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1 Introduction

Loop measures have become important in the analysis of random walks and fields
arising from random walks. Such measures appear in work of Symanzik [9] but the
recent revival came from the Brownian loop soup [7] which arose in the study of the
Schramm-Loewner evolution. The random walk loop soup is a discrete analogue
for which one can show convergence to the Brownian loop soup. The study of such
measures and soups has continued: in continuous time by Le Jan [8] and in discrete
time in [5, 6]. The purpose of this note is to give an introduction to the discrete time
measures and to discuss two of the applications: the relation with loop-erased walk
and spanning trees, and a distributional identity between a function of the loop soup
and the square of the Gaussian free field. This paper is not intended to be a survey
but only a sample of the uses of the loop measure.

While the term “loop measure” may seem vague, we are talking about a specific
measure from which a probabilistic construction, the “loop soup” is derived. We are
emphasizing the loop measure rather than the loop soup which is a Poissonian
realization of the measure because we want to allow the loop measure to take
negative or complex values. However, we do consider the loop soup as a complex
measure. Measures with negative and complex weights can arise even when
studying probabilistic objects; for example, sharp asymptotics for the planar loop-
erased random walk were derived in [4] using a loop measure with signed weights.

We will start with some basic definitions. In many ways, the loop measure can
be considered a way to understand matrices, especially determinants, and some of
the results have very classical counterparts. Most of the theorems about the basic
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properties can be found in [5, Chap. 9] although that book restricted itself to positive
measures. We redo some proofs just to show that positivity of the entries is not
important. A key fact is that the total mass of the loop measure is the negative of the
logarithm of the determinant of the Laplacian.

We next introduce the loop-erased random walk and show how one can use
loop measures to give a short proof of Kirchhoff matrix-tree theorem by using an
algorithm due to David Wilson for generating uniform spanning trees.

Our next section describes an isomorphism theorem found by Le Jan that is
related to earlier isomorphism theorems of Brydges et al. [1, 2] and Dynkin [3].
In this case, one shows that the local time of a continuous time version of the loop
soup has the same distribution as the square of a Gaussian field. Le Jan established
this by constructing a continuous-time loop soup. We choose a slightly different,
but essentially equivalent, method of using the discrete loop soup and then adding
exponential waiting times. This is similar to the construction of continuous time
Markov chains by starting with a discrete time chain and then adding the waiting
times. In order to get the formulas to work, one needs to consider a correction term
that is given by “trivial loops”.

We finally give some discussion of complex Gaussian fields with positive definite
Hermitian weights. We first consider real (signed) weights and relate this to the real
Gaussian free field. Finally we consider a complex Gaussian field and show that it
can be considered as a pair of real Gaussian fields.

2 Definitions

We will consider edge weights, perhaps complex valued, on a finite state space A. A
set of weights is the same thing as a matrix Q indexed by A.

• We call Q acceptable if the matrix with entries jQ.x; y/j has all eigenvalues in
the interior of the unit disc. (This is not a standard term, but we will use it for
convenience.)

• We say Q is positive if the entries are nonnegative and Q is real if the entries are
real.

• As usual, we say that Q is symmetric if Q.x; y/ D Q.y; x/ for all x; y and Q is
Hermitian if Q.x; y/ D Q.y; x/ for all x; y.

• If Q is Hermitian we say that Q is positive definite if all the eigenvalues are
strictly greater than zero, or equivalently if x � Qx > 0 for all non-zero x.

If A ¨ A0 and Q is the transition matrix for an irreducible Markov chain on A0,
then Q restricted to A is positive and acceptable. This is one of the main examples
of interest. If Q is any matrix, then �Q is acceptable for � > 0 sufficiently small.

If V � A with k elements, we will write QV for the k � k matrix obtained by
restricting Q to V . A path in A of length n is a finite sequence of points

! D Œ!0; : : : ; !n�; !j 2 A:
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We write j!j D n for the number of steps in the path and !R for the reversed path

!R D Œ!n; : : : ; !0�:

We allow the trivial paths with j!j D 0. We write Kx;y.A/ for the set of all paths in
A with !0 D x; !n D y; if x D y, we include the trivial path.

The matrix Q gives the path measure defined by

Q.!/ D
nY

jD1
Q.!j�1; !j/; ! D Œ!0; : : : ; !n� 2

[

x;y2A

Kx;y.A/;

where Q.!/ D 1 if j!j D 0. Note that if Q is Hermitian, then Q.!R/ D Q.!/. A
path ! is a (rooted) loop (rooted at !0) if !0 D !n. Note that we write Q both for
the edge weights (matrix entries) and for the induced measure on paths.

We let � D I � Q denote the Laplacian. We write G.x; y/ D GQ.x; y/ for the
Green’s function that can be defined either as

G D ��1 D
1X

jD0
Qj

or by

G.x; y/ D QŒKx;y.A/� D
X

!2Kx;y.A/

Q.!/:

Provided Q is acceptable, these sums converge absolutely. We write

G.x; y/ D GR.x; y/C i GI.x; y/;

where GR;GI are real matrices.
Let

fx D
X

Q.!/ (1)

where the sum is over all paths ! from x to x of length at least one that have no other
visits to x. A standard renewal argument shows that

G.x; x/ D
1X

kD0
f k
x ; (2)

and since the sum is convergent,

jfxj < 1:



214 G.F. Lawler and J. Perlman

If V � A, we will write

GV.x; y/ D GQV .x; y/ D
X

!2Kx;y.V/

Q.!/;

for the corresponding Green’s function associated to paths in V . The next propo-
sition is a well known relation between the determinant of the Laplacian and the
Green’s function.

