
Parallel Approach to the Levenberg-Marquardt

Learning Algorithm for Feedforward Neural
Networks

Jaros�law Bilski1(�), Jacek Smola̧g1, and Jacek M. Żurada2,3

1 Institute of Computational Intelligence, Czȩstochowa University of Technology,
Czȩstochowa, Poland

{Jaroslaw.Bilski,Jacek.Smolag}@iisi.pcz.pl
2 Information Technology Institute, University of Sociel Sciences, �Lódź, Poland
3 Department Electrical and Computer Engineering, University of Louisville,

Louisville, KY 40292, US
jacek.zurada@louisville.edu

Abstract. A parallel architecture of the Levenberg-Marquardt algo-
rithm for training a feedforward neural network is presented. The pro-
posed solution is based on completely new parallel structures to effec-
tively reduce high computational load of this algorithm. Detailed parallel
neural network structures are explicitely discussed.

1 Introduction

Feedforward neural networks have been investigated by many scientists e.g. [1],
[10], [19], [23], [26], [37], [39]. Gradient methods have been often used to train
feedforward networks, see e.g. [14], [24], [38]. In the traditional approach neural
networks learning algorithms, like other learning algorihms [25], [28], [29], [31],
[34], are implemented on a serial computer. Due to the computational complexity
of the learning algorithm, the serial implementation is very time consuming and
slow. The Levenberg Marquart algorithm [15], [22] is one of the most effective
learning methods, but requires particularly complex calculations. Unfortunately,
for very large networks the computational load of the Levenberg-Marquardt
algorithm makes it impractical. A suitable solution to this problem is the use of
high performance dedicated parallel structures, see eg. [2] - [9], [32], [33]. This
paper presents a new concept of parallel realisation of the Levenberg-Marquardt
learning algorithm. A single iteration of the parallel architecture requires much
fewer computation cycles than a serial implementation. The efficiency of this
new architecture is very satisfying and is explained in the last part of the paper.

A sample structure of the feedforward network is shown in Fig. 1. The network
has L layers, Nl neurons in each l − th layer and NL outputs. The input vector
contains N0 input signals. The equation (1) describes the recall phase of the
network

s
(l)
i (t) =

Nl−1∑

j=0

w
(l)
ij (t)x

(l)
i (t),

y
(l)
i (t) = f(s

(l)
i (t)).

(1)

c© Springer International Publishing Switzerland 2015
L. Rutkowski et al. (Eds.): ICAISC 2015, Part I, LNAI 9119, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-19324-3_1



4 J. Bilski et al.

Fig. 1. Feedforward neural network sample structure

Fig. 2. Pipelined version of recall phase of the feedforward network

Fig. 3. The structures of recall phase processing elements

The parallel realisation of the recall phase algorithm uses the architecture
which requires many simple processing elements. The pipelined version of the
parallel realisation of the feedforward network in recall phase (1) is depicted in
Fig. 2 and its processing elements (PE) in Fig. 3. Two main kinds of functional



Parallel Approach to the Levenberg-Marquardt Learning Algorithm 5

processing elements are used in the proposed solution. The aim of the processing
elements A is to create matrices which contain values of weights in all layers. The
input signals are entered parallelly into the rows of the elements, multiplied by
weights and finally the received results are summed in the columns. The activa-
tion function for each neuron in the l− th layer is calculated after determination

of product w
(l)
i x(l) in the processing element of type B. Additional processing

element C is used to delay transferred data. Thus the structure operates in a
pipeline flow and next results can be obtained after only one step. The outputs
of neurons in the previous layer act the same time as inputs to the next layer.
The output y(L) for the last layer is the output of the whole network.

The Levenberg-Marquard method [15], [22] is used to train the feedforward
network. The following goal criterion is minimized

E (w (n)) =
1

2

∑Q

t=1

∑NL

r=1
ε(L)2

r (t) =
1

2

∑Q

t=1

∑NL

r=1

(
y(L)
r (t)− d(L)

r (t)
)2

(2)

where ε
(L)
i is defined as

ε(L)
r (t) = ε(Lr)

r (t) = y(L)
r (t)− d(L)

r (t) (3)

and d
(L)
r (t) is the r − th desired output in the t− th probe.

