
Jan Kratochvíl · Mirka Miller
Dalibor Froncek (Eds.)

 123

LN
CS

 8
98

6

25th International Workshop, IWOCA 2014
Duluth, MN, USA, October 15–17, 2014
Revised Selected Papers

Combinatorial
Algorithms



Lecture Notes in Computer Science 8986

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Jan Kratochvíl • Mirka Miller
Dalibor Froncek (Eds.)

Combinatorial
Algorithms
25th International Workshop, IWOCA 2014
Duluth, MN, USA, October 15–17, 2014
Revised Selected Papers

123



Editors
Jan Kratochvíl
Faculty of Mathematics and Physics
Charles University
Praha
Czech Republic

Mirka Miller
University of Newcastle
Newcastle, NSW
Australia

Dalibor Froncek
Department of Mathematics
University of Minnesota, Duluth
Duluth, MN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19314-4 ISBN 978-3-319-19315-1 (eBook)
DOI 10.1007/978-3-319-19315-1

Library of Congress Control Number: 2015940420

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



Preface

The 25th International Workshop on Combinatorial Algorithms (IWOCA) was held
during October 15–17, 2014, in the picturesque harbor town Duluth, located in the
south-west corner of Lake Superior in Minnesota, USA. Autumn is a favorite time
of the year for visiting Duluth, owing to the amazing range of colors of tree and shrub
folliage on display at this time of the year. The IWOCA 2014 Organizing Committee
timed the event perfectly!

IWOCA – the workshop that originated 25 years ago as the (Australasian) AWOCA
– has over the years established itself as a truly international conference. The name
change (to IWOCA) reflected the expanse of the conference beyond local boundaries,
motivated by the growing global interest in the conference. The first IWOCA events
were still held in Australia in 2007, and the subsequent years brought it to Japan
(2008), the Czech Republic (2009), the UK (2010), Canada (2011), India (2012),
France (2013), and to the USA this year. During the last six years the proceedings have
been published by Springer in the LNCS series.

IWOCA 2014 received 68 submissions, most of them of very high quality. The
Program Committee was faced with hard work and sometimes difficult decisions and
we regretted that some good papers had to be rejected because of the limited capacity
of the conference schedule. In the end, 32 contributed talks were presented during the
conference.

We would like to thank all who have sent their submissions and to congratulate all
the authors of the accepted papers. We extend special thanks to the distinguished
invited speakers Josep Domingo-Ferrer, Pinar Heggernes, Saketh Saurab, and Xuding
Zhu. We also thank all the authors who submitted posters for the poster session (which
are, however, not included in these proceedings).

Finally, we thank all the members of the Program Committee, all external reviewers,
and all the members of the Organizing Committee for all the hard work they have done.
While all committee members worked well as a team, some names must be singled out:
Special thanks go to Sergei Bezrukov for tirelessly updating the website and running
the technology support during the workshop, and to Xiaofeng Gu for handling tech-
nical issues of papers included in both the pre-workshop proceedings and this volume.

March 2015 Dalibor Froncek
Jan Kratochvíl
Mirka Miller



Organization

Program Committee

Jemal Abawajy Deakin University, Australia
Hideo Bannai Kyushu University, Japan
Ljiljana Brankovic University of Newcastle, Australia
Stolting Brodal Aarhus University, Denmark
Pino Caballero-Gil University of La Laguna, Spain
Charlie Colbourn Arizona State University, USA
Maxime Crochemore King’s College London, UK
Pinar Dundar Ege University, Turkey
Jiri Fiala Charles University in Prague, Czech Republic
Dalibor Froncek University of Minnesota Duluth, USA
Roberto Grossi Università di Pisa, Italy
Jan Holub Czech Technical University in Prague, Czech Republic
Costas Iliopoulos King’s College London, UK
Ralf Klasing LaBRI and CNRS, France
Christian Komusiewicz TU Berlin, Germany
Jan Kratochvíl Charles University in Prague, Czech Republic
Dieter Kratsch Universite de Lorraine-Metz, France
Gregory Kucherov University Paris-Est Marne-la-Vallee and CNRS,

France
Thierry Lecroq Université de Rouen, France
Zsuzsanna Lipták Università di Verona, Italy
Paul Manuel Kuwait University, Kuwait
Mirka Miller University of Newcastle, Australia
Ian Munro University of Waterloo, Canada
Kunsoo Park Seoul National University, South Korea
Solon Pissis King’s College London, UK
Hebert Pérez-Rosés University of Lleida, Spain
Sohel Rahman Bangladesh University of Engineering and Technology,

Bangladesh
Vojta Rodl Emory University, USA
Frank Ruskey University of Victoria, Canada
Bill Smyth McMaster University, Canada
Lynette Van Zijl Stellenbosch University, South Africa



Program Committee Co-chairs

Jan Kratochvíl Charles University in Prague, Czech Republic
Mirka Miller University of Newcastle, Australia

Problem Session Co-chairs

Uwe Leck University of Wisconsin-Superior, USA
Zsuzsanna Lipták Università di Verona, Italy

Proceedings Technical Editor

Xiaofeng Gu University of Wisconsin-Superior, USA

Steering Committee

Costas Iliopoulos King’s College London, UK
Mirka Miller University of Newcastle, Australia
Bill Smyth McMaster University, Canada

Organizing Committee

Sergei Bezrukov University of Wisconsin-Superior, USA
Dalibor Froncek (Chair) University of Minnesota Duluth, USA
Xiaofeng Gu University of Wisconsin-Superior, USA
Steven Rosenberg University of Wisconsin-Superior, USA
Uwe Leck University of Wisconsin-Superior, USA

Additional Reviewers

Avrachenkov, Konstantin
Baca, Martin
Baisya, Dipankar
Bari, Md. Faizul
Bevern, René Van
Boeckenhauer, Hans-Joachim
Burcsi, Péter
Caballero-Gil, Candido
Caceres Cruz, Jose
Cechlarova, Katarina
Chen, Jiehua
Cheng, Eddie
Cicalese, Ferdinando
D’Arco, Paolo
Dev, Himel

Dogan, Derya
Escoffer, Bruno
Feria-Puron, Ramiro
Fernau, Henning
Fertin, Guillaume
Fici, Gabriele
Firoz, Jesun
Foucaud, Florent
Gerbner, Daniel
Grigorious, Cyriac
Gu, Xiaofeng
Harju, Tero
Hartung, Sepp
Hocquard, Hervé
Hoksza, David

VIII Organization



Hossain, Md. Iqbal
Hsieh, Sun-Yuan
Hüffner, Falk
I., Tomohiro
Inenaga, Shunsuke
Irvine, Veronika
Islam, A.S.M. Sohidull
Keil, Mark
Lefebvre, Arnaud
Li, Rao
Liu, Daphne
Lukovszki, Tamas
Martin-Fernandez, Francisco
Mary, Arnaud
Medvedev, Paul
Miltzow, Tillmann
Molina-Gil, Jezabel
Mondal, Debajyoti
Nisse, Nicolas
Oner, Tahsin
Ordin, Burak
Peterlongo, Pierre
Phanalasy, Oudone
Pineda-Villavicencio,

Guillermo
Prieur-Gaston, Elise

Rajan, Bharati
Rios-Solis, Yasmin
Rivals, Eric
Rosenberg, Steve
Ryan, Joe
Ryjacek, Zdenek
Saba, Sahand
Salikhov, Kamil
Scholtzova, Jirina
Sebe, Francesc
Sgall, Jiri
Sgall, Jiří
Shaw, Dipan Lal
Sorge, Manuel
Stephen, Sudeep
Suchy, Ondrej
Tantau, Till
Tiwary, Hans Raj
Valla, Tomáš
Valtr, Pavel
Vialette, Stéphane
Walen, Tomasz
Weimann, Oren
Xu, Min
Zhu, Xuding
Zohora, Fatema Tuz

Organization IX



Contents

On the Complexity of Various Parameterizations of Common Induced
Subgraph Isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Faisal N. Abu-Khzam, Édouard Bonnet, and Florian Sikora

Approximation and Hardness Results for the Maximum Edges
in Transitive Closure Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Anna Adamaszek, Guillaume Blin, and Alexandru Popa

Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk . . . 24
Mousa Alfalayleh and Ljiljana Brankovic

On the Galois Lattice of Bipartite Distance Hereditary Graphs . . . . . . . . . . . 37
Nicola Apollonio, Massimiliano Caramia, and Paolo Giulio Franciosa

Fast and Simple Computations Using Prefix Tables Under Hamming
and Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Carl Barton, Costas S. Iliopoulos, Solon P. Pissis, and William F. Smyth

Border Correlations, Lattices, and the Subgraph Component Polynomial . . . . 62
Francine Blanchet-Sadri, Michelle Cordier, and Rachel Kirsch

Computing Minimum Length Representations of Sets of Words
of Uniform Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Francine Blanchet-Sadri and Andrew Lohr

Computing Primitively-Rooted Squares and Runs in Partial Words . . . . . . . . 86
Francine Blanchet-Sadri, Jordan Nikkel, J.D. Quigley, and Xufan Zhang

3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle . . . . . . . . 98
Ilkyoo Choi, Jan Ekstein, Přemysl Holub, and Bernard Lidický

Computing Heat Kernel Pagerank and a Local Clustering Algorithm . . . . . . . 110
Fan Chung and Olivia Simpson

A C-magic Rectangle Set and Group Distance Magic Labeling . . . . . . . . . . . 122
Sylwia Cichacz

Solving Matching Problems Efficiently in Bipartite Graphs . . . . . . . . . . . . . 128
Selma Djelloul

A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries
with Sliding Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Stephane Durocher and Saeed Mehrabi

http://dx.doi.org/10.1007/978-3-319-19315-1_1
http://dx.doi.org/10.1007/978-3-319-19315-1_1
http://dx.doi.org/10.1007/978-3-319-19315-1_2
http://dx.doi.org/10.1007/978-3-319-19315-1_2
http://dx.doi.org/10.1007/978-3-319-19315-1_3
http://dx.doi.org/10.1007/978-3-319-19315-1_4
http://dx.doi.org/10.1007/978-3-319-19315-1_5
http://dx.doi.org/10.1007/978-3-319-19315-1_5
http://dx.doi.org/10.1007/978-3-319-19315-1_6
http://dx.doi.org/10.1007/978-3-319-19315-1_7
http://dx.doi.org/10.1007/978-3-319-19315-1_7
http://dx.doi.org/10.1007/978-3-319-19315-1_8
http://dx.doi.org/10.1007/978-3-319-19315-1_9
http://dx.doi.org/10.1007/978-3-319-19315-1_9
http://dx.doi.org/10.1007/978-3-319-19315-1_10
http://dx.doi.org/10.1007/978-3-319-19315-1_11
http://dx.doi.org/10.1007/978-3-319-19315-1_11
http://dx.doi.org/10.1007/978-3-319-19315-1_12
http://dx.doi.org/10.1007/978-3-319-19315-1_13
http://dx.doi.org/10.1007/978-3-319-19315-1_13


On Decomposing the Complete Graph into the Union
of Two Disjoint Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Saad I. El-Zanati, Uthoomporn Jongthawonwuth, Heather Jordon,
and Charles Vanden Eynden

Reconfiguration of Vertex Covers in a Graph . . . . . . . . . . . . . . . . . . . . . . . 164
Takehiro Ito, Hiroyuki Nooka, and Xiao Zhou

Space Efficient Data Structures for Nearest Larger Neighbor . . . . . . . . . . . . 176
Varunkumar Jayapaul, Seungbum Jo, Venkatesh Raman,
and Srinivasa Rao Satti

Playing Several Variants of Mastermind with Constant-Size Memory
is not Harder than with Unbounded Memory . . . . . . . . . . . . . . . . . . . . . . . 188

Gerold Jäger and Marcin Peczarski

On Maximum Common Subgraph Problems in Series-Parallel Graphs . . . . . . 200
Nils Kriege, Florian Kurpicz, and Petra Mutzel

Profile-Based Optimal Matchings in the Student/Project Allocation Problem . . . . 213
Augustine Kwanashie, Robert W. Irving, David F. Manlove,
and Colin T.S. Sng

The Min-max Edge q-Coloring Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Tommi Larjomaa and Alexandru Popa

Speeding up Graph Algorithms via Switching Classes . . . . . . . . . . . . . . . . . 238
Nathan Lindzey

Study of jðDÞ for D ¼ f2; 3; x; yg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Daniel Collister and Daphne Der-Fen Liu

Some Hamiltonian Properties of One-Conflict Graphs . . . . . . . . . . . . . . . . . 262
Christian Laforest and Benjamin Momège

Sequence Covering Arrays and Linear Extensions . . . . . . . . . . . . . . . . . . . . 274
Patrick C. Murray and Charles J. Colbourn

Minimum r-Star Cover of Class-3 Orthogonal Polygons . . . . . . . . . . . . . . . 286
Leonidas Palios and Petros Tzimas

Embedding Circulant Networks into Butterfly and Benes Networks . . . . . . . . 298
R. Sundara Rajan, Indra Rajasingh, Paul Manuel, T.M. Rajalaxmi,
and N. Parthiban

Kinetic Reverse k-Nearest Neighbor Problem . . . . . . . . . . . . . . . . . . . . . . . 307
Zahed Rahmati, Valerie King, and Sue Whitesides

XII Contents

http://dx.doi.org/10.1007/978-3-319-19315-1_14
http://dx.doi.org/10.1007/978-3-319-19315-1_14
http://dx.doi.org/10.1007/978-3-319-19315-1_15
http://dx.doi.org/10.1007/978-3-319-19315-1_16
http://dx.doi.org/10.1007/978-3-319-19315-1_17
http://dx.doi.org/10.1007/978-3-319-19315-1_17
http://dx.doi.org/10.1007/978-3-319-19315-1_18
http://dx.doi.org/10.1007/978-3-319-19315-1_19
http://dx.doi.org/10.1007/978-3-319-19315-1_20
http://dx.doi.org/10.1007/978-3-319-19315-1_20
http://dx.doi.org/10.1007/978-3-319-19315-1_21
http://dx.doi.org/10.1007/978-3-319-19315-1_22
http://dx.doi.org/10.1007/978-3-319-19315-1_22
http://dx.doi.org/10.1007/978-3-319-19315-1_23
http://dx.doi.org/10.1007/978-3-319-19315-1_24
http://dx.doi.org/10.1007/978-3-319-19315-1_25
http://dx.doi.org/10.1007/978-3-319-19315-1_25
http://dx.doi.org/10.1007/978-3-319-19315-1_26
http://dx.doi.org/10.1007/978-3-319-19315-1_27
http://dx.doi.org/10.1007/978-3-319-19315-1_27


Efficiently Listing Bounded Length st-Paths . . . . . . . . . . . . . . . . . . . . . . . . 318
Romeo Rizzi, Gustavo Sacomoto, and Marie-France Sagot

Metric Dimension for Amalgamations of Graphs. . . . . . . . . . . . . . . . . . . . . 330
Rinovia Simanjuntak, Saladin Uttunggadewa, and Suhadi Wido Saputro

A Suffix Tree Or Not a Suffix Tree? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Tatiana Starikovskaya and Hjalte Wedel Vildhøj

Deterministic Algorithms for the Independent Feedback Vertex
Set Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Yuma Tamura, Takehiro Ito, and Xiao Zhou

Lossless Seeds for Searching Short Patterns with High Error Rates . . . . . . . . 364
Christophe Vroland, Mikaël Salson, and Hélène Touzet

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Contents XIII

http://dx.doi.org/10.1007/978-3-319-19315-1_28
http://dx.doi.org/10.1007/978-3-319-19315-1_28
http://dx.doi.org/10.1007/978-3-319-19315-1_29
http://dx.doi.org/10.1007/978-3-319-19315-1_30
http://dx.doi.org/10.1007/978-3-319-19315-1_31
http://dx.doi.org/10.1007/978-3-319-19315-1_31
http://dx.doi.org/10.1007/978-3-319-19315-1_32


On the Complexity of Various Parameterizations
of Common Induced Subgraph Isomorphism

Faisal N. Abu-Khzam1, Édouard Bonnet2, and Florian Sikora2(B)

1 Lebanese American University, Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

2 PSL, Université Paris-Dauphine, LAMSADE, UMR CNRS 7243, Paris, France
{florian.sikora,edouard.bonnet}@dauphine.fr

Abstract. Maximum Common Induced Subgraph (henceforth
MCIS) is among the most studied classical NP-hard problems. MCIS
remains NP-hard on many graph classes including bipartite graphs, pla-
nar graphs and k-trees. Little is known, however, about the parame-
terized complexity of the problem. When parameterized by the vertex
cover number of the input graphs, the problem was recently shown to be
fixed-parameter tractable. Capitalizing on this result, we show that the
problem does not have a polynomial kernel when parameterized by vertex
cover unless NP ⊆ coNP/poly. We also show that Maximum Common
Connected Induced Subgraph (MCCIS), which is a variant where
the solution must be connected, is also fixed-parameter tractable when
parameterized by the vertex cover number of input graphs. Both prob-
lems are shown to be W[1]-complete on bipartite graphs and graphs of
girth five and, unless P = NP, they do not belong to the class XP when
parameterized by a bound on the size of the minimum feedback vertex
sets of the input graphs, that is solving them in polynomial time is very
unlikely when this parameter is a constant.

1 Introduction

A common induced subgraph of two graphs G1 and G2 is a graph that is isomor-
phic to induced subgraphs of each. The problem of finding a common induced
subgraph of maximum number of vertices (or edges) has many applications in
a number of domains including bioinformatics and chemistry [11–13,16,17]. In
the decision version of the problem, we are given an integer k and the question
is to decide if there is a solution with at least k vertices. We say that k is the
natural parameter of the problem, that is the solution size.

Concerning its classical complexity, Maximum Common Induced Sub-
graph is NP-complete, and remains so on bipartite graphs and graphs with
bounded treewidth. However, the problem is in P for trees [10] and graphs of
(both) bounded treewidth and bounded degree [3].

A decision subproblem of Maximum Common Induced Subgraph is the
well known Induced Subgraph Isomorphism (ISI) problem, which consists of
deciding whether G1 is isomorphic to an induced subgraph of G2. In other words,
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 1–12, 2015.
DOI: 10.1007/978-3-319-19315-1 1



2 F.N. Abu-Khzam et al.

it is equivalent to Maximum Common Induced Subgraph where k = |G1|.
In this case G1 is called the pattern graph while G2 is the host graph. ISI is
W[1]-hard in general, by a straightforward reduction from k-Clique. Therefore
MCIS is also W[1]-hard. On the other hand, if ISI is in FPT on a certain graph
class, then so is MCIS. To see this, note that an arbitrary instance (G1, G2, k)
of MCIS can be reduced in fpt-time to two instances of ISI by enumerating all
possible graphs on k vertices and checking whether each is an induced subgraph
of each of the two input graphs. This implies that ISI and MCIS have the same
parameterized complexity when parameterized by the solution size, which we
refer to as the natural parameter in this paper. Of course, the latter reduction
takes time O(2k

2
) (multiplied by the time needed to solve ISI on the given

graph class), which makes it prohibitively impractical. We shall provide a simpler
reduction that takes O(ck)-time on a class of graphs that includes H-minor free
graphs and graphs of bounded degree.

Another way to deal with the hardness of a problem is to study its complexity
with respect to auxiliary (or structural) parameters, to better understand the
behavior of the problem (see for example [8]). MCIS is already hard on graphs
with bounded treewidth, being NP-hard on forests, as we shall observe based
on a classical result from Garey and Johnson [10]. Accordingly, the problem is
W[1]-hard when parameterized by the treewidth of the input graphs. Therefore
we need to look for bigger parameters. We shall study the problem with respect
to the size of a (minimum) feedback vertex set that of a (minimum) vertex cover
of input graphs. We observe that MCIS is not in XP when parameterized by
the feedback vertex set number of the input graphs. This also implies that the
problem is not in XP when parameterized by treewidth.

We observe that ISI remains W[1]-hard on graphs where G1 has a k-vertex
cover by a reduction from the W[1]-hard Induced Bipartite Matching prob-
lem [14]: if the pattern consists of k disjoint edges, its vertex cover is k. Therefore,
MCIS is W[1]-hard when the parameter is the vertex cover of one of the input
graphs, even if the other graph is bipartite. However, if the parameter k is the
combination of the vertex cover of both input graphs, then the problem is in
FPT, with a running time of O((24k)k) [1]. We shall prove in Sect. 3 that MCIS
does not have a polynomial-size kernel in this case unless NP ⊆ coNP/poly.

We also consider the Maximum Common Connected Induced Subgraph
problem. We observe that the problem is in FPT on graphs of bounded degree
and show it to be W[1]-complete on the class of bipartite graphs, even if the input
graph is C4-free. Consequently, MCCIS is W[1]-complete on graphs of girth five.
Finally, we show that MCCIS is fixed-parameter tractable when parameterized
by a bound on the minimum vertex covers of the input graphs.

2 Preliminaries

Two finite graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if there is
a bijection π : V1 → V2 such that ∀u, v ∈ V1 : uv ∈ E1 ⇔ π(u)π(v) ∈ E2.
Given a graph G = (V,E), a graph G′ = (V ′, E′) is an induced subgraph of G



On the Complexity of Various Parameterizations 3

if V ′ ⊆ V and E′ = E(V ′) = {uv ∈ E | u, v ∈ V ′}, i.e. E′ is the edge set with
both extremities in V ′. We also say that G′ is the subgraph of G induced by V ′.

The girth of a graph G is the length of the shortest cycle contained in G.
Contracting an edge uv consists of deleting uv and replacing the vertices u and
v by a single vertex w in the incidence relation (edges incident on u or v become
incident on w). A graph H is a topological minor of graph G if H is obtained
from a subgraph of G by applying zero or more edge contractions. Given a fixed
graph H, a family F of graphs is said to be H-minor free if H is not a minor of
any element of F .

The Maximum Common Induced Subgraph problem is defined formally
as follows.

Maximum Common Induced Subgraph (MCIS):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

1 of G1 isomorphic to an induced
subgraph G′

2 of G2 with a maximum number of vertices.

Maximum Common Connected Induced Subgraph (MCCIS) is defined
as MCIS with the additional restriction that the solution must be connected.
Induced Subgraph Isomorphism is defined similarly:

Induced Subgraph Isomorphism (ISI):
• Input: Two graphs G1 = (V1, E1) and G2 = (V2, E2).
• Output: An induced subgraph G′

1 of G1 isomorphic to G2.

Parameterized complexity. A parameterized problem (I, k) is said fixed-parameter
tractable (or in the class FPT) w.r.t. (with respect to) parameter k if it can be
solved in f(k) · |I|c time (i.e. in fpt-time), where f is any computable func-
tion and c is a constant (see [7,15] for more details about fixed-parameter
tractability). The parameterized complexity hierarchy is composed of the classes
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP. The class XP contains problems solvable in
time f(k) · |I|g(k), where f and g are unrestricted functions. A W[1]-hard prob-
lem is not fixed-parameter tractable (unless FPT = W[1]) and one can prove
W[1]-hardness by means of a parameterized reduction from a W[1]-hard prob-
lem. This is a mapping of an instance (I, k) of a problem A1 in g(k) · |I|O(1)

time (for any computable function g) into an instance (I ′, k′) for A2 such that
(I, k) ∈ A1 ⇔ (I ′, k′) ∈ A2 and k′ ≤ h(k) for some function h.

A powerful technique to design parameterized algorithms is kernelization. In
short, kernelization is a polynomial-time self-reduction algorithm that takes an
instance (I, k) of a parameterized problem P as input and computes an equiv-
alent instance (I ′, k′) of P such that |I ′| � h(k) for some computable function
h and k′ � k. The instance (I ′, k′) is called a kernel in this case. If the function
h is polynomial, we say that (I ′, k′) is a polynomial kernel. It is well known
that a problem is in FPT iff it has a kernel, but this equivalence yields super-
polynomial kernels (in general). To design efficient parameterized algorithms, a



4 F.N. Abu-Khzam et al.

kernel of polynomial (or even linear) size in k is important. However, some lower
bounds on the size of the kernel can be shown unless some polynomial hierar-
chy collapses. To show this result, we will use the cross composition technique
developed by Bodlaender et al. [4].

Definition 1 (Polynomial Equivalence Relation [4]). An equivalence rela-
tion R on Σ∗ is said to be polynomial if the following two conditions hold: (i)
There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x and y
belong to the same equivalence class in time (|x| + |y|)O(1). (ii) For any finite
set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into at most
(maxx∈S |x|)O(1) classes.

Definition 2 (OR-Cross-Composition [4]). Let L ⊆ Σ∗ be a set and let
Q ⊆ Σ∗ × N be a parameterized problem. We say that L cross-composes into Q
if there is a polynomial equivalence relation R and an algorithm which, given
t strings x1, x2, . . . , xt belonging to the same equivalence class of R, computes
an instance (x∗, k∗) ∈ Σ∗ × N in time polynomial in

∑t
i=1 |xi| such that: (i)

(x∗, k∗) ∈ Q ⇔ xi ∈ L for some 1 � i � t. (ii) k∗ is bounded by a polynomial in
maxt

i=1 |xi| + log t.

Proposition 1 ([4]). Let L ⊆ Σ∗ be a set which is NP-hard under Karp reduc-
tions. If L cross-composes into the parameterized problem Q, then Q has no
polynomial kernel unless NP ⊆ coNP/poly.

A parameterized problem is said to be fixed-parameter enumerable if all feasible
solutions can be enumerated in O(f(k)|I|c) where f is a computable function of
the parameter k only, and c is a constant.

3 Structural Parameterization of Maximum Common
Induced Subgraph

Let us first recall that tw(G) � fvs(G) � vc(G), where tw(G) (resp. fvs(G),
vc(G)) represents the treewidth (resp. the feedback vertex set number, the ver-
tex cover number) of G [8]. As noted before, if the parameter is the combination
of tw(G1) and tw(G2) then MCIS is known to be W[1]-hard. Even more, if the
parameter is the combination of fvs(G1) and fvs(G2) (which is bigger than the
combination of the treewidth), then the problem is not even in XP since Max-
imum Common Induced Subgraph and Induced Subgraph Isomorphism
are NP-hard on forests, a case where the parameter is equal to 0. Indeed, one can
modify the reduction from 3-partition done by Garey and Johnson in [10] for
Subforest Isomorphism to our problem, by building chains of B + 3 vertices
instead of B + 1 in G2 such that each chain of G1 is separated by a vertex. The
following theorem follows.

Theorem 1. Unless P = NP, Maximum Common Induced Subgraph is not
in XP when parameterized by a bound on the minimum feedback vertex sets of
the pair of input graphs.



On the Complexity of Various Parameterizations 5

The hardness of MCIS on forest also implies the following.

Corollary 1. Unless P = NP, Maximum Common Induced Subgraph is
not in XP when parameterized by the treewidth of the input graphs.

It was shown in [1] that MCIS is in FPT if the parameter is the combination of
vc(G1) and vc(G2). Accordingly, the problem has a kernel, but no polynomial
bound is known on its size. We show that, in this case, the kernel cannot be
polynomial unless NP ⊆ coNP/poly.

Theorem 2. Unless NP ⊆ coNP/poly, Maximum Common Induced Sub-
graph has no polynomial kernel when parameterized by the sum of the sizes of
vertex covers in the two input graphs.

Proof. We will define an OR-cross-composition from the NP-complete Clique,
problem, where the given instance is a tuple (Gc, l) and the question is whether
the graph Gc contains a clique on l vertices.

Given t instances, (Gc
1, l1), (G

c
2, l2), . . . , (G

c
t , lt), of Clique, where Gc

i is a
graph and li ∈ N,∀1 � i � t, we define our equivalence relation R such that any
strings that are not encoding valid instances are equivalent, and (Gc

i , li), (G
c
j , lj)

are equivalent iff |V (Gc
i )| = |V (Gc

j)|, and li = lj . Hereafter, we assume that
V (Gc

i ) = {1, . . . , n} and li = l, for any 1 � i � t. We will build an instance of
Maximum Common Induced Subgraph parameterized by the vertex cover
(G1, G2, l

′, Z) where G1 and G2 are two graphs, l′ ∈ N and Z ⊆ V (G2) is a
vertex cover of G2 computed in fpt-time, such that there is a solution of size l′

for Maximum Common Induced Subgraph iff there is an i, 1 � i � t such
that there is a solution of size l in Gc

i . We will now describe how to build G1

and G2.

To build G2 (see also Fig. 1):

– V (G2) = {p, q, r}∪{ai | 1 � i � t}∪{euv | 1 � u < v � n}∪{vi | 1 � i � n},
– E(G2)1 = {pq, pr, qr},
– E(G2)2 = {rai | 1 � i � t},
– E(G2)3 = {aieuv | uv ∈ E(Gc

i )},
– E(G2)4 = {euvvu, euvvv | ∀1 � u < v � n},
– E(G2) = E(G2)1 ∪ E(G2)2 ∪ E(G2)3 ∪ E(G2)4.

To build G1 (see also Fig. 2):

– V (G1) = {p, q, r, a} ∪ {ei | 1 � i �
(
l
2

)} ∪ {vi | 1 � i � l},
– E(G1)1 = {pq, pr, qr, ra},
– E(G1)2 = {aei | 1 � i �

(
l
2

)},
– E(G1)3 = {eivu, eivv | ∀1 � i �

(
l
2

)
, ei = uv},

– E(G1) = E(G1)1 ∪ E(G1)2 ∪ E(G1)3.

We set l′ = |V (G1)|, and Z = {p, r}∪{euv|1 � u < v � n}. It is easy to see that
Z is indeed a vertex cover for G2 and that its size is equal to n(n−1)

2 + 2, which



6 F.N. Abu-Khzam et al.

r

p q

a1 a2 . . . at

e1,2 e1,3 . . . e1,n e2,3 . . . en−1,n

v1 v2 . . . vn

aieuv ∈ E(G2) ⇔ uv ∈ E(Gc
i )

euvvu, euvvv ∈ E(G2), ∀1 u < v n

Fig. 1. Illustration of the construction of G2.

r

p q

a

e1 e2 . . . e(l
2)

v1 v2 . . . vl

eivu, eivv ∈ E(G1), ∀1 i l
2
, ei = uv

Fig. 2. Illustration of the construction of G1.

is polynomial in n and hence in the size of the largest instance. Note that the
size of the graph G1 does not depend on t and is polynomial in n, so the size of
its vertex cover is also polynomial in n and independent of t.

Let us show that G1 is an induced subgraph of G2 iff at least one of the Gc
i ’s

has a clique of size l.
(⇐) Suppose that Gc

i has a clique of size l. We denote by S ⊆ V (Gc
i ) a

clique of size exactly l in Gc
i . We show that there is an induced subgraph S′

of G2 of size l′, isomorphic to G1. We set V (S′) = {p, q, r} ∪ {ai} ∪ {euv |
∀uv ∈ E(S)}∪{vu|u ∈ S}. One can easily check that this subgraph is isomorphic
to G1.

(⇒) Assume now that G1 is an induced subgraph of G2. Denote by S′ the
subgraph of G2 isomorphic to G1. Note that the only triangle in G2 is pqr.



On the Complexity of Various Parameterizations 7

Indeed, T (V (G2) \ {p}) is bipartite. The triangle pqr in G1 has therefore to
match pqr in G2. Moreover, r in G1 has to match r in G2 since p and q have no
edges besides the clique pqr. The vertex a in G1 can only match a vertex ai for
some i ∈ {1, . . . , t}. Then, e1 up to e(l

2) in G1 has to match
(
l
2

)
vertices in {euv |

1 � u < v � n} of G2 which correspond to actual edges in Gc
i . Finally, v1 up to

vl in G1 has to match l vertices among the vj ’s in G2. Note that the number of
edges in E(G1)3 between the ej ’s and the vj ’s is exactly 2

(
l
2

)
= l(l − 1). More

precisely, each ej touches 2 edges in E(G1)3 and each vj touches l − 1 edges
in E(G1)3. In order to get a match in G2, one should find a set of

(
l
2

)
edges

inducing exactly l vertices. So, this set of l vertices is a clique in Gc
i .

Note that the parameter of MCIS in this reduction is exactly the size of G1.
Therefore, this negative result holds for ISI too.

Despite the fact that ISI and MCIS have the same parameterized complexity
when parameterized by the natural parameter, they exhibit different complexi-
ties with respect to structural parameters. In fact, the latter is not even in XP
when parameterized by the vertex cover of only one of the two graphs while ISI
is FPT when parameterized by the vertex cover of the second (host) graph. To
see this, note that when the host graph has a k-vertex cover, the minimum size
of a vertex cover in the pattern graph must be bounded by the parameter k,
otherwise we have a no instance. The claim follows from the fixed-parameter
tractability of MCIS in this case [1].

Although MCIS is not in XP w.r.t. some structural parameters such as
treewidth and feedback vertex set number, it is, together with MCCIS and ISI,
in W[1] w.r.t. the natural parameter.

Theorem 3. MCIS, MCCIS and ISI are W[1]-complete w.r.t. the natural para-
meter.

Proof. Since ISI, MCIS and MCCIS are W[1]-hard by a straightforward reduction
from k-Clique, it suffices to show membership in W[1]. In [5], it is shown that if
a problem can be reduced in FPT time to simulating a non-deterministic single-
taped Turing Machine halting in at most f(k) steps, for some function f , then
it is in W[1]. The Turing Machine can have an alphabet and a set of states of
size depending on the size of the input of the initial problem. In our case, we
can design a Turing Machine that guesses in 2k steps the corresponding right
k vertices in G1 (for ISI this part is not necessary) and the right k vertices in
G2 (our alphabet being isomorphic to an indexing of V (G1) ∪ V (G2)) and then
check in time O(k2) whether the two induced subgraphs are isomorphic (and
that they are connected for MCCIS). ��
We now turn our attention to the case where the MCIS is parameterized by
a combination of the natural parameter and some structural parameter. For
example, consider the case where the parameter is the sum of some bound t on
the feedback vertex set of the input graphs and the natural parameter k. The
problem is FPT in this case since graphs of t-feedback vertex set are H-minor
free (let H be the “fixed” graph consisting of a disjoint union of t+1 triangles).



8 F.N. Abu-Khzam et al.

Moreover, we know ISI is FPT in this case due to [9]. However, and as stated
in Sect. 1, a solution to an instance of MCIS (in this case) is obtained via an
exhaustive enumeration of O(2k

2
) instances of ISI. This can be improved on

classes of graphs that are given with some fixed coloring t, such as H-minor free
graphs and graphs of bounded maximum degree. In fact, if the input to MCIS is
a pair of t-colored graphs, then a reduction algorithm would first check whether
each of the two graphs has an (independent) color class of size k. If so, then both
have an edgeless common subgraph of size k. Otherwise, the order of at least
one of the two graphs, say G1, is smaller than tk. In such case, the algorithm
proceeds by running a (fixed-parameter) algorithm for ISI on each of the O(2tk)
induced subgraphs of G1.

In [14] it was shown that Induced Matching is W[1]-hard on bipartite
graphs. As mentioned earlier, this proves that MCIS is W[1]-hard in this case.
We show that MCIS remains W[1]-hard on C4-free bipartite graphs, which proves
its W[1]-hardness on graphs of girth five.

Theorem 4. Maximum Common Induced Subgraph is W[1]-complete w.r.t.
size of the solution, as parameter, even on C4-free bipartite graphs.

Proof. Membership in W[1] comes from Theorem 3. For the hardness, consider
the following reduction from the W[1]-hard problem Clique. Given an instance
(G = (V,E), k) of Clique, we build an instance (G1, G2, k

′) of our problem as
follows. The graph G2 is the bipartite incidence graph of G (the bipartition is
between vertices representing V and vertices representing E), the graph G1 is
the bipartite incidence graph of Kk, and k′ = k +

(
k
2

)
= |V (G1)|.

Note that a bipartite incidence graph is C4-free since, in a simple graph, no
two edges are incident on the same pair of vertices.

It is clear that G1 occurs as a connected induced subgraph of G2 iff there is
a clique of size k in G, because w.l.o.g. k > 2 and the vertices representing edges
in G1 and G2 are of degree 2. ��
Corollary 2. Maximum Common Induced Subgraph is W[1]-complete
w.r.t. size of the solution on graphs of girth five.

4 Maximum Common Connected Induced Subgraph

Maximum Common Connected Induced Subgraph is trivially FPT when-
ever Induced Subgraph Isomorphism is FPT, including H-minor free graphs,
since the enumeration of all O(2k

2
) possible induced connected subgraphs can be

used as described before. The converse is also true. In fact, an instance (G1, G2, k)
of ISI can be reduced to an equivalent instance (G′

1, G
′
2, k +1) of MCCIS by let-

ting G′
i be the graph obtained by adding a single (universal) vertex to Gi that

is made adjacent to all other vertices of Gi. It follows that MCIS and MCCIS
have the same parameterized complexity with respect to the natural parameter
(i.e., solution size).



On the Complexity of Various Parameterizations 9

Note that MCIS is NP-hard on forests while MCCIS is solvable in polynomial-
time in this case: given two forests G1 and G2, run the polynomial-time MCCIS
algorithm of [2] on every pair of trees from G1 and G2.

In the following of this section we study the complexity of MCCIS with
respect to structural parameters.

Lemma 1. Induced connected Subgraph Isomorphism is NP-hard even
when both graphs have feedback vertex set number equal to one.

Proof. Given an instance of Induced Subgraph Isomorphism on forests G1

and G2 (each with at least 2 trees), we build an instance of Induced con-
nected Subgraph Isomorphism by adding a universal vertex (connected to
every node) in G1 and in G2. One can see that these two universal vertices must
be matched together since they are the only ones with sufficiently high degree.
Then, there is a solution for Induced Subgraph Isomorphism iff there is
a solution for Induced connected Subgraph Isomorphism. The result of
course holds for MCCIS too. ��
Corollary 3. Unless P = NP, Maximum Common Connected Induced
Subgraph is not in XP when parameterized by a bound of the minimum feedback
vertex set number of the input graphs (and hence then when parameterized by a
bound on the treewidth of each of the two input graphs).

Given the above negative result, the next question is whether MCCIS is in FPT
w.r.t. the parameter vertex cover. In [1], a parameterized algorithm is presented
for MCIS when the parameter is a bound on the minimum vertex cover number
of the input graphs. However, that algorithm cannot help us much for solving
MCCIS since it relies on the existence of a feasible solution of size at least
≈ n − k which consists of mapping the two big independent sets of the two
graphs onto each other. Of course, this is not a feasible solution for MCCIS.
In the following we prove that MCCIS is fixed-parameter tractable w.r.t. k =
max(vc(G1), vc(G2)).

Theorem 5. Maximum Common Connected Induced Subgraph parame-
terized by a bound on the vertex covers of the input graphs is fixed-parameter
tractable.

Proof. In time O∗(2k) (even O∗(1.2738k) [6]), we can find minimum vertex covers
C1 and C2 in G1 and G2 respectively. Let I(j) be the independent set V (Gj) \
Cj for j ∈ {1, 2}. By assumption, our parameter k is max(C1, C2), so we can
enumerate all tripartitions of C1 and C2 in time O∗(9k). We denote by C1,m,
C1,u and C1,i (respectively C2,m, C2,u and C2,i) the three sets of a tripartition of
C1 (respectively C2). For j ∈ {1, 2}, Cj,u corresponds to the vertices of Cj that
are not matched, so they may be deleted. Cj,m comprises the vertices matched to
C3−j,m (that is, to the vertex cover of the other graph), and Cj,i are the vertices
matched to I(3−j), the independent set of the other graph. See Fig. 3.

We observe that for j ∈ {1, 2}, I(j) can be partitioned into at most 2k classes
of twins: I

(j)
1 , I

(j)
2 , . . . I

(j)

2k
. A class of twins in this context is a set of vertices with



10 F.N. Abu-Khzam et al.

an identical neighborhood in the vertex cover and there are at most 2k subsets
of Cj . Potentially, some classes can be empty: they correspond to a subset of the
vertex cover Cj that is not the (exact) neighborhood of any vertex in I(j).

At this point, we can enumerate the mappings between C1,m and C2,m in time
O∗(kk) and the mappings between Cj,i and I(3−j) in time O∗((2k)k) = O∗(2k

2
).

Indeed, to match a vertex u with a vertex v or a twin of v is equivalent. Thus,
in time O∗((9k)k2k

2
) we can enumerate all the solutions of MCIS where only

vertices of I(1) could still be matched to vertices of I(2). The optimal map of the
independent sets can be done in linear time by matching the greatest number of
vertices in each equivalent twin class (which is the size of the smaller of the two
equivalent twin classes), where a twin class I

(j)
r in I(j) is equivalent to a twin

class I
(3−j)
s in I(3−j) if the vertices of N(I(j)r ) \ Cj,u and N(I(3−j)

s ) \ C3−j,u are
in one-to-one correspondence. ��

C1 = vc(G1)

I(1) = G1[V1 \ C1]

C1,u

C1,m

C1,i

G1

I
(1)
1

. . . I
(1)

2k

C2 = vc(G2)

I(2) = G2[V2 \ C2]

C2,u

C2,m

C2,i

G2

I
(2)
1

. . . I
(2)

2k

Fig. 3. Illustration of the proof of Theorem 5. Dashed boxes represent the classes inside
the independent set. Arrows represent the matching between sets of vertices.

To find a solution for MCCIS, the algorithm described in the above proof enu-
merates all possible maximal common induced subgraphs in time O∗((9k)k2k

2
).

As such, it can be used as an enumeration algorithm for MCIS.

Theorem 6. Maximum Common Induced Subgraph parameterized by ver-
tex cover, is fixed-parameter enumerable.

Finally, the following corollaries follow easily from the proofs of Theorems 2 and
4 since the graphs used in both proofs are connected.

Corollary 4. Maximum Common Connected Induced Subgraph, para-
meterized by a bound on the minimum vertex covers of input graphs, does not
have a polynomial-size kernel unless NP ⊆ coNP/poly.

Corollary 5. Maximum Common Connected Induced Subgraph is W[1]-
complete on bipartite graphs and graphs of girth five.



On the Complexity of Various Parameterizations 11

Table 1. Summary of different parameterized complexity results of ISI, MCIS and
MCCIS for different structural parameters.

vc + vc vc + fvs fvs + fvs vc

ISI FPT; no Poly Kernel
(Theorem 2)

Open /∈ XP FPT for vc(G2),
/∈ XP for vc(G1)

M(C)CIS FPT ([1],Theorem 5);
no Poly Kernel

Open /∈ XP (Corollary 3) /∈ XP

In the following table we give a summary of some results obtained in this
paper along with open questions. Note that for ISI, vc + fvs is not the same
parameter as fvs + vc. In the latter, the parameter is a bound on the vertex
cover of G2 (as well as the feedback vertex set of G1) which makes ISI in FPT,
while it remains open for vc + fvs. We also note that ISI is not in XP w.r.t.
vc(G1) by a simple reduction from Independent Set (let G2 be an edgeless
graph on k vertices, then its vertex cover number is 0).

5 Conclusion

We studied the Maximum Common Induced Subgraph and Maximum Com-
mon Connected Induced Subgraph problems with respect to the solution
size as natural parameter on special graphs classes, such as forests, bipartite
graphs and graphs of girth five. The two problems are fixed-parameter tractable
on H-minor free graphs, which include forests, but they are W[1]-complete on
bipartite graphs and graphs of girth five.

We also considered the use of auxiliary parameters, such as a bound on the
minimum vertex covers of the input graphs. Although both MCIS and MCCIS
are in FPT in this case, we proved that no kernel of polynomial bound can
be obtained unless NP ⊆ coNP/poly. We noted that MCIS is not even in XP
with respect to other (smaller) auxiliary parameters, such as treewidth and feed-
back vertex set (see Table 1). A few corresponding open problems remain to be
addressed. For example, are MCIS/MCCIS in FPT when parameterized by the
combination of the vertex cover number and the feedback vertex set number, or
by the vertex cover number and the treewidth?

Acknowledgements. Work partially supported by the bilateral research cooperation
CEDRE between France and Lebanon (grant number 30885TM).

References

1. Abu-Khzam, F.N.: Maximum common induced subgraph parameterized by vertex
cover. Inf. Process. Lett. 114(3), 99–103 (2014)

2. Akutsu, T.: An RNC algorithm for finding a largest common subtree of two trees.
IEICE Trans. Inf. Syst. 75(1), 95–101 (1992)



12 F.N. Abu-Khzam et al.

3. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 76(9), 1488–1493 (1993)

4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by
cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

5. Cesati, M.: The turing way to parameterized complexity. J. Comput. Syst. Sci.
67(4), 654–685 (2003)

6. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theor.
Comput. Sci. 411(40–42), 3736–3756 (2010)

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

8. Fellows, M.R., Jansen, B.M.P., Rosamond, F.A.: Towards fully multivariate algo-
rithmics: parameter ecology and the deconstruction of computational complexity.
Eur. J. Comb. 34(3), 541–566 (2013)

9. Flum, J., Grohe, M.: Fixed-parameter tractability, definability, and model-
checking. SIAM J. Comput. 31(1), 113–145 (2001)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

11. Grindley, H.M., Artymiuk, P.J., Rice, D.W., Willett, P.: Identification of tertiary
structure resemblance in proteins using a maximal common subgraph isomorphism
algorithm. J. Mol. Biol. 229(3), 707–721 (1993)

12. Koch, I., Lengauer, T., Wanke, E.: An algorithm for finding maximal common
subtopologies in a set of protein structures. J. Comput. Biol. 3(2), 289–306 (1996)

13. McGregor, J., Willett, P.: Use of a maximal common subgraph algorithm in the
automatic identification of the ostensible bond changes occurring in chemical reac-
tions. J. Chem. Inf. Comput. Sci 21, 137–140 (1981)

14. Moser, H., Sikdar, S.: The parameterized complexity of the induced matching prob-
lem. Discrete Appl. Math. 157(4), 715–727 (2009)

15. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Lecture Series in
Mathematics and Its Applications. Oxford University Press, Oxford (2006)

16. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms
for the matching of chemical structures. J. Comput. Aided Mol. Des. 16, 521–533
(2002)

17. Yamaguchi, A., Aoki, K.F., Mamitsuka, H.: Finding the maximum common sub-
graph of a partial k-tree and a graph with a polynomially bounded number of
spanning trees. Inf. Process. Lett. 92(2), 57–63 (2004)



Approximation and Hardness Results
for the Maximum Edges in Transitive

Closure Problem

Anna Adamaszek1, Guillaume Blin2,3, and Alexandru Popa4(B)

1 Max-Planck-Institut Für Informatik, Saarbrücken, Germany
anna@mpi-inf.mpg.de

2 LaBRI, UMR 5800, University of Bordeaux, 33400 Talence, France
3 CNRS, LaBRI, UMR 5800, 33400 Talence, France

guillaume.blin@labri.fr
4 Faculty of Informatics, Masaryk University, Brno, Czech Republic

popa@fi.muni.cz

Abstract. In this paper we study the following problem, named Max-
imum Edges in Transitive Closure, which has applications in compu-
tational biology. Given a simple, undirected graph G = (V, E) and a
coloring of the vertices, remove a collection of edges from the graph such
that each connected component is colorful (i.e., it does not contain two
identically colored vertices) and the number of edges in the transitive
closure of the graph is maximized.

The problem is known to be APX-hard, and no approximation algo-
rithms are known for it. We improve the hardness result by showing that
the problem is NP-hard to approximate within a factor of |V |1/3−ε, for
any constant ε > 0. Additionally, we show that the problem is APX-
hard already for the case when the number of vertex colors equals 3. We
complement these results by showing the first approximation algorithm
for the problem, with approximation factor

√
2 · OPT.

1 Introduction

The Maximum Edges in Transitive Closure problem we consider in this paper
belongs to the framework of colorful components problems.

Colorful components framework: Given a simple, undirected graph G =
(V,E) and a coloring σ : V → C of the vertices with colors from a given set C,
remove a collection of edges E′ ⊆ E from G such that each connected component
in the resulting graph G′ = (V,E\E′) is a colorful component (i.e., it does not
contain two identically colored vertices). We want the graph G′ to be optimal
according to some fixed optimization measure.

In our problem, the optimization measure is the number of edges in the tran-
sitive closure. For a graph consisting of k connected components, each containing
respectively a1, a2, . . . , ak vertices, the number of edges in the transitive closure
of the graph is
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 13–23, 2015.
DOI: 10.1007/978-3-319-19315-1 2



14 A. Adamaszek et al.

k∑

i=1

ai · (ai − 1)
2

.

Maximum Edges in Transitive Closure (MEC): Given a simple, undi-
rected graph G = (V,E) and a coloring σ : V → C of the vertices, remove
a collection of edges E′ ⊆ E from G such that each connected component in
the resulting graph G′ = (V,E\E′) is colorful, and the number of edges in the
transitive closure of G′ is maximum.

Motivation. The colorful components framework is motivated by applications in
comparative genomics [8,10], which is a fundamental branch of bioinformatics
studying the relationship of the genome structure between different biological
species. One of the key problems in this area, the multiple alignment of gene
orders, can be captured as a graph theoretical problem, using the colorful com-
ponents framework, where the colorful graphs represent similarity relationships
between genes from different homologous gene families. A partition into colorful
components corresponds then to a partition of genes into orthology sets, where
any two genes from the same genome belong to different orthology sets. We refer
the reader to [10] for a more detailed description of the connection between the
multiple alignment of gene orders and the graph theoretic framework considered.

The understanding of orthologous genes of two different genomes as originat-
ing from a single gene in the most recent common ancestor of the two species
leads to transitivity as a property of the orthology relation. This motivates the
study of MEC (see [10] for more details, and for a discussion why MEC yields
good results in practice).

Related Work. The Maximum Edges in Transitive Closure problem has been
introduced by Zheng et al. [10]. They present heuristic algorithms for the prob-
lem, without giving any worst-case approximation guarantee. They also conjec-
ture the problem to be NP-hard. Adamaszek and Popa [1] prove that MEC is
APX-hard, even in the case of 4 vertex colors.

The colorful components framework appeared first in the paper by Zheng
et al. [10] and has been formally defined by Adamaszek and Popa [1], although
problems which fit into this framework have already been studied earlier. We
now summarize known results for these problems.

In the problem named either Colorful Components [3,4] or Minimum Orthog-
onal Partition [5,10], the objective function is to minimize the number of edges
removed from G to obtain a graph in which all connected components are color-
ful. Bruckner et al. [4] show that the problem is NP -hard for three or more colors
and they study fixed-parameter algorithms for the problem. Their NP -hardness
reduction can be modified slightly to show the APX-hardness of the problem
(see [1]). Zheng et al. [10] and Bruckner et al. [3] study heuristic approaches
for the problem, and He et al. [5] present an approximation algorithm for some
special case of the problem. As the general problem is a special case of the
Minimum Multi-Multiway Cut problem, it admits a O(log |C|) approximation
algorithm [2].



Approximation and Hardness Results for the Maximum Edges 15

Zheng et al. [10] introduce the Minimum Singleton Vertices problem (MSV),
where the goal is to minimize the number of isolated vertices in the resulting
graph. Zheng et al. [10] present heuristic algorithms for the problem, without
giving any worst-case approximation guarantee. They also conjectured that the
problem is NP-hard. Tremblay-Savard and Swenson [9] consider a Maximum
Orthogonal Edge Cover problem (MAX-OREC), which is a dual problem to
MSV. There, the goal is to cover a maximum number of vertices of a graph
using vertex-disjoint, non-singleton connected colorful subgraphs. In [9], a 2/3-
approximation algorithm for MAX-OREC is presented. Adamaszek and Popa [1]
prove that MSV (and therefore also MAX-OREC) can be solved exactly in poly-
nomial time, thus disproving the conjecture in [10].

Adamaszek and Popa [1] introduce another problem, termed Minimum Col-
orful Components, in which the goal is to delete a subset of edges such that
the resulting graph has only colorful components and the number of connected
components is minimized. They show that this problem cannot be approximated
within a factor of |V |1/14−ε unless P = NP , and within a factor |V |1/2−ε unless
ZPP = NP .

Our Results. In this paper we improve the hardness results for the MEC problem,
and we present the first approximation algorithm.

First, we show that MEC is APX-hard even for the case when |C| = 3. This
settles the complexity of the problem when the number of colors is a constant,
as for |C| = 2 the MEC problem can be solved exactly in polynomial time by
using a maximum matching algorithm. Our proof is via a reduction from the
Maximum Bounded 3-Dimensional Matching problem (Max 3-DM-3).

For the general case, when the number of colors is arbitrary, we show that
MEC is NP-hard to approximate within a factor of |V |1/3−ε for any constant
ε > 0. This result holds even if the input graph is a tree and each color appears
at most twice in the graph. We use the same reduction from the Independent Set
as Rizzi and Sikora for proving hardness of approximation of the Graph Motif
problem [7].

We also show the first polynomial-time approximation algorithm for MEC,
which has a ratio of

√
2 · OPT. We use the exact polynomial time algorithm for

the Minimum Singleton Vertices problem [1] to obtain a partition into colorful
components and then we show that this partition has a big enough number of
edges in the transitive closure.

2 APX-hardness of MEC for |C| = 3

In this section, we prove that the MEC problem restricted to instances using
only 3 colors is APX-hard. The proof is via a reduction from the Maximum
Bounded 3-Dimensional Matching problem. This result strengthens the one pre-
sented in [1], which holds for problem instances using 4 colors.

Before we give the reduction, we first state the definition of Max 3-DM-3 and
the known hardness result for it.

Maximum Bounded 3-Dimensional Matching (Max 3-DM-3): The input
consists of pairwise disjoint sets X, Y , Z and a collection T ⊆ X × Y × Z of



16 A. Adamaszek et al.

triples such that each element from X, Y and Z occurs in at least one and at
most three triples in T . The aim is to find a feasible subset of triples T ′ ⊆ T
(i.e., no two elements of T ′ agree on any coordinate) of maximum cardinality.

Theorem 1 (Theorem 4.4 in [6], Rephrased). There exists a constant ε > 0
such that it is NP-hard to distinguish between the instances of Max 3-DM-3 with
the following properties:
1. There is a feasible collection of triples T ′ ⊆ T such that every element of X,

Y and Z belongs to some triple in T ′.
2. For every feasible collection of triples T ′ ⊆ T less than (1 − ε) fraction of

elements from X ∪ Y ∪ Z belong to some triple of T ′.

Without loss of generality we can assume that |X| = |Y | = |Z| = n, since if |X|,
|Y | and |Z| are different, then the case 1 of Theorem 1 cannot hold. Also, define
N = |T |. It holds that N ≤ 3n, since each element of X ∪ Y ∪ Z appears in
at most three triples. In the rest of the section, we use OPT3DM to denote the
size of an optimal solution of a Max 3-DM-3 instance (the instance we refer to
will always be clear from the context), and OPTMEC to denote the value of an
optimal solution (i.e., the number of edges in the transitive closure of the graph)
of the MEC instance obtained via the reduction.

Reduction. Given an instance (X,Y,Z, T ) of Max 3-DM-3, we create an
instance (G = (V,E), σ) of the MEC problem in the following way. See Fig. 1 for
a partial illustration. We create the set of vertices V as follows.
1. For each triple tj ∈ T , we add six vertices {tXj , tYj , tZj , tXY

j , tXZ
j , tY Z

j }.
2. For each element xi ∈ X (resp. yi ∈ Y and zi ∈ Z), we add a corresponding

vertex xi (resp. yi and zi).

We have that |V | = 6 · |T | + |X| + |Y | + |Z| = 6N + 3n. Let us now define the
coloring σ : V → C of the vertices using the set of colors C = {1, 2, 3}.
1. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(xi) = σ(tXY

j ) = σ(tZj ) = 1.
2. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(yi) = σ(tY Z

j ) = σ(tXj ) = 2.
3. For any 1 ≤ i ≤ n and 1 ≤ j ≤ N , σ(zi) = σ(tXZ

j ) = σ(tYj ) = 3.

Finally, let us define the collection of edges E.
1. For each 1 ≤ j ≤ N , each of {tXj , tXY

j , tXZ
j }, {tYj , tXY

j , tY Z
j }, {tZj , tXZ

j , tY Z
j }

forms a clique of size three.
2. For each 1 ≤ i ≤ n and 1 ≤ j ≤ N , if xi (resp. yi and zi) appears in tj ,

connect xi (resp. yi and zi) to tXj (resp. tYj and tZj ).

Analysis. Informally, we show that an instance of Max 3-DM-3 where all the
vertices X ∪ Y ∪ Z can be covered by a feasible collection of triples T ′ corre-
sponds to an instance of MEC with a large optimal value, i.e., the graph can
be partitioned into colorful components inducing a large transitive closure. On
the other hand, we show that an instance of Max 3-DM-3 where no more than
(1 − ε) fraction of the vertices X ∪ Y ∪ Z can be covered by any feasible set of
triples corresponds to an instance of MEC with a much smaller optimal value.
We now analyze both cases.



Approximation and Hardness Results for the Maximum Edges 17

xi

tXj

tXY
j

yk

tYj

tXZ
j

zl

tZj

tY Z
j

Fig. 1. A subgraph corresponding to a triple tj = (xi, yk, zl). Colors of the vertices are
denoted using the line styles: solid, dotted and dashed lines respectively corresponds
to colors 1, 2 and 3.

Lemma 1. Let (X,Y,Z, T ) be an instance of Max 3-DM-3 where OPT3DM = n,
i.e., where all the vertices of X ∪ Y ∪ Z can be covered by a feasible collection
of triples. Then for the corresponding instance of MEC, we have OPTMEC ≥
6N + 3n.

Proof. The colorful components of the MEC instance are constructed as follows.
For each triple tj ∈ T ′ (there are n of them), we add three colorful components,
each component consisting of three vertices. Given a triple tj = (xi, yk, zl), the
colorful components are {xi, t

X
j , tXZ

j }, {yk, tYj , tXY
j } and {zl, t

Z
j , tY Z

j }. For each
triple tj′ ∈ T \T ′ (there are N −n of them), we create two colorful components,
each consisting of three vertices: {tXj′ , tXZ

j′ , tZj′} and {tXY
j′ , tYj′ , tY Z

j′ }. See Fig. 2 for
an illustration.

As T ′ is a feasible collection of triples, that is a set of triples such that no two
elements agree on any coordinate, we obtain a feasible partition of the graph into
colorful components. Clearly, the total number of edges in the transitive closure
equals 9n + 6(N − n) = 6N + 3n, since each of the n triples in T ′ induces three
colorful components of size three and each of the N − n other triples induces
two colorful components of size three. 	


Lemma 2. Let (X,Y,Z, T ) be an instance of Max 3-DM-3 where OPT3DM <
(1 − ε)n, i.e., where every feasible collection of triples covers less than a (1 − ε)
w of vertices X ∪ Y ∪ Z. Then, for the corresponding instance of MEC, we have
OPTMEC < 6N + 3n(1 − ε/2).

Proof. Let (G = (V,E), σ) be the instance of the MEC problem corresponding
to an instance of Max 3-DM-3 as defined in the lemma statement. For any triple
tj = (xi, yk, zl) ∈ T , let Gtj be a subgraph of G induced by the following set of
vertices {xi, yk, zl, t

X
j , tYj , tZj , tXY

j , tXZ
j , tY Z

j }, as shown in Fig. 1.
Let us fix an optimal solution S for the MEC problem for (G, σ). This solu-

tion defines a partition Γ of G into colorful components. First, notice that each
colorful component is contained within some subgraph Gt. Indeed, by construc-
tion, the only vertices which belong to multiple subgraphs Gtj are the vertices



18 A. Adamaszek et al.

xi

tXj

tXY
j

yk

tYj

tXZ
j

zl

tZj

tY Z
j

xi

tXj

tXY
j

yk

tYj

tXZ
j

zl

tZj

tY Z
j

Fig. 2. Colorful components (defined by bold edges) for a triple from T ′ (left) and a
triple from T \ T ′ (right).

{xi, yi, zi | 1 ≤ i ≤ n}. Moreover, for 1 ≤ i ≤ n, each vertex xi (resp. yi and
zi) has only neighbours of color 2 (resp. 3 and 1) in G, and therefore is a leaf in
its colorful component. Finally, there are no edges between vertices (excluding
{xi, yi, zi | 1 ≤ i ≤ n}) belonging to different subgraphs Gtj and Gtj′ , with
1 ≤ j, j′ ≤ N .

We will now partition G into vertex-disjoint subgraphs G′
t for t ∈ T , such that

G′
t is a subgraph of Gt (possibly Gt itself), and each colorful component from our

fixed partition Γ is contained within a single graph G′
t. We proceed as follows.

Each vertex from {tXj , tYj , tZj , tXY
j , tXZ

j , tY Z
j } belongs to a single subgraph Gtj ,

therefore it belongs also to the subgraph G′
tj . We assign each vertex xi (resp.

yk and zl) to one subgraph G′
tj , in such a way that we do not split any colorful

component. That means that if xi (resp. yk and zl) is in the same colorful
component as tXj (resp. tYj and tZj ), we assign it to G′

tj . If the colorful component
containing xi (resp. yk and zl) is a singleton, we assign the vertex arbitrarily.

Now each subgraph G′
tj , with tj = (xi, yk, zl), contains 6, 7, 8 or 9 vertices

({tXj , tYj , tZj , tXY
j , tXZ

j , tY Z
j } and a possibly empty subset of {xi, yk, zl}). Let us

denote by g6, g7, g8 and g9 the number of subgraphs G′
t containing 6, 7, 8 and 9

vertices, respectively. We have g6+g7+g8+g9 = N . Moreover, g7+2·g8+3·g9 =
3n, since each vertex xi, yk and zl belongs to exactly one subgraph G′

t.
As we observed earlier, all colorful components from the partition Γ are

contained within the above-defined subgraphs G′
t. Therefore the solution S to

the MEC problem on (G, σ) is a union of solutions St for the MEC problem for
the graphs (G′

t, σ|G′
t
). Now observe the following.

1. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
6 vertices is at most 6 (value 6 is achieved when the solution consists of two
colorful components of 3 vertices each).

2. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
7 vertices is at most 6 (value 6 is achieved when the solution consists of two
colorful components of 3 vertices each, and one singleton).



Approximation and Hardness Results for the Maximum Edges 19

3. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on
8 vertices is at most 7 (value 7 is achieved when the solution consists of two
colorful components of 3 vertices and one component of 2 vertices).

4. The value of an optimal MEC solution for (G′
t, σ|G′

t
) for a subgraph G′

t on 9
vertices is at most 9 (value 9 is achieved when the solution consists of three
colorful components of 3 vertices each).

Now, assume toward a contradiction that OPTMEC ≥ 6N +3n(1−ε/2), i.e., the
value of S is at least 6N + 3n(1 − ε/2). We just mentioned that each subgraph
G′

t (there are N of them in total) of size 6 (7,8,9) contributes at most a value of
6 (6,7,9, respectively) towards the value of S. Thus, we must have

g8 + 3 · g9 ≥ 3n(1 − ε/2). (1)

We already know that
2 · g8 + 3 · g9 ≤ 3n. (2)

Multiplying inequality (1) by 2 and inequality (2) by −1 and adding them
yields the inequality g9 ≥ n(1 − ε).

Notice that a subgraph G′
t on 9 vertices corresponds to a triple from T .

Moreover, any two such triples are disjoint. As g9 ≥ n(1−ε), in the corresponding
Max 3-DM-3 instance, we can cover at least a (1−ε) fraction of elements X∪Y ∪Z
by disjoint triples, which contradicts the lemma statement. Therefore, we must
have OPTMEC < 6N + 3n(1 − ε/2). 	

Let us now derive the APX-hardness of MEC for instances where vertices are
colored using 3 colors from the above lemmas.

Theorem 2. The Maximum Edges in Transitive Closure problem is APX-hard,
even for |C| = 3.

Proof. From Theorem 1, we know that it is NP-hard to distinguish between
instances of Max 3-DM-3 such that OPT3DM = n or OPT3DM < (1 − ε)n. From
Lemmas 1 and 2, it is NP-hard to distinguish between instances of MEC for which
OPTMEC ≥ 6N + 3n and instances for which OPTMEC < 6N + 3n(1 − ε/2).

Since N ≤ 3n, we get that it is NP-hard to approximate MEC within some
constant factor, i.e., MEC is APX-hard. As all MEC instances considered here
use only 3 colors, MEC is APX-hard already for |C| = 3. 	


3 Approximation of MEC for an Unbounded
Number of Colors

3.1 A Positive Result

In this section we show that the MEC problem for an unbounded number of
colors admits approximation within a factor of

√
2 · OPT. The algorithm is an



20 A. Adamaszek et al.

exact polynomial time algorithm for the Minimum Singleton Vertices (MSV)
problem from [1]. Let us first restate the definition of the MSV problem.

Minimum Singleton Vertices: Given a simple, undirected graph G = (V,E)
and a coloring σ : V → C of the vertices, remove a collection of edges E′ ⊆ E
from the graph such that each connected component in G′ = (V,E \ E′) is
colorful and the number of isolated vertices is minimum.

Theorem 3 ([1]). The MSV problem can be solved exactly in polynomial time.

We are now ready to prove our result.

Theorem 4. The MEC problem admits a polynomial-time
√

2 · OPT approxi-
mation algorithm.

Proof. We show that the exact MSV algorithm is a
√

2 · OPT-approximation
algorithm for MEC. Let G = (V,E) be the input graph and let OPT be the
value of an optimal solution (i.e., the number of edges in the transitive closure)
of the MEC problem on G.

Let GMSV be the graph obtained by running the exact MSV algorithm on
G. Clearly, as each connected component of GMSV is colorful, GMSV is a feasible
solution for the MEC problem.

Let IMEC be the number of isolated vertices in an optimal solution of the
MEC problem, and let IMSV be the number of isolated vertices in GMSV. We
have IMSV ≤ IMEC.

We have OPT ≤ (|V |−IMEC
2

)
, since the largest possible value of OPT is

achieved when all the vertices that are not isolated are in the same connected
component.

Define ValMSV to be the number of edges in the transitive closure of GMSV.
We get that ValMSV ≥ (|V | − IMSV)/2. Thus, we have

OPT
ValMSV

≤
√

OPT · 1√
2
(|V | − IMEC)

1
2 (|V | − IMSV)

≤
√

2 · OPT ,

as |V | − IMEC ≤ |V | − IMSV. 	


3.2 A Negative Result

In this section, we show that the MEC problem is NP-hard to approximate
within a factor of |V |1/3−ε for any constant ε > 0. This result holds even if the
input graph is a tree and each color appears at most twice in the graph. We use
the same reduction as Rizzi and Sikora for proving hardness of approximation
of the Graph Motif problem [7].

Reduction. We make a reduction from the Maximum Independent Set problem
(MIS). Let G = (V,E) be a MIS instance, and let n = |V |. We create an instance
G′ = (V ′, E′) of MEC in the following way. See Fig. 3 for an illustration.

The set of vertices V ′ consists of the following vertices:



Approximation and Hardness Results for the Maximum Edges 21

a b

c

de

f

r

vab

vaf

vba

vbc

vcb

vcd

vcf

vdc

vde

ved

vef

vfa

vfc

vfe

va1

va36

vb1

vb36

vc1

vc36

vd1

vd36

ve1

ve36

v1

vf36

Fig. 3. Reduction from an instance G of MIS (left) to an instance G′ of MEC (right).
The only pairs of vertices in G′ sharing the same color are vertices vuw and vwu for
u, w ∈ {a, b, c, d, e, f}. An independent set in G corresponds to a colorful component
in G′ containing the root vertex r (gray vertices).

1. a special vertex r colored with a unique color cr,
2. for each edge uw ∈ E, vertices vuw and vwu colored with the same color cuw,
3. for each vertex u ∈ V , a collection of n2 vertices vu

1 , vu
2 , . . . , vu

n2 colored with
unique colors cu

1 , cu
2 , . . . , cu

n2 .

The resulting graph G′ will be a tree on the set of vertices V ′, rooted at r. For
each vertex u ∈ V , we add to G′ a path starting at r which visits all vertices
vuw (in an arbitrary order), and then all vertices vu

1 , vu
2 , . . . , vu

n2 .

Analysis

Lemma 3. If G = (V,E) has an independent set of size α, then there is a
solution for the corresponding instance G′ of the MEC problem with value at
least

(
αn2

2

)
.

Proof. Let VI ⊆ V be an independent set in G consisting of α vertices. We will
show that there is a colorful component in G′ consisting of at least α ·n2 vertices.

We construct the set V ′
C (see Fig. 3) in the following way. It consists of the

root vertex r, together with all vertices lying on the paths corresponding to
the vertices u ∈ VI (i.e., the vertices vuw where w ∈ V and uw ∈ E, and the
vertices vu

i for i = 1, . . . , n2). The subgraph of G′ induced by V ′
C is connected

and consists of at least α · n2 vertices. The subgraph is colorful, as from the
construction of G′ if two vertices lying on two paths of G′ have the same color,
then the vertices of G corresponding to these paths are connected by an edge,
and therefore they cannot belong to an independent set.



22 A. Adamaszek et al.

The decomposition of G′ into a component induced by V ′
C and singletons is

a feasible partition into colorful components, and its transitive closure has at
least

(
αn2

2

)
edges. 	


Lemma 4. If there is a solution for the instance G′ of the MEC problem of
value at least n5/2 + α2 · n4, then G has an independent set of size at least α.

Proof. First, notice that any colorful component which does not contain the
root vertex r consists of less than n2 + n vertices. Now, consider the colorful
component V ′

C containing r. Let VI ⊆ V be the subset of vertices u of G for
which vu

1 ∈ V ′
C . From the construction of the graph G′, VI is an independent set

in G. We will, now, show a lower bound on |VI |.
For any vertex u ∈ V , if u /∈ VI , then V ′

C contains at most n vertices from the
path of G′ corresponding to u. If u ∈ VI , then V ′

C contains at most n+n2 vertices
from this path. We get that |V ′

C | ≤ n2 + |VI |n2. As |V ′| < n3 + n2, we have that
OPTMEC < (n3 + n2) · (n2 + n)/2 + |VI |2 · n4/2. We get that |VI | ≥ α. 	

Theorem 5. It is NP-hard to approximate the MEC problem within a factor of
|V |1/3−ε.

Proof. The MIS problem is NP-hard to approximate within a factor of n1−ε for
any constant ε > 0 [11]. In particular, it is NP-hard to distinguish whether a
graph G has a maximum independent set of size at most nε, or at least n1−ε.

In the first case, by Lemma 4, OPTMEC ≤ n5/2 + n4+2ε. In the second case,
by Lemma 3, OPTMEC ≥ n6−2ε/2. As the number of vertices of G′ is in Θ(n3),
we get that approximating MEC within a factor of |V |1/3−ε is NP-hard. 	


4 Conclusions and Future Work

In this paper we show several approximation and hardness results for the Max-
imum Edges in Transitive Closure Problem. First we prove that the problem is
NP-hard to approximate within a factor of |V |1/3−ε, for any constant ε > 0.
Additionally, we show that the problem is APX-hard already for the case when
the number of vertex colors equals 3. We complement these results by showing
the first approximation algorithm for the problem, with approximation factor√

2 · OPT.
There are several directions for future work. First, it would be interesting to

close the gap between the approximation upper and lower bounds by showing an
approximation algorithm with a better ratio or improving the hardness result.
Another way to extend the current set of results would be to also consider the
problem of maximizing the number of edges in the connected components and
to identify and highlight similarities and differences between the two variants.
Maximising the number of edges in the components has the same complexity
as problem which asks to delete the minimum number of edges (it is the dual
problem which is known to be NP-hard). Nevertheless, from the approximation
point of view, these two problems are different.



Approximation and Hardness Results for the Maximum Edges 23

Another direction would be to consider approximation guarantees that take
the number of colors into account. However, we believe that there is not much
room for improvement in this direction. The presented approximation algorithm
has a ratio of (C − 1)/4, where C is the number of colors and, due the hardness
results, we cannot hope for a much better approximation.

References

1. Adamaszek, A., Popa, A.: Algorithmic and hardness results for the colorful com-
ponents problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392,
pp. 683–694. Springer, Heidelberg (2014)

2. Avidor, A., Langberg, M.: The multi-multiway cut problem. Theoret. Comput. Sci.
377(1–3), 35–42 (2007)

3. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-
based approaches for partitioning into colorful components. In: Demetrescu, C.,
Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp.
176–187. Springer, Heidelberg (2013)

4. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.:
Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen,
J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg
(2012)

5. He, G., Liu, J., Zhao, C.: Approximation algorithms for some graph partitioning
problems. J. Graph Algorithms Appl. 4(2), 1–11 (2000)

6. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4(2),
133–157 (1994)

7. Rizzi, R., Sikora, F.: Some results on more flexible versions of graph motif. In:
Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS,
vol. 7353, pp. 278–289. Springer, Heidelberg (2012)

8. Sankoff, D.: OMG! orthologs for multiple genomes - competing formulations. In:
Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 2–3.
Springer, Heidelberg (2011)

9. Savard, O.T., Swenson, K.M.: A graph-theoretic approach for inparalog detection.
BMC Bioinform. 13(S–19), S16 (2012)

10. Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! orthologs in multiple
genomes – competing graph-theoretical formulations. In: Przytycka, T.M., Sagot,
M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 364–375. Springer, Heidelberg (2011)

11. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)



Quantifying Privacy: A Novel Entropy-Based
Measure of Disclosure Risk

Mousa Alfalayleh and Ljiljana Brankovic(B)

School of Electrical Engineering and Computer Science,
The University of Newcastle, Callaghan, NSW 2308, Australia
{mousa.alfalayleh,ljiljana.brankovic}@newcastle.edu.au

Abstract. It is well recognised that data mining and statistical analy-
sis pose a serious treat to privacy. This is true for financial, medical,
criminal and marketing research. Numerous techniques have been pro-
posed to protect privacy, including restriction and data modification.
Recently proposed privacy models such as differential privacy and k-
anonymity received a lot of attention and for the latter there are now
several improvements of the original scheme, each removing some security
shortcomings of the previous one. However, the challenge lies in evaluat-
ing and comparing privacy provided by various techniques. In this paper
we propose a novel entropy based security measure that can be applied
to any generalisation, restriction or data modification technique. We use
our measure to empirically evaluate and compare a few popular methods,
namely query restriction, sampling and noise addition.

1 Introduction

Over the last few decades, proliferation of computer, network and communication
technology, and in particular social networking and cloud computing, had a
great impact on the way personal data is collected, stored and used [44]. Data
collected in one location (e.g., hospital) can now be stored remotely in a cloud
and accessed from anywhere in the world. These advances have undoubtedly
changed the way we think about privacy [3–5,9,23,27,38] and what once could
have been regulated by legislative measures alone now requires a sophisticated
suite of privacy enhancing technologies. In this study we are concerned with a
situation where confidential personal data is made available to a wide range of
users who are authorised to perform data mining and statistical analysis, but not
to access any individual data. There are various Statistical Disclosure Control
(SDC) techniques that can be used to alleviate this problem [1,10,13,26,55] but,
unfortunately, none of them is able to solve it completely, due to its intrinsic
contradictory nature. On one hand, one must keep the risk of individual data
disclosure as low as possible. On the other hand, the utility (usefulness) of the
data must remain high. However, low risk implies low utility and high utility
implies high risk. A good SDC technique aims at finding a right balance between
the two. In order to achieve this balance, it is crucial to adequately measure both
utility and disclosure risk. While measuring data utility has been well studied in
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 24–36, 2015.
DOI: 10.1007/978-3-319-19315-1 3



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 25

the literature [7,12,16–18,24,33,55], measuring disclosure risk is still considered
as a difficult problem and has been only partly solved.

Contribution: (1) In this paper we propose a novel entropy based measure of
disclosure risk, which we refer to as Confidential Attribute Equivocation (CAE),
and which is independent of the underlying SDC technique and thus can always
be used. The main novelty and advantage of our technique over similar ones is
that it takes into account the candidate confidential values themselves, rather
than just their probabilities, and is thus able to capture the risk of approxi-
mate disclosure of confidential values, rather than the exact disclosure alone.
(2) We develop an efficient dynamic programming algorithm to evaluate the
CAE. (3) We show how our measure can be applied to evaluate a few common
SDC techniques, including sampling, query restriction and noise addition.

The paper is organised as follows. In the next section we present related
work on disclosure risk measures. In Sect. 3 we present a scenario that is not
adequately covered by any of the previous work and we show how our novel
entropy-based measure CAE covers it. In Sect. 4 we present a dynamic program-
ming algorithm for calculating the disclosure risk with CAE, in Sect. 5 we use
CAE to empirically evaluate a few existing SDC techniques, and in Sect. 6 we
discuss the experimental results and give some concluding remarks.

2 Introduction to Statistical Disclosure Control
and Related Work on Disclosure Risk Measures

Privacy is an elusive concept, and many privacy models have been proposed,
with varying success. We next present a few of the most prominent models.

In a data set, some attributes may be considered public knowledge and used
to identify records. They are refereed to as “identifying” attributes or “quasi-
identifiers” (QI). A class of records where values of all QI attributes are the same
is called an equivalence class. To limit disclosure, Samarati and Sweeney [47] pro-
posed a so-called k -anonymity that requires each equivalence class to have no less
than k records. The main problem with k -anonymity arises when all the records
in an equivalence class share the same confidential value, which allows intruder to
disclose the confidential value without actually re-identifying the record. In order
to alleviate this problem, Machanavajjhala et al. proposed l -diversity [43], which
in its simplest form requires every QI to contain at least l distinct values. While
this model is indeed a great improvement over k-anonymity, it does not consider
how close these values are from each other, and thus leaves room for approximate
disclosure of confidential values. Li et al. [40] introduced t-closeness, which con-
siders the distribution of confidential attribute values in each equivalence class
and the distribution of the confidential attribute values in the whole dataset,
and requires that the distance between these two distributions does not exceed
a given threshold t. While it greatly reduces the disclosure risk, t-closeness is
overly restrictive and severely impacts the utility of data. In this context, our
measure of disclosure risk can be seen as bridging a gap between the l -diversity
and the rigid t-closeness.



26 M. Alfalayleh and L. Brankovic

A similar, yet different model, known as a “k -compromise” and also “g-group
compromise”, has been developed in a series of papers by Brankovic et al. [7,8,11,
12,15–18,31], Griggs [29,30] and Ahlswede and Aydinian [2]. This model is based
on rigorous mathematical proofs and guarantees that a user cannot deduce any
statistics based on k or less records. Unlike in k -anonymity, the user can only query
the dataset, instead of having a direct access to it, and thus this model does not
suffer from approximate compromise. This model has been designed for any com-
bination of SUM, COUNT and AVERAGE queries and it offers almost twice as
many queries as k-anonymity for the same level of security. More work is needed
to adapt this model for other types of queries.

Another prominent privacy model is differential privacy [21], which requires
that the results to all queries allowed on the database do not change significantly
if a single record is added or deleted from the database. While this is certainly an
efficient model against table linkage attack, it is not design to prevent attribute
and record linkage [26] and in practice may be inferior to k-anonymity [51].

Each one of the above models can be implemented using different SDC tech-
niques, which can be classified as modification techniques and query restric-
tion techniques [10,13,19,55]. Modification techniques involve some kind of
alternation of the original data set before it is released to statistical users.
This includes noise addition, data swapping, aggregation, suppression and sam-
pling [10,13,14,28,32,34,35,42]. The common denominator of all modification
techniques is that the modified dataset is released to users who are free to per-
form any query on it, but the answers they get are only approximate and not
exact. On the other hand, query restriction techniques do not release database
to a user but rather provide a query access. The SDC system decides whether
or not to answer the query but if the query is answered, the answer will always
be exact and not approximate as with modification techniques [10,19].

In this study we are not concerned with SDC techniques or privacy models as
such but rather with measuring disclosure risk. In the literature, disclosure risk
measures are classified as measures for record re-identification or confidential
value disclosure [10,20,39]. The latter focuses on measuring the risk of compro-
mising a confidential value of a particular individual, and the former on measur-
ing the risk of inferring an individual’s identity. In either case the disclosure risk
measures may be applied to the database as a whole, or to individual records.

Several methods have been proposed to estimate the disclosure risk in sam-
pling and they fall under the category of record identification. Winkler [56] refers
to these methods as Sample-Unique-Population-Unique (SUPU) methods as dis-
closure risk estimation requires assessing the uniqueness of records in the released
sample and in the population. Skinner and Eliot [49] introduced a new disclosure
risk measure for microdata which falls under SUPU methods [56]. Their measure
is based on the probability Pr(correct match|unique match) that a microdata
record and a population unit are correctly matched. Additionally, they intro-
duced a simple variance estimator and claimed that their measure is able to
evaluate the different ways of releasing microdata from a sample survey. Truta
et al. [54] introduced other SUPU measures and named them minimal, maximal,



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 27

and weighted disclosure risk measures. The minimal disclosure risk measure is
the percentage of records in a population that can be correctly re-identified by an
intruder. All these records must be population unique. The maximum disclosure
risk measure takes into account records that are not population unique while
the weighted disclosure risk measure assigns more weights to unique records
over other records. These measures are not linked to a certain individual but
are rather used to compute the overall disclosure risk for the database. As a
drawback, they can only be applied to limited SDC methods such as sampling
and microaggregation, and it is considered hard to choose the disclosure risk
weight matrix [54]. However, assigning weights enables a data owner to setup
different levels of confidentiality. These measures are useful in deciding the order
of applying more than one SDC method on the initial data.

Trottini and Fienberg [53] proposed a simple Bayesian model for capturing
user uncertainty after releasing the data by an agency. They distinguish between
the legitimate user (researcher) uncertainty and the malicious user (intruder)
uncertainty. This distinction is used as the basis of defining appropriate disclo-
sure risk measure. The proposed measure is an arbitrary decreasing function of
the user’s uncertainty about a confidential attribute value.

Spruill [50] measured confidentiality as a percentage of records in the released
data where a link with the original data can not be made. In order to decide if
there is such a link, for each released record, we add up either the square or the
absolute value of the difference between the released value and the true value for
all common numerical attributes. A link is said to be made if a released record
was derived from the true record that has the minimum sum of differences.
Spruill’s early work gave rise to record linkage, much studied in recent years [26].

There are some recent proposals that use information-theoretic approach to
measure privacy and utility of various SDC techniques [45,48]; however, none of
them measures the “approximate”compromise.

3 A Novel Entropy-Based Measure

Out of all disclosure risk measures, the closest to our proposal is a measure
introduced by Onganian and Domingo-Ferrer [45] that evaluates the security
of releasing tabular data. The measure is equal to the reciprocal of conditional
entropy given the knowledge of an intruder:

DR(X) =
1

H(X|Y = y)
=

1
(−∑

x p(x|y) log2 p(x|y))
(1)

where X represents a confidential attribute for a given record and Y represents
intruder’s knowledge. The disclosure risk is inversely proportional to the uncer-
tainty about the confidential attribute given intruder’s knowledge. The measure
performs a posteriori, that is, after applying one of SDC methods to the tables.
It is a complement to a priori measures such as some sensitivity rules including
(n,k)-dominance and pq-rule, which help a data owner in deciding whether to
release the data or not. The main strength of the above a posteriori measure is



28 M. Alfalayleh and L. Brankovic

its generality: it is applicable to various SDC methods such as Cell Suppression,
Rounding, and Table Redesign. In order to evaluate this disclosure risk, one
has to find a set of the possible confidential attribute values and their proba-
bilities given the condition Y = y. A down side of this measure is that it does
not capture accurately the knowledge that an intruder has about a confiden-
tial attribute, as it does not give careful consideration to the attribute values
but only the probabilities with which the values occur. Our proposed method
considers the attribute values in addition to their probabilities.

Before we proceed to describe our measure in more detail and compare some
of the SDC techniques in the experimental section, we need to introduce the
concept of “database compromise”. We say that a database is compromised if
a sensitive statistic is disclosed [19]. There are several distinct types of com-
promise, depending upon what is considered to be sensitive. For example, if
only exact individual values are considered sensitive, we have the so-called exact
compromise. Approximate compromise occurs when a user is able to infer that a
confidential individual value X lies within a range [X0 − ε

2 ,X0 + ε
2 ] for some pre-

defined value of ε. Approximate compromise will prove crucial for the definition
of our new security measure.

We consider a scenario where an intruder is trying to unlawfully disclose
confidential information from a database. She uses all the available information
she can get from the database, as well as any external knowledge she may have.
At the end of her analysis, the intruder is able to reduce the possibilities and
limit her suspicion to certain data values. Shannon’s entropy can measure the
intruder’s uncertainty, but does not take into consideration how far or close
these values are from each other. The first example in Table 1 shows the queries
submitted by an intruder and the database responses to them. Assuming that
there are only two female academics, the intruder learns that Layla’s salary
has one of the two values: It is either 107K or 50K. In the second example we
assume that there are only two academics aged 37 and the intruder knows that
Qay’s salary is either 80K or 77K. If we use Shannon’s entropy to evaluate the
intruder’s uncertainty in examples 1 and 2, we get the same result, 1 bit in each
case. However, we argue that the intruder learns more in example 2, as he can
pretty accurately estimate the salary to be 78.5K ± 1.5K. This highlights the
need for more accurate measure than Shannon’s entropy, which would be able
to capture such differences. We introduce a notion of privacy for the so-called
approximate compromise range (ε). In the approximate compromise an intruder
learns that the confidential value X lies within a range [X0 − ε

2 ,X0 + ε
2 ]. For

the two example above we have X ∈ [X0 − 28.5K, X0 + 28.5K] for Layla and
X ∈ [X0−1.5K, X0+1.5K] for Qay, where in both cases X0 = 78.5K. Obviously,
the intruder knows more about Qay’s than Layla’s salary, as in the former the
approximate compromise range is 3K, while in the latter it is 57K.

To capture the information about the range ε, we use Shannon’s entropy H
as a function of ε. The graphs in Fig. 1 correspond to the intruder’s uncertainty
H(ε) in the above examples. We notice that the entropy H(0) is the same in both
cases, that is, the disclosure risks are the same for exact compromise. However,



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 29

Table 1. Two examples

Example 1 Example 2

Q1: SELECT MAX (Salary) SELECT MAX (Salary)

FROM AcademicStaff FROM AcademicStaff

WHERE Sex = F WHERE Age = 37

A1: Maximum salary = 107, 000 Maximum salary = 80, 000

Q2: SELECT AVG (Salary) SELECT AVG (Salary)

FROM AcademicStaff FROM AcademicStaff

WHERE Sex = F WHERE Age = 37

A2: Average salary = 78, 500 Average salary = 78, 500

the area under H(ε) is much larger for Layla implying that this case is more
resistant against approximate compromise.

In general, we can evaluate intruder’s uncertainty for any given ε. In par-
ticular, we use H0 = H(0) to denote intruder’s uncertainty in the case of exact
compromise, that is, approximate compromise range of “0” and we call it initial
entropy. Additionally, in what follows we examine the area (A) determined as
an integral: A =

∫ εmax

0
H(ε), where “εmax” is the value of ε for which entropy

H(ε) drops to zero. Formally, H(εmax) = 0 and H(ε) > 0 for all ε < εmax.
We next explain how H(ε) is calculated in general. We introduce a “window”

of length ε. When a window “covers” two or more values, then they are replaced
with a single value whose probability is equal to the sum of probabilities of
all the values covered by the window. In general, there will be more than one
way to cover the values with windows of length ε and we need to select the
way that minimises the entropy H(ε). Computing the minimum entropy H(ε)
as a function of ε is not straightforward and in the next section we introduce
a dynamic programming algorithm to find it, and hence calculate the area (A)
that together with the initial entropy (H0) represents our disclosure risk.

Fig. 1. Our security measure: for (77K, 80K) and (50K, 107K).



30 M. Alfalayleh and L. Brankovic

4 A Dynamic Programming Algorithm to Compute H(ε)

We are given as input a set of values xi in increasing order (x1 < x2 < x3 <
· · · < xn) where each xi has a given probability pi, pi ≥ 0 and Σpi = 1.
In order to produce our security measure, we consider a collection C of sub-
sets (x1, ...xy1), (xy1+1, ..., xy2), . . . , (xym+1, ..., xn), such that (1) xy1 − x1 ≤ ε,
(2) xyi

− xyi−1+1 ≤ ε, 2 ≤ i ≤ m, (3) xn − xym+1 ≤ ε and the corresponding
probabilities q1 = p1 + ... + py1 , ..., qm+1 = pym+1 + ... + pn. We need to calcu-
late minimum H(ε) over probabilities q, such that H(ε) is maximised over all
collections C satisfying conditions above, for each ε. We break the problem into
stages (rows) and states (columns). Each row in the table corresponds to a stage
or ε. Column “i” in the table corresponds to the subproblem containing values
x1, x2, · · · , xi. For a given row (stage) in the table, each cell in this row is
viewed as a subproblem H(ε, i) of the original problem H(ε). For a given stage
and state, H(ε, i) is computed by the following recurrence:

H(ε, i) = min[(H(ε, i − 1) + ai), (H(ε, i − 2) + ai−1), ..., (H(ε, j − 1) + aj)]

where aj = (
∑i

k=j pk) · log( 1
(
∑i

k=j pk)
), Xi − Xj ≤ ε and Xi − Xj−1 > ε for

1 ≤ j ≤ i ≤ n, H(0, ε) = 0 and H(1, ε) = p1 · log( 1
p1

).

Input: x[ ]: a set of integer values in ascending order;
p[ ]: a set of probabilities corresponding to the above integer values.

Output: H(ε)
H0 ←∑n

i=1 p(xi) · log( 1
p(xi)

);

foreach ε do
H(ε, 0) ← 0;
H(ε, 1) ← p1 · log( 1

p1
);

for i ← 2 to n do
j ← i;
ppartial ← 0;
H(ε, i) ← H(ε − 1, i);
while (xi − xj ≤ ε) and (j �= 0) do

ppartial ← ppartial + pj ;
Htemp ← ppartial · log( 1

ppartial
) + H(ε, j − 1);

if Htemp < H(ε, i) then
H(ε, i) ← Htemp;

end
j ← j − 1;

end

end
H(ε) ← H(ε, n);
Display: H(ε)

end

Algorithm 1. A dynamic programming algorithm to compute H(ε)



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 31

5 The Experiments: Description and Implementation

In this section we apply our proposed security measure to a few common Sta-
tistical Disclosure Control (SDC) techniques. In all instances we assume that
the intruder has supplementary knowledge (SK) about an individual whose cor-
responding record is stored in the original dataset, which can be as limited as
one attribute or can be as extensive as all attributes except the confidential one.
The comparative study is performed on PUMS dataset [46].

Sampling. Instead of the whole dataset, we release a random sample without
replacement where each record in the original dataset is equally likely to be
included in the produced sample and duplicates are not allowed. The size of
the produced sample is specified as a percentage of the total size and referred
to as a “sampling size” (or a “sampling factor”). In deciding on the structure
of the sampling experiment, we follow work by Truta et al. [54] on disclosure
risk measures for sampling, where we compute the overall disclosure risk for the
database, rather than for a certain individual.

In order to study the effect of sample size on the security we use four dif-
ferent sampling factors: 5%, 10%, 20%, 50%. For each sample size, we generate
30 different sample files. Additionally, we study the effect of the intruder’s sup-
plementary knowledge. We start with supplementary knowledge as little as one
attribute and extended it to reach all attributes except the confidential one. For
each attribute we performed experiments for all possible values. The results in
Fig. 2 are the averaged over all 30 samples, all attributes and all values.

Query Restriction. In this experiment, we consider a scenario where an
intruder submits a set of range queries to a DBMS. The intruder performs an
analysis using the answers to the submitted queries as well as the supplementary
knowledge with an aim to infer a confidential attribute value for the given record,
e.g., salary in PUMS dataset. We assume that the intruder has built a system of
linear equations out of the responses to range queries. We use Q = 2l to denote
the query set size for the queries a user (i.e., an intruder) is permitted to ask.
For simplicity, we only consider even query set sizes. We use k to denote the
number of queries and thus also the number of linear equations: k = � 2n

Q � − 1.
We run the experiment for 5 different query set sizes {2, 4, 8, 16, 32} and for

each size we shuffle the records in the original dataset to produce randomly 30
different systems of linear equations. The results in Fig. 2 are the average results,
over all 30 systems of linear equations, all SK attributes and all values.

Noise Addition. In this scenario the noise is added to all attributes in the
dataset, sensitive and non-sensitive, categorical and numerical. We use additive
noise studied in [25,36,37,52,58]. The amount of noise is drawn randomly from
binomial probability distribution as the nature of attributes in our dataset is
discrete. The DBMS then releases the perturbed version of the dataset and
an intruder obtains a copy of it. The intruder analyses the released perturbed
dataset using their supplementary knowledge in a bid to infer a confidential
attribute value, e.g. salary in PUMS dataset, corresponding to the individual of
concern. We assume there is only one confidential attribute; the generalisation
to more than one confidential attribute is straightforward.



32 M. Alfalayleh and L. Brankovic

6 Discussion and Conclusion

As expected, for all three SDC techniques our privacy measure, CAE, increases
with decrease in utility (Fig. 2). In Sampling, utility is proportional to the sample
size, in Query Restriction it is inversely proportional to the query size, and in
Noise Addition it is inversely proportional to the amount of noise. CAE declines
with additional supplementary knowledge that intruder might have, which is
expressed on horizontal axis as the number of known attributes. We note that
this decline is sometimes gentle and sometimes sharp, depending on the utility
which is in Fig. 2 given as a parameter: for low utility privacy only gently declines
with supplementary knowledge, while for higher utility the decline is typically
sharp.

Importantly, our experiments demonstrate how we can compare different
SDC techniques and select the most suitable one for specific applications and
requirements.

1 2 3 4 5 6
2

2.5

3

3.5

4

4.5

5

Number of Known Attributes

In
iti

al
 E

nt
ro

py

Sample Size: 5%
Sample Size: 10%
Sample Size: 20%
Sample Size: 50%

(a) Sampling: H0 vs SK

1 2 3 4 5 6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Known Attributes

A
re

a

Sample Size: 5%
Sample Size: 10%
Sample Size: 20%
Sample Size: 50%

(b) Sampling: Area vs SK

1 2 3 4 5 6
0

1

2

3

4

5

Number of Known Attributes

In
iti

al
 E

nt
ro

py

Query Size: 2
Query Size: 4
Query Size: 8
Query Size: 16, 32

(c) QueryRestr.: H0 vs SK

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Known Attributes

A
re

a

Query Size: 2
Query Size: 4
Query Size: 8
Query Size: 16, 32

(d) QueryRestr.:Area vs SK

1 2 3 4 5 6
2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Number of Known Attributes

In
iti

al
 E

nt
ro

py

Noise Amount: 25%
Noise Amount: 50%
Noise Amount: 75%
Noise Amount: 100%

(e) NoiseAdd.: H0 vs SK

1 2 3 4 5 6
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Number of Known Attributes

A
re

a

Noise Amount: 25%
Noise Amount: 50%
Noise Amount: 75%
Noise Amount: 100%

(f) NoiseAdd.: Area vs SK

Fig. 2. Sampling, query restriction and noise addition (Color figure online)



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 33

For example, in the absence of supplementary knowledge sampling with size
50 % and query restriction with query set size 8 provide similar level of privacy
(blue line in Fig. 2(a) and red line in Fig. 2(c)); however, the privacy sharply
drops as the supplementary knowledge increases in sampling, while it remains
flat in query restriction. Moreover, Figs. 2(b) and (d) that indicate approximate
compromise show a slight superiority of sampling in the absence of supplemen-
tary knowledge, but as supplementary knowledge grows sampling becomes much
more vulnerable than query restriction.

In summary, unlike previously proposed privacy measures, our novel infor-
mation theoretic privacy measure (CAE) has the ability to capture approximate
compromise; it can also be applied to any SDC technique, as long as the prob-
abilities of different confidential values can be estimated. In this paper we con-
sidered the most common SDC techniques and showed how CAE can be used to
evaluate the privacy they offer, and how the privacy relates to both utility and
supplementary knowledge.

References

1. Adam, N.R., Worthmann, J.C.: Security-control methods for statistical databases:
a comparative study. ACM Comput. Surv. 21(4), 515–556 (1989)

2. Ahlswede, R., Aydinian, H.: On security of statistical databases. SIAM J. Discrete
Math. 25(4), 1778–1791 (2011)

3. Al-Saggaf, Y., Islam, M.Z.: Privacy in social network sites (SNS) - the threats from
data mining. Ethical Space: J. Commun. Ethics 9(4), 32–40 (2012)

4. Al-Saggaf, F., Islam, M.Z.: A malicious use of a clustering algorithm to threaten
the privacy of a social networking site user. World J. Comput. Appl. Technol. 1(2),
29–34 (2013)

5. Al-Saggaf, Y., Islam, M.Z.: Data mining and privacy of social network sites users:
implications of the data mining problem. Sci. Eng. Ethics (2014)

6. Blake, C.L.: Wine Recognition Data (1998)
7. Brankovic, L.: Usability of secure statistical databases. Ph.D. Thesis, Newcastle,

Australia (1998)
8. Brankovic, L., Cvetkovic, D.: The eigenspace of the eigenvalue -2 in generalized

line graphs and a problem in security of statistical databases. Publikacije ETF,
Serija: matematika. 14, 37–48 (2003)

9. Brankovic, L., Estivill-Castro, V.: Privacy issues in knowledge discovery and data
mining. In: Australian Institute of Computer Ethics Conference, pp. 89–99 (1999)

10. Brankovic, L., Giggins, H.: Statistical database security. In: Petković, M., Jonker,
W. (eds.) Security, Privacy, and Trust in Modern Data Management, pp. 167–181.
Springer, Heidelberg (2007)

11. Brankovic, L., Horak, P., Miller, M.: An optimization problem in statistical data-
bases. SIAM J. Discrete Math. 13(3), 46–353 (2000)

12. Brankovic, L., Horak, P., Miller, M., Wrightson, G.: Usability of compromise-free
statistical databases for range sum queries. In: 9th International Conference on
Scientific and Statistical Database Management, pp. 144–154. IEEE Computer
Society (1997)

13. Brankovic, L., Islam, M.Z., Giggins, H.: Security, privacy, and trust in modern data
management. In: Petković, M., Jonker, W. (eds.) Privacy-Preserving Data Mining,
pp. 151–165. Springer, Heidelberg (2007)



34 M. Alfalayleh and L. Brankovic

14. Brankovic, L., Lopez, N., Miller, M., Sebe, F.: Triangle randomization for social
network data anonymization. Ars Math. Contemp. 7(2), 461–477 (2014)

15. Brankovic, L., Miller, M., Siran, J.: Graphs, 0–1 matrices, and usability of statis-
tical databases. Congressus Numerantium 12, 169–182 (1996)

16. Brankovic, L., Miller, M., Siran, J.: Usability of k-compromise-free statistical data-
bases. In: Proceedings of the 11th Australasian Workshop on Combinatorial Algo-
rithms (AWOCA 2000), Hunter Valley, pp. 159–166 (2000)

17. Brankovic, L., Miller, M., Siran, J.: Range query usability of statistical databases.
Int. J. Comput. Math. 79(12), 1265–1271 (2002)

18. Brankovic, L., Sirán, J.: 2-compromise usability in 1-dimensional statistical data-
bases. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp.
448–455. Springer, Heidelberg (2002)

19. Denning, D.E.: Cryptography and Data Security. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston (1982)

20. Duncan, G.T., Lambert, D.: Disclosure-limited data dissemination. J. Am. Stat.
Assoc. 81, 10–28 (1986)

21. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

22. Estivill-Castro, V., Brankovic, L.: Data swapping: balancing privacy against pre-
cision in mining for logic rules. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999.
LNCS, vol. 1676, pp. 389–398. Springer, Heidelberg (1999)

23. Estivill-Castro, V., Brankovic, L., Dowe, D.L.: Privacy in data mining. Privacy -
Law Policy Reporter 9(3), 33–35 (1999)

24. Fletcher, S., Islam, M.Z.: Measuring information quality for privacy preserving
data mining. Int. J. Comput. Theory Eng. 7(1), 21–28 (2015)

25. Fuller, W.A.: Masking procedures for microdata disclosure limitation. J. Off. Stat.
9(2), 383–406 (1993)

26. Fung, C.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14.2–14.53 (2010)

27. Giggins, H.: Security of genetic databases. Ph.D. Thesis, Newcastle, Australia
(2009)

28. Giggins, H., Brankovic, L.: VICUS - a noise addition technique for categorical
data. In: 10th Australasian Data Mining Conference. CRPIT, vol. 134, pp. 139–
148 (2012)

29. Griggs, J.R.: Concentrating subset sums at k points. Bull. Inst. Comb. Appl. 20,
65–74 (1997)

30. Griggs, J.R.: Database security and the distribution of subset sums in Rm. In:
Proceedings of the International Colloquium on Combinatorics and Graph Theory
(1998)

31. Horak, P., Brankovic, L., Miller, M.: A combinatorial problem in database security.
Discrete Appl. Math. 91(1–3), 119–126 (1999)

32. Islam, M.Z.: Privacy preservation in data mining through noise addition. Ph.D.
Thesis, Newcastle, Australia (2008)

33. Islam, M.Z., Barnaghi, P.M., Brankovic, L.: Measuring data quality: predictive
accuracy vs. similarity of decision trees. In: 6th International Conference on Com-
puter and Information Technology, Dhaka, Bangladesh, pp. 457–462 (2003)

34. Islam, M.Z., Brankovic, L.: Noise addition for protecting privacy in data mining.
In: 6th Engineering Mathematics and Applications Conference, Sydney, pp. 85–90
(2003)



Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk 35

35. Islam, M.Z., Brankovic, L.: Detective: a decision tree based categorical value clus-
tering and perturbation technique in privacy preserving data mining. In: 3rd Inter-
national IEEE Conference on Industrial Informatics, Australia, pp. 701–708 (2005)

36. Kim, J.J.: A method for limiting disclosure in microdata based on random noise
and transformation. In: Proceedings of the Section on Survey Research Methods,
pp. 303–308. American Statistical Association (1986)

37. Kim, J.J., Winkler, W.E.: Masking microdata files. In: Proceedings of the Section
on Survey Research Methods, pp. 114–119. American Statistical Association (1995)

38. King, T., Brankovic, L., Gillard, P.: Perspectives of Australian adults about pro-
tecting the privacy of their health information in statistical databases. Int. J. Med.
Inform. 81(4), 279–289 (2012)

39. Lambert, D.: Measures of disclosure risk and harm. J. Off. Stat. 9, 313–331 (1993)
40. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity

and l-diversity. In: IEEE International Conference on Data Engineering (2007)
41. Lopez, N., Sebe, F.: Privacy preserving release of blogosphere data in the presence

of search engines. Inf. Process. Manage. 49(4), 833–851 (2013)
42. López, N., Sebé, F.: Degree sequences of pagerank uniform graphs and digraphs

with prime outdegrees. In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS,
vol. 8288, pp. 303–313. Springer, Heidelberg (2013)

43. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: l-diversity:
privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data. 1 (2007)

44. Morris, S., Cooper, J., Bomba, D., Brankovic, L., Miller, M., Pacheco, F.: Aus-
tralian healthcare: a smart card for a clever country. Int. J. Biomed. Comput.
40(2), 101–105 (1995)

45. Oganian, A., Domingo-Ferrer, J.: A posteriori disclosure risk measure for tabular
data based on conditional entropy. SORT - Stat. Oper. Res. Trans. 27(2), 175–190
(2003)

46. Public Use Microdata Sample (PUMS) (2006)
47. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-

anonymity and its enforcement through generalization and suppression. Technical
Report SRI-CSL-98-04. SRI Computer Science Laboratory, Palo Alto, CA (1998)

48. Sankar, L., Rajagopalan, S.R., Poor, H.V.: Utility-privacy tradeoffs for databases:
an information-theoretic approach. IEEE Trans. Inf. Forensics Secur. 9(6), 838–
852 (2013). Special Issue on Privacy and Trust Management in the Cloud and
Distributed Data Systems

49. Skinner, C.J., Elliot, M.J.: A measure of disclosure risk for microdata. J. Roy. Stat.
Soc. B 64(4), 855–867 (2002)

50. Spruill, N.L.: Measures of Confidentiality, Statistics of Income and Related Admin-
istrative Record Research, pp. 131–136 (1982)

51. Sramka, M., Safavi-Naini, R., Denzinger, J., Askari, M.: A Practice-oriented
framework for measuring privacy and utility in data sanitization systems. In:
EDBT/ICDT2010 Workshops, Lausanne, Switzerland, pp. 315–333 (2010)

52. Tendick, P.: Optimal noise addition for preserving confidentiality in multivariate
data. J. Stat. Plan. Inference 27, 341–353 (1991)

53. Trottini, M., Fienberg, S.E.: Modelling user uncertainty for disclosure risk and
data utility. Int. J. Uncertain. Fuzz. Knowl. Based Sys. 10(5), 511–527 (2002)

54. Truta, T.M., Fotouhi, F., Barth-Jones, D.: Disclosure risk measures for the sam-
pling disclosure control method. In: 2004 ACM symposium on Applied computing
(SAC 2004), NY, USA, pp. 301–306 (2004)

55. Willenborg, L., de Waal, T.: Elements of Statistical Disclosure Control. Lecture
Notes in Statistics, p. 155. Springer-Verlag, New York (2001)



36 M. Alfalayleh and L. Brankovic

56. Winkler, W.E.: Masking and re-identification methods for public-use microdata:
overview and research problems. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004.
LNCS, vol. 3050, pp. 231–246. Springer, Heidelberg (2004)

57. Wolberg, W.H., Street, W.N., Mangasarian, O.L.: Wisc. Diag. Breast Can. (1995)
58. Yancey, W.E., Winkler, W.E., Creecy, R.H.: Disclosure risk assessment in per-

turbative microdata protection. In: Domingo-Ferrer, J. (ed.) Inference Control in
Statistical Databases. LNCS, vol. 2316, p. 135. Springer, Heidelberg (2002)



On the Galois Lattice of Bipartite Distance
Hereditary Graphs

Nicola Apollonio1, Massimiliano Caramia2, and Paolo Giulio Franciosa3(B)

1 Istituto per le Applicazioni del Calcolo M. Picone, CNR,
via dei Taurini 19, 00185 Rome, Italy

nicola.apollonio@cnr.it
2 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”,

via del Politecnico 1, 00133 Rome, Italy
caramia@disp.uniroma2.it

3 Dipartimento di Scienze Statistiche, Sapienza Università di Roma,
piazzale Aldo Moro 5, 00185 Rome, Italy

paolo.franciosa@uniroma1.it

Abstract. We give a complete characterization of bipartite graphs hav-
ing tree-like Galois lattices. We prove that the poset obtained by deleting
bottom and top elements from the Galois lattice of a bipartite graph is
tree-like if and only if the graph is a Bipartite Distance Hereditary graph.
We show that the lattice can be realized as the containment relation
among directed paths in an arborescence. Moreover, a compact encoding
of Bipartite Distance Hereditary graphs is proposed, that allows optimal
time computation of neighborhood intersections and maximal bicliques.

Keywords: Galois lattice · Transitive reduction · Distance hereditary
graph · Ptolemaic graph

1 Introduction

Galois lattices are a well established topic in applied lattice theory. Their impor-
tance is widely recognized [9], and its applications span across theoretical com-
puter science and discrete mathematics as well as artificial intelligence, data
mining and data-base theory. There is a growing interest on the interplay between
finite Galois lattices and other discrete structures in combinatorics and computer
science, and new relationships have been (and are to be) discovered between
graphs and Galois lattices. This paper follows this stream: we characterize a
class of bipartite graphs by the Galois lattice of their maximal cliques.

Distance Hereditary graphs are graphs with the isometric property, i.e., the
distance function of a distance hereditary graph is inherited by its connected

The first author was partially supported by Italian MIUR project “La Matematica
per la società e l’innovazione tecnologica–MATHTECH”. The second author was
partially supported by Italian MIUR projects PRIN 2012C4E3KT “AMANDA –
Algorithmics for MAssive and Networked DAta” and “Sottografi fault resilient e
algoritmi per modelli di calcolo con memory faults”.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 37–48, 2015.
DOI: 10.1007/978-3-319-19315-1 4



38 N. Apollonio et al.

induced subgraphs. This important class of graphs was introduced and thor-
oughly investigated by Howorka in [10,11]. A comparability graph is the graph
of the comparability relation among elements of a poset. In [7], Cornelsen and
Di Stefano proved that by intersecting the class of Distance Hereditary graphs
with the class of comparability graphs one obtains precisely the comparability
graphs of tree-like posets, i.e., those posets whose transitive reduction is a tree.
Here we investigate another relation between comparability graphs and distance
hereditary graphs: inspired on the one hand by the work of Amilhastre, Vilarem
and Janssen [1] and on the other hand by the work of Berry and Sigayret [5] and
the work of Brucker and Gély [6]. In [1], Galois lattices of domino-free bipartite
graphs are investigated. In [5] it is shown that the Hasse diagram of the Galois
lattice of chordal bipartite graphs is dismantlable [13], while an analogous result
is shown in [6] for the clique lattice of strongly chordal graphs. Both [5,6] use a
dismantlability property of these lattices proved in [13]. Recall that a graph G
is strongly chordal if and only if its vertex-clique graph, namely, the incidence
bipartite graph of the maximal cliques of G over V (G), is a bipartite chordal
graph and that a graph is bipartite chordal if it does not contain an induced
copy of a chordless cycle on more than four vertices—the reader is referred to
Sect. 2 for undefined terms and notions.

In this paper we study the transitive reduction of the Galois lattice of those
bipartite graphs that are chordal (as in [5]) and domino-free (as in [1]). It follows
by Theorem 2 in Sect. 2 that these graphs are precisely the Bipartite Distance
Hereditary (BDH for shortness) graphs, namely, those distance hereditary graphs
which are bipartite. Essentially in the same way as chordal bipartite graphs are
related to strongly chordal graphs, BDH graphs are related to the so called
Ptolemaic graphs. If CH denotes the class of chordal graphs, namely, those
graphs that do not contain an induced copy of the chordless cycle on more than
three vertices, and if DH is the class of distance hereditary graphs, then the
class Pt of Ptolemaic graphs is the intersection between CH and DH. Actually,
by the results of [12], Pt is the intersection between SC and DH, where SC
is the class of strongly chordal graphs. Let L(G) denote the Galois lattice of a
bipartite graph G and let C(H) denote the clique lattice of a graph H. As shown
by Wu (as credited in [12]), if G is Ptolemaic, then the vertex-clique graph of
G is a BDH graph. Hence there is a map λ : Pt → BDH and it is not difficult
to see that L(λG) ∼= C(G), where ∼= is lattice isomorphism. In a sense, it can be
shown that the converse statement holds as well, namely, there is a mapping μ
that takes a BDH graph G into a Ptolemaic graph μG so that C(μG) ↪→ L(G)
in such a way that L(G − I) ∼= C(μG) for a certain set I of join-irreducible (or
meet-irreducible) elements of L(G), where ↪→ denotes order embedding. In other
words, the following diagram applies (and commutes):

Pt��
C(·)

��

λ ��
BDH

μ
�� ��

L(·)
��

TK Ψμ

��TB
Φλ��

(1)



On the Galois Lattice of Bipartite Distance Hereditary Graphs 39

where TK and TB are the classes of tree-shaped clique lattices and Galois lat-
tices, respectively, Φλ is lattice isomorphism induced by λ, and Ψμ is an order
embedding induced by μ.
Our Result. Let us recall what is the Galois lattice of a bipartite graph G.
Let G have color classes X and Y . A biclique of G is a set B ⊆ V (G) which
induces a complete bipartite graph. Let B(G) be the set of the (inclusionwise)
maximal bicliques of G and for B ∈ B(G) let X(B) = B∩X and Y (B) = B∩Y .
X(B) and Y (B) are called the shores of B. Throughout the rest of the paper
we assume that G does not contain universal vertices, where a universal vertex
in a bipartite graph is a vertex that is adjacent to all vertices in the opposite
color class. This assumption, while it does not cause loss of generality, leads to
simpler statements and proofs. Following [1], we endow B(G) by a partial order
� defined by B � B′ ⇔ X(B) ⊆ X(B′). Equivalently, the same partial order can
be defined as B � B′ ⇔ Y (B) ⊇ Y (B′), since X(B) ⊆ X(B′) ⇔ Y (B) ⊇ Y (B′).
If we extend B(G) by adding two dummy elements ⊥ and � acting as bottom
and top element respectively, the poset L(G) = (B(G) ∪ {⊥,�},�) is a lattice
known as the Galois lattice of G. The two dummy elements are respectively
defined by: X(⊥) = ∅, Y (⊥) = Y and X(�) = X, Y (�) = ∅.

In this paper we prove that the shape of L(G) can be used to characterize
BDH graphs. More precisely, we show the following.

Theorem 1. Let G be a connected bipartite graph and let H(G) be the transitive
reduction of (B(G),�). Then H(G) is a tree if and only if G is a BDH graph.

Otherwise stated: after deleting ⊥ and �, L(G) is a tree-like poset. This is a very
strong property: for instance, it allows efficient enumeration of linear extensions
[2]. The question of studying bipartite graphs (binary relations) whose Galois
lattice is tree-like (arborescence-like in a sense) was raised first in [4]. Here we
completely solve the problem from a graph-theoretical view-point. Theorem 1
implies that (B(G),�) has linear dimension at most 2, since this can be derived
by known properties of planar lattices [17]. Although Theorem 1 can be deduced
with some extra work from other known results on graphs and hypergraphs (by
taking the longest dipath in Diagram 1) the proof we present here is direct
and self-contained. Besides Ptolemaic graphs, BDH are related to series parallel
graphs. Indeed it can be proved that BDH graphs are fundamental graphs of
series parallel graphs. This result—via a theorem due to Shinoda, Chen, Yasuda,
Kajitani, and W. Mayeda (as credited by Syslo [16]) and Syslo himself—leads
to an implicit representation of the Galois lattice of a BDH graph as a collection
of paths in an arborescence. We discuss this representation in Sect. 4, where we
exploit it to show how the Galois lattice of a BDH graph, and the BDH graph
itself, can be efficiently encoded. The encoding of the BDH graph requires O(n)
space in the worst case, n being the order of the graph, still allowing the retrieval
of the neighborhood of any vertex in time linear in the size of the neighborhood.
Moreover, intersections of neighborhoods can be listed in optimal linear time in
the size of the intersection, in the worst case.

For the sake of brevity, most proofs are omitted and will be given in the full
paper.



40 N. Apollonio et al.

2 Preliminaries

If H is a family of subsets of a given ground set V , then Γ (H) is the bipartite
incidence graph of H over V , that is, the bipartite graph with color classes V
and H where there is an edge between v ∈ V and F ∈ H if and only if v ∈ F .

If G is a graph, then V (G) denotes its vertex-set if G is undirected, or its node-
set if G is directed. Similarly, E(G) denotes the edge-set of G if G is undirected,
or the arc-set of G if G is directed. The distance between two vertices u and
v of an undirected graph G, denoted by dG(u, v), equals the minimum length
of a path having u and v as end-vertices, or is ∞ if no such path exists. For a
graph G and a vertex v ∈ V (G), NG(v) (or simply N(v) when G is understood)
is the set of vertices adjacent to v in G. The degree of v is the number of
vertices in NG(v). The graph induced by V (G)−{v} is denoted by G− v. Let G
be a directed graph and v be a node of G. We split the neighborhood of v into
N−(v) = {u ∈ V (G) | (u, v) ∈ E(G)} and N+(v) = {w ∈ V (G) | (v, w) ∈ E(G)}.
The outdegree of v in G, denoted by deg+

G(v), is the number |N+(v)| of arcs
leaving v. Analogously, the indegree of v in G, deg−

G(v) = |N−(v)|, is the number
of arcs entering v. A node in G is a source if its indegree in G is zero, a sink
if its outdegree in G is zero, or a flow-node if it is neither a source nor a sink.
A dipath P of G is a path of G with exactly one source in P and exactly one
sink in P . A circuit C in G is a cycle in G with no source and no sink in C.

The chordless cycle on n ≥ 4 vertices is denoted by Cn, and a hole in a
bipartite graph is an induced subgraph isomorphic to Cn for some n ≥ 6.
A domino is a subgraph isomorphic to the graph obtained from C6 by join-
ing two antipodal vertices by a chord (see Fig. 1). A (l, k)-chordal graph is a
graph such that every cycle of length at least l has at least k chords. Bipartite
(6, 1)-chordal graphs are simply called chordal bipartite. A twin of a vertex v in
a graph is a vertex with the same neighbors as v.

Theorem 2 (Bandelt and Mulder [3]). The following statements are equiv-
alent for a bipartite graph G:

(i) G is a BDH graph;
(ii) G is constructed from a single vertex by a sequence of adding pending ver-

tices and twins of existing vertices;
(iii) G contains neither holes nor induced dominoes;
(iv) G is a bipartite (6, 2)-chordal graph.

If G,H1,H2 . . . , Hn are graphs, we say that G is H1, . . . , Hn-free if G contains
no induced copy of Hi, i = 1, . . . , n. Funny enough, after Theorem 2, one can say
that a graph is BDH if and only if it is DH-free: just solve the latter acronym as
Domino Hole.

In a poset (X,≤) an element y covers an element x if x < y and moreover
x ≤ z ≤ y ⇒ z = x or z = y. If x, y are incomparable we write x ‖ y. The
least or bottom element of a poset (X,≤) is the unique element x ∈ X such that
x ≤ x′ for every x′ ∈ X. This element is usually denoted by ⊥. The greatest or
top element of (X,≤), usually denoted by �, is defined dually. The transitive
reduction of a poset (X,≤) is the directed acyclic graph on X where there is



On the Galois Lattice of Bipartite Distance Hereditary Graphs 41

Fig. 1. Domino and C6 and the corresponding Galois lattices.

an arc leaving x and entering y if and only if y covers x. The meet and the
join operators in a lattice are denoted as customary by ∧ and ∨, respectively.
An element x in a poset (X,≤) is meet-irreducible (resp., join-irreducible) if
x = y ∧z (resp., x = y ∨z) implies x = y or x = z. Let (X1,≤1) and (X2,≤2) be
two posets. An order embedding of (X1,≤1) into (X2,≤2) is a map f : X1 → X2

satisfying the following condition

x ≤1 y ⇐⇒ f(x) ≤2 f(y).

An order isomorphism is a bijective order embedding.
For a bipartite graph G let L◦(G) = (B(G),�) and recall that L(G) denotes

(B(G)∪{�,⊥},�). Thus H(G) is the transitive reduction of L◦(G). Throughout
the rest of the paper we represent a biclique B of a bipartite graph G by the
ordered pair of its shores, i.e., we write B = (U,W ) to mean that U = X(B),
W = Y (B) and that X(B) ∪ Y (B) induces a complete bipartite subgraph of G.
Moreover, with some abuse of notation, if v ∈ V (G), then we write v ∈ B to mean
that v ∈ X(B)∪Y (B) and, analogously, we write B − v for the biclique induced
by (X(B)∪Y (B))−{v}. A biclique B dominates a biclique B′ if X(B′) ⊆ X(B)
and Y (B′) ⊆ Y (B). As an example, let G be either the domino or the C6 (see
Fig. 1). If G is the domino, then B(G) contains four members: the vertex-sets
of the two stars centered at vertices of degree three and the vertex-sets of two
squares; H(G) is thus a directed square with one source and one sink; if G is the
C6 then the members of B(G) are the vertex-sets of the subpaths of G of length
2; therefore, H(G) is a directed C6 with three sources and three sinks.

Remark 1. For B, B′ ∈ B(G) one has B ‖ B′ if and only if {X(B), X(B′)}
and {Y (B), Y (B′)} both have inclusionwise incomparable members. Indeed, if
X(B) ⊆ X(B′), say, then X(B)∪(Y (B)∪Y (B′)) is a biclique of G dominating B.

Remark 2. If L(G) is the Galois lattice of G then L∗(G) (the lattice dual of
L(G)) is the Galois lattice of G with color classes interchanged. We often use
this fact later in the following way: if we prove a property of the lattice for the
X-shores of maximal bicliques, then the same property holds by duality for the
Y -shores.

If X0 ⊆ X, then there is a biclique B0 ∈ L◦(G) such that X(B0) = X0 if and
only if X0 =

⋂
y∈Y0

N(y) for some Y0 ⊆ Y . Analogously if Y0 ⊆ Y , then there
is a biclique B0 ∈ L◦ such that Y (B0) = Y0 if and only if Y0 =

⋂
x∈X0

N(x) for



42 N. Apollonio et al.

some X0 ⊆ X. Using these facts one has that the projections (X0, Y0) �→ X0 and
(X0, Y0) �→ Y0 are actually order isomorphisms between L◦(G) and {X(B) | B ∈
L◦(G)} and {Y (B) | B ∈ L◦(G)}. Hence

L◦(G) ∼=
({

X(B) | B ∈ L◦(G)
}
,⊆

)
(2)

and
L◦(G) ∼=

({
Y (B) | B ∈ L◦(G)

}
,⊇

)
(3)

(see also [9]).
To prove the necessity in Theorem 1 we need a sort of “convexity property”

for the neighborhood of the vertices of a BDH graph (see Theorem 3). Such a
property is interesting on its own and it is equivalent to one of Fagin’s results [8].
Let G be a connected BDH graph. For v, v′ ∈ V (G), let G�{v, v′} be the graph
defined as follows:

– if v and v′ are in different color classes, then G � {v, v′} is G;
– if v and v′ are in the same color class, then G�{v, v′} is obtained from G by

adding a new vertex v̂v′ to the color class of v and v′. Vertex v̂v′ is adjacent
to every vertex in N(v) ∩ N(v′).

Theorem 3. Let G be a BDH graph and let v, v′ ∈ V (G). Then G � {v, v′} is
a BDH graph, that is the class of BDH graphs is closed under �.

Let XG = (X(B) | B ∈ B(G)) and YG = (Y (B) | B ∈ B(G)).

Corollary 1. If G is a BDH graph then so are the graphs Γ (XG) and Γ (YG).

Proof. By duality it suffices to prove the lemma only for YG. One has W ∈ Y if
and only if (U,W ) ∈ B(G) for some U ⊆ X and W =

⋂
u∈U NG(u). Therefore,

YG is a subfamily of the family C =
(⋂

u∈U NG(u) | U ⊆ X
)

and Γ (YG) is an
induced subgraph of Γ (C). Observe that Γ (C) ∼= Γ ({NG̃(x) | x ∈ X̃}) for a
certain graph G̃ with color classes X̃ and Y arising from G by a repeated appli-
cation of operation �. Such an operation preserves the property of being a BDH
graph. Thus Γ (C) (and hence Γ (YG)) is BDH.

3 Characterizing BDH Graphs by Their Galois Lattices

In this section we prove Theorem 1. The proof of the if part is given in Sect. 3.1
while the only if part is proved in Sect. 3.2.

3.1 Proof of the if Part

Let us exploit now the structure of BDH graphs to prove the if part of Theorem 1.
We remark that the next two results (whose proof is omitted) apply to the more
general class of domino-free bipartite graphs.



On the Galois Lattice of Bipartite Distance Hereditary Graphs 43

Lemma 1. If G is a domino-free bipartite graph then for any B1, B2 ∈ B(G)
such that B1 ‖ B2 one has

⊥ �= B1 ∧ B2 ⇒ B1 ∨ B2 = � and B1 ∨ B2 �= � ⇒ B1 ∧ B2 = ⊥.

Lemma 2. Let G be a domino-free bipartite graph and H(G) be the transitive
reduction of L◦(G). Then, any cycle of H(G) that does not contain ⊥ or � has
at least six non-flow-nodes.

We are now ready the prove the if part of Theorem 1.

Proof of the if part of Theorem 1. We assume ⊥ and � have been deleted
from H(G). Since H(G) is connected we have only to show that it does not
contain cycles. Suppose by contradiction that H(G) contains some cycle, and
let C be a cycle having the least possible number of non-flow-nodes. Let 2t,
t ∈ N, be such a number. As G is a BDH graph it is domino-free. Therefore, by
Lemma 2, t ≥ 3. Let B1, . . . , B2t−1 and B2, . . . , B2t be the sources and the sinks
of C, respectively, as they are met traversing the cycle in a chosen direction. By
definition of transitive reduction one has

∅ �= X(B1) ⊆ X(B2) ∩ X(B2t)

and
∅ �= X(B2i+1) ⊆ X(B2i) ∩ X(B2(i+1)), i = 1, . . . , t − 1.

Moreover, for i ∈ {0, . . . , t− 1} and j ∈ {1, . . . , t} such that |i− j| �∈ {0, 1, t} one
has X(B2i+1)∩X(B2j) = ∅. Otherwise X(B2i+1)∧X(B2j) ∈ V (H(G)) and one
of the two subpaths of C connecting X(B2i+1) and X(B2j) along with the two
paths of H(G) connecting X(B2i+1)∧X(B2j) to X(B2i+1) and X(B2j) respec-
tively, would define a cycle C′ of H(G) with fewer non-flow-nodes than C. Now
for i = 0, . . . , t − 1, pick x2i+1 ∈ X(B2i+1) and let U = {x1, x3 . . . , x2t−1} and
U = {X(B2i) | i = 1, . . . t}. Thus U ∪ U induces a hole in Γ (XG), contradicting
Corollary 1.

3.2 Proof of the only if Part

To complete the proof of Theorem 1 we need some more properties of H(G)
stated without proof in the following lemmata.

Lemma 3. Let G be a BDH graph with at least three vertices. Then x ∈ X is
a cut-vertex of G if and only if ({x}, N(x)) ∈ B(G). Analogously, y ∈ Y is a
cut-vertex of G if and only if (N(y), {y}) ∈ B(G).

Recall that in poset that has a bottom element ⊥, an atom is an element of the
poset that covers ⊥. Dually, if the poset has a top element �, a co-atom is an
element which is covered by �. After this terminology we can say that the cut
vertices of G are either atoms or co-atoms.

We now study the behavior of H(G − v) for v ∈ V (G). Let us begin with an
easy but useful property of H(G) in the general case. The next lemma proves



44 N. Apollonio et al.

that if the deletion of a vertex v from a maximal biclique of G does not cause
loss of maximality in the biclique, then H(G − v) inherits from H(G) as much
adjacency as possible.