Proposition 2.1 If A D fx1; : : : ; xng and Aj D A n fx1; : : : ; xj�1g,

1

det�
D

nY

jD1
GAj.xj; xj/:

Proof By induction on n. If n D 1 and q D Q.x1; x1/, there is exactly one path of
length k in A1 and it has measure qk. Therefore

GA1 .x1; x1/ D
1X

kD0
qk D 1

1 � q
:

Assume the result is true for each Aj ¨ A, and note that if g.x/ D GAj.x; xj/, then

ŒI � QAj � g D ıxj

Using Cramer’s rule to solve this linear system. we see that

GAj.xj; xj/ D detŒI � QAjC1
�

detŒI � QAj �
:

Proposition 2.2 If Q is a Hermitian acceptable matrix, then for each x, G.x; x/ > 0.
In particular,� and G D ��1 are positive definite Hermitian matrices.

Proof It is immediate that � and G are Hermitian. If ! is a path in (1), then so is
!R. Since Q.!R/ D Q.!/, we can see that =Œfx� D 0, and hence �1 < fx < 1. As
in (2), we can write

G.x; x/ D
1X

kD0
f k
x D 1

1 � fx
> 0:

Combining this with Proposition 2.1, we see that each principal minor of � is
positive and hence� is positive definite.
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3 Loop Measures

3.1 Definition

Let O D O.A/ denote the set of rooted loops of strictly positive length. If Q is an
acceptable weight, then the (rooted) loop measure (associated to Q) is the complex
measure m D mQ on O , given by

m.!/ D Q.!/

j!j :

Note that the loop measure is not the same thing as the path measure restricted to
loops. An unrooted loop is an equivalence class of rooted loops in O under the
equivalence relation generated by

Œ!0; : : : ; !n� � Œ!1; : : : ; !n; !1�:

In other words, an unrooted loop is a loop for which one forgets the “starting point”.
We will write Q! for unrooted loops and we let QO denote the set of unrooted loops.
We write! � Q! if! is in the equivalence class Q!. The measure m induces a measure
that we call Qm by

Qm. Q!/ D
X

!� Q!
m.!/:

We make several remarks.

• Unrooted loops have forgotten their roots but have not lost their orientation. In
particular, Q! and Q!R may be different unrooted loops.

• Since Q.!/ and j!j are functions of the unrooted loop, we can write Q. Q!/; j Q!j.
If Q is Hermitian, then Q. Q!R/ D Q. Q!/:

• Let d. Q!/ denote the number of rooted loops ! with ! � Q!. Note that d. Q!/ is an
integer that divides j Q!j, but it is possible that d. Q!/ < j Q!j. For example, if a; b; c
are distinct elements and Q! is the unrooted loop with representative

! D Œa; b; c; a; b; a; b; c; a; b; a�;

then j Q!j D 10 and d. Q!/ D 5. Note that

Qm. Q!/ D d. Q!/
j Q!j Q. Q!/:

• Suppose that an unrooted loop Q! with j Q!j D n has d D d. Q!/ rooted
representative. In other words, the loop “repeats” itself after d steps and does
n=d such repetitions. Suppose k > 0 of these rooted representatives are rooted
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at x. In the example above, k D 2 for x D a and x D b and k D 1 for x D c.
Then the total number of times that the loop visits x is k.n=d/. Suppose that we
give each of the k loops that are rooted at x measure Q. Q!/=Œkn=d� and give all
the other rooted representatives of Q! measure zero. Then the induced measure on
unrooted loops is the same as the usual unrooted loop measure, giving measure
.d=n/Q. Q!/ to Q!.

• In other words, if we give each rooted loop rooted at x measure Q.!/=k where k
is the number of visits to x, then the induced measure on unrooted loops restricted
to loops that intersect x is the same as Qm.

• One reason that the unrooted loop measure is useful is that one can move the root
around to do calculations. The next lemma is an example of this.

Let

F.A/ D FQ.A/ D exp

0

@
X

Q!2 QO
Qm. Q!/

1

A D exp

 
X

!2O
m.!/

!
:

If V � A, we let

FV.A/ D exp

0

@
X

Q!2 QO; Q!\V¤;
Qm. Q!/

1

A :

Note that FA.A/ D F.A/. If V D fxg, we write just Fx.A/. The next lemma relates
the Green’s function to the exponential of the loop measure; considering the case
where Q is positive shows that the sum converges absolutely. As a corollary, we will
have a relationship between the determinant of the Laplacian and the loop measure.

Lemma 3.1

Fx.A/ D G.x; x/:

More generally, if V D fx1; : : : ; xlg � A and Aj D A n fx1; : : : ; xj�1g, then

FV.A/ D
lY

jD1
GAj.xj; xj/:

Proof Let Ak denote the set of Q! 2 QO that have k different representatives that are
rooted at x. By spreading the mass evenly over these k representatives, as described
in the second and third to last bullets above, we can see that

Qm ŒAk� D 1

k
f k
x :
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Hence,

Qm
" 1[

kD1
Ak

#
D

1X

kD1

1

k
f k
x D � logŒ1 � fx� D log G.x; x/:

This gives the first equality and by iterating this fact, we get the second equality.

