
Sequence Covering Arrays and Linear Extensions

Patrick C. Murray and Charles J. Colbourn(B)

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, P.O. Box 878809, Tempe, AZ 85287, USA

colbourn@asu.edu

Abstract. Covering subsequences by sets of permutations arises in
numerous applications. Given a set of permutations that cover a spe-
cific set of subsequences, it is of interest not just to know how few
permutations can be used, but also to find a set of size equal to or
close to the minimum. These permutation construction problems have
proved to be computationally challenging; few explicit constructions have
been found for small sets of permutations of intermediate length, mostly
arising from greedy algorithms. A different strategy is developed here.
Starting with a set that covers the specific subsequences required, we
determine local changes that can be made in the permutations without
losing the required coverage. By selecting these local changes (using lin-
ear extensions) so as to make one or more permutations less ‘important’
for coverage, the method attempts to make a permutation redundant so
that it can be removed and the set size reduced. A post-optimization
method to do this is developed, and preliminary results on sequence cov-
ering arrays show that it is surprisingly effective.

1 Introduction

In order to motivate our study, consider the following question from [2]: Given
an n-vertex m-edge graph G, what is the smallest number k of dimensions so
that m axis-parallel k-dimensional boxes in R

k can be found whose intersection
graph is the line graph of G? Remarkably, they recast this as a question about
permutations: What is the smallest number of permutations so that for every two
vertex-disjoint edges {w, x} and {y, z} of G, in at least one of the permutations
w and x both precede y and z, or w and x both follow y and z? Similar problems
abound. In [17], in a problem in event sequence testing, one asks for the fewest
permutations so that for each of the t! orders of each subset of t elements, some
permutation contains the specified elements in the specified order.

In numerous problems of this type, strong asymptotic bounds on the mini-
mum number of permutations as a function of the length of the permutations
have been established. Our concern here is quite different; for any practical
application we must explicitly construct a set of permutations, and asymptotic
results are often not well suited to addressing construction problems for moder-
ate lengths. Probabilistic arguments typically establish that choosing a certain
number of permutations uniformly at random can yield a non-zero probability
of success; yet for practical purposes this is not satisfactory, because the number
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 274–285, 2015.
DOI: 10.1007/978-3-319-19315-1 24

Sequence Covering Arrays and Linear Extensions 275

of permutations required to have a reasonable chance of success is often much
more than the minimum. To treat the construction of such sets of permutations,
one avenue is to find mechanisms to translate knowledge about related combi-
natorial structures to underlie a direct construction, and another is to make sets
of permutations of greater length recursively from those with smaller. General
mechanisms to do this are not known, although in specific cases these can pro-
vide fast construction of sets of permutations far smaller than those from random
selections. But when such direct or recursive constructions are not available, one
resorts to computation.

Not surprisingly, exact methods such as backtracking or integer program-
ming can be applied effectively only for small lengths and simple requirements.
Heuristic methods extend the size and complexity of problems for which useful
sets of permutations can be found. As lengths increase and requirements become
more complex, best known results often arise from greedy algorithms that select
one permutation at a time. In the problems being discussed, even deciding what
is the best permutation to include next can be challenging, and hence greedy
methods often make selections that are sub-optimal even locally.

This is not a good state of affairs. If we want to test sequences of 75 events so
that every four of them appears in each of the 24 orders, we need an explicit set
of permutations, and the best method in the literature to find them is a greedy
method that selects permutations sub-optimally (but efficiently). In cases for
which this greedy strategy has been implemented [5], it provides the smallest
known sets of permutations in broad ranges of interest, despite the myopic nature
of greedy methods and the sub-optimal selection of permutations. How can we do
better? Rather than trying to improve the greedy methods further, we propose
a different local optimization approach that we call post-optimization. Post-
optimization repeatedly modifies the set of permutations with the general goal
of making one of the permutations “less useful” in meeting the requirements.
Ultimately, if it can be made redundant, it is deleted and the set size is reduced.

Our strategy determines what each permutation contributes, expresses this
information as a partial order, and chooses a linear extension (which is ensured
to contribute at least as much). This strategy can be effectively implemented,
but the real surprise is that it reduces the number of permutations in best known
solutions for event sequencing, sometimes dramatically.