Lemma 4. Let G be a bipartite graph, B0 ∈ B(G) and v ∈ B0. If B0 − v ∈
B(G − v), then

– there is an arc (B − v,B0 − v) in H(G − v) for every B ∈ B(G) such that
B − v ∈ B(G − v)and (B,K0) is an arc of H(G);

– there is an arc (B0 − v,B − v) in H(G − v) for every B ∈ B(G) such that
B − v ∈ B(G − v)and (B0, B) is an arc of H(G);

In other words,
φ : H(G − v) � B − v �−→ B ∈ H(G)

embeds H(G − v) in H(G) as a sub-digraph.

The next lemma shows instead that if the deletion of a vertex v from a maximal
biclique B of G causes loss of maximality in the biclique, then the role of B in
L(G) is not really relevant.

Lemma 5. Let G be a bipartite graph and let v ∈ V (G) and B ∈ B(G) be
such that B − v �∈ B(G − v). If v ∈ X and B is not an atom in L(G), then
deg−

H(G)(B) = 1. Moreover, if (B′, B) is the unique arc entering B in H(G)
then B′ ∈ B(G−v). Analogously, if v ∈ Y and B is not a co-atom in L(G), then
deg+

H(G)(B) = 1. Moreover, if (B,B′) is the unique arc leaving B in H(G) then
B′ ∈ B(G − v).

Using standard terminology, as in [5], a maximal biclique B that satisfies the
hypothesis of Lemma 5 corresponds either to a meet irreducible or to a join
irreducible concept in the context associated to the bipartite graph. The results
of Lemmas 3, 4, and 5 imply:

Theorem 4. Let G be a BDH graph and let v ∈ V (G). Then one of the following
conditions holds:

1. H(G − v) has more connected components than H(G);
2. H(G − v) is an induced subgraph of H(G);
3. H(G − v) is a contraction of H(G).

Proof. Let B0(v) ⊆ B(G) be the set of maximal bicliques B containing v such
that B−v �∈ B(G−v). If v is a cut-vertex of G, then condition 1 holds. Otherwise,
by Lemmas 4 and 5, H(G − v) can be derived from H(G) by the following
operations:

– if v ∈ X and B ∈ B0(v) delete B if it is a sink in H(G), otherwise contract
the unique arc (B′, B) with B′ ∈ B(G − v) to the single node B′;

– if v ∈ Y and B ∈ B0(v) delete B if it is a source in H(G), otherwise contract
the unique arc (B,B′) with B′ ∈ B(G − v) to the single node B′.

In both cases, either conditions 2 or 3 holds.



On the Galois Lattice of Bipartite Distance Hereditary Graphs 45

Proof of the only if part of Theorem 1. Let us assume that H(G) is a tree
and let us prove that G is a BDH graph. By Theorem 4, it follows in particular
that if G0 is an induced connected subgraph of G, then H(G0) is a contraction of
H(G1) for some connected induced subgraph G1 of G such that G0 is an induced
subgraph of G1. Hence, H(G0) is a tree, being the contraction of some subtree
of H(G). Now, to establish the thesis, it suffices to observe that if G0 is either a
domino or a chordless cycle with length greater than four then H(G0) is not a
tree (see Fig. 1).

4 Encoding L(G) and Efficiently Computing
Maximal Bicliques

In this section, we show how the Galois lattice of a BDH graph can be realized as
the containment relation among directed paths in an arborescence. The results
are achieved by further exploiting the interplay between BDH graphs and series-
parallel graphs. As credited by Syslo [16], Shinoda, Chen, Yasuda, Kajitani, and
W. Mayeda, proved that series-parallel graphs can be completely characterized
by a property of their spanning trees. They proved that every spanning tree of
a series-parallel graph S is a depth-first search tree of a 2-isomorphic copy of S,
where 2-isomorphism of graphs (in the sense of Whitney [18]) is isomorphism of
binary vector spaces between cycle-spaces of graphs. We can avoid to enter details
of such notions and we can content ourselves of restating in our terminology a
direct consequence of the result. Recall that an arborescence is a directed tree
with a single special node distinguished as the root such that, for each other
vertex, there is a dipath from the root to that vertex.

Theorem 5. Let G be a connected BDH graph with color classes X and Y .
There exists an arborescence φT with root r and X = E(T ) such that for each
y ∈ Y , the set {φx | x ∈ NG(y)} is the arc set of a directed path in φT . The
same holds with the role of X and Y interchanged.

The main consequence of Theorem 5 is that the Galois lattice of a BDH graph
is completely determined by some pairwise intersections of neighborhoods, plus
some simple neighborhoods.

Corollary 2. Let G be a BDH graph with color classes X and Y . Let F ={
N(x) ∩ N(x′) | x �= x′, x, x′ ∈ X

} ∪ {
N(x), x ∈ X

}
. Then L◦(G) ∼= (

F,⊆ )
.

Notice that, there are containment orders among paths in an arborescence
that are not isomorphic to the Galois lattice of any BDH graph. For exam-
ple, the Galois lattice of a domino is isomorphic to the containment among sets
{a, b}, {b, c}, {a, b, c}, and it is immediate to see that these sets are the edge sets
of three subpaths of a path with edges a, b, c, which is clearly an arborescence.

We discuss now some algorithmic consequences of the encoding described in
Theorem 5 and exploited in Corollary 2. By the results of [15], there exists an
algorithm that given a BDH graph computes a supporting arborescence φT for



46 N. Apollonio et al.

G as in Theorem 5. The algorithm runs in almost linear time in the size of G,
that is in time O(α(|X|,m) · m) where m is the number of edges of G and α
is an inverse of the Ackermann function, which behaves essentially as a small
constant even for very large values of its arguments. We propose a compact
encoding of the BDH graph that requires O(n) space in the worst case, where
n is the number of vertices in G, that allows to answer the following queries in
optimal worst case time, where x ∈ X and X ′ ⊆ X:

1. list N(x), in time O(|N(x)|);
2. check whether

⋂
x∈X′ N(x) = ∅, in time O(|X ′|);

3. list
⋂

x∈X′ N(x), in time O
(|X ′| +

∣
∣⋂

x∈X′ N(x)
∣
∣
)
;

4. check whether
(
X ′,

⋂
x∈X′ N(x)

)
is a maximal biclique, in time

O
(|X ′| +

∣
∣
⋂

x∈X′ N(x)
∣
∣
)
.

Note that the size of the encoding is only O(n), while the number of edges in
a BDH graph can be Θ(n2), and still allows the computation of the maximal
biclique containing a given set X ′ on one side in time linear in the in the number
of vertices in the biclique.

The algorithm to solve query 3 (queries 1 and 2 are special cases of query 3)
is described in Fig. 2.

Given X ′ ⊆ X, compute
⋂

x∈X′ N(x). We assume the arborescence T is given,
and a data structure for solving lowest common ancestor queries
according to ≤T , as described in [15], has been built.
(ai, bi), for 1 ≤ i ≤ |X ′|, are the end-arcs of the path in T associated to N(xi)

1. let amax = a1

2. for i = 2 to |X ′|
3. if ai >T amax

4. let amax = ai

5. else if ai �≤T amax

6. return ∅
7. let bmin =

∧
T {b1, b2, . . . , bk}

8. if bmin ≥T amax

9. return [amax, bmin]
10. else
11. return ∅

Fig. 2. Algorithm NeighborIntersection.

Let X ′ = {x1, x2, . . . , xk}, and let (ai, bi), for 1 ≤ i ≤ k, be the end-arcs of the
path associated to xi in T . It can be seen that algorithm NeighborIntersection
requires O

(|X ′| +
∣
∣
⋂

x∈X′ N(x)
∣
∣
)

worst case time, since tests in Lines 3 and 5
are performed in constant time starting from the encoding of the 2-dimensional
partial order ≤T . The computation of the lowest common ancestor

∧
T at Line



On the Galois Lattice of Bipartite Distance Hereditary Graphs 47

7 is computed in time O(|X ′|) using the data structure proposed in [14], which
is built in O(n) time. Path retrieval in Line 9 requires O(

∣
∣⋂

x∈X′ N(x)
∣
∣) worst

case time, starting from bmin and following parent pointers in the arborescence
T up to amax.

As a special case, query 3 can be used to list the neighbors of a vertex.
In order to solve query 2, we can still use algorithm NeighborIntersection,
without listing the path in Line 9, thus requiring O(|X ′|) worst case time. Query
4 can be solved using the same algorithm, provided that the same encoding is
stored both for side X and for side Y . In fact,

(
X ′,

⋂
x∈X′ N(x)

)
is a maximal

biclique if and only if X ′ =
⋂

y∈Y0
N(y), where Y0 =

⋂
x∈X′ N(x), that can

be checked by computing Y0 and then computing
⋂

y∈Y0
N(y), i.e., solving two

queries of type 3.

References

1. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite domino-free graphs. Discrete
Appl. Math. 86, 125–144 (1998)

2. Atkinson, M.D.: On computing the number of linear extensions of a tree. Order 7,
23–25 (1990)

3. Bandelt, H.J., Mulder, H.M.: Distance-hereditary graphs. J. Combin. Theory Ser.
B 41, 182–208 (1986)

4. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Trees in concept lattices.
In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol.
4617, pp. 174–184. Springer, Heidelberg (2007)

5. Berry, A., Sigayret, A.: Dismantlable lattices in the mirror. In: Cellier, P., Distel,
F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 44–59. Springer, Heidelberg
(2013)

6. Brucker, F., Gély, A.: Crown-free lattices and their related graphs. Order 28(3),
443–454 (2011)

7. Cornelsen, S., Di Stefano, G.: Treelike comparability graphs. Discrete Appl. Math.
157, 1711–1722 (2009)

8. Fagin, R.: Degrees of acyclicity for hypergraphs and relational database schemes.
J. ACM 30(3), 514–550 (1983)

9. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999)

10. Howorka, E.: A characterization of distance-hereditary graphs. Q. J. Math. 2(26),
417–420 (1977)

11. Howorka, E.: A characterization of Ptolemaic graphs, survey of results. In: Pro-
ceedings of the 8th SE Conference Combinatorics, Graph Theory and Computing,
pp. 355–361 (1977)

12. Peled, U.N., Wu, J.: Restricted unimodular chordal graphs. J. Graph Theory 30(2),
121–136 (1999)

13. Rival, I.: Lattices with doubly irreducible elements. Can. Math. Bull. 17(1), 91–95
(1974)

14. Schieber, G., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988)



48 N. Apollonio et al.

15. Swaminathan, R.P., Wagner, D.B.: The arborescence-realization problem. Discrete
Appl. Math. 59, 267–283 (1995)

16. Syslo, M.M.: Series-parallel graphs and depth-first search trees. IEEE Trans. Cir-
cuits Syst. 31(12), 1029–1033 (1984)

17. Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. The
Johns Hopkins University Press, Baltimore, Maryland (1992)

18. Whitney, H.: 2-isomorphic graphs. Am. Math. J. 55, 245–254 (1933)



Fast and Simple Computations Using Prefix
Tables Under Hamming and Edit Distance

Carl Barton1, Costas S. Iliopoulos1,3, Solon P. Pissis1(B),
and William F. Smyth2

1 King’s College London, London, UK
{carl.barton,c.iliopoulos,solon.pissis}@kcl.ac.uk

2 McMaster University, Hamilton, Canada
smyth@mcmaster.ca

3 University of Western Australia, Crawley, Australia

Abstract. In this article, we introduce a new and simple data structure,
the prefix table under Hamming distance, and present two algorithms to
compute it efficiently: one asymptotically fast; the other very fast on
average and in practice. Because the latter approach avoids the compu-
tation of global data structures, such as the suffix array and the longest
common prefix array, it yields algorithms much faster in practice than
existing methods. We show how this data structure can be used to solve
two string problems of interest: (a) approximate string matching under
Hamming distance; and (b) longest approximate overlap under Hamming
distance. Analogously, we introduce the prefix table under edit distance,
and present an efficient algorithm for its computation. In the process, we
also define the border array under both distance measures, and provide
an algorithm for conversion between prefix tables and border arrays.

1 Introduction

We begin with a few definitions, generally following [19]. We think of a string x
of length n as an array x[0. .n− 1], where every x[i], 0 ≤ i < n, is a letter drawn
from some finite alphabet Σ of size σ = |Σ| = O(1). The empty string of length
0 is denoted by ε. If x = uvw, then u is a prefix, v a substring, w a suffix of x;
proper in each case if u �= x, v �= x, w �= x, respectively. If x has a proper prefix
u that equals a suffix of x, u is said to be a border of x.

The border array β = β[0. .n − 1] of x gives the length β[i] of the longest
border of every prefix x[0. .i], 0 ≤ i < n, of x. It is computed by an elegant
algorithm in time Θ(n) [4,19], and has the property that for every rth longest
border βr[i] > 0, βr+1[i] is the length of the (r + 1)th longest border, where
βr denotes r applications β[β[. . . β[i] . . .]] of this function. Thus β specifies all
the borders of every prefix of x. The prefix table π = π[0. .n − 1] of x gives
the length π[i] of the longest substring beginning at position i, 0 ≤ i < n, of
x, that equals a prefix of x. The prefix table was introduced in [16] to compute
repetitions; it has since prominently appeared in [4,20].

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 49–61, 2015.
DOI: 10.1007/978-3-319-19315-1 5



50 C. Barton et al.

The Hamming distance between strings x and y, both of length n, is the
number of positions i, 0 ≤ i < n, such that x[i] �= y[i]. Given an integer k > 0,
we write x ≡H

k y if the Hamming distance between x and y is at most k.

Observation 1. If x ≡H
k y, then for every i, j ∈ 0, . . . , n − 1, i ≤ j, x[i. .j] ≡H

k

y[i. .j].

We can now define the k-prefix table πH
k of x: for every i, 0 ≤ i < n, πH

k [i] = �
is the length of the longest prefix of x such that x[i. .i+�−1] ≡H

k x[0. .�−1]. By
Observation 1, if πH

k [i] = �, it follows that every prefix x[0. .j], i ≤ j ≤ i+ �− 1,
has a k-border of length j−i+1. Thus, as for regular prefix tables, πH

k determines
all the k-borders of x [4]. Similarly we can define the k-border array βH

k , but
it should be noted that βH

k specifies only the length of the longest border at
each position i, not the lengths of shorter borders. This is a consequence of the
nontransitivity under the distance model.

Given a string x of length m and a string y of length n ≥ m, the edit distance
is the minimum total cost of operations required to transform one string into the
other. For simplicity, we consider the cost of each to be 1 [15]. The allowed edit
operations are as follows: insert a letter in y, not present in x; delete a letter in
y, present in x; and replace a letter in y with a letter in x. We write x ≡E

k y
if the edit distance between x and y is at most k. Equivalently, if x ≡E

k y, we
say that x and y have at most k differences. We refer to the standard dynamic
programming matrix of x and y defined by D[i, 0] = i, for 0 ≤ i ≤ m, D[0, j] =
j, for 0 ≤ j ≤ n, and for 1 ≤ i ≤ m, 1 ≤ j ≤ n :

D[i, j] = min

⎧
⎨

⎩

D[i − 1, j − 1] + 1 (if x[i − 1] �= y[j − 1])
D[i − 1, j] + 1
D[i, j − 1] + 1

Analogously, we can define the k-prefix table πE
k of x and the k-border array

βE
k of x under edit distance.

In Sect. 2, we present two algorithms to compute πH
k : a practical one requiring

average-case time Θ(kn); and another requiring worst-case time Θ(kn); we then
show how to compute βH

k from πH
k in time Θ(n).

In Sects. 3 and 4, we show how the computation of πH
k can be used to greatly

speed up two computations of interest in computational biology and elsewhere.
The first of these is approximate string matching with k-mismatches (see [4]
for a definition) where given a text t of length n the problem is to search for
occurrences of a pattern x of length m < n at Hamming distance at most k
from x. The original algorithms proposed for this problem [9,14] require time
O(kn). Shortly thereafter a O(

√
m log mn)-time algorithm was proposed [1],

with a time requirement independent of k and asymptotically faster than its
predecessors for k ≥ √

m log m. About 13 years ago the asymptotically fastest
algorithm was proposed, executing in time O(

√
k log kn), as well as an alterna-

tive O((n + (nk3)/m) log k)-time algorithm [2]. About 10 years ago an optimal
average-case algorithm was proposed, executing in time O(n(k + logσ m)/m),
only if k/m < 1/2 − O(1/

√
σ) [8]. Section 3 shows how to use πH

k of xt to solve



Fast and Simple Computations Using Prefix Tables 51

this problem in average-case time O(
n+ k(k +1)n/σm/(k+1)

)
— in practice, for

moderate k, essentially linear in n. We also consider the well-known problem of
computing the longest approximate overlap of two strings x of length m and y of
length n ≥ m with k-mismatches. This overlap can be found in time O(kn) [13].
In Sect. 4, we present a very simple algorithm, based on the computation of βH

k

from πH
k , that in time Θ(kn) not only solves the overlap problem for two strings,

but also for every prefix of those strings.
Finally, in Sect. 5, we present an algorithm based on incremental string com-

parison techniques to compute πE
k in worst-case time Θ(kn).

2 Efficient Computation of πH
k and βH

k

We present two algorithms that iteratively overwrite π = π0 with πH
j , j ≥ 1,

until j = k. The first requires average-case time Θ(kn) and the second worst-case
time Θ(kn). We then compute βH

k from πH
k in time Θ(n).

2.1 Average-Case Algorithm for Computing πH
k

The first algorithm is very simple and fast in practice. As we show below, it
executes in average-case time Θ(n) for each of the k iterations.

Fact 2. The expected number of letter comparisons required for each i in algo-
rithm k-PrefixTable-Simple is less than 3.

Proof. On an alphabet of size σ, the probability that two random strings of
length � are equal is (1/σ)�. Let r = 1/σ, there is probability r� the first � symbols
match. Thus the expected number of positions matched before inequality occurs
is S = r + 2r2 + · · · + (n − 1)rn−1, for some n ≥ 2. Hall &Knight [10, p. 44] tell
us that S = r(1−rn−1)/(1−r)2−(n−1)rn/(1−r), which as n → ∞ approaches
r/(1 − r)2 < 2 for all r. Thus S, the expected number of matching positions for
each i, is less than 2, and hence the expected number of letter comparisons
required for each i in algorithm k-PrefixTable-Simple is less than 3. 
�
By Fact 2, we obtain the following.

Theorem 3. Given a string x of length n, the prefix table π of x, and an integer
threshold k < n, algorithm k-PrefixTable-Simple computes πH

k in average-case
time Θ(kn) and space Θ(n).

2.2 Worst-Case Algorithm for Computing πH
k

Observation 4. If πH
k [i] = �, 0 ≤ i < n, then x[0. .�− 1] ≡H

k x[i. .i+ �− 1] and
x[�] �= x[i + �].



52 C. Barton et al.

ALGORITHM. k-PrefixTable-Simple(x, n, π, k)
for j ← 1 to k do

— Nothing to do for i = 0.
for i ← 1 to n − 1 do

δ ← i + π[i];
— Nothing to do if i + π[i] > n.

if δ ≤ n then
repeat

δ ← δ + 1;
until δ > n or x[δ − i] �= x[δ]

end if
π[i] ← min(δ − i, n − i);

end for
end for
return π;

ALGORITHM. k-PrefixTable(x, n, π, k)
Compute SA, iSA, LCP, and RMQLCP of x.
for j ← 1 to k do

— Nothing to do for i = 0.
for i ← 1 to n − 1 do

δ ← π[i] + 1 + lce(π[i] + 1, i + π[i] + 1);
π[i] ← min(δ, n − i);

end for
end for
return π;

Computing the value of � is equivalent to finding the longest common extension,
denoted by lce, of the suffixes starting at πH

j−1[i]+1 and i+πH
j−1[i]+1, 1 ≤ j ≤ k.

To achieve Θ(n)-time computation of each table we must be able to compute
the lce of two suffixes in constant time.

Let SA denote the array of positions of the sorted suffixes of x, i.e. for all
1 ≤ r < n, we have x[SA[r − 1]. .n − 1] < x[SA[r]. .n − 1]. The inverse iSA
of the array SA is defined by iSA[SA[r]] = r, for all 0 ≤ r < n. Let lcp(r, s)
denote the length of the longest common prefix of the strings x[SA[r]. .n − 1]
and x[SA[s]. .n − 1], for all 0 ≤ r, s < n, and 0 otherwise. Let LCP denote the
array defined by LCP[r] = lcp(r − 1, r), for all 1 < r < n, and LCP[0] = 0. We
perform the following linear-time and linear-space preprocessing: (i) compute
arrays SA and iSA of x [17]; (ii) compute array LCP of x [6]; and (iii) preprocess
array LCP for range minimum queries, that we denote by RMQLCP [7]. With the
preprocessing complete, the lce of two suffixes of x starting at positions p and q
can be computed in constant time in the following way (see [12] for details).

lce(p, q) = LCP[RMQLCP(iSA[p] + 1, iSA[q])]

Therefore, we obtain the following.



Fast and Simple Computations Using Prefix Tables 53

ALGORITHM. k-BorderArray(πH
k , n)

βH
k [0] ← 0;

� ← 0;
for i ← 1 to n − 1 do

— Nothing to do if i + πH
k [i] − 1 < �.

if i + πH
k [i] − 1 ≥ � then

for r ← 0 to i + πH
k [i] − 1 − � do

βH
k [i + πH

k [i] − r − 1] ← πH
k [i] − r;

end for
� ← i + πH

k [i];
end if

end for
return βH

k ;

Theorem 5. Given a string x of length n, the prefix table π of x, and an integer
threshold k < n, algorithm k-PrefixTable computes πH

k in worst-case time Θ(kn)
and space Θ(n).

2.3 Computing βH
k from πH

k

Lemma 6. Let � be the largest index in βH
k which has been correctly updated,

and let i be the smallest index such that i + πH
k [i] > � and i ≤ �. Then βH

k [i +
πH

k [i] − r − 1] = πH
k [i] − r, for all 0 ≤ r < i + πH

k [i] − 1 − �.

Proof. We update βH
k [i + π[i] − r − 1], for all 0 ≤ r < i + πH

k [i] − 1 − �, when
we find some index i ≤ � such that i + πH

k [i] > �. As � < i + πH
k [i] − r − 1 <

i + πH
k [i], no βH

k [i + πH
k [i] − r − 1] has been assigned a value, and for all j, such

that i < j < i + πH
k [i] and j + πH

k [j] > �, the k-borders given by j must be
smaller than the k-borders given by i for the same prefix. Therefore, the longest
k-border is given by πH

k [i] − r and βH
k [i + πH

k [i] − r − 1] = πH
k [i] − r, for all

0 ≤ r < i + πH
k [i] − 1 − �. 
�

By Lemma 6, we have no more than 2n operations executed in total by algorithm
k-BorderArray. Therefore, we obtain the following.

Theorem 7. Given array πH
k of string x of length n, algorithm k-BorderArray

computes βH
k in worst-case time and space Θ(n).

A similar approach in a different context was shown in [3]. Moreover, we can
compute all k-borders of x directly from πH

k , thus in time Θ(kn): For every
0 ≤ i < n, πH

k [i] is the length of a k-border of x if and only if πH
k [i] + i = n.

3 Application I: Approximate String Matching
with k-Mismatches via Filtering πH

k

In this section, we present FPT, an algorithm for approximate string matching
with k-mismatches. Algorithm FPT is based on Filtering the k-Prefix Table.



54 C. Barton et al.

Given a pattern x of length m, a text t of length n > m, and an integer threshold
k < m, an outline of algorithm FPT is as follows.

1. Construct T = xt, and compute the prefix table π0 of T .
2. The pattern x is split in k+1 fragments of length �m/(k+1) and �m/(k+1)�.
3. Match the k + 1 fragments against the text t using Aho Corasick automa-

ton [5]. Let L be a list of tuples of size Occ, where < id, p >∈ L is a tuple
such that 0 ≤ id ≤ k is the fragment identifier, and 0 ≤ p < n is the position
that the fragment occurs in t.

4. Using these occurrences we could invalidate (filter out) the positions on π0

that can never give a match if we extend them, i.e. we apply the partitioning
technique [24]. Equivalently, for each tuple < id, p >∈ L, we validate π0[m +
p − id × �id], where �id is the length of the respective fragment.

5. Compute only the valid positions of πH
i , for all 1 ≤ i ≤ k, using algorithm

k-PrefixTable.
6. If πH

k [i] ≥ m, x occurs at starting position i − m of t, for all m ≤ i ≤ n.

Theorem 8. Given a pattern x of length m drawn from alphabet Σ, σ = |Σ|, a
text t of length n > m drawn from Σ, and an integer threshold k < m, algorithm
FPT requires average-case time O(n + k(k + 1)n/σm/(k+1)) and space O(n).

Proof. The computation of the prefix table π0 of T = xt requires time
and space O(n + m) (Step 1) [4]. Splitting the pattern x takes time O(k)
(Step 2). The Aho-Corasick automaton of the k + 1 fragments requires time
O(m) with search time O(n + Occ) (Step 3) [5]. Validating positions of π0

takes time O(Occ) (Step 4). Computing the valid positions of πH
1 , . . . ,πH

k

requires time O(kOcc) (Step 5)—see Sect. 2.2. Reporting the output requires
time O(n) (Step 6). Since the expected number Occ of occurrences of the k + 1
fragments is O((k + 1)n/σm/(k+1)), algorithm FPT requires average-case time
O(n + k(k + 1)n/σm/(k+1)). 
�
Corollary 9. Given a pattern x of length m drawn from alphabet Σ, σ = |Σ|, a
text t of length n > m drawn from Σ, and an integer threshold k = O(m/ log m),
algorithm FPT requires average-case time O(n).

Proof. Algorithm FPT achieves average-case time O(n) iff

k(k + 1)n/σm/(k+1) ≤ cn

for some fixed constant c. Let r = m/(k + 1). We have k(k + 1)n/σr ≤ cn. Since
k < m, we can (pessimistically) replace k by m − 1. Then we have

m(m − 1)n/σr ≤ cn.

Solving for r, and using k ≤ m/r − 1, gives the maximum value of k, that is
k = O(m/ log m). 
�



Fast and Simple Computations Using Prefix Tables 55

By FPT-Simple, we denote the same algorithm apart from Step 5, where algo-
rithm k-PrefixTable is replaced by algorithm k-PrefixTable-Simple. By applying
Fact 2, it requires average-case time O(n), but because this approach avoids the
computation of global data structures, it can be implemented in space O(m).

Corollary 10. Given a pattern x of length m drawn from alphabet Σ, σ = |Σ|, a
text t of length n > m drawn from Σ, and an integer threshold k = O(m/ log m),
algorithm FPT-Simple requires average-case time O(n) and space O(m).

3.1 Experimental Results

We implemented FPT and FPT-Simple as library functions to perform approxi-
mate string matching with k-mismatches. They were implemented in the C pro-
gramming language and developed under GNU/Linux operating system. Keeping
in mind we wish to evaluate the practical efficiency of these two algorithms, we
compared their performance to the respective performance of the following:

– Naive, an algorithm that considers all Θ(n) alignments of the text and the
pattern, and counts mismatches at each alignment, stopping if more than k of
them are found. This algorithm has worst-case time complexity O(mn), but
average-case time complexity O(kn).

– Abrahamson, the algorithm presented in [1]. Even though this algorithm has
worst-case time complexity O(

√
m log mn), we preferred it to the O(

√
k log kn)-

time algorithm presented in [2]. Both algorithms make extensive use of the Fast
Fourier Transform to find the frequently occurring letters, however, the one pro-
posed in [2] also requires the construction of the generalised suffix tree of x and
t which is processed to allow constant-time lowest common ancestor queries,
making it slower in practice. Due to this we opted to use the algorithm pro-
posed in [1].

– FredNava, the algorithm with average-case optimal search time presented
in [8]. The search-time complexity is O(n(k +logσ m)/m) and the space com-
plexity is O(m5σO(1)).

The experiments were conducted on a Desktop PC using 1 Intel Core Quad
CPU Q9650 at 3.00 GHz and 8 GB of RAM and running under GNU/Linux.
The implementation of algorithms FPT and FPT-Simple is distributed under the
GNU General Public License (GPL) and is available at a website1, which is set up
for maintaining the source code. The implementations of algorithms Naive and
Abrahamson were obtained from library StringPedia [21]; the implementation of
algorithm FredNava was obtained via a personal communication with its author.
Tables 1, 2 and 3 illustrate elapsed-time comparisons for various pattern sizes
and moderate values of k, using as text a corpus of English, protein, and DNA
data taken from the Pizza&Chili website [18]. Different patterns were randomly
picked from the text and the average elapsed time for each implementation with
these patterns as input is presented.
1 http://www.inf.kcl.ac.uk/research/projects/asmf/.

http://www.inf.kcl.ac.uk/research/projects/asmf/


56 C. Barton et al.

Table 1. Elapsed-time and speed-up comparisons of algorithms Naive, Abrahamson,
FPT, and FPT-Simple using English data (σ = 128) for n = 50MB. *Algorithm
FredNava was terminated by a segmentation fault

Elapsed Time (s) Speed-up of FPT-Simple

m k Naive Abrahamson FredNava FPT FPT-Simple Naive Abrahamson FredNava FPT

2000 10 1.38 14.92 * 19.73 3.11 0.44 4.79 * 6.34

4000 25 2.54 26.28 * 20.15 3.48 0.72 7.55 * 5.79

8000 50 5.08 38.37 * 20.55 3.79 1.34 10.12 * 5.42

16000 100 9.67 52.32 * 20.86 4.17 2.31 12.54 * 5.00

32000 200 18.99 63.85 * 21.35 4.54 4.18 14.06 * 4.70

2000 25 2.93 14.90 * 20.50 3.73 0.78 3.99 * 5.49

4000 50 4.87 26.21 * 20.74 4.08 1.19 6.42 * 5.08

8000 100 9.70 38.62 * 20.98 4.20 2.30 9.19 * 4.99

16000 200 18.99 52.87 * 21.34 4.38 4.33 12.07 * 4.89

32000 400 37.40 64.64 * 22.12 4.54 8.23 14.23 * 4.87

2000 50 5.15 14.92 * 20.84 4.13 1.24 3.61 * 5.04

4000 100 9.28 26.59 * 20.96 4.18 2.22 6.36 * 5.01

8000 200 18.75 38.57 * 21.42 4.42 4.24 8.72 * 4.84

16000 400 37.13 52.48 * 22.37 4.50 8.25 11.66 * 4.97

32000 800 73.02 64.71 * 25.57 4.55 16.04 14.22 * 5.61

Table 2. Elapsed-time and speed-up comparisons of algorithms Naive, Abrahamson,
FredNava, FPT, and FPT-Simple using protein data (σ = 20) for n = 50MB

Elapsed Time (s) Speed-up of FPT-Simple

m k Naive Abrahamson FredNava FPT FPT-Simple Naive Abrahamson FredNava FPT

2000 10 1.11 19.98 13.34 22.32 2.74 0.41 7.29 4.87 8.15

4000 25 2.50 32.39 14.85 23.24 3.72 0.67 8.71 3.99 6.25

8000 50 4.61 57.20 14.92 24.12 4.16 1.11 13.75 3.59 5.80

16000 100 8.80 70.61 15.16 24.46 4.76 1.85 14.83 3.18 5.14

32000 200 17.20 81.77 15.16 24.73 4.97 3.46 16.45 3.05 4.98

2000 25 2.44 19.84 15.01 25.04 3.54 0.69 5.60 4.24 7.07

4000 50 4.55 32.00 14.97 23.72 4.24 1.07 7.55 3.53 5.59

8000 100 8.66 56.80 15.04 24.25 4.64 1.87 12.24 3.24 5.23

16000 200 17.21 70.71 15.18 24.88 4.86 3.54 14.55 3.12 5.12

32000 400 33.45 81.19 15.12 26.25 4.92 6.80 16.50 3.07 5.34

2000 50 4.67 19.88 14.93 23.88 4.17 1.12 4.77 3.58 5.73

4000 100 8.59 32.47 15.10 24.58 4.72 1.82 6.88 3.20 5.21

8000 200 17.18 56.93 15.00 25.16 4.78 3.59 11.91 3.14 5.26

16000 400 33.33 70.81 15.19 28.44 4.78 6.97 14.81 3.18 5.95

32000 800 66.76 80.90 15.22 36.03 5.08 13.14 15.93 3.00 7.09



Fast and Simple Computations Using Prefix Tables 57

Table 3. Elapsed-time and speed-up comparisons of algorithms Naive, Abrahamson,
FredNava, FPT, and FPT-Simple using DNA data (σ = 4) for n = 50MB

Elapsed Time (s) Speed-up of FPT-Simple

m k Naive Abrahamson FredNava FPT FPT-Simple Naive Abrahamson FredNava FPT

2000 10 3.14 14.88 3.36 22.71 3.36 0.93 4.42 1.00 6.75

4000 25 6.73 16.00 4.50 22.81 3.35 2.00 4.77 1.34 6.80

8000 50 12.74 16.69 4.32 22.96 3.48 3.66 4.79 1.24 6.59

16000 100 24.86 19.01 4.40 23.18 3.62 6.86 5.25 1.21 6.40

32000 200 49.28 20.38 4.40 23.19 3.86 12.76 5.27 1.13 6.00

2000 25 6.83 14.82 4.49 22.89 3.36 2.03 4.41 1.33 6.81

4000 50 12.82 15.83 4.28 22.91 3.43 3.73 4.61 1.14 6.67

8000 100 24.78 16.72 4.31 22.94 3.50 7.08 4.77 1.23 6.55

16000 200 49.17 19.01 4.47 23.15 3.64 13.50 5.22 1.22 5.16

32000 400 98.23 20.29 4.40 23.31 3.88 25.31 5.22 1.21 6.00

2000 50 12.89 14.86 4.31 23.25 3.42 3.76 4.34 1.26 6.79

4000 100 25.05 15.65 4.31 24.02 3.50 7.15 4.47 1.23 6.86

8000 200 48.90 18.98 4.31 25.30 3.68 13.28 5.15 1.17 6.87

16000 400 97.55 19.04 4.40 26.06 3.78 25.80 5.03 1.16 6.89

32000 800 195.18 20.26 4.40 27.53 4.10 47.60 4.94 1.07 5.55

As demonstrated by the experimental results, algorithm FPT-Simple is in
most cases the fastest. Algorithm Naive is the fastest for small m and k. Algo-
rithm FredNava with English data was terminated by a segmentation fault during
preprocessing stage due to lack of memory. Algorithms FredNava and FPT-Simple
with DNA data perform very similarly. Another observation, also suggested by
Corollaries 9 and 10, is that the FPT-based algorithms are essentially indepen-
dent of m for moderate values of k.

4 Application II: Longest Approximate Overlap of Two
Strings with k-Mismatches

Finding approximate overlaps is the first phase of many sequence assembly meth-
ods. Given a set of r strings and an error rate ε, the goal is to find, for all pairs of
strings, their suffix/prefix matches (overlaps) that are within edit or Hamming
distance k = �ε��, where � is the length of the overlap. Many existing solutions
focus on applications where r is large, the average string length is small, and
k is small; and therefore make use of techniques such as backward backtrack-
ing and/or suffix filters to save space [23]. However, algorithms are also needed
to merge overlapping paired-end reads, in the case when r = 2, while correct-
ing mismatches and uncalled bases [25]. Here we focus on the case where r = 2,
although our algorithm can be used to compute the approximate overlap between
r strings in time Θ(r2Nk), where N is the average length of the r strings.

Given a string x of length m, a string y of length n ≥ m, and an integer
threshold k < m, this overlap under edit or Hamming distance can be found



58 C. Barton et al.

in time O(kn) by the algorithm of [13]. Here, we propose a simple alternative
algorithm, for Hamming distance, that requires time Θ(kn) and space Θ(n).
Furthermore, notice that the proposed algorithm not only computes the longest
approximate overlap of x and y with k-mismatches, but also of all their prefixes.

1. Construct T = yx, and compute the prefix table π0 of T .
2. Compute the arrays πH

1 , . . . ,πH
k of T using algorithm k-PrefixTable.

3. Compute the arrays βH
0 ,βH

1 , . . . ,βH
k of T using algorithm k-BorderArray.

4. βH
0 [m+n−1],βH

1 [m+n−1], . . . ,βH
k [m+n−1] give the longest approximate

overlap of x and y with 0, 1, . . . , k mismatches, respectively.

As mentioned above, existing solutions for the overlap problem consider very
different sets of parameters, and so are not directly comparable with ours. Similar
to Sect. 3, we anticipate that using algorithm k-PrefixTable-Simple to compute
the k-prefix table and, then, algorithm k-BorderArray to compute the k-border
array would yield a very fast and simple solution.

5 Efficient Computation of πE
k and βE

k

In this section, we consider the prefix table under edit distance and present
an efficient algorithm for its computation. The computation is heavily based
on incremental string comparison techniques so first we give an overview of
these techniques. The incremental string comparison problem was introduced by
Landau et al. in [13]. The authors considered the following problem: given the
edit distance between two strings A and B, how can the edit distance between
A and bB; or Bb be efficiently derived, where b is an additional letter? Given
a threshold on the number of differences k, they solve this problem and allow
prepending and appending of letters in time O(k) per operation. Later in [11] a
generalisation of the problem was considered where prefixes can be deleted and
prepended to A or B with time complexity of O(k) per letter.

The idea in both [11,13] is the efficient computation of h-waves. In the stan-
dard dynamic programming matrix, we say that a cell D[i, j] is on the diagonal
d iff j − i = d. For each diagonal, we may have a lowest cell with value h;
if D[i, j] = h and D[i + 1, j + 1] = h + 1 then D[i, j] is this cell for diagonal
j − i. The h-wave, for all 0 ≤ h ≤ k, is the position of all these cells across
all diagonals, that is, a list Hh of length O(k), where each entry is a pair (i, j)
such that D[i, j] = h and D[i + 1, j + 1] = h + 1. Note that the i-th wave can
only contain entries on diagonal zero and the i diagonals either side of it, so for
0 ≤ i ≤ k every wave has size O(k). These h-waves define the entire dynamic
programming matrix due to monotonicity properties. For any diagonal d, if we
know the position of the lowest cell on d with value h and h + 1, then we also
know the value of every cell between these two cells: it must be h + 1. So given
the h-waves of the matrix, for all 0 ≤ h ≤ k, we have all the information from
the standard dynamic programming matrix. The key result from our perspec-
tive is the following. Let cat(u′,u) denote the string obtained by concatenating
string u′ and string u. Let del(α,u) denote the string obtained by deleting the



Fast and Simple Computations Using Prefix Tables 59

prefix of length α from string u. Further let D′ denote the standard dynamic
programming matrix of cat(A′,A) and del(t2,B), where |A′| = t1.

Theorem 11 ([11]). The 0-wave, 1-wave, . . . , and k-wave of matrix D′ can be
computed in time O((t1 + t2)k).

ALGORITHM. k-PrefixTable-ED(x, n, k)
πE

k [0] ← n;
D ← DP(x, x[1. .n − 1], k); H0,...,k ← GH(D);
for i ∈ {1, n − 1} do

� ← −1;
for (u, v) ∈ Hk do

if v > u then
w ← u;

else
w ← v;

end if
if w ≥ � then

� ← w; δ ← v − u;
end if

end for
if δ > 0 then

πE
k [i] ← �;

else
πE

k [i] ← � − δ;
end if
if i < n − 1 then

H0,...,k ← ISC(H0,...,k, x, x[i. .n − 1], 1);
end if

end for
return πE

k ;

Let DP(x,y, k) denote the dynamic programming algorithm for computing
the edit distance (at most k) between strings x and y. This algorithm requires
time Θ(kn) [22]. Let D denote the resulting dynamic programming matrix of
size Θ(kn). Further, let GH(D) denote the function to extract H0,...,k from D,
and let ISC(H0,...,k,x,y, α) denote the incremental string comparison function
that updates H0,...,k for x and del(α,y). We are now in a position to outline the
computation of the prefix table under edit distance. For each position i, for all
1 ≤ i < n, we compute H0,...,k for x and x[i. .n − 1]. We then check the k-wave
of the dynamic programming matrix to find the length � of the longest prefix of
x such that x[i. .i + j − 1] ≡E

k x[0. .� − 1] for � ≥ k and � − k ≤ j ≤ � + k.
The k-wave is stored as a linked list of size 2k that specifies for each diagonal

the lowest cell with value k. To find this longest prefix, we simply iterate through
the linked list of the k-wave and keep track of the diagonal δ with the lowest cell
on the k-wave. If a diagonal has no cell with value k then clearly that diagonal
has reached the last row of the dynamic programming matrix. This procedure
can be seen in algorithm k-PrefixTable-ED. Hence we obtain the following.



60 C. Barton et al.

Theorem 12. Given a string x of length n and an integer threshold k < n,
algorithm k-PrefixTable-ED computes πE

k in worst-case time and space Θ(kn).

The conversion between πE
k and βE

k is performed in exactly the same way as for
Hamming distance (algorithm k-BorderArray).

References

1. Abrahamson, K.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051
(1987)

2. Amir, A., Lewenstein, M., Porat, E.: Faster algorithms for string matching with k
mismatches. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2000), pp. 794–803. Society for Industrial and Applied
Mathematics, USA (2000)

3. Bland, W., Kucherov, G., Smyth, W.F.: Prefix table construction and conversion.
In: Lecroq, T., Mouchard, L. (eds.) IWOCA 2013. LNCS, vol. 8288, pp. 41–53.
Springer, Heidelberg (2013)

4. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, New York (2007)

5. Dori, S., Landau, G.M.: Construction of Aho Corasick automaton in linear time
for integer alphabets. Inf. Process. Lett. 98(2), 66–72 (2006)

6. Fischer, J.: Inducing the LCP-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)

7. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

8. Fredriksson, K., Navarro, G.: Average-optimal single and multiple approximate
string matching. J. Exp. Algorithmics 9, 1–47 (2004). http://doi.acm.org/10.1145/
1005813.1041513

9. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. ACM
SIGACT News 17(4), 52–54 (1986)

10. Hall, H.S., Knight, S.R.: Higher Algebra. MacMillan, London (1950)
11. Hsu, P.-H., Chen, K.-Y., Chao, K.-M.: Finding all approximate gapped palin-

dromes. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 1084–1093. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/3-540-
12689-9 129

12. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited
and applications to approximate string searching. J. Discrete Algorithms 8(4),
418–428 (2010)

13. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27–2, 557–582 (1998)

14. Landau, G.M., Vishkin, U.: Efficient string matching in the presence of errors. In:
IEEE (ed.) Proceedings of the 26th Annual Symposium on Foundations of Com-
puter Science (FOCS 1985), USA, pp. 126–136. IEEE Computer Society (1985)

15. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Technical report 8 (1966)

16. Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in
a string. J. Algs 5, 422–432 (1984)

17. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: Proceedings of the 2009 Data Compression Conference, DCC
2009, pp. 193–202, IEEE Computer Society, Washington, DC (2009)

http://doi.acm.org/10.1145/1005813.1041513
http://doi.acm.org/10.1145/1005813.1041513
http://dx.doi.org/10.1007/3-540-12689-9_129
http://dx.doi.org/10.1007/3-540-12689-9_129


Fast and Simple Computations Using Prefix Tables 61

18. Pizza & Chili, April 2013. http://pizzachili.dcc.uchile.cl/
19. Smyth, B.: Computing Patterns in Strings. Pearson Addison-Wesley, London

(2003)
20. Smyth, W.F., Wang, S.: New perspectives on the prefix array. In: Amir, A.,

Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 133–143. Springer,
Heidelberg (2008)

21. StringPedia, April 2013. http://stringpedia.bsmithers.co.uk
22. Ukkonen, E.: On approximate string matching. In: Karpinski, M. (ed.) Foundations

of Computation Theory. Lecture Notes in Computer Science, vol. 158, pp. 487–495.
Springer, Heidelberg (1983). http://dx.doi.org/10.1007/3-540-12689-9 129

23. Välimäki, N., Ladra, S., Mäkinen, V.: Approximate all-pairs suffix/prefix overlaps.
In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 76–87. Springer,
Heidelberg (2010)

24. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35(10),
83–91 (1992)

25. Zhang, J., Kobert, K., Flouri, T., Stamatakis, A.: PEAR: a fast and accurate
Illumina paired-end reAd mergeR. Bioinformatics 30(5), 614–620 (2013)

http://pizzachili.dcc.uchile.cl/
http://stringpedia.bsmithers.co.uk
http://dx.doi.org/10.1007/3-540-12689-9_129


Border Correlations, Lattices, and the Subgraph
Component Polynomial

Francine Blanchet-Sadri1(B), Michelle Cordier2, and Rachel Kirsch3

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematical Sciences, Kent State University,

P.O. Box 5190, Kent, OH 44242, USA
mcordie1@kent.edu

3 Department of Mathematics, University of Nebraska-Lincoln,
203 Avery Hall, P.O. Box 880130, Lincoln, NE 68588–0130, USA

rkirsch2@math.unl.edu

Abstract. We consider the border sets of partial words and study the
combinatorics of specific representations of them, called border correla-
tions, which are binary vectors of same length indicating the borders. We
characterize precisely which of these vectors are valid border correlations,
and establish a one-to-one correspondence between the set of valid bor-
der correlations and the set of valid period correlations of a given length,
the latter being ternary vectors representing the strong and strictly weak
period sets. It turns out that the sets of all border correlations of a given
length form distributive lattices under suitably defined partial orderings.
We also investigate the population size, i.e., the number of partial words
sharing a given border correlation, and obtain formulas to compute it. We
do so using the subgraph component polynomial of an undirected graph,
introduced recently by Tittmann et al. (European Journal of Combi-
natorics, 2011), which counts the number of connected components in
vertex induced subgraphs.

1 Introduction

Borders and periods are two fundamental concepts of combinatorics on words
that play an important role in several research areas including text compression,
computational biology, string searching and pattern matching algorithms (see,
e.g., [7]). It is well-known that these two word notions do not exist independently
from each other. The length of the maximal border of a word is its length minus
the length of its minimal period. Equivalently, it is unbordered if it has no proper
period. Borders and periods are also well-studied concepts in combinatorics on
partial words which allow positions to have don’t care characters or holes (see,

This material is based upon work supported by the National Science Foundation
under Grants DMS–0754154 and DMS–1060775. The Department of Defense is also
gratefully acknowledged.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 62–73, 2015.
DOI: 10.1007/978-3-319-19315-1 6



Border Correlations, Lattices, and the Subgraph Component Polynomial 63

e.g., [2]), as well as indeterminate strings which allow positions to have subsets
of the alphabet (see, e.g., [12]).

The combinatorics of specific representations of the border sets and period
sets of (partial) words of length n over a finite alphabet have been studied.
Among them are the period correlations, which are n-bit vectors indicating the
periods, and the border correlations, which are n-bit vectors indicating the pres-
ence of borders of a certain length. Guibas and Odlyzko [8] introduced the
period correlations, so-called (auto)correlations, provided characterizations of
them, asymptotic bounds on their number, and a recurrence for calculating the
population size of a period correlation, that is, the number of words sharing a
given period correlation. Rivals and Rahmann [11] showed that the set of all
period correlations of words of a given length is a lattice under set inclusion,
proposed the first efficient algorithm for enumerating them, and improved upon
Guibas and Odlyzko’s asymptotic lower bounds on their number. They also pro-
vided a new recurrence to compute the population size. Harju and Nowotka [9]
studied refined border correlations which specify the lengths of all the words’
bordered cyclic shifts’ minimal borders. Extensions of these results to partial
words appear in [4,5]. In particular, ternary vectors representing the strong and
strictly weak periods of partial words were considered.

On the other hand, Tittmann et al. [13] introduced the subgraph component
polynomial Q(G;x, y) of an undirected graph G with n vertices as the bivariate
generating function which counts the number of connected components in vertex
induced subgraphs, i.e., Q(G;x, y) = Σn

j=0Σ
n
i=0qji(G)xjyi, where qji(G) is the

number of vertex induced subgraphs of G with exactly j vertices and i connected
components. They showed that the power of the subgraph component polyno-
mial for distinguishing graphs is quite different from the power of other graph
polynomials that appear in the literature (see, e.g., [10] for more information
on graph polynomials). Recently, Blanchet-Sadri et al. [3] showed the use of the
subgraph component polynomial to count the number of primitive partial words
of a given length over an alphabet of a fixed size, which leads to a method for
enumerating such partial words.

In this paper, we establish connections between border correlations, lattices,
and the subgraph component polynomial. We use the subgraph component poly-
nomial to count the number of partial words of length n over a k-letter alphabet
that have the same border correlation, or its population size. We associate an
undirected graph Gbc with any border correlation bc of length n as follows: the
vertices represent the positions 0, . . . , n − 1 and the edges are the pairs {i, j}
that are (n− �)-apart, where � indicates the length of a border. It turns out that
the population size of bc can be expressed in terms of the Q(Gbc; 1, k)’s.

The contents of our paper are as follows: In Sect. 2, we review some basic
concepts on partial words such as borders, strong periods and weak periods, and
discuss relationships between them. In Sect. 3, we first recall the fact that the
set of period correlations of partial words over an arbitrary alphabet of cardi-
nality at least two is the same as the set of period correlations of partial words
over a binary alphabet. We then introduce border correlations and characterize



64 F. Blanchet-Sadri et al.

precisely which vectors are valid border correlations. We establish a one-to-one
correspondence between the set of valid border correlations and the set of valid
period correlations of a given length giving an algorithm for generating the valid
period correlations of a given length. We also prove that all valid border corre-
lations correspond to partial words over the binary alphabet. In Sect. 4, we look
at a more optimal way of counting valid colorings of undirected graphs by using
the subgraph component polynomial and looking at different graph structures.
In Sect. 5, we give formulas to calculate the population size of a given border
correlation. One approach is based on the previous section and another approach
is based on the fact that the sets of all border correlations of a given length form
distributive lattices under suitably defined partial orderings. Finally in Sect. 6,
we conclude with some open problems.

2 Preliminaries

Let Σ be a finite and non-empty set of characters, called an alphabet. Each
element a of Σ is referred to as a letter, and a sequence of letters from Σ as a
word, or total word, over Σ. A partial word over Σ is a sequence of characters
from Σ� = Σ ∪ {�}, where �, a new character which is not in Σ, is the “don’t
care” or “hole” character (it represents an undefined position). Note that a total
word is a partial word with no holes. The length of a partial word w, denoted by
|w|, is the number of characters in w. For example, if w = abbac��c then |w| = 8.
The empty word is the word of length zero and we denote it by ε. The set of all
words over Σ is denoted by Σ∗. We denote by Σn the set of all words of length
n over Σ. We can similarly define Σ∗

� and Σn
� for partial words over Σ.

A partial word u is a factor of a partial word w if there exist (possibly
empty) partial words x, y such that w = xuy. We say that u is a prefix of w if
x = ε. Similarly, u is a suffix of w if y = ε. Starting numbering positions from
0, we denote the character in position i of w by w[i] and the factor of w from
position i to position j (inclusive) by w[i..j] and from position i to position j
(non-inclusive) by w[i..j). We denote w concatenated with itself m times as wm.

If u and v are partial words of equal length over Σ, then u is contained in v,
denoted by u ⊂ v, if u[i] = v[i] for all i such that u[i] ∈ Σ. Partial words u and
v are compatible, denoted by u ↑ v, if there exists a partial word w such that
u ⊂ w and v ⊂ w. A non-empty partial word w is unbordered if no non-empty
partial words x1, x2, u, v exist such that w = x1u = vx2 and x1 ↑ x2. If such
non-empty partial words exist, then x exists such that x1 ⊂ x and x2 ⊂ x and
we call w bordered and x a border of w. It is easy to see that if w is unbordered
and w ⊂ w′, then w′ is unbordered as well. Note that there are two types of
borders: writing w = x1u = vx2, where x1 ⊂ x and x2 ⊂ x, we say that x is
a simple border if |x| ≤ |u|, and a non-simple border otherwise. For example,
a��ab is bordered with the simple border ab and non-simple border aab, the first
one being minimal, while ab�c is unbordered.

A strong period of a partial word w over Σ is a positive integer p such that
w[i] = w[j] whenever w[i], w[j] ∈ Σ and i ≡ j (mod p); w is called strongly



Border Correlations, Lattices, and the Subgraph Component Polynomial 65

p-periodic. A weak period of w is a positive integer p such that w[i] = w[i + p]
whenever w[i], w[i + p] ∈ Σ; w is weakly p-periodic. A strictly weak period is a
weak period that is not a strong period. The set of all strong periods (respec-
tively, weak periods) of w is denoted by SP(w) (respectively, WP(w)). The
following two lemmas are useful for our purposes. The first one states that a
weak period is a strong period if and only if all of its multiples are also weak
periods, and the second one establishes relationships between borders, and strong
and weak periods. Note that aaa�aba has a border of length 5 but is not strongly
2-periodic, hence the bound on � in Lemma 2(b).

Lemma 1 ([5]). Let w be a partial word and let p ∈ WP(w). Then p ∈ SP(w)
if and only if for all 0 < i ≤ |w|

p , ip ∈ WP(w).

Lemma 2 ([1]). Let w be a partial word.

(a) If 0 < � < |w|, then w has a border of length � if and only if w has weak
period |w| − �.

(b) If 0 < � ≤ 	 |w|
2 
, then w has a border of length � if and only if w has strong

period |w| − �.

3 Period and Border Correlations

Period correlations are defined according to the following definition.

Definition 1 ([5]). The period correlation of a partial word w of length n is
the ternary vector pcw of length n such that pcw[0] = 1 and for 1 ≤ i < n:

pcw[i] =

⎧
⎪⎨

⎪⎩

1 if i ∈ SP(w),
2 if i ∈ WP(w) \ SP(w),
0 otherwise.

Considering the partial word abaca��acaba which has strong periods 9 and 11
(and 12) and strictly weak period 5, its period correlation vector is 100002000101.
For any partial word w, note that both w and its reversal share the same period
correlation. We say that a ternary vector of length n is a valid period correlation
if it is the period correlation of some partial word of length n. The following
theorem implies that the sets of all valid period correlations are independent of
the alphabet size.

Theorem 1 ([5]). If w is a partial word over an alphabet Σ, then there exists a
binary partial word w′ of length |w| such that SP(w′) = SP(w) and WP(w′) =
WP(w).

Border correlations are now defined according to the following definition.



66 F. Blanchet-Sadri et al.

Definition 2. The border correlation of a partial word w of length n is the
binary vector bcw of length n such that bcw[n − 1] = 1 and for 0 ≤ i < n − 1:

bcw[i] =

{
1 if w has a border of length i + 1,

0 otherwise.

Considering again the partial word abaca��acaba, its border correlation vector
is 101000100001. The following theorem gives a characterization of the possible
border length sets of partial words of arbitrary length.

Theorem 2. Given a binary number q = q0q1 · · · qn−1 with qn−1 = 1, the binary
partial word w = w[0..n − 1] defined by w[n − 1] = b and for 0 ≤ i < n − 1,

w[i] =
{ � if qi = 1,

a otherwise

satisfies the equation bcw = q. In other words, every binary number that ends
in 1 is a valid border correlation.

Given the binary number 10101, the previous theorem builds the partial word
�a�ab having 10101 as its border correlation.

Theorem 3. There is a one-to-one correspondence between the set of valid bor-
der correlations and the set of valid period correlations of a given length.

The correspondence of Theorem 3 leads to an algorithm that can generate a list
of all the valid border correlations of a given length, and their corresponding
period correlations. For example, suppose we want to find the period correlation
pc corresponding to the border correlation 1111001111. We first assign pc[0] = 1
by definition. The border correlation gives the border set {1, 2, 3, 4, 7, 8, 9}, which
corresponds to the weak period set {9, 8, 7, 6, 3, 2, 1}. Thus, 4 and 5 are not weak
periods, so pc[4] and pc[5] are zeros. Then we check whether each weak period’s
multiples are also weak periods. All of the multiples of 9, 8, 7, 6, and 3 are also
in the weak period set, so pc[3], pc[6], pc[7], pc[8], and pc[9] are all ones. The
weak period set does not contain all of the multiples of 2 or of 1, so pc[1] and
pc[2] are twos. Now pc has been determined to be 1221001111.

Theorem 4. If w is a partial word over an alphabet Σ, then there exists a
binary partial word w′ such that bcw′ = bcw.

4 Valid Colorings of Undirected Graphs Using
the Subgraph Component Polynomial

We adopt the notation Σy for an arbitrary y-letter alphabet.

Definition 3. Let G = (V,E) be an undirected graph such that V = [0..n − 1]:



Border Correlations, Lattices, and the Subgraph Component Polynomial 67

– A valid coloring over Σy of G is one in which the colors of adjacent vertices
are the same or one is the hole color. Here, the colors are the y letters of the
alphabet Σy as well as the hole color, �. The number of valid colorings over
Σy of G, denoted by VCy(G), is the number of partial words w of length n
over Σy such that if {i, j} ∈ E, then w[i] ↑ w[j].

– If s is a sequence of pairs of the form (i, c), where i ∈ V and c ∈ Σy∪{�}, then
the number of s-valid colorings over Σy of G, denoted by s-VCy(G), is the
number of valid colorings w over Σy of G subject to the restrictions imposed
by s, that is, if (i, c) is in s, then w[i] = c. If s consists of a singleton (i, c),
then we simply write (i, c)-VCy(G).

Definition 4. Let G = (V,E) be an undirected graph such that V = [0..n − 1].
The connected component vector of G, denoted by ccG, is a vector of length n+1
such that for 0 ≤ i ≤ n, ccG[i] is the number of ways to remove a set of vertices
from G such that the resulting induced subgraph has i connected components.

For example, consider the graph G = ({0, 1, 2, 3, 4}, {{0, 2}, {1, 3}, {2, 4}}). Then
VC2(G) = 119, one of the valid colorings over {a, b} of G being aa�ab (we show
later how to calculate 119). The connected component vector of G is 19(19)300.
For example, the three ways to remove a set of vertices from G to get induced
subgraphs with three connected components are to remove the sets {2}, {1, 2},
and {2, 3}, so ccG[3] = 3.

Let P (G; y) =
∑n

i=0 yi ccG[i] be the generating function for the connected
component vector ccG of an undirected graph G on n vertices. We can obtain
this by plugging in x = 1 into the subgraph component polynomial Q(G;x, y), as
defined by Tittmann et al. [13]. The next theorem shows that there are P (G; y)
partial words of length n over Σy that satisfy the required compatibilities to be
valid colorings over Σy of an undirected graph G on n vertices.

Theorem 5. If G = (V,E) is an undirected graph with V = [0..n − 1], then

VCy(G) = P (G; y) =
n∑

i=0

yi ccG[i].

Results on subgraph component polynomials facilitate the computation of con-
nected component vectors.

Theorem 6 ([13]). If G = G1�G2�· · ·�Gn is the disjoint union of the graphs
G1, G2, . . . , Gn, then P (G; y) =

∏n
j=1 P (Gj ; y).

We adopt the following notations for graphs on n vertices: En is the empty graph,
Kn is the complete graph, Pn is a path graph, and Cn is the cycle graph. A wheel
graph (respectively, broken wheel graph) of order n is a graph consisting of a
cycle graph on n vertices and an additional vertex, called a hub, that is adjacent
to all (respectively, at least one) of the vertices in the cycle graph. We denote a
wheel graph of order n by Wn and a broken wheel graph of order n by Ws, where
s is a sequence of numbers whose sum is n. The first number in s is a number
of consecutive hub-adjacent vertices, the second number in s is the number of



68 F. Blanchet-Sadri et al.

0

1

2 3

4

0

1

2 3

4
5

0

1

2 3

4
5

0

1

2 3

4

Fig. 1. From left to right: the path graph P5, the cycle graph C5, the broken wheel
graph W3,2, and the broken wheel graph W1,2,1,1. They are associated with the border
correlations 00011, 10011, 110011, and 010011 respectively (see Sect. 5).

consecutive non-hub-adjacent vertices following the hub-adjacent ones, and so
on around the cycle. See Fig. 1 for examples.

Although the subgraph component polynomials of Pn, Cn, and Wn have been
studied and formulas have been given, we give new formulas.

Proposition 1 ([13]). The equalities (a)P (En; y) = (1+y)n and (b)P (Kn; y) =
1 + (2n − 1)y hold.

Proposition 2. The following equality holds:

P (Pn; y) = 1 +
n−1∑

h=0

h∑

i=0

(
n − h − 1

i

)(
h + 1
h − i

)

yi+1.

Moreover, let c be one of y non-hole colors, let s = 〈(0, c), (n − 1, c)〉, and let
s′ = 〈(0, c)〉. Then the following hold:

(a) s-VCy(Pn) = 1 +
∑n−2

h=1

∑h
i=1

(
n−h−1

i

)(
h−1
h−i

)
yi−1,

(b) s′-VCy(Pn) = 1 +
∑n−1

h=1

∑h
i=1

(
n−h−1

i

)(
h

h−i

)
yi.

Proposition 3. If c is one of y non-hole colors, then the following hold:

(a) P (Cn; y) = 2P (Pn−1; y) − P (Pn−2; y) + (s-VCy(Pn))y, where
s = 〈(0, c), (n − 1, c)〉,

(b) P (Wn; y) = P (Cn; y) + 2ny,
(c) P (W1,n−1; y) = P (Cn; y) + (s-VCy(Pn+1) + P (Pn−1; y))y, where

s = 〈(0, c), (n, c)〉,
(d) If n − r > 1, then P (Wn−r,r; y) is

P (Cn; y) + (s-VCy(Pr+2) + 2(s′-VCy(Pr+1)) + P (Pr; y))y2n−r−2,

where s = 〈(0, c), (r + 1, c)〉 and s′ = 〈(0, c)〉.
The graph G may not have any of the above forms, but its complement G may
have.

Theorem 7. If G = (V,E) is an undirected graph with V = [0..n − 1], then
VCy(G) = P (G; y) = 1 + (2n − 1)y + P (G; y), where 1 + (2n − 1)y counts the
number of valid unary colorings of G, i.e., those with at most one non-hole color,
and P (G; y) counts the number of valid non-unary colorings of G, i.e., those with
at least two and at most y non-hole colors.



Border Correlations, Lattices, and the Subgraph Component Polynomial 69

We give formulas when G = Pn or G = Cn.

Proposition 4. Let G = (V,E) be an undirected graph such that V = [0..n−1].
If G = Pn, then P (G; y) = y(y − 1)(2n − 3).

Proposition 5. Let G = (V,E) be an undirected graph such that V = [0..n−1].
If G = Cn, then

P (G; y) =

⎧
⎨

⎩

y(y − 1)(2n + y − 2) if n = 3 and y ≥ 3,
y(y − 1)(2n + 1) if n = 4,
2y(y − 1)n otherwise.

If a graph G has only one connected component and G’s connected components
are only path graphs, cycle graphs, and vertices of degree zero, we can calculate
the number of valid non-unary colorings of G by looking at each connected com-
ponent of G, ignoring the vertices of degree zero, and then add the results because
the non-unary colorings of these components are mutually exclusive. Considering
the graph G = ({0, 1, 2, 3, 4}, {{0, 2}, {1, 3}, {2, 4}}) again, we calculate VCy(G)
as follows. First, consider P2 on vertices 1 and 3, and P3 on vertices 0, 2 and 4. We
have P (P2; y) = 1+3y and P (P3; y) = 1+6y+y2 by using Proposition 2. Apply-
ing Theorems 5 and 6, we obtain VCy(G) = P (P2 �P3; y) = P (P2; y)P (P3; y) =
1 + 9y + 19y2 + 3y3, as is also computed from the connected component vector
of G. If y = 2, we get VC2(G) = 119. On the other hand, VCy(P2 � P3) =
1+(25 −1)y+P (P2 �P3; y) = 1+(25 −1)y+P (P2; y)+P (P3; y) = 1+27y+4y2

by using Theorem 7 and Proposition 4.
We can modify Definitions 3 and 4 to count valid colorings when restricting

the number of holes. For an undirected graph G = (V,E) such that V = [0..n−1]
and an integer h in [0..n], a h-valid coloring over Σy of G is one in which no ver-
tices colored with two different colors from Σy are adjacent and in which exactly
h vertices are colored with the hole color. The number of h-valid colorings over
Σy of G, denoted by VCh,y(G), is the number of partial words w of length n with
h holes over Σy such that if {i, j} ∈ E, then w[i] ↑ w[j]. The (n − h)-connected
component vector of G, denoted by ccn−h,G, is a vector of length n + 1 such
that for 0 ≤ i ≤ n, ccn−h,G[i] is the number of ways to remove a set of exactly h
vertices from G such that the resulting induced subgraph has i connected com-
ponents. Referring to the subgraph component polynomial Q(G;x, y), we use
the notation Qn−h(G;x, y) when we restrict to induced subgraphs with exactly
n − h vertices, and similarly for Pn−h(G; y).

Theorem 8. If G = (V,E) is an undirected graph with V = [0..n − 1] and h is
an integer in [0..n], then

VCh,y(G) = Pn−h(G; y) =
n∑

i=0

yi ccn−h,G[i].



70 F. Blanchet-Sadri et al.

5 Population Size

We derive formulas to compute the population size over Σk, an arbitrary k-letter
alphabet, of a given border correlation bc, i.e., the number of partial words over
Σk sharing bc as their border correlation, which we denote by PSk(bc). Given
m undirected graphs G1 = (V,E1), . . . , Gm = (V,Em) with the same vertex set
V , we let ∪(G1, . . . , Gm) = (V,E1 ∪ · · · ∪ Em).

We first describe a graphical approach based on the subgraph component
polynomial to calculate the population size. We define two types of graph col-
lections that are associated with a border correlation.

Definition 5. Let bc = bc[0..n) be a border correlation. For each � ∈ [1..n),
associate an undirected graph whose set of vertices consists of [0..n−1] and whose
set of edges consists of the pairs {i, j} such that |i − j| = n − �.

– Let GC(bc) be the collection of all graphs associated with integers � such that
bc[� − 1] = 1. Each graph in this collection is called a compatibility graph. If
GC(bc) = {G1, . . . , Gm}, then let Gbc be ∪(G1, . . . , Gm).

– Let GI(bc) be the collection of all graphs associated with integers � such that
bc[�−1] = 0. Each graph in this collection is called an incompatibility graph.
If GI(bc) = {G1, . . . , Gm}, then let Gbc be ∪(G1, . . . , Gm) (note that Gbc is
the complement graph of Gbc).

Note that the graph associated with � records the pairs of positions that are
(n−�)-apart. A compatibility graph associated with � encodes the compatibilities
a partial word w must satisfy to have a border of length �, i.e., it must satisfy
w[0..�−1] ↑ w[n− �..n−1], while an incompatibility graph associated with � has
a set of edges such that at least one edge must correspond to an incompatibility
in order for w not to have a border of length �. Figure 2 gives an example.

The graphs Gbc and Gbc may have the forms we discussed in Sect. 5 (see
Fig. 1). Letting 0 = 1 and 1 = 0, note that if bc = bc[0..n) is a border correlation
and bc′ = bc′[0..n) is the border correlation such that bc′[i] = bc[i] for 0 ≤ i <
n−1, then Gbc = Gbc′ . Also note that the graph G000100010001000100010001 is the
disjoint union of four K6’s. This observation generalizes to the following.

Proposition 6. Let bc = [0..n) be a border correlation and let p be a positive
integer. Let bc′ = [0..pn) be the border correlation such that bc′[j] = bc[i] for

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4

Fig. 2. First graph is the compatibility graph of border correlation 00101 that corre-
sponds to a border of length 3. Three other graphs are the incompatibility graphs of
border correlation 00101 that correspond to a border of length 1, 2, and 4, respectively.



Border Correlations, Lattices, and the Subgraph Component Polynomial 71

j = ip + p − 1, 0 ≤ i < n and bc′[j] = 0 otherwise. Then Gbc′ is the disjoint
union of p graphs isomorphic to Gbc and P (Gbc′ ; y) = (P (Gbc; y))p.

We now have the necessary definitions to count the number of partial words
sharing a given border correlation.

Theorem 9. Let bc be a border correlation. Let GI(bc) = {G1, G2, . . . , Gm}
and let G′

i = ∪(Gbc, Gi) for 1 ≤ i ≤ m. Then,

PSk(bc) = VCk(Gbc) +
m∑

j=1

(−1)j
∑

{i1,...,ij}
VCk(∪(G′

i1 , . . . , G
′
ij )),

where {i1, . . . , ij} is a subset of j distinct elements of {1, . . . , m}.
To illustrate the theorem, consider the border correlation 00101 of Fig. 2. Using
our earlier computations, VCk(G00101) = 1 + 9k + 19k2 + 3k3. We obtain

VCk(G′
1) = VCk(P2 � C3) = 1 + 10k + 21k2

VCk(G′
2) = VCk(C5) = 1 + 21k + 10k2

VCk(G′
3) = VCk(P4) = 1 + 26k + 5k2

VCk(∪(G′
1, G

′
2)) = VCk(P5) = 1 + 24k + 7k2

VCk(∪(G′
1, G

′
3)) = VCk(P2 � P2) = 1 + 29k + 2k2

VCk(∪(G′
2, G

′
3)) = VCk(P2) = 1 + 30k + k2

VCk(∪(G′
1, G

′
2, G

′
3)) = VCk(K5) = 1 + 31k.

Thus, PSk(00101) = 4k − 7k2 + 3k3.
We next describe a lattice approach to calculate the population size of a given

border correlation and its corresponding period correlation. We denote the set of
all partial word border correlations of length n by BCn. For bc ∈ BCn, define
B(bc) = {i | 0 ≤ i < n and bc[i] = 1}, and for bc,bc′ ∈ BCn, define bc ≤ bc′

if B(bc) ⊆ B(bc′). We use the symbolism bc < bc′ to denote bc ≤ bc′ and
bc �= bc′. Referring to Theorem 2, the pair (BCn,≤) is a distributive lattice.

Let bc be a border correlation. A partial word w satisfying bcw = bc cor-
responds to a valid coloring of the vertices of Gbc. Each valid coloring of Gbc

corresponds to a partial word having a border correlation bc′ such that bc ≤ bc′.
The number of valid colorings of Gbc is then the sum of the population sizes
of all border correlations bc′ such that bc ≤ bc′. To find the population size
of bc, we subtract the population sizes of all border correlations bc′ such that
bc < bc′ from the number of valid colorings of Gbc.

Theorem 10. If bc ∈ BCn, then

PSk(bc) = VCk(Gbc) − ∑
bc′∈BCn,bc<bc′ PSk(bc′),

= VCk(Gbc) − ∑
bc′∈BCn,bc<bc′,bc′ �=1n PSk(bc′).

Figure 3 illustrates the lattice (BC5,≤) along with the population size of each of
its border correlations, calculated over a binary alphabet. For example, G01011

contains two connected components, P2 and C3. Thus, its number of valid



72 F. Blanchet-Sadri et al.

11111(63)

10111(4) 11011(8) )41(10111)2(11110

01011(4) 10011(8) 01101(4) 10101(24) )83(10011)4(11100

00011(6) 00101(4) 01001(14) 10001(30)

00001(16)

Fig. 3. The distributive lattice (BC5,≤) along with the population size over the binary
alphabet of each of its border correlations (population size written in parentheses).

colorings with at most two non-hole colors is 1+(25−1)2+P (P2; 2)+P (C3; 2) =
63 + 2 + 12. To find the population size of 01011, we must subtract the popula-
tion sizes of the border correlations bc′ such that 01011 < bc′. Thus, we must
subtract PS2(01111)+PS2(11011)+PS2(11111) = 2+8+63, so PS2(01011) = 4.

We can also calculate the population size when restricting the number of
holes. Given a border correlation bc of length n, denote by PSh,k(bc) the number
of partial words of length n with h holes over Σk sharing bc as their border
correlation. Referring to Theorems 8 and 9, we obtain the following.

Theorem 11. Let bc = bc[0..n) be a border correlation, h be an integer in
[0..n], GI(bc) = {G1, G2, . . . , Gm}, and G′

i = ∪(Gbc, Gi) for 1 ≤ i ≤ m. Then,

PSh,k(bc) = VCh,k(Gbc) +
m∑

j=1

(−1)j
∑

{i1,...,ij}
VCh,k(∪(G′

i1 , . . . , G
′
ij )),

where {i1, . . . , ij} is a subset of j distinct elements of {1, . . . , m}.
Note that the population size of the border correlation 0n−11, numbering unbor-
dered partial words, can be computed using our results.

6 Conclusion

Our method for computing population sizes of border correlations also applies
to computing population sizes of period correlations (see Theorem 3). It also



Border Correlations, Lattices, and the Subgraph Component Polynomial 73

applies to computing population sizes of refined border correlations. It would be
worthwile to find faster methods of computing the population size of a border
correlation or to find efficient ways to determine the connected component vector.

Other recent papers have established connections between border/prefix
arrays and undirected graphs (see, e.g., [6]). Our method has the advantage
that it also applies to indeterminate strings.

There are several open problems involving the correlations that are binary
vectors indicating only the strong period sets of partial words w for which
SP(w) = WP(w): listing the valid correlations, finding the number of valid
correlations, and computing their population sizes.

References

1. Allen, E., Blanchet-Sadri, F., Byrum, C., Cucuringu, M., Mercaş, R.: Counting
bordered partial words by critical positions. Electron. J. Comb. 18, P138 (2011)

2. Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman &
Hall/CRC Press, Boca Raton (2008)

3. Blanchet-Sadri, F., Bodnar, M., Fox, N., Hidakatsu, J.: A graph polynomial app-
roach to primitivity. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2013. LNCS, vol. 7810, pp. 153–164. Springer, Heidelberg (2013)

4. Blanchet-Sadri, F., Clader, E., Simpson, O.: Border correlations of partial words.
Theory Comput. Syst. 47, 179–195 (2010)

5. Blanchet-Sadri, F., Fowler, J., Gafni, J.D., Wilson, K.H.: Combinatorics on partial
word correlations. J. Comb. Theory Ser. A 117, 607–624 (2010)

6. Christodoulakis, M., Ryan, P.J., Smyth, W.F., Wang, S.: Indeterminate strings,
prefix arrays and undirected graphs, 12 Jun 2014. arXiv:1406.3289v1 [cs.DM]

7. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, Cambridge (2007)

8. Guibas, L.J., Odlyzko, A.M.: Periods in strings. J. Comb. Theory Ser. A 30, 19–42
(1981)

9. Harju, T., Nowotka, D.: Border correlation of binary words. J. Comb.Theory Ser.
A 108, 331–341 (2004)

10. Makowsky, J.A.: From a zoo to a zoology: towards a general study of graph poly-
nomials. Theory Comput. Syst. 43, 542–562 (2008)

11. Rivals, E., Rahmann, S.: Combinatorics of periods in strings. J. Comb. Theory
Ser. A 104, 95–113 (2003)

12. Smyth, W.F.: Computing Patterns in Strings. Pearson Addison-Wesley, London
(2003)

13. Tittmann, P., Averbouch, I., Makowsky, J.: The enumeration of vertex induced
subgraphs with respect to number of components. Eur. J. Comb. 32, 954–974
(2010)

http://arxiv.org/abs/1406.3289v1


Computing Minimum Length Representations
of Sets of Words of Uniform Length

Francine Blanchet-Sadri1(B) and Andrew Lohr2

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402-6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Rutgers University,

110 Frelinghuysen Rd, Piscataway, NJ 08854-8019, USA

Abstract. Motivated by text compression, the problem of represent-
ing sets of words of uniform length by partial words, i.e., sequences that
may have some wildcard characters or holes, was recently considered and
shown to be in P. Polynomial-time algorithms that construct representa-
tions were described using graph theoretical approaches. As more holes
are allowed, representations shrink, and if representation is given, the
set can be reconstructed. We further study this problem by determin-
ing, for a binary alphabet, the largest possible value of the size of a set
of partial words that is important in deciding the representability of a
given set S of words of uniform length. This largest value, surprisingly, is
Σ

|S|−1
i=0 2χ(i) where χ(i) is the number of ones in the binary representation

of i, a well-studied digital sum, and it is achieved when the cardinality
of S is a power of two. We show that circular representability is in P and
that unlike non-circular representability, it is easy to decide. We also
consider the problem of computing minimum length representation
(circular) total words, those without holes, and reduce it to a cost/flow
network problem.

1 Introduction

A sequence over an alphabet Σ represents Σn, the set of all words of length n
over Σ, if each of the elements in Σn appears in it. For example, 1101000111
represents all the eight words of length 3 over the binary alphabet {0, 1}. Such
sequences of minimum length are the De Bruijn sequences and have found a num-
ber of important applications such as modern public-key cryptographic schemes
[9], pseudo-random number generation [10], and non-linear shift registers [5].

In some applications however, such as text compression, it is desirable to
consider sequences that represent only a subset S of Σn (each of the words in
S, and only those words, appear in the sequence). Partial words over Σ become
useful in such applications. They are sequences from Σ� = Σ ∪ {�}, where
� �∈ Σ is the hole character compatible with each letter in Σ. Total words are
sequences without holes. The partial word 0�0� with two holes represents the

This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 74–85, 2015.
DOI: 10.1007/978-3-319-19315-1 7



Computing Minimum Length Representations 75

five words 000, 001, 010, 100, 101 (we fill in the two �’s with letters from {0, 1}).
We say that a partial word is a representation for its set of length-n subwords
(as defined in Sect. 2 and a partial word with exactly h holes, where h ≥ 0,
is a h-representation for that set. A set S of words of uniform length, i.e., a
subset of Σn for some Σ and n, is representable (resp., h-representable) if there
exists a representation (resp., h-representation) word for S. We can say that S =
{000, 001, 010, 100, 101} is 2-represented by 0�0� and that 0�0� is a minimum
length representation for S (no other representation has shorter length).

Why do we consider partial words? First, they can be used for the compres-
sion of representations, e.g., the set {000, 001, 010, 100, 101} is representable by
the partial words 00010100, �00101, and 0�0�. As more holes are allowed, rep-
resentations shrink, and if representation is given, the set can be reconstructed.
Second, they can be used for the representation of non-0-representable sets, e.g.,
{001, 010, 011} has no 0-representation. However, it is 1-representable by 001�.

Let Rep (resp., h-Rep) be the problem of deciding whether a given subset
S of Σn is representable (resp., h-representable). Using a decomposition of the
Rauzy graph of S into subgraphs, Blanchet-Sadri and Simmons [3] showed that
h-Rep is in P and Blanchet-Sadri and Munteanu [2] showed that Rep is in P.
They provided polynomial-time algorithms that construct representations (resp.,
h-representations) when S is representable (resp., h-representable). However,
Rep and h-Rep are not easy to decide (the actual exponent grows quickly with
h). Variations of these problems have previously been studied under the name
“shortest common superstring”, e.g., Gallant, Maier, and Storer [6] proved that
given a set S of words and an integer �, whether there exists a word of length
at most � that contains as factors the words in S (and maybe some words not
in S) is NP-complete.

We further study these concepts of representability and variations on them.
In Sect. 2, we recall some basic concepts on partial words, and then discuss
the Rauzy graph associated with a set S of words of uniform length n and its
relation to representability of S. In Sect. 3, we consider Comp(S), the set of par-
tial words all of whose completions lie in S (a completion is a word obtained
by filling in the holes). This construction appears in deciding representability
because every representation partial word for S must have its length-n factors
in Comp(S) [2,3]. For the binary alphabet we compute the largest possible value
of |Comp(S)|, that is, Σ

|S|−1
i=0 2χ(i), where χ(i) is the number of ones in i’s binary

representation, a well-studied digital sum. Though the exact formula is very
complicated, it achieves the bound of |S|log2 3 when |S| is a power of two. In
Section (Rauzy Graphs)we show that circular representability, CRep, is in P
(as discussed above, non-circular representability, Rep, can be tested in polyno-
mial time). Here we show that unlike non-circular representability, any set that
can be circularly represented by a word with a single hole can be circularly rep-
resented by a word with any number of holes and also that every set circularly
representable by a partial word is circularly representable by a total word. This
leads to CRep being easy to decide. In Sect. 5, we consider the problem of com-
puting minimal representation (circular) total words. We reduce it to a cost/flow



76 F. Blanchet-Sadri and A. Lohr

network problem that can be done in O(|S|2 log |S|2) time for the circular case.
Finally in Sect. 6, we conclude with some open problems for future work.

2 Representable Sets and Rauzy Graphs

Let Σ be a finite alphabet. We denote the set of all (total) words of any length
formed by concatenating elements of Σ by Σ∗, and similarly we denote the set
of words of a finite length n by Σn. The empty word ε is the unique word of
length zero. On the other hand, we denote the set of all partial words of any
length formed by concatenating elements of Σ� = Σ ∪ {�} by Σ∗

� and the set of
partial words of length n by Σn

� . Here � /∈ Σ stands for the “hole character” and
represents any undefined position. The character at position i of a partial word
w is denoted by w[i], and i is a hole when w[i] = �. The length of w, denoted by
|w|, is the number of characters in w (including the hole characters).

If w and w′ are partial words of same length, w is contained in w′, and write
w ⊂ w′, if w[i] = w′[i] for all non-hole positions i in w, w is compatible with w′,
and write w ↑ w′, if w[i] = w′[i] for all non-hole positions i in both w and w′,
and w is equal to w′, and write w = w′, if w[i] = w′[i] for all i. A completion
of a partial word w is a total word obtained by filling in all the holes of w with
letters from the alphabet, while a strengthening is a partial word obtained by
filling in a (possibly trivial) subset of the holes of w. Taking the binary alphabet
{0, 1}, 0��1 ⊂ 0�01, 0��1 ↑ 00��, 0011 is one of the four completions of 0��1,
and 0�01 is one of the nine strengthenings of 0��1.

A partial word w of length n or greater has a set of factors facn(w) whose
elements are sequences of length n that consist of consecutive characters of w.
It has also a set of subwords subn(w) whose elements are total words compat-
ible with factors of w of length n. For instance, 0��1 is a factor of 000��10�,
while 0001, 0011, 0101, 0111 are the subwords compatible with that factor. We
abbreviate the factor w[i]w[i + 1] · · · w[j − 1] by w[i..j).

Let S ⊆ Σn. We say that S is representable if there exists a partial word
w ∈ Σ∗

� whose set of length-n subwords subn(w) is exactly equal to S, and we
call w a representation partial word for S. Letting h be a non-negative integer,
S is h-representable if there exists a partial word w ∈ Σ∗

� with h holes such that
subn(w) = S, and w is a h-representation partial word for S.

The Rauzy graph of S is the digraph RAU(S) = (V,E), where the set of vertices
V consists of the length-(n − 1) prefixes and suffixes of elements of S and the
set of edges E consists of the elements of S, i.e., if s ∈ S then there is an edge
labelled by s from the vertex s[0..n − 1) to the vertex s[1..n). For each v ∈ V ,

pred(v) = {u | u ∈ V,u = au′, v = u′b, a,b ∈ Σ},
succ(v) = {u | u ∈ V, v = av′, u = v′b, a, b ∈ Σ}.

A path through a Rauzy graph corresponds to a word with the ith edge
corresponding to the length-n subword starting at the ith position. It is
obtained by adding on the last letter of each edge traversed. In other words,
if u = u0, u1, . . . , u� = v is a path from u to v in RAU(S), then the word



Computing Minimum Length Representations 77

w = u0u1[n − 2]u2[n − 2] · · · u�[n − 2] corresponds to it. Using this correspon-
dence between paths and words, we refer also to w as a path in RAU(S). Figure 1
gives an example of a Rauzy graph. The word 0011011010 corresponds to the
path 001 → 011 → 110 → 101 → 011 → 110 → 101 → 010 and so S is
0-representable. However S′ = {0011, 0101, 0110, 1011, 1101} is not.

110

011 101 010100

11010110

10110011 1010

Fig. 1. Rauzy graph of S ={0011,0101,0110,1011,1101}

Lemma 1. For S ⊆ Σn, there is a bijection between the 0-representation words
w for S and the paths in RAU(S) of length |w| − n + 1 that include every edge.

3 Bound on the Cardinality of Comp(S)

Let S ⊆ Σn and let Comp(S) be the set of partial words all of whose completions
are in S. For example, if S consists of the six words v1 = 0000, v2 = 0001,
v3 = 0010, v4 = 0011, v5 = 0100, and v6 = 1010, then Comp(S) consists of

0000, 0001, 0010, 0011, 0100, 1010, �010, 00��, 000�, 001�, 00�0, 00�1, 0�00. (1)

In this section, we only consider the binary alphabet Σ = {0, 1}. We show that
the inequality |Comp(S)| ≤ |S|log2 3 holds. Set T (S) = |Comp(S)| and T (m) =
max{T (S) | |S| = m}.

The hypercube graph of order n > 0 is the digraph Hn = (V,E), where the
set of vertices V consists of Σn and the set of edges E consists of the pairs
(u, v) such that u and v have Hamming distance 1, i.e., u and v differ at only
one position. We define H0 to be the singleton graph. For S ⊆ Σn, let HAM(S)
denote the subgraph of Hn induced by the words in S.

The following lemma establishes a bijection that allows us to refer to sets of
partial words of length n (that are closed under strengthening) and the corre-
sponding subgraphs of Hn interchangeably. Thus, |Comp(S)| is the number of
copies of Hh, 0 ≤ h ≤ n, in HAM(S). Returning to our example in (1), there is one
copy of H2 from the partial word with two holes 00��, six copies of H1 from the
six partial words with one hole �010, 000�, 001�, 00�0, 00�1, 0�00, and six copies
of H0 from the six words 0000, 0001, 0010, 0011, 0100, 1010.

Lemma 2. For S ⊆ Σn, there is a bijection mapping a partial word w with h
holes in Comp(S) to a subgraph of HAM(S) isomorphic with Hh; the completions
of w correspond to the vertices in the subgraph.



78 F. Blanchet-Sadri and A. Lohr

We show how to construct Comp(S) starting from the empty set. Let Sj consist
of the first j words of S taken lexicographically. At Step 1 of the process of
building Comp(S), add the element of S1 to Comp(S). At Step j, first add the
element of Sj \ Sj−1, say vj . Then add all the partial words in Comp(Sj) that
do not already appear in Comp(S). The partial words added at Step j can be
constructed from vj by replacing a (possibly trivial) subset of the 1’s of vj with
�’s. Note that these partial words were not added to Comp(S) before, because
they can be completed by filling all their �’s with 1’s. Also note that they must
be added to Comp(S), because, any completion in which some of their �’s are
filled with 0’s comes earlier lexicographically, hence is in S.

To illustrate the construction, let Sj = {v1, . . . , vj} where the vj ’s refer to
our example set S from (1).

Step j Added to Comp(S) Added to HAM(S)

1 0000 H0

2 0001, 000� H0, H1

3 0010, 00�0 H0, H1

4 0011, 001�, 00�1, 00�� H0, H1, H1, H2

5 0100, 0�00 H0, H1

6 1010, �010 H0, H1

Neither 10�0 nor �0�0 is added at Step 6 since the completion 1000 is not
in S.

Theorem 1. For 0 ≤ h ≤ n, the equality T (Hh) = Σ
|Hh|−1
i=0 2χ(i) holds, where

χ(i) denotes the number of 1’s in the binary representation of i.

Proof. For S = Hh, the partial words added at Step j are constructed by replac-
ing all subsets of the 1’s of vj with �’s. Since the number of 1’s in the binary
representation of vj is χ(j − 1) in this case, there are 2χ(j−1) new partial words
added to Comp(S) or 2χ(j−1) new sub-hypercubes added to HAM(S) at Step j. �
Now we want to establish an upper bound on T (S) for all S ⊆ Σn. For S ⊆ Hn,
we start with a manipulation on subsets X ∼= Hn−1 ⊂ Hn and Y ∼= Hn−1 ⊂ Hn,
where X ∩ Y = ∅, which, intuitively, pushes the elements of S from X to Y ,
when the corresponding positions are not already occupied. Let ϕ : X → Y be
a graph isomorphism. We define push(X,Y, ϕ,S) ⊆ Hn as follows:

– for all v ∈ X, v ∈ push(X,Y, ϕ,S) if and only if v ∈ S and ϕ(v) ∈ S;
– for all v ∈ Y , v ∈ push(X,Y, ϕ,S) if and only if ϕ−1(v) ∈ S or v ∈ S.

Note that |push(X,Y, ϕ,S)| = |S|.
To illustrate the above manipulation and the following lemma, consider our

example set S = {0000, 0001, 0010, 0011, 0100, 1010}, X = 1{0, 1}3, and Y =
0{0, 1}3. Take ϕ to be the graph isomorphism that relabels 1’s with 0’s and



Computing Minimum Length Representations 79

0’s with 1’s. Here push (X,Y, ϕ,S) = {0000, 0001, 0010, 0011, 0100, 0101}. As
noticed earlier T (S) = 13, and we can check that T (push(X,Y, ϕ,S)) = 15.

Lemma 3. Let S ⊂ Hn. Let X ∼= Hn−1 ⊂ Hn and Y ∼= Hn−1 ⊂ Hn be such
that X ∩ Y = ∅, Y �= S, and 0 �= T (X ∩ S) ≤ T (Y ∩ S). Then, there exists
a graph isomorphism ϕ : X → Y such that T (S) ≤ T (push(X,Y, ϕ,S)) and
S �= push(X,Y, ϕ,S).

By Theorem 1, T (Hh) = Σ
|Hh|−1
i=0 2χ(i). But, T (Hh) = 3h because, looking at the

partial word with h holes corresponding to Hh, each of the hole positions can
be filled with one of {�, 0, 1}. So, since |Hh| = 2h, we have Σ2h−1

i=0 2χ(i) = 3h. We
next show that no other way of selecting a subgraph S with a fixed number of
vertices results in a larger value for T (S).

Theorem 2. For all n′ and |S| < 2n′
, where S ⊂ Hn and S ⊆ G ∼= Hn′ , the

inequality T (S) ≤ Σ
|S|−1
i=0 2χ(i) holds, where χ(i) denotes the number of 1’s in the

binary representation of i.

Proof. We proceed by induction on n′. If n′ = 1, then S = {w} for some word
w, in which case, T (S) = |Comp(S)| = |{w}| = 1 = 20. If n′ > 1, then we have
the following two cases. First, suppose that |S| < 2n′−1. Fix a subset Y ⊂ Hn′

where Y ∼= Hn′−1. Repeatedly use Lemma 3 until all the elements of S have
been moved into Y . Then, apply the inductive hypothesis. Next, suppose that
2n′

> |S| ≥ 2n′−1. Consider first the case when our subgraph S on n vertices
has a subgraph, say Z, isomorphic to Hn′−1. Then, |S \ Z| < 2n′−1, and, S \ Z
is contained in an adjacent copy of Hn′−1. Thus,

T (S) = 3n′−1 + 2 · T (S \ Z)

≤ Σ2n′−1−1
i=0 2χ(i) + 2 · Σ

|S|−1−2n′−1

i=0 2χ(i)

= Σ2n′−1−1
i=0 2χ(i) + Σ

|S|−1

i=2n′−12χ(i)

= Σ
|S|−1
i=0 2χ(i).

Consider now the case when there is no subgraph Z ⊆ S such that Z ∼= Hn′−1.
We can find Sj ⊆ Hn′ where |S| = |Sj |, T (S) ≤ T (Sj), and Sj has a subgraph
Y isomorphic to Hn′−1. Indeed, by repeatedly applying Lemma3 until Y is in
Sj , we define S0 = S and Si := push(X,Y, ϕ,Si−1) for i > 0. Then, we have
T (S) ≤ T (S1) ≤ · · · ≤ T (Sj). So, we apply the previous argument to Sj to
obtain T (Sj) ≤ Σ

|Sj |−1
i=0 2χ(i). The desired bound on T (S) follows easily. �

Corollary 1. For S ⊆ Σn, the inequality |Comp(S)| ≤ |S|log2 3 holds. This
bound is achieved when S consists of the completions of a single partial word.

Proof. We have shown that T (m) = Σm−1
i=0 2χ(i), which is a well-studied digital

sum. We have from [4] that

T (m) = mlog2 3 · F (log2 m), (2)



80 F. Blanchet-Sadri and A. Lohr

where F is a 1-periodic function defined by a Fourier series that we omit here.
Combining this with a result from [8], F (x) ≤ 1 for all x, so T (m) ≤ mlog2 3.
We get that |Comp(S)| ≤ T(|S|) ≤ |S|log2 3, and the largest possible value for
|Comp(S)| given |S| can be found by leaving in the F in Eq. (2). �

4 Membership of Circular Representability in P
In this section, we drop the restriction of a binary alphabet, and take Σ =
{0, 1, . . . , k − 1}, where k ≥ 2 is an integer.

For any partial word w and integer n ≥ 0, denote by csubn(w) the set of
length-n circular subwords of w, i.e., if u ∈ csubn(w) and u occurs at some
position j in w such that j +n ≤ |w|, we have u ↑ w[j..j +n), otherwise we have
u[0..|w|−j) ↑ w[j..|w|) and u[|w|−j..n) ↑ w[0..j+n−|w|). Now, let S be a subset
of Σn. A partial word w such that csubn(w) = S is a circular representation
word for S and a partial word w with h holes such that csubn(w) = S is a h-
circular representation word for S. The set S is circularly representable if there
exists a circular representation word for S and is h-circulary representable if
there exists a h-circular representation word for S. For example if we consider
S = {000, 001, 010, 100, 101}, then S can be 0-circularly represented by 000101,
1-circularly represented by �0010, and 2-circularly represented by �00�0.

Let CRep be the problem of deciding whether a given subset is circularly
representable and h-CRep be the one of deciding whether it is h-circularly repre-
sentable. We also denote by h-CRep the class of all the h-circularly representable
sets. Using the following lemma, a subset S of Σn is 0-circularly representable if
and only if RAU(S) has a cycle that visits every edge at least once implying that
0-CRep is in P.

Lemma 4. For all S ⊆ Σn, there is a bijection between 0-circular representation
words w for S and the cycles in RAU(S) of length |w| that include every edge.

We need the following lemmas to prove that for each non-negative integer h,
h-CRep, and thus CRep, are in P.

Lemma 5. For all partial words w and integers n, i ≥ 1, csubn(wi) = csubn(w).

For S ⊆ Σn, the De Bruijn graph of S is the digraph DEB(S) = (V,E), where
V consists of the elements of S and E consists of the pairs (v1, v2) such that
there exist u ∈ Σn−1, a, b ∈ Σ such that v1 = au and v2 = ub. Figure 2 gives an
example of a set S that is circularly representable by w = 001101101. Note that
DEB(S) is strongly connected, illustrating Lemma 6.

Lemma 6. A subset S of Σn is circularly representable if and only if DEB(S) is
strongly connected.

Lemma 7. We have 0-CRep � 1-CRep = 2-CRep = 3-CRep = · · · .
Lemma 8. For every S, S ⊆ Σn, that is 0-circularly representable, S ∈ 1-CRep
if and only if there exist vertices u, v in RAU(S) such that there are |Σ| distinct
paths of length n from u to v.



Computing Minimum Length Representations 81

1011

0110 1101 01011100

01001001

10110

00110 01101

11011
10100

01001

10011

11010

Fig. 2. De Bruijn graph of S = {0011, 0100, 0110, 1001, 1010, 1011, 1101}

Algorithm 1 determines when the condition of Lemma 8 is satisfied. This is
part of our proof for the memberships of h-CRep and CRep in P.

Algorithm 1. Deciding membership in 1-CRep of a given S in 0-CRep

Ensure: returns true if S ∈ 1-CRep, otherwise returns false
1: (V, E) ← RAU(S)
2: assign each vertex v a unique number η(v) ∈ {1, . . . , |V |}
3: associate an array arr(v) of size |V | with each vertex v
4: F ← empty queue
5: for v ∈ V do
6: for u ∈ pred(v) do
7: arr(u)[η(v)] ← 1 and push(F, (u, η(v)))
8: while F is not empty do
9: (v, j) ← pop(F )

10: if j = 1, . . . , |V | then
11: for u ∈ pred(v) do
12: arr(u)[j] ← arr(v)[j] + 1 and push(F, (u, j))
13: for u ∈ V do
14: for i = 1, . . . , |V | do
15: numpaths ← 0
16: for u′ ∈ succ(u) do
17: if arr(u′)[i] = n − 1 then
18: numpaths ← numpaths + 1
19: if numpaths = |Σ| then
20: return true
21: return false

Theorem 3. For all h, h-CRep is in P. Thus CRep is in P.

Proof. For h = 0, the result follows from Lemma 6 which implies that a subset
S of Σn is in 0-CRep if and only if DEB(S) is strongly connected. Testing that a
digraph is strongly connected can be done in linear time by Tarjan’s algorithm
[12]. For h > 0, the result follows from Lemma 7 which states that deciding
h-CRep is equivalent to deciding 1-CRep. We show that decising 1-CRep can
be done by Algorithm 1 which determines when the condition of Lemma 8 is
satisfied. The size to represent an input set S, S ⊆ Σn, being n|S|, we show that
Algorithm 1 runs in O(n|S|2) time.



82 F. Blanchet-Sadri and A. Lohr

Since |E| = |S| and Σv∈V |pred(v)| = Σv∈V|succ(v)| = |E|, Line 7 is run at
most |S| times, and Lines 17–18 are run at most n|S| times. We now prove a
bound on the number of times we go through the loop in Lines 8–12. We show
that for every u ∈ V and i = 1, . . . , |V |, the entry arr(u)[i] is written to at most
once. Suppose towards a contradiction that for some u and i, we assign distinct
integers �1 and �2, with �1, �2 < n, to arr(u)[i]. There is some v ∈ V such that
η(v) = i, and there are distinct paths of lengths �1 and �2 from u to v. By the
correspondence between paths and words, we have two distinct words of lengths
n − 1 + �1 and n − 1 + �2 having the same length-(n − 1) prefix and the same
length-(n − 1) suffix. Since these words are both of length at most 2n − 2, we
obtain a contradiction. Since each time a pair is pushed onto F , there is a write
to some arr(u)[i], we have that there are at most |V |2 times that a pair is pushed
onto F . This gives our bound.

By the time the last loop is run, arr(u)[η(v)] = � if and only if there is a
path of length � < n from u to v. So, the property of having |Σ| distinct paths
of length n from some u to some v is equivalent to there being a path of length
n − 1 from each of the successors of u to v, which is checked using arr. �

5 Computing Minimal (Circular) Representation Words

By Lemma 4, to compute a minimum length 0-circular representation word for a
given subset S of Σn if one exists, we want to find a shortest cycle in RAU(S) =
(V,E) that uses every edge at least once. We reduce this problem to a minimum-
cost flow network problem (see [1] for more information on flow networks).
A cost/flow network is a digraph (V ′, E′) having a distinguished source ver-
tex s, a distinguished sink vertex t, and such that every e ∈ E′ has a capacity, a
flow, and a cost, respectively denoted by capacity(e), flow(e), and cost(e), asso-
ciated with it. There are polynomial-time algorithms for finding the minimum-
cost maximum-flow, i.e., finding a flow that is maximum, but has a cost that
is minimum among all the maximum flows. In other words, the min-cost max-
flow problem is to minimize the total cost of the flow Σe∈E′flow(e) · cost(e)
with the constraints flow(e) ≤ capacity(e) for all e ∈ E′, and Σv∈V ′flow(s, v) =
Σv∈V′flow(v, t) = f, where f is the amount of flow to be sent from s to t.

We construct the following cost/flow network (V ′, E′) from RAU(S) = (V,E).
For each v ∈ V , let bv be the out-degree of v minus the in-degree of v, and let
Imb(S) = Σ{v∈V|bv>0}bv. Since we need to use each edge of RAU(S), think of
the vertices with more edges coming in than out as supplying, and those with
more going out as consuming. Flows along this network correspond to repeated
subwords of length n. We need to keep them to a minimum. So, let V ′ = V ∪{s, t}.
Put each e ∈ E in E′, with cost 1 and unlimited capacity (or some capacity at
least Imb(S)). Then, for each v ∈ V with bv < 0, add an edge (v, t) of capacity
−bv and cost 0 to E′. Similarly, for each v ∈ V with bv > 0, add an edge (s, v)
of capacity bv and cost 0 to E′.

Then we run a max-flow min-cost algorithm with (V ′, E′). We call the flow
amount f , the cost c, and the set of unit flows F .



Computing Minimum Length Representations 83

Algorithm 2. Computing a minimal 0-circular representation word for S ⊆ Σn

Ensure: returns a minimum length total word that circularly represents S, or returns
false if no such word exists

1: (V, E) ← RAU(S)
2: construct the cost/flow network (V ′, E′) from (V, E)
3: run a max-flow min-cost algorithm with (V ′, E′), call the flow amount f , the cost

c, and the set of unit flows F
4: if f < Σ{v∈V |bv>0}bv then
5: return false
6: E′′ ← E
7: for all p ∈ F do
8: add to E′′ an edge from p[1..n) to p[|p| − n..|p| − 1)
9: run an Eulerian cycle algorithm on (V, E′′), call the path u

10: w ← u[0..n)
11: for i = 1, . . . , |u| − n do
12: if u[i..i + n) ∈ E then
13: a ← u[i + n − 1]
14: else
15: p ← the path that made us add u[i..i + n) to E′′

16: a ← p[n..|p| − 1)
17: w ← wa
18: return w[0..|w| − n + 1)

Lemma 9. Let S ⊆ Σn and let (V ′, E′) be the cost/flow network constructed
from RAU(S), with capacity Imb(S) and cost c. Then there exists a word of length
|S| + c − n + 1 that 0-circularly represents S.

Proof. We can view each of the unit flows in F as an edge connecting the vertex
immediately after s, and the vertex immediately before t, with length equal to
the cost of the unit flow. Doing this, we now have a graph with total edge length
|S|+c where every vertex has equal in- and out-degrees. So, there is an Eulerian
cycle. To recover a 0-representation word for S from this cycle, we take the start
vertex, and then, for each edge in the cycle, append the last letter of that edge
until we are back at the start vertex. Call this word w. This implies that subn(w)
is equal to the set of edges in the cycle, which, since it is Eulerian, is all of S. Note
that the total cost of the edges in this graph is |S|+c, and so, that is |w|. Since we
want a 0-circular representation for S, and w[0..n−1) = w[|S|+c−n+1..|S|+c),
we can take w′ = w[0..|S| + c − n + 1) and, csubn(w′) = subn(w). �
Lemma 10. Let S ⊆ Σn and let (V ′, E′) be the cost/flow network constructed
from RAU(S). Given an all-edge-visiting cycle of length |S| + c in (V ′, E′), there
exists a flow of capacity Imb(S) with cost at most c.

By Lemmas 9 and 10, any all-edge-visiting path, that is, a 0-representation word,
must correspond to a flow of capacity Imb(S) with its length a constant off from
the cost of the flow in the network. This means that if we have a 0-representation
word of shorter length than that computed by Algorithm 2, then the min-cost



84 F. Blanchet-Sadri and A. Lohr

flow that we find is not actually min-cost. Since RAU(S) has |S| edges, and even
fewer vertices, we can find the min-cost flow in O(|S|2 log |S|2) time using the
min-cost max-flow algorithm of Goldberg and Tarjan [7]. For Algorithm 3, the
most time-consuming step is computing the min-cost flow, which gets computed
for every pair of distinguished start and end vertices, so the algorithm’s running
time picks up a factor of |S|2.
Theorem 4. Given as input a set S of words of uniform length, Algorithm 2
computes a minimum 0-circular representation word in O(|S|2 log |S|2) time and
Algorithm 3 computes a minimum 0-representation word in O(|S|4 log |S|2) time.

Algorithm 3. Computing a minimal 0-representation word for S ⊆ Σn

Ensure: returns a minimum length total word that represents S, or returns false if
no such word exists

1: (V, E0) ← RAU(S)
2: m ← ∞
3: for all v1, v2 ∈ V do
4: E ← E0 ∪ {(v2, v1)} with cost |S|2 and unlimited capacity
5: run Lines 2 to 9 of Algorithm 2 ; if it returns false or has a min-cost ≥ |S|2, try

a new pair v1, v2, otherwise, we have an Eulerian cycle u
6: since u visits every edge, and (v2, v1) is an edge, rotate u so that u = v1 · · · v2
7: run Lines 10 to 17 of Algorithm 2 to get w
8: if |w| < m then
9: wmin ← w

10: m ← |w|
11: if m = ∞ then
12: return false
13: else
14: return wmin

For example, the set consisting of the 12 words

00010 00011 00101 00111 01011 01111
10110 11110 01100 11100 11000 10001

has minimum total circular representation word 00010110001111 and minimum
partial circular representation word 0001�11.

6 Conclusion and Open Problems for Future Work

For S ⊆ Σn, we gave a bound on the size of Comp(S) when |Σ| = 2. A larger
|Σ| should make it harder for all of a partial word’s completions to be in S.

Conjecture 1. The inequality |Comp(S)| ≤ |S|log|Σ|(|Σ|+1) holds.



Computing Minimum Length Representations 85

Other than the above conjecture, some open problems include: (1) Characterize
the sets of words of uniform length that are representable or h-representable.
(2) If a subset S of Σn is representable, how long a partial word do we need to
represent it? (3) Can partial words of minimum length that produce all words
in S be constructed efficiently? We gave an efficient construction for (3) using
total words but the length could be reduced further by using partial words.

Tan and Shallit [11] focused on sets representable by total words. They con-
sidered the following problems: How many subsets of Σn are representable by
a total word? If a subset is representable, how long a total word do we need to
represent it? How many such subsets are represented by words of a fixed length
�? For the first problem, they gave upper and lower bounds in the binary case.
For the second prob , they gave a weak upper bound and some experimental
data. For the third problem, they gave a closed-form formula in the case where
n ≤ � ≤ 2n. They also left open a number of questions. We suggest extend-
ing Tan and Shallit’s work to partial words: (4) How many subsets of Σn are
representable by a partial word? How many such subsets are there if we fix the
number of holes or the length of the representation?

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, New Jersey (1993)

2. Blanchet-Sadri, F., Munteanu, S.: Deciding representability of sets of words of
equal length in polynomial time. In: Lecroq, T., Mouchard, L. (eds.) IWOCA
2013. LNCS, vol. 8288, pp. 28–40. Springer, Heidelberg (2013)

3. Blanchet-Sadri, F., Simmons, S.: Deciding representability of sets of words of equal
length. Theoret. Comput. Sci. 475, 34–46 (2013)

4. Flajolet, P., Grabner, P., Kirschenhofer, P., Prodinger, H., Tichy, F.: Mellin trans-
forms and asymptotics: digital sums. Theoret. Comput. Sci. 123, 291–314 (1994)

5. Fredericksen, H.: A survey of full length nonlinear shift register cycle algorithms.
SIAM Rev. 24, 195–221 (1982)

6. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J.
Comput. Syst. Sci. 20, 50–58 (1980)

7. Goldberg, A.V., Tarjan, R.E.: Finding minimum-cost circulations by successive
approximation. Math. Oper. Res. 15, 430–466 (1990)

8. Harborth, H.: Number of odd binomial coefficients. Proc. Amer. Math. Soc. 62,
19–22 (1977)

9. Katz, J., Lindell, Y.: Introduction to Modern Cryptography: Principles and Pro-
tocols. Cryptography and Network Security. Chapman & Hall/CRC, Boca Raton
(2008)

10. van Lint, J.H., MacWilliams, F.J., Sloane, N.J.A.: On pseudo-random arrays.
SIAM J. Appl. Math. 36, 62–72 (1979)

11. Tan, S., Shallit, J.: Sets represented as the length-n factors of a word. In:
Karhumäki, J., Lepistö, A., Zamboni, L. (eds.) WORDS 2013. LNCS, vol. 8079,
pp. 250–261. Springer, Heidelberg (2013)

12. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1,
146–160 (1972)



Computing Primitively-Rooted Squares
and Runs in Partial Words

Francine Blanchet-Sadri1(B), Jordan Nikkel2, J.D. Quigley3,
and Xufan Zhang4

1 Department of Computer Science, University of North Carolina,
P.O. Box 26170, Greensboro, NC 27402–6170, USA

blanchet@uncg.edu
2 Department of Mathematics, Vanderbilt University, 1326 Stevenson Center,

Nashville, TN 37240, USA
3 Department of Mathematics, University of Illinois - Urbana-Champaign,

Altgeld Hall, 1409 W. Green Street, Urbana, IL 61801, USA
4 Department of Mathematics, Princeton University, Fine Hall,

Washington Road, Princeton, NJ 08544, USA

Abstract. This paper deals with two types of repetitions in strings:
squares, which consist of two adjacent occurrences of substrings, and
runs, which are periodic substrings that cannot be extended further to
the left or right. We show how to compute all the primitively-rooted
squares in a given partial word, which is a sequence that may have
undefined positions, called holes or wildcards, that match any letter of
the alphabet over which the sequence is defined. We also describe an
algorithm for computing all primitively-rooted runs in a given partial
word.

1 Introduction

Repetitions in strings, or words, have been extensively studied, both from the
algorithmic point of view and the combinatorial point of view (see, for
example, [9]). Applications can be found in many important areas such as compu-
tational biology, data compression, to name a few [8]. Repetitions are character-
ized by their periods, lengths, and starting positions. There are many equivalent
characterizations of repetitions, and in this paper a repetition in a word w is
a triple (f, l, p), where w[f..l] is p-periodic and the exponent of the repetition,
l−f+1

p , is at least 2.
Squares are the special case of repetitions when l−f+1

p is 2. In other words, a
square in a word is a factor uu for some word u, called the root of the square. It
is primitively-rooted or PR if u is primitive, i.e., u is not a power of another word.
There can be as many as Θ(n log n) occurrences of primitively-rooted squares in

This material is based upon work supported by the National Science Foundation
under Grant No. DMS–1060775. We thank the referees of preliminary versions of
this paper for their very valuable comments and suggestions.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 86–97, 2015.
DOI: 10.1007/978-3-319-19315-1 8



Computing Primitively-Rooted Squares and Runs in Partial Words 87

a word of length n, and several O(n log n) time algorithms have been developed
for finding all the repetitions [2,7,16]. A major breakthrough was to compute
them in O(n) time; this was achieved in two steps: (1) all repetitions are encoded
in maximal repetitions or runs and (2) there is a linear bound on the number of
runs [14].

A repetition (f, l, p) is maximal, or is a run, if it is non-extendible, i.e., neither
(f − 1, l, p) nor (f, l + 1, p) are repetitions in the word w. Note that since every
run has exponent at least 2, the square at the beginning of the run uniquely
defines the run. This is because that square contains the starting position and
period of the run, and the property of the run being maximal gives a unique
ending position. A PR-run in w is a maximal repetition with a primitive root.
If w = 00011010110101101010, then w[2..18] = (01101)

17
5 is a PR-run with

period 5, root 01101, and exponent 17
5 (indexing in the word starts at 0). The

maximum number of runs in a string of length n is bounded from above by cn,
for some constant c. A first proof was given by Kolpakov and Kucherov [14]
who provided an O(n) time algorithm for detecting all runs. The number of
runs being linear has applications to the analysis of any optimal algorithm for
computing all repetitions.

Partial words, also referred to as strings with don’t-cares which allow for
incomplete or corrupted data [1,11], are sequences that may contain undefined
positions, called holes and represented by �’s, that are compatible with, or match,
any letter in the alphabet. Total words are partial words without holes. Here, a
factor is a consecutive sequence of symbols in a partial word w, while a subword
is a total word compatible with a factor in w. A factor uv is a square if some
completion, i.e., a filling in of the holes with letters from the alphabet, turns uv
into a total word that is a square; equivalently, u and v are compatible.

Repetitions in partial words have also recently been studied, both from the
algorithmic point of view and the combinatorial point of view (see, for example,
[5,6,10,12,17]). However, no work has been dedicated to computing all occur-
rences of PR-squares and PR-runs in partial words. The known algorithms for
detecting them in total words do not extend easily to partial words, one of the
most important culprits being that the compatibility relation is not transitive,
as opposed to the equality relation being transitive, e.g., 0 is compatible with �
and � is compatible with 1, but 0 is not compatible with 1.

So we adopt an approach, for our algorithms, based on the large divisors of
the length n of the input partial word, i.e., divisors of n, distinct from n, whose
multiples are either n itself or not divisors of n. Every distinct prime divisor i of
n gives rise to exactly one large divisor of n, namely n

i , and hence the number
of large divisors of n, ω(n), is the number of distinct prime divisors of n, e.g.,
30 has large divisors 6, 10, and 15, giving ω(30) = 3. Recently, a formula for the
number of primitive partial words was given in terms of the large divisors [4]. In
fact, the maximum number of holes in a primitive partial word of length n over
a k-letter alphabet is n − ω(n) − 1, for all n, k ≥ 2, and this bound is tight.

The contents of our paper are as follows: In Sect. 2, we review a few basic
concepts on partial words such as periodicity and primitivity. In Sect. 3, we



88 F. Blanchet-Sadri et al.

present efficient algorithms for computing all occurrences of PR-square factors
and PR-runs in any partial word over a k-letter alphabet. In Sect. 4, we describe
an efficient algorithm for counting the number of occurrences of PR-square sub-
words. Finally in Sect. 5, we conclude with some open problems.

2 Preliminary Definitions and Results

A partial word over an alphabet A is a sequence over the extended alphabet
A� = A ∪ {�}, where the symbol � represents an undefined position or a hole.
A total word is a partial word with no holes. A letter will always refer to an
element of A, while a symbol will refer to an element of A�. The symbol at
position i of a partial word w is denoted w[i], with position numbers starting
at 0. We denote by |w| the length of w or the number of symbols in w. Two partial
words u and v of equal length are compatible, denoted u ↑ v, if u[i] = v[i] for every
u[i], v[i] ∈ A, and u is contained in v, denoted u ⊂ v, if u[i] = v[i] for every u[i] ∈
A. The least upper bound of two compatible partial words u and v is the partial
word u∨v where u ⊂ (u∨v), v ⊂ (u∨v), and if u ⊂ w and v ⊂ w then (u∨v) ⊂ w.
A completion of a partial word u is any total word v such that u ⊂ v.

For a positive integer p, a length-n partial word w has a strong period of p or
is strongly p-periodic if i ≡ j mod p implies w[i] ↑ w[j] for every 0 ≤ i < j < n.
It has a weak period of p or is weakly p-periodic if w[i] ↑ w[i + p] for every
0 ≤ i < n − p. For total words, since weak periodicity implies strong periodicity,
we often do not write “strong(ly)” or “weak(ly)”. A partial word w is primitive
if there exists no total word v such that w ⊂ vm with m ≥ 2, equivalently, if
there is no proper divisor p of |w| such that w is strongly p-periodic. Clearly, if
w is primitive and w ⊂ v, then v is primitive.

A factor of a partial word w is a consecutive sequence of symbols in w,
while a subword of w is a total word compatible with a factor in w. We denote
by w[i..j) the factor of w starting at position i and ending at position j − 1.
A square factor of w is a factor of the form uv with u and v compatible. The
root of uv is u∨ v. Now uv is a PR-square factor if its root is primitive, while uu
is a PR-square subword if it is a total square word, with primitive root u, that is
compatible to a square factor (not necessarily a PR-square factor). For example,
if w = 0��10��111 then 0��10��1 is a factor occurring at position 0 of w but it is
not a PR-square factor, however, 01110111 is a PR-square subword occurring at
position 0 of w. Note that w[3..7) has three PR-square factors, 0�, ��, and 10��,
with primitive roots 0, �, and 10, respectively. It has four PR-square subword
occurrences, 02, 12, and (10)2, with 02 occurring twice, at positions 1 and 2.

To extend the definition of repetition, we use strong periodicity. The root of a
repetition (f, l, p) in w is the length-p partial word u such that for all 0 ≤ i < p,
u[i] = w[f + i] ∨ w[f + p + i] ∨ · · · ∨ w[f + cp + i] with the smallest integer c
satisfying f + (c + 1)p + i > l. A PR-run is then defined as in the case of total
words. For example, in 110�0�0�1, (2, 5, 2) is a square with root 0�, (1, 7, 2) is a
maximal repetition with root 10, and (2, 7, 1) is a PR-run with root 0. The next
proposition gives a condition for a maximal repetition to be PR.



Computing Primitively-Rooted Squares and Runs in Partial Words 89

Proposition 1. A maximal repetition (f, l, p) in a partial word w is not PR if
and only if there exists a maximal repetition (f, l, p′) in w such that p′ is a large
divisor of p.

3 Computing All PR-Square Factor and Run Occurrences

Algorithm 1 finds the positions of every PR-square factor occurrence in a partial
word of length n ≥ 2 over a k-letter alphabet. Let SqQ, RepQ be empty queues
which hold integer pairs, and isPR be a boolean array of size n×�n

2 �, where each
entry is initialized to true. The idea behind Algorithm 1 is to find all squares by
increasing root length, and use the information from the squares of smaller root
lengths to determine the primitivity of the roots of squares of larger root lengths.
Given a partial word w of length n, for every m from 1 to �n

2 �, do Procedures
1, 2, and 3.

Procedure 1. PSFBlocks(m)
Ensure: blocks and positions of PR-square factors of root length m
1: start ← 0
2: for i = 0, . . . , n − m − 1 do
3: if w[i] is incompatible with w[i + m] then
4: if i − start ≥ m then
5: push (start, i + m) onto SqQ
6: for j = start, . . . , i − m do
7: if isPR[j][m] then
8: output that a PR-square factor of root length m occurs at j
9: start ← i + 1

10: else if i = n − m − 1 and i − start + 1 ≥ m then
11: push (start, n) onto SqQ
12: for j = start, . . . , i + 1 − m do
13: if isPR[j][m] then
14: output that a PR-square factor of root length m occurs at j

Procedure 1: All squares of root length m can be found easily in maximal weakly
m-periodic factors of w (i.e., if we extend the factor to the left or right, it is no
longer weakly m-periodic), which we refer to as blocks. Computing all such blocks
can be done by simply iterating once through w and checking positions that are
m-apart for compatibility. When an incompatibility is found, the current block is
put onto a queue and the next block is started, skipping over the incompatibility.
To check if a square of root length m is PR, we look at isPR[j][m] which indicates
whether or not the square factor beginning at j with root length m is PR. The
array isPR[j][m] is updated in Procedure 3.

Procedure 2: Finding all maximal repetitions of root length m can be done by
iterating through every block, maintaining the current period, and keeping track
of the last position where a letter was seen for each position in the period.



90 F. Blanchet-Sadri et al.

Procedure 2. PSFReps(m)
Require: root (resp., lastLetter) is a symbol (resp., an integer) array of length m
Ensure: maximal repetitions of root length m
1: while SqQ.first is not empty do
2: block ← poll(SqQ)
3: start ← block.first
4: rootPos ← 0
5: for i = 0, . . . ,m − 1 do
6: root[i] ← w[start + i]
7: if root[i] is not a hole then
8: lastLetter[i] ← start + i
9: else

10: lastLetter[i] ← start
11: for i = block.first + m, . . . , block.last − 1 do
12: if (w[i] is not compatible with root[rootPos]) and (lastLetter[rootPos] ≥

start) then
13: push (start, i − start) onto RepQ
14: start ← max{lastLetter[rootPos], start} + 1
15: root[rootPos] ← w[i] and lastLetter[rootPos] ← i
16: else if i = block.last − 1 then
17: push (start, block.last − start) onto RepQ
18: else
19: if w[i] is not a hole then
20: root[rootPos] ← w[i] and lastLetter[rootPos] ← i
21: rootPos ← (rootPos + 1) mod m

When an incompatibility is found, the current repetition is put onto a queue,
the period position is updated to the most recent letter, and the process continues
from that same spot.

Procedure 3: Since any square that is not PR is contained in a repetition of
some root length m, using the maximal repetitions to mark off which squares
of larger root lengths are not PR provides a good alternative to checking every
factor individually for primitivity. For each maximal repetition found from left
to right, and for each prime p, mark off the squares of root length pm contained
in the current maximal repetition but not in any later maximal repetition.

To illustrateAlgorithm1, consider the partialword 101����01�012�12112000�.
In Procedure 1, m = 1 finds blocks (2,7), (8,10), (12,14), (16,17), (19,22); m = 2
finds blocks (0,9), (13,16), (19,22); m = 3 finds the block (0,18); m = 4 finds the
block (0,10); m = 5 finds no blocks; m = 6 finds the block (0,15); and m ≥ 7
finds no blocks. Once a block is found in Procedures 1, and 2 finds maximal repe-
titions. For m = 1, it finds maximal repetitions (2,6), (3,7), (8,9), (9,10), (12,13),
(13,14), (16,17), (19,22); m = 2 finds (0,9), (13,16), (19,22); m = 3 finds (0,11),
(1,15), (11,18); m = 4 finds (0,9), (3,10); m = 5 finds no repetitions; m = 6 finds
(0,11), (1,15); m ≥ 7 finds no repetitions. Once a maximal repetition is found
in Procedures 2, and 3 updates isPR[j][m], e.g., when considering the maxi-
mal repetition (2, 6, 1), isPR[2][2] and isPR[3][2] are set to false. Similarly,



Computing Primitively-Rooted Squares and Runs in Partial Words 91

Procedure 3. PSFPR(m)
Ensure: mark off, using the maximal repetitions, which squares of larger root length

are not PR
1: while RepQ is not empty do
2: rep ← poll(RepQ)
3: start ← rep.first and runLength ← rep.length
4: nextLength ← 0
5: if RepQ is not empty then
6: nextRep ← peek(RepQ)
7: next ← nextRep.first and nextLength ← nextRep.length
8: for each prime p less than or equal to runLength

2m
do

9: maxPos ← runLength − 2pm
10: if p ≤ nextLength

2m
then

11: maxPos ← min{maxPos, next − start − 1}
12: for i = 0, . . . ,maxPos do
13: isPR[start + i][pm] ← false

the following are set to false when considering the run (1, 15, 3): isPR[1][6],
isPR[2][6], isPR[3][6], and isPR[4][6].

Theorem 1. Algorithm 1 outputs exactly the PR-square factors.

Proof. We claim that Procedure 1 finds every block of root length m. If Lines 3–9
push a block, then every position in the block has been checked for compatibility
with the position m positions away, and thus the block contains squares of root
length m. Moreover, the block is cut off because of an incompatibility on the
right side, and it was started directly after an incompatibility on the left side,
thus the block is maximal. The block is also guaranteed to have at least one
square since i − start ≥ m implies that i + m − start ≥ 2m, and thus the first
position of the block starts a square. If a block is pushed on in Lines 10–14, then
we are on the last iteration, and hence the same argument applies, noting that
i− start + 1 ≥ m is the exact condition for when the block contains at least one
square, since getting to this conditional statement means that w[i] is compatible
with w[i+m]. Furthermore, if u is a block, then the same basic logic applies and
u is found by the procedure. Thus exactly every block of root length m is found
by Procedure 1.

Next we claim that Procedure 2 finds all maximal repetitions of root length m.
Since every such repetition is weakly m-periodic, every maximal repetition is con-
tained in a block, so it suffices to show that the procedure finds every run within
a given block. By checking compatibilities with a given root, and pushing the
current repetition only when we reach the end of the block or an incompatibility
with the root, we ensure that every repetition is maximal on the right. Moreover,
if an incompatibility between w[i] and root[rootPos] is reached, then the next
run must have root[rootPos] = w[i], and the start of the next run must be at
least one position after the previous run as well as at least one position after
the last non-hole that was compatible with root[rootPos]. Thus the repetition



92 F. Blanchet-Sadri et al.

cannot be extended on either side and is maximal. Moreover, since every posi-
tion starts a square, every repetition found has at least length 2m, and is thus
a valid repetition. This implies that the procedure only outputs valid, maximal
repetitions of root length m. Similarly it finds every such repetition.

Finally, to prove that Procedure 1 outputs only PR-square factors, we must
prove that Procedure 3 updates isPR completely. Suppose a square uv of root
length m that is not PR occurs at some position. Then uv ⊂ x2q for some xq

such that q is a proper divisor of m. If q is not a large divisor of m, then there
exists a prime p such that m

p is a multiple of q. This implies that uv ⊂ (x
q
p )2p, so

uv is contained in a repetition that has a period length equal to a large divisor
of m. Thus for every square of root length m that is not PR, there is a repetition
of period length m

p that witnesses the non-primitivity of the root of uv such that
m
p is a large divisor of m. As a result, consider a given repetition of root length
m. Then for every prime p such that a factor uv of length 2pm occurs in the
repetition, m is a large divisor of pm and is a witness to the non-primitivity of
uv. Also, since two repetitions of the same period length may overlap, it suffices
to only use a rightmost repetition as the witness for a given position and square
root length. Therefore Procedure 3 updates isPR completely and correctly so
that Procedure 1 outputs every PR-square factor. �
Theorem 2. Given a partial word w of length n, Algorithm 1 computes the
number of occurrences of PR-square factors of w in O(n2 log log n) time.

Proof. First consider Procedure 1. The outer loop (Line 2) iterates less than n
times, and every command other than the inner loops takes constant time. After
any going through the first inner loop (Line 3), start is always set to larger than
i, and since i is always increasing, start takes on each value from 1 to n − m at
most once. Moreover, when the second inner loop (Line 10) iterates, the outer
loop is on its last iteration, and hence it adds no more than O(n) time. Thus
Procedure 1 takes O(n) time.

Next consider Procedure 2. The outer loop (Line 1) iterates over each block
found by Procedure 1. Note that each block has at least length 2m since it
must contain a square. The first m positions are iterated over by the first for
loop (Lines 5–10), and the remaining positions are iterated over by the second
for loop (Lines 11–21), both of these loops taking at most constant time per
iteration. Thus it remains to show that the number of positions in all the blocks
combined is O(n). To see this, observe that for every block except the last,
there must be m positions which cannot start squares because of at least one
incompatibility. Moreover, there are two types of positions in every block: those
which start a square, and those which do not but are included because they are
contained in the last square of the block. The last 2m−1 positions fit this latter
category, but the first m of them cannot begin square positions. Thus at most
the last m − 1 positions are double-counted in a second block. Since the starts
of every block are thus at least m-apart, there are at most n

m blocks of root
length m. Thus the number of positions double-counted is at most n

m (m − 1),
which is O(n). Since Algorithm 1 has �n

2 � iterations, the total time spent on
Procedures 1 and 2 is O(n2).



Computing Primitively-Rooted Squares and Runs in Partial Words 93

Consider Procedure 3’s total running time over every root length m. First,
the primes less than n can easily be computed in O(n2) time using a sieve [3].
Second, by considering the next values from RepQ.first and RepQ.length, we
check in constant time for each prime less than or equal to the current value of
runLength

2m whether or not the positions which this repetition and the next could
update have overlap, and if they do, we save the positions for the next repetition
to update. Thus no two distinct repetitions of the same root length m access
isPR[i][m] for any position i.

