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Abstract. Recognizing the movement and activities of an individual in
an indoor space is a key functionality of smart homes, as a prerequi-
site to providing services in support of the occupant. Focusing on the
particular case of smart homes with multiple occupants, we developed
a location-and-movement recognition method using many inexpensive
passive infrared (PIR) motion sensors and, a small number of, more
costly RFID readers. In our method, PIR sensors, placed throughout the
space, recognize movement while RFID readers, placed in key locations,
recognize tags worn by individuals as they pass through their coverage
area. The RFID readings are used to disambiguate the trajectories con-
structed based on PIR sensor readings. We evaluate through simulations
the effectiveness of our method under different occupancy conditions.
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1 Introduction

In previous work [4] we used inexpensive wireless passive infrared (PIR) sensors
to determine the path of a single occupant in a “smart home” setting. Simple
“anonymous” sensors such as PIR sensors are clearly inadequate when more
than one individual are to be tracked and their trajectories need to be separated
and labeled. In order to track multiple individuals, we are expanding our sensor
toolkit to include RFID tag(s) worn by each individual and, correspondingly,
RFID readers. The question addressed in this paper is whether a combination
of PIR sensor deployment in an indoor space, coupled with the judicious use
of RFID readers deployed at certain points in space, is an effective solution to
multi-occupant localization.

RFID reader deployment is challenging and a significant contributor to total
deployent costs. RFID readers need to be deployed at locations where they can
be supplied by a continuous power source, i.e., powering them from batteries is
not a viable option. Additionally, the use of relatively large antennas, to pro-
duce reliable readings, increases the per-reader cost and results in cumbersome
placement. Hence, we are interested to reduce the number of RFID readers and
deploy them in locations that are as effective as possible, i.e., where they can
add the most in terms of improving the localization accuracy.
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Abstractly, the problem at hand is one of sensor fusion for the purposes of
tracking individual trajectories, in a mixed environment of anonymous (PIR)
and identity (RFID) sensors. The motion sensors are used to determine paths
for (possibly groups of) individuals roaming the indoor space, but their paths
mix and become ambiguous even if the original locations of each individual was
known. The RFID readers help mitigate the ambiguity but are limited because
the readers are only present in certain locations and have limited coverage. This
leads us to develop a model that can assist the placement of readers using a
“skeletal” tree of the paths of motion individuals follow in an indoor space.

Multi–object tracking is a well studied topic in computer vision, e.g., [2],
including the fusion with other sensor data [6], but the use of cameras is per-
ceived as privacy–intruding when compared to motion sensors and/or RFID
tags and readers. RFID-based sensor fusion (usually with IMU data) solutions
have been proposed [1,3], but, contrary to our approach, require individuals to
carry cumbersome portable readers. In the following, Section 2 introduces the
basic model and metrics used, while Section 3 provides sketches the RFID reader
placement heuristic. Section 4 presents some early simulation results and Section
5 concludes with a summary of the main points of the paper.

2 System Model and Performance Metrics

We assume we know the geometry of the indoor space and the geometry of cover-
age of each sensor type. We also assume the existence (and use) of a heatmap of
the visitation frequency of each point in the environment, as in [4]. The heatmap
is constructed by simulating in advance the paths followed by a potential occu-
pant between areas of interest in the space. This two-dimensional map, includes
the location of the walls (W ) and obstacles (O). Each of the remaining points is
associated with an information utility (I), which is the probability of a person
being present at that point. Overall, the heatmap contains N points, (x1, y1,
l1), . . . , (xN , yN , lN ). li indicates the group, W , O or I, to which the point
belongs. The objective of our method is, given k (k > 1) individuals present in
and moving around the environment, to reduce the error in inferring the location
of each individual in the space at any point in time.

