
Tom Holvoet
Mirko Viroli (Eds.)

 123

LN
CS

 9
03

7

17th IFIP WG 6.1 International Conference, COORDINATION 2015
Held as Part of the 10th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2015
Grenoble, France, June 2–4, 2015, Proceedings

Coordination Models
and Languages

Lecture Notes in Computer Science 9037

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Tom Holvoet · Mirko Viroli (Eds.)

Coordination Models
and Languages
17th IFIP WG 6.1 International Conference, COORDINATION 2015
Held as Part of the 10th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2015
Grenoble, France, June 2–4, 2015
Proceedings

ABC

Editors
Tom Holvoet
University of Leuven
Heverlee
Belgium

Mirko Viroli
Alma Mater Studiorum–Università di Bologna
Cesena
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19281-9 ISBN 978-3-319-19282-6 (eBook)
DOI 10.1007/978-3-319-19282-6

Library of Congress Control Number: 2015939278

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
c© IFIP International Federation for Information Processing 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Foreword

The 10th International Federated Conference on Distributed Computing Techniques
(DisCoTec) took place in Montbonnot, near Grenoble, France, during June 2–5, 2015.
It was hosted and organized by Inria, the French National Research Institute in Com-
puter Science and Control. The DisCoTec series is one of the major events sponsored
by the International Federation for Information Processing (IFIP). It comprises three
conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination Mod-
els and Languages.

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems.

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems.

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to systems
research issues.

Each day of the federated event began with a plenary keynote speaker nominated
by one of the conferences. The three invited speakers were Alois Ferscha (Johannes
Kepler Universität, Linz, Austria), Leslie Lamport (Microsoft Research, USA), and
Willy Zwaenepoel (EPFL, Lausanne, Switzerland).

Associated with the federated event were also three satellite workshops, that took
place on June 5, 2015:

– The 2nd International Workshop on Formal Reasoning in Distributed Algorithms
(FRIDA), with a keynote speech by Leslie Lamport (Microsoft Research, USA).

– The 8th International Workshop on Interaction and Concurrency Experience (ICE),
with keynote lectures by Jade Alglave (University College London, UK) and Steve
Ross-Talbot (ZDLC, Cognizant Technology Solutions, London, UK).

– The 2nd International Workshop on Meta Models for Process Languages (MeMo).

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec was only possible thanks to the dedicated work of the Organizing
Committee from Inria Grenoble-Rhône-Alpes, including Sophie Azzaro, Vanessa Pere-
grin, Martine Consigney, Alain Kersaudy, Sophie Quinton, Jean-Bernard Stefani, and
the excellent support from Catherine Nuel and the people at Insight Outside. Finally,
many thanks go to IFIP WG6.1 for sponsoring this event, and to Inria Rhône-Alpes and
his director Patrick Gros for their support and sponsorship.

Alain Girault
DisCoTec 2015 General Chair

VI Foreword

DisCoTec Steering Committee

Farhad Arbab CWI, Amsterdam, The Netherlands
Rocco De Nicola IMT Lucca, Italy
Kurt Geihs University of Kassel, Germany
Michele Loreti University of Florence, Italy
Elie Najm Télécom ParisTech, France (Chair)
Rui Oliveira University of Minho, Portugal
Jean-Bernard Stefani Inria Grenoble - Rhône-Alpes, France
Uwe Nestmann Technische Universität Berlin, Germany

Preface

This volume contains the papers presented at COORDINATION 2015: the 17th IFIP
WG 6.1 International Conference on Coordination Models and Languages held dur-
ing June 2–4, 2015 in Grenoble. The conference is the premier forum for publishing
research results and experience reports on software technologies for collaboration and
coordination in concurrent, distributed, and complex systems. The key focus of the
conference is the quest for high-level abstractions that can capture interaction patterns
and mechanisms occurring at all levels of the software architecture, up to the end-user
domain. COORDINATION called for high-quality contributions on the usage, study,
formal analysis, design, and implementation of languages, models, and techniques for
coordination in distributed, concurrent, pervasive, multi-agent, and multicore software
systems.

The Program Committee (PC) of COORDINATION 2015 consisted of 32 top re-
searchers from 12 different countries. We received 36 submissions out of which the PC
selected 14 full papers and 1 short paper for inclusion in the program. All submissions
were reviewed by three to four independent referees; papers were selected based on
their quality, originality, contribution, clarity of presentation, and relevance to the con-
ference topics. The review process included an in-depth discussion phase, during which
the merits of all papers were discussed by the PC. The process culminated in a shep-
herding phase whereby some of the authors received active guidance by one member
of the PC in order to produce a high-quality final version. The selected papers consti-
tuted a program covering a varied range of techniques for system coordination: tuple-
based coordination, multi-party and logic-based coordination of ensembles, constraints-
based coordination, agent-oriented techniques, and finally coordination based on shared
spaces. The program was further enhanced by an invited talk by Alois Ferscha from Jo-
hannes Kepler Universität Linz (Austria).

The success of COORDINATION 2015 was due to the dedication of many people.
We thank the authors for submitting high-quality papers, the PC and their subreviewers,
for their careful reviews, and lively discussions during the final selection process, and
the Publicity Chair for helping us with advertisement of the CFP. We thank the providers
of the EasyChair conference management system, which was used to run the review
process and to facilitate the preparation of the proceedings. Finally, we thank the Inria
Grenoble—Rhône-Alpes Organizing Committee from Grenoble, led by Alain Girault,
for its contribution in making the logistic aspects of COORDINATION 2015 a success.

June 2015 Tom Holvoet
Mirko Viroli

Organization

Program Committee Chairs

Tom Holvoet University of Leuven, Belgium
Mirko Viroli Alma Mater Studiorum–Università di Bologna,

Italy

Publicity Chair

Giacomo Cabri University of Modena and Reggio Emilia, Italy

Program Committee

Gul Agha University of Illinois at Urbana–Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Jacob Beal BBN Technologies, USA
Olivier Boissier École des Mines de Saint-Etienne, France
Ferruccio Damiani Università di Torino, Italy
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies Lucca, Italy
Ed Durfee University of Michigan, USA
Schahram Dustdar Technische Unversität Wien, Austria
Gianluigi Ferrari Università degli Studi di Pis a, Italy
José Luiz Fiadeiro Royal Holloway, University of London, UK
Tom Holvoet University of Leuven, Belgium
Valerie Issarny Inria, France
Christine Julien University of Texas at Austin, USA
Sarit Kraus Bar-Ilan University, Israel
Eva Kühn Vienna University of Technology, Austria
Marino Miculan University of Udine, Italy
Hanne Riis Nielson Technical University of Denmark, Denmark
Andrea Omicini Alma Mater Studiorum–Università di Bologna,

Italy
Sascha Ossowski University Rey Juan Carlos, Spain
Paolo Petta Austrian Research Institute for Artificial

Intelligence, Austria

X Organization

Rosario Pugliese Università degli Studi di Firenze, Italy
Alessandro Ricci Alma Mater Studiorum–Università di Bologna,

Italy
Juan Antonio Rodriguez Artificial Intelligence Research Institute (IIIA),

Spain
Carles Sierra Artificial Intelligence Research Institute (IIIA),

Spain
Marjan Sirjani Reykjavík University, Iceland
Carolyn Talcott SRI International, USA
Emilio Tuosto University of Leicester, UK
Mirko Viroli Alma Mater Studiorum–Università di Bologna,

Italy
Herbert Wiklicky Imperial College London, UK
Martin Wirsing Ludwig-Maximilians-Universität München,

Germany
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

Steering Committee

Gul Agha University of Illinois at Urbana–Champaign, USA
Farhad Arbab CWI and Leiden University, The Netherlands
Dave Clarke Uppsala University, Sweden
Tom Holvoet University of Leuven, Belgium
Christine Julien University of Texas at Austin, USA
Eva Kühn Vienna University of Technology, Austria
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Rocco De Nicola IMT - Institute for Advanced Studies Lucca, Italy
Rosario Pugliese Università degli Studi di Firenze, Italy
Marjan Sirjani Reykjavík University, Iceland
Carolyn Talcott SRI International, USA
Vasco T. Vasconcelos University of Lisbon, Portugal
Mirko Viroli Alma Mater Studiorum–Università di Bologna,

Italy
Gianluigi Zavattaro University of Bologna, Italy

Additional Reviewers

Andric, Marina
Bocchi, Laura
Bodei, Chiara
Bruni, Roberto
Cejka, Stephan
Chirita, Claudia
Coppieters, Tim
Crass, Stefan

DeJonge, Dave
De Koster, Joeri
Delzanno, Giorgio
Dokter, Kasper
Galletta, Letterio
Hamboeck, Thomas
Hildebrandt, Thomas
Hoste, Lode

Organization XI

Jongmans, Sung-Shik T.Q.
Loreti, Michele
Margheri, Andrea
Mariani, Stefano
Mohaqeqi, Morteza
Morales, Javier
Osman, Nardine
Padovani, Luca
Palmskog, Karl

Peressotti, Marco
Proenca, Jose
Renaux, Thierry
Sabahi Kaviani, Zeynab
Sabouri, Hamideh
Sproston, Jeremy
Tiezzi, Francesco
Torquati, Massimo
Varshosaz, Mahsa

