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Preface

This volume constitutes the proceedings of the 14th International Conference on
Artificial Intelligence and Soft Computing, ICAISC 2015, held in Zakopane, Poland,
during June 14-18, 2015. The conference was organized by the Polish Neural Network
Society in cooperation with the University of Social Sciences in £6dZ, the Institute
of Computational Intelligence at the Czgstochowa University of Technology, and the
IEEE Computational Intelligence Society, Poland Chapter. Previous conferences took
place in Kule (1994), Szczyrk (1996), Kule (1997), and Zakopane (1999, 2000, 2002,
2004, 2006, 2008, 2010, 2012, 2013, and 2014) and attracted a large number of papers
and internationally recognized speakers: Lotfi A. Zadeh, Hojjat Adeli, Rafal Angryk,
Igor Aizenberg, Shun-ichi Amari, Daniel Amit, Piero P. Bonissone, Jim Bezdek,
Zdzistaw Bubnicki, Andrzej Cichocki, Wlodzistaw Duch, Pablo A. Estévez, Jerzy
Grzymala-Busse, Martin Hagan, Yoichi Hayashi, Akira Hirose, Kaoru Hirota, Hisao
Ishibuchi, Er Meng Joo, Janusz Kacprzyk, Jim Keller, Laszlo T. Koczy, Adam Krzyzak,
Soo-Young Lee, Derong Liu, Robert Marks, Evangelia Micheli-Tzanakou, Kaisa
Miettinen, Henning Miiller, Ngoc Thanh Nguyen, Erkki Oja, Witold Pedrycz, Marios M.
Polycarpou, José C. Principe, Jagath C. Rajapakse, Sarunas Raudys, Enrique
Ruspini, Jorg Siekmann, Roman Stowiriski, Igor Spiridonov, Boris Stilman, Ponnuthurai
Nagaratnam Suganthan, Ryszard Tadeusiewicz, Ah-Hwee Tan, Shiro Usui, Fei-Yue
Wang, Jun Wang, Bogdan M. Wilamowski, Ronald Y. Yager, Syozo Yasui, Gary Yen,
and Jacek Zurada. The aim of this conference is to build a bridge between traditional
artificial intelligence techniques and so-called soft computing techniques. It was pointed
out by Lotfi A. Zadeh that "soft computing (SC) is a coalition of methodologies which
are oriented toward the conception and design of information/intelligent systems. The
principal members of the coalition are: fuzzy logic (FL), neurocomputing (NC), evo-
lutionary computing (EC), probabilistic computing (PC), chaotic computing (CC), and
machine learning (ML). The constituent methodologies of SC are, for the most part,
complementary and synergistic rather than competitive." These proceedings present both
traditional artificial intelligence methods and soft computing techniques. Our goal is to
bring together scientists representing both areas of research. This volume is divided into
Six parts:

Data Mining,

Bioinformatics, Biometrics and Medical Applications,
— Concurrent and Parallel Processing,

Agent Systems, Robotics and Control,

— Artificial Intelligence in Modeling and Simulation,
Various Problems of Artificial Intelligence.

The conference has attracted a total of 322 submissions from 39 countries and after the
review process, 142 papers have been accepted for publication. The ICAISC 2015 hosted
the Workshop: Large-Scale Visual Recognition and Machine Learning organized by
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— Marcin Korytkowski, Czgstochowa University of Technology, Poland,
— Rafatl Scherer, Czgstochowa University of Technology, Poland,
— Sviatoslav Voloshynovskiy, University of Geneva, Switzerland.

The Workshop was supported by the project "New Perspectives on Intelligent Multi-
media Management With Applications in Medicine and Privacy Protecting Systems"
cofinanced by a grant from Switzerland through the Swiss Contribution to the Enlarged
European Union, and supported by the project "Innovative methods of retrieval and
indexing multimedia data using computational intelligence techniques" funded by the
National Science Centre. I would like to thank our participants, invited speakers, and
reviewers of the papers for their scientific and personal contribution to the conference.

The following reviewers were very helpful in reviewing the papers:

R. Adamczak A. Dzielinski J. Kacprzyk
H. Altrabalsi P. Dziwiriski W. Kaminski
S. Amari S. Ehteram T. Kaplon

T. Babczyniski A. Fanea A. Kasperski
M. Baczynski B. Filipic V. Kecman
A. Bari L. Fister E. Kerre

M. Biatko C. Frowd P. Klesk

L. Bobrowski M. Gabryel J. Kluska

L. Borzemski A. Gaweda L. Koczy

J. Botzheim M. Giergiel Z. Kokosinski
T. Burczynski P. Glomb A. Kotakowska
R. Burduk Z. Gomo6tka J. Konopacki
K. Cetnarowicz M. Gorawski J. Korbicz

L. Chmielewski M. Gorzatczany P. Korohoda

W. Cholewa G. Gosztolya J. Koronacki

M. Choras D. Grabowski M. Korytkowski
K. Choros E. Grabska J. Koscielny

P. Cichosz K. Grabczewski L. Kotulski

R. Cierniak C. Grosan Z. Kowalczuk
P. Ciskowski M. Grzenda M. Kraft

S. Concetto J. Grzymala-Busse M. Kretowski
B. Cyganek J. Hihner D. Krol

J. Cytowski H. Haberdar B. Kryzhanovsky
R. Czabariski R. Hampel A. Krzyzak

I. Czarnowski Z. Hendzel A. Kubiak

J. de la Rosa F. Hermann E. Kucharska
K. Dembczynski Z. Hippe J. Kulikowski

J. Dembski A. Horzyk O. Kurasova

N. Derbel M. Hrebieri V. Kurkova

G. Dobrowolski E. Hrynkiewicz M. Kurzyniski
W. Duch I. Imani J. Kusiak

L. Dutkiewicz D. Jakébezak N. Labroche

L. Dymowa A. Janczak J. Liao



A. Ligeza

F. Liu

H. Liu

M. Lawrynczuk
J. Leski

B. Macukow

K. Madani

L. Magdalena
W. Malina

R. Mallipeddi

J. Mandziuk

U. Markowska-Kaczmar
M. Marques

A. Materka

R. Matuk Herrera
J. Mazurkiewicz
V. Medvedev

J. Mendel

J. Michalkiewicz
Z.. Mikrut

S. Misina

W. Mitkowski
W. Mokrzycki
O. Mosalov

T. Munakata

H. Nakamoto
G. Nalepa

M. Nashed

A. Nawrat

F. Neri

M. Nieniewski
R. Nowicki

A. Obuchowicz
G. Onwubolu

S. Osowski

A. Owczarek

G. Paragliola

K. Patan

A. Pieczynski
A. Piegat

Z. Pietrzykowski
P. Prokopowicz
A. Przybyt

A. Radzikowska
E. Rafajtowicz
E. Rakus-Andersson
M. Rane

A. Rataj

L. Rolka

F. Rudzinski

A. Rusiecki

L. Rutkowski

S. Sakurai

N. Sano

J. Sas

A. Sashima

R. Scherer

P. Sevastjanov
A. Sedziwy

J. Silc

W. Skarbek

A. Skowron

E. Skubalska-Rafajtowicz
K. Slot

D. Stota

A. Stowik

R. Stowinski

C. Smutnicki

A. Sokotowski
T. Sottysinski
B. Starosta

J. Stefanowski
E. Straszecka

V. Struc
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B. Strug

P. Strumitto

M. Studniarski
R. Sulej

J. Swacha

P. Szczepaniak
E. Szmidt

M. Szpyrka

J. Swigtek

R. Tadeusiewicz
H. Takagi

Y. Tiumentsev
A. Tomczyk

V. Torra

F. Trovo

M. Urbanski

C. Uzor

T. Villmann
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M. Wygralak
R. Wyrzykowski
G. Yakhyaeva
J. Yeomans

J. Zabrodzki

S. Zadrozny

D. Zakrzewska
A. Zamuda

R. Zdunek

Finally, I thank my co workers Lukasz Bartczuk, Piotr Dziwifiski, Marcin Gabryel,
Marcin Korytkowski, and the conference secretary Rafat Scherer, for their enormous
efforts to make the conference a very successful event. Moreover, I would like to appre-
ciate the work of Marcin Korytkowski who designed the Internet submission system.

June 2015

Leszek Rutkowski

President of the Polish Neural Network Society
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Abstract. Big data sets and variety of data types lead to new types
of problems in modern intelligent data analysis. This requires the devel-
opment of new techniques and models. One of the important subjects
is to reveal and indicate heterogeneous of non-trivial features of a large
database. Original techniques of modelling, data mining, pattern recogni-
tion, machine learning in such fields like commercial behaviour of Internet
users, social networks analysis, management and investigation of various
databases in static or dynamic states have been recently investigated.
Many techniques discovering hidden structures in the data set like clus-
tering and projection of data from high-dimensional spaces have been
developed. In this paper we have proposed a model for multiple view
unsupervised clustering based on Kohonen self-organizing-map method.

1 Introduction to the Issue

Lots of methods discovering hidden structures in the big data sets base on vari-
ations of correlation analysis, see e.g. [41], [40]. The curse of dimensionality has
the unpleasant features in practice: the requirements for the memory space and
CPUs time. Most known techniques accent the automation and efficiency of
the data analysis systems, but omit the effectiveness of them. Therefore, tech-
niques leading to reduction of dimensionality of data sets [21] or reduction of
attributes in the rough sets [20] are applied by many researchers. Also Kohonen
maps perform a low-dimensional visualization of high-dimensional data [25]. Big
data sets with undiscovered structure are inherent e.g. in the following areas. In
earth sciences, for example, the detailed information about the energy reflected
or emitted by the different materials has been used in mineral and geological ex-
ploration, forest biomass estimation, urban monitoring, cultivation assessment,
detection of areas with a relatively hot temperature (possible seismic activity)
etc. [40]. Analysed images are composed of tens to thousands of variables. They
represent the amount of solar energy reflected by the sensed objects at differ-
ent wavelengths (hyperspectral images). During the analysis information is di-
vided into narrowband pass channels ranging from visible to infrared frequencies.