Now consider how many times any given value isPR[i][m] is accessed: once
at the beginning when it is set to the default value true, once if a square of root
length m occurs at position i, and once for each distinct prime factor p of m for
which there is a repetition of root length m

p that contains w[i] · · · w[i + 2m − 1].
This gives a total of 2+ω(m) updates at most. Summing over all root lengths at

position i gives at most
∑�n−i

2 �
j=1 ω(j) updates, which by [13] is Θ(n−i

2 log log n−i
2 ).

Summing over all positions gives
∑n−1

i=0 c(n− i) log log(n− i) as an upper bound,
and this is in turn O(n2 log log n). �
Remark 1. Algorithm 1 has a best case running time of O(n2) because Proce-
dures 1 and 2 are O(n2). By examining the algorithm, we see that Procedure 3
is O(n2) when the number of maximal repetitions is constant, so in this case,
Algorithm 1 has running time O(n2).

Algorithm 1 can be modified for computing all PR-runs in a partial word. The
only modifications that are necessary are to remove the outputs from Proce-
dure 1, to remove Procedure 3, and to check which maximal repetitions are PR
using Proposition 1. Thus, all PR-runs can be found by sorting the repetitions
based on their first and last positions using a bucket sort, and then checking
which periods are large divisors of which for each starting and ending posi-
tion. To illustrate this PR-runs algorithm, looking at 101����01�012�12112000�
again, we have the same maximal repetitions from Procedures 1 and 2. For
m = 1, every maximal repetition will be marked as PR. Since (0, 9, 1) is not a
PR-run, (0, 9, 2) is marked as PR. Then (0, 9, 4) is marked as not PR because 2
is a large divisor of 4.

Theorem 3. Given a partial word w of length n, all PR-run occurrences in w
can be computed in O(n2 log log n) time.

Proof. By the previous theorems, Procedures 1 and 2 correctly identify all max-
imal repetitions for all root lengths 1 ≤ m ≤ �n

2 � in O(n2) time. Maximal
repetitions are characterized by their starting position f , ending position l, and
root length m. Proposition 1 states that a maximal repetition (f, l, p) in w is not
PR if and only if there exists a maximal repetition (f, l, p′) in w such that p′ is a
large divisor of p. We can sort the runs by their start and end positions in O(n2)
time using a bucket sort. Since we process m in increasing order, the runs in each
bucket are naturally ordered by increasing root length, and we examine them
again in this order. To ensure that only PR-runs are counted, we check each run



94 F. Blanchet-Sadri et al.

(f, l, p) against the already examined runs (f, l, p′) with the same starting and
ending positions. Since p > p′, we have the cases: (1) if there is no (f, l, p′) such
that p′ is a large divisor of p, (f, l, p) is PR (2) if there is (f, l, p′) such that p′ is
a large divisor of p, (f, l, p) is not PR. For each p, we only need to check all its
large divisors p′, the number of which is ω(p). So it suffices to bound

∑n
p=1 ω(p),

this sum is O(n log log n). There are O(n) repetitions for any fixed p. �

4 Counting All PR-Square Subword Occurrences

Algorithm 2 finds the number of PR-square subword occurrences compatible
with each square factor of a partial word w of length n ≥ 2 over a k-letter alpha-
bet. In addition to SqQ, RepQ, and isPR from Algorithms 1, and 2 requires an
array wRoot of symbols of length n. Finding all PR-square subword occurrences
reduces to first finding all square factor occurrences and determining if they are
primitively-rooted, which Algorithm 1 does, and then finding all primitive com-
pletions of the roots of these square factor occurrences, which Procedure 5 does.
Given a partial word w of length n, for every m from 1 to �n

2 �, do Procedures
2, 3, and 4. Procedure 4 calls Procedure 5. We first outline Procedure 5, which
takes as input a partial word u of length n with h holes over a k-letter alphabet
and outputs the number of primitive completions of u.

If u is primitive, then Line 2 returns the correct value and if u is non-primitive,
then Line 19 does so. To see the latter, first recall that the number of primitive
total words of length n over a k-letter alphabet is

∑
d|n kdμ(nd ), where μ is the

Möbius function [15]. Since Procedure 5 is called by Algorithm 2, which takes
at least Ω(n2) time, we can take O(n2) time to pre-compute all divisors of the
integers 1 to n as well as their values for the Möbius function.

Suppose that u is non-primitive. Then u is strongly d-periodic for some proper
divisor d of n. Thus we can classify every primitive completion of u by the
partial word v with the maximum number of holes such that u ⊂ v

n
d . Lines

5–18 consider periods v whose lengths are divisors of n and Line 18 counts
the primitive completions of u corresponding to each period found. Note that
it is possible to double-count primitive completions of u (e.g., 11��1�). So, it
is a matter of using inclusion-exclusion to ensure no double-counting. We can
apply the number-theoretic inclusion-exclusion (involving the Möbius function).
To find the number of primitive completions of u it suffices to find, for each
divisor d of n, the number of total words of length n over a k-letter alphabet
that are an n

d -th power, not necessarily primitively-rooted, compatible with u,
and then sum up these results with the appropriate μ(nd ) coefficients. Assuming
that all the divisors of n have been pre-computed as well as their values for the
Möbius function, this requires stepping through u once for each divisor which
takes O(nd(n)) time, where d(n) is the number of divisors of n. Procedure 5 is
run O(n) times for any fixed |u|.

Now, consider Procedure 5 when applied in Line 12 of Procedure 4, for two
consecutive values of j. Then the body of the loop of Procedure 5 actually does
almost the same thing for both calls. This redundancy can be easily replaced



Computing Primitively-Rooted Squares and Runs in Partial Words 95

Procedure 4. PSSBlocks(m)
Ensure: blocks and number of PR-square subword occurrences of root length m
1: start ← 0
2: for i = 0, . . . , n − 1 do
3: if i + m < n and w[i] ↑ w[i + m] then
4: wRoot[i] ← w[i] ∨ w[i + m]
5: else
6: wRoot[i] ← w[i]
7: for i = 0, . . . , n − m − 1 do
8: if w[i] is incompatible with w[i + m] then
9: if i − start ≥ m then

10: push (start, i + m) onto SqQ
11: for j = start, . . . , i − m do
12: output PC(wRoot[j] · · ·wRoot[j + m − 1],m, h, k, isPR[j][m])
13: if wRoot[j] is a hole and wRoot[j + m] is not a hole then
14: h ← h − 1
15: else if wRoot[j] is not a hole and wRoot[j + m] is a hole then
16: h ← h + 1
17: start ← i + 1
18: h ← 0
19: else if i = n − m − 1 and i − start + 1 ≥ m then
20: push (start, n) onto SqQ
21: for j = start, . . . , i + 1 − m do
22: output PC(wRoot[j] · · ·wRoot[j + m − 1],m, h, k, isPR[j][m])
23: if wRoot[j] is a hole and wRoot[j + m] is not a hole then
24: h ← h − 1
25: else if wRoot[j] is not a hole and wRoot[j + m] is a hole then
26: h ← h + 1
27: if i − start < m and wRoot[i] is a hole then
28: h ← h + 1

with a sliding window approach, which already proved useful in Procedure 1.
For any factor of length m and any divisor d of m, we count the number of total
words which are an m

d -th power, not necessarily primitively-rooted, and are
compatible with the factor. Since we are ultimately interested in PR-squares,
we can restrict to even values of m and divisors d of m

2 . These values appear in
the number-theoretic inclusion-exclusion, with coefficients μ( m

2d ), counting the
PR-square subwords compatible with a given factor.

For fixed m and d, we can compute these values for all length-m factors in
O(n) time. It suffices to have a sliding window of fixed length m, which for any
remainder modulo d tracks the situation at positions inside the sliding window
with that remainder modulo d. There can be either a conflict (at least two
different letters), just one letter, or just holes. To maintain the situation for a
fixed remainder, it suffices to store the last two letters encountered along with the
positions where they were encountered for the last time. Then a conflict in some
remainder is equivalent to isCompatible = false in Procedure 5, and if there is



96 F. Blanchet-Sadri et al.

Procedure 5. PC(u, n, h, k, isPrimitive)
Require: u is a partial word of length n with h holes over a k-letter alphabet,

isPrimitive is true if u is primitive
Ensure: the number of primitive completions of u
1: if isPrimitive then
2: return kh

3: else
4: result ← 0
5: for each divisor d of n in increasing order do
6: isCompatible ← true
7: i ← 0
8: let period be a symbol array of length d
9: while i < n and isCompatible do

10: if i < d then
11: period[i] ← u[i]
12: else
13: if period[i mod d] is a hole and u[i] is not a hole then
14: period[i mod d] ← u[i]
15: isCompatible ← period[i mod d] ↑ u[i]
16: i ← i + 1
17: if isCompatible then
18: result ← result + k# holes in period µ(n

d
)

19: return result

no conflict, the answer is k# of remainders with just holes . The sliding window needs
to be applied

∑n
m=1 d(m) times.

This sum is O(n log n); there are O(ni ) multiplicities of i not exceeding n,
this leads to the harmonic series and Hn =

∑n
i=1

1
i = O(log n).

Theorem 4. Given a partial word w of length n, Algorithm 2 computes the
number of occurrences of PR-square subwords of w in O(n2 log n) time.

Reexamining 101����01�012�12112000�, the square occurrence 1��� at position
2 has a PR-square completion 1010, but was ruled out before because it is not
a PR-square factor. Similarly, ���� at position 3 has PR-square completions
0101 and 1010, but was ruled out before because it is not a PR-square factor.
Additionally, 01����01�012 at position 1 is not a PR-square factor, but it has
PR-square completions 011012011012 and 010012010012.

Remark 2. One might try to apply dynamic programming to find the runs in
all the algorithms above, but since it must be at least quadratic, it will not
improve the time complexity of the current algorithms. Also, to keep the transi-
tion in dynamic programming efficient, extra work has to be done, which makes
it essentially the same as the current algorithms.

Remark 3. If h is large, the result does not fit a RAM word, but instead we can
represent it as

∑h
i=0 aik

i for some (small) integer coefficients ai.



Computing Primitively-Rooted Squares and Runs in Partial Words 97

5 Conclusion

We suggest the following problems for future work: How many occurrences of
primitively-rooted squares are there in a given partial word of length n? What
is the time complexity of computing all the squares and runs (not necessarily
primitively-rooted) in a given partial word of length n?

Our algorithms can be useful in the combinatorial analysis of repetitions in
partial words where computer checks are often applied.

References

1. Abrahamson, K.: Generalized string matching. SIAM J. Comput. 16(6), 1039–1051
(1987)

2. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theor. Comput. Sci. 22(3), 297–315 (1983)

3. Bach, E., Shallit, J.: Algorithmic Number Theory. Efficient Algorithms, vol. 1. MIT
Press, Cambridge (1996)

4. Blanchet-Sadri, F., Bodnar, M., Fox, N., Hidakatsu, J.: A graph polynomial app-
roach to primitivity. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) LATA
2013. LNCS, vol. 7810, pp. 153–164. Springer, Heidelberg (2013)

5. Blanchet-Sadri, F., Jiao, Y., Machacek, J.M., Quigley, J.D., Zhang, X.: Squares in
partial words. Theor. Comput. Sci. 530, 42–57 (2014)

6. Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: Periodicity algorithms and
a conjecture on overlaps in partial words. Theor. Comput. Sci. 443, 35–45 (2012)

7. Crochemore, M.: An optimal algorithm for computing the repetitions in a string.
Inf. Process. Lett. 12(5), 244–250 (1981)

8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, New York (2007)

9. Crochemore, M., Ilie, L., Rytter, W.: Repetitions in strings: Algorithms and com-
binatorics. Theor. Comput. Sci. 410, 5227–5235 (2009)

10. Diaconu, A., Manea, F., Tiseanu, C.: Combinatorial queries and updates on partial
words. In: Kuty�lowski, M., Charatonik, W., G ↪ebala, M. (eds.) FCT 2009. LNCS,
vol. 5699, pp. 96–108. Springer, Heidelberg (2009)

11. Fischer, M., Paterson, M.: String matching and other products. In: Karp, R. (ed.)
7th SIAM-AMS Complexity of Computation, pp. 113–125 (1974)

12. Halava, V., Harju, T., Kärki, T.: On the number of squares in partial words.
RAIRO-Theor. Inf. Appl. 44(1), 125–138 (2010)

13. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London (2008)

14. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a string in linear time.
In: FOCS 1999, pp. 596–604. IEEE Computer Society Press, Los Alamitos (1999)

15. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

16. Main, M.G., Lorentz, R.J.: An O(nlog n) algorithm for finding all repetitions in a
string. J. Algorithms 5(3), 422–432 (1984)

17. Manea, F., Mercaş, R., Tiseanu, C.: Periodicity algorithms for partial words. In:
Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 472–484.
Springer, Heidelberg (2011)



3-Coloring Triangle-Free Planar Graphs
with a Precolored 9-Cycle

Ilkyoo Choi1, Jan Ekstein2, Přemysl Holub2, and Bernard Lidický3(B)

1 Korea Advanced Institute of Science and Technology, Daejeon, South Korea
ilkyoo@kaist.ac.kr

2 University of West Bohemia, Pilsen, Czech Republic
{ekstein,holubpre}@kma.zcu.cz

3 Iowa State University, Ames, USA
lidicky@iastate.edu

Abstract. Given a triangle-free planar graph G and a cycle C of length
9 in G, we characterize all situations where a 3-coloring of C does not
extend to a proper 3-coloring of G. This extends previous results for the
length of C up to 8.

1 Introduction

Let [n] = {1, 2, . . . , n}. Graphs in this paper are finite and may have loops or
parallel edges. Given a graph G, let V (G) and E(G) denote the vertex set and
the edge set of G, respectively. We will also use |G| for the size of E(G). A proper
k-coloring of a graph G is a function ϕ : V (G) → [k] such that ϕ(u) �= ϕ(v) for
each edge uv ∈ E(G). A graph is k-colorable if there exists a proper k-coloring
of the graph, and the minimum k where a graph is k-colorable is the chromatic
number of the graph.

Garey and Johnson [15] proved that deciding if a graph is k-colorable is NP-
complete even when k = 3. Moreover, deciding if a graph is 3-colorable is still
NP-complete when restricted to planar graphs [9]. Therefore, even though planar
graphs are 4-colorable by the celebrated Four Color Theorem [4,5,19], finding
sufficient conditions for a planar graph to be 3-colorable has been an active area
of research. A landmark result in this area is Grötzsch’s Theorem [17], which is
the following:

Theorem 1 ([17]). Every triangle-free planar graph is 3-colorable.

Ilkyoo Choi—Supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT &
Future Planning (2011-0011653).
Jan Ekstein—Supported by P202/12/G061 of the Czech Science Foundation
and by the European Regional Development Fund (ERDF), project NTIS -
New Technologies for the Information Society, European Centre of Excellence,
CZ.1.05/1.1.00/02.0090.
Přemysl Holub—Supported by NSF grants DMS-1266016.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 98–109, 2015.
DOI: 10.1007/978-3-319-19315-1 9



3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 99

We direct readers to a nice survey by Borodin [7] for more results and conjectures
regarding 3-coloring planar graphs.

A graph G is k-critical if it is not (k−1)-colorable but every proper subgraph
of G is (k − 1)-colorable. Critical graphs are important since they are (in a
certain sense) the minimal obstacles in reducing the chromatic number of a
graph. Numerous coloring algorithms are based on detecting critical subgraphs.
Despite its importance, there is no known characterization of k-critical graphs
when k ≥ 4. On the other hand, there has been some success regarding 4-critical
planar graphs. Extending Theorem1, the Grünbaum–Aksenov Theorem [1,6,18]
states that a planar graph with at most three triangles is 3-colorable, and we
know that there are infinitely many 4-critical planar graphs with four triangles.
Borodin, Dvořák, Kostochka, Lidický, and Yancey [8] were able to characterize
all 4-critical planar graphs with four triangles.

Given a graph G and a proper subgraph C of G, we say G is C-critical fork-
coloring if for every proper subgraph H of G where C ⊆ H, there exists a proper
k-coloring of C that extends to a proper k-coloring of H, but does not extend to
a proper k-coloring of G. Roughly speaking, a C-critical graph for k-coloring is
a minimal obstacle when trying to extend a proper k-coloring of C to a proper
k-coloring of the entire graph. Note that (k + 1)-critical graphs are exactly the
C-critical graphs for k-coloring with C being the empty graph.

In the proof of Theorem1, Grötzsch actually proved that any proper coloring
of a 4-cycle or a 5-cycle extends to a proper 3-coloring of a triangle-free planar
graph. This implies that there are no triangle-free planar graphs that are C-
critical for 3-coloring when C is a face of length 4 or 5. This sparked the interest
of characterizing triangle-free planar graphs that are C-critical for 3-coloring
when C is a face of longer length. Since we deal with 3-coloring triangle-free
planar graphs in this paper, from now on, we will write “C-critical” instead of
“C-critical for 3-coloring” for the sake of simplicity.

The investigation was first done on planar graphs with girth 5. Walls [22]
and Thomassen [20] independently characterized C-critical planar graphs with
girth 5 when C is a face of length at most 11. The case when C is a 12-face
was initiated in [20], but a complete characterization was given by Dvořák and
Kawarabayashi in [11]. Moreover, a recursive approach to identify all C-critical
planar graphs with girth 5 when C is a face of any given length is given in [11].
Dvořák and Lidický [10] implemented an algorithm and used a computer to
generate all C-critical graphs with girth 5 when C is a face of length at most
16. The graphs generated were then used to reveal some structure of 4-critical
graphs on surfaces without short contractible cycles.

The situation for planar graphs with girth 4, which are triangle-free planar
graphs, is more complicated since the list of C-critical graphs is not finite when
C has size at least 6. We already mentioned that there are no C-critical triangle-
free planar graphs when C is a face of length 4 or 5. An alternative proof of the
case when C is a 5-face was given by Aksionov [1]. Gimbel and Thomassen [16]
not only showed that there exists a C-critical triangle-free planar graph when C
is a 6-face, but also characterized all of them. Aksenov, Borodin, and Glebov [2]



100 I. Choi et al.

independently proved the case when C is a 6-face using the discharging method,
and also characterized all C-critical triangle-free planar graphs when C is a
7-face in [3]. Dvořák and Lidický [14] used properties of nowhere-zero flows to
give simpler proofs of the case when C is either a 6-face or a 7-face, and also
characterized C-critical triangle-free planar graphs when C is an 8-face. The case
where C is a 7-face was used in [8].

In this paper, we push the project further and characterize all C-critical
triangle-free planar graphs when C is a face of length 9. For a plane graph G, let
S(G) denote the set of multisets of possible lengths of internal faces of G with
length at least 5.

Theorem 2. Let G be a connected plane triangle-free graph with outer face
bounded by a cycle C of length 9. The graph G is C-critical for 3-coloring if
and only if G contains no separating cycles of length at most five, the interior
of every non-facial 6-cycle contains only faces of length four and one of the
following propositions is satisfied (see Fig. 1 for an illustration):

(a) S(G) = {5} and the 5-face of G intersects C in a path of length at least two.
(b) S(G) = {7} and the 7-face of G intersects C in a path of length at least three.
(c) S(G) = {5, 6} and the 5-face, 6-face, of G intersects C in a path of length

at least two, and four, respectively.
(d) S(G) = {5, 6} and G is depicted as (d1) or (d2) in Fig. 1.
(e) S(G) = {5, 5, 5} and G is depicted as (Bij) in Fig. 1 for all i, j.

2 Preliminaries

Our proof of Theorem2 uses the same method as Dvořák and Lidický [14]. The
main idea is to use the correspondence between coloring of a plane graph G and
flows in the dual of G. In this paper, we give only a brief description of the
correspondence and the lemmas useful in our case. A more detailed and general
description can be found in [14].

Let G� denote the dual of a plane graph G. Let ϕ be a proper 3-coloring
of the vertices of G by colors {1, 2, 3}. For every edge uv of G, we orient the
corresponding edge e in G� in the following way. Let e have endpoints f, h in
G�, where f ,v,h is in the clockwise order from vertex u in the drawing of G. The
edge e will be oriented from f to h if (ϕ(u), ϕ(v)) ∈ {(1, 2), (2, 3), (3, 1)}, and
from h to f otherwise.

Since ϕ is a proper coloring, every edge of G� has an orientation. Tutte [21]
showed that this orientation of G� defines a nowhere-zero Z3-flow, which means
that the in-degree and the out-degree of every vertex in G� differ by a multiple of
three. Conversely, every nowhere-zero Z3-flow in G� defines a proper 3-coloring
of G up to the rotation of colors.

Let h be the vertex in G� corresponding to the outer face of G. Edges oriented
away from h are called source edges and the edges oriented towards h are called
sink edges. The orientations of edges incident to h depend only on the coloring
of C, where C is the cycle bounding the outer face of G.



3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 101

(a)

1
3

2

3

1 2

3

1

2

(b)

1
2

3

1

3 2

1

2

3

(c)

1
2

1

2

3 1

2

1

3

(d1)

1
2

3

1

3 2

1

2

3

(d2)

1
2

3

1

3 2

1

2

3

(B11)

1
2

1

2

3 2

3

1

3

(B21)

1
2

3

2

1 2

3

2

3

(B22)

1
2

3

2

1 2

3

2

3

(B31)

1
2

3

1

2 3

1

3

2

(B32)

1
2

3

1

2 3

1

3

2

(B33)

1
2

3

1

2 3

1

3

2

(B34)

1
2

3

1

3 1

2

3

2

(B35)

1
2

3

1

3 1

2

3

2

(B36)

1
2

3

1

3 1

2

3

2

(B41)

1
2

3

1

3 2

1

2

3

(B42)

1
2

3

1

3 2

1

2

3

(B43)

1
2

3

1

3 2

1

2

3

(B44)

1
2

3

1

3 2

1

2

3

(B51)

1
2

1

2

3 2

3

1

3

(B52)

1
2

1

2

3 2

3

1

3

Fig. 1. All C-critical triangle-free plane graphs where C is an outer 9-face. Note that
each figure actually represents infinitely many graphs, including ones that can be
obtained by identifying some of the depicted vertices. The arrows correspond to source
edges and sink edges that are defined in Preliminaries.

For a vertex f of G�, let δ(f) denote the difference of the out-degree and in-
degree of f . Possible values of δ(f) depend on the size of the face corresponding
to f , denoted by |f |. Clearly |δ(f)| ≤ |f | and δ(f) has the same parity as |f |.
Hence if |f | = 4, then δ(f) = 0. Similarly, if |f | ∈ {5, 7}, then δ(f) ∈ {−3, 3}
and if |f | = 6 then δ(f) ∈ {−6, 0, 6}.

Next we convert the problem of extending a proper 3-coloring of C to the
existence of a Z-flow in an auxiliary graph obtained from G�. We call a function
q assigning an integer to every internal face f of G a layout if q(f) ≤ |f |, q(f)
is divisible by 3, and q(f) has the same parity as |f |. Notice that q(f) satisfies
the same conditions as δ(f). Therefore it is sufficient to specify the q-values for
faces of size at least 5, since q(f) = 0 if f is a 4-face.

Let ψ be a proper 3-coloring C. The coloring ψ gives an orientation of the
edges corresponding to the edges of C in G�. Denote by ns the number of source
edges and by nt the number of sink edges. A layout q is ψ-balanced if ns+m = nt,



102 I. Choi et al.

where m is the sum of the q-values over all internal faces of G. A graph Gq,ψ is
obtained from G� by removing the vertex h corresponding to the outer face of G
and by adding two new vertices s and t. For every edge hf in G� we add one edge
sf if hf is a source edge and we add one edge tf if it is a sink edge. Moreover,
for every internal face f with q(f) > 0, we add q(f) parallel sf edges and for
every internal face f with q(f) < 0, we add −q(f) parallel tf edges. Note that
q is ψ-balanced if and only if s and t have the same degree.

For a ψ-balanced layout q of G, let c(q, ψ) denote the degree of the source
vertex s (and also the sink vertex t) of Gq,ψ. For an edge cut K in Gq,ψ sepa-
rating s from t, the component of Gq,ψ \ K containing s, or t, is called a source
component, or a sink component, respectively.

For a set of faces F , let �(F ) denote the smallest length of a cycle in a
critical graph that may contain all faces of F . Denote a face of size i by fi. It is
known [13] that �({fi}) = i and �({f5, f6}) = 9.

The next lemma describes interiors of cycles in critical graphs.

Lemma 1 ([12]). Let G be a plane graph with outer face K. Let C be a cycle
in G that does not bound a face, and let H be the subgraph of G drawn in the
closed disk bounded by C. If G is K-critical for k-coloring, then H is C-critical
for k-coloring.

Lemma 2 is the key lemma that gives the correspondence between 3-colorings of
C and flows. It implies that if a 3-coloring of C extends to the entire graph, then
there is a Z-flow from s to t of value c(q, ψ).

Lemma 2 ([14]). Let G be a connected plane triangle-free graph with the outer
face C bounded by a cycle and let ψ be a 3-coloring of C. The coloring ψ extends
to a 3-coloring of G if and only if there exists a ψ-balanced layout q such that
the terminals of Gq,ψ are not separated by an edge cut smaller than c(q, ψ).

The cuts showing that a 3-coloring of C does not extend are described by the
following lemma.

Lemma 3 ([14]). Let G be a connected plane triangle-free graph with the outer
face C bounded by a cycle and let ψ be a 3-coloring of C that does not extend to
a 3-coloring of G. If q is a ψ-balanced layout in G, then there exists a subgraph
K0 ⊆ G such that either

(i) K0 is a path with both ends in C and no internal vertex in C, and if P is a
path in C joining the end vertices of K0, ns is the number of source edges
of P , nt is the number of the sink edges of P and m is the sum of the values
of q over all faces of G drawn in the open disk bounded by the cycle P +K0,
then |ns + m − nt| > |K0|. In particular, |P | + |m| > |K0|.
Or,

(ii) K0 is a cycle with at most one vertex in C, and if m is the sum of the
values of q over all faces of G drawn in the open disk bounded by K0, then
|m| > |K0|.



3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 103

3 Proof of Theorem2

Let Sk be the set of possible multisets of sizes of faces of length at least five
in a graph of girth at least 4 where the length of the precolored face is k. The
result of Dvořák, Král’, and Thomas [13] implies among others that S6 = {∅},
S7 = {{5}}, S8 = {∅, {6}, {5, 5}}, and S9 = {{7}, {5}, {6, 5}, {5, 5, 5}}.

From now on, G is always a C-critical triangle-free plane graph and C is
always the outer face of length 9. By the previous paragraph, we have four cases
to consider when C has length 9. The case of one 7-face was already resolved
by Dvořák and Lidický [14], and it is described in Theorem2(b). We resolve the
remaining three cases in Lemmas 4, 5, and 6. The proof of Lemma 6 is omitted
due to the page limit. In order to simplify the cases, we first solve the case when
C has a chord.

If G is C-critical and C has a chord, then Lemma 1 implies that G can be
obtained by identifying two edges of the outer faces of two different smaller
critical graphs. It is not difficult to show that the converse is also true.

Therefore, we can enumerate C-critical graphs G where C has a chord and
has length 9 by identifying edges from two smaller critical graphs with outer
faces of length either 4 and 7 or 5 and 6. The resulting graphs are depicted in
Fig. 1 (a) and (b), where some of the vertices must be identified.

In the following we assume that C has no chords. In the rest of the paper,
ψ will always be a 3-coloring of C. Also, for a subset Z of the edges of C, we
will use ns

Z and nt
Z to denote the number of source edges and sink edges of Z,

respectively.

Lemma 4. If G contains one 5-face f5 and one 6-face f6, and all other faces are
4-faces, then G is described by Theorem2(c),(d) and depicted in Fig. 1(c),(d1),
and (d2).

Proof. Let G be a C-critical graph containing one 5-face f5 and one 6-face f6.
Let e ∈ E(G) \ E(C). We want to find a 3-coloring ψ of C that does not

extend to a proper 3-coloring of G but extends to a proper 3-coloring of G − e.
Note that G−e has either one 5-face and one 8-face, or one 6-face and one 7-face,
or one 9-face, or two 6-faces and and one 5-face. We know that the smallest k
such that Sk contains any of {5, 8}, {6, 7}, {9}, or {5, 6, 6} is at least 11. Hence
every precoloring of C extends to G − e. In particular, ψ extends to G − e.
Therefore, we only need to characterize ψ that does not extend to G.

Let ψ be a proper 3-coloring of C that does not extend to a proper 3-coloring
of G. By symmetry, we assume that C has more source edges than sink edges.
Hence C has either 9 or 6 source edges. Let q be a ψ-balanced layout of G. By
Lemma 2, there exists an edge-cut K in Gq,ψ separating s from t such that |K|
is smaller than c(q, ψ). Let K0 ⊂ G be obtained by Lemma 3 and let k0 = |K0|.

First suppose that K0 is a cycle. Let m denote the sum of the q-values of
the faces in the interior of K0. By Lemma 3, |m| > k0. If both f5, f6 are in
the interior of K0, then |m| ≤ 9, contradicting the fact that |m| > k0 since
k0 ≥ �({f5, f6}) = 9. If f5 is in the interior of K0, but f6 is not, then |m| = 3,



104 I. Choi et al.

while �({f5}) = 5, a contradiction again. Similarly, we obtain a contradiction
when f6 is in the interior of K0 but f5 is not, since �({f6}) = 6 and |m| ≤ 6.
Therefore K0 is always a path joining two distinct vertices of C.

The graph G bounded by C is divided by K0 into two closed disks X and Y
intersecting at K0, where faces in X correspond to the vertices in the component
containing s in Gq,ψ − K. For Z ∈ {X,Y }, denote by PZ the subpath of C such
that Z is bounded by PZ + K0. Recall that ns

Z and nt
Z denote the number of

source edges and sink edges in PZ , respectively. The described structure is shown
in Fig. 2.

YX k0
K0

nt
X

PX

ns
X

nt
Y

PY

ns
Y

s t

Fig. 2. Structure of a cut in G.

Claim 1. There are 6 source edges in C.

Proof. Suppose for a contradiction that C contains 9 source edges. Hence there
is just one ψ-balanced layout q with q(f5) = −3, q(f6) = −6, and c(q, ψ) = 9.
Note that ns

X +ns
Y = 9 and nt

X +nt
Y = 0. If both f5, f6 belong to X then |K| =

k0+ns
Y +9 < 9, a contradiction. If both f5, f6 belong to Y then |K| = k0+ns

Y < 9,
while the length of the boundary cycle of Y is k0+ns

Y ≥ �({f5, f6}) = 9, which is
a contradiction again. Now suppose that exactly one of f5, f6 belongs to X and
let fX denote such a face and fY the other one. Then |K| = k0+ns

Y +|q(fX)| < 9
and k0 + ns

Y ≥ |fY |. If fX = f5 then k0 + ns
Y + 3 < 9 and k0 + ns

Y ≥ 6, which
is a contradiction. If fX = f6 then k0 + ns

Y + 6 < 9 and k0 + ns
Y ≥ 5, a

contradiction. 
�
Claim 2. If q is a ψ-balanced layout with q(f5) = −3 and q(f6) = 0, then f5
belongs to Y and f6 belongs to X.

Proof. Assume that q(f5) = −3 and q(f6) = 0. Hence the six source edges are
the only edges incident to s, thus c(q, ψ) = 6. Note that ns

X + ns
Y = 6 and

nt
X +nt

Y = 3. First suppose that both f5, f6 belong to X. Then ns
X +nt

X +k0 ≥
�({f5, f6}) = 9, and the size of the cut K is 3 + k0 + nt

X + ns
Y < c(q, ψ) = 6.

By subtracting the two previous inequalities we get ns
X − ns

Y > 6, contradicting
the fact that ns

X + ns
Y = 6. Now suppose that both f5, f6 belong to Y . Then

ns
Y + nt

Y + k0 ≥ �({f5, f6}) = 9 and |K| = k0 + nt
X + ns

Y < 6. By subtracting
them we get nt

Y −nt
X > 3, a contradiction with nt

Y +nt
X = 3. Finally we suppose

that f5 belongs to X and f6 belongs to Y . Then ns
Y + nt

Y + k0 ≥ �({f6}) = 6
and |K| = 3 + k0 + nt

X + ns
Y < 6. But then nt

Y − nt
X > 3, a contradiction again.

Therefore f5 is in Y and f6 is in X. 
�



3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 105

Claim 3. If q is a ψ-balanced layout with q(f5) = 3 and q(f6) = −6, then f5
belongs to X and f6 belongs to Y .

Proof. Assume that q(f5) = 3 and q(f6) = −6. Since there are six source edges
on C and three edges from s to f5 in Gq,ψ, c(q, ψ) = 9. Note that ns

X + ns
Y =

6 and nt
X + nt

Y = 3. First suppose that both f5 and f6 belong to X. Then
k0 + ns

X + nt
X ≥ �({f5, f6}) = 9 and |K| = 6 + k0 + ns

Y + nt
X < c(q, ψ) = 9. But

then we obtain ns
X − ns

Y > 6, contradicting the fact that ns
X + ns

Y = 6. Now
suppose that both f5 and f6 belong to Y . Then k0 + ns

Y + nt
Y ≥ �({f5, f6}) = 9

and the size of K is 3 + k0 + ns
Y + nt

X < 9. But then we get nt
Y − nt

X > 3,
contradicting nt

X + nt
Y = 3. Finally we suppose that f6 belongs to X and f5

belongs to Y . Then |K| = 9 + k0 + ns
Y + nt

X < 9, a contradiction. 
�
Since C has 6 source edges, we have two different ψ-balanced layouts. Let q1 and
q2 be the layouts where q1(f5) = −3, q1(f6) = 0, and q2(f5) = 3, q2(f6) = −6,
respectively. Let K and L be the subgraphs of G obtained by Lemma 3 applied to
q1 and q2, respectively, and let k = |K| and l = |L|. Note that we already showed
that each of K and L is a path joining pairs of distinct vertices of C. Denote
these vertices by v1, v2 for K and by w1, w2 for L. The prescribed structure is
depicted in Figs. 3 and 4.

ZYX

lk

nt
Yns

Y

nt
X nt

Z

ns
X ns

Z
f6 f5

w1

w2

v2

v1

Fig. 3. A structure for two non-crossing cuts.

If we can choose the labels of the endpoints of K and L so that the clockwise
order along C is v1, v2, w1, w2, then we call K and L non-crossing, and we call K
and L crossing otherwise. Notice that K and L are always non-crossing if they
have a vertex of C in common.

We treat the cases of K and L being crossing and non-crossing separately.

Claim 4. If K and L are non-crossing, then G is depicted in Fig. 1(c).

Proof. Assume that K and L are non-crossing. See Fig. 3. Note that K, L are
not necessarily disjoint. The cuts K and L partition G into three parts. Denote
by X the region of G containing f6, by Z the region of G containing f5, and by
Y the rest of G. For an edge cut K ′ of Gq1,ψ corresponding to K, f6 belongs to
the source subdisk of G while f5 belongs to the sink subdisk of G by Claim 2.



106 I. Choi et al.

Analogously, for an edge cut L′ of Gq2,ψ corresponding to L, f5 belongs to the
source subdisk of G while f6 belongs to the sink subdisk of G by Claim 3. For
the edge cut K ′, |K ′| = k + nt

X + ns
Y + ns

Z < c(q1, ψ) = 6. For the edge cut
L′, |L′| = l + ns

X + ns
Y + nt

Z < c(q2, ψ) = 9. By the assumptions that C has
no chord, k ≥ 2 and l ≥ 2. Since X contains f6, k + ns

X + nt
X ≥ �({f6}) = 6

and even, and since Z contains f5, l + ns
Z + nt

Z ≥ �({f5}) = 5 and odd. Clearly
ns

X +ns
Y +ns

Z = 6 and nt
X +nt

Y +nt
Z = 3. Integer solutions to these constraints

are in the following table:

From these solutions we obtain the graphs depicted in Fig. 1(c). 
�
Claim 5. If K and L are crossing, then G is depicted in Fig. 1(d1) or (d2).

Proof. Assume that K and L cross, hence G is divided by K and L into four
regions. Let X be the region of G containing f6, Z be the region containing f5,
and let W ,Y be the two remaining regions. Since K and L cross, they have a
common internal vertex v. Note that K ∩L is a path and v can be any vertex on
the path. Denote by k1 the length of the subpath of K between X and Y up to
v, and denote by k2 the length of the rest of K. Denote by l1 the length of the
subpath of L between Y and Z up to v, and denote by l2 the length of the rest
of L. The prescribed structure is depicted in Fig. 4.

Z

Y

W

X l1

k2

k1

l2

nt
Yns

Y

nt
Wns

W

nt
X nt

Z

ns
X ns

Z

f6 f5
v

w1

v2

v1

w2

Fig. 4. A structure for two crossed cuts.

Note that min{k1, k2, l1, l2} ≥ 1 since v is an internal vertex. For an edge cut
K ′ of Gq1,ψ corresponding to K, f6 belongs to the source component while f5
belongs to the sink component by Claim 2. Analogously, for an edge cut L′ of
Gq2,ψ corresponding to L, f5 belongs to the source component while f6 belongs
to the sink component by Claim 3.



3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 107

We obtain the following set of constraints that must be satisfied in this
subcase.

|K ′| = k1 + k2 + nt
X + ns

Y + ns
Z + nt

W < c(q1, ψ) = 6 (1)

|L′| = l1 + l2 + ns
X + ns

Y + nt
Z + nt

W < c(q2, ψ) = 9 (2)

k1 + l2 + ns
X + nt

X ≥ �({f6}) = 6 and even (3)

l1 + k2 + ns
Z + nt

Z ≥ �({f5}) = 5 and odd (4)

l2 + k2 + ns
X + nt

X + ns
Y + nt

Y + ns
Z + nt

Z ≥ �({f5, f6}) = 9 and odd (5)

min{k1, l1} + ns
Y + nt

Y > max{k1, l1} (6)

min{k2, l2} + ns
W + nt

W > max{k2, l2} (7)
ns

X + ns
Y + ns

Z = 6 (8)

nt
X + nt

Y + nt
Z = 3 (9)

Inequalities (1) and (2) come from the size of the cut being smaller than
c(q1, ψ) and c(q2, ψ), respectively. Inequalities (3)–(5) come from the fact that
interior of cycles are also critical graphs. Finally, if any of the inequalities (6)–(7)
are violated then the cuts K and L can be taken as non-crossing.

We solve the system of constraints by computer programs. From these solu-
tions we get graphs depicted in Fig. 1(d1) and (d2). 
�
This finishes the proof of Lemma 4. 
�
Lemma 5. If G contains one 5-face f5 and all other faces are 4-faces, then G
is described by Theorem2(a) and depicted in Fig. 1(a).

Proof. Let G be a C-critical graph containing one 5-face f5. Let e ∈ E(G)\E(C).
We want to find a 3-coloring ψ of C that does not extend to a proper 3-coloring
of G but extends to a proper 3-coloring of G − e. Note that either G − e has a
5-face and a 6-face or G − e has a 7-face. This gives us two cases to consider.

Case 1: G − e contains a 5-face and a 6-face.
Let ψ be a 3-coloring of C containing 9 source edges (i.e. the colors
around C are 1, 2, 3, 1, 2, 3, 1, 2, 3). Then ψ extends to a 3-coloring of
G− e by Claim 1. However, ψ does not extend to a 3-coloring of G since
it is not possible to create a ψ-balanced layout for G.

Case 2: G − e contains a 7-face f7.
By Theorem 9 from [14], if ψ is a 3-coloring of C containing 9 source
edges, then ψ does not extend to a proper 3-coloring of G − e and if ψ
is a 3-coloring of C containing 6 source edges and 3 sink edges, then ψ
always extends to a proper 3-coloring of G − e. Since ψ must extend to
G − e, we know that ψ contains 6 source edges and 3 sink edges. Now
we need to construct such a proper 3-coloring ψ that does not extend
to a proper 3-coloring of G.
Let q be a ψ-balanced layout of G. The only possibility is q(f5) = −3 and
c(q, ψ) = 6. By Lemma 2, there exists an edge-cut K in Gq,ψ separating



108 I. Choi et al.

s from t such that |K| is smaller than 6. By a proof of Lemma 3 (for
details see [14]), there is a subgraph K0 of G containing edges of G,
which are crossed by edges of K that are not adjacent to any of the
terminals in Gq,ψ. Denote |K0| by k0. First suppose that K0 is a cycle.
Let m denote the sum of the q-values of the faces in the interior of K0.
By Lemma 3 |m| > k0. If f5 is in the interior of K0, then |m| = 3, while
�({f5}) = 5, a contradiction. Therefore K0 is a path joining two distinct
vertices of C.
From a ψ-balanced layout q we obtain that ns

X +ns
Y = 6 and nt

X +nt
Y =

3. This structure is the same as in the proof of Lemma 4 (see Fig. 2).
The following two possibilities can occur:
Let f5 belong to X. For the edge cut K, |K| = k0 + ns

Y + nt
X + 3 <

c(q, ψ) = 6. Hence k0 = 2, ns
Y = 0, nt

X = 0, ns
X = 6, and nt

Y = 3. The
cycle bounding X has length 8. However, it contains only one face of
odd size, which is a contradiction.
Let f5 belong to Y . For the edge-cut K, |K| = k0+ns

Y +nt
X < c(q, ψ) =

6. For X we have k0+ns
X +nt

X ≥ �({f4}) = 4 and even. Since Y contains
f5, k0 + ns

X + nt
X ≥ �({f5}) = 5 and odd. We solve the system of these

constraints by computer programs.
From these solutions we obtain that either Y is a 5-face f5 sharing at
least two sink edges with C (the first three solutions) or Y is bounded
by a 7-cycle sharing at least three sink edges with C (the last three
solutions). The situation is depicted in Fig. 1(a)(b). 
�

Lemma 6. If G contains three 5-faces and all other faces are 4-faces, then G
is described by Theorem2(e) and depicted in Fig. 1(Bij) for all i and j.

The proof of Lemma 6 is omitted due to the page limit. The proof goes along
similar lines as the proof of Lemma 4.

References

1. Aksenov, V.A.: The extension of a 3-coloring on planar graphs. Diskret. Analiz
(Vyp. 26 Grafy i Testy), 3–19, 84 (1974)

2. Aksenov, V.A., Borodin, O.V., Glebov, A.N.: Continuation of a 3-coloring from a
6-face to a plane graph without 3-cycles. Diskretn. Anal. Issled. Oper. Ser. 1 10(3),
3–11 (2003)

3. Aksenov, V.A., Borodin, O.V., Glebov, A.N.: Continuation of a 3-coloring from
a 7-face onto a plane graph without 3-cycles. Sib. Èlektron. Mat. Izv. 1, 117–128
(2004)

4. Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Illinois
J. Math. 21(3), 429–490 (1977)

5. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. II. Reducibility.
Illinois J. Math. 21(3), 491–567 (1977)

6. Borodin, O.V.: A new proof of Grünbaum’s 3 color theorem. Discrete Math.
169(1–3), 177–183 (1997). http://dx.doi.org/10.1016/0012-365X(95)00984-5

http://dx.doi.org/10.1016/0012-365X(95)00984-5


3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle 109

7. Borodin, O.V.: Colorings of plane graphs: A survey. Discrete Math. 33(4), 517–539
(2013). http://dx.doi.org/10.1016/j.disc.2012.11.011

8. Borodin, O.V., Dvořák, Z., Kostochka, A.V., Lidický, B., Yancey, M.: Pla-
nar 4-critical graphs with four triangles. Eur. J. Combin. 41, 138–151 (2014).
http://dx.doi.org/10.1016/j.ejc.2014.03.009

9. Dailey, D.P.: Uniqueness of colorability and colorability of planar 4-regular graphs
are NP-complete. Discrete Math. 30(3), 289–293 (1980). http://dx.doi.org/10.
1016/0012-365X(80)90236-8

10. Dvořák, Z., Lidický, B.: 4-critical graphs on surfaces without con-
tractible (≤ 4)-cycles. SIAM J. Discrete Math. 28(1), 521–552 (2014).
http://dx.doi.org/10.1137/130920952

11. Dvořák, Z., Kawarabayashi, K.i.: Choosability of planar graphs of girth 5. ArXiv
e-prints, September 2011

12. Dvořák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces
I. Extending a coloring to a disk with one triangle (2013) (Submitted)

13. Dvořák, Z., Král, D., Thomas, R.: Three-coloring triangle-free graphs on surfaces
IV. 4-faces in critical graphs (2014) (Manuscript)

14. Dvořák, Z., Lidický, B.: 3-coloring triangle-free planar graphs with a precolored
8-cycle (2014). http://dx.doi.org/10.1002/jgt.21842 (Accepted to J. Graph
Theory)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Co., San Francisco (1979)

16. Gimbel, J., Thomassen, C.: Coloring graphs with fixed genus and girth.
Trans. Amer. Math. Soc. 349(11), 4555–4564 (1997). http://dx.doi.org/10.1090/
S0002-9947-97-01926-0

17. Grötzsch, H.: Ein Dreifarbenzatz für Dreikreisfreie Netze auf der Kugel. Math.
Natur. Reihe 8, 109–120 (1959)

18. Grünbaum, B.: Grötzsch’s theorem on 3-colorings. Michigan Math. J. 10, 303–310
(1963)

19. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: The four-colour theorem. J.
Combin. Theory Ser. B 70(1), 2–44 (1997). http://dx.doi.org/10.1006/jctb.1997.
1750

20. Thomassen, C.: The chromatic number of a graph of girth 5 on a fixed sur-
face. J. Combin. Theory Ser. B 87(1), 38–71 (2003). http://dx.doi.org/10.1016/
S0095-8956(02)00027-8 (dedicated to Crispin St. J. A. Nash-Williams)

21. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Canadian J.
Math. 6, 80–91 (1954)

22. Walls, B.H.: Coloring girth restricted graphs on surfaces. ProQuest LLC, Ann
Arbor (1999). http://gateway.proquest.com/openurl?url ver=Z39.88-2004&rft
val fmt=info:ofi/fmt:kev:mtx:dissertation&res dat=xri:pqdiss&rft dat=xri:pqdiss:
9953838 (thesis (Ph.D.)–Georgia Institute of Technology)

http://dx.doi.org/10.1016/j.disc.2012.11.011
http://dx.doi.org/10.1016/j.ejc.2014.03.009
http://dx.doi.org/10.1016/0012-365X(80)90236-8
http://dx.doi.org/10.1016/0012-365X(80)90236-8
http://dx.doi.org/10.1137/130920952
http://dx.doi.org/10.1002/jgt.21842
http://dx.doi.org/10.1090/S0002-9947-97-01926-0
http://dx.doi.org/10.1090/S0002-9947-97-01926-0
http://dx.doi.org/10.1006/jctb.1997.1750
http://dx.doi.org/10.1006/jctb.1997.1750
http://dx.doi.org/10.1016/S0095-8956(02)00027-8
http://dx.doi.org/10.1016/S0095-8956(02)00027-8
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9953838
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9953838
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9953838


Computing Heat Kernel Pagerank and a Local
Clustering Algorithm

Fan Chung and Olivia Simpson(B)

University of California, San Diego,
La Jolla, CA 92093, USA
{fan,osimpson}@ucsd.edu

Abstract. Heat kernel pagerank is a variation of Personalized PageRank
given in an exponential formulation. In this work, we present a sublinear
time algorithm for approximating the heat kernel pagerank of a graph. The
algorithm works by simulating random walks of bounded length and runs

in time O
( log(ε−1) log n

ε3 log log(ε−1)

)
, assuming performing a random walk step and

sampling from a distribution with bounded support take constant time.
The quantitative ranking of vertices obtained with heat kernel pager-

ank can be used for local clustering algorithms. We present an efficient
local clustering algorithm that finds cuts by performing a sweep over a
heat kernel pagerank vector, using the heat kernel pagerank approxima-
tion algorithm as a subroutine. Specifically, we show that for a subset
S of Cheeger ratio φ, many vertices in S may serve as seeds for a heat
kernel pagerank vector which will find a cut of conductance O(

√
φ).

Keywords: Heat kernel pagerank · Heat kernel · Local algorithms

1 Introduction

In large networks, many similar elements can be identified to a single, larger
entity by the process of clustering. Increasing granularity in massive networks
through clustering eases operations on the network. There is a large literature
on the problem of identifying clusters in a graph [10,13,14,17], and the problem
has found many applications. However, in a variation of the graph clustering
problem we may only be interested in a single cluster near one element in the
graph. For this, local clustering algorithms are of greater use.

As an example, local clustering is a common tool for identifying communities
in a network. A community is loosely defined as a subset of vertices in a graph
which are more strongly connected internally than to vertices outside the sub-
set. Properties of community structure in large, real world networks have been
studied in [12], for example, where local clustering algorithms are employed for
identifying communities of varying quality.

The goal of a local clustering algorithm is to identify a cluster in a graph near
a specified vertex. Using only local structure avoids unnecessary computation
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 110–121, 2015.
DOI: 10.1007/978-3-319-19315-1 10



Computing Heat Kernel Pagerank 111

over the entire graph. An important consequence of this are running times which
are often in terms of the size of the small side of the partition, rather than of
the entire graph. The best performing local clustering algorithms use probability
diffusion processes over the graph to determine clusters (see Sect. 1.1). In this
paper we present a new algorithm which identifies a cut near a specified vertex
with simple computations over a heat kernel pagerank vector.

The theory behind using heat kernel pagerank for computing local clusters
has been considered in previous work. Here we give an efficient approximation
algorithm for computing heat kernel pagerank. Note that we use a “relaxed”
notion of approximation which allows us to derive a sublinear probabilistic
approximation algorithm for heat kernel pagerank, while computing an exact
or sharp approximation would require computational complexity of order simi-
lar to matrix multiplication. We use this sublinear approximation algorithm for
efficient local clustering.

1.1 Previous Work

Heat kernel and approximation of matrix exponentials. Heat kernel pagerank was
first introduced in [6] as a variant of personalized PageRank [5]. While PageRank
can be viewed as a geometric sum of random walks, the heat kernel pagerank
is an exponential sum of random walks. An alternative interpretation of the
heat kernel pagerank is related to the heat kernel of a graph as the fundamental
solution to the heat equation. As such, it has connections with diffusion and
mixing properties of graphs and has been incorporated into a number of graph
algorithmic primitives.

Orecchia et al. use a variant of heat kernel random walks in their random-
ized algorithm for computing a cut in a graph with prescribed balance con-
straints [18]. A key subroutine in the algorithm is a procedure for computing
e−Av for a positive semidefinite matrix A and a unit vector v in time Õ(m) for
graphs on n vertices and m edges. They show how this can be done with a small
number of computations of the form A−1v and applying the Spielman-Teng linear
solver [20]. Their main result is a randomized algorithm that outputs a balanced
cut in time O(mpolylog n). In a follow up paper, Sachdeva and Vishnoi [19]
reduce inversion of positive semidefinite matrices to matrix exponentiation, thus
proving that matrix exponentiation and matrix inversion are equivalent to poly-
log factors. In particular, the nearly-linear running time of the balanced separator
algorithm depends upon the nearly-linear time Spielman-Teng solver.

Another method for approximating matrix exponentials is given by Kloster
and Gleich in [11]. They use a Gauss-Southwell iteration to approximate the
Taylor series expansion of the column vector eP ec for transition probability
matrix P and ec a standard basis vector. The algorithm runs in sublinear time
assuming the maximum degree of the network is O(log log n).

Local clustering. Local clustering algorithms were introduced in [20], wherein
Spielman and Teng present a nearly-linear time algorithm for finding local par-
titions with certain balance constraints. Let Φ(S) denote the cut ratio of a subset



112 F. Chung and O. Simpson

S that we will later define as the Cheeger ratio. Then, given a graph and a subset
of vertices S such that Φ(S) < φ and vol(S) ≤ vol(G)/2, their algorithm finds
a set of vertices T such that vol(T ) ≥ vol(S)/2 and Φ(T ) ≤ O(φ1/3 logO(1) n)
in time O(m(log n/φ)O(1)). This seminal work incorporates the ideas of Lovász
and Simonovitz [15,16] on isoperimetric properties of random walks, and their
algorithm works by simulating truncated random walks on the graph. Spielman
and Teng later improve their approximation guarantee to O(φ1/2 log3/2 n) in a
revised version of the paper [21].

Andersen et al. [2] give an improved local clustering algorithm using approx-
imate PageRank vectors. For a vertex subset S with Cheeger ratio φ and volume
k, they show that a PageRank vector can be used to find a set with Cheeger ratio
O(φ1/2 log1/2 k). Their local clustering algorithm runs in time O(φ−1m log4 m).
The analysis of the above process was strengthened in [1] and emphasized that
vertices with higher PageRank values will be on the same side of the cut as the
starting vertex.

Andersen and Peres [3] later simulate a volume-biased evolving set process
to find sparse cuts. Although their approximation guarantee is the same as that
of [2], their process yields a better ratio between the computational complex-
ity of the algorithm on a given run and the volume of the output set. They
call this value the work/volume ratio, and their evolving set algorithm achieves
an expected ratio of O(φ−1/2 log3/2 n). This result is improved by Gharan and
Trevisan in [9] with an algorithm that finds a set of conductance at most
O(ε−1/2φ1/2) and achieves a work/volume ratio of O(ςεφ−1/2 log2 n) for tar-
get volume ς and target conductance φ. The complexity of their algorithm is
achieved by running copies of an evolving set process in parallel.

1.2 Our Contributions

In this paper, we give a probabilistic approximation algorithm for computing a
vector that yields a ranking of vertices close to the heat kernel pagerank vector.
The approximation algorithm, ApproxHKPRseed, works by simulating heat kernel
random walks of length k, where k is taken according to the Poisson distribution,
and then computing contributions of these walks for each vertex in the graph.
Assuming access to a constant-time query which returns the destination of a
heat kernel random walk starting from a specified vertex, ApproxHKPRseed runs
in time O

( log(ε−1) log n
ε3 log log(ε−1)

)
.

Using ApproxHKPRseed as a subroutine, we then present a local clustering
algorithm that uses a ranking according to an approximate heat kernel pagerank.
Let G be a graph and S a proper vertex subset with volume ς ≤ vol(G)/4 and
Cheeger ratio Φ(S) ≤ φ. Then, with probability at least 1−ε, our algorithm out-
puts either a cutset T with vol(T ) ≥ vol(S)/2 and ς-local Cheeger ratio at most
O(

√
φ) or a certificate that no such set exists. The algorithm has work/volume

ratio of O(ς−1ε−3 log n log(ε−1) log log(ε−1)) (Table 1).



Computing Heat Kernel Pagerank 113

Table 1. Summary of local clustering algorithms

Algorithm Conductance of output set Work/volume ratio

[21] O(φ1/2 log3/2 n) O(φ−2polylog n)

[2] O(φ1/2 log1/2 n) O(φ−1polylog n)

[3] O(φ1/2 log1/2 n) O(φ−1/2polylog n)

[9] O(ε−1/2φ1/2) O(ςεφ−1/2polylog n)

This work O(φ1/2) O(ς−1ε−3 log n log(ε−1) log log(ε−1))

The theory behind finding local cuts with heat kernel pagerank vectors was
first presented in [6,7]. Using some of this analysis as a starting point, we provide
the algorithm for computing local clusters, called ClusterHKPR.

2 Preliminaries

Let G = (V,E) be an undirected graph on n vertices and m edges. We use u ∼ v
to denote u,v ∈ E. The degree, dv, of a vertex v is the number of vertices u
such that u ∼ v. The volume of a set of vertices S ⊆ V is the total degree of
its vertices, vol(S) =

∑
v∈S dv, and the edge boundary S is the set of edges with

one vertex in S and the other outside of S, ∂(S) = {u ∼ v : u ∈ S, v /∈ S}.
When discussing the full vertex set, V , we write S ⊆ G and vol(G) = vol(V ).

Let f ∈ R
n be a row vector over the vertices of G. Then the support of f is

the set of vertices with nonzero values in f , supp(f) = {u ∈ V : f(u) �= 0}. For
a subset of vertices S, we define f(S) =

∑
u∈S f(u).

2.1 A Local Cheeger Inequality

The quality of a cut can be measured by the ratio of the number of edges between
the two parts of the cut and the volume of the smaller side of the cut. This is
called the Cheeger ratio of a set, defined by

Φ(S) =
|∂(S)|

min(vol(S), vol(V \ S))
.

The Cheeger constant of a graph is the minimal Cheeger ratio, Φ(G) =
minS⊂G Φ(S). Finally, for a given subset S of a graph G, the local Cheeger
ratio is defined

Φ∗(S) = min
T⊆S

Φ(T ).

Our local clustering algorithm relies on a local version of the usual Cheeger
inequalities which relate the Cheeger constant of a graph to an eigenvalue of
the graph. Namely, let the normalized Laplacian of a graph be the matrix L =
D−1/2(D − A)D−1/2, where D is the diagonal matrix of vertex degrees and A
is the unweighted, symmetric adjacency matrix. Also, let LS be determined by



114 F. Chung and O. Simpson

a subset S of size |S| = s and defined as the restricted matrix of L with rows
and columns indexed by vertices in S. Then the eigenvalues λS := λS,1 ≤ λS,2 ≤
· · · ≤ λS,s of LS are also known as the Dirichlet eigenvalues of S, and are related
to Φ∗(S) by the following local Cheeger inequality [7]:

1
2
(Φ∗(S))2 ≤ λS ≤ Φ∗(S). (1)

The inequality (1) will be used to derive a relationship between a ranking
according to heat kernel pagerank and sets with good Cheeger ratios. Details
will be given in Sect. 4.

2.2 Heat Kernel and Heat Kernel Pagerank

The heat kernel pagerank vector has entries indexed by the vertices of the graph
and involves two parameters; t, a non-negative real value representing the tem-
perature, and a preference row vector f : V → R, by the following equation:

ρt,f = e−t
∞∑

k=0

tk

k!
fP k (2)

where P is the transition probability matrix

(P )uv =

{
1/du if u ∼ v

0 otherwise.

When f is a probability distribution, the heat kernel pagerank can be
regarded as the expected distribution of a random walk according to the tran-
sition probability matrix P . A starting distribution we will be particularly con-
cerned with is that with all probability initially on a single vertex u, i.e. f = χu

where χu is the indicator vector for vertex u. We will denote the heat kernel
pagerank vector over this distribution by ρt,u := ρt,χu

.
The heat kernel of a graph is defined Ht = e−tΔ where Δ is the Laplace

operator Δ = I − P . Then an alternative definition for heat kernel pagerank is
ρt,f = fHt.

We can compare the heat kernel pagerank to the personalized PageRank
vector, given by

prα,f = α

∞∑

k=0

(1 − α)kfP k.

In this definition, α is often called the jumping or reset constant, meaning that at
any step the random walk may jump to a vertex taken from f with probability
α. When f = χu for some u, the random walk is “reset” to the first vertex
of the walk, u, with probability α. We note that, compared to the personalized
PageRank vector, which can be viewed as a geometric sum, we can expect better
convergence rates from the heat kernel pagerank, defined as an exponential sum.



Computing Heat Kernel Pagerank 115

3 Heat Kernel Pagerank Approximation

We begin our discussion of heat kernel pagerank approximation with an obser-
vation. Each term in the infinite series defining heat kernel pagerank in (2) is
of the form e−t tk

k! fP k for k ∈ [0,∞]. The vector fP k is the distribution after k
random walk steps with starting distribution f . Then, if we perform k steps of a
random walk given by transition probability matrix P from starting distribution
f with probability pk = e−t tk

k! , the heat kernel pagerank vector can be viewed
as the expected distribution of this process.

This suggests a natural way to approximate the heat kernel pagerank. That is,
we can obtain a close approximation to the expected distribution with sufficiently
many samples. Our algorithm operates as follows. We perform r random walks
to approximate the infinite sum, choosing r large enough to bound the error.
We also use the fact that very long walks are performed with small probability.
As such, we limit the lengths of our random walks by a finite number K. Both
r,K depend on a predetermined error bound ε.

ApproxHKPRseed(G, t, u, ε)

input: a graph G, t ∈ R
+, seed vertex u ∈ V , error parameter 0 < ε < 1.

output: ρ, an ε-approximation of ρt,u.
initialize a 0-vector ρ of dimension n, where n = |V |
r ← 16

ε3
log n

K ← log(ε−1)

log log(ε−1)

for r iterations do
Start

simulate a P random walk from vertex u where k steps are taken with prob-

ability e−t tk

k!
and k ≤ K

let v be the last vertex visited in the walk
ρ[v] ← ρ[v] + 1

End
end for
return 1/r · ρ

In our analysis we will use the following definition of an ε-approximate vector.

Definition 1. Let G be a graph on n vertices, and let f : V → R be a vector
over the vertices of G. Let ρt,f be the heat kernel pagerank vector according to f
and t. Then we say that ν ∈ R

n is an ε − approximatevector of ρt,f if

1. for every vertex v ∈ V in the support of ν,
(1 − ε)ρt,f (v) − ε ≤ ν(v) ≤ (1 + ε)ρt,f (v),

2. for every vertex with ν(v) = 0, it must be that ρt,f (v) ≤ ε.

We note that this is a rather coarse requirement for an approximation, but
satisfies our needs for local clustering. In the following algorithm, we approximate
ρt,u by an ε-approximate vector which we denote by ρ̂t,u. The running time of
the algorithm is O

( log(ε−1) log n
ε3 log log(ε−1)

)
.



116 F. Chung and O. Simpson

Theorem 1. Let G be a graph and let u be a vertex of G. Then, the algorithm
ApproxHKPRseed(G, t, u, ε) outputs an ε-approximate vector ρ̂t,u of the heat ker-
nel pagerank ρt,u for 0 < ε < 1 with probability at least 1 − ε. The running time
of ApproxHKPRseed is O

( log(ε−1) log n
ε3 log log(ε−1)

)
.

Our analysis relies on the usual Chernoff bounds as stated below.

Lemma 1. ([4]) Let Xi be independent Bernoulli random variables with X =
r∑

i=1

Xi. Then,

1. for 0 < ε < 1, P(X < (1 − ε)rE(X)) < exp(− ε2

2 rE(X))
2. for 0 < ε < 1, P(X > (1 + ε)rE(X)) < exp(− ε2

4 rE(X))
3. for c ≥ 1, P(X > (1 + c)rE(X)) < exp(− c

2rE(X)).

Proof (Theorem 1). Consider the random variable which takes on value fP k

with probability pk = e−t tk

k! for k ∈ [0,∞). The expectation of this random
variable is exactly ρt,f . Heat kernel pagerank can be understood as a series of
distributions of weighted random walks over the vertices, and the weights are
related to the number of steps taken in the walk. The series can be computed
by simulating this process, i.e., draw k according to pk and compute fP k with
sufficiently many random walks of length k.

We approximate the infinite sum by limiting the walks to at most K steps.
We will take K to be K = log(ε−1)

log log(ε−1) . These interrupts risk the loss of contribu-

tion to the expected value, but can be upper bounded by e−ttK

K! ≤ ε
2 provided

that t > K/ log K. This is within the error bound for an approximate heat kernel
pagerank. If t ≤ K/ log K, the expected length of the random walk is

∞∑

k=0

e−ttk

k!
· k = t < K/ log K.

Thus we can ignore walks of length more than K while maintaining ρt,u(v)−ε ≤
ρ̂t,u(v) ≤ ρt,u(v) for every vertex v.

Next we show how many samples are necessary for our approximation vectors.
For k ≤ K, our algorithm simulates k random walk steps with probability e−t tk

k! .
To be specific, for a fixed u, let Xv

k be the indicator random variable defined by
Xv

k = 1 if a random walk beginning from vertex u ends at vertex v in k steps. Let
Xv be the random variable that considers the random walk process ending at
vertex v in at most k steps. That is, Xv assumes the vector Xv

k with probability
e−t tk

k! . Namely, we consider the combined random walk Xv =
∑

k≤K e−t tk

k! X
v
k .

Now, let ρ(k)t,u be the contribution to the heat kernel pagerank vector ρt,u

of walks of length at most k. The expectation of each Xv is ρ(k)t,u(v). Then, by
Lemma 1,

P(Xv < (1 − ε)ρ(k)t,u(v) · r) < exp(−ρ(k)t,u(v)rε2/2)
= exp(−(8/ε)ρ(k)t,u(v) log n)

< n−4



Computing Heat Kernel Pagerank 117

for every component with ρt,u(v) > ε, since then ρ(k)t,u(v) > ε/2. Similarly,

P(Xv > (1 + ε)ρ(k)t,u(v) · r) < exp(−ρ(k)t,u(v)rε2/4)
= exp(−(4/ε)ρ(k)t,u(v) log n)

< n−2.

We conclude the analysis for the support of ρt,u by noting that ρ̂t,u = 1
r Xv, and

we achieve an ε-multiplicative error bound for every vertex v with ρt,u(v) > ε
with probability at least 1 − O(n−2).

On the other hand, if ρt,u(v) ≤ ε, by the third part of Lemma 1, P(ρ̂t,u(v) >

2ε) ≤ n−8/ε2 . We may conclude that, with high probability, ρ̂t,u(v) ≤ 2ε.
For the running time, we use the assumptions that performing a random walk

step and drawing from a distribution with bounded support require constant
time. These are incorporated in the random walk simulation, which dominates
the computation. Therefore, for each of the r rounds, at most K steps of the
random walk are simulated, giving a total of rK = O

(
16
ε3 log n · log(ε−1)

log log(ε−1)

)
=

Õ(1) queries. ��
We note that the algorithm works for any t, but a good choice of t will be

related to the size of the local cluster S and a desirable convergence rate. In
particular, the constraints put on t are necessary for our local clustering results,
presented in the next section.

The algorithm for efficient heat kernel pagerank computation has promise
for a variety of applications. It has been shown in [8] how to apply heat ker-
nel pagerank in solving symmetric diagonally dominant linear systems with a
boundary condition, for example.

4 Finding Good Local Cuts

The premise of the algorithm is to find a good cut near a specified vertex by
performing a sweep over a vector associated to that vertex, which we will specify.
Let p : V → R be a probability distribution vector over the vertices of the graph
of support size Np = supp(p). Then, consider a probability-per-degree ordering
of the vertices where p(v1)/dv1 ≥ p(v2)/dv2 ≥ · · · ≥ p(vNp

)/dvNp
. Let Si be the

set of the first i vertices per the ordering. We call each Si a segment. Then the
process of investigating the cuts induced by the segments to find an optimal cut
is called performing a sweep over p.

In this section we will show how a sweep over a single heat kernel pagerank
vector finds local cuts. Specifically, we show that for a subset S with vol(S) ≤
vol(G)/4 and Φ(S) ≤ φ, and for a large number of vertices u ∈ S, performing a
sweep over the vector ρ̂t,u, where ρ̂t,u is an ε-approximation of ρt,u, will find a
set with Cheeger ratio at most O(

√
φ).

Remark 1. Though all the vertices in the support of the vector are sorted to build
segments, in practice the sweep will be aborted after the volume of the current



118 F. Chung and O. Simpson

segment is larger than the target size. This is the locality of the algorithm, and
ensures that the amount of work performed is proportional to the volume of the
output set.

The ς-local Cheeger ratio of a sweep over a vector ν is the minimum Cheeger
ratio over segments Si with volume 0 ≤ vol(Si) ≤ 2ς. Let Φς(ν) the ς-local
Cheeger ratio of cuts over a sweep of ν that separates sets of volume between 0
and 2ς.

We will make use of the following bounds for heat kernel pagerank in terms
of local Cheeger ratios and sweep cuts. The proof is given in the full version of
this paper.

Lemma 2. Let G be a graph and S a subset of vertices of volume ς ≤ vol(G)/4.
Then the set of u ∈ S satisfying

1
2
e−tΦ∗(S) ≤ ρt,u(S) ≤ √

ςe−tΦς(ρt,u)2/4

has volume at least ς/2.

We use Lemma 2 to reason that many vertices u satisfy the above inequalities,
and thus can serve as good seeds for performing a sweep.

4.1 A Local Graph Clustering Algorithm

It follows from Lemma 2 that the ranking induced by a heat kernel pagerank
vector with appropriate seed vertex can be used to find a cut with approximation
guarantee O(

√
φ) by choosing the appropriate t. To obtain a sublinear time local

clustering algorithm for massive graphs, we use ApproxHKPRseed to efficiently
compute an ε-approximate heat kernel pagerank vector, ρ̂t,u, to rank vertices.

The ranking induced by ρ̂t,u is not very different from that of a true vector
ρt,u in the support of ρ̂t,u. Namely, using the bounds of [7], we have ρ̂t,u(S) ≥
(1 − ε)ρt,u(S) − εs. In particular,

1
2
(1 − ε)e−tΦ∗(S) − εs ≤ ρ̂t,u(S) ≤ √

ςe−tΦς(ρ̂t,u)2/4 (3)

for a set of vertices u of volume at least ς/2.

Theorem 2. Let G be a graph and S ⊂ G a subset with vol(S)= ς ≤vol(G)/4,
|S| = s, and Cheeger ratio Φ(S) ≤ φ. Let ρ̂t,u be an ε-approximate of ρt,u for
some vertex u ∈ S. Then there is a subset St ⊂ S with vol(St)≥ ς/2 for which a
sweep over ρ̂t,u for any vertex u ∈ St with

1. t = φ−1 log(2
√

ς
1−ε + 2εs) and

2. Φς(ρ̂t,u)2 ≤ 4/t log(2)

finds a set with ς-local Cheeger ratio at most
√

8φ.



Computing Heat Kernel Pagerank 119

Proof. Let u be a vertex in St as described in the theorem statement. Using the
inequalities (3), we can bound the local Cheeger ratio by a sweep over ρ̂t,u:

e−tΦ∗(S) ≤ 2
1 − ε

(
√

ςe−tΦς(ρ̂t,u)2/4 + εs)

which implies

e−tΦ∗(S) ≤ e−tΦς(ρ̂t,u)2/4
( 2

√
ς

1 − ε
+ εsetΦς(ρ̂t,u)2/4

)
,

and by the assumption 2, we have

e−tΦ∗(S) ≤ e−tΦς(ρ̂t,u)2/4
( 2

√
ς

1 − ε
+ 2εs

)

Φ∗(S) ≥ Φς(ρ̂t,u)2

4
− log(2

√
ς

1−ε + 2εs)
t

.

Let x = log(2
√

ς
1−ε + 2εs). Then,

Φς(ρt,u)2 ≤ 4Φ∗(S) + 4x/t.

Since Φ∗(S) ≤ Φ(S) ≤ φ and t = φ−1x, it follows that Φς(ρ̂t,u) ≤ √
8φ. In

particular, a sweep over ρ̂t,u finds a cut with Cheeger ratio O(
√

φ) as long as u
is contained in St. ��

We are now prepared to give our algorithm for finding cuts locally with heat
kernel pagerank. The algorithm takes as input a starting vertex u, a desired
volume ς for the cut set, and a target Cheeger ratio φ for the cut set. Then, to
find a set achieving a minimum ς-local Cheeger ratio, we perform a sweep over
an approximate heat kernel pagerank vector with the starting vertex as a seed.

ClusterHKPR(G, u, s, ς, φ, ε)

input: a graph G, a vertex u, target cluster size s, target cluster volume ς ≤ vol(G)/4,
target Cheeger ratio φ, error parameter ε.
output: a set T with ς/2 ≤ vol(T ) ≤ 2ς, Φ(T ) ≤ √

8φ.

1: t ← φ−1 log( 2
√

ς

1−ε
+ 2εs)

2: ρ̂ ← ApproxHKPRseed(G, t, u, ε)
3: sort the vertices of G in the support of ρ̂ according to the ranking ρ̂[v]/dv

4: for j ∈ [1, n] do
5: Sj =

⋃
i≤j vi

6: if vol(Sj) > 2ς then
7: output NO CUT FOUND, break
8: else if ς/2 ≤ vol(Sj) ≤ 2ς and Φ(Sj) ≤ √

8φ then
9: output Sj

10: end if
11: end for
12: if no set was output then
13: output NO CUT FOUND

14: end if



120 F. Chung and O. Simpson

Theorem 3. Let G be a graph which contains a subset S of volume at most
vol(G)/4 and Cheeger ratio bounded by φ. Further, assume that u is contained
in the set St ⊆ S as defined in Theorem 2. Then ClusterHKPR(G, u, s, ς, φ, ε)
outputs a cutset T with ς-local Cheeger ratio at most

√
8φ. The running time is

the same as that of ApproxHKPRseed.

Proof. Since it is given that u ∈ St for t = φ−1 log(2
√

ς
1−ε + 2εs), and by the

assumptions on G and S, Theorem 2 states that a sweep over the approximate
heat kernel pagerank vector ρ̂ will find a set with ς-local Cheeger ratio at most√

8φ. The checks performed in line 8 of the algorithm discover such a set.
The computational work reduces to the main procedures of computing the

heat kernel pagerank vector in line 2 and performing a sweep over the vec-
tor in line 4. Performing a sweep involves sorting the support of the vector
(line 3) and calculating the conductance of segments. From the guarantees of
an ε-approximate heat kernel pagerank vector, any vertex with average prob-
ability less than ε will be excluded from the support. Then the volume of a
vector ρ̂ output in line 2 is O(ε−1), and performing a sweep over ρ̂ can be
done in O(ε−1 log(ε−1)) time. The algorithm is therefore dominated by the
time to compute a heat kernel pagerank vector, and the total running time
is O

( log(ε−1) log n
ε3 log log(ε−1)

)
. ��

References

1. Andersen, R., Chung, F.: Detecting sharp drops in pagerank and a simplified local
partitioning algorithm. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 1–12. Springer, Heidelberg (2007)

2. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vec-
tors. In: IEEE 47th Annual Symposium on Foundations of Computer Science,
pp. 475–486. IEEE (2006)

3. Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Pro-
ceedings of the 41st Annual Symposium on Theory of Computing, pp. 235–244.
ACM (2009)

4. Borgs, C., Brautbar, M., Chayes, J., Teng, S.-H.: A sublinear time algorithm for
pagerank computations. In: Bonato, A., Janssen, J. (eds.) WAW 2012. LNCS,
vol. 7323, pp. 41–53. Springer, Heidelberg (2012)

5. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. ISDN Syst. 30(1), 107–117 (1998)

6. Chung, F.: The heat kernel as the pagerank of a graph. Proc. Natl. Acad. Sci.
104(50), 19735–19740 (2007)

7. Chung, F.: A local graph partitioning algorithm using heat kernel pagerank. Inter-
net Math. 6(3), 315–330 (2009)

8. Chung, F., Simpson, O.: Solving linear systems with boundary conditions using
heat kernel pagerank. In: Bonato, A., Mitzenmacher, M., Pra�lat, P. (eds.) WAW
2013. LNCS, vol. 8305, pp. 203–219. Springer, Heidelberg (2013)

9. Gharan, S.O., Trevisan, L.: Approximating the expansion profile and almost opti-
mal local graph clustering. In: IEEE 53rd Annual Symposium on Foundations of
Computer Science, pp. 187–196. IEEE (2012)



Computing Heat Kernel Pagerank 121

10. Kannan, R., Vempala, S., Vetta, A.: On clusterings: good, bad and spectral. J.
ACM (JACM) 51(3), 497–515 (2004)

11. Kloster, K., Gleich, D.F.: A nearly-sublinear method for approximating a column
of the matrix exponential for matrices from large, sparse networks. In: Bonato, A.,
Mitzenmacher, M., Pra�lat, P. (eds.) WAW 2013. LNCS, vol. 8305, pp. 68–79.
Springer, Heidelberg (2013)

12. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th International Conference on World Wide Web, pp. 695–704. ACM (2008)

13. Lin, F., Cohen, W.W.: Power iteration clustering. In: Proceedings of the 27th
International Conference on Machine Learning (ICML 2010), pp. 655–662 (2010)

14. Lin, F., Cohen, W.W.: A very fast method for clustering big text datasets. In:
Proceedings of the 19th European Conference on Artificial Intelligence, pp. 303–
308 (2010)

15. Lovász, L., Simonovits, M.: The mixing rate of markov chains, an isoperimetric
inequality, and computing the volume. In: Proceedings of the 31st Annual Sympo-
sium on Foundations of Computer Science, pp. 346–354. IEEE (1990)

16. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved
volume algorithm. Random Struct. Algorithms 4(4), 359–412 (1993)

17. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an
algorithm. Adv. Neural Inf. Proc. Syst. 2, 849–856 (2002)

18. Orecchia, L., Sachdeva, S., Vishnoi, N.K.: Approximating the exponential, the
lanczos method and an Õ(m)-time spectral algorithm for balanced separator. In:
Proceedings of the 44th Symposium on Theory of Computing, pp. 1141–1160. ACM
(2012)

19. Sachdeva, S., Vishnoi, N.K.: Matrix inversion is as easy as exponentiation (2013).
arXiv preprint arXiv:1305.0526

20. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In: Proceedings of the thirty-sixth
annual ACM symposium on Theory of Computing, pp. 81–90. ACM (2004)

21. Spielman, D.A., Teng, S.H.: A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning. CoRR abs/0809.3232 (2008)

http://arxiv.org/abs/1305.0526


A Γ -magic Rectangle Set and Group Distance
Magic Labeling

Sylwia Cichacz(B)

AGH University of Science and Technology,
Al. Mickiewicza 30, 30-059 Kraków, Poland

cichacz@agh.edu.pl

Abstract. A Γ -distance magic labeling of a graph G = (V, E) with
|V | = n is a bijection � from V to an Abelian group Γ of order n such
that the weight w(x) =

∑
y∈NG(x) �(y) of every vertex x ∈ V is equal to

the same element μ ∈ Γ called the magic constant. A graph G is called
a group distance magic graph if there exists a Γ -distance magic labeling
for every Abelian group Γ of order |V (G)|.

A Γ -magic rectangle set MRSΓ (a, b; c) of order abc is a collection of
c arrays (a × b) whose entries are elements of group Γ , each appearing
once, with all row sums in every rectangle equal to a constant ω ∈ Γ and
all column sums in every rectangle equal to a constant δ ∈ Γ .

In the paper we show that if a and b are both even then MRSΓ (a, b; c)
exists for any Abelian group Γ of order abc. Furthermore we use this
result to construct group distance magic labeling for some families of
graphs.

Keywords: Distance magic labeling · Magic constant · Sigma labeling ·
Graph labeling · Cartesian product · Γ -magic rectangle set

1 Definitions

All graphs G = (V,E) are finite undirected simple graphs. For standard graph
theoretic notation and definitions we refer to Diestel [6].

A distance magic labeling of a graph G of order n is a bijection � : V →
{1, 2, . . . , n} so that there exists a positive integer μ such that the weight w(v) =∑

u∈N(v) �(u) = μ for all v ∈ V , where N(v) is the open neighborhood of v. The
constant μ is called the magic constant of the labeling f . Any graph which
admits a distance magic labeling is called a distance magic graph.

A magic rectangle MR(a, b) is an a × b array with entries from the set
{1, 2, . . . , ab}, each appearing once, with all its row sums equal to a constant
δ and with all its column sums equal to a constant η. It was proved in [11,12]:

Theorem 1 ([11,12]). A magic rectangle MR(a, b) exists if and only if a, b > 1,
ab > 4, and a ≡ b (mod 2).

The author was supported by National Science Centre Grant Nr 2011/01/D/
ST1/04104.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 122–127, 2015.
DOI: 10.1007/978-3-319-19315-1 11



A Γ -magic Rectangle Set and Group Distance Magic Labeling 123

The following generalization of magic rectangles was introduced by Froncek in
[7].

Definition 2. A magic rectangle set M= MRS(a, b; c) is a collection of c arrays
(a × b) whose entries are elements of {1, 2, . . . , abc}, each appearing once, with
all row sums in every rectangle equal to a constant δ and all column sums in
every rectangle equal to a constant η.

Moreover it was shown:

Theorem 3 ([7]). If a ≡ b ≡ 0 (mod 2), a ≥ 2 and b ≥ 4, then a magic
rectangle set MRS(a, b; c) exists for every c.

Observation 4 ([7]). If a magic rectangle set MRS(a, b; c) exists, then both
MR(a, bc) and MR(ac, b) exist.

The concept of distance magic labeling has been motivated by the construction
of magic rectangles, since we can construct a distance magic complete r partite
graph with each part size equal to n by labeling the vertices of each part by
the columns of the magic rectangle. Although there does not exist 2 × 2 magic
rectangle, observe that the partite sets of K2,2 can be labeled {1, 4} and {2, 3},
respectively, to obtain a distance magic labeling.

A Cartesian product G�H is a graph with the vertex set V (G)×V (H). Two
vertices (g, h) and (g′, h′) are adjacent in G�H if and only if g = g′ and h is
adjacent with h′ in H, or h = h′ and g is adjacent with g′ in G.

The necessary and sufficient condition for Cartesian product of cycles to be
distance magic is given.

Theorem 5 ([13]) The Cartesian product Cn�Cm is distance magic if and only
if n = m ≡ 2 (mod 4).

Let K(n; r) denote the complete r-partite graph K(n, n, . . . , n). It has been
recently proved:

Theorem 6 ([1]). The Cartesian product K(n; r)�C4 is distance magic if and
only if n > 2, r > 1 and n is even.

Theorem 7 ([1]). The Cartesian product K(n; r)�C4 is distance magic if and
only if there exists a magic rectangle set MRS(2, n; 2r).

Froncek in [8] defined the notion of group distance magic graphs, i.e. the graphs
allowing the bijective labeling of vertices with elements of an Abelian group
resulting in constant sums of neighbor labels.

A Γ -distance magic labeling of a graph G = (V,E) with |V | = n is a
bijection � from V to an Abelian group Γ of order n such that the weight
w(x) =

∑
y∈NG(x) �(y) of every vertex x ∈ V is equal to the same element

μ ∈ Γ , called the magic constant. A graph G is called a group distance magic
graph if there exists a Γ -distance magic labeling for every Abelian group Γ of
order |V (G)|.



124 S. Cichacz

The connection between distance magic graphs and Γ -distance magic graphs
is as follows. Let G be a distance magic graph of order n with the magic constant
μ′. If we replace the label n in a distance magic labeling for the graph G by the
label 0, then we obtain a Zn-distance magic labeling for the graph G with the
magic constant μ = μ′ (mod n). Hence every distance magic graph with n ver-
tices admits a Zn-distance magic labeling. Although a Zn-distance magic graph
on n vertices is not necessarily a distance magic graph. For instance compare
Theorem 5 and the one below:

Theorem 8 ([7]). The Cartesian product Cm�Ck, m, k ≥ 3, is a Zmk-distance
magic graph if and only if km is even.

There are some graphs not being distance magic but at the same time they are
group distance magic (see [3]).

Recall that any group element ι ∈ Γ of order 2 (i.e., ι �= 0 such that 2ι = 0)
is called an involution, and that a non-trivial finite group has elements of order 2
if and only if the order of the group is even. Moreover every cyclic group of even
order has exactly one involution. The fundamental theorem of finite Abelian
groups states that the finite Abelian group Γ can be expressed as the direct sum
of cyclic subgroups of prime-power order. This product is unique up to the order
of the direct product. When t is the number of these cyclic components whose
order is a power of 2, then Γ has 2t − 1 involutions. Moreover the sum of all the
group elements is equal to the sum of the involutions and the neutral element.

Cichacz and Froncek proved:

Theorem 9 ([4]). Let G be an r-regular distance magic graph on n vertices,
where r is odd. There does not exists an Abelian group Γ having exactly one
involution ι, |Γ | = n such that G is Γ -distance magic.

The concept of magic squares on an Abelian group was presented in [9]. A Γ -
magic square MSΓ (n) is an n × n array with entries from the an Abalian group
Γ of order n2, each appearing once, with all its row, column and diagonal sums
equal to a constant δ. It was proved in [9]:

Theorem 10 ([9]) Γ -magic squares MSΓ (n) exist for all groups Γ of order n2

for any n > 2.

To prove our main result, we will need the following generalization of Γ -magic
squares MSΓ (n).

Definition 11. A Γ -magic rectangle set MRSΓ (a, b; c) on group Γ of order abc
is a collection of c arrays (a × b) whose entries are elements of group Γ , each
appearing once, with all row sums in every rectangle equal to a constant ω ∈ Γ
and all column sums in every rectangle equal to a constant δ ∈ Γ .

In the paper we show that if a and b are both even then MRSΓ (a, b; c) exists for
any Abelian group Γ of order abc. Furthermore we use this result to construct
group distance magic labeling for some families of graphs.



A Γ -magic Rectangle Set and Group Distance Magic Labeling 125

2 A Γ -magic Rectangle Set MRSΓ(a, b; c)

We start with simple observations.

Observation 12. If a Γ -magic rectangle set MRSΓ (a, b; c) on group Γ exists,
then both MRSΓ (a, bc; 1) and MRSΓ (ac, b; 1) exist.

To construct MRSΓ (a, bc; 1) (or MRSΓ (ac, b; 1)), we simply take all a × b rec-
tangles and “glue” them together into one a × bc (or ac × b) rectangle.

Observation 13. If a is even, b is odd then for any c and an Abelian group Γ
having exactly one involution, |Γ | = abc there does not exist a Γ -magic rectangle
set MRSΓ (a, b; c).

Proof. Assume that there exists a MRSΓ (ac, b; 1) on Γ . Then we can construct
a Γ -distance magic complete ac partite graph with each part size equal to b (i.e.
K(b; ac)) by labeling the vertices of each part by the columns of the magic
rectangle, a contradiction with Theorem9. Therefore there does not exist a
MRSΓ (ac, b; 1) on Γ what implies not existence a magic rectangle set by Obser-
vation 12. ��
Observation 13 implies immediately the following observations:

Observation 14. If exactly one of numbers the a, b, c is even, then there does
not exist a magic rectangle set MRSΓ (a, b; c) on any Abelian group Γ having
exactly one involution.

Observation 15. If exactly one of numbers the a, b, c is even and moreover
congruent to 2 modulo 4, then there does not exist a magic rectangle set
MRSΓ (a, b; c) on any Abelian group Γ .

Observation 16. If a is even, b is odd and Γ ∼= Zabc there does not exist a
magic rectangle set MRSΓ (a, b; c) on the group Γ .

Now we show that for a and b both even, a magic rectangle set MRSΓ (a, b; c) can
be constructed for any c and any Abelian group Γ . We start with an elementary
step.

Lemma 17. A magic rectangle set MRSΓ (2, 2; c) exists for every c for any
Abelian group Γ .

Proof. Denote by xs
i,j the entry in the i-th row and j-th column of the s-th

rectangle.
Suppose first that Γ ∼= Z2 × Z2 × Ψ for some Abelian group Ψ of order c.

Using the isomorphism ϕ : Γ → Z2 × Z2 × Ψ , we identify every γ ∈ Γ with
its image ϕ(γ) = (j1, j2, gs), where j1, j2 ∈ Z2 and gs ∈ Ψ , s = 0, 1, . . . , c − 1.
Set xs

1,1 = (0, 0, gs), xs
1,2 = (1, 1,−gs), xs

2,1 = (0, 1,−gs) and xs
2,2 = (1, 0, gs) for

s = 0, 1, . . . , c − 1. Apparently, every column adds up to (1, 0, 0) and every row
in each rectangle has the sum equal to (1, 1, 0).



126 S. Cichacz

Suppose now that Γ ∼= Z2α × Ψ for some Abelian group Ψ of order c/2α−2

and α > 1. Using the isomorphism ϕ : Γ → Z2α × Ψ , we identify every γ ∈ Γ
with its image ϕ(γ) = (j, gs), where j ∈ Z2α and gs ∈ Ψ , s = 0, 1, . . . , c/2α−2.
Set

as
i,j =

{
(smod2α−2 + 1 + 2α+1−i, g�s2−α+2�), for i = j,
(2α + 1, 0) − as

imod2+1,j , for i �= j,

for i, j = 1, 2, s = 0, 1, . . . , 2α−2c− 1. Notice that every column adds up to (1, 0)
and every row in each rectangle has the sum equal to (2α−1 + 1, 0). ��
Theorem 18. If a, b are both even, then a magic rectangle set MRSΓ (a, b; c)
exists for every c for any Γ .

Proof. There exist MRSΓ (2, 2; abc/4) by Lemma 17. To construct one of
MRSΓ (a, b; c), we simply take ab/2 of MRSΓ (2, 2; abc/4) rectangles and “glue”
them into a rectangle a × b. ��

3 Group Distance Magic Graphs

Theorem 19. A graph K(n; r) is group distance magic if n = r or n and r are
both even or n ≡ 0 (mod 4).

Proof. Let Γ be an Abelian group of order rn. If n = r then there exists a
MRSΓ (n, n; 1) by Theorem 10. If now n, r ≡ 0 (mod 2) or n ≡ 0 (mod 4) there
exists a MRSΓ (n, r; 1) or MRSΓ (n/2, 2r; 1), respectively by Theorem 18. For
n = r or n and r both even we can construct a distance magic labeling for K(n; r)
by labeling the vertices of each part by the columns of the magic rectangle.

For n ≡ 0 (mod 4) let V (K(n; r)) = {vj
i : i = 1, . . . , n; j = 1, . . . , r} and

denote by xi,j i-th row and j-th column of the Γ -magic rectangle. Let

�(vj
i )

{
xi,j , for i ≤ n/2
xi,j+r, for i > n/2.

Obviously � is a Γ -distance magic labeling. ��
Theorem 20. The Cartesian product K(n; r)�C4 is group distance magic if n
is even, r > 1.

Proof. Let V (K(n; r)) = {vj
i : i = 1, . . . , n; j = 1, . . . , r}, C4 = xuywx, and

H = K(n; r) × C4. Let Γ be an Abelian group of order 4rn.
If n is even, then a Γ -magic rectangle set MRS(2, n; 2r) with all row sums in

every rectangle equal to a constant ω ∈ Γ and all column sums in every rectangle
equal to a constant δ ∈ Γ exists by Theorem 18. Denote by aj

i,h the entry in the
i-th row and h-th column of the j-th rectangle from the set MRS(2, n; 2r), let:

�(vj
i , x) = aj

i,1, �(vj
i , y) = aj

i,2,

�(vj
i , u) = aj+r

i,1 , �(vj
i , v) = aj+r

i,2

for i = 1, . . . , n and j = 1, . . . , r. Obviously the labeling � is bijection. Moreover
it is distance magic since

∑
y∈N(x) �(y) = (r − 1)ω + δ for any x ∈ H. ��



A Γ -magic Rectangle Set and Group Distance Magic Labeling 127

At the end of this section we state a conjecture analogously to Theorem 7:

Conjecture 21. The Cartesian product K(n; r)�C4 is Γ -distance magic if and
only if there exists a magic rectangle set MRSΓ (2, n; 2r) for some Abelian group
Γ of order 4nr.

References

1. Barrientos, C., Cichacz, S., Froncek, D., Krop, E., Raridan, C.: Distance Magic
Cartesian Product of Two Graphs (preprint)

2. Cichacz, S.: Group distance magic graphs G × Cn. Discrete Appl. Math. 177(20),
80–87 (2014)

3. Cichacz, S.: Note on group distance magic complete bipartite graphs. Cent. Eur.
J. Math. 12(3), 529–533 (2014)

4. Cichacz, S., Froncek, D.: Distance magic circulant graphs. Preprint Nr MD 071
(2013). http://www.ii.uj.edu.pl/documents/12980385/26042491/MD 71.pdf

5. Combe, D., Nelson, A.M., Palmer, W.D.: Magic labellings of graphs over finite
abelian groups. Australas. J. Comb. 29, 259–271 (2004)

6. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173. Springer,
Heidelberg (2005)

7. Froncek, D.: Handicap distance antimagic graphs and incomplete tournaments.
AKCE Int. J. Graphs Comb. 10(2), 119–127 (2013)

8. Froncek, D.: Group distance magic labeling of Cartesian product of cycles. Aus-
tralas. J. Combin. 55, 167–174 (2013)

9. Sun, H., Yihui, W.: Note on magic squares and magic cubes on Abelian groups. J.
Math. Res. Exposition 17(2), 176–178 (1997)

10. Gallian, J.A.: A dynamic survey of graph labeling. Electron. J. Comb. 17, 17–20
(2013). #DS6

11. Harmuth, T.: Ueber magische Quadrate undÉihnliche Zahlenfiguren. Arch. Math.
Phys. 66, 286–313 (1881)

12. Harmuth, T.: Ueber magische Rechtecke mit ungeraden Seitenzahlen. Arch. Math.
Phys. 66, 413–447 (1881)

13. Rao, S.B., Singh, T., Parameswaran, V.: Some sigma labelled graphs I. In: Aru-
mugam, S., Acharya, B.D., Raoeds, S.B. (eds.) Graphs, Combinatorics, Algorithms
and Applications, pp. 125–133. Narosa Publishing House, New Delhi (2004)

http://www.ii.uj.edu.pl/documents/12980385/26042491/MD_71.pdf


Solving Matching Problems Efficiently
in Bipartite Graphs

Selma Djelloul(B)

LRI, UMR 8623, Bât 650 Université de Paris-Sud,
91405 Orsay Cedex, France

djelloul@lri.fr

Abstract. We investigate the problem maxDMM of computing a largest
set of pairwise disjoint maximum matchings in undirected graphs. In
this paper, n, m denote, respectively, the number of vertices and the
number of edges. We solve maxDMM for bipartite graphs, by provid-
ing an O(n1.5

√
m/ log n + mn logn)-time algorithm. We design better

algorithms for complete bipartite graphs, and bisplit graphs. (Bisplit
graphs are bipartite graphs with the nested neighborhood property.)
Specifically, we prove that the problem maxDMM is solvable in complete
bipartite graphs in time O(m). A sequence S = (s1, · · · , st) of positive
integers is said to be color-feasible for a graph G, if there exists a proper
edge-coloring of G with colors 1, · · · , t, such that precisely si edges have
color i, for every i = 1, · · · , t. Actually, for complete bipartite graphs,
we prove that, for any sequence S of integers which is color-feasible for
a complete bipartite graph G, an edge-coloring of G corresponding to S
can be obtained in time O(m). For bisplit graphs, (1) we solve maxDMM
in time O(mn logn), and (2) we design an O(n2 logn)-time algorithm
to count all maximum matchings. This latter time is the same time in
which runs the best known algorithm computing the number of maxi-
mum matchings in bisplit graphs [17], but our algorithm is much simpler
than the one given in [17]. The key idea underlying both results is that
bisplit graphs have an O(n)-time enumeration of their minimal vertex
covers.

1 Introduction

We consider undirected simple graphs. In a graph, a matching is a subset of
pairwise independent edges. A maximum matching is a matching of maximum
cardinality. For a graph G, we denote by ν(G) the cardinality of a maximum
matching of G, which is called the matching number of G. In all the paper, n
and m denote, respectively, the number of vertices and the number of edges. If
x is a vertex of a graph G, dG(x) denotes the degree of x in G. The notation
Δ(G) and δ(G) is used, respectively, for the maximum degree and the minimum
degree of G. If no ambiguity exists, we simply write Δ and δ.

Determining a maximum matching in a graph can be done in time O(n2.5) [7]
in general graphs, and it can be done in time O(n1.5

√
m/ log n) in bipartite

graphs [1].
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 128–139, 2015.
DOI: 10.1007/978-3-319-19315-1 12



Solving Matching Problems Efficiently in Bipartite Graphs 129

We are interested in the following optimization problem:

maxDMM: Maximum set of Disjoint Maximum Matchings.

Instance: A graph G.

Solution: A set M of pairwise disjoint maximum matchings.

Measure: |M|.
Let μ(G) denotes this maximum for G. Note that μ(G) ≤ �m/ν(G)�, and that
any graph G with a perfect matching satisfies μ(G) ≤ δ.

A related more general problem is the following one posed in [8]. Given a
graph G, and a sequence (s1, · · · , st) of positive integers, does there exist a
proper edge-coloring of G, with colors 1, · · · , t, (edges with the same color are
pairwise independent) such that precisely si edges are colored with color i, for
each i = 1, · · · , t? If the answer is “yes”, the sequence (s1, · · · , st) is said to be
color-feasible for G. This problem is NP-complete even if G is bipartite, Δ = 3,
and sequences are of the form (s1, s2, s3) with s2 ≤ s1 − 2, and s3 ≤ s2 − 2 (see
[2] for references). Stated in terms of color-feasible sequences, maxDMM is the
problem of determining for a graph G, the greatest integer t such that a sequence
of the form (s1, · · · , st), or of the form (s1, · · · , st, 1, · · · , 1), with si = ν(G), for
every i = 1, · · · , t, is color-feasible for G. In [2,8], the following partial order
is considered on non-increasing sequences of positive integers which sum to m.
The sequence T = (t1, · · · , tp) is said to majorize the sequence S = (s1, · · · , sq),
if p ≤ q, and

∑r
i=1 ti ≥ ∑r

i=1 si, for every r = 1, · · · , p − 1. It is proved in [8]
that, if P is a color-feasible sequence for G, and S is a sequence majorized
by P , then S is color-feasible for G, as well. Moreover, the proof in [8] shows
that, given an edge-coloring of G corresponding to P , an edge-coloring of G
corresponding to S, can be obtained in polynomial time by a sequence of transfers
of edges, one by one, from one matching to another one. Before each transfer, the
connected components of some subgraph are determined. This gives an O(m2)-
time algorithm for constructing an edge-coloring corresponding to a sequence
S, provided we were given an edge-coloring corresponding to a color-feasible
sequence for G that majorizes S. As mentioned in [8], characterizing all maximal
sequences (in the sense of majorization) that are color-feasible for G, allows us
to characterize all sequences that are color-feasible for G. We cite from [8]:
“However, even for the case of bipartite graphs, we don’t know how to construct
one such (maximal) sequence, let alone all of them”.

Before outlining the main results in this paper, let us give some addi-
tional definitions and notation. For a vertex x, let us denote by N(x) the open
neighborhood of x. An ordering x1, . . . , xk, of a subset X = {xi, 1 ≤ i ≤
k}, of vertices of a graph G is a nested neighborhood ordering if it satisfies
(N(x1) \ X) ⊆ (N(x2) \ X) ⊆ . . . ⊆ (N(xk) \ X) (non-decreasing order), or
(N(x1) \ X) ⊇ (N(x2) \ X) ⊇ . . . ⊇ (N(xk) \ X) (non-increasing order). In
a bipartite graph, one side of the bipartition satisfies the nested neighborhood
property if and only if both sides have the property [24].

A bisplit graph [9] (also called difference graph [11], chain graph [24], and
nonseparable bipartite graph [6,10]) is a bipartite graph such that one side of



130 S. Djelloul

the bipartition satisfies the nested neighborhood property. Bisplit graphs can
be recognized in time O(n + m), and the corresponding nested neighborhood
orderings computed in the same time [12].

We denote by χ′(G) the number of colors in an edge-coloring of G with
the minimum number of colors. According to Vizing’s theorem, χ′(G) is Δ or
Δ + 1, and according to König’s line coloring theorem, bipartite graphs have an
edge-coloring with Δ colors. Bipartite graphs with maximum degree Δ can be
Δ-edge-coloured in time O(m log Δ) [4].

Our Results

Biregular graphs are bipartite graphs where the vertices of the same partition
class have the same degree. We say that a bipartite graph of maximum degree Δ
is semi-biregular if one partition class satisfies that all the vertices have degree
Δ. Clearly, edge-coloring semi-biregular graphs yields a solution to maxDMM
in time O(m log Δ). Moreover, let G = (X,Y,E) be a semi-biregular bipartite
graph, with |X| ≤ |Y |. Then the sequence (s1, · · · , sΔ), with si = |X|, for every
i = 1, · · · ,Δ, is the unique maximal (in the sense of majorization introduced
above) color-feasible sequence for G. Hence, sequences that are color-feasible for
a semi-biregular bipartite graph are all well characterized. They are all non-
increasing sequences (s1, . . . , st) of positive integers which sum to m, and such
that s1 ≤ min{|X|, |Y |}. For each of them, a corresponding edge-coloring of G
can be obtained in time O(m2).

The complete bipartite graphs form a subclass of semi-biregular graphs for
which we prove a more efficient algorithm for constructing edge-colorings cor-
responding to color-feasible sequences. We do that by constructing, in time
O(m), an ordering of the edges of complete bipartite graphs. Once this order-
ing e1, . . . , em, is done for the edges of complete bipartite graph G = (X,Y,E),
then, for any sequence (s1, . . . , sk), of non-increasing positive integers with sum
at most m, and such that s1 ≤ min{|X|, |Y |}, the subsets M1 = {e1, . . . , es1},
M2 = {es1+1, . . . , es1+s2}, . . . , Mk = {es1+...+sk−1+1, . . . , es1+...+sk

}, form a set
of pairwise disjoint matchings. This gives an edge-coloring in complete bipartite
graphs corresponding to any color-feasible sequence in time O(m), without per-
forming any transfer from one matching to another one. The coloring is obtained
directly just by picking edges, consecutively, starting from the beginning of the
ordering. As a consequence, we obtain that maxDMM is solvable in complete
bipartite graphs in time O(m).

Our first main result is the design of an algorithm solving maxDMM in
general bipartite graphs and running in time O(n1.5

√
m/ log n + mn log n). The

term n1.5
√

m/ log n represents the cost of computing a minimum vertex cover
in a bipartite graph. For subclasses of bipartite graphs where the computation
of a minimum vertex cover requires less time, the overall running time will be
improved. This is what we do next for bisplit graphs.

The graphs whose vertices can be linearly ordered in such a way that all the
minimal vertex covers are subsets of consecutive vertices were characterized in [6]
in various ways. Among these characterizations, we mention the following one.



Solving Matching Problems Efficiently in Bipartite Graphs 131

The set of vertices of a graph G can be linearly ordered such that all the minimal
vertex covers are subsets of consecutive vertices if and only if G is a bisplit graph.
We give an explicit O(n)-time enumeration of the minimal vertex covers of bis-
plit graphs using a concise encoding of the graph. This result allows us to derive:
(1) an algorithm for maxDMM in bisplit graphs running in time O(mn log n), and
(2) O(n2 log n)-time algorithms for computing the number of maximum match-
ings of a bisplit graph, and for computing the number of perfect matchings of
a threshold graph. This is the same time as for the best known algorithms com-
puting these two numbers ([17]), but we claim that our algorithms are simpler
than those given in [17] which need to handle a recursive subdivision structure
associated with the graph.

2 Preliminaries

The problem of deciding whether a 2-connected cubic graph has two disjoint
maximum matchings is NP-complete. This can be proved using a reduction
from the problem of 3-edge-coloring 2-connected cubic graphs, which is NP-
complete [14]. (Note that, by Petersen’s theorem [3,18], every 2-connected cubic
graph has a perfect matching.) It follows that maxDMM is not approximable
within 2/3 + ε, for any ε > 0.

A graph H is a minor of a graph G if H is a subgraph of a graph that can be
obtained from G by contracting a set of edges. If H is fixed, checking whether
H is a minor of G can be done in time O(n2) [15].

Every 2-connected cubic graph G which has not the Petersen graph as a minor
is 3-edge-colorable [20,23]. Hence, the algorithm for 3-edge-coloring a 2-connected
cubic graph G with no Petersen minor produces a solution of maxDMM for G.
We point out the particular case of 2-connected planar cubic graphs (they do
not have the Petersen graph as a minor.) Tait proved that 3-edge-coloring a
2-connected planar cubic graph is equivalent to 4-coloring a plane graph. Hence,
the quadratic time algorithm used in [19] to produce a 4-coloring for a plane
graph can be used to produce a solution of maxDMM for 2-connected planar
cubic graphs.

We end this section by mentioning that there exists an algorithm running in
time O(1.344n) and polynomial space that checks 3-edge-colorability for graphs
with Δ = 3, and computes such a coloring if it exists [16]. For this problem, there
also exists an O(1.201n)-time and exponential space algorithm [5]. We apply
one of these algorithms, say the latter one, on a 2-connected cubic graph G.
If the algorithm says: “No 3-edge-coloring”, then μ(G) = 1, and a solution to
maxDMM is any maximum matching (which is perfect by Petersen’s theorem.) If
the algorithm outputs a 3-edge-coloring, then it outputs 3 disjoint perfect match-
ings. Hence, maxDMM is solvable in 2-connected cubic graphs in time O(1.201n).

3 maxDMM in Arbitrary Bipartite Graphs

Let G be a graph, and let g, and f , be two integer functions on the vertex set
of G, such that 0 ≤ g(v) ≤ f(v) ≤ dG(v), for each vertex v of G. A (g, f)-factor



132 S. Djelloul

of G is a spanning subgraph F of G such that g(v) ≤ dF (v) ≤ f(v), for every
vertex v ∈ V (G). The following result has been proved in [13]:

Theorem 1. If g(v) < f(v) for every vertex v, or if the graph G is bipartite,
then, deciding whether there exists a (g, f)-factor in G can be done in time
O(

√
g(V ) ·m), where g(V ) denotes

∑
v∈V g(v). Such a factor can be constructed

in the same time if it exists.

In [22], Slater gave a characterization of trees with (at least) k disjoint maximum
matchings, without mentioning any algorithmic complexity aspect.

We say that a bipartite graph G = (X,Y,E) is X- (Y -) matchable if ν(G) =
|X| (ν(G) = |Y |.) If U is a minimum vertex cover of a bipartite graph G, we let
GU be the spanning subgraph obtained from G by removing the set EU of edges
having both ends in U , and δU = min {dGU

(z), z ∈ U}. We call GU the pruning
of G with respect to minimum vertex cover U .

By König’s theorem, in bipartite graphs G, the size of a minimum vertex
cover is precisely ν(G). Hence, for any minimum vertex cover U of G, and any
maximum matching F of G, each vertex of U is matched by F , and each edge
of F has a single end in U . Thus, we have the following:

Fact 1. Let G be a bipartite graph and U be any minimum vertex cover of G.
The pruning GU = (U, V −U,E−EU ) of G with respect to U is U -matchable and
the set of maximum matchings of G is exactly the set of maximum matchings
of GU . Moreover, the set of solutions to maxDMM in GU is exactly the set of
solutions to maxDMM in G, and μ(G) ≤ δU .

Theorem 2. maxDMM is solvable in bipartite graphs in time O(n1.5
√

m/ log n+
mn log n).

Proof. First, we consider the case where G = (X,Y,E) is X-matchable. There
cannot be more than δX disjoint maximum matchings. There are k disjoint
maximum matchings in G if and only if there does exist a k-edge-colorable
(g, f)-factor F (k) in G, where f is k at each vertex, and g is k on X, and 0
elsewhere. The condition on the k-edge-colorability can be omitted since the
required (g, f)-factor is a bipartite graph with maximum degree k. It is then k-
edge-colorable. Note that the number of edges in F (k) is k|X|. We test the values
of k in {1, · · · , δX} by binary search, starting with k = δX . We obtain the value
of optimum k, say OPT, after an amount of running time which is at worst of the
form c·m√

δX |X|·log δX , for some constant c (Theorem 1). By Fact 1, OPT ≤ δU ,
for every minimum vertex cover U . We finish by OPT-edge-coloring the obtained
F (OPT) factor, which can be performed in time c′ ·OPT · |X| · log OPT, for some
constant c′. Each color appears at each vertex in X. Hence, each color class has
size |X|. Thus, each color class is a maximum matching of G. Now, we consider
an arbitrary bipartite graph G. Given a maximum matching of bipartite graph
G, we can compute a minimum vertex cover U for G in time O(m) (see [21],
for example). In time O(m), we obtain the pruning GU of G with respect to U .
We apply on GU the algorithm of X-matchable graphs, taking δU as the first
tested value for the maximum degree of the searched (g, f)-factor. By Fact 1,
this solves maxDMM in G. 	




Solving Matching Problems Efficiently in Bipartite Graphs 133

4 Complete Bipartite Graphs

Theorem 3. Let G = (X,Y,E) be a complete bipartite graph. There exists
an O(m)-time ordering e1, . . . , em, of the edges of G guaranteeing the fol-
lowing. For any non-increasing sequence (s1, . . . , sk) of positive integers, with
sum at most m, and s1 ≤ min {|X|, |Y |}, the subsets M1 = {e1, . . . , es1},
M2 = {es1+1, . . . , es1+s2}, . . . , Mk = {es1+...+sk−1+1, . . . , es1+...+sk

}, form a
set of pairwise disjoint matchings.

Before proceeding to the proof, let us give some definitions and notation. If
a, b, are positive integers, and R is a subset of {0, . . . , a − 1} × {0, . . . , b − 1}, we
denote by Π1(R), Π2(R) the projections of R on {0, . . . , a−1} and {0, . . . , b−1},
respectively. That is: Π1(R) = {i | (i, j) ∈ R}, and Π2(R) = {j | (i, j) ∈ R}.

For any positive integers a, b, a ≤ b, an injective mapping ϕ : {0, . . . , ab −
1} → {0, . . . , a−1}×{0, . . . , b−1} is called an (a, b)-sequencing of {0, . . . , ab−1}
if one of the two holds: (1) a < b, and every sequence S of at most a consecutive
integers from {0, . . . , ab − 1} satisfies |Π1(ϕ(S))| = |Π2(ϕ(S))| = |S|; (2) a = b,
and every sequence S of at most a − 1 consecutive integers from {0, . . . , ab − 1}
satisfies |Π1(ϕ(S))| = |Π2(ϕ(S))| = |S|.
Lemma 1. For any positive integers a, b, a ≤ b, there exists an (a, b)-sequencing
of {0, . . . , ab−1}. Moreover such a sequencing can be constructed in time O(ab).

Proof. Let d = gcd(a, b), and a′, b′ such that a = da′, b = db′. Let Iλ =
{λa′b, λa′b + 1, · · · , (λ + 1)a′b − 1}, 0 ≤ λ ≤ d − 1. The sets Iλ are pairwise
disjoint, each of them has cardinality a′b, and their union is {0, · · · , da′b − 1}.
Hence {I0, · · · , Id−1} is a partition of {0, · · · , ab − 1}.

Let ϕ : {0, . . . , ab − 1} → {0, . . . , a − 1} × {0, . . . , b − 1} defined by ϕ(i) = (i
mod a, (i + λ) mod b), where λ is such that i ∈ Iλ. We want to prove that ϕ is
injective. Let i, i′ such that ϕ(i) = ϕ(i′). We have a|(i−i′) and b|((i−i′)+(λ−λ′))
(1), with i ∈ Iλ, and i′ ∈ Iλ′ . Hence d divides both (i− i′) and (i− i′)+ (λ−λ′).
It then divides (λ − λ′). Since |λ − λ′| < d, we have λ = λ′, and therefore
|i − i′| < a′b, and (1) becomes b|(i − i′). Thus (i − i′) is a multiple of both
a and b, and thus it is a multiple of their lowest common multiple, which is
ab/d = a′b = ab′. We have a′b |(i − i′) and |i − i′| < a′b. This means that i = i′.

For any sequence S of consecutive integers from {0, · · · , ab − 1}, Π1(ϕ(S))
is a sequence of remainders modulo a of consecutive integers. Hence, if |S| is at
most a, all those remainders are pairwise distinct and we have |Π1(ϕ(S))| = |S|.
Now, we consider Π2(ϕ(S)), where S is any sequence of at most a consecutive
integers from {0, · · · , ab − 1}. If S ⊆ Iλ for some λ, 0 ≤ λ ≤ d − 1, then
Π2(ϕ(S)) is a sequence of remainders modulo b of at most b consecutive inte-
gers, and we have |Π2(ϕ(S))| = |S|. Now, assume that min S and max S are
in distinct I ′

λs. Since the length of each Iλ is at least b, min S ∈ Iλ−1 and
max S ∈ Iλ, for some λ, 1 ≤ λ ≤ d − 1. Therefore, Π2(ϕ(S)) is a sequence
of remainders modulo b of |S| integers that are all consecutive except the pair
{(λ− 1+λa′b− 1) mod b, (λ+λa′b) mod b} corresponding to the second com-
ponents of ϕ(max Iλ−1), ϕ(min Iλ), respectively. The latter pair is a pair of



134 S. Djelloul

remainders modulo b of two integers with a gap of two between them. Hence, if
we restrict S to have no more than a elements or no more than a − 1 elements
according to whether a < b, or a = b, then, still Π2(ϕ(S)) is a sequence of
pairwise distinct integers modulo b. 	

Proof (of Theorem 3). Let G = (X,Y,E) be a complete bipartite graph. We
assume, w.l.o.g; that |X| ≤ |Y |. Let a = |X|, b = |Y |. Let ϕ be the (a, b)-
sequencing of {0, · · · , ab − 1} defined in Lemma 1. Consider X as the set
of integers modulo a, Y as the set of integers modulo b, and E as the set
ϕ({0, · · · , ab − 1}). Let k, and s1 ≥ . . . ≥ sk be integers satisfying: s1 ≤ a,
and Σk

i=1si ≤ |E|. We consider the subset S1 = {0, · · · , s1 −1}, and if k > 1, the
subsets Sl = {Σl−1

r=1sr, · · · ,Σl
r=1sr − 1}, 2 ≤ l ≤ k. For every l, 1 ≤ l ≤ k, let

Ml = ϕ(Sl). If a, b, s1 satisfy one of the two cases: (1) a < b, or (2) a = b, and
s1 < a, then we are done. The case a = b = s1 is settled by noting that, after
picking all the matchings of size a, any integer s among the next integers (if any)
in the sequence (s1, · · · , sk) is such that s < b. 	

It follows that maxDMM is solvable in complete bipartite graphs G = (X,Y,E)
in time O(m), and we have μ(G) = max {|X|, |Y |}. (Take k = max {|X|, |Y |},
and s1 = . . . = sk = min {|X|, |Y |}.)

5 Bisplit Graphs

Let X be a subset of vertices of a graph G. A vertex v of G is said to be
X-universal if it is adjacent to every vertex from X.

In the rest of the paper, if G = (X,Y,E) denotes a bisplit graph, then it is
assumed that the ordering of X is non-increasing and that the ordering of Y is
non-decreasing. We let |X| = nx, and |Y | = ny.

Proposition 1. Let G = (X,Y,E) be a bisplit graph. The following statements
are equivalent: (1) G has no isolated vertices; (2) x1 is Y -universal and yny

is
X-universal; (3) G is connected.

Since removing isolated vertices still gives a bisplit graph, from now on, all bisplit
graphs are assumed to be connected.

Theorem 4. maxDMM is solvable in bisplit graphs in time O(mn log n).

The key idea is the following result that we prove firstly.

Theorem 5. The set of all minimal vertex covers of a bisplit graph can be com-
puted in time O(n).

If n is a positive integer, [n] denotes the set {1, . . . , n}. Let X = {x1, · · · , xn},
and I ⊆ [n]. Then X(I) denotes the subset {xi, i ∈ I} of X.



Solving Matching Problems Efficiently in Bipartite Graphs 135

5.1 The Break Points of a Bisplit Graph

Let G = (X,Y,E) be a bisplit graph. We define two mappings α : [nx] → [ny],
and β : [ny] → [nx] as follows. For every i ∈ [nx], α(i) = min{j | yj ∈ N(xi)}. For
every j ∈ [ny], β(j) = max{i | xi ∈ N(yj)}. We have α(1) = 1, and β(ny) = nx.
The two mappings α, β, encode the entire graph, since if [xi, yj ] is an edge then
the pairs of the form (xi′ , yj′), i′ ≤ i, j′ ≥ j, are all edges as well.

We consider bisplit gaphs that are not complete. Let i1 = β ◦ α(1), and for
k ≥ 1, if ik = nx, ik+1 = β ◦ α(ik + 1). We obtain a sequence of integers from
[nx]: 1 ≤ i1 < . . . < il = nx. Similarly, let j1 = α◦β(ny), and for k ≥ 1, if jk = 1,
jk+1 = α ◦ β(jk − 1). We obtain a sequence of integers from [ny]: 1 = jp < . . . <
j1 ≤ ny, that we rename in reverse order to get: 1 = j1 < . . . < jp ≤ ny. We
prove that p = l, and that for every r, 1 ≤ r ≤ l, jr = α(ir), and ir = β(jr).
The details are omitted. In fact, the i′rs are the points where the invariability
of α is broken and so are the j′

rs for the invariability of β. We say that the pair
({i1, · · · , il = nx}, {1 = j1, . . . , jl}) is the break points map of G, and that l is its
breaking multiplicity. They are determined in time O(n). Hence, bisplit graphs
can be given by means of their break points map.

5.2 Vertex Covers

If ({i1, · · · , il = nx}, {1 = j1, · · · , jl}) is the break points map of a bisplit graph,
we let Ur = X({1, · · · , ir}) ∪ Y ({jr+1, · · · , ny}), 1 ≤ r ≤ l − 1.

Proof (of Theorem 5). We prove that the minimal vertex covers of G are X, Y ,
and Ur, 1 ≤ r ≤ l − 1. Since there are no edges between X([nx] − {1, · · · , ir})
and Y ({1, · · · , jr+1 − 1}), Ur is a vertex cover. Let U be a vertex cover of
G that contains neither X nor Y . The set U must contain x1 (which is Y -
universal). Let i be the greatest i′ such that {1, · · · , i′} ⊆ U . We have i < nx

because U does not contain X. There are edges incident with xi+1 because G
is connected. The neighborhood of xi+1 is Y ({α(i + 1), · · · , ny}), and it is then
included in U . If α(i) = α(i + 1) then i is a break point for α, say ir0 . We
have: α(i + 1) = α(ir0+1) = jr0+1. Hence U contains Ur0 . Now, we assume that
α(i) = α(i + 1). Since U does not contain Y , we have α(i) = 1. Hence, there are
edges between X({1, · · · , i}) and Y ({1, · · · , α(i) − 1}. Let i1 be the greatest i′

between 1 and i − 1 such that α(i) = α(i′). From i1 to i1 + 1, the invariability
of α breaks. Then, i1 is of the form ir for some r, 1 ≤ r ≤ l − 1. We have:
jr+1 = α(ir+1) = α(ir + 1) = α(i) = α(i + 1). Hence U contains Ur. 	

In any graph, the complement of a vertex cover is an independent set. Then, it
follows from Theorem 5, that determining the set of all maximal independent
sets in bisplit graphs can be done in time O(n). By König’s theorem, in bipartite
graphs, the matching number equals the size of a minimum vertex cover. Then,
it follows from Theorem 5, that the matching number of a bisplit graph can be
computed in time O(n).



136 S. Djelloul

Proof (of Theorem 4). Pick any minimum vertex cover U . As in the proof of
Theorem 2, we solve maxDMM in G in a time which is at worst of the form
c · m

√
δU · |U | · log δU , for some constant c, by taking δU , as the first tested

value for the maximum degree of the searched (g, f)-factor (Theorem 1). By
Fact 1, μ(G) ≤ δ̃, where δ̃ = min {δU ′ , U ′ is a minimum vertex cover}. Thus,
we can run the algorithm on GU , starting the series of tests with the better
degree value δ̃. Furthermore, instead of running the algorithm on GU , we can
run it on the U -matchable spanning subgraph (U, V − U,E′), obtained from G
by removing, for every minimum vertex cover U ′, all the edges that have both
ends in U ′. 	


5.3 Matching and Counting All Maximum Matchings

In this section, we prove that:

Theorem 6. For bisplit graphs, constructing a maximum matching can be done
in time O(n).

We will also give another proof of the following result proved in [17] by designing
a simpler algorithm:

Theorem 7. For bisplit graphs, counting all maximum matchings can be done
in time O(n2 log n).

We let U0 = Y , Ul = X, I1 = {1, · · · , i1}, I2 = {i1 + 1, · · · , i2}, · · · , Il = {il−1 +
1, · · · , nx}, and J1 = {1, · · · , j2−1}, J2 = {j2, · · · , j3−1}, · · · , Jl = {jl, · · · , ny},
and ar = |Ir|, br = |Jr|, 1 ≤ r ≤ l. If Ur is a minimum vertex cover, Gr denotes
the pruning of G with respect to Ur.

Lemma 2. G denotes a bisplit graph, Ur denotes a minimum vertex cover of
G, and F denotes a maximum matching of G. If 1 ≤ r ≤ l − 1, then F matches
all the vertices of X({1, · · · , ir}) in Y ({1, · · · , jr+1 − 1}, and all the vertices of
Y ({jr+1, · · · , ny}) in X({ir + 1, · · · , nx}).

Proof. By Fact 1, Gr is Ur-matchable, and F is a maximum matching of Gr. 	

Lemma 3. G denotes a bisplit graph, Ur denotes a minimum vertex cover of G.

(1) If r = 0, then every s, 0 ≤ s < r, satisfies
∑r

k=s+1 ak ≤ ∑r
k=s+1 bk.

(2) If r = l, then every s, l ≥ s > r, satisfies
∑s

k=r+1 bk ≤ ∑s
k=r+1 ak.

Proof

(1) Us = Ur ∪ Js+1 ∪ . . . ∪ Jr − Is+1 ∪ . . . ∪ Ir. Hence |Us| = |Ur| −
∑r

k=s+1 ak +∑r
k=s+1 bk. Since Ur is of minimum size, the inequality follows.

(2) We proceed similarily by observing that Us = Ur ∪ Ir+1 ∪ . . . ∪ Is − Jr+1 ∪
. . . ∪ Js. 	




Solving Matching Problems Efficiently in Bipartite Graphs 137

Proof (of Theorems 6 and 7). Seeking readability, we allow denoting the vertices
directly by means of their corresponding subscripts in the orderings of X and
Y . Pick any minimum vertex cover, say Ur. We have Ur = Xr ∪Yr, where, if not
empty, Xr is I1 ∪ . . . ∪ Ir, and if not empty, Yr is Jr+1 ∪ . . . ∪ Jl. The pruning
Gr of G with respect to Ur is the disjoint union of two bisplit subgraphs: H0,
H1. By Lemma 2, if not empty, the subgraph H0 induced by Xr ∪ [ny] − Yr is
Xr-matchable, and if not empty, the subgraph H1 induced by Yr ∪ [nx] − Xr

is Yr-matchable. Consider two variables N0, and N1 that will hold the numbers
of maximum matchings of H0 and H1 respectively. Let N0 ← 1, and N1 ← 1.
We recall that ak (resp. bk) denotes |Ik| (resp. |Jk|.) If H0 is not empty, we
proceed by induction on t from r down to 1. Variable N0 is updated when
going along the induction. Let d ← 0. By Lemma 3, ar ≤ br. Hence, in the
complete bipartite subgraph induced by Ir ∪ Jr, we can match all the vertices
of Ir with a subset Sr of Jr. Update N0 by N0 ← N0 · (d + br)!/((d + br − ar)!).
Now, update d by d ← d + br − ar. If we are just constructing a maximum
matching, we don’t need to handle the numbers N0, N1. We just have to pick,
at step k, of the induction, where the vertices of Ik are about to be matched,
a set of vertices of size |ak| in the other side of the current complete bipartite
subgraph. Assume we have matched all the vertices of Ir ∪ . . . ∪ It, with a
subset St of Jr ∪ . . . ∪ Jt, for 1 ≤ t ≤ r (this is done in time of the form
c · ∑r

k=t ak, for some constant c, including the time needed to update the other
side of the current complete bipartite subgraph.) If Xr − Ir ∪ . . . ∪ It, is not
empty, then t > 1. The subgraph induced by It−1 ∪ Jr ∪ . . . ∪ Jt−1 − St, is
complete bipartite. Since at−1 ≤ bt−1 +

∑r
k=t bk − ∑r

k=t ak (Lemma 3), we can
match all the vertices of It−1 with a subset St−1 of Jr ∪ . . . ∪ Jt−1 − St (in time
O(at−1)). Update N0: N0 ← N0 · (d + bt−1)!/((d + bt−1 − at−1)!). Now, update
d: d ← d + bt−1 − at−1. Similarily, if H1 is not empty, we proceed by induction
on t, r + 1 ≤ t ≤ l, as follows. Reset d ← 0. As done for N0, we will first have:
N1 ← N1 · (d + ar+1)!/((d + ar+1 − br+1)!), then d ← d + ar+1 − br+1. If we
must go further than r + 1 in the induction, then the update operations from
t to t + 1 are first N1: N1 ← N1 · (d + at+1)!/((d + at+1 − bt+1)!), and then d:
d ← d + at+1 − bt+1. Let N = N0 · N1. Output N as the number of maximum
matchings of G.

All factorials i!, 1 ≤ i ≤ n, are computed beforehand in time O(n2 log n) and
stored in space O(n2 log n). Note that N is bounded up by the number of arrange-
ments of

∑r
k=1 ak +

∑l
k=r+1 bk elements from a set of

∑r
k=1 bk +

∑l
k=r+1 ak ≤ n,

elements. Hence, N is at most n!. Therefore, each update operation is done in
time O(n log n). There are at most l such update operations, where l is the break-
ing multiplicity. All update operations are done in the same memory location
which is of space O(n log n). 	


5.4 Counting All Perfect Matchings in Threshold Graphs

Cochain and threshold graphs have a structure similar to bisplit graphs.
A cochain graph is the complement of a bisplit (chain) graph. Namely, a cochain
graph is a graph whose vertex set can be partitioned into two cliques joined by



138 S. Djelloul

a set of edges that induces a bisplit graph. Split graphs are those graphs whose
vertex set can be partitioned into a clique and an independent set. Threshold
graphs are split graphs where the independent set part has the nested neighbor-
hood property. All those graphs can be recognized in time O(n + m) ([12]). In
[17], the authors used their algorithm for bisplit graphs to derive O(n2 log n)-time
algorithms for counting all perfect matchings in cochain and threshold graphs.
Our algorithm for bisplit graphs can be used to derive a simpler O(n2 log n)-time
algorithm for computing the number of perfect matchings in threshold graphs.
Let G = (X,Y,E) be a connected threshold graph, where X is the independent
set part. Let G′ be the underlying bisplit graph. We denote by N(G) (resp.
N(G′)) the number of maximum matchings of G (resp. G′), and we denote by
k(n) = n!/�n/2�! · 2�n/2� the number of maximum matchings of Kn: the clique
on n vertices. We prove that N(G) ≥ N(G′) ·k(|Y |−ν(G′)), and that if G has a
perfect matching, every maximum matching of G induces a maximum matching
in G′. Hence, if G has a perfect matching, N(G) = N(G′) · k(|Y | − ν(G′)).

