
On Maximum Common Subgraph Problems
in Series-Parallel Graphs

Nils Kriege, Florian Kurpicz(B), and Petra Mutzel

Department of Computer Science, Technische Universität Dortmund,
Dortmund, Germany

{nils.kriege,florian.kurpicz,petra.mutzel}@tu-dortmund.de

Abstract. The complexity of the maximum common connected sub-
graph problem in partial k-trees is still not fully understood. Polynomial-
time solutions are known for degree-bounded outerplanar graphs,
a subclass of the partial 2-trees. On the contrary, the problem is known to
be NP-hard in vertex-labeled partial 11-trees of bounded degree. We con-
sider series-parallel graphs, i.e., partial 2-trees. We show that the prob-
lem remains NP-hard in biconnected series-parallel graphs with all but
one vertex of degree bounded by three. A positive complexity result is
presented for a related problem of high practical relevance which asks
for a maximum common connected subgraph that preserves blocks and
bridges of the input graphs. We present a polynomial time algorithm for
this problem in series-parallel graphs, which utilizes a combination of
BC- and SP-tree data structures to decompose both graphs.

Keywords: Maximum Common Subgraph · Block and Bridge Preserv-
ing · Series-parallel graphs

1 Introduction

Finding a maximum common subgraph (MCS) of two input graphs is an impor-
tant task in many application domains like pattern recognition and cheminfor-
matics [18]. MCS is well known to be NP-hard. Since practically relevant graphs,
e.g., derived from small molecules, often have small treewidth [9], it is highly rel-
evant to develop polynomial time algorithms for tractable graph classes and to
clearly identify graph classes, where MCS remains NP-hard. For the related
subgraph isomorphism problem such a clear demarcation for partial k-trees is
known. Subgraph isomorphism is solvable in polynomial time in partial k-trees
if the smaller graph either is k-connected or has bounded degree [7,13]. How-
ever, it is NP-complete when the smaller graph is not k-connected or has more
than k vertices of unbounded degree [8]. MCS apparently is at least as hard
as subgraph isomorphism; two recent results show that it actually is consider-
ably harder: Akutsu [2] has shown that finding a connected MCS is NP-hard in

This work was supported by the German Research Foundation (DFG), priority pro-
gramme “Algorithms for Big Data” (SPP 1736).

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 200–212, 2015.
DOI: 10.1007/978-3-319-19315-1 18

On Maximum Common Subgraph Problems in Series-Parallel Graphs 201

vertex-labeled partial 11-trees of bounded degree. Furthermore it was believed
that the problem of finding a maximum common k-connected subgraph of k-
connected partial k-trees (k-MCS) can be solved with the same technique that
was successfully used for subgraph isomorphism. Recently, it was shown that
these techniques are insufficient even for series-parallel graphs, for which a new
approach based on SP-trees was devised [10]. Further polynomial time algo-
rithms were proposed for connected MCS of almost trees and outerplanar graphs
of bounded degree [1,3].

Motivated by the fact that even subgraph isomorphism is NP-hard when the
smaller graph is a tree and the other is outerplanar, a problem variation referred
to as BBP-MCS was considered [17,18]. Here, the common subgraph is required
to preserve blocks, i.e., maximal biconnected subgraphs, and bridges of the input
graphs, which renders efficient algorithms for outerplanar graphs possible [17].
Notably, BBP-MCS yields meaningful results for molecular graphs in practice
and even compares favorably to ordinary MCS in empirical studies [16,18].

Our Contribution. On the theoretical side, we prove that finding a connected
MCS of two biconnected series-parallel graphs with all but one vertex of degree
bounded by three is NP-hard. We obtain this result by a polynomial-time reduc-
tion of the Numerical Matching with Target Sums problem. Furthermore, we con-
sider BBP-MCS in series-parallel graphs and propose a polynomial time solution,
thus, generalizing the known result for outerplanar graphs. Employing BC- and
SP-tree decompositions of the input graphs allows us to identify subproblems
closely related to k-MCS, k ∈ {1, 2}. We make use of a classical approach for the
maximum common subtree problem [14], i.e., 1-MCS, and a recently proposed
algorithm for 2-MCS [10] to obtain our main result. Our approach yields a run-
ning time of O(n6) in series-parallel and O(n5) in outerplanar graphs, where n
is the maximum number of vertices in one of the input graphs.

