
Chapter 7
Users’ Belief Awareness in Reinforcement
Learning-Based Situated Human–Robot
Dialogue Management

Emmanuel Ferreira, Grégoire Milliez, Fabrice Lefèvre, and Rachid Alami

Abstract Others can have a different perception of the world than ours.
Understanding this divergence is an ability, known as perspective taking in
developmental psychology, that humans exploit in daily social interactions. A recent
trend in robotics aims at endowing robots with similar mental mechanisms. The
goal then is to enable them to naturally and efficiently plan tasks and communicate
about them. In this paper we address this challenge extending a state-of-the-art
goal-oriented dialogue management framework, the Hidden Information State
(HIS). The new version makes use of the robot’s awareness of the users’ belief
in a reinforcement learning-based situated dialogue management optimisation
procedure. Thus the proposed solution enables the system to cope not only with
the communication ambiguities due to noisy channel but also with the possible
misunderstandings due to some divergence among the beliefs of the robot and its
interlocutor in a human–robot interaction (HRI) context. We show the relevance of
the approach by comparing different handcrafted and learnt dialogue policies with
and without divergent belief reasoning in an in-house pick–place–carry scenario by
means of user trials in a simulated 3D environment.

Keywords Human-robot interaction • POMDP-based Dialogue Management •
Reinforcement learning • Theory of mind

7.1 Introduction

When robots and humans share a common environment, previous works have shown
how much enhancing the robot’s perspective taking and intention detection abilities
improves its understanding of the situation and leads to more appropriate and
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efficient task planning and interaction strategies (Breazeal et al. 2006, 2009; Milliez
et al. 2014b). As part of the theory of mind, perspective taking is a widely studied
ability in developmental literature. This broad term encompasses: (1) perceptual
perspective taking, whereby human can understand that other people see the world
differently, and (2) conceptual perspective taking, whereby humans can go further
and attribute thoughts and feelings to other people (Baron-Cohen and Leslie 1985).
Tversky et al. (1999) explain to what extent switching between perspectives rather
than staying in an egocentric position can improve the overall dialogue efficiency
in a situated context. Therefore, to make robots more socially competent, some
research aims to endow robots with this ability. Among others, Breazeal et al. (2006)
present a learning algorithm that takes into account information about a teacher’s
visual perspective in order to learn specific coloured buttons’ activation/deactivation
patterns, and Trafton et al. (2005) use both visual and spatial perspective taking
to find out the referent indicated by a human partner. In the present study, we
specifically focus on a false belief task as part of the conceptual perspective taking.
Formulated in Wimmer and Perner (1983), this kind of task requires the ability
to recognise that others can have beliefs about the world that differ from the
observable reality. Breazeal et al. (2009) proposed one of the first human–robot
implementations and proposed some more advanced goal recognition skills relying
on this false belief detection. In Milliez et al. (2014b), a Spatial Reasoning and
Knowledge component (SPARK) is presented to manage separate models for agent
belief state and used to pass the Sally and Anne test (Baron-Cohen and Leslie 1985)
on a robotic platform. This test is a standard instance of false belief task where an
agent has to guess the belief state of another agent with a divergent belief mind state.
The divergence in this case arises from modifications of the environment which one
agent is unaware of and which are not directly observable, for instance displacement
of objects hidden to this agent (behind another object for instance).

Considering this, to favour the human intention understanding and improve the
overall dialogue strategy, we take benefit of the divergent belief management into
the multimodal situated dialogue management problem. To do so, we rely on the
Partially Observable Markov Decision Process (POMDP) framework. This latter is
becoming a reference in the Spoken Dialogue System (SDS) field (Young et al.
2010; Thomson and Young 2010; Pinault and Lefèvre 2011) as well as in HRI
context (Roy et al. 2000; Lucignano et al. 2013; Milliez et al. 2014a), due to its
capacity to explicitly handle parts of the inherent uncertainty of the information
which the system (the robot) has to deal with (erroneous speech recogniser, falsely
recognised gestures, etc.). In the POMDP setup, the agent maintains a distribution
over possible dialogue states, the belief state, all along the dialogue course and
interacts with its perceived environment using a reinforcement learning (RL)
algorithm so as to maximise some expected cumulative discounted reward (Sutton
and Barto 1998). So our goal here is to introduce the divergence notion into the
belief state tracking and add some means to deal with it in the control part.