Corollary 3.2

F.A/ D 1

det�
:

Proof Let A D fx1; : : : ; xng;Aj D fxj; : : : ; xng. By Proposition 2.1 and Lemma 3.1,

1

det�
D

nY

jD1
GAj.xj; xj/ D F.A/:

Suppose f is a complex valued function defined on A to which we associate the
diagonal matrix

Df .x; y/ D ıx;y f .x/:

Let Qf D D1=.1Cf / Q, that is,

Qf .x; y/ D Q.x; y/

1C f .x/
:

If Q is acceptable, then for f sufficiently small, Qf will be an acceptable matrix for
which we can define the loop measure mf . More specifically, if ! D Œ!0; : : : ; !n� 2
O , then

mf .!/ DQf .!/

j!j D m.!/
nY

jD1

1

1C f .!j/
;

Qmf . Q!/ D Qm. Q!/
nY

jD1

1

1C f .!j/
:

Hence, if Gf D GQf ,

det Gf D exp

 
X

!2O
mf .!/

!
D exp

0

@
X

Q!2 QO
Qmf . Q!/

1

A :
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Example Consider a one-point space A D fxg with Q.x; x/ D q 2 .0; 1/. For each
n > 0, there is exactly one loop !n of length n with Q.!n/ D qn;m.!n/ D qn=n.
Then,� is the 1 � 1 matrix with entry 1 � q,

GA.x; x/ D
1X

nD0
qn D 1

1 � q
;

and

X

!2O
m.!/ D

1X

nD1

qn

n
D � logŒ1 � q�:

3.2 Relation to Loop-Erased Walk

Suppose A is a finite set, A ¨ A; @A D A n A, and Q is a an acceptable matrix
on A. Let K .A/ denote the set of paths ! D Œ!0; : : : ; !n� with !n 2 @A and
f!0; : : : ; !n�1g � A: For each path !, there exists a unique loop-erased path LE.!/
obtained from ! by chronological loop-erasure as follows.

• Let j0 D maxfj W !j D !0g.
• Recursively, if jk < n, then jkC1 D maxfj W !j D !jkC1g.
• If jk D n, then LE.!/ D Œ!j0 ; : : : ; !jk �:

If � D Œ�0; : : : ; �k� is a self-avoiding path in K .A/, we define its loop-erased
measure by

OQ.�I A/ D
X

!2K .A/;LE.!/D�
Q.!/:

The loop measure gives a convenient way to describe OQ.�I A/.

Proposition 3.3

OQ.�I A/ D Q.�/F�.A/:

Proof We can decompose any path ! with LE.!/ D � uniquely as

l0 ˚ Œ�0; �1�˚ l1 ˚ Œ�1; �2�˚ � � � ˚ lk�1 ˚ Œ�k�1; �k�

where lj is a rooted loop rooted at �j that is contained in Aj WD Anf�0; �1; : : : ; �j�1g.
By considering all the possibilities, we see that the measure of all walks with
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LE.!/ D � is

GA.�0; �0/Q.�0; �1/GA1 .�1; �1/ � � � GAk�1 .�k�1; �k�1/Q.�k�1; �k/;

which can be written as

Q.�/
k�1Y

jD0
GAj.�j; �j/ D Q.�/F�.A/:

There is a nice application of this to spanning trees. Let A D fx0; x1; : : : ; xng be
the vertex set of a finite connected graph, and let Q be the transition probability for
simple random walk on the graph, that is, Q.x; y/ D 1=d.x/ if x and y are adjacent,
where d.x/ is the degree of x. Consider the following algorithm due to David Wilson
[10] to choose a spanning tree from A:

• Start with the trivial tree consisting of a single vertex, x0, and no edges.
• Start a random walk at x1 and run it until it reaches x0. Erase the loops

(chronologically) and add the edges of the loop-erased walk to the tree.
• Let xj be the vertex of smallest index that has not been added to the tree yet. Start

a random walk at xj, let it run until it hits a vertex that has been added to the tree.
Erase loops and add the remaining edges to the tree.

• Continue until we have a spanning tree.

It is a straightforward exercise using the last proposition to see that for any tree, the
probability that it is chosen is exactly

2

4
nY

jD1
d.xj/

3

5
�1

F.A0/

which by Corollary 3.2 can be written as

2

4detŒI � QA0 �

nY

jD1
d.xj/

3

5
�1

D 1

detŒD � K�
:

Here D.x; y/ D ıx;y d.x/ is the diagonal matrix of degrees and K is the adjacency
matrix, both restricted to A0. (The matrix D � K is what graph theorists call the
Laplacian.) We can therefore conclude the following. The second assertion is a
classical result due to Kirchhoff called the matrix-tree theorem.

Theorem 3.4 Every spanning tree is equally likely to be chosen in Wilson’s
algorithm. Moreover, the total number of spanning trees is detŒD�K�: In particular,
detŒD � K� does not depend on the ordering fx0; : : : ; xng of the vertices of A.



