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Abstract. This paper presents a novel reversible data hiding method
which uses a combined predictor. The proposed combined predictor com-
bines five base predictors according to their global and local predicting
performance. The weights to combine the base predictors are calculated
with a pixel by pixel manner that they adjust to the local image patch
characteristics. The proposed predictor is shown to have high prediction
precision which is beneficial for the following prediction error expan-
sion (PEE). Observing that our predictor performs well even for images
with complex textures, a novel pixel selection criterion that bases on the
prediction errors is proposed, which can accurately select the pixels that
have small prediction errors to use. Extensive experiments are conducted
to verify the superior performance of the proposed method.

Keywords: Reversible data hiding · Combined predictor · Pixel selec-
tion · Prediction error expansion

1 Introduction

Reversible data hiding is a technique that can embed data into host image and
the data can be extracted from the marked image. After the extraction of data,
the host image can be recovered perfectly. The ability of recovering the origi-
nal host image is required in applications such as military and medical image
processing where any distortion can not be tolerated.

Many reversible data hiding methods have been proposed that can be catego-
rized as lossless compression based [5], integer transform based [15,22], histogram
shifting based [12,13,19] and difference expansion based [21]. Among the above
mentioned methods, difference expansion based method is the most popular one
due to its high embedding capacity and low embedding distortion.

Difference expansion (DE) was first proposed by Tian [21] which expands
the difference value between a pair of pixels to embed 1 bit data. Later on,
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DE was improved in various different ways. The first way is to generalize DE
where n−1 bits can be embedded into a n pixel vector [1]. The second way is to
reduce the size of the location map. Kamastra [8] proposed sorting to make the
location map more compressible. Kim [9] proposed a novel difference expansion
transform with a simplified location map. The location map in their method has
a better compression ratio thus the true capacity of their method is increased.
Hu [7] constructs a payload-dependent overflow location map which reduces
unnecessary alteration to image and has a better compressibility. Thodi [20]
uses histogram shifting to separate the embedded pixel and the un-embedded
pixel such that the location map size is significantly reduced. The third way is
to use prediction error expansion (PEE) proposed by Thodi [20] instead of DE.
PEE has two advantages over DE: larger embedding capacity and smaller dis-
tortion. Predictors used in PEE can better utilize the correlation of pixels and
the obtained prediction error is usually smaller compared with pixel difference.
Many predictors are proposed such as rhombus predictor [18], orthogonal pro-
jection [6], gradient adjusted predictor (GAP) [11], pixel value ordering based
predictor [10,16], partial differential equation based predictor [14], edge based
difference expansion [17] and local predictor [4]. Recently, a novel improvement
of DE called context embedding was proposed [2,3]. Context embedding distrib-
utes the embedding distortion to the context pixels which reduces the overall
embedding distortion.

In this paper, we propose a high performance reversible data hiding method
using a novel combined predictor and a new pixel selection criterion. Five base
predictors are linearly combined into a final predictor. The weights for com-
bining those five base predictors are determined by the base predictor’s global
performance and local performance. The base predictor is texture selective that
it performs well when certain texture appears. By adjusting the weight pixel
by pixel, the proposed combined predictor performs well with different textures,
including very complex textures. To realize the full potential of the combined
predictor, a novel pixel selection criterion is used. The new criterion is based on
the characteristics of the combined predictor’s prediction errors. It selects the
image regions with small prediction errors to use such that the texture regions
can be utilized. In the experiment, the proposed method is compared with the
methods in [11,18], and it is shown that our method has the best performance.

The rest of the paper is organized as follows. The reversible data hiding
based on PEE is introduced in Sect. 2. Section 3 describes the proposed combined
predictor, the new pixel selection method and the way to avoid overflow and
underflow problems. The experiment result is shown in Sect. 4. Finally, Sect. 5
is the conclusion.

2 Reversible Data Hiding Based on Prediction
Error Expansion

Without loss of generality, the predictor in [18] is used in this section (Fig. 1).
Assume the current pixel is x and it’s four context pixels are x1, x2, x3 and x4.
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Fig. 1. The four context pixels of the pixel x.