The remainder of the paper is organised as follows. Section 7.2 gives some details
about how an agent knowledge model can be maintained in a robotic system; in
Sect. 7.3 our extension of a state-of-art goal-oriented POMDP dialogue management
framework, the Hidden Information State (HIS), is presented to take into account
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users’ beliefs state; in Sect. 7.4 the proposed pick–place–carry false belief scenario
used to exemplify the benefit of both taking account of the perspective taking ability
and its integration in a machine learning scheme is introduced. In the same section,
the current system architecture and the experimental setup employed are given. The
user trial results obtained with a learnt and a handcrafted belief-aware system are
compared in Sect. 7.5 with systems lacking perspective taking ability. Finally, in
Sect. 7.6 we discuss some conclusions and give some perspectives.

7.2 Agent Knowledge Management

As mentioned in the introduction, the spatial reasoning framework SPARK is used
for situation assessment and spatial reasoning. We will briefly recap here how it
works, for further details please refer to Milliez et al. (2014b). In our system, the
robot collects data about three different entities to virtually model its environment:
objects, humans and proprioceptions (its own position, posture, etc.). Concerning
objects, a model of the environment is loaded at startup to obtain the positions
of static objects (e.g. walls, furnitures, etc.). Other objects (e.g. mug, tape, etc.)
are considered as movable. Their positions are gathered using the robot’s stereo
vision. Posture sensors, such as Kinect, are used to obtain the position of humans.
These perception data allow the system to use the generated virtual model for further
spatial-temporal reasoning. As an example, the system can reason on why an object
is not perceived any more by a participant and decide to keep its last known position
if it recognizes a situation of occlusion, or remove the object from its model if there
is none.

Figure 7.1a shows a field experiment with the virtual environment built by the
system from the perception data collected and enriched by the spatial reasoner. The
latter component is also used to generate facts about the objects relative position
and agents’ affordances. The relative positions such as isIn, isNextTo, isOn are used
not only for multimodal dialogue management as a way to solve referents in users’
utterances, but also for a more natural dialogue description of the objects position in
the robot’s responses. Agents’ affordances come from their ability to perceive and

Fig. 7.1 (a) Real users in front of the robot (left) and the virtual representation built by the system
(right). (b) Divergent belief example with belief state
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reach objects. The robot is calculating its own capability of perception according
to the actual data it gets from the object position and recognition modules. For
reachability, the robot computes if it is able to reach the object with its grasping
joints. To compute the human’s affordances the robot applies its perspective taking
ability. In other words, the robot has to estimate what is visible and reachable for the
human according to her current position. For visibility, it computes which objects
are present in a cone, emerging from human’s head. If the object can be directly
linked to the human’s head with no obstacle and if it is in the field of the view cone,
then it is assumed that the human sees the object and hence has knowledge of its
true position. If an obstacle is occluding the object, then it won’t be visible for the
human. Concerning the reachability, a threshold of one meter is used to determine
if the human can reach an object or not.

The facts generation feature allows the robot to get the information about the
environment, its own affordances and the human’s affordances. In daily life, humans
get the information about the environment through perception and dialogue. Using
the perspective taking abilities of our robot, we can compute a model of each
human’s belief state according to what she perceived or what the robot has told
her about the environment. Then two different models of the world are considered:
one for the world state from the robot perception and reasoning and one for
each human’s belief state (computed by the robot according to what the human
perceived). Each of these models is independent and logically consistent. In some
cases, the robot and the human models of the environment can diverge. As an
example, if an object O has a property P with a value A, if P’s value changed to
B and the human had no way to perceive it when it occurred, the robot will have the
value B in its model (P(O) = B) while the human will still have the value A for the
property P (P(O) = A). This value shouldn’t be updated in the human model until
the human is actually able to perceive this change or until the robot informs him. In
our scenario, this reasoning is applied to the position property.