The Levenberg-Marquardt algorithm is a modification of the Newton method
and is based on the first three elements of the Taylor series expansion of the goal
function. In the classical case a change of weights is given by

Δ (w(n)) = −[∇2E (w(n))
]−1∇E (w(n)) (4)

this requires knowledge of the gradient vector

∇E (w(n)) = JT (w(n)) ε (w(n)) (5)

and the Hessian matrix

∇2E (w(n)) = JT (w(n))J (w(n)) + S (w(n)) (6)

where J (w(n)) in (5) and (6) is the Jacobian matrix

J(w (n)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ε
(L)
1 (1)

∂w
(1)
10

∂ε
(L)
1 (1)

∂w
(1)
11

· · · ∂ε
(L)
1 (1)

∂w
(k)
ij

· · · ∂ε
(L)
1 (1)

∂w
(L)

NLNL−1

...
...

...
...

...
...

∂ε
(L)
NL

(1)

∂w
(1)
10

∂ε
(L)
NL

(1)

∂w
(1)
11

· · · ∂ε
(L)
NL

(1)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(1)

∂w
(L)
NLNL−1

...
...

...
...

...
...

∂ε
(L)
NL

(Q)

∂w
(1)
10

∂ε
(L)
NL

(Q)

∂w
(1)
10

· · · ∂ε
(L)
NL

(Q)

∂w
(k)
ij

· · · ∂ε
(L)
NL

(Q)

∂w
(L)
NLNL−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)



6 J. Bilski et al.

The errors ε
(lr)
i in the hidden layers are calculated as follows

ε
(lr)
i (t)

∧
=

Nl+1∑

m=1

δ
(l+1,r)
i (t)w

(l+1)
mi , (8)

δ
(lr)
i (t) = ε

(lr)
i (t) f ′

(
s
(lr)
i (t)

)
. (9)

On this basis, the components of the Jacobian matrix for each weight can be
determined

∂ε
(L)
r (t)

w
(l)
ij

= δ
(lr)
i (t)x

(l)
j (t) . (10)

It should be noted that derivatives (10) are computed in a similar way it is done
in the classical backpropagation method, except that each time there is only one
error given to the output. In this algorithm, the weights of the entire network
are treated as a single vector and their derivatives form the Jacobian matrix J.

The S (w(n)) component (6) is given by the formula

S (w(n)) =
∑Q

t=1

∑NL

r=1
ε(L)
r (t)∇

2

ε(L)
r (t) . (11)

In the Gauss-Newton method it is assumed that S (w(n)) ≈ 0 and that equation
(4) takes the form

Δ (w(n)) = −[
JT (w(n))J (w(n))

]−1
JT (w(n)) ε (w(n)) . (12)

In the Levenberg-Marquardt method is is assumed that S (w(n)) = μI and that
equation (4) takes the form

Δ (w(n)) = −[
JT (w(n))J (w(n)) + μI

]−1
JT (w(n)) ε (w(n)) . (13)

By defining
A (n) = − [

JT (w(n))J (w(n)) + μI
]

h (n) = JT (w(n)) ε (w(n))
(14)

the equation (13) is as follows

Δ (w(n)) = A(n)
−1

h (n) . (15)

The equation (15) can be solved using the QR factorization

QT (n)A (n)Δ (w(n)) = QT (n)h (n) , (16)

R (n)Δ (w(n)) = QT (n)h (n) . (17)

This paper used the Householder reflection method for the QR factorization.
Operation of the Levenberg-Marquardt algorithm is described below. In practice,
the algorithm is implemented in 5 steps:



Parallel Approach to the Levenberg-Marquardt Learning Algorithm 7

1. The calculation of the network outputs for all input data, errors and the goal
criterion.

2. The calculation the Jacobianmatrix, by applying the backpropagationmethod
for each error individually.

3. The calculation of Δ (w(n)) by using the QR factorization.
4. The recalculation of the goal criterion (2) for w(n) +Δ (w(n)). If the goal

criterion is less than the one calculated in step 1, then μ should be reduced
β times, the new weight vector remains and the algorithm returns to Step 1.
Otherwise, the μ value should be increased β times and the algorithm goes
back to step 3.