© Springer International Publishing Switzerland 2015
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In social sciences and marketing behavioral analysis of likes of potential cus-
tomers lead to the precise commercial offer. The similar groups of web surfers
probably should buy similar products in internet shops. Collected data on visited
web pages, clicked links etc. could help in making the characteristics or profiles
of such groups. The multiple view approach arises from the fact that the web
pages have following multiple representations [7]:

- the term vector corresponding to words occurring in the pages themselves,

- the graph of hyper-links between the pages, and

- the term vectors corresponding to words contained in anchor text of links
pointing to the pages.

Solving the problem of clustering of web-surfers leads to an appropriate offer for
the possible customer expectation. As "views" we mean multiple representations
in different spaces of the same multidimensional samples. The different represen-
tations often could have different statistical properties, then the question how to
find a compatible pattern from multiple representations is a challenge. Note that
the view in each space could have different measures. We are still looking for
the answer of the question: does a prototype vector of patterns, trained basing
on multiple representations is better, more accurate and robust than one based
on a single view? Many researchers are inspired to work for satisfactory solu-
tions relating tasks like multi-view clustering [7] and intelligent data analysis
[43]. The space of interests with respect to initial knowledge could be pointed
and developed as supervised, semi-supervised and unsupervised methods. The
multiple-view learning using the co-training method (semi-supervised), was in-
troduced and investigated in [6] by Blum and Mitchell. Next researchers (see
e.g. [12], [8], [19], [24], [30]) extend the idea of co-training to explicitly mea-
sure the degree of agreement between the rules in different views. A few works
on multiple view clustering [5], [35], [44] are focused on the simpler cases of
two views with limiting assumptions. The spectral clustering algorithms using
the minimizing-disagreement rule and the normalized cut from a single view to
multiple views were investigated in [35] and [44] respectively. The authors also
investigated related new methods like e.g. ensemble clustering [17], [39] which
combines different clusters for a single view data or multi-type clustering [38]
using attribute information for clustering process.

Similar algorithms derived from artificial intelligence methodology have been
applied for variety of tasks (see e.g. [1], [2], [10], [13], [14], [15], [26], [27], [31],
33], [34], [36], [37]).

In this paper, we investigate the method of multiple-view unsupervised clus-
tering derived from the Kohonen SOM (Self-Organizing-Map) algorithm. This
approach leads to the dimensionality reduction and realise the initial grouping
of the data set. In the classification phase for the clustering process we used
in our previous work [18] the well known k-means method. In this article we
present the results of implementation of the different approach: fuzzy c-means
classifier. In Section 2 we describe the main scope of the article. In Section 3,
the experimental results on artificial data sets are illustrated.
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2  Main Overview of Work and Used Tools

This paper is a proposition of a distributed framework for unsupervised cluster-
ing methodology. We apply the Kohonen ([25]) Self Organizing Map (SOM) for
initial grouping of the data. The SOM has the natural convenience to perform
reduction of dimensionality of the data set, allows to discover the internal struc-
ture of the data and visualize the results in two dimensional space. The SOM
algorithm is used in unsupervised mode. In the next phase of our framework
the fuzzy c-means algorithm (see [42]) is used to find the optimal (in a cer-
tain sense) representation for the previously learnt classes. The final step uses
Xie-Beni index as a validity measure of our fuzzy clustering.

Now we present a brief description of operation rules of algorithms. The
Figure 1 shows the base structure of the Kohonen SOM network. The input vec-
tors (feature space) are projected to the network at input layer and the classes
are formed on the output layer basing of similarities and differences of inputs.

Fig. 1. The base structure of the Kohonen SOM network

Algorithm operates as follows:

1. Initialize weights of the map nodes (for instance: random or uniform)

. Pass input vector to the input nodes

3. Calculate the Euclidean distance between input vector and all nodes, finding
the smallest distance output node (so called: winner node).

4. Update weights of the winning node and its neighbour by the formulas:

[\

w1 (K, J) = wn(k, j) +En)[x(7) — wn(k, j)] (1)
for the input weights of winner node, and
wn+1(m7j) = wn(maj) + d(m7 n, k)f(n)[x(j) - wn(k’j)} (2)

for the neighbour nodes inside the area around the winner with radius de-
fined by function d(m,n, k) (decreasing function depending on the number
of iteration);

where n - number of iteration, k - number of winning node, j — j'th co-
ordinate of the vector, £(n) - decreasing function of modification weights
depending on number of iteration, x(j) input pattern vector j'th coordinate.
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5. Repeat above steps until a measure of convergence (e.g. recursive mean
square error method RMS) reaches assumed limit level.

The self-organizing-map performs in natural manner human brain method of
organizing information. The outcome of the algorithm is a low-dimensional rep-
resentation of the input space of the training samples, called a map. SOM reduces
the dimensionality of the input space preserving its topological properties.

The fuzzy c-algorithm was formulated by Dunn [16] and developed by Bezdek
[4]. This method of clustering allows the elements of data to belong to more than
one clusters. It is based on minimization of the following measure function:

N C
T =3 S ulla — e (3)

i=1 j=1

where u;; is the degree of membership of z; in the cluster j, z; is the i — th of
d-dimensional measured data, ¢; is the center of the j — th cluster, and ||| is a
norm expressing the similarity between the measured sample and the center, and
1 < m < oo. Fuzzy clustering is carried out through an iterative optimization of
the function (3), with the update of membership u;; and the cluster center c;
by:

—1

2
C m_1
Uij = (Z - Cj”) (4)
= llzi —cxll

and
N
> ufl
i=1
=" (5)
>
i=1
The iteration process stops when
max;; { u%ﬁl) — ul(?) } <e (6)

where k is the number of iteration step, and ¢ is a termination criterion constant.
Algorithm operates as follows:

1. Initialize U©® = [uij(o)] matrix;

2. At k — th step calculate the vector of centers CF) = [¢;] with U®) using
expression (5);

3. Update U®) UKk+Y ysing (4);

4. Repeat above steps until (6) is fulfilled.

The fuzzy behaviour of this algorithm is caused by factors of matrix U*) which are
the numbers between 0 and 1, and represent the degree of membership between data
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and centers of clusters. The last phase of our work is the test of validity of performed
clustering. We applied the Xie-Beni index (see [42]) as a measure of compactness
and intra-cluster diversity of obtained partitions. This index is a function of the
data set and the centroids of the clusters. The Xie-Beni factor (for details see: [42])
is in the form:

2
ugi|lzi — ]

M=

k
j=1i=1

uUuxp (U, V;X) = . 9
n- <m1n(#l)\|cj — ¢ )

(7)

where n is a whole number of objects in set. Its sense may be understood as a
ratio of the total variation of the partition and the centroids and the separation
of the centroids vectors.

3 Simulation Experiments Results

In simulation experiments we used the artificially generated sets, named View 1
and View 2, consisting of data with 30 attributes and 4 clusters each. Detailed
information on sets is presented in Table 1 and Table 2.

Table 1. Detailed information of the data set View 1

Cluster Number of Standard Number of

No. attributes deviation instances
0 30 0.16 36
1 30 0.14 11
2 30 0.07 48
3 30 0.28 48

Total number of instances in View 1 is 143.

Table 2. Detailed information of the data set View 2

Cluster Number of Standard Number of

No. attributes deviation instances
0 30 0.10 53
1 30 0.10 22
2 30 0.07 68
3 30 0.14 67

Total number of instances in View 2 is 210.
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Fig. 2. Graphic representation of the classification of Views 1 and 2 by the Kohonen
SOM
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Fig. 3. The diagram of resulting patterns combined from two views

The Kohonen SOM - the net of 30x30 neurons - applied for testing sets, led to
results presented in Figure 2. The final map of neurons is a logical multiplication
of the matrices, which represent the activity of neurons in different views. Values
of active neurons (visible on diagrams) are equal to one, the remaining values
of neurons are zeros (not shown). The final map of the active neurons, which
defines the prototype vector is shown in Figure 3.