We introduce here an example of false belief situation (Fig. 7.1b). A human sees
a red book (RED_BOOK) on the bedside table BT . She will then have this property
in his belief state: P(RED_BOOK) = BT . Now, while this human is away (has no
perception of BT), the book is swapped with another brown one (BROWN_BOOK)
from the kitchen table KT . In this example, the robot explores the environment and
is aware of the new position values. The human will keep this belief until she gets
a new information on the current position of RED_BOOK. This could come from
actually seeing RED_BOOK on the position KT or seeing that RED_BOOK is not
any more in BT (in which case the position property value will be updated to an
unknown value). Another way to update this value is for the robot to explicitly
inform the user of the new position.

In our system we mainly focused on position properties but this reasoning could
be straightforwardly extended to other properties such as who manipulated an
object, its content, temperature, etc. Obviously if this setup generalises quite easily
to false beliefs about individual properties of elements of the world, more complex
divergence configurations that might arise in daily interactions, for instance due to
prior individual knowledge, still remain out of range and should be addressed by
future complementary works.
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7.3 Belief Aware Multimodal Dialogue Management

As mentioned earlier, an important aspect of the approach is to base our user
belief state management on the POMDP framework (Kaelbling et al. 1998). It is
a generalisation of the fully observable Markov Decision Process (MDP), which
was first employed to determine an optimal mapping between situations (dialogue
states) and actions for the dialogue management problem in Levin et al. (1997).
We try hereafter to recall some of the principles of this approach pertaining to the
modifications that will be introduced. More comprehensive descriptions should be
sought in the cited papers. This framework maintains a probability distribution over
dialogue states, called belief states, assuming the true one is unobservable. By doing
so, it explicitly handles parts of the inherent uncertainty on the information conveyed
inside the Dialogue Manager (DM) (e.g. error prone speech recognition and
understanding processes). Thus, POMDP can be cast as a continuous space MDP.
The latter is a tuple < B; A; T; R; � > , where B is the belief state space (continuous),
A is the discrete action space, T is a set of Markovian transition probabilities,
R is the immediate reward function, R W B � A � B ! < and � 2 Œ0; 1� the
discount factor (discounting long-term rewards). The environment evolves at each
time step t to a belief state bt and the agent picks an action at according to policy
mapping belief states to actions, � W B ! A. Then the belief state changes to btC1

according to the Markovian transition probability btC1 � T.:jbt; at/ and, following
this, the agent received a reward rt D R.bt; at; btC1/ from the environment. The
overall problem of this continuous MDP is to derive an optimal policy maximising
the reward expectation. Typically the averaged discounted sum over a potentially
infinite horizon is used,

P1
tD0 � trt. Thus, for a given policy and start belief state b,

this quantity is called the value function: V�.b/ D EŒ
P

t�0 � trtjb0 D b; �� 2 <B.
V� corresponds to the value function of any optimal policy ��. The Q-function may
be defined as an alternative to the value function. It adds a degree of freedom on
the first selected action, Q�.b; a/ D EŒ

P
t�0 � trtjb0 D b; a0 D a; �� 2 <B�A, Q�

corresponds to the action-value function of any optimal policy ��. If it is known,
an optimal policy can be directly computed by being greedy according to Q� ,
��.b/ D arg maxa Q�.b; a/8b 2 B.