2 Preliminaries

Let G be a simple graph. We denote the set of vertices by V (G) and the set of
edges by E(G). A graph is connected if there is a path between any two vertices.
Each maximal connected subgraph G′ ⊆ G is called connected component. Let
V ⊆ V (G), then G[V] denotes the induced subgraph G′ ⊆ G with V (G′) = V and
E(G′) = {(u, v) ∈ V × V : (u, v) ∈ E(G)}. A set S ⊆ V (G) is called |S|-separator
or separator of a connected graph G if G \ S := G[V (G) \ S] consists of at least
two connected components. If S = {v} is a separator then v is called cutvertex.
A graph G with |V (G)| > k is called k-connected if there is no j-separator of G
with j < k and biconnected if k = 2. We define [n] := {1, . . . , n} for all n ∈ N.
A path is a sequence of vertices (v0, v1, . . . , vn) such that (vi−1, vi) ∈ E(G) for all
i ∈ [n]. A path with vn = v0 is called cycle. The length of a path or cycle is the
number of edges contained in it. Let (v0, v1, . . . , vn) be a cycle, an edge (vi, vj)
such that 1 �= |i − j| < n is called chord. Cycles without chords are chordless.

A graph G is bipartite if there are two disjoint sets U,U ′ ⊆ V (G) such that
U ∪ U ′ = V (G) and for all (u, v) ∈ E(G) neither u, v ∈ U nor u, v ∈ U ′.

202 N. Kriege et al.

A matching of G is a set of edges M ⊆ E(G) such that u = u′ ⇐⇒ v = v′ for
all ((u, v), (u′, v′)) ∈ M×M . The maximum weighted bipartite matching problem
(MwbM) asks for the maximum weight of a matching of a weighted bipartite
graph and is solvable in O(n3), e.g., with the Hungarian method [11].

Kn denotes the complete graph with n vertices and Ks,t
2 denotes an instance

of the K2 where one vertex is called s- and the other t-vertex. A graph is series-
parallel if each maximal biconnected subgraph can be constructed starting with
a finite set of Ks,t

2 by performing a sequence of the following two operations.

S-Operation: Merge the s-vertex of one component with the t-vertex of a
different component. The vertex created by merging remains unnamed.

P-Operation: Merge the s- and t-vertices of two different components of the
set. The resulting vertices are called s- and t-vertex.

By definition, series-parallel graphs are at most biconnected and equivalent to
partial 2-trees [4], i.e., graphs with treewidth at most 2. We use the notation and
definition introduced in [5] to define the SP-tree decomposition of series-parallel
graphs.

Definition 1 (SP-tree). Let G be a biconnected series-parallel graph with at
least three vertices. Then the SP-tree of G, denoted by SP(G) = T SP, is the
smallest tree such that the following conditions are satisfied:

SP1 each node1 λ of T SP is associated with a skeleton graph Sλ = (Vλ, Eλ).
Each edge e = (u, v) ∈ Eλ is either a real or a virtual edge. If e is a virtual
edge, then S = {u, v} is a separator of G.

SP2 T SP has two different types of nodes. S-nodes where the skeleton graph
is a chordless cycle and P -nodes which have a skeleton graph consisting of
multiple parallel edges between exactly two vertices.

SP3 for two adjacent nodes λ and η in T SP, the skeleton graph Sλ contains a
virtual edge eη representing Sη and vice versa. The node η is called pertinent
to the edge eη.

SP4 The graph resulting by merging all skeleton graphs in a way that each virtual
edge is replaced by the skeleton of its pertinent node in T SP is exactly G.

The sets of S-nodes and P -nodes in T SP are denoted by VS(T SP) or VP (T SP)
and T SP is bipartite regarding these two sets. Let r ∈ E(G), the rooted SP-tree
is obtained by rooting T SP at the node λ with r ∈ V (Sλ). A rooted SP-tree
induces a parent-child relation where a node λ is the parent of an adjacent node
η if the path from the root node to λ is shorter than the path from the root
node to η. If a node λ is the parent of a node η and eλ ∈ E(Sη) is the virtual
edge pertinent to λ in η, then eλ is called reference edge of λ and denoted by
ref(λ).

Let G be a graph. Each maximal connected subgraph without a cutvertex
with respect to that component is called a block. There are two different types of
blocks: A maximal biconnected subgraph and a bridge, i.e., a K2. Any two blocks

1 We call vertices of SP- and BC-trees nodes and vertices of the input graphs vertices.

On Maximum Common Subgraph Problems in Series-Parallel Graphs 203

of G may have at most one vertex in common, which must be a cutvertex. Blocks
that are not bridges are called non-bridge block. Let B denote the set of blocks
of G and C the set of cutvertices of G. The graph with vertices B ∪C and edges
between each b ∈ B and c ∈ C iff V (c) ∈ V (b) is called block graph of G and
denoted by BC(G). If G is connected, the block graph is a tree and referred to
as BC-tree. Each node Λ in a BC-tree has a skeleton graph SΛ consisting of the
vertices and edges represented by the node. Let TBC = BC(G) and r ∈ E(G),
the rooted BC-tree TBC,r is obtained by rooting TBC at the B-node Λ such that
r ∈ V (SΛ). It induces a parent-child relation as defined above in TBC,r and also
a parent-child relation between the nodes of the SP-trees of the skeleton graphs.
Since those only exists for non-bridge nodes, denoted by VBl(TBC,r), there are
two cases: Let T SP

Λ be the SP-tree of the skeleton graph of Λ ∈ VB(TBC). First,
Λ is the root of TBC, then T SP

Λ is rooted at r. Otherwise, let Ξ be the parent of Λ
hence Ξ is a cutvertex with v = V (SΞ). Then T SP

Λ is rooted at the P - or S-node
such that v is in the skeleton graph of this node (P -node if existing). VBr(TBC,r)
denotes the bridges of the BC-tree. Greek upper- and lowercase letters denote
B-, C- and S-, P -nodes, resp. Latin letters denote vertices of the input graphs.

