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Abstract. This paper is aimed at the giving of a comparative approach
to the preferences modelling. This approach is conceived to grasp the
fuzzy nature of preferences what determines the choice two fuzzy logic
formalisms for their representation discussed by P. Hajek and L. Godo.
These two (appropriately modified) formalism are used to propose two
formalism for preferences: Fuzzy Modal Preferential Logic (FMPL) and
Comparative Possibilistic Multi-Modal Propositional Logic (CPMPL). We
also justify some metalogical properties of both systems such as their
completeness and we discuss a satisfiability problem for them. In result,
we propose a short juxtaposition of the properties of the considered sys-
tems.

Keywords: Fuzzy logic for preferences · Multi-valued logic for prefer-
ences · Preferences modelling

1 Introduction

Different aspects of preferences modelling are considered in temporal knowledge
representation. On one one hand, preferences and their representation are dis-
cussed in the context of the temporal planning issue as its specific constraints
type – see for example: [8], [10], sometimes in term of STPP and STPPU— like
in [11]. On the other hand, other approaches—such as: [15], [13] expose an epis-
temic or a game-theoretic nature of preferences. It is usually discussed there in
terms of different variants of epistemic logic or logic of action. All the approaches
refer, however, to the fuzzy nature of preferences partially and indirectly. The
recent attempt for modelling user’s preferences on attributes from [3] seems to
be too algebraic and relatively narrow approach.

The lack of the exact multi-valued or fuzzy logic system for preferences rep-
resentation and–as result–lack of a knowledge about its properties forms a main
motivation of this paper. Therefore, we propose a new formalism of multi-valued
logic and fuzzy logic for preferences modeling in this paper. For this purpose, we
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especially adopt a formalism of systems involved in a newly interpreted modal
necessity proposed and developed by L.Godo and F. Esteva in [4], in [6] and [7]–
retrospectively discussed also in [5]. This approach allows us to apply a multi-
valued modal systems with a decreasing or increasing degree of necessity of the
modal operators to the preferences. It has been shown in [4] that if a set S of
such degrees taken from a fuzzy set [0,1] is finite, then systems of possibilistic
logic with modal operators with necessity (possibility) degrees from S remain
complete.

1.1 Goal and a Novelty of the Paper

The first aim of this paper is a putting forward proposal of a new Fuzzy-Modal
Preferential Logic FMPL as suitable for preferences representation. In order to
expose the advantages of this newly proposed system we intend to compare
FMPL with some alternative fuzzy system being an appropriate modification
of the Hajek’s comparative possibilistic multi-modal propositional logic CPMPL
— considered in [5]— but without reference to preferences. For this purpose
we justify a handful of properties of both systems such as completeness, model
checking problem and its complexity. We show these properties in terms of the
newly proposed interval semantics. In other words, this paper proposes an answer
of the following questions:

• How to construct a multi-valued logic for preferences?
• Which (useful) properties have this system?
• Why a multi-valued system seems to be more comfortable than an alterna-

tive fuzzy comparative one?

1.2 Terminological Background and Methodological Remarks

All of the considered frames in our interval-based semantics will be based on an
order 〈S,≤〉 which:

• is strongly discrete, i.e. there are only finitely many points between any two
points,

• the order contains the least element,
• for any a, b, c ∈ S, if a ≤ c and b ≤ c, then either a ≤ b or b ≤ a.
We will consider a finite set A = {1, . . . ,m} of agents such that each agent is

endowed with a set of a local states Li and i ∈ A. If e is an environment of an
agent the set of local states is denoted by Le. Each agent is equipped with a set
of local actions and protocolar functions that produce a transition relation t. In
such a framework we adopt the following definitions.

Definition 1. Let L be a given language. An interval-based interpreted system
IBIS is a tuple (S, s0, t,Lab) such that

S is a set of global states (which can be points or intervals) reachable from the
initial state s0,
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t is a standard transition relation between states, and
Lab is a labeling function, which for an interval I = s1, s2, . . . , sk is defined:
Lab(I) = Lab(s1, s2, . . . , sk) = (ŝ1, ŝ2, . . . , ŝk), where terms ŝi represents the
point si in L, for i < k. In particular pairs (a, b) ∈ S2 are associated to formulas
pair (â, b̂).

