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Faisal N. Abu-Khzam1, Édouard Bonnet2, and Florian Sikora2(B)

1 Lebanese American University, Beirut, Lebanon
faisal.abukhzam@lau.edu.lb
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Abstract. Maximum Common Induced Subgraph (henceforth
MCIS) is among the most studied classical NP-hard problems. MCIS
remains NP-hard on many graph classes including bipartite graphs, pla-
nar graphs and k-trees. Little is known, however, about the parame-
terized complexity of the problem. When parameterized by the vertex
cover number of the input graphs, the problem was recently shown to be
fixed-parameter tractable. Capitalizing on this result, we show that the
problem does not have a polynomial kernel when parameterized by vertex
cover unless NP ⊆ coNP/poly. We also show that Maximum Common
Connected Induced Subgraph (MCCIS), which is a variant where
the solution must be connected, is also fixed-parameter tractable when
parameterized by the vertex cover number of input graphs. Both prob-
lems are shown to be W[1]-complete on bipartite graphs and graphs of
girth five and, unless P = NP, they do not belong to the class XP when
parameterized by a bound on the size of the minimum feedback vertex
sets of the input graphs, that is solving them in polynomial time is very
unlikely when this parameter is a constant.

1 Introduction

A common induced subgraph of two graphs G1 and G2 is a graph that is isomor-
phic to induced subgraphs of each. The problem of finding a common induced
subgraph of maximum number of vertices (or edges) has many applications in
a number of domains including bioinformatics and chemistry [11–13,16,17]. In
the decision version of the problem, we are given an integer k and the question
is to decide if there is a solution with at least k vertices. We say that k is the
natural parameter of the problem, that is the solution size.

Concerning its classical complexity, Maximum Common Induced Sub-
graph is NP-complete, and remains so on bipartite graphs and graphs with
bounded treewidth. However, the problem is in P for trees [10] and graphs of
(both) bounded treewidth and bounded degree [3].

A decision subproblem of Maximum Common Induced Subgraph is the
well known Induced Subgraph Isomorphism (ISI) problem, which consists of
deciding whether G1 is isomorphic to an induced subgraph of G2. In other words,
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it is equivalent to Maximum Common Induced Subgraph where k = |G1|.
In this case G1 is called the pattern graph while G2 is the host graph. ISI is
W[1]-hard in general, by a straightforward reduction from k-Clique. Therefore
MCIS is also W[1]-hard. On the other hand, if ISI is in FPT on a certain graph
class, then so is MCIS. To see this, note that an arbitrary instance (G1, G2, k)
of MCIS can be reduced in fpt-time to two instances of ISI by enumerating all
possible graphs on k vertices and checking whether each is an induced subgraph
of each of the two input graphs. This implies that ISI and MCIS have the same
parameterized complexity when parameterized by the solution size, which we
refer to as the natural parameter in this paper. Of course, the latter reduction
takes time O(2k

2
) (multiplied by the time needed to solve ISI on the given

graph class), which makes it prohibitively impractical. We shall provide a simpler
reduction that takes O(ck)-time on a class of graphs that includes H-minor free
graphs and graphs of bounded degree.

Another way to deal with the hardness of a problem is to study its complexity
with respect to auxiliary (or structural) parameters, to better understand the
behavior of the problem (see for example [8]). MCIS is already hard on graphs
with bounded treewidth, being NP-hard on forests, as we shall observe based
on a classical result from Garey and Johnson [10]. Accordingly, the problem is
W[1]-hard when parameterized by the treewidth of the input graphs. Therefore
we need to look for bigger parameters. We shall study the problem with respect
to the size of a (minimum) feedback vertex set that of a (minimum) vertex cover
of input graphs. We observe that MCIS is not in XP when parameterized by
the feedback vertex set number of the input graphs. This also implies that the
problem is not in XP when parameterized by treewidth.