Let G and H be graphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is
called subgraph of G. The graphs G and H are isomorphic, if there is a bijection
φ : V (G) → V (H), such that (u, v) ∈ E(G) ⇐⇒ (φ(u), φ(v)) ∈ E(H) ∀u, v ∈
V (G) and H is subgraph isomorphic to G, if H is isomorphic to a subgraph of
G. We say u is mapped to v′ if φ(u) = v′. There is a common subgraph isomor-
phism between G and H, if there are sets R ⊆ V (G) and S ⊆ V (H) such that
the induced subgraphs G[R] and H[S] are isomorphic. Let φ be the common
subgraph isomorphism, then φ is a maximum common subgraph isomorphism if
there is no common subgraph isomorphism φ′ with |dom(φ′)| > |dom(φ)|, where
dom(φ) denotes the domain of φ. A common subgraph is called maximum com-
mon subgraph (MCS) if there is no common subgraph containing more vertices.

Definition 2 (Maximum Common Subgraph Problem (MCS)). Given
two graphs G and H, find the order of a maximum common connected subgraph.

Please notice, that MCS can denote both: the problem and a subgraph. In the
following we assume that the input graphs are connected series-parallel graphs
and common subgraphs must be induced subgraphs of both input graphs.

3 MCS in Series-Parallel Graphs with Bounded Degree

In this section, we consider MCS where both input graphs are biconnected and
have degree at most 3 for all but 1 vertex (MCS≤3,1). We prove that this problem
is NP-hard and improve the result for subgraph isomorphism that, transferred
to MCS, states that MCS≤4,2 is NP-hard [8].

Since the running time of an algorithm is given with respect to the size of
the input, a reasonable encoding is demanded, e.g., an integer n can be encoded
in log n bits. An NP-complete problem may no longer be NP-complete if the
instances are encoded unary. Strongly NP-complete problems are NP-complete

204 N. Kriege et al.

v w

(a) Cv
w

v w

(b) Dv
w

v w

(c) Kv
w

v w

k + 1

(d) P v,k
w

Fig. 1. Gadgets used to create the graphs G and H for a NMwTS instance.

even if the input is encoded unary [6]. Hence even the values of numbers can be
used. To prove that MCS≤3,1 is NP-hard we show that there is a polynomial-
time reduction from the following problem which is strongly NP-complete [6].

Definition 3 (Numerical Matching with Target Sums (NMwTS)) .
Given two disjoint sets X and Y with |X| = |Y | = n, a size function
s : X ∪ Y → Z

+ and a vector b = 〈b1, b2, . . . , bn〉 with bi ∈ Z
+ for all i ∈ [n].

Can X ∪ Y be partitioned into disjoint sets A1, A2, . . . , An each containing one
element from each of X and Y , such that

∑
a∈Ai

s (a) = bi for all i ∈ [n]?

3.1 Construction of the Polynomial-Time Reduction

For an instance (X,Y, s, b) of NMwTS we construct two graphs, G and H to
represent the values of the elements in X,Y and b. Let Σs :=

∑
z∈X∪Y s(z) and

Σb :=
∑n

i=1 bi. Bv
w denotes a cycle with 2Σs + 2 vertices such that each path

from v to w has length Σs. Cv
w is an instance of Bv

v′ with an additional vertex
w called anchor vertex and an edge (v′, w). Dv

w is an extension of Cv
w with two

chords such that it is still outerplanar and there are two edge disjoint paths of
length 4 from v to w.2 Kv

w is an instance of K3, where two vertices are denoted
by v and v′, with additional vertex w and an edge (v′, w). Last, P v,k

w is a path
of length k, where the vertices of degree 1 are denoted by v and w, see Fig. 1.