Definition 2. An interval is a finite path in IBIS, or as a sequence I = s1ss . . . sk
such that sitsi+1 for 1 ≤ i ≤ k − 1 and a transition t.

Definition 3. A generalized Kripke frame is a tuple M = (S, s0, t,Lab), where
s0, t and Lab are as above and S ⊆ Le×L1× . . . Lm is a set of reachable (in any
way) global states. It easy to see that an unravelling generalized Kripke frame is
an IBIS. 1

Definition 4. (Model checking). Given a logic L, a generalized Kripke frame
M , an interval I = s0 . . . sk and a formula φ ∈ L, the model checking problem
for L amounts to checking whether or not it holds M, I |= φ.

In a model checking procedure for a newly constructed FMPL we make use of
the reduction method to the Boolean quantified satisfiability problem recognized
as a PSpace-problem from [9]. We use a standard logical notation.

1.3 Paper’s Organization

The paper is organized as follows. In Section 2 we introduce a multi-valued logic
for preferences (FMPL) representation by means of the necessity definition pro-
posed by Godo and Hajek. We check completeness of this system and perform
its model checking for the interval-based semantics. In Section 3 we consider
comparative fuzzy preferential logic CPMPL as the alternative system for pref-
erences and we will discuss its difficulties. We expose the conditional nature of
the completeness proof, the difficulties with an interval-based semantics con-
struction for CPMPL and undefinability of a CPMPL-satisfiability problem in
this semantics type. In section 4 we give a short juxtaposition of properties of
both systems. In the last section of the paper we formulate conclusions and we
sketch a promising research direction in this area.

2 Fuzzy Modal Preferential Logic

It has just been mentioned that preferences are often expressed in terms of
modal-epistemic logic and represented by relations being some types of orders–
especially in many game-theoretic approaches where they are interpreted in in-
finite game trees. In this paragraph we intend to understand preferences in a
’broader’ sense and represent them by partial orders rejecting a linearity con-
dition for them. We adopt such a way of their understanding because such a
1 For clarity, we omit the detailed definition of unravelling.
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generality ensures more flexibility with respect to the incomparable worlds. This
manouvre is also dictated by a purely meta-logical properties of the formalism
that we use for preferences representation. Indeed, partial orders represent the
modal system S4 which shows to have much more comfortable properties such
as completeness (in a multi-modal version as S4m, i.e. S4 with m-modalities)
than S4.3 – suitable for linear orders.

We also intend to expose a fuzzy nature of preferences — often formulated
with a different degree of a certainty in many practical situations as the one
described below.

Example 1. We can prefer to go to the theater today afternoon with a preference
3
10 and whenever, but not today-with a preference 7

10 and only in our birthday
we are strongly motivated with a preference = 1 (modal necessity) to go to the
theater.

It is clear that a modal representation of preferences seems to be too sharp
in this matter because—as based on two-valued reasoning. However, it seems to
be reasonable to restrict a spectrum of possible fuzzy values associated with our
preferences to their finite set S ⊆ [0, 1]. This manouvre will turn out reasonable
from the technical point of view, as well. In essence, it ensures completeness of
the considered system.

2.1 Fuzzy Modal Preferential Logic FMPL — Syntax and Semantics

It has already been said that preferences will be represented by us in an interval-
based semantics as transitive and reflexive orders. Moreover, we decided to in-
terpret their in a fuzzy manner. It will be reflected in types of operators that we
introduce. In essence, we want to consider operators of a type [Pref]αi φ read: “an
agent i (strongly) prefers φ with a degree α ∈ [0, 1]”, and 〈Pref〉αi φ “an agent i
weakly prefers φ with a degree α”

A language L of FMPL is given by a grammar:

φ := p | ¬φ |φ ∧ ψ | [Pref]αi φ | 〈Pref〉αi φ
Axioms: The axioms of FMPL are: the axioms of Boolean propositional calcu-
lus, and

[Pref]αi (φ → χ) → ([Pref]αi φ → [Pref]αi χ) (axiom K)
[Pref]αi φ → [Pref]αi [Pref]

α
i φ (axiom 4)

[Pref]αi φ → φ (axiom T)
As inference rules we adopt Modus Ponens and the inference rule for [Pref]αi
operator: from φ → ψ infer [Pref]αi φ → [Pref]αi φ for some α ∈ G, with G being
a finite subset of [0, 1]. The finiteness of G is important for the satisfiability of
FMPL, and it enables the completeness for the point-wise semantics [4,5]. This
will be discussed in the context of interval-based semantics.