Next we combined obtained views by the operation of logical multiplication.
Figure 3 shows active neurons belonging to both previous views jointly. Then the
active neurons weights were applied with the Fuzzy c-means clustering procedure
as the input vectors. The Xie-Beni factor ux g was used for validation of obtained
results - reaching its minimum value uxpg,,,, = 0.0583558. The resulting pattern
consists of four clusters. The validated centers, representing optimal patterns of
the tested data sets, are sixty-dimensional vectors - shown in Table 3.
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Centre
No.
0

Table 3. Detailed information of the validated centers

Coordinates
in D=60

[1.970, 1.000, 1.070, 1.060, 0.978, 1.100, 0.980, 1.060, 1.040, 1.000,
0.997, 0.995, 1.030, 1.020, 0.981, 1.010, 0.990, 1.050, 1.020, 1.060,
0.966, 1.040, 0.948, 1.040, 1.050, 0.990, 1.050, 1.010, 1.020, 1.010,
1.200, 0.562, 0.654, 0.647, 0.610, 0.632, 0.644, 0.611, 0.644, 0.619,
0.651, 0.657, 0.617, 0.633, 0.604, 0.599, 0.624, 0.638, 0.631, 0.607,
0.613, 0.634, 0.612, 0.600, 0.618, 0.614, 0.640, 0.608, 0.621, 0.663]
[0.987, 1.010, 1.020, 1.060, 0.991, 1.020, 1.040, 0.990, 0.998, 1.020,
1.030, 1.030, 0.982, 0.992, 1.030, 0.998, 1.000, 1.050, 1.030, 1.030,
0.968, 1.020, 0.995, 1.010, 0.997, 1.020, 1.020, 1.010, 1.060, 1.050,
0.610, 0.608, 0.627, 0.633, 0.601, 0.627, 0.632, 0.623, 0.615, 0.623,
0.620, 0.619, 0.627, 0.611, 0.595, 0.601, 0.607, 0.65, 0.623, 0.623,

0.586, 0.618, 0.594, 0.625, 0.611, 0.618, 0.640, 0.610, 0.637, 0.636]
[1.980, 2.100, 1.050, 0.976, 1.050, 1.090, 0.989, 1.080, 1.080, 1.050,
1.030, 0.972, 1.020, 1.020, 0.931, 1.040, 1.010, 1.090, 0.989, 1.020,
1.020, 1.020, 0.968, 1.060, 1.070, 1.020, 1.080, 1.010, 1.030, 1.030,
1.210, 1.240, 0.638, 0.635, 0.615, 0.614, 0.613, 0.604, 0.625, 0.630,
0.644, 0.656, 0.608, 0.628, 0.595, 0.625, 0.600, 0.616, 0.604, 0.603,
0.639, 0.629, 0.654, 0.612, 0.607, 0.610, 0.614, 0.619, 0.607, 0.630]
[1.030, 2.030, 1.020, 1.000, 1.030, 1.020, 1.030, 1.010, 1.030, 1.030,
1.040, 1.020, 1.020, 1.020, 1.000, 1.020, 1.020, 1.050, 1.010, 1.000,
1.020, 1.020, 1.020, 1.010, 1.010, 1.030, 1.030, 1.010, 1.030, 1.040,
0.631, 1.220, 0.614, 0.604, 0.614, 0.624, 0.612, 0.618, 0.621, 0.632,
0.624, 0.614, 0.614, 0.619, 0.604, 0.636, 0.618, 0.631, 0.611, 0.621,
0.627, 0.619, 0.617, 0.622, 0.617, 0.623, 0.625, 0.620, 0.627, 0.619]

4 Conclusions and Remarks

In this paper, we have proposed the distributed framework for multiple view
classification task. Our method is based on Kohonen Self-Organizing-Map and
fuzzy c-means clustering method. The evaluation of the numerical experiments
for synthetic data sets is presented. The simulations show the effectiveness and
great potential of the proposed approach. The framework could be applied to
various types of multiple view data sets. Our methodology seems to be appli-
cable to many data mining problems including stream data (]|23], [32]). In the
future research we plan to develop new algorithms for multiple view unsupervised

learning.
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Abstract. The paper presents an idea to combine variety of Natural
Language Processing techniques with different classification methods as
a tool for automatic prediction mechanism of related phenomenon. Dif-
ferent types of preprocessing techniques are used and verified, in order
to find the best set of them. It is assumed that such approach allows to
recognize the phenomenon which is related to the text. Research uses
the real input from the big data systems. The news website articles are
the source of raw text data. The paper proposes the new, promising
ways of automatic data and content mining methods for the big data
systems. The presented accuracy results are much better than average
classification for sentimental analysis done by the human.

1 Introduction

The number of web pages which are available on the Internet has grown from
10 million to more than 150 billion from 2001 to 2009. The enormous number
of Internet users together with vastly increasing amount of web content push
engineers to find new ways of automatic data and content mining methods for
the big data systems. Content of this paper concerns topic of raw text data
classification using multiple techniques and classifiers. The main aim of this
paper was to show how our additional techniques could improve classification
accuracy with different classifiers [1]. Studies were based on idea to check whether
it is possible to categorize raw text by some particular phenomenon, which relates
to it, using text mining, Natural Language Processing and multiple classification
methods. Paper tries to answer the question if Natural Language Processing
methods can be used as an input for automatic mechanism to predict related
phenomena. Whole research was based on English language as it is the most
popular language used in the web [16][20]. A human can recognize if given data
concerns some particular phenomenon, e.g. war, disaster, or more general one
e.g. being positive or negative. It is very hard to implement human-like detection
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mechanism of relations, which could work with various text data types and
give high classification accuracy. The assumption is that text which has some
particular phenomenon should contain unique features for this phenomenon,
which could be extracted using NLP [10].

The first area for which existing solutions should be shown is sentiment anal-
ysis. The topic has been covered by many approaches and implementations,
where one of them is WordNet-Affect project created and described by Carlo
Strapparava and Alessandro Valitutti [18]. It assumed a usage of WordNet text
corpora as a base for affective categorization of particular words. As in case of
regular WordNet corpora, here each word received at least one label describing
this word in connection with such characteristics as emotion or mood. This kind
of categorization is later useful for sentimental analysis.

A bit different approach was presented by Stefano Baccianella, Andrea Esuli,
and Fabrizio Sebastiani [5], who created text corpora also based on WordNet
but included categorization of words for particular sentiment. Each element in
the net was categorized into three types: negative, positive and neutral. Authors
created natural language processing base later used for text categorization and
sentiment analysis. Complete solution and research in this area was presented
by Bo Pang and Lillian Lee [15]. Authors created sentiment analysis solution,
which was based on movie reviews which are tend to be sentimental oriented.
During the research several machine learning techniques has been used in order to
check best possible solution. Authors used IMDB reviews set for training purpose
and results validation. The used text corpora allowed to base training on huge
amount of text, which could express most language details regarding sentimental
analysis. Second important part for this research of Natural Language Processing
area is text simplification. Simplification of text was described by Beata Beigman
Klebanov, Kevin Knight, and Daniel Marcu [9], who implemented the algorithm
of automatic phrases simplification, which could be used for later processing of
the text. R. Chandrasekar, B. Srinivas [2] also tried to cover the topic of text
simplification and presented few approaches for it.

2 Natural Language Processing Techniques

Natural language processing is an approach which allow to find meaning of the
free text [6]. The first technique which should be described for NLP is tokeniza-
tion. It is cutting string into still useful linguistic units. Tokenization can be
done using given regular expressions in order to reach more advanced text split,
which allow to control a tokenization process. There are many approaches of
tokenization, e.g. the most simple one is tokenization using whitespaces [8]. An-
other method is a tokenization with the usage of regular expressions. It gives
much better control over the process and it can be extended with the usage of
text corporas or even machine learning techniques such as regression, as it can
give better results for more complicated text data [14]. Another NLP technique
which was used during the research is a lemmatization, which is a transformation
of word into base form. This kind of a base form is called lemma. The lemmati-
zation matches words which basically have the same meaning but differ in form
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(e.g. plural or singular). The lemmatization is a normalization process which can
be applied to text in order to get the as simple version of words as possible. It
simplifies the processed text and it gives benefits during later text data usage
such as text categorization [11]. Very useful concept which was extensively used
during the research is WordNet. It is a lexical database of the English language.
It groups words within synonymic groups which can be called synsets [13]. Tt is
possible to get information about relation between words, such as hypernyms,
antonyms,nouns related to adjectives, root adjectives [22]. WordNet is accessible
with some libraries like NLTK framework and allows to find relations which are
required during text mining.

Topic covered by the research is a sentimental analysis which is also within a
scope of natural language processing. It is a categorization of a text into few given
subjective groups e.g., emotions, opinion or mood. The sentimental analysis is
usually applied for whole texts in order to get information about selected feature.

3 Research Design and Methodology

3.1 Source Data Processing Methods

The data used for research was taken from web pages containing news articles
from different categories such as www.bbc.com, www.cnn.com, www.yahoo.com,
in order to reach a maximal level of accuracy and to reflect real live usage. It
was assumed that the data extracted from a collection of articles should contain
a title, an author and an actual article text.

Raw texts which can be found in articles, books and web pages are full of ele-
ments which do not introduce any additional information and are useful mostly
by humans [21][19]. Such elements could be useful only when text would be an-
alyzed from the perspective of the human, not the machine which is a modern
computer. It’s not trivial to determine which exactly parts of the raw text should
be removed in order to reduce noises crated by uninformative elements. Our idea
was to divide text filtering process into three main parts called later levels of
text filtering. Each level of the filtering uses additional techniques which should
give better results than other once. It is a very important part of the categoriza-
tion process because it determines categorization accuracy due to interrelation
between information and noise amount, which could have great influence on re-
sults. Please find the description of levels below. Level I - filtering is mostly
focused on short words, stop words and punctuation marks removal, including
also conversion to lowercase. It also uses lemmatisation [4] techniques. This level
contains techniques which are commonly used in text processing and will be later
used as a reference for results analysis. Level 2 - filtering is based on semantic
trees analysis and removal of similar words according to the neighborhood in the
tree. It was our idea to combine such extensive related words merging with text
categorization. Diagram of the 2nd filtering level was presented in the Figure 1.
Level 8 - filtering is connected with removal of adjectives and replacing them
with corresponding nouns. The method should give accuracy enhancement in
case of using words such as ”Polish” and ”Poland”, so we could get the same
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word two times instead of having two different words. Our idea was to combine
this method with text categorization to check if it gives satisfying results.