We observe that ISI remains W[1]-hard on graphs where G1 has a k-vertex
cover by a reduction from the W[1]-hard Induced Bipartite Matching prob-
lem [14]: if the pattern consists of k disjoint edges, its vertex cover is k. Therefore,
MCIS is W[1]-hard when the parameter is the vertex cover of one of the input
graphs, even if the other graph is bipartite. However, if the parameter k is the
combination of the vertex cover of both input graphs, then the problem is in
FPT, with a running time of O((24k)k) [1]. We shall prove in Sect. 3 that MCIS
does not have a polynomial-size kernel in this case unless NP ⊆ coNP/poly.

We also consider the Maximum Common Connected Induced Subgraph
problem. We observe that the problem is in FPT on graphs of bounded degree
and show it to be W[1]-complete on the class of bipartite graphs, even if the input
graph is C4-free. Consequently, MCCIS is W[1]-complete on graphs of girth five.
Finally, we show that MCCIS is fixed-parameter tractable when parameterized
by a bound on the minimum vertex covers of the input graphs.

2 Preliminaries

Two finite graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is
a bijection π : V1 → V2 such that ∀u, v ∈ V1 : uv ∈ E1 ⇔ π(u)π(v) ∈ E2.
Given a graph G = (V,E), a graph G′ = (V ′, E′) is an induced subgraph of G
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if V ′ ⊆ V and E′ = E(V ′) = {uv ∈ E | u, v ∈ V ′}, i.e. E′ is the edge set with
both extremities in V ′. We also say that G′ is the subgraph of G induced by V ′.

The girth of a graph G is the length of the shortest cycle contained in G.
Contracting an edge uv consists of deleting uv and replacing the vertices u and
v by a single vertex w in the incidence relation (edges incident on u or v become
incident on w). A graph H is a topological minor of graph G if H is obtained
from a subgraph of G by applying zero or more edge contractions. Given a fixed
graph H, a family F of graphs is said to be H-minor free if H is not a minor of
any element of F .

The Maximum Common Induced Subgraph problem is defined formally
as follows.

Maximum Common Induced Subgraph (MCIS):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

1 of G1 isomorphic to an induced
subgraph G′

2 of G2 with a maximum number of vertices.

Maximum Common Connected Induced Subgraph (MCCIS) is defined
as MCIS with the additional restriction that the solution must be connected.
Induced Subgraph Isomorphism is defined similarly:

Induced Subgraph Isomorphism (ISI):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

1 of G1 isomorphic to G2.

Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. (with respect to) parameter k if it can be
solved in f(k) · |I|c time (i.e. in fpt-time), where f is any computable func-
tion and c is a constant (see [7,15] for more details about fixed-parameter
tractability). The parameterized complexity hierarchy is composed of the classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. The class XP contains problems solvable in
time f(k) · |I|g(k), where f and g are unrestricted functions. A W[1]-hard prob-
lem is not fixed-parameter tractable (unless FPT = W[1]) and one can prove
W[1]-hardness by means of a parameterized reduction from a W[1]-hard prob-
lem. This is a mapping of an instance (I, k) of a problem A1 in g(k) · |I|O(1)

time (for any computable function g) into an instance (I ′, k′) for A2 such that
(I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.

A powerful technique to design parameterized algorithms is kernelization. In
short, kernelization is a polynomial-time self-reduction algorithm that takes an
instance (I, k) of a parameterized problem P as input and computes an equiv-
alent instance (I ′, k′) of P such that |I ′| � h(k) for some computable function
h and k′ � k. The instance (I ′, k′) is called a kernel in this case. If the function
h is polynomial, we say that (I ′, k′) is a polynomial kernel. It is well known
that a problem is in FPT iff it has a kernel, but this equivalence yields super-
polynomial kernels (in general). To design efficient parameterized algorithms, a
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kernel of polynomial (or even linear) size in k is important. However, some lower
bounds on the size of the kernel can be shown unless some polynomial hierar-
chy collapses. To show this result, we will use the cross composition technique
developed by Bodlaender et al. [4].