As usual, we define FMPL as the smallest theory in a language L(FMPL)
which contains the above axioms and closed on the above inference rules.
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FMPL in An Interval-Based Semantics and Satisfiability Problem.
We intend to interpret this FMPL in an interval-based semantics. It will be
based on an inductive definition of satisfaction for formulas of L(FMPL) that
we will introduce below. For this purpose assume as given an IBIS with a labeling
function Lab defined earlier. Recall that if an interval I = s1 . . . sk, than Lab(I) =
Lab(s1 . . . sk) = (ŝ1 . . . , ŝ1), where ŝi represents a point si in a given language.
Assume also that ∼i is an accessibility relation between intervals (for some agent
i). For two given intervals, say I = s1 . . . sk and I ′ = s

′
1 . . . s

′
l we only assume

wrt ∼α
i the following: I ∼α

i I ′ means that k ≤ l and j-local states of I and I ′

are identical (for j ≤ k).
Naturally, the necessity degrees α — associated to modal formulas of FMPL

— should be reflected in the accessibility relation ∼i interpreting these formulas.
We will write: I ∼α I ′ iff the relation ∼ (I, I ′) is associated to a value at least
α (symb: α ≤ ‖ ∼ (I, I ′)‖. In terms of a convention of Hajek we can say that
intervals I and I ′ are at least α-similar [5]. It is easy to observe that ∼α

i is a
partial order, hence it can be an appropriate representation for preferences in
the light of earlier arrangements.

Definition 5. (Satisfaction) Given a formula φ ∈ L(FMPL), an IBIS and an
interval I we define inductively the fact that φ is satisfied in IBIS and in an
interval I (symb.I |= φ) as follows:

IBIS, I |= p iff p ∈ Lab(I) for all p ∈ Var.
IBIS, I |= ¬φ iff if its not such a case that IBIS, I |= φ.
IBIS, I |= φ ∧ ψ iff there is such a case that IBIS, I |= φ and IBIS, I |= ψ.
IBIS, I |= [Pref]αi φ, where i ∈ A, iff for all I ∼α

i I ′ it holds IBIS, I ′ |= φ for
a fixed α.

IBIS, I |= 〈Pref〉αi φ, where i ∈ A, iff there is such I’ that I ∼α
i I ′ and it holds

IBIS, I ′ |= φ for a fixed α.

The key clause of the above definition is this one referring to the modal oper-
ators [Pref]αi φ and 〈Pref〉αi φ. These conditions assert that such modal formulas
are satisfied in an interval I and model IBIS iff the same formula φ holds in all
intervals accessible from this I in the sense of the accessible relation ∼i by an
agent i.

Example 2. Consider a formula [Pref]αi φ and intervals Ik of the form: s1s2 . . . sk
(for k = 1, 2, . . . 5) that are labeled by a formula φ, and an interval s1 . . . s6, which
is not labeled by φ. Assume that I ∼i I

k and I ∼i s1 . . . s6 for some accessibility
relation ∼i. It is easy to observe that a formula [Pref]αi φ is not satisfied in I
because not for all intervals accessible from, say Iaccess, it holds Iaccess |= φ. In
fact, s1 . . . s6 �|= φ (due to above satisfaction definition).

We intend to justify the PSpace completeness of satisfiability problem for
FMPL. The proof uses a reduction of a satisfiability problem for FMPL to the
satisfiability problem for S4m that is known as PSpace-complete, [2]. In the
proof we adopt the proof ideas from [9]. This proof idea requires, however, some
additional justification. In fact, we said that accessibility relations in IBIS are
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associated to one of a values from a finite G ∈ [0.1] in our case. Hence we will
consider a slightly modified key relationships between accessibility relations in
Kripke frames of the form K = 〈W,S1 . . . , Sk〉 and in IBIS in the form: I1SiI2
in K ⇐⇒ I1 ∼α

i I2 in IBIS, for α ∈ G and i ≤ k. It means that we will consider
only intervals et least α-similar to the initial ones in satisfaction condition for
formulas of FMPL.