220 G.F. Lawler and J. Perlman

4 Loop Soup and Gaussian Free Field

4.1 Soups

If � > 0, then the Poisson distribution on N D f0; 1; 2; : : : g is given by

q�.k/ D e�� �k

kŠ
:

We can use this formula to define the Poisson “distribution” for � 2 C. In this case
q� is a complex measure supported on N with variation measure jq�j given by

jq�j.k/ D je��j j�jk

kŠ
D e�<.�/ j�jk

kŠ
;

and total variation

kq�k D
1X

kD0
jq�j.k/ D expfj�j � <.�/g � e2j�j:

Note that

1X

kD1
jq�j.k/ D expfj�j � <.�/g Œ1 � e�j�j� � j�j e2j�j:

The usual convolution formula q�1 � q�2 D q�1C�2 holds, and if

1X

jD1
j�jj < 1;

we can define the infinite convolution

�Y

j

q�j D lim
n!1.q

�1 � � � � � q�n/ D q
P
�j :

If � > 0 and Mt is a Poisson process with parameter �, then the distribution of
Mt is

qt.fkg/ D qt�.k/ D e�t� .t�/
k

kŠ
; k D 0; 1; 2; : : : (3)

The family of measures fqtg satisfy the semigroup law qsCt D qs � qt: If we are only
interested in the measure qt, then we may choose � in (3) to be complex. In this case
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the measures fqtg are not probability measures but they still satisfy the semigroup
law. We call this the Poisson semigroup of measures with parameter � and note that
the Laplace transform is given by

1X

kD0
ek˛qt.fkg/ D exp.t�.e˛ � 1//:

Suppose m is a complex measure on a countable set X, that is, a complex function
with

X

x2X

jm.x/j < 1:

Then we say that the soup generated by m is the semigroup of measures fqt W t 	 0g
on N

X where qt is the product measure of fqx
t W x 2 Xg where fqx

t W t 	 0g is a
Poisson semigroup of measures with parameter m.x/. Pushing forward qt along the
map � 7! P

x2X �.x/ to a measure on N [ f1g, we see that it agrees with
Q� qx

t
on N and thus qt is supported on the pre-image of N, the set of � 2 N

X with finite
support which we will call NX

fin. The complex measure qt satisfies

kqtk �
Y

x2X

kqx
t k � exp

(
2t
X

x2X

jm.x/j
)
:

Soups were originally defined when m is a positive measure on X, in which case
it is defined as an independent collection of Poisson processes fMx

t W x 2 Xg where
Mx

t has rate m.x/. A realization Ct of the soup at time t is a multiset of X in which
the element x appears Mx

t times. In this case qt gives the distribution of the vector
.Mx

t W x 2 X/.

4.2 Loop Soup

Suppose Q is an acceptable weight with associated loop measure m. Let 0 < � < 1
be such that the matrix with entries P�.x; y/ WD e� jQ.x; y/j is still acceptable. Let m
be the rooted loop measure associated to Q and note that

X

!2O
j!j e�j!j jm.!/j D

X

!2O
P�.!/ < 1: (4)

The (rooted) loop soup is a “Poissonian realization” of the measure m. To be
more precise, recall that O is the set of rooted loops in A with positive length. A
multiset C of loops is a generalized subset of O in which loops can appear more
than once. In other words it is an element fC .!/ W ! 2 Og of NO where C .!/
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denotes the number of times that ! appears in C . Then the rooted loop soup is the
semigroup of measures Mt D Mt;m on N

O given by the product measure of the
Poisson semigroups fM !

t W ! 2 Og where M !
t has parameter m.!/. The measure

M !
t is Poisson with parameter tm.!/ and hence kM !

t k � expf2tjm.!/jg and

1X

kD1
jM !

t .k/j � tjm.!/j e2tjm.!/j: (5)

For any x 2 A and rooted loop !, we define the (discrete) local time N!.x/ to be
the number of visits of ! to x W

N!.x/ D
j!j�1X

jD0
1f!j D xg D

j!jX

jD1
1f!j D xg:

Note that this is a function of an unrooted loop, so we can also write N Q!.x/. Also
N!R

.x/ D N!.x/. We define the additive function L W NO
fin ! N

A by

LC .x/ D
X

!2O
C .!/N!.x/:

By pushing forward by L, the loop soup Mt induces a measure on N
A which we

denote by �t D �t;m and refer to as the discrete occupation field. Indeed, since Mt

is a product measure, we can write �t as

�t D
�Y

!2O
�!t

where the notation
Q� means convolution and �!t denotes the measure supported

on fkN! W k D 0; 1; 2; : : :g with

�!t .kN!/ D e�tm.!/ Œtm.!/�
k

kŠ
:

For future reference we note that since N! D N!R
,

Œ�!t � �!R

t �.kN!/ D e�tŒm.!/Cm.!R/� tk Œm.!/C m.!R/�k

kŠ
;

and hence,

�2t D
�Y

!2O
�!2t D

�Y

!2O
�!t � �!t D

�Y

!2O
�!t � �!R

t D �t;mR ; (6)
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where

mR.!/ D m.!/C m.!R/:

4.3 A Continuous Occupation Field

In order to get a representation of the Gaussian free field, we need to change
the discrete occupation field to a continuous time occupation field. We will do
so in a simple way by replacing N!.x/ with a sum of N!.x/ independent rate
one exponential random variables. This is similar to the method of constructing
continuous time Markov chains from discrete time chains by adding exponential
waiting times.