5. The algorithm terminates when the gradient falls below a preset value or the
goal function falls below a preset value.

2 Parallel Realisation

First, the errors in all neurons using backpropagation are calculated assuming
that each time only one error is given to the output and than the Jacobian
matrix is determined. This is accomplished by the structure shown in Fig. 4. Its
processing elements are shown in Fig. 5. The A processing elements are used to

calculate the error ε
(L)
r (3) in the output layer. The B elements transfer the errors

to the linear part of neurons (9), and the D processing elements compute errors

Fig. 4. The structure showing how to propagate error back and compute the Jacobian
matrix elements



8 J. Bilski et al.

Fig. 5. The processing elements for propagating error back and computing the Jaco-
bian matrix elements

ε
(lr)
i in the hidden layers (8). The E processing elements determine the elements
of the Jacobian matrix (10). It should be noted that at the same time all rows
of the Jacobian matrix for all output errors of a single sample are determined.
This is achieved by the use of L parallel layers. The structure shown in Fig. 4
starts operation immediately after the calculation of the outputs perfomed by
the structure in Fig 2 for the data of the first sample. The A (n) matrix (14)
is calculated based on the Jacobian matrix. These calculations are performed
by the structure shown in Fig. 6. In the same figure the internal structure of
the individual processing elements in this structure is also shown. At the same
time, the vector h (n) (14) is determined by the structure shown in Figure 7.

Fig. 6. The structure for computing the A matrix and its processing element



Parallel Approach to the Levenberg-Marquardt Learning Algorithm 9

Fig. 7. The structure for computing the h vector and its processing element

After calculating the A (n) matrix and the h (n) vector, the equation (15) is
solved. The equation (15) can be solved using the QR factorization . This will
be achieved by the use of the Hauseholder reflections. The parallel structure
calculating matrices R and QTh is shown in Fig. 8. Elements A2 transform

Fig. 8. The general structure for parallelization of the QR decomposition

Fig. 9. The processing elements of the QR decomposition



10 J. Bilski et al.

the elements of the A matrix and elements H2 transform the elements of the
h vector. This step performs a sequence of the Householder reflection so as to
reset the elements below the main diagonal of the A matrix. First, the elements
in the first column are reset, then the second and so on, until the last but one.
The A matrix and the h vector are transformed. The vectors used to perform
reflections are based on the columns of the A matrix, except that it includes the
elements from the main diagonal to the end of the column. It should be noted
that the QR decomposition process requires the Nw − 1 matrix reflections. The
A2 and H2 processing elements will operate differently depending on the phase
(k) of the process (Fig. 9). The A2a and A2b elements determine the module of
the a subvector and, on this basis, calculate the value

ρk =

{‖ak‖2 for akk ≤ 0
−‖ak‖2 for akk > 0,

(18)

and the reflection vector

vk =

[
0
v̄k

]

. (19)

The v vector is transmitted to the elements A2c and A2d which in the next
columns calculate the values of the reflected vectors ā

ā = a− vβ (20)

where

β =
vTa

γ
(21)

γ = v1. (22)

The H2c and H2d elements operate in the same manner on the h vector. The
construction of all the processing elements is shown in Fig. 9. After determination
of the R matrix and the QTh vector the equation (17) is solved. This is realized
by the structure shown in Fig. 10. Its elements are also shown in this figure. The
A3a and A3b elements determine the value of Δ (w(n)), and the W elements
update the weights.