Bk =
n⋃

i=1

(
C x̄

ci ∪ Dx̄
ci+n

)
∪

n+k−1⋃

i=1+k

(
P ci,2

ci+1

)
(1)

G =
n⋃

i=1

⎛

⎝Kci
x̄1,i

∪ K
ci+n

ȳ1,i
∪

s(xi)⋃

j=2

K
x̄j−1,i
x̄j,i

∪
s(yi)⋃

j=2

K
ȳj−1,i
ȳj,i

∪ P
x̄s(xi)

,3

ȳs(yi)

⎞

⎠ ∪ B0 (2)

H =
n⋃

i=1

⎛

⎝Kci
v1,i

∪ K
vbi,i
ci+n ∪

bi⋃

j=2

Kvj−1
vj

⎞

⎠ ∪ Bn (3)

The graphs G and H contain a subgraph which we call base-gadget, see Eq. 1.
It consists of 2n cycles, C x̄

ci and Dx̄
ci+n

for i ∈ [n]. All cycles share the vertex x̄,
which is the only vertex with unbounded degree. The subgraphs

⋃n+k−1
i=1+k P ci,2

ci+1
,

2 If an instance of NMwTS does not allow the construction of Dv
w, all values are

multiplied by 3.

On Maximum Common Subgraph Problems in Series-Parallel Graphs 205

k ∈ {0, n} are called anchor paths and are required to assure that G and H are
biconnected. The index k in Eq. 1 is used to connect either the anchor vertices of
cycles containing chords (k = 0) or of the chordless cycles (k = n). The graph G
represents the values of the elements in X and Y , see Eq. 2. There is an xy-path
between the anchor vertices ci and ci+n representing the values of xi and yi. The
i-th xy-path consists of s(xi) connected Kv

w’s (x-path) and s(yi) connected Kv
w’s

(y-path). The x- and the y-path are connected by one P v,3
w called separating

path. Analogously, H represents the values in the vector b, see Eq. 3. There is
a b-path between the anchor vertices ci and ci+n representing the value bi. The
i-th b-path consists of bi + 1 Kv

w’s.
Both, G and H, are series-parallel and can be computed in polynomial time

with respect to the input size of NMwTS since the problem is NP-complete in
the strong sense.

Lemma 1. G and H are biconnected series-parallel graphs and can be con-
structed in polynomial time with respect to the values of the NMwTS instance.

Proof (Sketch). Consider either G or H without x̄, due to the anchor paths,
the graph is connected, the same is true for G and H without any other ver-
tex. Paths and cycles are series-parallel. Hence, Kv

w’s are series-parallel and
thus the xy-, b-paths and base-gadgets are series-parallel, too. They can be
merged with P -operations such that x̄ and an anchor vertex are the s- and
t-nodes. Also G and H contain |V (G)| = n (4Σs + 3) + 3 (Σs + 1) , |V (H)| =
n (4Σs + 3) + 3 (Σb + 1) , |E (G) | = 4 (Σsn + Σs + n) + 3n − 2 and |E (H) | =
4 (Σsn + Σb + 2n)+n− 2 vertices and edges, which is polynomial regarding the
instance size of NMwTS. �

Due to their construction, all MCS of G and H have common characteristics
regarding their size and the vertices contained in them. First we show, that not
all vertices in the xy- and b-paths can be contained in an MCS.

Lemma 2. Let P be an xy-path and P ′ be a b-path each with an additional
edge incident to the vertices with degree one, then an MCS of P and P ′ has size
min (|V (P)|, |V (P ′)|) − 1.

Proof (Sketch). Due to their construction there are k, l ∈ N such that 3k =
|V (P)| and 3l = |V (P ′)|. If k ≤ l, then the xy-path contains more than one
K3 less than the b-path. Since the separating path cannot be mapped to a K3

there is at least one vertex which cannot be contained in an MCS. If k > l, then
the xy-path contains at least two more K3’s than the b-path, hence each vertex
except one in the b-path can be contained in the MCS. �

We can also prove, that all vertices in the base gadgets are contained in the MCS
except for the vertices only contained in the anchor paths.

Lemma 3. Let B0 and Bn be two base-gadgets, then an MCS of B0 and Bn has
size |V (B0)| − n + 1.

206 N. Kriege et al.

Proof (Sketch). The vertices with unbounded degree are mapped to each other,
as otherwise not all cycles can be contained in the MCS. In B0 the anchor
paths are between the chordless cycles and in Bn the anchor paths are between
the cycles with chords. If vertices of cycles of different types are mapped, then
one vertex of each cycle and the adjacent anchor vertex cannot be contained in
the MCS. Hence, only the n − 1 vertices contained in the anchor paths cannot
be contained in the MCS. �

3.2 Correctness of the Polynomial-Time Reduction

For the reduction, we show that an instance of NMwTS has a numerical matching
if and only if an MCS of the corresponding graphs G and H has a specific size.

Lemma 4. An instance (X,Y, s, b) of NMwTS has a numerical matching if and
only if |V (G)| = |V (H)| and an MCS of G and H has size |V (G)| − 2n + 1.

