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Abstract. This paper presents a new concept of representation of data
and their relations in neural networks which allows to automatically asso-
ciate, reproduce them, and generalize about them. It demonstrates an in-
novative way of developing emergent neural representation of knowledge
using a new kind of neural networks whose structure is automatically
constructed and parameters are automatically computed on the basis of
plastic mechanisms implemented in a new associative model of neurons -
called as-neurons. Inspired by the plastic mechanisms commonly occur-
ring in a human brain, this model allows to quickly create associations
and establish weighted connections between neural representations of
data, their classes, and sequences. As-neurons are able to automatically
interconnect representing similar or sequential data. This contribution
describes generalized formulas for quick analytical computation of the
structure and parameters of ANAKG neural graphs for representing and
recalling of training sequences of objects.
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1 Introduction

Brains are well-developed biological machines that efficiently represent and pro-
cess big-data. The principle of operation of the human mind is not based on
numerical computational processes, but on active associative context-sensitive
consolidation of many pieces of information which forms knowledge and allows
generalization and creativity [14] [31]. Generalization is indispensable for mod-
elling and operation of knowledge and intelligence [8]. In the current stage of
development of neural networks, we have many structures, models of neurons,
and training methods that enable approximation, association, prediction, regres-
sion, recognition, and classification [3] [21] [29]. The majority of artificial neuron
models represents weighted sums which are used to compute output values us-
ing various activation functions [21] [29]. Artificial neural networks (ANNs) are
trained using external algorithms [17] [21] [29] which usually do not exist in real
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brains [16] [19]. Biological neurons use internal, plastic, and local adaptation
mechanisms which enable them to represent frequently repeated combinations
of similar input stimuli and connect these representations to reproduce their
sequence. Current investigations in neurobiology [15] [16] [19] [20] provide in-
sight into universal plastic mechanisms which enable neurons to automatically
change their connections and parameters to consolidate and represent frequent
and similar combinations of object features and their sequences.

The essence of intelligence is the ability to memorize, reproduce, and general-
ize about frequent and similar patterns which define objects, actions, and their
sequences, which allows to predict and control future events. As brains have in-
sufficient resources to memorize every pattern [7] [16] [19] [25] [26], they prefer
to represent and memorize only classes of patterns representing subgroups of
similar objects. Classes are represented in neurons as combinations of their most
frequent and representative features. Such connected neurons can represent state-
ments, rules, and algorithms based on the most frequent and similar sequences
of training objects. This unified, simplified, and consolidated representation of
objects and their sequences is fundamental for knowledge representation, gener-
alization, creativeness, and managing big-data on the fly [14] [22] [23] [24]. This
kind of representation allows to quickly recognize similar objects and their se-
quences as well as recall other corresponding pieces of information. Thus, neural
representations of classes of objects can be activated by various pieces of the
objects defining these classes. The previously activated neurons can temporarily
influence potential future activity of other connected neurons (Fig. 2-3) and thus
control them and represent a context for their subsequent possible activations.
This control can not only strengthen the influence of other inputs - in effect
enabling or accelerating their activity - but also inhibit their influence and de-
celerate or even stop their activity due to inhibitory connections. This feature
defines the possibility to control neuronal activity within the context of previous
objects, events, and thoughts in brains [12] [16] [19].

Human languages help to share important information, define rules, methods,
and algorithms, as well as allow to describe things and actions precisely to avoid
misunderstandings. They make way for human cooperation which relies strongly
on communication, knowledge, and intelligence. They allow people to solve prob-
lems on the basis of previously solved tasks which were somehow similar to the
currently solved problems. Solutions are usually described by algorithms in the
form of a sequence of steps [9] [11] [12]. Such steps are performed under the condi-
tions of given contexts defined by various circumstances. Our brains can consol-
idate sequential relations, dependencies, rules, conditions, and develop complex
algorithms using consolidated neural representations of objects defined by their
subsets of features. This paper informs about neural associative processes and
describes a generalized universal model for associative context-sensitive consoli-
dation of training sequences of objects which can represent things and procedures
in general.