The remainder of the paper is organized as follows. In Sect. 2 we give a precise
formulationof ageneral set of problemsand thendiscuss a special case, the sequence
covering arrays that arise in event sequence testing. Then in Sect. 3 we focus on
sequence covering arrays; we describe the current state of computational methods,
and motivate the idea of post-optimization. Section 4 develops a framework and
some details for the post-optimization method using linear extensions, and Sect. 5
describes preliminary computational results that are quite encouraging.

2 Background

Let Σ = {0, . . . , v − 1} be a set of symbols or elements. A t-subsequence of Σ
is a t-tuple (x1, . . . , xt) with xi ∈ Σ for 1 ≤ i ≤ t, and xi �= xj when i �= j.

276 P.C. Murray and C.J. Colbourn

A genus of t-subsequences for the t-subset {x1, . . . , xt} is a non-empty subset
of {(y1, . . . , yt) : {y1, . . . , yt} = {x1, . . . , xt}}, A permutation π of Σ covers the
t-subsequence (x1, . . . , xt) if π−1(xi) < π−1(xj) whenever i < j. A permutation
covers a genus when it covers one of the t-subsequences in the genus.

By way of example, suppose that v = 8 and t = 4. Then (2, 4, 3, 5) is a
4-subsequence, and one genus of subsequences for {2, 3, 4, 5} is {(y1, y2, y3, y4) :
{{y1, y2}, {y3, y4}} = {{2, 4}, {3, 5}}}. This genus contains eight 4-subsequences
((2,4,3,5), (2,4,5,3), (4,2,3,5), (4,2,5,3), (3,5,2,4), (3,5,4,2), (5,3,2,4), and
(5,3,4,2)). The permutation π = 40251376 has π−1(2) = 2, π−1(3) = 5,
π−1(4) = 0, and π−1(5) = 3. It therefore covers the 4-subsequence (4, 2, 5, 3),
and hence covers the genus given. However, the same permutation fails to cover
the genus {(y1, y2, y3, y4) : {{y1, y2}, {y3, y4}} = {{2, 3}, {4, 5}}}.

Let G be a set of genera of t-subsequences on symbols Σ. A set Π =
{π1, . . . , πN} of N permutations is a G-permutation covering if, for every genus
G ∈ G, there exists a permutation πj ∈ Π for which πj covers genus G. To
continue the example, the box genus, box({x1, x2}, {x3, x4}), is {(y1, y2, y3, y4) :
{{y1, y2}, {y3, y4}} = {{x1, x2}, {x3, x4}}}. Let

BΣ = {box({x1, x2}, {x3, x4}) : {x1, x2, x3, x4} is a 4-subset of Σ}.

Genus box({2, 4}, {3, 5}) is covered by 40251376. Now box({2, 3}, {4, 5}) is
covered by 73012645 and box({2, 5}, {3, 4}) is covered by 27540631. In this exam-
ple, there are 1680 4-subsequences forming 210 box genera, so the remaining
verification is best left to a machine.

No matter what genera are to be covered, some number of permutations
suffices to cover them, because each t-subsequence has a linear extension to a
permutation that necessarily covers the subsequence. Our interest is to determine
the minimum number of permutations needed to cover a set G of genera.

Many permutation covering problems have been explored; we mention a few.
Dushnik [8] examined the existence of sets of permutations in which for every
subset S of k elements and every element σ not in this subset, one permutation
has all elements in S preceding σ. In other words, he examined Gk-permutation
coverings with Gk = {(x1, . . . , xk, xk+1) : {x1, . . . , xk} = S} for S∪{xk+1} a (k+
1)-subset of Σ}. Spencer [25] established bounds on the number of permutations
needed. In defining the “dimension of hypergraphs,” Fishburn and Trotter [10]
examined coverage of fewer genera in which the set S corresponds to hyperedges
of an input hypergraph.