Definition 1 (Polynomial Equivalence Relation [4]). An equivalence rela-
tion R on Σ∗ is said to be polynomial if the following two conditions hold: (i)
There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y
belong to the same equivalence class in time (|x| + |y|)O(1). (ii) For any finite
set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 2 (OR-Cross-Composition [4]). Let L ⊆ Σ∗ be a set and let
Q ⊆ Σ∗ × N be a parameterized problem. We say that L cross-composes into Q
if there is a polynomial equivalence relation R and an algorithm which, given
t strings x1, x2, . . . , xt belonging to the same equivalence class of R, computes
an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that: (i)

(x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 � i � t. (ii) k∗ is bounded by a polynomial in
maxt

i=1 |xi| + log t.

Proposition 1 ([4]). Let L ⊆ Σ∗ be a set which is NP-hard under Karp reduc-
tions. If L cross-composes into the parameterized problem Q, then Q has no
polynomial kernel unless NP ⊆ coNP/poly.

A parameterized problem is said to be fixed-parameter enumerable if all feasible
solutions can be enumerated in O(f(k)|I|c) where f is a computable function of
the parameter k only, and c is a constant.

3 Structural Parameterization of Maximum Common
Induced Subgraph

Let us first recall that tw(G) � fvs(G) � vc(G), where tw(G) (resp. fvs(G),
vc(G)) represents the treewidth (resp. the feedback vertex set number, the ver-
tex cover number) of G [8]. As noted before, if the parameter is the combination
of tw(G1) and tw(G2) then MCIS is known to be W[1]-hard. Even more, if the
parameter is the combination of fvs(G1) and fvs(G2) (which is bigger than the
combination of the treewidth), then the problem is not even in XP since Max-
imum Common Induced Subgraph and Induced Subgraph Isomorphism
are NP-hard on forests, a case where the parameter is equal to 0. Indeed, one can
modify the reduction from 3-partition done by Garey and Johnson in [10] for
Subforest Isomorphism to our problem, by building chains of B + 3 vertices
instead of B + 1 in G2 such that each chain of G1 is separated by a vertex. The
following theorem follows.

Theorem 1. Unless P = NP, Maximum Common Induced Subgraph is not
in XP when parameterized by a bound on the minimum feedback vertex sets of
the pair of input graphs.
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The hardness of MCIS on forest also implies the following.

Corollary 1. Unless P = NP, Maximum Common Induced Subgraph is
not in XP when parameterized by the treewidth of the input graphs.

It was shown in [1] that MCIS is in FPT if the parameter is the combination of
vc(G1) and vc(G2). Accordingly, the problem has a kernel, but no polynomial
bound is known on its size. We show that, in this case, the kernel cannot be
polynomial unless NP ⊆ coNP/poly.

Theorem 2. Unless NP ⊆ coNP/poly, Maximum Common Induced Sub-
graph has no polynomial kernel when parameterized by the sum of the sizes of
vertex covers in the two input graphs.

Proof. We will define an OR-cross-composition from the NP-complete Clique,
problem, where the given instance is a tuple (Gc, l) and the question is whether
the graph Gc contains a clique on l vertices.

Given t instances, (Gc
1, l1), (G

c
2, l2), . . . , (G

c
t , lt), of Clique, where Gc

i is a
graph and li ∈ N,∀1 � i � t, we define our equivalence relation R such that any
strings that are not encoding valid instances are equivalent, and (Gc

i , li), (G
c
j , lj)

are equivalent iff |V (Gc
i )| = |V (Gc

j)|, and li = lj . Hereafter, we assume that
V (Gc

i ) = {1, . . . , n} and li = l, for any 1 � i � t. We will build an instance of
Maximum Common Induced Subgraph parameterized by the vertex cover
(G1, G2, l

′, Z) where G1 and G2 are two graphs, l′ ∈ N and Z ⊆ V (G2) is a
vertex cover of G2 computed in fpt-time, such that there is a solution of size l′

for Maximum Common Induced Subgraph iff there is an i, 1 � i � t such
that there is a solution of size l in Gc

i . We will now describe how to build G1

and G2.