The prediction of x is calculated as:

x̂ =
⌊

(x1 + x2 + x3 + x4)
4

+ 0.5
⌋

(1)

where the �.� is the floor operation which rounds down the value to the next
lowest integer value. The prediction error is calculated as:

e = x − x̂ (2)

The prediction error can be expanded to embed a bit b ∈ {0, 1} as:

ê = 2 × e + b (3)

The marked pixel is obtained after the embedding as:

X = x̂ + ê (4)

To control the embedding capacity and distortion, a pair of threshold Tp ∈
[0,+∞) and Tn ∈ (−∞, 0) determines which pixel to use. The pixels where
e > Tp or e < Tn are shifted as:

X =
{
x + Tp + 1, if e > Tp

x + Tn, if e < Tn.
(5)

At data extraction, the same prediction x̂ is calculated and ê is obtained as
X − x̂. If ê ∈ [2 × Tn, 2 × Tp + 1], the extracted data can be calculated as:

b = ê − 2 ×
⌊
ê

2

⌋
(6)

The original pixel value x can be recovered as:

x = x̂ +
⌊
ê

2

⌋
(7)

If ê ∈ (−∞, 2 × Tn) ∪ (2 × Tp + 1,∞), no data can be extracted and the
original pixel value is recovered as:

x =
{
X − Tp − 1, if ê > 2 × Tp + 1
X − Tn, if ê < 2 × Tn.

(8)
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Fig. 2. The proposed six context pixels of the pixel x.

3 Proposed Method

3.1 Combined Predictor

The proposed predictor uses the nearest six context pixels to predict the center
pixel x as shown in Fig. 2. x5 and x6 can not be used in the predictor of [18] due
to the sorting operation. Pixel selection is used instead of sorting in our method
which allows x5 and x6 to be included into the context pixels. When extracting
data from the current pixel x, all it’s context pixels have been recovered which
guarantees the predictions of the x in the extracting process and embedding
process have the same value.

Using those context pixels, five base predictors can be defined as:

p1 = x1+x2+x3+x4
4

p2 = x2+x4
2

p3 = x1+x3
2

p4 = x5

p5 = x6

(9)

The performance of these five base predictors are different for different kinds
of textures. For example, p2 performs well when encountering an horizontal edge
in the image. Therefore, it is not optimal to select one of these five base predictors
to use for the whole image since there are different textures in different regions of
the image. It is better to assign weights to these five base predictors and linearly
combine them. Higher weights are assigned to the predictors that are proper for
the current image texture.

For determining the weights, the global and the local performance of the base
predictors are considered together. The global performance of the base predictors
are measured by the prediction errors of the whole host image. Assume the accu-
mulated absolute prediction error of the base predictor pi for the host image I is
Eglobal

i (the summation of all the absolute prediction errors for a host image), the
global weight assigned to base predictor pi is calculated as:

wglobal
i =

1

Eglobal
i∑5

i=1
1

Eglobal
i

(10)
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Fig. 3. The local region with red border is used to evaluate the predictor’s local per-
formance. The pixels with red dots are not included due to incomplete context pixels.

Clearly, the base predictor with small global prediction error will be assigned
with large global weight. However, the global weight itself is not enough to cap-
ture the local texture characteristics. Image texture varies from region to region,
therefore, local performance of each base predictor should also be considered.
The local performance is measured by the prediction error of this base predic-
tor in a small local region. Figure 3 shows an example of the small region with
size equals to three. Notice that the pixels with red dots can not be used due
to incomplete context pixels, which guarantees that the embedding process and
the extracting process has the same pixel information. The current pixel x is
white pixel so that all gray pixels are available, and all white pixels that above
x are also available. x1 and x2 hve incomplete context pixel because of x is not
available. The other two red dot pixels have incomplete context pixel because
of the lower vertical pixels are not available Assume the accumulated absolute
prediction error in the local region is Elocal

i for the base predictor pi, the local
weight assigned to base predictor pi is calculated as:

wlocal
i =

1
Elocal

i∑5
i=1

1
Elocal

i

(11)