Contents

Tuple-Based Coordination

Replica-Based High-Performance Tuple Space Computing 3
Marina Andrić, Rocco De Nicola, and Alberto Lluch Lafuente

Investigating Fluid-Flow Semantics of Asynchronous Tuple-Based
Process Languages for Collective Adaptive Systems 19

Diego Latella, Michele Loreti, and Mieke Massink

Logic Fragments: A Coordination Model Based on Logic Inference 35
Francesco Luca De Angelis and Giovanna Di Marzo Serugendo

Coordinating Ensembles

Comingle: Distributed Logic Programming for Decentralized Mobile
Ensembles . 51

Edmund Soon Lee Lam, Iliano Cervesato, and Nabeeha Fatima

Dynamic Choreographies: Safe Runtime Updates of Distributed
Applications . 67

Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo,
Ivan Lanese, and Jacopo Mauro

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free
Linear π-Calculi . 83

Luca Padovani, Tzu-Chun Chen, and Andrea Tosatto

Constraints

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 101
Alberto Lluch Lafuente, Michele Loreti, and Ugo Montanari

Take Command of Your Constraints! . 117
Sung-Shik T.Q. Jongmans and Farhad Arbab

A Labelled Semantics for Soft Concurrent Constraint Programming 133
Fabio Gadducci, Francesco Santini, Luis F. Pino,
and Frank D. Valencia

XIV Contents

Agent-Oriented Techniques

Parallelisation and Application of AD3 as a Method for Solving Large
Scale Combinatorial Auctions . 153

Francisco Cruz-Mencia, Jesus Cerquides, Antonio Espinosa,
Juan Carlos Moure, and Juan A. Rodriguez-Aguilar

Handling Agent Perception in Heterogeneous Distributed Systems:
A Policy-Based Approach . 169

Stephen Cranefield and Surangika Ranathunga

Blending Event-Based and Multi-Agent Systems Around Coordination
Abstractions . 186

Andrea Omicini, Giancarlo Fortino, and Stefano Mariani

Shared Spaces

Klaim-DB: A Modeling Language for Distributed Database
Applications . 197

Xi Wu, Ximeng Li, Alberto Lluch Lafuente, Flemming Nielson,
and Hanne Riis Nielson

Open Transactions on Shared Memory . 213
Marino Miculan, Marco Peressotti, and Andrea Toneguzzo

VISIRI - Distributed Complex Event Processing System for Handling
Large Number of Queries . 230

Malinda Kumarasinghe, Geeth Tharanga, Lasitha Weerasinghe,
Ujitha Wickramarathna, and Surangika Ranathunga

Author Index . 247

Tuple-Based Coordination

Replica-Based High-Performance

Tuple Space Computing

Marina Andrić1, Rocco De Nicola1, and Alberto Lluch Lafuente2(�)

1 IMT Institute for Advanced Studies Lucca, Lucca, Italy
2 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark

{marina.andric,rocco.denicola}@imtlucca.it, albl@dtu.dk

Abstract. Wepresent the tuple-based coordination languageRepliKlaim,
which enriches Klaim with primitives for replica-aware coordination. Our
overall goal is to offer suitable solutions to the challenging problems of data
distributionand locality in large-scalehighperformance computing. Inpar-
ticular, RepliKlaim allows the programmer to specify and coordinate the
replication of shareddata itemsand thedesired consistencyproperties.The
programmer can hence exploit such flexible mechanisms to adapt data dis-
tribution and locality to the needs of the application, so to improve
performance in terms of concurrency anddata access.We investigate issues
related to replica consistency, provide an operational semantics that guides
the implementation of the language, and discuss themain synchronization
mechanisms of our prototypical run-time framework. Finally, we provide a
performance analysis, which includes scenarios where replica-based speci-
fications and relaxed consistency provide significant performance gains.

1 Introduction

The scale of parallel and distributed computing systems is growing fast to meet
the computational needs of our society, ranging from (big) data-driven anal-
yses to massively distributed services. One of the key points in parallel and
distributed computing is the division and communication of data between com-
putational entities. Better performances are achieved with increased data local-
ity and minimized data communication. Increasing data locality can be easily
achieved by replicating data, but this comes of course at a high price in terms of
synchronization if replicated data need to be kept consistent. As a matter of fact
the trade-off between consistency and performance is one of the big dilemmas in
distributed and parallel computing.

The recent years have seen the advent of technologies that provide software
engineers and programmers with flexible mechanisms to conveniently specify
data locality, communication and consistency to the benefit of their applications.
A pragmatical example for large-scale distributed services is theGoogle Cloud

Storage
1 service, that allows users to geographically specify data locality (to

Research supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

1 https://cloud.google.com/storage/

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-19282-6_1

https://cloud.google.com/storage/

4 M. Andrić et al.

reduce cost and speed up access) and provides different consistency levels (e.g.
strong and eventual consistency) for different operations (e.g. single data and
list operations).

In the realm of parallel computing, one can find several high performance com-
puting languages that offer similar support for designing efficient applications.
De-facto standards such as OpenMP

2 (for shared memory multiprocessing) and
MPI

3 (for message-passing large-scale distributed computing) are being chal-
lenged by new languages and programming models that try to address concerns
such as the memory address to physical location problem. This is a general con-
cern that needs to be solved when programming scalable systems with a large
number of computational nodes. In languages X10

4, UPC
5 and Titanium [19],

this problem is solved via the partitioned global address space (PGAS) model.
This model is a middle way approach between shared-memory (OpenMP) and
distributed-memory (MPI) programming models, as it combines performance
and data locality (partitioning) of distributed-memory and global address space
of a shared-memory model. In the PGAS model, variables and arrays are either
shared or local. Each processor has private memory for local data and shared
memory for globally shared data.

Summarizing, two key aspects in the design of distributed and parallel systems
and software are data locality and data consistency. A proper design of those as-
pects can bring significant performance advantages, e.g. in terms of minimization
of communication between computational entities.

Contribution. We believe that those two aspects cannot be hidden to the pro-
grammer of the high performance applications of the future. Instead, we believe
that programmers should be equipped with suitable primitives to deal with those
aspects in a natural and flexible way. This paper instantiates such philosophy in
the coordination language RepliKlaim, a variant of Klaim [12] with first-class fea-
tures to deal with data locality and consistency. In particular, the idea is to let
the programmer specify and coordinate data replicas and operate on them with
different levels of consistency. The programmer can hence exploit such flexible
mechanisms to adapt data distribution and locality to the needs of the applica-
tion, so to improve performance in terms of concurrency and data access. We
investigate issues related to replica consistency, provide an operational semantics
that guides the implementation of the language, and discuss the main synchro-
nisation mechanisms of our implementation. Finally, we provide a performance
evaluation study in our prototype run-time system. Our experiments include
scenarios where replica-based specifications and relaxed consistency provide sig-
nificant performance gains.

Structure of the Paper. This paper is organised as follows. Section 2 presents
RepliKlaim and discusses some examples that illustrate its semantics. Section 3

2 www.openmp.org/
3 http://www.open-mpi.org/
4 x10-lang.org
5 upc.lbl.gov

www.openmp.org/
http://www.open-mpi.org/
x10-lang.org
upc.lbl.gov

Replica-Based High-Performance Tuple Space Computing 5

N ::= 0 | l :: [K,P] | N ‖ N (networks)
K ::= ∅ | 〈eti, L〉 | K,K (repositories)
P ::= nil | A.P | P + P | P | P (processes)
A ::= outs(ti)@L | ins(Tι)@� | read(Tι)@� (strong actions)

outw(ti)@L | inw(Tι)@� | (weak actions)
inu(Tι, L)@� | outu(eti, L)@� (unsafe actions)

L ::= ε | � | � | L • L (locations)

Fig. 1. Syntax of RepliKlaim

provides some details about our prototype implementation and presents a set of
performance experiments. Section 4 discusses related works. Section 5 concludes
the paper and identifies possible future works.

2 RepliKlaim: Klaim with Replicas

We present our language RepliKlaim in this section. We start with the definition
of the syntax in Section 2.1 and proceed then with the description of the oper-
ational semantics in Section 2.2. Section 2.3 discusses some examples aimed at
providing some insights on semantics, implementation and performance aspects,
later detailed in Section 3.

2.1 RepliKlaim: Syntax

The syntax of RepliKlaim is based on Klaim [12]. The main differences are the
absence of mobility features (i.e. the eval primitive and allocation environments)
and the extension of communication primitives to explicitly deal with replicas.

Definition 1 (RepliKlaim Syntax). The syntax of RepliKlaim is defined by the
grammar of Fig. 1, where L is a set of locations (ranged over by �, �′, . . .), U
is a set of values (ranged over by u, v, . . .), V is a set of variables (ranged over
by x, y, . . .), !V denotes the set binders over variables in V (i.e. !x, !y, . . .), I
is a set of tuple identifiers (ranged over by i, i′, j, j′), T ⊆ (U ∪ V)∗ is a set
of I-indexed tuples (ranged over by ti, t

′
i′ , . . .), ET ⊆ (U∗ is a set of I-indexed

evaluated tuples (ranged over by et i, et
′
i′ , . . .), and T T ⊆ (U ∪ V∪!V)∗ is a set

of templates (ranged over by Tι, T
′
ι′, . . . , with ι ∈ I ∪ !V).