To build G2 (see also Fig. 1):

– V (G2) = {p, q, r}∪{ai | 1 � i � t}∪{euv | 1 � u < v � n}∪{vi | 1 � i � n},
– E(G2)1 = {pq, pr, qr},
– E(G2)2 = {rai | 1 � i � t},
– E(G2)3 = {aieuv | uv ∈ E(Gc

i )},
– E(G2)4 = {euvvu, euvvv | ∀1 � u < v � n},
– E(G2) = E(G2)1 ∪ E(G2)2 ∪ E(G2)3 ∪ E(G2)4.

To build G1 (see also Fig. 2):

– V (G1) = {p, q, r, a} ∪ {ei | 1 � i �
(
l
2

)} ∪ {vi | 1 � i � l},
– E(G1)1 = {pq, pr, qr, ra},
– E(G1)2 = {aei | 1 � i �

(
l
2

)},
– E(G1)3 = {eivu, eivv | ∀1 � i �

(
l
2

)
, ei = uv},

– E(G1) = E(G1)1 ∪ E(G1)2 ∪ E(G1)3.

We set l′ = |V (G1)|, and Z = {p, r}∪{euv|1 � u < v � n}. It is easy to see that
Z is indeed a vertex cover for G2 and that its size is equal to n(n−1)

2 + 2, which
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r

p q

a1 a2 . . . at

e1,2 e1,3 . . . e1,n e2,3 . . . en−1,n

v1 v2 . . . vn

aieuv ∈ E(G2) ⇔ uv ∈ E(Gc
i )

euvvu, euvvv ∈ E(G2), ∀1 u < v n

Fig. 1. Illustration of the construction of G2.

r

p q

a

e1 e2 . . . e(l
2)

v1 v2 . . . vl

eivu, eivv ∈ E(G1), ∀1 i l
2
, ei = uv

Fig. 2. Illustration of the construction of G1.

is polynomial in n and hence in the size of the largest instance. Note that the
size of the graph G1 does not depend on t and is polynomial in n, so the size of
its vertex cover is also polynomial in n and independent of t.

Let us show that G1 is an induced subgraph of G2 iff at least one of the Gc
i ’s

has a clique of size l.
(⇐) Suppose that Gc

i has a clique of size l. We denote by S ⊆ V (Gc
i ) a

clique of size exactly l in Gc
i . We show that there is an induced subgraph S′

of G2 of size l′, isomorphic to G1. We set V (S′) = {p, q, r} ∪ {ai} ∪ {euv |
∀uv ∈ E(S)}∪{vu|u ∈ S}. One can easily check that this subgraph is isomorphic
to G1.

(⇒) Assume now that G1 is an induced subgraph of G2. Denote by S′ the
subgraph of G2 isomorphic to G1. Note that the only triangle in G2 is pqr.
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Indeed, T (V (G2) \ {p}) is bipartite. The triangle pqr in G1 has therefore to
match pqr in G2. Moreover, r in G1 has to match r in G2 since p and q have no
edges besides the clique pqr. The vertex a in G1 can only match a vertex ai for
some i ∈ {1, . . . , t}. Then, e1 up to e(l

2) in G1 has to match
(
l
2

)
vertices in {euv |

1 � u < v � n} of G2 which correspond to actual edges in Gc
i . Finally, v1 up to

vl in G1 has to match l vertices among the vj ’s in G2. Note that the number of
edges in E(G1)3 between the ej ’s and the vj ’s is exactly 2

(
l
2

)
= l(l − 1). More

precisely, each ej touches 2 edges in E(G1)3 and each vj touches l − 1 edges
in E(G1)3. In order to get a match in G2, one should find a set of

(
l
2

)
edges

inducing exactly l vertices. So, this set of l vertices is a clique in Gc
i .

Note that the parameter of MCIS in this reduction is exactly the size of G1.
Therefore, this negative result holds for ISI too.