The result of input data processing was the list of the most frequent words
extracted from the article for each filtering level. It was obligatory to perform
tokenization of the raw text before any mechanism proceeding. As a result of
the tokenization, the list of single words is obtained, on which allows frequency
analysis is being based. This initial processing is included in the first level of
the filtering and functions as a base for later activities. The first level was based
on well-known and widely used techniques. The first level of filtering which was
performed on raw tokens contained following elements: lemmatization, removal
of stop words, removal of punctuation, removal of short words [12].

In case of the second and the third filtering levels it was our idea to use NLTK
as a basis for filtering of related words, and to test them as a group with many
different classifiers.

The lemmatization process was performed by the method from NLTK library
[14]. It allows conversion of token to their simplified version. The second level of
data filtering was focused on the extended lemmatization method which could
match less similar words [19][21]. Whole concept was based on semantic trees
which are available with NLTK Wordnet corpus [22]. Each token from the list is
compared with each other to check if they are close enough in the semantic tree
that they can be merged. As a result of merging token which is located closer
to tree trunk is placed as an output token. Minimal similarity level and minimal
distance between two words can be configured, so it is possible to check how such
merging could impact later classification results. In case of the later research only
one set of fixed values for both parameters was used. Minimal similarity was set
to 85% and maximum semantic tree distance was set to 2. The third level of the
filtering is based on transformation of adjectives into nouns. This operation is
performed in order to get one word instead of two which have almost the same
meaning but by the frequency distribution are counted as a separate word. First
step of this process is to find synonyms that share a common meaning with the
token. Later all lemmas that have a proper type are extracted, which means in
this case that they have to be adjectives. After that, for each lemma we search for
derivationally related forms. In the end, all related forms are put into result list.
First element from the list is used later as transformed token. We planned that
feature vector will contain N features where each feature meaning would be the
existence of particular word in examined text. The creation of the feature vector
consisted in creating a separate frequency distribution for words from articles
marked as positive and negative. This kind of approach makes it possible to have
the most popular words which are used in each text category. Technique can be
also applied for a categorization with more than two possible output categories.
It can be done by creation of M number of separate frequency distribution, where
M is a number of categories. After that N most popular words could be taken
as a feature vector. Important note here is that N/3 words should be taken from
each frequency distribution, so each category would be represented by the same
number of features. Due to the fact that the feature vector is a set of words it
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Fig. 1. Diagram presenting Level 2 filtering algorithm
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is possible to have less words than it was planned. Most frequent pools of words
for each category might overlap which cause a shrink of the final feature vector.

3.2 Natural Language Processing and Classification Mechanisms

According to the filtering levels the following NLP techniques were applied: di-
viding text into tokens - called also as tokenization, usage of ready-to-use seman-
tic trees, usage of text dictionaries, frequency distribution analysis, lemmatiza-
tion. It was expected that each of listed methods should give additional accuracy
enhancement that should be examined by testing different filtering levels. Most
of them were taken from the NLTK library but some required additional custom
implementation. Important thing here was the usage of the ready-to-use dictio-
naries and corpuses which contain already collected data for different purposes.
Two corpuses used during the implementation were a stop words dictionary and
a wordnet dictionary. Wordnet corpus was the most important one because it
allowed to analyze the relations between examined words. Having such large lex-
ical database of English it was possible to match words having the same meaning
but different form, which was extremely useful during research. This technique
was mainly used by the us in order to implement the 2nd and the 3rd filtering
level. NLTK library provides also many mechanisms for text processing such as
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Fig. 2. Algorithm for different classifiers testing

frequency distribution and classifiers [14]. Each classifier has unified interface
and can be used separately. The assumption was that interface should contain a
learning method, a testing method and a classifying method. Learning method
receive a training set and a train classifier object. Later classifier instance can be
tested with the test method that receives test data set and returns an average ac-
curacy for all test set elements. Additionally it is possible to classify one feature
vector. Classifiers were used to test whether our additional techniques improved
the classification. Comparison of classifiers wasn’t the aim of this work.

The neural network classifier was implemented to let user create Multilayer
Perceptron with custom parameters such as a number of hidden neurons, a
number of hidden layers, a number of input and output neurons, a type of the
network and types of the activation functions.

Some of the parameters were used to test classification accuracy by changing
them. During the test also 3 other classifiers were used in order to verify if results
can be reproduced with other classifier types.

Max Entropy classifier was used with improved Iterative Scaling algorithm
without Gaussian prior. Second classifier was the Naive Bayes classification al-
gorithm which due to simplicity and popularity could give good comparison



NLP Methods Used for Automatic Prediction Mechanism 19

point. The last classifier was based on decision tree with maximum depth of 100
and the use of a single n-way branch for each feature.

Research part concerning a testing of the classifiers was designed and imple-
mented that each classifier could be tested with different parameters [17]. The
core part of the test mechanism is a definition of test case where user can put
data regarding the values of parameters which are later used by the classifiers.
Such approach makes it possible to check how different classifiers behave against
changing parameters. The testing is done by first shuffling dataset and later by
splitting it into two parts. The classifier is trained with a training part of the
data set and later is tested with the test data set. An average accuracy of classi-
fication is a result for the classifier testing - Figure 2. Important remark is that
testing is done for each filtering level. Each classifier is tested many times with
shuffled data set which removes chance of wrong results and let user calculate
an average accuracy from those many iterations. Results of each test case, each
classifier, each filtering level are stored in the database to make them easier for
later results visualization and analysis.

For each case there was separate test description structure which contained
the following element: a parameter name from configuration, a parameter val-
ues range, a parameter values step, a test case name, a test case description,
classifiers which should be used during testing. Test cases examined the relation
between a number of training epochs for Multilayer Perceptron Classifier and
the classification accuracy. The reason why this test was executed is that pos-
sibly minimal number of training epochs can make learning time shorter and it
means that training is more efficient. In the test, the number of training epochs
was set as a range of values between 1 and 20. Number of features which were
extracted from the data set was set to 100. Only 30 most informative features
were selected using Naive Bayesian Classifier.

The test for each number of epochs was repeated 15 times in order to get
average results. The test gave very important outcome which is information that
any number of training epochs bigger than 3 can give proper classification results
that made later tests much shorter. The conclusion is that neural networks does
not have to be trained with big amount of learning epochs when the big amount
of data is used for the training.

Test cases examined the relation between number of training epochs for Max-
ent Classifier and classification accuracy. In this case a number of iterations was
examined in order to get information when a number of iterations is sufficient.
In the test, number of training iterations was set as a range of values between 1
and 20. Number of features which were extracted from data set was set to 100.
Only 20 most informative were selected using Naive Bayesian Classifier. The
test for each number of epochs was repeated 15 times in order to get average
results. It is possible to get a few important remarks. The first remark is that
Maxent Classifier reaches relatively stable classification accuracy after the 9th
iteration and was later used as a number of iterations. The second remark was
that classification accuracy for the 3rd level of input data filtration was better
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during early training stages. It can be noticed that results in iterations between
10 and 20 are quite similar for all filtering levels.

The data set used for testing contained 1039 articles, where each article had
at least 200 words. For the testing purposes the data set was divided into 2 parts,
where one part was used for the training and the rest was used as a testing data
set. The verification of the results was done by presenting randomly shuffled
data set for the training and testing purposes to each classifier for more than 10
times. The test resulted in obtaining the accuracy of classification for classifier
type and test parameters.

4 Results

In the first test all possible classifiers were used to check how size of features
vector used as an input influence the ability to classify phenomenon. It was also
important how classifiers behave using different filtering levels. The reason why
this test was performed is importance of training speed and ability to reach really
good results using as small number of features as it is possible. Usage of filtering
most informative features was disabled during the test in order to check only
relation between features number and accuracy. In the test, number of features
in vector was set as a range of values between 1 and 20. In the second test, it was
examined how different classifiers types behave using most informative features,
which were selected from whole set of features using Naive Bayes Classifier. As
previously feature vector was used as a input data for classification, the difference
was that such vector contained only features with the biggest information gain.
Both tests were executed in order to check if techniques used by us enhance the
classification accuracy. The first thing which could be observed is the accuracy
gain in case of Naive Bayes Classifier. As it was presented in the Figure 3 and
Figure 4, it can be noticed that for both case accuracy enhance was reached for
additional input data filtering levels. The result presented in the Figure 3 shows
that the best results are reached using 3rd filtering level and they oscillate around
70% accuracy. For results presented in the Figure 4 it can be noticed that there
is no significant difference in terms of accuracy for 2nd and 3rd filtering level,
nevertheless both additional filtering techniques introduced by us gave accuracy
gain comparing to 1st filtering level. There is also difference in the maximal
accuracy for test where most informative features were used. Maximal accuracy
reached in the test oscillated around 73%, which means that 3% accuracy gain
was reached comparing to test where most frequent words were used.

Results presented in Figure 5 and 6 show that from different classifiers, when
most frequent words are used as a input data, the best results are reached for
Naive Bayes Classifier and Max Entropy Classifier. There is also no significant
difference for different classifiers, when most informative words are used as a
input, which shows that some classifiers are better in classification of data with
information noise, as it takes place in case of most frequent words.
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Chart of relation between number of most frequent words used as a feature vector and accuracy

i /\/\\

Average accuracy
A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Number of most frequent words used as a feature vector

—&- Processing level: 1, classifier: NaiveBayesClassifier —&— Processing level: 3, classifier: NaiveBayesClassifier

Processing level: 2, classifier: NaiveBayesClassifier

Fig. 3. Results of test for relation between classification accuracy and number of feature
words in case of Naive Bayesian Classifier
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Chart of relation between number of most frequent words used as a feature vector and accuracy
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Fig. 5. Results of test for relation between classification accuracy and number of feature
words in case Level 3 of filtering and different classifiers
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Fig. 6. Results of test for relation between classification accuracy and number of most
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5 Conclusion

Based on the research results we reached the conclusion that it is very important
hot the raw data is prepared before providing it to a classifier. Some classifiers
are less sensitive to information noises which are included in unfiltered data. In-
teresting information gives also test which showed that Naive Bayesian Classifier
provides decent accuracy with the lowest training set size and training effort.