The coverage of PIR motion sensors is modelled as a boolean rectangle,
assuming that such sensors are placed on the ceiling, facing vertically down,
projecting a rectangular base pyramid on the floor. We consider both the 0
degree and the 90 degree rotation rectangular footprints. To address the occlu-
sion caused by, e.g., walls and doors, we use complex polygons to represent sensor
footprints (Figure 1(a)). The coverage of RFID readers is a directed boolean sec-
tor model, in the sense of [5] (Figure 1(b)). φ0 is called the orientation angle, ω
is the angle of view, r is the sensing range resulting in a coverage represented
by a circular sector.

In general, there exist locations within the environment, i.e., kitchen counter,
one’s own bed, etc., that tend to be destinations of the occupants’ movement.
These destinations are potential starting/ending points of paths. Considering
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(a) (b)

Fig. 1. Sensor coverage for (a) PIR sensors [4], and, (b) RFID readers

the set P representing the k individuals (P = {P1, P2, . . . , Pk}), the sequence of
destinations chosen by each occupant, i.e., their trajectory TPi

, is the sequence
of the person’s locations-at-time, lPi,tn = (xPi,tn , yPi,tn). A collision between
Pi and Pj means that there exists a timestamp tcol when the distance between
(xPi,tcol , yPi,tcol) and (xPj ,tcol , yPj ,tcol) is less than δ (as a convention we set δ to
two times the radius of a circle representing a person’s body). The definition of
collision is generalized to three or more people. Past a collision point, trajectories
reconstructed purely by PIR sensors can be ambiguous, since it is not possible
to identify which of the colliding individual(s) continue to which “branch”. It is
up to the readings from RFID readers to provide the authoritative unambigu-
ous IDs as individuals cross the reader’s range; unambigusously recognizing an
occupant, at some location, at some point in time, allows us to revisit previous
ambiguous trajectories and infer the corresponding individuals. The process is
not perfect as certain segments of the trajectories can remain ambiguous. Nev-
ertheless, we are interested to decide on an RFID reader placement that reduces
ambiguity of trajectories.

Specifically, we consider two metrics: ambiguity and tracking error. The ambi-
guity metric in an indicator of the extent to which the occupants’ locations have
been incorrectly inferred. The ambiguity for each tracked individual is the frac-
tion of time that the invividual’s ID belongs to ambiguous trajectory segments
(i.e., segments containing two more more candidate IDs including the ID of
the particular individual and we call the sets of two or more candidate IDs
the ambiguity sets). The ambiguity metric is the average over all individual
ambiguities.

The tracking error metric is influenced by the ambiguity metric. It consists
of a lower and an upper bound for the localization error. For each individual,
there are ambiguous segments that this individual has likely traversed (based on
its participation on trajectories that are ambiguous and include the particular
ID). Of those, the two paths with most and least Euclidean distance from the
person’s actual (ground truth) path are considered to describe an upper bound
(Tracking Error Upper-bound, TEU) and a lower bound (Tracking Error Lower-
bound, TEL) error. The TEU and TEL errors are calculated on a per-individual
basis and averaged across time.
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3 RFID Reader Placement

We introduce a skeleton of the heatmap (Figure 2(c)), which is the result of a
three step process: a) thresholding the heatmap, b) iterative thinning the binary
values created by thresholding, and (c) removal of short branches and cycles.
The end result is an undirected n-ary tree, T = (Vt, Et). The vertices of T are
also called the branching points and the edges are the actual paths (i.e., they
correspond to a sequence of real spatial points, and are not just logical links
between vertices). Figure 2 illustrates the conversion of the heatmap to a n-ary
tree. Having computed T , all its vertices become potential coverage points for
RFID readers as they indicate busy gateways towards different locations, but
only some of them will be chosen for reader placement.

We consider the branching points of T as candidate locations for reader
placement. The placement heuristic is based on a score function F that captures
(via their product, Fv = Hv × Dv) two factors. First, the heat factor Hv is
expressed as the sum of heatmap values of the locations covered by placing a
reader at a particular vertex, thus favoring coverage of heavier traffic areas.
Second, the distance factor Dv expresses the path distance from already placed
readers, thus biasing in favor of readers further apart, as placing them near each
other results in coverage overlaps producing no noticable advantage.