Despite the fact that ISI and MCIS have the same parameterized complexity
when parameterized by the natural parameter, they exhibit different complexi-
ties with respect to structural parameters. In fact, the latter is not even in XP
when parameterized by the vertex cover of only one of the two graphs while ISI
is FPT when parameterized by the vertex cover of the second (host) graph. To
see this, note that when the host graph has a k-vertex cover, the minimum size
of a vertex cover in the pattern graph must be bounded by the parameter k,
otherwise we have a no instance. The claim follows from the fixed-parameter
tractability of MCIS in this case [1].

Although MCIS is not in XP w.r.t. some structural parameters such as
treewidth and feedback vertex set number, it is, together with MCCIS and ISI,
in W[1] w.r.t. the natural parameter.

Theorem 3. MCIS, MCCIS and ISI are W[1]-complete w.r.t. the natural para-
meter.

Proof. Since ISI, MCIS and MCCIS are W[1]-hard by a straightforward reduction
from k-Clique, it suffices to show membership in W[1]. In [5], it is shown that if
a problem can be reduced in FPT time to simulating a non-deterministic single-
taped Turing Machine halting in at most f(k) steps, for some function f , then
it is in W[1]. The Turing Machine can have an alphabet and a set of states of
size depending on the size of the input of the initial problem. In our case, we
can design a Turing Machine that guesses in 2k steps the corresponding right
k vertices in G1 (for ISI this part is not necessary) and the right k vertices in
G2 (our alphabet being isomorphic to an indexing of V (G1) ∪ V (G2)) and then
check in time O(k2) whether the two induced subgraphs are isomorphic (and
that they are connected for MCCIS). ��
We now turn our attention to the case where the MCIS is parameterized by
a combination of the natural parameter and some structural parameter. For
example, consider the case where the parameter is the sum of some bound t on
the feedback vertex set of the input graphs and the natural parameter k. The
problem is FPT in this case since graphs of t-feedback vertex set are H-minor
free (let H be the “fixed” graph consisting of a disjoint union of t+1 triangles).
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Moreover, we know ISI is FPT in this case due to [9]. However, and as stated
in Sect. 1, a solution to an instance of MCIS (in this case) is obtained via an
exhaustive enumeration of O(2k

2
) instances of ISI. This can be improved on

classes of graphs that are given with some fixed coloring t, such as H-minor free
graphs and graphs of bounded maximum degree. In fact, if the input to MCIS is
a pair of t-colored graphs, then a reduction algorithm would first check whether
each of the two graphs has an (independent) color class of size k. If so, then both
have an edgeless common subgraph of size k. Otherwise, the order of at least
one of the two graphs, say G1, is smaller than tk. In such case, the algorithm
proceeds by running a (fixed-parameter) algorithm for ISI on each of the O(2tk)
induced subgraphs of G1.

In [14] it was shown that Induced Matching is W[1]-hard on bipartite
graphs. As mentioned earlier, this proves that MCIS is W[1]-hard in this case.
We show that MCIS remains W[1]-hard on C4-free bipartite graphs, which proves
its W[1]-hardness on graphs of girth five.

Theorem 4. Maximum Common Induced Subgraph is W[1]-complete w.r.t.
size of the solution, as parameter, even on C4-free bipartite graphs.

Proof. Membership in W[1] comes from Theorem 3. For the hardness, consider
the following reduction from the W[1]-hard problem Clique. Given an instance
(G = (V,E), k) of Clique, we build an instance (G1, G2, k

′) of our problem as
follows. The graph G2 is the bipartite incidence graph of G (the bipartition is
between vertices representing V and vertices representing E), the graph G1 is
the bipartite incidence graph of Kk, and k′ = k +

(
k
2

)
= |V (G1)|.

Note that a bipartite incidence graph is C4-free since, in a simple graph, no
two edges are incident on the same pair of vertices.

It is clear that G1 occurs as a connected induced subgraph of G2 iff there is
a clique of size k in G, because w.l.o.g. k > 2 and the vertices representing edges
in G1 and G2 are of degree 2. ��
Corollary 2. Maximum Common Induced Subgraph is W[1]-complete
w.r.t. size of the solution on graphs of girth five.