Fig. 10. The structure for computing the weight vector w and its processing element



Parallel Approach to the Levenberg-Marquardt Learning Algorithm 11

3 Conclusion

In this paper the parallel realisation of the Leveberg-Marquardt learning al-
gorithm for a feedforward neural network is proposed. It is assumed that all
multiplications and additions are performed within the same time unit. To make
the presentation of the results simple, graphs only for the neural network shown
in Fig. 1 with variable neuron number in the hidden layer are presented. We
can compare computational performance of the parallel implementation of the
Levenberg-Marquardt learning algorithm with a sequential solution for a two-
layer network with two inputs, one output, up to N = 100 neurons in the hidden
layer and up to Q = 100 samples of the learning data of a neural network. Com-
putational complexity of the serial Levenberg-Marquardt learning algorithm is of
order O(N3) and equals TS = 21 1

3N
3+72N2+48 2

3N +32N2Q+38NQ+10Q.
In the presented parallel architecture each epoch requires only TP = 16N2 +
53N + 2Q + 15 time units (see Fig. 11). Performance factor (PF = TS/TP )
of parallel realisation of the Levenberg-Marquardt learning algorithm achieves
nearly 330 for N = 100 neurons in the hidden layer, Q = 100 samples of the
learning data and it grows fast when these numbers grow, see Fig. 11. It has
been observed that the performance of the proposed solution is promising. An
analogous parallel approach can be used for other advanced learning algorithms
of feedforward neural networks, see eg. [1], [7]. In the future research we plan
to design parallel realisation of learning of other structures including probabilis-
tic neural networks [27] and various fuzzy [11], [17], [20], [35], [36], [40], and
neuro-fuzzy structures [12], [13], [16], [18], [21], [30].

Fig. 11. Number of times cycles in a) classical (serial), b) parallel implementation and
c) performance factor

References

1. Bilski, J.: The UD RLS algorithm for training the feedforward neural net-
works. International Journal of Applied Mathematics and Computer Science 15(1),
101–109 (2005)



12 J. Bilski et al.

2. Bilski, J., Litwiński, S., Smola̧g, J.: Parallel realisation of QR algorithm for
neural networks learning. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 158–165. Springer,
Heidelberg (2004)

3. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent RTRN neural network
learning. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 11–16. Springer, Heidelberg (2008)

4. Bilski, J., Smola̧g, J.: Parallel realisation of the recurrent Elman neural network
learning. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada,
J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 19–25. Springer,
Heidelberg (2010)

5. Bilski, J., Smol ↪ag, J.: Parallel realisation of the recurrent multi layer perceptron
learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 12–20.
Springer, Heidelberg (2012)

6. Bilski, J., Smol ↪ag, J.: Parallel approach to learning of the recurrent Jordan neural
network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh,
L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 32–40.
Springer, Heidelberg (2013)

7. Bilski, J.: Parallel Structures for Feedforward and Dynamical Neural Networks (in
Polish). AOW EXIT (2013)

8. Bilski, J., Smol ↪ag, J., Galushkin, A.I.: The parallel approach to the conjugate
gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2014, Part I. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Heidelberg
(2014)

9. Bilski, J., Smola̧g, J.: Parallel Architectures for Learning the RTRN and Elman
Dynamic Neural Networks. IEEE Transactions on Parallel and Distributed Sys-
tems PP(99) (2014), doi:10.1109/TPDS.2014.2357019

10. Chu, J.L., Krzyźak, A.: The recognition of partially occluded objects with support
vector machines, convolutional neural networks and deep belief networks. Journal
of Artificial Intelligence and Soft Computing Research 4(1), 5–19 (2014)

11. Cpa�lka, K., Rutkowski, L.: Flexible Takagi-Sugeno Fuzzy Systems. In: Proceedings
of the Int. Joint Conference on Neural Networks, Montreal, pp. 1764–1769 (2005)

12. Cpa�lka, K., �Lapa, K., Przyby�l, A., Zalasiński, M.: A new method for designing
neuro-fuzzy systems for nonlinear modelling with interpretability aspects. Neuro-
computing 135, 203–217 (2014)

13. Cpalka, K., Rebrova, O., Nowicki, R., et al.: On design of flexible neuro-fuzzy
systems for nonlinear modelling. International Journal of General Systems 42(6),
Special Issue: SI, 706–720 (2013)

14. Fahlman, S.: Faster learning variations on backpropagation: An empirical study.
In: Proceedings of Connectionist Models Summer School, Los Atos (1988)

15. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

16. Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost Ensemble of
DCOG Rough–Neuro–Fuzzy Systems. In: J ↪edrzejowicz, P., Nguyen, N.T., Hoang,
K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg
(2011)