A neuron represents an object or its part when it activates as a result of a
time-spread combination of input stimuli triggered by the object. Thus, each
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Fig. 1. As-neurons capable of representation of most frequent and repeatable combi-
nations of input stimuli and their sequences

neuron represents an infinite set of time-spread combinations of input stimuli
that can activate it. This set can contain similar as well as differing combina-
tions, which allows neurons to automatically generalize about objects and create
representations of their classes. As a result, similar objects produce similar neu-
ral reactions, and similarly affect other connected neurons. Connections between
neurons also enable to represent various time-spread sequences of objects (e.g.
sentences, rules, or algorithms). The preceding objects in each sequence - that
are represented in a neural network and have triggered activity of other neurons -
create an activity context for subsequent objects represented by other neurons
only if these neurons are connected together and can influence their states as
a result of their activity. Connections between as-neurons described in this pa-
per are automatically created if their activity occurs in short intervals [12], e.g.
for as-neurons representing objects of each training sequence. This feature of
as-neurons enables their network automatic, consolidated, and context-sensitive
representation of time-spread sequences of classes of objects that as-neurons
already represent. Synaptic weights are presented as a percentage of thresh-
old values (Fig. 1) because it is important to notice how much each weight
influences the activation of a postsynaptic as-neuron. Connections and synap-
tic weights between as-neurons enable to differentiate various influences of the
context formed by the activity of other presynaptic neurons. This allows to pro-
duce different context-sensitive reactions of a neural network constructed from
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as-neurons. Furthermore, associative consolidation of representations of various
sequences in a single neural graph sometimes triggers generalized reactions that
have not been trained (Fig. 3). This kind of generalization can be sometimes
intuitively interpreted as creativity [11] [12].

This paper describes a generalized associative model of neurons (as-neurons)
(Fig. 1) for an upgraded fast automatic construction of ANAKG neural graphs
- introduced in [11] and [12] - capable of representing and consolidating training
sequences of objects. An introduced associative method for automatic develop-
ment of ANAKG neural graphs constructed from as-neurons is very fast because
it demands only a single browse through a training sequence set (S). All pa-
rameters and connections are automatically computed locally by as-neurons and
synapses. This is possible if the training sequence set is fully defined and avail-
able before starting the adaptation process [11] [13]. In nature, due to emotions,
needs, and other circumstances, the thinking processes favour and many times
rehearse specific training patterns, which are trained at various moments and
contexts. In machine learning, we lack such redundant information, treat data
in the same way, and build a computational model quickly for a precise number
of training patterns [5] [6] [21] [29]. These circumstances can force adaptation
methods to work differently. In order to use the time-dependent mechanisms of
biological neurons for efficient machine learning, we have to intelligently speed
up or slow down the simulation time of as-neurons to automatically produce
appropriate connections between them. We also need to substitute the initial
structure and connections of biological neurons - inherited and naturally devel-
oped - with fast plastic mechanisms which let as-neurons quickly develop an
artificial structure representing classes of training objects, their relations and
sequences.