6 Further Work

A natural question that arises from this work is whether there exist other types
of graph classes in which maxDMM is solvable in polynomial time. Most likely,
there should be few such graph classes, since even by restricting to graphs with
Δ = 3, and having a perfect matching, the problem remains NP-hard. One
approach to deal with the problem may be looking for graph classes where we
could efficiently find structures that prevent from having k disjoint maximum
matchings. This leads to upper bounds on maxDMM. Another approach is to
consider fixed parameterized algorithms for maxDMM. For instance, maxDMM
is solvable in time O(f(w) · n log δ), for graphs of minimum degree at most
δ, having a perfect matching. Here, f(w) denotes a function of treewidth w,
only. Indeed, for every integer k, the property ϕk(G) saying: “G has k disjoint
perfect matchings” is expressible in the monadic second order logic that allows
quantification on subsets of edges. Hence, for each k, ϕk(G) is decidable in time
O(f(w) ·n). We get the optimum from {1, . . . , δ} after testing at most log δ such
formulae.

Acknowledgements. I thank Odile Favaron for her helpful idea to handle the proof
of Theorem 3 by arithmetic. I thank Pierre Fraigniaud for his careful reading and
advices to improve the paper writing.

References

1. Alt, H., Blum, N., Mehlhorn, K., Paul, M.: Computing a maximum cardinality
matching in a bipartite graph in time O(n1.5

√
m/ logn). Inf. Process. Lett. 37(4),

237–240 (1991)
2. Asratian, A.S.: Some results on an edge-coloring problem of Folkman and

Fulkerson. Discret. Math. 223, 13–25 (2000)



Solving Matching Problems Efficiently in Bipartite Graphs 139

3. Chartrand, G., Zhang, P.: A First Course in Graph Theory. Dover Publications,
New York (2012)

4. Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E logD)
time. Combinatorica 21(1), 5–12 (2001)

5. Couturier, J.F., Golovach, P.A., Kratsch, D., Liedloff, M., Pyatkin, A.: Colorings
with few colors: counting, enumeration and combinatorial bounds. Theory Comput.
Syst. 52, 645–667 (2013). Springer-Verlag New York. Secaucus, NJ, USA

6. Ding, G.: Covering the edges with consecutive sets. J. Graph Theory 15(5), 559–
562 (1991)

7. Even, S., Kariv, O.: An O(n2.5) algorithm for maximum matching in general
graphs. In: IEEE 16th annual Symposium on Foundations of Computer Science
(FOCS), pp. 100–112 (1975)

8. Folkman, J., Fulkerson, D.R.: Edge-colorings in bipartite graphs. In: Bose, R.,
Dowling, T. (eds.) Combinatorial Mathematics and its Applications, pp. 561–577.
University of North Carolina Press, Chapel Hill (1969)

9. Frost, H., Jacobson, M., Kabell, J., Morris, F.R.: Bipartite analogues of split graphs
and related topics. Ars Combinatoria 29, 283–288 (1990)

10. Golumbic, M.R., Goss, C.F.: Perfect elimination and chordal bipartite graphs. J.
Graph Theory 2(2), 155–163 (1978)

11. Hammer, P.L., Peled, U.N., Sun, X.: Difference graphs. Discret. Appl. Math. 28,
35–44 (1990)

12. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic J. Comput. 14, 87–108 (2007)

13. Heinrich, K., Hell, P., Kirkpatrick, D.G., Liu, G.: A simple existence criterion for
(g < f)-factors. Discrete Mathematics 85, 313–317 (1990)

14. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–
720 (1981)

15. Kawarabayashi, K., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Comb. Theory Ser. B 102, 424–435 (2012)

16. Kowalik, L.: Improved edge-coloring with three colors. Theoret. Comput. Sci. 410,
3733–3742 (2009)

17. Okamoto, Y., Uehara, R., Uno, T.: Counting the number of matchings in chordal
and chordal bipartite graph classes. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS,
vol. 5911, pp. 296–307. Springer, Heidelberg (2010)

18. Petersen, J.: Die theorie der regulären graphen. Acta Mathematica 15, 193–220
(1891)

19. Robertson, N., Sanders, D., Seymour, P., Thomas, R.: Efficiently four-coloring
planar graphs. In: Proceedings of the 28th annual ACM Symposium on Theory of
Computing, (STOC), pp. 571–575 (1996)

20. Robertson, N., Seymour, P., Thomas, R.: Tutte’s edge-coloring conjecture. J.
Comb. Theory Ser. B 70, 166–183 (1997)

21. Schrijver, A.: Combinatorial Optimization, vol. 1. Springer-Verlag, Berlin (2003)
22. Slater, P.: A constructive characterization of trees with at least k disjoint maximum

matchings. J. Comb. Theory Ser. B 25, 326–338 (1978)
23. Thomas, R.: Recent excluded minor theorem for graphs. In: Surveys in Combi-

natorics, vol. 267, pp. 201–222 (1999). The electronic journal of combinatorics 8
(2001)

24. Yannakakis, M.: Node deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981)



A 3-Approximation Algorithm for Guarding
Orthogonal Art Galleries with Sliding Cameras

Stephane Durocher and Saeed Mehrabi(B)

Department of Computer Science, University of Manitoba,
Winnipeg, Canada

{durocher,mehrabi}@cs.umanitoba.ca

Abstract. A sliding camera travelling along a line segment s in a poly-
gon P can see a point p in P if and only if p lies on a line segment
contained in P that intersects s at a right angle. The objective of the
minimum sliding cameras (MSC) problem is to guard P with the fewest
sliding cameras possible, each of which is a horizontal or vertical line
segment. In this paper, we give an O(n3)-time 3-approximation algo-
rithm for the MSC problem on any simple orthogonal polygon with n
vertices. Our algorithm involves establishing a connection between the
MSC problem and the problem of guarding simple grids with periscope
guards.

1 Introduction

Given a polygon P with n vertices in the plane, the art gallery problem is to find a
minimum-cardinality set of guards such that every point in P is visible to at least
one guard, where each guard g is a point in the plane that sees a point p if the line
segment from g to p is contained in P . In the orthogonal art gallery problem, the
input polygon P is orthogonal; that is, every edge of P is vertical or horizontal.
The art gallery problem is NP-hard for both arbitrary [13] and orthogonal poly-
gons [16]. Eidenbenz [4] proved that the art gallery problem is APX-hard on
simple polygons, and that no polynomial-time algorithm can guarantee to find
a solution with o(log n) times the minimum number of guards on polygons with
holes, unless P=NP [5]. Ghosh [7] gave an O(log n)-approximation algorithm
for the art gallery problem that runs in O(n4) time on simple polygons and
O(n5) time on polygons with holes. Krohn and Nilsson [12] gave a polynomial-
time O(OPT 2)-approximation algorithm for the orthogonal art gallery problem,
where OPT is the cardinality of the optimal solution. Many variants of the art
gallery problem have been studied based on different types of visibility [14,19],
different polygonal domains (e.g., orthogonal polygons [8], or polyominoes [1])
and different types of guards (e.g., points or line segments). See the surveys by
O’Rourke [15] or Urrutia [18] for a history of the art gallery problem.

Recently, Katz and Morgenstern [9] introduced a variant of the art gallery
problem in which sliding cameras are used to guard an orthogonal polygon.
Given an orthogonal polygon P with n vertices, a sliding camera is a point
guard that travels back and forth along a horizontal or vertical line segment s
inside P . The camera can see a point p ∈ P if there is a point q ∈ s such that the
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 140–152, 2015.
DOI: 10.1007/978-3-319-19315-1 13



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 141

line segment pq is horizontal or vertical, and is contained in P . In the minimum
sliding cameras (MSC) problem, the objective is to guard P using the minimum
number of sliding cameras.

A grid D is a connected union of vertical and horizontal line segments; each
maximal line segment in the grid is called a grid segment. We denote the set of
grid segments of D by TD. Moreover, a simple grid is defined as follows:

Definition 1 (Kosowski et al. [10]). A grid D is simple if there exists δ > 0
such that for every ε ∈ (0, δ) and every grid segment d in D, both endpoints of dε

lie in the outer face, where dε is the extension of d by ε units in both directions.

A periscope guard x located on a grid segment s in a grid D is a point on s that
sees a point y in D if some path from x to y in D has at most one bend. In other
words, points x and y are mutually visible if and only if they lie on respective
segments sx and sy in D such that sx ∩ sy �= ∅ (it could be that sx = sy).
Periscope guards were introduced by Gewali and Ntafos [6] in their examina-
tion of the complexity of the orthogonal art gallery problem (the orthogonal art
gallery problem was shown to be NP-hard three years later by Schuchardt and
Hecker [16]). In the minimum periscope guards (MPG) problem on a grid, the
objective is to guard the grid with the minimum number of periscope guards.
The MPG problem can be defined on an orthogonal polygon P similarly: the
goal is to locate the minimum number of periscope guards in P such that every
point in P is guarded by at least one periscope guard.

Related Work. Katz and Morgenstern [9] first considered a restricted version
of the MSC problem in which only vertical cameras are allowed; by reducing the
problem to the minimum clique cover problem on chordal graphs, they solved the
problem exactly in polynomial time. For the generalized case, where both vertical
and horizontal cameras are allowed, they gave a 2-approximation algorithm for
the MSC problem under the assumption that the polygon P is x-monotone.
Durocher and Mehrabi [3] showed that the MSC problem is NP-hard when
the polygon P is allowed to have holes (i.e., polygon P is not simple). They
also gave an exact polynomial-time algorithm that solves a variant of the MSC
problem, called the minimum-length sliding cameras (MLSC) problem, in which
the objective is to minimize the sum of the lengths of line segments along which
cameras travel. Seddighin [17] considered the MLSC problem under k-visibility,
where a camera’s line of sight can pass through k edges of the polygon, and
proved that the MLSC problem is NP-hard under k-visibility for any fixed k ≥ 2.
Durocher et al. [2] gave an O(n2.5)-time (3.5)-approximation algorithm for the
MSC problem on a simple orthogonal polygon with n vertices. Their algorithm
uses different techniques from those used in this paper; specifically, it applies
solutions to the minimum edge cover problem in graphs and the guarded mobile
guard problem on grids (where each guard must be seen by at least one other
guard). The complexity of the MSC problem on simple orthogonal polygons
remains unknown.

Gewali and Ntafos [6] showed that the MPG problem is NP-hard on gen-
eral three-dimensional grids and that it is polynomial-time tractable on simple



142 S. Durocher and S. Mehrabi

two-dimensional grids (see Theorem 1). Moreover, Kosowski et al. [11] showed
that the problem of guarding a two-dimensional grid with the minimum number
of k-periscope guards is NP-hard (a point p on the grid is visible to a k-periscope
guard g if there exists a path of at most k bends in the grid from p to g). Our
results refer to the following theorem by Gewali and Ntafos [6].

Theorem 1 (Gewali and Ntafos [6]). Given a simple two-dimensional grid
G with n segments, the MPG problem can be solved exactly on G in O(n3) time.

Our Result. In this paper, we give an O(n3)-time 3-approximation algorithm
for the MSC problem on any simple orthogonal polygon P . To this end, we
describe a connection between the MSC problem on simple orthogonal polygons
and the MPG problem on simple grids. We first construct a simple grid GP asso-
ciated with polygon P and then show that a reduction from the MSC problem
on P to the MPG problem on grid GP gives a set of sliding cameras whose car-
dinality is at most twice the cardinality of the solution to MPG problem on GP .
However, some new potentially unguarded regions are introduced. We show that
the number of such unguarded regions is bounded from above by the cardinal-
ity of the optimal solution to the MPG problem, each of which can be guarded
with a single sliding camera. Finally, we show that the cardinality of the optimal
solution to the MPG problem is a lower bound for any feasible solution for the
MSC problem. This results in an approximation factor of 3 (2 for each periscope
guard in the solution of the MPG problem and 1 for guarding each unguarded
region), improving the previous best approximation factor of 3.5 [2].

2 Preliminaries

Throughout the paper, let P denote a simple orthogonal closed polygonal with n
vertices (including the polygon’s interior). Observe that every simple orthogonal
polygon with at most six vertices can be guarded by a single sliding camera;
therefore, we assume throughout the paper that n > 6. Let OPTP and OPTPG

denote optimal solutions for the MSC problem on P and the MPG problem on
a simple grid, respectively. Let V (P ) denote the set of reflex vertices of P and
let Hu and Vu be the maximum-length horizontal and vertical line segments,
respectively, inside P through a vertex u ∈ V (P ). Let L(P ) = {Hu | u ∈
V (P )} ∪ {Vu | u ∈ V (P )}. Let L and L′ be two orthogonal line segments (with
respect to P ) inside P ; the visibility region of L is the union of points in P that
are seen by a sliding camera that travels along L. We say L dominates L′ if the
visibility region of L′ is a subset of that of L.

Let r be a reflex vertex of P . The lines through Hr and Vr partition the
plane into four quadrants, exactly one of which contains the exterior of P in an
ε-neighbourhood around r, for some ε > 0; we call the quadrant that is opposite
to this quadrant the essential quadrant of r, denoted by Q(r). See Fig. 1(a) for
an example. Let u be a convex vertex of P such that both the vertices v and w
of P that are adjacent to u are also convex. Let p and q denote the next vertices
of P that are adjacent to v and w, respectively. We call vertex u a pocket vertex



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 143

r

uw

vp

q

Q(r)

(a) (b)

R

Fig. 1. (a) An example of a reflex vertex r with the essential quadrant Q(r) (i.e., the
open hatched quadrant) shown in pink. (b) An example of a pocket vertex u; both
vertices p and q are reflex and Q(p) ∩ Q(q) �= ∅. The edges uv and uw are the pocket
edges of the convex pocket R(red rectangle) (Colour figure online).

of P if and only if (i) both the vertices p and q are reflex, and (ii) Q(p)∩Q(q) �= ∅.
Moreover, we refer to the edges of P that are incident to a pocket vertex as the
pocket edges of P and to the rectangular subregion of P whose sides are two of
the pocket edges of P as a convex pocket of P . See Fig. 1(b).

3 A 3-Approximation Algorithm

In this section, we describe the 3-approximation algorithm for the minimum
sliding cameras (MSC) problem on simple orthogonal polygons. Given any simple
orthogonal polygon P , we first construct a grid GP associated with P as follows.
Initially, let GP be the set of all line segments in L(P ). Now, for any pair of
reflex vertices u and v where Hu dominates Hv (resp., Vu dominates Vv) in P ,
we remove Hv (resp., Vv) from GP ; if two segments mutually dominate each
other, remove one of the two arbitrarily. Next, for each convex pocket R of P ,
we add a segment into GP for every pocket edge of R. We call a grid segment
in GP corresponding to a pocket edge of P a pocket segment of GP . Let GP

denote the resulting grid. Each of the pocket segments remains in GP even if it
is dominated by another segment in GP . See Fig. 2 for an example.

Observe that the number of grid segments in GP (i.e., |TG|) is at most n,
where n is the number of vertices of P . Moreover, GP is simple because the
construction preserves the property that the endpoints of each grid segment in
TG lie on the boundary of the polygon and, therefore, the endpoints of every grid
segment in TG lie on the outer face of GP . To see that GP is connected, it suffices
to note that (i) the grid induced by the line segments in L(P ) is connected, and
(ii) for each grid segment s ∈ L(P ) that is removed (due to domination), the set
of grid segments that are intersected by s are also intersected by s′ ∈ TG, where
s′ is the grid segment that dominates s. Therefore, GP is also connected and we
have the following result.



144 S. Durocher and S. Mehrabi

(a) (b) (c)

Fig. 2. (a) Polygon P with the initial grid GP that consists of all line segments in
L(P ). (b) Grid GP after removing the dominated grid segments. (c) The final grid GP

after adding the segments corresponding to the pocket edges of the convex pockets
of P ; these grid segments are shown in green (Colour figure online).

Lemma 1. Grid GP is a simple and connected grid.

g

Fig. 3. Although the grid GP

induced by P can be guarded
by a single periscope guard g,
two sliding cameras (shown in
purple) are needed to guard P
(Colour figure online).

As described in Sect. 1, we reduce the MSC prob-
lem on P to the MPG problem on GP . In general
the visibility region of a periscope guard g cannot
be guarded entirely by a single sliding camera; see
Fig. 3 for an example. Two sliding cameras suffice
to guard the visibility region of a periscope guard.

Observation 1. The visibility region of any
periscope guard g in a polygon P can be guarded by
the maximal vertical and horizontal line segments
through g in P .

By Theorem 1 we can obtain a set of periscope
guards by solving the MPG problem on GP in O(n3) time. Let M denote the set
of sliding cameras obtained by placing a pair of sliding cameras on each periscope
guard. Since the algorithm of Gewali and Ntafos [6] positions periscope guards
only at the intersections of grid segments, this ensures that the sliding cameras
located in P are all aligned with line segments in L(P ).

The procedure described above can result in a set M of sliding cameras
whose cardinality exceeds three times that of an optimal solution. See Fig. 4: the
vertical segment in GP that corresponds to the vertical pocket edge of convex
pocket R cannot be guarded by periscope guard g1, forcing the algorithm to add
a second periscope guard, while a single sliding camera suffices to guard polygon
P entirely. We now describe how to modify the grid GP to bound |M |.

3.1 Pocket Segments and Desert Regions

As illustrated in Fig. 4, the cardinality of solution M may not be bounded
by three times the cardinality of an optimal solution for the MSC problem.
To resolve this problem, we add into GP exactly one of the pocket segments



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 145

g1

g2

R

Fig. 4. By adding the two pocket segments
into grid GP corresponding to the pocket
edges of every convex pocket of P , an opti-
mal solution to the MPG problem uses two
guards (g1 and g2). The algorithm for the
MSC problem uses four sliding cameras
(red), which is four times the size of the
optimal solution (purple) (Colour figure
online).

corresponding to the pocket edges of
every convex pocket of P as follows:
let R be a convex pocket of P and let
s1 and s2 be, respectively, the verti-
cal and horizontal grid segments in GP

whose corresponding maximal line seg-
ments in P enter R. Observe that the
vertical pocket edge (resp., horizontal
pocket edge) of R intersects s2 (resp.,
s1). If the number of grid segments
intersected by s1 is greater than the
number of grid segments intersected
by s2, then we remove from GP the
pocket segment that corresponds to
the vertical pocket edge of R; other-
wise, we remove the pocket segment

that corresponds to the horizontal pocket edge of R. Note that we now have
exactly one pocket segment in GP for both the pocket edges of every convex
pocket of P . We show later that by this modification the cardinality of M
obtained by solving the MPG problem on GP is at most three times that of
OPTP .

The set M might not still be a feasible solution for the MSC problem. See
Fig. 5 for an example. In the following, we characterize such unguarded regions,
called the desert regions, and show that the number of desert regions is bounded
from above by |M |. To characterize desert regions, take any unguarded point p
in P and let Rp be a maximal axis-aligned rectangle contained in P that covers
p and is also not guarded by the line segments in M . Observe that (i) rectangle
Rp is visible to some line segments in GP , and that (ii) no such line segments
are in M because Rp is unguarded. Consider the maximal regions in P that lie
immediately above, below, left, and right of Rp; we denote the union of these
regions by X. See the hatched region in Fig. 6(a) for an example. Any sliding
camera that sees any part of Rp must intersect some region of X. Since Rp

g1g2

Fig. 5. A simple orthogonal polygon P and its corresponding grid GP (dashed red).
The set {g1, g2} of periscope guards guard GP . However,the sliding cameras located by
the algorithm (solid purple) do not guard P entirely. The hatched pink region, called
a desert,is not guarded by any sliding camera (Colour figure online).



146 S. Durocher and S. Mehrabi

(a)

X

S1 S2

S3 S4

X

X

X

p

S3

p

Yu

(b)

s1

Fig. 6. (a) An unguarded point p inside a polygon P with maximal unguarded rectangle
Rp. The hatched pink region of P indicates the region X; the four regions S1, S2, S3

and S4 are labelled accordingly. (b) An illustration in support of the proof of Lemma 2
(Colour figure online).

is unguarded, region X cannot contain any sliding camera in M ; therefore, no
periscope guard lies in X. Moreover, region X partitions the polygon into five
subregions (see Fig. 6(a)): the union of X and rectangle Rp, the subregion on
the upper-left side of X (denoted by S1), the subregion on the upper-right side
of X (denoted by S2), the subregion on the lower-left side of X (denoted by S3)
and the subregion on the lower-right side of X (denoted by S4). Note that the
periscope guards in S can only lie in regions S1, S2, S3 and S4. We first show
the following results.

Lemma 2. If for some 1 ≤ i ≤ 4, the subregion Si contains no periscope guards
of S, then all reflex vertices of P in Si face the unguarded rectangle Rp.

Proof. Without loss of generality, assume that there is no periscope guard in S3.
Suppose, to the contrary of the lemma statement, that there exists a reflex vertex
u of P in S3 that is not faced towards rectangle Rp. Observe that there are only
two possibilities for such reflex vertex as shown in Fig. 6(b). We now continue
the proof for the upper vertex u shown in Fig. 6(b); the proof for the other vertex
is similar. Consider the maximal vertical line segment s1 that passes through u
and let Y be the set of line segments in GP that enter region S3 from the other
regions. First, note that either s1 ∈ GP or otherwise sj ∈ GP , for some sj that
dominates s1. Without loss of generality, assume that s1 ∈ GP (otherwise, the
proof will be similar by replacing s1 with sj). Since Rp is unguarded, there is no
sliding camera and, therefore, no periscope guard located on L, for all L ∈ Y .
Since there is no periscope guard in S3, we conclude that s1 is not guarded
by any periscope guard, which is a contradiction to the fact that S is a feasible
solution to the MPG problem on GP . Therefore, all the reflex vertices of P inside
S3 must face towards rectangle Rp. 	

By Lemma 2, we conclude that if there is no periscope guard in Si, for some
1 ≤ i ≤ 4, then the region Si must be bounded by at most two staircases with
their reflex vertices all facing towards the unguarded rectangle Rp. There are



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 147

two possibilities for the staircases to lie in Si depending on the orientation of
the staircases: they can be either both horizontal or both vertical; see Fig. 8 for
an illustration in which Si = S1. Moreover, Lemma 2 implies that region Si is
orthogonally convex, because otherwise there must be a reflex vertex in Si that
is not faced toward rectangle Rp and, therefore, there will be a grid segment in
Si that is not guarded by any periscope guard.

Lemma 3. If the subregion Si, for some 1 ≤ i ≤ 4, contains no periscope guards
of S, then the subregion Si has no convex pockets.

Proof. Without loss of generality, assume that there is no periscope guard in
S3. Suppose, to the contrary of the lemma statement, that there exists a convex
pocket R inside S3 and let Y be the set of grid segments in GP that intersect at
least one of the pocket edges s1 and s2 of R; see Fig. 7. Without loss of generality,
assume that s1 ∈ GP . We first show that there is no periscope guard on L, for
all L ∈ Y . Take any grid segment L in Y . Note that if L is entirely contained in
S3, then there is no periscope guard on L by the assumption. If L enters S3 from
another region, then it must intersect region X and, therefore, rectangle Rp is
visible to L. Since Rp is unguarded, there is no sliding camera (and therefore
no periscope guard) on L. This means that s1 is not guarded by any periscope
guard, which is a contradiction to the fact that S is a feasible solution to the
MPG problem. This completes the proof of the lemma.

By Lemma 3, we conclude that the staircases of Si are joined with each other
in such a ways that they do not create any convex pocket in Si.

3.2 Characterizing Desert Regions

S3

p

Y

s1

s2

R

X

X

Fig. 7. An illustration in support of the
proof of Lemma 3.

Recall that the periscope guards in S can
only lie in S1 ∪S2 ∪S3 ∪S4. The structure
of a desert region depends on how many
of the four regions S1, S2, S3 and S4 con-
tain at least one periscope guard. In the
following, we consider all the four cases
and show that the desert region in each
case can be guarded entirely by a single
sliding camera. Let Z ⊆ {S1, S2, S3, S4}
such that Si ∈ Z, for all 1 ≤ i ≤ 4, if and
only if Si contains at least one periscope
guard.
Case 1: |Z| = 4. In this case, there is at least one periscope guard in Si, for
all 1 ≤ i ≤ 4. Since (i) the grid segments in GP are all guarded by at least one
periscope guard, and (ii) each part of region X (i.e., the parts that are imme-
diately above, below, to the left and to the right of rectangle Rp) is intersected
by at least one grid segment in GP , we conclude that the region Si is guarded
by sliding cameras in M , for all 1 ≤ i ≤ 4. Therefore, the desert region in this



148 S. Durocher and S. Mehrabi

(a)

S1

pX

X

(b)

S1

pX

X
L

Fig. 8. An example of a region S1 such that it contains no periscope guards of S. The
staircases in S1 must both be either (a) horizontal, or (b) vertical. Note that S1 is an
orthogonally convex region.

case is just the rectangle Rp and can be guarded by a single sliding camera. See
Fig. 5 for an example.
Case 2: |Z| = 3. Without loss of generality, assume that there is no periscope
guard in region S1. Note that the desert region in this case is the union of S1 and
rectangle Rp. Recall that the staircases in S1 must both be horizontal or both
vertical. Assume without loss of generality that the staircases are lied vertically
in S1 (i.e., Fig. 8(b)). Since S1 is an orthogonally convex region the maximal
vertical line segment L that crosses the top most horizontal edge of S1 guards
the union of S1 and rectangle Rp; we call L the neighbour camera associated
with S1. Therefore, one sliding camera located on L can guard the desert region.
Case 3: |Z| = 2. Let Si and Sj , for some 1 ≤ i, j ≤ 4 and i �= j, be the regions
that contain no periscope guard. We observe that in this case, the desert region
is the union of Si, Sj and rectangle Rp. There are two cases depending on the
positions of Si and Sj :

(a) Suppose regions Si and Sj are neighbours to each other. Without loss of
generality, assume that Si = S1 and Sj = S2 and that the staircases in S1

are lied vertically; see Fig. 9(a). Let L1 and L2 be the neighbour cameras of
S1 and S2, respectively. If the staircases in S2 are also lied vertically, then it
is straightforward to see that there exists a maximal horizontal line segment
inside P that guards the union S1, S2 and rectangle Rp (see Fig. 9(a)). If
the staircases in S2 are lied horizontally, we show that L1 guards the union
of S1, S2 and rectangle Rp. First, note that L1 guards the union of S1 and
rectangle Rp. Now, suppose to the contrary, that there exists a point q ∈ S2

that is not visible to L1; see Fig. 9(b). Since S2 consists of only two staircases
and such staircases in S2 are lied horizontally, they must be joined with each
other in S2 such that they form a convex pocket, which is a contradiction to
Lemma 3. Therefore, S2 is entirely visible to L1.

(b) Suppose regions Si and Sj are opposite to each other. Note that (i) each of
the regions Si and Sj consists of at most two staircases, and (ii) the staircases



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 149

(a)

X

S1

S2X

Xp

(b)

X

S1

S2X

Xp

L1 L2 qL1

Fig. 9. An illustration in support of Case 3.

in Si (or in Sj) are either both vertical or both horizontal. By an argument
analogous to that given in Case (a), we can conclude that the union of regions
Si, Sj and rectangle Rp can be guarded by one sliding camera.

By the two cases described above, we conclude that the desert region can be
guarded by one sliding camera.

S3

p

X

X

q1

q2

X

X

L1

L3

S1
S2

Fig. 10. An illustration in support
of Case 4.

Case 4: |Z| = 1. Without loss of generality,
assume that all the periscope guards lie in S4.
We show that the subregion P \ {S4}, which
forms the desert region, can be guarded by a
single sliding camera. Consider the neighbour
camera L3 associated with region S3 and
assume without loss of generality that the
staircases in S3 lie horizontally; see Fig. 10.
It is straightforward to see that L3 guards
the union of S3 and rectangle Rp. We now
check to see if L3 can also guard the union of
S1 and S2. If L3 guards the union of S1 and

S2, then the subregion P \ {S4} can be guarded by one sliding camera located
on L3. Otherwise, there are two possibilities:

(a) Suppose exactly one of the regions S1 or S2 is guarded by L3. Without loss
of generality, assume that S2 is not guarded by L3 entirely. Thus, there is a
point q1 ∈ S2 that is not visible to L3; see Fig. 10. Since L3 guards S1 the
staircases in S1 must be lied vertically. Therefore, the neighbour camera L1

(associated with region S1) is vertical and guards the union of S1, S3 and
rectangle Rp. Note that L1 also guards S2 because otherwise there must be
a point q2 ∈ S2 that is not visible to L1 (see Fig. 10). But, the existence
of points q1 and q2 in S2 implies that the staircases in S2 must be joined
with each other in such a way that they form a convex pocket in S2, which
is a contradiction to Lemma 3. Therefore, in this case, L1 guards the desert
region entirely.

(b) Suppose neither S1 nor S2 is guarded entirely by L3. Since L3 is horizon-
tal, the staircases in regions S1 and S2 must all have lain horizontally and,



150 S. Durocher and S. Mehrabi

therefore, all the staircases in subregion P \ {S4} lie horizontally. It is now
easy to observe that in this case there exists a maximal vertical line segment
inside P that guards the subregion P \ {S4}.

By the two possibilities above, we conclude that the desert region can be guarded
by one sliding camera.

We observe that in each of the Cases 1 through 4, at least one periscope guard
is required in characterizing the desert region. Therefore, by Cases 1 through 4
described above, we have the following theorem.

Theorem 2. Every point in P that is not inside a desert region is guarded by
at least one sliding camera in M . Each desert region of P consists of a set of
staircases and it can be guarded entirely by a single sliding camera. Moreover,
the number of desert regions is at most the number of periscope guards in S.

To summarize the algorithm, we first solve the MPG problem on GP and com-
pute the set S of optimal periscope guards. By Observation 1, we locate two
sliding cameras inside P for each periscope guard to obtain the set M . By
Theorem 2, we then guard each desert region by a single sliding camera; let M ′

denote the set of sliding cameras that guard the desert regions. By Theorem 2,
the set M ∪ M ′ of sliding cameras guards P entirely.

3.3 Analyzing the Algorithm

In this section, we analyze the running time and the approximation factor of the
algorithm. To this end, we first give a lower bound on any feasible solution for
the MSC problem on P . Recall OPTP , an optimal solution to the MSC problem,
and recall OPTPG, an optimal solution for the MPG problem on GP . We show
the following result whose proof is omitted due to space constraints.

Lemma 4. |OPTP | ≥ |OPTPG|.
We know that |M | ≤ 2 · |S|. By Theorem 2, we have that |M ′| ≤ |S| and so
|M ∪ M ′| ≤ 3 · |S|. Therefore, by Lemma 4 we have that |M ∪ M ′| ≤ 3 · |OPTP |.
To analyze the running time of the algorithm, we note that the construction of
grid GP can be completed in O(n2) time [2]. Since |TG| = O(n), where n is the
number of vertices of P , the MPG problem can be solved on GP in O(n3) time.
Next, the desert regions of P can be detected in O(n2) time by detecting the
visibility region of cameras in M and comparing their union with P . Finally,
the desert regions can be guarded in O(n) time by locating a sliding camera
inside P , for each desert region. Therefore, we have the main result of this
paper.

Theorem 3. There exists an O(n3)-time 3-approximation algorithm for the
MSC problem on any simple orthogonal polygon with n vertices.



A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries 151

4 Conclusion

In this paper, we gave an O(n3)-time 3-approximation algorithm for the problem
of guarding a simple orthogonal polygon P with n vertices using the minimum
number of sliding cameras (i.e., the MSC problem). The complexity of the MSC
problem is still unknown and remains the main direction for future work. Also,
giving algorithms with better approximation factor or showing a hardness of
approximation remains open as another direction for future work.

References

1. Biedl, T.C., Irfan, M.T., Iwerks, J., Kim, J., Mitchell, J.S.B.: The art gallery
theorem for polyominoes. Disc. Comp. Geom. 48(3), 711–720 (2012)

2. Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-
approximation algorithm for guarding orthogonal art galleries with sliding cam-
eras. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 294–305.
Springer, Heidelberg (2014)

3. Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras:
algorithmic and hardness results. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013.
LNCS, vol. 8087, pp. 314–324. Springer, Heidelberg (2013)

4. Eidenbenz, S.: Inapproximability results for guarding polygons without holes. In:
Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, p. 427. Springer,
Heidelberg (1998)

5. Eidenbenz, S.: Inapproximability of visibility problems on polygons and terrains.
Ph.D. thesis, ETH Zurich (2000)

6. Gewali, L., Ntafos, S.C.: Covering grids and orthogonal polygons with periscope
guards. Comput. Geom. 2, 309–334 (1992)

7. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Disc.
App. Math. 158(6), 718–722 (2010)

8. Hoffmann, F.: On the rectilinear art gallery problem. In: Paterson, M.S. (ed.)
Automata, Languages and Programming. LNCS, pp. 717–728. Springer, Heidelberg
(1990)

9. Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cam-
eras. Int. J. Comp. Geom. App. 21(2), 241–250 (2011)

10. Kosowski, A., Ma�lafiejski, M., Żyliński, P.: An efficient algorithm for mobile
guarded guards in simple grids. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan,
C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol.
3980, pp. 141–150. Springer, Heidelberg (2006)

11. Kosowski, A., Malafiejski, M., Zylinski, P.: Cooperative mobile guards in grids.
Comp. Geom. 37(2), 59–71 (2007)

12. Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear poly-
gons. Algorithmica 66(3), 564–594 (2013)

13. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE
Trans. Info. Theory 32(2), 276–282 (1986)

14. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star
polygons: the perfect graph approach. In: Proceedings of ACM SoCG, pp. 211–223
(1988)

15. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press Inc,
New York (1987)



152 S. Durocher and S. Mehrabi

16. Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons.
Math. Log. Q. 41(2), 261–267 (1995)

17. Seddighin, S.: Guarding polygons with sliding cameras. Master’s thesis, Sharif
University of Technology (2014)

18. Urrutia, J.: Art gallery and illumination problems. Handb. Comp. Geom. 1(1),
973–1027 (2000). North-Holland

19. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery
problem. Int. J. Comp. Geom. App. 17(2), 105–138 (2007)



On Decomposing the Complete Graph
into the Union of Two Disjoint Cycles

Saad I. El-Zanati1(B), Uthoomporn Jongthawonwuth2, Heather Jordon1,
and Charles Vanden Eynden1

1 Illinois State University, Normal 61790-4520, USA
{saad,hjordon,cve}@ilstu.edu

2 Chulalongkorn University, Bangkok 10330, Thailand
aor utoo@hotmail.com

Abstract. Let G of order n be the vertex-disjoint union of an even and
an odd cycle. It is known that there exists a G-decomposition of Kv for
all v ≡ 1 (mod 2n). We use an extension of the Bose construction for
Steiner triple systems and a recent result on the Oberwolfach Problem
for 2-regular graphs with two components to show that there exists a
G-decomposition of Kv for all v ≡ n (mod 2n), unless G = C4 ∪ C5

and v = 9.

Keywords: Graph decomposition · Bose construction · Disjoint cycles

1 Introduction

Let Zn be the group of integers modulo n. For integers a and b with a ≤ b, we
denote the set {a, a+1, . . . , b} by [a, b] (if a > b, then [a, b] = ∅). For a graph G,
let V (G) and E(G) denote the vertex set of G and the edge set of G, respectively.
The order and the size of a graph G are |V (G)| and |E(G)|, respectively. We
will denote the complete multipartite graph with n partite sets of order m by
Kn×m. The vertex-disjoint union of t copies of a graph G will be denoted by tG.

A decomposition of a graph K is a set T = {G1, G2, . . . , Gt} of subgraphs
of K such that the edge sets of the graphs Gi form a partition of the edge set
of K. If each Gi is isomorphic to a subgraph G of K, such a decomposition
is called a G-decomposition of K or a (K,G)-design. A (Kv, G)-design is also
known as a G-design of order v. The study of graph decompositions is known
as the study of graph designs or simply as the study of G-designs. For recent
surveys on G-designs, we direct to the reader to [2,8].

One of the better-studied problems in G-designs is the case when G is a cycle.
Necessary and sufficient conditions for the existence of Cn-designs of order v were
found about a decade ago by Alspach and Gavlas [4] and by Šajna [17]. Necessary
and sufficient conditions for the existence of a G-design of order v are found in [3]
when G is a 2-regular graph of order at most 10. For an arbitrary 2-regular graph
G of order n, the problem of finding necessary and sufficient conditions for the
existence of a G-design of order v is far from settled. It is expected however that
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 153–163, 2015.
DOI: 10.1007/978-3-319-19315-1 14



154 S.I. El-Zanati et al.

for such a G, there will exist a G-design of order v for all v ≡ 1 (mod 2n). This
has been confirmed when G is bipartite (see [5,11]), when G is rCm where m is
odd (see [12]), and when G has two components (see [1,3,6,9]). If in addition n
is odd and (G, v) /∈ {(C4 ∪ C5, 9), (C3 ∪ C3 ∪ C5, 11)}, then a G-design of order
v for all v ≡ n (mod 2n) is likely to exist. We confirm this assertion here in the
case where G has exactly two components.

Let G be a 2-regular graph of odd order n. The problem of determining
whether there exists a G-decomposition of Kn is known as the Oberwolfach
problem. Although the general problem is far from settled, Traetta [18] recently
settled the case when G has two components.

Theorem 1. Let a ≥ 2 and b ≥ 1 be integers and let n = 2a + 2b + 1. There
exists a (C2a ∪ C2b+1)-decomposition of Kn if and only if (a, b) �= (2, 2).

In this article, we use an extension of the Bose construction for Steiner triple
systems (see [15]) to show that if G of odd order n is the vertex-disjoint union of
two cycles, then there exists a G-decomposition of K(2k+1)×n for every positive
integer k. We also show that there exists a G-decomposition of Kk×2n for every
integer k ≥ 3. We combine the decomposition of K(2k+1)×n result with Traetta’s
result on the Oberwolfach Problem for 2-regular graphs with two components to
show that there exists a G-decomposition of Kv for all v ≡ n (mod 2n), unless
G = C4 ∪ C5 and v = 9.

2 Quasigroups and the Bose Construction

Let G = Cm∪C� where m ≥ 4 is even and � ≥ 3 is odd and let n = m+�. We use
an extension of the Bose construction for Steiner triple systems of order 6k+3 to
show that there exists a G-decomposition of K(2k+1)×n for every positive integer
k. We also show that there exists a G-decomposition of Kk×2n for every integer
k ≥ 3. These constructions make use of idempotent commutative quasigroups
and of commutative quasigroups with holes.

A quasigroup of order q is a pair (Q, ◦) where Q is a set of size q, say Q = [1, q],
and ◦ is a binary operation on Q such that for every pair of elements a, b ∈ Q,
the equations a ◦ x = b and y ◦ a = b have unique solutions. The quasigroup is
idempotent if i ◦ i = i for every i ∈ Q and it is commutative if i ◦ j = j ◦ i for all
i, j ∈ Q. Note that in any idempotent quasigroup, if a �= b, then a, b, and a ◦ b
are distinct. It is known that an idempotent commutative quasigroup of order q
exists if and only if q is odd (see [15]).

Let Q = [1, 2k] and let H = {{1, 2}, {3, 4}, . . . , {2k−1, 2k}}. In what follows,
the two-element subsets {2i−1, 2i} ∈ H are called holes. A quasigroup with holes
H is a quasigroup (Q, ◦) of order 2k in which for each h ∈ H, we have (h, ◦)
is a subquasigroup of (Q, ◦). It is known that for every k ≥ 3, there exists a
commutative quasigroup (Q, ◦) of order 2k with holes H (see [15]). Commutative
quasigroups of order 2k with holes H are used to construct C3-decompositions
of Kk×6 for every integer k ≥ 3.



On Decomposing the Complete Graph into the Union of Two Disjoint Cycles 155

We give a brief description of Bose’s construction for Steiner triple systems
of order 6k + 3. We also describe how to obtain a C3-decomposition of Kk×6 for
k ≥ 3. We direct the reader to the book by Lindner and Rodger [15] for detailed
information on quasigroups and triple systems.

We will define a Steiner triple system of order v to be a C3-decomposition
of Kv. It has long been known that a Steiner triple system of order v exists
if and only if v ≡ 1 or 3 (mod 6). In 1939, Bose [7] used the existence of an
idempotent commutative quasigroup of order q = 2k + 1 to construct a C3-
decomposition of K6k+3 for every positive integer k. One can view K6k+3 as
(2k + 1)K3

⋃
K(2k+1)×3. Thus to construct a C3-decomposition of K6k+3, it

suffices to construct a C3-decomposition of K(2k+1)×3. Let (a, b, c) denote the
C3 (also called a triple) with vertex set {a, b, c}.

Let (Q, ◦) be an idempotent commutative quasigroup of order 2k + 1 where
Q = [1, 2k+1] and let V (K(2k+1)×3) = Z3×Q with the obvious vertex partition.
Let T = {((0, i), (0, j), (1, i◦j)), ((1, i), (1, j), (2, i◦j)), ((2, i), (2, j), (0, i◦j)) : 1 ≤
i < j ≤ 2k + 1}. Then the C3’s in T form a C3-decomposition of K(2k+1)×3.
Figure 1 shows an idempotent commutative quasigroup of order 5 and one triple
from the Bose construction of a Steiner triple system of order 15.

2

5
5

5
5

54
4

4
4

3
3

3
3

3

2
2

2

1
1

1
1

5

4

43

5
4
3
2
1

2

2

◦ 1

1

(0,1) (0,2) (0,3) (0,4) (0,5)

(1,1)

(2,1)

(1,2)

(2,2)

(1,3) (1,4)

(2,4)(2,3)

(1,5)

(2,5)

Fig. 1. An idempotent commutative quasigroup of order 5 and one triple from the Bose
construction of a Steiner triple system of order 15.

Alternatively, let k ≥ 3 be an integer and for i ∈ [1, k], let hi = {2i − 1, 2i}
and gi = Z3 × hi. Let Q = [1, 2k] and H = {h1, h2, . . . , hk}. Let (Q, ◦) be
a commutative quasigroup of order 2k with holes H. Let V (Kk×6) = Z3 ×
Q with the vertex-set partition {g1, g2, . . . , gk}. Let T = {((0, i), (0, j), (1, i ◦
j)), ((1, i), (1, j), (2, i ◦ j)), ((2, i), (2, j), (0, i ◦ j)) : 1 ≤ i < j ≤ 2k, {i, j} /∈ H}.
Then the C3’s in T form a C3-decomposition of Kk×6. This process is part
of what is known as the quasigroups with holes construction for triple systems
(see [15]). Figure 2 shows a commutative quasigroup of order 6 with holes and
one triple from the corresponding C3-decomposition of K3×6.

3 G-decompositions of K(2k+1) × n and of Kk×2n

Let n ≥ 3 be an odd integer and let k be a positive integer. Let K(2k+1)×n

have vertex set Zn × [1, 2k + 1] with the obvious vertex partition. For i ∈ [1, k],



156 S.I. El-Zanati et al.

12
243

6 1
265

45
65

6

6

5

4 3

3
3

2
1

1

5
4

43

5
4
3
2
1

2◦ 1

6
1 2
2 1

3
3
4

4

5
5
6

6

(0,1) (0,2)

(1,1)

(2,1)

(1,2)

(2,2)

g1

(2,3) (2,4)

(1,4)(1,3)

(0,4)(0,3)

g2

(0,5)

(1,5)

(2,5)

(0,6)

(1,6)

(2,6)

g3

Fig. 2. A commutative quasigroup of order 6 with holes and one triple from the cor-
responding C3-decomposition of K3×6.

let hi = {2i − 1, 2i} and gi = Zn × hi. Let V (Kk×2n) = Zn × [1, 2k] with
the vertex-set partition {g1, g2, . . . , gk}. If e = {(i, r), (j, s)}, where r < s, is
an edge in K(2k+1)×n or in Kk×2n, define the length of e to be j − i if j ≥ i;
otherwise the length of e is n + i − j. Thus, between any two parts, there are
edges of lengths 0, 1, . . . , n−1. We will often write −j for edge length n−j when
n is understood. Therefore, between any two parts, there are edges of lengths
0,±1,±2, . . . ,± (n−1)

2 . If G is a subgraph of K(2k+1)×n and 1 ≤ j ≤ 2k+1, define
Vj(G) to be {i ∈ Zn : (i, j) ∈ V (G)}. Similarly, if G is a subgraph of Kk×2n and
1 ≤ j ≤ 2k, define Vj(G) to be {i ∈ Zn : (i, j) ∈ V (G)}.

We first prove a lemma about the existence of paths with certain edge lengths
in Kn,n.

Lemma 1. Let n ≥ 3 be an odd integer and let x ≤ n be a positive integer. Let
Kn,n have vertex set Zn × [1, 2] with the obvious vertex partition. For positive
integers d1, d2, . . . , dx with d1 < d2 < · · · < dx ≤ (n − 1)/2, there exists a path
P in Kn,n of length 2x + 1 whose edges have lengths 0,±d1,±d2, . . . ,±dx with
endpoints (0, 1) and (0, 2). Furthermore, V (P ) ⊆ [0, dx] × [1, 2].

Proof. For k ∈ [1, x], define ek =
k−1∑

i=0

(−1)idx−i. Note that since d1 < d2 <

· · · < dx, we have that e1 > e3 > · · · and e2 < e4 < · · · . Consider the
path of length x given by P ′ : (0, 1), (e1, 2), (e2, 1), (e3, 2), . . . where P ′ ends with
(ex, 2) if x is odd or (ex, 1) if x is even. Observe that the lengths of the edges
on P ′, in the order encountered, are dx, dx−1, . . . , d1. Next consider the path
P ′′ : (0, 2), (e1, 1), (e2, 2), (e3, 1), . . . where P ′′ ends with (ex, 1) if x is odd or
(ex, 2) if x is even, and observe that the edges on P ′′, in the order encountered,
are −dx,−dx−1, . . . ,−d1. Construct the path P from the paths P ′ and P ′′ by
adding the edge from (ex, 1) to (ex, 2). Note that P has length 2x + 1, the edges
of P have lengths 0,±d1,±d2, . . . ,±dx, and V (P ) ⊆ [0, dx] × [1, 2]. 
�
Let H be a subgraph of a graph with vertex set Zn × [1, q]. For a positive
integer �, the graph H + � has vertex set {(i + �, z) : (i, z) ∈ V (H)} and edge set
{{(i + �, r), (j + �, s)} : {(i, r), (j, s)} ∈ E(H)}.



On Decomposing the Complete Graph into the Union of Two Disjoint Cycles 157

Given a sequence W1,W2, . . . , Wt of directed edge-disjoint walks (each with
1 vertex or more) in a graph H, by the connection of the sequence we mean the
directed walk, the edges of which are the edges of W1, then the edge from the
last vertex of W1 to the first vertex of W2, then the edges of W2, etc., ending
with the edges of Wt.

Theorem 2. Let G be a 2-regular graph of odd order n consisting of exactly two
cycles. For every positive integer k, there exists a G-decomposition of K(2k+1)×n.

Proof. Let G = Cm ∪ C�, where m ≥ 4 is even and � ≥ 3 is odd. Let k be a
positive integer and let Q = [1, 2k + 1]. Label the vertex set of K(2k+1)×n with
the elements of the set Zn × [1, 2k + 1] with the obvious vertex partition. Let
(Q, ◦) be an idempotent commutative quasigroup of order 2k + 1.

For integers j > 0, a, and b and for r, s ∈ Q, with r < s, let W (a, j, b) be the
directed path with consecutive vertices

(a, r), (b+j−1, s), (a+1, r), (b+j−2, s), (a+2, r), . . . , (b−1, s), (a+j−1, r), (b, s).

Notice that this sequence contains 2j vertices, starting with (a, r) and ending
with (b, s). We have Vr(W (a, j, b)) = [a, a+j−1], and Vs(W (a, j, b)) = [b, b+j−1].
The set of lengths of the edges of this path is b − a + [−(j − 1), j − 1].

Fix r and s with 1 ≤ r < s ≤ 2k + 1. In what follows, we will construct a
graph Gr,s, consisting of a cycle Cr,s of length m and a cycle C ′

r,s of length �
such that Cr,s and C ′

r,s are vertex disjoint. We proceed by cases depending on
the congruence class of m modulo 8.
Case 1: m ≡ 2 (mod 8). Let m = 8t + 2 for some positive integer t. Let Cr,s be
the walk with m edges which is the connection of

W (0, t + 1, 3t + 2),W (t + 2, t − 1, 2t + 3), (2t + 1, r), (2t − 1, s),
W (2t + 2, t − 1, t),W (3t + 2, t, 0), (4t + 2, r), (2t + 1, s), (0, r).

Notice that we have listed 2(t+1)+2(t−1)+2+2(t−1)+2t+3 = 8t+3 = m+1
vertices, but (0, r) is listed twice. Here Vr(Cr,s) is

[0, t] ∪ [t + 2, 2t] ∪ {2t + 1} ∪ [2t + 2, 3t] ∪ [3t + 2, 4t + 1] ∪ {4t + 2}
= [0, t] ∪ [t + 2, 3t] ∪ [3t + 2, 4t + 2],

and these are distinct in Zn. Likewise Vs(Cr,s) is

[3t + 2, 4t + 2] ∪ [2t + 3, 3t + 1] ∪ {2t − 1} ∪ [t, 2t − 2] ∪ [0, t − 1] ∪ {2t + 1}
= [0, 2t − 1] ∪ {2t + 1} ∪ [2t + 3, 4t + 2],

and these are also distinct in Zn. Thus Cr,s is a cycle of length m.
The set of lengths of edges in Cr,s is

[2t + 2, 4t + 2] ∪ {2t} ∪ [3, 2t − 1] ∪ {2,−2,−3} ∪ [−2t,−4] ∪ {−2t − 2} ∪
[−4t − 1,−2t − 3] ∪ {−4t − 2,−2t − 1, 2t + 1} = [−(4t + 2),−2] ∪ [2, 4t + 2].



158 S.I. El-Zanati et al.

Notice that the difference between the largest and smallest length is 8t + 4, but
n = m + � ≥ 8t + 2 + 3. Thus these lengths are distinct in Zn.

We next give the construction of C ′
r,s. If � = 3, then let C ′

r,s be the 3-cycle
((4t + 3, r), (4t + 3, s), (4t + 4, r ◦ s)).

Suppose that � ≥ 5. By Lemma 2, there exists a path Pr,s of length � − 2
using the edge lengths in {−1, 0, 1} ∪ ±[4t + 3, (n − 3)/2] with endpoints (0, r)
and (0, s). In the lemma we would use d1 = 1, d2 = 4t + 3, . . . , dx = (n − 3)/2,
so V (Pr,s) ⊆ [0, (n − 3)/2] × {r, s}. Let P ∗

r,s = Pr,s + 4t + 3, with endpoints
(4t + 3, r) and (4t + 3, s). Then V (P ∗

r,s) ⊆ [4t + 3, (n − 3)/2 + 4t + 3] × {r, s}.
Since (n − 3)/2 + 4t + 3 = (n + m + 1)/2 = (2n − � + 1)/2 < n, we see that P ∗

r,s

is vertex disjoint from Cr,s.
Finally we construct the cycle C ′

r,s from P ∗
r,s by adding the edges {(4t +

3, r), (4t + 3 + (n − 1)/2, r ◦ s)} and {(4t + 3, s), (4t + 3 + (n − 1)/2, r ◦ s)}. Note
that in the subgraph of K(2k+1)×n with vertex set Zn ×{r, s}, Gr,s contains one
edge of each length i ∈ [−(n − 1)/2, (n − 1)/2] \ {±z}, where z = 1 if � = 3
and z = (n − 1)/2, otherwise. Figure 3 shows an example of Cr,s and C ′

r,s where
m = 10 and � = 9.

(6, s)

(0, r) (1, r)

(5, s)

(3, r)

(1, s)

(5, r)

(3, s)

(9, r)

(15, s)(9, s)(8, s)

(8, r) (7, r)

(16, r ◦ s)

(6, r) (15, r)

(0, s) (7, s)

Fig. 3. Cr,s and C′
r,s where m = 10 and � = 9.

Case 2: m ≡ 6 (mod 8). Let m = 8t+6 for some nonnegative integer t. We will
consider two cases.
Case 2.1: t = 0. Let Cr,s be the C6 defined by the connection of (0, r), (3, s),
(2, r), (0, s), (3, r), (2, s), and (0, r). Note that the set of edge lengths of Cr,s is
±[1, 3].

We next give the construction of C ′
r,s. If � = 3, then let C ′

r,s be the 3-cycle
((4, r), (4, s), (8, r ◦ s)).

Suppose that � ≥ 5. By Lemma 2, there exists a path Pr,s of length � − 2
using the edge lengths in {0} ∪ ±[4, (n − 3)/2] with endpoints (0, r) and (0, s).
In the lemma we would use d1 = 4, d2 = 5, . . . , dx = (n − 3)/2, so V (Pr,s) ⊆
[0, (n − 3)/2] × {r, s}. Let P ∗

r,s = Pr,s + 4, with endpoints (4, r) and (4, s).
Then V (P ∗

r,s) ⊆ [4, (n − 3)/2 + 4] × {r, s}. Since (n − 3)/2 + 4 = (n + 5)/2 =
(2n − � − 1)/2 < n, we see that P ∗

r,s is vertex disjoint from Cr,s.
Finally we construct the cycle C ′

r,s from P ∗
r,s by adding the edges {(4, r), (4+

(n − 1)/2, r ◦ s)} and {(4, s), (4 + (n − 1)/2, r ◦ s)}. Note that in the subgraph
of K(2k+1)×n with vertex set Zn × {r, s}, Gr,s contains one edge of each length
i ∈ [−(n − 1)/2, (n − 1)/2] \ {±z}.



On Decomposing the Complete Graph into the Union of Two Disjoint Cycles 159

Case 2.2: t ≥ 1. Let Cr,s be the walk with m edges which is the connection of

W (0, t + 1, 3t + 4),W (t + 1, t, 2t + 3), (2t + 2, r), (2t + 1, s),
W (2t + 4, t − 1, t + 2),W (3t + 3, t + 1, 0), (4t + 4, r), (2t + 2, s), (0, r).

Notice that we have listed 2(t+1)+2t+2+2(t−1)+2(t+1)+3 = 8t+7 = m+1
vertices, but (0, r) is listed twice. Here Vr(Cr,s) is

[0, t] ∪ [t + 1, 2t] ∪ {2t + 2} ∪ [2t + 4, 3t + 2] ∪ [3t + 3, 4t + 3] ∪ {4t + 4}
= [0, 2t] ∪ {2t + 2} ∪ [2t + 4, 4t + 4],

and these are distinct in Zn. Likewise Vs(Cr,s) is

[3t + 4, 4t + 4] ∪ [2t + 3, 3t + 2] ∪ {2t + 1} ∪ [t + 2, 2t] ∪ [0, t] ∪ {2t + 2}
= [0, t] ∪ [t + 2, 3t + 2] ∪ [3t + 4, 4t + 4],

and these are also distinct in Zn. Thus Cr,s is a cycle of length m.
The set of lengths of edges in Cr,s is

[2t + 4, 4t + 4] ∪ {2t + 3} ∪ [3, 2t + 1] ∪ {1,−1,−3} ∪ [−2t,−4] ∪ {−2t − 1}∪
[−4t −3,−2t−3]∪{−4t − 4,−2t − 2,2t + 2}=[−(4t + 4),−3] ∪ [3, 4t+4]∪ {±1}.

Notice that the difference between the largest and smallest length is 8t + 8, but
n = m + � ≥ 8t + 6 + 3. Thus these lengths are distinct in Zn.

We next give the construction of C ′
r,s. If � = 3, then let C ′

r,s be the 3-cycle
((4t + 5, r), (4t + 5, s), (4t + 7, r ◦ s)).

Suppose that � ≥ 5. By Lemma 2, there exists a path Pr,s of length � − 2
using the edge lengths in {−2, 0, 2} ∪ ±[4t + 5, (n − 3)/2] with endpoints (0, r)
and (0, s). In the lemma we would use d1 = 2, d2 = 4t + 5, . . . , dx = (n − 3)/2,
so V (Pr,s) ⊆ [0, (n − 3)/2] × {r, s}. Let P ∗

r,s = Pr,s + 4t + 5, with endpoints
(4t + 5, r) and (4t + 5, s). Then V (P ∗

r,s) ⊆ [4t + 5, (n − 3)/2 + 4t + 5] × {r, s}.
Since (n − 3)/2 + 4t + 5 = (n + m + 1)/2 = (2n − � + 1)/2 < n, we see that P ∗

r,s

is vertex disjoint from Cr,s.
Finally we construct the cycle C ′

r,s from P ∗
r,s by adding the edges {(4t +

5, r), (4t + 5 + (n − 1)/2, r ◦ s)} and {(4t + 5, s), (4t + 5 + (n − 1)/2, r ◦ s)}. Note
that in the subgraph of K(2k+1)×n with vertex set Zn ×{r, s}, Gr,s contains one
edge of each length i ∈ [−(n − 1)/2, (n − 1)/2] \ {±z}, where z = 2 if � = 3
and z = (n − 1)/2, otherwise. Figure 4 shows an example of Cr,s and C ′

r,s where
m = 14 and � = 7.
Case 3: m ≡ 0 (mod 4). Let m = 4t for some positive integer t. Let Cr,s be the
walk with m edges which is the connection of

W (0, t, t + 1),W (t + 2, t − 1, 2), (2t + 1, r), (1, s), (0, r).

Notice that we have listed 2t + 2(t − 1) + 3 = 4t + 1 = m + 1 vertices, but
(0, r) is listed twice. Here Vr(Cr,s) is

[0, t − 1] ∪ [t + 2, 2t] ∪ {2t + 1} = [0, t − 1] ∪ [t + 2, 2t + 1],



160 S.I. El-Zanati et al.

(8, s)

(0, r) (1, r)

(7, s)

(2, r)

(5, s)

(4, r)

(3, s)

(6, r)

(4, s)

(18, r)

(18, s)(16, s)(9, s)

(16, r) (9, r)

(19, r ◦ s)

(7, r) (8, r)

(1, s) (0, s)

Fig. 4. Cr,s and C′
r,s where m = 14 and � = 7.

and these are distinct in Zn. Likewise Vs(Cr,s) is

[t + 1, 2t] ∪ [2, t] ∪ {1} = [1, 2t],

and these are also distinct in Zn. Thus Cr,s is a cycle of length m.
The set of lengths of edges in Cr,s is

[2, 2t] ∪ {−1} ∪ [−2t + 2,−2] ∪ {−2t + 1,−2t, 1} = [−2t,−1] ∪ [1, 2t].

Notice that the difference between the largest and smallest length is 4t, but
n = m + � ≥ 4t + 3. Thus these lengths are distinct in Zn.

We next give the construction of C ′
r,s. If � = 3, then let C ′

r,s be the 3-cycle
((2t + 2, r), (2t + 2, s), (0, r ◦ s)).

Suppose that � ≥ 5. By Lemma 2, there exists a path Pr,s of length � − 2
using the edge lengths in {0} ∪ ±[2t + 1, (n − 3)/2] with endpoints (0, r) and
(0, s). In the lemma we would use d1 = 2t + 1, d2 = 2t + 2, . . . , dx = (n − 3)/2,
so V (Pr,s) ⊆ [0, (n − 3)/2] × {r, s}. Let P ∗

r,s = Pr,s + 2t + 2, with endpoints
(2t + 2, r) and (2t + 2, s). Then V (P ∗

r,s) ⊆ [2t + 2, (n − 3)/2 + 2t + 2] × {r, s}.
Since (n − 3)/2 + 2t + 2 = (n + m + 1)/2 = (2n − � + 1)/2 < n, we see that P ∗

r,s

is vertex disjoint from Cr,s.
Finally we construct the cycle C ′

r,s from P ∗
r,s by adding the edges {(2t +

2, r), (2t + 2 + (n − 1)/2, r ◦ s)} and {(2t + 2, s), (2t + 2 + (n − 1)/2, r ◦ s)}. Note
that in the subgraph of K(2k+1)×n with vertex set Zn ×{r, s}, Gr,s contains one
edge of each length i ∈ [−(n − 3)/2, (n − 3)/2]. Figure 5 shows an example of
Cr,s and C ′

r,s where m = 8 and � = 11.

(4, s)

(0, r) (1, r)

(3, s)

(4, r)

(2, s)

(5, r)

(1, s)

(8, r)

(14, s)(13, s)(8, s)

(7, r) (6, r)

(15, r ◦ s)

(14, r)(13, r)

(6, s) (7, s)

Fig. 5. Cr,s and C′
r,s where m = 8 and � = 11.



On Decomposing the Complete Graph into the Union of Two Disjoint Cycles 161

For fixed r and s with 1 ≤ r < s ≤ 2k+1, let G∗
r,s = {Gr,s+x : 0 ≤ x ≤ n−1}.

Note that G∗
r,s contains n distinct copies of G. Moreover, in the subgraph of

K(2k+1)×n with vertex set Zn × {r, s}, G∗
r,s contains all edges of length i for all

i ∈ [−(n−1)/2, (n−1)/2]\{±z} for some z ∈ [1, (n−1)/2]. We note that z = 1
if � = 3 and m ≡ 2 (mod 8), and z = 2 if � = 3 and m ≡ 6 (mod 8),m �= 6.
Also, z = 4 if � = 3 and m = 6. In all other cases, z = (n − 1)/2.

Let C = {Gr,s + i : 1 ≤ r < s ≤ 2k + 1, 0 ≤ i ≤ n − 1} and note that
C contains

(
2k+1

2

)
n distinct copies of G. We wish to show that every edge of

K(2k+1)×n appears in some copy of G in C. Let e = {(i, r), (j, s)} with r < s be
an arbitrary edge of K(2k+1)×n. Let t′ be the unique solution to r ◦ t′ = s and let
α′ = min{r, t′} and β′ = max{r, t′}. Let t′′ be the unique solution to s◦t′′ = r and
let α′′ = min{r, t′′} and β′′ = max{r, t′′}. If j−i ∈ [−(n−1)/2, (n−1)/2]\{±z},
then e belongs to Gr,s + x for some x with 0 ≤ x ≤ n − 1. If j − i = z, then
e belongs to Gα′,β′ + x where 0 ≤ x ≤ n − 1. If j − i = −z, then e belongs to
Gα′′,β′′ +x where 0 ≤ x ≤ n− 1. Since every edge of K(2k+1)×n appears in some
copy of G in C and since C contains

(
2k+1

2

)
n distinct copies of G, it follows that

C is a decomposition of K(2k+1)×n into copies of G. 
�
By using symmetric quasigroups with holes in place of idempotent symmetric
quasigroups, we can modify the proof of Theorem2 to obtain a G-decomposition
of Kk×2n for every integer k ≥ 3.

Theorem 3. Let G be a 2-regular graph of odd order n consisting of exactly two
cycles. For every integer k ≥ 3, there exists a G-decomposition of Kk×2n.

Proof. Let G = Cm ∪C�, where m ≥ 4 is even and � ≥ 3 is odd. Let k ≥ 3 be an
integer and let Q = [1, 2k]. For i ∈ [1, k], let hi = {2i − 1, 2i} and gi = Zn × hi.
Let V (Kk×2n) = Zn × [1, 2k] with the vertex-set partition {g1, g2, . . . , gk}. Let
(Q, ◦) be a commutative quasigroup of order 2k with holes H.

For integers j > 0, a, and b and for r, s ∈ Q, with r < s and such that
{r, s} /∈ H, let W (a, j, b) be the directed path with consecutive vertices

(a, r), (b+j−1, s), (a+1, r), (b+j−2, s), (a+2, r), . . . , (b−1, s), (a+j−1, r), (b, s).

Notice that this sequence contains 2j vertices, starting with (a, r) and ending
with (b, s). We have Vr(W (a, j, b)) = [a, a+j−1], and Vs(W (a, j, b)) = [b, b+j−1].
The set of lengths of the edges of this path is b − a + [−(j − 1), j − 1].

Fix r and s with 1 ≤ r < s ≤ 2k and {r, s} /∈ H. We proceed in the same
fashion as in the proof of Theorem2 producing the graph Gr,s consisting of a
cycle Cr,s of length m and a cycle C ′

r,s of length � such that Cr,s and C ′
r,s are

vertex-disjoint.
For fixed r and s with 1 ≤ r < s ≤ 2k, and with {r, s} /∈ H, let G∗

r,s =
{Gr,s + x : 0 ≤ x ≤ n − 1}. Note that G∗

r,s contains n distinct copies of G.
Moreover, in the subgraph of Kk×2n with vertex set Zn ×{r, s}, G∗

r,s contains all
edges of length i for all i ∈ [−(n−1)/2, (n−1)/2]\{±z} for some z ∈ [1, (n−1)/2].
We note that z = 1 if � = 3 and m ≡ 2 (mod 8), and z = 2 if � = 3 and m ≡ 6
(mod 8),m �= 6. Also, z = 4 if � = 3 and m = 6. In all other cases, z = (n−1)/2.



162 S.I. El-Zanati et al.

Let C = {Gr,s + i : 1 ≤ r < s ≤ 2k, {r, s} /∈ H, 0 ≤ i ≤ n−1} and note that C
contains

(
2k
2

)
n distinct copies of G. We wish to show that every edge of Kk×2n

appears in some copy of G in C. Let e = {(i, r), (j, s)} with r < s be an arbitrary
edge of Kk×2n. Let t′ be the unique solution to r ◦ t′ = s and let α′ = min{r, t′}
and β′ = max{r, t′}. Let t′′ be the unique solution to s ◦ t′′ = r and let
α′′ = min{r, t′′} and β′′ = max{r, t′′}. If j − i ∈ [−(n − 1)/2, (n − 1)/2] \ {±z},
then e belongs to Gr,s + x for some x with 0 ≤ x ≤ n − 1. If j − i = z, then
e belongs to Gα′,β′ + x where 0 ≤ x ≤ n − 1. If j − i = −z, then e belongs to
Gα′′,β′′ + x where 0 ≤ x ≤ n − 1. Since every edge of Kk×2n appears in some
copy of G in C and since C contains

(
2k
2

)
n distinct copies of G, it follows that C

is a decomposition of Kk×2n into copies of G. 
�

4 Main Result

By combining the results from Theorems 1 and 2, we obtain the following
theorem.

Theorem 4. Let G be a 2-regular graph of odd order n consisting of exactly
two cycles. There exists a G-decomposition of Kv for all v ≡ n (mod 2n) unless
G = C4 ∪ C5 and v = 9.

Proof. In [3], it is shown that there exists a (C4 ∪ C5)-decomposition of Kv if
and only if v ≡ 1 or 9 (mod 18) and v �= 9. For all other G, let v = 2kn + n.
Observe that Kv = (2k + 1)Kn ∪ K(2k+1)×n. By Theorem 1, there exists a G-
decomposition of Kn and hence of (2k + 1)Kn and by Theorem 2, there exists a
G-decomposition of K(2k+1)×n. The result follows. 
�
If n in Theorem 4 is a power of a prime, then we have the following corollary.

Corollary 1. Let G be a 2-regular graph of odd order n consisting of exactly
two cycles. If n is a prime power, then there exists a G-decomposition of Kv if
and only if v ≡ 1 or n (mod 2n), unless G = C4 ∪ C5 and v = 9.

Proof. The necessary conditions for the existence of a G-decomposition of Kv

include n|v(v − 1)/2 and v ≥ n is odd. If n = pk, where p is prime, then we have
2pk|v(v − 1) and v ≥ pk is odd. Since v and v − 1 are relatively prime, either
pk|v or pk|v − 1. Thus, v ≡ 1 or pk (mod 2pk).

It is known that there exists a G-decomposition of Kv for all v ≡ 1 (mod 2n)
(see [3,6]). By Theorem 4, there exists a G-decomposition of Kv for all v ≡ n
(mod 2n) unless G = C4 ∪ C5 and v = 9. The result follows. 
�

5 Final Comments

This manuscript highlights ways of extending the classical Bose construction
for Steiner triple systems to constructions of G-decompositions of complete and
complete multipartite graphs where G is the vertex-disjoint union of one even



On Decomposing the Complete Graph into the Union of Two Disjoint Cycles 163

and one odd cycle. In [14], this approach is used to construct G-decompositions
of K(2k+1)×n and of Kk′×2n as well as of K2nk′+1 when G of size n is the union
of three vertex-disjoint odd length cycles and k and k′ �= 2 are positive integers.
Other authors have used similar approaches in the past where G is a single cycle
of odd order. In particular, we note the use of this approach in [13,16]. We also
note that there are other popular approaches to finding G-decompositions of
K(2k+1)×n for a graph G with n edges. In particular, we note the work on this
topic by Buratti and Gionfriddo [10].

References

1. Abrham, J., Kotzig, A.: Graceful valuations of 2-regular graphs with two compo-
nents. Discrete Math. 150, 3–15 (1996)

2. Adams, P., Bryant, D., Buchanan, M.: A survey on the existence of G-designs. J.
Combin. Des. 16, 373–410 (2008)

3. Adams, P., Bryant, D., Gavlas, H.: Decompositions of the complete graph into
small 2-regular graphs. J. Combin. Math. Combin. Comput. 43, 135–146 (2002)

4. Alspach, B., Gavlas, H.: Cycle decompositions of Kn and of Kn − I. J. Combin.
Theory Ser. B 81, 77–99 (2001)

5. Blinco, A., El-Zanati, I.: A note on the cyclic decomposition of complete graphs
into bipartite graphs. Bull. Inst. Combin. Appl. 40, 77–82 (2004)

6. Blinco, A., El-Zanati, S., Vanden Eynden, C.: On the decomposition of complete
graphs into almost-bipartite graphs. Discrete Math. 284, 71–81 (2004)

7. Bose, R.C.: On the construction of balanced incomplete block designs. Ann. Eugen-
ics 9, 353–399 (1939)

8. Bryant, D., El-Zanati, S.: Graph decompositions. In: Colbourn, C.J., Dinitz,
J.H.(eds.), Handbook of Combinatorial Designs. 2nd edn, pp. 477–485, Chapman
& Hall/CRC, Boca Raton (2007)

9. Bunge, R.C., Chantasartrassmee, A., El-Zanati, S., Vanden Eynden, C.: On cyclic
decompositions of complete graphs into tripartite graphs. J. Graph Theory 72,
90–111 (2013)

10. Buratti, M., Gionfriddo, L.: Strong difference families over arbitrary graphs. J.
Combin. Des. 16, 443–461 (2008)

11. El-Zanati, S., Vanden Eynden, C., Punnim, N.: On the cyclic decomposition of
complete graphs into bipartite graphs. Australas. J. Combin. 24, 209–219 (2001)

12. Gannon, D.I., El-Zanati, S.: All 2-regular graphs with uniform odd components
admit ρ-labelings. Australas. J. Combin. 53, 207–219 (2012)

13. Hoffman, D.G., Lindner, C.C., Rodger, C.A.: On the construction of odd cycle
systems. J. Graph Theory 13, 417–426 (1989)

14. Jongthawonwuth, U., El-Zanati, S., Uiyyasathian, C.: On extending the Bose con-
struction for triple systems to decompositions of complete multipartite graphs into
2-regular graphs of odd order. Australas. J. Combin. 59, 378–390 (2014)

15. Lindner, C.C., Rodger, C.A.: Design Theory: Discrete Mathematics and its Appli-
cations, 2nd edn. CRC Press, Boca Raton, FL (2009)

16. Lindner, C.C., Rodger, C.A., Stinson, C.R.: Nesting of cycle systems of odd length.
Discrete Math. 77, 191–203 (1989)

17. Šajna, M.: Cycle decompositions III: complete graphs and fixed length cycles. J.
Combin. Des. 10, 27–78 (2002)

18. Traetta, A.: Complete solution to the two-table Oberwolfach problems. J. Combin.
Theory Ser. A 120, 984–997 (2013)



Reconfiguration of Vertex Covers in a Graph

Takehiro Ito(B), Hiroyuki Nooka, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai 980-8579, Japan

{takehiro,zhou}@ecei.tohoku.ac.jp,
nooka.hiroyuki@ec.ecei.tohoku.ac.jp

Abstract. Suppose that we are given two vertex covers C0 and Ct of a
graph G, together with an integer threshold k ≥ max{|C0| , |Ct|}. Then,
the vertex cover reconfiguration problem is to determine whether
there exists a sequence of vertex covers of G which transforms C0 into Ct

such that each vertex cover in the sequence is of cardinality at most k and
is obtained from the previous one by either adding or deleting exactly
one vertex. This problem is PSPACE-complete even for planar graphs. In
this paper, we first give a linear-time algorithm to solve the problem for
even-hole-free graphs, which include several well-known graphs, such as
trees, interval graphs and chordal graphs. We then give an upper bound
on k for which any pair of vertex covers in a graph G has a desired
sequence. Our upper bound is best possible in some sense.

1 Introduction

A vertex cover C of a graph G is a vertex subset of G which contains at least one
of the two endpoints of every edge in G. (See Fig. 1 which depicts six different
vertex covers of the same graph.) Then, the vertex cover problem is a well-
known NP-complete problem [5], defined as follows: Given a graph G and an
integer k, it determines whether G has a vertex cover of cardinality at most k.

The vertex cover problem has several applications, such as in the SNP
assembly problem on the computational biochemistry and in a computer network
security problem [12]. In the computer network security problem, each vertex
corresponds to a router and each edge corresponds to a link in a computer
network, and we wish to pick a subset of routers for monitoring packets flowed
on the links; such a subset forms a vertex cover of the corresponding graph.

However, a practical issue in computer network security requires that the for-
mulation should be considered in more dynamic situations: in order to maintain
routers, we sometimes need to change the current subset of routers to another
subset. Of course, we wish to keep monitoring all links even during the trans-
formation. This situation can be formulated by the concept of reconfiguration
problems that have been extensively studied in recent literature [1,2,6–9,11].

1.1 Our Problems

Suppose that we are given two vertex covers C0 and Ct of a graph G = (V,E),
together with an integer threshold k ≥ max{|C0| , |Ct|}. Then, the vertex

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 164–175, 2015.
DOI: 10.1007/978-3-319-19315-1 15



Reconfiguration of Vertex Covers in a Graph 165

(a)  C0 (b)  C1 (c)  C2

(d)  C3 (e)  C4 (f )  C5 = Ct

Fig. 1. A sequence 〈C0, C1, . . . , C5〉 of vertex covers of the same graph, where the
vertices in vertex covers are depicted by large black circles.

cover reconfiguration problem is to determine whether there exists a
sequence 〈C0, C1, . . . , C�〉 of vertex covers of G such that

(a) C� = Ct, and |Ci| ≤ k for all i, 0 ≤ i ≤ �; and
(b) for each index i, 1 ≤ i ≤ �, the vertex cover Ci of G is obtained from the

previous one Ci−1 by either deleting or adding a single vertex u ∈ V , that
is, Ci−1 � Ci = (Ci−1 \ Ci) ∪ (Ci \ Ci−1) = {u}.

Figure 1 illustrates a sequence 〈C0, C1, . . . , C5〉 of vertex covers of the same graph
which transforms C0 into Ct = C5, where the vertex which is deleted from (or
added to) the previous vertex cover is surrounded by a dotted circle.

The existence of such a transformation clearly depends on the value of a given
threshold k. For example, if k ≥ 4, then the instance of the two vertex covers
C0 and Ct in Fig. 1 is a yes-instance because all vertex covers in Fig. 1 have the
cardinalities at most four. On the other hand, if k ≤ 3, then the instance in
Fig. 1 is a no-instance because there is no transformation between C0 and Ct

that consists only of vertex covers of cardinalities at most three.
Therefore, we can get a natural minimization problem, called the minmax

vertex cover reconfiguration problem, in which we wish to minimize the
maximum cardinality of any vertex cover in a transformation for two given vertex
covers C0 and Ct of a graph G; we denote by f∗

G(C0, Ct) the optimal value. Then,
the answer to vertex cover reconfiguration is “yes” if k ≥ f∗

G(C0, Ct);
otherwise “no.” (A formal definition will be given in Sect. 2.)

1.2 Related and Known Results

Recently, this type of problems has been studied extensively in the framework
of reconfiguration problems [8], which arise when we wish to find a step-by-
step transformation between two feasible solutions of a problem such that all
intermediate solutions are also feasible and each step abides by a prescribed
reconfiguration rule (i.e., an adjacency relation defined on feasible solutions of
the original problem). For example, in vertex cover reconfiguration, fea-
sible solutions are defined to be all vertex covers of a graph with cardinalities at



166 T. Ito et al.

most a given threshold k; and the reconfiguration rule is defined to be the condi-
tion (b) in Sect. 1.1. This reconfiguration framework has been applied to several
well-known problems, including independent set [7–9,11], satisfiability [6],
clique, matching [8], vertex-coloring [1,2], etc.

Both vertex cover reconfiguration and minmax vertex cover
reconfiguration are known to be PSPACE-complete for planar graphs of
maximum degree three [8], and hence it is very unlikely that they are solvable
in polynomial time even for planar graphs.

From the viewpoint of approximation, it is known that the optimal value
f∗

G(C0, Ct) can be approximated within a factor 2 in linear time; indeed, this
approximation result can be obtained from a linear-time 2-approximation algo-
rithm for the reconfiguration problem on set cover [8, Theorem 6]. However,
as far as we know, only this 2-approximation is known for the reconfiguration
problem on set cover, and hence it is desired to investigate further algorithmic
(positive) results for the reconfiguration problems on vertex cover.

One may think that some known results for the reconfiguration problem on
independent set [7–9,11] can be converted into our vertex cover recon-
figuration; because, if a vertex subset C is a vertex cover of a graph G = (V,E),
then V \C forms an independent set of G, and vice versa. There are three types
of reconfiguration problems for independent set which employ different recon-
figuration rules. Although one of the three rules corresponds to the one for our
vertex cover reconfiguration, almost all (positive) results are given to the
other reconfiguration rules. Indeed, as far as we know, there is only one positive
result which can be converted into our vertex cover reconfiguration; this
will be discussed in Sect. 3.

1.3 Our Contribution

In this paper, we investigate algorithmic results for the vertex cover recon-
figuration and minmax vertex cover reconfiguration problems.

We first show that both reconfiguration problems can be solved in linear time
for even-hole-free graphs. We will define the class of even-hole-free graphs later,
but we here note that this graph class contains several well-known graph classes,
such as those of trees, interval graphs and chordal graphs.

We then give an upper bound on the optimal value f∗
G(C0, Ct) for two ver-

tex covers C0 and Ct of a graph G. Our upper bound holds for any graph;
as a corollary, we have f∗

G(C0, Ct) ≤ max{|C0| , |Ct|} + 1 if G is a tree; and
f∗

G(C0, Ct) ≤ max{|C0| , |Ct|}+2 if G is a cactus. We note that our upper bound
is best possible in the following sense: there are instances of cacti such that
f∗

G(C0, Ct) = max{|C0| , |Ct|} + 2. (See Sect. 4.2 for details.)
We finally note that our second result gives an approximation for f∗

G(C0, Ct)
with absolute performance guarantee. For an instance of minmax vertex
cover reconfiguration, let apG(C0, Ct) be an objective value computed by
an algorithm. Then, for two integers ρ ≥ 1 and c ≥ 0, we say that the algorithm
is (ρ, c)-approximation if apG(C0, Ct) ≤ ρ · f∗

G(C0, Ct)+ c holds for any instance.



Reconfiguration of Vertex Covers in a Graph 167

As we have mentioned above, there is a linear-time (2, 0)-approximation algo-
rithm for f∗

G(C0, Ct), which follows from the 2-approximation for the reconfig-
uration problem on set cover [8]. On the other hand, our second result gives
a (1, α)-approximation for f∗

G(C0, Ct), where α is some integer defined later.
Although this integer α depends on an input graph G, it is remarkable that α
can be obtained by only a local computation: we just focus on a transformation
restricted on 2-connected subgraphs of G, and extend it to a transformation on
the whole graph G.

Due to the page limitation, we omit some proofs from this extended abstract.

2 Preliminaries

In this paper, we may assume without loss of generality that graphs are simple,
undirected and unweighted. For a graph G, we sometimes denote by V (G) and
E(G) the vertex set and the edge set of G, respectively. For a vertex subset V ′

of a graph G, we denote by G[V ′] the subgraph of G induced by V ′.
A vertex u in a connected graph G = (V,E) is called a cut vertex of G if the

induced subgraph G[V \ {u}] is disconnected. A connected graph G is said to be
2-connected if G has no cut vertex.

A vertex subset C of a graph G is called a vertex cover of G if at least one
of v ∈ C and w ∈ C holds for every edge vw ∈ E(G). We say that an edge
vw ∈ E(G) is covered by v if v ∈ C.

Definitions for vertex cover reconfiguration. Let Ci and Cj be two
vertex covers of a graph G = (V,E). We say that Ci and Cj are adjacent if
their symmetric difference Ci � Cj consists of exactly one vertex. A recon-
figuration sequence between two vertex covers C and C ′ of G is a sequence
C = 〈C1, C2, . . . , C�〉 of vertex covers of G such that C1 = C, C� = C ′, and
Ci−1 and Ci are adjacent for i = 2, 3, . . . , �. For notational convenience, we write
Ci ∈ C if a vertex cover Ci appears in a reconfiguration sequence C.

For a reconfiguration sequence C, let f(C) = max{|Ci| : Ci ∈ C}, that is, the
maximum cardinality of a vertex cover that appears in C. For two vertex covers
C and C ′ of a graph G, we define the reconfiguration index f∗

G(C,C ′), as follows:

f∗
G(C,C ′) = min{f(C) : C is a reconfiguration sequence between C and C ′}.

It should be noted that the reconfiguration index f∗
G(C,C ′) is well defined,

because any pair of vertex covers C and C ′ of G has a trivial reconfiguration
sequence C such that f(C) = |C ∪ C ′|, as follows: we add to C the vertices in
C ′ \ C one by one, and obtain the vertex cover C ∪ C ′ of G; and we delete from
C ∪ C ′ the vertices in C \ C ′ one by one. We note in passing that this trivial
reconfiguration sequence C gives a 2-approximation for f∗

G(C,C ′) as shown in
[8, Theorem 6], because we clearly have

f∗
G(C,C ′) ≥ max{|C| , |C ′|}. (1)

Given two vertex covers C0 and Ct of a graph G and a positive integer
k, the vertex cover reconfiguration problem is to determine whether



168 T. Ito et al.

f∗
G(C0, Ct) ≤ k; while the minmax vertex cover reconfiguration problem

is to compute the reconfiguration index f∗
G(C0, Ct). Note that both problems do

not ask for an actual reconfiguration sequence between C0 and Ct. We always
denote by C0 and Ct the initial and target vertex covers of G, respectively.

3 Even-Hole-Free Graphs

A graph G is even-hole free if any induced subgraph of G is not a cycle consisting
of an even number of vertices [4]. This graph class includes several well-known
classes, such as trees, interval graphs and chordal graphs.

In this section, we give the following theorem.

Theorem 1. Both vertex cover reconfiguration and minmax vertex
cover reconfiguration can be solved in linear time for even-hole-free graphs.

As a proof of Theorem 1, it suffices to give a linear-time algorithm which
computes f∗

G(C0, Ct) for any pair of vertex covers C0 and Ct of an even-hole-free
graph G. Our algorithm employs the nice property on a reconfiguration sequence
for independent sets, given by Kamiński et al. [9]. We first explain this property
in Sect. 3.1, and then give our algorithm in Sect. 3.2.

3.1 Reconfiguration of Independent Sets

Kamiński et al. [9] deeply studied three types of reconfiguration problems for
independent sets in a graph. In this subsection, we define and explain only one
type used for our algorithm, which is called “Token Addition and Removal (TAR)
model” in their paper [9].

In the TAR-model, two independent sets Ii and Ij of a graph G are adjacent
if their symmetric difference Ii � Ij consists of a single vertex u, that is, Ij can
be obtained from Ii by either removing or adding the vertex u. Similarly as for
vertex covers, a reconfiguration sequence between two independent sets I and
I ′ of G is a sequence 〈I1, I2, . . . , I�〉 of independent sets of G such that I1 = I,
I� = I ′, and Ii−1 and Ii are adjacent for i = 2, 3, . . . , �. Kamiński et al. [9] gave
the following lemma for even-hole-free graphs.

Lemma 1 ([9]). Let I0 and It be any pair of independent sets of an even-hole-
free graph G such that |I0| = |It|. Then, there exists a reconfiguration sequence
I between I0 and It such that |Ii| ≥ |I0| − 1 for all independent sets Ii ∈ I.

Based on Lemma 1, we give the following lemma. Note that two vertex covers
do not necessarily have the same cardinality.

Lemma 2. Let C0 and Ct be any pair of two vertex covers of an even-hole-free
graph G. Then, f∗

G(C0, Ct) ≤ max{|C0| , |Ct|} + 1.



Reconfiguration of Vertex Covers in a Graph 169

3.2 Linear-Time Algorithm

We now give our linear-time algorithm. Let C0 and Ct be two given vertex
covers of an even-hole-free graph G. We may assume without loss of generality
that |C0| ≥ |Ct|. Then, max{|C0| , |Ct|} = |C0|. Note that Lemma 2 and Eq. (1)
imply that f∗

G(C0, Ct) ∈ {|C0| , |C0| + 1
}
.

A vertex cover C of a graph G is said to be minimal if there is no vertex
u ∈ C such that C \ {u} is a vertex cover of G. We can easily check whether
a vertex cover of G is minimal or not in linear time. Then, our algorithm is
described as follows:

1. if C0 is minimal, then return f∗
G(C0, Ct) = |C0| + 1;

2. else if Ct is minimal, then return f∗
G(C0, Ct) = max{|C0| , |Ct| + 1};

3. otherwise return f∗
G(C0, Ct) = |C0|.

The algorithm above clearly runs in linear time, because it just checks the min-
imality of vertex covers C0 and Ct. We omit the correctness proof of our algo-
rithm, due to the page limitation.

4 Upper Bound on Reconfiguration Index

In this section, we give an upper bound on the reconfiguration index f∗
G(C0, Ct).

4.1 Definitions

For a vertex cover Ci of a graph G and a subgraph G′ of G, we denote by
Ci,G′ = Ci ∩ V (G′) the restriction of Ci to G′. Observe that Ci,G′ is a vertex
cover of G′, because Ci is a vertex cover of G and G′ is a subgraph of G.

Let Ci and Cj be two vertex covers of a graph G, and let D be any vertex
subset of Ci ∩ Cj . Then, we introduce the reconfiguration index f∗

G(Ci, Cj ;D)
under the constraint of D, as follows:

f∗
G(Ci, Cj ;D) = min{f(CD) : CD is a reconfiguration sequence between Ci

and Cj such that D ⊆ Ck for all Ck ∈ CD}. (2)

Note that f∗
G(Ci, Cj ;D) is well defined for any vertex subset D ⊆ Ci ∩Cj ; recall

the trivial reconfiguration sequence CD between Ci and Cj via the vertex cover
Ci ∪ Cj (in Sect. 2), then D ⊆ Ck holds for every Ck ∈ CD. We clearly have

f∗
G(Ci, Cj) = f∗

G(Ci, Cj ; ∅). (3)

Furthermore, we have the following lemma.

Lemma 3. Let Ci and Cj be any pair of vertex covers of a graph G, and let D
and D′ be any vertex subsets such that D ⊆ D′ ⊆ Ci∩Cj. Then, f∗

G(Ci, Cj ;D) ≤
f∗

G(Ci, Cj ;D′).

Lemma 3 and Eq. (3) imply that, for any vertex subset D ⊆ C0 ∩ Ct,

f∗
G(C0, Ct) ≤ f∗

G(C0, Ct;D).



170 T. Ito et al.

4.2 Our Upper Bound

We now give our upper bound, whose proof will be given in Sect. 4.3.

Theorem 2. Let α be a fixed integer, and let G be any graph. Suppose that

f∗
G′′(C0,G′′ , Ct,G′′ ;C0,G′′ ∩ Ct,G′′) ≤ max{|C0,G′′ | , |Ct,G′′ |} + α

for every 2-connected subgraph G′′ of G. Then,

f∗
G(C0, Ct;C0 ∩ Ct) ≤ max{|C0| , |Ct|} + α.

A graph G is a cactus if every edge is part of at most one cycle in G [3].
Using Theorem 2, we give the following corollary.

Corollary 1. Let C0 and Ct be any pair of vertex covers of a graph G. Then,

(a) f∗
G(C0, Ct) ≤ max{|C0| , |Ct|} + 1 if G is a tree; and

(b) f∗
G(C0, Ct) ≤ max{|C0| , |Ct|} + 2 if G is a cactus.

We note that Corollary 1(a) gives another proof of Lemma 2 for trees. Con-
versely, Corollary 1(b) cannot be obtained from Lemma2, because a cactus is
not always even-hole free.

Furthermore, we note that our upper bound on f∗
G(C0, Ct) is best possible

in some sense. For example, consider an even-length cycle G and its two vertex
covers C0 and Ct, each of which forms an independent set of G. (See Fig. 2.)
Since G is a cycle (and hence a cactus), by Corollary 1(b) we have f∗

G(C0, Ct) ≤
max{|C0| , |Ct|} + 2. Indeed, we have to add at least two vertices to C0 in order
to delete any vertex in C0. Therefore, f∗

G(C0, Ct) = max{|C0| , |Ct|} + 2.

(a) C0 (b) Ct

Fig. 2. Instance for a cycle G such that f∗
G(C0, Ct) = max{|C0| , |Ct|} + 2.

4.3 Proof of Theorem2

In this subsection, as a proof of Theorem2, we construct a reconfiguration
sequence C between C0 and Ct such that f(C) ≤ max{|C0| , |Ct|} + α and
C0 ∩ Ct ⊆ Ci for all vertex covers Ci ∈ C. Then, the theorem follows, because
f∗

G(C0, Ct;C0 ∩ Ct) ≤ f(C) holds for such a reconfiguration sequence C.
Roughly speaking, our idea is as follows. We first decompose a graph G

into its 2-connected subgraphs, and then separately construct a reconfiguration
sequence for each 2-connected subgraph G′′ which transforms the vertex cover



Reconfiguration of Vertex Covers in a Graph 171

C0 ∩ V (G′′) into the target one Ct ∩ V (G′′). Of course, we need to extend the
reconfiguration sequence for G′′ to the one for the whole graph G. Furthermore,
we need to find a clever ordering of 2-connected subgraphs of G to be transformed
so that all intermediate vertex covers Ci of G satisfy |Ci| ≤ max{|C0| , |Ct|}+α.

Therefore, we first introduce some notions and properties of vertex covers in
subgraphs, and then give our reconfiguration sequence.

Notion and Properties. Let Ci and Cj be two vertex covers of a graph G.
Then, for a subgraph G′ of G, we define the difference δ(G′, Ci, Cj) from Ci to
Cj , as follows:

δ(G′, Ci, Cj) = |Cj,G′ | − |Ci,G′ | ,
that is, the cardinality of the vertex cover of G′ is increased by δ(G′, Ci, Cj) if we
transform the vertex cover Ci ∩ V (G′) into Cj ∩ V (G′). Clearly, δ(G′, Ci, Cj) =
−δ(G′, Cj , Ci).

)b()a(

uu w

GL GRGL GR
w

Ga

G1

Gp

G1

Gp

Ga

Fig. 3. The bipartition (G′
L, G

′
R) of a subgraph G′ with a cut vertex u for the cases

where (a) u ∈ C0 and (b) u �∈ C0.

Let G′ = (V ′, E′) be any induced subgraph of a graph G = (V,E). Let u be
an arbitrary cut vertex of G′, and suppose that the induced subgraph G[V ′\{u}]
consists of p connected components G′

1, G
′
2, . . . , G

′
p. Note that p ≥ 2 since u is a

cut vertex of G′. Let G′
a = (V ′

a, E′
a) be the connected component in G[V ′ \ {u}]

such that δ(G′
a, C0, Ct) = min{δ(G′

i, C0, Ct) : 1 ≤ i ≤ p}. Then, the bipartition
(G′

L, G′
R) of G′ with a cut vertex u is to decompose G into two subgraphs G′

L

and G′
R, defined as follows (see Fig. 3):

G′
L =

{
G′

a if u ∈ C0;
G[V ′

a ∪ {u}] if u �∈ C0,

and G′
R = G[V ′ \ V (G′

L)]. Therefore, V (G′
L) and V (G′

R) form a partition of
V (G′), that is, V (G′

L) ∪ V (G′
R) = V (G′) and V (G′

L) ∩ V (G′
R) = ∅.

Based on the bipartition (G′
L, G′

R) of a subgraph G′ with a cut vertex u, we
construct a reconfiguration sequence from C0,G′ to Ct,G′ , as follows:



172 T. Ito et al.

(1) transform C0,G′
L

into Ct,G′
L

without adding/deleting any vertex in G′
R; and

(2) transform C0,G′
R

into Ct,G′
R

without adding/deleting any vertex in G′
L.

The following lemma will be used in Lemma 6 for proving that any vertex subset
appeared in the reconfiguration sequence above is a vertex cover of G′. For
notational convenience, let Ci,L = Ci,G′

L
and Ci,R = Ci,G′

R
.

Lemma 4. Let (G′
L, G′

R) be the bipartition of G′ with a cut vertex u. Then,

(a) for any vertex cover C ′
L of G′

L, the vertex subset C ′
L ∪ C0,R forms a vertex

cover of G′; and
(b) for any vertex cover C ′

R of G′
R such that C0,R ∩Ct,R ⊆ C ′

R, the vertex subset
Ct,L ∪ C ′

R forms a vertex cover of G′.

Let C ′
q = Ct,L ∪ C0,R. Lemma 4(a) implies that C ′

q is a vertex cover of G′.
Furthermore,

∣
∣C ′

q

∣
∣ = |Ct,L| + |C0,R| since V (G′

L) ∩ V (G′
R) = ∅. Then, we give

the following lemma.

Lemma 5. Let C ′
q = Ct,L ∪ C0,R. Then,

∣
∣C ′

q

∣
∣ ≤ max{|C0,G′ | , |Ct,G′ |}.

Reconfiguration Sequence . We now give our reconfiguration sequence
between C0 and Ct of a graph G, based on a decomposition tree T of G which is
recursively defined as follows:

(A) the root r of T corresponds to the whole graph G; and
(B) if there is a cut vertex u in the subgraph G′ corresponding to a node v of T ,

then v has two children vL and vR in T which correspond to the subgraphs
G′

L and G′
R, respectively, where (G′

L, G′
R) is the bipartition of G′ with u.

Then, each leaf of T corresponds to a 2-connected subgraph of G.
We now prove the key lemma.

Lemma 6. Let α be a fixed integer, and T be a decomposition tree of a graph
G. For every 2-connected subgraph G′′ of G, suppose that

f∗
G′′(C0,G′′ , Ct,G′′ ;C0,G′′ ∩ Ct,G′′) ≤ max{|C0,G′′ | , |Ct,G′′ |} + α. (4)

Then, for the subgraph G′ corresponding to each node v of T , there is a recon-
figuration sequence C′ = 〈C ′

0, C
′
1, . . . , C

′
�〉 such that

(a) C ′
0 = C0,G′ and C ′

� = Ct,G′ ;
(b) C0,G′ ∩ Ct,G′ ⊆ C ′

i for all vertex covers C ′
i ∈ C′; and

(c) f(C′) ≤ max{|C0,G′ | , |Ct,G′ |} + α.

Proof. We prove the lemma by induction based on the decomposition tree T .

Base Step. Suppose that v is a leaf of T , and let G′ be the subgraph corre-
sponding to v. Then, G′ is 2-connected, and hence Eq. (4) holds for G′. Therefore,
Eqs. (2) and (4) imply that there exists a reconfiguration sequence between C0,G′

and Ct,G′ satisfying all the three conditions (a)–(c).



Reconfiguration of Vertex Covers in a Graph 173

Inductive Step. Let v be an internal node of T having two children vL and vR.
Let G′, G′

L and G′
R be the subgraphs corresponding to v, vL and vR, respectively,

and hence (G′
L, G′

R) is a bipartition of G′. Suppose that the lemma holds for G′
L

and G′
R. Then, G′

L has a reconfiguration sequence CL = 〈CL
0 , CL

1 , . . . , CL
�L

〉 such
that

(a-L) CL
0 = C0,L and CL

�L
= Ct,L;

(b-L) C0,L ∩ Ct,L ⊆ CL
i for all vertex covers CL

i ∈ CL; and
(c-L) f(CL) ≤ max{|C0,L| , |Ct,L|} + α.

Similarly, G′
R has a reconfiguration sequence CR = 〈CR

0 , CR
1 , . . . , CR

�R
〉 such that

(a-R) CR
0 = C0,R and CR

�R
= Ct,R;

(b-R) C0,R ∩ Ct,R ⊆ CR
j for all vertex covers CR

j ∈ CR; and
(c-R) f(CR) ≤ max{|C0,R| , |Ct,R|} + α.

From the induction hypothesis, we construct a sequence C′ = 〈C ′
0, C

′
1, . . . , C

′
�〉 of

vertex subsets of G′, where � = �L + �R, defined as follows:

(i) C ′
i = CL

i ∪ C0,R for all i, 0 ≤ i ≤ �L; and
(ii) C ′

i = Ct,L ∪ CR
i−�L

for all i, �L < i ≤ �L + �R = �.

Then, C ′
�L

= Ct,L ∪ C0,R. In the following, we will show that C′ is a reconfig-
uration sequence for G′ satisfying all the three conditions (a)–(c). Let C′

0,�L
=

〈C ′
0, C

′
1, . . . , C

′
�L

〉 and C′
�L,� = 〈C ′

�L
, C ′

�L+1, . . . , C
′
�L+�R

〉. Note that C ′
�L

is con-
tained in both C′

0,�L
and C′

�L,� for notational convenience.
We first show that C′ satisfies the condition (a). By the construction (i) above

and the condition (a-L), we have C ′
0 = CL

0 ∪ C0,R = C0,L ∪ C0,R = C0,G′ , as
required. Similarly, by the construction (ii) above and the condition (a-R), we
have C ′

� = Ct,L ∪ CR
�R

= Ct,L ∪ Ct,R = Ct,G′ . Thus, C′ satisfies the condition (a).
Before showing the conditions (b) and (c), we now prove that C′ is a recon-

figuration sequence between C0,G′ and Ct,G′ . It suffices to show that C′
0,�L

is a
reconfiguration sequence from C0,G′ = C0,L∪C0,R to C ′

�L
= Ct,L∪C0,R, and that

C′
�L,� is a reconfiguration sequence from C ′

�L
= Ct,L ∪C0,R to Ct,G′ = Ct,L∪Ct,R.

Recall that CL = 〈CL
0 , CL

1 , . . . , CL
�L

〉 is a reconfiguration sequence between
CL

0 = C0,L and CL
�L

= Ct,L, and hence each CL
i ∈ CL is a vertex cover of G′

L.
Since C ′

i = CL
i ∪ C0,R for each vertex subset C ′

i ∈ C′
0,�L

, Lemma 4(a) implies
that C ′

i is a vertex cover of G′. Therefore, the sequence C′
0,�L

is a reconfiguration
sequence from C0,G′ = C0,L ∪ C0,R to C ′

�L
= Ct,L ∪ C0,R.

Recall also that CR = 〈CR
0 , CR

1 , . . . , CR
�R

〉 is a reconfiguration sequence
between CR

0 = C0,R and CR
�R

= Ct,R, and hence each CR
j ∈ CR is a vertex

cover of G′
R. Furthermore, by the condition (b-R) we have C0,R ∩ Ct,R ⊆ CR

j

for all CR
j ∈ CR. Since C ′

i = Ct,L ∪ CR
i−�L

for each vertex subset C ′
i ∈ C′

�L,�,
Lemma 4(b) implies that C ′

i is a vertex cover of G′. Therefore, the sequence C′
�L,�

is a reconfiguration sequence from C ′
�L

= Ct,L ∪ C0,R to Ct,L ∪ Ct,R = Ct,G′ .
In this way, C′ is a reconfiguration sequence between C0,G′ and Ct,G′ .



174 T. Ito et al.

We then show that C′ satisfies the condition (b). Since V (G′
L) ∩ V (G′

R) = ∅,
we have C0,G′ ∩ Ct,G′ =

(
C0,L ∩ Ct,L

) ∪ (
C0,R ∩ Ct,R

)
. By the condition (b-L),

we have C0,L ∩ Ct,L ⊆ CL
i for all i, 0 ≤ i ≤ �L. Therefore, for all vertex covers

C ′
i in C′

0,�L
, by the construction (i) above we have

C0,G′ ∩ Ct,G′ =
(
C0,L ∩ Ct,L

) ∪ (
C0,R ∩ Ct,R

) ⊆ CL
i ∪ C0,R = C ′

i,

as required. Similarly, by the condition (b-R), we have C0,R ∩ Ct,R ⊆ CR
i−�L

for all i, �L ≤ i ≤ �L + �R. Therefore, for all vertex covers C ′
i in C′

�L,�, by the
construction (ii) above we have

C0,G′ ∩ Ct,G′ =
(
C0,L ∩ Ct,L

) ∪ (
C0,R ∩ Ct,R

) ⊆ Ct,L ∪ CR
i−�L = C ′

i,

as required. In this way, C0,G′ ∩ Ct,G′ ⊆ C ′
i for all vertex covers C ′

i ∈ C′, and
hence C′ satisfies the condition (b).

We finally prove that C′ satisfies the condition (c). Notice that

f(C′) = max{f(C′
0,�L), f(C′

�L,�)}. (5)

Recall that V (G′
L) ∩ V (G′

R) = ∅. Then, by the construction (i) above and the
condition (c-L), we have

f(C′
0,�L) = f(CL) + |C0,R| ≤ max{|C0,L| , |Ct,L|} + α + |C0,R|

= max{|C0,L| + |C0,R| , |Ct,L| + |C0,R|} + α

= max{|C0,G′ | , ∣∣C ′
�L

∣
∣} + α.

Since C ′
�L

= Ct,L ∪ C0,R, by Lemma 5 we thus have

f(C′
0,�L) ≤ max{|C0,G′ | , |Ct,G′ |} + α. (6)

Similarly, by the construction (ii) above and the condition (c-R), we have

f(C′
�L,�) = |Ct,L| + f(CR) ≤ |Ct,L| + max{|C0,R| , |Ct,R|} + α

= max{|Ct,L| + |C0,R| , |Ct,L| + |Ct,R|} + α

= max{∣∣C ′
�L

∣
∣ , |Ct,G′ |} + α.

Therefore, by Lemma 5 we have

f(C′
�L,�) ≤ max{|C0,G′ | , |Ct,G′ |} + α. (7)

Equations (5), (6) and (7) prove that C′ satisfies the condition (c). �

Proof of Theorem 2. Recall that the root r of a decomposition tree T of
a graph G corresponds to the whole graph G. Therefore, by Lemma 6 there
exists a reconfiguration sequence C between C0,G = C0 and Ct,G = Ct such that
C0,G∩Ct,G ⊆ Ci for all vertex covers Ci ∈ C and f(C) ≤ max{|C0,G| , |Ct,G|}+α.
By Eq. (2) we thus have

f∗
G(C0, Ct;C0 ∩ Ct) ≤ f(C) ≤ max{|C0| , |Ct|} + α,

as required. This completes the proof of Theorem 2. �



Reconfiguration of Vertex Covers in a Graph 175

5 Concluding Remarks

In this paper, we gave algorithmic results for the two reconfiguration problems
on vertex cover. We note again that our upper bound on the reconfiguration
index gives an approximation algorithm with absolute performance guarantee.

Very recently, Mouawad et al. [10] proposed a linear-time algorithm to solve
vertex cover reconfiguration for even-hole-free graphs and cacti. Their
proof method is different from ours, and hence both results can coexist with
each other. As one of interesting points of our paper, we proved that the recon-
figuration index of a whole graph can be bounded only by the local computation,
that is, the reconfiguration index of each 2-connected subgraph; this fact suggests
that 2-connected subgraphs are essential for the problem.

Acknowledgment. We are grateful to Ryuhei Uehara for fruitful discussions. This
work is partially supported by JSPS KAKENHI 25106504 and 25330003.

References

1. Bonamy, M., Johnson, M., Lignos, I., Patel, V., Paulusma, D.: Reconfiguration
graphs for vertex colourings of chordal and chordal bipartite graphs. J. Comb.
Optim. 27, 132–143 (2014)

2. Bonsma, P., Cereceda, L.: Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoret. Comput. Sci. 410,
5215–5226 (2009)

3. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

4. Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Even-hole-free graphs part
i: decomposition theorem. J. Graph Theory 39, 6–49 (2002)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

6. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectiv-
ity of Boolean satisfiability: computational and structural dichotomies. SIAM J.
Comput. 38, 2330–2355 (2009)

7. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theoret. Comput. Sci. 343, 72–96 (2005)

8. Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theoret. Comput.
Sci. 412, 1054–1065 (2011)

9. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theoret. Comput. Sci. 439, 9–15 (2012)

10. Mouawad, A.E., Nishimura, N., Raman, V.: Vertex cover reconfiguration and
beyond. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
452–463. Springer, Heidelberg (2014)

11. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the para-
meterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.)
IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

12. Pirzada, S., Dharwadker, A.: Applications of graph theory. J. Korean Soc. Ind.
Appl. Math. 11, 19–38 (2007)



Space Efficient Data Structures for Nearest
Larger Neighbor

Varunkumar Jayapaul1, Seungbum Jo2, Venkatesh Raman3,
and Srinivasa Rao Satti2(B)

1 Chennai Mathematical Institute, Chennai, India
2 Seoul National University, Seoul, South Korea
sbcho@tcs.snu.ac.kr, ssrao@cse.snu.ac.kr

3 The Institute of Mathematical Sciences, Chennai, India
vraman@imsc.res.in

Abstract. Given a sequence of n elements from a totally ordered set,
and a position in the sequence, the nearest larger neighbor (NLN) query
returns the position of the element which is closest to the query posi-
tion, and is larger than the element at the query position. The problem of
finding all nearest larger neighbors has attracted interest due to its appli-
cations for parenthesis matching and in computational geometry [1–3].
We consider a data structure version of this problem, which is to pre-
process a given sequence of elements to construct a data structure that
can answer NLN queries efficiently. We consider time-space tradeoffs for
the problem in both the encoding (where the input is not accessible after
the data structure has been created) and indexing model, and consider
cases when the input is in a one or two dimensional array. We also con-
sider the version when only the nearest larger right neighbor (NLRN) is
sought (in one dimension). We initiate the study of this problem in two
dimensions, and describe upper and lower bounds in the encoding and
indexing models, distinguishing the two cases when all the elements are
distinct or non-distinct.

1 Introduction and Motivation

Given a sequence of n elements from a totally ordered set, and a position in the
sequence, the nearest largest neighbor (NLN) query asks for the position of an
element which is closest to the query position, and is larger than the element
at the query position. More formally, given an array A of length n containing
elements from a totally ordered set, and a position i in A, we define the query:
NLN(i): return the index j such that A[j] > A[i] and |i−j| = min{k : A[i+k] >
A[i] or A[i − k] > A[i] for k > 0}. Ties are broken to the left, and if there is no
element greater than the query element, the query returns the answer ∞.

Seungbum Jo and Rao Satti—Research partly supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education, Science and Technology (Grant number 2012-0008241).

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 176–187, 2015.
DOI: 10.1007/978-3-319-19315-1 16



Space Efficient Data Structures for Nearest Larger Neighbor 177

In a similar way, we define NLRN (right nearest larger neighbor), and NLLN
(left nearest larger neighbor) queries, which return the position of the nearest
larger neighbor to the right and left, respectively, of the query position. In a
symmetric way, one can also define nearest smaller neighbor problems. In this
paper, we will stick to the version that seeks the larger neighbors.

2-dimensional NLN. We also consider a natural extension of the NLN problem
to two-dimensional arrays. Here, we define the NLN of a query position as the
closest position in the array, in terms of the L1 distance, that contains an element
larger than the element at the query position. More formally, given a position
(i, j) in A, NLN((i, j)) = (i′, j′) such that A[i′, j′] > A[i, j], and |i − i′| + |j −
j′| = min{(|x| + |y| : A[i + x, j + y] > A[i, j]}.

Encoding and Indexing Models. We consider the data structure versions of these
problems in two different models that have been studied in the succinct data
structures literature, namely the indexing and encoding models. In both these
models, the data structure is created after preprocessing the input data. In the
indexing model, the queries can be answered by probing the data structure as
well as the input data, whereas in the encoding model, the query algorithm
cannot access the input data. The size of the data structure in the encoding
model is also referred to as the effective entropy [10] (of the input data, with
respect to the problem).

Previous Work and Motivation. The problem of computing all (right) near-
est larger neighbors has attracted much attention due to its importance as a
preprocessing routine for answering range minimum queries, triangulation algo-
rithms, reconstructing a binary tree from its traversal orders and matching a
sequence of balanced parentheses [3]. While Berkman et al. [3] have given effi-
cient parallel algorithms for the problem, recently Asano et al. [1] have given
sequential time-space tradeoff results.

Fischer et al. [9] considered the problem of supporting NLRN and NLLN,
and showed how a data structure supporting these two queries can be used in
obtaining entropy-bounded compressed suffix tree representation. (They consid-
ered the min version of the problem instead of max, and named the operations
NSV and PSV, for the next and previous smaller values, respectively.) They
obtain two results:

(a) For anyf(n) = O(lg n/ lg lg n), one can construct an O(n/f(n))-bitindex
that supports NSV and PSV queries in O(f(n) lg lg n) time.

(b) Queries PSV and NSV can be answered in constant time, using an encoding
of size 4n + o(n) bits.

The second result was later improved by Fischer [8] to 2.54n+o(n) bits. We show
that this can be further improved to 2n+o(n) bits if all the elements are distinct.
We also improve the first result by shaving a factor of O(lg lg n) in the situation
when only NLN is required and all the elements are distinct.



178 V. Jayapaul et al.

Given a two-dimensional array, Asano et al. [1] considered the All Nearest
Larger Neighbours problem which asks for computing the NLN values for all the
elements in the input array. They showed that this problem can be solved in
O(n2 lg n) time (and more generally, for any d-dimensional matrix in O(nd lg n)
time). To the best of our knowledge, the data structure version of the two-
dimensional NLN problem, in which we are inteterested in constructing a data
structure that answers online queries efficiently, has not been considered earlier.

For the case of binary sequences, the data structure version of the NLN
problem can be solved by building an auxiliary structure to support rank and
select queries on the bit vector. This uses o(n) bits of extra space, in addition to
the input array, and answers NLN (and also NLRN and NLLN) queries in O(1)
time.

We assume a standard word RAM model [11] with O(1)-time arithmetic and
bitwise boolean operations, and we count space in terms of the number of bits
used.

Our Results. For the case of one dimension, we first observe in Sect. 2, a 2n−o(n)-
bit lower bound for NLRN in the encoding model, by relating the problems to
the well studied range minimum queries (RMQ). We also give an independent
lower bound proof by directly counting the number of distinct configurations,
which maybe of independent interest. In terms of upper bounds in the encoding
model, a 2n+o(n) bits to answer NLRN queries and a 2.54n+o(n) bit structure
to answer NLN queries exist through a structure of Fischer et al. [9]. We develop
a 2n + o(n) bits structure for NLN if all elements are distinct.

Then in Sect. 3, we look at the problems in indexing model. We give a lower
bound for time-space tradeoff for NLN and NLRN queries adapting the lower
bound tradeoff proof of Brodal et al. [4] for RMQ. We also provide an algorithm
that matches the tradeoff for NLN. For NLRN, our algorithm achieves the time-
space product of O(n log c) (where the query takes O(c) time) while the lower
bound is Ω(n).

For the 2-dimensional NLN problem in the encoding model, we first show
that Ω(n2) bits are necessary to encode the array to support NLN queries, even
when all the elements are distinct. We then describe an asymptotically optimal
Θ(n2)-bit encoding that answers queries in O(1) time, when all the elements in
the input array are distinct. For the general case (without the restriction on the
distinctness of the elements), we obtain an encoding that uses O(n2 lg lg n) bits
and supports queries in O(1) time. For indexing model in the general case, we
construct an index of size O(n2) bits, which answers queries in O(lg lg lg n) time.

2 Data Structures for 1D in the Encoding Model

NLRN. We first show tight space bounds for NLRN encodings.

Theorem 1. Any data structure which solves NLRN and NLN queries in the
encoding model requires 2n − O(lg n) bits.



Space Efficient Data Structures for Nearest Larger Neighbor 179

Proof. We reduce the RMQ (Range maximum query) problem [5] to the NLRN
query problem. In the RMQ problem, we are given a static array, and the query
comes with a pair of indices in the array, and the output is the index of position
which has maximum value in the range between the pair of indices. Suppose we
have a data structure to solve NLRN query, the algorithm to solve RMQ(i, j)
repeatedly finds NLRN(t) {i ≤ t ≤ j} until the NLRN index goes out of the
range (i, j) or there is no element larger than it to the right, at which point, it
returns the last found NLRN value.

Now the lower bound follows from the lower bound for RMQ in encoding
model [4]. ��
The converse of the simulation in the proof of Theorem 1 – i.e., supporting NLRN
queries using RMQ data structure also works – giving the following upper bound.

Lemma 1. There exists a data structure in the encoding model that takes at
most 2n + o(n) bits and supports NLRN queries in O(lg n) time.

Proof. We use a 2n + o(n) bit RMQ structure [5]. We assume that the given
sequence is in an array A, and RMQ(i, j) returns the index of the maximum
in the array between A[i] and A[j] (A[i] and A[j] inclusive). If there is a tie for
the maximum, we assume that RMQ returns the smallest index that has the
maximum in the range.

The idea is to do a ‘doubling binary search’ starting from i by calling RMQ
on indices to the right of i, until we find the first occurrence where RMQ(i, x)
value differs from i, i.e. the first value larger than A[i] appears in the doubling
binary search; and this gives a bounded range to do another binary search to
find the answer. ��
In fact, the query time can be improved to O(1) using a 2d-Max-Heap as observed
by Fischer [7]. We give the description for completeness.

Theorem 2 ([7]). There exists a data structure in the encoding model that
solves NLRN queries using 2n + o(n) bits in O(1) time.

Proof. A 2d-Max-Heap analogous to 2d-Min-Heap as described by Fischer [7] is
constructed on array A[1, n + 1]. The original structure in that paper solves the
nearest smaller left neighbor problem.

The 2d-Max-Heap MA of A is a labeled ordered tree with vertices v1, ..., vn+1

and each vertex corresponds to an index i. The root is labelled with n+1, and we
treat A[n + 1] as ∞. The parent node of vi is vj if and only if i < j, A[i] < A[j],
and A[k] ≤ A[i] for all i < k ≤ j. I.e. as we read the array from right to left,
we make vi the child of vj if vj is the nearest larger element (in the right) to vi.
It is clear that the sibling values are in increasing order from left to right, and
that the parent of the node labelled vi corresponds to the NLRN of A[i].

As explained by Fischer [7], the labelled ordered tree can be represented using
any of the succinct representation for such a tree, taking at most 2n + o(n) bits
of space and can answer NLRN in constant time. ��



180 V. Jayapaul et al.

NLN. Clearly an NLN query can be answered with two NLRN data structures –
one for the array A from left to right, and one for the reverse of the array – i.e.
reading the array from right to left. This results in a space of 4n + o(n) bits.
Fischer [8] has given a data structure that takes 2.54n+o(n) bits to answer both
NLRN and NLLN queries.

It is not clear whether NLN can be answered without explicitly answer-
ing NLLN and NLRN, and hence whether a representation using (2.54 − ε)n
bits suffice to answer NLN queries. We conjecture that this is not possible, i.e.,
2.54n + o(n) bits are necessary to answer NLN queries. However, when all ele-
ments are distinct, we show that one can do better.

Theorem 3. There exists a data structure that uses 2n + o(n) bits and can
answer NLRN and NLLN queries in O(1) time, when all elements are distinct.

Proof. We show how to support NLLN and NLRN using a succinct representa-
tion of a Cartesian tree [5]. Given a node v in the Cartesian tree corresponding
to a position i in the input array, the position j corresponding to the parent
of v is either NLLN(i) or NLRN(i), depending on whether j < i or j > i.
Suppose that j < i (the other case is symmetric). Then the node correspond-
ing to the position NLRN(i) is the lowest ancestor of v which corresponds to
a position greater than i, which is in fact the next node in preorder after the
rightmost leaf of v. This can be computed in O(1) time using any succinct binary
tree representation that supports rank and select of nodes in preorder and sub-
tree size. The binary tree representation of [5] supports all these operations in
O(1) time. ��

3 Data Structures for 1D in the Indexing Model

NLN. Recall that in the indexing model, the input can be accessed at query
time, and hence significant space saving should be possible. We first observe that
this can be extended to a time-space tradeoff for NLN.

Theorem 4. For any parameter c, where 1 ≤ c ≤ n, there exists a data structure
which solves NLN queries in the indexing model using O(n/c) bits in O(c) time.

Proof. Break the input array A of n elements into chunks of size c. Extract the
maximal of each block and construct a conceptual array B of size n/c. Build
an encoding data structure for B that answers NLLN and NLRN queries, using
2.54n/c + o(n/c) bits.

To solve an NLN query for index i, check in O(c) time by scanning the
original input array, whether A[i] is a maximal element of its block. If A[i] is a
maximal element in its block, use the encoding structure for B to find the blocks
containing its NLLN and NLRN. Now, sequentially scan these two blocks to find
the NLN of the query element (in fact, if the two blocks are not at the same
distance from the block containing the query element, it is enough to scan one
of them).



Space Efficient Data Structures for Nearest Larger Neighbor 181

If A[i] is not the maximum of the block then in O(c) time, check the block
containing the query index, as well as the block before the query index and the
block after the query index, by sequentially scanning the elements and find the
NLN. The space used in addition to the input is 2.54n

c + o(nc ) bits, and the time
taken to solve a query is O(c). ��
In the indexing model, Brodal, et al. [4] proved a lower bound for space-time
tradeoff of the RMQ problem. The proof is in the non-uniform cell probe
model [11]. In this model, computation is free, and time is counted as the number
of cells accessed (probed) by the query algorithm. The algorithm is also allowed
to be non-uniform, i.e., for different values of input parameter n, we can have
different algorithms.

For n and any value of c, where 1 ≤ c ≤ n, they define a set of arrays Cn,c

and a set of queries Q. They argue that for any RMQ algorithm which has access
to an index of size n/c bits (in addition to the input array A), there exists an
array in Cn,c and a query in Q for which the algorithm is required to perform
Ω(c) probes into A.

The following lower bound proof for NLRN and NLN follows along those
lines. We defer the proof to the extended version.

Theorem 5. Any data structure which stores O(n/c) bits and answers NLRN
(or NLN) queries in the indexing model, requires at least Ω(c) query time.

NLRN. Interestingly, we find obtaining tradeoffs for NLRN harder than that
for NLN, and we don’t quite achieve the lower bound above. This is because,
for an element that is not the maximum of a block, its NLRN can be quite far
(unlike for NLN). Hence we use a different approach to find an upper bound for
the trade-off.

Theorem 6. There exists a data structure that supports NLRN queries in the
indexing model in O(c + lg n) time using O(n lgn

c2 + n lg c
c ) bits, for any integer

1 ≤ c ≤ n.

Proof. We construct a two-level index structure to answer the NLRN queries.
At the top level, we break the given array A[1, . . . , n] into logical blocks of size
b, for some parameter b to be determined later. We find the maximal value in
each block, and store an array C[1, . . . , n/b] such that C[i] stores the position of
a maximal element in the ith block (if the maximal element occurs more than
once, we store one of the positions that contains the maximal element). Thus
A[C[i]] ≥ A[(i − 1) ∗ b + j], for 1 ≤ j ≤ b. We now construct a complete binary
tree with n/b leaves, and assign values with the nodes of this tree as follows.
The i-th leaf from left-to-right in the tree is assigned the value C[i]. If v is a
node with children v1 and v2, and v1 and v2 are assigned the values i1 and i2
respectively, then the value assigned to v is i1 if A[i1] ≥ A[i2], and i2 otherwise.
(We essentially build a heap like structure with the maximal values of the blocks
at the leaves, but instead of the values, we store the positions pointing to these
values at the nodes of the tree.) The height of this tree is lg(n/b).



182 V. Jayapaul et al.

In the second level, we break each block into sub-blocks of size s, for some
parameter s < b to be chose later. For each sub-block, we store the position of
a maximal element within the subblock, using lg s bits.

Thus the overall space usage of the structure is O(nb lg n + n
s lg s) bits.

To answer the NLRN query for an index i, we first scan the sub-block con-
taining i (to the right of position i) to find its NLRN. If it is not found in this
range, we scan the maximal values of each sub-block within the block contain-
ing i (again, to the right of position i) to look for a value that is greater than
A[i]. If we find such a value, we then scan the corresponding sub-block to find
the answer to the query. Otherwise, we use the complete binary tree structure
to find the closest block to the right of the query position that whose maximal
value is greater than A[i]. Once we find such a block, we again scan the maximal
values of the sub-blocks within that block to find the sub-block that contains
the answer, and finally scan that sub-block to find the answer.

The total query time is at most s + b/s + O(lg(n/b)) + b/s + s which is
O(s + b/s + lg(n/b)). By setting b = c2 and s = c, we get the time and space
bounds stated in the theorem. ��
In particular, by setting c = lg n, we get an NLRN index that uses
O(n lg lg n/ lg n) bits and supports queries in O(lg n) time.

4 NLN on 2-Dimensional Arrays

Consider an n × n 2-dimensional (2D) matrix A[1 . . . n][1 . . . n]. Given two posi-
tions (i, j) and (i′, j′) in A, we define dist((i, j), (i′j′)) = |i− i′|+ |j−j′|. Given a
2D matrix A and a position (i, j) in A, we define NLN((i, j)) as a position (i′, j′)
such that A[i, j] < A[i′, j′], and dist((i, j), (i′j′)) is the least possible among all
such (i′, j′).

A trivial solution to the NLN problem in 2D is to store NLN((i, j)), for
1 ≤ i, j ≤ n. This requires O(n2 lg n) bits, and supports queries in O(1) time. In
the following, we obtain improved results for the 2D NLN in the encoding and
indexing models, and also describe some trade-off results.

4.1 2D NLN in the Encoding Model – Distinct Case

When there is no restriction on the elements of the matrix, one can show an n2-
bit lower bound for NLN encoding (follows easily for the case of a bit matrix).
Using a simple encoding method, one can prove that the same asymptotic lower
bound applies even when all the elements of the matrix are distinct (proof omit-
ted), to obtain the following.

Theorem 7. Any data structure which supports NLN queries on an n×n matrix
A in encoding model requires at least n2/6 bits, even when all the elements in A
are distinct.

We now obtain an asymptotically optimal upper bound for 2D NLN encoding
for the distinct case.



Space Efficient Data Structures for Nearest Larger Neighbor 183

Lemma 2. There exists an encoding of an n × n matrix A that uses at most
O(n2) bits, and supports NLN queries in O(lg n) time, provided all elements are
distinct.

Proof. The main idea is to divide the matrix recursively into blocks of geo-
metrically increasing size, and store the NLN values of all elements, except the
largest element and the elements whose answers are stored at a previous level,
in each block explicitly. The following argument shows that this requires O(n2)
bits overall.

In the first level, we divide A into n2/4 blocks of size 2×2 each. Except for the
largest element in each 2×2 block, the distance of NLN answer for the other three
elements are bounded by 2. In general, at level k, we divide A into n2/4k blocks
of size 2k ×2k each. In each of these 2k ×2k-sized blocks, there are four elements
left for which we need to store the answer to their NLN queries. For three of
these four elements, which do not correspond to the maximum value in the block,
we store their answers at level k. Since the distance to the NLN answer for these
three elements is bounded by 2k+2, we can store these answers using O(k) bits.
Thus the total space usage is bounded by

∑lgn
k=1(3n2/4k) ∗ O(k) = O(n2) bits.

One can support NLN queries in time proportional to the number of levels,
i.e., in O(lg n) time, by going through each level, and checking in O(1) time
whether or not the answer is stored at that level, and if so, reading the answer
from that level. ��
We now describe another O(n2)-bit encoding for the 2D NLN problem that
supports queries in constant time.

Theorem 8. There exists an encoding of an n × n matrix A that uses O(n2)
bits and supports NLN queries in O(1) time, provided all elements are distinct.

Proof. The encoding is a small variant of the encoding described in the proof
of Lemma 2. For each position in A, in some canonical order (say, row-major
order), we write down the relative position (i.e., the distance in from the position
to its answer in horizontal and vertical directions) of its NLN answer. We use
a variable-length encoding, such as γ-code or δ-code [6], to write these answers.
The proof of Lemma 2 implies that the sum of the lengths of all these answers is
O(n2). We also store an indexable bit vector [12] indicating the starting positions
of each code. This enables us to find the position where the answer to a given
query starts and ends, in constant time. ��

4.2 2D NLN in the Encoding Model – General Case

If there is no restriction of distinctness on the elements of the matirx, we divide
the n × n matrix A into blocks of size lg n × lg n. We use the following lemma
that gives an upper bound on the number of distinct NLN positions of all the
maximum elements in a block.

Lemma 3. Given a block B of size k × k, then maximum values of B have at
most 4k − 4 distinct NLN.



184 V. Jayapaul et al.

Fig. 1. Block B and its outside areas B1 to B8

Proof. Without loss of generality, suppose that B is defined as A[ak . . . (a+1)k−
1][bk . . . (b + 1)k − 1]. Because of their maximality, all NLN of the maximum
elements in B exist outside of the block. Divide the outside of B into 8 areas as
B1 = {A[i, j]|i < ak, bk < j < (b + 1)k − 1}, B2 = {A[i, j]|i > (a + 1)k − 1, bk <
j < (b+1)k−1}, B3 = {A[i, j]|ak < i < (a+1)k−1, j < bk}, B4 = {A[i, j]|ak <
i < (a+1)k−1, j > (b+1)k−1}, B5 = {A[i, j]|i ≥ (a+1)k−1, j ≥ (b+1)k−1},
B6 = {A[i, j]|i ≥ (a + 1)k − 1, j ≤ bk}, B7 = {A[i, j]|i ≤ ak, j ≥ (b + 1)k − 1}
and B8 = {A[i, j]|i ≤ ak, j ≤ bk} (see Fig. 1).

If there are two distinct NLN values in B1, they cannot exist in the same row
because all elements in B has smaller distance to the element that has smaller
column value than the other one (see p1 and p2 in Fig. 1). So there exists at most
k − 2 distinct NLN in B1. By the similar approach, there exists at most 4(k − 2)
distinct NLN elements in B1, B2, B3 and B4.