Networks. A RepliKlaim specification is a network N , i.e. a possibly empty set
of components or nodes.

Components. A component � :: [K,P] has a locality name � which is unique
(cf. well-formedness in Def. 2), a data repository K, and set of processes P .
Components may model a data-coherent unit in a large scale system, where each
unit has dedicated memory and computational resources, e.g. an SMP node in
a many-core machine.

6 M. Andrić et al.

Repositories. A data repository K is a set of data items, which are pairs of
identifier-indexed tuples and their replication information. In particular a data
item is a pair 〈et i, L〉, where ti is a tuple, i is a unique identifier of the tuple,
and L is a list of localities where the tuple is replicated. For a data item 〈et i, L〉
with |L| > 1 we say that ti is shared or replicated. We use indexed tuples in
place of ordinary anonymous tuples to better represent long-living data items
such as variables and objects that can be created and updated. We require the
replication information to be consistent (cf. well-formedness in Def. 2). This
property is preserved by our semantics, as we shall see.

It is worth to note that a locality � in L can appear as � or as �. The latter case
denotes a sort of ownership of the tuple. We require each replicated tuple to have
exactly one owner (cf. well-formedness in Def. 2). This is fundamental to avoid
inconsistencies due to concurrent weak (asynchronous) retrievals or updates of
a replicated tuple. This issue will be explained in detail later.

Processes. Processes are the main computational units and can be executed
concurrently either at the same locality or at different localities. Each process
is created from the nil process, using the constructs for action prefixing (A.P),
non-deterministic choice (P1 + P2) and parallel execution (P1 | P2).

Actions and Targets. The actions of RepliKlaim are based on standard primitives
for tuple spaces, here extended to suitably enable replica-aware programming.
Some actions are exactly as in Klaim. For instance, read(ti)@� is the standard
non-destructive read of Klaim.

The standard output operation is enriched here to allow a list of localities
L as target. RepliKlaim features two variants of the output operation: a strong
(i.e. atomic) one and a weak (i.e. asynchronous) one. In particular, outα(ti)@L
is used to place the shared tuple ti at the data repositories located on sites l ∈ L
atomically or asynchronously (resp. for α = s,w). In this way the shared tuple is
replicated on the set of sites designated with L. In RepliKlaim output operations
are blocking: an operation outα(ti)@L cannot be enacted if an i-indexed tuple
exists at L. This is necessary to avoid inconsistent versions of the same data
item in the same location to co-exist. Hence, before placing a new version of a
data item, the previous one needs to be removed. However, we will see that weak
consistency operations still allow inconsistent versions of the same data item to
co-exist but in different locations.

As in the case of output operations, RepliKlaim features two variants of the
standard destructive operation in: a strong input ins and a weak input inw. A
strong input ins(Tι)@� retrieves a tuple et i matching Tι at � and atomically re-
moves all replicas of et i. A weak input inw(Tι)@� tries to asynchronously remove
all replicas of a tuple et i matching Tι residing in �. This means that replicas are
not removed simultaneously. Replicas in the process of being removed are called
ghost replicas, since they are reminiscent of the ghost tuples of [25,14] (cf. the
discussion in Section 4).

RepliKlaim features two additional (possibly) unsafe operations: outu(eti, L)@�
puts a data item 〈et i, L〉 at all locations in L, while inu(Tι, L)@� retrieves a tuple

Replica-Based High-Performance Tuple Space Computing 7

P + (Q+R) ≡ (P +Q) +R
P + nil ≡ P
P +Q ≡ Q+ P

P | (Q | R) ≡ (P | Q) | R
P | nil ≡ P

P | Q ≡ Q | P
N ‖ (M ‖ W) ≡ (N ‖ M) ‖ W

N ‖ 0 ≡ N
N ‖ M ≡ M ‖ M

� :: [K,P] ≡ � :: [K, nil] ‖ � :: [∅, P]

Fig. 2. Structural congruence for RepliKlaim

et i matching Tι at � and does not remove the replicas of et i. These operations are
instrumental for the semantics and are not meant to appear in user specifications.

As we have seen, the syntax of RepliKlaim admits some terms that we would
like to rule out. We therefore define a simple notion of well-formed network.

Definition 2 (Well-formedness). Let N be a network. We say that N is well
formed if:

1. Localities are unique, i.e. no two distinct components � :: [K,P], � :: [K ′, P ′]
can occur in N ;

2. Replication is consistent, i.e. for every occurrence of � :: [(K, 〈et i, L〉), P] in
a network N it holds that � ∈ L and for all (and only) localities �′ ∈ L we
have that component �′ is of the form �′ :: [(K ′, 〈et ′i, L〉), P ′]. Note that t′ is
not required to be t since we allow relaxed consistency of replicas.

3. Each replica has exactly one owner, i.e. every occurrence of L has at most
one owner location �.

4. Tuple identifiers are unique, i.e. there is no K containing two data items
〈et i, L〉, 〈et ′i, L′〉. Note that this guarantees local uniqueness; global unique-
ness is implied by condition (2).

Well-formedness is preserved by the semantics, but as usual we admit some
intermediate bad-formed terms which ease the definition of the semantics.

We assume the standard notions of free and bound variables, respectively
denoted by fn(·) and bn(·), as well as the existence of a suitable operation for
matching tuples against templates, denoted match(Tι, ti) which yields a substi-
tution for the bound variables of Tι. Note that ι may be a bound variable to
record the identifier of the tuple.

2.2 RepliKlaim: Semantics

RepliKlaim terms are to be intended up to the structural congruence induced
by the axioms in Fig 2 and closed under reflexivity, transitivity and symmetry.

8 M. Andrić et al.

A.P
A−→P

(ActP)
P

A−→P ′

P+Q
A−→P ′

(Choice)
P

A−→P ′

P |Q A−→P ′|Q
(Par)

P
outs(ti)@L−−−−−−→P ′ ∀�′∈L. �∃et′,L′.〈et′i,L′〉∈K�′

N‖�::[K,P]‖Π�′∈L�′::[K�′ ,P�′] −→ N‖�::[K,P ′]‖Π�′∈L�′::[(K�′ ,〈eti,L〉),P�′]
(OutS)

P
outw(ti)@L−−−−−−−→P ′ �′′∈L �∃et′,L′.〈et′i,L′〉∈K�′′

N‖�::[K,P]‖�′′::[K�′′ ,P�′′] −→ N‖�::[K,P ′]‖�′′::[(K�′′ ,〈eti,L〉),P�′′ |Π�′∈(L\�′′)outu(eti,L)@�′] (OutW)

P
outu(eti,L)@�−−−−−−−−→P ′ �∃et′,L′.〈et′i,L′〉∈K�

N‖�::[K,P] −→ N‖�::[(K,〈eti,L〉),P ′] (OutU)

P
ins(Tι)@�′′−−−−−−−→P ′ �′′∈L σ=match(Tι,eti)

N‖�::[K,P]‖Π�′∈L�′::[(K�′ ,〈eti,L〉),P�′] −→ N‖�::[K,P ′σ]‖Π�′∈L�′::[K�′ ,P�′]
(InS)

P
inw(Tι)@�′′−−−−−−−→P ′ �′′∈L �′∈L σ=match(Tι,eti)

N‖�::[K,P]‖�′::[(K�′ ,〈eti,L〉),P�′] −→ N‖�::[K,P ′σ]‖�′::[K�′ ,P�′ |
∏

�′′′∈(L\�′) inu(eti,L)@�′′′] (InW)

P
inu(Tι,L)@�′−−−−−−−−→P ′ σ=match(Tι,eti)

N‖�::[K,P]‖�′::[(K�′ ,〈eti,L〉),P�′] −→ N‖�::[K,P ′σ]‖�′::[K�′ ,P�′]
(InU)

P
read(Tι)@�′−−−−−−−→P ′ σ=match(Tι,eti)

N‖�::[K,P]‖�′::[(K�′ ,〈eti,L〉),P�′] −→ N‖�::[K,P ′σ]‖�′::[(K�′ ,〈eti,L〉),P�′]
(Read)

Fig. 3. Operational semantics of RepliKlaim

As usual, besides axiomatising the essential structure of RepliKlaim systems, the
structural congruence allows us to provide a more compact and simple seman-
tics. The axioms of the structural congruence are standard. We just remark the
presence of a clone axiom (bottom right) which is similar to the one used in early
works on Klaim. In our case, this clone axiom allows us to avoid cumbersome
semantic rules for dealing with multiparty synchronisations where the subject
component is also an object of the synchronisation (e.g. when a component �
removes a shared tuple ti that has a replica in � itself). The clone axiom allows a
component to participate in those interactions, by separating the processes (the
subject) from the repository (the object). It is worth to note that this axiom
does not preserve well-formedness (uniqueness of localities is violated).

The operational semantics in Fig. 3 mixes an SOS style for collecting the pro-
cess actions (cf. rules ActP, Choice and Par) and reductions for the evolution
of nets. The standard congruence rules are not included for simplicity.

It is worth to remark that the replicas located at the owner are used in some
of the rules as a sort of tokens to avoid undesirable race conditions. The role of
such tokens in inputs and outputs is dual: the replica must not exist for outputs
to be enacted, while the replica must exist for inputs to be enacted.