4 Maximum Common Connected Induced Subgraph

Maximum Common Connected Induced Subgraph is trivially FPT when-
ever Induced Subgraph Isomorphism is FPT, including H-minor free graphs,
since the enumeration of all O(2k

2
) possible induced connected subgraphs can be

used as described before. The converse is also true. In fact, an instance (G1, G2, k)
of ISI can be reduced to an equivalent instance (G′

1, G
′
2, k +1) of MCCIS by let-

ting G′
i be the graph obtained by adding a single (universal) vertex to Gi that

is made adjacent to all other vertices of Gi. It follows that MCIS and MCCIS
have the same parameterized complexity with respect to the natural parameter
(i.e., solution size).
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Note that MCIS is NP-hard on forests while MCCIS is solvable in polynomial-
time in this case: given two forests G1 and G2, run the polynomial-time MCCIS
algorithm of [2] on every pair of trees from G1 and G2.

In the following of this section we study the complexity of MCCIS with
respect to structural parameters.

Lemma 1. Induced connected Subgraph Isomorphism is NP-hard even
when both graphs have feedback vertex set number equal to one.

Proof. Given an instance of Induced Subgraph Isomorphism on forests G1

and G2 (each with at least 2 trees), we build an instance of Induced con-
nected Subgraph Isomorphism by adding a universal vertex (connected to
every node) in G1 and in G2. One can see that these two universal vertices must
be matched together since they are the only ones with sufficiently high degree.
Then, there is a solution for Induced Subgraph Isomorphism iff there is
a solution for Induced connected Subgraph Isomorphism. The result of
course holds for MCCIS too. ��
Corollary 3. Unless P = NP, Maximum Common Connected Induced
Subgraph is not in XP when parameterized by a bound of the minimum feedback
vertex set number of the input graphs (and hence then when parameterized by a
bound on the treewidth of each of the two input graphs).

Given the above negative result, the next question is whether MCCIS is in FPT
w.r.t. the parameter vertex cover. In [1], a parameterized algorithm is presented
for MCIS when the parameter is a bound on the minimum vertex cover number
of the input graphs. However, that algorithm cannot help us much for solving
MCCIS since it relies on the existence of a feasible solution of size at least
≈ n − k which consists of mapping the two big independent sets of the two
graphs onto each other. Of course, this is not a feasible solution for MCCIS.
In the following we prove that MCCIS is fixed-parameter tractable w.r.t. k =
max(vc(G1), vc(G2)).

Theorem 5. Maximum Common Connected Induced Subgraph parame-
terized by a bound on the vertex covers of the input graphs is fixed-parameter
tractable.

Proof. In time O∗(2k) (even O∗(1.2738k) [6]), we can find minimum vertex covers
C1 and C2 in G1 and G2 respectively. Let I(j) be the independent set V (Gj) \
Cj for j ∈ {1, 2}. By assumption, our parameter k is max(C1, C2), so we can
enumerate all tripartitions of C1 and C2 in time O∗(9k). We denote by C1,m,
C1,u and C1,i (respectively C2,m, C2,u and C2,i) the three sets of a tripartition of
C1 (respectively C2). For j ∈ {1, 2}, Cj,u corresponds to the vertices of Cj that
are not matched, so they may be deleted. Cj,m comprises the vertices matched to
C3−j,m (that is, to the vertex cover of the other graph), and Cj,i are the vertices
matched to I(3−j), the independent set of the other graph. See Fig. 3.

We observe that for j ∈ {1, 2}, I(j) can be partitioned into at most 2k classes
of twins: I

(j)
1 , I

(j)
2 , . . . I

(j)

2k
. A class of twins in this context is a set of vertices with
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an identical neighborhood in the vertex cover and there are at most 2k subsets
of Cj . Potentially, some classes can be empty: they correspond to a subset of the
vertex cover Cj that is not the (exact) neighborhood of any vertex in I(j).