Füredi [11] explored 3-mixing sets, which are M-permutation coverings with
M = {(x1, x3, x2), (x2, x3, x1) : {x1, x2, x3} is a 3-subset of Σ}. In other words,
for every pair of elements {a, b} and third element c, there must be a permutation
in which c is between a and b; see also [23] and [6].

Sequence Covering Arrays and Linear Extensions 277

Basaravaju et al. [2] discuss the relevance of these permutation coverings to
geometric representations of graphs and hypergraphs. In particular, they define
the separation dimension of a graph in a manner equivalent to the following. Let
G = (V,E) be a graph. Let BG be the set of all box genera box({x1, x2}, {x3, x4})
for which {x1, x2} and {x3, x4} are vertex-disjoint edges of G. They establish
that the smallest number of permutations in a BG-permutation covering, which
they term the separation dimension of G, is precisely the same as the “boxicity”
of the line graph of G.

Recently, applications of permutation coverings in event sequence testing
have attracted attention as well. In this case, the genera each contain a single
t-subsequence, so the terminology need not refer to genera at all. A sequence cov-
ering array of order v and strength t, or SeqCA(N ; t, v), is a set Π = {π1, . . . , πN}
where πi is a permutation of Σ, and every t-subsequence of Σ is covered by at
least one of the permutations {π1, . . . , πN}. Often the permutations are written
as an N × v array. (Every permutation of every t of the v letters appears in
the specified order in at least one of the N permutations.) Kuhn et al. [17,18]
describe the application to testing. Suppose that a process involves a sequence
of v tasks or events. The operator may perform the tasks in an incorrect order,
resulting in system faults. Often errors result from the improper ordering of a
small number of events. When each permutation of a sequence covering array is
used as a test order for the events, if faults result from the improper ordering
of t or fewer tasks and are not masked, the presence of a fault will be detected.
To reduce testing cost, we examine SeqCAN(t, v), the smallest N for which a
SeqCA(N ; t, v) exists.

Spencer [25] examined equivalent sets of permutations, completely
t-scrambling permutations, obtained by interchanging the roles of symbols and
columns in a sequence covering array [5]. For subsequent research, see Füredi
[11], Ishigami [14,15], Radhakrishnan [24], and Tarui [26]. Chee et al. [5] explore
the relationship to so-called “directed t-coverings” as well.

From this point onwards, we restrict to cases when, for some strength t,
every t-subsequence appears in one of the genera to be covered. Even then,
for each of the permutation covering problems mentioned thus far, few exact
results for the fewest permutations needed are known. More precisely, when
each genus (of strength t) contains all t! orderings, a single permutation suffices
to cover all genera. When the genera can be named as G1, . . . Gg,H1, . . . Hg so
that for 1 ≤ i ≤ g, Gi ∪ Hi contains all t! orderings of t symbols, and both
Gi and Hi contain each t-subsequence of these t symbols or its reversal, two
permutations suffice: Simply take any permutation and its reversal. In these
“trivial” situations, there is no dependence on the size of Σ. When the strength
t is at most two, only these trivial cases arise. When Σ is “small,” exact values
are also sometimes known. For example, SeqCAN(t, t + 1) = t! [19].

Unfortunately, except in these situations, current knowledge of sizes of min-
imum permutation coverings has focussed on asymptotic results, determining
the relationship between the size of the covering and the number of symbols,

278 P.C. Murray and C.J. Colbourn

as the latter goes to infinity. While informative, these methods typically do
not provide explicit solutions for small numbers of symbols. Yet in the testing
application, the construction of sequence covering arrays is essential. In [26], an
elegant direct construction for SeqCA(N ; 3, v) is given that, while typically the
smallest known, is known not to realize the minimum when v is small [5]. In [5],
a direct construction produces a SeqCA(N + M ; 3, vw) from a SeqCA(N ; 3, v)
and a SeqCA(M ; 3, w); occasionally this produces the smallest sequence covering
array that is known, but it does not do so in general. For strength t ≥ 4, no
such direct or recursive methods are known. Hence we turn to computational
methods. Although we focus on sequence covering arrays to make the presenta-
tion more self-contained, most of the method to be described operates mutatis
mutandis for permutation coverings with more complicated genera.