Theorem 1. (Satisfiability + Completeness) FMPL is complete wrt the interval
IBIS-based semantics. The satisfiability problem for FMPL is PSpace-complete.

Proof. (Outline) This proof uses a reduction of a satisfiability problem for FMPL
to the satisfiability problem for S4m what can be deduced as PSpace-complete
because of the satisfiability problem for S4 — known as PSpace-complete, [2].
In the proof we adopt the proof ideas from [9].

In order to reduce the case of S4m to the case of FMPL, it suffices to show
that IBIS, I |=FMPL φ ⇐⇒ M |=S4m f(φ) for some model M and a bijection
f that transforms the formulas of FMPL into formulas of S4m replacing each
box-operator [ ]jφ of S4m by [Pref]αi φ, where j ∈ {1, . . . ,m} and card{G} = m.
(→) Assume first that φ is satisfied in a model IBIS = (S, s0,∼α

i , t,Lab) and in
an interval I. We aim at giving of such a Kripke model M that f(φ) is satisfied
in it. This situation is, however, easy because it is enough to assume that a
domain |M | of M consists of the intervals from IBIS such that it holds for all i:
I1SiI2inM ⇐⇒ I1 ∼α

i I2inIBIS for a fixed α ∈ G. One can inductively check
that f(φ) is satisfied in the Kripke model M.

(←) Assume now that (M,ω) |= f(φ) for M = (W,ω0, S1, . . . , Sm) and
that M contains only the relations in φ. We can construct a model IBIS =
〈W ⋃{s0}, s0, t,Lab〉 with a new point s0 as an initial one. A transition relation
t is not empty because it contains (s0, t) for some t-due to its definition. We
finally define Lab(s0, ω) = π(ω). It remains only to justify by induction that φ
is satisfied in the interval s0ω in IBIS.

We analyze only the case of the modal box-operator. For this purpose we
assume inductively that IBIS, s0ω |= φ ⇐⇒ M,ω |= f(φ). We want to prove
that IBIS, s0ω |= [Pref]αi φ, or that ∀s′w′(s0ω ∼α s′ω′ ∧ s′ω′ |= φ) for some fixed
α. Assume also that M,ω |= [Pref]αi f(φ), which is equivalent to ∀ω′(ωSω′∧ω′ |=
f(φ)). Meanwhile ωSω′ ⇐⇒ (s′ = s0 and s0ω ∼α s′ω′) for all ω′ and the
relation S. Therefore we have ∀ω′(s′ = s0 and s0ω ∼α s′ω′ ∧ ω′ |= f(φ)).
The induction assumption allows us to deduce that ∀s′ω′(s′ = s0 ∧ s0ω ∼α

s′ω′ ∧ s′ω′ |= φ) what proves this case.
The above procedure has been carried out for the fixed parameter α ∈ G ⊆

[0, 1]. The same reasoning can be used for each parameter β ∈ G. The finiteness
of G ensures that the complexity of the satisfiability problem for FMPL remains
PSpace-complete. ��

Note that an assuming of a linearity condition for preferences changes a com-
plexity of the satisfiability problem. In fact, it holds the following theorem:

Theorem 2. The satisfiability problem for for FMPL with a linearity condition
for preferences is NP-complete.
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Proof. In essence, such a system can form a kind of a multi-modal S4.3m for
some finite m. It has been shown in [2] that a satisfiability problem for S4.3 —
even for the Horn clauses — is NP-complete. ��
One can raise a question whether a finiteness condition imposed on a set of
necessity degree can ensure a completeness of FMPL wrt the interval based
semantics with discrete finite intervals, like in a pointwise semantics in [4]. This
is not obvious, since it requires at least a density condition for the space of
intervals. How inappropriate is the condition of a finite discreteness imposed on
intervals, can be seen from the fact that S4remains complete wrt the Cantor set.
Recall that this set can be defined as a set of all real numbers represented as
∑∞

i=1 ai/3
i for ai ∈ {0, 2}.

Theorem 3. Assume that FMPL is such that a set of necessity degrees G has
one fixed value α. Then it is complete wrt the Cantor space.