We got promising results when using Maxent Classifier since it proved to
be not sensitive to noise as in case of Naive Bayesian model. The the usage
of additional features filtering methods and big amount of features can possibly
give very good results. It is clear that usage of Naive Bayesian Classifier with the
3rd input data filtering level and features filtering is probably the best method
to be used for text data classification.

The aim of this research was to check if this is possible to recognize phe-
nomenon related to the text. Sentiment which is used as phenomenon in this
research, was successfully categorized on the bases of random articles which
were found on the Internet. It was proved that it is possible to build a system
that can be trained to recognize given phenomenon using Natural Language Pro-
cessing and machine learning techniques. This phenomenon was divided into set
of output categories.

We found additional techniques which helped us to improve classification ac-
curacy using different classification models. Tests we performed proved that our
additional techniques allowed to enhance accuracy of the classification for each
type of the classification model.

We support the idea of some researchers [7] that the selection of most infor-
mative features of the text leads to improvement in accuracy. Our observation
is that some classifiers are less sensitive to unfiltered features of an input data
than than the others. The most useful and efficient classifier seems to be Naive
Bayes, since it combines high training speed, ability to work with small data sets
and high classification accuracy.

The results of our research correspond to the results which were observed
by other researcher who used sentimental analysis data set containing movies
reviews and much bigger features number [15]. It is promising that methods
created by us proved to give accuracy gain. It is important that the accuracy
results which were gained during automatic classification of articles are much
better than average classification for sentimental analysis done by the human.

We conducted our research on one phenomenon, however it is theoretically
possible to apply existing methodology and implementation to other phenomena.
It would be very good to execute tests against other types of phenomena and
check how classifiers and filtering methods behave within such conditions. The
suggested future usage of Support Vector Machine Classifier could give promising
results since this classifier is popular in sentimental analysis and proved to be
the best in terms of categorization accuracy [3].

Further filtering algorithm enhancement is also possible. Filtering of raw text
could be extended with additional procedures using additional linguistic elements
such as adjectives and more sophisticated search of related words.
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Abstract. Knowledge mining from immense datasets requires fast, re-
liable and affordable tools for their visual and interactive exploration.
Multidimensional scaling (MDS) is a good candidate for embedding of
high-dimensional data into visually perceived 2-D and 3-D spaces. We
focus here on the way to increase the computational performance of MDS
in the context of interactive, hierarchical, visualization of big data. To
this end we propose a parallel implementation of MDS on the modern
Intel Many Integrated Core Architecture (MIC). We compare the timings
obtained for MIC architecture to GPU and standard multi-core CPU im-
plementations of MDS. We conclude that despite 30-40% lower compu-
tational performance comparing to GPU/CUDA tuned MDS codes, the
MIC solution is still competitive due to dramatically shorter code pro-
duction and tuning time. The integration of MIC with CPU will make
this architecture very competitive with more volatile on technological
changes GPU solutions.

Keywords: Interactive data visualization - Many integrated core archi-
tecture (MIC) - Multidimensional scaling - Method of particles

1 Introduction

Interactive data visualization is an important component of analytics in the
age of big data. It allows an expert to be directly involved in the process of
knowledge extraction. The possibility of manipulation on visualized data can
radically accelerate this processes by:
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— more precise selection of data mining tools,
— faster matching their parameters,

— formulation and instant verification of larger set of hypotheses.

Nowadays, multidimensional scaling (MDS) becomes one of the key compo-
nent and data embedding technique used for big data analytics and visualization
[1]. There are many overview papers describing plenty of algorithms realizing
MDS concept in confrontation to other feature extraction techniques (see e.g.
[1, 2]). In general, multidimensional scaling is defined as a non-linear mapping
F : Q — X of a “source” space of abstract items Q@ = {Oyi = 1,..., M}

(e.g, N-dimensional vectors {y; = (yi1,-..,¥in)}i=1,... M) into a “target” vector
space R" 5 X = {x; = (®i1, ..., Tin) }i=1,... M, where dimX = n << N. It trans-
forms a matrix of dissimilarities A = [0;;] = [0(Oj, Oj)] between all the objects
from € into a respective matrix d = [d;;] = [d(xi, xj)] of the Euclidean distances

between corresponding vectors x; from X. The mapping F' can be realized by
minimizing a cost (error) function V(A,d). Its proper selection is crucial for the
quality of data embedding [6].

In the classical MDS algorithms [1, 2] the error V(]|A — d||) (called also the
“stress”) depends on the norm of difference between distance matrices from the
“source” €2 and the “target” X spaces, respectively. For relatively low-dimensional
data (i.e., N is of order 10') the MDS mapping is able to properly approximate the
structure of original data in the visually perceived 2-D and 3-D Euclidean spaces.
Visualization of data by using various forms of the “stress” allows to focus on many
aspects of the original data such as its local or global properties.

However, for very high-dimensional data (i.e., N is of order 10°*) the error
functions based on direct ||A — d|| difference does not work properly due to
the “curse of dimensionality” principle [3]. As shown in [3-5], the results of
MDS mapping will improve dramatically when the cost function V(A ,d) is
represented by the Kullback-Leibler (K-L) metrics. Instead of minimizing the
error between A and d, the K-L divergence computes the distance between
probability densities of the nearest-neighbors occurrence in €2 and X spaces,
respectively. Nevertheless, the “stress” remains the function of € and d. It can
be minimized by using the same optimization procedures as those employed
for the classical MDS formulation. Because, the error function can be extremely
complex and multimodal, the heuristic optimization methods are often preferred
over gradient base techniques in search for the global minimum of V(A d). In
this paper we focus on the N-body (particle) solver, which belongs to one of the
most efficient heuristics used for the “stress” minimization (e.g.[6, 7]).

The classical MDS implementations, which base on the definition presented
above (including relatively novel and robust t-SNE algorithm based on the K-L
metrics [3]), suffers at least O(M?) computational and memory complexity due
to M x M sizes of both A and d matrices. Currently, only 103-10* data objects
can be visualized interactively on a desktop computer. As shown in [4, 5], visual-
ization of large data consisting of 10°+ of objects requires approximated versions
of MDS. They can be developed by limiting the number of computed distances,
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e.g., via random sampling [8, 9], landmark particles [8], core points selection, hi-
erarchical clustering and k-NN interpolation [10, 11], or by using more sophisti-
cated thinning or approximation procedures such as: deep belief networks (DBN)
[12], Barnes-Hut-SNE [4], Q-SNE [5] or LoCH [10]. There are also many parallel
realization of approximated versions of MDS including such the solvers as SMA-
COF [13], GLIMMER [11] and SUBSET [8]. They were implemented in both
multiprocessor architectures by using OpenMP interface (SMACOF, SUBSET)
and GPU boards by employing both low level GPU instructions (GLIMMER)
and CUDA environments (SUBSET).

However, the “brute force” particle-based MDS with O(M?) computational
complexity remains still the core of the most of these approximations. Its strong
point is both methodological and implementational simplicity with relatively
high fidelity in embedding of low-dimensional (i.e. N is of order 10) data [8,
11, 13]. Moreover, this method can be efficiently parallelized on the most of
existing and emerging computer architectures. It is also very important, that its
parallel implementation is relatively simple and does not involve sophisticated
algorithms, long coding and testing time.

In this paper we show that the brute force MDS can be used as the engine
for interactive exploration of large datasets. In this context we propose the Intel
Many Integrated Core (MIC) architecture [14] as computational platform for its
efficient implementation. We stress here the great advantage of the MIC solution
over GPU competitors in much shorter code production time with a comparable
performance.

2 Methodology
2.1 Particle-Based MDS

In particle-based multidimensional scaling [6, 7] the criterion function V(A,d)
is minimized by employing the N-body solver [6]. We assume that each data
object Oj,i = 1,2,..., M from a feature (“source”) space Q is represented by
a corresponding “particle” x; in 3-D X (“target”) space. The particle-particle
interactions are equal to 0 when the distance d;; = d(z;, ;) between particles
in X is equal to the dissimilarity d,; = 6(Oj, Oj) in the source space. Otherwise,
the particles repel (d;; < d;5) or attract (d;; > 6;;) one another. The total po-
tential energy of the particle system is equal to the value of the error function
V(A,d). The system of particles evolve in time according to the Newtonian
dynamics. Apart of the particle interaction forces we assume that the kinetic
energy is dissipated due to a friction force proportional to the particle veloc-
ity [6]. Resulting frozen configuration is the visual representation of € in X.
This particle-based MDS is well-known and has already been described in many
papers (e.g. [6-9, 11]).

