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Abstract. In this paper we study the search abilities of binary one-point
crossover (1ptc) operator in a genetic algorithm (GA). We show, that un-
der certain conditions, GA is capable of using only a 1ptc operator to
explore the entire search space, fighting premature convergence. Further,
we prove that to restore the entire space from any two binary chromo-
somes, each of length n, at least 2n−1 − 1 one-point crossover operations
is needed. This number can serve as a measure for comparing the search
speed of the different algorithms. Moreover, we propose an algorithm
spanning the search space in the minimal number of crossovers.

Keywords: Evolutionary Computation ·Genetic Algorithm ·One-point
Crossover · Premature Convergence

1 Introduction

The genetic algorithm (GA), invented in 1960s by Holland [10], seems to be
one of the most studied topics in evolutionary algorithm (EA) literature. GAs
are robust search and optimization algorithms based on natural selection in en-
vironments and natural genetics in biology. What is interesting, GA examines
not just one solution, but a pool of probable solutions simultaneously, which are
organized as chromosomes and form a population. GA incrementally generates
new chromosomes by applying selection, crossover and mutation operators, un-
til the population finally reaches a state, where diversity is minimal (so called
convergence). The set of all possible chromosomes forms the search space. The
most common way of encoding chromosome in GA is a fixed binary string. It is
well-known that crossover operator plays a key role in the evolutionary process,
especially in preserving the genetic diversity [3,31]. Various crossover operators
are used in GA, and among them the simplest one is the one-point crossover be-
longing to so-called mask-based crossover operators [30]. This operator selects a
crossover point within a chromosome then interchanges two parent chromosomes
at this point to produce two new offspring. Note that any multi-point crossover
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can be seen as 1ptcs assembling [22]. Moreover, in [24] we proved the theorem
which says that each crossover exchanging can be represented as a composition
of 1ptcs. It means, that the maximum exploration opportunities within a class of
exchanging crossovers has one-point crossover, and each other type of crossover
operator can retain–at best–this ability!

In this paper we show, that under certain conditions, GA is capable to span
(explore) the entire search space adequately, using only one-point crossover op-
erator.

Lets stress here and now that any evolutionary algorithm, including GA,
usually tries to avoid exploring the entire space of possible solutions. However,
knowing the search abilities of genetic operators is essential for the proper design
of the algorithm and to prevent undesirable properties, such as a premature
convergence.

Further, we propose a measure for comparing the search speed of a set by
different algorithms. For a n-element set this measure is the minimal number
of 1ptcs necessary to explore the entire binary space, i.e. 2n−1 − 1. We show
how to construct an algorithm spanning the space of binary chromosomes in the
minimal number of steps. The use both of the measure and the algorithm was
illustrated by the problem of finding palindromes.

2 Related Work

The issue posed by this paper has been a long time study in the field of genetic
algorithms [6,29], but the problem of spanning the space of binary chromosomes
seems to be still insufficiently explored in the literature and certainly prematurely
abandoned.

In [21] the conditions for one-point crossover operator in GA were defined
which must be met by the operator for exploring all the search space of binary
chromosomes. A somewhat related problem is the problem of too early conver-
gence of GA (convergence refers to some measure of the genetic diversity of the
population). A number of attempts were undertaken to avoid this undesirable
phenomenon (for a comparative survey see [19]). The authors presented a wide
range of solutions. Some of them argue that sufficient operator is a mutation
[9] or that such discussion is pointless without reference to particular fitness
function or coding method [15]. Another group of authors proposed adaptive
probabilities of genetic operators [2,4,5] or drew attention to the impact of selec-
tive pressure [1,14]. It is worth noticing a bit controversial proposal of inserting
a random individual into a pool [11].

The dynamics of evolutionary algorithms expressed by the NK model, only
partly related to the problem of binary search space, has been recently studied
[13,32].

What is interesting, while most of the research prove the usefulness of the
crossover operator in EAs [7,8,12,17,18], [26] showed the problem, called Igno-
ble Trails, in which mutation-only EA finds solutions much faster than using
crossing-over.

Recently, the influence of crossover in multi-objective EAs is studied [16,27].



On the Ability of the One-Point Crossover Operator 363

3 Some Properties of the Space of Binary Chromosomes

Subject of this study is the following set:
An = {(an, an−1, . . . , ai, . . . , a1) : ∀i ∈ {1, 2, . . . , n} , ai ∈ {0, 1}} .
Its elements represent all possible binary chromosomes of equal length n,

where n is a natural number higher than 1. Only one-point crossover is performed
on the pairs of elements of this set. This limitation is more apparent than real,
however. In [22] we showed that any multi-point crossover is a combination of
one-point crossovers. The proof is to be found in [24].