Parallel Approach to the Levenberg-Marquardt Learning Algorithm 13

17. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to
single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer,
Heidelberg (2008)

18. Korytkowski, M., Scherer, R.: Negative Correlation Learning of Neuro-fuzzy Sys-
tem Ensembles. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 114–119.
Springer, Heidelberg (2010)

19. Laskowski, L., Jelonkiewicz, J.: Self-Correcting Neural Network for stereo-matching
problem solving. Fundamenta Informaticae 138, 1–26 (2015)

20. �Lapa, K., Przyby�l, A., Cpa�lka, K.: A new approach to designing interpretable
models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS
(LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)

21. �Lapa, K., Zalasiński, M., Cpa�lka, K.: A new method for designing and complex-
ity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L.,
Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg
(2013)

22. Marqardt, D.: An algorithm for last-sqares estimation of nonlinear paeameters. J.
Soc. Ind. Appl. Math., 431–441 (1963)

23. Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural net-
works. Journal of Artificial Intelligence and Soft Computing Research 1(2), 103–114
(2011)

24. Riedmiller, M., Braun, H.: A direct method for faster backpropagation learning:
The RPROP Algorithm. In: IEEE International Conference on Neural Networks,
San Francisco (1993)

25. Romaszewski, M., Gawron, P., Opozda, S.: Dimensionality reduction of dynamic
msh animations using HO-SVD. Journal of Artificial Intelligence and Soft Com-
puting Research 3(3), 277–289 (2013)

26. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations
by error propagation. In: Rumelhart, D.E., McCelland, J. (red.) Parallel Dis-
tributed Processing, ch. 8, vol. 1. The MIT Press, Cambridge (1986)

27. Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regres-
sions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065
(1993)

28. Rutkowski, L.: Identification of MISO nonlinear regressions in the presence of a
wide class of disturbances. IEEE Transactions on Information Theory 37(1), 214–
216 (1991)

29. Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining
data streams based on the gaussian approximation. IEEE Transactions on Knowl-
edge and Data Engineering 26(1), 108–119 (2014)

30. Rutkowski, L., Przyby�l, A., Cpa�lka, K., Er, M.J.: Online speed profile generation for
industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer,
R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS
(LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

31. Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of
some nonparametric identification procedures. IEEE Transactions on Automatic
Control 34(10), 1089–1091 (1989)

32. Smola̧g, J., Bilski, J.: A systolic array for fast learning of neural networks. In: Proc.
of V Conf. Neural Networks and Soft Computing, Zakopane, pp. 754–758 (2000)



14 J. Bilski et al.

33. Smola̧g, J., Rutkowski, L., Bilski, J.: Systolic array for neural networks. In: Proc. of
IV Conf. Neural Networks and Their Applications, Zakopane, pp. 487–497 (1999)

34. Starczewski, A.: A clustering method based on the modified RS validity index.
In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 242–250.
Springer, Heidelberg (2013)

35. Starczewski, J., Rutkowski, L.: Connectionist structures of type 2 Fuzzy Infer-
ence Systems. In: 4th International Conference on Parallel Processing and Applied
Mathematics, Nalenczow, Poland (2001)

36. Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on in-
terval consequents. In: Neural Networks and Soft Computing. Advances In Soft
Computing, pp. 570–577 (2003)

37. Tadeusiewicz, R.: Neural Networks (in Polish). AOW RM (1993)
38. Werbos, J.: Backpropagation through time: What it does and how to do it. Pro-

ceedings of the IEEE 78(10) (1990)
39. Wilamowski, B.M., Yo, H.: Neural network learning without backpropagation.

IEEE Transactions on Neural Networks 21(11), 1793–1803 (2010)
40. Zalasiński, M., Cpa�lka, K.: New approach for the on-line signature verification

based on method of horizontal partitioning. In: Rutkowski, L., Korytkowski, M.,
Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part
II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)


	Parallel Approach to the Levenberg-MarquardtLearning Algorithm for Feedforward NeuralNetworks
	1 Introduction
	2 Parallel Realisation
	3 Conclusion
	References