Replica-Based High-Performance Tuple Space Computing 9

N

• •

•

ins

��

read

��

ins��

Ns

• •

•

ins

��

read

��

ins��

Nw

• •

••

•

inw

��

read

��

inw��

read

��

inu

��

inu��

Fig. 4. Concurrent reads and inputs with no replicas (left), replicas and strong input
(center) and weak input (right)

Rule OutS deals with a strong output out(et i)@L by putting the tuple et i
in all localities in L. However, the premise of the rule requires a version of data
item i (i.e. a tuple et ′i) to not exist in the repository of the owner of et i (�

′′). Rule
OutW governs weak outputs of the form out(et i)@L by requiring the absence
of a version of data item i. The difference with respect to the strong output is
that the effect of the rule is that of creating a set of processes that will take
care of placing the replicas in parallel, through the unsafe output operation.
Such operation is handled by rule OutU which is very much like a standard
Klaim rule for ordinary outputs, except that the operation is blocking to avoid
overwriting existing data items.

Rule InS deals with actions in(Tι)@� by retrieving a tuple et i matching Tι from
locality �, and from all localities containing a replica of it. Rule InW retrieves
a tuple et i from an owner �′ of a tuple that has a replica in the target �. As a
result, processes are installed at �′ that deal with the removal of the remaining
replicas in parallel (thus allowing the interleaving of read operations). As in the
case of weak outputs, weak inputs resort to unsafe inputs. Those are handled by
rule InU, which is like a standard input rule in Klaim.

Finally, rule Read is a standard rule for dealing with non-destructive reads.

2.3 RepliKlaim: Examples

We provide here a couple of illustrative examples aimed at providing insights on
semantics, implementation and performance aspects.

Concurrent Reads and Inputs. The following example illustrates three ways of
sharing and accessing a tuple and is meant to exemplify the benefit of replicas
and weak inputs. The example consists of the networks

N
.
= �1 :: [〈et i, �1〉, ins(et j)@�1] ‖ �2 :: [∅, read(et j)@�1]

Nα
.
= �1 :: [〈et i, {�1, �2}〉, inα(et j)@�1] ‖ �2 :: [〈et i, {�1, �2}〉, read(et j)@�2]

with α ∈ {s,w}. The idea is that in N a tuple has to be accessed by both �1
and �2 is shared in the traditional Klaim way: it is only stored in one location

10 M. Andrić et al.

Ms

•

•

outs

��

read

��

Mw

•

• •

•

outw

��

outu

��

read

��

read

��

Ws

•

•

ins

��

outs

��

Ww

•

• •

•

•

inw

��

inu

��

outw

��

inu��

outw

��

outu

��

Fig. 5. Transitions for Ms (concurrent read and strong output), Mw (concurrent read
and weak output), Ws (concurrent strong input and strong output) and Ww (concurrent
weak input and weak output)

(namely, �1) with no replicas. To the contrary, Nα models the same scenario
with explicit replicas. The tuple et i is replicated at both �1 and �2, possibly
after some process executed out(et i)@{�1, �2}. Networks Ns and Nw differ in the
way the tuple et i is retrieved by �1: using strong or weak input, respectively.
Fig. 4 depicts the transition systems for the three networks, where the actual
description of the reachable states is not provided due to lack of space and due
to the simplicity of the example. The transition systems of N and Ns are similar
but differ in the way the transitions are computed. In N , the input is local to �1,
but the read is remote (from �2 to �1), while in Ns the input is global (requires
a synchronization of �1 and �2 to atomically retrieve all replicas of et i), and the
read is local to �2. The main point in Nw is that the process in �2 can keep
reading the ghost replicas of et i even after �1 started retrieving it.

Concurrent Reads and Outputs. The next example illustrates (see also Fig. 5)
the interplay of reads with strong and weak outputs.

Mα
.
= �1 :: [∅, outα(et i)@{�1, �2}] ‖ �2 :: [∅, read(et j)@�1]

with α ∈ {s,w}. The idea is that component �1 can output a tuple with replicas
in �1 and �2 in a strong or weak manner, while �2 is trying to read the tuple
from �1. In the strong case, the read can happen only after all replicas have been
created. In the weak case, the read can be interleaved with the unsafe output.

Concurrent inputs and outputs. The last example (see also Fig. 5) illustrates the
update of a data item using strong and weak operations.

Wα
.
= �1 :: [∅, inα(et i)@{�1, �2}.outα(f(et)i)@{�1, �2}] ‖ �2 :: [∅, nil]

with α ∈ {s,w}. The idea is that component �1 retrieves a tuple and then outputs
an updated version of it (after applying function f). Relaxing consistency from
s to w increases the number of interleavings.

Replica-Based High-Performance Tuple Space Computing 11

3 Performance Evaluation

We describe in this section our prototype implementation and present a set of
experiments aimed at showing that an explicit use of replicas in combination with
weakly consistent operations then provide significant performance advantages.

Implementing RepliKlaim in Klava. Our prototype run-time framework is based
on Klava, a Java package used for implementing distributed applications based
on Klaim. Klava is a suitable framework for testing our hypothesis as it pro-
vides a set of process executing engines (nodes) connected in a network via one
of the three communication protocols (TCP, UDP, local pipes). The current im-
plementation of RepliKlaim is based on an encoding of RepliKlaim into standard
Klaim primitives. We recall the main Klaim primitives we use in the encoding:
in(T)@� destructively retrieves a tuple matching T in location �. The operation
is blocking until a matching tuple is found; read(T)@�: non-destructive variant
of in; out(t)@�: inserts a tuple t into the tuple space located at �. The actual
encoding is based on the operational semantics presented in Fig. 3, which al-
ready uses some operations that are close to those of Klaim, namely the unsafe
operations inu and outu. The rest of the machinery (atomicity, etc.) is based on
standard synchronisation techniques.

Experiments: Hypothesis. The main hypothesis of our experiments is that better
performances are achieved with improved data locality and data communication
minimized through the use of replicated tuples and weak operations. Indeed, min-
imizing data locality can be easily done by replicating data, however it comes at
a cost in terms of synchronization if replicated data need to be kept consistent
(e.g. when using strong inputs and outputs). As we shall see, our experimen-
tal results show how the ratio between the frequencies of read and update (i.e.
sequences of inputs and outputs on the same data item) operations affects the
performance of three different versions of a program: a traditional one that does
not use replicas, and two versions using replicas: one using strong (consistent)
operations and another one using weak (weak consistent) operations. We would
only like to remark that we had to deviate in one thing from the semantics:
while spawning parallel processes in rules InW and OutW to deal with the
asynchronous/parallel actions on replicas seems very appealing, in practice per-
forming such operations in sequence showed to be more efficient. Of course in
general the choice between parallel and sequential composition of such actions
depends on several aspects, like the number of available processors, the num-
ber of processes already running in the system and the size of the data being
replicated.

Experiments: Configuration of the Scenario.6 The general idea of the scenario
we have tested is that multiple nodes are concurrently working (i.e. performing

6 The source code and Klava library are available online at http://sysma.imtlucca.it/
wp-content/uploads/2015/03/RepliKlaim-test-examples.rar

http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar
http://sysma.imtlucca.it/wp-content/uploads/2015/03/RepliKlaim-test-examples.rar

12 M. Andrić et al.

inputs, reads and outputs) on a list whose elements can be scattered on various
nodes. A single element (i.e. the counter) is required to indicate the number of
the next element that can be added. In order to add an element to the list, the
counter is removed using an input, the value of the counter is increased and
the tuple is re-inserted, and then a new list element is inserted. We call such a
sequence of input and output operations on the same data item (i.e. the counter)
an update operation.

Each of the nodes is running processes that perform read or update operations.
Both reader and updater processes run in loops. We fix the number of updates to
10, but vary the number of read accesses (20, 30, 50, 100, 150, 200). We consider
two variants of the scenario. The first variant has 3 nodes: one node containing
just one reader process, another node containing just one updater process and
a last one containing both a reader and an updater process. The second variant
has 9 nodes, each containing process as in the previous case, i.e. this scenario is
just obtained by triplicating the nodes of the previous scenario. The main point
for considering these two variants is that we run the experiment in a dual core
machine, so that in the first case one would ideally have all processes running in
parallel, while this is not the case in the second variant.

Formally, the RepliKlaim nets N we use in our experiments are specified as
follows

N
.
=

n∏

i=1

{
�i,1 :: [∅,P1(�i,1)] ‖ �i,2 :: [∅,P2(�i,2)] ‖ �i,3 :: [∅,P1(�i,3) | P2(�i,3)]

}

where P1 is an updater process and P2 is a reader process, both parametric
with respect to the locality they reside on. P1 is responsible for incrementing
the counter and adding a new list element, while P2 only reads the current
number of list elements. For the scalability evaluation we compare results for
nets obtained when n = 1 and n = 3, meaning that corresponding nets have 3
and 9 nodes respectively. Our aim is to compare the following three alternative
implementations of processes P1 and P2 which offer the same functionality, but
exhibit different performances:

Program no− replicas: this implementation follows a standard approach that
does not make use of replica-based primitives. The idea here is that the
shared tuple is stored only in one location, with no replicas. The consistency
of such model is obviously strong, as there are no replicas. Local access to the
shared tuple is granted only to processes running on the specified location,
while other processes access remotely. In the begining we assume that one
of the sites has executed outs(countera)@�1 which places the counter tuple
countera at place �1, with a being a unique identifier. Then processes P1 and
P2 can be expressed as follows:

P1(self) ≡ ins(countera)@�1.outs(f (countera))@�1.outs(ltacounter)@self .P1

P2(self) ≡ read(Ta)@�1.P2

where f (·) refers to the operation of incrementing the counter and lt refers
to the new list element which is added locally after the shared counter had

Replica-Based High-Performance Tuple Space Computing 13

been incremented. Note that we use a as unique identifier for the counter
and acounter as unique identifier for the new elements being inserted.