3 Computational Constructions

In [18], a simple greedy method is used to compute upper bounds on SeqCAN(t, v)
for t ∈ {3, 4} and small values of v. A more sophisticated greedy method was
developed by Erdem et al. [9]. A conditional expectation greedy algorithm that
derandomizes a randomized method establishes:

Theorem 1. [5] For fixed t and input v, there is an algorithm to construct a
SeqCA(N ; t, v) having at most N ≤ 2(log(v!

(v−t)!))/(log(t!
t!−2)) permutations in

time that is polynomial in v.

Chee et al. [5] observe that the bound in Theorem 1 is quite pessimistic. Imple-
mentation of the conditional expectation methods yields substantially better
results for t ∈ {3, 4, 5} than guaranteed by the theorem. One might expect that
a greedy method can fare well, but it appears unlikely that it will yield optimum
coverings. Indeed, using answer set programming, improvements on the greedy
methods have been developed when t ∈ {3, 4} [1,3,9]. A cooperative search strat-
egy (the “bees algorithm”) is explored in [12]. These methods are compared in
[5], and we summarize the conclusions here.

For strength t = 3, the answer set programming methods outperform all of
the greedy methods. Nevertheless when v ≥ 30 they do not fare as well as Tarui’s
direct construction or the recursive construction. Tarui’s direct construction is
not optimum, however; for small values of v, answer set programming wins, and
for certain values of v (such as v = 128), the recursive method wins.

Proceeding to strengths four and five, no direct or recursive method is avail-
able. Surprisingly, the answer set programming methods do not report the best
known results except when v is very small; the conditional expectation greedy
method yields the best known result. The explanation is almost certainly that
the time and storage required for the answer set programming methods and the
cooperative search methods are prohibitive.

Sequence Covering Arrays and Linear Extensions 279

The conditional expectation algorithm is
greedy, and hence it is reasonable to expect that
the later permutations chosen are less useful in
the coverage of t-subsequences. Let us examine
this more carefully. Consider the SeqCA(34;4,6)
shown at left; the permutations are shown in the
last six columns. Although the permutation cov-
ering need not order the permutations, in the
sequence covering array they are ordered, and
the greedy method added these permutations
in this order. Therefore we can count, for each
permutation, the 4-subsequences covered by this
permutation that are covered by no earlier one
(this is precisely the quantity that the greedy
algorithm attempts to maximize). These counts
are shown in the first column on the left.

No permutation in this example can cover more than
(
6
4

)
= 15 4-subsequences.

Mathon and Tran Van Trung [21] give a SeqCA(24;4,6) in which every permu-
tation necessarily covers 15 4-subsequences for the first time. However, the myopic
nature of the greedy method has resulted in permutations that cover fewer and
fewer 4-subsequences for the first time, so that the last only covers a single
4-subsequence.

When the permutations are listed in this order, the last appears to be less
useful. Can we avoid using some of these later permutations? The last permu-
tation covers only the 4-subsequence (2, 4, 3, 0) for the first time, and hence any
of 30 different permutations would serve as well. A similar problem arises in the
construction of related combinatorial objects known as covering arrays. In that
setting, Nayeri et al. [22] devised a post-optimization method, which repeatedly
reorders the array, attempting to reduce the amount of coverage required from
the last row. If the last row can be made to provide no coverage not provided by
an earlier row, it can be deleted to yield a solution with fewer rows. Surprisingly,
this works well! For a variety of covering arrays from different constructions,
such post-optimization eliminates many rows, sometimes more than 10 % of the
rows in an initial (best known) solution. Arguably this is because the best known
solutions can often be far from optimal due to deficiencies in the constructions
that we know; nevertheless in that context such post-optimization has proved
useful. Indeed covering arrays arise as a type of “t-restriction” problem, and
post-optimization is effective more generally for such problems [7].