Proof. It immediately follows from the fact that S4 is complete wrt to the Cantor
space [14] and from the fact that such a restricted FMPL can be translated to
S4. ��

3 Comparative Multi-modal Preferential Logic and Its
Difficulties

As it has been mentioned before, the preferences have a comparative nature. It
means that having a preference, say Pref1, with respect to a subject or activity
A, we can have a possibility to compare Pref1 with some other, say Pref2, wrt
to the same preference object or activity. In essence, we are usually willing to
formulate our preferences against the other alternative ones.

Example 3. We put a preference P1: ’going to the cinema today’ with a value 3
10

against a preference P2 ’goint to the cinema tomorrow" with a values 4
25 .

In the light of the above statements it seems to be reasonable to consider
a new alternative approach to the preferences representation that will be more
suitable for such a comparative nature of preferences. In fact: some A can be
more preferable than B and B more than C etc. It remains to chose only the
appropriate formal representation for such a property. The so-called compara-
tive possibilistic modal propositional logic CPMPL with a one binary modality
∇–interpreted as ‖φ ∇ χ‖ = 1 iff possibility of φ is less than or equal to the
possibility of χ–described in [5] can be suitable for such a task from the purely
theoretical point of view.

In this section we introduce a slightly modified version of CPMPL as suitable
for preferences representation. Secondly, we comparatively examine both FMPL
and CPMPL in further subsections. This presentation will be, however, aimed at
the exposing of the advantages of the earlier multi-valued preferential approach
because–as we will argue later–this new comparative fuzzy approach is not so
convenient as one can think. On the other hand, we observe an interesting fact
that a rejecting of a linearity condition is not required to preserve a completeness
in a case of CPMPL-formalism.
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3.1 Comparative Possibilistic Multi-modal Preferential
Logic-Syntax and Semantics

As this alternative fuzzy approach to the preferences representation we adopt
a multi-modal system CPMPL proposed in [6]–in a slight modified version.
CPMPL is built in a language given by a grammar:

φ ::= φ |¬φ | φ ∧ χ| φ �χ.
Because a comparison between preferences is both a transitive relation (if

A is weaker preferable than B and B weaker than C, than than A is weaker
preferable than C) and a linear one (either A is more preferable than B, or B is
more preferable than A), we adopt the following axioms system:

• axioms of propositional calculus,
• (φ�χ) → ((χ�ψ) → (φ�ψ), (transitivity)
• (φ�χ) ∨ (χ�φ), (linearity)
• (φ�χ) → ((φ ∨ χ)�(χ ∨ ψ)) (disjunction)
• (φ�χ) → [ ](φ�χ) (boxing 1).
As inference rules we adopt Modus Ponens and necessitation rule of the form:

from φ → χ deduce φ�χ.
CPMPL will be interpreted by us in a Kripke frames K = (W,μ, e), where

W �= ∅ is a set of states, μ is a probability measure and e : L(CPMPL) �→ [0, 1]
is a standard fuzzy evaluation function. We adopt the following interpretation
of formulas in a model K: ‖φ�χ‖M = μ(φ) ≤ μ(χ) (probability of χ is greater
than probability of φ) for w = ‖φ‖K and v = ‖χ‖K .

Example 4. Assume that φC = ’It is preferable to visit a cinema today’ and χT

= It is preferable to visit a theather today’ and ‖φC‖ = 45
100 and ‖φT ‖ = 21

100 .
Than ‖φT ‖ = μ(visiting a cinema) = 21

100 ≤ 45
100 = μ(visiting a theater) and

‖φT�χC‖ is satisfied in some model K.

3.2 Completeness of CPMPL

It has been shown in [6](see also: [5]) that CPMPL is complete wrt to the pro-
posed semantics. This proof leads by an reinterpretation of this system in some
fuzzy tense system, called MTL in [6]. The proof idea bases on a translation
* of the language L(CPMPL) into the language L(MTL) such that: p∗ = p,
(φ�χ)∗ = [ ](φ∗ → Fχ∗), where F is a temporal operator ’always in the future’
of LTL and [ ] is a normal modal box-type operator. We omit the details of the
proof that can be easily found in [6], pp. 16-17. Meanwhile we will propose a
short outline of the new completeness proof of this system.