We say that a process Y.t/ is a gamma process if it has independent increments,
Y.0/ D 0, and for any t; s 	 0; Y.t C s/ � Y.t/ has a Gamma.s; 1/ distribution.
In particular, Y.n/ is distributed as the sum of n independent rate one exponential
random variables. Let fYx W x 2 Ag be a collection of independent gamma processes.
If Ns D fsx W x 2 Ag 2 Œ0;1/A, we write Y.Ns/ for the random vector .Yx.sx//. The
Laplace transform is well known,

E Œexpf�Y.Ns/ � f g� D
Y

x2A

1

Œ1C f .x/�sx
;

provided that kf k1 < 1. In particular, if C 2 N
O
fin, then

E Œexpf�Y.LC / � f g� D
Y

x2A

1

Œ1C f .x/�LC .x/

D
Y

!2O

Y

x2A

1

Œ1C f .x/�C .!/N!.x/

D
Y

!2O
exp Œ�C .!/.ln.1C f / � N!/� : (7)

For positive Q, we could then define a continuous occupation field in terms
of random variables, and we let Lt D Y.LCt / by taking Ct as an independent
loop soup corresponding to jQj. In order to handle the general case, we define the
“distribution” of the continuous occupation field at time t to be the complex measure
	t D 	t;m on Œ0;1/A given by

	t.V/ D
X

C2NO
fin

Mt.C /PfY.LC / 2 Vg D
X

Nk2NA

�t.Nk/PfY.Nk/ 2 Vg; (8)
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where V � Œ0;1/A: We will write

	tŒh.L /� D
Z

Œ0;1/A
h.L /d	t.L /

provided that
R
Œ0;1/A

jh.L /j dj	tj.L / < 1:

Lemma 4.1 If EŒjh.Lt/j� < 1, then j	tjŒjh.L /j� < 1.

Proof First, note that

jMt.C /j D
ˇ̌
ˇ̌
ˇ
Y

!2O
M !

t .C .!//

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇe�t

P
!2O m.!/

ˇ̌
ˇ
Y

!2O

.tjm.!/j/C .!/
C .!/Š

D ˛PfCt D C g

with ˛ D et
P
!2O jm.!/j�<.m.!//. Thus, taking sup over all finite partitions fVign

iD1 of
V into measurable sets,

j	tj.V/ D sup
nX

iD1
j	t.Vi/j D sup

nX

iD1

ˇ̌
ˇ̌
ˇ̌
X

C2NO
fin

Mt.C /PfY.LC / 2 Vig
ˇ̌
ˇ̌
ˇ̌

� sup
nX

iD1

X

C2NO
fin

jMt.C /jPfY.LC / 2 Vig

D
X

C2NO
fin

jMt.C /jPfY.LC / 2 Vg D ˛PfLt 2 Vg:

We will compute the Laplace transform of the measure 	t, but first we need use
the following lemma.

Lemma 4.2 Suppose S is a countable set and F W S � N ! C is a function with
F.s; 0/ D 1 for all s 2 S,

X

s2S

ˇ̌
ˇ̌
ˇ

1X

nD1
F.s; n/

ˇ̌
ˇ̌
ˇ < 1

and

X

 2NS
fin

ˇ̌
ˇ̌
ˇ
Y

s2S

F.s;  .s//

ˇ̌
ˇ̌
ˇ < 1:
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Then,

Y

s2S

1X

nD0
F.s; n/ D

X

 2NS
fin

Y

s2S

F.s;  .s//:

Proof Since
P

s2S jP1
nD1 F.s; n/j < 1, the product on the left-hand side does not

depend on the order. For this reason we may assume that S is the positive integers
and write

1Y

sD1

1X

nD0
F.s; n/ D lim

J!1

JY

sD1

1X

nD0
F.s; n/

D lim
J!1

X

 2NJ

JY

sD1
F.s;  .s// D

X

 2N1
fin

1Y

sD1
F.s;  .s//:

The last equality uses the absolute convergence of the final sum.

Proposition 4.3 For f sufficiently small,

	tŒexp.�L � f /� D
�

det Gf

det G

�t

: (9)

Proof We first claim that there exists ı > 0 such that if kf k1 < ı,

EŒj expf�Lt � f gj� < 1;

so that the left hand side of (9) is well defined. Indeed, if kf k1 < ı, and .1 � ı/ D
e�� , then for any C 2 N

!
fin

E Œj expf�Y.LC / � f gj� �
Y

!2O
j1 � ıj�C .!/ j!j D

Y

!2O
e� j!jC .!/;

and hence

EŒj expf�Y.LCt / � f gj� D E
�
EŒj expf�Y.LCt / � f gjˇ̌Ct�

�

� E

"
Y

!2O
e�j!jCt.!/

#

D
Y

!2O
exp

�
tjm.!/j.e�j!j � 1/

�

which is finite for � sufficiently small by (4).
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We assume that kf k1 < ı. Using (7) we get

	tŒexp.�L � f /� D
X

C2NO
fin

Mt.C /E Œexp.�Y.LC / � f /�

D
X

C2NO
fin

Y

!2O
M !

t .C .!// exp ŒC .!/.� ln.1C f / � N!/�

D
Y

!2O

1X

nD0
M !

t .n/ exp Œn.� ln.1C f / � N!/�

D
Y

!2O
exp Œtm.!/.exp.� ln.1C f / � N!/� 1/� :

The third equality uses Lemma 4.2, which is valid as

X

!2O

ˇ̌
ˇ̌
ˇ

1X

nD1

.tm.!//n

nŠ
exp Œn.� ln.1C f / � N!/�

ˇ̌
ˇ̌
ˇ D

X

!2O

ˇ̌
exp

�
tmf .!/

� � 1ˇ̌ < 1

and

X

C2NO
fin

ˇ̌
ˇ̌
ˇ
Y

!2O
M !