And there is at most one NLN element in B5. To prove this, assmue that
there are 2 elements at the different position q1, q2 in B and their NLN are in
B5 and distinct such as NLN(q1) = NLN1, NLN(q2) = NLN2 (see Fig. 1).
If we define x as ((a+1)k − 1, (b+1)k − 1), then dist(q1, NLN1) = dist(q1, x)+
dist(x,NLN1) < dist(q1, NLN2) = dist(q1, x) + dist(x,NLN2) by the defi-
nition of NLN and we can derive dist(x,NLN1) < dist(x,NLN2) from this
inequality. But this contracts to the assumption that NLN(q2) = NLN2 because
dist(q2, NLN1) = dist(q2, x) + dist(x,NLN1) < dist(q2, x) + dist(x,NLN2) =
dist(q2, NLN2). By similar approach, there are at most 4 distinct NLN in B5,
B6, B7 and B8, totally 4k − 4 distinct NLN. ��
Theorem 9. There exists a data structure which solves NLN on an n×n matrix
A in encoding model using O(n2 lg lg n) bits and O(1) query time.

Proof. As mentioned above, divide the A into blocks of size lg n× lg n. We create
an n×n bit-matrix B such B[i, j] = 1 if A[i, j] is a maximal element in its block,
and B[i, j] = 0 otherwise. We represent B by writing down its entries such that



Space Efficient Data Structures for Nearest Larger Neighbor 185

all the bits corresponding to block are consecutive (say, in row-major order), and
store an auxiliary structure to support rank and select queries in the bit vector.
This structure allows us to determine whether the query position contains a
maximal element in its block or not, and if so, the rank among all the maximal
or non-maximal elements within the block, in constant time.

If the query element is not a maximum element in the block, distance between
the query and its NLN is less than 2 lg n. By encoding the difference of x and y
co-odinates and direction, we can encode these elements using O(n2 lg lg n) bits
and constant query time.

Suppose the query element is the maximum element in the block. In this
case, we assign a color to each maximum element in the block such that all the
elements with the same color have the same NLN. By Lemma 3, each block has
at most 4 lg n − 4 distinct NLN for theses queries so we can store the colors of
all the elements in A using at most n2 lg (4 lg n − 4) = O(n2 lg lg n) bits. We
also maintain the global table which matches the colors in each block and their
corresponding positions in A using n2/ lg2 n · (4 lg n − 4) · lg n = O(n2) bits. The
query algorithm simply probes the look-up table and returns the answer, so it
takes constant time. ��

4.3 NLN in the Indexing Model

In indexing model, we use 2-dimensional RMQ (range maximum query) structure
which supports RMQ query in n × n matrix using O(n2) bits and O(1) query
time in indexing model [4] (one can also use the trade-off result in [4] to obtain
a trade-off result for the NLN problem). We construct this RMQ structure on
2n − 1 × 2n − 1 ancillary matrix A′[1 . . . 2n − 1][1 . . . 2n − 1 which defined as
A′[i, j] = A[(i−j+n+1)/2, (i+j−n+1)/2] if both (i−j+n+1) and (i+j−n+1)
are even and less than 2n+1, −∞ otherwise. Then if A′[i, j] is not −∞, for k ≥ 0,
RMQ in A′[max(i−k, 1) . . . min(i+k, 2n−1)][max(i−k, 1) . . . min(i+k, 2n−1)]
returns the maximum in all elements whose distance is smaller than k from the
correspoding element to A′[i, j] in A. (see Fig. 2). And we do not need to store A′

itself for RMQ indexing structure on A′ because all elements in A′ can be easily
derived from A using former relation. The following lemma shows that we can
find NLN in A by performing a binary search on A′ using RMQ queries.

Lemma 4. Given n × n matrix A[1 . . . n][1 . . . n]. For 1 ≤ i, j ≤ n , 0 ≤ a ≤ b
and k > 0, if NLN of A[i][j] is A[i′][j′] and ak ≤ dist(A[i][j], A[i′][j′]) ≤ bk,
We can find the NLN of A[i][j], A[i′][j′] using lg ((b − a)k) RMQ queries on A′,
which defined as above in indexing model.

Proof. We use a similar approach to Lemma 1. First set t as (ak + bk)/2. And
we call a RMQ query with range A′[max(i − t, 1) . . . min(i + t, 2n − 1)][max(i −
t, 1) . . . min(i + t, 2n − 1)]. If the value of the result position is less or equal than
A[i][j], we set t as (t+bk)/2, otherwise set t as (t+ak)/2 and call RMQ recursivly
until find a smallest range whose RMQ is gearter than A[i][j]. Then the RMQ
in this range gives the NLN of A[i][j]. ��



186 V. Jayapaul et al.

Fig. 2. 3 × 3 matrix A and its corresponding matrix A′. The dashed line shows that
RMQ of the rhombus area in A matches to the RMQ of the rectangle area in A′.

Theorem 10. There exists a data structure that solves NLN on an n×n matrix
A in the indexing model using O(n2) bits and O(lg lg lg n) query time.

Proof. Divide the A into blocks of size lg lg n×lg lg n. And define the (n/ lg lg n)×
(n/ lg lg n) matrix Q such that Q]i][j] stores the maximum element in the block
A[i lg lg n . . . (i+1) lg lg n−1][j lg lg n . . . (j+1) lg lg n−1]. Then we can define the
data structure QNLN which supports NLN query on Q using O(n2/(lg lg n)2 ×
lg lg (n/ lg lg n)) = o(n2) bits with constant query time by encoding model in
Theorem 9.

For query q, first find the nearest block B whose maximum element is larger
than q using QNLN . If the distance from the block contains q to B is t, the
possible minimum and maximum distance between q and NLN of q is (t−2) lg lg n
and (t + 2) lg lg n respectively. By Lemma 4, the total space contains RMQ on
A′ and QNLN , so they takes O(n2) + o(n) = O(n2) bits and total query time is
O(lg lg lg n). ��

5 Conclusions

Our main contribution is a systematic study of data structures for NLN and
NLRN in one and two dimensional arrays in the encoding and indexing models.

More recently, for the two dimensional NLN problem, we obtained an encod-
ing that supports NLN queries in constant time using O(n2) bits in the general
case. And for 0 < c ≤ n, we also have a data structure for NLN queries on
two-dimensional binary array that supports queries in O(c) time using an index
of O(n/c) additional bits. Also, for the NLRN problem in 1D, we obtained an
index that takes O((n/c) lg c) bits and answers queries in O(c) time.

We end with specific open problems that can trigger further work.



Space Efficient Data Structures for Nearest Larger Neighbor 187

– Is there a data structure that takes less than 2.54n+o(n) bits and can answer
NLN queries in a one dimensional array in constant time in the general case
(when elements may repeat) in the encoding model?

– In the indexing model, is it possible to achieve O(c) query time for NLRN
using O(n/c) bits of space for one dimensional arrays?

References

1. Asano, T., Bereg, S., Kirkpatrick, D.: Finding nearest larger neighbors. In: Albers,
S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 249–260.
Springer, Heidelberg (2009)

2. Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors
problems. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 61–72. Springer, Heidelberg (2013)

3. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993)

4. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica 63(4), 815–830 (2012)

5. Davoodi, P., Raman, R., Satti, S.R.: Succinct representations of binary trees
for range minimum queries. In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.)
COCOON 2012. LNCS, vol. 7434, pp. 396–407. Springer, Heidelberg (2012)

6. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

7. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

8. Fischer, J.: Combined data structure for previous- and next-smaller-values. Theor.
Comput. Sci. 412(22), 2451–2456 (2011)

9. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

10. Golin, M., Iacono, J., Krizanc, D., Raman, R., Rao, S.S.: Encoding 2D range
maximum queries. In: Asano, T., Nakano, S., Okamoto, Y., Watanabe, O. (eds.)
ISAAC 2011. LNCS, vol. 7074, pp. 180–189. Springer, Heidelberg (2011)

11. Peter, B.: Miltersen Cell probe complexity - a survey. In: FSTTCS (1999)
12. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-

tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 510–534 (2007). Article 43



Playing Several Variants of Mastermind
with Constant-Size Memory is not Harder

than with Unbounded Memory

Gerold Jäger1 and Marcin Peczarski2(B)

1 Department of Mathematics and Mathematical Statistics,
University of Ume̊a, 901-87 Ume̊a, Sweden

gerold.jaeger@math.umu.se
2 Institute of Informatics, University of Warsaw,

ul. Banacha 2, 02-097 Warszawa, Poland
marpe@mimuw.edu.pl

Abstract. We investigate a version of the Mastermind game, where
the codebreaker may only store a constant number of questions and
answers, called Constant-Size Memory Mastermind, which was recently
introduced by Doerr and Winzen. We concentrate on the most diffi-
cult case, where the codebreaker may store only one question and one
answer, called Size-One Memory Mastermind. We consider two variants
of the game: the original one, where the answer is coded with white and
black pegs, and the simplified one, where only black pegs are used in
the answer. We show that for two pegs and an arbitrary number of col-
ors, the number of questions needed by the codebreaker in an optimal
strategy in the worst case for these games is equal to the corresponding
number of questions in the games without a memory restriction. In other
words, for these cases restricting the memory size does not make the game
harder for the codebreaker. This is a continuation of a result of Doerr and
Winzen, who showed that this holds asymptotically for a fixed number
of colors and an arbitrary number of pegs. Furthermore, by computer
search we determine additional pairs (p, c), where again the numbers of
questions in an optimal strategy in the worst case for Size-One Memory
Mastermind and original Mastermind are equal.

Keywords: Game theory · Logic game · Mastermind · Space complexity

1 Introduction

Mastermind is a two-player board game invented by Meirowitz in 1970. The
players are usually called codemaker and codebreaker. The codemaker chooses a
secret code consisting of 4 pegs and 6 possible colors for each peg. The code-
breaker has to give several questions about the code, until he or she has found
the correct secret. The codemaker has to evaluate each question by giving an
answer consisting of black and white pegs, where each black peg corresponds
to a peg of the codebreaker’s question which is correct in position and color,
and each white peg corresponds to another peg which is correct only in color.
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 188–199, 2015.
DOI: 10.1007/978-3-319-19315-1 17



Playing Several Variants of Mastermind with Constant-Size Memory 189

The codebreaker’s aim is to minimize the number of questions needed to find the
secret. There are two ways of optimizing the codebreaker’s strategy: minimizing
the number of questions on average and minimizing the number of questions
in the worst case. Both optimum strategies have been found for original Mas-
termind with 4 pegs and 6 colors using 5625/1296 ≈ 4.34 questions [16] and 5
questions [15], respectively.

Original Mastermind can easily be extended to Generalized Mastermind with
p pegs and c colors. Let f(p, c) be the number of questions needed by the code-
breaker in an optimal strategy in the worst case for this game. Chen and Lin.
theoretically determined that f(2, c) = �c/2� + 2 for c ≥ 2 [2]. We determined a
similar formula for f(3, c) and proved a tight upper and lower bound for f(4, c)
and an upper and a lower bound for f(p, 2) [12]. Furthermore, we obtained addi-
tional values f(p, c) by a computer search. Recently, Doerr et al. have shown
that f(c, c) = O(c log log c) [4], improving the classical result f(c, c) = O(c log c)
of Chvátal [3]. Also many variants of Mastermind have been investigated in
the literature. One important variant is black-peg Mastermind, where the code-
maker only gives black-peg information and not white-peg information [11,13].
Let b(p, c) be the number of questions needed by the codebreaker in an optimal
strategy in the worst case for this variant of the game. We proved, among others,
the exact formula b(p, c) = c + p − 1 for p = 2, 3 and c ≥ 2 [13]. Other variants
are static Mastermind [10] and the AB game [1,14].

In this work we investigate another version of the Mastermind game, which
has recently been introduced by Doerr and Winzen [6,7]. They add to original
Generalized Mastermind a so-called size-m memory restriction for the code-
breaker. Then the codebreaker can store only up to m questions and the code-
maker’s corresponding answers and he or she can decide about the next question
based only on this information. However, after receiving the answer, the code-
breaker can decide which m of the last m+1 questions and corresponding answers
he or she can store. For m = 1 this means that the codebreaker has a memory for
storing only one pair of question and answer. Based only on this information he
or she chooses the next question. After receiving the answer, he or she has two
pairs of question and answer, and he or she decides which one to keep. The other
one is discarded. Our codebreaker’s strategy is even more restrictive. The code-
breaker asks the question Qi and remembers it. After receiving the answer Ai

he or she remembers it and then decides about the next question Qi+1. He or
she asks and remembers Qi+1 and immediately forgets the question Qi and the
answer Ai. After receiving the answer Ai+1 he or she remembers also Ai+1.

It should be noted that the memory, as defined in the work of Doerr and
Winzen and in this paper, is in fact not constant. Memorizing a question requires
θ(p log c) bits, and memorizing an answer requires θ(log p) bits. Hence, the mem-
ory increases linearly in p and logarithmically in c.

Let fm(p, c) and bm(p, c) be the number of questions needed by the code-
breaker in an optimal strategy in the worst case for Size-m Memory Mastermind
and its black-peg variant, respectively. Doerr and Winzen proved that for a fixed
number of colors c the codebreaker has a size-one memory strategy winning the



190 G. Jäger and M. Peczarski

Mastermind game with p pegs using O(p/ log p) questions in the worst case,
in other words, f1(p, c) = O(p/ log p). A lower bound of Ω(p/ log p) was previ-
ously known, even without memory restriction, and it follows from an informa-
tion theoretic argument [3,9]. Doerr and Winzen considered also the black-peg
variant of this game and described that for two colors this game is equiva-
lent to the memory restricted black box complexity of OneMaxn (for details
see [5–7]). Furthermore, they proved b1(p, c) = O(p/ log p) for a fixed num-
ber of colors. Interestingly, this disproves the conjecture of Droste, Jansen,
Wegener that a memory restriction of size one leads to a black box complex-
ity of OneMaxn of order θ(n log n) [8].

In this work we show an exact formula for the number of questions needed
by the codebreaker in an optimal strategy in the worst case for Size-m Memory
Mastermind with two pegs. In other words, we fix the number of pegs and not the
number of colors. Our main result can be summarized in the following theorem.

Theorem 1. The codebreaker has a size-one memory strategy winning the Mas-
termind game with two pegs and c ≥ 2 colors using exactly �c/2� + 2 questions
in the worst case. Thus, it holds that f1(2, c) = f(2, c) for all c.

We obtain also a corresponding result for the black-peg variant, for both, two
and three pegs.

Theorem 2. The codebreaker has a size-one memory strategy winning the black-
peg variant of the Mastermind game with two or three pegs and c ≥ 2 colors using
exactly c+ p− 1 questions in the worst case. Thus, it holds that b1(p, c) = b(p, c)
for p = 2, 3 and all c.

This paper is organized as follows. In Sect. 2 we present the algorithm for The-
orem 1, and we prove its correctness in Sect. 3. Then we present the proof of
Theorem 2 for p = 2 in Sect. 4. We describe additional results with more than
two pegs in Sect. 5, and make some conclusions and suggest future work in Sect. 6.
Regarding the proof of Theorem 2 for p = 3 we refer to the full version of this
paper.

Let xB denote the answer with x black pegs and no white pegs, and let xW
denote the answer with x white pegs and no black pegs. Furthermore, let ∅ and
0B denote the zero (empty) answer. Observe that for the two pegs game an
answer with one black peg and one white peg is impossible.

2 Algorithm

A strategy for two-pegs Mastermind can be found in [12]. It starts with the
questions (0, 1), (2, 3), (4, 5), i.e., we use questions of the pattern (2i, 2i + 1).
At most two of them can receive a non-empty answer. The codebreaker needs
to memorize these two questions and the associated answers. If the codebreaker
is allowed to memorize only one question and answer, we use the following idea.
We start asking questions as in [12], but after the first non-empty answer we



Playing Several Variants of Mastermind with Constant-Size Memory 191

change the pattern of asked questions so that it codes this question and its
corresponding answer. Further questions are chosen such that one question codes
all information needed to guess the secret. The key idea is to code and recode a
history of questions and answers into the current question, leading to a sequence
of further questions. The algorithm is divided into phases. Let k = �c/2�. Note
that in the following all values i and j can always be computed from the previous
question and the number of colors c.
Phase 1. We ask successively at most k − 2 questions of the form (2i, 2i + 1)
for 0 ≤ i ≤ k − 3, in increasing order of i. If the answers to all these questions
are empty, then we go to Phase 3.

Otherwise, let i be the integer such that the first question with a non-empty
answer is (2i, 2i + 1). We consider several cases:

– (2i, 2i + 1) receives the answer 2B: The game ends.
– (2i, 2i + 1) receives the answer 2W: We ask the question (2i + 1, 2i), which

has to be answered with 2B, and the game ends.
– (2i, 2i + 1) receives the answer 1W: We go to Phase 2a.
– (2i, 2i + 1) receives the answer 1B: We go to Phase 2b.

Phase 2a. Up to now i+1 questions have been asked, and the question (2i, 2i+1)
has been answered with 1 W in Phase 1. Now we ask at most k − i− 1 questions
of the pattern

(2i + 2, l), (2i + 3, l + 1), . . . , (l − 1, 2k − 1),

where l will be chosen in the following. Note that the second color in the first
question is the next color to the first color in the last question. It must hold
(l − 1) − (2i + 2) = (2k − 1) − l. Hence, we have l = k + i + 1. Thus, we ask the
questions

(2i + 2, k + i + 1), (2i + 3, k + i + 2), . . . , (k + i, 2k − 1).

Observe that the answers 2B and 2 W are impossible in this phase. Hence, we
consider three cases:

– If the first j questions have received the empty answer and the question (2i+
j + 2, k + i + j + 1) is answered with 1W, where j = 0, 1, 2, . . . , k − i − 2, we
go to Phase 4a.

– If the first j questions have received the empty answer and the question (2i+
j + 2, k + i + j + 1) is answered with 1B, where j = 0, 1, 2, . . . , k − i − 2, we
go to Phase 4b.

– If all k − i − 1 questions receive the empty answer, we go to Phase 5a.

Phase 2b. Up to now i+1 questions have been asked, and the question (2i, 2i+1)
has been answered with 1B in Phase 1. Now we ask at most k − i − 1 questions
of the pattern

(k + i + 1, 2i + 2), (k + i + 2, 2i + 3), . . . , (2k − 1, k + i).



192 G. Jäger and M. Peczarski

23

45 34 32 43

54 44 52 42 35 22 24 33

55 25 53

∅ 1W 2W 1B

1B2W ∅ 1W 1B ∅ 1W 1B

∅ 1B 1B

Fig. 1. Phase 3 for c = 6 colors

Note that the above questions differ from the questions of Phase 2a only by
reversing the order of the colors. As previously, the answers 2B and 2 W are
impossible in this phase, and we consider three cases:

– If the first j questions have received the empty answer and the question (k +
i + j + 1, 2i + j + 2) is answered with 1W, where j = 0, 1, 2, . . . , k − i − 2, we
go to Phase 4c.

– If the first j questions have received the empty answer and the question (k +
i + j + 1, 2i + j + 2) is answered with 1B, where j = 0, 1, 2, . . . , k − i − 2, we
go to Phase 4d.

– If all k − i − 1 questions receive the empty answer, we go to Phase 5b.

Phase 3. All k − 2 first questions have received the empty answer. If c is even,
then there are four possible colors: c−4, c−3, c−2, c−1. They can be denoted
also as 2k−4, 2k−3, 2k−2, 2k−1. If c is odd, then there are five possible colors:
c−5, c−4, c−3, c−2, c−1. They can be denoted also as 2k −4, 2k −3, 2k −2,
2k − 1, 2k. In both cases we can find the secret with four questions using only
colors from the set of possible colors. Figure 1 shows the strategy for Phase 3
when the game was started with c = 6 colors, and 4 colors (namely the colors
2, 3, 4, 5) remain possible for that phase. Figure 2 shows the strategy for Phase
3, when the game was started with c = 7 colors, and 5 colors (namely the colors
2, 3, 4, 5, 6) remain possible for that phase. The nodes represent questions and
edges represent answers. Questions which can be answered with 2B are drawn
in a circle, whereas questions which cannot be answered with 2B are drawn in
a square. Note that questions in leafs are always answered with 2B. If c is even,
then the strategy from Fig. 1 can be transformed into a general strategy by the
color mapping 2 �→ 2k − 4, 3 �→ 2k − 3, 4 �→ 2k − 2, 5 �→ 2k − 1. If c is odd,
then the strategy from Fig. 2 can be transformed into a general strategy by the
above color mapping with the additional mapping 6 �→ 2k.



Playing Several Variants of Mastermind with Constant-Size Memory 193

23

45 34 32 43

66 64 54 46 52 42 36 24

56 55 65 44 62 35 22 26 25 33 63 53

65 56

∅ 1W 2W 1B

∅ 1W2W 1B ∅ 1W 1B ∅ 1W 1B

1W ∅ 1W1B 1B 1B ∅ 1W1B ∅ 1W 1B

Fig. 2. Phase 3 for c = 7 colors

Phase 4a. The question (2i, 2i + 1) has been answered with 1 W in Phase 1.
The question (2i + j + 2, k + i + j + 1) has been answered with 1 W in Phase 2a.
Hence, there are two possible secrets, namely

(2i + 1, 2i + j + 2), (k + i + j + 1, 2i).

We ask the question (2i + 1, 2i + j + 2), and we consider two cases:

– If the answer is 2B, the game ends.
– If the answer is empty, we ask the question (k + i + j + 1, 2i), which has to

be answered with 2B.

Note that all four colors used in this phase (and all Phases 4) are distinct,
because 2i 
= k + i + j + 1, 2i + 1 
= k + i + j + 1 and 2i + j + 2 
= k + i + j + 1.

Phase 4b. The question (2i, 2i + 1) has been answered with 1 W in Phase 1.
The question (2i + j + 2, k + i + j + 1) has been answered with 1B in Phase 2a.
Hence, there are two possible secrets, namely

(2i + 1, k + i + j + 1), (2i + j + 2, 2i).

We ask the same question as in Phase 4a, i.e., (2i+1, 2i+j +2), and we consider
two further cases:

– If the answer is 1W, we ask the question (2i + j + 2, 2i).
– If the answer is 1B, we ask the question (2i + 1, k + i + j + 1).

In both cases the latter question has to be answered with 2B.

Phase 4c. The question (2i, 2i+1) has been answered with 1B in Phase 1. The
question (k + i + j + 1, 2i + j + 2) has been answered with 1 W in Phase 2b.
Hence, there are two possible secrets, namely

(2i, k + i + j + 1), (2i + j + 2, 2i + 1).

We ask the question (2i + j + 2, 2i + 1), and we consider two cases:



194 G. Jäger and M. Peczarski

– If the answer is 2B, the game ends.
– If the answer is empty, we ask the question (2i, k + i + j + 1), which has to

be answered with 2B.

Phase 4d. The question (2i, 2i+1) has been answered with 1B in Phase 1. The
question (k+ i+j +1, 2i+j +2) has been answered with 1B in Phase 2b. Hence,
there are two possible secrets, namely

(2i, 2i + j + 2), (k + i + j + 1, 2i + 1).

We ask the same question as in Phase 4c, i.e., (2i+j +2, 2i+1), and we consider
two further cases:

– If the answer is 1W, we ask the question (2i, 2i + j + 2).
– If the answer is 1B, we ask the question (k + i + j + 1, 2i + 1).

In both cases the latter question has to be answered with 2B.

Phase 5a. The question (2i, 2i+1) has been answered with 1 W in Phase 1. All
other questions have received the empty answer. It is impossible to reach this
phase if c is even, because all colors except 2i and 2i + 1 are impossible.

If c is odd, then there are two possible secrets, namely

(c − 1, 2i), (2i + 1, c − 1).

We ask the question (c − 1, 2i), and we consider two cases:

– If the answer is 2B, the game ends.
– If the answer is 1W, we ask the question (2i + 1, c − 1), which has to be

answered with 2B.

Phase 5b. The question (2i, 2i + 1) has been answered with 1B in Phase 1. All
other questions have received the empty answer. If c is even, then there are two
possible secrets, namely

(2i, 2i), (2i + 1, 2i + 1).

We ask the question (2i, 2i), and we consider two cases:

– If the answer is 2B, the game ends.
– If the answer is empty, we ask the question (2i + 1, 2i + 1), which has to be

answered with 2B.

If c is odd, then there are four possible secrets, namely

(2i, 2i), (2i + 1, 2i + 1), (2i, c − 1), (c − 1, 2i + 1).

We ask the question (2i, c − 1), and we consider four cases:



Playing Several Variants of Mastermind with Constant-Size Memory 195

1

2a 2b3

4a 4b 5a 4c 4d 5b

1W 1Ball ∅

1W 1B all ∅ 1W 1B all ∅

Fig. 3. Phase transition diagram

– If the answer is 1B, we ask the question (2i, 2i), which has to be answered
with 2B.

– If the answer is empty, we ask the question (2i + 1, 2i + 1), which has to be
answered with 2B.

– If the answer is 2B, the secret is (2i, c − 1), and the game ends.
– If the answer is 1W, we ask the question (c − 1, 2i + 1), which has to be

answered with 2B.

Small Number of Colors. If the number of colors is 4 or 5, then Phase 1
reduces to zero questions and thus there is also no Phase 2, 4 and 5. The whole
algorithm reduces to Phase 3 only, using at most 4 questions. If the number of
colors is 2 or 3, then we use the part of Phase 3, which does not ask the first
question, and assume that it has received the empty answer. In those cases we
find a secret in at most 3 questions. It is easy to see that f1(2, 1) = f(2, 1) = 1.

3 Proof of Correctness

First, we count the number of questions needed to find a secret. Phase 1 uses
i+1 ≤ k −2 questions. Phase 2 uses at most k − i−1 questions. Phase 3 uses at
most four questions. Phases 4 and 5 use at most two questions. Figure 3 shows all
possible phase transitions. This leads to the following three possible scenarios:

– Phase 1, Phase 2, Phase 4;
– Phase 1, Phase 2, Phase 5;
– Phase 1, Phase 3.

It is easy to see that we find a secret in at most k + 2 questions.
Next, we need to check if the above algorithm states a strategy for the code-

breaker with size-one memory. It is sufficient to prove that the asked question
depends only on the previous question and the received answer. This will be
implied by the property that either a question is used only in one game state or
if a question is used in two game states, then the sets of answers in these states
are disjoint.



196 G. Jäger and M. Peczarski

The sets of questions asked in Phases 1, 2a, 2b are disjoint, because the colors
used in a question in Phases 2a and 2b differ by at least two, as (k + i + 1) −
(2i + 2) = k − i − 1 ≥ k − (k − 3) − 1 = 2. Moreover, in Phase 2a the first color
in the question has a smaller number than the second one, and in Phase 2b the
first color in the question has a larger number than the second one.

Phase 3 uses distinct colors compared to Phase 1. Hence, it uses also distinct
questions. Note that the questions (2k−4, 2k−2), (2k−3, 2k−1), (2k−2, 2k−4),
(2k−1, 2k−3) are used only if they are expected to be answered with 2B, as they
are also used in Phase 2a or 2b, where a question cannot be answered with 2B.

As the second question in Phase 4 has to be answered only with 2B, it can
be used in all other phases. The first question of Phase 4 is distinct from all
questions of Phase 1, because:

– the first color has a smaller number than the second one and the first one is
odd, e.g., the question (2i + 1, 2i + j + 2), or

– the first color has a larger number than the second one and the second one is
odd, e.g., the question (2i + j + 2, 2i + 1).

Phase 4 uses distinct questions compared to Phase 3, because one color in each
question of Phase 4 has a number smaller than 2k − 4 (this is the color which
was used in Phase 1).

In the following we will prove that the first question used in Phase 4 is not
used in Phase 2. The first question used in Phase 4a or 4b cannot be used in
Phase 2b, because it has an opposite color number order. Now assume that the
first question used in Phase 4a or 4b is also used in Phase 2a. Let (2i′ + j′ +
2, k + i′ + j′ + 1) be a question asked in Phase 2a. Let (2i + 1, 2i + j + 2) be the
first question asked in Phase 4a or 4b. This implies that

2i′ + j′ + 2 = 2i + 1, (1)
k + i′ + j′ + 1 = 2i + j + 2. (2)

Hence, we have 2(k + i′ + j′ + 1) − (2i′ + j′ + 2) = 2(2i + j + 2) − (2i + 1) and
2k + j′ = 2i + 2j + 3. However, i + j ≤ k − 2 and thus j′ ≤ −1, which is a
contradiction.

A similar result can be proved for Phases 4c, 4d and Phases 2a, 2b as follows.
The first question used in Phase 4c or 4d cannot be used in Phase 2a, because
it has an opposite color number order. Now assume that the first question used
in Phase 4c or 4d is also used in Phase 2b. Let (k + i′ + j′ + 1, 2i′ + j′ + 2) be
a question asked in Phase 2b. Let (2i + j + 2, 2i + 1) be the first question asked
in Phase 4c or 4d. This implies exactly the same Eqs. (1) and (2) as previously,
and we have a contradiction again.

The questions used in Phase 5a or 5b are not used in Phase 3, because
2i < 2k−4 and 2i+1 < 2k−4 holds. They are also not used in any other phase,
because only in Phases 3 and 5, questions can contain the color 2k (i.e., color
c − 1 for odd c) or twice the same color.

This finishes the proof of correctness and of Theorem 1.



Playing Several Variants of Mastermind with Constant-Size Memory 197

4 Algorithm for Black-Peg Variant

Let us consider a Mastermind strategy, where we choose only questions for which
the answer pB (p black pegs) is possible. In other words, we choose questions
only from the set of secrets which are still possible based on all answers given
yet by the codemaker. We call such a strategy a P-strategy.

Now we prove that every P-strategy is a size-one memory strategy. Every
strategy-tree for Mastermind has to contain as nodes all possible questions,
because for every possible secret there must be a question equal to this secret
and answered with p black pegs. Every question appears at most once in the P-
strategy-tree, because distinct paths in the strategy-tree lead to disjoint sets of
possible secrets. Hence, every P-strategy-tree contains exactly cp nodes, where
each node is labeled with another question. Therefore, each question appears
exactly once. Moreover, a P-strategy-tree has exactly cp −1 edges. In general, to
store the game state, the codebreaker has to remember the whole path from the
root to the present node, but in the P-strategy the label of the node (a question)
uniquely determines the game state. Hence, the codebreaker has to memorize
only one question to store a position in the strategy-tree, and the P-strategy-
tree immediately defines a strategy for Size-One Memory Mastermind.

A strategy for the black-peg variant of two-pegs Mastermind can be found in
[13]. We adapt this strategy to a size-one memory P-strategy. Note that in this
game we have only three possible answers, namely 0B, 1B and 2B.

Consider the following strategy for c ≥ 2. We ask successively at most c − 1
questions of the form (i, i) for 0 ≤ i ≤ c−2, in increasing order of i. If the answers
of all these questions are empty, then the only possible secret is (c − 1, c − 1).
We ask the question (c − 1, c − 1), which has to be answered with 2B. Thus,
we are done in c questions. Otherwise, let i be the integer such that the first
question with a non-empty answer is (i, i). We consider three cases:

1. (i, i) receives the answer 2B: We are done in i + 1 ≤ c − 1 questions.
2. (i, i) receives the answer 1B: We ask the question (i, i + 1).
3. (i, i) receives the answer 0B: By construction, this case is not possible.

Regarding the question (i, i + 1) (Case 2) we have three next cases:

4. (i, i + 1) receives the answer 2B: We are done in i + 2 ≤ c questions.
5. (i, i+1) receives the answer 1B: Then i < c−2 and we have c− i−2 possible

secrets: (i, i + 2), (i, i + 3), . . . , (i, c − 1), which we can test in c − i − 2 further
questions. Then totally we have at most i + 2 + c − i − 2 = c questions.

6. (i, i + 1) receives the answer 0B: Then we ask the question (i + 1, i).

Regarding the question (i + 1, i) (Case 6) we have three further cases:

7. (i + 1, i) receives the answer 2B: We are done in i + 3 ≤ c + 1 questions.
8. (i+1, i) receives the answer 1B: Then i < c−2 and we have c− i−2 possible

secrets: (i + 2, i), (i + 3, i), . . . , (c − 1, i), which we can test in c − i − 2 further
questions. Totally, we have at most i + 3 + c − i − 2 = c + 1 questions.

9. (i + 1, i) receives the answer 0B: This case is not possible.



198 G. Jäger and M. Peczarski

We conclude that b1(2, c) ≤ c+1. By [13], it holds that b1(2, c) ≥ b(2, c) = c+1
for c ≥ 2. It is easy to see that b1(2, 1) = b(2, 1) = 1. This finishes the proof of
Theorem 2 for p = 2.

For a better understanding of the strategy, below we present a function for the
codebreaker. The function takes a question and an answer (0B or 1B) and returns
the next question. We omit the answer 2B, because after that the game ends.

(i, i), 0B �→ (i + 1, i + 1) for i = 0, 1, . . . , c − 2,
(i, i), 1B �→ (i, i + 1) for i = 0, 1, . . . , c − 2,

(i, i + 1), 0B �→ (i + 1, i) for i = 0, 1, . . . , c − 2,
(i, i + j + 1), 1B �→ (i, i + j + 2) for i = 0, 1, . . . , c − 3, j = 0, 1, . . . , c − i − 3,
(i + j + 1, i), 1B �→ (i + j + 2, i) for i = 0, 1, . . . , c − 3, j = 0, 1, . . . , c − i − 3.

Note that the questions (i, i + j + 1) for j > 0 and (i + j + 1, i) for j ≥ 0 cannot
be answered with 0B.

5 More Pegs

Using computer search, we can show that there are additional pairs (p, c), where
the numbers of questions needed by the codebreaker in an optimal strategy in
the worst case for Size-One Memory Mastermind and original Mastermind are
equal, i.e., it holds that f(p, c) = f1(p, c) or b(p, c) = b1(p, c). For obtaining
these results we have modified the program from [12] for computing the number
of questions f(p, c) needed by the codebreaker in an optimal strategy in the
worst case for original Mastermind. As the program was not able to compute
f1(p, c) or b1(p, c) directly, we have restricted the computations to find only P-
strategies. Let f0(p, c) and b0(p, c) be the worst case number of questions in a
P-strategy for the original and black-peg variant, respectively. Clearly, it holds
that f0(p, c) ≥ f1(p, c) ≥ f(p, c) and b0(p, c) ≥ b1(p, c) ≥ b(p, c). Hence, if we
obtain that f0(p, c) = f(p, c) or b0(p, c) = f(p, c), we can conclude the value of
f1(p, c) or b1(p, c). The computed values are listed in the following, where the
values of f(p, c) and b(p, c) are taken from [12,13].

f0(2, 2) = f(2, 2) = 3 f0(4, 2) = f(4, 2) = 4
f0(2, 3) = f(2, 3) = 3 f0(4, 3) = f(4, 3) = 4
f0(2, 4) = f(2, 4) = 4 f0(4, 4) = 5 > f(4, 4) = 4

f0(2, 5) = 5 > f(2, 5) = 4 f0(4, 5) = f(4, 5) = 5
f0(2, 6) = 6 > f(2, 6) = 5 f0(4, 6) = 6 > f(4, 6) = 5

f0(3, 2) = f(3, 2) = 3 f0(5, 2) = f(5, 2) = 4
f0(3, 3) = f(3, 3) = 4 f0(5, 3) = f(5, 3) = 4
f0(3, 4) = f(3, 4) = 4 f0(5, 4) = f(5, 4) = 5
f0(3, 5) = f(3, 5) = 5 f0(6, 2) = f(6, 2) = 5

f0(3, 6) = 6 > f(3, 6) = 5 f0(6, 3) = f(6, 3) = 5

b0(4, 2) = 5 = b(4, 2) = 5 b0(5, 2) = 6 > b(5, 2) = 5
b0(4, 3) = 9 > b(4, 3) = 5 b0(5, 3) = 9 > b(5, 3) = 6
b0(4, 4) = 10 > b(4, 4) = 6 b0(6, 2) = 7 > b(6, 2) = 6



Playing Several Variants of Mastermind with Constant-Size Memory 199

6 Conclusions and Future Work

In this work we continued the work of Doerr and Winzen [6,7], who showed that
in original Mastermind for a fixed number of colors, bounding memory for the
codebreaker does not increase the asymptotic number of questions in the worst
case. We show that similar holds for two pegs. However, our result is not only
an asymptotic bound, but an exact one.

The computational results from Sect. 5 show that the approach used for the
black-peg variant of Size-One Memory Mastermind with two or three pegs cannot
be extended to a larger number of pegs, as for p = 4, 5, 6 there exists a c such
that b0(p, c) > b(p, c), i.e., there is no appropriate P-strategy.

For future research we suggest to search for a pair (p, c), where the size-one
memory version needs more questions than the version with unbounded memory.

References

1. Chen, S.T., Lin, S.S.: Optimal algorithms for 2 × n AB games–a graph-partition
approach. J. Inform. Sci. Eng. 20(1), 105–126 (2004)

2. Chen, S.T., Lin, S.S.: Optimal algorithms for 2 × n Mastermind games–a graph-
partition approach. Comput. J. 47(5), 602–611 (2004)

3. Chvátal, V.: Mastermind. Combinatorica 3(3–4), 325–329 (1983)
4. Doerr, B., Spöhel, R., Thomas, H., Winzen, C.: Playing mastermind with many

colors. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), SIAM, pp. 695–704 (2013)

5. Doerr, B., Winzen, C.: Memory-restricted black-box complexity of OneMax.
Inform. Process. Lett. 112(1–2), 32–34 (2012)

6. Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory. In: Pro-
ceedings of 29th International Symposium on Theoretical Aspects of Computer
Science (STACS 2012). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 14, pp. 441–452. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)

7. Doerr, B., Winzen, C.: Playing Mastermind with constant-size memory. Theory
Comput. Syst. 55(4), 658–684 (2014)

8. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search
heuristics in black-box optimization. Theory Comput. Syst. 39(4), 525–544 (2006)

9. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tud. Akad.
Mat. Kutató Int. Közl. 8, 229–243 (1963)

10. Goddard, W.: Static Mastermind. J. Combin. Math. Combin. Comput. 47, 225–
236 (2003)

11. Goodrich, M.T.: On the algorithmic complexity of the Mastermind game with
black-peg results. Inform. Process. Lett. 109(13), 675–678 (2009)

12. Jäger, G., Peczarski, M.: The number of pessimistic guesses in Generalized Mas-
termind. Inform. Process. Lett. 109(12), 635–641 (2009)

13. Jäger, G., Peczarski, M.: The number of pessimistic guesses in Generalized Black-
peg Mastermind. Inform. Process. Lett. 111(19), 933–940 (2011)

14. Jäger, G., Peczarski, M.: The worst case number of questions in Generalized AB
game with and without white-peg answers. Discrete Appl. Math. 184, 20–31 (2015)

15. Knuth, D.E.: The computer as Mastermind. J. Recr. Math. 9(1), 1–6 (1976–1977)
16. Koyama, K., Lai, T.W.: An optimal Mastermind strategy. J. Recr. Math. 25(4),

251–256 (1993)



On Maximum Common Subgraph Problems
in Series-Parallel Graphs

Nils Kriege, Florian Kurpicz(B), and Petra Mutzel

Department of Computer Science, Technische Universität Dortmund,
Dortmund, Germany

{nils.kriege,florian.kurpicz,petra.mutzel}@tu-dortmund.de

Abstract. The complexity of the maximum common connected sub-
graph problem in partial k-trees is still not fully understood. Polynomial-
time solutions are known for degree-bounded outerplanar graphs,
a subclass of the partial 2-trees. On the contrary, the problem is known to
be NP-hard in vertex-labeled partial 11-trees of bounded degree. We con-
sider series-parallel graphs, i.e., partial 2-trees. We show that the prob-
lem remains NP-hard in biconnected series-parallel graphs with all but
one vertex of degree bounded by three. A positive complexity result is
presented for a related problem of high practical relevance which asks
for a maximum common connected subgraph that preserves blocks and
bridges of the input graphs. We present a polynomial time algorithm for
this problem in series-parallel graphs, which utilizes a combination of
BC- and SP-tree data structures to decompose both graphs.

Keywords: Maximum Common Subgraph · Block and Bridge Preserv-
ing · Series-parallel graphs

1 Introduction

Finding a maximum common subgraph (MCS) of two input graphs is an impor-
tant task in many application domains like pattern recognition and cheminfor-
matics [18]. MCS is well known to be NP-hard. Since practically relevant graphs,
e.g., derived from small molecules, often have small treewidth [9], it is highly rel-
evant to develop polynomial time algorithms for tractable graph classes and to
clearly identify graph classes, where MCS remains NP-hard. For the related
subgraph isomorphism problem such a clear demarcation for partial k-trees is
known. Subgraph isomorphism is solvable in polynomial time in partial k-trees
if the smaller graph either is k-connected or has bounded degree [7,13]. How-
ever, it is NP-complete when the smaller graph is not k-connected or has more
than k vertices of unbounded degree [8]. MCS apparently is at least as hard
as subgraph isomorphism; two recent results show that it actually is consider-
ably harder: Akutsu [2] has shown that finding a connected MCS is NP-hard in

This work was supported by the German Research Foundation (DFG), priority pro-
gramme “Algorithms for Big Data” (SPP 1736).

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 200–212, 2015.
DOI: 10.1007/978-3-319-19315-1 18



On Maximum Common Subgraph Problems in Series-Parallel Graphs 201

vertex-labeled partial 11-trees of bounded degree. Furthermore it was believed
that the problem of finding a maximum common k-connected subgraph of k-
connected partial k-trees (k-MCS) can be solved with the same technique that
was successfully used for subgraph isomorphism. Recently, it was shown that
these techniques are insufficient even for series-parallel graphs, for which a new
approach based on SP-trees was devised [10]. Further polynomial time algo-
rithms were proposed for connected MCS of almost trees and outerplanar graphs
of bounded degree [1,3].

Motivated by the fact that even subgraph isomorphism is NP-hard when the
smaller graph is a tree and the other is outerplanar, a problem variation referred
to as BBP-MCS was considered [17,18]. Here, the common subgraph is required
to preserve blocks, i.e., maximal biconnected subgraphs, and bridges of the input
graphs, which renders efficient algorithms for outerplanar graphs possible [17].
Notably, BBP-MCS yields meaningful results for molecular graphs in practice
and even compares favorably to ordinary MCS in empirical studies [16,18].

Our Contribution. On the theoretical side, we prove that finding a connected
MCS of two biconnected series-parallel graphs with all but one vertex of degree
bounded by three is NP-hard. We obtain this result by a polynomial-time reduc-
tion of the Numerical Matching with Target Sums problem. Furthermore, we con-
sider BBP-MCS in series-parallel graphs and propose a polynomial time solution,
thus, generalizing the known result for outerplanar graphs. Employing BC- and
SP-tree decompositions of the input graphs allows us to identify subproblems
closely related to k-MCS, k ∈ {1, 2}. We make use of a classical approach for the
maximum common subtree problem [14], i.e., 1-MCS, and a recently proposed
algorithm for 2-MCS [10] to obtain our main result. Our approach yields a run-
ning time of O(n6) in series-parallel and O(n5) in outerplanar graphs, where n
is the maximum number of vertices in one of the input graphs.

2 Preliminaries

Let G be a simple graph. We denote the set of vertices by V (G) and the set of
edges by E(G). A graph is connected if there is a path between any two vertices.
Each maximal connected subgraph G′ ⊆ G is called connected component. Let
V ⊆ V (G), then G[V ] denotes the induced subgraph G′ ⊆ G with V (G′) = V and
E(G′) = {(u, v) ∈ V × V : (u, v) ∈ E(G)}. A set S ⊆ V (G) is called |S|-separator
or separator of a connected graph G if G \ S := G[V (G) \ S] consists of at least
two connected components. If S = {v} is a separator then v is called cutvertex.
A graph G with |V (G)| > k is called k-connected if there is no j-separator of G
with j < k and biconnected if k = 2. We define [n] := {1, . . . , n} for all n ∈ N.
A path is a sequence of vertices (v0, v1, . . . , vn) such that (vi−1, vi) ∈ E(G) for all
i ∈ [n]. A path with vn = v0 is called cycle. The length of a path or cycle is the
number of edges contained in it. Let (v0, v1, . . . , vn) be a cycle, an edge (vi, vj)
such that 1 �= |i − j| < n is called chord. Cycles without chords are chordless.

A graph G is bipartite if there are two disjoint sets U,U ′ ⊆ V (G) such that
U ∪ U ′ = V (G) and for all (u, v) ∈ E(G) neither u, v ∈ U nor u, v ∈ U ′.



202 N. Kriege et al.

A matching of G is a set of edges M ⊆ E(G) such that u = u′ ⇐⇒ v = v′ for
all ((u, v), (u′, v′)) ∈ M×M . The maximum weighted bipartite matching problem
(MwbM) asks for the maximum weight of a matching of a weighted bipartite
graph and is solvable in O(n3), e.g., with the Hungarian method [11].

Kn denotes the complete graph with n vertices and Ks,t
2 denotes an instance

of the K2 where one vertex is called s- and the other t-vertex. A graph is series-
parallel if each maximal biconnected subgraph can be constructed starting with
a finite set of Ks,t

2 by performing a sequence of the following two operations.

S-Operation: Merge the s-vertex of one component with the t-vertex of a
different component. The vertex created by merging remains unnamed.

P-Operation: Merge the s- and t-vertices of two different components of the
set. The resulting vertices are called s- and t-vertex.

By definition, series-parallel graphs are at most biconnected and equivalent to
partial 2-trees [4], i.e., graphs with treewidth at most 2. We use the notation and
definition introduced in [5] to define the SP-tree decomposition of series-parallel
graphs.

Definition 1 (SP-tree). Let G be a biconnected series-parallel graph with at
least three vertices. Then the SP-tree of G, denoted by SP(G) = T SP, is the
smallest tree such that the following conditions are satisfied:

SP1 each node1 λ of T SP is associated with a skeleton graph Sλ = (Vλ, Eλ).
Each edge e = (u, v) ∈ Eλ is either a real or a virtual edge. If e is a virtual
edge, then S = {u, v} is a separator of G.

SP2 T SP has two different types of nodes. S-nodes where the skeleton graph
is a chordless cycle and P -nodes which have a skeleton graph consisting of
multiple parallel edges between exactly two vertices.

SP3 for two adjacent nodes λ and η in T SP, the skeleton graph Sλ contains a
virtual edge eη representing Sη and vice versa. The node η is called pertinent
to the edge eη.

SP4 The graph resulting by merging all skeleton graphs in a way that each virtual
edge is replaced by the skeleton of its pertinent node in T SP is exactly G.

The sets of S-nodes and P -nodes in T SP are denoted by VS(T SP) or VP (T SP)
and T SP is bipartite regarding these two sets. Let r ∈ E(G), the rooted SP-tree
is obtained by rooting T SP at the node λ with r ∈ V (Sλ). A rooted SP-tree
induces a parent-child relation where a node λ is the parent of an adjacent node
η if the path from the root node to λ is shorter than the path from the root
node to η. If a node λ is the parent of a node η and eλ ∈ E(Sη) is the virtual
edge pertinent to λ in η, then eλ is called reference edge of λ and denoted by
ref(λ).

Let G be a graph. Each maximal connected subgraph without a cutvertex
with respect to that component is called a block. There are two different types of
blocks: A maximal biconnected subgraph and a bridge, i.e., a K2. Any two blocks

1 We call vertices of SP- and BC-trees nodes and vertices of the input graphs vertices.



On Maximum Common Subgraph Problems in Series-Parallel Graphs 203

of G may have at most one vertex in common, which must be a cutvertex. Blocks
that are not bridges are called non-bridge block. Let B denote the set of blocks
of G and C the set of cutvertices of G. The graph with vertices B ∪C and edges
between each b ∈ B and c ∈ C iff V (c) ∈ V (b) is called block graph of G and
denoted by BC(G). If G is connected, the block graph is a tree and referred to
as BC-tree. Each node Λ in a BC-tree has a skeleton graph SΛ consisting of the
vertices and edges represented by the node. Let TBC = BC(G) and r ∈ E(G),
the rooted BC-tree TBC,r is obtained by rooting TBC at the B-node Λ such that
r ∈ V (SΛ). It induces a parent-child relation as defined above in TBC,r and also
a parent-child relation between the nodes of the SP-trees of the skeleton graphs.
Since those only exists for non-bridge nodes, denoted by VBl(TBC,r), there are
two cases: Let T SP

Λ be the SP-tree of the skeleton graph of Λ ∈ VB(TBC). First,
Λ is the root of TBC, then T SP

Λ is rooted at r. Otherwise, let Ξ be the parent of Λ
hence Ξ is a cutvertex with v = V (SΞ). Then T SP

Λ is rooted at the P - or S-node
such that v is in the skeleton graph of this node (P -node if existing). VBr(TBC,r)
denotes the bridges of the BC-tree. Greek upper- and lowercase letters denote
B-, C- and S-, P -nodes, resp. Latin letters denote vertices of the input graphs.

Let G and H be graphs. If V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is
called subgraph of G. The graphs G and H are isomorphic, if there is a bijection
φ : V (G) → V (H), such that (u, v) ∈ E(G) ⇐⇒ (φ(u), φ(v)) ∈ E(H) ∀u, v ∈
V (G) and H is subgraph isomorphic to G, if H is isomorphic to a subgraph of
G. We say u is mapped to v′ if φ(u) = v′. There is a common subgraph isomor-
phism between G and H, if there are sets R ⊆ V (G) and S ⊆ V (H) such that
the induced subgraphs G[R] and H[S] are isomorphic. Let φ be the common
subgraph isomorphism, then φ is a maximum common subgraph isomorphism if
there is no common subgraph isomorphism φ′ with |dom(φ′)| > |dom(φ)|, where
dom(φ) denotes the domain of φ. A common subgraph is called maximum com-
mon subgraph (MCS) if there is no common subgraph containing more vertices.

Definition 2 (Maximum Common Subgraph Problem (MCS)). Given
two graphs G and H, find the order of a maximum common connected subgraph.

Please notice, that MCS can denote both: the problem and a subgraph. In the
following we assume that the input graphs are connected series-parallel graphs
and common subgraphs must be induced subgraphs of both input graphs.

3 MCS in Series-Parallel Graphs with Bounded Degree

In this section, we consider MCS where both input graphs are biconnected and
have degree at most 3 for all but 1 vertex (MCS≤3,1). We prove that this problem
is NP-hard and improve the result for subgraph isomorphism that, transferred
to MCS, states that MCS≤4,2 is NP-hard [8].

Since the running time of an algorithm is given with respect to the size of
the input, a reasonable encoding is demanded, e.g., an integer n can be encoded
in log n bits. An NP-complete problem may no longer be NP-complete if the
instances are encoded unary. Strongly NP-complete problems are NP-complete



204 N. Kriege et al.

v w

(a) Cv
w

v w

(b) Dv
w

v w

(c) Kv
w

v w

k + 1

(d) P v,k
w

Fig. 1. Gadgets used to create the graphs G and H for a NMwTS instance.

even if the input is encoded unary [6]. Hence even the values of numbers can be
used. To prove that MCS≤3,1 is NP-hard we show that there is a polynomial-
time reduction from the following problem which is strongly NP-complete [6].

Definition 3 (Numerical Matching with Target Sums (NMwTS)) .
Given two disjoint sets X and Y with |X| = |Y | = n, a size function
s : X ∪ Y → Z+ and a vector b = 〈b1, b2, . . . , bn〉 with bi ∈ Z+ for all i ∈ [n].
Can X ∪ Y be partitioned into disjoint sets A1, A2, . . . , An each containing one
element from each of X and Y , such that

∑
a∈Ai

s (a) = bi for all i ∈ [n]?

3.1 Construction of the Polynomial-Time Reduction

For an instance (X,Y, s, b) of NMwTS we construct two graphs, G and H to
represent the values of the elements in X,Y and b. Let Σs :=

∑
z∈X∪Y s(z) and

Σb :=
∑n

i=1 bi. Bv
w denotes a cycle with 2Σs + 2 vertices such that each path

from v to w has length Σs. Cv
w is an instance of Bv

v′ with an additional vertex
w called anchor vertex and an edge (v′, w). Dv

w is an extension of Cv
w with two

chords such that it is still outerplanar and there are two edge disjoint paths of
length 4 from v to w.2 Kv

w is an instance of K3, where two vertices are denoted
by v and v′, with additional vertex w and an edge (v′, w). Last, P v,k

w is a path
of length k, where the vertices of degree 1 are denoted by v and w, see Fig. 1.

Bk =
n⋃

i=1

(
C x̄

ci ∪ Dx̄
ci+n

)
∪

n+k−1⋃

i=1+k

(
P ci,2

ci+1

)
(1)

G =
n⋃

i=1

⎛

⎝Kci
x̄1,i

∪ K
ci+n

ȳ1,i
∪

s(xi)⋃

j=2

K
x̄j−1,i
x̄j,i

∪
s(yi)⋃

j=2

K
ȳj−1,i
ȳj,i

∪ P
x̄s(xi)

,3

ȳs(yi)

⎞

⎠ ∪ B0 (2)

H =
n⋃

i=1

⎛

⎝Kci
v1,i

∪ K
vbi,i
ci+n ∪

bi⋃

j=2

Kvj−1
vj

⎞

⎠ ∪ Bn (3)

The graphs G and H contain a subgraph which we call base-gadget, see Eq. 1.
It consists of 2n cycles, C x̄

ci and Dx̄
ci+n

for i ∈ [n]. All cycles share the vertex x̄,
which is the only vertex with unbounded degree. The subgraphs

⋃n+k−1
i=1+k P ci,2

ci+1
,

2 If an instance of NMwTS does not allow the construction of Dv
w, all values are

multiplied by 3.



On Maximum Common Subgraph Problems in Series-Parallel Graphs 205

k ∈ {0, n} are called anchor paths and are required to assure that G and H are
biconnected. The index k in Eq. 1 is used to connect either the anchor vertices of
cycles containing chords (k = 0) or of the chordless cycles (k = n). The graph G
represents the values of the elements in X and Y , see Eq. 2. There is an xy-path
between the anchor vertices ci and ci+n representing the values of xi and yi. The
i-th xy-path consists of s(xi) connected Kv

w’s (x-path) and s(yi) connected Kv
w’s

(y-path). The x- and the y-path are connected by one P v,3
w called separating

path. Analogously, H represents the values in the vector b, see Eq. 3. There is
a b-path between the anchor vertices ci and ci+n representing the value bi. The
i-th b-path consists of bi + 1 Kv

w’s.
Both, G and H, are series-parallel and can be computed in polynomial time

with respect to the input size of NMwTS since the problem is NP-complete in
the strong sense.

Lemma 1. G and H are biconnected series-parallel graphs and can be con-
structed in polynomial time with respect to the values of the NMwTS instance.

Proof (Sketch). Consider either G or H without x̄, due to the anchor paths,
the graph is connected, the same is true for G and H without any other ver-
tex. Paths and cycles are series-parallel. Hence, Kv

w’s are series-parallel and
thus the xy-, b-paths and base-gadgets are series-parallel, too. They can be
merged with P -operations such that x̄ and an anchor vertex are the s- and
t-nodes. Also G and H contain |V (G)| = n (4Σs + 3) + 3 (Σs + 1) , |V (H)| =
n (4Σs + 3) + 3 (Σb + 1) , |E (G) | = 4 (Σsn + Σs + n) + 3n − 2 and |E (H) | =
4 (Σsn + Σb + 2n)+n− 2 vertices and edges, which is polynomial regarding the
instance size of NMwTS. �
Due to their construction, all MCS of G and H have common characteristics
regarding their size and the vertices contained in them. First we show, that not
all vertices in the xy- and b-paths can be contained in an MCS.

Lemma 2. Let P be an xy-path and P ′ be a b-path each with an additional
edge incident to the vertices with degree one, then an MCS of P and P ′ has size
min (|V (P )|, |V (P ′)|) − 1.

Proof (Sketch). Due to their construction there are k, l ∈ N such that 3k =
|V (P )| and 3l = |V (P ′)|. If k ≤ l, then the xy-path contains more than one
K3 less than the b-path. Since the separating path cannot be mapped to a K3

there is at least one vertex which cannot be contained in an MCS. If k > l, then
the xy-path contains at least two more K3’s than the b-path, hence each vertex
except one in the b-path can be contained in the MCS. �
We can also prove, that all vertices in the base gadgets are contained in the MCS
except for the vertices only contained in the anchor paths.

Lemma 3. Let B0 and Bn be two base-gadgets, then an MCS of B0 and Bn has
size |V (B0)| − n + 1.



206 N. Kriege et al.

Proof (Sketch). The vertices with unbounded degree are mapped to each other,
as otherwise not all cycles can be contained in the MCS. In B0 the anchor
paths are between the chordless cycles and in Bn the anchor paths are between
the cycles with chords. If vertices of cycles of different types are mapped, then
one vertex of each cycle and the adjacent anchor vertex cannot be contained in
the MCS. Hence, only the n − 1 vertices contained in the anchor paths cannot
be contained in the MCS. �

3.2 Correctness of the Polynomial-Time Reduction

For the reduction, we show that an instance of NMwTS has a numerical matching
if and only if an MCS of the corresponding graphs G and H has a specific size.

Lemma 4. An instance (X,Y, s, b) of NMwTS has a numerical matching if and
only if |V (G)| = |V (H)| and an MCS of G and H has size |V (G)| − 2n + 1.

Proof (Sketch). Let (X,Y, s, b) be an instance of NMwTS and G,H graphs con-
structed as described above. Assume that there is a numerical matching. Hence,
Σs = Σb and thus |V (G)| = |V (H)|. An MCS of all xy-paths, b-paths and the
base-gadgets has size |V (G)| − n and |V (G)| − n + 1 (Lemmas 2 and 3). Even
though they have been considered separately, the results can be combined, since
all relevant vertices, the ones adjacent to the base-gadget or the xy-paths and
b-paths, are contained in each MCS.

Now assume |V (G)| = |V (H)| and there is an MCS with size |V (G)|−2n+1.
Since we only consider connected MCSs, the vertex with unbounded degree must
be contained in this MCS. For each xy-path and b-path there has to be one vertex
which cannot be contained in an MCS (Lemma 2). The same is true for the base-
gadgets, since the vertices of the anchor paths cannot be contained (Lemma 3).
The vertices of the separating paths are not contained in an MCS. Thus the
values of the elements of X and Y are correctly bipartitioned. Due to the size
of the graphs for each bi there is an xj and yj′ such that bi = s(xj) + s(yj′). �
Since G and H both have a maximum degree bounded by 3 for all but one vertex,
the next result follows accordingly.

Theorem 1. MCS≤3,1 in biconnected series-parallel graphs is NP-hard.

4 The Block-and-Bridge Preserving Maximum Common
Subgraph Problem in Series-Parallel Graphs

In this section we consider the block-and-bridge preserving MCS (BBP-MCS)
which has been introduced in [17] and also is used in [3]. An MCS is a BBP-
MCS if it satisfies the following two conditions:

(BBP1) Any two vertices in different blocks in a common subgraph must not
be contained in the same block of an input graph.

(BBP2) Each bridge in a common subgraph is a bridge in both input graphs.



On Maximum Common Subgraph Problems in Series-Parallel Graphs 207

We use the polynomial time algorithm for computing the size of a biconnected
MCS of two biconnected series-parallel graphs (2-MCS) [10] to obtain an algo-
rithm which solves BBP-MCS in arbitrary series-parallel graphs. To do so, we
make use of a characteristic of an MCS: Every two vertices in an input graph
which are not in the same block cannot be in the same block in any common sub-
graph. Hence, vertices in one block can only be mapped to vertices contained in
exactly one block due to condition (BBP1). With respect to BBP-MCS, cutver-
tices have only to be considered if two of them are mapped. Since in biconnected
graphs there are no cutvertices, BBP-MCS and 2-MCS are equivalent in those.

4.1 The Algorithm

We present an algorithm which solves BBP-MCS in polynomial time. The algo-
rithm uses the BC-trees of the input graphs as underlying data structure. We
apply the idea presented in [14] for MCS in trees, to the BC-trees. We decom-
pose the BC-trees in rooted subtrees and compute the BBP-MCS for those.
These results are then combined with MwbM. Since we want to solve BBP-MCS
we do not need to compare all combination of subtrees, hence we use block split
graphs to define the ones that must be considered. Let G be a series-parallel
graph and TBC,r

G the BC-tree of G rooted at r ∈ E(G). Let S ⊆ V (G) be a
1- or 2-separator of G and {C1, . . . , Cn} the connected components of G \ S

such that r ∈ E(C1). Then TBC,r
G,S denotes the induced subgraph G[V (C1) ∪ S]

and TBC,r
G,S denotes the induced subgraph G[

⋃n
i=2 Ci ∪ S], called the block split

graphs of G. BBP-MCS is the main procedure of the algorithm. Given two

Algorithm 1. BBP-MCS(G,H)
Input: Two series-parallel graphs G and H.
Output: Size of a BBP-MCS of the series-parallel graphs G and H.
1: TBC

G ← BC(G); TBC
H ← BC(H); z ← 0

2: for all (Λ, Λ′) ∈ VBl(T
BC
G ) × VBl(T

BC
H ) do

3: T SP
Λ ← SP(SBC

Λ ); T SP
Λ′ ← SP(SBC

Λ′ )
4: for all (λ, λ′) ∈ VS(T SP

Λ ) × VS(T SP
Λ′ ) do

5: r ← arbitrary (u, v) ∈ E(Sλ) ∩ E(G); Root(TBC
G , r)

6: for all r′ = (u′, v′) ∈ E(Sλ′) ∩ E(H) do
7: Root(TBC

H , r′)
8: p1 ← BBP-MCS-S(u, v, λ, u′, v′, λ′)
9: p2 ← BBP-MCS-S(u, v, λ, v′, u′, λ′)

10: z ← max(z, p1, p2)
11: for all (Λ, Λ′) ∈ VBr(T

BC
G ) × VBr(T

BC
H ) do

12: r = (u, v) ← E(SBC
Λ ); Root(TBC

G , r)
13: r′ = (u′, v′) ← E(SBC

Λ′ ); Root(TBC
H , r′)

14: p1 ← BBP-MCS-C(u, u′) + BBP-MCS-C(v, v′)
15: p2 ← BBP-MCS-C(u, v′) + BBP-MCS-C(v, u′)
16: z ← max(z, p1, p2)
17: return z + 2



208 N. Kriege et al.

series-parallel graphs it computes the size of a BBP-MCS. To do so, first the
BC-trees and SP-trees of the non-bridge nodes are computed. Then the 2-MCS
for each combination of bridges or non-bridge nodes is computed. For each of
those combinations, the BC-trees are rooted at an edge r and r′ in the skeleton
graphs of these nodes. If the two nodes are non-bridge nodes, the BBP-MCS of
those is computed using a 2-MCS algorithm modified to handle cutvertices, see
Procedure 2.

Procedure 2. BBP-MCS-S(u, v, λ, u′, v′, λ′)
Input: Vertices u, v ∈ V (G), u′, v′ ∈ V (H) and S-nodes λ ∈ VS(T SP

·,G), λ′ ∈ VS(T SP
·,H).

Output: Size of a BBP-MCS of TBC,r
G,{u,v} and TBC,r

G,{u′,v′} such that u �→ u′ and v �→ v′.
1: e = (v, w) ← Next(v, λ); e′ = (v′, w′) ← Next(v′, λ′)
2: if e = ref(λ) then return BBP-MCS-S(u, v, pS(λ), u′, v′, λ′)
3: if e′ = ref(λ′) then return BBP-MCS-S(u, v, λ, u′, v′, pS(λ′))
4: if w = u and w′ = u′ then return MCS-E(e, λ, e′, λ′) + BBP-MCS-C(w, w′)
5: if w = u xor w′ = u′ then return −∞
6: z ← MCS-E(e, λ, e′, λ′)+BBP-MCS-S(u, w, λ, u′, w′, λ′)+BBP-MCS-C(w, w′)+1
7: if e /∈ E(G) or e′ /∈ E(H) then
8: if e ∈ E(G) then M ← {λ} else M ← cS(e)
9: if e′ ∈ E(H) then M ′ ← {λ′} else M ′ ← cS(e′)

10: for all (η, η′) ∈ M × M ′ do
11: p ← BBP-MCS-S(u, v, η, u′, v′, η′)
12: z ← max(z, p)
13: return z

BBP-MCS-S computes the 2-MCS of two non-bridge blocks [10, MCS-S].
It utilizes the rooted SP-trees given by the BC-tree decomposition. To obtain a
BBP-MCS each common subgraph of a non-bridge block must be biconnected.
Hence we traverse through the skeleton graph of the SP-trees and in the end
have to return to the first visited vertex of the non-bridge block as otherwise the
computed subgraph of the block is not biconnected. Whenever BBP-MCS-S
is called, there are three cases regarding the edges incident to the considered
vertices: If both are real, the extension of the mapping is straightforward. If
both are virtual, the block split graphs TBC,r

G,{v,w} and TBC,r′

H,{v′,w′} must be mapped,
where v, w, v′ and w′ are the considered vertices. If one is real while the other
is virtual, the real edges in an S-node pertinent to the virtual edge have to
be considered. In addition to these cases, whenever two cutvertices w,w′ are
mapped, the block split graphs TBC,r

G,{w} and TBC,r′

H,{w′} must be mapped.
BBP-MCS-C computes the size of a BBP-MCS of two block split graphs

obtained from cutvertices. Therefore, 0 is returned if the given vertices u and
u′ are not both cutvertices. Otherwise, we consider their child nodes cB(u) and
cB(u′) in the BC-trees rooted at r and r′, respectively. To this end, we create
a weighted complete bipartite graph C with vertex partition cB(u) ∪ cB(u′).
The weight w : E(C) → N ∪ {−∞} of an edge is the size of a BBP-MCS of the
two block split graphs associated with its endpoints. All edges incident to nodes



On Maximum Common Subgraph Problems in Series-Parallel Graphs 209

Procedure 3. BBP-MCS-C(u, u′)
Input: Two cutvertices u ∈ V (G), u′ ∈ V (H).
Output: Size of a BBP-MCS of TBC,r

G,{u} and TBC,r
G,{u′} such that u �→ u′.

1: if �λ ∈ VC(TBC
G ) : u ∈ V (Sλ) or �λ′ ∈ VC(TBC

H ) : u′ ∈ V (Sλ) then return 0
2: M ← cB(u); M ′ ← cB(u′); w ← ∅
3: for all d = (Λ, Λ′) ∈ VBl(M) × VBl(M

′) do
4: T SP

Λ ← SP(SBC
Λ ); T SP

Λ′ ← SP(SBC
Λ′ )

5: if ∃λ ∈ VP (T SP
Λ ) : u ∈ V (Sλ) then N ← cS(λ) else N ← {λ}

6: if ∃λ′ ∈ VP (T SP
Λ′ ) : u′ ∈ V (Sλ′) then N ′ ← cS(λ′) else N ′ ← {λ′}

7: for all (λ, λ′) ∈ N × N ′ do
8: (s, t) ← arbitrary (s, t) ∈ E(Sλ) ∩ E(G) : s = u
9: for all (s′, t′) ∈ E(Sλ′) ∩ E(H) : s′ = u′ do

10: w(d) ← max(w(d),BBP-MCS-S(s, t, λ, s′, t′, λ′))
11: for all d = (Λ, Λ′) ∈ VBr(M) × VBr(M) do
12: (u, v) ← Next(u, Λ); (u′, v′) ← Next(u′, Λ′)
13: w(d) ← BBP-MCS-C(v, v′) + 1
14: return MwbMatching(M, M ′, w)

Procedure 4. MCS-E(e, λ, e′, λ′)
Input: Edges e = (u, v) ∈ E(Sλ) and e′ = (u′, v′) ∈ E(S′

λ)
Output: Size of a BBP-MCS of TBC,r

G,{u,v} and TBC,r
G,{u′,v′} such that u �→ u′ and v �→ v′.

1: if e ∈ E(G) xor e′ ∈ E(H) then return −∞
2: if e ∈ Er(Sλ) or e′ ∈ Er(Sλ′) then return 0
3: M ← cS(e); M ′ ← cS(e′); w ← ∅
4: for all d = (η, η′) ∈ M × M do
5: w(d) ← BBP-MCS-S(u, v, η, u′, v′, η′)
6: p ← MwbMatching(M, M ′, w)
7: if p = 0, e /∈ E(G) or e′ /∈ E(H) then return −∞ else return p

associated with a block and a bridge have weight −∞ as a mapping of those
contradicts restriction (BBP1). It is important to notice, that the computation
of the BBP-MCS of two blocks is not the same as in the main procedure, since
the cutvertices must be mapped. Hence, we only consider mappings where these
vertices are mapped, see Lines 8 and 9, Procedure 3. The child S-nodes of a
P -node λ are denoted by cS(λ) and pS(λ) refers to its parent.

MCS-E is also called whenever the considered subgraph is extended by
adding a new vertex to it. If both edges between the newly mapped vertex
and the vertex added before are virtual, then the vertices are a separator, see
(SP1) and the BBP-MCS of the block split graph has to be added to the result.
Next(u, λ) and Next(u,Λ) return the vertex adjacent to u which yet has not
been considered in the skeleton graph of λ and Λ, respectively. Root roots
the BC-tree at the given edge and induces a rooting in all considered SP-trees.
A more detailed description of the algorithm can be found in [12].



210 N. Kriege et al.

4.2 Analysis

We argue that Algorithm 1 solves BBP-MCS in polynomial time and show that
if both input graphs are outerplanar then the running time can be improved.

Theorem 2. Algorithm 1 solves BBP-MCS in series-parallel graphs in time
O(n6).

Proof. The correctness of the algorithm is based on the argumentation above
and [10]. To prove the running time, we transform the algorithm in a dynamic
programming approach. In [10, Th.1] it is shown, that 2-MCS can be solved in
time O(n6) while storing the 2-MCS of two split graphs in a table of size O(n4).

We assume w.l.o.g. that for each smaller block split graph the BBP-MCS has
been computed whenever BBP-MCS-S is called. The size of BBP-MCS for each
pair of child blocks has already been computed, hence the BBP-MCS of the block
split graphs can be obtained with MwbM in O(n3) (BBP-MCS-C). The tables
have size O(n4) and the only loop requires total time O(n2) because the results
have already been computed. Thus one call of BBP-MCS-S has running time
O(n4). Since there are only O(n2) possible combinations of block split graphs
the total running time of BBP-MCS-S is O(n6).

BBP-MCS-C can be computed in time O(n5) since the size of a BBP-MCS
of the smaller block split graphs has already been computed. Again MwbM can
be solved in time O(n3) since at most O(n2) of these matching problems must
be solved, the total running time of BBP-MCS-C is O(n5).

As MCS-E has not been changed with respect to [10], its running time is
O(n5), resulting in a total running time of O(n6). �
Even though MwbM can be solved in O(n3) it is a limiting factor regarding the
running time. If we consider outerplanar graphs each P -node in the SP-trees has
degree two which concludes in the following theorem.

Theorem 3. BBP-MCS in outerplanar graphs can be solved in time O (
n5

)
.

Proof. The proof is similar to the proof of Theorem 2. Since all P -nodes in
SP-trees of outerplanar graphs have degree two, the total running time of BBP-
MCS-S reduces to O(n4). Moreover, there is no need to use MwbM, as the
bipartite graphs are K2’s. Consequently the running time of MCS-E is O(n3).

BBP-MCS-C considers all adjacent nodes in the BC-tree whose number is
not restricted if the graph is outerplanar and therefore still unbounded. Therefore
the total running time is O(n5). �
It was known that BBP-MCES in outerplanar graphs can be solved in O(n7),
where MCES refers to a variation of the problem that asks for edge-induced
common subgraphs with maximum number of edges [17]. Note that — in contrast
to the variant we consider — a subgraph where in one input graph two vertices
are adjacent while the vertices in the other are not, is a feasible MCES.



On Maximum Common Subgraph Problems in Series-Parallel Graphs 211

5 Concluding Remarks

We have shown that MCS in series-parallel graphs with degree bounded by 3 for
all but one vertex is NP-hard by reduction of NMwTS. Then we have extended a
2-MCS algorithm [10] to solve BBP-MCS with running time O(n6). In outerpla-
nar graphs, it can solve BBP-MCS in O(n5) which is an improvement regarding
the algorithm solving BBP-MCES in outerplanar graphs in O(n7) [17]. BBP-
MCES in outerplanar graphs was taken as basis to obtain polynomial time solu-
tions for MCES in outerplanar graphs of bounded degree [3] and it has yet to be
decided whether MCES in series-parallel graphs of bounded degree can be solved
in polynomial time. To the author’s best knowledge, there is only one problem
which is known to be solvable in polynomial time in outerplanar graphs, but is
NP-complete in series-parallel graphs: the edge-disjoint paths problem [15]. It
still is unknown, whether MCS in series-parallel graphs is solvable in polyno-
mial time if all vertices have bounded degree. Since the series-parallel graphs are
equivalent to the partial 2-trees, there is a parameterized class of graphs, i.e.,
the partial k-trees, for which it is known that MCS is NP-complete for k ≥ 11
even when the degree is bounded [2]. For all other k > 1, the complexity has yet
to be decided.

References

1. Akutsu, T.: A polynomial time algorithm for finding a largest common subgraph
of almost trees of bounded degree. IEICE Trans. Fundam. E76–A(9), 1488–1493
(1993)

2. Akutsu, T., Tamura, T.: On the complexity of the maximum common subgraph
problem for partial k -trees of bounded degree. In: Chao, K.-M., Hsu, T., Lee, D.-T.
(eds.) ISAAC 2012. LNCS, vol. 7676, pp. 146–155. Springer, Heidelberg (2012)

3. Akutsu, T., Tamura, T.: A polynomial-time algorithm for computing the maxi-
mum common connected edge subgraph of outerplanar graphs of bounded degree.
Algorithms 6(1), 119–135 (2013)

4. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

5. Chimani, M., Hliněný, P.: A tighter insertion-based approximation of the crossing
number. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS,
vol. 6755, pp. 122–134. Springer, Heidelberg (2011)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. WH Freeman and Company, New York (1979)

7. Gupta, A., Nishimura, N.: Sequential and parallel algorithms for embedding prob-
lems on classes of partial k-trees. In: Schmidt, E.M., Skyum, S. (eds.) SWAT 1994.
LNCS, vol. 824. Springer, Heidelberg (1994)

8. Gupta, A., Nishimura, N.: The complexity of subgraph isomorphism for classes of
partial k-trees. Theoret. Comput. Sci. 164(1–2), 287–298 (1996)

9. Horvth, T., Ramon, J.: Efficient frequent connected subgraph mining in graphs of
bounded tree-width. Theoret. Comput. Sci. 411(3133), 2784–2797 (2010)

10. Kriege, N., Mutzel, P.: Finding maximum common biconnected subgraphs in series-
parallel graphs. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS
2014, Part II. LNCS, vol. 8635, pp. 505–516. Springer, Heidelberg (2014)



212 N. Kriege et al.

11. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logis-
tics Q. 2(1–2), 83–97 (1955)

12. Kurpicz, F.: Efficient algorithms for the maximum common subgraph problem in
partial 2-trees. Master’s thesis, TU Dortmund (2014)

13. Matouek, J., Thomas, R.: On the complexity of finding iso- and other morphisms
for partial k-trees. Discrete Math. 108(1–3), 343–364 (1992)

14. Matula, D.W.: Subtree isomorphism in O(n5/2). In: Algorithmic Aspects of Com-
binatorics, Ann. Discrete Math., vol. 2, pp. 91–106 (1978)

15. Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is np-complete
for series-parallel graphs. Discrete Appl. Math. 115(1), 177–186 (2001)

16. Schietgat, L., Costa, F., Ramon, J., De Raedt, L.: Effective feature construction
by maximum common subgraph sampling. Mach. Learn. 83(2), 137–161 (2011)

17. Schietgat, L., Ramon, J., Bruynooghe, M.: A polynomial-time metric for outerpla-
nar graphs. In: Mining and Learning with Graphs (MLG) (2007)

18. Schietgat, L., Ramon, J., Bruynooghe, M., Blockeel, H.: An efficiently computable
graph-based metric for the classification of small molecules. In: Boulicaut, J.-F.,
Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 197–209.
Springer, Heidelberg (2008)



Profile-Based Optimal Matchings in the
Student/Project Allocation Problem

Augustine Kwanashie1(B), Robert W. Irving1, David F. Manlove1,
and Colin T.S. Sng2

1 School of Computing Science, University of Glasgow, Glasgow, UK
a.kwanashie.1@research.gla.ac.uk

2 EBay Inc., Austin, TX, USA

Abstract. In the Student/Project Allocation problem (spa) we seek to
assign students to individual or group projects offered by lecturers. Stu-
dents provide a list of projects they find acceptable in order of preference.
Each student can be assigned to at most one project and there are con-
straints on the maximum number of students that can be assigned to each
project and lecturer. We seek matchings of students to projects that are
optimal with respect to profile, which is a vector whose rth component
indicates how many students have their rth-choice project. We present
an efficient algorithm for finding agreedy maximum matching in the spa
context – this is a maximum matching whose profile is lexicographically
maximum. We then show how to adapt this algorithm to find a generous
maximum matching – this is a matching whose reverse profile is lexico-
graphically minimum. Our algorithms involve finding optimal flows in
networks. We demonstrate how this approach can allow for additional
constraints, such as lecturer lower quotas, to be handled flexibly.

1 Introduction

In most academic programmes students are usually required to take up indi-
vidual or group projects offered by lecturers. Students are required to rank a
subset of the projects they find acceptable in order of preference. Each project
is offered by a unique lecturer who may also be allowed to rank the projects
she offers or the students who are interested in taking her projects in order of
preference. Each student can be assigned to at most one project and there are
usually constraints on the maximum number of students that can be assigned
to each project and lecturer. The problem then is to assign students to projects
in a manner that satisfies these capacity constraints while taking into account
the preferences of the students and lecturers involved. This problem has been
described in the literature as the Student-Project Allocation problem (spa). In

D.F. Manlove—Supported by Engineering and Physical Sciences Research Council
grant EP/K010042/1.
C.T.S. Sng—Work done while at the School of Computing Science, University of
Glasgow.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 213–225, 2015.
DOI: 10.1007/978-3-319-19315-1 19



214 A. Kwanashie et al.

some cases, lecturer lower quotas, indicating the minimum number of students
to be assigned to each lecturer, may also be specified.

Although described in an academic context, applications of spa need not be
limited to assigning students to projects but may extend to other scenarios, such
as the assignment of employees to posts in a company where available posts are
offered by various departments. It is widely accepted that matching problems
(like spa) are best solved by centralised matching schemes where agents submit
their preferences and a central authority computes an optimal matching that
satisfies all the specified criteria [5]. Moreover the potentially large number of
students and projects involved in these schemes motivates the need to discover
efficient algorithms for finding optimal matchings.

In spa, students are always required to provide preference lists over projects.
However, variants of the problem may be defined depending on the presence and
nature of lecturer preference lists. Some variants of spa require both students
and lecturers to provide preference lists. These variants include: (i) the Stu-
dent/Project Allocation problem with lecturer preferences over Students (spa-s)
[2] which requires each lecturer to rank the students who find at least one of
her offered projects acceptable, in order of preference, (ii) the Student/Project
Allocation problem with lecturer preferences over Projects (spa-p) [11,14] which
involves lecturers ranking the projects they offer in order of preference and (iii)
the Student/Project Allocation problem with lecturer preferences over Student-
Project pairs (spa-(s,p)) [2,3] where lecturers rank student-project pairs in order
of preference. These variants of spa have been studied in the context of the well-
known stability solution criterion for matching problems [5]. The general stabil-
ity objective is to produce a matching M in which no student-project pair that
are not currently matched in M can simultaneously improve by being paired
together (thus in the process potentially abandoning their partners in M). A
full description of the results relating to these spa variants can be found in [13].

1.1 One-Sided Preferences and Profile-Based Optimality

In many practical spa applications it is considered appropriate to allow only
students to submit preferences over projects. When preferences are specified by
only one set of agents in a two-sided matching problem, the notion of stability
becomes irrelevant. This motivates the need to adopt alternative solution criteria
when lecturer preferences are not allowed. In this subsection we mention some of
these solution criteria and briefly present results relating to them. These criteria
consider the size of the matchings produced as well as the satisfaction of the
students involved.

When the preference lists of the lecturers are ignored, the spa problem
becomes a two-sided matching problem with one-sided preferences. Various opti-
mality criteria for such problems have been studied in the literature [13]. Some
of these criteria depend on the profile or the cost of a matching. In the spa
context, the profile of a matching is a vector whose rth component indicates
the number of students obtaining their rth-choice project in the matching. The
cost of a matching (w.r.t. the students) is the sum of the ranks of the assigned



Profile-Based Optimal Matchings in the Student/Project Allocation Problem 215

projects in the students’ preference lists (that is, the sum of rxr taken over all
components r of the profile, where xr is the rth component value). A minimum
cost maximum matching is a maximum cardinality matching with minimum
cost. A rank-maximal matching is a matching that has lexicographically max-
imum profile [8,10]. That is the maximum number of students are assigned to
their first-choice project and subject to this, the maximum number of students
are assigned to their second choice project and so on. However a rank maximal
matching need not be a maximum matching in the given instance (see, e.g., [13,
p. 43]). Since it is usually important to match as many students as possible,
we may first optimise the size of the matching before considering student sat-
isfaction. Thus we define a greedy maximum matching [6,9,15] as a maximum
matching which has lexicographically maximum profile. The intuition behind
both rank-maximal and greedy maximum matchings is to maximize the number
of students matched with higher ranked projects. This may lead to some stu-
dents being matched to projects that are relatively low on their preference lists.
An alternative approach is to find a generous maximum matching which is a
maximum matching in which the minimum number of students are matched to
their Rth-choice project (where R is the maximum length of any students’ pref-
erence list) and subject to this, the minimum number of students are matched to
their (R−1)th-choice project and so on. Greedy and generous maximum match-
ings have been used to assign students to projects in the School of Computing
Science, and students to elective courses in the School of Medicine, both at the
University of Glasgow, since 2007.

A special case of spa, where each project is offered by a unique lecturer
with an infinite upper quota and zero lower quota, can be modelled as the
Capacitated House Allocation problem (cha). This is a variant of the well-studied
House Allocation problem (ha) [7,19] which involves the allocation of a set of
indivisible goods (which we call houses) to a set of applicants. In cha, each
applicant is required to rank a subset of the houses in order of preference with
the houses having no preference over applicants. The applicants play the role of
students and the houses play the role of projects and lecturers. As in the case of
spa, we seek to find a many-to-one matching comprising applicant-house pairs.
Efficient algorithms for finding profile-based optimal matchings in cha have been
studied in the literature [6,9,15,17]. The most efficient of these is the O(R∗m

√
n)

algorithm for finding rank-maximal, greedy maximum and generous maximum
matchings in cha problems due to Huang et al. [6] where R∗ is the maximum
rank of any applicant in the matching, m is the sum of all the preference list
lengths and n is the total number of applicants and houses. These models however
fail to address the issue of load balancing among lecturers. In order to keep
the assignment of students fair each lecturer will typically have a minimum
(lower quota) and maximum (capacity/upper quota) number of students they are
expected to supervise. These numbers may vary for different lecturers according
to other administrative and academic commitments. Finding efficient algorithms
for profile-based optimal matchings when considering these lecturer upper and
lower quotas is the main motivation of this paper.



216 A. Kwanashie et al.

The cha algorithms mentioned above are based on modelling the problem
in terms of a bipartite graph with the aim of finding a matching in the graph
which satisfies the stated criteria. However a more flexible approach would be
to model the problem as a network with the aim of finding a flow that can be
converted to a matching which satisfies the stated criteria. spa has also been
investigated in the network flow context [1,18] where a minimum cost maximum
flow algorithm is used to find a minimum cost maximum matching and other
profile-based optimal matchings. The model presented in [18] allows for lower
quotas on lecturers and projects as well as alternative lecturers to supervise
each project. By an appropriate assignment of edge weights in the network it is
shown that a minimum cost maximum flow algorithm (due to Orlin [16]) can
find rank maximal, generous maximum and greedy maximum matchings in a
spa instance. This takes O(m log n(m + n log n)) time in the worst case, where
m and n are the number of vertices and edges in the network respectively. In
the spa context this takes O(m2

2 log(n1 +n2)+m2(n1 +n2) log2(n1 +n2)) time,
where n1 is the number of students, n2 is the number of projects and m2 is the
sum of all the students’ preference list lengths. However this approach involves
assigning exponentially large edge weights (see, e.g., [13, p. 405]), which may
be computationally infeasible for larger problem instances due to floating point
inaccuracies in dealing with such high numbers. For example given a large spa
instance involving say, n1 = 100 students each ranking R = 10 projects in order
of preference, edge weights could potentially be of the order nR

1 = 10010 = 1020

(and arithmetic involving such weights could easily require more than the 15–
17 significant figures available in a 64-bit double-precision floating representa-
tion). Since the flow algorithms involve comparing these edge weights, floating
point precision errors could easily cause them to fail in practice. Moreover using
the standard assumption that arithmetic on numbers of magnitude O(n1) takes
constant time, arithmetic on edge weights of magnitude O(nR

1 ) would add an
additional factor of O(R) onto the running time of Orlin’s algorithm.

1.2 Our Contribution

In this paper we present efficient algorithms for finding optimal matchings to spa
problems based on the profile-based greedy maximum and generous maximum
optimality criteria. Our model allows for lecturer upper and lower quotas and
finds these profile-based optimal matchings without the need for exponentially-
large edge weights.

We model spa as a network flow problem and describe a modified augmenting
path algorithm for finding a maximum flow which can then be transformed
to an optimal spa matching. This approach introduces greater flexibility by
allowing side constraints like lecturer lower quotas to be added to the model.
Our algorithms run in O(n2

1Rm2) time. The elimination of large edge weights
comes at the expense of a slightly slower running time than that of Orlin’s
algorithm in the worst case (i.e. slower by a factor of O(max{ n1

logn1
, n2
logn2

}) in
all cases. See [12] for further details).



Profile-Based Optimal Matchings in the Student/Project Allocation Problem 217

The remainder of this paper is organised as follows. In Sect. 2 we formally
define the model. In Sect. 3 we describe an efficient algorithm for finding a greedy
maximum matching given a spa instance. In Sect. 4 we show how this algorithm
can be modified in order to find a generous maximum matching. Finally in Sect. 5
we explain how the approach can be extended to allow lecturer lower quotas. All
proofs for this paper can be found in [12].

2 Preliminary Definitions

An instance I of the spa problem consists of a set S of students, a set P
of projects and a set L of lecturers. Each student si ranks a set Ai ⊆ P of
projects that she considers acceptable in order of preference. This preference list
of projects may contain ties. Each project pj ∈ P has an upper quota cj indicat-
ing the maximum number of students that can be assigned to it. Each lecturer
lk ∈ L offers a set of projects Pk ⊆ P and has an upper quota d+k indicating
the maximum number of students that can be assigned to lk. Unless explicitly
mentioned, we assume that all lecturer lower quotas are equal to 0. The sets
{P1, . . . , Pk} partition P. If project pj ∈ Pk, then we denote lk = l(pj).

An assignment M in I is a subset of S × P such that:

1. Student-project pair (si, pj) ∈ M implies pj ∈ Ai.
2. For each student si ∈ S, |{(si, pj) ∈ M : pj ∈ Ai}| ≤ 1.

If (si, pj) ∈ M we denote M(si) = pj . For a project pj , M(pj) is the set of
students assigned to pj in M . Also if (si, pj) ∈ M and pj ∈ Pk we say student si
is assigned to project pj and to lecturer lk in M . We denote the set of students
assigned to a lecturer lk as M(lk). A matching in this problem is an assignment
M that satisfies the capacity constraints of the projects and lecturers. That is,
|M(pj)| ≤ cj for all projects pj ∈ P and |M(lk)| ≤ d+k for all lecturers lk ∈ L.

Given a student si and a project pj ∈ Ai, we define rank(si, pj) as 1 + the
number of projects that si prefers to pj . Let R be the maximum rank of a project
in any student’s preference list. We define the profile ρ(M) of a matching M in
I as an R-tuple (x1, x2, ..., xR) where for each r (1 ≤ r ≤ R), xr is the number
of students si assigned in M to a project pj such that rank(si, pj) = r. Let α =
(x1, x2, ..., xR) and σ = (y1, y2, ..., yR) be any two profiles. We define the empty
profile OR = (o1, o2, ..., oR) where or = 0 for all r (1 ≤ r ≤ R). We also define the
negative infinity profile B−

R = (b1, b2, ..., bR) where br = −∞ (1 ≤ r ≤ R) and
the positive infinity profile B+

R = (b1, b2, ..., bR) where br = +∞ (1 ≤ r ≤ R). We
define the sum of two profiles α and σ as α + σ = (x1 + y1, x2 + y2, ..., xR + yR).
Given any q (1 ≤ q ≤ R), we define α + q = (x1, ..., xq−1, xq + 1, xq+1, ..., xR).
We define α − q in a similar way.

We define the total order �L on profiles as follows. We say α left dominates
σ, denoted by α �L σ if there exists some r (1 ≤ r ≤ R) such that xr′ = yr′

for 1 ≤ r′ < r and xr > yr. We define weak left domination as follows. We say
α �L σ if α = σ or α �L σ. We may also define an alternative total order ≺R

on profiles as follows. We say α right dominates σ (α ≺R σ) if there exists some



218 A. Kwanashie et al.

r (1 ≤ r ≤ R) such that xr′ = yr′ for r < r′ ≤ R and xr < yr. We also define
weak right domination as follows. We say α 
R σ if α = σ or α ≺R σ.

The spa problem can be modelled as a network flow problem. Given a spa
instance I, we construct a flow network N(I) = 〈G, c〉 where G = (V,E) is a
directed graph and c is a non-negative capacity function c : E → R

+ defining
the maximum flow allowed through each edge in E. The network consists of
a single source vertex vs and sink vertex vt and is constructed as follows. Let
V = {vs, vt}∪S∪P∪L and E = E1∪E2∪E3∪E4 where E1 = {(vs, si) : si ∈ S},
E2 = {(si, pj) : si ∈ S, pj ∈ Ai}, E3 = {(pj , lk) : pj ∈ P, lk = l(pj)} and
E4 = {(lk, vt) : lk ∈ L}. We set the capacities as follows: c(vs, si) = 1 for all
(vs, si) ∈ E1, c(si, pj) = 1 for all (si, pj) ∈ E2, c(pj , lk) = cj for all (pj , lk) ∈ E3

and c(lk, vt) = d+k for all (lk, vt) ∈ E4.
We call a path P ′ from vs to some project pj a partial augmenting path if

P ′ can be extended by adding the edges (pj , l(pj)) and (l(pj), vt) to form an
augmenting path with respect to flow f . Given a partial augmenting path P ′

from vs to pj , we define the profile of P ′, denoted ρ(P ′), as follows:

ρ(P ′) = OR +
∑

{rank(si, pj) : (si, pj) ∈ P ′ ∧ f(si, pj) = 0}
−

∑
{rank(si, pj) : (pj , si) ∈ P ′ ∧ f(si, pj) = 1}

where additions are done with respect to the + and − operations on profiles.
Unlike the profile of a matching, the profile of an augmenting path may contain
negative values. Also if P ′ can be extended to a full augmenting path P with
respect to flow f by adding the edges (pj , l(pj)) and (l(pj), vt) where vs and pj
are the endpoints of P ′, then we define the profile of P , denoted by ρ(P ), to be
ρ(P ) = ρ(P ′). Multiple partial augmenting paths may exist from vs to pj , thus
we define the maximum profile of a partial augmenting path from vs to pj with
respect to �L, denoted Φ(pj), as follows:

Φ(pj) = max�L

{ρ(P ′) : P ′ is a partial augmenting path from vs to pj}.

An augmenting path P is called a maximum profile augmenting path if ρ(P ) =
max�L

{Φ(pj) : pj ∈ P}. Let f be an integral flow in N . We define the matching
M(f) in I induced by f as follows: M(f) = {(si, pj) : f(si, pj) = 1}. Clearly by
construction of N , M(f) is a matching in I, such that |M(f)| = |f |. If f is a flow
and P is an augmenting path with respect to f then ρ(M ′) = ρ(M)+ρ(P ) where
M = M(f),M ′ = M(f ′) and f ′ is the flow obtained by augmenting f along P .
Also given a matching M in I, we define a flow f(M) in N corresponding to M
as follows:

∀ (vs, si) ∈ E1, f(vs, si) = 1 if si is matched in M and f(vs, si) = 0 otherwise.
∀ (si, pj) ∈ E2, f(si, pj) = 1 if (si, pj) ∈ M and f(si, pj) = 0 otherwise.
∀ (pj , lk) ∈ E3, f(pj , lk) = c′

j where c′
j = |M(pj)|

∀ (lk, vt) ∈ E4, f(lk, vt) = d′
k where d′

k = |M(lk)|



Profile-Based Optimal Matchings in the Student/Project Allocation Problem 219

students’ preferences: lecturers’ offerings:

s1 : p1 p2 p3 l1 : {p1, p2}
s2 : p1 l2 : {p3}
s3 : p2 p3 project capacities: c1 = 1, c2 = 1, c3 = 1

lecturer capacities: d1 = 2, d2 = 1

Fig. 1. A spa instance I

We define a student si to be exposed if f(vs, si) = 0 meaning that there is no
flow through si. Similarly we define a project pj to be exposed if f(pj , lk) < cj
and f(lk, vt) < d+k where lk = l(pj).

Let M be a matching of size k in I. We say that M is a greedy k-matching if
there is no other matching M ′ such that |M ′| = k and ρ(M ′) �L ρ(M). If k is
the size of a maximum cardinality matching in I, we call M a greedy maximum
matching in I. Also we say that M is a generous k-matching if there is no other
matching M ′ such that |M ′| = k and ρ(M ′) ≺R ρ(M). If k is the size of a
maximum cardinality matching in I, we call M a generous maximum matching
in I.

Figure 1 shows a sample spa instance with greedy and generous maximum
matchings M1 = {(s1, p3), (s2, p1), (s3, p2)} and M2 = {(s1, p2), (s2, p1), (s3, p3)}
respectively.

3 Greedy Maximum Matchings in spa

In this section we present the algorithm Greedy-max-spa for finding a greedy
maximum matching given a spa instance. The algorithm is based on the gen-
eral Ford-Fulkerson algorithm for finding a maximum flow in a network [4]. We
obtain maximum profile augmenting paths by adopting techniques used in the
bipartite matching approach for finding a greedy maximum matching in ha [9]
and cha [17].

The Greedy-max-spa algorithm shown in Algorithm 1 takes in a spa
instance I as input and returns a greedy maximum matching M in I. A flow
network N(I) = 〈G, c〉 is constructed as described in Sect. 2. Given a flow f
in N(I) that yields a greedy k-matching M(f) in I, if k is not the size of a
maximum flow in N(I), we seek to find a maximum profile augmenting path P
with respect to f in N(I) such that the new flow f ′ obtained by augmenting f
along P yields a greedy (k + 1)-matching M(f ′) in I. Lemmas 1 and 2 show the
correctness of this approach. We firstly show that if k is smaller than the size of
a maximum flow in N(I) then such a path is bound to exist.

Lemma 1. Let I be an instance of spa and let η denote the size of a maximum
matching in I. Let k (1 ≤ k < η) be given and suppose that Mk is a greedy k-
matching in I. Let N = N(I) and f = f(Mk). Then there exists an augmenting
path P with respect to f in N such that if f ′ is the result of augmenting f along
P then Mk+1 = M(f ′) is a greedy (k + 1)-matching in I.



220 A. Kwanashie et al.

Algorithm 1. Greedy-max-spa

Require: spa instance I;
Ensure: return matching M ;
1: define flow network N(I) = 〈G, c〉;
2: define empty flow f ;
3: loop
4: P = Get-max-aug(N(I), f);
5: if P �= null then
6: augment f along P ;
7: else
8: return M(f);

Lemma 2. Let f be a flow in N and let Mk = M(f). Suppose that Mk is a
greedy k-matching. Let P be a maximum profile augmenting path with respect to
f . Let f ′ be the flow obtained by augmenting f along P . Now let Mk+1 = M(f ′).
Then Mk+1 is a greedy (k + 1)-matching.

The Get-max-aug algorithm shown in Algorithm2 accepts a flow network N(I)
and flow f as input and finds an augmenting path of maximum profile relative
to f or reports that none exists. The latter case implies that M(f) is already
a greedy maximum matching. The method consists of three phases: an initiali-
sation phase (lines 1–11), the main phase which is a loop containing two other
loops (lines 12–27) and a final phase (lines 28–35) where the augmenting path
is generated and returned.

For each project pj the Get-max-aug method maintains a variable ρ(pj)
describing the profile of a partial augmenting path P ′ from some exposed student
to pj . It also maintains, for every project pj ∈ P, a pointer pred(pj) to the
student or lecturer preceding pj in P ′. For every lecturer lk ∈ L a pointer
pred(lk) is also used to refer to any project preceding lk in P ′. Thus the final
augmenting path produced will pass through each lecturer or project at most
once. The initialisation phase of the method involves setting all pred pointers to
null and ρ profiles to B−

R . Next, the method seeks to find, for each project pj , a
partial augmenting path ((vs, si), (si, pj)) from the source, through an exposed
student si to pj should one exist. In the presence of multiple paths satisfying
this criterion, the path with the best profile (w.r.t. �L) is selected. The variables
pred(pj) and ρ(pj) are updated accordingly. Thus at the end of this phase ρ(pj)
indicates the maximum profile of an augmenting path of length 2 via some
exposed student to pj should one exist. If such a path does not exist then ρ(pj)
and pred(pj) retain their initial values of B−

R and null respectively.
In the main phase, the algorithm then runs |f | iterations, at each stage

attempting to increase the quality (w.r.t. �L) of the augmenting paths described
by the ρ profiles. Each iteration runs two loops. Each loop identifies cases where
the flow through one edge in the network can be reduced in order to allow the
flow through another to be increased while improving the profile of the projects
involved. In both loops, the decision on whether to switch the flow between
candidate edges is made based on an edge relaxation operation similar to that



Profile-Based Optimal Matchings in the Student/Project Allocation Problem 221

used in the Bellman-Ford algorithm for solving the single source shortest path
problem in which edge weights may be negative. In the first loop, we seek to
evaluate the gain that may be derived from switching the flow through a student
from one project to another. Given an edge (si, pk) with a flow of 1 in f and
edge (si, pj) with no flow in f , we define σ to be the resulting profile of pj
if the partial augmenting path ending at pk is to be extended (via si) to pj .
Thus σ will become the new value of ρ(pj) should this extension take place. If
σ �L ρ(pj) (i.e. if the proposed profile is better than the current one), we extend
the augmenting path to pj and update ρ(pj) = σ and pred(pj) = si.

In the second loop, we seek to evaluate the gain that may be derived from
switching flow to some lecturer from one project to another. Given a lecturer lk,
let P ′

k ⊆ Pk be the set of projects offered by lk with positive outgoing flow and
P ′′
k ⊆ Pk be the set of projects offered by lk that are undersubscribed in M(f).

Then we seek to determine if an improvement can be obtained by switching a
unit of flow from some project pj ∈ P ′

k to some other project pm ∈ P ′′
k . This is

achieved by comparing the ρ(pj) and ρ(pm) profiles and updating ρ(pj) = ρ(pm),
pred(pj) = lk and pred(lk) = pm if ρ(pm) �L ρ(pj) where ρ(pm) represents the
profile of a partial augmenting path that does not already pass through lk (i.e.,
pred(pm) �= lk). This means that the partial augmenting path ending at pm can
be extended further (via lk) to pj while improving its profile. The intuition is
that, after augmenting along such a path, pm gains an extra student while pj
loses one.

During the final phase, we iterate through all exposed projects and find the
one with the largest profile with respect to �L (say pq). An augmenting path is
then constructed through the network using the pred values of the projects and
lecturers and the matched edges in M(f) starting from pq. The generated path
is returned to the calling algorithm. If no exposed project exists, the method
returns null. We next show that Get-max-aug method produces such a maxi-
mum profile augmenting path in N with respect to f should one exist.

Lemma 3. Given a spa instance I, let f be a flow in N = N(I) where k = |f |
is not the size of a maximum matching in I and M(f) is a greedy k-matching
in I. Algorithm Get-max-aug finds a maximum profile augmenting path in N
with respect to f .

From Lemmas 1, 2 and 3, we can conclude that the algorithm Greedy-max-
spa finds a greedy maximum matching given a spa instance. Concerning the
complexity of the algorithm, the main loop calls Get-max-aug η times where
η is the size of a maximum cardinality matching in I. The first phase of Get-
max-aug performs O(m2) profile comparison operations and O(n3) initialisation
steps for the lecturer pred values where m2 = |E2|, n3 = |L|, and each profile
comparison step requires O(R) time. The loop in the main phase of Get-max-
aug runs k times where k is the value of the flow obtained at that time. The first
and second loops perform O(m2) and O(n2) relaxation steps respectively where
n2 = |P| and each relaxation step requires O(R) time to compare profiles. The
final phase of the algorithm performs O(n2) profile comparisons, each also taking



222 A. Kwanashie et al.

Algorithm 2. Get-max-aug (method for Greedy-max-spa)
Require: flow network N(I) = 〈G, c〉 where G = (V, E), flow f where M(f) is a

greedy |f |-matching;
1: /* initialisation */
2: for project pj ∈ P do
3: ρ(pj) = B−

R ;
4: pred(pj) = null;
5: for each exposed student si ∈ S such that pj ∈ Ai do
6: σ = OR + rank(si, pj);
7: if σ �L ρ(pj) then
8: ρ(pj) = σ;
9: pred(pj) = si;

10: for lecturer lk ∈ L do
11: pred(lk) = null;
12: /* main phase */
13: for 1...|f | do
14: /* first loop */
15: for each (si, pj) ∈ E where f(si, pj) = 0 and f(si, pk) = 1 for some pk ∈ Ai do
16: σ = ρ(pk) − rank(si, pk) + rank(si, pj);
17: if σ �L ρ(pj) then
18: ρ(pj) = σ; pred(pj) = si;
19: /* second loop */
20: for each lecturer lk ∈ L do
21: σ = B−

R ; pz = null;
22: for each project pm ∈ Pk such that l(pm) = lk ∧ f(pm, lk) < cm do
23: if ρ(pm) �L σ then
24: σ = ρ(pm); pz = pm;
25: for each project pj ∈ Pk such that l(pj) = lk ∧ f(pj , lk) > 0 ∧ pj �= pz do
26: if σ �L ρ(pj) then
27: ρ(pj) = σ; pred(pj) = lk; pred(lk) = pz;
28: /* final phase */
29: ρ = max�L({B−

R} ∪ {ρ(pj) : pj ∈ P is exposed});
30: if ρ �L B−

R then
31: pq = arg max�L({B−

R} ∪ {ρ(pj) : pj ∈ P is exposed});
32: Q = path obtained by following pred values and matched edges in M(f) from

pq to an exposed student;
33: return 〈vs〉 ++ reverse(Q) ++ 〈l(pq), vt〉; /*++ denotes concatenation*/
34: else
35: return null;

O(R) time. Thus the overall time complexity of the Get-max-aug method
is O(m2R + n3 + kR(m2 + n2) + n2R) = O(kR(m2)). Thus the overall time
complexity of the Greedy-max-spa algorithm is O(n2

1m2R). A straightforward
refinement of the algorithm can be made by observing that if no profile is updated
during an iteration of the main loop, then no further profile improvements can
be made and we can terminate the main loop at this point. We conclude with
the following theorem.



Profile-Based Optimal Matchings in the Student/Project Allocation Problem 223

Theorem 4. Given a spa instance I, a greedy maximum matching in I can be
obtained in O(n2

1Rm2) time.

4 Generous Maximum Matchings in spa

Analogous to the case for greedy maximum matchings, generous maximum
matchings can also be found by modelling spa as a network flow problem. Given
a spa instance I we define the following terms relating to partial augmenting
paths in N(I). For each project pj ∈ P, we define the minimum profile of a
partial augmenting path from vs through an exposed student to pj with respect
to ≺R, denoted Φ′(pj), as follows: Φ′(pj) = min≺R

{ρ(P ′) : P ′ is a partial aug-
menting path from vs to pj}.

If a partial augmenting path P ′ ending at project pj can be extended to
an augmenting path P by adding edges (pj , l(pj)) and (l(pj), vt) then such
an augmenting path is called a minimum profile augmenting path if ρ(P ) =
min≺R

{Φ′(pj) : pj ∈ P}. A similar approach to that used to find a greedy maxi-
mum matching can be adopted in order to find a generous maximum match-
ing. The main Greedy-max-spa algorithm will remain unchanged (we will
call it Generous-max-spa for convenience) as the intuition remains to suc-
cessively find larger generous k-matchings until a generous maximum matching
is obtained. We however make slight changes to the Get-max-aug algorithm in
order to find a minimum profile augmenting path in the network should one exist
(the resulting algorithm is then known as Get-Min-Aug). The changes are as
follows. (i) We replace all occurrences of left domination �L with right domi-
nation ≺R. (ii) We also replace all occurrences of negative infinity profile B−

R

with a positive infinity profile B+
R . (iii) Finally we replace both max functions

(in lines 29 and 31) with the min function. Analogous statements and proofs
of Lemmas 1, 2 and 3 exist in this context. Thus we may conclude with the
following theorem concerning the Generous-max-spa algorithm.

Theorem 5. Given a spa instance I, a generous maximum matching in I can
be obtained in O(n2

1Rm2) time.

5 Lecturer Lower Quotas

We have so far considered a spa model in which each lecturer lk has an upper
quota. In this section we discuss how the algorithm presented above can be mod-
ified to allow lecturer lower quotas. We call this extension the Student/Project
problem with Lecturer lower quotas (spa-l). In an instance I of spa-l, each lec-
turer lk now additionally has a lower quota d−

k (I) (it will be helpful to indicate
specific instances to which these lower bounds refer within the notation). We
assume that d−

k (I) ≥ 0 and d+k (I) ≥ max{d−
k (I), 1}. In the spa-l context, our

definition of a matching as presented in Sect. 2 needs to be tightened slightly. A
constrained matching is a matching M in the spa context with the additional



224 A. Kwanashie et al.

property that, for each lecturer lk, |M(lk)| ≥ d−
k (I). We seek to find greedy and

generous maximum constrained matchings should they exist.
Let I be a spa-l instance. Also let I ′ be a spa instance constructed from I

by setting d−
k (I ′) = 0 and d+k (I ′) = d−

k (I) for each lecturer lk. Firstly we find
a greedy maximum matching M ′ in I ′ using the Greedy-max-spa algorithm.
If f ′ = f(M ′) is not a saturating flow (i.e., one in which all edges (lk, vt) ∈ E4

are saturated), then I admits no constrained matching. Otherwise we augment
f ′ in N(I) by calling Greedy-Max-Spa on I, changing line 2 so that flow f is
assigned to be f ′ initially. We continuously augment the flow until no augmenting
path exists. The matching M = M(f) obtained from the resulting flow f is a
greedy maximum constrained matching in I. Generous maximum constrained
matchings can also be found by using Generous-max-spa and Get-min-aug
instead of Greedy-max-spa and Get-max-aug respectively.

Theorem 6. Let I be a spa-l instance. Each of the problems of finding a greedy
or generous maximum constrained matching, or reporting that no such matching
exists, can be solved in O(n2

1Rm2) time.

References

1. Abraham, D.J.: Algorithmics of two-sided matching problems. Master’s thesis, Uni-
versity of Glasgow, Department of Computing Science (2003)

2. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the Student-
Project allocation problem. J. Discrete Algorithms 5(1), 79–91 (2007)

3. El-Atta, A.H.A., Moussa, M.I.: Student project allocation with preference lists
over (student, project) pairs. In: Proceedings of ICCEE 09: The 2nd International
Conference on Computer and Electrical Engineering, pp. 375–379 (2009)

4. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press,
Princeton (1962)

5. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algo-
rithms. MIT Press, Cambridge (1989)

6. Huang, C.-C., Kavitha, T., Mehlhorn, K., Michail, D.: Fair matchings and related
problems. In: IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2013), vol. 24, pp. 339–350 (2013)

7. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J.
Polit. Econ. 87(2), 293–314 (1979)

8. Irving, R.W.: Greedy matchings. Technical Report TR-2003-136, University of
Glasgow, Department of Computing Science (2003)

9. Irving, R.W.: Greedy and generous matchings via a variant of the Bellman-Ford
algorithm (2006) (Unpublished manuscript)

10. Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal
matchings. ACM Trans. Algorithms 2(4), 602–610 (2006)

11. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for
the student-project allocation problem with preferences over projects. J. Discrete
Algorithms 13, 59–66 (2012)

12. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal
matchings in the Student/Project Allocation problem. CoRR Technical Report
1403.0751 (2014). http://arxiv.org/abs/1403.0751

http://arxiv.org/abs/http://arxiv.org/abs/1403.0751


Profile-Based Optimal Matchings in the Student/Project Allocation Problem 225

13. Manlove, D.F.: Algorithmics of Matching Under Preferences. World Scientific,
Singapore (2013)

14. Manlove, D.F., O’Malley, G.: Student project allocation with preferences over
projects. J. Discrete Algorithms 6, 553–560 (2008)

15. Mehlhorn, K., Michail, D.: Network problems with non-polynomial weights and
applications (2006) (Unpublished manuscript)

16. Orlin, J.B.: A faster strongly polynomial minimum cost flow algorithm. Oper. Res.
41(2), 338–350 (1993)

17. Sng, C.T.S.: Efficient Algorithms for Bipartite Matching Problems with Prefer-
ences. Ph.D. thesis, University of Glasgow, Department of Computing Science
(2008)

18. Zelvyte, M.: The Student-Project Allocation problem: a network flow model.
Honours project dissertation, University of Glasgow, School of Mathematics and
Statistics (2014)

19. Zhou, L.: On a conjecture by Gale about one-sided matching problems. J. Econ.
Theor. 52(1), 123–135 (1990)



The Min-max Edge q-Coloring Problem

Tommi Larjomaa1 and Alexandru Popa2(B)

1 Department of Communications and Networking, Aalto University School of
Electrical Engineering, Aalto, Finland

tommi.larjomaa@gmail.com
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

popa@fi.muni.cz

Abstract. In this paper we introduce and study a new problem named
min-max edge q-coloring which is motivated by applications in wireless
mesh networks. The input of the problem consists of an undirected graph
and an integer q. The goal is to color the edges of the graph with as
many colors as possible such that: (a) any vertex is incident to at most
q different colors, and (b) the maximum size of a color group (i.e. set of
edges identically colored) is minimized. We show the following results:

1. Min-max edge q-coloring is NP-hard, for any q ≥ 2.
2. A polynomial time exact algorithm for min-max edge q-coloring on

trees.
3. Exact formulas of the optimal solution for cliques.
4. An approximation algorithm for planar graphs.

1 Introduction

Traditionally, backbone connectivity in networks of various sizes has been built
using wired infrastructure. Even though the bandwidth that modern wired net-
working technology offers is no doubt better than that of wireless alternatives,
the material and installation costs of wired networks is a significant drawback.
Therefore, the concept of wireless mesh networks (WMNs) has received a lot of
attention and has been researched actively during the past decade [2,3,7].

In a multi-channel WMN, each node is able to use multiple non-overlapping
frequency channels. The use of many channels inside the same network can
significantly improve overall performance; interference from neighboring nodes
can be decreased substantially, when nodes do not need to use the same radio
channel for every link. Multiple radio channels in the network means, that at
least some of the nodes need to handle more than one channel at a time. In
many proposed designs the multi-channel feature is achieved by packet-by-packet
reconfiguration of the radio [8,11,15]. However, one of the drawbacks of this
kind of continuous channel switching of a single radio interface is that it requires
precise synchronization throughout the network.

An alternative approach would be to fit multiple radio interfaces to each
node, thus allowing a more persistent channel allocation per interface. A couple
of such multi-NIC (network interface card) architectures have been proposed
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 226–237, 2015.
DOI: 10.1007/978-3-319-19315-1 20



The Min-max Edge q-Coloring Problem 227

by Raniwala et al. [12,13]. Their simulation and testbed experiments show a
promising improvement with only two NICs per node, compared to a single-
channel WMN. Another appealing feature of these architectures is that they are
based on readily available, commodity IEEE 802.11 interfaces, requiring only
systems software modification.

The scenario of two or more NICs per node with fixed channels imposes
some limitations to the assignment of channels on each interface. In order to set
up a link between two nodes, both of them have to have at least one of their
interfaces set to the same channel. On the other hand, links inside an interference
range should use as many different channels as possible. Thus, the channels need
to be assigned carefully in order to both keep every required link possible and
maximize useful bandwidth throughout the network.

The channel assignment problem can be modeled as a type of edge coloring
problem: given a graph G, the edges have to be colored so that there are at most q
different colors incident to each vertex. Here, vertices, edges and colors represent
network nodes, links and channels, respectively. A coloring that satisfies this
constraint, is called an edge q-coloring. Note, that the coloring constraint differs
from the traditional coloring problems, where adjacent items are not allowed to
have the same color. Also the goal is different; instead of minimizing the amount
of colors, a large amount of different colors in an edge q-coloring is often a desired
state of things.

Previously, the channel assignment was formulated as the max edge q-coloring
problem, where the goal was to maximize the total number of colors. The draw-
back of this model is that in an optimal solution the same color is assigned to
many edges while other colors are used only once. We remind the reader that
in the wireless mesh network setting, having the same color assigned to many
edges is equivalent to having the same frequency used many times, and therefore,
having interference. Since the goal of the application is to minimize the inter-
ference, max edge q-coloring is perhaps not the ideal theoretical formulation
(although max edge q-coloring is still interesting as a combinatorial problem).
Instead, we aim to have the color components as balanced as possible. Therefore,
we newly introduce the min-max edge q-coloring where the goal is to minimize
the maximum size of a color group. It is true that the interference cannot be
reduced completely under this model, since the same frequency is assigned to
edges of connected subgraphs, but we believe that it is more realistic. Also, we
believe that the min-max edge q coloring problem is an interesting combinatorial
problem by itself.

We would like to emphasize that the approximation algorithms proposed for
the max edge q-coloring [1,4–6] indeed use the same color many times, since they
select first a maximum matching in the graph, color the edges of the matching
with distinct colors, remove them from the graph, and, finally, color all the edges
in the same connected component using an identical color. There exist instances
where the maximum color class returned by the 2-approximation algorithm for
max edge q coloring [1] has size O(|V |), but the optimal solution of the min-max
q coloring is constant. Thus, the situation presented in the previous paragraph



228 T. Larjomaa and A. Popa

is definitely not an artificial example and it reflects precisely the behavior of
known algorithms.

Related Work. The problem of finding a maximum edge q-coloring of a given
graph has been studied by Feng et al. [4–6]. They provide a 2-approximation
algorithm for q = 2 and a (1 + 4q−2

3q2−5q+2 )-approximation for q > 2. They show
that the problem is solvable in polynomial time for trees and complete graphs
in the case q = 2, but the complexity for general graphs has been left as an
open problem. Adamaszek and Popa [1] show that the problem is APX-hard
and present a 5/3-approximation algorithm for graphs which have a perfect
matching. The maximum edge q-coloring is also considered in combinatorics
and is a particular case of the anti-Ramsey number. For a brief description of
the connection of the two problems, the reader can refer to [1].

To the best of our knowledge there has been no prior research on the min-max
edge q-coloring problem.

Our Contributions. In this paper we introduce and study the min-max edge
q-coloring problem. First, in Sect. 2 we prove that the problem is NP-hard for
any q ≥ 2. The proof is split into two parts. We first show the NP-hardness for
a more general version in which each vertex is allowed to have an independent
value of q. In the second part we show how to introduce extra gadgets in order
to force all the vertices to have the same value of q.

Then, in Sect. 3 we show an exact polynomial time algorithm for trees, for
q = 2. We first show that the optimal solution in a tree is at least Δ/2 and at
most Δ, where Δ is the maximum degree of the tree. Then, the algorithm uses
binary search to find a value c, such that the input admits a coloring in which the
largest color group is at most c. Given a value c, we select in turn each vertex as
the root of the tree and try to construct a solution in a bottom up fashion. This
is not straightforward as for each vertex we have to solve a knapsack instance
(fortunately, these instances are solvable in polynomial time).

In Sect. 4 we analyze the value of the optimal solution on complete graphs.
Since the problem on general graphs seems difficult, the study of special classes
of graphs helps us to understand better the structure of the problem. We provide
the exact formulas of the optimal solutions for cliques.

Section 5 summarizes the results and briefly discusses possible future research
directions. Due to space limitations we omitted some of the proofs. Detailed
proofs and several additional results are presented in [9].

2 NP-hardness of Min-max Edge q-Coloring

In this section we prove that the min-max edge q-coloring problem is NP-hard
for q ≥ 2, giving little hope of finding a general exact polynomial time algorithm
for it. The proof is split into two steps. First we prove NP-hardness for a more
general version of the problem, defined next, where each vertex is assigned a
value for q individually.



The Min-max Edge q-Coloring Problem 229

Problem 1 (General min-max edge q-coloring problem). The input is a graph
G = (V,E), and for each vertex vi there is a positive integer qi. A feasible
solution is a coloring of edges, such that for each vertex vi, there are at most qi
different colors incident to it. The goal is to find a coloring σ such that the size
of the largest color group, max

c
|{e ∈ E|σ(e) = c}|, is minimized.

The reduction is made from monotone one-in-three SAT (Definition 1), which
is known to be NP-complete [14]. By modifying this reduction slightly we can
prove NP-hardness for the min-max edge q-coloring problem with a constant
value of q.

Definition 1 (Monotone one-in-three SAT Problem). The input is a
Boolean 3CNF-formula φ, where each literal is simply a variable; there is no
negation. Determine whether a truth assignment for the variables exists, such
that for each clause, there is exactly one literal that is true, while the other two
literals are false.

Now we state the NP-hardness for the general edge q-coloring problem.

Theorem 1. Problem 1 is NP-hard.

Proof. We use a reduction from monotone one-in-three SAT (Definition 1), which
goes as follows. There are m clauses and n variables in the formula φ. For each
clause, there is a single vertex cj with q = 2 (we use this notation as a shorthand
for “at most 2 different colors can be incident to cj”). For each variable xi, there
are three vertices: ai, bi and vi having q = 1, q = 1 and q = 2, respectively. Each
vertex vi is adjacent to vertices ai and bi. If a variable is present in a clause, the
corresponding variable vertex ai is adjacent to the clause vertex cj . For each ai,
there are additional leaves adjacent to it, so that deg(ai) = 2mi, where mi is
the number of clauses the variable is present in.1 Moreover, for each bi, there are
additional leaves so that deg(bi) = L − 2mi, where L = 4m + n. Finally, there
is a vertex f with q = 1, that is adjacent to each vi. The resulting graph is of
polynomial size in m. Figure 1 illustrates the idea of the reduction by showing
the full gadget of a single variable.

Next we show that if φ is satisfiable, there is a feasible coloring for the
reduction, whose largest color group is L. For each variable xi that is false in
the satisfying truth assignment, color the edges incident to ai with the color F ,
which is the color incident to the vertex f . There are two edges incident to some
a-vertex per each literal, and 2m false literals, so there are in total 4m + n = L
edges colored with F . Since vi is incident to only one color at this point, we give
a distinct color for the edges of bi, of which there are less than L.

For each true variable xi we choose a distinct color and use it to color edges
incident to both ai and bi. These color groups have thus L − 2mi + 2mi = L
edges. Since the truth assignment is satisfying, there is one color representing a
true variable and the color F representing false variables incident to each clause
vertex, which makes the coloring feasible.
1 We can safely assume that each variable has at most one literal in any clause.



230 T. Larjomaa and A. Popa

Fig. 1. The reduction from formula (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4). The dotted edges
are assigned the color F in a coloring where none of the colors have more than L = 12
edges.

Finally, we show that if the formula is not satisfiable, the optimum of the
reduction is more than L (in other words, if the optimum of the reduction is less
or equal to L, the formula is satisfiable). In a feasible coloring of a reduction
from an unsatisfiable formula, there are two possibilities, because otherwise, the
coloring gives a truth assignment. Either there are clauses in which two or more
variables and their a-vertices have a color different from F , or there are clauses
in which all variables are using color F (or both).

In the first case, two variable vertices ai and aj necessarily share a color,
which we denote by C. Consequently, the vertices vi and vj are both saturated
with colors F and C. Note, that for any variable xk, deg(bk) ≥ L − 2m >
L/2. Thus, if the vertices bi and bj are assigned the same color, the limit L is
immediately exceeded. On the other hand, if one of those vertices, say, bi takes
the color F , and bj takes the color C, there are already L edges colored with C
due to the variable xj plus the edges incident to ai.

In the second case we can assume that the clauses that have not only false
literals in them, have exactly one true literal, since the other case was already
discussed. Now, there are more than 2m false literals, and, as observed before,
there are two edges per literal incident to the a-vertices. Thus, there must be
more than 4m + n = L edges colored with F . ��
As we go on to prove NP-hardness for min-max edge q-coloring, where each
vertex has the same value for q, we use a slightly modified version of the previous
reduction. The idea is to mimic vertices with q = 1 or q = 2. This is done by
saturating vertices with an appropriate number of different colors that already
have L edges. We proceed with the theorem and proof.

Theorem 2. The min-max edge q-coloring problem is NP-hard for q ≥ 2.



The Min-max Edge q-Coloring Problem 231

Proof. We begin by showing how to force a vertex with any value of q to allow
only one or two new colors for its additional edges, given the upper bound L
for color group size. Observe that the optimum for a (qL + 1)-star, namely a
star with qL leaves, is exactly L. We take q − 1 such stars, pick one leaf from
each star and identify them as one vertex. In an optimal coloring of the acquired
gadget, the contracted vertex v is incident to q − 1 different colors of size L. As
we add edges to v, they can be colored with only one color in order to keep color
group sizes below L. If we want a vertex that allows two colors, we pick q − 2
leaves from different qL-stars (we can use the same stars as before, since there
are plenty of leaves left) and identify them as one.

Using such gadgets that mimic vertices with q = 1 and q = 2, we straight-
forwardly construct a reduction equivalent to the one used in the proof of Theo-
rem 1. Now it remains to show that the number of additional vertices and edges
in the new reduction is polynomially bounded in the size of the formula.

We show that we need only (q−1) stars to be able to mimic enough vertices. In
the original reduction, there is one vertex per clause, three vertices per variable2

and the vertex f . In total we have M = m + 3n + 1 vertices that need to
be mimicked. We need at most q − 1 leaves to mimic one vertex, so having
qL ≥ 2L ≥ M will suffice. Assume the opposite, which yields

M > 2L ⇔ m + 3n + 1 > 8m + 2n ⇔ n > 7m − 1.

This contradicts with the fact that there can be at most 3m variables in a
3CNF-formula, that is, n ≤ 3m. So, the number of additional edges needed for
the modified reduction is (q − 1)qL = O(m + n), since q is constant. ��

3 Exact Polynomial Time Algorithm for Trees

In this section we present an exact polynomial time algorithm for solving the
min-max edge 2-coloring problem on trees. First of all we give the following
bounds of the optimal solution.

Lemma 1. For an instance of the min-max edge 2-coloring problem, where the
graph is a tree T , OPT ∈ [

Δ
2 ,Δ − 1

]
, where Δ is the maximum degree of T .

Proof. The lower bound follows from the fact that there is a vertex with Δ
edges incident to it, and only two distinct colors can be assigned to these edges.
The upper bound can always be achieved with the following coloring. Choose
an arbitrary vertex vr as the root vertex, and color its edges evenly with two
colors. For each child v of vr, there are deg(v) − 1 uncolored edges that can be
colored with a new color, since v had only one edge colored previously. The same
is repeated iteratively for each child vertex of a visited vertex. No more than
Δ − 1 edges are colored with any color. ��
2 We do not need to take into account the leaves of the variable vertices; a leaf allows

only one color incident to it, no matter what value q has.



232 T. Larjomaa and A. Popa

Next, we describe informally the polynomial time algorithm for trees (the algo-
rithm is presented formally as Algorithm 1). The idea of the algorithm is to try
to color the tree with different candidate values for optimum from the interval[

Δ
2 ,Δ − 1

]
, until candidates c and c − 1 are found so that c leads to a feasible

coloring whereas c− 1 does not. This is repeated for each vertex as the root ver-
tex, and the smallest successful value of c is the optimum. Using binary search
we only need to test O(log Δ) different candidates per root.

Once we have fixed a root and a value c for the maximum color class, the
algorithm proceeds in a bottom up fashion, starting from the leaves. For each
vertex v, we have to color the edges incident to v with two colors, each color
class having size at most c. We proceed as follows: for each vertex v we color
with one color as many edges incident to v and then we transmit to the parent
of v the number of edges that are left uncolored (this number is termed residual
number in Algorithm 1). Thus, for each vertex v, we have to solve a knapsack
instance, where the size of the knapsack is c, the maximum size of a color class,
and the items are the residual values of the children. The residual value of v is
the sum of the residual values of its children minus the optimal solution of the
knapsack instance plus one (this is the edge that connects v to its parent).

Essentially, one run through the loop starting at step 8 minimizes the residual
number of the root vertex with respect to an optimum candidate c. If a residual
number exceeds c, the combination of the root vertex and the optimum candidate
does not lead to a feasible coloring. Changing the root vertex, however, changes
the parental relationships between the vertices, and consequently the residual
numbers, even if the optimum candidate was the same. This is why we need to
iterate the minimization process with all combinations of root vertices and opti-
mum candidates to be sure. Since there are merely O(nΔ) of such combinations,
this does not compromise the algorithm running in polynomial time.

As a final note, since the knapsack problem is known to be NP-hard, it might
give reason to believe that step 9 of the adlgorithm does not run in polynomial
time in general. Fortunately, it is also well known that knapsack instances are
solvable in O(nW ) time, where n is the number of items and W is the size of
the knapsack. Since at any vertex there are at most Δ items (children) and the
knapsack size is also at most Δ, any knapsack instance encountered in step 9 is
solvable in O(Δ2) time.

4 Complete Graphs

In this section we present formulas for the optimal solution of the min-max edge
2-coloring problem in the case of complete graphs. More precisely, we show that
an optimal min-max edge 2-coloring of an n-clique Kn achieves OPT(Kn) ≥⌈

1
3 |E(Kn)|⌉. The proof is split in parts. Also, we show that the bound is tight in

most cases and present exact formulas for the optimum in all cases. Before we
begin, we define a term used frequently later on.