Notice that if the pixel in the local region does not have full context available,
it will be ignored when computing the accumulated absolute error. The base
predictor with small local prediction errors will be assigned with large local
weight. With the global weight and local weight at hand, the next step is to
combine these two weights into the final weights as:

wi =
wlocal

i × wglobal
i∑5

i=1 w
local
i × wglobal

i

(12)

The rationale of the proposed predictor can also be explained with Bayes’
theorem. The weight reflects the probability of selecting each base predictor.
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The global weight can be regarded as the prior of each base predictor and the
local weight is the likelihood of each base predictor. If there is no local region
pixels available, the prior (global weight) will be used directly. By observing the
local region prediction errors, the likelihood is estimated and it transforms the
prior into the posteriori.

The proposed combined predictor can be calculated as:

p =
⌊ 5∑

i=1

wi × pi + 0.5
⌋

(13)

3.2 Pixel Selection Using Prediction Errors

Pixel selection separates the host image into two parts: usable part and unusable
part. The prediction errors in the usable part tends to be smaller than that in the
unusable part. For each pixel, a pixel selection measurement can be calculated.
Then, a proper pixel selection threshold T is determined given a certain payload.
The pixels with the pixel selection measurement smaller than T are used to
embed data, and all other pixels are skipped.

Conventionally, pixel selection uses neighboring pixel value variance or dif-
ference as the metric. The assumption behind is that predictor performs well in
smooth regions and those regions should be embedded with priority. However,
with the proposed combined predictor, this assumption is not true any more.
The proposed predictor adaptively assigns weights to the five base predictors
such that it performs well in complex texture regions (e.g., strong edges).

In order to use the texture region as well (which is skipped when using
pixel value variance), a new pixel selection metric is proposed. The new metric
considers the prediction error values instead of the pixel values. The idea is that
the prediction error in the small local region near the current pixel can reflect the
performance of the combined predictor to some extent. We can assume that the
performance of the combined predictor is similar for the current pixel and it’s
neighbor pixels. Hence, the prediction errors in the small local region can be used
to decide whether to use the current pixel to embed data. Assume the absolute
prediction errors in the small local region are grouped into one vector denoted as
PE, the pixel selection metric is calculated as max(PE)−min(PE), where max()
and min() compute the maximum and minimum value of PE, respectively. The
advantage of the new metric is that it predicts the predictor’s performance using
that predictor’s historic predicting performance, which can better utilize those
pixels in texture but easy to predict region.

3.3 Overflow and Underflow Prevention and Side
Information Construction

In the embedding process, some modifications to original pixels may occur
overflow and underflow problems that the modified pixel value may be out of
the intensity level, for example, [0, 255] for eight-bit grayscale image. Usually,
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a binary location map with the same size of the host image is needed to record
such locations and transmitted to the decoder side. Due to the large size of
the location map, compression is needed to reduce the location map’s size. The
usage of compression makes the algorithm complex and the determination of
parameters for the embedding algorithm is hard. We use a strategy to construct
a location map that compression is avoided as in [11].

Before embedding, all pixels should be checked if an overflow or underflow
problem may occur, if it is possible to have such problems, then the location of
this pixel needs to be recoded and this pixel is not used to embed data. For a

W × H grayscale image, each location needs
⌊
log2(W × H)

⌋
+ 1 bits. Besides

the location map, some other side information should also be recorded:

1. Compressed location map size (
⌊
log2(W × H)

⌋
+ 1).

2. Global weights for five base predictors (16 bits for each weight).
3. Local region size (8 bits).
4. Embedding threshold T (8 bits).
5. Pixel selection threshold Tps (16 bits).

All the side information concatenated with the location map is embedded using
least significant bit (LSB) substitution as in [11].