t .C .!// exp ŒC .!/.� ln.1C f / � N!/�

ˇ̌
ˇ̌
ˇ < 1

for sufficiently small f since jMtj is a finite measure on N
O
fin. Above we used that

exp.� ln.1C f / � N!/ D
Y

x2A

exp ln

"�
1

1C f .x/

�N!.x/
#

D
j!j�1Y

jD0

1

1C f .!j/
;

which also gives us

	tŒexp.�L � f /� D exp

2

4t
X

!2O
m.!/

j!j�1Y

jD0

1

1C f .!j/

3

5 exp

"
�t
X

!2O
m.!/

#

D exp

"
t
X

!2O
mf .!/

#
exp

"
�t
X

!2O
m.!/

#

D
�

det Gf

det G

�t

:

The last equality is by Corollary 3.2.
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Consider the one-point example at the end of Sect. 3.1. If we let s denote the
function f taking the value s, then

ms.!
n/ D 1

n

�
q

1C s

	n

;

and

X

!n2O
ms.!

n/ D
1X

nD1

1

n

�
q

1C s

	n

D � log

�
1 � q

1C s

	
:

Therefore, if Lt denotes the continuous time occupation field at time t,

E
�
e�sLt

� D
�

det Gs

det G

�t

D
�
1C s � q.1C s/

1C s � q

	t

: (10)

We recall that we have defined the (discrete time) loop measure m.!/ D Q.!/
j!j

and then we have added continuous holding times. Another approach, which is the
original one taken by Le Jan [8], is to construct a loop measure on continuous time
paths. Here we start with Q, add the waiting times to give a measure on continuous
time loops, and then divide the measure by the (continuous) length. Considered as
a measure on unrooted continuous time loops, the two procedures are essentially
equivalent (although using discrete time loops makes it easier to have “jumps” from
a site to itself).

4.4 Trivial Loops

We will see soon that the loop soup and the square of the Gaussian free field are
closely related, but because our construction of the loop soup used discrete loops
and only added continuous time afterwards, we restricted our attention to loops of
positive length. We will need to add a correction factor to the occupation time to
account for these trivial loops which are formed by viewing the continuous time
process before its first jump.

Consider the one-point example at the end of Sect. 3.1. The Gaussian free field
with covariance matrix ŒI � Q��1 is just a centered normal random variable Z with
variance 1=.1� q/ which we can write as N=

p
1 � q where N is a standard normal.

Since N2 has a 
2 distribution with one degree of freedom, we see that

E

h
e�sZ2=2

i
D
s

1 � q

1� q C s
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If we compare this to (10), we can see that

E

h
e�sZ2=2

i
D E

h
e

�sL 1
2

i
Œ1C s��1=2 :

The second term on the right-hand side is the moment generating function for
a Gamma. 1

2
; 1/ random variable. Hence we can see that Z2=2 has the same

distribution at L 1
2

C Y where Y is an independent Gamma. 1
2
; 1/ random variable.

The trivial loops we will add are not treated in the same way as the other loops. To
be specific, we add another collection of independent gamma processes fYx

trivialgx2A

and define the occupation field of the trivial loops as

Tt.x/ D Yx
trivial.t/:

When viewed in terms of the discrete time loop measure, this seems unmotivated. It
is useful to consider the continuous time loop measure in terms of continuous time
Markov chains. For any t prior to the first jump of the Markov chain, the path will
form a trivial loop of time duration t. As the Markov chain has exponential holding
times, the path measure (analogue of Q) to assign to such a trivial loop is e�t dt, and
so the loop measure (analogue of m) should be t�1 e�t dt. Hence in the continuous
time measure, we give trivial loops of time duration t weight e�t=t. Since e�t=t
is the intensity measure for the jumps of a gamma process, we see that the added
occupation time at x corresponds to Tt.x/.

We write 	Tt for the probability distribution of Tt. In other words, it is the
distribution of independent gamma processes fYx.t/ W x 2 Ag. Note that if L 2
Œ0;1/A,

	Tt Œexpf�f � L g� D
Y

x2A

1

Œ1C f .x/�t
D Œdet D1Cf �

�t: (11)

We will also write

�t D 	t � 	Tt ;

which using (8) can also be written as

�t.V/ D
X

C2NO
fin

Mt.C /PfY.LC C Nt/ � Vg;

where Nt denotes the vector each of whose components equals t.
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4.5 Relation to the Real Gaussian Free Field

If A is a finite set with jAj D n, and G is a symmetric, positive definite real matrix,
then the (centered, discrete) Gaussian free field on A with covariance matrix G is
the random function � W A ! R, defined by having density

1

.2�/n=2
p

det G
exp

�
�1
2
� � G�1�

�
D 1

.2�/n=2
p

det G
exp

�
�1
2

jJ�j2
�

with respect to Lebesgue measure on R
n. Here J is a positive definite, symmetric

square root of G�1. In other words, � is a jAj-dimensional mean zero normal random
variable with covariance matrix EŒ�.x/�.y/� D G.x; y/.