As shown in the pseudocode from Listing 1, this N-body version of MDS,
similar to all “brute-force” MDS algorithms including its clones such as t-SNE
[3], suffers at least O(M?) memory and computational complexity. Therefore,
the interactive visualization of larger data sets consisting of M > 10* items on
up-to-the-date personal computers is impossible.
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M < number of particles;
Forces[0...(M — 1)] + 0;
for i < 0 to (M —1) do
for j«+ 0to (i—1) do
x; < Positionsi];
x; < Positions[jl;
f;; < ComputeForce (x;,x;, Distancesli, j]);
Forcesli] < Forcesli] + f;;;
Forces[j] < Forces[j] — fi;;

end

end

for i < 0 to (M —1) do

F; < Forces[i];

v; < ComputeVelocity(v;, F;);

x; < Positions]i];

Positions|i] + ComputePosition(x;,Vv;);
end

Listing 1: The pseudo-code of the sequential version of particle-based MDS
algorithm [9]

To find analytically the global minimum of criterion (1) a system of n x M
nonlinear equations in n-dimensional target space should be solved. However,
such the system is strongly overdetermined [8]. This means that only a subset
of all distances from A is needed to reconstruct N-D data topology in 3(2) di-
mensions. We show in [8], that a proper choice of this subset, which preserve the
topological structure of data, improves radically the computational efficiency of
MDS. One can employ even more sophisticated approximations of inter-particle
forces in X. For example, the Burnes-Hut trees were used for approximation
of forces from distant particles in t-SNE realizaton of MDS [4]. Another ap-
proximation is used in LoCH algorithm [10], which seeks to place each point x;
close to the convex hull of its nearest neighbors in X. All of these approximate
methods have computational comlexity lower than O(M?) (e.g., O(M log M) for
BH-SNE) and are really very efficient. They produce excellent results especially
for very high-dimensional data, which give similar distances between feature
vectors due to the “curse of dimensionality” principle. They allow indeed for
visualization of 10° data vectors in 2-D space in tens of minutes on a modern
laptop [4]. However, it is still not enough for interactive data exploration of big
data. We expect that by using highly parallelized O(M?) MDS codes for smaller
M resulting from a proper data coarse-graining we can do much better.

2.2 Particle-Based MDS in Interactive Data Visualization

Direct visualization of millions of data points, even on high-resolution screens,
disables any type of generalization and obscures both the overall and local data
structures. Therefore, to perceive the overall structure of big data set, approxi-
mation and thinning schemes are necessary to decrease the number of visualized
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data vectors (particles). Similarly, exploring finer scales we do not need the most
of vectors lying outside of the region of interest (ROI). Otherwise, we waste the
effort required for embedding all feature vectors in X and slowdown the process
of visualization.

i “Zd(o- fines

Fig. 1. The scheme demonstrating the concept of hierarchical decomposition and vi-
sualization of big data using brute-force formulation of MDS

Meanwhile, instead of the whole dataset, only its approximate representation
can be visualized. In particular, the big dataset can be organized in a hierarchi-
cal way similar to that presented in Fig. 1. The hierarchical zoom-in of ROI and
their mapping into X by the brute-force particle-based MDS allows to observe in
3-D (or 2-D) space both the global approximate view of £ and its structures of
higher resolution. This visualization scheme can be developed in many ways. For
example, the original dataset in €2 can be pre-clustered using simple agglomera-
tive clustering schemes or one can apply more sophisticated algorithms allowing
for extraction of muti-resolution clusters. This procedure is of O(M log M) com-
putational complexity and is performed only once at the beginning of MDS
mapping. For really big data this step can be accomplished by using e.g. a
Hadoop system. One can stop the agglomerative clustering when the number of
clusters K (and outliers) is small enough to be visualized interactively by the
brute-force particle-based MDS. For example, K = 10* or even more by using an
efficient parallel version of MDS implemented on new multi-core CPU or GPU
architectures. After this pre-clustering, the cluster-cluster proximity matrix A g
has to be computed and, if necessary, the representative core points (feature
vectors) calculated. On the base of Ak, the brute-force particle-based MDS can
be used for mapping, where the masses m; of particles x; are proportional to
the cardinality of clusters the respective particles represent.

As shown in Fig. 1 by zooming-in a selected ROI of this pre-clustered struc-
ture and complementing core points laying in this fragment of  with data from
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Y =read_big_data (N,M) //[Y - M N-dimensional vectors from Q //

Y, = agglomerative_clustering(Y)  //#Y,<<Ko-threshold, Y,-pre-clustered Y//

Ao = proximity_matrix(Y o) /lcalculate proximity matrix Ago, between clusters//
Xo = MDS_visualize(Ako) //Xo — vectors in 3-D — global view of //

i=1;

while i # stop do
ROI, = zoom_in_fragment(X.1)  //Select a region of interest in Xi..//

Y: = MDS"(ROI)) //finer scale structures in € corresponding to ROI,//
A = proximity_matrix(Y;) /Icalculate proximity matrix Ax; between clusters in Y/
X; = MDS_visualize (Axi) /Ivectors Xi in X corresponding to Y; — local view//
i++
end /I we assume that X, and X; can be visualized interactively using MDS with dense Ax;

Listing 2: The pseudo-code of hierarchical decomposition of data

their neighborhood, one can apply brute-force particle-based MDS for mapping
this subset to 3-D space. It can be explored interactively by employing as parti-
cles the fine-grained structures of higher resolution lying inside ROI. For really
big datasets, the number of the levels of details can be greater than two. This
way one can visualize and manipulate big data sets (consisting of millions of
objects) fragment by fragment by using as a guide its approximated views from
lower resolution levels. This process can be described by the pseudo-code from
Listing 2.

Summarizing, instead of approximated MDS procedures described in the pre-
vious section, we can use for interactive visualization the brute-force particle-base
MDS in a hierarchical way. In this case it is not necessary to store both all the
particles positions and distances in the operational memory. Currently, the lim-
ited number of particles #Y;, which can be visualized at the same time remains
the main disadvantage of this approach. However, by using modern multi-core
processors, such as MIC, this flaw can be mitigated.

3 Implementation and Tests

Unlike in classical N-body codes, the particle-particle interactions in X space
(e.g. 3-D Euclidean space) depend not only on the distances d between parti-
cles in X but also on the proximity measure array A in €2, which is computed
only once at the beginning of simulation. This proximity measure matrix has
to be kept in the memory and distributed among computational nodes. This
is an important factor decreasing the computational efficiency of MDS parallel
implementation comparing to N-body parallel codes (e.g. molecular dynamics
codes). The large size of A with O(M?) memory complexity, poses a serious
problem for efficient use of cache memory. Therefore, the approaches for MDS
parallelization are very different than those used, e.g., for molecular dynamics.
The effective MDS algorithm for multi-core CPU was published previously in [9].
However it did not allow for efficient utilization of SIMD instructions. Below we
outline a new algorithm which is more computationally efficient on both multi-
thread CPU and novel Intel Many Integrated Core MIC architectures. It allows
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to utilize efficiently multi-threading and vectorization mechanisms. The hyper-
threading mechanism allows to run up to 244 threads on Xenon Phi processor.
Moreover, SSE and AVX instructions available in Intel’s processors enable opera-
tions on 128 bits and 256 bits registers, respectively. MIC devices offer analogical
set of instructions called IMIC, basing on 512 bits registers. These two attributes
can greatly enhance the performance of MIC.

As shown in Fig. 2, in our algorithm the matrix of distances A is organized in
square blocks. Each block is split into vectors of variables corresponding to SIMD
registers. The size of these SIMD vectors depends on the type of SIMD instruc-
tions employed. It equals to 4 single precision variables for SSE instructions, 8
single precision variables for AVX instructions’ set and 16 single precision vari-
ables for MIC devices. The matrix is saved in the memory and is processed block
by block in the order shown in Fig. 2. When more than one core is available, the
following blocks are assigned to different threads to distribute the calculations
between cores. This simple algorithm enables efficient and effective usage of pro-
cessors’ cache and minimizes the number of memory reads. The cache conflicts
are avoided by assuming that each thread works on its own copy of the Forces[]
array (see Listing 1). Before particle velocities are calculated we sum up all these
arrays.

A
/
/
/
.
A A 4
7
/ / /
t /
/ / /
1 T 2 /
/ ,/ / / /
/ / / / /

Fig. 2. The structure and organization of distances matrix A in the parallel code

Data topology does not noticeably influence the timings of a single MDS
iteration (see Listing 1) albeit it may have the crucial effect on the quality of
final mapping and the number of iterations necessary to obtain the optimal
value of the “stress”. Because we are focused here on the efficiency of a single
iteration and on parallel implementation issues, we do not discuss the problem
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of mapping quality. The former depends on the hardware and software issues
while the latter on a proper choice of heuristics and its parameters. This is the
reason that we use here only one artificially generated dataset in which O; object
corresponds to vectors with 40 dimensions. The vectors belong to two classes of
the same size. The first 1-20 vector coordinates were generated randomly from

[— g’, ‘3] interval. For vectors belonging to the class 1 their 21-40 coordinates were
generated randomly from [—3, }] interval, while those from class 2 from [}, 5]

one. We assume additionally that A is the Euclidean matrix.

Fig. 3. The visualization of data set H128 in 3-D (a) and MNIST (b) dataset in 2-D
target Euclidean spaces by using particle based MDS

The Sammon’s error [1, 2], which is of V(||A — d||) type, is minimized. The
computational efficiency of the code for other choices of V(A,d) (such as K-L
cost function in t-SNE mapping) will not differ significantly. We can generate
datasets of various sizes: H1, H2, H3 etc. consisting of 1024 up to 256 x 1024
(M = 2.68 x 10°) feature vectors. For example, the final results of H256 and
MNIST datasets (handwritten digits — M = 0.70 x 10%; N = 784) visualization
using our approximated MDS algorithm [8] is shown in Fig. 3. However, to focus
our attention on the maximal data size, which can be manageable by our code,
visualized interactively and fits to the memory of all the tested architectures, we
have selected H31 test bed consisting of 3.17 x 10* 40-dimensional vectors. Qur
MDS algorithm was tested on 2 different platforms:

1. a desktop with two Intel Xeon E5-2643 @ 3.30GHz (2 x 4 cores, Sandy-
Bridge).
2. Intel Xeon Phi (SE 10P) Coprocessor card (61 cores, 1.1 GHz).