2 Active Associative Mechanisms in Neural Networks

Association is usually defined as a connection or relation between two or more
objects [2] [3] [18] [30] [32]. Brains contain reactive neurons [16], which allow us to
consider a special kind of associations - active associations - which automatically
trigger relationships between neural representations of object classes via auto-
matic reactivity of neurons and their ability to stimulate neurons representing
other object classes in diverse ways. Stimulated neurons can be activated, which
automatically triggers recalling of sequences of associated neural representations
of other object classes through weighted neural connections. Such active associ-
ations are modelled in a new kind of systems - called artificial neural associative
systems (aas-systems) - defined in [11] and [12]. Among other elements, the aas-
systems are built from reactive as-neurons that enable to automatically create
active associations between neural representations of object classes reproducing
their context-sensitive relationships with other classes. In aas-systems, the ca-
pabilities observed in brains can be adapted to tasks of machine learning and
cooperation with contemporary computers by introducing new kinds of sensory
receptors not occurring in nature [12].
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Associative systems exhibit a few important features that determine and de-
fine active associations in neural graphs: similarity, sequence, frequency, unique-
ness, parallelism, and time-dependency of associative processes. These processes
are controlled by local dependencies transmitted through connections and by the
flow of time. They can also activate plastic mechanisms reconstructing associ-
ations. Similar neurons, which are often connected together and can stimulate
each other, usually represent similar objects defined by similar feature values.
Representation of object sequences is very important because it allows to asso-
ciate even totally different objects which are somehow related. In an aas-system
representing sequences of objects, the as-neurons representing them form new
connections or strengthen the existing ones to reproduce these sequences. It is
sometimes impossible to unambiguously represent all correlated sequences of ob-
jects in aas-systems. Varying frequencies of presenting individual sequences dur-
ing training of the aas-systems play an important role in the adaptation process:
frequently occurring training sequences of objects will be more strongly repre-
sented and more easily recalled than those that occur more rarely. Moreover,
this enables to forget less frequent and correlated sequences. This mechanism
automatically manages knowledge of aas-systems. On the other hand, unique
objects and unique combinations of common objects create unique contexts for
easy recalling of sequences. To demonstrate how it works in your brain, you can
try to put together two or three common objects in a unique (untypical) config-
uration and place them on your desk when you leave thinking about something
you would like to remember when you come back. When you come back you will
immediately remember what you wanted when you see this unique (untypical)
object configuration you left on your desk. ANAKG neural graphs - parts of aas-
systems - adequately connect neural representations of objects and strengthen
the connections reproducing their frequencies, sequences, and uniqueness. Ad-
ditional connections are used to reproduce the contexts of recently presented
objects that activated the as-neurons which represent them. This allows for au-
tomatic sequential context-sensitive recalling of associated objects (Fig. 2-3) [11].
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where
S � Ŝ - a synaptic weighted connection between as-neurons S and Ŝ,
δS,̂S - efficiency of synaptic connection at activating postsynaptic as-

neuron Ŝ through presynaptic as-neuron S accordingly to the time
interval of their activations,

θS - an activation threshold of as-neuron S,
ηS - a number of activations of presynaptic as-neuron S,
ω - maximum time necessary to gradually relax each as-neuron from its

most excited state to its resting state,
ts - time necessary to propagate a stimulus along a connection and

through a synapse from a presynaptic as-neuron S to a postsynaptic
as-neuron Ŝ,

tr - absolute refraction time in which as-neurons are unsusceptible for
any stimulations,

tSa - computed relative activation time of as-neuron S according to its
above-threshold excitation level determined by its activation thresh-
old θS (0 < ta ≤ tMAX

a ),
tMAX
a - maximum activation time of as-neurons when XS = θS ,
t1 - the moment of the last update of a neuronal state,
t2 - the current moment of a neuronal state update,
f
̂S(t) - concave continuously decreasing functions used to define relaxation

function R of as-neurons,

RΔt
̂S

- a relaxation function that gradually turns the as-neuron Ŝ to its
resting state, where Δt is the relaxation period from its last update
during which no external stimuli occurred,

xt2
S - an input stimulus distributed from as-neuron S to synapses, where

t2 is a moment of its influence on postsynaptic as-neurons via these
synapses,

h(Xt
S) - a function that determines the presynaptic influence of as-neuron S

accordingly to the activation threshold of this as-neuron.
The context of past events should not last infinitely, their influence on recalling

of following objects has to be gradually reduced and stopped (4). Consequently,
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the neurons need a built-in mechanism which will gradually reduce their excita-
tion (3). In biological neurons, such a mechanism is called relaxation [16] [19],
during which neurons return back to their resting states after the stimulations
have failed in activating them or after the activations precede the refraction pe-
riod. An associative model of neurons (as-neurons) (Fig. 1) augments the models
of artificial neurons [21] [29] and spiking neurons [15] by additional features and
functions that enable as-neurons to automatically connect and represent classes
of objects and their sequences allowing for context-sensitive recalling, general-
ization, and creativeness [14]. The as-neurons weigh and add input stimuli (2),
use activation thresholds θ

̂S , relax, refract (5), start plastic processes to change
weights (2), and automatically connect to other as-neurons, whose activities of-
ten occur in similar periods [11] [12]. The synchronisation of firing of as-neurons
usually suggests that object classes represented by these as-neurons are semanti-
cally related (e.g. they are similar, define the same class, or follow one another),
so they should be connected or their connections should be strengthened. In
this way, related object classes represented by as-neurons can be conditionally
recalled according to the strength of synaptic connections between them.