Idea of our proof will be based on the alternative translation of formulas of
CPMPL into propositional variables of so-called Rational Pavelka Logic RPL.
The idea of translation is easy: bimodal formula, say �(k, j), is represented by
double-indexed propositional variable pk,j ; unary modal operator, say �j,–by a
singularly indexed propositional variable pj .

Our proof-similar to the ideas of of completeness proof for Rational Pavelka
logic from [5] will be essentially based on the definition of so-called truth degree
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and provability degree defined as: ‖φ‖T = inf{‖φ‖M : M is a model of T } and
|φ|T = sup{r : T � (r̂ → φ)} (resp.) for an arbitrary formula φ ∈ L(RPL).
In such a terminological framework, the Pavelka style of completeness proofs
consists of a proving of a unique equality:

‖φ|T = |φ‖T 2.

In order to prove the CPMPL-completeness we also adopt the following lemmas
(without their proofs).

Lemma 1. ([5], p. 130) If T � �r̂ → φ then the theory T ∪{φ → r̂} is consistent.

Lemma 2. ([5], p. 81) Let T be consistent and complete. Then the evaluation
e(pi) = |pi| is a model for T.

Theorem 4. Completeness CPMPL is complete wrt to the proposed seman-
tics. More precisely, for each theory T in a language L(CPMPL) and a formula
φ of this language it holds: |φ|T = ‖φ‖T .

Proof. (Short outline). For a use of the proof we should make a simple translation
of the bi-modal CPMPL-formulas φ � χ into the propositional variables pφ,χ–
similarly as it has been made by a translation of the formulas of fuzzy probability
system FP discussed in [5], p. 235.

In order to justify the theorem we have to justify that both |φ|T ≤ ‖φ‖T and
‖φ‖T ≤ |φ|T . Meanwhile, the proof for |φ|T ≤ ‖φ‖T (soundness) is routine. In
order to prove the converse we must show that for each rational r < ‖φ‖, T � r̂ →
φ, where r̂ is a representation of r in a language of CPMPL. By a transposition
it is enough to show that if T does not prove r̂ → φ, than ‖φ‖ ≤ r. Assume
therefore that T � �r̂ → φ what means that T ∪{φ → r̂} is consistent and it must
have a complete Lindenbaum extension, say T

′
. Then-by the above lemma– an

evaluation e(pi) = |pi| and e(φ → r̂) = 1, thus e(φ) ≤ r. In particular, it means
that e(pφ, chi) = |pφ,χ| and e((φ�χ) → r̂) = 1, thus e(φ�χ) ≤ r what finishes
our proof. ��
Remark 1. Note that the translation of the formulas can be also carried out in
two steps. Firstly, we can represent a CPMPL-formulas φ�χ by an unary modal
operator P (φ|χ) for a conditional probability-read as: ’probability of χ under a
condition φ’ in the appropriate language. In the second step, we can represent
P (φ|χ) by a single propositional variable pφ,χ.

3.3 Further Properties of CPMPL and Its Difficulties....

We have just shown how to arrive at the completeness theorem via method of for-
mulas translation. It is not difficult to observe that the above proof is essentially
based on the earlier lemmas and the same translation between formulas of CPMPL
and formulas of Pavelka’s system. This situation seems to correspond well with
2 It exactly means that a formula φ is equally provable in a theory T as satisfiable in
its models.
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the situation exposed in [6] of the similarly conditioned proving of completeness
of CPMPL via referring to a fuzzy tense logic. Hence, one can state that a com-
pleteness proof for CPMPL cannot be so direct like in a case of FMPL where we
make use of the direct translation to better-known completeness of S4.3m. More-
over, the CPMPL-completeness does not solve the model checking problem. This
problem will be shortly discussed in this subsection together with further proper-
ties of CPMPL and its difficulties such as interval-based semantics construction.

Interval-Based Semantics Construction. The pointwise Kripke fuzzy se-
mantics for CPMPL has already been introduced in outline. The interval-based
semantics construction seems to be, however, more problematic one for the fol-
lowing reasons–if it is possible at all.