In the previous works [20,21,22,23,24] some definitions and properties of the
binary space under study was introduced. In the following, the key definitions
and results are summarized.

Definition 1. An initial or primary population is a set of chromosomes (ele-
ments) from the An space.

We assume that all elements of such a set take part in the first selection process
for the parent pool.

Definition 2. We say that the An space is ancestral, if all its elements can be
obtained from a primary population of repeatedly applying finite number of times
only one-point crossover operators.

Note that the above definition does not reject the chromosomes received from
the primary population by the other genetic operations (like mutation or inver-
sion). The only requirement is that there is a potential ability to generate all
chromosomes from the space using only 1ptcs.

Definition 3. Two chromosomes at and ak in An are called polar chromosomes
if and only if for each coordinate these chromosomes have opposite values.

For example two chromosomes: (01100) and (10011) are polar in A5 space. Note
that the distance between polar chromosomes is constant and equals n. Some
other properties of polar chromosomes were given in [23].

Theorem 1. The whole space An is ancestral if and only if there are the ele-
ments in the primary population P , which have the following properties:
for each position (locus), we have two elements from P having different (in terms
of dual opposing) values.

This theorem is proven in [20] for binary Hadamard space, which is isomorphic
with An space (see [23]).

Theorem 2 follows from Theorem 1 immediately.

Theorem 2. If a primary population P ⊆ An contains a pair of polar chromo-
somes, then the whole space An is an ancestral space.
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4 An Optimal Algorithm for Exploring the Space of
Binary Chromosomes

Before we prove a theorem allowing us to construct an efficient (in terms of
number of operations used) algorithm for searching An space, we introduce some
definitions and designations.

The space An consisting of binary chromosomes generated by 1ptc from two
primary chromosomes (i.e. making primary population) can be presented by a
binary tree, called CT - crossover tree. In Figure 1, the binary space A5 in the
CT form is shown. In the root node of CT there are two primary chromosomes:
(00000), (11111) with their phenotypes 0 and 31, respectively.

We say that the chromosome h in CT is located on the level k � 1 when there
is k− 1 nodes between the root node of the tree and h. The primary population
of chromosomes is located on the 0 level. In the Figure 1, chromosome (00111),
with phenotype 7, is situated on the level 3. There are two intermediate nodes
to the root: (00011) - phenotype 3 and (00001) - phenotype 1.
The child chromosome is obtained by using one-point crossover from parent chro-
mosomes. In the Figure 1, chromosome (11101) - phenotype 29 from the level 2
- is the child of two chromosomes (00001) - 1 and (11111) - 31 from the level 1.
Affiliate chromosome (parent) is the chromosome associated with another parent
chromosome to perform a crossover operation. For example, a primary popula-
tion in CT is a pair of affiliate chromosomes.

Now we will prove a simple but important for our discussion theorem.

Theorem 3. Any algorithm established to restore (span) the entire space An

from any two chromosomes with a one-point crossover operator needs at least
2n−1 − 1 operations.

Proof (of Theorem 2). Note that 1ptc operator gives always two offspring chro-
mosomes. Let us assume (as we show below this is a realistic assumption) that
each of the fresh chromosome is new (i.e. not obtained earlier) and chromosomes
in the child pair differ from each other.

Since in An we have 2n chromosomes and the whole population starts from
two primary chromosomes, then the minimal number of 1ptcs to be performed
to explore the entire space is (2n − 2)/2 = 2n−1 − 1. ��

It is therefore not possible to create an algorithm exploring the whole binary
space An performing less than 2n−1 − 1 one-point crossovers.
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Fig. 1. Exemplary binary space A5 with the primary population (00000) and (11111).
Square brackets are used to denote a phenotype of chromosome.

Listing 1.1. Algorithm CT122

1 Input :
2 n // s i z e of the space under study
3 hr0 // input chromosome
4 Begin
5 Tree (1 ,1 ,0 ) = hr0
6 Tree (1 ,2 ,0 ) = 2ˆn−1−Tree (1 ,1 ,0 )
7 For c = 1 To n−1
8 Begin // c
9 For j = 1 To 2ˆ( c−1)

10 Begin // j
11 Tree (2∗ j −1 ,1 , c ) = Tree ( j , 1 , c−1) −
12 ( Tree ( j , 1 , c−1)Mod(2ˆ c ) ) +
13 ( Tree ( j , 2 , c−1)Mod(2ˆ c ) )
14 Tree (2∗ j , 1 , c ) = Tree ( j , 2 , c−1) −
15 ( Tree ( j , 2 , c−1)Mod(2ˆ c ) ) +
16 ( Tree ( j , 1 , c−1)Mod(2ˆ c ) )
17 I f c < n−1 Then
18 Begin // I f
19 Tree (2∗ j −1 ,2 , c ) = Tree ( j , 2 , c−1)
20 Tree (2∗ j , 2 , c ) = Tree ( j , 1 , c−1)
21 End // I f
22 End // j
23 End // c
24 End .
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Fig. 2. Tree notation for a node in a crossover tree