The Min-max Edge q-Coloring Problem 233

Input: A tree graph T

1. m ←− Δ − 1
2. For each vertex vr

3. Label each vertex of T with its distance from the root vertex (via e.g. BFS)

4. l ←−
⌈

Δ
2

⌉
, u ←− Δ − 1

5. Repeat
6. Assign for each non-root vertex v a residual number vl ←− 1, and for

the root vrl ←− 0

7. c ←− ⌊ 1
2
(l + u)

⌋
8. For each non-leaf vertex in descending order of distance from root

9. Solve the following knapsack instance:
Denote the children of v by vi. Size of the knapsack is c, and the item
sizes are the residual numbers vil of the children.

10. Store the set of indices of the children in the knapsack solution to S

11. If
∑
i

vil −
∑
j∈S

vjl + vl > c: l ←− c + 1 and go to step 16

12. Color the uncolored edges incident to vi, i ∈ S, and all their successors
with a new color

13. vl ←− vl +
∑
i

vil −
∑
j∈S

vjl

14. Color the remaining uncolored edges connected to the root with one color
15. Store the current coloring to U , and set u ←− c
16. If l = u, revert to the coloring U , jump out of the loop to step 17

17. if u < m: m ←− u and M ←− U
18. Revert to the coloring M

Output: m
Algorithm 1. Tree 2-coloring algorithm

Definition 2 (Color Subgraph). For a given feasible edge q-coloring of a
graph G and a color c, a color subgraph Gc is an edge induced subgraph of G,
induced by all edges with the color c.

The first observation concerns a color that is not incident to every vertex of
the clique. Such a color can share vertices with only a limited number of other
colors. This and the forthcoming lemmas help narrow down the different ways
of how a clique can be colored.

Lemma 2. In a feasible edge 2-coloring of a clique Kn and for any color c, a
color subgraph Kc

n cannot share vertices with more than two other color sub-
graphs, if V (Kc

n) ⊂ V (Kn).

Proof. Assume the opposite. In a feasible coloring of Kn, let Kc
n be a color

subgraph that shares vertices with k ≥ 3 other color subgraphs Kc1
n , . . . , Kck

n ,
and V (Kc

n) ⊂ V (Kn). Now, a vertex v in V (Kc
n) is incident to two colors: c and

ci, the latter being assigned to the edges going from v to vertices not in V (Kc
n).

Formally, V (Kn) \ V (Kc
n) ⊂ V (Kci

n ) for each i = 1, . . . , k. Thus, we have a set
of vertices V (Kci

n ) that is incident to k colors, which makes the coloring not
feasible, a contradiction. ��



234 T. Larjomaa and A. Popa

Next, we look at a more specific case of the situation described in the above
lemma. When a color is not incident to all vertices and shares vertices with
exactly two other colors, there are exactly three colors, all of which are necessarily
incident to the other two. This coloring strategy actually turns out to be the
best in the end.

Lemma 3. Given a feasible edge 2-coloring of Kn, for which there is a color
subgraph Kc

n that shares vertices with exactly two other color subgraphs, and
V (Kc

n) ⊂ V (Kn), the coloring has exactly three colors, whose color subgraphs
have these same properties.

Proof. Let Kc
n be a color subgraph of Kn that shares vertices with exactly

two other color subgraphs Kc1
n and Kc2

n . As in the proof of Lemma 2, V (Kn) \
V (Kc

n) ⊂ V (Kci
n ), i = 1, 2. Thus, all vertices V (Kn) \ V (Kc

n) are saturated with
2 colors. Since V (Kc

n) was assumed to be incident to only the three colors, there
cannot be any other colors. Furthermore, none of the colors is incident to all
vertices. ��
In the following lemma we cover the remaining non-trivial alternative, that is,
there is a color that shares vertices with exactly one other color. This implies
the presence of a color incident to all vertices. From now on we call such a color
global.

Lemma 4. Given a feasible edge 2-coloring of Kn and a color subgraph Kc
n that

shares vertices with exactly one other color subgraph KF
n , and V (Kc

n) ⊂ V (Kn),
the color F is incident to all vertices of Kn.

Proof. The edges between V (Kc
n) and the rest of the vertices must be colored

with some other color than c. Since c is incident only to V (Kc
n), the edges

between V (Kc
n) and the rest of the vertices must be colored with F . Thus, F is

incident to all vertices of Kn. ��
We now have enough tools to provide the actual lower bound. First we show that
if there are more than four colors, one of them must be global. This, in turn,
yields that one of the colors has over one third of all edges. Since the alternative
is to have three or less different colors, the lower bound follows.

Theorem 3. For min-max edge 2-coloring, the following holds:

OPT(Kn) ≥
⌈

1
3
|E(Kn)|

⌉

=
⌈

n(n − 1)
6

⌉

(1)

Proof. First of all, we observe that in order to have OPT (Kn) <
⌈

1
3 |E(Kn)|⌉,

at least four different colors must be used in an optimal coloring. Assume this
is possible. With at least four colors, Lemmas 2 and 3 imply that the colors not
incident to all vertices can share vertices with only one other color. By Lemma 4,
that other color is the global color F . Now, let Kc

n be the color subgraph with
the largest proper subset of vertices of Kn, and let kc = |V (Kc

n)|. Edges of only



The Min-max Edge q-Coloring Problem 235

the global color fill the cut (i.e. the set of edges between two groups of vertices)
between V (Kc

n) and the rest of the n − kc vertices, thus

kc(n − kc) ≤ 1
3
|E(Kn)| =

n(n − 1)
6

.

With the help of basic calculus, this yields

kc ≤ n

2
−

√
n2 + 2n

12
<

(
1
2

− 1√
12

)

n <
1
3
n (2)

or

kc ≥ n

2
+

√
n2 + 2n

12
>

(
1
2

+
1√
12

)

n >
2
3
n. (3)

If (2) is true, there are two possibilities: either all non-global colors are incident
to a total of less than a third of all vertices, or there is a set of non-global colors
that are incident to a total of k vertices, so that 1

3n ≤ k ≤ 2
3n. In the former

case, |E(KF
n )| > 1

3 |E(Kn)|, a contradiction. In the latter case, the cut between
the k and the other n − k vertices are again filled with edges of the global color,
as in the case of kc, but this time k fails to satisfy (2) or (3), leading to a
contradiction.

If (3) is true, there are k < 1
3n vertices for the rest of the colors to occupy. In

total, these vertices have at most the following amount of edges between them:

|E(Kk)| =
k(k − 1)

2
<

1
3n2 − n

6
<

n2 − n

6
=

1
3
|E(Kn)|.

Thus, over two thirds of the edges are left for the two other colors to share,
leaving the lower bound out of reach.

Now, the only way to achieve the suggested lower bound is by using three
colors, in which case the bound is trivial. ��
Most of the time, the lower bound is actually tight, and it is achievable only
with a coloring described in Lemma 3 (i.e. every vertex incident to exactly two
colors, no global color) for two reasons. First, as we saw in the above proof, the
lower bound is out of reach using four colors. Second, if one of the three colors
is global, the other colors need to satisfy either (2) or (3), leaving at least one
of them too small.

The most even way to distribute the edges between three colors is to first
divide the vertices of Kn to three groups of sizes k =

⌊
n
3

⌋
and k + 1, depending

on the remainder of the division. Each color is then incident to the vertices of
two of the groups, each group is incident to two colors.

If the remainder is 1, then k = n−1
3 . One color is incident to 2k vertices,

while two other colors are incident to 2k +1 vertices each. If the “smaller” color
subgraph with 2k vertices can accommodate one third of the edges, distribut-
ing the rest of the edges evenly to the two “bigger” color subgraphs is trivial.
Otherwise, it is not possible to color the edges quite evenly, and the remaining



236 T. Larjomaa and A. Popa

over two thirds of edges still need to be shared between the bigger color groups.
More precisely, the exact optimum can be written as

OPT(Kn) = max
(⌈

1
3
|E(Kn)|

⌉

,

⌈
5
4
k(k + 1)

⌉)

.

If the remainder is 2, then k = n−2
3 . There are two colors incident to 2k + 1

vertices and one color incident to 2k + 2 vertices. Achieving the lower bound is
possible, if the bigger color subgraph can avoid coloring more than one third of
all edges. If not, the minimum size of the bigger color group is the optimum,
that is

OPT(Kn) = max
(⌈

1
3
|E(Kn)|

⌉

, (k + 1)2
)

.

5 Conclusions and Future Work

The goal of this paper is to analyze the problem of efficiently allocating chan-
nels in wireless mesh networks from a theoretic point of view and to design
and analyze some basic approximation algorithms. The analysis is simplified by
modelling the channel allocation problem as a graph coloring problem, namely
min-max edge q-coloring. The concept of edge q-coloring captures the restric-
tion in some proposed WMN architectures, where each network node can use at
most a number of different frequency channels at once. Furthermore, we give the
most attention to the case q = 2, since it has been considered important from a
practical perspective.

For the min-max edge q-coloring problem, we prove NP-hardness, both in a
more general case (see Problem 1), where each vertex has its individual value
for q, and in the case where the value of q ≥ 2 is constant for each vertex. We
show lower bounds for the optimum in terms of maximum and average degree.
We also introduce an exact polynomial time algorithm for trees and provide the
exact formulas of the optimal solutions for cliques.

In [9] we present some extra results. First, for bicliques, we present a lower
bound which is tight when both parts of the graph have an even number of ver-
tices (and almost tight for the other cases). For a hypercube Qn we give a lower
bound which is tight for even n, and similarly, almost tight for odd n. Although
these classes of graphs have a very simple structure, finding lower bounds is
much more difficult than in the case of the max edge q-coloring problem.

A good lower bound of the optimal solution is necessary in order to design
approximation algorithms. For the min-max edge q-coloring problem, a trivial
lower bound is half of the maximum degree. In [9], we also show another lower
bound in terms of the average degree of the graph, namely that OPT ≥ d2

2q2 ,
where d is the average degree.

Moreover, we design approximation algorithm for planar graphs which
achieves a sublinear approximation ratio. The algorithm uses a theorem of Lip-
ton and Tarjan [10] which says that a planar graph admits a small balanced
separator.



The Min-max Edge q-Coloring Problem 237

Interesting directions for future research include finding hardness of approxi-
mation results and better algorithms, especially for min-max edge q-coloring on
general graphs. Also it might be interesting to see how the proposed algorithms
would affect performance, if applied to actual Wireless Mesh Networks.

Acknowledgements. We would like to thank anonymous reviewers for their useful
comments.

References

1. Adamaszek, A., Popa, A.: Approximation and hardness results for the maximum
edge q-coloring problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC
2010, Part II. LNCS, vol. 6507, pp. 132–143. Springer, Heidelberg (2010)

2. Akyildiz, I., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput.
Netw. 47(4), 445–487 (2005)

3. Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh
networks. In: MobiCom 2004, pp. 114–128. ACM (2004)

4. Feng, W., Chen, P., Zhang, B.: Approximate maximum edge coloring within factor
2: a further analysis. In: ISORA, pp. 182–189 (2008)

5. Feng, W., Zhang, L., Qu, W., Wang, H.: Approximation algorithms for maximum
edge coloring problem. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007.
LNCS, vol. 4484, pp. 646–658. Springer, Heidelberg (2007)

6. Feng, W., Zhang, L., Wang, H.: Approximation algorithm for maximum edge col-
oring. Theor. Comput. Sci. 410(11), 1022–1029 (2009)

7. Gupta, B., Acharya, B., Mishra, M.: Optimization of routing algorithm in wireless
mesh networks. In: NaBIC 2009, pp. 1150–1155. IEEE (2009)

8. Kyasanur, P., Vaidya, N.: Routing and interface assignment in multi-channel multi-
interface wireless networks. In: Proceedings of IEEE Wireless Communications and
Networking Conference 2005, vol. 4, pp. 2051–2056. IEEE (2005)

9. Larjomaa, T., Popa, A.: The min-max edge q-coloring problem. CoRR
abs/1302.3404 (2013)

10. Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM J. Com-
put. 9(3), 615–627 (1980)

11. Muir, A., Garcia-Luma-Aceves, J.: A channel access protocol for multihop wireless
networks with multiple channels. In: ICC 1998, vol. 3, pp. 1617–1621, June 1998

12. Raniwala, A., Chiueh, T.: Architecture and algorithms for an IEEE 802.11-based
multi-channel wireless mesh network. In: INFOCOM, pp. 2223–2234. IEEE (2005)

13. Raniwala, A., Gopalan, K., Chiueh, T.: Centralized channel assignment and routing
algorithms for multi-channel wireless mesh networks. Mob. Comput. Commun.
Rev. 8(2), 50–65 (2004)

14. Schaefer, T.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–
226. ACM, New York (1978)

15. So, J., Vaidya, N.: Multi-channel mac for ad hoc networks: handling multi-channel
hidden terminals using a single transceiver. In: MobiHoc 2004, pp. 222–233. ACM
(2004)



Speeding up Graph Algorithms
via Switching Classes

Nathan Lindzey(B)

Computer Science Department, Colorado State University,
Fort Collins, CO 80523-1873, USA

lindzey@cs.colostate.edu

Abstract. Given a graph G, a vertex switch of v ∈ V (G) results in
a new graph where neighbors of v become nonneighbors and vice versa.
This operation gives rise to an equivalence relation over the set of labeled
digraphs on n vertices. The equivalence class of G with respect to the
switching operation is commonly referred to as G’s switching class. The
algebraic and combinatorial properties of switching classes have been
studied in depth; however, they have not been studied as thoroughly
from an algorithmic point of view. The intent of this work is to further
investigate the algorithmic properties of switching classes. In particu-
lar, we show that switching classes can be used to asymptotically speed
up several super-linear unweighted graph algorithms. The current tech-
niques for speeding up graph algorithms are all somewhat involved inso-
far that they employ sophisticated pre-processing, data-structures, or use
“word tricks” on the RAM model to achieve at most a O(log(n)) speed
up for sufficiently dense graphs. Our methods are much simpler and can
result in super-polylogarithmic speedups. In particular, we achieve bet-
ter bounds for diameter, transitive closure, bipartite maximum matching,
and general maximum matching.

1 Introduction

The runtime of an algorithm is intimately related to how an instance is rep-
resented. Recall that the runtimes of the first generation of graph algorithms
were expressed solely in terms of n, the number of vertices. This analysis was
natural since at this time graphs were represented in Θ(n2) space via their adja-
cency matrix. It was soon noticed that if m = o(n2), then a variety of graph
algorithms could be sped up by first computing the adjacency list from the adja-
cency matrix, then running the algorithm on the more efficient adjacency list
representation. This motivated the introduction of m to the runtime of graph
algorithms and it is now customary in algorithm design to assume that a graph
instance is given in the form of its adjacency list.

We introduce m̃ as a measure of complexity and show many classical graph
algorithms can be analyzed in terms of m̃. This is a significant measure of com-
plexity since m̃ = O(m) but m̃ �= Θ(m). In particular, if m̃ = o(m), then several
graph algorithms can be asymptotically sped up by computing the so-called
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 238–249, 2015.
DOI: 10.1007/978-3-319-19315-1 21



Speeding up Graph Algorithms via Switching Classes 239

partially complemented adjacency list (pc-list) from an adjacency list, then run-
ning the algorithm on the more efficient partially complemented adjacency list
representation.

The pc-list [4] is a natural generalization of the adjacency list that involves
an additional O(n) bits of storage to represent vertex switches. When a vertex is
switched, its neighbors become nonneighbors and nonneighbors become neigh-
bors. A (di)graph afforded such a switching operation is commonly referred to
as a switching class [17]. Figure 1 demonstrates how a pc-list can represent a
switching class which can in turn be used to obtain a more compact representa-
tion of a graph. Algebraic and combinatorial properties of switching classes have
been studied in depth [2,17]; however, they have not been studied as thoroughly
from an algorithmic point of view. The intent of this work is extend [4] by further
investigating algorithmic properties of switching classes.

In [4] canonical Θ(n + m) unweighted graph algorithms were developed for
switching classes; however, due to the linear-time solvability of these problems,
the pc-list provided no asymptotic speed up in runtime. We extend this work by
developing switching class algorithms for classical unweighted graph problems
for which no linear-time algorithm is known. We show that for sufficiently dense
graphs, the pc-list can provide super-polylogarithmic speed ups in runtime.

This is notable since the current techniques for speeding up algorithms over
dense instances are all somewhat involved and achieve at most a O(log(n)) speed
up. A data-structure in [11] is given that allows one to work on the complement
of a graph without constructing it; however, the algorithms they consider are
linear and do not improve any of the results established in [4]. The techniques
in [3] are notable in that they achieve a O(log(n)) speed-up for several canonical
graph problems over arbitrary dense graphs (assuming the RAM model). Clever

Fig. 1. An illustration of the partially complemented adjacency list. Setting G as the
graph given in the leftmost picture, it is not hard to see that the graph obtained by out
switching (the rightmost picture) and Gale-Berlekamp switching (the lower picture) ar
e minimum representatives of C+

G and C±
G respectively. This demonstrates that G is not

necessarily a minimum representative of G.



240 N. Lindzey

but complicated preprocessing in [6] allows for an asymptotic speedup that is
logarithmic in the density of the graph that is at most O(log(n)).

Our approach is much simpler insofar that it involves only basic preprocessing
of the graph and slight modifications to existing algorithms.

2 Preliminaries

All graphs are assumed to be finite, labeled, directed, unweighted, and simple
unless stated otherwise, and let G denote the class of all such graphs on n vertices.
Let V (G) and E(G) denote vertex set and edge set of G respectively. Let E(A,B)
denote the set of edges that have exactly one endpoint in A ⊆ V and exactly one
endpoint in B ⊆ V . Let G[X] denote the subgraph induced by the vertex set X ⊆
V . An out-switch (in-switch) of a vertex changes out-neighbors (in-neighbors)
to non out-neighbors (in-neighbors) and vice versa. A Seidel-switch of a vertex
in an undirected graph changes neighbors to nonneighbors and nonneighbors
to neighbors. Performing an out-switch and in-switch on the same vertex of
an undirected graph is equivalent to Seidel-switching that vertex. Let ¬+

v (G),
¬−

v (G), and ¬v(G) be the graphs obtained by out, in, and Seidel switching on a
vertex v ∈ V (G) respectively. It is easy to see that the order in which vertices
are switched does not matter, so let ¬+

U (G), ¬−
U (G), and ¬U (G) be the graph

obtained by out, in, and Seidel switching on a set U ⊆ V (G). If a mixed sequence
of in and out switches are permitted, then let ¬±

I,O(G) be the graph obtained by
Gale-Berlekamp switching where I,O ⊆ V (G) are the subsets of vertices that
have been in-switched and out-switched respectively.

Definition 1. Let G,H ∈ G. Then G ∼∗ H iff ∃U ⊆ V such that ¬∗
U (G) ∼= H

with respect to some switching operation ∗.
Proposition 1. ∼x equivalence relation over G.

Definition 2. Let C∗
G = {H ∈ G : G ∼x H}. Then C∗

G is the switching class of
G with respect to some switching operation ∗.
In particular, we let C+

G , C−
G , C±

G , and CG denote the in, out, Gale-Berlekamp,
and Seidel switching class of G respectively. It is worth noting that in-switching
classes and out-switching classes have an algebraic structure similar to Gale-
Berlekamp switching classes [16]. It is routine to show that ∼+ and ∼− form an
equivalence relation over G that gives rise to the Abelian group Z

n2−2n
2 .

Definition 3. The partially complemented adjacency list (pc-list) of a graph G
(with respect to some switching operation) is an adjacency list outfitted with a
constant number of bitstrings of length n that represent vertex switches.

If a vertex v is switched, then we let Ñ(v) denote its doubly-linked neighborlist
in the pc-list of G̃. If v is unswitched, then we let N(v) denote the doubly-linked
neighbor list of v in the pc-list of G̃. For any switched vertex v, we still refer to
Ñ(v) as the neighborlist of v even though its elements are actually non-neighbors
in the original graph.



Speeding up Graph Algorithms via Switching Classes 241

Proposition 2. G is the graph obtained by out-switching (in-switching) all of
the vertices.

The proposition above is useful due to the fact that some graph classes can be
recognized by considering properties of their complements [14]. Unfortunately,
constructing the complement graph G is an Ω(n2) operation which precludes
any linear-time bound. The pc-list has proved useful in this context since it
represents G implicitly which obviates the Ω(n2) cost of constructing G [4,14].

The pc-listwasmotivated byMcConnell’s complement-equivalence classes [13].
It is straightforward to see that the symmetric complement-equivalence classes
of [4] coincide with Seidel switching classes and in-out complement-equivalence
classes [4] coincide with Gale-Berlekamp switching classes. Due to this correspon-
dence, it seems natural to couch the pc-list in terms of the existing theory of switch-
ing classes.

It is obvious that we should seek out small members of switching classes to
obtain a more succinct representation of a given graph. Ideally, we should seek
a member of a switching class with the fewest edges. We definte a minimum
representative of a switching class C∗

G as a not necessarily unique graph G̃ ∈ C∗
G

having minimum edge cardinality m̃. If we limit ourselves to strictly out-switches
or strictly in-switches, the following lemma shows that we can easily construct
a minimum representative using a greedy algorithm.

Lemma 1. [4] A minimum representative G̃ ∈ C+
G (G̃ ∈ C−

G) can be constructed
in O(n + m) time.

Proof. Visit each vertex and if switching it reduces the edge count, do so. For
out switching, if there are more than n/2 elements in v’s neighbor list, switch
v and replace the neighbor list with non-neighbors of v. The work for creating
the list of non-neighbors can be charged to visiting the neighbors of v. For in
switching, if v appears more than n/2 times in the adjacency list of G, then
switch v. The work is clearly O(m).

Observe that if both in-switches and out-switches are allowed, then the algo-
rithm in the proof of Lemma1 no longer guarantees that the representative is a
minimum. This is because edges can reappear while constructing the representa-
tive. It is known that computing minimum representatives for Gale-Berlekamp
and Seidel switching classes is NP-hard and is even hard to approximate within
a constant factor of the optimum [9,16]. There do however exist randomized
linear-time (1 + ε)-approximation schemes for computing a minimum represen-
tative G̃ ∈ C±

G [12]. This allows one to obtain a representative G′ ∈ C±
G such that

|G′| = Θ(|G̃|) in O(n log(n) + m log(n)) time with high probability.

3 Basic Algorithms for Switching Classes

3.1 Traversal

Traversal algorithms for out-switching classes first appeared in [4] where the
existence of O(n + m̃) algorithms for traversal on Seidel switching classes was



242 N. Lindzey

left open. We show that these algorithms can obtained in a straightforward man-
ner through a slight modification of the pc-list data-structure and the traversal
algorithms of [4,10]. We refer the reader to [4,10] for a more thorough treatment.
We begin with an intuitive explanation as to why the pc-list is able to provide
asymptotic savings in runtime for graph traversal.

Let A be a graph traversal algorithm and assume there exists an oracle O
such that for any current vertex v, it returns in O(1) time either an undiscovered
neighbor v or reports that all of v’s neighbors have been discovered. If A considers
a vertex that has already been discovered, then we shall call this a bad query.
It is clear that the runtime of A with oracle O is Θ(n) since A can make no
bad queries. This is no longer the case if we run A without O since we might
have ω(n) bad queries for arbitrary graphs. In this case, the runtime of A is
dominated by bad queries since we could have as many as O(m). However, if
the size of G’s pc-list is asymptotically smaller than its adjacency list, then we
can obtain a tighter upper bound on the number of bad queries that can occur
during an execution of algorithm A without use of an oracle. This is due to the
fact that every bad query of BFS or DFS can be charged to an element of the
pc-list data-structure [4,10].

Theorem 1. [4] Given G̃ ∈ C+
G , BFS on G can be done O(n + m̃) time.

Theorem 2. [4,10] Given G̃ ∈ C+
G , DFS on G can be done in O(n + m̃) time.

Proposition 3. Let S ⊆ V be a set of Seidel switched vertices and let H =
G[S] ∪ G[S − V ]. Then ¬S(G) is isomorphic to the graph H ′ = (V (H), E(H) ∪
E(S, V −S)) where E(S, V −S) is the complement of the cut induced by (S, V −S).

Given an adjacency list representation of G and a set of Seidel switched vertices
S ⊆ V such that |E(¬S(G))| < |E(G)|, a pc-list data-structure that represents
¬S(G) can be constructed in O(n + m) time as follows. Let v be an arbitrary
vertex. If v is switched, set its bit to 1, add all of its neighbors in S and its
nonneighbors in V − S into its neighborlist. If v is unswitched, set its bit to 0,
add all of its neighbors in V − S and its nonneighbors in S into its neighborlist.
Relabel the vertices so that the members of V − S have a smaller label than
members of S, then radix-sort the pc-list with respect to this new labeling. The
sort has the effect of making all nonneighbors of v appear consecutively in v’s
neighborlist. Finally, insert a dummy vertex between the two elements u and w
of v’s neighborlist such that u is switched and w is unswitched.

The same algorithms given in [4,10] can be used on this pc-list representation
with the following modification; once v’s dummy vertex is visited during a scan
of its neighbor list, flip v’s bit in the pc-list. If v is switched, then the flip has the
effect of treating elements after the dummy vertex as actual neighbors of v. If v
is unswitched, then the flip has the effect of treating elements after the dummy
vertex as nonneighbors of v. Accounting for this modification in the traversal
algorithms of [4,10] is trivial. The foregoing gives the following result.

Theorem 3. Given G̃ ∈ CG, BFS and DFS on G can be done in O(n+m̃) time.



Speeding up Graph Algorithms via Switching Classes 243

3.2 Contraction

Henceforth we shall assume that all switching operations are out-switches for ease
of exposition. Let G̃ ∈ C+

G be a minimum representative, n(B) be the number
of vertices of a subset B ⊆ V , and m̃(B) be the number of edges incident to
vertices of B in the graph G̃. Without loss of generality, we assume that the
pc-list of G̃ is sorted by vertex label.

Lemma 2. Given G̃ ∈ C+
G , a set B ⊆ V can be contracted to vertex b̂ in

O(n(B) + m̃(B)) time.

Proof. To build the neighbor list of b̂, we first build two doubly-linked neighbor
lists X,Y that correspond to the contraction of all the switched vertices S ⊆ B
and unswitched vertices of B − S respectively.

Initialize X to be Ñ(s) some s ∈ S and let b, c ∈ S. Then contracting b

and c together corresponds to taking the intersection Ñ(b) ∩ Ñ(c). Since the
neighborlists are sorted, taking the intersection

⋂
b∈S Ñ(b) can be computed in

O(n(B) + m̃(B)) using a routine similar to the merge routine of merge-sort as
follows. Let L[i] denote the ith element of a doubly-linked list L.

If X[i] = Ñ(b)[j], then the comparison can be charged to the jth edge of
b’s neighbor list. If X[i] > Ñ(b)[j], then the comparison can be charged to the
jth edge of b’s neighbor list. If X[i] < Ñ(b)[j], then X[i] is removed from the
doubly-linked list X. Removing a vertex from X happens at most m̃(B) times
since each deletion can be charged to an element of Ñ(s).

Initialize Y to be N(v) for some v ∈ B −S and let b, c ∈ B −S. Suppose that
b, c ∈ B−S are unswitched, then contracting b and c together corresponds taking
the union N(b) ∪ N(c). The union Y =

⋃
b∈B−S N(b) can clearly be computed

in O(n(B) + m̃(B)).
To combine X and Y it suffices to scan X and remove all elements from

X that also exist in Y . This can be done using a routine similar to the merge
routine. At the end of the routine, define Ñ(b̂) to be X. Since the sizes of X

and Y are each O(n(B) + m̃(B)), it follows that Ñ(b̂) can be constructed in
O(n(B) + m̃(B)) time.

Lemma 3. Let β be a collection of vertex-disjoint subsets. Then the contracted
graph G̃/β can be computed in O(n + m̃).

Proof. By Lemma 2 we can perform all of the contractions in time
∑

B∈β n(B)+
m̃(B) = O(n+m̃). After performing the contractions, the pc-list must be cleaned
up so that vertices subsumed by contractions are no longer referenced. This can
be done by radix-sorting and removing duplicates in O(n + m̃) time.

4 Super-Linear Graph Algorithms

In this section, we show that given a graph G = (V,E), spending O(n+m) time
to compute an O(n + m̃) space pc-list representation of G gives rise to better
bounds for several canonical unweighted graph algorithms.



244 N. Lindzey

4.1 Diameter and Transitive Closure

At present, the most efficient combinatorial algorithm (ignoring log factors) for
computing the diameter and transitive closure of a graph to our knowledge is
the naive O(n2 + nm) algorithm, that is, calling BFS from each vertex. The
following results are straightforward.

Theorem 4. The diameter of a graph G can be computed in O(n2 + nm̃) time.

Theorem 5. The transitive closure of a graph G can be computed in O(n2+nm̃)
time.

Proof. Compute G̃ in O(n + m) time, then run the naive algorithm from each
vertex using the BFS algorithm of [4]. The runtime of this algorithm is O((n +
m) + n(n + m̃)) = O(n2 + nm̃).

Since n2 + nm̃ is never worse than n2 + nm and is sometimes better, this is
indeed a better bound for both diameter and transitive closure.

At this point it is natural to ask when a graph benefits from its pc-list repre-
sentation, that is, when its pc-list representation is asymptotically smaller than
its adjacency-list representation. It is easy to see that there are at least twice
as many graphs that benefit from pc-lists as there are graphs that benefit from
adjacency-lists. This is because the pc-list is a generalization of the adjacency-list
and the complement of any graph whose adjacency-list representation is asymp-
totically smaller than its adjacency-matrix representation must have a minimum
representative G̃ ∈ C+

G such that m̃ = o(m). For instance, the class of graphs
whose complement is sparse benefits from its pc-list representation simply by
out-switching all of its vertices.

It would be interesting to give precise conditions for when a graph benefits
from its pc-list representation, but for now, our intuition tells us that very dense
graphs and “unbalanced” graphs (graphs with vanishingly few vertices of average
valency) appear to benefit most from the pc-list representation. On the other
hand, since almost all graphs are roughly n/2-regular, the pc-list does not provide
an asymptotically smaller representation for most graphs. The techniques of [3,6]
are notable since they give logarithmic speedups in runtime for almost all graphs.

4.2 Hopcroft-Karp Bipartite Maximum Matching

Notice that switching in general does not preserve the bipartite property. Given
a bipartite graph G, define the bipartite switching class of G (with respect to
some switching operator), such that neighbors of v become nonneighbors and
nonneighbors of v that lie outside of v’s partition class become neighbors. In
this section, all switches are assumed to be bipartite out-switches. Familiarity
with the bipartite maximum matching problem is assumed.

The Hopcroft-Karp algorithm consists of phases, each of which strictly
increases the size of a current matching. In [8] it is shown that a phase consists
of a call to a modified BFS routine followed by a call to a modified DFS and that



Speeding up Graph Algorithms via Switching Classes 245

only O(
√

n) phases are needed to compute a maximum matching. These routines
can be implemented to run in O(n+m) time which gives rise to a O(

√
n(n+m))

bound for computing a maximum matching of a bipartite graph.
The purpose of running the modified BFS is to discover a directed acyclic level

graph L such that any path connecting two unmatched vertices in L corresponds
to a shortest augmenting path in G. A modified DFS is then conducted on L in
order to find a maximal set of vertex-disjoint augmenting paths P in G. These
steps are repeated until a phase is encountered such that P = ∅, in which case
the matching M must be maximum by a theorem of Berge.

It suffices to show that given G̃, a phase of Hopcroft-Karp can be implemented
to run in O(n + m̃) time. Let BFS* and DFS* be pc-list implementations of the
aforementioned modified BFS and DFS routines. The BFS* routine is essentially
the same as the BFS algorithm of [4] except for the following modifications. Let
level(v) denote the BFS level of a vertex v.

1. The undiscov ered vertices are divided into two doubly-linked lists UA and
UB . If the current vertex v ∈ A, then BFS∗ only considers vertices in UB

(similarly for v ∈ B).
2. The discovered vertices are kept in an array of doubly-linked lists L that

represents a partition of the discovered vertices by BFS level. In particular,
a discovered vertex v resides in the doubly-linked list at index level(v) of L.
This array represents the levels in the DAG L.

3. Let k be the level of the first unmatched vertex in B that has been dequeued.
Once all vertices at level k have been dequeued, the routine returns L.

It is clear that the aforementioned modifications to the BFS routine of [4] can
be accomplished in O(n + m̃) time.

The vertices of L form the initial set of undiscovered vertices for the modified
DFS routine. Notice that explicitly constructing the level DAG L from L would
exceed the O(n+m̃) time bound; however, this is unnecessary since L provides an
implicit representation of L. A precondition to the DFS algorithm of [10] is that
doubly-linked list of undiscovered vertices is ordered according to the ordering
of the vertices of the pc-list. For each i ∈ {1 · · · k}, the ordering of L[i] might
not respect the ordering of the vertices in the sorted pc-list; however, this can
be corrected by performing a radix-sort on L in O(n) time. The DFS* routine
is the same as the DFS algorithm in [10] except for the following modifications.

1. If a vertex v ∈ L[level(v)] is current, then U points to the doubly-linked list
L[level(v)+1] so that v only considers undiscovered neighbors at level(v)+1.

2. When a path P from the designated source vertex s to an unmatched vertex
in B has been found, the routine adds P − s to the set of vertex-disjoint
augmenting paths and restarts DFS* from s.

The vertices of P − s cannot be considered in subsequent DFS* searches since
they are removed from L once they are discovered. Since the union of vertex-
disjoint paths P has size O(n), it is clear that DFS* can be implemented to run
in O(n + m̃) time.



246 N. Lindzey

Finally, since a set of matched edges M has size O(n), it is clear that the
symmetric difference between M and the edges of the paths in P can be com-
puted in O(n) time. This completes the description of a phase. Because BFS*
and DFS* are O(n + m̃) and updating a matching takes O(n) time, we obtain
the following result.

Lemma 4. A phase of Hopcroft-Karp can be implemented in O(n + m̃) time.

Theorem 6. A maximum matching of a bipartite graph G can be computed in
O(n1.5 +

√
nm̃ + m) time.

In [1] it is shown that finding maximum matchings of complement biclique graphs
can be used as a heuristic to enumerate large cliques in graphs. It is possible that
the pc-list could make this heuristic more efficient in practice by circumventing
the construction of the complement.

4.3 Gabow-Tarjan Maximum Matching

A full discussion of the Gabow-Tarjan maximum cardinality matching algo-
rithm [7] is beyond the scope of this paper. The following is only a rough sketch
of the algorithm. Familiarity with the maximum matching problem is assumed.

It is well known that the maximum matching problem for general graphs
is complicated by the existence of alternating odd cycles (blossoms) [5]. The
Gabow-Tarjan maximum matching algorithm consists of �√n iterations of so-
called phase 1 (not to be confused with Hopcroft-Karp’s phases) followed by
O(

√
n) calls to find ap set [7]. Phase 1 consists of running find ap set on a

contracted graph G/β and expanding unweighted blossoms afterwards. The
find ap set routine is a depth-first based search responsible for discovering aug-
menting paths and blossoms of the input graph. A pre-condition to find ap set
is that the input graph G/β is contracted with respect to a set of blossoms β.
Once find ap set halts, the routine returns a maximal set of vertex-disjoint aug-
ment paths in the contracted graph. These paths in the contracted graph are
translated into vertex-disjoint augmenting paths in the original graph in O(n)
time and the current matching is updated with respect to those paths. In addi-
tion to finding these paths, an execution discovers a set of new blossoms as well
as a set of previously discovered blossoms to be expanded. This gives rise to
a new set of blossoms to be contracted before the next call to find ap set. A
blossom is expanded if its dual variable z becomes non-positive, which estab-
lishes an invariant that contracted blossoms b̂ always have positive weight after
the first execution of find ap set. Unweighted blossoms are expanded because
they might be “hiding augmenting paths” [5]. Expanding these blossoms gives
find ap set a chance to find these hidden augmenting paths in the next itera-
tion. The maximum cardinality case is treated as a special case of their minimum
weight matching algorithm and is shown to run in time O(

√
n(n+m)) since the

algorithm performs O(
√

n) iterations of find ap set which runs in time O(n+m).
In [7] it is shown that blossom, augmenting path, and dual variable maintenance
all take O(n) time and space during an iteration of phase 1.



Speeding up Graph Algorithms via Switching Classes 247

Lemma 3 shows that we can build the contracted graph in time proportional
to G̃, so it remains to show that find ap set can be conducted in O(n + m̃)
time. We shall assume that we have obtained a minimum member G̃ of G’s out-
switching class. Recall that a vertex of G̃ is switched if and only if it has n/2 or
more neighbors in the original graph. It follows that we can build an adjacency
lookup vector v[] for each switched vertex v in O(n + m) time. This lookup
vector will allow us to answer if some vertex u is adjacent to a switched vertex
v in the original graph in O(1) time.

Lemma 5. The find ap set routine can be implemented in O(n + m̃) time.

It suffices to show that the subroutine find ap can be implemented in O(n + m̃)
time [7]. Let b(v) denote the blossom that v currently belongs to. It is important
to note that find ap only performs grow steps and blossom steps. We show how
to perform each of these steps when the current vertex is switched. The following
invariants will be needed to simplify the analysis of our modification to find ap.

1. Let x be the current vertex. If an edge xy is scanned and b(y) became outer
after b(x), then a blossom step is performed and every vertex in b(y) has been
completely scanned [7].

2. The order in which vertices become outer is given by the ordering of a doubly-
linked list OUT .

3. If the current vertex performs a blossom step, then no more grow steps are
possible from the current vertex.

The second and third invariants are not part of the specification of their algo-
rithm; however, it can be implemented to maintain these invariants without
affecting the correctness or resource bounds of the algorithm.

It is straightforward to modify the DFS algorithm of [10] so that when a
current outer vertex u is considering an inner undiscovered neighbor v, the next
outer current vertex becomes v′ where vv′ ∈ M is a matched edge. The details
of the blossom step are slightly more involved. It helps to view the blossom steps
as DFS where the “undiscovered vertices” are those vertices that have an outer
label that is greater than the current vertex’s outer label. Once a blossom step is
performed, the inner vertices along that blossom become current (and therefore
outer) in order of their DFS discovery time and the routine proceeds recursively.

Assume that a current vertex x has no more grow steps, that is, there are no
more undiscovered vertices reachable from x. If x is not switched, then proceed as
usual in find ap; otherwise, assume that x is switched. The invariants guarantee
that the blossom steps from x can be conducted by performing DFS where the
“undiscovered vertices” are those vertices to the right of x in OUT . Let us refer
to this ordered set of vertices as OUT>x. The main obstacle is that we cannot
use the DFS routine of [10] immediately to solve this problem since the ordering
of the pc-list does not respect the ordering of OUT>x. For this reason we must
use x[] to determine adjacency in O(1) time.

Let y ∈ OUT>x. If x[y] = 1, then a blossom step is performed. When a
blossom step is performed, then b(y) is removed from OUT since invariant 1



248 N. Lindzey

implies that these vertices have already been completely scanned and cannot
be further used to discover an augmenting path. Assuming the blossom data-
structures in [7], it follows that blossom steps take O(n + m̃) time.

If x[y] = 0, then no blossom step is performed, but we can charge the
lookup to y’s entry in Ñ(x). But as in the routines of [4,10], we must guar-
antee that x considers y only O(1) times throughout the entire DFS execution
on OUT>x. To ensure this, each time we encounter a y such that x[y] = 0,
we add it to the end of an auxiliary doubly-linked neighborlist for Ñ ′(x). This
has the effect of building an ordered neighborlist for x that respects the order-
ing of OUT . Using this neighborlist, we can follow the restart step of the DFS
algorithm in [10] to correctly and efficiently resume DFS on OUT>x when x
returns from a recursive call. As in the bipartite case, keeping track of augment-
ing paths and updating the current matching can be accomplished in O(n) time.
Since find ap set can be implemented in O(n+ m̃) time, we obtain the following
result.

Theorem 7. A maximum matching of a graph G can be computed in O(n1.5 +√
nm̃ + m) time.

5 Conclusions

We have demonstrated that switching classes can be used to obtain asymp-
totically better bounds for several graph algorithms through use of the pc-list
data-structure. These improvements on algorithm resource bounds suggest that
the pc-list is a more efficient data-structure than the adjacency list for several
unweighted graph problems. But like any graph representation, it has its trade-
offs. For instance, finding an arbitrary neighbor of a switched vertex v in the
original graph takes Θ(|Ñ(v)|) time whereas finding an arbitrary neighbor of an
unswitched vertex takes Θ(1) time.

It may be tempting to believe that any unweighted graph algorithm can be
implemented to work with a pc-list representation; however, it seems unlikely
that the maximum matching algorithm of [15] is amenable to pc-lists. This is due
to the fact that their approach requires a number of edges (so-called bridges) to
be queued and processed at a later point in the execution of the algorithm. When
a bridge is processed, it does not always progress the algorithm, that is, it may
not lead to a grow step, produce an augmenting path, or discover a blossom.
In light of this, processing a bridge cannot always be charged to a vertex or
edge of G̃. We were unable to obtain a bound tighter than O(m) for the number
of bridges queued throughout the algorithm; however, it might be possible to
modify the algorithm so that only bridges that lead to an augmenting path or
blossom are considered.

An obvious line of future work would be towards a more formal characteriza-
tion of graphs that benefit from pc-list representations as well as the development
of more pc-list algorithms. We conclude by thanking Ross M. McConnell for his
insightful comments.



Speeding up Graph Algorithms via Switching Classes 249

References

1. Balas, E., Niehaus, W.: Finding large cliques in arbitrary graphs by bipartite
matching. In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Colouring, and Satisfi-
ability, Second DIMACS Implementations Challenge. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, vol. 26, pp. 29–52. American
Mathematical Society, Providence (1996)

2. Cheng, Y., Wells, A.L.: Switching classes of directed graphs. J. Comb. Theory,
Ser. B 40(2), 169–186 (1986). http://www.sciencedirect.com/science/article/pii/
0095895686900754

3. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks on the
random access computer. Algorithmica 15(6), 521–549 (1996)

4. Dahlhaus, E., Gustedt, J., McConnell, R.M.: Partially complemented representa-
tions of digraphs. Discrete Math. Theor. Comput. Sci. 5(1), 147–168 (2002)

5. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965).
http://dx.doi.org/10.4153/CJM-1965-045-4

6. Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-up
algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

7. Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-matching
problems. J. ACM 38(4), 815–853 (1991)

8. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

9. Jeĺınková, E., Suchý, O., Hlinený, P., Kratochv́ıl, J.: Parameterized problems
related to seidel’s switching. Discrete Math. Theor. Comput. Sci. 13(2), 19–44
(2011)

10. Joeris, B., Lindzey, N., McConnell, R.M., Osheim, N.: Simple DFS on the com-
plement of a graph and on partially complemented digraphs. Inf. Process. Lett.,
arxiv.org (2013, submitted)

11. Kao, M.Y., Occhiogrosso, N., Teng, S.H.: Simple and efficient graph compression
schemes for dense and complement graphs. J. Comb. Optim. 2(4), 351–359 (1998)

12. Karpinski, M., Schudy, W.: Linear time approximation schemes for the gale-
berlekamp game and related minimization problems. In: STOC, pp. 313–322 (2009)

13. McConnell, R.M.: Complement-equivalence classes on graphs. In: Mycielski, J.,
Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science.
LNCS, vol. 1261, pp. 174–191. Springer, Heidelberg (1997)

14. McConnell, R.M., Spinrad, J.: Modular decomposition and transitive orientation.
Discrete Math. 201(1–3), 189–241 (1999)

15. Micali, S., Vazirani, V.V.: An o(sqrt(n) m) algorithm for finding maximum match-
ing in general graphs. In: FOCS, pp. 17–27 (1980)

16. Roth, R.M., Viswanathan, K.: On the hardness of decoding the gale-berlekamp
code. IEEE Trans. Inf. Theory 54(3), 1050–1060 (2008)

17. Seidel, J.J.: A survey of two-graphs. In: Colloquio Internazionale sulle Teorie Com-
binatorie, pp. 481–511 (1976)

http://www.sciencedirect.com/science/article/pii/0095895686900754
http://www.sciencedirect.com/science/article/pii/0095895686900754
http://dx.doi.org/10.4153/CJM-1965-045-4
http://arxiv.org


Study of κ(D) for D = {2, 3, x, y}

Daniel Collister and Daphne Der-Fen Liu(B)

California State University Los Angeles, Los Angeles, CA 90032, USA
collister.d@gmail.com, dliu@calstatela.edu

Abstract. Let D be a set of positive integers. The kappa value of D,
denoted by κ(D), is the parameter involved in the so called “lonely runner
conjecture.” Let x, y be positive integers, we investigate the kappa values
for the family of sets D = {2, 3, x, y}. For a fixed positive integer x > 3,
the exact values of κ(D) are determined for y = x + i, 1 ≤ i ≤ 6. These
results lead to some asymptotic behavior of κ(D) for D = {2, 3, x, y}.

1 Introduction

Let D be a set of positive integers. For any real number x, let ||x|| denote the
minimum distance from x to an integer, that is, ||x|| = min{�x� − x, x − �x�}.
For any real t, denote ||tD|| the smallest value of ||td|| among all d ∈ D. The
kappa value of D, denoted by κ(D), is the supremum of ||tD|| among all real t.
That is,

κ(D) := sup{α : ||tD|| ≥ α for some t ∈ �}.

Wills [20] conjectured that κ(D) ≥ 1/(|D| + 1) is true for all finite sets D.
This conjecture is also known as the lonely runner conjecture by Bienia et al.
[2]. Suppose m runners run laps on a circular track of unit circumference. Each
runner maintains a constant speed, and the speeds of all the runners are distinct.
A runner is called lonely if the distance on the circular track between him or
her and every other runner is at least 1/m. Equivalently, the conjecture asserts
that for each runner, there is some time t when he or she becomes lonely. The
conjecture has been proved true for |D| ≤ 6 (cf. [1,3,6,7]), and remains open for
|D| ≥ 7.

For a set D of positive integers, the parameter κ(D) is closely related to
another parameter of D called the “density of integral sequences with missing
differences.” For a set D of positive integers, a sequence S of non-negative inte-
gers is called a D-sequence if |x − y| 
∈ D for any x, y ∈ S. Denote S(n) as
|S ∩{0, 1, 2, · · · , n−1}|. The upper density δ(S) and the lower density δ(S) of S
are defined, respectively, by δ(S) = limn→∞S(n)/n and δ(S) = limn→∞S(n)/n.
We say S has density δ(S) if δ(S) = δ(S) = δ(S). The parameter of interest is
the density of D, μ(D), defined by

μ(D) := sup { δ(S) : S is a D-sequence}.

Supported in part by the National Science Foundation under grant DMS-1247679.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 250–261, 2015.
DOI: 10.1007/978-3-319-19315-1 22



Study of κ(D) for D = {2, 3, x, y} 251

It is known that for any set D (cf. [4,14]):

μ(D) ≥ κ(D). (1)

For two-element sets D = {a, b}, Cantor and Gordon [4] proved that κ(D) =

μ(D) = � a+b
2 �

a+b . For 3-element sets D, if D = {a, b, a + b} it was proved that
κ(D) = μ(D) and the exact values were determined (see Theorem 1 below). For
the general case D = {i, j, k}, various lower bounds of κ(D) were given by Gupta
[11], in which the values of μ(D) were also studied. In addition, among other
results it was shown in [11] that if D is an arithmetic sequence then κ(D) = μ(D)
and the value was determined.

The parameters κ(D) and μ(D) are closely related to coloring parameters of
distance graphs. Let D be a set of positive integers. The distance graph generated
by D, denoted as G(ZZ,D), has all integers ZZ as the vertex set. Two vertices
are adjacent whenever their absolute value difference falls in D. The chromatic
number (minimum number of colors in a proper vertex-coloring) of the distance
graph generated by D is denoted by χ(D). It is known that χ(D) ≤ �1/κ(D)�
for any set D (cf. [21]).

The fractional chromatic number of a graph G, denoted by χf (G), is the
minimum ratio m/n (m,n ∈ ZZ+) of an (m/n)-coloring, where an (m/n)-coloring
is a function on V (G) to n-element subsets of [m] = {1, 2, · · · ,m} such that if
uv ∈ E(G) then f(u)∩f(v) = Ø. It is known that for any graph G, χf (G) ≤ χ(G)
(cf. [14,21]).

Denote the fractional chromatic number of G(ZZ,D) by χf (D). Chang et al.
[5] proved that for any set of positive integers D, it holds that χf (D) = 1/μ(D).
Together with (1) we have

1
μ(D)

= χf (D) ≤ χ(D) ≤ � 1
κ(D)

�. (2)

The chromatic number of distance graphs G(ZZ,D) with D = {2, 3, x, y} was
studied by several authors (cf. [8,9]). For prime numbers x and y, the values of
χ(D) for this family were first studied by Eggleton, Erdős and Skilton [10] and
later on completely solved by Voigt and Walther [18]. For general values of x
and y, Kemnitz and Kolberg [13] and Voigt and Walther [19] determined χ(D)
for some values of x and y. This problem was completely solved for all values
of x and y by Liu and Setudja [15], in which κ(D) was utilized as one of the
main tools. In particular, it was proved in [15] that κ(D) ≥ 1/3 for many sets in
the form D = {2, 3, x, y}. Hence, by (2), for those sets it holds that χ(D) = 3.

In this article we further investigate those previously established lower
bounds of κ(D) for the family of sets D = {2, 3, x, y}. In particular, we deter-
mine the exact values of κ(D) for D = {2, 3, x, y} with |x−y| ≤ 6. Furthermore,
for some cases we prove κ(D) = μ(D). Our results also lead to some asymptotic
behavior of κ(D).



252 D. Collister and D.D.-F. Liu

2 Preliminaries

We introduce terminologies and known results that will be used to determine the
exact values of κ(D). It is easy to see that if the elements of D have a common
factor r, then κ(D) = κ(D′) and μ(D) = μ(D′), where D′ = D/r = {d/r :
d ∈ D}. Thus, throughout the article we assume that gcd(D) = 1, unless it is
otherwise indicated.

The following proposition is derived directly from definitions.

Proposition 1. If D ⊆ D′ then κ(D) ≥ κ(D′) and μ(D) ≥ μ(D′).

The next result was established by Liu and Zhu [16], after confirming a conjecture
of Rabinowitz and Proulx [17].

Theorem 1. [16] Suppose M = {a, b, a + b} for some positive integers a and b
with gcd(a, b) = 1. Then

μ(M) = κ(M) = max

{
� 2b+a

3 �
2b + a

,
� 2a+b

3 �
2a + b

}

.

By Proposition 1, if {a, b, a + b} ⊆ D for some a and b, then Theorem1 gives an
upper bound for κ(D).

For a D-sequence S, denote S[n] = |{0, 1, 2, . . . , n} ∩ S|. The next result was
proved by Haralambis [12].

Lemma 1. [12] Let D be a set of positive integers, and let α ∈ (0, 1]. If for every
D-sequence S with 0 ∈ S there exists a positive integer n such that S[n]

n+1 ≤ α,
then μ(D) ≤ α.

For a given D-sequence S, we shall write elements of S in an increasing order,
S = {s0, s1, s2, . . .} with s0 < s1 < s2 < . . ., and denote its difference sequence by

Δ(S) = {δ0, δ1, δ2, . . .} where δi = si+1 − si.

We say a subsequence of consecutive terms in Δ(S), δa, δa+1, . . . , δa+b−1, gen-
erates a periodic interval of k copies, k ≥ 1, if δj(a+b)+i = δa+i for all
0 ≤ i ≤ b − 1, 1 ≤ j ≤ k − 1. We denote such a periodic subsequence of
Δ(S) by (δa, δa+1, . . . , δa+b−1)k. If the periodic interval repeats infinitely, we
simply denote it by (δa, δa+1, . . . , δa+b−1). If Δ(S) is infinite periodic, except the
first finite number of terms, with the periodic interval (t1, t2, . . . , tk), then the

density of S is (
k∑

i=1

ti)/k.

Proposition 2. A sequence of non-negative integers S is a D-sequence if and

only if
b∑

i=a

δi 
∈ D for every a ≤ b.



Study of κ(D) for D = {2, 3, x, y} 253

Proposition 3. Assume 2, 3 ∈ D. If S is a D-sequence, then δi + δi+1 ≥ 5 for
all i. Moreover, the equality holds only when {δi, δi+1} = {1, 4}. Consequently,
μ(D) ≤ 2/5.

Lemma 2. Let D = {2, 3} ∪ A. Then κ(D) = 2/5 if and only if A ⊆ {x : x ≡
2, 3 (mod 5)}. Furthermore, if κ(D) = 2/5, then μ(D) = 2/5.

Proof. Let D = {2, 3}∪A. Assume A ⊆ {x : x ≡ 2, 3 (mod 5)}. Let t = 1/5. Then
||td|| ≥ 2/5 for all d ∈ D. Hence κ(D) ≥ 2/5. On the other hand, the density of
the infinite periodic D-sequence S with Δ(S) = (1, 4) is 2/5. By Proposition 3,
this is an optimal D-sequence. Hence, μ(D) = 2/5, implying κ(D) = 2/5.

Conversely, assume κ(D) = 2/5. Then μ(D) ≥ 2/5. By Proposition 3, μ(D) =
2/5. By Proposition 2, this implies that if d ∈ D, then d 
≡ 0, 1, 4 (mod 5). Thus
the result follows. ��
Note, in D = {2, 3, x, y}, if x = 1, then it is known [16] and easy to see that
μ(D) = κ(D) = 1/4 if y is not a multiple of 4 (with Δ(S) = (4)); otherwise y =
4k and μ(D) = κ(D) = k/(4k + 1) (with Δ(S) = ((4)k−15)). Hence throughout
the article we assume x > 3.

Another method we will utilize is an alternative definition of κ(D). In this
definition, for a projected lower bound α of κ(D), for each element z in D the
valid time t for z to achieve α is expressed as a union of disjoint intervals. Let
α ∈ (0, 1

2 ). For positive integer i, define Ii(α) = {t ∈ (0, 1) : ‖ ti ‖ ≥ α}.
Equivalently,

Ii(α) = {t : n + α ≤ ti ≤ n + 1 − α, 0 ≤ n ≤ i − 1}.

That is, Ii consists of intervals of reals with length (1 − 2α)/i and centered
at (2n + 1)/(2i), n = 0, 1, . . . , i − 1. By definition, κ(D) ≥ α if and only if⋂

i∈D Ii(α) 
= Ø. Thus,

κ(D) = sup

{

α ∈ (0,
1
2
) :

⋂

i∈D

Ii(α) 
= Ø

}

.

Observe that if
⋂

i∈D

Ii(α) consists of only isolated points, then κ(D) ≤ α. Hence,

we have the following:

Proposition 4. For a set D, κ(D) = d/c if
⋂

i∈D

Ii is a set of isolated points,

where

Ii =
i−1⋃

n=0

[
d + cn

i
,
c − d + cn

i

]

.

3 D = {2, 3, x, y} for y = x + 1, x + 2, x + 3

Theorem 2. Let D = {2, 3, x, x + 1}, x ≥ 4. Then

κ(D) = μ(D) =

{
2� x+3

5 �+1

x+3 if x ≡ 1 (mod 5);
2� x+3

5 �
x+3 otherwise.



254 D. Collister and D.D.-F. Liu

Proof. We prove the following cases.

Case 1. x = 5k + 2. The result follows by Lemma 2.

Case 2. x = 5k + 3. Let t = (k + 1)/(5k + 6). Then ||dt|| ≥ (2k + 2)/(5k + 6)
for every d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 6).

By (1) it remains to show that μ(D) ≤ (2k + 2)/(5k + 6). Assume to the
contrary that μ(D) > (2k +2)/(5k +6). By Lemma 1, there exists a D-sequence
S with S[n]/(n + 1) > (2k + 2)/(5k + 6) for all n ≥ 0. This implies, for instance,
S[0] ≥ 1, so s0 = 0; S[2] ≥ 2, so s1 = 1 (as 2, 3 ∈ D); S[5] ≥ 3, so s3 = 5.
Moreover, S[5k+5] ≥ 2k+3. By Proposition 3, it must be (δ0, δ1, δ2, . . . , δ2k+1) =
(1, 4, 1, 4, . . . , 1, 4). This implies 5k + 5 ∈ S, which is impossible since 1 ∈ S and
5k + 4 ∈ D. Therefore, μ(D) = κ(D) = (2k + 2)/(5k + 6).

Case 3. x = 5k + 4. Let t = (k + 1)/(5k + 7). Then ||dt|| ≥ (2k + 2)/(5k + 7)
for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 7).

By (1) it remains to show that μ(D) ≤ (2k + 2)/(5k + 7). Assume to the
contrary that μ(D) > (2k +2)/(5k +7). By Lemma 1, there exists a D-sequence
S with S[n]/(n + 1) > (2k + 2)/(5k + 7) for all n ≥ 0. This implies, for instance,
S[0] ≥ 1, so s0 = 0; S[3] ≥ 2, so s1 = 1 (as 2, 3 ∈ D); and S[5k + 6] ≥ 2k + 3.
By Proposition 3, either 5k + 5 or 5k + 6 is an element in S. This is impossible
since 0, 1 ∈ S and 5k + 4, 5k + 5 ∈ D. Thus μ(D) = κ(D) = (2k + 2)/(5k + 7).

Case 4. x = 5k + 5. Let t = (k + 1)/(5k + 8). Then ||dt|| ≥ (2k + 2)/(5k + 8)
for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(5k + 8).

It remains to show that μ(D) ≤ (2k + 2)/(5k + 8). Assume to the contrary
that μ(D) > (2k + 2)/(5k + 8). By Lemma 1, there exists a D-sequence S with
S[n]/(n+1) > (2k+2)/(5k+8) for all n ≥ 0. Similar to the above, one has 0, 1 ∈ S
and S[5k+7] ≥ 2k+3. This implies that one of 5k+5, 5k+6, or 5k+7 is an element
in S, which is again impossible. Therefore, μ(D) = κ(D) = (2k + 2)/(5k + 8).

Case 5. x = 5k + 1. Let t = (k + 1)/(5k + 4). Then ||dt|| ≥ (2k + 1)/(5k + 4)
for all d ∈ D. Hence κ(D) ≥ (2k + 1)/(5k + 4).

Now we show μ(D) ≤ (2k+1)/(5k+4). Assume to the contrary that μ(D) >
(2k+1)/(5k+4). By Lemma 1, (s0, s1) = (0, 1), and S[5k+3] ≥ 2k+2. Because
S[5k] ≤ 2k+1, so S∩{5k+1, 5k+2, 5k+3} 
= Ø, which is impossible. Therefore,
μ(D) = κ(D) = (2k + 1)/(5k + 4). ��
By the above proof, one can the sets D in Theorem 2 to the following:

Corollary 1. Let D∗ = {2, 3, x, x + 1} ∪ D′, where D′ ⊆ {y : y ≡ ±2,±3 (mod
(x + 3))}. Then μ(D∗) = κ(D∗) = μ({2, 3, x, x + 1}).

Corollary 2. Let D = {2, 3, x, x + 1}. Then lim
x→∞ κ(D) = 2

5 .

Theorem 3. Let D = {2, 3, x, x + 2}, x ≥ 4. Assume x + 4 = 6β + r with
0 ≤ r ≤ 5. Then

κ(D) =

⎧
⎪⎨

⎪⎩

� x+4
3 �

x+4 if 0 ≤ r ≤ 2;

� 2x+1
3 �

2x+2 if 3 ≤ r ≤ 5.



Study of κ(D) for D = {2, 3, x, y} 255

Furthermore, κ(D) = μ(D) if r 
= 3.

Proof. We prove the following cases.

Case 1. x = 6k + 2. Then r = 0. Let t = 1/6. Then ||dt|| ≥ 1/3 for all d ∈ D.
Hence κ(D) ≥ 1/3.

Now we prove μ(D) ≤ 1/3. Let M ′ = {2, x, x + 2} = {2, 6k + 2, 6k + 4}.
By Theorem 1 with M = {1, 3k + 1, 3k + 2}, we obtain μ(M ′) = μ(M) = 1/3.
Because M ′ ⊆ D, so μ(D) ≤ μ(M ′) = 1/3.

Case 2. x = 6k + 3. Then r = 1. Let t = (k + 1)/(6k + 7). Then ||dt|| ≥
(2k + 2)/(6k + 7) for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(6k + 7).

By Theorem 1 with M = {2, x, x + 2} = {2, 6k + 3, 6k + 5}, we get μ(M) =
(2k+2)/(6k+7). Because M ⊆ D, so μ(D) ≤ (2k+2)/(6k+7). Thus, the result
follows.

Case 3. x = 6k + 4. Then r = 2. Let t = (k + 1)/(6k + 8). Then ||dt|| ≥
(2k + 2)/(6k + 8) for all d ∈ D. Hence κ(D) ≥ (2k + 2)/(6k + 8).

By Theorem 1 with M = {2, x, x + 2} = {2, 6k + 4, 6k + 6} which can be
reduced to M ′ = {1, 3k + 2, 3k + 3}, we obtain μ(M) = (k + 1)/(3k + 4).
Therefore, μ(D) ≤ μ(M) = (2k + 2)/(6k + 8). So the result follows.

Case 4. x = 6k + 5. Then r = 3. Let t = (2k + 3)/(12k + 12). Then ||dt|| ≥
(4k + 3)/(12k + 12) for all d ∈ D. Hence κ(D) ≥ (4k + 3)/(12k + 12).

By Proposition 4, it remains to show that
⋂

i=2,3,x,x+2

Ii is a set of isolated

points, where

Ii =
i−1⋃

n=0

[
4k + 3 + n(12k + 12)

i
,
8k + 9 + n(12k + 12)

i

]

.

Let I =
⋂

i=2,3,x,x+2

Ii. By symmetry it is enough to consider the interval I ∩
[0, (12k + 12)/2]. In the following we claim I ∩ [0, 6k + 6] = {2k + 3}. (Indeed,
this single point is the numerator of the t value at the beginning of the proof.)

Note that I2∩I3∩ [0, 6k+6] = [(4k+3)/2, (8k+9)/3]. Denote this interval by

I2,3 =
[
4k + 3

2
,
8k + 9

3

]

.

We then begin to investigate possible values of n for Ix and Ix+2, respectively,
that will fall within I2,3. First, we compare the Ix intervals with I2,3. Recall

Ix =
[
3 + 4k + n(12 + 12k)

6k + 5
,
8k + 9 + n(12 + 12k)

6k + 5

]

, 0 ≤ n ≤ 6k + 4.

By calculation, the intervals of Ix that intersect with I2,3 are those with n ≥ k.
Similarly, we compare Ix+2 intervals with I2,3. Recall

Ix+2 =
[
3 + 4k + n(12 + 12k)

6k + 7
,
8k + 9 + n(12 + 12k)

6k + 7

]

, 0 ≤ n ≤ 6k + 6.



256 D. Collister and D.D.-F. Liu

By calculation, the intervals of Ix+2 that intersect with I2,3 are those with n ≥
k + 1.

Next, we consider the intersection between intervals of Ix and Ix+2. Let
n = k + a for some a ≥ 0 for the Ix interval, and let n = k + a′ for some a′ ≥ 1
for the Ix+2 interval. By taking the common denominator of the Ix and Ix+2

intervals we obtain the following numerators of those intervals:

for Ix : [21 + 84a + 130k + 156ak + 180k2 + 72ak2 + 72k3,

63 + 84a + 194k + 156ak + 204k2 + 72ak2 + 72k3];

for Ix+2 : [15 + 60a′ + 98k + 132a′k + 156k2 + 72a′k2 + 72k3,

45 + 60a′ + 154k + 132a′k + 180k2 + 72a′k2 + 72k3].

Using a = a′ = 1, we get

for Ix : [105 + 286k + 252k2 + 72k3, 147 + 350k + 276k2 + 72k3]

for Ix+2 : [75 + 230k + 228k2 + 72k3, 105 + 286k + 252k2 + 72k3].

Thus, there is a single point intersection for Ix and Ix+2 when a = a′ = 1, which
is {2k + 3}. This single point intersection is also within the I2,3 interval. Hence,
{2k + 3} ∈ I ∩ [0, 6k + 6].

In addition, through inspection it is clear that making n = k (i.e. a = 0) for
the Ix interval and n ≥ k + 1 (a′ ≥ 1) for the Ix+2 interval removes Ix and Ix+2

from intersecting one another. For all other cases, (a = 1 and a′ ≥ 2), (a ≥ 2
and a′ = 1), or (a, a′ ≥ 2), there will never be an intersection of intervals for all
elements in D, either because the I2,3 interval is too small or because the Ix+2

elements become too big. Thus, I ∩ [0, 6k + 6] = {2k + 3}.

Case 5. x = 6k + 6. Then r = 4. Let t = (2k + 3)/(12k + 14). Then ||dt|| ≥
(4k + 4)/(12k + 14) for all d ∈ D. Hence κ(D) ≥ (4k + 4)/(12k + 14).

By Theorem 1 with M = {2, x, x + 2} = {2, 6k + 6, 6k + 8} which can be
reduced to M ′ = {1, 3k + 3, 3k + 4}, we get μ(M) = κ(M) = (2k + 2)/(6k + 7).
Hence, μ(D) ≤ μ(M) = (2k + 2)/(6k + 7).

Case 6. x = 6k + 7. Then r = 5. Let t = (2k + 3)/(12k + 16). Then ||dt|| ≥
(4k + 5)/(12k + 16) for all d ∈ D. Hence κ(D) ≥ (4k + 5)/(12k + 16).

By Theorem 1 with M = {2, x, x+2} = {2, 6k+7, 6k+9}, we obtain μ(M) =
κ(M) = (4k + 5)/(12k + 16). Therefore, μ(D) ≤ (4k + 5)/(12k + 16). ��
Theorem 4. Let D = {2, 3, x, x + 3}, x ≥ 4. Assume (2x + 3) = 9β + r with
0 ≤ r ≤ 8. Then

κ(D) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4
15 if x = 10;

3� 2x+3
9 �

2x+3 if 0 ≤ r ≤ 5 and x 
= 10;

� x+5
3 �

x+6 if 6 ≤ r ≤ 8.

Furthermore, if r = 0, 1, 3, 6, 8 then κ(D) = μ(D).



Study of κ(D) for D = {2, 3, x, y} 257

Proof. We prove the following cases:

Case 1. x = 9k + 3. Then r = 0. Let t = 2/9. Then ||dt|| ≥ 1/3 for all d ∈ D.
Hence κ(D) ≥ (6k + 3)/(18k + 9) = 1/3.

By Theorem 1 with M = {3, x, x + 3} = {3, 9k + 3, 9k + 6}, which can be
reduced to M ′ = {1, 3k + 1, 3k + 2}, resulting in μ(M) = κ(M) = 1/3. Because
M ⊆ D, so μ(D) = μ(M) = 1/3.

Case 2. x = 9k + 8. Then r = 1. Let t = (4k + 4)/(18k + 19). Then ||dt|| ≥
(6k + 6)/(18k + 19) for all d ∈ D. Hence κ(D) ≥ (6k + 6)/(18k + 19).

By Theorem 1 with M = {3, x, x + 3}, we get κ(M) = (6k + 6)/(18k + 19).
Hence, μ(D) ≤ κ(M) = (6k + 6)/(18k + 19).

Case 3. x = 9k + 4. Then r = 2. Let t = (4k + 2)/(18k + 11). Then ||dt|| ≥
(6k + 3)/(18k + 11) for all d ∈ D. Thus, κ(D) ≥ (6k + 3)/(18k + 11).

The proof for the other direction is similar to the proof of Case 4 in Theo-
rem 3. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(11/2)] = {4k+2}.

This single point of intersection occurs when n = 2k in the Ix interval, and
n = 2k + 1 in the Ix+3 interval.

Case 4. x = 9k. Then r = 3. Let t = 4k/(18k+3). Then ||dt|| ≥ (6k)/(18k+3)
for all d ∈ D. Thus κ(D) ≥ (2k)/(6k + 1).

By Theorem 1 with M = {3, x, x + 3} = {3, 9k, 9k + 3}, μ(M) = κ(M) =
(2k)/(6k + 1). Hence, the result follows.

Case 5. x = 9k + 5. Then r = 4. Let t = (4k + 2)/(18k + 13). Then ||dt|| ≥
(6k + 3)/(18k + 13) for all d ∈ D. Thus κ(D) ≥ (6k + 3)/(18k + 13).

The proof for the other direction is similar to the proof of Case 4 in Theo-
rem 3. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(13/2)] = {4k+2}.

This single point of intersection occurs when n = 2k in the Ix interval, and
n = 2k + 1 in the Ix+3 interval.

Case 6. x = 9k + 1. Then r = 5. If k = 1, then x = 10. Let t = 2/15. Then
||dt|| ≥ 4/15 for all d ∈ D. Hence κ(D) ≥ 4/15.

Assume k ≥ 2. Let t = (4k)/(18k + 5). Then ||dt|| ≥ (6k)/(18k + 5) for all
d ∈ D. Thus κ(D) ≥ (6k)/(18k + 5).

The proof for κ(D) ≤ (6k)/(18k + 5) is similar to the proof of Case 4 in
Theorem 3. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I ∩ [0, 9k + (5/2)] =

{4k}. This single point of intersection occurs when n = 2k −1 in the Ix interval,
and n = 2k in the Ix+3 interval.

Case 7. x = 9k + 6. Then r = 6. Let t = (2k + 3)/(9k + 12). Then ||dt|| ≥
(3k + 3)/(9k + 12) for all d ∈ D. Thus κ(D) ≥ (k + 1)/(3k + 4).

By Theorem 1 with M = {3, x, x + 3} with M = {3, x, x + 3} = {3, 9t +
6, 9t + 9}, which can be reduced to M ′ = {1, 3t + 2, 3t + 3}, we get μ(M) =
κ(M) = (k + 1)/(3k + 4). Because M ⊆ D, so κ(D) ≤ μ(D) ≤ μ(M) ≤ κ(M) =
(k + 1)/(3k + 4).



258 D. Collister and D.D.-F. Liu

Case 8. x = 9k + 11. Then r = 7. Let t = (2k + 4)/(9k + 17). Then ||dt|| ≥
(3k + 5)/(9k + 17) for all d ∈ D. Thus κ(D) ≥ (3k + 5)/(9k + 17).

The proof for the other direction is similar to the proof of Case 4 in Theo-
rem 3. Let I =

⋂

i=2,3,x,x+3

Ii. By calculation we have I∩[0, 9k+(17/2)] = {2k+4}.

This single point of intersection occurs when n = 2k + 2 in the Ix interval, and
n = 2k + 3 in the Ix+3 interval.

Case 9. x = 9k + 7. Then r = 8. Let t = (2k + 3)/(9k + 13). Then ||dt|| ≥
(3k + 4)/(9k + 13) for all d ∈ D. Thus κ(D) ≥ (3k + 4)/(9k + 13).

By Theorem 1 with M = {3, x, x + 3} = {3, 9t + 7, 9t + 10}, we get κ(M) =
(3k + 4)/(9k + 13). Because M ⊆ D, so κ(D) ≤ μ(D) ≤ μ(M) = κ(M) =
(3k + 4)/(9k + 13). ��
Corollary 3. Let D = {2, 3, x, y} where y ∈ {x+2, x+3}. Then lim

x→∞ κ(D) = 1
3 .

4 D = {2, 3, x, y} for y = x + 4, x + 5, x + 6

By similar proofs to the previous section, we obtain the following results.
Theorem 5. Let D = {2, 3, x, x + 4}, x ≥ 4. Assume (x + 4) = 5β + r with
0 ≤ r ≤ 4. Then

κ(D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2β+r
x+7 if 0 ≤ r ≤ 1;

μ(D) = 2
5 if r = 2;

2β
x+2 if 3 ≤ r ≤ 4.

Proof. The case for r = 2 is from Lemma 2. The following table gives the corre-
sponding t, κ(D), and the n values of Ix and Ix+4 where the single intersection
point occurs.

x r t n in Ix n in Ix+4 κ(D)

5k + 4 3 (k + 1)/(5k + 6) k k + 1 (2k + 2)/(5k + 6)
5k + 5 4 (k + 1)/(5k + 7) k k + 1 (2k + 2)/(5k + 7)
5k + 6 0 (k + 3)/(5k + 13) k + 1 k + 2 (2k + 4)/(5k + 13)
5k + 7 1 (k + 3)/(5k + 14) k + 1 k + 2 (2k + 5)/(5k + 14)
5k + 8 2 1/5 2/5 ��

Theorem 6. Let D = {2, 3, x, x + 5}, x ≥ 4. Assume (x + 3) = 5β + r with
0 ≤ r ≤ 4. Then

κ(D) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ(D) = 2
5 if 0 ≤ r ≤ 1;

2β
x+2 if 2 ≤ r ≤ 3;

2β+1
x+3 if r = 4.



Study of κ(D) for D = {2, 3, x, y} 259

Proof. The cases for r = 0, 1 are by Lemma 2. The following table gives the cor-
responding t, κ(D), and the n values of Ix and Ix+5 where the single intersection
point occurs.

x r t n in Ix n in Ix+5 κ(D)
5k + 4 2 (k + 1)/(5k + 6) k + 1 k + 1 (2k + 2)/(5k + 6)
5k + 5 3 (k + 1)/(5k + 7) k + 1 k + 1 (2k + 2)/(5k + 7)
5k + 6 4 (k + 2)/(5k + 9) k + 1 k + 2 (2k + 3)/(5k + 9)
5k + 7 0 1/5 2/5
5k + 8 1 1/5 2/5

��
Theorem 7. Let D = {2, 3, x, x + 6}, x ≥ 4. Assume (x + 8) = 5β + r with
0 ≤ r ≤ 4. Then

κ(D) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(D) = 2
7 if x = 5;

μ(D) = 2
5 if r = 0;

2β
x+8 if 1 ≤ r ≤ 3 and x 
= 5;

2β+1
x+3 if r = 4.

Proof. Assume x = 5. That is D = {2, 3, 5, 11}. Letting t = 1/7 we get ||td|| ≥
2/7 for every d ∈ D. Hence, κ(D) ≥ 2/7. On the other hand, by Theorem1,
μ({2, 3, 5}) = 2/7. Therefore, by (2), we have κ(D) ≤ μ(D) ≤ 2/7.

The case for r = 0 is from Lemma 2. The following table gives the corre-
sponding t, κ(D), and the n values of Ix and Ix+6 where the single intersection
point occurs.

x r t n in Ix n in Ix+6 κ(D)
5k + 4 2 (k + 2)/(5k + 12) k k + 1 (2k + 4)/(5k + 12)
5k + 5 3 (k + 2)/(5k + 13) k k + 1 (2k + 4)/(5k + 13)
5k + 6 4 (k + 2)/(5k + 9) k + 1 k + 2 (2k + 3)/(5k + 9)
5k + 7 0 1/5 2/5
5k + 8 1 (k + 3)/(5k + 16) k + 1 k + 2 (2k + 6)/(5k + 16)

��
Corollary 4. Let D = {2, 3, x, y}, y ∈ {x+4, x+5, x+6}. Then lim

x→∞ κ(D) = 2
5 .

Concluding Remark and Future Study. Similar to Corollary 1, one can
obtain sets D∗ that are extensions of the sets D studied in this article, D ⊂ D∗,
such that κ(D) = κ(D∗). Furthermore, the methods used in this article can be



260 D. Collister and D.D.-F. Liu

applied to other sets D = {2, 3, x, x + c} with c ≥ 7. For a fixed c, preliminary
results we obtained indicate that the values of κ(D) might be inconsistent only
for the first finite terms; after a certain threshold of the values of x, they become
consistent (that is, they can be described by a single formula). It is interesting
to investigate the correlation between c and the asymptotic values of κ(D). For
instance, would the conclusions of Corollaries 2, 3, or 4 hold for other values of
c? Are there other asymptotic values of κ(D) besides 1/3 and 2/5 as indicated
in Corollaries 2, 3 and 4? In particular, whether c = 2, 3 are the only values of
c such that the conclusion of Corollary 3 is true?

References

1. Barajas, J., Serra, O.: The lonely runner with seven runners. Electron. J. Combin.
15, #R48 (2008)

2. Bienia, W., Goddyn, L., Gvozdjak, P., Sebő, A., Tarsi, M.: Flows, view obstruc-
tions, and the lonely runner. J. Combin. Theory Ser. B 72, 1–9 (1998)

3. Bohman, T., Holzman, R., Kleitman, D.: Six lonely runners. Electron. J. Comb.
8, 49 (2001). Research Paper 3

4. Cantor, D., Gordon, B.: Sequences of integers with missing differences. J. Comb.
Theory Ser. A 14, 281–287 (1973)

5. Chang, G., Liu, D., Zhu, X.: Distance graphs and T -coloring. J. Comb. Theory
Ser. B 75, 159–169 (1999)

6. Cusick, T.: View-obstruction problems in n-dimensional geometry. J. Comb. The-
ory Ser. A 16, 1–11 (1974)

7. Cusick, T., Pomerance, C.: View-obstruction problems, III. J. Number Theory 19,
131–139 (1984)

8. Eggleton, R., Erdős, P., Skilton, D.: Colouring the real line. J. Comb. Theory Ser.
A 39, 86–100 (1985)

9. Eggleton, R., Erdős, P., Skilton, D.: Research problem 77. Discrete Math. 58, 323
(1986)

10. Eggleton, R., Erdős, P., Skilton, D.: Colouring prime distance graphs. Graphs
Comb. 6, 17–32 (1990)

11. Gupta, S.: Sets of integers with missing differences. J. Comb. Theory Ser. A 89,
55–69 (2000)

12. Haralambis, N.: Sets of integers with missing differences. J. Comb. Theory Ser. A
23, 22–33 (1997)

13. Kemnitz, A., Kolberg, H.: Coloring of integer distance graphs. Discrete Math. 191,
113–123 (1998)

14. Liu, D.: From rainbow to the lonely runner: a survey on coloring parameters of
distance graphs. Taiwanese J. Math. 12, 851–871 (2008)

15. Liu, D., Sutedja, A.: Chromatic number of distance graphs generated by the sets
{2, 3, x, y}. J. Comb. Optim. 25, 680–693 (2013)

16. Liu, D., Zhu, X.: Fractional chromatic number and circular chromatic number for
distance graphs with large clique size. J. Graph Theory 47, 129–146 (2004)

17. Rabinowitz, J., Proulx, V.: An asymptotic approach to the channel assignment
problem. SIAM J. Alg. Discrete Methods 6, 507–518 (1985)

18. Voigt, M., Walther, H.: Chromatic number of prime distance graphs. Discrete Appl.
Math. 51, 197–209 (1994)



Study of κ(D) for D = {2, 3, x, y} 261

19. Voigt, M., Walther, H.: On the chromatic number of special distance graphs. Dis-
crete Math. 97, 395–397 (1991)

20. Wills, J.: Zwei Sätze über inhomogene diophantische appromixation von irra-
tionlzahlen. Monatsch. Math. 71, 263–269 (1967)

21. Zhu, X.: Circular chromatic number: a survey. Discrete Math. 229, 371–410 (2001)



Some Hamiltonian Properties
of One-Conflict Graphs

Christian Laforest and Benjamin Momège(B)

LIMOS, CNRS UMR 6158 – Université Blaise Pascal, Clermont-Ferrand,
Campus des Cézeaux, 24 Avenue des Landais, 63173 Aubiére Cedex, France

{laforest,momege}@isima.fr

Abstract. Dirac’s and Ore’s conditions (1952 and 1960) are well known
and classical sufficient conditions for a graph to contain a Hamiltonian
cycle and they are generalized in 1976 by the Bondy-Chvátal Theorem.
In this paper, we add constraints, called conflicts. A conflict in a graph G
is a pair of distinct edges of G. We denote by (G, Conf) a graph G with
a set of conflicts Conf . A path without conflict P in (G, Conf) is a path
P in G such that for any edges e, e′ of P , {e, e′} /∈ Conf . In this paper
we consider graph with conflicts such that each vertex is not incident
to the edges of more than one conflict. We call such graphs one-conflict
graphs. We present sufficient conditions for one-conflict graphs to have a
Hamiltonian path or cycle without conflict.

Keywords: Graph · Conflict · Hamiltonian · Path · Cycle

1 Introduction

These last decades many works have been done to prove sufficient conditions for
a graph to have a Hamiltonian cycle. The most classical ones in a graph with n
vertices are the following: Dirac’s condition [3] (the degree of each vertex is at
least n

2 ), Ore’s condition [8] (for any non adjacent vertices u and v, degree of u
plus degree of v is at least n), Bondy-Chvátal’s condition (based on closure of
graphs). For more results in this area, see the recent survey [7]. More recently,
several papers were devoted to the introduction of conflicts into graphs. A con-
flict is a pair of edges of the graph and, as they are in conflict, they cannot
be both in a structure as a path or a tree. Conflicts are useful to model situa-
tions in which it is forbidden to use two incompatible objects (because of their
nature, functions, etc.) in the same structure. In [5,9] the authors investigated
the problem to find a path without conflict between two vertices in a graph with
a given set of restrictive conflicts (the two edges of a conflict are adjacent). For
these graphs, the problem of finding two-factors1 was considered in [4] and a
dichotomy between tractable and intractable instances was also given. In [6],
the authors investigated the problem of finding a spanning tree without conflict.

B. Momège has a PhD grant from CNRS and région Auvergne.
1 A subgraph such that for any vertex its in-degree and its out-degree is exactly one.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 262–273, 2015.
DOI: 10.1007/978-3-319-19315-1 23



Some Hamiltonian Conditions in One-Conflict Graphs 263

All the known results show that adding conflicts to a graph considerably increases
the complexity of problems. In this paper we try to extend the classical Dirac’s,
Ore’s and Bondy-Chvátal’s results to graphs in which each vertex is part of at
most one conflict (called one-conflict graphs). We show that it is not possible in
all cases. We then propose sufficient conditions (inspired by Dirac’s and Ore’s
ones) for a one-conflict graph to contain a Hamiltonian path or cycle without
conflict and Bondy-Chvátal-type conditions.

2 Preliminaries, Notations and Definitions

In this paper, we only consider undirected, unweighted and simple graphs. We
refer to [2] for definitions and undefined notations. The vertex set of a graph G
is denoted by VG and its edge set by EG. If |VG| = n, the graph G is called an
n-vertex graph. An edge between u and v in a graph G is denoted by uv. The two
endpoints of an edge are said to be adjacent to each other. The complete graph
Kn is a graph with n vertices in which every vertex is adjacent to every other.
A path in G consists of a sequence of vertices with each two consecutive vertices
in the sequence adjacent to each other in the graph. A simple path is a path with
no repetitions of vertices. A cycle in G consists of a sequence of vertices starting
and ending at the same vertex, with each two consecutive vertices in the sequence
adjacent to each other in the graph. We only consider simple cycle i.e. no repe-
titions of vertices allowed, other than the repetition of the starting and ending
vertex. A path (or a cycle) of G is Hamiltonian if it contains all the vertices of G
exactly once (all paths and cycles are elementary here). The length of a path or
a cycle is the number of edges it contains. For example, in an n-vertex graph the
length of a Hamiltonian path is n−1 and the length of a Hamiltonian cycle is n. An
edge and a vertex on that edge are called incident. The degree of a vertex v of G is
the number of edges incident to v. It is denoted by degG(v). The minimum degree
of G is denoted by δ(G) (i.e. δ(G) = minv∈VG

degG(v)). A matching in a graph
is a subgraph where each vertex has degree 1 (i.e. a set of edges without common
vertices). If G is a graph, a conflict in G is a pair {e1, e2} of distinct edges of G. We
denote by (G, Conf) a graph G with a set of conflicts Conf . A path without conflict
P in (G, Conf) is a path P in G such that for any e, e′ of P , {e, e′} /∈ Conf (simi-
larly for a simple path without conflict, Hamiltonian path without conflict, cycle
without conflict and Hamiltonian cycle without conflict). In this paper we only
consider graph with conflicts such that each vertex is not incident to the edges
of more than one conflict (each vertex is not involved in more than one conflict).
We call such graphs one-conflict graphs. From now, (G, Conf) is an n-vertex one-
conflict graph.

3 Dirac-Type Conditions in One-Conflict Graphs

We recall the result of Dirac (1952) for “classical”graphs (i.e. without conflict):

Theorem 1 (Dirac). [3] An n-vertex graph (n ≥ 3) G s.t. δ(G) ≥ n
2 contains

a Hamiltonian cycle.



264 C. Laforest and B. Momège

Firstly, one can deduce from Theorem 1 the following result:

Corollary 2. An n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n
2 + 1 con-

tains a Hamiltonian cycle without conflict.

Proof. Simply remove one edge of each conflict and note that the resulting graph
satisfies the conditions of Theorem 1 and therefore admits a Hamiltonian cycle
that is a Hamiltonian cycle without conflict in (G, Conf). ��
We want to show the following result:

Theorem 3. An n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n
2 contains

a Hamiltonian path without conflict.

Our proof is constructive. For n = 1, 2, 3 or 4, it is easy to see that the theorem
is true. From now, we suppose that n is greater than or equal to 5.

Lemma 4. An n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n
2 contains a

simple path without conflict of length at least n
2 −1 that can be constructed using

the method described in the proof.

Proof. We start from any vertex of (G, Conf) and gradually construct a simple
path without conflict, as long as possible, by adding an adjacent vertex of one
of its endpoints. As long as the length of the path is less than n

2 − 1 each of its
endpoints is adjacent to at least two vertices that are exterior to it and it can
be extended while remaining without conflict. By doing this as much as possible
we are sure to get a simple path without conflict of length at least n

2 − 1. ��
Lemma 5. Let P = v1, . . . , vk+1 be a simple path without conflict of length k in
an n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n

2 , that cannot be extended
using the method described in the proof of Lemma 4. If k ≤ n − 3, (G, Conf)
contains a cycle without conflict of length k+1 that can be constructed using the
method described in the proof.

Proof. Begin by noting that as n ≥ 5 we have k ≥ 2. We remove one edge outside
P from each conflict. We denote by G′ the graph obtained. A Hamiltonian path
in G′ is then a Hamiltonian path without conflict in (G, Conf). Each vertex of
G′ is of degree greater than or equal to n

2 − 1. In the new graph v1 and vk+1 are
each adjacent to at least n

2 − 1 vertices of P (otherwise we could extend P using
the method described in the proof of Lemma 4). Moreover, there is 1 ≤ i ≤ k
such that v1 is adjacent to vi+1 and vk+1 is adjacent to vi. Indeed, if for any
neighbor vi+1 of v1, vi is not adjacent to vk+1, at least n

2 − 1 vertices of P are
not adjacent to vk+1. Thus, vk+1 would have at most k − (n2 − 1) neighbors in
P , and as k − (

n
2 − 1

)
= k − n

2 + 1 ≤ n − 3 − n
2 + 1 = n

2 − 2 < n
2 − 1, this is

impossible. Finally, if i = 1 or i = k, v1, . . . , vk+1, v1 is a cycle without conflict
of length k +1 and if 1 < i < k −1, v1, . . . , vi, vk+1, . . . vi+1, v1 is a cycle without
conflict of length k + 1. ��



Some Hamiltonian Conditions in One-Conflict Graphs 265

Lemma 6. Let C = v1, . . . , vk+1, v1 be a cycle without conflict of length k+1 in
an n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n

2 , with
n
2 − 1 ≤ k ≤ n − 3.

We can construct in (G, Conf) a simple path without conflict of length k + 1
from C by following the method described in the proof.

Proof. Assume first k + 1 = n
2 . Take any vertex vi of the cycle C. As the degree

of vi is greater than or equal to n
2 it is adjacent to a vertex v outside the cycle.

If there is no edge of C in conflict with vvi then we add vvi to C and remove
one edge of C containing vi to obtain a simple path without conflict of length
k + 1. Otherwise, we denote by ab the edge of the cycle in conflict with vvi. We
then have a �= vi or b �= vi. By symmetry we may assume a �= vi. Since a cannot
be in more than one conflict, we can we can choose a initially and perform the
above operations to get the desired path.

If k + 1 > n
2 , take a vertex v outside the cycle. As the degree of v is greater

than or equal to n
2 it is adjacent to at least two vertices vi and vj of C. Since v

is not in more than one conflict, one of the edges vvi or vvj is not involved in
a conflict. For example if it is vvi, we add vvi to C and remove one edge of C
containing vi to obtain a simple path without conflict of length k + 1. ��
In an n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n

2 , any simple path
without conflict of length k ≤ n − 3 can give rise to a simple path without
conflict of length k + 1 in the following way:

– If possible, apply the techniques presented in Lemma 4,
– Otherwise, construct a cycle without conflict of length k + 1 using the tech-

niques presented in Lemma 5 and then construct a simple path without conflict
of length k + 1 from this cycle using the techniques presented in Lemma 6.

So using those operations we get:

Lemma 7. Starting from any vertex of an n-vertex one-conflict graph (G, Conf)
s.t. δ(G) ≥ n

2 , one can construct a simple path without conflict of length at least
n − 2.

If the simple path without conflict obtained with Lemma 7 is of length n−1, then
it is a Hamiltonian path without conflict in (G, Conf). Otherwise, the following
result is used to construct a Hamiltonian path without conflict in (G, Conf).

Lemma 8. Any simple path without conflict P = v1, . . . , vn−1 of length n − 2
in an n-vertex one-conflict graph (G, Conf) s.t. δ(G) ≥ n

2 can give rise to a
Hamiltonian path without conflict in (G, Conf) by following the method described
in the proof.

Proof. We denote by v the vertex outside P . We remove one edge outside P
from each conflict. We denote by G′ the graph obtained. Each vertex of G′ is
of degree greater than or equal to n

2 − 1. A Hamiltonian path in G′ is then a
Hamiltonian path without conflict in (G, Conf). If vv1 ∈ EG′ or vvn−1 ∈ EG′ ,
then there exists a Hamiltonian path without conflict in (G, Conf). So assume



266 C. Laforest and B. Momège

that vv1 /∈ EG′ and vvn−1 /∈ EG′ . If v1vn−1 ∈ EG′ , then for every vertex vi of
P such that vvi ∈ EG′ , v, vi, . . . , vn−1, v1, . . . vi−1 is a Hamiltonian path without
conflict in (G, Conf). Suppose then that v1vn−1 /∈ EG′ .

If there is k ∈ {2, . . . , n − 3} such that v is adjacent to vk and vk+1 then
v1, . . . , vk, v, vk+1, . . . vn−1 is a Hamiltonian path without conflict in (G, Conf).

Otherwise, n is even and v is adjacent to the n
2 − 1 vertices of

A := {v2, v4, . . . , vn−2}.

In this case, if the vertex v1 (resp. vn−1) is adjacent to a vertex vi /∈ A,
then vi, v1, . . . , vi−1, v, vi+1 . . . , vn−1 (resp. v1, . . . , vi−1, v, vi+1 . . . , vn−1, vi) is a
Hamiltonian path without conflict in (G, Conf).

Otherwise, v1 and vn−1 are adjacent to the n
2 − 1 vertices of A. In this case,

if we have deleted an edge incident to v to obtain G′, we add it to G′ and
we remove the edge with which it is in conflict to obtain a new graph G′′. We
show that G′′ contains a Hamiltonian path, which will be a Hamiltonian path
without conflict in (G, Conf). If vv1 ∈ EG′′ or vvn−1 ∈ EG′′ , then there exists a
Hamiltonian path without conflict in (G, Conf).

Otherwise, there is k ∈ {2, . . . , n − 3} such that v is adjacent to vk and
vk+1 in G′, but it can miss an edge of P . If all edges of P are in G′′ then
v1, . . . , vk, v, vk+1, . . . vn−1 is a Hamiltonian path without conflict in (G, Conf).

Otherwise, let vjvj+1 be the edge of P that is not in G′′. If j = k then
v1, . . . , vk, v, vk+1, . . . vn−1 is a Hamiltonian path without conflict in (G, Conf).

If j < k and j ∈ A then vj+1, . . . , vk, v, vk+1, . . . vn−1, vj , . . . , v1 is a Hamil-
tonian path without conflict in (G, Conf).

If j < k and j /∈ A then vj , . . . , v1, vj+1, . . . , vk, v, vk+1, . . . vn−1 is a Hamil-
tonian path without conflict in (G, Conf).

If j > k and j ∈ A then v1, . . . , vk, v, vk+1, . . . , vj , vn−1 . . . , vj+1 is a Hamil-
tonian path without conflict in (G, Conf).

If j > k and j /∈ A then vn−1, . . . , vj+1, v1, . . . , vk, v, vk+1, . . . , vj is a Hamil-
tonian path without conflict in (G, Conf). ��
We can now prove the Theorem 3:

Proof (of Theorem 3). Lemma 7 shows that one can construct a simple path
without conflict of length at least n − 2. If necessary, Lemma 8 shows how to
transform it into a Hamiltonian path without conflict. ��
Theorem 3 proves that under Dirac’s condition, a one-conflict graph contains a
Hamiltonian path without conflict. We prove now that, in general, it is impossi-
ble to get a Hamiltonian cycle without conflict. For example, if n = 4, the cycle
on 4 vertices C4 with a conflict satisfies the conditions of Theorem 3 but doesn’t
contain a Hamiltonian cycle without conflict. For n = 6, consider a graph G1

with 2 vertices and no edge, and a graph G2 with 4 vertices and only 2 dis-
joint edges. If G is the graph obtained from the disjoint union of G1 and G2

by adding all possible edges between G1 and G2, any Hamiltonian cycle in G
necessarily contains the two edges of G2. If Conf contains the conflict composed



Some Hamiltonian Conditions in One-Conflict Graphs 267

of these two edges, (G, Conf) satisfies the conditions of Theorem 3 but contains
no Hamiltonian cycle without conflict. We will see in Corollary 21, that when
the set of conflicts Conf satisfies |Conf | ≤ n

4 − 1, the graph (G, Conf) always
contains a Hamiltonian cycle without conflict.

4 Ore and Bondy-Chvátal-type Conditions
in One-Conflict Graphs

We recall the result of Ore (1960) for “classical” graphs (i.e. without conflict):

Theorem 9 (Ore) [8]. If for every pair of non-adjacent vertices of an n-vertex
graph (n ≥ 3) the sum of their degrees is at least n then it contains a Hamiltonian
cycle.

This result becomes false when we consider conflicts. Indeed, let G be the graph
obtained from the disjoint union of K1 and Kn−1 by adding two edges between
K1 and Kn−1. A Hamiltonian cycle in G necessarily contains these two edges. If
Conf contains the conflict composed of these two edges, (G, Conf) satisfies the
conditions of Theorem 9 but contains no Hamiltonian cycle without conflict.

Definition 1. A circular representation C of an n-vertex one-conflict graph
(G, Conf) with n ≥ 3 is obtained by ordering the vertices of G in some cyclic
order v1, v2, . . . , vn, v1 and by retaining only the edges between two consecu-
tive vertices and only the conflicts in Conf containing two of these edges. We
often refer to a circular representation C by a natural sequence of its ver-
tices C = v1, v2, . . . , vn, v1. The two natural sequences v1, v2, . . . , vn, v1 and
v1, vn, . . . , v2, v1 denote the same circular representation. Still, if often helps to
fix one of this two orderings of VG notationally: we may then speak of things like
the successor of a vertex, etc. There is a hole ab between two consecutive ver-
tices a and b if there is no edge connecting them in EG. In a graph G (without
conflict), a circular representation is a Hamiltonian cycle with missing edges:
the holes, and a Hamiltonian cycle is a circular representation without hole.

Lemma 10. Let (G, Conf) be an n-vertex one-conflict graph with n ≥ 3. If C
is a circular representation of (G, Conf) with a hole ab such that:

– both a and b are not incident to any edge of any conflict in Conf and,
– degG(a) + degG(b) ≥ n.

Then there exists a circular representation of (G, Conf) whose holes are included
in the holes of C, with at least one hole less and no more conflicts than C.

Proof. If n = 3, a circular representation satisfying the conditions of Lemma 10
cannot have a hole. So, in this case we have G = K3.

For n ≥ 4, we denote C by

C = a, b, x1, . . . , xn−2, a



268 C. Laforest and B. Momège

and we show first there are two consecutive vertices xi and xi+1 with 1 ≤ i ≤ n−3
such that xi is adjacent to a and xi+1 is adjacent to b. Indeed, if this was not the
case, b cannot be adjacent to the successors of the neighbors of a in G (because
ab is a hole) and we would have:

degG(b) ≤ n − 1 − degG(a)

that is to say:
degG(a) + degG(b) ≤ n − 1

which contradicts the assumptions of the lemma.
Now

C ′ := a, xi, . . . , x1, b, xi+1, . . . , xn−2, a

(C to which we add edges au and bv and remove edge uv) is a circular represen-
tation of (G, Conf) whose holes are included in the holes of C and with a hole
less than C (if uv is a hole of C, C ′ has two holes less). As a and b are not in
any conflict, the conflicts of C ′ are included in the conflicts of C. As C ′ does not
contain the edge uv, if it is in conflict with another edge of C then C ′ contains
a conflict less than C. ��
Definition 2. If the two edges of a conflict don’t share a common vertex, the
conflict is called parallel.

We have the following result:

Theorem 11. If (G, Conf) is an n-vertex one-conflict graph (n ≥ 3) s.t. all
conflicts in Conf are parallel and ∀u, v ∈ VG (u �= v) : uv /∈ EG ⇒ degG(u) +
degG(v) ≥ n + 1 then (G, Conf) contains a Hamiltonian cycle without conflict.

Proof. By Theorem 9, G contains a Hamiltonian cycle but it may have conflicts.
Consider a Hamiltonian cycle C in G with the minimum number of conflicts. If
it has no conflict, the result is true. Otherwise, take a conflict {ab, cd} (Note: a,
b, c and d are four distinct vertices because conflicts are parallel and we have
n ≥ 4) such that we have:

C = a, b, x1, . . . , xi, c, d, . . . , a

Consider the circular representation

C ′ = a, c, xi, . . . , x1, b, d, . . . , a

We note that, as {ab, cd} is a conflict and as each vertex is in at most one conflict,
C ′ has a conflict less than C. C ′ is a circular representation with at most two
holes ac and bd. If C ′ has no holes, it is a Hamiltonian cycle in G with a conflict
less than C. This contradicts the minimality of the number of conflicts of C. So
C ′ has at least one hole. We can assume without loss of generality that ac is a
hole. C ′ is also a circular representation of (G′ := G− ab, Conf � {ab, cd}) with:



Some Hamiltonian Conditions in One-Conflict Graphs 269

– both a and c are not incident to any edge of any conflict in Conf � {ab, cd}
and,

– degG′(a) + degG′(c) ≥ n.

According to Lemma 10, there is a circular representation C ′′ of G′ whose holes
are included in the holes of C ′, with at least one hole less and not more conflicts
than C ′. Then C ′′ has at most one hole. Using the Lemma 10 as above if necessary
we obtain a Hamiltonian cycle in G′ and hence in G with no more conflicts than
C ′. This contradicts the minimality of the number of conflicts of C. Thus, C has
no conflict. ��
We now turn our attention to Bondy-Chvátal’s conditions that uses the notion
of closure that we generalize here.

Theorem 12. For any integer k ≥ 0 and for any n-vertex graph G = (V,EG),
Algorithm 1 constructs a unique graph G

k
(whatever the order of addition of the

edges). This graph is called the k-closure of G.

Proof. We show that the k-closure of an n-vertex graph G = (V,EG) is unique,
whatever the order of addition of the edges, because it is equal to the intersection
H of all the graphs H = (V,EH) satisfying the following properties (P):

– EG ⊆ EH and,
– uv /∈ EH ⇒ degH(u) + degH(v) < n + k.

Indeed, consider G
k

a result of Algorithm 1 on G with integer k ≥ 0. As clearly
H := G

k
satisfies the properties (P) we have EH ⊆ E

G
k . Suppose that EH �=

E
G

k . Let xy be the first edge of E
G

k � EH added by Algorithm 1. We have
degH(x) + degH(y) ≥ degG(x) + degG(y) ≥ n + k. As xy /∈ EH, there is H
satisfying properties (P) s.t. xy /∈ EH . This implies degH(x) + degH(y) < n + k
and as H ⊆ H we have degH(x)+degH(y) < n+k which contradicts the previous
inequality. Finally we have EH = E

G
k . ��

Algorithm 1. Construction of the k-closure G
k

of G (k ≥ 0).
Input: An n-vertex graph G

Output: The closure G
k

of G
begin

G
k ← G

while There are two vertices u and v of G
k
such that uv /∈ E

G
k and

deg
G

k(u) + deg
G

k(v) ≥ n + k do

G
k ← G

k
+ uv

end

return G
k
;

end



270 C. Laforest and B. Momège

Remark 13. G �= G
k ⇒ n ≥ 4 + k.

Proof. As G �= G
k

there are two vertices u and v of G such that uv /∈ EG and
degG(u) + degG(v) ≥ n + k. As degG(u) ≤ n − 2 and degG(v) ≤ n − 2 then
degG(u) + degG(v) ≤ 2n − 4 hence n + k ≤ 2n − 4 and therefore n ≥ 4 + k. ��
We recall the result of Bondy and Chvátal (1976) for “classical”graphs (i.e.
without conflict):

Theorem 14 (Bondy-Chvátal) [1]. A graph (without conflict) contains a
Hamiltonian cycle if and only if its 0-closure contains a Hamiltonian cycle.

In one-conflict graphs, we have the following result:

Theorem 15. An n-vertex one-conflict graph (G, Conf) contains a Hamiltonian
path without conflict if and only if (G

1
, Conf) too.

Proof. If n < 5 the result is true by Remark 13. We can assume that n ≥ 5.
It is clear that if (G, Conf) contains a Hamiltonian path without conflict then
(G

1
, Conf) too. Conversely, suppose that (G

1
, Conf) contains a Hamiltonian

path without conflict and not (G, Conf). Consider any sequence of graphs start-
ing with (G, Conf) and ending with (G

1
, Conf) such that we move from one

graph to the next by adding one edge:

(G0 := G, Conf), . . . , (Gi, Conf), (Gi+1, Conf), . . . , (G
1
, Conf)

There is a smallest integer i such that (Gi+1, Conf) contains a Hamiltonian path
without conflict and not (Gi, Conf). We denote by ab the edge added to go from
Gi to Gi+1 and by P a Hamiltonian path without conflict in (Gi+1, Conf). We
therefore have:

degGi
(a) + degGi

(b) ≥ n + 1.

Consider the graph Gi. If a is incident to an edge of a conflict, it admits (at
least) one edge outside P . We remove it from EGi

. If b is incident to an edge of
a conflict, we remove it from Conf . We denote by (G′

i, Conf ′) the one-conflict
graph obtained. In the graph G′

i we have:

degG′
i
(a) + degG′

i
(b) ≥ n. (1)

In (G′
i, Conf ′), the circular representation naturally associated to P − ab satis-

fies the conditions of Lemma 10 and (G′
i, Conf ′) contains a Hamiltonian cycle

without conflict. Now, by removing one edge if b is incident to an edge of a
conflict in Conf , with its two edges in P we obtain a Hamiltonian path without
conflict in (Gi, Conf). This contradicts the existence of an integer i such that
(Gi+1, Conf) contains a Hamiltonian path without conflict and not (Gi, Conf).
Thus (G, Conf) contains a Hamiltonian path without conflict. ��
From Theorem 15, we deduce an Ore-type result for Hamiltonian paths without
conflict in one-conflict graphs.



Some Hamiltonian Conditions in One-Conflict Graphs 271

Corollary 16. If (G, Conf) is an n-vertex one-conflict graph s.t. ∀u, v ∈ VG :
uv (u �= v) /∈ EG ⇒ degG(u) + degG(v) ≥ n + 1 then (G, Conf) contains a
Hamiltonian path without conflict.

Proof. (G
1
, Conf) is a complete one-conflict graph and therefore it admits a

Hamiltonian path without conflict by Theorem 3 and (G, Conf) contains a
Hamiltonian path without conflict by Theorem 15.

Theorem 17. An n-vertex one-conflict graph (G, Conf) contains a Hamiltonian
cycle without conflict if and only if G

2
too.

Proof. If n < 6 the result is true by Remark 13. We assume n ≥ 6. It is clear
that if (G, Conf) contains a Hamiltonian cycle without conflict then G

2
too.

Conversely, suppose that G
2

contains a Hamiltonian cycle without conflict and
not (G, Conf). Consider any sequence of graphs starting with (G, Conf) and
ending with (G

2
, Conf) such that we move from one graph to the next by adding

an edge:

(G0 := G, Conf), . . . , (Gi, Conf), (Gi+1, Conf), . . . , (G
2
, Conf)

There is a smallest integer i such that (Gi+1, Conf) contains a Hamiltonian cycle
without conflict and not (Gi, Conf). We denote by ab the edge added to go from
Gi to Gi+1 and by C a Hamiltonian cycle without conflict in (Gi+1, Conf). We
therefore have:

degGi
(a) + degGi

(b) ≥ n + 2.

Consider the graph Gi. If a is incident to an edge of a conflict, it admits (at
least) one edge outside C. We remove it from EGi

. The same is done for b. We
denote by (G′

i, Conf ′) the one-conflict graph obtained. In the graph G′
i we have:

degG′
i
(a) + degG′

i
(b) ≥ n.

In (G′
i, Conf ′), the circular representation C − ab satisfies the conditions of

Lemma 10 and (G′
i, Conf ′) contains a Hamiltonian cycle without conflict and

therefore Gi too. This contradicts the existence of an integer i such that
(Gi+1, Conf) contains a Hamiltonian cycle without conflict and not (Gi, Conf).
Finally (G, Conf) contains a Hamiltonian cycle without conflict. ��
From Theorem 17, we deduce an Ore-type result for Hamiltonian cycles without
conflict in one-conflict graphs.

Corollary 18. If (G, Conf) is n-vertex one-conflict graph s.t. n ≥ 4 and ∀u, v ∈
VG (u �= v) : uv /∈ EG ⇒ degG(u) + degG(v) ≥ n + 2 then (G, Conf) contains a
Hamiltonian cycle without conflict.

Proof. (G
2
, Conf) is a complete one-conflict graph on n vertices. From

(G
2
, Conf) we construct a new graph H (without conflict) by removing one



272 C. Laforest and B. Momège

edge of each conflict. ∀u ∈ VH we have degH(u) = n − 2 and when n ≥ 4 we
have degH(u) ≥ n

2 . By Theorem 1, H contains a Hamiltonian cycle and therefore

(G
2
, Conf) contains a Hamiltonian cycle without conflict. Finally, by Theorem

17, (G, Conf) contains a Hamiltonian cycle without conflict. ��
Now we will give a result for “classical” graphs (i.e. without conflict) from which
we can draw corollaries in one-conflict graphs.

Lemma 19. Let H be an n-vertex graph and X a matching in H. Define the
integer k := |VX | (VX is the set of vertices of X). If ∀u, v ∈ VH (u �= v) :
uv /∈ EH ⇒ degH(u) + degH(v) ≥ n and if we can order the vertices of X as
(x1, x2, . . . , xk) such that for each 1 ≤ i ≤ k

degH(xi) ≥ i + 2,

then the graph H deprived of the edges of X contains a Hamiltonian cycle.

Proof. We denote by H ′ the graph H deprived of the edges of X. We will show
that H ′0 is a complete graph and use Theorem 14 to deduce that H ′ contains a
Hamiltonian cycle.

As in H the sum of the degrees of any two non-adjacent vertices is at least
n, H ′0 contains all edges between two vertices which are not in VX and these
vertices are thus of degree at least n − k − 1 in H ′0.

We now show that H ′0 contains all edges between vertices of VX and vertices
that are not in VX . Suppose the contrary. Consider the largest integer i such that
xi is not connected to all the vertices of H that are not in VX . H ′0 therefore
contains all edges between vertices of H that are not in VX and vertices of VX

of index strictly greater than i. Thus, the vertices of H not in VX have a degree
greater than or equal to n − k − 1 + k − i = n − i − 1. But as the degree of xi

in H ′ is greater than or equal to i + 1 (because we removed a edge), it must be
connected to all vertices of H that are not in VX . This contradicts the initial
assumption and therefore H ′0 contains all the edges between vertices of VX and
vertices that are not in VX .

It remains to show that H ′0 contains all the edges of X. To do this, we
will show that in H ′0 each vertex xj is connected to all the vertices of index
greater than j. Suppose the contrary. Consider then the largest integer j such
the vertex xj is not connected to all the vertices of index greater than j. The
vertices of index strictly greater than j of VX are of degree greater than or equal
to n − k + k − j − 1 = n − j − 1. But as the degree of xj in H ′ is greater than or
equal to j +1 (because we removed an edge), it must be connected to all vertices
of index greater than j. This contradicts the initial hypothesis and therefore xj

is connected to all the vertices of index strictly greater than j. Thus H ′0 contains
all edges of X.

Finally H ′0 is a complete graph. So it contains a Hamiltonian cycle and H
also by Theorem 14. ��



Some Hamiltonian Conditions in One-Conflict Graphs 273

Theorem 20. If (G, Conf) is an n-vertex one-conflict graph s.t. ∀u, v ∈
VG (u �= v) : uv /∈ EG ⇒ degG(u) + degG(v) ≥ n and if there is a match-
ing X in G containing exactly one edge of each conflict of Conf such that we
can order the vertices of X as (x1, x2, . . . , xk) with for each 1 ≤ i ≤ k:

degG(xi) ≥ i + 2,

then (G, Conf) contains a Hamiltonian cycle without conflict.

Proof. By Lemma 19, the graph G (without conflict) deprived of the edges of
X contains a Hamiltonian cycle and such a cycle is a Hamiltonian cycle without
conflict in (G, Conf). ��
Corollary 21. If (G, Conf) is n-vertex one-conflict graph s.t. each vertex has
degree greater than or equal to n

2 and |Conf | ≤ n
4 − 1 then (G, Conf) contains a

Hamiltonian cycle without conflict.

Proof. Let X be a matching in G having exactly one edge in each conflict of
Conf . As |EX | = |Conf | ≤ n

4 − 1, we have |VX | ≤ n
2 − 2 and n

2 ≥ |VX | + 2. Now,
take any ordering (x1, x2, . . . , xk) of the vertices of X. We obtain degH(xi) ≥ n

2 ≥
|VX |+2 ≥ i+2 and therefore by Theorem 20 (G, Conf) contains a Hamiltonian
cycle without conflict. ��

Acknowledgements. We thank Mamadou M. Kanté and anonymous referees for
reading and helping to improve a first version of this work.

References

1. Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15, 111–135
(1976)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London Ltd (2010)
3. Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. 2, 69–81

(1952)
4. Dvořák, Z.: Two-factors in orientated graphs with forbidden transitions. Discrete

Math. 309(1), 104–112 (2009)
5. Kanté, M.M., Laforest, C., Momège, B.: An exact algorithm to check the existence of

(elementary) paths and a generalisation of the cut problem in graphs with forbidden
transitions. In: van Emde Boas, P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack,
H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp. 257–267. Springer, Heidelberg (2013)

6. Kanté, M.M., Laforest, C., Momège, B.: Trees in graphs with conflict edges or
forbidden transitions. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013.
LNCS, vol. 7876, pp. 343–354. Springer, Heidelberg (2013)

7. Li, H.: Generalizations of Dirac’s theorem in hamiltonian graph theory - a survey.
Discrete Math. 313(19), 2034–2053 (2013)

8. Ore, Ø.: Note on Hamiltonian circuits. Am. Math. Mon. 67, 55 (1960)
9. Szeider, S.: Finding paths in graphs avoiding forbidden transitions. Discrete Appl.

Math. 126(2–3), 261–273 (2003)



Sequence Covering Arrays and Linear Extensions

Patrick C. Murray and Charles J. Colbourn(B)

School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, P.O. Box 878809, Tempe, AZ 85287, USA

colbourn@asu.edu

Abstract. Covering subsequences by sets of permutations arises in
numerous applications. Given a set of permutations that cover a spe-
cific set of subsequences, it is of interest not just to know how few
permutations can be used, but also to find a set of size equal to or
close to the minimum. These permutation construction problems have
proved to be computationally challenging; few explicit constructions have
been found for small sets of permutations of intermediate length, mostly
arising from greedy algorithms. A different strategy is developed here.
Starting with a set that covers the specific subsequences required, we
determine local changes that can be made in the permutations without
losing the required coverage. By selecting these local changes (using lin-
ear extensions) so as to make one or more permutations less ‘important’
for coverage, the method attempts to make a permutation redundant so
that it can be removed and the set size reduced. A post-optimization
method to do this is developed, and preliminary results on sequence cov-
ering arrays show that it is surprisingly effective.

1 Introduction

In order to motivate our study, consider the following question from [2]: Given
an n-vertex m-edge graph G, what is the smallest number k of dimensions so
that m axis-parallel k-dimensional boxes in R

k can be found whose intersection
graph is the line graph of G? Remarkably, they recast this as a question about
permutations: What is the smallest number of permutations so that for every two
vertex-disjoint edges {w, x} and {y, z} of G, in at least one of the permutations
w and x both precede y and z, or w and x both follow y and z? Similar problems
abound. In [17], in a problem in event sequence testing, one asks for the fewest
permutations so that for each of the t! orders of each subset of t elements, some
permutation contains the specified elements in the specified order.

In numerous problems of this type, strong asymptotic bounds on the mini-
mum number of permutations as a function of the length of the permutations
have been established. Our concern here is quite different; for any practical
application we must explicitly construct a set of permutations, and asymptotic
results are often not well suited to addressing construction problems for moder-
ate lengths. Probabilistic arguments typically establish that choosing a certain
number of permutations uniformly at random can yield a non-zero probability
of success; yet for practical purposes this is not satisfactory, because the number
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 274–285, 2015.
DOI: 10.1007/978-3-319-19315-1 24



Sequence Covering Arrays and Linear Extensions 275

of permutations required to have a reasonable chance of success is often much
more than the minimum. To treat the construction of such sets of permutations,
one avenue is to find mechanisms to translate knowledge about related combi-
natorial structures to underlie a direct construction, and another is to make sets
of permutations of greater length recursively from those with smaller. General
mechanisms to do this are not known, although in specific cases these can pro-
vide fast construction of sets of permutations far smaller than those from random
selections. But when such direct or recursive constructions are not available, one
resorts to computation.

Not surprisingly, exact methods such as backtracking or integer program-
ming can be applied effectively only for small lengths and simple requirements.
Heuristic methods extend the size and complexity of problems for which useful
sets of permutations can be found. As lengths increase and requirements become
more complex, best known results often arise from greedy algorithms that select
one permutation at a time. In the problems being discussed, even deciding what
is the best permutation to include next can be challenging, and hence greedy
methods often make selections that are sub-optimal even locally.

This is not a good state of affairs. If we want to test sequences of 75 events so
that every four of them appears in each of the 24 orders, we need an explicit set
of permutations, and the best method in the literature to find them is a greedy
method that selects permutations sub-optimally (but efficiently). In cases for
which this greedy strategy has been implemented [5], it provides the smallest
known sets of permutations in broad ranges of interest, despite the myopic nature
of greedy methods and the sub-optimal selection of permutations. How can we do
better? Rather than trying to improve the greedy methods further, we propose
a different local optimization approach that we call post-optimization. Post-
optimization repeatedly modifies the set of permutations with the general goal
of making one of the permutations “less useful” in meeting the requirements.
Ultimately, if it can be made redundant, it is deleted and the set size is reduced.

Our strategy determines what each permutation contributes, expresses this
information as a partial order, and chooses a linear extension (which is ensured
to contribute at least as much). This strategy can be effectively implemented,
but the real surprise is that it reduces the number of permutations in best known
solutions for event sequencing, sometimes dramatically.

The remainder of the paper is organized as follows. In Sect. 2 we give a precise
formulationof ageneral set of problemsand thendiscuss a special case, the sequence
covering arrays that arise in event sequence testing. Then in Sect. 3 we focus on
sequence covering arrays; we describe the current state of computational methods,
and motivate the idea of post-optimization. Section 4 develops a framework and
some details for the post-optimization method using linear extensions, and Sect. 5
describes preliminary computational results that are quite encouraging.

2 Background

Let Σ = {0, . . . , v − 1} be a set of symbols or elements. A t-subsequence of Σ
is a t-tuple (x1, . . . , xt) with xi ∈ Σ for 1 ≤ i ≤ t, and xi �= xj when i �= j.



276 P.C. Murray and C.J. Colbourn

A genus of t-subsequences for the t-subset {x1, . . . , xt} is a non-empty subset
of {(y1, . . . , yt) : {y1, . . . , yt} = {x1, . . . , xt}}, A permutation π of Σ covers the
t-subsequence (x1, . . . , xt) if π−1(xi) < π−1(xj) whenever i < j. A permutation
covers a genus when it covers one of the t-subsequences in the genus.

By way of example, suppose that v = 8 and t = 4. Then (2, 4, 3, 5) is a
4-subsequence, and one genus of subsequences for {2, 3, 4, 5} is {(y1, y2, y3, y4) :
{{y1, y2}, {y3, y4}} = {{2, 4}, {3, 5}}}. This genus contains eight 4-subsequences
((2,4,3,5), (2,4,5,3), (4,2,3,5), (4,2,5,3), (3,5,2,4), (3,5,4,2), (5,3,2,4), and
(5,3,4,2)). The permutation π = 40251376 has π−1(2) = 2, π−1(3) = 5,
π−1(4) = 0, and π−1(5) = 3. It therefore covers the 4-subsequence (4, 2, 5, 3),
and hence covers the genus given. However, the same permutation fails to cover
the genus {(y1, y2, y3, y4) : {{y1, y2}, {y3, y4}} = {{2, 3}, {4, 5}}}.

Let G be a set of genera of t-subsequences on symbols Σ. A set Π =
{π1, . . . , πN} of N permutations is a G-permutation covering if, for every genus
G ∈ G, there exists a permutation πj ∈ Π for which πj covers genus G. To
continue the example, the box genus, box({x1, x2}, {x3, x4}), is {(y1, y2, y3, y4) :
{{y1, y2}, {y3, y4}} = {{x1, x2}, {x3, x4}}}. Let

BΣ = {box({x1, x2}, {x3, x4}) : {x1, x2, x3, x4} is a 4-subset of Σ}.

Genus box({2, 4}, {3, 5}) is covered by 40251376. Now box({2, 3}, {4, 5}) is
covered by 73012645 and box({2, 5}, {3, 4}) is covered by 27540631. In this exam-
ple, there are 1680 4-subsequences forming 210 box genera, so the remaining
verification is best left to a machine.

No matter what genera are to be covered, some number of permutations
suffices to cover them, because each t-subsequence has a linear extension to a
permutation that necessarily covers the subsequence. Our interest is to determine
the minimum number of permutations needed to cover a set G of genera.

Many permutation covering problems have been explored; we mention a few.
Dushnik [8] examined the existence of sets of permutations in which for every
subset S of k elements and every element σ not in this subset, one permutation
has all elements in S preceding σ. In other words, he examined Gk-permutation
coverings with Gk = {(x1, . . . , xk, xk+1) : {x1, . . . , xk} = S} for S∪{xk+1} a (k+
1)-subset of Σ}. Spencer [25] established bounds on the number of permutations
needed. In defining the “dimension of hypergraphs,” Fishburn and Trotter [10]
examined coverage of fewer genera in which the set S corresponds to hyperedges
of an input hypergraph.

Füredi [11] explored 3-mixing sets, which are M-permutation coverings with
M = {(x1, x3, x2), (x2, x3, x1) : {x1, x2, x3} is a 3-subset of Σ}. In other words,
for every pair of elements {a, b} and third element c, there must be a permutation
in which c is between a and b; see also [23] and [6].



Sequence Covering Arrays and Linear Extensions 277

Basaravaju et al. [2] discuss the relevance of these permutation coverings to
geometric representations of graphs and hypergraphs. In particular, they define
the separation dimension of a graph in a manner equivalent to the following. Let
G = (V,E) be a graph. Let BG be the set of all box genera box({x1, x2}, {x3, x4})
for which {x1, x2} and {x3, x4} are vertex-disjoint edges of G. They establish
that the smallest number of permutations in a BG-permutation covering, which
they term the separation dimension of G, is precisely the same as the “boxicity”
of the line graph of G.

Recently, applications of permutation coverings in event sequence testing
have attracted attention as well. In this case, the genera each contain a single
t-subsequence, so the terminology need not refer to genera at all. A sequence cov-
ering array of order v and strength t, or SeqCA(N ; t, v), is a set Π = {π1, . . . , πN}
where πi is a permutation of Σ, and every t-subsequence of Σ is covered by at
least one of the permutations {π1, . . . , πN}. Often the permutations are written
as an N × v array. (Every permutation of every t of the v letters appears in
the specified order in at least one of the N permutations.) Kuhn et al. [17,18]
describe the application to testing. Suppose that a process involves a sequence
of v tasks or events. The operator may perform the tasks in an incorrect order,
resulting in system faults. Often errors result from the improper ordering of a
small number of events. When each permutation of a sequence covering array is
used as a test order for the events, if faults result from the improper ordering
of t or fewer tasks and are not masked, the presence of a fault will be detected.
To reduce testing cost, we examine SeqCAN(t, v), the smallest N for which a
SeqCA(N ; t, v) exists.

Spencer [25] examined equivalent sets of permutations, completely
t-scrambling permutations, obtained by interchanging the roles of symbols and
columns in a sequence covering array [5]. For subsequent research, see Füredi
[11], Ishigami [14,15], Radhakrishnan [24], and Tarui [26]. Chee et al. [5] explore
the relationship to so-called “directed t-coverings” as well.

From this point onwards, we restrict to cases when, for some strength t,
every t-subsequence appears in one of the genera to be covered. Even then,
for each of the permutation covering problems mentioned thus far, few exact
results for the fewest permutations needed are known. More precisely, when
each genus (of strength t) contains all t! orderings, a single permutation suffices
to cover all genera. When the genera can be named as G1, . . . Gg,H1, . . . Hg so
that for 1 ≤ i ≤ g, Gi ∪ Hi contains all t! orderings of t symbols, and both
Gi and Hi contain each t-subsequence of these t symbols or its reversal, two
permutations suffice: Simply take any permutation and its reversal. In these
“trivial” situations, there is no dependence on the size of Σ. When the strength
t is at most two, only these trivial cases arise. When Σ is “small,” exact values
are also sometimes known. For example, SeqCAN(t, t + 1) = t! [19].

Unfortunately, except in these situations, current knowledge of sizes of min-
imum permutation coverings has focussed on asymptotic results, determining
the relationship between the size of the covering and the number of symbols,



278 P.C. Murray and C.J. Colbourn

as the latter goes to infinity. While informative, these methods typically do
not provide explicit solutions for small numbers of symbols. Yet in the testing
application, the construction of sequence covering arrays is essential. In [26], an
elegant direct construction for SeqCA(N ; 3, v) is given that, while typically the
smallest known, is known not to realize the minimum when v is small [5]. In [5],
a direct construction produces a SeqCA(N + M ; 3, vw) from a SeqCA(N ; 3, v)
and a SeqCA(M ; 3, w); occasionally this produces the smallest sequence covering
array that is known, but it does not do so in general. For strength t ≥ 4, no
such direct or recursive methods are known. Hence we turn to computational
methods. Although we focus on sequence covering arrays to make the presenta-
tion more self-contained, most of the method to be described operates mutatis
mutandis for permutation coverings with more complicated genera.

3 Computational Constructions

In [18], a simple greedy method is used to compute upper bounds on SeqCAN(t, v)
for t ∈ {3, 4} and small values of v. A more sophisticated greedy method was
developed by Erdem et al. [9]. A conditional expectation greedy algorithm that
derandomizes a randomized method establishes:

Theorem 1. [5] For fixed t and input v, there is an algorithm to construct a
SeqCA(N ; t, v) having at most N ≤ 2(log( v!

(v−t)! ))/(log( t!
t!−2 )) permutations in

time that is polynomial in v.

Chee et al. [5] observe that the bound in Theorem 1 is quite pessimistic. Imple-
mentation of the conditional expectation methods yields substantially better
results for t ∈ {3, 4, 5} than guaranteed by the theorem. One might expect that
a greedy method can fare well, but it appears unlikely that it will yield optimum
coverings. Indeed, using answer set programming, improvements on the greedy
methods have been developed when t ∈ {3, 4} [1,3,9]. A cooperative search strat-
egy (the “bees algorithm”) is explored in [12]. These methods are compared in
[5], and we summarize the conclusions here.

For strength t = 3, the answer set programming methods outperform all of
the greedy methods. Nevertheless when v ≥ 30 they do not fare as well as Tarui’s
direct construction or the recursive construction. Tarui’s direct construction is
not optimum, however; for small values of v, answer set programming wins, and
for certain values of v (such as v = 128), the recursive method wins.

Proceeding to strengths four and five, no direct or recursive method is avail-
able. Surprisingly, the answer set programming methods do not report the best
known results except when v is very small; the conditional expectation greedy
method yields the best known result. The explanation is almost certainly that
the time and storage required for the answer set programming methods and the
cooperative search methods are prohibitive.



Sequence Covering Arrays and Linear Extensions 279

The conditional expectation algorithm is
greedy, and hence it is reasonable to expect that
the later permutations chosen are less useful in
the coverage of t-subsequences. Let us examine
this more carefully. Consider the SeqCA(34;4,6)
shown at left; the permutations are shown in the
last six columns. Although the permutation cov-
ering need not order the permutations, in the
sequence covering array they are ordered, and
the greedy method added these permutations
in this order. Therefore we can count, for each
permutation, the 4-subsequences covered by this
permutation that are covered by no earlier one
(this is precisely the quantity that the greedy
algorithm attempts to maximize). These counts
are shown in the first column on the left.

No permutation in this example can cover more than
(
6
4

)
= 15 4-subsequences.

Mathon and Tran Van Trung [21] give a SeqCA(24;4,6) in which every permu-
tation necessarily covers 15 4-subsequences for the first time. However, the myopic
nature of the greedy method has resulted in permutations that cover fewer and
fewer 4-subsequences for the first time, so that the last only covers a single
4-subsequence.