Lemma 4.4 Suppose G is a symmetric positive definite matrix, � D G�1, and let
� denote a Gaussian free field with covariance matrix G. Then for all f sufficiently
small,

E

�
exp

�
�1
2
�2 � f

�	
D 1p

det .�C Df /

1p
det G

: (12)

Proof This is a standard calculation,

E

�
exp

�
�1
2
�2 � f

�	

D 1

.2�/n=2
p

det G

Z

Rn
exp

�
�1
2
�2 � f

�
exp

�
�1
2
� � G�1�

�
d�

D 1

.2�/n=2
p

det G

Z

Rn
exp

�
�1
2
� � .�C Df /�

�
d�:

If f is sufficiently small, then�C Df is a positive definite symmetric matrix and so
has a positive definite square root, call it Rf . Then

Z

Rn
exp

�
�1
2
� � .�C Df /�

�
d� D

Z

Rn
exp

�
�1
2

Rf� � Rf�

�
d�

D 1

det Rf

Z

Rn
exp

�
�1
2
� � �

�
d�

D .2�/n=2p
det.�C Df /

:

Theorem 4.5 If Q is a symmetric, acceptable real matrix, and � is the discrete
Gaussian free field on A with covariance matrix G, then the distribution of 1

2
�2

is �1
2
.
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Proof It suffices to show that the Laplace transforms for 1
2
�2 and �1

2
exist and agree

on a neighborhood of zero. We have calculated the transforms for L 1
2

and �2 in (9)
and (11) giving

�1
2
ŒexpfL � f g� D 	 1

2
ŒexpfL � f g� 	T1

2

ŒexpfL � f g�

D det.D�1
1Cf /

1
2

�
det Gf

det G

� 1
2

D det.D�1
1Cf /

1
2

 
det.I � D�1

1Cf Q/
�1/

det G

! 1
2

D
�

det.D1Cf � Q/�1

det G

� 1
2

D 1
p

det .�C Df /

1p
det G

:

Comparing this to (12) completes the proof.

Conversely, suppose that a symmetric, positive definite real matrix G is given,
indexed by the elements of A and let f�.x/ W x 2 Ag denote the Gaussian free field.
If the matrix Q WD I �G�1 is positive definite and acceptable, then we can use loops
to give a representation of f�.x/2 W x 2 Ag. If G has negative entries then so must Q
(since the Green’s function for positive weights is always positive).

4.6 Complex Weights

There is also a relation between complex, Hermitian weights and a complex
Gaussian field. Let A be a finite set with n elements. Suppose G0 is a positive
definite Hermitian matrix and let K be a positive definite Hermitian square root
of .G0/�1. The (centered) complex Gaussian free field on A with covariance matrix
G0 is defined to be the measure on complex functions h W RA ! C with density

1

�n det G0 exp

�h � .G0/�1h

� D 1

�n det G0 exp

�jKhj2�

with respect to Lebesgue measure on C
n (or R2n). Equivalently, the function  Dp

2 h has density

1

.2�/n det G0 exp

�
�1
2
 � .G0/�1 

�
D 1

.2�/n det G0 exp

�
�1
2

jK j2
�
; (13)
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It satisfies the covariance relations

E
�
h.x/ h.y/

� D 1

2
E

h
 .x/  .y/

i
D G0.x; y/; (14)

E Œh.x/ h.y/� D 0:

The complex Gaussian free field on a set of n elements can be considered as
a real field on 2n elements by viewing the real and imaginary parts as separate
components. The next proposition makes this precise. Let A� D fx� W x 2 Ag be
another copy of A and A D A [ A�. We can view A as a “covering space” of A and
let ˚ W A ! A be the covering map, that is, ˚.x/ D ˚.x�/ D x. We call A and A�
the two “sheets” in A. Let G0 D GR C iGI and define G on A by

G.x; y/ DG.x�; y�/ D GR.x; y/;

G.x; y�/ D � G.x�; y/ D �GI.x; y/:

Note that G is a real, symmetric, positive definite matrix.

Proposition 4.6 Suppose G0 D GR C iGI is a positive definite Hermitian matrix
indexed by A and suppose G is the positive definite, symmetric matrix indexed by A,

G D
� A A�

A GR �GI

A� GI GR

�
:

Let f�z W z 2 Ag be a centered Gaussian free field on A with covariance matrix G. If

 x D �x C i�x� ; (15)

then f x W x 2 Ag is a complex centered Gaussian free field with covariance matrix
2G0.

Proof Let K D KR C iKI be the Hermitian positive definite square root of .G0/�1
and write .G0/�1 D �R C i�I . The relation K2 D .G0/�1 implies

K2
R � K2

I D �R; KR KI C KI KR D �I:

and G0 .G0/�1 D I implies

GR �R � GI �I D I; GR�I C GI �R D 0:

Therefore,

G�1 D
�
�R ��I

�I �R

	
;
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and J2 D G�1 where

J D
�

KR �KI

KI KR

	
:

In particular, jJ�j2 D jK j2. Moreover if � > 0 is an eigenvalue of G0 with
eigenvector x C iy, then

GR x � GIy D � x; GR y C GI x D � y;

from which we see that

G

�
x
y

	
D �

�
x
y

	
; G

��y
x

	
D �

��y
x

	
:

Since the eigenvalues of G are the eigenvalues of G0 with double the multiplicity,

det G D Œdet G0�2:

Therefore, (13) can be written as

1

.
p
2�/2n

p
det G

exp

�
�1
2

jJ�j2
�
;

which is the density for the centered real field on A with covariance matrix G.