(a) (b) (c)

Fig. 2. The skeletonization process: (a) heatmap, (b) thresholding, and, (c) skeleton

4 Simulation Results

We produced a number of test cases simulating different numbers of occupants
moving in the smart home with the floorplan in Figure 2(a) which corresponds
to an actual space with an area of 10.60 × 6.29m2. In total, we considered 14
different activity patterns, and we simulated the movement of the occupants
assuming that each occupant randomly chooses three activities out of the pos-
sible 14. On average, each activity takes the occupant 15 seconds of simulated
time. In order to emphasize the ability to distinguish trajectories, no pause times
were simulated, that is, an individual would be simulated starting a new activ-
ity as soon as the previous one had ended. We conducted simulations for k = 2,
k = 3 and k = 5 occupants. First, the PIR motion sensor placement by [4] was
followed, producing an optimal solution consisting of 11 PIR sensors.
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Table 1. Comparing different placement methods for five RFID readers

We compare the placement determined from our heuristic against an “expert”
manual placement and a random one. The manual placement aims to cover as
much as possible of the entire space but places at least one reader in every
room. For the randomized placement, points with a non-zero utility score in the
heatmap were randomly chosen. For each RFID reader point, the closest point
on a wall was determined and assumed to be the reader’s mounting point (the
same process was used for mounting points of readers in the tree-based method).
For randomized placement we report the average of 10 randomized placements.

The results presented in Table 1 are averages over 100 runs for each reader
placement. To properly appreciate the results, we note that even in the ground
truth there is a small probability that individual trajectories collide (same loca-
tion at the same time). The ground truth for the case k = 2 shows 2.986% colli-
sion between the two occupants. For k = 3, two people trajectories are colliding
10.547% of the time, and three colliding 0.301% of the time. The percentages
for k = 5 are 14.627%, 1.209%, 0.137% and 0.001%, for collisions involving 2, 3,
4 and 5 trajectories, respectively.

In each sub-table of Table 1, two rows present the TEU and TEL. An addi-
tional k−1 rows show the average ambiguity (a∗

2 to a∗
k) for an individual’s trajec-

tory, as a function of the cardinality (from 2 to k) of the ambiguity set (defined
earlier). In all cases the tree-based method surpasses the other two methods: it
exhibits smaller tracking error and smaller ambiguity. However, while the mer-
its of the tree-based method become increasingly apparent as k increases, the
absolute tracking error deteriorates quickly from approximately 60cm for two
occupants, to between 75cm and 120cm for three occupants, to 3.5m in the case
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of five occupants (making it virtually unusable). Note that as k increases the
value of a∗

k is inflated, because disambiguating (“teasing apart”) the trajectories
of each individual in a large group is less likely to accomplish, than from a small
group. Additionally, for large populations of occupants, given a budget limita-
tion to five RFID readers only, it is increasingly likely that, after approaching
(and read by) an RFID reader, an individual’s trajectory will collide with some
other trajectory before it gets a chance to be read again by an RFID reader,
hence ambiguous trajectories abound in large occupant population scenarios.

5 Conclusion

We introduced and evaluated through simulations an indoor multiple-person
tracking system based on a combination of PIR and RFID technologies. The
ambiguity of PIR-based tracking for mutiple occupants is mitigated by the use
of information from RFID readers. Due to the relatively costly and challenging
deployment of multiple RFID readers, we devised a RFID reader placement
heuristic aiming to produce good tracking results. A reading from an RFID tag
worn by an occupant provides unambiguous location information, subsequently
used to disambiguate segments of occupants’ trajectories that were, up to that
point, unknown to which occupant they corresponded. The proposed heuristic
favorably compares against random as well as naive manual placements that
attempt to cover the whole space.
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