However, real-world POMDP problems are often intractable due to their dimen-
sionality (large belief state and action spaces). Among other techniques, the
HIS model (Young et al. 2010) circumvents this scaling problem for dialogue
management by the use of two main principles. First, it factors the dialogue state
into three components: the user goal, the dialogue history and the last user act
(see Fig. 7.2). The possible user goals are then grouped together into partitions
on the assumption that all goals from the same partition are equally probable. These
partitions are built using the dependencies defined in a domain-specific ontology and
the information extracted all along the dialogue from both the user and the system
communicative acts. In the standard HIS model, each partition is linked to matching
database entities based on its static and dynamic properties that correspond to the
current state of the world (e.g. colour of an object vs spatial relations like isOn).
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Fig. 7.2 Overview of the HIS extension to take into account divergent belief

The combination of a partition, the associated dialogue history, which corresponds
here to a finite state machine that keeps track of the grounding status for each
convoyed piece of information (e.g. informed or grounded by the user), and a
possible last user action forms a dialogue state hypothesis. A probability distribution
b.hyp/ over the most likely hypotheses is maintained during the dialogue and this
distribution constitutes the POMDP’s belief state. Second, HIS maps both the belief
space (hypotheses) and the action space into a much reduced summary space where
RL algorithms are tractable. The summary state space is the compound of two
continuous and three discrete values. Continuous values are the probabilities of the
two-first hypotheses b.hyp1/ and b.hyp2/ while the discrete ones, extracted from
the top hypothesis, are the type of the last user act (noted last uact), a partition
status (noted p-status) database matching status related to the corresponding goal
and a history status (noted h-status). Likewise system dialogue acts are simplified
in a dozen of summary actions like offer, execute, explicit-confirm and request. Once
the summary actions are ordered by their Q.b; a/ scores in descending order by the
policy, a handcrafted process checks if the best scored action is compatible with the
current set of hypotheses (e.g. for the confirm summary act this compatibility test
consists in checking if there is something to confirm in the top hypothesis). If they
are compatible, a heuristic-based method maps this action back to the master space
as the next system response. If not, the process is pursued using the next best scored
summary action until a possible action is found.

The standard HIS framework can properly handle misunderstandings due to noise
in the communicative channel. However, misunderstandings can also be introduced
in cases where the user has false beliefs, impacting negatively her communicative
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acts. HIS has no dedicated mechanism to deal with such a situation and so it should
react as in front of a classical uncertainty by asking the user to confirm hypotheses
until the request can match the reality, although it could have been resolved since the
first turn. Therefore having an appropriate mechanism should improve the quality
and efficiency of the dialogue, preventing user to pursue her goal with an erroneous
statement.

So, as illustrated in Fig. 7.2 and highlighted with the orange items, we propose to
extend the summary belief state with an additional status, the divergent belief status
(noted d-status), and an additional summary action, inform divergent belief. The
d-status is employed to trigger the presence of false belief situations by matching
the top partition with user facts compiled by the system (see Sect. 7.2) and as such
trying to highlight some divergences between the user and the robot points of view.
Both the user and the robot facts (from the belief models, not to be mistaken with
the belief state related to the dialogue representation) are considered as part of the
dynamic knowledge resource and are maintained independently of the internal state
of the system with the techniques described in Sect. 7.2. Here we can observe in
Fig. 7.2 that the top partition is about a book located on the bedside table. In the
robot model of the world (i.e. robot facts) this book is identified as a unique entity,
RED_BOOK, and p-status is set to unique accordingly. However, in the user model
it is identified as BROWN_BOOK. This situation can be considered as divergent and
p-status is set to unique too because there is one possible object that corresponds
to that description in the user model. In this preliminary study d-status can only
be unique or non-unique. Further studies may consider more complex cases. The
new summary action is employed for appropriate resolution and removal of the
divergence. The (real) communicative acts associated to this (generic) action rely
on expert design. In this first version, if this action is compatible with the current
hypotheses and thus picked up by the system, it explicitly informs the user of the
presence and the nature of the divergence. To do so, the system uses a deny dialogue
act to inform the user about the existence of a divergent point of view and let
the user agree on the updated information. Consequently, the user may pursue its
original goal with the correct property instead of the obsolete one. This process is
also illustrated in Fig. 7.2 when the inform divergent belief action is mapped back
to the master space.