Program strong − replicas: The difference between this model and the non-
replicated one is the presence of replicas on each node, while this model also
guarantees strong consistency. Concretely, each update of replicated data
items is done via operations ins and outs. The formalisation is presented
below, after the description of the weak variant of this implementation.

Program weak− replicas: In this variant, the replicas are present on each node,
but the level of consistency is weak. This means that interleavings of ac-
tions over replicas are allowed. However, to make this program closer to the
functionality offered by the above ones, we forbid the co-existence of differ-
ent versions of the same data item. Such co-existence is certainly allowed in
sequences of operations like inw(ti)@�.outw(t

′
i)@L as we have seen in the ex-

amples of Section 2.3. To avoid such co-existence, but still allow concurrent
reads we use an additional tuple that the updaters used as sort of lock to en-
sure that outputs (reps. inputs) are only enacted once inputs (resp. outputs)
on the same data item are completed on all replicas. Of course, this makes
this program less efficient than it could be but it seems a more fair choice for
comparison and still our results show its superiority in terms of performance.

In the above two replication-based implementations we assume that the
counter is replicated on all nodes by executing outα(countera)@{�1, �2, �3}
with α ∈ {s,w}. In this case the processes are specified as:

P1(self) ≡ inα(countera)@self.outα(f (countera))@{�1, �2, �3}.
outs(acounter)@self.P1

P2(self) ≡ read(Ta)@self.P2

where the strong and weak variants are obtained by letting α be s and w,
respectively.

Experiments: Data and Interpretation. The results of our experiments are de-
picted in Fig. 6 and 7. The x axis corresponds to the ratio of reads and updates
performed by all processes, while the y axis corresponds to the time needed
by the processes to complete their computation. We measure the relation be-
tween average running time and the ratio between access frequencies. Time is
expressed in seconds and presents the average of 15 executions, while the ratio
is a number (2, 3, 5, 10, 15, 20). The results obtained for programs no− replicas,
strong − replicas and weak− replicas are respectively depicted in blue, green and
red.

It can be easily observed that when increasing the ratio the weak− replicas
program is the most efficient. This program improves over program no− replicas
only after the ratio of reading operations reaches a certain level that varies from
the two variants used (3 and 9 nodes). The variant with 9 nodes requires a higher
ratio to show this improvement, mainly due to the fact that the 12 processes
of the scenario cannot run in parallel in the dual-core machine we used. Note
that strong − replicas offers the worst performance. Indeed, preserving strong

14 M. Andrić et al.

2 4 6 8 10 12 14 16 18 20

20

40

60

80

100

120

140

160

180

200

220

Read/Update ratio

T
im

e
 (

s
e

c
)

No replicas
Strong−replicas
Weak−replicas

Fig. 6. Comparing three strategies in a scenario with 3 nodes

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

800

900

Read/Update ratio

T
im

e
 (

s
e

c
)

No replicas
Strong−replicas
Weak−replicas

Fig. 7. Comparing three strategies in a scenario with 9 nodes

Replica-Based High-Performance Tuple Space Computing 15

consistency in presence of replicas is unfeasible in practice because it requires a
great deal of synchronization.

4 Related Works

Many authors have investigated issues related to the performance of tuple space
implementations and applications of tuple space coordination to large-scale dis-
tributed and concurrent systems (cloud computing, high-performance comput-
ing, services, etc.). We discuss here some representative approaches that are
closely related to our work and, in part, served as inspiration.

One of the first performance improvements for tuple-space implementations
was the ghost tuple technique, originally presented in [25] and later proven to
be correct in [14]. The technique applies to Linda-like languages used in a dis-
tributed setting where local tuple replicas are used to improve local operations.
Ghost tuple is a local replica of a tuple being destructively read (by a Linda in)
operation. The ghost tuple technique allows the non-destructive read of those
local replicas (by a Linda read operation). This technique is very similar to our
idea of relaxing consistency in tuple space operations. In particular, our local
replicas can be seen as ghost tuples as we have mentioned in several occasions
in the paper. As a matter of fact, the ghost tuple technique is one of our main
sources of inspiration.

Another seminal work considering performance issues in tuple space coordi-
nation was the introduction of asynchronous tuple space primitives in Bonita
(asynchronous Linda) [24]. This work provided a practical implementation and
an illustrative case study to show the performance advantages of asynchronous
variants of tuple space primitives for coordinating distributed agents. A thor-
ough theoretical study of possible variants of tuple space operations was later
presented in [8]. In particular, the authors study three variants for the output
operation: an instantaneous output (where an output can be considered as in-
stantaneous creation of the tuple), and ordered output (where a tuple is placed
in the tuple space as one atomic action) and an unordered output (where the tu-
ple is passed to the tuple space handler and the process will continue, the tuple
space handler will then place the tuple in the tuple space, not necessarily re-
specting order of outputs). A clear understanding of (true) concurrency of tuple
space operations was developed in [7], where the authors provide a contextual
P/T nets semantics of Linda. All these works have inspired the introduction of
the asynchronous weak operations in RepliKlaim.

Performance issues have been also considered in tuple space implementations.
Besides Klaim implementations [5,4], we mention GigaSpaces [1], a commercial
tuple space implementation, Blossom [15], a C++ high performance distributed
tuple space implementation, Lime [23], a tuple space implementation tailored
for ad-hoc networks, TOTA [22], a middleware for tuple-based coordination in
multi-agent systems, and PeerSpace [9] a P2P based tuple space implementa-
tion. Moreover, tuple space coordination has been applied and optimised for
a large variety of systems where large-scale distribution and concurrency are

16 M. Andrić et al.

key aspects. Among other, we mention large-scale infrastructures [10], cluster
computing environments [2], cloud computing systems [17], grid computing sys-
tems [21], context-aware applications [3], multi-core Java programs [16], and
high performance computing systems [18]. As far as we know, none of the above
mentioned implementations treats replicas as first-class programming citizens.

Another set of works that are worth considering are recent technologies for
high performance computing. Among them we mention non-uniform cluster com-
puting systems, which are built out of multi-core SMP chips with non-uniform
memory hierarchies, and interconnected in horizontally scalable cluster configu-
rations such as blade servers. The programming language X10, currently under
development, is intended as object-oriented language for programing such sys-
tems. A recent formalization of some X10 features can be found in [11]. The
main concept of X10 is a notion of place which is a collection of threads (ac-
tivities) and data, and it maps to a data-coherent unit of a large system (e.g.
SMP node). In X10 the programmer makes the initial distribution of shared data
which is not changed throughout the program execution. Each piece of shared
data maps to a single place, and all remote accesses are achieved by spawning
(asynchronous) activities. In our language, such concept of place would corre-
spond to a single node. We believe that the concept of replicas introduced in
RepliKlaim, can be suitable for modeling high-performance programming using
X10-like programming languages.

5 Conclusion

We have presented the tuple-based coordination language RepliKlaim, which en-
riches Klaim with primitives for replica-aware coordination. RepliKlaim allows the
programmer to specify and coordinate the replication of shared data items and
the desired consistency properties so to obtain better performances in large-scale
high performance computing applications. We have provided an operational se-
mantics to formalise our proposal as well as to guide the implementation of
the language, which has been encoded into Klava [5], a Java-based implemen-
tation of Klaim. We have also discussed issues related to replica consistency
and the main synchronization mechanisms of our implementation. Finally, we
have provided a performance evaluation study in our prototype run-time sys-
tem. Our experiments include scenarios where replica-based specifications and
relaxed consistency provide significant performance gains.

We plan to enrich our performance evaluation to consider large-scale dis-
tributed systems since our focus so far has been on local concurrent systems.
Moreover, we would like to compare our implementation against existing tuple
space implementations (cf. the discussion in Section 4). We may also consider
other forms of consistency beyond strong and weak, as advocated e.g. in [26,6],
and to understand if there are automatic ways to help the programmer decide
when to use which form of consistency as done, e.g. in [20]. Another future
work we plan to pursue is to apply our approach to the Scel language [13].
One characteristic difference between Scel and Klaim is that the target of tu-
ple operations can be specified by a predicate on the attributes of components.

Replica-Based High-Performance Tuple Space Computing 17

This provides a great flexibility as it allows to use group-cast operations with-
out explicitly creating groups, called ensembles in Scel. In many applications
creating replicas would be a convenient mechanism to share information among
groups. However, the dynamicity of ensembles, since components change at-
tributes at run-time and those join and leave ensembles arbitrarily, poses some
challenges on the semantics and implementation of shared data items that need
to be investigated.