When the permutations are listed in this order, the last appears to be less
useful. Can we avoid using some of these later permutations? The last permu-
tation covers only the 4-subsequence (2, 4, 3, 0) for the first time, and hence any
of 30 different permutations would serve as well. A similar problem arises in the
construction of related combinatorial objects known as covering arrays. In that
setting, Nayeri et al. [22] devised a post-optimization method, which repeatedly
reorders the array, attempting to reduce the amount of coverage required from
the last row. If the last row can be made to provide no coverage not provided by
an earlier row, it can be deleted to yield a solution with fewer rows. Surprisingly,
this works well! For a variety of covering arrays from different constructions,
such post-optimization eliminates many rows, sometimes more than 10 % of the
rows in an initial (best known) solution. Arguably this is because the best known
solutions can often be far from optimal due to deficiencies in the constructions
that we know; nevertheless in that context such post-optimization has proved
useful. Indeed covering arrays arise as a type of “t-restriction” problem, and
post-optimization is effective more generally for such problems [7].

4 Post-Optimization and Linear Extensions

The main contribution of this paper is to develop a post-optimization technique
for sequence covering arrays. Define the effective coverage of a permutation in
an ordered list of permutations to be the number of t-subsequences covered by
this permutation but by no earlier one. The basic algorithm follows:



280 P.C. Murray and C.J. Colbourn

As an iteration condition, we terminate the inner loop when at least one
permutation is removed or when an iteration limit is exceeded. The termination
condition enforces a limit on the number of times a complete reordering of the
array is undertaken. The determination of specific iteration and termination
conditions dictate the number of times that an improvement is attempted, and
can be set based on experimentation (that we do not describe here). We adopt
random reordering. While it is reasonable to instead reorder so that permutations
with larger effective coverage appear earlier in the ordering, we found that the
method appeared more likely to be trapped in a local optimum and fail to make
improvement.

The key aspect of the algorithm is to determine when a permutation can
be replaced by another without loss of (effective) coverage. Patterned on the
approach for covering arrays [7], call an entry σ in a permutation πj necessary
if there is some t-subsequence containing σ that is covered by πj for the first
time, and flexible otherwise. By iterating through all t-subsequences, finding
their first occurrence in the array, and marking the t corresponding symbols as
necessary, any symbol left unmarked is flexible. Any permutation π that contains
the necessary elements in πj in the same order can be used to replace πj without
reducing the effective coverage. Hence a basic post-optimization method can
locate all flexible symbols in permutations, and move them (perhaps randomly)
within the permutation; the result remains a sequence covering array.

Despite the fact that the SeqCA(34;4,6) is far from optimal, it has only two
flexible symbols (1 and 5), both in the last permutation. Nevertheless, it has
much more flexibility; we pursue this next. For each permutation πj define a
partial order ≺j on Σ so that whenever (x1, . . . , xt) is covered for the first time
by πj , we have xi ≺j xi+1 for 1 ≤ i < t. Evidently πj is a linear extension of
≺j , but any linear extension of ≺j serves to provide at least the same effective
coverage. In our SeqCA(34;4,6) example, the last permutation has partial order
2 ≺ 4 ≺ 3 ≺ 0 incomparable to 1 and 5. (This just restates the earlier observation
about flexible symbols.) The second last permutation has effective coverage 2
(covering (1,0,3,2) and (0,3,5,4)) and partial order 1 ≺ 0 ≺ 3 ≺ 5 ≺ 4 and
3 ≺ 2. While there are no flexible symbols, the partial order has three linear
extensions. The third last permutation, with effective coverage of 3 (covering



Sequence Covering Arrays and Linear Extensions 281

(0,1,2,3), (0,5,1,4), and (5,1,2,3)), has partial order 0 ≺ 5 ≺ 1 ≺ 2 ≺ 3 and
1 ≺ 4, again with three linear extensions. The fourth last permutation, with
effective coverage of 3 (covering (3,1,2,0), (3,1,5,0), and (3,4,5,2)), has partial
order 3 ≺ 1 ≺ 5 ≺ 2 ≺ 0 and 3 ≺ 4 ≺ 5, with two linear extensions.

The partial orders ≺j are computed at the same time as the effective cover-
age. Replacement of permutations is carried out by choosing a linear extension
of ≺j to replace πj . A strategy for choosing the ‘best’ linear extension for each
of the partial orders is not clear; deterministic rules appear to stall the method
in local optima. Hence one might prefer random linear extensions. Counting
linear extensions is #P-complete [4], but there is a polynomial expected time
algorithm for generating a random linear extension [13,16]. We do not need
such sophisticated machinery, because we have no need for extensions to be
selected uniformly at random. For our purposes, any method that has non-zero
probability of obtaining each linear extension suffices. Such a method is easy:
A simple greedy algorithm that repeatedly selects a minimum element and
removes it exhibits this behaviour.

One improvement is worth mentioning. Rather than computing all of the
partial orders ≺j and then forming a linear extension of each, once each partial
order ≺j is determined, we immediately replace it by a linear extension. This
can sometimes cover an additional t-subsequence previously only covered by
a later permutation, reducing its effective coverage. Indeed, if in considering
partial order ≺j some t-subsequence T covered only in the last permutation is
consistent with ≺j , we add the comparability relations from T to ≺j before
choosing a linear extension; in this way, we guarantee that the last permutation
has less effective coverage than before (making it a better candidate for removal).
Further effort could be made to search for t-subsequences covered only after the
jth permutation that are consistent with ≺j to make some permutation other
than the last have lower effective coverage, but this can require checking a large
number of t-subsequences for consistency with ≺j . We have concentrated instead
on reducing the effective coverage of the last permutation.

With these implementation decisions, the algorithm requires only O(vN)
storage for the array and O(v2) storage for the partial orders. The time is dom-
inated by the time to determine the partial orders, which involves examining
up to N permutations for O(vt) different t-subsequences. While this appears to
be quite large, a single iteration of the post-optimization involves essentially the
same effort as checking that the array is indeed a sequence covering array. In prac-
tice, the execution time depends not only on the time per iteration of the inner
loop, but the termination and iteration conditions that determine the number
of iterations. Our interest is not in theoretical efficiency, although our decisions
have been guided by ensuring that a single iteration is not too computationally
intensive; rather our concern is with whether the post-optimization method can
be used in a practical sense to improve our knowledge about sequence covering
arrays. For this, we turn to some computational results.



282 P.C. Murray and C.J. Colbourn

5 Some Computations

The objective is to find best explicit constructions for small sequence cover-
ing arrays, so the ‘acid test’ for post-optimization is whether it can improve
upon the current best sequence covering numbers, and to what extent. We have
implemented the method, and performed a number of preliminary experiments
for strengths 3, 4, and 5 in the ranges of lengths reported in [5]. Results are
reported in Table 1.

Table 1. Post-optimization for strengths 3, 4, 5, and 6

t = 3 t = 4 t = 5 t = 6

v Best In Out v Best In Out v Best In Out v In Out

4 6 8 6 5 24 26 24 6 120 148 122 7 991 836

5 7 8 7 6 24 34 24 7 198 198 175 8 1342 1179

6 8 10 8 7 38 41 37 8 242 242 218 9 1662 1535

7 8 12 8 8 44 47 42 9 282 284 261 10 1970 1873

8 9 12 9 9 50 52 46 10 318 322 294

9 9 12 9 10 55 57 53 11 354 354 330

10 9 14 10 15 78 78 67 12 384 386 360

15 10 15 12 20 92 92 80 13 416 419 390

20 12 16 13 25 104 104 90 14 446 446 418

25 14 18 14 30 113 113 98 15 470 475 448

30 14 19 15 40 128 128 112 16 496 501 474

40 16 21 16 50 141 141 123 17 518 518 496

50 16 23 17 60 151 151 133 18 540 547 520

60 16 26 18 70 160 160 142 19 560 570 541

70 16 28 19 80 168 168 150 20 582 590 568

80 17 30 20 90 176 180 162 25 674 674 656

90 18 30 21 30 748 748 725

For each strength, different lengths are examined. For each, Best reports the
best result known from [5], In reports the size of the array – usually produced
by the conditional expectation greedy algorithm – to which post-optimization is
applied, and Out reports the size when post-optimization was terminated.

First consider the results for strength t = 3. In this case, more sophisticated
computational methods have earlier been applied, and useful direct and recursive
constructions are known. Perhaps then it is no surprise that post-optimization
has not improved upon any of the best known sizes. The improvements upon
the sizes produced by the greedy method are nevertheless substantial. When
v = 80, for example, the conditional expectation method gives a SeqCA(30;3,80);



Sequence Covering Arrays and Linear Extensions 283

ensuring that reversals are present yields a SeqCA(26;3,80) [5]. The answer set
programming techniques give a SeqCA(24;3,80) [1] and a SeqCA(23;3,80) [3].
Post-optimization improves the SeqCA(30;3,80) by removing ten permutations,
yielding a SeqCA(20;3,80). While Tarui’s method [26] yields a SeqCA(18;3,80)
and the recursive construction a SeqCA(17;3,80) [5], it remains striking that
post-optimization fares so well.

Turning to strengths 4 and 5 shows the potential of post-optimization. In
each of the cases examined, post-optimization matches or improves upon the
best known result. In light of the comparison with the direct and recursive con-
structions for strength 3, it is unlikely that post-optimization has produced opti-
mal arrays except when v is quite small. Nevertheless, in the absence of such
constructions for strength greater than 3, it does yield the best known sizes,
giving a non-trivial improvement on other methods applied.

Even when powerful direct or recursive constructions (as for strength three)
are known, post-optimization may nevertheless prove useful. If only some of
the t-subsequences are to be covered (“partial coverage”), the direct and recur-
sive constructions do not exploit this, whereas post-optimization can eliminate
permutations while ensuring that every t-subsequence that is covered initially
remains covered. In principle, there is no obstacle to incorporating constraints
as well. A constraint is an �-subsequence that is not permitted to appear in any
permutation. Sets of constraints may make it impossible to find an array cover-
ing some specified t-subsequences consistent with the constraints [5,20]. When
some array with appropriate coverage meeting all constraints does exist, how-
ever, post-optimization can be applied by ensuring that every linear extension
chosen does not violate any constraint. We have conducted limited experiments
with partial coverage and with constraints; the extensions are natural. We have
also conducted a more thorough set of experiments with covering various genera,
such as the box genus. Our computational results, not discussed here, demon-
strate that post-optimization is practical and effective in these problems. We
argue that the ability to cope with such variants is a positive feature of post-
optimization.

Finally we remark on execution times. Every iteration of post-optimization
on a SeqCA(180;4,90) examines 61,324,560 4-subsequences, determining for each
the first permutation in which it is covered and forming 180 partial orders on 90
elements each. Linear extensions of each order are then selected and a random
reordering of the permutations is done before going on to the next iteration. Thus
each iteration can be substantial. The results shown reflect computations after
between 1000 and 10000 iterations for the most part, yielding times that are com-
parable to the initial construction cost by the conditional expectation method.
Because our concern until this point has been with the extent of improvement
possible, we have not optimized execution times. We plan a more detailed exam-
ination of the time to conduct one iteration, and the numbers of iterations
employed to see different reductions.

As a proof of concept for post-optimization, we believe that the results shown
succeed in demonstrating its potential.



284 P.C. Murray and C.J. Colbourn

6 Conclusions

In describing and implementing post-optimization, we have concentrated on
sequence covering arrays. The extensions to requiring specified partial cover-
age, and to incorporating constraints on the ordering of pairs, are immediate.
The extension to permutation coverings with more complicated genera follows
similar lines. Both will be reported fully elsewhere.

At the outset, we asked a question: How ought one, in practice, construct
a ‘small’ set of permutations of specified length with specified coverage proper-
ties? When the length and the strength of coverage are small enough, exhaustive
methods will do. For somewhat larger strength and length, clever metaheuris-
tic methods apply. For large enough length, randomized methods can be used.
But sadly there typically remains a substantial intermediate range of lengths
for which none of these methods applies. In these cases, randomized methods
yield far too many permutations. Random selection gives a SeqCA(361;4,90), but
greedy methods produce a SeqCA(176;4,90). In any real application the reduc-
tion from 361 to 176 is important. Our post-optimization provides a mechanism
to obtain even smaller solutions, in this case a SeqCA(162;4,90).

Naturally one prefers powerful explicit constructions in the intermediate range
of interest, as has been done in part for sequence covering arrays of strength 3.
However, for most of the permutation coverage problems mentioned here, such
powerful explicit constructions remain elusive; this is particularly the case when
considering partial coverage or constraints. Our argument is that a sensible and
practical strategy in these situations is to first apply a greedy method to get a
‘reasonably sized’ initial array, and then to post-optimize it.

Acknowledgments. Thanks to Sunil Chandran, Marty Golumbic, Rogers Mathew,
and Deepak Rajendraprasad for interesting discussions about permutation coverings
and geometric representations of graphs and hypergraphs.

References

1. Banbara, M., Tamura, N., Inoue, K.: Generating event-sequence test cases by
answer set programming with the incidence matrix. In: Technical Communica-
tions of the 28th International Conference on Logic Programming (ICLP 2012),
pp. 86–97 (2012)

2. Basavaraju, M., Chandran, L.S., Golumbic, M.C., Mathew, R., Rajendraprasad,
D.: Boxicity and separation dimension. In: Kratsch, D., Todinca, I. (eds.) WG
2014. LNCS, vol. 8747, pp. 81–92. Springer, Heidelberg (2014)

3. Brain, M., Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H., Yilmaz, C.:
Event-sequence testing using answer-set programming. Int. J. Adv. Softw. 5(3–4),
237–251 (2012)

4. Brightwell, G., Winkler, P.: Counting linear extensions. Order 8(3), 225–242 (1991)
5. Chee, Y.M., Colbourn, C.J., Horsley, D., Zhou, J.: Sequence covering arrays. SIAM

J. Discrete Math. 27(4), 1844–1861 (2013)
6. Chor, B., Sudan, M.: A geometric approach to betweenness. SIAM J. Discrete

Math. 11(4), 511–523 (1998)



Sequence Covering Arrays and Linear Extensions 285

7. Colbourn, C.J., Nayeri, P.: Randomized Post-optimization for t-Restrictions. In:
Aydinian, H., Cicalese, F., Deppe, C. (eds.) Ahlswede Festschrift. LNCS, vol. 7777,
pp. 597–608. Springer, Heidelberg (2013)

8. Dushnik, B.: Concerning a certain set of arrangements. Proc. Amer. Math. Soc. 1,
788–796 (1950)

9. Erdem, E., Inoue, K., Oetsch, J., Pührer, J., Tompits, H., Yilmaz, C.: Answer-set
programming as a new approach to event-sequence testing. In: Proceedings of the
Second International Conference on Advances in System Testing and Validation
Lifecycle, pp. 25–34. Xpert Publishing Services (2011)

10. Fishburn, P.C., Trotter, W.T.: Dimensions of hypergraphs. J. Combin. Theory Ser.
B 56(2), 278–295 (1992)

11. Füredi, Z.: Scrambling permutations and entropy of hypergraphs. Random Struct.
Alg. 8(2), 97–104 (1996)

12. Hazli, M.M.Z., Zamli, K.Z., Othman, R.R.: Sequence-based interaction testing
implementation using bees algorithm. In: 2012 IEEE Symposium on Computers
and Informatics, pp. 81–85. IEEE (2012)

13. Huber, M.: Fast perfect sampling from linear extensions. Discrete Math. 306(4),
420–428 (2006)

14. Ishigami, Y.: Containment problems in high-dimensional spaces. Graphs Combin.
11(4), 327–335 (1995)

15. Ishigami, Y.: An extremal problem of d permutations containing every permutation
of every t elements. Discrete Math. 159(1–3), 279–283 (1996)

16. Karzanov, A., Khachiyan, L.: On the conductance of order Markov chains. Order
8(1), 7–15 (1991)

17. Kuhn, D.R., Higdon, J.M., Lawrence, J.F., Kacker, R.N., Lei, Y.: Combinatorial
methods for event sequence testing. CrossTalk: J. Defense Software Eng. 25(4),
15–18 (2012)

18. Kuhn, D.R., Higdon, J.M., Lawrence, J.F., Kacker, R.N., Lei, Y.: Combinatorial
methods for event sequence testing. In: IEEE Fifth International Conference on
Software Testing, Verification and Validation (ICST), pp. 601–609 (2012)

19. Levenshtĕın, V.I.: Perfect codes in the metric of deletions and insertions. Diskret.
Mat. 3(1), 3–20 (1991)

20. Margalit, O.: Better bounds for event sequence testing. In: The 2nd International
Workshop on Combinatorial Testing (IWCT 2013), pp. 281–284 (2013)

21. Mathon, R.: Tran Van Trung: Directed t-packings and directed t-Steiner systems.
Des. Codes Cryptogr. 18(1–3), 187–198 (1999)

22. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of covering
arrays. Eur. J. Comb. 34, 91–103 (2013)

23. Opatrný, J.: Total ordering problem. SIAM J. Comput. 8(1), 111–114 (1979)
24. Radhakrishnan, J.: A note on scrambling permutations. Random Struct. Alg.

22(4), 435–439 (2003)
25. Spencer, J.: Minimal scrambling sets of simple orders. Acta Math. Acad. Sci. Hun-

gar. 22, 349–353 (1971/72)
26. Tarui, J.: On the minimum number of completely 3-scrambling permutations. Dis-

crete Math. 308(8), 1350–1354 (2008)



Minimum r-Star Cover of Class-3
Orthogonal Polygons

Leonidas Palios(B) and Petros Tzimas

Department of Computer Science and Engineering,
University of Ioannina, 45110 Ioannina, Greece

{palios,ptzimas}@cs.uoi.gr

Abstract. We are interested in the problem of covering simple orthog-
onal polygons with the minimum number of r-stars; an orthogonal poly-
gon is an r-star if it is star-shaped. The problem has been considered by
Worman and Keil [13] who described an algorithm running in
O(n17poly-logn) time where n is the size of the input polygon.

In this paper, we consider the above problem on simple class-3 ortho-
gonal polygons, i.e., orthogonal polygons that have dents along at most
3 different orientations. By taking advantage of geometric properties of
these polygons, we give an output-sensitive O(n+k log k)-time algorithm
where k is the size of a minimum r-star cover; this is the first purely
geometric algorithm for this problem. Ideas in this algorithm may be
generalized to yield faster algorithms for the problem on general simple
orthogonal polygons.

Keywords: Orthogonal polygon · Cover · Decomposition · r-star · Vis-
ibility · Output-sensitive

1 Introduction

A polygon is orthogonal if its edges are either horizontal or vertical; an edge e of
such a polygon is a N-edge (S-edge, E-edge, and W-edge, resp). if the outward-
pointing normal vector to e is directed towards the North (South, East, and West,
resp.). Of particular importance are the dents (i.e., edges whose endpoints are
reflex vertices of the polygon) and the extremities (i.e., edges whose endpoints
are convex vertices); see Fig. 1(left). Orthogonal polygons can be classified in
terms of the types of dents that they contain [2]: a class-k orthogonal polygon
(0 ≤ k ≤ 4) is defined to have dents along at most k different orientations. Class-
2 polygons can be further classified into class-2a where the 2 dent orientations are
parallel (i.e., N and S, or E and W), and class-2b where the 2 dent orientations
are perpendicular to each other; class-2a orthogonal polygons are monotone.

We are interested in minimum covers of simple orthogonal polygons by
r-stars. A cover of a polygon by a set S of pieces (or subpolygons) requires that
the union of the pieces in S be equal to the polygon. If additionally the pieces
are required to be mutually disjoint (except along boundaries), then we have
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 286–297, 2015.
DOI: 10.1007/978-3-319-19315-1 25



Minimum r-Star Cover of Class-3 Orthogonal Polygons 287

L

p

q

s

N-dent

Fig. 1. (left) Illustration of the main definitions (the r-visibility polygon of p is shown
dark); (middle) two trousers with their covered parts shown dark; (right) the histogram
of the line segment s is shown dark.

a partition. Clearly, a minimum-size cover of a polygon involves at most as many
pieces as a minimum-size partition of the polygon into the same type of pieces.
Yet, covering problems prove to be harder than their corresponding partition
problems and there are cases where the former are NP-hard whereas the latter
admit polynomial solutions (e.g., finding a minimum-size Steiner-free partition of
a simple polygon into star-shaped polygons can be computed in polynomial time
[6], whereas the corresponding covering problem is NP-complete [1]). Covers and
partitions are very important as they can be used for decomposition into simpler
pieces. Recent applications of rectangulations include planar self-assembly with
local information [8] and DNA self-assembly (M.Y. Kao and A. Sterling).

An orthogonal polygon is an r-star if it is star-shaped; clearly, an r-star
is orthogonally convex. The term r-star comes from its formal definition with
respect to the r-visibility : in an orthogonal polygon P , two points p, q of P are
r-visible from one another if and only if the axis-parallel rectangle with p, q at
opposite corners lies within P (Fig. 1(left) shows two such points p and q); then,
a polygon P is an r-star if there exists a point p of P such that every point q ∈ P
is r-visible from p. (For completeness, we mention that in orthogonal polygons
another notion of visibility, the s-visibility, is also defined; see [12].) Clearly,
the problem of determining a minimum cover of a simple orthogonal polygon by
r-stars is equivalent to determining a minimum set of r-visibility guards to watch
the polygon. We note that computing the minimum number of guards to watch a
general simple polygon is NP-complete [1], and that orthogonal polygons require
fewer guards (in terms of the size of the polygon) [5].

Covering by r-stars has been investigated early enough. Keil [7] described
an O(n2)-time algorithm to cover a class-2a orthogonal polygon by r-stars.
Culberson and Reckhow [2] showed that Keil’s algorithm is worst-case optimal if
the r-stars need to be explicitly reported and presented an O(n)-time algorithm
to count the minimum number of r-stars needed; they also gave O(n2)-time
algorithms for minimally covering class-2a and class-2b orthogonal polygons.
Gewali, Keil, and Ntafos [4] gave a 2-pass O(n)-time algorithm to report the
locations of a minimum-cardinality set of r-visibility guards for class-2a orthog-
onal polygons. Their algorithm was improved by Lingas et al. [9,10] who were



288 L. Palios and P. Tzimas

able to perform all the computations in a single pass; they also reduced the space
requirement (in addition to the space required to store the polygon) to linear
in the number of guards required rather than linear in the size of the polygon.
The problem of covering general orthogonal polygons with r-stars was addressed
by Worman and Keil [13] who took advantage of the graph-theoretic approach
[12] to describe an O(n17poly-log n)-time algorithm. Recently, a linear-time 3-
approximation algorithm for general simple orthogonal polygons has been given
by Lingas, Wasylewicz, and Żyliński [11].

In this paper, we study the r-star covering problem on class-3 orthogonal
polygons. We take advantage of geometric properties of these polygons and we
present an 1-pass output-sensitive O(n + k log k)-time algorithm to report the
locations of a minimum-cardinality set of r-visibility guards to watch the entire
polygon, where k is the (minimum) number of such guards. This is the first purely
geometric algorithm for this problem. Ideas in this algorithm may be generalized
to yield faster algorithms for the problem on general simple orthogonal polygons.

2 Theoretical Framework

We consider simple orthogonal polygons; so, in the following, we omit the adjec-
tive “simple.” In a cartesian coordinate system, consider an orthogonal poly-
gon P that has no N-dents. The intersection of P with a horizontal line L may
consist of several line segments. Since P has no N-dents, these line segments
correspond to disjoint parts of the polygon P below the line L; for convenience,
we call each such part of P a trouser (in Fig. 1(middle) the sweep-line at its
current position defines two trousers). It is important to note that, due to their
definition, the trousers can be ordered along the x-axis.

We extend the notions of “grid segment” and “level” used in [4]: a grid
segment of P or of a trouser T is a maximal (closed) horizontal line segment
in P or T ; the level of a point or a horizontal line segment (which may be a
grid segment or a horizontal edge) is its y-coordinate. We also use the notion of
orthogonal projection in an orthogonal polygon P given in [10]: the orthogonal
projection o(s) of a horizontal line segment s at level � in P onto the grid
segment s′ at level �′ ≥ � is the maximal subsegment of s′ such that for each
point a of o(s) there exists a vertical line segment in P that goes through a and
intersects s. Finally, for a horizontal line segment s (edge or grid segment) we
define its x-range to be the set of x-coordinates of the points of s. (Although a
polygon is considered a closed set, we consider edges to be open sets (i.e., they
do not include their endpoints) and thus their x-ranges are open sets as well).

The following lemma provides three important properties of class-3 orthogo-
nal polygons.

Lemma 1. Let P be a class-3 orthogonal polygon without N-dents. Then:

(i) The polygon P has a single topmost edge.
(ii) Consider sweeping the polygon P from bottom to top. Each edge encountered

other than a S-extremity is incident with the swept part of P ’s boundary.



Minimum r-Star Cover of Class-3 Orthogonal Polygons 289

(iii) Let s1 and s2 be grid segments of P at levels �1 and �2, respectively, where
�2 > �1, such that there exists a vertical line segment in P intersecting both
s1 and s2. Then, the orthogonal projection of s1 onto a level � ≥ �2 is a
subset of the orthogonal projection of s2 onto �.

For a horizontal line segment s in an orthogonal polygon P , the histogram of s is
the set of points p of P such that the vertical line segment pq, where q ∈ s, lies
entirely in P (in Fig. 1(right), the histogram of line segment s is shown dark). It
is important to note that the lack of N-dents implies that the histogram of any
line segment is horizontally convex (note that by definition it is also vertically
convex); see Fig. 1(right). The topmost edge of the histogram of s is a part of
an edge of the polygon P and is the top ceiling of s [4].

Lemma 2. Let P be a class-3 orthogonal polygon without N-dents, s a horizontal
line segment, and let s′ ⊆ s be the projection of the top ceiling of s vertically
onto s. Then, any point of P at a level ≥ level(s) that is seen by any point of s
is also seen by any point of s′.

Let us consider a polygon P and a trouser T of P defined by a horizontal sweep-
line L. Then, T is partitioned into the set of points p ∈ T such that the vertical
line segment pq, where q ∈ L, contains points outside P (these points form the
covered part of T ) and the set of the remaining points (these points form the
non-covered part of T ); in Fig. 1(middle) the covered parts of the two trousers
are shown dark. Then it is not difficult to see the following:

Lemma 3. Let P be a class-3 orthogonal polygon without N-dents swept by a
horizontal sweep-line and let T be a trouser of P .

(i) The non-covered part of T is an orthogonally convex region bounded from
above by the intersection of the sweep-line with T and from below by an x-
monotone orthogonal chain whose horizontal edges are (entire or parts of)
S-edges of P .

(ii) Consider points p, q in the non-covered part of T such that the line seg-
ment pq is vertical and p is higher than q. Then any point in P not belonging
to the covered part of T seen by q is also seen by p.

Finally, by using induction in the number of dents and since a guard can see at
most 1 extremity in each direction, we show the following:

Lemma 4. Let P be an orthogonal polygon, k be the minimum number of r-vi-
sibility guards needed to watch P , and I and J be the number of extremities and
dents of P , respectively. Then: (i) I = J +4; (ii) I ≤ 4k (and hence J ≤ 4k−4).

3 The Algorithm

Our algorithm applies plane-sweeping; we assume that the given class-3 poly-
gon P does not have N-dents and we sweep it from bottom to top stopping at
each horizontal edge (thus we can take advantage of Lemmas 1, 2, and 3). The
invariant that we maintain is that:



290 L. Palios and P. Tzimas

Invariant: At any time, every point of the currently covered part of P
is seen by at least one guard in the current set of guards.

At each S-edge we do some preparatory work but do not place guards as such
edges can be watched by guards located at a higher level. N-edges may “cover”
parts of the polygon from guards located higher. We check this and only if a
guard is needed, it is located at the level of the N-edge (see Lemma 3(ii) and
the Invariant); the x-coordinate of the guard’s location is determined later as
discussed below. In the end, the algorithm reports the locations of a minimum-
cardinality set of r-visibility guards that watch the entire input polygon.

3.1 Determining When a Guard is Needed and Where to be Placed

Consider any S-edge e of the given polygon P . If the x-range of a N-edge d
intersects e’s x-range (Fig. 2(left)), then a guard must be located at a level
between (and including) the levels of e and d since no other guard can watch
the darker shaded area. Additionally, if such a guard is to be placed at level �,
it has to be placed at any point of the orthogonal projection of the grid segment
containing e onto level �, in order to watch e.

Therefore, in order to enforce the above observations, each encountered
S-edge e submits a guard-request with which we maintain:

• a forcing-range, or f-range for short, which is the x-range of the edge e (we
need to make sure that there is a guard watching e if the x-range of a N-edge
above e and e’s f-range have non-empty intersection);

• a placement-range, or p-range for short, which is the range of x-coordinates
of the grid segment containing e (this is the initial range of x-coordinates of
the location of a guard watching e).

Each of these ranges is a single interval of x-coordinates (the f-range is open, the
p-range is closed), and it always holds that the f-range of a S-edge is a subset of
its p-range. Figure 2(right) shows the initial values of the f-range (shown dotted)
and p-range (shown dashed) for the S-edge e.

Here is how the f- and p-range of a guard-request r submitted by an edge e
are used: During the sweeping, as long as we encounter N-edges whose x-ranges
do not intersect either range, no change occurs. After we have encountered and

ee

d

Fig. 2. (left) A guard is needed no higher than the N-edge d to watch the darker shaded
area; (right) the initial values of the f-range (shown dotted) and the p-range (shown
dashed) of the S-edge e.



Minimum r-Star Cover of Class-3 Orthogonal Polygons 291

processed a N-edge d whose x-range intersects the p-range of r, we clip r’s p-
range about d so that it always is the x-range of the orthogonal projection of
the initial p-range onto a level slightly above the level of d; thus, it is the range
of x-coordinates of the location of a guard at that level watching e). However, if
we encounter a N-edge d whose x-range intersects the f-range of r, then a guard
is needed immediately (in this way, our Invariant will keep holding); any guard
located at a point with level between (and including) the levels of e and d, and
with x-coordinate in the p-range of r will do. If the x-range of the N-edge d
is a superset of the f-range of r, then r is deleted; if the x-range intersects the
f -range of r but it is not a superset of the f-range (the N-edge partially covers e)
then we keep r but we update its f-range to the difference of the f-range minus
the x-range of d. Thus, we have guard-requests for all the S-edges (or parts of
them) that bound the non-covered part of the trousers of P from below.

3.2 Maintaining and Processing Guards

In order to be able to manage the guards, with each guard g we maintain:

• its level (i.e., the y-coordinate of g’s location) and
• its location-range, or loc-range for short, which is the range of x-coordinates

of the points at which the guard g can currently be placed.

For a guard g to be placed at a grid segment s� at level � in a trouser T , initially
its loc-range coincides with the x-range of s�. As the sweep-line moves upward,
the loc-range gets clipped by N-edges whose x-ranges intersect it. Thus, since
there are no N-dents, the loc-range is a single closed interval of x-coordinates.
If g is chosen to fulfill a guard-request r then the loc-range of g is set equal
to r’s p-range (in such a case, g’s loc-range must intersect r’s p-range; in fact,
g’s loc-range is a superset of r’s p-range due to Lemma 1(iii) and the fact that
both ranges are x-ranges of orthogonal projections of grid segments with the grid
segment corresponding to g’s loc-range being higher than that of r’s p-range).

Finally, when a N-edge d is encountered such that the (possibly clipped) loc-
range of g is a subset of d’s x-range, then we say that g is positioned and the
x-coordinate of g’s location is set equal to the left bound value of g’s loc-range
right before d was encountered (in accordance with the convention followed in
[4,9]). (Note that g cannot see any points in the polygon P above the level of
d). In this way, if g was used to satisfy a set A of guard-requests and s is the
(non-empty) intersection of the p-ranges of the requests in A, it is ensured that

P1: g is placed at the leftmost point of the vertical projection of the
top-ceiling of s onto the level of g.

In addition to the histograms of the S-edges whose requests are satisfied by a
guard g that got positioned when processing N-edge d, g may (entirely or par-
tially) watch histograms of other edges (e.g., in Fig. 3(left), when processing
N-edge d1, guard g1 is used to satisfy the request of edge e1; later, when process-
ing d2, g1 is used to also satisfy the requests of e2 and e3, and g1 gets positioned;
g1 also watches parts of the histograms of edges e4, e5, e6, e7). We concentrate



292 L. Palios and P. Tzimas

d1

d1
d2

d2

d3

g1
g1

g2

g2 g3

e1
e2

e3
e4

e5
e6

e7

e8

e9

e10

e11

e

Fig. 3. (left) The histogram of e7 is entirely watched by positioned guards g1 and
g2; (right) not selecting the lowermost candidate guard may lead to a non-minimum
number of guards.

only on the histograms whose points below the part seen by g (if any) are seen
by other positioned guards (these are the histograms of e4, e5, e7 for g1 and of
e5, e7, e8, e9 for g2 in Fig. 3(left)). Any other histogram He (of an edge e) partly
watched by g has a set Q of points below the part seen by g that are not seen
by any positioned guard. For Q to be watched, (i) either another positioned
guard g′ will see part of Q but since g′ will be positioned after g (when process-
ing a N-edge d′ at a level higher than d’s), it will watch the entire part of the
histogram He seen by g (no matter whether the level of g′ is above or below that
of g), (ii) or another guard g′′ will be used to satisfy the guard-request submitted
by e, and thus g′′ will watch the entire histogram He.

In order to find the histograms we are interested in, for each trouser T we
need to compute the top segments of the (seen by positioned guards) parts of
the histograms in the non-covered part of T that are right- and left-maxima.

3.3 Selecting a Guard to Watch a S-Edge

Many guards at different levels in the polygon may be able to watch a S-edge e′

when the f-range in the guard-request submitted by e′ is intersected by the x-
range of a N-edge. In order to make a good choice among them, we apply the
following policy:

P2: Whenever a guard-request needs to be fulfilled, among all guards
that can fulfill it, the lowermost one is chosen.

The correctness of this approach follows from Lemma 3(ii); in this way, among
the guards fulfilling the guard-request, we choose a guard g whose visibility
polygon in the non-covered part of the trouser T to which it belongs is as small
as possible, saving guards with larger visibility polygons to help watch portions
of the non-covered part of T that g cannot see.

In fact, there are cases where by choosing a guard other than the lowermost
available we get an incorrect result; see Fig. 3(right). When encountering the
N-edges d1 and d2, we realize that guards are needed at these levels. If when
assigning a guard to watch the S-edge e, we select a guard at the level of d2



Minimum r-Star Cover of Class-3 Orthogonal Polygons 293

(see guard g1 in Fig. 3(right)), then a third guard g3 will also be needed; yet,
two guards (located at the white circles) suffice to watch the entire polygon.

3.4 Description and Complexity of the Algorithm

As mentioned, we sweep the given class-3 orthogonal polygon P from bottom to
top maintaining information on the current trousers (for simplicity, we assume
that no two edges of the polygon are collinear). With each trouser T , we maintain
T ’s guard ranges, guard-request ranges, left- and right-maxima, and the set of
guards in T that have not yet been positioned. Additionally, we maintain a set
Positioned storing all the positioned guards.

For the sweeping, we apply the idea of Hertel and Mehlhorn [3]: we have
a global sweep-line that stops at each S-extremity (a new trouser is defined),
S-dent (two neighboring trousers get merged), and the topmost edge (the last
trouser gets deleted) in increasing y-coordinate, and each trouser T has its own
sweep-line that may lag behind the level of the global sweep-line; the sweep-line
of T gets advanced to the level of the global sweep-line (located at an edge e)
only if we want to find the relative position of e with respect to T .

While advancing the sweep-line of a trouser T , we process the horizontal edges
that are adjacent to T ’s endpoints in increasing y-coordinate. If the currently
processed horizontal edge e is a S-edge, we set up and insert a corresponding
guard-request and update the trouser information. If e is a N-edge, we process the
guard-requests whose f-ranges are intersected by e’s x-range, position and process
the guards whose loc-ranges are subsets of e’s x-range, update the maxima infor-
mation, and clip the guard-requests’ p-ranges and the guards’ loc-ranges. After
all the edges have been processed, the resulting guard set Positioned gives us the
locations of a minimum-cardinality set of r-visibility guards.

The correctness of the algorithm follows from the discussion in Sects. 3.1–3.3
and the following:

1. the guards in the resulting set Positioned watch the histograms of all S-edges
and thus watch the entire input polygon,

2. we use a new guard only when a portion of the polygon (i) is not watched by
the currently used guards and (ii)cannot be watched by any guard above the
current position of the sweep-line,

3. Lemmas 1–4 and approach P2, and
4. any guard g used to handle a number of guard-requests is positioned in the

vertical projection of the top-ceiling of the intersection of the p-ranges of
these requests onto the level of g (see P1), and thus g’s visibility polygon
contains the visibility polygon of any guard handling the same requests.

Time and Space Complexity. Let n be the number of vertices of the given
class-3 polygon P and k = O(n) be the minimum number of r-visibility guards
needed to watch P . Then, at any given time, the number of guard-requests is
O(n) (we have at most 1 guard-request for each of the S-edges) whereas the
number of trousers is O(k) since each trouser contains at least one S-extremity
and due to Lemma 4(ii).



294 L. Palios and P. Tzimas

12 14 16 20 24 28 30 12 14 16 20 24 28 30

12

14

16

20

24 28

30

g1g1 g2

g2

g3g3

g4

g4

LT

T

Fig. 4. A trouser T (sweep-line LT ) and the data structure for the guards’ loc-ranges
(rectangles indicate main doubly-linked list nodes, black disks indicate sublist nodes).

Data Structures. Let us now discuss the data structures used. The guard set
Positioned is stored in an O(k)-size array. For the trousers, since we need to
be able to insert, to delete, and to search the current trousers to locate the
one incident with an edge (see Lemma 1(ii)), we maintain them in an O(k)-size
balanced binary search tree Dt storing them in order from left to right; then
every insertion, deletion, and search operation takes O(log k) time.

The f-ranges of the guard-requests associated with a trouser T are stored
with T in a doubly-linked list with pointers at both ends so that insertion and
deletion at either end, and list concatenation can be done in O(1) time. The
overall size of the lists in all the trousers is O(n).

The clipping of the guards’ loc-ranges is done in an implicit way; thus, the
loc-ranges are stored in a special doubly-linked list as shown in Fig. 4. Each node
corresponds to a vertical edge (which either defined the endpoint of a loc-range
or clipped a previously defined loc-range) and stores the x-coordinate of that
edge and a y-ordered (from bottom to top) sublist (with pointers at both its
start and its end nodes) of loc-ranges ending at that vertical edge; moreover, the
sublist nodes corresponding to the endpoints of the same loc-range are linked
with double pointers to each other and to the corresponding guard’s record. Note
that for any two consecutive nodes in the list corresponding both to E-edges or
both to W-edges, the y-coordinates of the loc-ranges in the sublist of the one
node are all larger than the y-coordinates of all the loc-ranges in the sublist of the
other node; thus, by simply concatenating the sublists of two such nodes we get
a y-ordered list of all the loc-ranges. If the clipping affects only the first or last
node in the list, then we simply update the x-coordinate stored in the node in
O(1) time. If the clipping affects more nodes, then these nodes are merged into a
single one with updated x-coordinate and sublist that is the concatenation of the
merged nodes’ sublists (in y-order); the O(1)-time concatenation of the sublists
of two consecutive nodes t1, t2 is charged to the vertical edge corresponding to
the topmost node between t1 and t2, which will not be encountered, and thus will
not be charged, again. For example, in Fig. 4, if a N-edge whose right endpoint
has x-coordinate equal to 15 is encountered above the top left corner of the



Minimum r-Star Cover of Class-3 Orthogonal Polygons 295

L

T

h

Fig. 5. The data structure for the right-maxima of trouser T : non-dashed pointers link
maxima list-nodes; dashed pointers from a node p (other than the head-node h) point
to the first and last nodes of the (lower-level) list of maxima of T ’s non-covered part
between the edges corresponding to p and to the next maxima node.

trouser shown, the two leftmost nodes of the list will be merged into one with
associated x-coordinate equal to 15, their sublists will be concatenated, and the
cost will be charged to the vertical edge with x-coordinate equal to 12.

The guard-requests’ p-ranges are stored together with the guards’ loc-ranges
in the same data structure (a bit distinguishes the sublist nodes storing loc-
ranges from those storing p-ranges). Thus, the clipping of p-ranges is done as
above. Getting the lowermost guard to fulfill a guard-request r is done as fol-
lows: Consider a N-edge d (incident with the right endpoint of a trouser T (see
Lemma 1(ii))) that covers the right end of r’s f-range (the case of T ’s left endpoint
is treated symmetrically). Then the p-range of r extends to the right endpoint
of T since the f-range of a request is a subset of its p-range. We traverse the
sublist (from bottom to top) of the rightmost node of the ranges data structure
looking for a loc-range of a guard. If such a guard g is found, the sublist node
corresponding to the left endpoint of the loc-range of g is marked for deletion
while its info is copied on a copy of the sublist node for the left endpoint of the
lowermost p-range in the sublist, thus setting g’s loc-range equal to the smallest
p-range; if no loc-range is found, we place a new guard g and update its loc-
range as previously described. It is important to observe that in either case this
guard g fulfills all the requests whose p-ranges were traversed until g was found
or placed. Thus, we mark the p-ranges traversed, unlink their right endpoint
sublist nodes, and place them in a p-range super-node so that we spend O(1)
time traversing all of them in subsequent steps. Therefore, finding the lower-
most guard or placing a new one as well as updating its loc-range can be done
in O(1 + t) time where t is the number of p-ranges bundled together. In total,
these add up to O(n) time.

The data structure for the right-maxima of a trouser T is illustrated in Fig. 5
(the one for the left-maxima is symmetric). The structure is hierarchical and



296 L. Palios and P. Tzimas

is based on doubly-linked lists with pointers at both end nodes which allows
concatenation in O(1) time. Each maxima node stores the current level of the
maximum and has a pointer to (and from) the corresponding S-edge, a pointer
to the next maximum, and, in case these two maxima do not correspond to
consecutive horizontal edges in the boundary of the polygon, pointers (shown
dashed in Fig. 5) to the end nodes of a lower-level maxima list (i.e., a similar
structure for the maxima in between), a pointer to the previous maximum, and
in case this is the first maximum of a lower-level maxima list pointed by a node t,
a pointer to t (shown dotted in Fig. 5). It is important to note that we can walk
from either end towards the other in O(1) time per step and that we can update
this structure in O(1) time if a S-edge is added at the upper left or upper right
corner of T or in O(1) time plus O(1) time per deleted edge if a N-edge is added.
We also note that whenever a positioned guard g sees parts of histograms of S-
edges other than those whose requests g was used to satisfy (e.g., edges e4, e5, e7
for g1 in Fig. 3(left)) then the maxima corresponding to these edges along with
the structure of the maxima in between them are stored in a super-node so that
the level of all of them can be updated in O(1) time; from then on, these maxima
are treated all together except when they are deleted. Here again, the total time
to process these structures is O(n).

Complexity Analysis. Finding the S-extremities, S-dents, and unique topmost
edge (Lemma 1(i)) takes O(n) time while sorting them takes O(k log k) time
(Lemma 4(ii)). Then, for each S-extremity or S-dent e in order, we need to locate
e with respect to the existing trousers in the O(k)-size Dt; this takes O(log k)
time for each such edge for a total of O(k log k) time. The remaining processing
for each such edge takes O(1) time plus the time to process the edges encountered
while advancing the sweep-line of the neighboring trouser(s). Processing a S-edge
implies a constant-size change in the data structures and can be done in O(1)
time. Let us now consider the processing of each N-edge e. The requests whose
f-ranges are intersected by the x-range of e are located at one of the two ends of
the f-range linked list and thus we can find them in O(1) time each. Determining
whether a guard is needed and getting and updating one also takes O(1) time per
request plus time proportional to the number of bundled p-ranges. Processing a
guard that gets positioned due to edge e takes O(1) time plus time proportional
to the number of maxima collected (which, as mentioned, are inserted in a single
super-node). Thus the total time to collect maxima over all processed edges is
O(n). Moreover, updating the maxima data structure takes O(n) total time.
Clipping also takes O(1) time per N-edge plus O(1) time per charged vertical
edge, for O(n) time in total. In summary, processing the entire polygon takes
O(n + k log k) time. The space complexity is O(n).

Since reporting the guards takes O(k) time, we have:

Theorem 1. Let P be a simple class-3 orthogonal polygon with n vertices that
can be covered with no fewer than k r-stars. Then, a minimum-cardinality set of
r-visibility guards watching the entire P can be computed in O(n + k log k) time
and O(n) space.



Minimum r-Star Cover of Class-3 Orthogonal Polygons 297

4 Concluding Remarks

We presented an output-sensitive O(n + k log k)-time algorithm for computing
a minimum r-star cover of a class-3 orthogonal polygon on n vertices where k is
the size of the minimum r-star cover. We leave as open problems the following on
r-star covers: obtaining faster algorithms for general simple orthogonal polygons,
investigating the complexity of the problem for orthogonal polygons with holes,
and studying extensions to 3 dimensions. It would also be interesting to obtain
algorithms that run in less than Θ(n8) time (see [12]) for the s-star covering
problem on general simple orthogonal polygons.

Acknowledgments. This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning” of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: THALIS UOA (MIS 375891) - Investing
in knowledge society through the European Social Fund.

References

1. Aggarwal, A.: The art gallery theorem: its variations, applications, and algorithmic
aspects. Ph.D. thesis, Department of Electrical Engineering and Computer Science,
Johns Hopkins University (1984)

2. Culberson, J., Reckhow, R.A.: Orthogonally convex coverings of orthogonal poly-
gons without holes. J. Comput. Syst. Sci. 39(2), 166–204 (1989)

3. Hertel, S., Mehlhorn, K.: Fast triangulation of simple polygons. In: FCT 1983:
Proceedings of the 4th International Conference on Fundamentals of Computation
Theory, pp. 207–218 (1983)

4. Gewali, L., Keil, M., Ntafos, S.C.: On covering orthogonal polygons with star-
shaped polygons. Inf. Sci. 65, 45–63 (1992)

5. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen.
SIAM J. Algebraic Discrete Methods 4(2), 194–206 (1983)

6. Keil, J.M.: Decomposing a polygon into simpler components. SIAM J. Comput.
14, 799–817 (1985)

7. Keil, J.M.: Minimally covering a horizontally convex orthogonal polygon. In: SoCG
1986: Proceedings of the 2nd Annual ACM Symposium Computational Geometry,
pp. 43–51 (1986)

8. Li, G., Zhang, H.: A rectangular partition algorithm for planar self-assembly. In:
IROS 2005: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3213–3218 (2005)

9. Lingas, A., Palios, L., Wasylewicz, A., Żyliński, P.: Corrigendum: note on covering
orthogonal polygons. Inf. Process. Lett. 114, 646–654 (2014)

10. Lingas, A., Wasylewicz, A., Żyliński, P.: Note on covering orthogonal polygons
with star-shaped polygons. Inf. Process. Lett. 104(6), 220–227 (2007)

11. Lingas, A., Wasylewicz, A., Żyliński, P.: Linear-time 3-approximation algorithm for
the r-star covering problem. Int. J. Comput. Geom. Appl. 22(2), 103–141 (2012)

12. Motwani, R., Raghunathan, A., Saran, H.: Covering orthogonal polygons with star
polygons: the perfect graph approach. J. Comput. Syst. Sci. 40, 19–48 (1990)

13. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery
problem. Int. J. Comput. Geom. Appl. 17(2), 105–138 (2007)



Embedding Circulant Networks into Butterfly
and Benes Networks

R. Sundara Rajan1(B), Indra Rajasingh1, Paul Manuel2, T.M. Rajalaxmi3,
and N. Parthiban4

1 School of Advanced Sciences, VIT University, Chennai 600 127, India
vprsundar@gmail.com

2 Department of Information Science, Kuwait University,
13060 Safat, Kuwait

3 Department of Mathematics, SSN College of Engineering, Chennai 603 110, India
4 School of Computing Sciences and Engineering,

VIT University, Chennai 600 127, India

Abstract. The dilation of an embedding is defined as the maximum
distance between pairs of vertices of host graph that are images of adja-
cent vertices of guest graph. An embedding with a long dilation faces
many problems, such as long communication delay, coupling problems
and the existence of different types of uncontrolled noise. In this paper,
we compute the minimum dilation of embedding circulant networks into
butterfly and benes networks.

Keywords: Embedding · Dilation · Circulant network · Butterfly and
benes networks

1 Introduction

Graph embedding is an important technique that maps a guest graph into a host
graph, usually an interconnection network. Many applications can be modeled as
graph embedding. In architecture simulation, graph embedding has been known
as a powerful tool for implementation of parallel algorithms or simulation of
different interconnection networks [1].

The quality of an embedding can be measured by certain cost criteria. One
of these criteria which is considered very often is the dilation. The dilation of an
embedding is defined as the maximum distance between pairs of vertices of host
graph that are images of adjacent vertices of the guest graph. It is a measure
for the communication time needed when simulating one network on another [2].
Dilation of an embedding has been well studied for a number of networks [2–7].

An interconnection network is a scheme that connects the units of a multi-
processing system. It plays a central role in determining the overall performance of
a multicomputer system. A suitable interconnection network is an important part

I. Rajasingh—This work is supported by Project No. SR/S4/MS: 846/13, Depart-
ment of Science and Technology, SERB, Government of India.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 298–306, 2015.
DOI: 10.1007/978-3-319-19315-1 26



Embedding Circulant Networks into Butterfly and Benes Networks 299

for the design of a multicomputer or multiprocessor system and is usually mod-
eled by a symmetric graph, where the nodes represent the processing elements and
the edges represent the communication channels. Desirable properties of an inter-
connection network include symmetry, embedding capabilities, relatively small
degree, small diameter, scalability, robustness, and efficient routing [8].

The circulant network is a natural generalization of the double loop network
[9]. It has been used for decades in the design of computer and telecommunication
networks due to its optimal fault-tolerance and routing capabilities [10]. It is also
used in VLSI design and distributed computation [11–13]. Every circulant graph
is a vertex transitive graph and a Cayley graph [14]. Most of the earlier research
concentrated on using the circulant graphs to build interconnection networks for
distributed and parallel systems [10,11].

Butterfly network is an important and well known topological structure of
interconnection networks. It is a bounded-degree derivative of the hypercube
which aims at overcoming some drawbacks of hypercube. It is used to perform
fast Fourier transform, which is intensively used in the field of signal process-
ing. The benes network consists of back-to-back butterflies [15]. In this paper,
we embed circulant networks into butterfly and benes networks with minimum
dilation.

2 Basic Concepts

In this section we give the basic definitions and preliminaries required for our
subsequent work.

Definition 1. [3] Let G and H be finite graphs. An embedding φ = (f, Pf ) of
G into H is defined as follows:

1. f is a one-to-one map from V (G) → V (H)
2. Pf is a one-to-one map from E(G) to {Pf (u, v) : Pf (u, v) is a path in H

between f(u) and f(v) for (u, v) ∈ E(G)}.

For brevity, we denote the pair (f, Pf ) as f . The expansion [3] of an embedding
f is the ratio of the number of vertices of H to the number of vertices of G. In
this paper, we consider embeddings with expansion one.

Definition 2. [3] Let f be an embedding of G into H. If e = (u, v) ∈ E(G), then
the length of Pf (u, v) in H is called the dilation of the edge e. The maximum
dilation over all edges of G is called the dilation of the embedding f . The dilation
of embedding G into H is the minimum dilation taken over all embeddings of G
into H and is denoted by dil(G,H).

Definition 3. [4,11] The undirected circulant graph G(n;±S), S ⊆ {1, 2, . . . , j},
1 ≤ j ≤ �n/2� is a graph with vertex set V = {0, 1, . . . , n − 1} and the edge set
E = {(i, k) : |k − i| ≡ s(mod n), s ∈ S}.



300 R.S. Rajan et al.

0

1

2

3

4

5

6

7

Fig. 1. Circulant graph G(8;±{1, 3, 4})

The circulant graph shown in Fig. 1 is G(8;±{1, 3, 4}). It is clear that G(n;±1)
is the undirected cycle Cn and G(n;±{1, 2, . . . , �n/2�}) is the complete graph
Kn. The cycle G(n;±1) 	 Cn contained in G(n;±{1, 2, . . . , j}), 1 ≤ j ≤ �n/2�
is sometimes referred to as the outer cycle C of G.

Definition 4. [15] The r-dimensional butterfly BFr has n = 2r (r + 1) nodes
arranged in r + 1 levels of 2r nodes each. Each node has a distinct label 〈w, i〉
where i is the level of the node (0 ≤ i ≤ r) and w is a r-bit binary number
that denotes the column of the node. All nodes of the form 〈w, i〉, 0 ≤ i ≤ r,
are said to belong to column w. Similarly, the ith level Li consists of all of the
nodes 〈w, i〉, where w ranges over all r-bit binary numbers. Two nodes 〈w, i〉 and
〈w′

, i
′〉 are linked by an edge if i

′
= i + 1 and either w and w

′
are identical or w

and w
′
differ only in the bit in position i

′
.

Definition 5. [15] An r-dimensional Benes network Br has 2r + 1 levels, each
level with 2r nodes. The level 0 to level r nodes in the network form an r dimen-
sional butterfly. The middle level of the Benes network is shared by these butter-
flies.

Remark 1. The diameter of both BF (r) and B(r) is 2r, r ≥ 1.

Figure 2 illustrate the butterfly network BF (3) and the benes network B(3).

3 Main Results

For an embedding f of G into H, the sum of the dilations in H of edges in G
is called the wirelength of f . The minimum taken over all the embeddings f
is called the wirelength of embedding G into H. The dilation problem and the
wirelength problem are different in the sense that an embedding that gives the
minimum dilation need not give the minimum wirelength and vice-versa. Even
though there are numerous results and discussions on the dilation problem, there
is no efficient method to compute the exact dilation of graph embeddings [4–6].



Embedding Circulant Networks into Butterfly and Benes Networks 301

000,0 001.0 010,0 011,0 100,0 101,0 110,0 111,0

000,3 010,3 001,3 011,3100,3 110,3 101,3 111,3

000,1 111,1

000,2 111,2

000,0 111,0

000,1 111,1

000,2 111,2

000,3 111,3

4,1114,000

5,1115,000

6,1116,000

Fig. 2. (a) Butterfly network BF (3) (b) Benes network B(3)

In 2012, Manuel et al. obtained a lower bound for dilation of an embedding using
exact wirelength and formulated the result as IPS Lemma [7]. Since wirelength
problem itself is NP-complete [16,17], the question arises whether it is possible
to obtain a lower bound for dilation without computing wirelength of an embed-
ding. In this direction, Manuel et al. obtained a lower bound for dilation of an
embedding without using exact wirelength [18], which we quote as Generalized
Dilation Lemma in this paper.

In this section, we prove that the lower bounds obtained for embedding cir-
culant networks into butterfly and benes networks are sharp.

Lemma 1. (Generalized Dilation Lemma) [18] Let G be an undirected circulant
graph G(n;±{1, 2, . . . , j}), 1 ≤ j < �n/2�. Let H be a graph on n vertices with
diameter δ such that for u1, u2, . . . , ul ∈ V (H), Dδ(ui) = φ, 1 ≤ i ≤ l, where
Dα(ui) denotes the set of all vertices in H which are at distance α from ui. Let ki

be the least integer such that |Dδ(ui)|+ |Dδ−1(ui)|+ · · ·+ |Dδ−ki
(ui)| > n−2j− l

and let k = min
i

ki. Then the dilation of embedding G into H is at least δ − k.

Remark 2. The Dilation Lemma [19] is a particular case of Generalized Dilation
Lemma, when l = 1.

Lemma 2. Let u be a vertex in BF (r) with Dδr (u) = φ, where δr is the diameter
of BF (r). Then |Dδr (u)| = 2r−1 and |Dδr−1(u)| = 2r−1, r ≥ 1.

Proof. We prove the result by induction on r. When r = 1, there is exactly one
vertex at distance δ1 = 2 from u, since BF (1) 	 C4. Thus the result is true for
r = 1. Let us assume that the result is true for r = k. That is, |Dδk(u)| = 2k−1 in
BF (k). Now consider r = k+1. BF (k+1) contains two vertex disjoint subgraphs
of BF (k), say BF 1(k) and BF 2(k), and diametrically opposite vertices in BF (r)



302 R.S. Rajan et al.

belong to the 0th level of BF (r − 1), for all r. Therefore, |Dδk+1(u)| = 2 ·
|Dδk(u)| = 2k. Hence the result. Similarly, we can prove that |Dδr−1(u)| = 2r−1,
r ≥ 1.

The following result is an easy observation from the definition of dilation of an
embedding.

Theorem 1. Let G be a complete graph and H be any graph with |V (G)| =
|V (H)|. Then dil(G,H) = δ, where δ is the diameter of H.

The following theorem illustrates that it is not necessary for a graph G to be
complete to get δ as the dilation of an embedding.

Theorem 2. Let G be the circulant graph G((r + 1)2r;±{1, 2, . . . , r · 2r−1 + 1})
and H be the butterfly network BF (r). Then dil(G,H) = diameter of H = 2r,
where r ≥ 1.

Proof. Let ui ∈ V (G) be such that Dδ(ui) = φ, 1 ≤ i ≤ 2r−1. By the definition of
circulant graph, there are exactly n−2j−2r−1 = (r+1)2r−2[r·2r−1+1]−2r−1 =
2r−1 − 2 vertices which are not adjacent to the vertices u1, u2, . . . , u2r−1 in G.
By Lemma 2, |Dδ(f(ui))| = 2r−1 > 2r−1 − 2. Hence by Lemma 1, dil(G,H) ≥ δ,
the diameter of H. For any embedding of G into H, dil(G,H) ≤ δ. Hence
dil(G,H) = δ = 2r.

The problem of finding lower bounds for dilation of an embedding is challenging.
In what follows, we obtain the same for embedding a class of circulant graphs
into butterfly and benes networks and prove that the bound is sharp.

Theorem 3. Let G be the circulant graph G((r+1)2r;±{1, 2, . . . , (2r−1)2r−2+
1}) and H be the butterfly network BF (r). Then dil(G,H) ≥ 2r−1, where r ≥ 1.

Proof. Let ui ∈ V (G) be such that Dδ(f(ui)) = φ, 1 ≤ i ≤ 2r−1. By the
definition of circulant graph, there are exactly n − 2j − 2r−1 = (r + 1)2r −
2[(2r − 1)2r−2 + 1] − 2r−1 = 2r − 1 vertices which are not adjacent to the
vertices u1, u2, . . . , u2r−1 in G. Since |Dδ(f(ui))| + |Dδ−1(f(ui))| = 2r > 2r − 1,
by Lemma 1, dil(G,H) ≥ δ − 1 = 2r − 1.

Now we embed the circulant graph G((r + 1)2r;±{1, 2, . . . , (2r − 1)2r−2 + 1})
into BF (r) with dilation 2r − 1, which is one less than the diameter of H.

Dilation Algorithm A

Input: The circulant graph G((r + 1)2r;±{1, 2, . . . , (2r − 1)2r−2 + 1}) and but-
terfly network BF (r), r ≥ 1.

Algorithm: Label the consecutive vertices of the outer cycle C in G((r +
1)2r;±{1, 2, . . . , (2r − 1)2r−2 + 1}) as 0, 1, . . . , (r + 1)2r − 1 in the clockwise
sense. Label the vertices in the 0th level of BF (r) as 0, 1, . . . , 2r−1 − 1, (r +
1)2r−1, (r + 1)2r−1 + 1, . . . , (r + 2)2r−1 − 1 and label the remaining vertices in
BF (r) arbitrarily. See Fig. 3.



Embedding Circulant Networks into Butterfly and Benes Networks 303

0 1 2 3 16 17 18 19

4 5 6 7 20 21 22 23

8 9 10 11 24 25 26 27

12 13 14 15 28 29 30 31

Fig. 3. Labeling of BF (3) using Dilation Algorithm A

Output: An embedding f of G((r + 1)2r;±{1, 2, . . . , (2r − 1)2r−2 + 1}) into
BF (r) given by f(x) = x with dilation 2r − 1.

Theorem 4. Let G be the circulant graph G((r+1)2r;±{1, 2, . . . , (2r−1)2r−2+
1}) and H be the butterfly network BF (r). Then dil(G,H) = 2r − 1, r ≥ 1.

Proof. Label the vertices of G and H using Dilation Algorithm A. We assume
that the labels represent the vertices to which they are assigned. BF (r) contains
two vertex disjoint subgraphs isomorphic to BF (r − 1), say BF 1(r − 1) and
BF 2(r − 1). This labeling implies that there is no edge e = (u, v) of G with
f(u) mapped to a vertex in the 0th level of BF 1(r − 1) and f(v) mapped to a
vertex in the 0th level of BF 2(r − 1). Thus dil(G,H) ≤ δ − 1, where δ = 2r. By
Theorem 3, dil(G,H) ≥ 2r − 1. Thus dil(G,H) = 2r − 1.

Now we embed the circulant graph G((2r+1)2r;±{1, 2, . . . , (4r−7)2r−2+1}) into
benes network B(r) with dilation 2r−1, which is one less than the diameter of H.

Theorem 5. Let G be the circulant graph G((2r+1)2r;±{1, 2, . . . , (4r−7)2r−2+
1}) and H be the benes network B(r). Then dil(G,H) ≥ 2r − 1, where r ≥ 1.

Proof. Let ui ∈ V (G) be such that Dδ(f(ui)) = φ, 1 ≤ i ≤ 3 · 2r−1. By the
definition of circulant graph, there are exactly n − 2j − 3 · 2r−1 = (r + 1)2r −
2[(2r−1)2r−2 +1]−2r−1 = 2r −1 vertices which are not adjacent to the vertices
u1, u2, . . . , u3·2r−1 in G. Since |Dδ(f(ui))| + |Dδ−1(f(ui))| = 2r > 2r − 1, by
Lemma 1, dil(G,H) ≥ δ − 1 = 2r − 1.

Dilation Algorithm B

Input: The circulant graph G((2r+1)2r;±{1, 2, . . . , (4r−7)2r−2+1}) and benes
network B(r), r ≥ 1.

Algorithm: Label the consecutive vertices of the outer cycle C in G((2r +
1)2r;±{1, 2, . . . , (4r−7)2r−2+1}) as 0, 1, . . . , (4r−7)2r−2 in the clockwise sense.
Label the vertices of B(r) as follows:



304 R.S. Rajan et al.

0 1 2 3 4 5 6 7

8 9 10 11

24 25 26 27 28 29 3023

31 32 33 34

13 14 15 16 17 18 1912

21 22 35 36 37 38 3920

41 42 43 44 45 46 4740

49 50 51 52 53 54 5548

Fig. 4. Labeling of B(3) using Dilation Algorithm B

1. Label the vertices in the 0th level as 0, 1, . . . , 2r − 1 beginning with
(00 · · · 00︸ ︷︷ ︸

r times

, 0).

2. Label the vertices in the rth level as 2r, 2r +1, . . . , 3 · 2r−1 − 1, 2r−2(4r +3)+
1, 2r−2(4r + 3) + 2, . . . , 2r−2(4r + 5) beginning with (00 · · · 00︸ ︷︷ ︸

r times

, r).

3. Label the vertices in the 2r-th level as 2r−2(4r − 1) + 1, 2r−2(4r − 1) +
2, . . . , 2r−2(4r + 3) beginning with (00 · · · 00︸ ︷︷ ︸

r times

, 2r).

4. Label the remaining vertices in B(r) arbitrarily. See Fig. 4.

Output: An embedding f of G((2r + 1)2r;±{1, 2, . . . , (4r − 7)2r−2 + 1}) into
B(r) given by f(x) = x with dilation 2r − 1.

Theorem 6. Let G be the circulant graph G((2r+1)2r;±{1, 2, . . . , (4r−7)2r−2+
1}) and H be the benes network B(r). Then dil(G,H) = 2r − 1, r ≥ 1.

Proof. Label the vertices of G and H using Dilation Algorithm B. We assume
that the labels represent the vertices to which they are assigned. This labeling
implies that there is no edge e = (u, v) of G with f(u) mapped to a vertex in
the 0th level of B(r) and f(v) mapped to a vertex in the 2r-th level of B(r).
Further, there is no edge e = (u, v) of G with f(u) mapped to a vertex in the set
{(00 · · · 00︸ ︷︷ ︸

r times

, r), (00 · · · 00︸ ︷︷ ︸
r−1 times

1, r), . . . , (011 · · · 11︸ ︷︷ ︸
r−1 times

, r)} of B(r) and f(v) mapped to a

vertex in the set {(100 · · · 00︸ ︷︷ ︸
r−1 times

, r), (100 · · · 00︸ ︷︷ ︸
r−2 times

1, r), . . . , (11 · · · 11︸ ︷︷ ︸
r times

, r)} of B(r). Thus

dil(G,H) ≤ δ − 1, where δ = 2r. By Theorem 5, dil(G,H) ≥ 2r − 1. Thus
dil(G,H) = 2r − 1.



Embedding Circulant Networks into Butterfly and Benes Networks 305

4 Concluding Remarks

In this paper, we compute the minimum dilation of embedding certain classes of
circulant networks into butterfly and benes networks. Finding the wirelengths
of embedding circulant networks into butterfly and benes networks is under
investigation.

Acknowledgement. The authors would like to thank the anonymous referees for
their comments and suggestions. These comments and suggestions were very helpful
for improving the quality of this paper.

References

1. Chaudhary, V., Aggarwal, J.K.: Generalized mapping of parallel algorithms onto
parallel architectures. In: Proceeding of International Conference on Parallel
Processing, pp. 137–141 (1990)

2. Dvor̂ák, T.: Dense sets and embedding binary trees into hypercubes. Discrete Appl.
Math. 155(4), 506–514 (2007)

3. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.P.: Embed-
ding of hypercubes into grids. In: Mortar Fire Control System, pp.693–701 (1998)

4. Rajasingh, I., Rajan, B., Rajan, R.S.: Embedding of special classes of circulant net-
works, hypercubes and generalized Petersen graphs. Int. J. Comput. Math. 89(15),
1970–1978 (2012)

5. Gupta, A.K., Nelson, D., Wang, H.: Efficient embeddings of ternary trees into
hypercubes. J. Parallel Distrib. Comput. 63(6), 619–629 (2003)

6. Bezrukov, S.L.: Embedding complete trees into the hypercube. Discrete Appl.
Math. 110(2–3), 101–119 (2001)

7. Manuel, P., Rajasingh, I., Rajan, R.S.: Embedding variants of hypercubes with
dilation 2. J. Interconnect. Netw. 13(1–2), 1–16 (2012)

8. Ramanathan, P., Shin, K.G.: Reliable broadcast in hypercube multicomputers.
IEEE Trans. Comput. 37(12), 1654–1657 (1988)

9. Wong, G.K., Coppersmith, D.A.: A combinatorial problem related to multimodule
memory organization. J. Assoc. Comput. Mach. 21(3), 392–401 (1994)

10. Boesch, F.T., Wang, J.: Reliable circulant networks with minimum transmission
delay. IEEE Trans. Circuit Syst. 32(12), 1286–1291 (1985)

11. Bermond, J.C., Comellas, F., Hsu, D.F.: Distributed loop computer networks: a
survey. Surv. J. Parallel Distrib. Comput. 24(1), 2–10 (1995)

12. Beivide, R., Herrada, E., Balcazar, J.L., Arruabarrena, A.: Optimal distance net-
works of low degree for parallel computers. IEEE Trans. Comput. 40(10), 1109–
1124 (1991)

13. Wilkov, R.S.: Analysis and design of reliable computer networks. IEEE Trans.
Commun. 20(3), 660–678 (1972)

14. Xu, J.M.: Topological Structure and Analysis of Interconnection Networks. Kluwer
Academic Publishers, Dordrecht (2001)

15. Manuel, P., Abd-El-Barra, M.I., Rajasingh, I., Rajan, B.: An efficient represen-
tation of benes networks and its applications. J. Discrete Algorithms 6(1), 11–19
(2008)



306 R.S. Rajan et al.

16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

17. Harper, L.H.: Global Methods for Combinatorial Isoperimetric Problems. Cam-
bridge University Press, Cambridge (2004)

18. Rajan, R.S., Miller, M., Rajasingh, I., Manuel, P.: Embedding circulant networks
into certain trees. J. Comb. Optim. (submitted)

19. Rajan, R.S., Manuel, P., Rajasingh, I., Parthiban, N., Miller, M.: A lower bound
for dilation of an embedding. Comput. J. (2015). http://comjnl.oxfordjournals.
org/content/early/2015/04/01/comjnl.bxv021

http://comjnl.oxfordjournals.org/content/early/2015/04/01/comjnl.bxv021
http://comjnl.oxfordjournals.org/content/early/2015/04/01/comjnl.bxv021


Kinetic Reverse k-Nearest Neighbor Problem

Zahed Rahmati1,2(B), Valerie King1, and Sue Whitesides1

1 Department of Computer Science, University of Victoria, Victoria, Canada
{rahmati,val,sue}@uvic.ca

2 Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
zrahmati@uwaterloo.ca

Abstract. This paper provides the first solution to the kinetic reverse
k-nearest neighbor (RkNN) problem in R

d, which is defined as follows:
Given a set P of n moving points in arbitrary but fixed dimension d, an
integer k, and a query point q /∈ P at any time t, report all the points
p ∈ P for which q is one of the k-nearest neighbors of p.

Keywords: Reverse k-nearest neighbor query · Moving points ·
k-nearest neighbors · Kinetic data structure · Continuous monitoring ·
Continuous queries

1 Introduction

The reverse k-nearest neighbor (RkNN) problem is a popular variant of the
k-nearest neighbor (kNN) problem and asks for the influence of a query point
on a point set. Unlike the kNN problem, the exact number of reverse k-nearest
neighbors of a query point is not known in advancem, but as we prove in this
paper the number is upper-bounded by O(k). The RkNN problem is formally
defined as follows: Given a set P of n points in R

d, an integer k, 1 ≤ k ≤ n − 1,
and a query point q /∈ P , find the set RkNN(q) of all p in P for which q is one
of k-nearest neighbors of p. Thus RkNN(q) = {p ∈ P : |pq| ≤ |ppk|}, where |.|
denotes Euclidean distance, and pk is the kth nearest neighbor of p among the
points in P . The kinetic RkNN problem is to answer RkNN queries on a set P
of moving points, where the trajectory of each point p ∈ P is a function of time.
Here, we assume the trajectories are polynomial functions of maximum degree
bounded by some constant s.

Related Work. The reverse k-nearest neighbor problem was first posed by
Korn and Muthukrishnan [13] in the database community, and then considered
extensively in this community due to its many applications, e.g., decision support
systems, profile-based marketing, traffic networks, business location planning,
clustering and outlier detection, and molecular biology. The reverse k-nearest
neighbor queries for a set of continuously moving objects has also attracted the

This work was partially supported by a British Columbia Graduate Student Fellow-
ship and by NSERC discovery grants.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 307–317, 2015.
DOI: 10.1007/978-3-319-19315-1 27



308 Z. Rahmati et al.

attention of the database community; see [8] and references therein. Examples
of moving objects include players in multi-player game environments, soldiers in
a battlefield, tourists in dangerous environments, and mobile devices in wireless
ad-hoc networks.

To our knowledge, in computational geometry, there exist two data struc-
tures [9,14] that give solutions to the RkNN problem. Both of these solutions
answer RkNN queries for a set P of stationary points and both only work
for k = 1. Maheshwari et al. (2002) [14] gave a data structure to solve the
R1NN problem in R

2. Their data structure creates an arrangement of largest
empty circles centered at the points of P and answers R1NN queries by point
location in the arrangement. Their data structure uses O(n) space and O(n log n)
preprocessing time, and an R1NN query can be answered in time O(log n).
Cheong et al. (2011) [9] considered the R1NN problem in R

d, where d = O(1).
Their method, which uses a compressed quadtree, partitions space into cells such
that each cell contains a small number of candidate points. To answer an R1NN
query, their solution finds a cell that contains the query point and then checks
all the points in the cell. Their approach uses O(n) space and O(n log n) pre-
processing time, and can answer an R1NN query in O(log n) time. It seems that
the approach by Cheong et al. can be extended to answer RkNN queries with
preprocessing time O(kn log n), space O(kn), and query time O(log n + k).

For a set P of n stationary points, one can report all the 1-nearest neighbors
in time O(n log n) [18], and all the k-nearest neighbors, for any k ≥ 1, in time
O(kn log n) [12], where the neighbors are reported in order of increasing distance
from each point; reporting the unordered set takes time O(n log n+kn) [5,10,12].

For a set of moving points, there are three kinetic data structures (KDS’s) [2,
16,17] to maintain all the k-nearest neighbors, but they only work for k = 1.

Our Contribution. For a set P of n continuously moving points in R
d, where

the trajectory of each point is a polynomial function of at most constant degree
s, we provide a simple kinetic approach to answer RkNN queries on the moving
points. In fact, we provide the first solution to the kinetic RkNN problem for
any k ≥ 1 in any fixed dimension d. To answer an RkNN query for a query
point q /∈ P at any time t, we partition the d-dimensional space into a constant
number of cones around q, and then among the points of P in each cone, we
examine the k points having shortest projections on the cone axis. We obtain
O(k) candidate points for q such that q might be one of their k-nearest neighbors
at time t. To check which if any of these candidate points is a reverse k-nearest
neighbor of q, we maintain the kth nearest neighbor pk of each point p ∈ P over
time. By checking whether |pq| ≤ |ppk| we can easily check whether a candidate
point p is one of the reverse k-nearest neighbors of q at time t.

In the preprocessing step, we introduce a method for reporting all the
k-nearest neighbors for all the points p ∈ P in order of increasing distance
from p. For k = Ω(logd−1 n), both our method and the method of Dickerson and
Eppstein [12] give the same complexity, but in our view, our method is simpler
in practice.



Kinetic Reverse k-Nearest Neighbor Problem 309

In order to answer RkNN queries, our kinetic approach maintains all the
k-nearest neighbors over time. This is the first KDS for maintenance of all the
k-nearest neighbors in R

d, for any k ≥ 1. Our KDS uses O(n logd+1 n + kn)
space and O(n logd+1 n+kn log n) preprocessing time, and processes O(φ(s, n)∗
n2) events, each in amortized time O(log n). Here, φ(s, n) is the complexity of
the k-level of a set of n partially-defined polynomial functions, such that each
pair of them intersects at most s times. The current bounds on φ(s, n) are as
follows [6,7].

φ(s, n) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(n3/2 log n), for s = 2;
O(n5/3poly log n), for s = 3;
O(n31/18poly log n), for s = 4;
O(n161/90−δ), for s = 5, for some constant δ > 0;
O(n2−1/2s−δs), for odd s, for some constant δs > 0;
O(n2−1/2(s−1)−δs), for even s, for some constant δs > 0.

At any time t, an RkNN query can be answered in time O(logd n+k). Note that
if an event occurs at the same time t, we first spend amortized time O(log n) to
update all the k-nearest neighbors, and then we answer the query.

Outline. Section 2 provides two key lemmas, and in fact introduces a new super-
graph, namely the k-Semi-Yao graph, of the k-nearest neighbor graph. In Sect. 3,
we show how to report all the k-nearest neighbors. Section 4 gives a (kinetic) data
structure for answering RkNN queries on moving points, where the trajectory
of each point is a bounded-degree polynomial. Section 5 concludes.

2 Key Lemmas

Partition the plane around the origin o into six wedges, W0, ...,W5, each of angle
π/3 (see Fig. 1(a)). Denote by Wl(p) the translation of wedge Wl, 0 ≤ l ≤ 5,
such that its apex moves from o to point p (see Fig. 1(b)). Denote by xl (resp.
xl(p)) the vector along the bisector of Wl (resp. Wl(p)) directed outward from
the apex at o (resp. p). Denote the reflection of Wl(p) through p by Wl′(p). Note
that l′ = (l + 3) mod 6; see Fig. 1(b). Consider the ith nearest neighbor pi of p.
Denote by L(P ∩Wl(pi)) the list of the points in P ∩Wl(pi), sorted by increasing
order of their xl-coordinates (projections). The following lemma provides a key
insight. The short proof is omitted (see the full version of the paper in Chap. 6
of the first author’s PhD dissertation [15]).

Lemma 1. Let pi be the ith nearest neighbor of p among a set P of points in
R

2, and let Wl(pi) be the wedge of pi that contains p. Then point p is among the
first i points in L(P ∩ Wl(pi)).

The k-nearest neighbor graph (k-NNG) of a point set P is constructed by con-
necting each point in P to all its k-nearest neighbors. If we connect each point



310 Z. Rahmati et al.

p

(a) (b)

W0(p)

x0(p)
o

W0

W1W2

W3

W4
W5

x0
W3(p)

o
x0

f1

f2

u2

u1

π
6

π
3

W0

+

+

+

−

−

−

f
−
2

f
+
2

f
+
1

f
−
1

(c)

Fig. 1. (a) A Partition of the plane into six wedges with common apex at o. (b) A
translation of W0 that moves apex to p. The wedge W0(p) is the reflection through p of
W3(p) and vise-versa. (c) The wedge W0 in R

2 is bounded by f1 and f2. The coordinate
axes u1 and u2 are orthogonal to f1 and f2.

p ∈ P to the first k points in the sorted list L(P ∩ Wl(p)), for l = 0, ..., 5, we
obtain what we call the k-Semi-Yao graph (k-SYG). Lemma 1 gives a necessary
condition for pi to be the ith nearest neighbor of p: the point p is among the
first i points in L(P ∩ Wl(pi)), where l is such that p ∈ Wl(pi). Therefore, the
edge set of the k-SYG covers the edges of the k-NNG. In summary, we have the
following.

Lemma 2. The k-NNG of a set P of points in R
2 is a subgraph of the k-SYG of

the set P .

3 Reporting All k-Nearest Neighbors

Here we give a simple method for reporting all the k-nearest neighbors via a
construction of the k-SYG.

Let C be a right circular cone in R
d with opening angle θ with respect to

some given unit vector v. Thus C is the set of points x ∈ R
d such that the angle

between −→ox and −→v is at most θ/2. The angle between any two rays inside C
emanating from the apex o is at most θ. From now on, we assume θ ≤ π/3.

Now consider a polyhedral cone inscribed in the right circular cone C where
the polyhedral cone is formed by the intersection of d distinct half-spaces,
bounded by f1, ..., fd, passing through the apex of C. Assuming d is arbitrary
but fixed, the d-dimensional space around the origin o can be tiled by a constant
number of polyhedral cones W0, ...,Wc−1 [1,2]. Denote by Cl the associated right
circular cone of the polyhedral cone Wl. Let xl be the vector in the direction of
the symmetry of Cl. Denote by Wl(p) the translation of the wedge (polyhedral
cone) Wl where o moves to p.

A similar approach and analysis as that in Sect. 2 can be easily used to state
(key) Lemmas 1 and 2 for a set of points in R

d.



Kinetic Reverse k-Nearest Neighbor Problem 311

To construct the k-SYG efficiently, we need a data structure to perform the
following operation efficiently: For each p ∈ P and any of its wedges Wl(p),
0 ≤ l ≤ c − 1, find the first k points in L(P ∩ Wl(p)). Such an operation can be
performed by using range tree data structures. For each wedge Wl with apex at
origin o, we construct an associated d-dimensional range tree Tl as follows.

Consider a particular wedge Wl with apex at o. The wedge Wl is the intersec-
tion of d half-spaces f+

1 , ..., f+
d bounded by f1, ..., fd (see Fig. 1(c)). Let ûj denote

the normal to fj pointing to f+
j . We define d coordinate axes uj , j = 1, ..., d,

through ûj , where ûj gives the respective directions of increasing uj-coordinate
values.

The range tree Tl is a regular d-dimensional range tree based on the uj-
coordinates, j = 1, ..., d. The points at level j are sorted at the leaves according
to their uj-coordinates (for more details about range trees, see Chap. 5 of [4]).
Any d-dimensional range tree, e.g., Tl, uses O(n logd−1 n) space and can be
constructed in time O(n logd−1 n); for any point r ∈ R

d, the points of P inside
the query wedge Wl(r) whose sides are parallel to fj , j = 1, ..., d, can be reported
in time O(logd−1 n + z), where z is the cardinality of the set P ∩ Wl(r) [4].

Now we add a new level to Tl, based on the coordinate xl. Let Cl(p) be the set
of the first k points in L(P ∩Wl(p)). To find Cl(p) in an efficient time, we use the
level d+1 of Tl, which is constructed as follows: For each internal node v at level
d of Tl, we create a list L(P (v)) sorted by increasing order of xl-coordinates of
the points in P (v). For the set P of n points in R

d, the range tree Tl, which now
is a (d+1)-dimensional range tree, uses O(n logd n) space and can be constructed
in time O(n logd n).

The following lemma establishes the processing time for obtaining a Cl(p).
The short proof is omitted (see the full version of the paper).

Lemma 3. Given Tl, the set Cl(p) can be found in time O(logd n + k).

By Lemma 3, we can efficiently find all the Cl(p), for all the points p ∈ P . This
gives the following lemma.

Lemma 4. Using a data structure of size O(n logd n), the edges of the k-syg of
a set of n points in fixed dimension d can be reported in time O(n logd n + kn).

Next, suppose we are given the k-SYG and we want to report all the k-nearest
neighbors. Let Ep be the set of edges incident to the point p in the k-SYG.
By sorting these edges in non-decreasing order according to their Euclidean
lengths, which can be done in time O(|Ep| log |Ep|), we can find the k-nearest
neighbors of p ordered by increasing distance from p. Since the number of edges
in the k-SYG is O(kn) and each edge pp′ belongs to exactly two sets Ep and
Ep′ , the time to find all the k-nearest neighbors, for all the points p ∈ P , is∑

p O(|Ep| log |Ep|) = O(kn log n).
From the above discussion and Lemmas 2 and 4, the following results.

Theorem 1. For a set of n points in fixed dimension d, our data structure can
report all the k-nearest neighbors, in order of increasing distance from each point,
in time O(n logd n + kn log n). The data structure uses O(n logd n + kn) space.



312 Z. Rahmati et al.

4 RkNN Queries on Moving Points

We are given a set P of n continuously moving points, where the trajectory
of each point in P is a polynomial function of bounded degree s. To answer
RkNN queries on the moving points, we must keep a valid range tree and track
all the k-nearest neighbors during the motion. This section first shows how to
maintain a (ranked-based) range tree, and then provides a KDS for maintenance
of the k-SYG, which in fact gives a supergraph of the k-NNG over time. Using
the kinetic k-SYG, we can easily maintain all the k-nearest neighbors over time.
Finally we show how to answer RkNN queries on the moving points.

Kinetic RBRT. Let uj , 1 ≤ j ≤ d, be the coordinate axis orthogonal to the
half-space fj of the wedge Wl, 0 ≤ l ≤ c − 1 (see Fig. 1(c)). Abam and de
Berg [1] introduced a variant of the range tree, namely the ranked-based range
tree (RBRT), which has the following properties. Denote by Tl the RBRT cor-
responding to the wedge Wl.

– Tl can be described as a set of pairs Ψl = {(B1, R1), ..., (Bm, Rm)} such that:
• For any two points p and q in P where q ∈ Wl(p), there is a unique pair

(Bi, Ri) ∈ Ψl such that p ∈ Bi and q ∈ Ri.
• For any pair (Bi, Ri) ∈ Ψl, if p ∈ Bi and q ∈ Ri, then q ∈ Wl(p) and

p ∈ Wl′(q); here Wl′(q) is the reflection of Wl(q) through q.
The Ψl is called a cone separated pair decomposition (CSPD) for P with respect
to Wl. Each pair (Bi, Ri) is generated from an internal node v at level d of
the RBRT Tl.

– Each point p ∈ P is in O(logd n) pairs of (Bi, Ri), which means that the
number of elements of all the pairs (Ri, Bi) is O(n logd n).

– For any point p ∈ P , all the sets Bi (resp. Ri) where p ∈ Bi (resp. p ∈ Ri)
can be found in time O(logd n).

– The set P ∩ Wl(p) is the union of O(logd n) sets Ri, where p ∈ Bi.
– When the points are moving, Tl remains unchanged as long as the order of

the points along axes uj , 1 ≤ j ≤ d, remains unchanged.
– When a u-swap event occurs, meaning that two points exchange their uj-

order, the RBRT Tl can be updated in worst-case time O(logd n) without
rebalancing operations.

4.1 Kinetic k-SYG
Here we give a KDS for the k-SYG, for any k ≥ 1, extending [16].

To maintain the k-SYG, we must track the set Cl(p) for each point p ∈ P . So,
for each 1 ≤ i ≤ m, we need to maintain a sorted list L(Ri) of the points in Ri

in ascending order according to their xl-coordinates over time. Note that each
set Ri is some P (v), the set of points at the leaves of the subtree rooted at some
internal node v at level d of Tl. To maintain these sorted lists L(Ri), we add a
new level to the RBRT Tl; the points at the new level are sorted at the leaves
in ascending order according to their xl-coordinates. Therefore, in the modified
RBRT Tl, in addition to the u-swap events, we handle new events, called x-swap



Kinetic Reverse k-Nearest Neighbor Problem 313

events, when two points exchange their xl-order. The modified RBRT Tl behaves
like a (d + 1)-dimensional RBRT. From the last property of an RBRT above,
when a u-swap event or an x-swap event occurs, the RBRT Tl can be updated
in worst-case time O(logd+1 n).

Denote by p̈l,k the kth point in L(P ∩ Wl(p)). To track the sets Cl(p), for all
the points p ∈ P , we need to maintain the following over time.

– A set of d + 1 kinetic sorted lists Lj(P ), j = 1, ..., d, and the Ll(P ) of the
point set P . We use these kinetic sorted lists to track the order of the points
in the coordinates uj and xl, respectively.

– For each Bi, a sorted list L(B′
i) of the points in B′

i, where B′
i = {(p, p̈l,k)| p ∈

Bi}. The order of the points in L(B′
i) is according to a label of the second

points p̈l,k. This sorted list L(B′
i) is used to answer the following query effi-

ciently: Given a query point q and a Bi, find all the points p ∈ Bi such that
p̈l,k = q.

– The kth point ri,k in the sorted list L(Ri). We track the values ri,k in order
to make necessary changes to the k-SYG when an x-swap event occurs.

Handling u-swap Events. W.l.o.g., let q ∈ Wl(p) before the event. When a u-
swap event between p and q occurs, the point q moves outside the wedge Wl(p);
after the event, q /∈ Wl(p). Note that the changes that occur in the k-SYG are
the deletions and insertions of the edges incident to p inside the wedge Wl(p).

Whenever two points p and q exchange their uj-order, we do the following
updates.

– We update the kinetic sorted list Lj(P ). Each swap event in a kinetic sorted
list can be handled in time O(log n).

– We update the RBRT Tl and if a point is deleted or inserted into a Bi,
we update the sorted list L(B′

i). Since each insertion/deletion to L(B′
i)

takes O(log n) time, and since each point is in O(logd n) sets Bi, this takes
O(logd+1 n) time.

– We update the values of ri,k. After updating the RBRT Tl, point q might be
inserted or deleted from some Ri and change the values of ri,k. So, for all
Ri where q ∈ Ri, before and after the event, we do the following. We check
whether the xl-coordinate of q is less than or equal to the xl-coordinate of
ri,k; if so, we take the successor or predecessor point of ri,k in L(Ri) as the
new value for ri,k. This takes O(logd+1 n) time.

– We query to find C(p). By Lemma 3, this takes O(logd n + k) time.
– If we get a new value for p̈l,k, we update all the sorted lists L(B′

i) such that
p ∈ Bi. This takes O(logd+1 n) time.

Considering the complexity of each step above, and assuming the trajectory of
each point is a bounded degree polynomial, the following results.

Lemma 5. Our KDS for maintenance of the k-SYG handles O(n2) u-swap
events, each in worst-case time O(logd+1 n + k).



314 Z. Rahmati et al.

Handling x-swap Events. When an x-swap event between two consecutive points
p and q with p preceding q occurs, it does not change the elements of the pairs
(Bi, Ri) of the CSPD Ψl. Such an event changes the k-SYG if both p and q are
in the same Wl(w), for some w ∈ P , and wl,k = p.

We apply the following updates to our KDS when two points p and q exchange
their xl-order.

1. We update the kinetic sorted list Ll(P ); this takes O(log n) time.
2. We update the RBRT Tl, which takes O(logd+1 n) time.
3. We find all the sets Ri where both p and q belong to Ri and such that ri,k = p.

Also, we find all the sets Ri where ri,k = q. This takes O(logd n) time.
4. For each Ri, we extract all the pairs (w, ẅl,k) from the sorted lists L(B′

i) such
that ẅl,k = p. Note that each change to the pair (w, ẅl,k) is a change to the
k-SYG.

5. For each w, we update all the sorted lists L(B′
i) where (w, ẅl,k) ∈ B′

i: we
replace the previous value of ẅl,k, which is p, by the new value q.

Denote by χk the number of exact changes to the k-SYG of a set of moving points
over time. For each found Ri, the fourth step takes O(log n + ξi) time, where ξi

is the number of pairs (w, ẅl,k) such that ẅl,k = p. For all these O(logd n) sets
Ri, this step takes O(logd+1 n+

∑
i ξi) time, where

∑
i ξi is the number of exact

changes to the k-SYG when an x-swap event occurs. Therefore, for all the O(n2)
x-swap events, the total processing time for this step is O(n2 logd+1 n + χk).

The processing time for the fifth step is a function of χk. For each change to
the k-SYG, this step spends O(logd+1 n) time to update the sorted lists L(B′

i).
Therefore, the total processing time for all the x-swap events in this step is
O(χk ∗ logd+1 n).

From the above discussion and an upper bound for χk in Lemmas 6, 7 results.
The proof of Lemma 6 is omitted (see the full version of the paper).

Lemma 6. The number of changes to the k-SYG of a set of n moving points,
where the trajectory of each point is a polynomial function of at most constant
degree s, is χk = O(φ(s, n) ∗ n).

Lemma 7. Our KDS for maintenance of the k-SYG handles O(n2) x-swap
events with a total cost of O(φ(s, n) ∗ n logd+1 n).

From Lemmas 5 and 7, the following theorem results.

Theorem 2. For a set of n moving points in R
d, where the trajectory of each

point is a polynomial function of at most constant degree s, our k-SYG KDS
uses O(n logd+1 n) space and handles O(n2) events with a total cost of O(kn2 +
φ(s, n) ∗ n logd+1 n).

4.2 Kinetic All k-Nearest Neighbors

Given a KDS for maintenance of the k-SYG (from Theorem 2), a supergraph of
the k-NNG, this section shows how to maintain all the k-nearest neighbors over



Kinetic Reverse k-Nearest Neighbor Problem 315

time. For maintenance of the k-nearest neighbors of each point p ∈ P , we only
need to track the order of the edges incident to p in the k-SYG according to
their Euclidean lengths. This can easily be done by using a kinetic sorted list.
The following theorem summarizes the complexity of our kinetic approach. The
proof is omitted (see the full version of the paper).

Theorem 3. For a set of n moving points in R
d, where the trajectory of

each point is a polynomial of at most constant degree s, our KDS for main-
tenance of all the k-nearest neighbors, ordered by distance from each point, uses
O(n logd+1 n + kn) space and O(n logd+1 n + kn log n) preprocessing time. Our
KDS handles O(φ(s, n) ∗ n2) events, each in O(log n) amortized time.

4.3 RkNN Queries
Suppose we are given a query point q /∈ P at some time t. To find the reverse
k-nearest neighbors of q, we seek the points in P ∩Wl(q) and find Cl(q), the set of
the first k points in L(P ∩Wl(q)). The set ∪lCl(q) contains O(k) candidate points
for q such that q might be one of their k-nearest neighbors. In time O(logd n) we
can find a set of Ri where P ∩Wl(q) =

∑
i Ri. From Lemma 3, and since we have

sorted lists L(Ri) at level d + 1 of Tl, the O(k) candidate points for the query
point q can be found in worst-case time O(logd n + k). Now we check whether
these candidate points are the reverse k-nearest neighbors of the query point q
at time t or not; this can be easily done by application of Theorem 3, which in
fact maintain the kth nearest neighbor pk of each p ∈ P . Therefore, checking a
candidate point can be done in O(1) time by comparing distance |pq| to distance
|ppk|. This implies that checking which elements of Cl(q), for l = 0, ..., c − 1, are
reverse k-nearest neighbors of the query point q takes time O(k).

If a query arrives at a time t that is simultaneous with the time when one of
the O(φ(s, n) ∗ n2) events occurs, our KDS first spends amortized time O(log n)
to handle the event, and then spends time O(logd n + k) to answer the query.
Thus we have the following.

Theorem 4. Consider a set P of n moving points in R
d, where the trajectory

of each one is a bounded-degree polynomial. The number of reverse k-nearest
neighbors for a query point q /∈ P is O(k). Our KDS uses O(n logd+1 n + kn)
space, O(n logd+1 n + kn log n) preprocessing time, and handles O(φ(s, n) ∗ n2)
events. At any time t, an RkNN query can be answered in time O(logd n+k). If
an event occurs at time t, the KDS spends amortized time O(log n) on updating
itself.

5 Discussion

In the kinetic setting, where the trajectories of the points are polynomials of
bounded degree, to answer the RkNN queries over time we have provided a
KDS for maintenance of all the k-nearest neighbors. Our KDS is the first KDS



316 Z. Rahmati et al.

for maintenance of all the k-nearest neighbors in R
d, for any k ≥ 1. It processes

O(φ(s, n) ∗ n2) events, each in amortized time O(log n). An open problem is to
design a KDS for all k-nearest neighbors that processes less than O(φ(s, n) ∗n2)
events.

Arya et al. [3] have a kd-tree implementation to approximate the nearest
neighbors of a query point that is in use by practitioners [11] who have found
challenging to implement the theoretical algorithms [5,10,12,18]. Since to report
all the k-nearest neighbors ordered by distance from each point our method uses
multidimensional range trees, which can be easily implemented, we believe our
method may be useful in practice.

Acknowledgments. We thank Timothy M. Chan for his helpful comments and sug-
gestions.

References

1. Abam, M.A., de Berg, M.: Kinetic spanners in R
d. Discrete Comput. Geom. 45(4),

723–736 (2011)
2. Agarwal, P.K., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for

closest pair and all nearest neighbors. ACM Trans. Algorithms 5(4), 1–37 (2008)
3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal

algorithm for approximate nearest neighbor searching in fixed dimensions. J. ACM
45(6), 891–923 (1998)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Santa Clara
(2008)

5. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM
42(1), 67–90 (1995)

6. Chan, T.M.: On levels in arrangements of curves, ii: A simple inequality and its
consequences. Discrete Comput. Geom. 34(1), 11–24 (2005)

7. Chan, T.M.: On levels in arrangements of curves, iii: further improvements. In:
Proceedings of the 24th annual Symposium on Computational Geometry (SoCG
2008), pp. 85–93. ACM, New York (2008)

8. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest
neighbors queries in euclidean space and in spatial networks. VLDB J. 21(1), 69–95
(2012)

9. Cheong, O., Vigneron, A., Yon, J.: Reverse nearest neighbor queries in fixed dimen-
sion. Int. J. Comput. Geom. Appl. 21(02), 179–188 (2011)

10. Clarkson, K.L.: Fast algorithms for the all nearest neighbors problem. In: Proceed-
ings of the 24th Annual Symposium on Foundations of Computer Science (FOCS
1983), pp. 226–232. IEEE Computer Society, Washington, DC (1983)

11. Connor, M., Kumar, P.: Fast construction of k-nearest neighbor graphs for point
clouds. IEEE Trans. Vis. Comput. Graph. 16(4), 599–608 (2010)

12. Dickerson, M.T., Eppstein, D.: Algorithms for proximity problems in higher dimen-
sions. Int. J. Comput. Geom. Appl. 5(5), 277–291 (1996)

13. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. In: Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (SIGMOD 2000), pp. 201–212. ACM, New York (2000)



Kinetic Reverse k-Nearest Neighbor Problem 317

14. Maheshwari, A., Vahrenhold, J., Zeh, N.: On reverse nearest neighbor queries. In:
Proceedings of the 14th Canadian Conference on Computational Geometry (CCCG
2002), pp. 128–132 (2002)

15. Rahmati, Z.: Simple, faster kinetic data structures. Ph.D. thesis, University of
Victoria (2014). http://zahedrahmati.com

16. Rahmati, Z., Abam, M.A., King, V., Whitesides, S.: Kinetic data structures for
the Semi-Yao graph and all nearest neighbors in R

d. In: Proceedings of the 26th
Canadian Conference on Computational Geometry (CCCG 2014) (2014)

17. Rahmati, Z., Abam, M.A., King, V., Whitesides, S., Zarei, A.: A simple, faster
method for kinetic proximity problems. Comput. Geom. 48(4), 342–359 (2015)

18. Vaidya, P.M.: An O(n log n) algorithm for the all-nearest-neighbors problem. Dis-
crete Comput. Geom. 4(2), 101–115 (1989)

http://zahedrahmati.com


Efficiently Listing Bounded Length st-Paths

Romeo Rizzi1, Gustavo Sacomoto2,3(B), and Marie-France Sagot2,3,4

1 Dipartimento di Informatica, Università di Verona, Verona, Italy
2 Université de Lyon, 69000 Lyon, France

sacomoto@gmail.com
3 CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive,

Université Lyon 1, 69622 Villeurbanne, France
4 INRIA Grenoble Rhône-Alpes, Montbonnot-saint-martin, France

Abstract. The problem of listing the K shortest simple (loopless)
st-paths in a graph has been studied since the early 1960s. For a non-
negatively weighted graph with n vertices and m edges, the most effi-
cient solution is an O(K(mn + n2 log n)) algorithm for directed graphs
by Yen and Lawler [Management Science, 1971 and 1972], and an
O(K(m + n log n)) algorithm for the undirected version by Katoh et al.
[Networks, 1982], both using O(Kn + m) space. In this work, we con-
sider a different parameterization for this problem: instead of bounding
the number of st-paths output, we bound their length. For the bounded
length parameterization, we propose new non-trivial algorithms match-
ing the time complexity of the classic algorithms but using only O(m+n)
space. Moreover, we provide a unified framework such that the solutions
to both parameterizations – the classic K-shortest and the new length-
bounded paths – can be seen as two different traversals of a same tree,
a Dijkstra-like and a DFS-like traversal, respectively.

1 Introduction

The K-shortest simple paths problem has been studied for more than 50 years
(see the references in [6]). The first efficient algorithm for this problem in directed
graphs with non-negative weights only appeared 10 years later independently by
Yen [18] and Lawler [12]. Given a non-negatively weighted directed graph G =
(V,E) with n = |V | vertices and m = |E| edges, using modern data structures [1],
their algorithm lists the K distinct shortest simple st-paths by non-decreasing
order of the their lengths in O(K(mn + n2 log n)) time. For undirected graphs,
Katoh et al. [11] gave an improved O(K(m+n log n)) algorithm. Both algorithms
use O(Kn + m) memory.

The best known algorithm for directed unweighted graphs is an Õ(Km
√

n)
randomized algorithm [16], where Õ(f(n)) is a shorthand for O(f(n) logk n). In
a different direction, Roditty [15] noticed that the K-shortest simple paths can

GS and MFS were partially supported by the ERC programme FP7/2007-
2013/ERC grant agreement no. [247073]10, and the French project ANR-12-BS02-
0008 (Colib’read).

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 318–329, 2015.
DOI: 10.1007/978-3-319-19315-1 28



Efficiently Listing Bounded Length st-Paths 319

be efficiently approximated. Building upon his work, Bernstein [2] presented an
Õ(Km/ε) time algorithm for a (1 + ε)-approximation. Moreover, Eppstein [7]
showed that if the paths are allowed to repeat vertices, i.e. they are not simple,
then the problem can be solved in O(K + m + n log n) time. However, when the
paths are simple and to be computed exactly, no improvement has been made
on Yen and Lawler’s for directed graphs or Katoh’s algorithm for undirected
graphs. The main bottleneck of these algorithms is their memory consumption.

Here, we consider the problem of listing all st-paths with length at most α.
This is a different parameterization of the K-shortest path problem, where we
impose an upper-bound on the length of the output paths instead of their
number. This is a natural variant of the K-shortest path problem. There are
situations where it is necessary to consider all paths that are a given percent-
age of the optimal (e.g. [4]). Moreover, the bounded length problem is almost
a particular case of the K-shortest path problem. Given any solution to the
K-shortest path problem, such that the st-paths are generated one at a time in
non-decreasing length order, we can use the following simple approach to solve
the α-bounded length variant: choose a sufficiently large K and halt the enu-
meration when the length of the paths is larger than α. The main disadvantage
of this algorithm is its space complexity which is proportional to the number of
paths output hence, in the worst case, exponential in the size of the graph.

Our first and main contribution are new polynomial delay algorithms to list
st-paths with length at most α matching the time complexity (per path) of Yen
and Lawler’s algorithm for directed graphs (Sect. 3) and Katoh’s for undirected
graphs (Sect. 4), but using only O(n + m) internal memory. This represents an
exponential improvement in memory consumption.

The main differences between the classic solutions to the K-shortest paths
problem and our solutions to the α-bounded paths problem are the order in
which the solutions are output and the memory complexity of the algorithms.

Our second contribution is thus a unified framework where both problems
can be represented in such a way that those differences arise in a natural manner
(Sect. 3). Intuitively, we show that both families of algorithmic solutions corre-
spond to two different traversals of a same rooted tree: a Dijkstra-like traversal
for the K-shortest and a DFS-like traversal for the α-bounded paths.

2 Preliminaries

Given a directed graph G = (V,E) with n = |V | vertices and m = |E| arcs, the in
and out-neighborhoods of v ∈ V are denoted by N−(v) and N+(v), respectively.
Given a (directed or undirected) graph G with weights w : E �→ Q, the weight,
or length, of a path π is

∑
(u,v)∈π w(u, v) and is denoted by w(π). We say that a

path π is α-bounded if its length satisfies w(p) ≤ α and α ∈ Q; in the particular
case of unit weights (i.e. of unweighted graphs), we say that p is k-bounded if
w(p) ≤ k with k ∈ Z≥0. A listing algorithm is polynomial delay if it generates the
solutions, one after the other in some order, and the time elapsed until the first
is output, and thereafter the time elapsed (delay) between any two consecutive



320 R. Rizzi et al.

solutions, is bounded by a polynomial in the input size [9]. The general problem
which we are concerned in this work is listing α-bounded st-paths in G.

Problem 1 (Listing α-bounded st-paths). Given a weighted directed graph G =
(V,E), two vertices s, t ∈ V , and an upper bound α ∈ Q, output all α-bounded
st-paths.

Clearly, any solution to the K-shortest path problem is also a solution to
Problem 1, with the same (total/delay) time and space complexities. Thus
Problem 1 is no harder than the classic K-shortest path problem.

We assume all directed graphs are weakly connected and all undirected
graphs are connected, hence m ≥ n − 1. Moreover, we assume hereafter the
weights are non-negative. We remark however that a weaker assumption suffices
to the applicability of our algorithms. Indeed, it is a well known fact that, when
the graph G and the weights w : E �→ Q are such that no cycle is negative,
then, using Johnson’s reweighting strategy [10], we can compute non-negative
weights w′ such that, for some constant C, we have that w′(π) = w(π) + C for
any st-path π. This reweighting can be done in O(mn) preprocessing steps.

3 An O(mn + n2 log n)-Delay Algorithm

In this section, we present an O(mn + n2 log n)-delay algorithm to list all st-
paths with length at most α in a weighted directed graph G. Thus matching
the time complexity (per path) of Yen and Lawler’s algorithm, while using only
space linear in the input size.

The new algorithm, inspired by the binary partition method [3,14], recur-
sively partitions the solution space at every call until the considered subspace is
a singleton (contains only one solution) and in that case outputs the correspond-
ing solution. In order to have an efficient algorithm is important to explore only
non-empty partitions. Moreover, it should be stressed that the order in which
the solutions are output is fixed, but arbitrary.

Let us describe the partition scheme. Let Pα(s, t,G) be the set of all
α-bounded paths from s to t in G, and (x, s)·Pα(s, t,G) denote the concatenation
of (x, s) to each path of Pα(s, t,G). Assuming s �= t, we have that

Pα(s, t,G) =
⋃

v∈N+(s)

(s, v) · Pα′(v, t,G − s), (1)

where α′ = α − w(s, v). In words, the set of paths from s to t can be partitioned
into the disjoint union of (s, v) · Pα′(v, t,G− s), the sets of paths beginning with
an arc (s, v), for each v ∈ N+(s). Indeed, since s �= t, every path in Pα(s, t,G)
necessarily begins with an arc (s, v), where v ∈ N+(s).

Algorithm 1 implements this recursive partition strategy. The solutions are
only output in the leaves of the recursion tree (line 2), where the partition
is always a singleton. Moreover, in order to guarantee that every leaf in the
recursion tree outputs one solution, we have to test if Pα′(v, t,G − u), where



Efficiently Listing Bounded Length st-Paths 321

α′ = α − w(u, v), is not empty before the recursive call (line 7). This set is not
empty if and only if the weight of the shortest path from v to t in G − u is at
most α′, i.e. dG−u(v, t) ≤ α′ = α − w(u, v). Hence, to perform this test it is
enough to compute all the distances from t in the graph GR − u, where GR is
the graph G with all arcs reversed.

Consider a generic execution of Algorithm 1 for a graph G, vertices s, t ∈ V
and an upper bound α. We can represent this execution by a rooted tree T ,
i.e. the recursion tree, where each node corresponds to a call with arguments
〈u, t, α, πsu, G′〉. The children of a given node (call) in T are the recursive calls
with arguments 〈v, t, α′, πsu(u, v), G′ −u〉 of line 8. This tree plays an important
role in the unified framework of Sect. 5.

Lemma 1. The recursion tree T has the following properties:

1. The leaves of T are in one-to-one correspondence with the paths in Pα(s, t,G).
2. The leaves in the subtree rooted on a node 〈u, t, α, πsu, G′〉 correspond to the

paths in πsu · Pα′(u, t,G′).
3. The height of T is bounded by n.

Algorithm 1. list paths(u, t, α, πsu, G)
1 if u = t then
2 output(πsu)
3 return

4 end

5 compute the distances from t in GR − u
6 for v ∈ N+(u) do
7 if d(v, t) ≤ α − w(u, v) then
8 list paths(v, t, α − w(u, v), πsu · (u, v), G − u)

9 end

10 end

The correctness of Algorithm 1 follows directly from the relation given in
Eq. 1 and the correctness of the tests of line 7.

Let us now analyze its running time. The cost of a node in T is the time spent
by the operations inside the corresponding call, without including its recursive
calls. This cost is dominated by the tests of line 7. They are performed in O(1)
time by pre-computing the distances from t to all vertices in the reverse graph
GR − u (line 5). This takes O(t(n,m)) time, where t(n,m) is the cost of a single
source shortest path computation. By Lemma 1 the height of T is bounded by
n, so the path between any two leaves (solutions) in the recursion tree has at
most 2n nodes. Thus, the time elapsed between two solutions being output is
O(nt(n,m)). Moreover, the algorithm uses O(m) space, since each recursive call
has to store only the difference with the its parent graph. Recall that each
solution is immediately output (line 2), not stored by the algorithm.



322 R. Rizzi et al.

Theorem 1. Algorithm1 has delay O(nt(n,m)), where t(n,m) is the cost of a
single source shortest path computation, and uses O(m) space.

For unweighted (directed and undirected) graphs, the single source shortest
paths can be computed using breadth-first search (BFS) running in O(m) time,
so Theorem 1 guarantees an O(km) delay to list all k-bounded st-paths, since
the height of the recursion tree is bounded by k instead of n. More generally,
the single source shortest paths can be computed using Dijkstra’s algorithm in
O(m + n log n) time (we are assuming non-negative weights), resulting in an
O(nm + n2 log n) delay.

4 An Improved Algorithm for Undirected Graphs

The total time complexity of Algorithm 1 is equal to the delay times the num-
ber of solutions, i.e. O(nt(n,m)γ), where γ = |Pα(s, t,G)| is the number of α-
bounded st-paths. We now improve its total time complexity from O(nt(n,m)γ)
to O((m + t(n,m))γ) in the case of weighted undirected graphs. On average the
algorithm spends O(m + t(n,m)) per solution (amortized delay), thus matching
the time complexity (per path) of Katoh’s algorithm. The (worst-case) delay,
however, remains the same as Algorithm 1.

The main idea to improve the complexity of Algorithm1 is to explore the
structure of the set of paths Pα(s, t,G) to reduce the number of nodes in the
recursion tree. We avoid redundant partition steps by guaranteeing that every
node in the recursion tree has at least two children. More precisely, at every call,
we identify the longest common prefix of Pα(s, t,G), i.e. the longest (considering
the number of edges) path πss′ such that Pα(s, t,G) = πss′ · Pα(s′, t, G), and
append it to the current path prefix being considered in the recursive call. The
intuition here is that by doing so we identify and “merge” all the consecutive
single-child nodes in the recursion tree, thus guaranteeing that the remaining
nodes have at least two children.

The pseudocode for this algorithm is very similar to Algorithm1 and, for the
sake of completeness, is given in Algorithm 2. We postpone the description of
the lcp(u, t, α,G) function to the next section, along with a discussion about
the difficulties to extend it to directed graphs.

The correctness of Algorithm 2 follows directly from the correctness of
Algorithm 1. The space used is the same of Algorithm 1, provided that lcp(u, t,
α,G) uses linear space, which, as we show in the next section, is indeed the case
(Theorem 3).

Let us now analyze the total complexity of Algorithm2 as a function of the
input size and of γ, the number of α-bounded st-paths. Let R be the recursion
tree of Algorithm 2 and T (r) the cost of a given node r ∈ R. The total cost of
the algorithm can be split in two parts, which we later bound individually, in
the following way:

∑

r∈R

T (r) =
∑

r:internal

T (r) +
∑

r:leaf

T (r). (2)



Efficiently Listing Bounded Length st-Paths 323

Algorithm 2. list paths(u, t, α, πsu, G)
1 πuu′ = lcp(u, t, α, G)
2 if u′ = t then
3 output(πsuπuu′)
4 return

5 else
6 compute a shortest path tree T ′

t from t in GR − πuu′

7 for v ∈ N(u′) do
8 if d(v, t) + w(u, v) ≤ α then
9 list paths(v, t, α − w(πuu′) − w(u′, v), πsu · πuu′ · (u′, v), G − πuu′)

10 end

11 end

12 end

We have that
∑

r:leaf T (r) = O((m + t(m,n))γ), since leaves and solutions
are in one-to-one correspondence and the cost for each leaf is dominated by the
cost of lcp(u, t, α,G), that is O(m + t(m,n)) (Theorem 3). Now, we have that
every internal node of the recursion has at least two children, otherwise πuu′

would not be the longest common prefix of Pα(u, t,G). Thus,
∑

r:internal T (r) =
O((m+t(m,n))γ) since in any tree the number of branching nodes is at most the
number of leaves, and the cost of each internal node is dominated by the O(m+
t(m,n)) cost of the longest prefix computation. Therefore, the total complexity
of Algorithm 2 is O((m + t(n,m))γ). This completes the proof of Theorem2.

Theorem 2. Algorithm2 outputs all α-bounded st-paths in O((m + t(n,m))γ)
time using O(m) space.

This means that for unweighted graphs, it is possible to list all k-bounded
st-paths in O(m) time per path. In addition, for weighted graphs, it is possible
to list all α-bounded st-paths in O(m + n log n) time per path.

4.1 Computing the Longest Common Prefix of Pα(s, t, G)

The problem of computing the longest common prefix of Pα(s, t,G) can be seen
as a special case of the replacement paths problem [8]. Let π be a shortest st-path
in G. In this problem we want to compute, for each edge e on π, the shortest
st-path that avoids e. Given a solution to the replacement path problem we can
compute the longest common prefix of Pα(s, t,G) using the following procedure.
For each edge e along the path π, check whether the shortest st-path avoiding e is
shorter than α. There is an O(m+n log n) algorithm to compute the replacement
path in undirected graphs [13], but for directed graphs the best solutions is a
trivial O(nm + n2 log n) algorithm.

In this section, we present an alternative, arguably simpler, algorithm to
compute the longest common prefix of the set of α-paths from s to t, completing
the description of Algorithm 2. The naive algorithm for this problem runs in



324 R. Rizzi et al.

O(nt(n,m)) time, so that using it in Algorithm2 would not improve the total
complexity compared to Algorithm 1. Basically, the naive algorithm computes
a shortest path πst and then for each prefix in increasing order of length tests
if there are at least two distinct extensions each with total weight less than α.
In order to test the extensions, for each prefix πsu, we recompute the distances
from t in the graph G − πsu, thus performing n shortest path tree computations
(k computations in the unweighted case) in the worst case.

Algorithm 3 improves the naive algorithm by avoiding those recomputations.
However, before entering the description of Algorithm3, we need a better charac-
terization of the structure of the longest common prefix of Pα(s, t,G). Lemma 2
gives this. It does so by considering a shortest path tree rooted at s, denoted
by Ts. Recall that Ts is a subgraph of G and induces a partition of the edges
of G into tree edges and non-tree edges. In this tree, the longest common prefix
of Pα(s, t,G) is a prefix of the tree path from the root s to t. Additionally, any
st-path in G, excluding the tree path, necessarily passes through at least one
non-tree edge. The lemma characterizes the longest common prefix in terms of
the non-tree edges from the subtrees rooted at siblings of the vertices in the
tree path from s to t. For instance, in Fig. 1(b) the common prefix πsu can be
extended to πsu · (u, v) only if there is no α-bounded path that passes through
the subtree Tw and a non-tree edge (x, z), where v belongs to tree path from s
to t and w is one of its siblings.

s

u

v

Tv

z

s

u

v

Tv

z

w

x

Tw

t t

)b)a

πsu πsu

Fig. 1. The common prefix πsu of Pα(s, t, G) can always be extended into an st-path
using the tree path of Ts from u to t. The path πsu is the longest common prefix if and
only if it can also be extended with a path containing a non-tree edge (x, z) such that
z ∈ Tv and (a) x = u or (b) x ∈ Tw and w is sibling of v; and dG′(s, x) + w(x, z) +
dG′(z, t) ≤ α, where G′ = G − (u, v).

Lemma 2. Let πsu = (s = v0, v1), . . . , (vl−1, vl = u) be a common prefix of all
paths in Pα(s, t,G) �= ∅ and Ts a shortest path tree rooted at s. Then,



Efficiently Listing Bounded Length st-Paths 325

1. the path πsu(u, v) is a common prefix of Pα(s, t,G), if there is no edge (x, z)
such that dG′(s, x) + w(x, z) + dG′(z, t) ≤ α, where G′ = G − (u, v), z ∈ Tv,
and (a) x = u or (b) x ∈ Tw with w a sibling of v (see Fig. 1);

2. πsu is the longest common prefix of Pα(s, t,G), otherwise.

In order to use the characterization of Lemma 2 for the longest prefix of
Pα(s, t,G), we need to efficiently test the weight condition given in item 1,
namely dG′(s, x) + w(x, z) + dG′(z, t) ≤ α, where G′ = G − (u, v) and (u, v)
belongs to the tree path from s to t. We have that dG′(s, x) = dG(s, x), since
x does not belong to the subtree of v in the shortest path tree Ts. Indeed, only
the distances of vertices in the subtree Tv can possibly change after the removal
of the tree edge (u, v). However, in principle we have no guarantee that dG′(z, t)
also remains unchanged: recall that to maintain the distances from t we need a
tree rooted at t not at s. Clearly, we cannot compute the shortest path tree from
t for each G′; in the worst case, this would imply the computation of n short-
est path trees. For this reason, we need Lemma 3. It states that, in the specific
case of the vertices z we need to compute the distance to t in G′, we have that
dG′(z, t) = dG(z, t).

Lemma 3. Let Ts be a shortest path tree rooted at s and t a vertex of G. Then,
for any edge (u, v), with v closer to t, in the shortest path πst in the tree Ts, we
have that dG(z, t) = dG′(z, t), where z ∈ Tv and G′ = G − (u, v).

It is not hard to verify that Lemma2 is also valid for directed graphs. However,
the non-negative hypothesis for the weights is necessary; more specifically, we
need the monotonicity property for path weights which states that for any path
the weight of any subpath is not greater than the weight of the full path. Now,
in Lemma 3 both the path monotonicity property and the fact that the graph is
undirected are necessary. Since these two lemmas are the basis for the efficiency
of Algorithm 3, it seems difficult to extend it to directed graphs.

Algorithm 3 implements the strategy suggested by Lemma 2. Given a shortest
path tree Ts of G rooted at s, the algorithm traverses each vertex vi in the tree
path s = v0 . . . vn = t from the root s to t, and at every step finds all non-
tree edges (x, z) entering the subtree rooted at vi+1 from a sibling subtree, i.e. a
subtree rooted at w ∈ N+(vi)\{vi+1}. For each non-tree (x, z) linking the sibling
subtrees found, it checks if it satisfies the weight condition dG′(s, x) + w(x, z) +
dG′(z, t) ≤ α, where G′ = G − (vi, vi+1). Item 2 of the same lemma implies
that the first time an edge (x, z) satisfies the weight condition, the tree path
traversed so far is the longest common prefix of Pα(s, t,G). In order to test the
weight conditions, as stated previously, we have that dG′(s, x) = dG(s, x), since
x does not belong to the subtree of v in Ts. In addition, Lemma 3 guarantees
that dG′(z, t) = dG(z, t). Thus, it is sufficient for the algorithm to compute only
the shortest path trees from t and from s in G.

Theorem 3. Algorithm3 finds the longest common prefix of Pα(s, t,G) in
O(m + t(n,m)) time using O(m) space.



326 R. Rizzi et al.

Algorithm 3. lcp(s, t, α,G)
1 compute Ts, a shortest path tree from s in G
2 compute Tt, a shortest path tree from t in G
3 let πst = (s = v0, v1) . . . (vn−1, vn = t) be the shortest path in Ts

4 for vi ∈ {v1, . . . , vn} do
5 for w ∈ N+(vi) \ {vi+1} do
6 let Tw be the subtree of Ts rooted at w
7 for (x, z) ∈ G s.t. x ∈ Tw or x = vi do
8 if z ∈ Tvi+1 and dG(s, x) + w(x, z) + dG(z, t) ≤ α then
9 break

10 end

11 end

12 end

13 end
14 return πsvi−1

Proof. The cost of the algorithm can be divided in two parts: the cost to compute
the shortest path trees Ts and Tt, and the cost of the loop in line 4. The first
part is bounded by O(t(n,m)). Let us now prove that the second part is bounded
by O(m + n). The cost of each execution of line 8 is O(1), since we only need
distances from s and t and the shortest path trees from s and t are already
computed, and we pre-process the tree to decide in O(1) if a vertex belongs to a
subtree. Hence, the cost of the loop is bounded by the number of times line 8 is
executed. The neighborhood of each vertex x ∈ Tw is visited exactly once, since
for each w ∈ N+(vi) \ {vi+1} and w′ ∈ N+(vj) \ {vj+1} the subtrees Tw and Tw′

are disjoint, where vi and vj belong to the tree path from s to t. �

5 K-Shortest and α-Bounded Paths: A Unified View

The two main differences between the solutions to the K-shortest and α-bounded
paths problems are: (i) the order in which the paths are output and (ii) the space
complexity of the algorithms. In this section, we show that both problems can
be placed in a unified framework such that those differences arise in a natural
way. More precisely, we show that their solutions correspond to two different
traversals of the same rooted tree: a Dijkstra-like traversal for the K-shortest
and a DFS-like traversal for the α-bounded paths. This tree is a weighted version
of the recursion tree of Algorithm 1, so the height is bounded by n and each leaf
corresponds to an α-bounded st-path (see Lemma 1).

The space complexity of the algorithms then follows from the fact that, in
addition to the memory to store the tree, Dijkstra’s algorithm uses memory
proportional to the number of nodes, whereas the DFS uses memory proportional
to the height of the tree. In addition, the order in which the solutions are output
is precisely the order in which the leaves of the tree are visited, a Dijkstra-like
traversal visits the leaves in increasing order of their distance from the root,
whereas a DFS-like traversal visits them in an arbitrary but fixed order.



Efficiently Listing Bounded Length st-Paths 327

We first modify Algorithm1 to obtain an iterative generic variant. The
pseudocode is shown in Algorithm 4. Observe that each node in the recursion tree
of Algorithm 1 corresponds to some tuple 〈u, t, πut, G

′〉 in line 3 of Algorithm 4.
By generic we mean that the container Q is not specified in the pseudocode, the
only requirement is the support for two operations: push, to insert a new element
in Q; and pop, to remove and return an element of Q. It should be clear now
that depending on the container, the algorithm will perform a different traversal
in the underlying recursion tree of Algorithm1.

Algorithm 4. list paths iterative(u, t, α, πsu, G)
1 push 〈s, t, ∅, G〉 in Q
2 while Q is not empty do
3 〈u, t, πsu, G′〉 = Q.pop()
4 if u = t then
5 output(πsu)
6 else
7 compute a shortest path tree Tt from t in GR − u
8 for v ∈ N+(u) do
9 if d(v, t) ≤ α − w(u, v) then

10 push 〈v, t, α − w(u, v), πsu · (u, v), G′ − u〉 in Q

11 end

12 end

13 end

14 end

Algorithm 4 uses the same strategy to partition the solution space (Eq. 1).
Of course, the order in which the partitions are explored depends on the type
of container used for Q. We show that if Q is a stack, then the solutions are
output in the reverse order of Algorithm1 and the maximum size of the stack is
linear in the size of the input. If on the other hand, Q is a priority queue, using
a suitable key, the solutions are output in increasing order of their lengths, but
in this case the maximum size of the priority queue is linear in the number of
solutions, which is not polynomial in the size of the input.

Let T be the recursion tree of Algorithm 1 (see Lemma 1). In Algorithm 4, each
element 〈u, t, πsu, G′〉 corresponds to the arguments of a call of Algorithm 1, i.e. a
node of T . For any container Q supporting push and pop operations, Algorithm4
visits each node of T exactly once, since at every iteration a node from Q is deleted
and its children are inserted in Q, and T is a tree. In particular, this guarantees
that every leaf of T is visited exactly once, thus proving the following lemma.

Lemma 4. Algorithm4 outputs all α-bounded st-paths.

Let us consider the case where Q is a stack. It is not hard to prove that
Algorithm 1 is a DFS traversal of T starting from the root, while Algorithm4
is an iterative DFS [17] traversal of T also starting from the root. Basically, an
iterative DFS keeps the vertices of the fringe of the non-visited subgraph in a
stack, at each iteration the next vertex to be explored is popped from the stack,



328 R. Rizzi et al.

and recursive calls are replaced by pushing vertices in the stack. Now, for a fixed
permutation of the children of each node in T , the nodes visited in an iterative
DFS traversal are in the reverse order of the nodes visited in a recursive DFS
traversal, thus proving Lemma5.

Lemma 5. If Q is a stack, then Algorithm4 outputs the α-bounded st-path in
the reverse order of Algorithm1.

For any rooted tree, at any moment during an iterative DFS traversal, the num-
ber of nodes in the stack is bounded by the sum of the degrees of the root-to-leaf
path currently being explored. Recall that every leaf in T corresponds to a path
in Pα(s, t,G). Actually, there is a one-to-one correspondence between the nodes
of a root-to-leaf path P in T and the vertices of the α-bounded st-path π asso-
ciated to that leaf. Hence, the sum of the degrees of the nodes of P in T is equal
to the sum of the degrees of the vertices π in G, which is bounded by m, thus
proving Lemma 6.

Lemma 6. The maximum number of elements in the stack of Algorithm4 over
all iterations is bounded by m.

Let us consider now the case where Q is a priority queue. There is a one-to-many
correspondence between arcs in G and arcs in T , i.e. if Pα′′(v, t,G′′) is a child
of Pα′(u, t,G′) in T then (u, v) is an arc of G. For every arc of T , we give the
weight of the corresponding arc in G. Now, Algorithm 4 using a priority queue
with w(πsu)+dG(u, t) as keys performs a Dijkstra-like traversal in this weighted
version of T starting from the root. Indeed, for a node 〈u, t, πsu, G〉 the distance
from the root is w(πsu), and dG(u, t) is a (precise) estimation of the distance
from 〈u, t, πsu, G〉 to the closest leaf of T . In other words, it is an A∗ traversal [5]
in the weighted rooted tree T , using the (optimal) heuristic dG(u, t). As such,
Algorithm 4 explores first the nodes of T leading to the cheapest non-visited leaf.
This is formally stated in Lemma 7.

Lemma 7. If Q is a priority queue with w(πsu) + dG′(u, t) as the priority key
of 〈u, t, πsu, G′〉, then Algorithm4 outputs the α-bounded st-paths in increasing
order of their lengths.

For any choice of the container Q, each node of T is visited exactly once, that
is, each node of T is pushed at most once in Q. This proves Lemma 8.

Lemma 8. The maximum number of elements in a priority queue of
Algorithm4 over all iterations is bounded by γ.

Algorithm 4 uses O(mγ) space since for every node inserted in the priority queue,
we also have to store the corresponding graph. Moreover, using a binary heap
as a priority queue, the push and pop operations can be performed in O(log γ)
each, where γ is the maximum size of the heap. Therefore, combining this with
Lemma 7, we obtain the following theorem.

Theorem 4. Algorithm4 using a binary heap outputs all α-bounded st-paths
in increasing order of their lengths in O((nt(n,m) + log γ)γ) total time, using
O(mγ) space.