7.4 Scenario and Experimental Setup

In order to illustrate the robot’s ability to deal with user’s perspective, an adapted
pick–place–carry scenario is used as test-bed. The robot and the user are in a virtual
flat with three rooms, in which there are different kinds of objects varying in terms
of colour, type and position (e.g. blue mug on the kitchen table, red book on the
living room table, etc.). The user interacts with the robot using unconstrained speech
(Large Vocabulary Speech Recognition) and pointing gestures to ask the robot to
perform some specific object manipulation tasks (e.g. move the blue mug from
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Fig. 7.3 Architecture of the
multimodal and situated
dialogue system

the living room table to the kitchen table). The multimodal dialogue is used to
solve ambiguities and to request missing information until task completion (i.e. full
command execution) or failure (i.e. explicit user disengagement or wrong command
execution). In this study, we specifically focus on tasks where divergent beliefs are
prone to be generated as in the Sally and Anne test: a previous interaction has led
the user to think that a specific object O is located at A which is out of her view, and
an event has changed the object position from A to B without user’s awareness. For
example, a change performed by another user (or by the robot) without the presence
of the first one. Thereby, if the user currently wants to perform a manipulation
involving O she may do so using her own believed value (A) of the position property
in her communicative act.

Concerning the simulation, the setup of Milliez et al. (2014a) is applied to enable
a rich multimodal HRI. Thus, the open-source robotics simulator MORSE (Echev-
erria et al. 2011) is used which provides a realistic rendering through the Blender
Game Engine, a wide range support of middleware (e.g. ROS, YARP), and proposes
reliable implementations of realistic sensors and actuators which ease the integration
on real robotic platforms. It also provides the operator with an immersive control
of a virtual human avatar in terms of displacement, gaze and interactions on
the environment, such as object manipulation (e.g. grasp/release an object). This
simulator is tightly coupled with the multimodal dialogue system, with the overall
architecture given in Fig. 7.3.

In the chosen architecture, the Google Web Speech API1 for Automatic Speech
Recognition (ASR) is combined with a custom-defined grammar parser for Spo-
ken Language Understanding (SLU). The spatial reasoning module, SPARK, is
responsible for both detecting the user gestures and generating the per-agent spatial
facts (see Sect. 7.2) used to dynamically feed the contextual knowledge base and
allowing the robot to reason over different perspectives of the world. Furthermore,
we also make use of a static knowledge base containing the list of all available
objects (even those not perceived) and their related static properties (e.g. colour).
The Gesture Recognition and Understanding (GRU) module catches the gesture-
events generated by SPARK during the course of the interaction. Then, a rule-based
fusion engine, close to the one presented in Holzapfel et al. (2004), temporally aligns

1https://www.google.com/intl/en/chrome/demos/speech.html.

https://www.google.com/intl/en/chrome/demos/speech.html
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the monomodal inputs (speech and gesture) and merges them to convey the list
of possible fused inputs to the POMDP-based DM, with speech considered as the
primary modality.

The DM implements the extended HIS framework described in Sect. 7.3. For
the reinforcement learning setup, the sample-efficient KTD-SARSA RL algo-
rithm (Daubigney et al. 2012) in combination with the Bonus Greedy exploration
scheme enables online learning of dialogue strategy from scratch, as in Ferreira
and Lefevre (2013a). A reward function is defined to penalise the DM by �1 for
each dialogue turn and give it a C20 if the right command is performed at the
end of the interaction, 0 otherwise. To convey the DM action back to the user, a
rule-based fission module is employed that splits the high-level DM decision into
verbal and non-verbal actions. The robot speech outputs are generated by chaining
a template-based Natural Language Generation (NLG) module, which converts the
sequence of concepts into text, to a Text-To-Speech (TTS) component based on the
commercial Acapela TTS system.2 A Non-verbal Behaviour Planning and Motor
Control (NVBP/MC) module produces robot postures and gestures by translating
the non-verbal actions into a sequence of abstract actions such as grasp, moveTo,
release which are then executed in the simulated environment.