References

1. Gigaspaces technologies ltd, www.gigaspaces.com
2. Atkinson, A.K.: Development and Execution of Array-based Applications in a Clus-

ter Computing Environment. Ph.D. thesis, University of Tasmania (2010)
3. Balzarotti, D., Costa, P., Picco, G.P.: The lights tuple space framework

and its customization for context-aware applications. Web Intelligence and
Agent Systems 5(2), 215–231 (2007), http://iospress.metapress.com/content/
v16153407085177x/

4. Bettini, L., De Nicola, R., Loreti, M.: Implementing mobile and distributed ap-
plications in x-klaim. Scalable Computing: Practice and Experience 7(4) (2006),
http://www.scpe.org/index.php/scpe/article/view/384

5. Bettini, L., De Nicola, R., Pugliese, R.: Klava: a java package for dis-
tributed and mobile applications. Softw., Pract. Exper. 32(14), 1365–1394 (2002),
http://dx.doi.org/10.1002/spe.486

6. Brewer, E.: CAP twelve years later: How the “rules” have changed. Com-
puter 45(2), 23–29 (2012)

7. Busi, N., Gorrieri, R., Zavattaro, G.: A truly concurrent view of linda interprocess
communication. Tech. rep., University of Bologna (1997)

8. Busi, N., Gorrieri, R., Zavattaro, G.: Comparing three semantics
for linda-like languages. Theor. Comput. Sci. 240(1), 49–90 (2000),
http://dx.doi.org/10.1016/S0304-3975(99)00227-3

9. Busi, N., Montresor, A., Zavattaro, G.: Data-driven coordination in peer-to-peer
information systems. Int. J. Cooperative Inf. Syst. 13(1), 63–89 (2004)

10. Capizzi, S.: A tuple space implementation for large-scale infrastructures. Ph.D.
thesis, University of Bologna (2008)

11. Crafa, S., Cunningham, D., Saraswat, V., Shinnar, A., Tardieu, O.: Semantics of
(resilient) X10. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 670–696.
Springer, Heidelberg (2014)

12. De Nicola, R., Ferrari, G., Pugliese, R.: Klaim: a kernel language for agents inter-
action and mobility. IEEE Transactions on Software Engineering 24(5), 315–330
(1998)

13. De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to au-
tonomic systems programming: The SCEL language. TAAS 9(2), 7 (2014),
http://doi.acm.org/10.1145/2619998

14. De Nicola, R., Pugliese, R., Rowstron, A.: Proving the correctness of opti-
mising destructive and non-destructive reads over tuple spaces. In: Porto, A.,
Roman, G.-C. (eds.) COORDINATION 2000. LNCS, vol. 1906, pp. 66–80.
Springer, Heidelberg (2000)

15. van der Goot, R.: High Performance Linda using a Class Library. Ph.D. thesis,
Erasmus University Rotterdam (2001)

www.gigaspaces.com
http://iospress.metapress.com/content/v16153407085177x/
http://iospress.metapress.com/content/v16153407085177x/
http://www.scpe.org/index.php/scpe/article/view/384
http://dx.doi.org/10.1002/spe.486
http://dx.doi.org/10.1016/S0304-3975(99)00227-3
http://doi.acm.org/10.1145/2619998

18 M. Andrić et al.

16. Gudenkauf, S., Hasselbring, W.: Space-based multi-core programming in java. In:
Probst, C.W., Wimmer, C. (eds.) Proceedings of the 9th International Conference
on Principles and Practice of Programming in Java, PPPJ 2011, pp. 41–50. ACM
(2011), http://doi.acm.org/10.1145/2093157.2093164

17. Hari, H.: Tuple Space in the Cloud. Ph.D. thesis, Uppsala Universitet (2012)
18. Jiang, Y., Xue, G., Li, M., You, J.-y.: Dtupleshpc: Distributed tuple space for

desktop high performance computing. In: Jesshope, C., Egan, C. (eds.) ACSAC
2006. LNCS, vol. 4186, pp. 394–400. Springer, Heidelberg (2006)

19. Krishnamurthy, A., Aiken, A., Colella, P., Gay, D., Graham, S.L., Hilfinger, P.N.,
Liblit, B., Miyamoto, C., Pike, G., Semenzato, L., Yelick, K.A.: Titanium: A high
performance java dialect. In: PPSC (1999)

20. Li, C., Porto, D., Clement, A., Gehrke, J., Preguiça, N.M., Rodrigues, R.: Making
geo-replicated systems fast as possible, consistent when necessary. In: Thekkath,
C., Vahdat, A. (eds.) 10th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2012), pp. 265–278. USENIX Association (2012)

21. Li, Z., Parashar, M.: Comet: a scalable coordination space for decentralized dis-
tributed environments. In: Second International Workshop on Hot Topics in Peer-
to-Peer Systems, HOT-P2P 2005, pp. 104–111. IEEE Computer Society (2005)

22. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4) (2009)

23. Murphy, A.L., Picco, G.P., Roman, G.: LIME: A coordination model and mid-
dleware supporting mobility of hosts and agents. ACM Trans. Softw. Eng.
Methodol. 15(3), 279–328 (2006)

24. Rowstron, A.: Using asynchronous tuple-space access primitives (BONITA prim-
itives) for process co-ordination. In: Garlan, D., Le Métayer, D. (eds.) COORDI-
NATION 1997. LNCS, vol. 1282, pp. 426–429. Springer, Heidelberg (1997)

25. Rowstron, A., Wood, A.: An efficient distributed tuple space implementation for
networks of workstations. In: Bougé, L., Fraigniaud, P., Mignotte, A., Robert, Y.
(eds.) Euro-Par 1996. LNCS, vol. 1123, pp. 510–513. Springer, Heidelberg (1996)

26. Terry, D.: Replicated data consistency explained through baseball. Commun.
ACM 56(12), 82–89 (2013), http://doi.acm.org/10.1145/2500500

http://doi.acm.org/10.1145/2093157.2093164
http://doi.acm.org/10.1145/2500500

Investigating Fluid-Flow Semantics

of Asynchronous Tuple-Based Process Languages
for Collective Adaptive Systems

Diego Latella1, Michele Loreti2, and Mieke Massink1(�)

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
{Diego.Latella,mieke.massink}@isti.cnr.it

2 Università di Firenze and IMT-Lucca, Lucca, Italy
michele.loreti@unifi.it

Abstract. Recently, there has been growing interest in nature-inspired
interaction paradigms for Collective Adaptive Systems, for modelling and
implementation of adaptive and context-aware coordination, amongwhich
the promising pheromone-based interaction paradigm. System modelling
in the context of such a paradigmmay be facilitated by the use of languages
in which adaptive interaction is decoupled in time and space through asyn-
chronous buffered communication, e.g. asynchronous, repository- or tuple-
based languages. In this paper we propose a differential semantics for such
languages. In particular, we consider an asynchronous, repository based
modellingkernel-languagewhich is a restrictedversion ofLINDA,extended
with stochastic information about action duration. We provide stochastic
formalsemantics forbothanagent-basedviewandapopulation-basedview.
We then derive an ordinary differential equation semantics from the latter,
which provides a fluid-flow deterministic approximation for the mean be-
haviour of large populations. We show the application of the language and
the ODE analysis on a benchmark example of foraging ants.

Keywords: Asynchronous coordination languages · Stochastic process
algebras · Fluid-flow approximation · Continuous time markov chains

1 Introduction and Related Work

Collective Adaptive Systems (CAS) are systems typically composed of a large
number of heterogeneous agents with decentralised control and varying degrees of
complex autonomous behaviour. Agents may be competing for shared resources
and, at the same time, collaborate for reaching common goals. The pervasive
nature of CAS, together with the importance of the role they play, for instance
in the very core of the ICT support for smart cities, implies that a serious
a priori analysis—and, consequently modelling—of the design of any such a
system must be performed and that all critical aspects of its behaviour must be
carefully investigated before the system is deployed.

This research has been partially funded by the EU project QUANTICOL
(nr. 600708), and the IT MIUR project CINA.

© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 19–34, 2015.
DOI: 10.1007/978-3-319-19282-6_2

20 D. Latella et al.

Recently, there has been growing interest in nature-inspired interaction para-
digms for CAS, for enforcing adaptive and context-aware coordination. Among
these, those based on the metaphor of pheromones seem promising. System mod-
elling in the context of such a paradigmmay be facilitated by the use of languages
in which adaptive interaction is decoupled in time and space through asyn-
chronous buffered communication, e.g. tuple-based languages, a la LINDA [5].
For systems of limited size, several languages have already been proposed in
the literature and have proven useful for modelling—as well as programming—
autonomic adaptive coordination. Examples include KLAIM [10], which extends
LINDA with, among others, a notion of space, the TOTA framework [21], which,
additionally, provides for explicit adaptive tuple propagation mechanisms and
a sort of force field view of tuples, and SCEL [8], where the basic interaction
paradigm is enriched with a flexible, predicate-based addressing mechanism, with
a framework for defining policies, and with a notion of tuple-space which is ex-
tended to a more general knowledge-space. Additionally, quantitative extensions
of both KLAIM and SCEL have been developed, namely StoKLAIM [11] and
StocS [20], where the quantity of interest is the duration of (the execution of)
process actions. Such durations are assumed to be continuous random variables
with negative exponential distributions, commonly used in stochastic process
algebra [17]. Consequently, each such random variable is fully characterised by
its rate, a positive real value that is equal to the inverse of the mean duration
of the execution of the action. This choice for action durations gives rise to a
Markovian semantics for the languages: the behaviour of each agent of a sys-
tem is modelled by a continuous time Markov chain (CTMC). The collective
behaviour of a system of agents is also modelled by a CTMC, of course obtained
as a suitable combination of those of the component agents.