4 Post-Optimization and Linear Extensions

The main contribution of this paper is to develop a post-optimization technique
for sequence covering arrays. Define the effective coverage of a permutation in
an ordered list of permutations to be the number of t-subsequences covered by
this permutation but by no earlier one. The basic algorithm follows:

280 P.C. Murray and C.J. Colbourn

As an iteration condition, we terminate the inner loop when at least one
permutation is removed or when an iteration limit is exceeded. The termination
condition enforces a limit on the number of times a complete reordering of the
array is undertaken. The determination of specific iteration and termination
conditions dictate the number of times that an improvement is attempted, and
can be set based on experimentation (that we do not describe here). We adopt
random reordering. While it is reasonable to instead reorder so that permutations
with larger effective coverage appear earlier in the ordering, we found that the
method appeared more likely to be trapped in a local optimum and fail to make
improvement.

The key aspect of the algorithm is to determine when a permutation can
be replaced by another without loss of (effective) coverage. Patterned on the
approach for covering arrays [7], call an entry σ in a permutation πj necessary
if there is some t-subsequence containing σ that is covered by πj for the first
time, and flexible otherwise. By iterating through all t-subsequences, finding
their first occurrence in the array, and marking the t corresponding symbols as
necessary, any symbol left unmarked is flexible. Any permutation π that contains
the necessary elements in πj in the same order can be used to replace πj without
reducing the effective coverage. Hence a basic post-optimization method can
locate all flexible symbols in permutations, and move them (perhaps randomly)
within the permutation; the result remains a sequence covering array.

Despite the fact that the SeqCA(34;4,6) is far from optimal, it has only two
flexible symbols (1 and 5), both in the last permutation. Nevertheless, it has
much more flexibility; we pursue this next. For each permutation πj define a
partial order ≺j on Σ so that whenever (x1, . . . , xt) is covered for the first time
by πj , we have xi ≺j xi+1 for 1 ≤ i < t. Evidently πj is a linear extension of
≺j , but any linear extension of ≺j serves to provide at least the same effective
coverage. In our SeqCA(34;4,6) example, the last permutation has partial order
2 ≺ 4 ≺ 3 ≺ 0 incomparable to 1 and 5. (This just restates the earlier observation
about flexible symbols.) The second last permutation has effective coverage 2
(covering (1,0,3,2) and (0,3,5,4)) and partial order 1 ≺ 0 ≺ 3 ≺ 5 ≺ 4 and
3 ≺ 2. While there are no flexible symbols, the partial order has three linear
extensions. The third last permutation, with effective coverage of 3 (covering

Sequence Covering Arrays and Linear Extensions 281

(0,1,2,3), (0,5,1,4), and (5,1,2,3)), has partial order 0 ≺ 5 ≺ 1 ≺ 2 ≺ 3 and
1 ≺ 4, again with three linear extensions. The fourth last permutation, with
effective coverage of 3 (covering (3,1,2,0), (3,1,5,0), and (3,4,5,2)), has partial
order 3 ≺ 1 ≺ 5 ≺ 2 ≺ 0 and 3 ≺ 4 ≺ 5, with two linear extensions.

The partial orders ≺j are computed at the same time as the effective cover-
age. Replacement of permutations is carried out by choosing a linear extension
of ≺j to replace πj . A strategy for choosing the ‘best’ linear extension for each
of the partial orders is not clear; deterministic rules appear to stall the method
in local optima. Hence one might prefer random linear extensions. Counting
linear extensions is #P-complete [4], but there is a polynomial expected time
algorithm for generating a random linear extension [13,16]. We do not need
such sophisticated machinery, because we have no need for extensions to be
selected uniformly at random. For our purposes, any method that has non-zero
probability of obtaining each linear extension suffices. Such a method is easy:
A simple greedy algorithm that repeatedly selects a minimum element and
removes it exhibits this behaviour.

One improvement is worth mentioning. Rather than computing all of the
partial orders ≺j and then forming a linear extension of each, once each partial
order ≺j is determined, we immediately replace it by a linear extension. This
can sometimes cover an additional t-subsequence previously only covered by
a later permutation, reducing its effective coverage. Indeed, if in considering
partial order ≺j some t-subsequence T covered only in the last permutation is
consistent with ≺j , we add the comparability relations from T to ≺j before
choosing a linear extension; in this way, we guarantee that the last permutation
has less effective coverage than before (making it a better candidate for removal).
Further effort could be made to search for t-subsequences covered only after the
jth permutation that are consistent with ≺j to make some permutation other
than the last have lower effective coverage, but this can require checking a large
number of t-subsequences for consistency with ≺j . We have concentrated instead
on reducing the effective coverage of the last permutation.