We will discuss the analogue to Theorem 4.5 for complex Hermitian weights. We
can either use the complex weights Q0 D I � .G0/�1 D QR C i QI on A to give a
representation of fj .x/j2 W x 2 Ag or we can use the weights on A given by

Q D
�

QR �QI

QI QR

	
D I � G�1; (16)

to give a representation of fj�.z/j2 W z 2 Ag. The latter contains more information
so we will do this. Note that Q is a positive definite symmetric matrix, but may not
be acceptable even if Q0 is.

Provided that Q0 and Q are acceptable, let Om;m denote the loop measures derived
from them respectively. As before, let O denote the set of (rooted) loops of positive
length in A. Let O be the set of such loops in A. Note that Om is a complex measure
on O and m is a real measure on O . We write

Om.!/ D OmR.!/C i OmI.!/:

Recall that ˚ W A ! A is the covering map. We also write ˚ W O ! O for the
projection, that is, if !0 D Œ!0

0; : : : ; !
0
k� 2 O then ˚.!0/ is the loop of length k
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whose jth component is ˚.!0
j /. We define the pushforward measure ˚�m on O by

˚�m.!/ D m
�
˚�1.!/

� D
X

˚.!0/D!
m.!0/:

Proposition 4.7

˚�m.!/ D 2 OmR.!/ D Om.!/C Om.!R/:

Proof Let Sk D fR; Igk and if � D .�1; : : : ; �k/ 2 Sk we write d.�/ for the
number of components that equal I. Let S e

k denote the set of sequences � 2 Sk

with d.�/ even.
Suppose ! D Œ!0; : : : ; !k� 2 O . There are 2k loops !0 D Œ!0

0; !
0
1; : : : ; !

0
k� 2 O

such that ˚.!0/ D !. We can write each such loop as an ordered triple .!; ; �/.
Here  2 f0;�g and � 2 S e

k . We obtain !0 from .!; ; �/ as follows. If  D 0 then
!0
0 D !0, and otherwise !0

0 D !�
0 . For j 	 1, !0

j 2 f!j; !
�
j g. If � j D R, then !0

j is
chosen to be in the same sheet as !0

j�1. If � j D I, then !0
j is chosen in the opposite

sheet to !0
j�1. Since d.�/ is even, we see that !0

n D !0
0 so this gives a loop in O with

˚.!0/ D !.
By expanding the product we see that

Q0.!/ D
kY

jD1

�
QR.!j�1; !j/C i QI.!j�1; !j/

�

D
X

�2Sk

id.�/
kY

jD1
Q� j.!j�1; !j/;

Re
�
Q0.!/

� D
X

�2S e
k

id.�/
kY

jD1
Q� j.!j�1; !j/;

Note that

Q.!0
j�1; !0

j / D � QI.!j�1; !j/; !0
j�1 2 A; !0

j 2 A0;

Q.!0
j�1; !0

j / DQI.!j�1; !j/; !0
j�1 2 A0; !0

j 2 A;

Q.!0
j�1; !0

j / DQR.!j�1; !j/; otherwise :

If dŒ�� is even, then dŒ��=2 denotes the number of times that the path !0 goes from
A� to A. Using this we can write

Re
�
Q0.!/

� D 1

2
Q
�
˚�1.!/

� D 1

2

X

˚.!0/D!
Q.!0/:
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The factor 1=2 compensates for the initial choice of !0
0. Since Q0.!R/ D Q0.!/, we

see that

Q0.!/C Q0.!R/ D Q
�
˚�1.!/

�
:

Since

Om.!/ D Q0.!/
j!j ; ˚�m.!/ D Q

�
˚�1.!/

�

j!j ;

we get the result.

Since

det G0 D exp

(
X

!�A

Om.!/
)
; det G D exp

8
<

:
X

!0�A

m.!/

9
=

; ;

we get another derivation of the relation det G D Œdet G0�2:
Given the loop measure Om on A (or the loop measure m on A), we can consider

the discrete occupation field at time t as a measure �t; Om on N
A (or �t;m on N

A,
respectively). The measure �t;m pushes forward to a measure ˚��t;m on N

A by
adding the components of x and x�. It follows from (6) and Proposition 4.7 that

˚��t;m D �2t; Om:

Also the “trivial loop occupation field” on A at time t induces an occupation field on
A by addition. This has the same distribution as the trivial loop occupation field on
A at time 2t since there are two points in A corresponding to each point in A. Hence
˚��t;m has the same distribution as �2t; Om.

Using Theorem 4.5 and Proposition 4.6 we get the following.

• Suppose Q0 is a positive definite acceptable Hermitian matrix indexed by A. Let
G0 D .I � Q0/�1.

• Let Q be the positive definite real matrix on A as in (16). Let G D .I � Q/�1.
• Let f�.z/ W z 2 Ag be a centered Gaussian free field on A with covariance matrix

G provided Q is acceptable.
• If h.x/ D Œ�.x/C i�.x�/�=

p
2, then h is a complex Gaussian free field on A with

covariance matrix G0.
• If �t denotes the continuous occupation field on A (including trivial loops) given

by Q at time t then f 1
2
�.z/2 W z 2 Ag has distribution �1

2
:

• If �0
t denotes the continuous occupation field on A (including trivial loops) given

by Q0 at time t then fjh.z/j2 W z 2 Ag has distribution �0
1:
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