In this study we intend to assess the benefit of introducing the divergent belief
management into the multimodal situated dialogue management problem. Thereby,
the scenarios of interest require some situations of divergent beliefs between the
user and the robot. In real setup those scenarios often need a long-term interaction
context tracking. To bypass this time-consuming process in our evaluation setup,
we directly propose a corrupted goal to the user at the beginning of her interaction.
So, a false belief about the location value was automatically added concerning an
object not visible from the human point of view. Although the situation is artificially
generated, the same behaviour can be obtained with the spatial reasoner if the
robot performs an action in self-decision mode or if another human corrupts the
scene. Thereby, this setup was used to evaluate the robot’s ability to deal with
both classical (CLASSIC) and false belief (FB) object manipulation tasks. To do
so, we compare the belief-aware learnt system performance (noted BA-LEARNT
hereafter) to a handcrafted one (noted BA-HDC), and with two other similar systems
with no perspective taking ability (noted LEARNT and HDC, respectively). The
handcrafted policies make use of expert rules based on the information provided
by the summary state to pick the next action to perform (deterministic). They are
not considered as the best possible handcrafted policies but as robust enough to
manage correctly an interaction with real users. The learnt policies were trained in
an online learning setting using a small set of 2 expert users which first performed 40

dialogues without FB tasks and 20 more as a method-specific adaptation (LEARNT
with CLASSIC tasks vs BA-LEARNT with FB tasks). In former works we have
shown the possibility to learn efficient policies with few tens of dialogue samples,
due to expert users’ better tolerance to poor initial performance combined with more
consistent behaviours during interactions (Ferreira and Lefèvre 2013b).

2http://www.acapela-group.com/index.html.

http://www.acapela-group.com/index.html
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In the evaluation setup, ten dialogues for the four proposed system configurations
(the learnt policies were configured to act greedily according to the value function)
were recorded from six distinct subjects (two females and four males, around 25
years old on average) who interacted with all configurations (within-subjects study),
so 240 dialogues in total. Thirty percent of the performed dialogues involve FB
tasks. No user had knowledge of the current system configurations and they were
proposed in random order to avoid any prior effect. At the end of each interaction,
users evaluated the system in terms of task completion with an online questionnaire.

7.5 Results

Table 7.1 is populated with the performance obtained by the four system config-
urations discussed above considering CLASSIC and FB tasks. These results are
first given in terms of mean discounted cumulative rewards (Avg.R). According to
the reward function definition, this metric expresses in a single real value the two
variables of improvement, namely the success rate (accuracy) and the number of
turns until dialogue end (time efficiency). However, both metrics are also presented
for convenience. The results in Table 7.1 were gathered in test condition where no
exploration of the RL method is allowed. Thus, they basically consist of a mere
average over the 60 performed dialogues for each method and metric.

The differences observed between the LEARNT/BA-LEARNT and the
HDC/BA-HDC on the overall performance (row ALL) show the interest of
considering RL methods rather than handcrafted policies. Indeed, only 60 training
dialogues are enough to outperform both handcrafted solutions. On CLASSIC tasks
the performance between LEARNT and BA-LEARNT as well as between HDC
and BA-HDC must be considered similar. Thus, the divergent belief resolution
mechanism doesn’t seem to impact the dialogue management when divergent belief
situations do not appear. For BA-HDC this statement could be expected (in lack of
false belief, the rules are the same as HDC). However for BA-LEARNT the tested
policy is learnt and the action assignment process is optimised with an additional
degree of complexity (larger state/action space than in LEARNT), so a loss could
have been observed. The performances between LEARNT and BA-LEARNT and
respectively between HDC and BA-HDC on FB tasks appear in favour of the
BA-systems (both show a higher success rate and a slightly more time efficient
dialogue management process—average gain of 1 turn). However the quantitative
comparison between the system configurations is not ensured to be relevant due
to the relatively high confidence interval on considered metrics (e.g. success rate
confidence interval for row FB is around 0:2 for all system configurations). Two
main reasons account for this status quo. First, a limited amount of observations
involving the different system configurations (due to experimental cost). Second,
the expected marginal gain in terms of the considered metrics. Indeed, the current
system is learnt on some overall task completion and efficiency criterion. However
solving divergent belief situations in a pick and place scenario cannot be considered
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Table 7.2 Dialogue examples with (a) and without (b) divergent belief reasoning in the
case of an unknown (from the user’s point of view) interchange between a red and a brown
book