• Assuming that formulas φ and χ (from φ�χ) will be interpreted in intervals,
say I1 and I2 (resp.), it is not clear how to define relationships between I1 and
I2. Fuzzy logic semantics-in a contrast with a modal logic one-is not necessary
based on the accessibility relations between states or intervals.

• It is not clear whether the relations of intervals for CPMPL-formulas have/or
should have more temporal or spatial nature.

• Even if the interval-based semantics construction is possible, it is not clear
which of the spatial-temporal interval relations (for example of Allen’s sort) can
be suitable for an interpretation of φ�χ. It appears that this formula requires
more a quantitative interpretation approach than the qualitative one. Indeed,
φ�χ can be much better semantically interpreted by a fact that a measure of an
interval I1 (associated with φ) is smaller than a measure of I2 associated with
χ than by the temporal-spatial relationships between I1 and I2 such as: meet,
overlap, begin etc.

Satisfiability Problem. In order to consider a satisfiability problem for CPMPL
return to the idea of the representation of a formula φ�χ by [ ](φ → Fχ) for
F being a temporal ’future’ operator of linear temporal logic LTL. Such a rep-
resentation justifies that a CPMPL-satisfiability problem is not only more com-
plicated than a model checking for LTL, but also for our FMPL that does not
contain such ’mixed’ modalities. Meanwhile, it is known that the model checking
for LTL is in PSpace and–even–PSpace-hard. This first fact was solved via re-
duction to the formulas satisfiability problem(see: [12], p. 15); the second one-by
a reduction to the tiling problem (see: [12], p. 18-19). It allows us to formulate
the following

Corollary 1. The satisfiability problem for CPMPL is (at least) in PSpace and
is even (at least) PSpace-hard.

The direct justification of this fact should be, however, (at least) slightly more
complicated that the satisfiability proof for FMPL and systems with separate,
non-combined modalities.

All the above remarks on the CPMPL-satisfiability problem refer to the
pointwise semantics. Meanwhile–in the light of the exposed difficulties with the
interval-based semantics construction–the CPMPL-satisfiability problem for this
semantics type cannot be even formulated.
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4 FMPL versus Comparative Fuzzy Preferential Logic

We venture to formulate a handful of comparative remarks on both systems for
preferences representation. There are handful similarities between them, but also
a handful of differences. Both FMPL and CPMPL are complete and the com-
pleteness can be obtained by a referring to the other systems earlier recognized as
complete ones and via an appropriate formulas translation. CPMPL grasps the
comparative nature of preferences, but it has worst technical and meta-logical
properties. The detailed comparison is given in the table below.

Properties Fuzzy-Modal Preferential
Logic

Comparative Multi-M.
Preferential Logic

•completeness yes yes
•proof of completeness via formulas translation, use-

ful in a model checking prob-
lem solving

via formulas translation

•nature of logic multi-valued fuzzy
•comparative nature of
preferences

non-reflected reflected

•semantics type pointwise, interval-based only pointwise
•nature of semantics Kripke modal Kripke fuzzy
•satisfiability problem PSPACE (at least) PSPACE
•satisfiability prob-
lem for interval-based
semantics

in PSPACE, PSPACE-hard non exists

•ability for a combina-
tion with other system
(for actions, temporal re-
lations etc.)

high restricted, non direct

5 Further Implementations and Concluding Remarks

In this paper we put forward a comparative analysis of two ’candidatures’ for a
role of the appropriate multi-valued/fuzzy logic for preferences representation.
In order to single out the best logic, we considered a handful of their properties
such as completeness, satisfiability problems and a problem of the interval-based
semantics construction. We concluded that–although a comparative fuzzy prefer-
ential logic better grasp the comparative nature of preferences than the alterna-
tive system–it shows worst meta-logical properties. It turns out that Fuzzy-Modal
Preferential Logic shows a better ability for a combination with other systems
for actions, temporal relations etc.

This last property–a system’s ability to be combined–is especially important
from the point of view of a long term goal of our research. In future we just intend
to develop hybrid models for temporal reasoning with preferences and other
constraints. FMPL seems to be also more able to be extended to a new system
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with preferences for two agents groups that can express the mutually inconsistent
preferences. It appears that the Allen’s detecting inconsistency algorithm from
[1] can be easily implemented for such a system. This issue requires, however, a
more detailed analysis.
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