Efficiently Listing Bounded Length st-Paths 329

References

1. Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the
shortest path problem. J. ACM 37, 213–223 (1990)

2. Bernstein, A.: A nearly optimal algorithm for approximating replacement paths
and k shortest simple paths in general graphs. In: Proceedings of the 20th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 742–755 (2010)

3. Birmelé, E., Ferreira, R., Grossi, R., Marino, A., Pisanti, N., Rizzi, R., Sacomoto,
G.: Optimal listing of cycles and st-paths in undirected graphs. In: Proceedings of
the 24th Symposium on Discrete Algorithms (SODA), pp. 1884–1896 (2013)

4. Böhmová, K., Mihalák, M., Pröger, T., Srámek, R., Widmayer, P.: Robust rout-
ing in urban public transportation: how to find reliable journeys based on past
observations. In: 13th Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS), pp. 27–41 (2013)

5. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. J. ACM 32(3), 505–536 (1985)

6. Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3),
395–412 (1969)

7. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2), 652–673
(1999)

8. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth?
In: Proceedings of the 42nd Symposium on Foundations of Computer Science
(FOCS), pp. 252–259. IEEE Computer Society (2001)

9. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

10. Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM
24(1), 1–13 (1977)

11. Katoh, N., Ibaraki, T., Mine, H.: An efficient algorithm for K shortest simple
paths. Networks 12(4), 411–427 (1982)

12. Lawler, E.L.: A procedure for computing the K best solutions to discrete optimiza-
tion problems and its application to the shortest path problem. Manage. Sci. 18,
401–405 (1972)

13. Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path
problem. Oper. Res. Lett. 8(4), 223–227 (1989)

14. Ferreira, R., Grossi, R., Rizzi, R., Sacomoto, G., Sagot, M.-F.: Amortized Õ(|V |)-
delay algorithm for listing chordless cycles in undirected graphs. In: Schulz, A.S.,
Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 418–429. Springer, Heidelberg
(2014)

15. Roditty, L.: On the k-simple shortest paths problem in weighted directed graphs.
In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM (2007)

16. Roditty, L., Zwick, U.: Replacement paths and k simple shortest paths
in unweighted directed graphs. In: Caires, L., Italiano, G.F., Monteiro, L.,
Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 249–260.
Springer, Heidelberg (2005)

17. Sedgewick, R.: Algorithms in C, Part 5: Graph Algorithms, 3rd edn. Addison-
Wesley Professional, Reading (2001)

18. Yen, J.Y.: Finding the K shortest loopless paths in a network. Manage. Sci. 17,
712–716 (1971)



Metric Dimension for Amalgamations of Graphs

Rinovia Simanjuntak(B), Saladin Uttunggadewa, and Suhadi Wido Saputro

Combinatorial Mathematics Research Group, Faculty of Mathematics
and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia

{rino,s uttunggadewa,suhadi}@math.itb.ac.id

Abstract. A set of vertices S resolves a graph G if every vertex is uniquely
determined by its vector of distances to the vertices in S. Themetric dimen-
sion of G is the minimum cardinality of a resolving set of G.

Let {G1, G2, . . . , Gn} be a finite collection of graphs and each Gi

has a fixed vertex v0i or a fixed edge e0i called a terminal vertex or
edge, respectively. The vertex-amalgamation of G1, G2, . . . , Gn, denoted
by V ertex − Amal{Gi; v0i}, is formed by taking all the Gi’s and
identifying their terminal vertices. Similarly, the edge-amalgamation of
G1, G2, . . . , Gn, denoted by Edge − Amal{Gi; e0i}, is formed by taking
all the Gi’s and identifying their terminal edges.

Here we study the metric dimensions of vertex-amalgamation and
edge-amalgamation for finite collection of arbitrary graphs. We give lower
and upper bounds for the dimensions, show that the bounds are tight,
and construct infinitely many graphs for each possible value between the
bounds.

1 Introduction

In this paper we consider finite, simple, and connected graphs. The vertex and
edge sets of a graph G are denoted by V (G) and E(G), respectively.

The distance d(u, v) between two vertices u and v in a connected graph G is
the length of a shortest u − v path in G. For an ordered set W = {w1, w2, . . .,
wk} ⊆ V (G), we refer to the k-vector r(v|W ) = (d(v, w1), d(v, w2), . . . , d(v, wk))
as the (metric) representation of v with respect to W . The set W is called a
resolving set for G if r(u|W ) = r(v|W ) implies that u = v for all u, v ∈ G. In a
graph G, a resolving set with minimum cardinality is called a basis for G. The
metric dimension, dim(G), is the number of vertices in a basis for G.

The metric dimension problem was first introduced in 1975 by Slater [24],
and independently by Harary and Melter [11] in 1976; however the problem for
hypercube was studied (and solved asymptotically) much earlier in 1963 by Erdős
and Rényi [7]. In general, it is difficult to obtain a basis and metric dimension
for arbitrary graph. Garey and Johnson [10], and also Khuller et al. [18], showed
that determining the metric dimension of an arbitrary graph is an NP-complete

This research is partially supported by Penelitian Unggulan Perguruan Tinggi
(Desentralisasi) 2013.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 330–337, 2015.
DOI: 10.1007/978-3-319-19315-1 29



Metric Dimension for Amalgamations of Graphs 331

problem. The problem is still NP-complete even if we consider some specific
families of graphs, such as bipartite graphs [19] or planar graphs [6].

Until today, only graphs of order n with metric dimension 1 (the paths),
n− 3, n− 2, and n− 1 (the complete graphs) have been characterized [5,12,16].
On the other hand, researchers have determined metric dimensions for many
particular classes of graphs, such as trees, cycles, grids, complete multipartite
graphs, hypercube, wheels, fans, unicyclic graphs, honeycombs, and circulant
graphs. Recently, Bailey and Cameron [1] established relationship between the
base size of automorphism group of a graph and its metric dimension. This
result then motivated researchers to study metric dimensions of distance regular
graphs. Bollobas, Mitsche, and Pralat have also studied the metric dimension of
some random graphs [2].

There are also some research on metric dimensions of graphs resulting from
graph operations; for instance: Cartesian product graphs [4], joint product
graphs [3], corona product graphs [14,26], lexicographic product graphs [21],
hierarchical product graphs [8], and line graphs [9,17]. Note that if we could
determine whether a particular graph is constructed from certain graph opera-
tions, then the aforementioned results could be utilized to approximate metric
dimensions of large graphs. We would only have to recognize the subgraphs and
graph operations used to produce the large graph under consideration; and then
utilize the dimensions of the subgraphs to determine the dimension of the large
graph.

In this paper, we study metric dimension of graphs resulting from another
type of graph operations, i.e., vertex-amalgamation and edge-amalgamation of a
finite collection of arbitrary graphs. Compare with other graph operations, it is
easier to recognize which graphs are constructed from vertex-amalgamation or
edge-amalgamation; and thus our results would be useful in approximating the
dimensions such graphs. Previous study has been done for vertex-amalgamation
of two arbitrary graphs [20] and vertex-amalgamation and edge-amalgamation of
particular families of graphs, which include cycles, complete graphs, and prisms
[13,22,23]. We present these known results in the next section and then provide
more general results in the last section: give lower and upper bounds for the
dimensions, show that the bounds are tight, and construct infinitely many graphs
for each possible value between the bounds.

2 Previous Results

Let {G1, G2, . . . , Gn} be a finite collection of graphs and each block Gi has a fixed
vertex v0i or a fixed edge e0i called a terminal vertex or edge, respectively. The
vertex-amalgamation of G1, G2, . . . , Gn, denoted by V ertex−Amal{Gi; v0i}, is
formed by taking all the Gi’s and identifying their terminal vertices. Similarly,
the edge-amalgamation of G1, G2, . . . , Gn, denoted by Edge−Amal{Gi; e0i}, is
formed by taking all the Gi’s and identifying their terminal edges.

In [20], Poisson and Zhang studied vertex-amalgamation of two nontrivial
connected graphs G1, G2 and provide a lower bound as follow.



332 R. Simanjuntak et al.

Theorem 1 [20]. Let G be the vertex-amalgamation of nontrivial connected
graphs G1 and G2 with terminal vertices v01 and v02 . Then

dim(G) ≥ dim(G1) + dim(G2) − 2.

Other known results are vertex-amalgamation and edge-amalgamation of par-
ticular families of graphs, as presented in the following theorems. We denote by
Cn the cycle of order n, by Kn the complete graph of order n, and by Prn the
prism of order 2n.

Theorem 2 [13,22]. Let {Cc1 , Cc2 , . . . , Ccn} be a collection of n cycles with
ne cycles of even order. Suppose that G is the vertex-amalgamation of
Cc1 , Cc2 , . . . , Ccn and H is the edge-amalgamation of Cc1 , Cc2 , . . . , Ccn . Then

dim(G) =
{
n , ne = 0,
n + ne − 1 , ne ≥ 1

and

n − 2 ≤ dim(H) ≤ n.

Theorem 3 [23]. Let {Kk1 ,Kk2 , . . . ,Kkn
} be a collection of n complete graphs

with n2 complete graphs of order 2 and n3 complete graphs of order 3. Sup-
pose that G is the vertex-amalgamation of Kk1 ,Kk2 , . . . ,Kkn

and H is the edge-
amalgamation of Kk1 ,Kk2 , . . . ,Kkn

. Then

dim(G) =
{∑n

i=1(ki − 2) + n2 − 1, n2 ≥ 2,∑n
i=1(ki − 2), otherwise

and

dim(H) =

⎧
⎨

⎩

∑n
i=1(ki − 3) + 1, n3 = 0,∑n
i=1(ki − 3) + 2, n3 = 1 and n = 2,∑n
i=1(ki − 3) + n3, otherwise.

Theorem 4 [23]. Let {Prp1 , P rp2 , . . . , P rpn
} be a collection of n prisms with no

prisms of pis. Suppose that G is the vertex-amalgamation of Prp1 , P rp2 , . . . , P rpn

and H is the edge-amalgamation of Prp1 , P rp2 , . . . , P rpn
. Then

dim(G) =
{

2n , no = 0,
2n − n0 − 1 , no ≥ 1

and

dim(H) = 2n − n0 − 1.



Metric Dimension for Amalgamations of Graphs 333

3 Main Results

The next theorem provide the sharp lower and upper bounds for the metric
dimension of vertex-amalgamation of finite collection of arbitrary graphs, as well
as a construction showing that all values between the bounds are attainable.

Theorem 5. Let {G1, G2, . . . , Gn} be a finite collection of graphs and v0i is
a terminal vertex of Gi, i = 1, 2, . . . , n. If G is the vertex-amalgamation of
G1, G2, . . . , Gn, V ertex − Amal{Gi; v0i}, then

n∑

i=1

dim(Gi) − n ≤ dim(G) ≤
n∑

i=1

dim(Gi) + n − 1.

Moreover, the bounds are sharp and there are infinitely many graphs with dimen-
sion equal to all values within the range of the bounds.

Proof. For the lower bound, consider a vertex set W with cardinality less than∑n
i=1 dim(Gi) − n. Consequently, there exists a Gi which the cardinality of

its intersection with W is less than dim(Gi) − 1. Therefore W could not be a
resolving set of G and so

dim(G) ≥
n∑

i=1

dim(Gi) − n.

For the upper bound, consider two arbitrary Gi and Gj of G and their basis
Ri and Rj . Clearly, at most two vertices in V (Gi) ∪ V (Gj), say x and y, could
have the same representation with respect to Ri∪Rj , since otherwise there exist
two vertices in either Gi or Gj , say Gi, having the same representation with
respect to Ri, a contradiction with Ri being a resolving set. Thus, to guarantee
all vertices in V (Gi)∪V (Gj) have different representation, we have to add either
x or y to Ri∪Rj . If we consider each pair of arbitrary Gi and Gj in G, we obtain

dim(G) ≤
n∑

i=1

dim(Gi) + n − 1.

Now let us start our construction by considering {G1, G2, . . . , Gn} as a finite
collection of complete graphs of order at least 3, where Gi = Kki

, ki ≥ 3, i =
1, . . . , n. By Theorem 3, dim(G) =

∑n
i=1(ki − 2), which can be rewritten as

dim(G) =
∑n

i=1 dim(Gi) − n, which achieve the lower bound. We then replace
G1 with a path consisting non-leaf terminal vertex. Let B be the union of all the
Gis’ basis. Since the path has dimension 1 and its basis vertex is a leaf vertex,
then the two vertices of the path adjacent to the terminal vertex will have the
same representation with respect to B. Thus we have to add one vertex, i.e. one
of the two vertices of the path adjacent to the terminal vertex, to B in order
to obtain a basis for G. This results in dim(G) =

∑n
i=1 dim(Gi) − n + 1, which

increases the lower bound by one. We continue this process by replacing the
Gis one at a time until all complete graphs are replaced with paths (see Fig. 1).
The resulting graph is a subdivided star, whose dimension achieves the upper
bound. ��



334 R. Simanjuntak et al.

Fig. 1. Vertex-amalgamations of graphs whose dimensions attaining all values between
the lower and upper bounds.

Note that the lower bound in the previous theorem generalizes the result of
Poisson and Zhang in Theorem1. From Theorems 2 and 4, we can see that there
exist amalgamations of particular cycles and prisms whose dimensions attaining
the lower bounds. These graphs could be used in the construction of the proof
of Theorem 5.

To prove the result for edge-amalgamation of a finite collection of graphs, we
need to know the dimensions of two special graphs. The first graph is complete
bipartite graphs Km,n. It is known that dim(Km,n) = m + n − 2 and the basis
consists of all vertices in Km,n except for one vertex from each partite set. The
second graph is a variation of a cycle of order n, Cn. For n ≥ 6, suppose that
V (Cn) = {x1, x2, . . . , xn} and E(Cn) = {x1xn, xixi+1, i = 1, 2, . . . , n − 1}. We
add two vertices y2, y5 and six edges y2xi, i = 1, 2, 3, y5xi, i = 4, 5, 6. We call the
resulting graph a double-hats cycle, denoted by DHCn (see Fig. 2). It is easy to
see that a resolving set of DHCn must consist two vertices: either x2 or x5 and
either y2 or y5. On the other hand, the set {x2, y5} is a resolving set of DHCn,
and so dim(DHCn) = 2.

Fig. 2. The double-hats cycle, DHCn.

Theorem 6. Let {G1, G2, . . . , Gn} be a finite collection of graphs and e0i is
a terminal edge of Gi, i = 1, 2, . . . , n. If H is the edge-amalgamation of
G1, G2, . . . , Gn, Edge − Amal{Gi; e0i}, then

n∑

i=1

dim(Gi) − 2n ≤ dim(H) ≤
n∑

i=1

dim(Gi) + n − 1.

Moreover, the bounds are sharp and there are infinitely many graphs with dimen-
sion equal to all values within the range of the bounds.



Metric Dimension for Amalgamations of Graphs 335

Proof. For the lower bound, consider a vertex set W with cardinality less than∑n
i=1 dim(Gi) − 2n. Consequently, there exists a Gi which the cardinality of

its intersection with W is less than dim(Gi) − 2. Therefore W could not be a
resolving set of H and so

dim(G) ≥
n∑

i=1

dim(Gi) − 2n.

For the upper bound, consider two arbitrary Gi and Gj of G and their basis
Ri and Rj . Clearly, at most two vertices in V (Gi) ∪ V (Gj), say x and y, could
have the same representation with respect to Ri∪Rj , since otherwise there exist
two vertices in either Gi or Gj , say Gi, having the same representation with
respect to Ri, a contradiction with Ri being a resolving set. Thus, to guarantee
all vertices in V (Gi)∪V (Gj) have different representation, we have to add either
x or y to Ri∪Rj . If we consider each pair of arbitrary Gi and Gj in G, we obtain

dim(G) ≤
n∑

i=1

dim(Gi) + n − 1.

Similarly to the construction for vertex-amalgamation of graphs in the proof
of Theorem 5, we start by considering {G1, G2, . . . , Gn} as a finite collection of
symmetric complete bipartite graphs Kmi,mi

with vertex-set partitioned into
{x1, x2, . . . , xmi

} and {y1, y2, . . . , ymi
}. Let xmi

ymi
be the terminal edge in each

Kmi,mi
. By the first part of the theorem, we have dim(H) ≥ ∑n

i=1 dim(Gi)−2n.
Now, consider the set R =

⋃n
i=1{x1, x2, . . . , xmi−2}. It is easy to see that R is a

resolving set for H, and thus dim(H) =
∑n

i=1 dim(Gi) − 2n. Therefore we have
amalgamation of graphs attaining the lower bound.

We then replace G1 with a double-hats cycle DHCn with terminal edge x6x7

(refer to the standard vertices notation of DHCn). Let B be the union of all the
Gis’ basis. The two vertices of DHCn adjacent to the terminal edge will have
the same representation with respect to B. Thus we have to add one vertex, i.e.
one of the two vertices of DHCn adjacent to the terminal edge, to B in order
to obtain a basis for H. This results in dim(H) =

∑n
i=1 dim(Gi) − n+ 1, which

increases the lower bound by one. We continue this process by replacing the Gis
one at a time until all complete bipartite graphs are replaced with DHCns. The
dimension of the resulting graph then achieves the upper bound. ��
Notice that there exists edge-amalgamation of some complete graphs with dimen-
sion equal to the lower bound (see Theorem3), and so these graphs could be
used in the construction of the proof of the previous theorem. We could also see
from Theorems 2, 3, and 4, that the dimensions of edge-amalgamations of cycles
and prims are the middle values between the lower and upper bounds, while the
dimensions of edge-amalgamation of complete graphs are values around the lower
bound. Determining which collection of graphs whose vertex-amalgamation or
edge-amalgamation have small dimensions, i.e. close to the lower bounds, might



336 R. Simanjuntak et al.

be seen as interesting problems. Other problems to be considered are recogniz-
ing which vertices or edges should be chosen as terminals in order to obtain
amalgamated graphs attaining the lower bounds.

We would like to conclude by a remark that recognizing which graphs con-
structed from vertex-amalgamation and edge-amalgamation is relatively easier
than from other graph operations. Thus our main results could be utilized to
approximate the dimensions of such graphs. Moreover, if a graph contains a
bridge, we could subdivide the bridge by inserting one vertex; and the result-
ing graph could be seen as a vertex-amalgamation of two graphs. Similarly, if
a graph contains two bridges, we could insert one vertex in each of the bridges
and connect those two vertices with an edge; and so the resulting graph could
be seen as an edge-amalgamation of two graphs. In such cases, our main results
enable us to approximate the dimension of (large) graphs containing either one
or two bridges.

References

1. Bailey, R.F., Cameron, P.J.: Base size, metric dimension and other invariants of
groups and graphs. Bull. Lond. Math. Soc. 43, 209–242 (2011)

2. Bollobas, B., Mitsche, D., Pralat, P.: Metric dimension for random graphs. Elec-
tron. J. Comb. 20, �P1 (2013)

3. Buczkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On k-dimensional graphs
and their bases. Period. Math. Hung. 46, 9–15 (2003)

4. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood,
D.R.: On the metric dimension of Cartesian products of graphs. SIAM J. Discrete
Math. 21, 423–441 (2007)

5. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete Appl. Math. 105, 99–113 (2000)

6. Dı́az, J., Pottonen, O., Serna, M., van Leeuwen, E.J.: On the complexity of metric
dimension. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp.
419–430. Springer, Heidelberg (2012)

7. Erdős, P., Rényi, A.: On two problems of information theory. Magyar Tud. Akad.
Mat. Kutat Int. Kzl. 8, 229–243 (1963)

8. Feng, M., Wang, K.: On the metric dimension and fractional metric dimension of
the hierarchical product of graphs. Appl. Anal. Discrete Math. 7, 302–313 (2013)

9. Feng, M., Xu, M., Wang, K.: On the metric dimension of line graphs. Discrete
Appl. Math. 161, 802–805 (2013)

10. Garey, M.R., Johnson, D.S.: Computers and Intractibility: A Guide to the Theory
of NP Completeness. W.H. Freeman and Company, San Francisco (1979)

11. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–
195 (1976)

12. Hernando, C., Mora, M., Pelayo, I.M., Seara, C., Wood, D.R.: Extremal graph
theory for metric dimension and diameter. Electron. J. Comb. 17 �R30 (2010)

13. Iswadi, H., Baskoro, E.T., Salman, A.N.M., Simanjuntak, R.: The metric dimension
of amalgamation of cycles. Far East J. Math. Sci. 41, 19–31 (2010)

14. Iswadi, H., Baskoro, E.T., Simanjuntak, R.: On the metric dimension of corona
product of graphs. Far East J. Math. Sci. 52, 155–170 (2011)



Metric Dimension for Amalgamations of Graphs 337

15. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of
graphs. Discrete Math. 312, 3349–3356 (2012)

16. Jannesari, M., Omoomi, B.: Characterization of n-vertex graphs with metric
dimension n − 3. Math. Bohemica 139, 1–23 (2014)

17. Klein, D.J., Yi, E.: A comparison on metric dimension of graphs, line graphs, and
line graphs of the subdivision graphs. European J. Pure Appl. Math. 5, 302–316
(2012)

18. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl.
Math. 70, 217–229 (1996)

19. Manuel, P.D., Abd-El-Barr, M.I., Rajasingh, I., Rajan, B.: An efficient represen-
tation of Benes networks and its applications. J. Discrete Algorithms 6, 11–19
(2008)

20. Poisson, C., Zhang, P.: The metric dimension of unicyclic graphs. J. Comb. Math.
Comb. Comput. 40, 17–32 (2002)

21. Saputro, S.W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.T.,
Salman, A.N.M., Baća, M.: The metric dimension of the lexicographic product of
graphs. Discrete Math. 313, 1045–1051 (2013)

22. Simanjuntak, R., Assiyatun, H., Baskoroputro, H., Iswadi, H., Setiawan, Y.,
Uttunggadewa, S.: Graphs with relatively constant metric dimensions (preprint)

23. Simanjuntak, R., Murdiansyah, D.: Metric dimension of amalgamation of some
regular graphs (preprint)

24. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
25. Tavakoli, M., Rahbarnia, F., Ashrafi, A.R.: Distribution of some graph invariants

over hierarchical product of graphs. App. Math. Comput. 220, 405–413 (2013)
26. Yero, I.G., Kuziak, D., Rodriguez-Velázquez, J.A.: On the metric dimension of

corona product graphs. Comput. Math. Appl. 61, 2793–2798 (2011)



A Suffix Tree Or Not a Suffix Tree?

Tatiana Starikovskaya1 and Hjalte Wedel Vildhøj2(B)

1 National Research University Higher School of Economics (HSE), Moscow, Russia
2 DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark

hwvi@dtu.dk

Abstract. In this paper we study the structure of suffix trees. Given an
unlabeled tree τ on n nodes and suffix links of its internal nodes, we ask
the question “Is τ a suffix tree?”, i.e., is there a string S whose suffix
tree has the same topological structure as τ? We place no restrictions
on S, in particular we do not require that S ends with a unique symbol.
This corresponds to considering the more general definition of implicit
or extended suffix trees. Such general suffix trees have many applications
and are for example needed to allow efficient updates when suffix trees
are built online. We prove that τ is a suffix tree if and only if it is realized
by a string S of length n − 1, and we give a linear-time algorithm for
inferring S when the first letter on each edge is known. This generalizes
the work of I et al. [Discrete Appl. Math. 163, 2014].

1 Introduction

The suffix tree was introduced by Peter Weiner in 1973 [21] and remains one
of the most popular and widely used text indexing data structures (see [1] and
references therein). In static applications it is commonly assumed that suffix
trees are built only for strings with a unique end symbol (often denoted $),
thus ensuring the useful one-to-one correspondance between leaves and suffixes.
In this paper we view such suffix trees as a special case and refer to them as
$-suffix trees. Our focus is on suffix trees of arbitrary strings, which we simply
call suffix trees to emphasize that they are more general than $-suffix trees1.
Contrary to $-suffix trees, the suffixes in a suffix tree can end in internal non-
branching locations of the tree, called implicit suffix nodes.

Suffix trees for arbitrary strings are not only a nice generalization, but are
required in many applications. For example in online algorithms that construct
the suffix tree of a left-to-right streaming text (e.g., Ukkonen’s algorithm [20]),
it is necessary to maintain the implicit suffix nodes to allow efficient updates.
Despite their essential role, the structure of suffix trees is still not well under-
stood. For instance, it was only recently proved that each internal edge in a
suffix tree can contain at most one implicit suffix node [4].

T. Starikovskaya—Partly supported by Dynasty Foundation.
1 In the literature the standard terminology is suffix trees for $-suffix trees and

extended/implicit suffix trees [3,12] for suffix trees of strings not ending with $.

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 338–350, 2015.
DOI: 10.1007/978-3-319-19315-1 30



A Suffix Tree Or Not a Suffix Tree? 339

(a) (b) (c)

Fig. 1. Three potential suffix trees. (a) is a $-suffix tree, e.g. for ababa$. (b) is not a
$-suffix tree, but it is a suffix tree, e.g. for abaabab. (c) is not a suffix tree.

In this paper we prove some new properties of suffix trees and show how to
decide whether suffix trees can have a particular structure. Structural properties
of suffix trees are not only of theoretical interest, but are essential for analyzing
the complexity and correctness of algorithms using suffix trees.

Given an unlabeled ordered rooted tree τ and suffix links of its internal nodes,
the suffix tree decision problem is to decide if there exists a string S such that
the suffix tree of S is isomorphic to τ . If such a string exists, we say that τ is
a suffix tree and that S realizes τ . If τ can be realized by a string S having a
unique end symbol $, we additionally say that τ is a $-suffix tree. See Fig. 1 for
examples of a $-suffix tree, a suffix tree, and a tree which is not a suffix tree. In
all figures in this paper leaves are black and internal nodes are white.

I et al. [16] recently considered the suffix tree decision problem and showed
how to decide if τ is a $-suffix tree in O(n) time, assuming that the first letter
on each edge of τ is also known. Concurrently with our work, another approach
was developed in [5]. There the authors show how to decide if τ is a $-suffix tree
without knowing the first letter on each edge, but also introduce the assumption
that τ is an unordered tree.

Deciding if τ is a suffix tree is much more involved than deciding if it is a
$-suffix tree, mainly because we can no longer infer the length of a string that
realizes τ from the number of leaves. Without an upper bound on the length
of such a string, it is not even clear how to solve the problem by an exhaustive
search. In this paper, we give such an upper bound, show that it is tight, and
give a linear time algorithm for deciding whether τ is a suffix tree when the first
letter on each edge is known.

Our Results. In Sect. 2, we start by settling the question of the sufficient length
of a string that realizes τ .

Theorem 1. An unlabeled tree τ on n nodes is a suffix tree if and only if it is
realized by a string of length n − 1.

As far as we are aware, there were no previous upper bounds on the length of
a shortest string realizing τ . The bound implies an exhaustive search algorithm
for solving the suffix tree decision problem, even when the suffix links are not
provided. In terms of n, this upper bound is tight, since e.g. stars on n nodes
are realized only by strings of length at least n − 1.



340 T. Starikovskaya and H.W. Vildhøj

The main part of the paper is devoted to the suffix tree decision problem.
We generalize the work of I et al. [16] and show in Sect. 4 how to decide if τ is
a suffix tree.

Theorem 2. Let τ be a tree with n nodes, annotated with suffix links of internal
nodes and the first letter on each edge. There is an O(n) time algorithm for
deciding if τ is a suffix tree.

In case τ is a suffix tree, the algorithm also outputs a string S that realizes τ .
To obtain the result, we show several new properties of suffix trees, which may
be of independent interest.

For space reasons the proofs of Lemmas 6, 9 and 10 have been omitted. They
can be found in the full version of this paper [19].

Related Work. The problem of revealing structural properties and exploiting
them to recover a string realizing a data structure has received a lot of attention
in the literature. Besides $-suffix trees, the problem has been considered for
border arrays [8,18], parameterized border arrays [13–15], suffix arrays [2,10,17],
KMP failure tables [9,11], prefix tables [6], cover arrays [7], directed acyclic word
graphs [2], and directed acyclic subsequence graphs [2].

2 Suffix Trees

In this section we prove Theorem 1 and some new properties of suffix trees,
which we will need to prove Theorem 2. We start by briefly recapitulating the
most important definitions.

The suffix tree of a string S is a compacted trie on suffixes of S [12]. Branching
nodes and leaves of the tree are called explicit nodes, and positions on edges are
called implicit nodes. The label of a node v is the string on the path from the
root to v, and the length of this label is called the string depth of v. The suffix
link of an internal explicit node v labeled by a1a2 . . . am is a pointer to the node
u labeled by a2a3 . . . am. We use the notation and extend the definition
of suffix links to leaves and implicit nodes as well. We will refer to nodes that
are labeled by suffixes of S as suffix nodes. All leaves of the suffix tree are suffix
nodes, and unless S ends with a unique symbol $, some implicit nodes and
internal explicit nodes can be suffix nodes as well. Suffix links for suffix nodes
form a path starting at the leaf labeled by S and ending at the root. Following [4],
we call this path the suffix chain.

Lemma 1 ([4]). The suffix chain of the suffix tree can be partitioned into the
following consecutive segments: (1) Leaves; (2) Implicit suffix nodes on leaf edges;
(3) Implicit suffix nodes on internal edges; and (4) Suffix nodes that coincide with
internal explicit nodes. (See Fig. 2a.)

We define the parent par(x) of a node x to be the deepest explicit node on the
path from the root to x (excluding x). The distance between a node and one of
its ancestors is defined to be the difference between the string depths of these
nodes.



A Suffix Tree Or Not a Suffix Tree? 341

a

a
b
a
b
a
a

b
a
b
a
a

b
a

a
b
a
b
a
a

b
a
b
a
a

b
a
a

b
a
b
a
a

ba

a
b
a
b
a
a

b
a
b
a
a

b
a
a

b
a
b
a
a

(a)

a

a
b
a
b

b
a

a
b
a
b

b

b
a

a
b
a
b

b

(b)

Fig. 2. (a) The suffix tree τ of a string S = abaababaababaa with suffix nodes and the
suffix chain. (b) The suffix tree of a prefix S′ = abaabab of S. Suffix links of internal
nodes are not shown, but they are the same in both trees.

Lemma 2. If is a suffix link, then the distance from x1 to par(x1)
cannot be less than the distance from x2 to par(x2).

Proof. If d is the distance between x1 and par(x1), then the suffix link of par(x1)
points to an explicit ancestor d characters above x2.

Lemma 3. Let x be an implicit suffix node. The distance between x and par(x)
is not bigger than the length of any leaf edge.

Proof. It follows from Lemma 2 that as the suffix chain
is traversed, the distance from each node to its parent is non-increasing. Since
the leaves are visited first, the distance between any implicit suffix node and its
parent cannot exceed the length of a leaf edge. ��
Lemma 4. If τ is a suffix tree, then it can be realized by some string such that

(1) The minimal length of a leaf edge of τ will be equal to one;
(2) Any edge of τ will contain at most one implicit suffix node at the distance

one from its upper end.

Proof. Let S be a string realizing τ , and m be the minimal length of a leaf edge
of τ . Consider a prefix S′ of S obtained by deleting its last (m − 1) letters. Its
suffix tree is exactly τ trimmed at height m − 1. (See Fig. 2b.) The minimal
length of a leaf edge of this tree is one. Applying Lemma 3, we obtain that the
distance between any implicit suffix node x of this tree and par(x) is one, and,
consequently, any edge contains at most one implicit suffix node. ��
Lemma 5. If τ is realized by a string of length l, then it is also realized by
strings of length l + 1, l + 2, l + 3, and so on.

Proof. Let be the suffix chain for a string S that
realizes τ . Moreover let letters(yi) be the set of first letters immediately below



342 T. Starikovskaya and H.W. Vildhøj

node yi. Then letters(yi−1) ⊆ letters(yi), i = 1, . . . , l. Let yj be the first non-leaf
node in the suffix chain (possibly the root). It follows that Sa also realizes τ ,
where a is any letter in letters(yj). ��
We now prove Theorem 1 by showing that if τ is a suffix tree then a string of
length n − 1 realizes it. By Lemma 4, τ can be realized by a string S′ so that
the minimal length of a leaf edge is 1. Consider the last leaf � visited by the
suffix chain in the suffix tree of S′. By the property of S′ the length of the edge
(par(�) → �) is 1. Remember that a suffix link of an internal node always points
to an internal node and that suffix links cannot form cycles. Moreover, upon
transition by a suffix link the string depth decreases exactly by one. Hence if τ
has I internal nodes then the string depth of the parent of � is at most I −1 and
the string depth of � is at most I. Consequently, if L is the number of leaves in τ ,
the length of the suffix chain and thus the length of S′ is at most L+I−1 = n−1,
so by Lemma 5 there is a string of this length that realizes τ .

3 The Suffix Tour Graph

In their work [16] I et al. introduced a notion of suffix tour graphs. They showed
that suffix tour graphs of $-suffix trees must have a nice structure which ties
together the suffix links of the internal explicit nodes, the first letters on edges,
and the order of leaves of τ — i.e., which leaf corresponds to the longest suffix,
which leaf corresponds to the second longest suffix, and so on. Knowing this
order and the first letters on edges outgoing from the root, it is easy to infer a
string realizing τ . We study the structure of suffix tour graphs of suffix trees. We
show a connection between suffix tour graphs of suffix trees and $-suffix trees
and use it to solve the suffix tree decision problem.

Let us first formalize the input to the problem. Consider a tree τ = (V,E)
annotated with a set of suffix links σ : V → V between internal explicit nodes,
and the first letter on each edge, given by a labelling function λ : E → Σ for
some alphabet Σ. For ease of description, we will always augment τ with an
auxiliary node ⊥, the parent of the root. We add the suffix link and
label the edge (⊥→ root) with a symbol “?”, which matches any letter of the
alphabet.

To construct the suffix tour graph of τ , we first compute values �(x) and
d(x) for every explicit node x in τ . The value �(x) is equal to the number of
leaves y where is a suffix link in σ, and λ(par(y) → y) =
λ(par(x) → x). Let Lx and Vx be the sets of leaves and nodes, respectively, of
the subtree of τ rooted at a node x. Note that Lx is a subset of Vx. We define
d(x) = |Lx| − ∑

y∈Vx
�(y). See Fig. 3 for an example.

Definition 1. The suffix tour graph of a tree τ = (V,E) is a directed graph
G = (V,EG), where EG = {(y → x)k | (y → x) ∈ E, k = d(x)} ∪ {(y →
x) | y is a leaf contributing to �(x)}. Here (y → x)k means the edge y → x with
multiplicity k. If k = d(x) < 0, we define (y → x)k to be (x → y)|k|. (See Fig. 3.)

Lemma 6 ([16], see [19] for proof). The suffix tour graph G of a suffix tree
τ is an Eulerian graph (possibly disconnected).



A Suffix Tree Or Not a Suffix Tree? 343

(2, 0)

⊥

(1, 0) (1, 0)(0, 2)

(1, 0) (0, 1)(1, 1)

(0, 1) (0, 1)

?

. .
.$

a
.
.
.

b. . .

. .
.$

a
.
.
.

b. . .
. .
.$

a. . .

(a)

(2, 0)

⊥

(1, 0) (1, 0)(0, 2)

(1, 0) (0, 1)(1, 1)

(0, 1) (0, 1)

(b)

Fig. 3. (a) An input consisting of a tree, suffix links and the first letter on each edge.
The input has been extended with the auxiliary node ⊥, and each node is assigned
values (�(x), d(x)). (b) The corresponding suffix tour graph. The input (a) is realized
by the string abaaa$, which corresponds to an Euler tour of (b).

3.1 Suffix Tour Graph of a $-suffix Tree

The following proposition follows from the definition of a $-suffix tree.

Proposition 1 ([16]). If τ is a $-suffix tree with a set of suffix links σ and
first letters on edges defined by a labelling function λ, then

(1) For every internal explicit node x in τ there exists a unique path
root such that belongs to σ for all i;

(2) If y is the end of the suffix link for par(x), there is a child z of y such that
λ(par(x) → x) = λ(y → z), and the end of the suffix link for x belongs to
the subtree of τ rooted at y;

(3) For any node x ∈ V the value d(x) ≥ 0.

If all tree conditions hold, it can be shown that

Lemma 7 ([16]). The tree τ is a $-suffix tree iff its suffix tour graph G contains
a cycle C which goes through the root and all leaves of τ . Moreover, a string
realizing τ can be inferred from C in linear time.

In more detail, the authors proved that the order of leaves in the cycle C cor-
responds to the order of suffixes. That is, the ith leaf after the root corresponds
to the ith longest suffix. Thus, the string can be reconstructed in linear time: its
ith letter will be equal to the first letter on the edge in the path from the root to
the ith leaf. Note that the cycle and hence the string is not necessarily unique.
See Fig. 3 for an example.

3.2 Suffix Tour Graph of a Suffix Tree

The high level idea of our solution is to try to augment the input tree so that
the augmented tree is a $-suffix tree. More precisely, we will try to augment the



344 T. Starikovskaya and H.W. Vildhøj

suffix tour graph of the tree to obtain a suffix tour graph of a $-suffix tree. It will
be essential to understand how the suffix tour graphs of suffix trees and $-suffix
trees are related.

Let ST and ST$ be the suffix tree and the $-suffix tree of a string. We call a
leaf of ST$ a $-leaf if the edge ending at it is labeled by a single letter $. Note
that to obtain ST$ from ST we must add all $-leaves, their parents, and suffix
links between the consecutive parents to ST . We denote the deepest $-leaf by s.

An internal node x of a suffix tour graph has d(x) incoming arcs produced
from edges and �(x) incoming arcs produced from suffix links. All arcs outgoing
from x are produced from edges, and there are d(x) + �(x) of them since suffix
tour graphs are Eulerian graphs. A leaf x of a suffix tour graph has d(x) incoming
arcs produced from edges, �(x) incoming arcs produced from suffix links, and
one outgoing arc produced from a suffix link. Below we describe what happens
to the values d(x) and �(x), and to the outgoing arcs produced from suffix links.
These two things define the changes to the suffix tour graph.

Lemma 8. For the deepest $-leaf s we have �(s) = 0 and d(s) = 1. The �-values
of other $-leaves are equal to one, and their d-values are equal to zero.

Proof. Suppose that �(s) = 1. Then there is a leaf y such that is a
suffix link in σ, and the first letter on the edge from par$(y) to y is $. That is,
y is a $-leaf and its string depth is bigger than the string depth of s, which is a
contradiction. Hence, �(s) = 0 and therefore d(s) = 1. The parent of any other
$-leaf y will have an incoming suffix link from the parent of the previous $-leaf
and hence �(y) = 1 and d(y) = 0. ��
The important consequence of Lemma 8 is that in the suffix tour graph of ST$

all the $-leaves are connected by a path starting in the deepest $-leaf and ending
in the root.

Next, we consider nodes that are explicit in ST and ST$. If a node x is explicit
in both trees, we denote its (explicit) parent in ST by par(x) and in ST$ — by
par$(x). Below in this section we assume that each edge of ST contains at most
one implicit suffix node at distance one from its parent.

Lemma 9 (see [19] for proof). Consider a node x of ST . If a leaf y con-
tributes to �(x) either in ST or ST$, and par$(y) and par$(x) are either both
explicit or both implicit in ST , then y contributes to �(x) in both trees.

Before we defined the deepest $-leaf s. If the parent of s is implicit in ST , the
changes between ST and ST$ are more involved. To describe them, we first need
to define the twist node. Let p be the deepest explicit parent of any $-leaf in ST .
The node that precedes p in the suffix chain is thus an implicit node in ST , i.e.,
it has two children in ST$, one which is a $-leaf and another node y, which is
either a leaf or an internal node. If y is a leaf, let t be the child of p such that y
contributes to �(t). We refer to t as the twist node.



A Suffix Tree Or Not a Suffix Tree? 345

par$(y)

y

a

b
...

$

par$(t)

t

a

b
...

$ c
.
. .

par(y)

y

a
... par(t)

t

a

b
...

c
.
. .

(a)

par$(y)

y

a
... par$(x)

x

a

b
...

$

par(y)

y

a
...

par(x)

x
a
...

(b)

Fig. 4. Both figures show ST on the left and ST$ on the right. Edges of the suffix tour
graphs that change because of the twist node t (Fig. 4a) and because of an implicit
parent (Fig. 4b) are shown in grey.

Lemma 10. Let x be a node of ST . Upon transition from ST to ST$, the �-
value of x = t increases by one and the �-value of its parent decreases by one. If
par$(x) is an implicit node of ST , then �(x) decreases by �(par$(x)). Otherwise,
�(x) does not change.

Proof (Sketch – see full version for all details [19]).
The value �(x) can change when (1) A leaf y contributes to �(x) in ST$, but

not in ST ; or (2) A leaf y contributes to �(x) in ST , but not in ST$. In the first
case par$(y) is implicit in ST , and par$(x) is explicit. Since par$(x) is the first
explicit suffix node and y is a leaf that contributes to �(x), we have x = t, and
�(x) = �(t) in ST$ is bigger than �(t) in ST by one (see Fig. 4).

Consider one of the leaves y satisfying (2). In this case exactly one of the
nodes par$(y) and par$(x) must be implicit in ST . Hence, we have two subcases:
(2a) par$(y) is implicit in ST , and par$(x) is explicit; (2b) par$(y) is explicit in
ST , and par$(x) is implicit.

In the subcase (2a) the node x is the parent of the twist node t, and the value
�(x) = �(par$(t)) is smaller by one in ST$ (see Fig. 4a). In the subcase (2b) the
�-value of x in ST is bigger than the �-value of x in ST$ by �(par$(x)), as all
leaves contributing to par$(x) in ST$, e.g. y, switch to x in ST (see Fig. 4b). ��
Lemma 11 Let x be a node of ST . Upon transition from ST to ST$, the value
d(x) of a node x such that par$(x) is implicit in ST increases by �(par$(x)). If
x is the twist node t, its d-value decreases by one. Finally, the d-values of all
ancestors of the deepest $-leaf s increase by one.

Proof. Remember that d(x) = |Lx| − ∑
y∈Vx

�(y). If par$(x) is implicit in ST ,
�(x) decreases by �(par$(x)), i.e. d(x) increases by �(par$(x)). Note that d-values
of ancestors of x are not affected since for them the decrease of �(x) is compen-
sated by the presence of par$(x). The value �(t) increases by one and results
in decrease of d(t) by one, but for other ancestors of t increase of �(t) will be
compensated by decrease of �(par$(t)).

The value �(s) = 0 and the �-values of other $-leaves are equal to one. Con-
sequently, when we add the $-leaves to ST , d-values of ancestors of s increase
by one, and d-values of ancestors of other $-leaves are not affected. ��



346 T. Starikovskaya and H.W. Vildhøj

Lemma 12. Let par$(x) be an implicit parent of a node x ∈ ST . Then
d(par$(x)) in ST$ is equal to d(x) in ST if the node par$(x) is not an ancestor
of s, and d(x) + 1 otherwise.

Proof. First consider the case when par$(x) is not an ancestor of s. Remember
that the suffix tour graph is an Eulerian graph. The node par$(x) has �(par$(x))
incoming arcs produced from suffix links and d(x) outgoing arcs produced from
edges. Hence it must have d(x)− �(par$(x)) incoming arcs produces from edges,
and this is equal to d(x) in ST . If par$(x) is an ancestor of s, the d-value must
be increased by one as in the previous lemma. ��
Speaking in terms of suffix tour graphs, we make local changes when the node
is the twist node t or when the parent of a node is implicit in ST , and add a
cycle from the root to s (increase of d-values of ancestors of s) and back via all
$-leaves.

4 A Suffix Tree Decision Algorithm

Given a tree τ = (V,E) annotated with a set of suffix links and a labelling
function, we want to decide whether there is a string S such that τ is the suffix
tree of S and it has all the properties described in Lemma 4.

We assume that τ satisfies Proposition 1(1) and Proposition 1(2), which can
be verified in linear time. We will not violate this while augmenting τ . If τ
is a suffix tree, the string depth of a node equals the length of the suffix link
path starting at it. Consequently, string depths of all explicit internal nodes and
lengths of all internal edges can be found in linear time.

We replace the original problem with the following one: Can τ be augmented
to become a $-suffix tree? The deepest $-leaf s can either hang from a node of
τ , or from an implicit suffix node par$(s) on an edge of τ . In the latter case
the distance from par$(s) to the upper end of the edge is equal to one. That is,
there are O(n) possible locations of s. For each of the locations we consider a
suffix link path starting at its parent. The suffix link paths form a tree which
we refer to as the suffix link tree. The suffix link tree can be built in linear time:
For explicit locations the paths already exist, and for implicit locations we can
build the paths following the suffix link path from the upper end of the edge
containing a location and exploiting the knowledge about lengths of internal
edges. (Of course, if we see a node encountered before, we stop.)

If τ is a suffix tree, then it is possible to augment it so that its suffix tour graph
will satisfy Proposition 1(3) and Lemma 7. We remind that Proposition 1(3) says
that for any node x of the suffix tour graph d(x) ≥ 0, and Lemma 7 says that the
suffix tour graph contains a cycle going through the root and all leaves. We show
that each of the conditions can be verified for all possible ways to augment τ by
a linear time traverse of τ or the suffix link tree. We start with Proposition 1(3).

Lemma 13. If τ can be augmented to become a $-suffix tree, then ∀x d(x) ≥ −1.



A Suffix Tree Or Not a Suffix Tree? 347

Proof. The value d(x) increases only when x is an ancestor of s or when par$(x)
is implicit in ST . In the first case it increases by one. Consider the second case.
Remember that d(par$(x)) is equal to d(x) or to d(x)+1 if it is an ancestor of s.
Since in a $-suffix tree all d-values are non-negative, we have d(x) ≥ −1 for any
node x. ��

Step 1. We first compute all d-values and all �-values. If d(x) ≤ −2 for some
node x of τ , then τ cannot be augmented to become a $-suffix tree and hence it
is not a suffix tree. From now on we assume that τ does not contain such nodes.
All nodes x with d(x) = −1, except for at most one, must be ancestors of s. If
there is a node with a negative d-value that is not an ancestor of s, then it must
be the lower end of the edge containing par$(s), and the d-value must become
non-negative after we augment τ .

We find the deepest node x with d(x) = −1 by a linear time traverse of τ .
All nodes with negative d-values must be its ancestors, which can be verified in
linear time. If this is not the case, τ is not a suffix tree. Otherwise, the possible
locations for the parent of s are descendants of x and the implicit location on
the edge to x if d(x)+ �(x), the d-value of x after augmentation, is at least zero.
We cross out all other locations.

Step 2. For each of the remaining locations we consider the suffix link path
starting at its parent. If the implicit node q preceding the first explicit node p in
the path belongs to a leaf edge then the twist node t is present in τ and will be
a child of p. We cannot tell which child though, since we do not know the first
letter on the leaf edge outgoing from q. However, we know that d(t) decreases
by 1 after augmentation, and hence d(t) must be at least 0. Moreover, if d(t) = 0
the twist node t must be an ancestor of s to compensate for the decrease of d(t).

In other words, a possible location of s is crossed out if the twist node t is
present but p has no child t that satisfies d(t) > 0 or d(t) = 0 and t is ancestor
of s. For each of the locations of s we check if t exists, and if it does, we find p (i1).
This can be done in linear time in total by a traverse of the suffix link tree. We
also compute for every node if it has a child u such that d(u) > 0 (i2). Finally, we
traverse τ in the depth-first order while testing the current location of s. During
the traverse we remember, for any node on the path to s, its child which is an
ancestor of s (i3). With the information (i1), (i2), and (i3), we can determine if
we cross out a location of s in constant time, and hence the whole computation
takes linear time.

Step 3. We assume that the suffix tour graph of τ is an Eulerian graph, otherwise
τ is not a suffix tree by Lemma 7. This condition can be verified in linear time.
When we augment τ , we add a cycle C from the root to the deepest $-leaf s and
back via $-leaves. The resulting graph will be an Eulerian graph as well, and one
of its connected components (cycles) must contain the root and all leaves of τ .

We divide C into three segments: the path from the root to the parent par(x)
of the deepest node x with d(x) = −1, the path from par(x) to s, and the path
from s to the root. We start by adding the first segment to the suffix tour graph.



348 T. Starikovskaya and H.W. Vildhøj

This segment is present in the cycle C for any choice of s, and it might actually
increase the number of connected components in the graph. (Remember that if
C contains an edge x → y and the graph contains an edge y → x, then the edges
eliminate each other.)

The second segment cannot eliminate any edges of the graph, and if it touches
a connected component then all its nodes are added to the component containing
the root of τ . Since the third segment contains the $-leaves only, the second
segment must go through all connected components that contain leaves of τ . We
paint nodes of each of the components into some color. And then we perform
a depth-first traverse of τ maintaining a counter for each color and the total
number of distinct colors on the path from the root to the current node. When
a color counter becomes equal to zero, we decrease the total number of colors by
one, and when a color counter becomes positive, we increase the total number
of colors by one. If a possible location of s has ancestors of all colors, we keep it.

Lemma 14. The tree τ is a suffix tree iff there is a survived location of s.

Proof. If there is such a location, then for any x in the suffix tour graph of the
augmented tree we have d(x) ≥ 0 and there is a cycle containing the root and
all leaves. We are still to apply the local changes caused by implicit parents.
Namely, for each node x with an implicit parent the edge from y to x is to be
replaced by the path y, par$(x), x (see Fig. 4b). The cycle can be re-routed to
go via the new paths instead of the edges, and it will contain the root and the
leaves of τ . Hence, the augmented tree is a $-suffix tree and τ is a suffix tree.

If τ is a suffix tree, then it can be augmented to become a $-suffix tree. The
parent of s will survive the selection process. ��
Suppose that there is such a location. Then we can find the parent of the twist
node if it exists. The parent must have a child t such that either d(t) > 0 or
d(t) = 0 and t is an ancestor of s, and we choose t as the twist node. Let the
first letter on the edge to the twist node be a. Then we put the first letter on all
new leaf edges caused by the implicit nodes equal to a. The resulting graph will
be the suffix tour graph of a $-suffix tree. We can use the solution of I et al. [16]
to reconstruct a string S$ realizing this $-suffix tree in linear time. The tree τ
will be a suffix tree of the string S. This completes the proof of Theorem 2.

5 Conclusion and Open Problems

We have proved several new properties of suffix trees, including an upper bound
of n−1 on the length of a shortest string S realizing a suffix tree τ with n nodes.
As noted this bound is tight in terms of n, since the number of leaves in τ , which
can be n − 1, provides a trivial lower bound on the length of S.

Using these properties, we have shown how to decide if a tree τ with n nodes
is a suffix tree in O(n) time, provided that the suffix links of internal nodes and
the first letter on each edge is specified. It remains an interesting open question



A Suffix Tree Or Not a Suffix Tree? 349

whether the problem can be solved without first letters or, even, without suffix
links (i.e., given only the tree structure).

Our results imply that the set of all $-suffix trees is a proper subset of the set
all of suffix trees (e.g., the suffix tree of abaabab is not a $-suffix tree by Lemma 7),
which in turn is a proper subset of the set of all trees (consider, e.g., Fig. 1c).

References

1. Apostolico, A., Crochemore, M., Farach-Colton, M., Galil, Z., Muthukrishnan, S.:
Forty years of text indexing. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS,
vol. 7922, pp. 1–10. Springer, Heidelberg (2013)

2. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003)

3. Breslauer, D., Hariharan, R.: Optimal parallel construction of minimal suffix and
factor automata. Parallel Process. Lett. 06(01), 35–44 (1996)

4. Breslauer, D., Italiano, G.F.: On suffix extensions in suffix trees. Theor. Comp.
Sci. 457, 27–34 (2012)

5. Cazaux, B., Rivals, E.: Reverse engineering of compact suffix trees and links: a
novel algorithm. J. Discrete Algorithms 28, 9–22 (2014)

6. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
Proceedings of the 26th STACS, pp. 289–300 (2009)

7. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string
reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
251–259. Springer, Heidelberg (2010)

8. Duval, J.P., Lecroq, T., Lefebvre, A.: Border array on bounded alphabet. J. Autom.
Lang. Comb. 10(1), 51–60 (2005)

9. Duval, J.P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of border
arrays and validation of string matching automata. RAIRO Theor. Inform. Appl.
43, 281–297 (2009)

10. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
RAIRO Theor. Inform. Appl. 36(3), 249–259 (2002)

11. Gawrychowski, P., Jeż, A., Jeż, �L.: Validating the Knuth-Morris-Pratt failure func-
tion, fast and online. Theory Comput. Syst. 54(2), 337–372 (2014)

12. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

13. I, T., Inenaga, S., Bannai, H., Takeda, M.: Verifying and enumerating parameter-
ized border arrays. Theor. Comput. Sci. 412(50), 6959–6981 (2011)

14. I, T., Inenaga, S., Bannai, H., Takeda, M.: Counting parameterized border arrays
for a binary alphabet. In: Dediu, A.H., Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA
2009. LNCS, vol. 5457, pp. 422–433. Springer, Heidelberg (2009)

15. I., Tomohiro, Inenaga, Shunsuke, Bannai, Hideo, Takeda, Masayuki: Verifying a
Parameterized Border Array in O(n1.5) Time. In: Amir, Amihood, Parida, Laxmi
(eds.) CPM 2010. LNCS, vol. 6129, pp. 238–250. Springer, Heidelberg (2010)

16. I, T., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix trees and
links on a binary alphabet. Discrete Appl. Math. 163, 316–325 (2014)

17. Kucherov, G., Tóthmérész, L., Vialette, S.: On the combinatorics of suffix arrays.
Inf. Process. Lett. 113(22–24), 915–920 (2013)



350 T. Starikovskaya and H.W. Vildhøj

18. Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Verifying a border array in
linear time. J. Comb. Math. Comb. Comput. 42, 223–236 (2002)

19. Starikovskaya, T., Vildhøj, H.W.: A suffix tree or not a suffix tree. arXiv (2014).
http://arxiv.org/abs/1403.1364

20. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

21. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th FOCS
(SWAT), pp. 1–11 (1973)

http://arxiv.org/abs/http://arxiv.org/abs/1403.1364


Deterministic Algorithms for the Independent
Feedback Vertex Set Problem

Yuma Tamura1,2(B), Takehiro Ito1, and Xiao Zhou1

1 Graduate School of Information Sciences, Tohoku University,
Aoba-yama 6-6-05, Sendai 980-8579, Japan

{tamura,takehiro,zhou}@ecei.tohoku.ac.jp
2 JST, ERATO, Kawarabayashi Large Graph Project,

c/o Global Research Center for Big Data Mathematics, NII,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Abstract. A feedback vertex set F of an undirected graph G is a vertex
subset of G whose removal results in a forest. Such a set F is said to
be independent if F forms an independent set of G. In this paper, we
study the problem of finding an independent feedback vertex set of a
given graph with the minimum number of vertices, from the viewpoint of
graph classes. This problem is NP-hard even for planar bipartite graphs
of maximum degree four. However, we show that the problem is solvable
in linear time for graphs having tree-like structures, more specifically,
for bounded treewidth graphs, chordal graphs and cographs. We then
give a fixed-parameter algorithm for planar graphs when parameterized
by the solution size. Such a fixed-parameter algorithm is already known
for general graphs, but our algorithm is exponentially faster than the
known one.

1 Introduction

The feedback vertex set problem for undirected graphs is one of the most classical
NP-hard problems. A feedback vertex set F of an undirected graph G = (V,E) is
a vertex subset of G such that the subgraph of G induced by V \F is a forest. (See
Fig. 1(b) as an example.) For a given undirected graph G, the feedback vertex
set problem is to find a feedback vertex set of G with the minimum number of
vertices. This problem has several applications such as in combinatorial circuit
design [1], constraint satisfaction and Bayesian inference [2].

Recently, Misra et al. [14] introduced the “independence” variant of the feed-
back vertex set problem. Formally, a feedback vertex set F of a graph G is said to
be independent if F forms an independent set of G. (See Fig. 1(c) as an example.
Notice that the feedback vertex set in Fig. 1(b) is not independent.) Note that,
in contrast to (original) feedback vertex sets, there are graphs which have no
independent feedback vertex set; for example, consider the complete graph on
four vertices. For a given undirected graph G, the independent feedback vertex
set problem is to find an independent feedback vertex set of G with the minimum
number of vertices if it exists.
c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 351–363, 2015.
DOI: 10.1007/978-3-319-19315-1 31



352 Y. Tamura et al.

)c()b()a(

Fig. 1. (a) Graph G, (b) an optimal feedback vertex set of G, and (c) an optimal
independent feedback vertex set of G, where each vertex in the feedback vertex sets is
depicted by a large black circle.

For convenience, we sometimes call the feedback vertex set problem the orig-
inal problem, and the independent feedback vertex set problem the independence
variant.

1.1 Related Results and Known Results

The original problem has been intensively studied from various viewpoints, such
as of approximation, fixed parameter tractability (FPT), and tractability on
special graph classes [1,2,9,11,17]. The original problem is APX-complete [1],
and remains NP-hard even for planar graphs of maximum degree four [17].

In contrast to the original problem, as far as we know, there are only two
results for the independence variant. Misra et al. [14] gave an FPT algorithm for
general graphs when parameterized by the solution size k, and gave a kernel of
size O(k3). Their algorithm runs in time O(5knO(1)), where n is the number of
vertices in a graph. Recently, Song [16] improved this running time to O(4kn2).

As Misra et al. pointed out in [14], the original problem can be reduced to the
independence variant in polynomial time in an approximation-preserving man-
ner. This implies that several hardness results for the original problem hold also
for the independence variant: the independence variant is APX-hard for bipar-
tite graphs, and remains NP-hard even for planar bipartite graphs of maximum
degree four. However, such a relationship does not hold for tractable results:
algorithms for the original problem do not work for the independence variant.

1.2 Our Contribution

In this paper, we embark on a systematic investigation of the computational sta-
tus of the independent feedback vertex set problem from the viewpoint of graph
classes. (Figure 2 summarizes known results and our results for the problem.)

We first show that the problem can be solved in linear time for graphs having
tree-like structures, more specifically, for bounded treewidth graphs, chordal
graphs and cographs. Note that these graph classes are incomparable with each
other as shown in Fig. 2, and have “tree-like” structures in difference senses.

We then give a subexponential FPT algorithm for planar graphs when para-
meterized by the solution size k. Our algorithm runs in time 2O(

√
k log k)n, where

n is the number of vertices in a graph, and hence improves the best known run-
ning time O(4kn2) = 2O(k)n2 by Song [16] when restricted to planar graphs.



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 353

bipartite

O(n)
[Thm 3]

NP-hard

APX-hardeven-hole-free

NP-hard

open

P (linear time) O(n + m) 
[Thm 4]cograph

perfect

interval

chordal

planar

general

bounded treewidth

tree

2O(  k log k) n [Thm 2]

2O(t log t) n [Thm 1]

2O(k) n2 [16]

Fig. 2. Known results and our results, where n and m are the numbers of vertices
and edges in a graph, respectively, and t is the treewidth of the graph. Each arrow
represents the inclusion relationship between graph classes: A → B represents that B
is properly included in A [6].

Note that the improvement is achieved in terms of both k and n; especially, the
function depending on k is improved exponentially.

We emphasize that our algorithms are not developed independently: it is
interesting that our FPT algorithm for planar graphs and linear-time algorithm
for chordal graphs employ our linear-time algorithm for bounded treewidth
graphs, although neither planar nor chordal graphs have bounded treewidth
in general.

Due to the page limitation, we omit some proofs from this extended abstract.

1.3 Comparison with Known Techniques

It can be easily shown that the independence variant admits a linear-time
algorithm for bounded treewidth graphs, because any optimization problem that
can be expressed by Extended Monadic Second Order Logic (EMSOL) can be
solved in linear time for bounded treewidth graphs [7]. However, the algorithm
obtained by this method is very slow since the hidden constant factor of the
running time depends on a tower of exponentials in treewidth [12]. On the other
hand, our algorithm runs in time 2O(t log t)n, where n is the number of vertices in
a graph and t is the treewidth of the graph (defined in Sect. 3); thus, its constant
factor is only 2O(t log t).

Recently, Bodlaender et al. [4] developed new techniques to obtain algorithms
for “connectivity problems” which run in time 2O(t)nO(1). Both the original prob-
lem and the independence variant certainly belong to connectivity problems, and
hence we can obtain

(
2O(t)nO(1)

)
-time algorithms for both problems. However,

it seems difficult to obtain an algorithm for the independence variant whose run-
ning time is single exponential in t with keeping the dependence on n is linear,
although the original problem can be solved in time 2O(t)n [4]. To show this,
the

(
2O(t)n

)
-time algorithm uses the property that any super vertex-set of a

feedback vertex set of a graph G forms a feedback vertex set of G, too. However,
this property does not hold for the independence variant.

Therefore, our
(
2O(t log t)n

)
-time algorithm for bounded treewidth graphs

should be interesting in its own right. Furthermore, we note that this running
time is essential to obtain an FPT algorithm for planar graphs whose running
time is subexponential in the parameter and is linear in n.



354 Y. Tamura et al.

2 Preliminaries

In this paper, we assume that graphs are undirected, unweighted, simple and
connected. Let G = (V,E) be a graph; we sometimes denote by V (G) and E(G)
the vertex set and edge set of G, respectively.

For a vertex subset V ′ of a graph G = (V,E), let G[V ′] be the subgraph of
G induced by V ′. A vertex subset V ′ of G is called an independent set of G if
G[V ′] contains no edge. For a subset W ⊆ V , we denote simply by G \ W the
induced subgraph G[V \ W ].

For a graph G, a vertex subset F of G is called a feedback vertex set of G
if G \ F is a forest. In particular, a feedback vertex set F of G is said to be
independent if G[F ] forms an independent set of G. Let

OPT(G) = min{|F | : F is an independent feedback vertex set of G};

we let OPT(G) = +∞ if G has no independent feedback vertex set. For a given
graph G, the independent feedback vertex set problem is to find an independent
feedback vertex set F of G such that |F | = OPT(G).

All algorithms given in this paper only compute the value OPT(G) for a given
graph G. It is easy to modify them so that they actually find an independent
feedback vertex set of G with the minimum number OPT(G) of vertices.

3 Our Results Based on Algorithm for Bounded
Treewidth Graphs

As we have mentioned in Introduction, our results for planar graphs and chordal
graphs employ a linear-time algorithm for bounded treewidth graphs. In this
section, we explain how to obtain these results.

We first define the notion of treewidth. A tree-decomposition of a graph G is
a pair 〈{Xi : i ∈ VT }, T 〉, where T = (VT , ET ) is a rooted tree, such that the
following four conditions (1)–(4) hold [3]:

(1) each Xi is a subset of V (G), and is called a bag for a node i;
(2)

⋃
i∈VT

Xi = V (G);
(3) for each edge (u, v) ∈ E(G), there is at least one node i ∈ VT such that

u, v ∈ Xi; and
(4) for each vertex v ∈ V (G), the set {i ∈ VT : v ∈ Xi} induces a connected

subgraph (subtree) of T .

For example, Fig. 3(b) illustrates a tree-decomposition of the graph G in Fig. 3(a).
We will refer to a node in VT in order to distinguish it from a vertex in V (G).
The width of a tree-decomposition 〈{Xi : i ∈ VT }, T 〉 is defined as max{|Xi|−1 :
i ∈ VT }, and the treewidth of G is the minimum t such that G has a tree-
decomposition of width t. We denote by tw(G) the treewidth of G. Bodlaender
et al. [5] gave the following useful algorithm.



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 355

(a) G

(c) Gi (b) Xi : i ∈ VT }, T

Fig. 3. (a) Graph G, (b) a nice tree-decomposition 〈{Xi : i ∈ VT }, T 〉 of G, and (c) the
subgraph Gi of G for the node i ∈ VT .

Lemma 1 ([5]). For a graph G with n vertices and a positive integer t, there
is a

(
2O(t)n

)
-time algorithm which either outputs tw(G) > t or gives a tree-

decomposition of G whose width is at most 5t + 4.

We now formally state our result for bounded treewidth graphs.

Theorem 1. Let G be a graph whose treewidth is bounded by an integer t. Then,
OPT(G) can be computed in time 2O(t log t)n, where n = |V (G)|.

Our proof for Theorem1 will be given in Sect. 4. In the remainder of this
section, we give two algorithms for planar graphs and chordal graphs, based on
Theorem 1. We note again that neither planar graphs nor chordal graphs have
bounded treewidth in general [6].

3.1 FPT Algorithm for Planar Graphs

The independent feedback vertex set problem is NP-hard even for planar bipar-
tite graphs. In this subsection, we give a subexponential FPT algorithm for
planar graphs when parameterized by the solution size.

Theorem 2. Let k be a positive integer, and let G be a planar graph with n ver-
tices. Then, one can determine whether OPT(G) ≤ k or not in time 2O(

√
k log k)n.

Recall that our FPT algorithm is exponentially faster than the known one (for
general graphs) which runs in time O(4kn2) = 2O(k)n2 [16].

We first give the following lemma, which enables us to apply the algorithm
for bounded treewidth graphs to planar graphs.

Lemma 2. Let G be a planar graph such that OPT(G) ≤ k. Then, tw(G) ≤
c
√

k, where c is a fixed constant.



356 Y. Tamura et al.

We note that, as far as we know, the best constant factor for Lemma 2 is c =
9.546, due to the result of Fomin and Thilikos [10].

We then give our FPT algorithm for planar graphs. Let G be a given planar
graph with n vertices. Then, our algorithm is described as follows.

Step 1. Apply Lemma 1 to G and t = c
√

k. If tw(G) > c
√

k, then the algorithm
terminates and outputs OPT(G) > k.

Step 2. Compute OPT(G) using Theorem 1, and output whether OPT(G) ≤ k
or not.

Lemma 2 ensures the correctness of our algorithm, and hence we here esti-
mate the running time. By Lemma 1, Step 1 can be done in time 2O(

√
k)n. It

should be noted that our algorithm executes Step 2 only when we obtain a tree-
decomposition of G with width at most 5c

√
k + 4 in Step 1; this means that

tw(G) ≤ 5c
√

k + 4. Therefore, by Theorem1 we can compute OPT(G) in time
2O(

√
k log k)n.

This completes the proof of Theorem 2. 	

For a planar graph G with n vertices and a positive integer k, one can also

obtain an FPT algorithm which determines whether OPT(G) ≤ k or not in time
2O(

√
k)nO(1), because there is a

(
2O(t)n′O(1)

)
-time algorithm which computes

OPT(G′) for a graph G′ with n′ vertices and tw(G′) ≤ t [4].

3.2 Linear-Time Algorithm for Chordal Graphs

We then consider the problem restricted to chordal graphs. A graph G is chordal
if every cycle in G of length at least four has a chord, which is an edge joining
non-consecutive vertices in the cycle [6].

Theorem 3. The independent feedback vertex set problem can be solved in linear
time for chordal graphs.

We give such an algorithm as a proof of Theorem3. Indeed, our algorithm for
chordal graphs employs the same strategy as that for planar graphs. Then,
together with Theorem 1, the following lemma establishes Theorem 3.

Lemma 3. For any chordal graph G, tw(G) ≤ 2 if OPT(G) �= +∞.

Proof. For a graph G, we denote by ω(G) the size of a maximum clique in G.
Then, we will prove the following two claims: for any chordal graph G,

(a) tw(G) ≤ 2 if ω(G) ≤ 3; and
(b) ω(G) ≤ 3 if OPT(G) �= +∞.

Clearly, Lemma 3 follows from the claims (a) and (b) above.
The claim (a) holds, because Robertson and Seymour [15] proved that tw(G) =

ω(G) − 1 for any chordal graph G.
We then prove the claim (b) above. Indeed, this claim holds for any graph

which is not necessarily chordal. Suppose that OPT(G) �= +∞ for a graph G,



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 357

and hence G has an independent feedback vertex set F . Since G \ F is a forest,
we have ω(G \ F ) ≤ 2. Furthermore, since G[F ] forms an independent set, we
have ω(G[F ]) = 1. Therefore, ω(G) ≤ ω(G \ F ) + ω(G[F ]) ≤ 3.

This completes the proof of lemma. 	


4 Algorithm for Bounded Treewidth Graphs

In this section, we give a constructive proof of Theorem1.

4.1 Nice Tree-Decomposition

In Sect. 3, we have defined a tree-decomposition of a graph G, based on the
conditions (1)–(4). In particular, a tree-decomposition 〈{Xi : i ∈ VT }, T 〉 of G is
called a nice tree-decomposition if the following conditions (5)–(8) hold [8]:

(5) |VT | = O(n), where n = |V (G)|;
(6) every node in VT has at most two children in T ;
(7) if a node i ∈ VT has two children l and r, then Xi = Xl = Xr; and
(8) if a node i ∈ VT has only one child j, then

• |Xi| = |Xj | − 1 and Xi ⊂ Xj (such a node i is called a forget node); or
• |Xi| = |Xj | + 1 and Xi ⊃ Xj (such a node i is called an introduce node.)

Figure 3(b) illustrates a nice tree-decomposition 〈{Xi : i ∈ VT }, T 〉 of the graph
G in Fig. 3(a) whose treewidth is three.

For a given tree-decomposition of G of width t′, one can transform it into a
nice one of width t′ in time O(t′2n) [8]. Therefore, together with Lemma 1, one
can obtain the following proposition.

Proposition 1. Let G be a graph with n vertices, and let t be a positive integer.
Then, there exists a

(
2O(t)n

)
-time algorithm which either outputs tw(G) > t or

gives a nice tree-decomposition of G whose width is at most 5t + 4.

Let 〈{Xi : i ∈ VT }, T 〉 be a nice tree-decomposition of a graph G. Then,
each node i ∈ VT corresponds to a subgraph Gi of G which is induced by the
vertices that are contained in the bag Xi and the bags for all descendants of
i in T . Therefore, if a node i ∈ VT has two children l and r in T , then Gi

is the union of Gl and Gr which are the subgraphs corresponding to nodes l
and r, respectively. Clearly, G = G0 for the root 0 of T . For example, Fig. 3(c)
illustrates the subgraph Gi of the graph G in Fig. 3(a) which corresponds to the
node i ∈ VT in Fig. 3(b).

4.2 Idea and Definitions

Let G be a graph such that tw(G) ≤ t for a positive integer t, and let 〈{Xi : i ∈
VT }, T 〉 be a nice tree-decomposition of G of width t′. By Proposition 1 we may
assume that t′ ≤ 5t + 4.



358 Y. Tamura et al.

For a node i ∈ VT , let S be any subset of Xi and let π : Xi\S → {0, 1, . . . , t′}
be any mapping; we call such a pair (S, π) a pair on Xi. Then, an independent
feedback vertex set F of Gi is called an (S, π)-set of Gi if the following two
conditions (i) and (ii) hold:

(i) F ∩ Xi = S; and
(ii) two vertices v, w ∈ Xi \ S are contained in the same connected component

in Gi \ F if and only if π(v) = π(w).

Therefore, for an (S, π)-set F of Gi, the set S forms an independent set of G[Xi],
and Gi \F forms a forest. For a pair (S, π) on Xi, we define the value f(Gi;S, π)
as follows:

f(Gi;S, π) = min{|F | : F is an (S, π)-set of Gi}.

If Gi has no (S, π)-set for the pair (S, π), then we let f(Gi;S, π) = +∞.
Our algorithm computes the values f(Gi;S, π) for each node i ∈ VT and all

pairs (S, π) on Xi, from the leaves of T to the root 0 of T , by means of dynamic
programming. Since G0 = G for the root 0 of T , we can compute the optimal
value OPT(G) from the values of f(G0;S, π), as follows:

OPT(G) = min{f(G0;S, π) : (S, π) is a pair on X0}. (1)

4.3 Algorithm

In this subsection, we explain how to compute the values f(Gi;S, π).
(I) The node i is a leaf of T .

Note that Gi = G[Xi] in this case. Thus, for any pair (S, π) on Xi, we can
determine whether the vertex subset S forms an (S, π)-set of Gi. We thus have

f(Gi;S, π) =
{ |S| if S is an (S, π)-set of Gi;

+∞ otherwise.

(II) The node i is an internal node of T .

Suppose that we have already computed the values f(Gj ;Sj , πj) for all children j
of an internal node i in T and their pairs (Sj , πj). Then, we compute f(Gi;S, π)
for the node i and each pair (S, π) on Xi. Since 〈{Xi : i ∈ VT }, T 〉 is a nice
tree-decomposition of G, there are three cases to consider, that is, i is a forget
node, i is an introduce node, and i has two children. We here explain only one
case; the remaining two cases are omitted from this extended abstract.

Case: The node i ∈ VT is a forget node. (See Fig. 4.)
In this case, the node i has exactly one child j in T such that |Xi| = |Xj |−1

and Xi ⊂ Xj . Let v be the vertex in Xj \ Xi. Since Gi = Gj in this case, any
(S, π)-set F of Gi is an independent feedback vertex set of Gj and hence F forms
an (Sj , πj)-set of Gj for some pair (Sj , πj) on Xj . However, since v �∈ Xi , we do
not know from the set S whether v ∈ F or not (and hence v ∈ Sj or not). We
thus consider both the two sub-cases v ∈ F and v �∈ F , and define two values
fa(Gi;S, π) and f b(Gi;S, π) for them; the value f(Gi;S, π) can be computed by
taking the better one.



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 359

Xi

Gi = Gj

Xjv1 v2

v3

v4

Gj

v1 v2

v3

v4

Case (1-a)

Xi

Gi = Gj

Xjv1 v2

v3

v4

Gj

v1 v2

v3

v4

Case (1-b)

Fig. 4. Suppose S = {v1, v4} and only v3 is forgotten from Xj . Case (1-a) depicts an
(S, π)-set F of Gi such that v3 ∈ F , and Case (1-b) depicts an (S, π)-set F of Gi such
that v3 �∈ F .

(1-a) v ∈ F .
Since v ∈ Xj , we have Sj = S ∪ {v} in this sub-case. Then, since v �∈
Xj \ Sj , we have πj = π. Therefore, F is an (S ∪ {v}, π)-set of Gj , and
hence we define fa(Gi;S, π) as follows:

fa(Gi;S, π) = f(Gj ;S ∪ {v}, π).

(1-b) v �∈ F .
We have Sj = S in this sub-case. Then, since v ∈ Xj \Sj = Xj \S, F is an
(S, πj)-set of Gj for some mapping πj : Xj \ S → {0, 1, . . . , t′}. Therefore,
we define f b(Gi;S, π) as follows:

f b(Gi;S, π) = min f(Gj ;S, πj),

where the minimum above is taken over all mappings πj : Xj \ S →
{0, 1, . . . , t′} such that πj(w) = π(w) for all vertices w ∈ Xi \ S.

Then, we can compute the value f(Gi;S, π), as follows:

f(Gi;S, π) = min{fa(Gi;S, π), f b(Gi;S, π)}.

4.4 Running Time

We first estimate the number of all pairs (S, π) on Xi for each node i ∈ VT . For
a nice tree-decomposition 〈{Xi : i ∈ VT }, T 〉 of width t′, each bag Xi contains
at most t′ + 1 vertices of G. Since S ⊆ Xi and π : Xi \ S → {0, 1, . . . , t′}, the
number of all pairs (S, π) on Xi is bounded by

t′+1∑

k=0

(
t′ + 1

k

)

· (t′ + 1)t
′+1−k ≤ 2t

′+1 · (t′ + 1)t
′+1 = 2O(t′ log t′).

Recall that by Proposition 1 we have assumed t′ ≤ 5t+4. Therefore, the number
of all pairs (S, π) on Xi for each node i ∈ VT is bounded by 2O(t log t).

For each leaf i of T and every pair (S, π) on Xi, recall that we simply checked
whether S is an (S, π)-set of Gi. This can be done in time O(t2) because Gi =



360 Y. Tamura et al.

(a)                                                           (b)

v1

v2

v3

v4

v5

v3

V

V
v1 v2 v4 v5

V

U

Fig. 5. (a) Cograph G and (b) its cotree, where each edge in G is depicted by the same
(thick dotted, thin dotted, or thick) line as the corresponding join node of the cotree.

G[Xi] and |Xi| = O(t). Therefore, for each leaf i and all pairs (S, π) on Xi, the
values f(Gi;S, π) can be computed in time O(t2) × 2O(t log t) = 2O(t log t). Since
T has O(n) leaves, the initialization can be done in time 2O(t log t)n in total.

Similar argument shows that, for each internal node i of T and all pairs (S, π)
on Xi, the values f(Gi;S, π) can be computed in time 2O(t log t) from the values
f(Gj ;Sj , πj) for its children j. Since T has O(n) nodes, the values f(G0;S, π)
can be computed in time 2O(t log t)n for all pairs (S, π) on the root 0 of T . By
Eq. (1) the optimal value OPT(G) can be computed in time 2O(t log t) from the
values f(G0;S, π).

This completes the proof of Theorem 1. 	


5 Our Result for Cographs

In this section, we consider the problem restricted to cographs. In contrast
to chordal graphs, a cograph G may have a super-constant treewidth even if
OPT(G) �= +∞. For example, consider a complete bipartite graph Kp,q, which
is a cograph. Then, tw(Kp,q) = min{p, q} and hence it is not bounded by a
constant, even though OPT(Kp,q) = min{p, q} − 1 �= +∞.

We first define the class of cographs (also known as P4-free graphs) [6]. For
two graphs G1 = (V1, E1) and G2 = (V2, E2), their union G1 ∪ G2 is the graph
such that V (G1 ∪ G2) = V1 ∪ V2 and E(G1 ∪ G2) = E1 ∪ E2, while their join
G1 ∨ G2 is the graph such that V (G1 ∨ G2) = V1 ∪ V2 and E(G1 ∨ G2) =
E1 ∪ E2 ∪ {(v, w) : v ∈ V1, w ∈ V2}. Then, a cograph can be recursively defined,
as follows (see Fig. 5(a) as an example):

(1) a graph consisting of a single vertex is a cograph;
(2) if G1 and G2 are cographs, then the union G1 ∪ G2 is a cograph; and
(3) if G1 and G2 are cographs, then the join G1 ∨ G2 is a cograph.

The main result of this section is the following theorem.

Theorem 4. The independent feedback vertex set problem can be solved in linear
time for cographs.

In this section, we give such an algorithm as a proof of Theorem4.



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 361

5.1 Cotree

From the definition of cographs, we can naturally represent a cograph G by a
binary tree, called a cotree of G, defined as follows (see Fig. 5 as an example):
a cotree Tc = (Vc, Ec) of a cograph G is a binary tree such that each leaf of Tc

corresponds to a single vertex in G, and each internal node of Tc has exactly two
children and is labeled with either union ∪ or join ∨. Such a cotree of a given
cograph G can be constructed in linear time [13].

Each node i ∈ Vc corresponds to a subgraph Gi of G which is induced by
all vertices corresponding to the leaves of Tc that are the descendants of i in Tc.
Clearly, G = G0 for the root 0 of Tc.

5.2 Idea and Definitions

Let i be an internal node of a cotree Tc with two children l and r. Suppose that
Gl and Gr have independent feedback vertex sets Fl and Fr, respectively. If i is a
union node and hence E(Gi) = E(Gl)∪E(Gr), then the vertex subset Fl ∪Fr is
clearly an independent feedback vertex set of Gi. On the other hand, if i is a join
node and hence E(Gi) = E(Gl)∪E(Gr)∪{(v, w) : v ∈ V (Gl), w ∈ V (Gr)}, then
the vertex subset Fl ∪ Fr is not always an independent feedback vertex set of
Gi. Indeed, Fl = ∅ or Fr = ∅ must hold to keep the independence. Furthermore,
newly added edges may make cycles in Gi \ (Fl ∪ Fr). However, such a case can
be avoided by the following lemma.

Lemma 4. Let Hl and Hr be forests. Then, the graph Hl ∨Hr is a forest if and
only if at least one of the following (i)–(iv) holds: (i) |V (Hl)| = 0; (ii) |V (Hr)| =
0; (iii) |V (Hl)| = 1 and |E(Hr)| = 0; and (iv) |E(Hl)| = 0 and |V (Hr)| = 1.

Note that |V (Hr)| ≥ 1 may hold in the case (iii) above. Similarly, |V (Hl)| ≥ 1
may hold in the case (iv) above.

According to Lemma 4, we thus characterize an independent feedback vertex
set F of a graph Gi, i ∈ Vc, by the number of vertices in Gi \ F and the number
of edges in Gi \ F . Formally, for a node i ∈ Vc and two integers p ∈ {0, 1, 2}
and q ∈ {0, 1}, a (p, q)-set of Gi is an independent feedback vertex set F of Gi

satisfying the following (i) and (ii):

(i) Gi \ F has no vertex (resp., exactly one vertex) if p = 0 (resp., p = 1); and
Gi \ F has at least two vertices if p = 2; and

(ii) Gi \ F has no edge if q = 0; and Gi \ F has at least one edge if q = 1.

Then, for a node i ∈ Vc and two integers p ∈ {0, 1, 2} and q ∈ {0, 1}, we define
the value g(Gi; p, q), as follow:

g(Gi; p, q) = min{|F | : F is a (p, q)-set of Gi}.

If Gi has no (p, q)-set, then we let g(Gi; p, q) = +∞.
Our algorithm computes the values g(Gi; p, q) for each node i ∈ Vc and all

integers p ∈ {0, 1, 2} and q ∈ {0, 1}, from the leaves of Tc to the root 0 of Tc,



362 Y. Tamura et al.

by means of dynamic programming. Since G0 = G for the root 0 of Tc, we can
compute the optimal value OPT(G) from the values of g(G0; p, q), as follows:

OPT(G) = min
{
g(G0; p, q) : p ∈ {0, 1, 2}, q ∈ {0, 1}}.

Since our algorithm computes only six types of (p, q)-sets for each node i ∈ Vc,
it runs in linear time.

6 Concluding Remark

As shown in Fig. 2, it remains open to clarify the complexity status for even-
hole-free graphs. However, interestingly, the complexity status for even-hole-free
graphs remains open even for the (original) feedback vertex set problem.

Acknowledgments. We are grateful to Saket Saurabh for fruitful discussions with
him. This work is partially supported by JSPS KAKENHI Grant Numbers 25106504
and 25330003.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)

2. Bar-Yehuda, R., Geiger, D., Naor, J., Roth, R.M.: Approximation algorithms for
the feedback vertex set problem with applications to constraint satisfaction and
Bayesian inference. SIAM J. Comput. 27, 942–959 (1998)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25, 1305–1317 (1996)

4. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
I. LNCS, vol. 7965, pp. 196–207. Springer, Heidelberg (2013)

5. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D.,
Pilipczuk, M.: An O(ckn) 5-approximation algorithm for treewidth. In: Proceed-
ings of FOCS 2013, pp. 499–508 (2013)

6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

7. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J.
(ed.) Handbook of Theoretical Computer Science, vol. B, pp. 193–242. MIT Press,
Cambridge (1990)

8. Dorn, F., Telle, J.A.: Two birds with one stone: the best of branchwidth and
treewidth with one algorithm. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN
2006. LNCS, vol. 3887, pp. 386–397. Springer, Heidelberg (2006)

9. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.-Z.,
Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 209–258.
Kluwer Academic Publishers, Dordrecht (1999)

10. Fomin, F.V., Thilikos, D.M.: Dominating sets in planar graphs: branch-width and
exponential speed-up. SIAM J. Comput. 36, 281–309 (2006)



Deterministic Algorithms for the Independent Feedback Vertex Set Problem 363

11. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex
set, and k-disjoint cycles on plane and planar graphs. In: Kučera, L. (ed.) WG
2002. LNCS, vol. 2573, pp. 282–295. Springer, Heidelberg (2002)

12. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64, 19–37 (2012)

13. McConnell, R.M., Spinrad, J.P.: Linear-time modular decomposition of directed
graphs. Discrete Appl. Math. 145, 198–209 (2005)

14. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent
feedback vertex set. Theoret. Comput. Sci. 461, 65–75 (2012)

15. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms 7, 309–322 (1986)

16. Song, Y.: An improved parameterized algorithm for the independent feedback ver-
tex set problem. Theoret. Comput. Sci. 535, 25–30 (2014)

17. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in
cubic graphs. J. Graph Theory 12, 405–412 (1988)



Lossless Seeds for Searching Short Patterns
with High Error Rates

Christophe Vroland1,2,3(B), Mikaël Salson1,2, and Hélène Touzet1,2

1 LIFL, UMR CNRS 8022, Université Lille 1, Villeneuve D’ascq, France
{christophe.vroland,mikael.salson,helene.touzet}@lifl.fr

2 Inria Lille Nord-Europe, Villeneuve D’ascq, France
3 Laboratoire Génétique et Evolution des Populations Végétales, UMR CNRS 8198,

Université Lille1, Villeneuve D’ascq, France

Abstract. We address the problem of approximate pattern matching
using the Levenshtein distance. Given a text T and a pattern P , find all
locations in T that differ by at most k errors from P . For that purpose,
we propose a filtration algorithm that is based on a novel type of seeds,
combining exact parts and parts with a fixed number of errors. Exper-
imental tests show that the method is specifically well-suited for short
patterns with a large number of errors.

1 Introduction

We consider the approximate pattern matching problem where a pattern P is
searched in a text T with a given number of errors k. An error can be defined in
several ways. Here we consider an error as defined by the Levenshtein distance:
either a substitution, an insertion, or a deletion. The problem is to find all the
locations where the pattern matches the text with at most k errors.

Navarro et al. distinguish three main approaches [17]. The first one, neigh-
borhood generation, consists in generating all the strings within the number of
errors of the queried string. Then the generated strings are searched exactly in
the text. This generation is exponential in the number of errors. It is often done
with dynamic programming, bit-parallelism, or finite automata (for instance [27]).

A second approach, partitioning approach, consists in filtering regions of inter-
est. Such regions are found by using pattern substrings, called seeds. Once the
seeds are found in the text, their occurrences must be extended to check if the
pattern occurs within k errors. The pigeonhole principle is used, where the pat-
tern is split in k + ε non-overlapping parts, ε > 0. Then ε parts are searched
exactly, usually ε = 1. However the more errors we allow, the shorter the parts
will be and therefore the more potential occurrences we may have. Thus the
filtration efficiency becomes lower with higher values of k. A recent example of
this method, using a modified Burrows-Wheeler transform is shown in [18].

Finally, the third approach a hybrid of the twoprevious established approaches.
The pattern is split in non-overlapping parts that can be searched with a given

This work was partly supported by the Mastodons project (CNRS).

c© Springer International Publishing Switzerland 2015
J. Kratochv́ıl et al. (Eds.): IWOCA 2014, LNCS 8986, pp. 364–375, 2015.
DOI: 10.1007/978-3-319-19315-1 32



Lossless Seeds for Searching Short Patterns with High Error Rates 365

number of errors. For instance, Navarro and Baeza-Yates [16] designed a hybrid
method which consists of splitting the pattern in j = (m+k)/ logσ n parts, where
σ is the alphabet size, and searching these parts with �k

j � errors. This approach
has also been used with a LZ-index or a FM-index [19].

Each of these search strategies can be directly applied to a string and will be
linear in time depending on the size of the text. For a survey of online algorithms,
refer to [15]. Using a text index, it is also possible to reduce time consumption
at the expense of space consumption. Two main families of indexes are used:
q-gram indexes and full-text indexes. The former allows to efficiently recover
occurrences of a fixed-length word, while the latter allows to search for any pat-
tern of any length. This generally allows one to backtrack so that a word can be
searched with some errors. A third family of indexes consists of indexes specifi-
cally designed for approximate search [2,4,5,13]. However, these indexes are not
compressed indexes, (i.e. whose space consumption is proportional to the empir-
ical entropy of the text) and, to the best of our knowledge, no implementation
of the proposed solutions exists.

Despite all these methods, we think there is a need for algorithms dedicated
to searching short patterns (<50 letters) on a small alphabet (e.g. DNA alpha-
bet) with a medium to high error-rate (7 %–15 %). This can be used in several
applications in computational biology, such as predicting targets of non-protein
coding small RNAs [25] and analysing spacers in CRISPR for potential trans-
fers from viruses or plasmids [22,24], to cite a few. More generally, introducing
some errors would improve the sensitivity in the presence of sequencing errors
or variants. Since we combine a high error rate with a small alphabet, we need
to design a method with a good filtration efficiency. This is necessary to limit
the number of false positives, thus the number of unnecessary verifications. In
this paper, we present a new hybrid method where the pattern will be split in
non-overlapping parts, some of them being searched without error, while others
are searched with a limited number of errors.

In Sect. 2, we detail the novel type of seeds we will use and show some proper-
ties of those seeds. We also show that in practice those seeds are efficient filters.
In Sect. 3, we explain how we make use of those seeds in our algorithm and how
they are searched in a compressed index. In Sect. 4 we show some experimental
results on DNA with random sequences and real data.

2 Approximate Seeds for the Levenshtein Edit Distance

Let A be a finite alphabet. Given two strings u and v of A∗, define lev(u, v) to
be the Levenshtein distance between u and v. This is the minimum number of
operations needed to transform u into v, where the only allowed operations are
substitution of a single character and deletion or insertion of a single character.
Each such operation is also called an error. From now on, we assume that a
given natural number k corresponds to a maximum number of errors.

Let P be a pattern of length m over A. Using the pigeonhole principle, it
is well-known that if P is partitioned into k + 1 parts, then every string U ,



366 C. Vroland et al.

such that lev(P,U) ≤ k, contains at least one of these parts. Similarly, if P
is partitioned into k + 2 parts, denoted P1, . . . , Pk+2, then U should contain at
least two disjoint parts of P . The parts do not need to be of the same length.
The following lemma allows to push the analysis further. It is indeed possible to
request that these two parts be separated by parts with exactly one error.

Lemma 1. Let U be a string of A∗ such that lev(P,U) ≤ k. Then there exists
i, j, 1 ≤ i < j ≤ k + 2, and U1, . . . , Uj−i−1 of A∗ such that

1. PiU1 . . . Uj−i−1Pj is a substring of U , and
2. When j > i + 1, for each �, 1 ≤ � ≤ j − i − 1, lev(Pi+�−1, U�) = 1.

Example 1. Assume k = 3. Given the pattern P = AACGTGAGGTAGGTTCCATG of
length 20, we partition it into five parts, of equal length: P1 = AACG, P2 = TGAG,
P3 = GTAG, P4 = GTTC, and P5 = CATG. Consider three strings whose Lev-
enshtein distance with P is 3: AACGGAGGTAAGTTCTCATG, AACGTAGGCAAGTTCCATG
and ATCGTGACGTAGGGTCCATG. For each string, we show in Fig. 1 the parts that
fulfil the conditions of Lemma1.

P1 P2 P3 P4 P5

A A C G

| | | |
A A C G

0

T G A G

| | |
- G A G

1

G T A G

| | |
G T A A

1

G T T C

| | | |
G T T C

0

- C A T G

| | | |
T C A T G

P1 P2 P3 P4 P5

A A C G

| | | |
A A C G

T G A G

| | |
T - A G

G T A G

| |
G C A A

G T T C

| | | |
G T T C

0

C A T G

| | | |
C A T G

0

P1 P2 P3 P4 P5

A A C G

| | |
A T C G

T G A G

| | |
T G A C

G T A G

| | | |
G T A G

0

G T T C

| | |
G G T C

1

C A T G

| | | |
C A T G

0

Fig. 1. Application of Lemma 1 for sequences of Example 1. The pattern
AACGTGAGGTAGGTTCCATG is on the top of each alignment. The two parts with no error
(written Pi and Pj in the Lemma) are highlighted in dark grey, and the parts with 1
error surrounded by Pi and Pj are highlighted in light grey.

We rephrase Lemma 1 as a pure counting problem and establish its proof.

Lemma 2. Let k be a natural number. Assume you have k +2 containers num-
bered from 1 to k + 2, and y tokens with 0 ≤ y ≤ k. Then there exists two
containers i and j, 1 ≤ i < j ≤ k + 2, such that



Lossless Seeds for Searching Short Patterns with High Error Rates 367

1. containers i and j are empty, and
2. for each �, i < � < j, the container � contains exactly one token.

Proof. The proof is by recurrence on k.

– If k = 0. In this case, we have two containers that are both empty: i = 1 and
j = 2 is a solution for our problem.

– If k > 0:

Case 1: The first container is not empty, or the total amount of tokens y is strictly
inferior to k. In this case, containers 2 to k+2 contain at most k−1 tokens. The
recurrence hypothesis yields that there exists i and j, with 2 ≤ i < j ≤ k + 2,
which solves our problem.
Case 2: The first container is empty, and the total amount of tokens is exactly
k. In general, we know that at least one of the containers among 2, . . . , k + 2 is
empty. Let x ≥ 2 be the number of empty containers and i1, i2, . . . , ix be their
indices. We must have at least one pair (ip, ip+1) with 1 ≤ p < x, such that each
intervening container �, ip < � < ip+1 contains a single token. Therefore, we have
x − 1 candidates.

We have k + 2 − x non-empty containers. All of them have at least one token,
so we have k− (k+2−x) = x−2 tokens left. The x−2 remaining tokens must be
distributed in the non-empty containers. In the worst case scenario, the tokens will
be distributed in x − 2 distinct containers, each one being in-between a different
candidate pair. Since we have x − 1 candidate pairs, there remains at least one
candidate pair whose intervening containers contain exactly one token. ��
As a consequence of Lemma 1, we can design a seeding framework for lossless
filtering for the approximate pattern matching problem with k errors. To this
end, we introduce some terminology that will be used in the remaining of the
paper.

Definition 1. Let P = P1 . . . Pk+2 be a pattern divided into k + 2 parts. Then
the 01∗0 seed for P and k is the regular expression

∪k+1
i=1 ∪k+2

j=i+1 Pi lev1(Pi+1) . . . lev1(Pj−1) Pj

where lev1(u) denotes the set of strings whose Levenshtein distance with u is 1.
A subseed is the regular expression associated to a given pair (i, j):

Pi lev1(Pi+1) . . . lev1(Pj−1) Pj .

An instance of a seed, or of a subseed, is a string u of A∗ which is recognized by
the seed, or the subseed. Given a text T on A∗, an occurrence of the seed for P
is a substring of T which is an instance of the seed. Therefore, an occurrence is
characterized by its start position and its end position in T .

The filtration efficiency is the primary criterion used to evaluate the performance
of a seed. To estimate it, we generated an independent and identically distributed



368 C. Vroland et al.

random sequence of length 108 over the DNA alphabet {A,C,G, T} as well as
100 patterns of length 20. We then searched for our 01∗0 seed for k = 3. For
each pattern, we counted the total number of occurrences of the seed in the
text, including overlapping occurrences. The distribution is plotted in Fig. 2-(a).
The average number of observed occurrences per pattern is 6,665. To compare
with exact seeds, we report analogous results obtained with filtration based on q-
grams in the same text as well as the same collection of patterns. First, we divide
the pattern in k + 1 = 4 parts, leading to q-grams of length 5, which guarantees
lossless filtration (Fig. 2-(b)). We also divide the pattern in three parts, of lengths
6, 7, and 7 (Fig. 2-(c)). This seed is less sensitive since it allows for some false
negatives. In the first case, the average number of occurrences is 390,635, and in
the latter case, it is 36,644. Both distributions are shown in Fig. 2-(b,c). These
empirical measurements show that the 01∗0 seed is significantly more selective
than exact seeds, such as q-grams. Of course, this higher selectivity comes at the
price of some additional work to locate seeds in the text. However, the fact
that errors are not randomly distributed within the seed drastically reduces the
combinatorics.

(a) (b) (c)

6,500

6,600

6,700

6,800

389,000

390,000

391,000

392,000

36,500

37,000

Fig. 2. Distribution of the number of occurrences of three different seeds for 100 pat-
terns of size 20 in a random sequence of length 108. This filtration is done (a) with the
01∗0 seed for k = 3 and m = 20, (b) by dividing the pattern in 4 parts of length 5,
(c) by dividing the pattern in 3 parts of lengths 6, 7, and 7, respectively. For each
box plot, the bottom and top of the box are the first and third quartiles. The band
inside the box is the median, and the ends of the whiskers represent the minimum and
maximum of all of the data. There is on average 26.85 occurrences of the whole pattern
within 3 errors.

To conclude this section, we introduce a new Lemma that is a direct conse-
quence of Lemma 2, and that will be useful in the forthcoming section.

Lemma 3. Let k be a natural number. Assume you have k +2 containers num-
bered from 1 to k+2, and y tokens with 0 ≤ y ≤ k. Assume j to be the container
furthest to the right, such that there exists some i, such that the pair (i, j) fulfils
the conditions of Lemma 2. Then the total number of tokens present in containers
from j + 1 to k + 2 is at least k − j + 2.

Proof. Consider the containers numbered from i+1 to k+2, which makes k−i+2
containers. By hypothesis, these containers do not contain a 01∗0 seed. So the
contraposition of Lemma 2 ensures that these containers contain strictly more



Lossless Seeds for Searching Short Patterns with High Error Rates 369

than k − i tokens. Furthermore, by definition of i and j, there is exactly one
token in each container ranging from i+1 to j −1, thus making j − i−1 tokens,
while the container j is empty. As a consequence, the total number of tokens in
containers j + 1, . . . , k + 2 is strictly greater than k − i − (j − i − 1) = k − j + 1.
So, it is at least k − j + 2. ��

3 Algorithm

Let T be a text over the alphabet A∗. The problem we consider now is that of
finding matches of P with at most k errors in T . For this we devise an efficient
filtration algorithm based on the seeding framework introduced in Sect. 2. It is
necessary to keep in mind that we want to search small patterns (several dozens
of letters) in large texts (millions or billions of letters) with small alphabets (e.g.
DNA). We first justify our choice of using a FM-index. Then we explain how
seeds are searched for and how they are extended when necessary.

3.1 Choice of Index

As we have biological applications in mind (e.g. searching small DNA sequences
on large genomes), we are in the situation where the text is known in advance.
Moreover, we may have millions of short sequences to be queried in the text.
This situation is particularly suitable for text indexes.

Since patterns do not have fixed sizes, full-text indexes are more appropriate.
Furthermore, to limit space consumption, compressed indexes appear to be the
indexes of choice. Among compressed indexes, FM-indexes [8] have an optimal
time complexity for counting the occurrences of a pattern, while pattern search
is more complex and counting is more time consuming with LZ-indexes [7].

3.2 Seed Filtration

Given a pattern P , we enumerate all possible subseeds for the pattern. Each
subseed for P is characterized by two parts Pi and Pj , 1 ≤ i < j ≤ k + 2,
that occur exactly in the text. According to Lemma2, all the intervening parts
between Pi and Pj must be searched with exactly one error. We recall that in the
FM-index, patterns are searched backwards, therefore, we first start by searching
any part P�, with 1 < � ≤ k + 2, assuming it is Pj . This is an exact search in
the index. Then the parts preceding P� are searched with at most one error (by
backtracking as in BWA for instance [12]). When a part is found exactly, we
know that Pi has been reached. Starting with P�, we can have several parts that
fulfill our requirements; on reaching different parts Pi1 , . . . , Piq each of them
matching exactly at different locations in the text. All the possible solutions are
searched. If P� cannot be found exactly or if a part cannot be found with at
most one error, this P� is skipped and we move on the next one. Therefore, at
most we will have considered the (k+1)(k+2)

2 possible pairs (i, j).



370 C. Vroland et al.

Example 2. Let us continue with Example 1, also shown in Fig. 1: k = 3 and P =
AACG TGAG GTAG GTTC CATG, which is partitioned into 5 parts of equal length.
Assume that this text is the concatenation of the three strings at distance 3
from P :
T =AACGGAGGTAAGTTCTCATGAACGTAGGCAAGTTCCATGATCGTGACGTAGGGTCCATG.

– The algorithm first tries j = 5. P5 = CATG is found with no error in the FM-
index. So, it has some exact occurrences in the text. Therefore, we continue to
go through the FM-index to extend P5 to the left and find all possible values
for i. We find i = 4 (P4 occurs exactly), i = 3 (P4 occurs with one error and
P3 exactly) and i = 1 (P4, P3 and P2 occur with one error and P1 exactly).
This gives three different seed instances, leading to three seed occurrences.

– With j = 4, GTTC occurs exactly in the FM-index, and correspond to two
occurrences in T . By extending P4 to the left, we keep just one instance since
the second one cannot be extended to P3 = GTAG with at most one error.

Note that in this particular case, the first occurrence of P in T is covered
by two overlapping 01∗0 seeds, characterized by i = 1 and j = 5, and i = 1
and j = 4, respectively. This redundancy is solved with the extension and
verification step, which is described in the next subsection.

– With j = 3, we have two occurrences of GTAG in the text. The first one
cannot be extended to the left with P2 = TGAG. As for the second occurrence,
P2 is found with one error, but P1 = AACG does not exactly match. So, the
occurrence is discarded.

– With j = 2, there is no exact occurrence of the part TGAG in the text.

At this point, all the seed instances occurring in the text are identified. We then
proceed to the elongation and verification step.

3.3 Elongation and Verification

To perform the elongation of an instance of the seed, we first need to have a deeper
look at the error distribution along the pattern. We know that the subseed instance
has a Levenshtein distance of j − i−1 with Pi . . . Pj , which makes j − i−1 errors.
Via Lemma 3, we know that there are at least k − j + 2 errors in Pj+1 . . . Pk+2.



Lossless Seeds for Searching Short Patterns with High Error Rates 371

So, since the total number of errors should not exceed k, there should be at most
i − 1 errors in P1 . . . Pi−1. As a consequence, each seed instance is first extended
to the left, to find P1 . . . Pi−1 with at most i − 1 errors. To gain more efficiency,
this extension is directly carried out in the FM-index to filter out candidates.
Indeed, the retrieval of the positions of occurrences is the most time consuming
part in an FM-index (in O(log1+ε n) per occurrence [9]). Once this extension is
performed, the occurrences of P1 . . . Pj are retrieved. Then the extension to the
right is performed in the text using a banded dynamic programming algorithm.
The starting point of the extension is the ending position of the occurrence of
P1 . . . Pj in the text. Let us assume that an instance of a given prefix P1 . . . Pj

has been found with e errors in the FM-index. Thus, Pj+1 . . . Pk+2 must be
searched with at most k − e errors in the text. Therefore, the bandwidth is
2 × (k − e) + 1 in the dynamic programming algorithm. Note that the extension
to the right could also have been performed in the index using a bidirectional
Burrows-Wheeler transform [3,21]. That would, however, increase the memory
footprint and provide only a moderate speed up, since many false positive seed
instances have been removed at this step.

3.4 Implementation

Our algorithm was implemented in a software called Bwolo. Bwolo is written in
C++, with the help of SeqAn library and the FM-Index implemented within [6].
It is open source and can be downloaded from http://bioinfo.lifl.fr/bwolo. In this
implementation, patterns are divided into parts whose length differ by at most
one character.

4 Experimental Results

In this section, we present some experimental results in order to measure the
performance of our algorithm. We compare Bwolo to a selection of tools that were
chosen for their complementarity. Widely utilized in bioinformatics, Exonerate is
a generic tool for pair-wise sequence alignment, which uses exact sparse dynamic
programming to perform the search. [23]. We use it as a standard for an on-line
exact algorithm for our problem. RazerS3 is a read mapping program based
on counting q-grams [26]. It performs the verification via an implementation of
the improved Myers bit-vector algorithm proposed by Hyyr [10]. RazerS3 works
without a precomputed index for the text. So, we also selected Bowtie2 [11], that,
like our tools, indexes the text with an FM-index. It then uses backtracking for
handling errors and dynamic programming to build the full alignment. Lastly, we
used an in-house implementation for approximate search in an FM-index written
with the SeqAn library. It is based on a simple breadth-first search method with
no prior filtration. Unfortunately, we were not able to include hybrid methods
described in [19] in our benchmark, since the implementation is not available.

All these tools were configured to be full sensitive and output all occurrences
of the pattern: option --exhaustive for Exonerate, --filter pigeonhole

http://bioinfo.lifl.fr/bwolo


372 C. Vroland et al.

--percent-identity [Id] --recognition-rate 100 such that [Id] = 100 ×
(1− k

m ) for RazerS3 and -a -L [Seeds] -i C,[Seeds],0 such that [Seeds] = m
k+1

for Bowtie2. Moreover, for each tool the score system is based on the unit score,
which computes the Levenshtein distance.

The tests were run on a single thread of a server equipped with two Intel(R)
Xeon(R) CPU E5-2420 and 205 GB of RAM. The CPU time and the memory
consumption were measured using the GNU time command.

4.1 Randomly Generated Sequences

This first test uses independent and identically distributed sequences on the
DNA alphabet. The size n of the sequences ranges from 104 to 109. We also
generated 100 patterns of 20 nt at random and measured the computation time
of each tool for k = 2 and k = 3. Results are shown in Fig. 3.

In both cases, Bwolo is the fastest tool for long sequences, from 106 nt. As
expected, the added-value of Bwolo is even more obvious when k = 3. Tools
with no filtration, Exonerate and the exact search in the FM-index, are slow.
Bowtie2 operates slowly compared to all the other tools, especially with larger
values of n. This confirms that Bowtie2’s heuristics, which have been designed
for long patterns (at least 50 nt) and few errors, is not well adapted to shorter
patterns with higher error rate. Unfortunately, there is not yet a specialized tool
for this type of problem. In our benchmark, Bowtie2 is obliged to use a seed
with low filtering power that lets too many occurrences happen. This dramati-
cally increases the verification effort due to the cost of retrieving text positions
from the FM-index. Interestingly enough, RazerS3, which uses the same seed,
functions well on this data. This is consistent with the fact that a linear method
can, in certain conditions for large k and n, be more efficient than a method
based on a text index [16]. However, Bwolo is still five times faster than RazerS3
for sequences of length 109. Indeed, the number of seed occurrences is an order
of magnitude less with Bwolo, which offsets the additional time needed to query
the FM-index in the verification step.

For k = 2, we can observe that there are fewer differences in the CPU time
between FM-index and Bwolo on larger texts. The former takes 18.4 s on the
1 GB sequence while the latter takes 13.8 s. This small difference is actually
misleading. Loading the index from disk (which is the same in both cases) and
unserializing the data structures takes 12 s on that same sequence. Ignoring the
loading of the index leads to a three-fold speedup using the 01∗0 seeds compared
to the breadth-first approach. With a higher error rate (k = 3) we have a seventy-
five-fold speedup on the 1 GB sequence. For the sake of comprehensiveness, we
should mention that RazerS3 takes 8 s to load the 1 GB sequence from disk.

All tools have a reasonable memory consumption, independent of the value
of k, which grows linearly with the size of the text. For example, it is 27 MB
for Bwolo, 99 MB for Bowtie2, 25 MB for RazerS3, and 31 MB for Exonerate
for n = 107. The memory consumption of Bwolo and Bowtie2 is dominated by
the size of the FM-index. It is larger for Bowtie2 because it also deals with the
inverted text and uses a different implementation. It is quite surprising that



Lossless Seeds for Searching Short Patterns with High Error Rates 373

104 105 106 107 108 109
10−2

10−1

100

101

102

103

104

Sequence length

T
im

e
(s

ec
on

ds
)

k = 2

104 105 106 107 108 109

Sequence length

k = 3

Bwolo FM-index Bowtie2 Exonerate RazerS3

Fig. 3. Running time for 100 randomly generated sequences. Both axes are in log-
arithmic scale. Bwolo is our algorithm. FM-index refers to the breadth-first search
implementation in a FM-index.

Table 1. Running time on the Human genome benchmark. All times are in seconds,
and the memory in Mo. NA: non available.

Index construction 10, 000 reads 107 reads

Time Memory Time Memory Time Memory

Bwolo 7, 594 9, 584 97 6, 522 55, 493 9, 054

RazerS3 0 0 502 6, 469 467, 413 152, 045

Bowtie2 10, 584 5, 379 156, 164 8, 260 NA NA

RazerS3 and Exonerate have a memory peak in the same order. It may be
possible that they load both all the text and keep all results in memory.

4.2 Reads from the Human Genome

In order to test our algorithm with an external dataset made of short sequences
we relied on the work done by Schbath et al. [20]. Their H3 dataset contains
10 millions of reads of length 40nt that have been generated from the Human
genome (assembly 37.1 from the NCBI, 25 chromosomes for 2.7 Gbp) with
exactly three mismatches. Compared to the previous test, it allows us to eval-
uate the performance of the software with longer patterns, hence longer seeds.
The maximum number k of errors is 3 (including indels, not only substitutions).
We ran Bwolo, RazerS3, and Bowtie2 on the full set of reads (107 reads). Since



374 C. Vroland et al.

we were not able to obtain results with Bowtie2 on the full dataset within a
reasonable amount of time, we also used a random selection of 10,000 reads.
Table 1 shows the results. As in the previous test, Bwolo achieves the best per-
formances. However, the difference between Bwolo and RazerS3 was even more
striking than in the previous test. This is due to the time needed to load the
index. It was negligible on this dataset, but it constituted an important part of
the search time with a much smaller dataset in the previous test.

5 Conclusion

We have introduced a new seed framework, which we named 01∗0 seeds. These
seeds achieve a good balance between the filtration step and the verification
effort. Moreover, we have shown that they can be efficiently searched in a com-
pressed full-text index, such as the FM-index. We believe that this method is
especially well-suited to deal with patterns containing a high rate of errors and
constitutes a promising alternative to existing algorithms. In this paper, we chose
to show how to apply these seeds to searching a preprocessed text stored in an
index. Our results offer some other perspectives. For instance, when dealing with
a large collection of patterns, preprocessing them would allow us to take advan-
tage of the parts that are shared among several patterns in order to speed up the
algorithm. The filtration algorithm could also be applied online. Identifying the
01∗0 seeds requires us to identify an exact part first, which we then extend to
the 1∗ parts. This can be performed efficiently using bit-wise operations. Once
the seeds are identified, we can compute the left and right extensions using a
bit-parallel algorithm [14].

The generalisation of 01∗0 seeds to (01∗)ε0 could also be promising in further
studies. This would not be as straightforward as one would think, since splitting
the pattern in k + 1 + ε parts is not sufficient.

Finally, albeit having been beyond the scope of this paper, an important
aspect to thoroughly analyze would be the average case of our algorithm, as
Baeza-Yates and Perleberg did in [1].

References

1. Baeza-Yates, R.A., Perleberg, C.H.: Fast and practical approximate string match-
ing. Inf. Process. Lett. 59(1), 21–27 (1996)

2. Belazzougui, D.: Improved space-time tradeoffs for approximate full-text indexing
with one edit error. Algorithmica, pp. 1–27 (2014)

3. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013)

4. Chan, H.L., Lam, T.W., Sung, W.K., Tam, S.L., Wong, S.S.: A linear size index
for approximate pattern matching. J. Discrete Algorithms 9(4), 358–364 (2011)

5. Chávez, E., Navarro, G.: A metric index for approximate string matching. In:
Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 181–195. Springer,
Heidelberg (2002)



Lossless Seeds for Searching Short Patterns with High Error Rates 375

6. Döring, A., Weese, D., Rausch, T., Reinert, K.: SeqAn an efficient, generic C++
library for sequence analysis. BMC Bioinformatics 9(1), 11–19 (2008)

7. Ferragina, P., González, R., Navarro, G., Venturini, R.: Compressed text indexes:
from theory to practice. J. Exp. Algorithmics (JEA) 13, 12 (2009)

8. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM (JACM) 52(4),
552–581 (2005)

9. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Trans. Alg. (TALG) 3(2) (2007)

10. Hyyrö, H.: A bit-vector algorithm for computing levenshtein and damerau edit
distances. Nord. J. Comput. 10(1), 29–39 (2003)

11. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nat.
Meth. 9(4), 357–359 (2012)

12. Li, H., Durbin, R.: Fast and accurate short read alignment with burrows-wheeler
transform. bioinformatics 25(14), 1754–1760 (2009). (Oxford, England)

13. Maaß, M.G., Nowak, J.: Text indexing with errors. J. Discrete Algorithms 5(4),
662–681 (2007)

14. Myers, G.: A fast bit-vector algorithm for approximate string matching based on
dynamic programming. J. ACM 46(3), 395–415 (1999)

15. Navarro, G.: A guided tour to approximate string matching. ACM comput. surv.
(CSUR) 33(1), 31–88 (2001)

16. Navarro, G., Baeza-Yates, R.: A hybrid indexing method for approximate string
matching. J. Discrete Algorithms 1, 19–27 (2001)

17. Navarro, G., Sutinen, E., Tanninen, J., Tarhio, J.: Indexing text with approximate
q-grams. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp.
350–363. Springer, Heidelberg (2000)

18. Petri, M., Culpepper, J.S.: Efficient indexing algorithms for approximate pattern
matching in text. In: Proceedings of the Seventeenth Australasian Document Com-
puting Symposium, ADCS 2012, pp. 9–16. ACM, New York (2012)

19. Russo, L., Navarro, G., Oliveira, A.L., Morales, P.: Approximate string matching
with compressed indexes. Algorithms 2(3), 1105–1136 (2009)

20. Schbath, S., Martin, V., Zytnicki, M., Fayolle, J., Loux, V., Gibrat, J.F.: Mapping
reads on a genomic sequence: an algorithmic overview and a practical comparative
analysis. J. Comput. Biol. 19(6), 796–813 (2012)

21. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

22. Shah, S.A., Hansen, N.R., Garrett, R.A.: Distribution of CRISPR spacer matches
in viruses and plasmids of crenarchaeal acidothermophiles and implications for
their inhibitory mechanism. Biochem. Soc. Trans. 37(1), 23 (2009)

23. Slater, G.S.C., Birney, E.: Automated generation of heuristics for biological
sequence comparison. BMC Bioinformatics 6, 1–11 (2005)

24. Stern, A., Keren, L., Wurtzel, O., Amitai, G., Sorek, R.: Self-targeting by CRISPR:
gene regulation or autoimmunity? Trends Genet. 26(8), 335–340 (2010)

25. Storz, G., Altuvia, S., Wassarman, K.M.: An abundance of RNA regulators. Annu.
Rev. Biochem. 74, 199–217 (2005)

26. Weese, D., Holtgrewe, M., Reinert, K.: RazerS 3: faster, fully sensitive read map-
ping. Bioinformatics 28(20), 2592–2599 (2012)

27. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35(10),
83–91 (1992)



Author Index

Abu-Khzam, Faisal N. 1
Adamaszek, Anna 13
Alfalayleh, Mousa 24
Apollonio, Nicola 37

Barton, Carl 49
Blanchet-Sadri, Francine 62, 74, 86
Blin, Guillaume 13
Bonnet, Édouard 1
Brankovic, Ljiljana 24

Caramia, Massimiliano 37
Choi, Ilkyoo 98
Chung, Fan 110
Cichacz, Sylwia 122
Colbourn, Charles J. 274
Collister, Daniel 250
Cordier, Michelle 62

Djelloul, Selma 128
Durocher, Stephane 140

Ekstein, Jan 98
El-Zanati, Saad I. 153
Eynden, Charles Vanden 153

Franciosa, Paolo Giulio 37

Holub, Přemysl 98

Iliopoulos, Costas S. 49
Irving, Robert W. 213
Ito, Takehiro 164, 351

Jäger, Gerold 188
Jayapaul, Varunkumar 176
Jo, Seungbum 176
Jongthawonwuth, Uthoomporn 153
Jordon, Heather 153

King, Valerie 307
Kirsch, Rachel 62
Kriege, Nils 200
Kurpicz, Florian 200
Kwanashie, Augustine 213

Laforest, Christian 262
Larjomaa, Tommi 226
Lidický, Bernard 98
Lindzey, Nathan 238
Liu, Daphne Der-Fen 250
Lohr, Andrew 74

Manlove, David F. 213
Manuel, Paul 298
Mehrabi, Saeed 140
Momège, Benjamin 262
Murray, Patrick C. 274
Mutzel, Petra 200

Nikkel, Jordan 86
Nooka, Hiroyuki 164

Palios, Leonidas 286
Parthiban, N. 298
Peczarski, Marcin 188
Pissis, Solon P. 49
Popa, Alexandru 13, 226

Quigley, J.D. 86

Rahmati, Zahed 307
Rajalaxmi, T.M. 298
Rajan, R. Sundara 298
Rajasingh, Indra 298
Raman, Venkatesh 176
Rizzi, Romeo 318

Sacomoto, Gustavo 318
Sagot, Marie-France 318
Salson, Mikaël 364
Saputro, Suhadi Wido 330
Satti, Srinivasa Rao 176
Sikora, Florian 1
Simanjuntak, Rinovia 330
Simpson, Olivia 110
Smyth, William F. 49
Sng, Colin T.S. 213
Starikovskaya, Tatiana 338

Tamura, Yuma 351
Touzet, Hélène 364
Tzimas, Petros 286

Uttunggadewa, Saladin 330

Vildhøj, Hjalte Wedel 338
Vroland, Christophe 364

Whitesides, Sue 307

Zhang, Xufan 86
Zhou, Xiao 164, 351


	Preface
	Organization
	Contents
	On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism
	1 Introduction
	2 Preliminaries
	3 Structural Parameterization of Maximum Common Induced Subgraph
	4 Maximum Common Connected Induced Subgraph
	5 Conclusion
	References

	Approximation and Hardness Results for the Maximum Edges in Transitive Closure Problem
	1 Introduction
	2 APX-hardness of MEC for |C|=3
	3 Approximation of MEC for an Unbounded Number of Colors
	3.1 A Positive Result
	3.2 A Negative Result

	4 Conclusions and Future Work
	References

	Quantifying Privacy: A Novel Entropy-Based Measure of Disclosure Risk
	1 Introduction
	2 Introduction to Statistical Disclosure Control and Related Work on Disclosure Risk Measures
	3 A Novel Entropy-Based Measure
	4 A Dynamic Programming Algorithm to Compute H()
	5 The Experiments: Description and Implementation
	6 Discussion and Conclusion
	References

	On the Galois Lattice of Bipartite Distance Hereditary Graphs
	1 Introduction
	2 Preliminaries
	3 Characterizing BDH Graphs by Their Galois Lattices
	3.1 Proof of the if Part
	3.2 Proof of the only if Part

	4 Encoding L(G) and Efficiently Computing Maximal Bicliques
	References

	Fast and Simple Computations Using Prefix Tables Under Hamming and Edit Distance
	1 Introduction
	2 Efficient Computation of kH and kH
	2.1 Average-Case Algorithm for Computing kH
	2.2 Worst-Case Algorithm for Computing kH
	2.3 Computing kH from kH

	3 Application I: Approximate String Matching with k-Mismatches via Filtering kH
	3.1 Experimental Results

	4 Application II: Longest Approximate Overlap of Two Strings with k-Mismatches
	5 Efficient Computation of kE and kE
	References

	Border Correlations, Lattices, and the Subgraph Component Polynomial
	1 Introduction
	2 Preliminaries
	3 Period and Border Correlations
	4 Valid Colorings of Undirected Graphs Using the Subgraph Component Polynomial
	5 Population Size
	6 Conclusion
	References

	Computing Minimum Length Representations of Sets of Words of Uniform Length
	1 Introduction
	2 Representable Sets and Rauzy Graphs
	3 Bound on the Cardinality of Comp(S)
	4 Membership of Circular Representability in P
	5 Computing Minimal (Circular) Representation Words
	6 Conclusion and Open Problems for Future Work
	References

	Computing Primitively-Rooted Squares and Runs in Partial Words
	1 Introduction
	2 Preliminary Definitions and Results
	3 Computing All PR-Square Factor and Run Occurrences
	4 Counting All PR-Square Subword Occurrences
	5 Conclusion
	References

	3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem2
	References

	Computing Heat Kernel Pagerank and a Local Clustering Algorithm
	1 Introduction
	1.1 Previous Work
	1.2 Our Contributions

	2 Preliminaries
	2.1 A Local Cheeger Inequality
	2.2 Heat Kernel and Heat Kernel Pagerank

	3 Heat Kernel Pagerank Approximation
	4 Finding Good Local Cuts
	4.1 A Local Graph Clustering Algorithm

	References

	A -magic Rectangle Set and Group Distance Magic Labeling
	1 Definitions
	2 A -magic Rectangle Set MRS(a, b; c)
	3 Group Distance Magic Graphs
	References

	Solving Matching Problems Efficiently in Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 maxDMM in Arbitrary Bipartite Graphs
	4 Complete Bipartite Graphs
	5 Bisplit Graphs
	5.1 The Break Points of a Bisplit Graph
	5.2 Vertex Covers
	5.3 Matching and Counting All Maximum Matchings
	5.4 Counting All Perfect Matchings in Threshold Graphs

	6 Further Work
	References

	A 3-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras
	1 Introduction
	2 Preliminaries
	3 A 3-Approximation Algorithm
	3.1 Pocket Segments and Desert Regions
	3.2 Characterizing Desert Regions
	3.3 Analyzing the Algorithm

	4 Conclusion
	References

	On Decomposing the Complete Graph into the Union of Two Disjoint Cycles
	1 Introduction
	2 Quasigroups and the Bose Construction
	3 G-decompositions of K(2k+1)n and of Kk 2n
	4 Main Result
	5 Final Comments
	References

	Reconfiguration of Vertex Covers in a Graph
	1 Introduction
	1.1 Our Problems
	1.2 Related and Known Results
	1.3 Our Contribution

	2 Preliminaries
	3 Even-Hole-Free Graphs
	3.1 Reconfiguration of Independent Sets
	3.2 Linear-Time Algorithm

	4 Upper Bound on Reconfiguration Index
	4.1 Definitions
	4.2 Our Upper Bound
	4.3 Proof of Theorem2

	5 Concluding Remarks
	References

	Space Efficient Data Structures for Nearest Larger Neighbor
	1 Introduction and Motivation
	2 Data Structures for 1D in the Encoding Model
	3 Data Structures for 1D in the Indexing Model
	4 NLN on 2-Dimensional Arrays
	4.1 2D NLN in the Encoding Model -- Distinct Case
	4.2 2D NLN in the Encoding Model -- General Case
	4.3 NLN in the Indexing Model

	5 Conclusions
	References

	Playing Several Variants of Mastermind with Constant-Size Memory is not Harder than with Unbounded Memory
	1 Introduction
	2 Algorithm
	3 Proof of Correctness
	4 Algorithm for Black-Peg Variant
	5 More Pegs
	6 Conclusions and Future Work
	References

	On Maximum Common Subgraph Problems in Series-Parallel Graphs
	1 Introduction
	2 Preliminaries
	3 MCS in Series-Parallel Graphs with Bounded Degree
	3.1 Construction of the Polynomial-Time Reduction
	3.2 Correctness of the Polynomial-Time Reduction

	4 The Block-and-Bridge Preserving Maximum Common Subgraph Problem in Series-Parallel Graphs
	4.1 The Algorithm
	4.2 Analysis

	5 Concluding Remarks
	References

	Profile-Based Optimal Matchings in the Student/Project Allocation Problem
	1 Introduction
	1.1 One-Sided Preferences and Profile-Based Optimality
	1.2 Our Contribution

	2 Preliminary Definitions
	3 Greedy Maximum Matchings in spa
	4 Generous Maximum Matchings in spa
	5 Lecturer Lower Quotas
	References

	The Min-max Edge q-Coloring Problem
	1 Introduction
	2 NP-hardness of Min-max Edge q-Coloring
	3 Exact Polynomial Time Algorithm for Trees
	4 Complete Graphs
	5 Conclusions and Future Work
	References

	Speeding up Graph Algorithms via Switching Classes
	1 Introduction
	2 Preliminaries
	3 Basic Algorithms for Switching Classes
	3.1 Traversal
	3.2 Contraction

	4 Super-Linear Graph Algorithms
	4.1 Diameter and Transitive Closure
	4.2 Hopcroft-Karp Bipartite Maximum Matching
	4.3 Gabow-Tarjan Maximum Matching

	5 Conclusions
	References

	Study of (D) for D = {2, 3, x, y}
	1 Introduction
	2 Preliminaries
	3 D = {2, 3, x, y} for y = x+1, x+2, x+3
	4 D = {2, 3, x, y} for y = x+4, x+5, x+6
	References

	Some Hamiltonian Properties of One-Conflict Graphs
	1 Introduction
	2 Preliminaries, Notations and Definitions
	3 Dirac-Type Conditions in One-Conflict Graphs
	4 Ore and Bondy-Chvátal-type Conditions in One-Conflict Graphs
	References

	Sequence Covering Arrays and Linear Extensions
	1 Introduction
	2 Background
	3 Computational Constructions
	4 Post-Optimization and Linear Extensions
	5 Some Computations
	6 Conclusions
	References

	Minimum r-Star Cover of Class-3 Orthogonal Polygons
	1 Introduction
	2 Theoretical Framework
	3 The Algorithm
	3.1 Determining When a Guard is Needed and Where to be Placed
	3.2 Maintaining and Processing Guards
	3.3 Selecting a Guard to Watch a S-Edge
	3.4 Description and Complexity of the Algorithm

	4 Concluding Remarks
	References

	Embedding Circulant Networks into Butterfly and Benes Networks
	1 Introduction
	2 Basic Concepts
	3 Main Results
	4 Concluding Remarks
	References

	Kinetic Reverse k-Nearest Neighbor Problem
	1 Introduction
	2 Key Lemmas
	3 Reporting All k-Nearest Neighbors
	4 RkNN Queries on Moving Points
	4.1 Kinetic k-SYG
	4.2 Kinetic All k-Nearest Neighbors
	4.3 RkNN Queries

	5 Discussion
	References

	Efficiently Listing Bounded Length st-Paths
	1 Introduction
	2 Preliminaries
	3 An O(mn + n2 logn)-Delay Algorithm
	4 An Improved Algorithm for Undirected Graphs
	4.1 Computing the Longest Common Prefix of P(s,t,G)

	5 K-Shortest and -Bounded Paths: A Unified View
	References

	Metric Dimension for Amalgamations of Graphs
	1 Introduction
	2 Previous Results
	3 Main Results
	References

	A Suffix Tree Or Not a Suffix Tree?
	1 Introduction
	2 Suffix Trees
	3 The Suffix Tour Graph
	3.1 Suffix Tour Graph of a $-suffix Tree
	3.2 Suffix Tour Graph of a Suffix Tree

	4 A Suffix Tree Decision Algorithm
	5 Conclusion and Open Problems
	References

	Deterministic Algorithms for the Independent Feedback Vertex Set Problem
	1 Introduction
	1.1 Related Results and Known Results
	1.2 Our Contribution
	1.3 Comparison with Known Techniques

	2 Preliminaries
	3 Our Results Based on Algorithm for Bounded Treewidth Graphs
	3.1 FPT Algorithm for Planar Graphs
	3.2 Linear-Time Algorithm for Chordal Graphs

	4 Algorithm for Bounded Treewidth Graphs
	4.1 Nice Tree-Decomposition
	4.2 Idea and Definitions
	4.3 Algorithm
	4.4 Running Time

	5 Our Result for Cographs
	5.1 Cotree
	5.2 Idea and Definitions

	6 Concluding Remark
	References

	Lossless Seeds for Searching Short Patterns with High Error Rates
	1 Introduction
	2 Approximate Seeds for the Levenshtein Edit Distance
	3 Algorithm
	3.1 Choice of Index
	3.2 Seed Filtration
	3.3 Elongation and Verification
	3.4 Implementation

	4 Experimental Results
	4.1 Randomly Generated Sequences
	4.2 Reads from the Human Genome

	5 Conclusion
	References

	Author Index