At this point, we can enumerate the mappings between C1,m and C2,m in time
O∗(kk) and the mappings between Cj,i and I(3−j) in time O∗((2k)k) = O∗(2k

2
).

Indeed, to match a vertex u with a vertex v or a twin of v is equivalent. Thus,
in time O∗((9k)k2k

2
) we can enumerate all the solutions of MCIS where only

vertices of I(1) could still be matched to vertices of I(2). The optimal map of the
independent sets can be done in linear time by matching the greatest number of
vertices in each equivalent twin class (which is the size of the smaller of the two
equivalent twin classes), where a twin class I

(j)
r in I(j) is equivalent to a twin

class I
(3−j)
s in I(3−j) if the vertices of N(I(j)r ) \ Cj,u and N(I(3−j)

s ) \ C3−j,u are
in one-to-one correspondence. ��

C1 = vc(G1)

I(1) = G1[V1 \ C1]

C1,u

C1,m

C1,i

G1

I
(1)
1

. . . I
(1)

2k

C2 = vc(G2)

I(2) = G2[V2 \ C2]

C2,u

C2,m

C2,i

G2

I
(2)
1

. . . I
(2)

2k

Fig. 3. Illustration of the proof of Theorem 5. Dashed boxes represent the classes inside
the independent set. Arrows represent the matching between sets of vertices.

To find a solution for MCCIS, the algorithm described in the above proof enu-
merates all possible maximal common induced subgraphs in time O∗((9k)k2k

2
).

As such, it can be used as an enumeration algorithm for MCIS.

Theorem 6. Maximum Common Induced Subgraph parameterized by ver-
tex cover, is fixed-parameter enumerable.

Finally, the following corollaries follow easily from the proofs of Theorems 2 and
4 since the graphs used in both proofs are connected.

Corollary 4. Maximum Common Connected Induced Subgraph, para-
meterized by a bound on the minimum vertex covers of input graphs, does not
have a polynomial-size kernel unless NP ⊆ coNP/poly.

Corollary 5. Maximum Common Connected Induced Subgraph is W[1]-
complete on bipartite graphs and graphs of girth five.
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Table 1. Summary of different parameterized complexity results of ISI, MCIS and
MCCIS for different structural parameters.

vc + vc vc + fvs fvs + fvs vc

ISI FPT; no Poly Kernel
(Theorem 2)

Open /∈ XP FPT for vc(G2),
/∈ XP for vc(G1)

M(C)CIS FPT ([1],Theorem 5);
no Poly Kernel

Open /∈ XP (Corollary 3) /∈ XP

In the following table we give a summary of some results obtained in this
paper along with open questions. Note that for ISI, vc + fvs is not the same
parameter as fvs + vc. In the latter, the parameter is a bound on the vertex
cover of G2 (as well as the feedback vertex set of G1) which makes ISI in FPT,
while it remains open for vc + fvs. We also note that ISI is not in XP w.r.t.
vc(G1) by a simple reduction from Independent Set (let G2 be an edgeless
graph on k vertices, then its vertex cover number is 0).

5 Conclusion

We studied the Maximum Common Induced Subgraph and Maximum Com-
mon Connected Induced Subgraph problems with respect to the solution
size as natural parameter on special graphs classes, such as forests, bipartite
graphs and graphs of girth five. The two problems are fixed-parameter tractable
on H-minor free graphs, which include forests, but they are W[1]-complete on
bipartite graphs and graphs of girth five.

We also considered the use of auxiliary parameters, such as a bound on the
minimum vertex covers of the input graphs. Although both MCIS and MCCIS
are in FPT in this case, we proved that no kernel of polynomial bound can
be obtained unless NP ⊆ coNP/poly. We noted that MCIS is not even in XP
with respect to other (smaller) auxiliary parameters, such as treewidth and feed-
back vertex set (see Table 1). A few corresponding open problems remain to be
addressed. For example, are MCIS/MCCIS in FPT when parameterized by the
combination of the vertex cover number and the feedback vertex set number, or
by the vertex cover number and the treewidth?
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