Proof (Sketch). Let (X,Y, s, b) be an instance of NMwTS and G,H graphs con-
structed as described above. Assume that there is a numerical matching. Hence,
Σs = Σb and thus |V (G)| = |V (H)|. An MCS of all xy-paths, b-paths and the
base-gadgets has size |V (G)| − n and |V (G)| − n + 1 (Lemmas 2 and 3). Even
though they have been considered separately, the results can be combined, since
all relevant vertices, the ones adjacent to the base-gadget or the xy-paths and
b-paths, are contained in each MCS.

Now assume |V (G)| = |V (H)| and there is an MCS with size |V (G)|−2n+1.
Since we only consider connected MCSs, the vertex with unbounded degree must
be contained in this MCS. For each xy-path and b-path there has to be one vertex
which cannot be contained in an MCS (Lemma 2). The same is true for the base-
gadgets, since the vertices of the anchor paths cannot be contained (Lemma 3).
The vertices of the separating paths are not contained in an MCS. Thus the
values of the elements of X and Y are correctly bipartitioned. Due to the size
of the graphs for each bi there is an xj and yj′ such that bi = s(xj) + s(yj′). �

Since G and H both have a maximum degree bounded by 3 for all but one vertex,
the next result follows accordingly.

Theorem 1. MCS≤3,1 in biconnected series-parallel graphs is NP-hard.

4 The Block-and-Bridge Preserving Maximum Common
Subgraph Problem in Series-Parallel Graphs

In this section we consider the block-and-bridge preserving MCS (BBP-MCS)
which has been introduced in [17] and also is used in [3]. An MCS is a BBP-
MCS if it satisfies the following two conditions:

(BBP1) Any two vertices in different blocks in a common subgraph must not
be contained in the same block of an input graph.

(BBP2) Each bridge in a common subgraph is a bridge in both input graphs.

On Maximum Common Subgraph Problems in Series-Parallel Graphs 207

We use the polynomial time algorithm for computing the size of a biconnected
MCS of two biconnected series-parallel graphs (2-MCS) [10] to obtain an algo-
rithm which solves BBP-MCS in arbitrary series-parallel graphs. To do so, we
make use of a characteristic of an MCS: Every two vertices in an input graph
which are not in the same block cannot be in the same block in any common sub-
graph. Hence, vertices in one block can only be mapped to vertices contained in
exactly one block due to condition (BBP1). With respect to BBP-MCS, cutver-
tices have only to be considered if two of them are mapped. Since in biconnected
graphs there are no cutvertices, BBP-MCS and 2-MCS are equivalent in those.

4.1 The Algorithm

We present an algorithm which solves BBP-MCS in polynomial time. The algo-
rithm uses the BC-trees of the input graphs as underlying data structure. We
apply the idea presented in [14] for MCS in trees, to the BC-trees. We decom-
pose the BC-trees in rooted subtrees and compute the BBP-MCS for those.
These results are then combined with MwbM. Since we want to solve BBP-MCS
we do not need to compare all combination of subtrees, hence we use block split
graphs to define the ones that must be considered. Let G be a series-parallel
graph and TBC,r

G the BC-tree of G rooted at r ∈ E(G). Let S ⊆ V (G) be a
1- or 2-separator of G and {C1, . . . , Cn} the connected components of G \ S

such that r ∈ E(C1). Then TBC,r
G,S denotes the induced subgraph G[V (C1) ∪ S]

and TBC,r
G,S denotes the induced subgraph G[

⋃n
i=2 Ci ∪ S], called the block split

graphs of G. BBP-MCS is the main procedure of the algorithm. Given two

Algorithm 1. BBP-MCS(G,H)
Input: Two series-parallel graphs G and H.
Output: Size of a BBP-MCS of the series-parallel graphs G and H.
1: TBC

G ← BC(G); TBC
H ← BC(H); z ← 0

2: for all (Λ, Λ′) ∈ VBl(T
BC
G) × VBl(T

BC
H) do

3: T SP
Λ ← SP(SBC

Λ); T SP
Λ′ ← SP(SBC

Λ′)
4: for all (λ, λ′) ∈ VS(T SP

Λ) × VS(T SP
Λ′) do

5: r ← arbitrary (u, v) ∈ E(Sλ) ∩ E(G); Root(TBC
G , r)

6: for all r′ = (u′, v′) ∈ E(Sλ′) ∩ E(H) do
7: Root(TBC

H , r′)
8: p1 ← BBP-MCS-S(u, v, λ, u′, v′, λ′)
9: p2 ← BBP-MCS-S(u, v, λ, v′, u′, λ′)

10: z ← max(z, p1, p2)
11: for all (Λ, Λ′) ∈ VBr(T

BC
G) × VBr(T

BC
H) do

12: r = (u, v) ← E(SBC
Λ); Root(TBC

G , r)
13: r′ = (u′, v′) ← E(SBC

Λ′); Root(TBC
H , r′)

14: p1 ← BBP-MCS-C(u, u′) + BBP-MCS-C(v, v′)
15: p2 ← BBP-MCS-C(u, v′) + BBP-MCS-C(v, u′)
16: z ← max(z, p1, p2)
17: return z + 2

208 N. Kriege et al.

series-parallel graphs it computes the size of a BBP-MCS. To do so, first the
BC-trees and SP-trees of the non-bridge nodes are computed. Then the 2-MCS
for each combination of bridges or non-bridge nodes is computed. For each of
those combinations, the BC-trees are rooted at an edge r and r′ in the skeleton
graphs of these nodes. If the two nodes are non-bridge nodes, the BBP-MCS of
those is computed using a 2-MCS algorithm modified to handle cutvertices, see
Procedure 2.