In all the tests, the codes were compiled by the Intel’s compiler icpc 13.1.3
20130607. We used two floating point arithmetics: ieee - compatible with the
standard IEEE-754 and fast - producing binaries based on simplified floating
point instructions.

The speedups obtained for two Intel Xeon E5-2643 processors and Intel Xeon
Phi SE 10P co-processor board are presented in Fig. 4. To check the scalability of
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the proposed parallel algorithm, we measured the average computational times
of a single iteration for the various number of threads. The speedups refer to the
average timings obtained for the serial single-thread code. In the tests we use
AVX instructions sets.

120.0
-B- Xeon Phi SE 10P (AVX-512)
100.01 o Xeons E5-2643 (AVX-256)
80.0 16.0
§- 14.01
g 60.0- 12.01
& 10.0
8.0 A |
40.0 6.0
4.04
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Number of threads

Fig. 4. The speedups obtained for two Intel Xeons E5-2643 @ 3.30GHz (AVX-256) and
Intel Xeon Phi SE 10P (version with AVX-512 instructions set)

As shown in Fig. 4, the speedup obtained for 8 cores of the Intel Xeon E5-2643
CPU processor board is 7.8. We also showed that the influence of the hyper-
threading technology on the speedup is insignificant. Similarly, the efficiency
obtained for MIC platform is about 90% when the number of threads is equal
to the number of cores. However, unlike in the previous architecture, the hyper-
threading is meaningful for MIC. Though the efficiency dropped significantly
when the number of threads exceeded 61 (the number of cores) the best speedup
of 96.4 was obtained for as many as 244 threads.

The best timings obtained on three different platforms are compared in Fig.
5. In tests of multi-core CPU and MIC implementations, the AVX-256 and AVX-
512 SIMD instruction sets were used, respectively. The results obtained for GPU
(and the details concerning the efficient GPU algorithms) were presented earlier
in [9]. For each platform two different binaries were tested. The first one ieee
uses floating point arithmetics compliant to IEEE standard. The second, called
fast, uses the fastest (unreliable) floating point operations available on a given
platform.

The best computational performance was obtained for Nvidia Tesla M2090
GPU board. The timings measured for Intel Xeon Phi (MIC) board are only
slightly worse taking into account ieee binaries and 30%-40% slower when using
fast arithmetics. For the largest dataset tested, the board with two Intel Xeon
E5-2643 processors was more than 2.5 times slower than MIC.



34 P. Pawliczek et al.

300

——@— CPU (ieee/fast) 2 x Xeon E5-2643 (4 x 3.3GHz)
——— MIC (ieee) Xeon Phi SE10P (61 x 1.1GHz)
2501 ~——#—— GPU (ieee) Tesla M2090

g MIC (fast) Xeon Phi SE10P (61 x 1.1GHz)
s GPU (fast) Tesla M2090

2004

1501

100 A

Average time of one iteration [ms]

50

0 5000 10000 15000 20000 25000 30000 35000

Size of the dataset

Fig. 5. The timing obtained on GPU, CPU and MIC for different number of particles

4 Concluding Remarks

We show that the multidimensional scaling based on N-body dynamics can be a
viable and robust engine for interactive visualization of multidimensional data
when implemented on the MIC multi-thread architecture. Even though direct
MDS mapping of billion of data points into 3-D/2-D space is unrealistic, it can
be used for visualization of big data in hierarchical way on various levels of de-
tails. We demonstrate also, that even though the GPU tuned MDS codes remain
still at most 30%-40% faster (only for unreliable fast arithmetics) the dramatic
difference between production time of CUDA (or OpenCL) codes over OpenMP
based implementations definitely favors new MIC architectures. In particular, in
our tests we used identical OpenMP code for both brute-force multi-core CPU
boards with 2 x Xeon E5 processor and MIC Xeon Phi accelerator. Meanwhile,
GPU implementations involve high programming skills and weeks spent for cod-
ing, implementation, tedious tuning and testing. Moreover, the optimal tuning
parameters depend strongly on the type of GPU board used [9].

Summing up, we show that a novel MIC computer architecture is very com-
petitive to both classical and GPU based solutions when applied for multidimen-
sional scaling and interactive visualization of multidimensional data. Moreover,
announced integration of MIC with CPU board (Knights Landing 72 cores 14nm
Xeon Phi architecture) will make this architecture less volatile on changes in
technology than GPU solutions.
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Abstract. Data has become more and more important to individuals,
organizations, and companies, and therefore, safeguarding these sensitive
data in relational databases has become a critical issue. However, despite
traditional security mechanisms, attacks directed to databases still occur.
Thus, an intrusion detection system (IDS) specifically for the database
that can provide protection from all possible malicious users is necessary.
In this paper, we present a random forests (RF) method with weighted
voting for the task of anomaly detection. RF is a graph-based technique
suitable for modeling SQL queries, and weighted voting enhances its
capabilities by balancing the voting impact of each tree. Experiments
show that RF with weighted voting exhibits a more superior performance
consistency, as well as better error rates with increasing number of trees,
compared to conventional RF. Moreover, it outperforms all other state-
of-the-art data mining algorithms in terms of false positive rate (0.076)
and false negative rate (0.0028).

Keywords: Intrusion detection - Anomaly detection - Database secu-
rity - Data mining - Random forest - Weighted voting

1 Introduction

Big data, in the broadest sense, refer to a collection of information so large and
multi-faceted that it becomes too difficult to process using traditional data man-
agement tools. With this, relational database management systems (RDBMS) have
been widely developed for the purpose of organizing and safeguarding this kind of
data. Most of these are sensitive information about individuals and organizations;
any form of illegal access or modification on these data can lead to serious damages,
lawsuits, and financial fraud [1]. Traditional database security mechanisms alone
are not enough to provide protection against malicious attacks [2].

An intrusion detection system (IDS) is the embodiment of any strong security
framework. Although much has been made in the field of network-based and host-
based IDS, they have been found to be ineffective and unsuitable in detecting
database-specific attacks [3]. These IDSs do not work at the application layer;
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thus, they are not suited for intrusion detection at the information level because
the semantics of the applications are not reflected in the low-level audit logs [4].

The most important part of an effective and reliable IDS is its core mecha-
nism. A number of researchers have already investigated the use of data mining
techniques for the task of database anomaly detection. However, most of the
proposed systems failed to take into account all users of the database. A le-
gitimate user with malicious intent is a more serious threat than a user with
limited privileges [3]. Unlike outsider threats that can be mitigated with the
use of defensive programming techniques or prepared statements, insider threats
cannot be alleviated by these measures. Thus, a strong and effective IDS with a
robust core mechanism especially for the database that can handle all possible
malicious users is needed. In this paper, we present a random forest algorithm
with weighted voting as the core IDS mechanism for the relational database.
Weighted voting enables us to calculate the probabilistic decision for each un-
seen query sample based on the strength of each tree [5]. Not only is an ensemble
graph-based method suitable in modeling SQL query access, but also weighted
voting minimizes confusion between profiles, emphasizes trees in the forest that
perform well over other trees, and effectively improves false positive and false
negative rates.

The paper is organized as follows: Section II reviews the related work, while
the system architecture and feature extraction, random forest, and the weighted
voting scheme are discussed in Section III. Section IV presents the experimental
results, and Section V closes the paper with a conclusion.

2 Related Work

Data mining techniques have garnered a lot of attention in mature IDS fields
such as network-based and host-based, so it is not a surprise that database IDS
researchers have ventured into incorporating them into their proposed frame-
works, as seen in Table 1. One of the earliest works is an IDS that exploits
hidden Markov models to detect changes in database behavior [6]. In addition
to that, Hu et al. and Srivastava et al. developed an IDS on the concept of data
dependency and association rules mining [7,8]. However, the former method had
only experimented on a very small number of tables and is not very scalable
to typical database sizes, while the latter method requires the user to manu-
ally assign attribute weights. Artificial neural networks were also proposed by
Ramasubramanian and Pinzon in their separate works, with Pinzon combin-
ing multilayer perceptrons and support vector machines in their proposed IDS
framework [4,9]. One of the simplest techniques, nave Bayes, were also tackled
n [10]. Other methods such as Bayesian and tree kernel models have been pro-
posed in [18] and [19]. These works, although comprehensive in terms of their
framework, neither paid much attention to the core data mining mechanism, nor
compared their proposed techniques to other alternatives. We believe that the
latter points are very important in arguing that a proposed method is indeed a
suitable one for the problem.
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Table 1. Related Work on Database Intrusion Detection Using Data Mining Tech-
niques

Authors Method Description
Barbara et al. (2003),[6] Hidden Markov Model Creates an HMM for each cluster
Hu et al. (2004) [7], Association Rules Mines dependencies among
Srivastava et al. (2006) [8] attributes
Valeur et al. (2005) [18] Bayesian model SQL grammar generalization

Ramasubramanian et al. (2006) [4]  Artificial Neural,Networks Used GA to speed-up the training
and Genetic Algorithm  process of ANN

Kamra et al. (2008),[10] Nave Bayes Took into account,imbalanced
SQL query access

Bockermann et al. (2009) [19] Tree Kernels Exploited the inherent,tree-
structure of SQL queries

Pinzon et al. (2010) [9] Support Vector Machines — Agent-based intrusion,detection

We utilize the role based access control (RBAC) mechanism typically incor-
porated in databases today, in conjunction with the database IDS framework to
be able to effectively reduce the number of profiles to maintain, as in [10]. By
keeping track of profiles instead of monitoring the behavior of individual users,
the resulting system can be easily scalable to a large user population (a typical
scenario of a company). In this scheme, privileges are assigned to profiles and
profiles are assigned to users. The same concept was presented in our previous
work [11], where we found out that graph-based models are far more effective
in discriminating between profiles than other techniques. Moreover, among the
graph-based methods evaluated, random forests (RF) came out to be the best in
terms of performance and time complexity. SVM and MLP, in combination with
PCA, yielded comparable results with RF, but the time complexity is unsuitable
for the field of database IDS, where timely detection is of utmost importance.