4 Experiment

The test images used in our experiment have the size of 512 × 512, namely
Lena, F16, Baboon, Barbara, Sailboat and Elaine which can be downloaded
from SIPI image database (sipi.usc.edu/database/) except Barbara. Capacity-
distortion performance is used to evaluate the performance of reversible data
hiding method. The embedding capacity is measured with bits per pixel (bpp)
and distortion is measured with peak signal-to-noise ratio (PSNR).

The performance of the PEE based reversible data hiding is highly dependent
on the predictor’s performance. An accurate predictor produces small prediction
errors which can achieve large embedding capacity with low distortion. The
performance of the predictor can be measured by the entropy of the prediction
errors which is calculated as:

entropy = −
N∑
i=1

pilog2(pi) (14)

where pi is the probability of of the ith prediction error and N is the total number
of possible values of the prediction error. A small entropy means that the predic-
tion errors are more concentrated which is beneficial for the following expansion
operation. The entropy comparison of the proposed combined predictor with other
predictors is shown in Table. 1. The window size is set to 3 since we found that the
window size of 3 has the best trade-off of prediction performance and computation
complexity. Henceforth, all the window size used is 3.
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Table 1. Comparisons in terms of entropy for different predictors.

Image MED [20] GAP [11] Rhombus [18] Combined predictor

Lena 4.55 4.39 4.10 3.99

F16 4.18 4.12 3.86 3.80

Baboon 6.27 6.21 5.96 5.82

Barbara 5.48 5.38 5.14 4.75

Sailboat 5.38 5.25 4.97 4.92

Elaine 5.34 5.15 4.89 4.77

Average 5.20 5.08 4.82 4.67

To show the capacity-distortion performance of the proposed reversible data
hiding method, we conduct two separate experiments for small size payload and
large size payload. The experiment for small size payload can also show the
performance of the proposed new pixel selection method.

Pixel selection is more important with small size payload than with large
size payload. With large size payload, pixel selection has to select most pixels
to use. While with small size payload, the pixel selection has more freedom to
decide which pixel to use. The proposed pixel selection based on prediction error
distribution is compared with pixel section based on pixel variance as in [18]. The
capacity-distortion performance comparison with small size payload is shown in
Fig. 4. The embedding capacity tested is from 0.01 bpp to 0.1 bpp. Proposed 1
utilizes the combined predictor and the pixel selection based on prediction error
distribution. Proposed 2 utilizes the combined predictor and the pixel selection
based on pixel variance. The only difference of Proposed 1 and Proposed 2 is the
pixel selection method, hence, the performance difference of these two methods
can reflect the effectiveness of the respective pixel selection method. As can
be seen, Proposed 1 performs better than Proposed 2 for all the test images.
Compared with other two methods in [11] and [18], Proposed 1 and Proposed 2
both performs better.

With large embedding capacity, we compare the proposed method (combined
predictor + pixel selection based on prediction error) with [11] and [18] given the
payload size from 0.1 bpp to the maximum embedding capacity. The proposed
method outperforms [11] and [18] for all the test images. However, the perfor-
mance gap between the proposed method with [11] and [18] is different from
image to image. For the relatively smooth images, e.g., F16, the performance
gain of the proposed method is not significant. The reason is that the advantage
of the proposed combined predictor is less with smooth images. Given the images
with complex texture patterns, e.g., Barbara, the proposed combined predictor
performs well, therefore, the overall performance of the proposed reversible data
hiding method is excellent (Fig. 5).
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Fig. 4. The capacity-distortion performance of the proposed method compared with
the methods of Li et al. [11] and Sachnev et al. [18] with low payload size.
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Fig. 5. The capacity-distortion performance of the proposed method compared with
the methods of Li et al. [11] and Sachnev et al. [18] with large payload size.
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5 Conclusion

In this paper, a high performance combined predictor and a novel pixel selection
method is proposed. It is shown that the proposed combined predictor performs
well especially for complex textured images and the proposed pixel selection can
better choose the proper pixel to use. Combining the combined predictor and the
proposed pixel selection together, the proposed reversible data hiding method
achieves excellent result.