As-neurons work in parallel in time, but their activations are often not syn-
chronized, so they need a special simulation environment. Due to the limitations
of today’s computers, some simplified models have also been proposed [11] [12]
to enable and accelerate an adaptation process of aas-systems. These models
assume updating in discrete moments of simulation time and accomplish the
main associative goals which allow to automatically influence representation and
relationships of other data. Thus, aas-systems are automatically internally pro-
grammed by training data relationships - not by external training algorithms.
They use plastic mechanisms that can automatically react to input data and
represent these relationships in synaptic weights, connections, and thresholds.
External stimulations of any time-spread combination of as-neurons (directly
or via sensory receptors) recall an active associative reaction of the aas-system
according to the relationships in the represented training data. This results in
stimulation of other connected as-neurons as well. Upon activation, they produce
an answer built from the represented classes of objects in a sequence arising from
the moments of their activations (Fig. 3). Frequently activated as-neurons can
newly interconnect or strengthen their existing connections in order to remember
the result of associative recalling and make it available for the future. In this way,
aas-systems - a kind of emergent cognitive systems - can develop new internal
associations according to external and internal stimuli. This process resembles
the ability to recall self-developed conclusions during thinking in people.

Brains have the built-in ability to develop initial neural structures. Aas-
systems lack genetically inherited structures, so we have to use some extra rules
to quickly develop these structures for various training data. This often proves
advantageous, because the structures can be created according to a given task
without the limitations introduced by e.g. inherited types of receptors or an
imposed initial structure. The aas-system structures can be automatically op-
timized and specialized in associating given training data. New as-neurons are



Innovative Types and Abilities of Neural Networks 33

created as a consequence of external input stimuli which have not produced acti-
vation of any existing as-neuron. The axon of as-neuron S connects to as-neuron
Ŝ if as-neuron Ŝ is activated in short period (≤ ω) after as-neuron S has been
activated and this connection is reinforced when this sequence of activations is
repeated in the future. In the ANAKG neural graphs only δS,̂S (1) and ηS have
to be computed during a single browse through a training sequence set. Weights
(2) can be computed at the end of this fast adaptation process. The construction
process of ANAKGs has been precisely described in [11], [12], and [14].

3 Generalization of Training Sequences

This section describes an experiment in which a training sequence set called
’Monkey’: ”I have a monkey. My monkey is very small. It is very lovely. It likes
to sit on my head. It can jump very quickly. It is also very clever. It learns
quickly. My monkey is lovely.” was used to develop an ANAKG graph shown in
Fig. 2. New as-neurons represented each new word. Words from each sentence
were presented with an interval of 20 units of simulation time. Connections
were established between all as-neurons in each sequence of words (sentence)
so that each as-neuron representing a word in a sequence was connected to all
as-neurons representing all following words in this sequence. If the same word
occurred in many sequences, the same neuron represented it. This process natu-
rally combined and interlaced all training sequences taking into account contexts
of previous words in each sentence. This also aggregated representations of all
the same words in all training sequences. The amount of activations of all presy-
naptic as-neuron ηS was computed according to the number of repetitions of
words of all training sequences (Tab. 1). They served to compute the efficien-
cies of all synaptic connections δS,̂S (1) at activating postsynaptic as-neurons

Ŝ by stimulations of presynaptic as-neurons S according to the time interval
of their activations (Tab. 1). Weights were computed according to formula (2)
introduced in the previous section (Tab. 2). Other constants were set according
to the average times described by Kalat in [16], assuming that each unit of sim-
ulation time conforms to approximately 1 ms of biological neuron operation in
the following way: maximal relaxation time ω = 100, maximal charge time of
excited as-neurons that achieved their activation thresholds tMAX

a = 15, connec-
tion and synaptic transmission time ts = 5, absolute refraction time tr = 3, and
activation thresholds of all as-neurons θ = 1. Gamma constant γ = 4 allowed to
achieve appropriate concave shape of function (3) used for relaxation (4).