RF, being an ensemble model, can adopt several voting schemes other than
the classic balanced voting. Instance similarity or distance metrics like dynamic
integration have been used to assign weights and were found to effectively boost
performance [12,13]. Another approach is by exploiting the internal out-of-bag
(OOB) error metric in RF, which is a more practical and straightforward method
to improve performance [14,15]. We adopt the latter approach and make use of
the built-in OOB error to calculate the weights to be integrated during tree
voting.

3 Random Forest with Weighted Voting

This section discusses a brief overview of the system architecture, followed by the
concept of random forest ensemble learning, and finally, the proposed weighted
voting scheme for improved anomaly detection performance.

3.1 System Architecture and Feature Extraction

Database anomaly detection, in conjunction with RBAC profiles, is considered
as a standard classification problem. Figure 1 shows the training and detection
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Fig. 1. Database intrusion detection system architecture
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phases of the proposed IDS framework. During the training phase, query logs
collected from the database, with their corresponding RBAC profile annotations,
are fed to the query parser. Features are extracted from these parsed logs (as
seen in Table 2), and these query logs in the form of features are then fitted to
the RF model for training [11]. The final output of this phase is the RF trained
model. During the detection phase, the RF trained model evaluates the new
query (in the form of the same features as in the training phase). If it is an
anomaly, an alarm is raised and it goes to the response engine. Otherwise, it
directly goes to the database for processing.

Vector field
SQL-CMD[]

PROJ-REL-DEC[]

PROJ-ATTR-DEC[]
SEL-ATTR-DEC[]
ORDBY-ATTR-DEC[]
GRPBY-ATTR-DEC[]
VALUE-CTR[]

Table 2. Query Features

Description

Convention (N4, Nall, NarplD):

N4 number of attributes in a particular clause
Nl number of attributes in a particular clause counted per table
position of the attributes present in a particular clause, represented in decimal

Narpll

Command features

Value counter features

Projection relation features

Projection attribute features
Selection attribute features
ORDER BY clause features
GROUP BY clause features

Feature elements

query mode, ¢
query length, Qr,

(OA’OAH:
(Ga,Gall,

Number of projected relations, Pr
Position of projected relations, Prrp

(Pa, Pal], Parp[]) *
(Sa, Sal], Sarp[))*

Oarp[])*
Garp[])*

Number of string values, Sy
Length of string values, S,
Number of numeric values, Ny
Number of JOINs, J

Number of ANDs and ORs, AO
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We parse queries so as query clauses (such as projection clause, selection
attribute clause, among others), line-by-line, are separated, i.e., for the SELECT
command:

SELECT <Projection attribute clause>
FROM <Projection relation clause>
WHERE  <Selection attribute clause>
ORDER BY <ORDER BY clause>

GROUP BY <GROUP BY clause>

From these parsed queries, we extract query features, represented by the
vector: Q(SQL-CMD[], PROJ-REL-DEC([], PROJ-ATTR-DEC[], SEL-ATTR-DEC[],
ORDBY-ATTR-DEC[], GRPBY-ATTR-DEC[], VALUE-CTR[]). As seen in Table 2,
counting features, which are features that count the presence of an element
in a query clause, and ID features, which denote the position of an element in
the query clause, are extracted from a parsed query log. All features use the
decimal encoding scheme for their final values, as with our previous work in
[11]. Extending the feature extraction method to other SQL commands is pretty
straightforward.

3.2 Random Forests

Random forests (RF) are an ensemble method composed of simple decision trees
(DT). DTs are tree-structured models that perform decisions at each node using
a certain feature y € Y. At each node, the feature with the highest information
gain (IG)

M
IGY)=1(S)= Y |s:I(Sm) (1)

is chosen, where s is the total number of queries in data set S with K different
profiles/roles, and s,, is the number of queries in subset m after the split using
feature Y. I(S) in (1) is the entropy, characterized by

e Dl sl
18) = =32 i log | 2)

k=1 ‘

where sj is the number of queries in class k. For each feature chosen at each
node, query instances ¢ € S are split into leaves. At each leaf, a node is again
constructed and feature picked through (1), and the process is repeated until all
gs in the terminal nodes have the same class. Note that the DTs used in RF
are not pruned. Random forest, as the term implies, is a combination of bagging
and random feature selection. For every tree ¢ in the forest F', m features are
randomly selected and one third of data set S are left out of the bootstrap
sample. The rest of the sample, other than the ones left out, together with the
m random features, are used to construct tree t. The process is repeated for each
tree ¢, until n trees are produced, which will form the ensemble. The number of
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random features are usually set to log, M +1, where M is the number of features
in the data set, since the number of random features does not have a significant
effect on performance [10]. Moreover, for each ¢, the left-out or out-of-bag (OOB)
cases become test samples that are used to compute useful internal estimates
like OOB error and variable importance [17]. In the conventional RF, detection
is done by balanced tree voting, i.e., given a query ¢ and tree t in the forest F,
the predicted class r* is the one with the most votes from the trees,

Fip = arg rpeag;[h@m — . 3)

We incorporate a different kind of voting scheme to the conventional RF, which
we will discuss in the next section.

3.3 Weighted Tree Voting

It is apparent that each tree in the forest contributes differently in the classifica-
tion of unseen query samples. These trees have different classification accuracies,
and thus, different strengths. To emphasize the strongest trees in the forest, we
exploit the OOB error of each tree ¢ in F' to compute the weight of each tree to
be used at detection time, i.e., we obtain the weights internally during training
time. This enables us to weigh the voting impact of each tree by its local per-
formance, which is the rate of how correctly it can classify its OOB cases [14].
The weight of tree ¢ given a test query ¢ instance of class r is

> scorey (q)

OOB samples

4
no. of OOB samples )

W, r =

)

where
1 if tree t gives class r for instance ¢

scores r(q) = {0 otherwise -

()

The weights are normalized so that they sum to one:

Wy — MINW),

Wt,r(norm) = o . (6)
Mazrw, — Minw,

This effectively creates a normalized matrix of weights during training time,
which denotes the strength of each tree t given a class r. These normalized
weights are then embedded into the probabilistic classification process (as seen
in Fig. 2), i.e.,
UOteS(Q) = Z wt,r(no’rm) X pr(quv leaft)v (7)
teF

of which the class with the highest score will be predicted class:

r pp = argmaxovotes(q). (8)
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Fig. 2. Random forest with weighted voting

4 Experiment

We adopt the schema and standard transactions of the TPC-E benchmark
database for all our experiments [16]. This benchmark is composed of 33 re-
lations and a total of 191 attributes. 11 read-only and read/write transactions
were treated as roles/profiles, as if it were obtained from an RBAC model. We
note that several transactions can also be included in one profile, depending on
the organizational structure or access pattern of the users.

4.1 Datasets

Normal queries for each role are generated according to the database footprint
and pseudo-code found in [16]. For each role r, we set the tables t € T that it
is allowed to access, the set of commands ¢ € C' that it is allowed to issue, and
a set of probabilities based on T and C, as seen in Table 3 [11]. We generate
two data sets with different probability distributions: data set A uses a uniform
probability distribution, while data set B follows the zipf probability distribution
function (pdf), denoted by

—S

wipf(X,N,s)= o, )
,L‘—S
=1

7
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Table 3. Role Probabilities

Probability Description
p(clr) the probability of using a command ¢ € C given a role r
p(Pile,r) the probability of projecting a table ¢ € T' given a command ¢ and a role r

p(St|Pr,c,r) the probability of selecting a table ¢ given a set of projected tables Pr, command ¢, and role r
p(Pa|P:,c,r) the probability of projecting an attribute a € A given a projected table P;, command ¢, and role r

p(Sa|St, ¢, ) the probability of selecting an attribute a given a selected table S;, command ¢, and role r

p(vsnle,r) the probability of including a random string or numeric value v € V' in the selection clause given a
command c and role r
p(Jle, ) the probability of including a JOIN J given a command ¢ and role r

p(AO|e,r) the probability of including an AND or OR given a command ¢ and role r

where z is the rank of a random variable, N is the number of elements, and s is
the degree of skewness. We incorporate the zipf pdf to mimic non-uniform access
in real-world databases. For example, the random variable x can be represented
by the relations in a given schema—for a schema with 10 relations ordered in a
certain manner and a skewness degree of 1, each table will get a probability of
being accessed that corresponds to a point in Fig. 3, s = 1. The value of s is
varied to make the access pattern more skewed, i.e., the access pattern becomes
more skewed as s increases.

For both data sets, we generate 1,000 normal queries for each role, with a total
of 11,000 queries for each of our intrusion-free data sets. Since we have built the
system with insider threats in mind, we generate anomalous queries with the
same p