Unfortunately, as soon as the size of the systems under consideration grows,
the infamous combinatorial state space explosion problem makes system mod-
elling and analysis essentially unfeasible. On the other hand, one of the key
features of CAS is the large size of their component populations. Consequently,
scalability of modelling—and, most of all, analysis—techniques and tools be-
comes a must in the context of CAS design and development. It is thus essential
to develop alternative approaches for modelling systems with large populations of
agents, possibly based on—and formally linked to—process algebra. In this way,
one can try to extend, to such alternative approaches, modelling and analysis
techniques which have proven effective for standard stochastic process algebra,
such as stochastic model-checking of probabilistic temporal logics. One way to
deal with large population systems is the so called fluid-flow approach, which
consists in computing a deterministic approximation of the mean behaviour of
the large population [2]. The first step is to abstract from agent identity and to
look only at the number of agents in a particular state, for each of the possible
states of the agents in the population and at any point in time. Then, a further
step is performed by approximating the average values of such numbers by means
of a deterministic, continuous function of time, which is obtained as the solution
of an initial value problem where the set of ordinary differential equations (ODE)

Investigating Fluid-Flow Asynchronous Semantics 21

is derived from the system model and the initial condition is the initial distri-
bution of the population over the set of local states of the agents. Prominent
examples of the fluid-flow approach are the differential (i.e. ODE-based) seman-
tics version of the Performance Analysis Process Algebra (PEPA) [23], which
we will call ODE-PEPA, Bio-PEPA [7] and, more recently, PALOMA [13]. The
advantage of a fluid-flow approach is that the transient average behaviour of the
system can be analysed orders of magnitude faster than by stochastic simula-
tion, where the mean of a usually large number of simulation traces must be
computed. The fluid-flow approach is independent of the size of the involved
populations, as long as this size is large enough to provide a good deterministic
approximation [2].

In this paper we explore the possibility for differential semantics for languages
with an asynchronous buffered communication interaction paradigm, e.g. data-
repository- /tuple- based ones. We present OdeLinda, a simple experimental
language, based on a LINDA-like, asynchronous paradigm, where processes in-
teract only via a data repository by means of out, in and read operations for
respectively inserting, withdrawing and reading data values to/from the reposi-
tory. In particular, we present a quantitative, Markovian language; the behaviour
of each agent is modelled by a Markov process.

In most stochastic process languages, each action is decorated with its rate,
which is typically a constant. In OdeLinda, instead, action rates are allowed to
depend on the global state of the complete system; thus they are functions from
global system states to positive real values, in a similar way as in Bio-PEPA. We
provide a formal definition of the Markovian semantics using State-to-Function
Labeled Transition Systems (FuTS) [9], an approach that provides for a simple
and concise treatment of transition multiplicities—an issue closely related to the
CTMC principle of race-condition—and a clean and compact definition of the
semantics.

We follow the fluid-flow approach for making the language scalable in order
to be able to deal with CAS. We define a population semantics for OdeLinda
from which a differential (ODE) semantics is derived, in a similar way as pro-
posed in [13] for PALOMA and in [23] for ODE-PEPA. The interaction paradigm
underlying OdeLinda is fundamentally different from those of ODE-PEPA, Bio-
PEPA and PALOMA. ODE-PEPA is based on the well-known PEPA process
interaction paradigm, with processes synchronising on common, specific activi-
ties, Bio-PEPA is based on the chemical-reaction paradigm, whereas PALOMA
agents use message multicasting. Additionally, both Bio-PEPA and PALOMA
provide some simple means for spatial modelling. Spatial information is currently
not incorporated in OdeLinda.

In tuple-based approaches, data repositories are typically multi-sets of values
and adding/withdrawing a value to/from the repository increases/decreases the
multiplicity of that value in the repository. In a “population”-oriented view, this
means that the total system population size may change during the computa-
tions, i.e. we are dealing with a birth-death type of systems. This is the case for
OdeLinda and constitutes another distinguishing feature when compared with

22 D. Latella et al.

e.g. ODE-PEPA. In this respect, our proposal is more similar to sCCP [3], al-
though, from a technical point of view, for the actual definition of the differential
semantics we followed the approach used in [23,13] rather than that presented
in [3]. Finally, our work is also related to PALPS [1] and MASSPA [15]. PALPS is
a language for ecological models. Only an individual-based semantics is available
for PALPS. The language is thus usable only in the specific domain of ecological
models and, furthermore, seriously suffers of lack of scalability. MASSPA [15]
shares some features with PALOMA, e.g. a multicast-like interaction paradigm;
it is lacking a Markovian, individual-based semantics.

It is worth noting that the language we present here is a minimal kernel lan-
guage; we intended to address only the basic issues which arise when defining a
differential semantics for tuple-based asynchronous languages. For this reason,
operations on data, and in particular templates and pattern-matching are not
considered, so that in and read operations result into pure synchronisation ac-
tions (with or without value consumption, respectively). The unconstrained use
of templates and pattern-matching, as well as the use of general operations on
data types, could result in an unbounded number of distinct values in a model,
which, in turn, would require an unbounded number of differential equations
in the differential semantics. Consequently, only ground terms are allowed in
model specifications. It is worth noting that this does not imply that we allow
only finite computations or that there are bounds on the multiplicity of each
piece of data or on the resulting state spaces. In fact, the number of copies of
any given value which can be stored in a repository by means of repeated execu-
tions of out actions in a computation, by one or more processes, is unbounded
(and may be infinite for infinite computations). Anyway, one should also keep
in mind that OdeLinda is intended to be a process modelling, rather than a
programming, language and that differently from most process modelling lan-
guages, that, typically, do not provide any feature for dealing with data, offers
some means, although primitive, for data storage, withdrawal and retrieval. For
the sake of simplicity, we also refrain from considering process spawning, al-
though this would not cause particular problems given that the semantic model
we use deals with dynamic population sizes in a natural way. The objective of
the present paper is to show that the basic notion of ODE semantics for asyn-
chronous, shared-repository based languages is well founded. Additionally, by
revisiting the benchmark example of Foraging Ants, we show that even in the
restricted form we present in this paper, OdeLinda can be useful for actual
system modelling and analysis.

The present paper is organised as follows: the syntax and Markovian, indi-
vidual-based semantics of OdeLinda are presented in Section 2; the differential
semantics of the language are presented in Section 3. An example of model spec-
ification as well as ODE analysis is given in Section 4. Finally, some conclusions
and considerations for future work are discussed in Section 5.

Investigating Fluid-Flow Asynchronous Semantics 23

2 Syntax and Markovian Semantics of OdeLinda

We recall that the main purpose of this paper is to show the basic principles for
the definition of a differential semantics of asynchronous repository-based lan-
guages rather than the definition of a complete, high-level, ready-to-use process
language. Consequently, the language we present here is a very minimal one, al-
though, as we pointed out in Section 1 it can be used for the effective modelling
of typical CAS systems like foraging ants, as we will show in Section 4.

2.1 Syntax

LetD be a denumerable non-empty set of data values, ranged over by d, d′, d1, . . .,
A be set of actions with A = Ao ∪Ai ∪Ar, where Ao = {out(d) | d ∈ D},Ai =
{in(d) | d ∈ D},Ar = {read(d) | d ∈ D}, ranged over by α, α′, . . ., P be a denu-
merable non-empty set of state constants (or states), ranged over by C,C′, C1, . . .

A system model is the result of the parallel composition of agents, i.e. pro-
cesses, which are finite state machines. Thus the language has the following two
level grammar for the sets Agents of agents and Proc of processes:

A ::= (R,out(d)).C | (R, in(d)).C | (R, read(d)).C |A+A P ::= C |P || P

where for each used constant C there is a definition of the form C := A, which, in
the sequel, will be written as C :=

∑
j∈J (Rj , αj).Cj , for some finite index set J ,

with obvious meaning. In action prefix, (R,α). , R is the name of a rate function
under the scope of a suitable definition R := E; E is a numerical expression
where the special operator #C can be used which, for state name C, yields the
number of agents which are in state C in the current global system state. We
will refrain from giving further details on the syntax of expressions E.

A process definition is the collection of definitions for the states of the process.
A system state is a pair (P,D) where the set Reps of data repositories D is
defined according to the following grammar:

D ::= 〈〉 | 〈d〉 | D|D

The language of expressions E for rate function definitions is extended with
#d, for values d ∈ D, with the obvious meaning. A system (model) specification
is composed of the set of definitions for its processes, the set of definitions for the
rate functions used therein, and an initial global state (P0, D0). It is required
that for each state in the system specification there is exactly one definition.
For the sake of simplicity, in the present paper we require that for all i ∈ I
and x ∈ {o, i, r}, if αij ∈ Ax for some j ∈ Ji, then αih ∈ Ax for all h ∈ Ji
(no mixed choice) and that for C �= C′, if C :=

∑
j∈J (Rj , αj).Cj and C′ :=∑

j∈J′(R′
j , α

′
j).C

′
j are both state definitions appearing in the system definition

then {αj}j∈J∩{α′
j}j∈J′ �= ∅ implies {αj}j∈J = {α′

j}j∈J′ (in order not to incur in
the possibility of circular definitions in the ODE). In the sequel we let S denote
the set of global system states.