Procedure 2. BBP-MCS-S(u, v, λ, u′, v′, λ′)
Input: Vertices u, v ∈ V (G), u′, v′ ∈ V (H) and S-nodes λ ∈ VS(T SP

·,G), λ′ ∈ VS(T SP
·,H).

Output: Size of a BBP-MCS of TBC,r
G,{u,v} and TBC,r

G,{u′,v′} such that u �→ u′ and v �→ v′.
1: e = (v, w) ← Next(v, λ); e′ = (v′, w′) ← Next(v′, λ′)
2: if e = ref(λ) then return BBP-MCS-S(u, v, pS(λ), u′, v′, λ′)
3: if e′ = ref(λ′) then return BBP-MCS-S(u, v, λ, u′, v′, pS(λ′))
4: if w = u and w′ = u′ then return MCS-E(e, λ, e′, λ′) + BBP-MCS-C(w, w′)
5: if w = u xor w′ = u′ then return −∞
6: z ← MCS-E(e, λ, e′, λ′)+BBP-MCS-S(u, w, λ, u′, w′, λ′)+BBP-MCS-C(w, w′)+1
7: if e /∈ E(G) or e′ /∈ E(H) then
8: if e ∈ E(G) then M ← {λ} else M ← cS(e)
9: if e′ ∈ E(H) then M ′ ← {λ′} else M ′ ← cS(e′)

10: for all (η, η′) ∈ M × M ′ do
11: p ← BBP-MCS-S(u, v, η, u′, v′, η′)
12: z ← max(z, p)
13: return z

BBP-MCS-S computes the 2-MCS of two non-bridge blocks [10, MCS-S].
It utilizes the rooted SP-trees given by the BC-tree decomposition. To obtain a
BBP-MCS each common subgraph of a non-bridge block must be biconnected.
Hence we traverse through the skeleton graph of the SP-trees and in the end
have to return to the first visited vertex of the non-bridge block as otherwise the
computed subgraph of the block is not biconnected. Whenever BBP-MCS-S
is called, there are three cases regarding the edges incident to the considered
vertices: If both are real, the extension of the mapping is straightforward. If
both are virtual, the block split graphs TBC,r

G,{v,w} and TBC,r′

H,{v′,w′} must be mapped,
where v, w, v′ and w′ are the considered vertices. If one is real while the other
is virtual, the real edges in an S-node pertinent to the virtual edge have to
be considered. In addition to these cases, whenever two cutvertices w,w′ are
mapped, the block split graphs TBC,r

G,{w} and TBC,r′

H,{w′} must be mapped.
BBP-MCS-C computes the size of a BBP-MCS of two block split graphs

obtained from cutvertices. Therefore, 0 is returned if the given vertices u and
u′ are not both cutvertices. Otherwise, we consider their child nodes cB(u) and
cB(u′) in the BC-trees rooted at r and r′, respectively. To this end, we create
a weighted complete bipartite graph C with vertex partition cB(u) ∪ cB(u′).
The weight w : E(C) → N ∪ {−∞} of an edge is the size of a BBP-MCS of the
two block split graphs associated with its endpoints. All edges incident to nodes

On Maximum Common Subgraph Problems in Series-Parallel Graphs 209

Procedure 3. BBP-MCS-C(u, u′)
Input: Two cutvertices u ∈ V (G), u′ ∈ V (H).
Output: Size of a BBP-MCS of TBC,r

G,{u} and TBC,r
G,{u′} such that u �→ u′.