With these implementation decisions, the algorithm requires only O(vN)
storage for the array and O(v2) storage for the partial orders. The time is dom-
inated by the time to determine the partial orders, which involves examining
up to N permutations for O(vt) different t-subsequences. While this appears to
be quite large, a single iteration of the post-optimization involves essentially the
same effort as checking that the array is indeed a sequence covering array. In prac-
tice, the execution time depends not only on the time per iteration of the inner
loop, but the termination and iteration conditions that determine the number
of iterations. Our interest is not in theoretical efficiency, although our decisions
have been guided by ensuring that a single iteration is not too computationally
intensive; rather our concern is with whether the post-optimization method can
be used in a practical sense to improve our knowledge about sequence covering
arrays. For this, we turn to some computational results.

282 P.C. Murray and C.J. Colbourn

5 Some Computations

The objective is to find best explicit constructions for small sequence cover-
ing arrays, so the ‘acid test’ for post-optimization is whether it can improve
upon the current best sequence covering numbers, and to what extent. We have
implemented the method, and performed a number of preliminary experiments
for strengths 3, 4, and 5 in the ranges of lengths reported in [5]. Results are
reported in Table 1.

Table 1. Post-optimization for strengths 3, 4, 5, and 6

t = 3 t = 4 t = 5 t = 6

v Best In Out v Best In Out v Best In Out v In Out

4 6 8 6 5 24 26 24 6 120 148 122 7 991 836

5 7 8 7 6 24 34 24 7 198 198 175 8 1342 1179

6 8 10 8 7 38 41 37 8 242 242 218 9 1662 1535

7 8 12 8 8 44 47 42 9 282 284 261 10 1970 1873

8 9 12 9 9 50 52 46 10 318 322 294

9 9 12 9 10 55 57 53 11 354 354 330

10 9 14 10 15 78 78 67 12 384 386 360

15 10 15 12 20 92 92 80 13 416 419 390

20 12 16 13 25 104 104 90 14 446 446 418

25 14 18 14 30 113 113 98 15 470 475 448

30 14 19 15 40 128 128 112 16 496 501 474

40 16 21 16 50 141 141 123 17 518 518 496

50 16 23 17 60 151 151 133 18 540 547 520

60 16 26 18 70 160 160 142 19 560 570 541

70 16 28 19 80 168 168 150 20 582 590 568

80 17 30 20 90 176 180 162 25 674 674 656

90 18 30 21 30 748 748 725

For each strength, different lengths are examined. For each, Best reports the
best result known from [5], In reports the size of the array – usually produced
by the conditional expectation greedy algorithm – to which post-optimization is
applied, and Out reports the size when post-optimization was terminated.

First consider the results for strength t = 3. In this case, more sophisticated
computational methods have earlier been applied, and useful direct and recursive
constructions are known. Perhaps then it is no surprise that post-optimization
has not improved upon any of the best known sizes. The improvements upon
the sizes produced by the greedy method are nevertheless substantial. When
v = 80, for example, the conditional expectation method gives a SeqCA(30;3,80);

Sequence Covering Arrays and Linear Extensions 283

ensuring that reversals are present yields a SeqCA(26;3,80) [5]. The answer set
programming techniques give a SeqCA(24;3,80) [1] and a SeqCA(23;3,80) [3].
Post-optimization improves the SeqCA(30;3,80) by removing ten permutations,
yielding a SeqCA(20;3,80). While Tarui’s method [26] yields a SeqCA(18;3,80)
and the recursive construction a SeqCA(17;3,80) [5], it remains striking that
post-optimization fares so well.

Turning to strengths 4 and 5 shows the potential of post-optimization. In
each of the cases examined, post-optimization matches or improves upon the
best known result. In light of the comparison with the direct and recursive con-
structions for strength 3, it is unlikely that post-optimization has produced opti-
mal arrays except when v is quite small. Nevertheless, in the absence of such
constructions for strength greater than 3, it does yield the best known sizes,
giving a non-trivial improvement on other methods applied.