R1: Can I help you? U1: Bring me the book on my bedside table

R2: Do you want the red one?

R2: The brown book is not on
the bedside table, it has
been moved to the kitchen

U2: No, the brown book

R3: There is no brown book in your bedroom
but there is one in the kitchen

U2: Ok, bring it to me U3: Are you sure? Well, bring me that one

R4: I will give you the brown book that is on
the kitchen table

R3: I will give you the brown
book that is on the kitchen
table

(a) (b)

a critical factor influencing this criterion greatly but just a way to cope with an
additional (not dominant) degree of uncertainty and to improve user experience and
naturalness of the interaction with the embodied agent.

To have better insights on what the main differences between the four dialogue
strategies are we also performed a qualitative study. In this study we precisely
identify the behavioural differences due to introducing an FB handling mechanism
in a learning setup. Overall, it is observed that confirmation acts (e.g. confirm,
offer) are more accurate and less frequent for the two learnt methods. For instance,
when the learnt systems are confident on the top object manipulation hypothesis
they predominantly performed the command directly rather than trying to check its
validity further as in the handcrafted versions. In Table 7.2 two dialogue samples
extracted from the evaluation dataset illustrate the differences between non-BA and
BA dialogue management on the same FB task (here a red book was interchanged
with a brown one). If the belief divergence problem is not explicitly taken into
account (as in (a)) the DM can be constrained to deal with an additional level of
misunderstanding (see (b) from R2 to U3). We can also see in (b) that the non-
BA system was able to succeed FB tasks (explaining the relatively high LEARNT
performance on FB tasks). Indeed, if the object is clearly identified by the user (e.g.
colour and type) the system can release the constraint of the false position and thus is
able to make an offer on (execute) the “corrected” form of the command involving
the true object position. Concerning the main differences between BA-LEARNT
and BA-HDC, we observed a less systematic usage of the inform divergent belief
act in the learnt case. BA-LEARNT first tries to reach a high confidence on the
true presence of the object involved in the belief divergence in the user goal.
Furthermore, BA-LEARNT, like LEARNT, has learnt alternative mechanisms to
fulfil FB tasks such as direct execution of the user command (which also avoids
misunderstanding) when the convoyed piece of information seems to be sufficient
to identify the object.
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7.6 Conclusion

In this paper, we described how a user belief real-time tracking framework can be
used along with a multimodal POMDP-based dialogue management. The evaluation
of the proposed method with real users confirms that this additional information
helps to achieve more efficient and natural task planning (and does not harm
handling of normal situations). Our next step will be to integrate the multimodal
dialogue system on the robot and carry out evaluations in real setting to uphold our
claims in a fully realistic configuration.
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Young S, Gašić M, Keizer S, Mairesse F, Schatzmann J, Thomson B, Yu K (2010) The hidden
information state model: a practical framework for pomdp-based spoken dialogue management.
Comput Speech Lang 24(2):150–174


	7 Users' Belief Awareness in Reinforcement Learning-Based Situated Human–Robot Dialogue Management
	7.1 Introduction
	7.2 Agent Knowledge Management
	7.3 Belief Aware Multimodal Dialogue Management
	7.4 Scenario and Experimental Setup
	7.5 Results
	7.6 Conclusion
	References