1: if �λ ∈ VC(TBC
G) : u ∈ V (Sλ) or �λ′ ∈ VC(TBC

H) : u′ ∈ V (Sλ) then return 0
2: M ← cB(u); M ′ ← cB(u′); w ← ∅
3: for all d = (Λ, Λ′) ∈ VBl(M) × VBl(M

′) do
4: T SP

Λ ← SP(SBC
Λ); T SP

Λ′ ← SP(SBC
Λ′)

5: if ∃λ ∈ VP (T SP
Λ) : u ∈ V (Sλ) then N ← cS(λ) else N ← {λ}

6: if ∃λ′ ∈ VP (T SP
Λ′) : u′ ∈ V (Sλ′) then N ′ ← cS(λ′) else N ′ ← {λ′}

7: for all (λ, λ′) ∈ N × N ′ do
8: (s, t) ← arbitrary (s, t) ∈ E(Sλ) ∩ E(G) : s = u
9: for all (s′, t′) ∈ E(Sλ′) ∩ E(H) : s′ = u′ do

10: w(d) ← max(w(d),BBP-MCS-S(s, t, λ, s′, t′, λ′))
11: for all d = (Λ, Λ′) ∈ VBr(M) × VBr(M) do
12: (u, v) ← Next(u, Λ); (u′, v′) ← Next(u′, Λ′)
13: w(d) ← BBP-MCS-C(v, v′) + 1
14: return MwbMatching(M, M ′, w)

Procedure 4. MCS-E(e, λ, e′, λ′)
Input: Edges e = (u, v) ∈ E(Sλ) and e′ = (u′, v′) ∈ E(S′

λ)
Output: Size of a BBP-MCS of TBC,r

G,{u,v} and TBC,r
G,{u′,v′} such that u �→ u′ and v �→ v′.

1: if e ∈ E(G) xor e′ ∈ E(H) then return −∞
2: if e ∈ Er(Sλ) or e′ ∈ Er(Sλ′) then return 0
3: M ← cS(e); M ′ ← cS(e′); w ← ∅
4: for all d = (η, η′) ∈ M × M do
5: w(d) ← BBP-MCS-S(u, v, η, u′, v′, η′)
6: p ← MwbMatching(M, M ′, w)
7: if p = 0, e /∈ E(G) or e′ /∈ E(H) then return −∞ else return p

associated with a block and a bridge have weight −∞ as a mapping of those
contradicts restriction (BBP1). It is important to notice, that the computation
of the BBP-MCS of two blocks is not the same as in the main procedure, since
the cutvertices must be mapped. Hence, we only consider mappings where these
vertices are mapped, see Lines 8 and 9, Procedure 33. The child S-nodes of a
P -node λ are denoted by cS(λ) and pS(λ) refers to its parent.

MCS-E is also called whenever the considered subgraph is extended by
adding a new vertex to it. If both edges between the newly mapped vertex
and the vertex added before are virtual, then the vertices are a separator, see
(SP1) and the BBP-MCS of the block split graph has to be added to the result.
Next(u, λ) and Next(u,Λ) return the vertex adjacent to u which yet has not
been considered in the skeleton graph of λ and Λ, respectively. Root roots
the BC-tree at the given edge and induces a rooting in all considered SP-trees.
A more detailed description of the algorithm can be found in [12].

210 N. Kriege et al.

4.2 Analysis

We argue that Algorithm 1 solves BBP-MCS in polynomial time and show that
if both input graphs are outerplanar then the running time can be improved.

Theorem 2. Algorithm 1 solves BBP-MCS in series-parallel graphs in time
O(n6).

Proof. The correctness of the algorithm is based on the argumentation above
and [10]. To prove the running time, we transform the algorithm in a dynamic
programming approach. In [10, Th.1] it is shown, that 2-MCS can be solved in
time O(n6) while storing the 2-MCS of two split graphs in a table of size O(n4).

We assume w.l.o.g. that for each smaller block split graph the BBP-MCS has
been computed whenever BBP-MCS-S is called. The size of BBP-MCS for each
pair of child blocks has already been computed, hence the BBP-MCS of the block
split graphs can be obtained with MwbM in O(n3) (BBP-MCS-C). The tables
have size O(n4) and the only loop requires total time O(n2) because the results
have already been computed. Thus one call of BBP-MCS-S has running time
O(n4). Since there are only O(n2) possible combinations of block split graphs
the total running time of BBP-MCS-S is O(n6).

BBP-MCS-C can be computed in time O(n5) since the size of a BBP-MCS
of the smaller block split graphs has already been computed. Again MwbM can
be solved in time O(n3) since at most O(n2) of these matching problems must
be solved, the total running time of BBP-MCS-C is O(n5).

As MCS-E has not been changed with respect to [10], its running time is
O(n5), resulting in a total running time of O(n6). �

Even though MwbM can be solved in O(n3) it is a limiting factor regarding the
running time. If we consider outerplanar graphs each P -node in the SP-trees has
degree two which concludes in the following theorem.

Theorem 3. BBP-MCS in outerplanar graphs can be solved in time O (
n5

)
.

Proof. The proof is similar to the proof of Theorem 2. Since all P -nodes in
SP-trees of outerplanar graphs have degree two, the total running time of BBP-
MCS-S reduces to O(n4). Moreover, there is no need to use MwbM, as the
bipartite graphs are K2’s. Consequently the running time of MCS-E is O(n3).