We now present the algorithm, which reconstructs the space An in exactly
2n−1 − 1 one-point crossovers. In the algorithm presented below (Listing 1.1)
and called CT122 (Crossover Tree 1-point 2 children 2 parents algorithm), span-
ning binary space An over a binary tree, each chromosome (except the primary
ones) is generated by 1ptc operation. The primary population consists of polar
chromosomes. Cutting is always performed after k+1 allele for all chromosomes
from k level, counting from the right side. The parent chromosomes in each node
(except the root node) are created by affiliating the child with one of its parent
chromosome, i.e. by using so called backcrossing [28].

Each node in CT122 is denoted by Tree(x, y, z) (see Figure 2), where:

• x counts the nodes for a given level of CT, from the left to the right,
• y distinguishes partners for crossing operation: the value of 1 has the first
parent obtained as a result of crossing on the previous level (generation), the
second affiliating chromosome, taken from its parental couple, has the value
of 2,

• z depicts the level of the node.

According to the above notation Tree(x, y, 1) for the binary tree from
Figure 1 gives the following set of chromosomes: (00001) - phenotype 1, (11111)
- 31, (11110) - 30, and (00000) - 0. For the same tree, Tree(3, 1, 4) denotes the
chromosome (10011) with the phenotype 19.

The proof of the correctness of the Algorithm CT122 is relatively easy, and
here omitted. Note that between chromosomes arranged in a tree node, occur
the following properties (the reader easily sees them in Figure 1):

• a pair of the chromosomes at the same level c receives the remainders of
the division by 2c according to the rule: the first offspring and the second
parent, as well as the second offspring and the first parent, have the same
reminders,
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• the first offspring from the level c and its first parent, as well as the second
offspring from the level c and its second parent, have the same alleles from
positions c+ 1 to n,

• the affiliated chromosomes coupled with a children at the level c � n− 1 in the
lines 11-16 of the CT122 Algorithm (see the restriction in the line 17) have the
following properties in respect to their partners chosen in the lines 19-20:
· equal remainders of the division by 2c,
· different alleles between affiliated chromosomes at the position c+ 1.

5 CT122 Algorithm in Palindrome Recognition

Now the question can be raised, what is the use of the minimal number of one-
point crossovers performed to explore the entire search space, and introduced in
Theorem 2? How and where can the CT122 Algorithm be used? For example,
we can apply this number to compare two different algorithms searching a set.

Let us consider the apparently simple task of finding palindromes. This prob-
lem is intensively exploited in bioinformatics, e.g. to find palindromic sequences
in proteins [25].

Assume, we want to find all palindromes in the space An. From the Theorem
2 we know without any computation, that the fastest algorithm can generate all
2n chromosomes from An space in 2n−1 − 1 crossovers. But by knowing some
properties of CT122 algorithm we are able to reduce the number of operations
twice! In this case we explore two facts:

• the chromosome is a palindrome if and only if the polar-to-it chromosome is
a palindrome,

• in the tree CT generated by CT122 algorithm, each polar pair of chromo-
somes (except by pair of polar chromosomes located in the root node at the
level 0) has one each chromosome in two sub-trees, which root nodes contain
chromosomes located at the level 1.

Taking into account above properties, we can determine all palindromes in An

space, scanning two primary chromosomes and only one of the sub-tree, which
in its root node has one of the child chromosome from the level 1 (in Figure 2
chromosome (00001) - phenotype 1 or (11110) - 30. It means, that we need to

scan only 2+ 2n−2
2 = 2n−1+1 chromosomes, what requires 1+ 2n−1−1−1

2 = 2n−2

crossovers. Comparing these two algorithms, we can notice, that the second

algorithm performs 2n−1+1
2n−2

∼= 2 times less operations.

6 Conclusions

The paper considered problem of exploring the binary space An using only one-
point crossover genetic operator. The result obtained entitle us to claim, that
1ptc operator does not have to lead to a too rapid convergence. Its ability to
penetrate the space is determined by two factors: starting pool and selection.
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This conclusion is somewhat supported by the literature: [4,5] and especially [1]
pay attention to the problem of selection, and even apparently extreme propo-
sition of inserting a random chromosome [11], is in fact an attempt to maintain
diversity of starting pool. Theorem 1 shows that if the replenishment of the cur-
rent pool will be ensured by, for example, the presence of at least one pair of
polar chromosomes, then the genetic algorithm can escape from the local trap.
The results indicate the need to control the selection impact for reducing the
possibility of exploration and exploitation properties of crossover operator.
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