The constructed ANAKG neural graph allowed for external stimulation of
any as-neuron, as-neuron combination, or sequence to elicit an ANAKG reac-
tion. Depending on the breadth of a context of initializing external stimulations
of as-neurons, we could obtain various behaviours and answers. The ANAKG
neural graph answers were constructed from sequences of objects represented
by activated as-neurons. In the constructed ANAKG graph (Fig. 2), as-neuron
MONKEY was stimulated and activated two times in t = 0 and t = 20. The
first activation of as-neuron MONKEY has stimulated connected as-neurons
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Table 1. δS,̂S (1) and ηS values computed for training sequence set ’Monkey’

Table 2. wS,̂S (2) values computed for training sequence set ’Monkey’

IS, VERY, SMALL, and LOVELY but did not result in further activations of
other as-neurons. The second activation of as-neuron MONKEY triggered a se-
quence of activations of the as-neurons representing words: MONKEY IS VERY
LOVELY (Fig. 2-3). Notice, that this sequence of words had not been used dur-
ing construction and adaptation of this ANAKG graph, so it came into being as a
result of generalization of all training sequences. The ANAKG neural graphs are
universal and can consolidate and generalize sequences representing anything.

This example shows a new kind of generalization and highlights the impor-
tance of neuron relaxation common in biological neural networks.Without the re-
laxation of as-neurons, this result and a similar kind of network answers would be
impossible. Moreover, these as-neurons produced this sequence of activations au-
tomatically as an answer to external stimulations of single as-neuron MONKEY.
Stimulating an initial sub-sequence of any training sequence in almost all cases
causes recalling of the remainder of this training sequence. Given a context, the
differing length of the initial sub-sequence depends on the training frequency and
uniqueness of the recalled sequence. Rare and more correlated sequences demand
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Fig. 2. A developed ANAKG graph for the presented training sequence set: (A) two
sequential external stimulations of as-neuron MONKEY in simulation time: t=0 and
t=20 result in activation of as-neuron IS, (B) as-neuron IS together with the previous
contextual excitation coming from as-neuron MONKEY activates as-neuron VERY

a wider context for initial recalling than sequences that have a more unique ini-
tial sequence or have been trained more frequently than the others. The context
for recalling of subsequent as-neurons in a sequence is formed based on below-
threshold excitations that enable as-neurons activations in the immediate future
(Fig. 2-3).
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Fig. 3. The automatically stimulated and activated as-neurons: (C) as-neuron VERY
together with the previous contextual excitations coming from as-neurons MONKEY
and IS activates as-neuron LOVELY (Fig. 2), (D) time chart of the as-neuron ex-
citations, activities, and refractions, presenting an ANAKG answer to the external
stimulations of as-neuron MONKEY represented by sequentially activated as-neurons

4 Summary and Conclusions

This paper extends the abilities of commonly used neural networks in the field of ar-
tificial intelligence. It introduces a new kind of neurons and adaptation strategies.
The presented adaptation strategy uses novelty parameters regarding the numbers
of activations of as-neurons and time-dependent delta parameters thatmeasure the
efficiency of synaptic connectionbetween presynaptic andpostsynaptic as-neurons
accordingly to the time interval of their activations.This paper also presents gener-
alized formulas to quickly construct and adapt ANAKG neural networks to repre-
sent training sequence sets. A single browse through a training sequence set allows
to construct a structure and compute all parameters of this network. This work
shows that this kind of neural networks can not only remember a great part of
training sequences but also generalize about them. The ANAKG neural networks
as well as aas-systems are not intended to precisely remember training data but
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rather to represent the knowledge about trained objects, generalize about them,
and even get creative answers. Knowledge is always the generalization of trained
objects, facts, and rules. Our brains also do not precisely remember all the trained
objects, facts, and rules, but represent classes of objects and only the most im-
portant or frequent facts and rules. This limitation is necessary if we want to pro-
cess big-data and form knowledge on their basis. The precision of representation of
classes of objects and represented facts and rules depends on the number and kind
of perception elements (receptors) as well as the number of neurons that can be
used to represent them. However, knowledge more capable of generalizing comes
into being when objects are well aggregated and their sequences are appropriately
consolidated. Such knowledge makes an indispensable background for intelligent
processing and intelligence.

The experiments confirmed the adaptive and generalizing abilities of the pre-
sented ANAKG neural graphs. The obtained results demonstrate the associative
capabilities that can be modelled and used in the field of artificial intelligence.
These investigations have shown new possible directions of investigation that
can spark the creation of new neural associative models of knowledge represen-
tation and extend the capabilities of artificial intelligence, knowledge mining, and
emergent cognitive systems. This research was supported by AGH 11.11.120.612.
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