BBP-MCS-C considers all adjacent nodes in the BC-tree whose number is
not restricted if the graph is outerplanar and therefore still unbounded. Therefore
the total running time is O(n5). �

It was known that BBP-MCES in outerplanar graphs can be solved in O(n7),
where MCES refers to a variation of the problem that asks for edge-induced
common subgraphs with maximum number of edges [17]. Note that — in contrast
to the variant we consider — a subgraph where in one input graph two vertices
are adjacent while the vertices in the other are not, is a feasible MCES.

On Maximum Common Subgraph Problems in Series-Parallel Graphs 211

5 Concluding Remarks

We have shown that MCS in series-parallel graphs with degree bounded by 3 for
all but one vertex is NP-hard by reduction of NMwTS. Then we have extended a
2-MCS algorithm [10] to solve BBP-MCS with running time O(n6). In outerpla-
nar graphs, it can solve BBP-MCS in O(n5) which is an improvement regarding
the algorithm solving BBP-MCES in outerplanar graphs in O(n7) [17]. BBP-
MCES in outerplanar graphs was taken as basis to obtain polynomial time solu-
tions for MCES in outerplanar graphs of bounded degree [3] and it has yet to be
decided whether MCES in series-parallel graphs of bounded degree can be solved
in polynomial time. To the author’s best knowledge, there is only one problem
which is known to be solvable in polynomial time in outerplanar graphs, but is
NP-complete in series-parallel graphs: the edge-disjoint paths problem [15]. It
still is unknown, whether MCS in series-parallel graphs is solvable in polyno-
mial time if all vertices have bounded degree. Since the series-parallel graphs are
equivalent to the partial 2-trees, there is a parameterized class of graphs, i.e.,
the partial k-trees, for which it is known that MCS is NP-complete for k ≥ 11
even when the degree is bounded [2]. For all other k > 1, the complexity has yet
to be decided.

References

1. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Trans. Fundam. E76–A(9), 1488–1493
(1993)

2. Akutsu, T., Tamura, T.: On the complexity of the maximum common subgraph
problem for partial k -trees of bounded degree. In: Chao, K.-M., Hsu, T., Lee, D.-T.
(eds.) ISAAC 2012. LNCS, vol. 7676, pp. 146–155. Springer, Heidelberg (2012)

3. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maxi-
mum common connected edge subgraph of outerplanar graphs of bounded degree.
Algorithms 6(1), 119–135 (2013)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

5. Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing
number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS,
vol. 6755, pp. 122–134. Springer, Heidelberg (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. WH Freeman and Company, New York (1979)

7. Gupta, A., Nishimura, N.: Sequential and parallel algorithms for embedding prob-
lems on classes of partial k-trees. In: Schmidt, E.M., Skyum, S. (eds.) SWAT 1994.
LNCS, vol. 824. Springer, Heidelberg (1994)

8. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of
partial k-trees. Theoret. Comput. Sci. 164(1–2), 287–298 (1996)

9. Horvth, T., Ramon, J.: Efficient frequent connected subgraph mining in graphs of
bounded tree-width. Theoret. Comput. Sci. 411(3133), 2784–2797 (2010)

10. Kriege, N., Mutzel, P.: Finding maximum common biconnected subgraphs in series-
parallel graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014, Part II. LNCS, vol. 8635, pp. 505–516. Springer, Heidelberg (2014)

212 N. Kriege et al.

11. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

12. Kurpicz, F.: Efficient algorithms for the maximum common subgraph problem in
partial 2-trees. Master’s thesis, TU Dortmund (2014)

13. Matouek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108(1–3), 343–364 (1992)

14. Matula, D.W.: Subtree isomorphism in O(n5/2). In: Algorithmic Aspects of Com-
binatorics, Ann. Discrete Math., vol. 2, pp. 91–106 (1978)

15. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is np-complete
for series-parallel graphs. Discrete Appl. Math. 115(1), 177–186 (2001)

16. Schietgat, L., Costa, F., Ramon, J., De Raedt, L.: Effective feature construction
by maximum common subgraph sampling. Mach. Learn. 83(2), 137–161 (2011)

17. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerpla-
nar graphs. In: Mining and Learning with Graphs (MLG) (2007)

18. Schietgat, L., Ramon, J., Bruynooghe, M., Blockeel, H.: An efficiently computable
graph-based metric for the classification of small molecules. In: Boulicaut, J.-F.,
Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 197–209.
Springer, Heidelberg (2008)

	On Maximum Common Subgraph Problems in Series-Parallel Graphs
	1 Introduction
	2 Preliminaries
	3 MCS in Series-Parallel Graphs with Bounded Degree
	3.1 Construction of the Polynomial-Time Reduction
	3.2 Correctness of the Polynomial-Time Reduction

	4 The Block-and-Bridge Preserving Maximum Common Subgraph Problem in Series-Parallel Graphs
	4.1 The Algorithm
	4.2 Analysis

	5 Concluding Remarks
	References