Acknowledgments. This work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012015587),
and the National Natural Science Foundation of China (no. 61173147).

References

1. Alattar, A.M.: Reversible watermark using the difference expansion of a generalized
integer transform. IEEE Trans. Image Process 13(8), 1147–1156 (2004)

2. Coltuc, D.: Improved embedding for prediction-based reversible watermarking.
IEEE Trans. Inf. Forensics Secur. 6(3), 873–882 (2011)

3. Coltuc, D.: Low distortion transform for reversible watermarking. IEEE Trans.
Image Process 21(1), 412–417 (2012)

4. Dragoi, I., Coltuc, D.: Local prediction based difference expansion reversible water-
marking. IEEE Trans. Image Process 23(4), 1779–1790 (2014)

5. Fridrich, J., Goljan, M., Du, R.: Lossless data embeddingnew paradigm in digital
watermarking. EURASIP J. Adv. Sig. Process. 2002(2), 185–196 (1900)

6. Hong, W., Chen, T.S., Chang, Y.P., Shiu, C.W.: A high capacity reversible data
hiding scheme using orthogonal projection and prediction error modification. Sig.
Process. 90(11), 2911–2922 (2010)

7. Hu, Y., Lee, H.K., Li, J.: De-based reversible data hiding with improved overflow
location map. IEEE Trans. Circ. Syst. Video Technol. 19(2), 250–260 (2009)

8. Kamstra, L., Heijmans, H.J.: Reversible data embedding into images using wavelet
techniques and sorting. IEEE Trans. Image Process 14(12), 2082–2090 (2005)

9. Kim, H.J., Sachnev, V., Shi, Y.Q., Nam, J., Choo, H.G.: A novel difference expan-
sion transform for reversible data embedding. IEEE Trans. Inf. Forensics Secur.
3(3), 456–465 (2008)

10. Li, X., Li, J., Li, B., Yang, B.: High-fidelity reversible data hiding scheme based on
pixel-value-ordering and prediction-error expansion. Sig. process. 93(1), 198–205
(2013)

11. Li, X., Yang, B., Zeng, T.: Efficient reversible watermarking based on adaptive
prediction-error expansion and pixel selection. IEEE Trans. Image Process 20(12),
3524–3533 (2011)

12. Li, X., Zhang, W., Gui, X., Yang, B.: A novel reversible data hiding scheme based
on two-dimensional difference-histogram modification. IEEE Trans. Inf. Forensics
Secur. 8(7), 1091–1100 (2013)

13. Ni, Z., Shi, Y.Q., Ansari, N., Su, W.: Reversible data hiding. IEEE Trans. Circ.
Syst. Video Technol. 16(3), 354–362 (2006)

14. Ou, B., Li, X., Zhao, Y., Ni, R.: Reversible data hiding based on pde predictor. J.
Syst. Softw. 86(10), 2700–2709 (2013)



Reversible Data Hiding 265

15. Peng, F., Li, X., Yang, B.: Adaptive reversible data hiding scheme based on integer
transform. Sig. Process. 92(1), 54–62 (2012)

16. Peng, F., Li, X., Yang, B.: Improved pvo-based reversible data hiding. Digit. Sig.
Process. 25, 255–265 (2014)

17. Qu, X., Kim, S., Kim, H.: Reversible watermarking using edge based difference
modification. In: Fifth International Conference on Graphic and Image Processing.
pp. 90690Q–90690Q. International Society for Optics and Photonics (2014)

18. Sachnev, V., Kim, H.J., Nam, J., Suresh, S., Shi, Y.Q.: Reversible watermarking
algorithm using sorting and prediction. IEEE Trans. Circ. Syst. Video Technol.
19(7), 989–999 (2009)

19. Tai, W.L., Yeh, C.M., Chang, C.C.: Reversible data hiding based on histogram
modification of pixel differences. IEEE Trans. Circ. Syst. Video Technol. 19(6),
906–910 (2009)
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