Even when powerful direct or recursive constructions (as for strength three)
are known, post-optimization may nevertheless prove useful. If only some of
the t-subsequences are to be covered (“partial coverage”), the direct and recur-
sive constructions do not exploit this, whereas post-optimization can eliminate
permutations while ensuring that every t-subsequence that is covered initially
remains covered. In principle, there is no obstacle to incorporating constraints
as well. A constraint is an �-subsequence that is not permitted to appear in any
permutation. Sets of constraints may make it impossible to find an array cover-
ing some specified t-subsequences consistent with the constraints [5,20]. When
some array with appropriate coverage meeting all constraints does exist, how-
ever, post-optimization can be applied by ensuring that every linear extension
chosen does not violate any constraint. We have conducted limited experiments
with partial coverage and with constraints; the extensions are natural. We have
also conducted a more thorough set of experiments with covering various genera,
such as the box genus. Our computational results, not discussed here, demon-
strate that post-optimization is practical and effective in these problems. We
argue that the ability to cope with such variants is a positive feature of post-
optimization.

Finally we remark on execution times. Every iteration of post-optimization
on a SeqCA(180;4,90) examines 61,324,560 4-subsequences, determining for each
the first permutation in which it is covered and forming 180 partial orders on 90
elements each. Linear extensions of each order are then selected and a random
reordering of the permutations is done before going on to the next iteration. Thus
each iteration can be substantial. The results shown reflect computations after
between 1000 and 10000 iterations for the most part, yielding times that are com-
parable to the initial construction cost by the conditional expectation method.
Because our concern until this point has been with the extent of improvement
possible, we have not optimized execution times. We plan a more detailed exam-
ination of the time to conduct one iteration, and the numbers of iterations
employed to see different reductions.

As a proof of concept for post-optimization, we believe that the results shown
succeed in demonstrating its potential.

284 P.C. Murray and C.J. Colbourn

6 Conclusions

In describing and implementing post-optimization, we have concentrated on
sequence covering arrays. The extensions to requiring specified partial cover-
age, and to incorporating constraints on the ordering of pairs, are immediate.
The extension to permutation coverings with more complicated genera follows
similar lines. Both will be reported fully elsewhere.

At the outset, we asked a question: How ought one, in practice, construct
a ‘small’ set of permutations of specified length with specified coverage proper-
ties? When the length and the strength of coverage are small enough, exhaustive
methods will do. For somewhat larger strength and length, clever metaheuris-
tic methods apply. For large enough length, randomized methods can be used.
But sadly there typically remains a substantial intermediate range of lengths
for which none of these methods applies. In these cases, randomized methods
yield far too many permutations. Random selection gives a SeqCA(361;4,90), but
greedy methods produce a SeqCA(176;4,90). In any real application the reduc-
tion from 361 to 176 is important. Our post-optimization provides a mechanism
to obtain even smaller solutions, in this case a SeqCA(162;4,90).

Naturally one prefers powerful explicit constructions in the intermediate range
of interest, as has been done in part for sequence covering arrays of strength 3.
However, for most of the permutation coverage problems mentioned here, such
powerful explicit constructions remain elusive; this is particularly the case when
considering partial coverage or constraints. Our argument is that a sensible and
practical strategy in these situations is to first apply a greedy method to get a
‘reasonably sized’ initial array, and then to post-optimize it.

Acknowledgments. Thanks to Sunil Chandran, Marty Golumbic, Rogers Mathew,
and Deepak Rajendraprasad for interesting discussions about permutation coverings
and geometric representations of graphs and hypergraphs.

References

1. Banbara, M., Tamura, N., Inoue, K.: Generating event-sequence test cases by
answer set programming with the incidence matrix. In: Technical Communica-
tions of the 28th International Conference on Logic Programming (ICLP 2012),
pp. 86–97 (2012)

2. Basavaraju, M., Chandran, L.S., Golumbic, M.C., Mathew, R., Rajendraprasad,
D.: Boxicity and separation dimension. In: Kratsch, D., Todinca, I. (eds.) WG
2014. LNCS, vol. 8747, pp. 81–92. Springer, Heidelberg (2014)

3. Brain, M., Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H., Yilmaz, C.:
Event-sequence testing using answer-set programming. Int. J. Adv. Softw. 5(3–4),
237–251 (2012)

4. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)
5. Chee, Y.M., Colbourn, C.J., Horsley, D., Zhou, J.: Sequence covering arrays. SIAM

J. Discrete Math. 27(4), 1844–1861 (2013)
6. Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete

Math. 11(4), 511–523 (1998)

Sequence Covering Arrays and Linear Extensions 285

7. Colbourn, C.J., Nayeri, P.: Randomized Post-optimization for t-Restrictions. In:
Aydinian, H., Cicalese, F., Deppe, C. (eds.) Ahlswede Festschrift. LNCS, vol. 7777,
pp. 597–608. Springer, Heidelberg (2013)

8. Dushnik, B.: Concerning a certain set of arrangements. Proc. Amer. Math. Soc. 1,
788–796 (1950)

9. Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H., Yilmaz, C.: Answer-set
programming as a new approach to event-sequence testing. In: Proceedings of the
Second International Conference on Advances in System Testing and Validation
Lifecycle, pp. 25–34. Xpert Publishing Services (2011)

10. Fishburn, P.C., Trotter, W.T.: Dimensions of hypergraphs. J. Combin. Theory Ser.
B 56(2), 278–295 (1992)

11. Füredi, Z.: Scrambling permutations and entropy of hypergraphs. Random Struct.
Alg. 8(2), 97–104 (1996)

12. Hazli, M.M.Z., Zamli, K.Z., Othman, R.R.: Sequence-based interaction testing
implementation using bees algorithm. In: 2012 IEEE Symposium on Computers
and Informatics, pp. 81–85. IEEE (2012)

13. Huber, M.: Fast perfect sampling from linear extensions. Discrete Math. 306(4),
420–428 (2006)

14. Ishigami, Y.: Containment problems in high-dimensional spaces. Graphs Combin.
11(4), 327–335 (1995)

15. Ishigami, Y.: An extremal problem of d permutations containing every permutation
of every t elements. Discrete Math. 159(1–3), 279–283 (1996)

16. Karzanov, A., Khachiyan, L.: On the conductance of order Markov chains. Order
8(1), 7–15 (1991)

17. Kuhn, D.R., Higdon, J.M., Lawrence, J.F., Kacker, R.N., Lei, Y.: Combinatorial
methods for event sequence testing. CrossTalk: J. Defense Software Eng. 25(4),
15–18 (2012)

18. Kuhn, D.R., Higdon, J.M., Lawrence, J.F., Kacker, R.N., Lei, Y.: Combinatorial
methods for event sequence testing. In: IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST), pp. 601–609 (2012)

19. Levenshtĕın, V.I.: Perfect codes in the metric of deletions and insertions. Diskret.
Mat. 3(1), 3–20 (1991)

20. Margalit, O.: Better bounds for event sequence testing. In: The 2nd International
Workshop on Combinatorial Testing (IWCT 2013), pp. 281–284 (2013)

21. Mathon, R.: Tran Van Trung: Directed t-packings and directed t-Steiner systems.
Des. Codes Cryptogr. 18(1–3), 187–198 (1999)

22. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of covering
arrays. Eur. J. Comb. 34, 91–103 (2013)

23. Opatrný, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
24. Radhakrishnan, J.: A note on scrambling permutations. Random Struct. Alg.

22(4), 435–439 (2003)
25. Spencer, J.: Minimal scrambling sets of simple orders. Acta Math. Acad. Sci. Hun-

gar. 22, 349–353 (1971/72)
26. Tarui, J.: On the minimum number of completely 3-scrambling permutations. Dis-

crete Math. 308(8), 1350–1354 (2008)

	Sequence Covering Arrays and Linear Extensions
	1 Introduction
	2 Background
	3 Computational Constructions
	4 Post-Optimization and Linear Extensions
	5 Some Computations
	6 Conclusions
	References