24 D. Latella et al.

Agents:
Reader = (RA, in(a)).Comp + (RB, in(b)).Comp
Comp = (RR, read(r)).Reader
AWriter = (WA, out(a)).AWriter
BWriter = (WB, out(b)).AWriter

Rate Functions:
RA = 10 ·#Reader ·#a
RB = 5 ·#Reader ·#b
RR = 10 ·#Comp ·#r
WA = 9 ·#AWriter
WB = 4 ·#BWriter

Fig. 1. A simple model of Readers and Writers

As a simple running example we consider the specification of a readers/writ-
ers model given in Figure 1, where two kinds of writers are considered—those
writing messages of type a and those writing messages of type b—and readers
perform some computation using some resources r before reading the next item,
modelled by synchronisation on r—with the following initial state1

(Reader[10000] || AWriter[5000] || BWriter[5000], 〈a〉[5000]|〈b〉[5000])|〈r〉[1000]).

2.2 Stochastic Semantics

The stochastic semantics are given in Figure 2 using the FuTS framework [9],
that is an alternative to the classical approach, based on Labelled Transition
Systems (LTS). In LTS, a transition is a triple (s, α, s′) where s and α are the
source state and the label of the transition, respectively, while s′ is the target
state reached from s via a transition labeled with α. In FuTS, a transition is
a triple of the form (s, α,F). The first and second component are the source
state and the label of the transition, as in LTS, while the third component
F is a continuation function (or simply a continuation in the sequel), which
associates a value from an appropriate semiring with each state s′. In the case
of Markovian process algebra, the relevant semiring is that of non-negative real
numbers. If F maps s′ to 0, then state s′ cannot be reached from s via this
transition. A positive value for state s′ represents the rate for the jump of the
system from s to s′. Any FuTS over R≥0 uniquely defines a CTMC, which can
obviously be built by successive application of the continuations to the set of
states. Below we recall the main notions on FuTS. The reader interested in
further details is referred to [9].

Given a denumerable non-empty set V , we let FS(V,R≥0) denote the class
of finitely supported2 functions from V to R≥0. For v1, . . . , vn in set V and

1 We use the standard notational convention that P [n] means n instances of P in
parallel: P || P || . . . || P . We extend it to tuples in the obvious way.

2 A function f : V → R≥0 has finite support if and only if the set {v ∈ V | f v �= 0} is
finite. In this paper we often use Currying in function application.

Investigating Fluid-Flow Asynchronous Semantics 25

PA:
C:=

∑
j∈J(Rj ,αj).Cj

C
R,α
�

∑
{h∈J,αh=α∧Rh=R}[Ch �→ 1]

DI:

〈d〉 in(d)
� [〈〉 �→ 1]

DR:

〈d〉 read(d)
� [〈d〉 �→ 1]

DN1: 〈〉 α� []
DN2:

α�∈{in(d),read(d)}
〈d〉 α� []

PP:
P1

R,α
�P1 P2

R,α
�P2

P1|P2
R,α
�P1|(X P2)+(X P1)|P2

DP:
D1

α�D1 D2
α�D2

D1|D2
α�D1|(X D2)+(X D1)|D2

OUT:
P

R,out(d)
� P

(P,D)
out(d)
� Ro(P,D,P,X (D|〈d〉),R)

IN:
D

in(d)
� D P

R,in(d)
� P

(P,D)
in(d)
� Ri(P,D,P,D,R)

READ:
D

read(d)
� D P

R,read(d)
� P

(P,D)
read(d)

� Rr(P,D,P,D,R)

Fig. 2. FuTS semantics of the process language with tuple creation

r1, . . . , rn ∈ R≥0, we let [v1 	→ r1, . . . , vn 	→ rn] in FS(V,R≥0) denote the
function mapping vi to ri, for i = 1, . . . n, and any other v ∈ V \ {v1, . . . , vn}
to 0; the degenerate case [] denotes the constant function yielding 0 everywhere.
For v ∈ V , X v denotes the function [v 	→ 1]. For functions F1,F2 ∈ FS(V,R≥0)
we let (F1 + F2) ∈ FS(V,R≥0) be defined as (F1 + F2) v = (F1 v) + (F2 v)
and we extend (F1 + F2) to the n-ary version

∑
j∈J Fj , in the obvious way,

for finite index set J . For r ∈ R we let F/r ∈ FS(V,R≥0) be the defined
as (F/r) v = (F v)/r if r �= 0 and (F/r) v = 0 otherwise. We let ⊕F be
defined as ⊕F =

∑
v∈V (F v); note that ⊕F is finite, and thus well-defined, for

F ∈ FS(V,R≥0). We recall standard structural congruence ≡ on Reps, with
D|〈〉 ≡ D,D1|D2 ≡ D2|D1, (D1|D2)|D3 ≡ D1|(D2|D3). In the sequel, when
dealing with data repositories, we will implicitly assume them modulo ≡. For
the sake of notational simplicity we will keep D,D′ . . . in the notation (but
actually the representatives of their equivalence classes are intended). A similar
structural congruence ≡ is assumed for processes, with P1 || P2 ≡ P2 || P1, (P1 ||
P2) || P3 ≡ P1 || (P2 || P3) , as well as similar conventions concerning notation.

For function P in FS(Proc/≡,R≥0) and D in FS(Reps/≡,R≥0) the notation
(P ,D) defines a function in FS(S/≡,R≥0) as follows: for system state (P,D) ∈
S/≡, we have (P,D)(P,D) = (P P) · (D D), where · denotes product in R≥0.
For each rate function definition R = E, we consider the function R : S/≡ →
R≥0 defined in the following. For all (P,D) ∈ S/≡ R(P,D) = [[E]](P,D), where
[[E]](P,D) denotes the value of expression E in the current global state (P,D).
Obviously [[#C]](C,D) = 1 and [[#C]](P1||P2,D) = [[#C]](P1,D) + [[#C]](P2,D). The
definition for [[#d]](P,D) is similar.

The continuation summation in Rule (PA) takes care of multiple alterna-
tives with the same action and rate function. Different choices for functions

26 D. Latella et al.

Ro, Ri, Rr in rules (IN), (OUT) and (READ) give rise to different interac-
tion policies. For instance, for a TIPP-like synchronisation policy, assuming
each rate function definition be of the form R := kR, for kR ∈ R>0, one can
let Ro(P,D,P,D , R) = Ri(P,D,P ,D , R) = Rr(P,D,P ,D , R) = R(P,D) ·
(P,D). Similarly, for a PEPA-like interaction paradigm, assuming again each
rate function be a constant, we get Ro(P,D,P ,D , R) = R(P,D) · (P ,D), and

Ri(P,D,P,D , R) = Rr(P,D,P ,D , R) = R(P,D) · min{⊕P,⊕D}
⊕P·⊕D (P ,D). In this

paper we choose Ro = Ri = Rr = R where

R(P,D,P ,D , R) = R(P,D) · (P

⊕P
,
D

⊕D
).

The idea is that the rate of the action is the full responsibility of the modeller,
being equal to R(P,D); in fact (P

⊕P , D
⊕D)(P ′, D′) is equal to 1 if (P ′, D′) is

reachable in one transition from (P,D) and 0, if it is not.

3 Differential Semantics of OdeLinda

In this section we define the differential semantics for the language introduced
in Sect. 2. We follow a similar approach as in [13,23]: we first define a population
semantics for the language and then we define the differential semantics by means
of deriving, from the population semantics, suitable ODEs for the mean-field
model.

3.1 Population Semantics

Assume we are given a system specification where {C1, . . . Cs} is the set of all
states of all processes and {d1, . . . dt} is the set of all data values textually
occurring in the specification. Given a global system state (P,D) we consider
the corresponding vector X = (x1, . . . , xm) of counting variables such that, for
i = 1, . . . , s, xi records the number of agents in P which are in (local) state
Ci, and for i = s + 1, . . . ,m = s + t, xi records the number of instances of
di−s in D. Clearly, every transition at the single agent level corresponds to a
change in the value of X, i.e. a population-based transition. In order to formalise
how single agent transitions induce population-based transitions, let (P ′, D′)
and (P ′′, D′′) be two global system states with P ′ = C′

1 || . . . || C′
s′ , P

′′ =
C′′

1 || . . . || C′′
s′′ , D

′ = d′1| . . . |d′t′ , and D′′ = d′′1 | . . . |d′′t′′ and, with reference to
the given system specification, define the update vector δ in the usual way3:
δ((P ′′, D′′), (P ′, D′)) = (δ1, . . . , δm) with

δi =

⎧
⎪⎨

⎪⎩

∑s′′

j=1 1{C′′
j = Ci} −

∑s′

j=1 1{C′
j = Ci}, for i = 1, . . . , s

∑t′′

j=1 1{d′′j = di} −
∑t′

j=1 1{d′j = di}, for i = s+ 1, . . . ,m

3 1{C = C′} is equal to 1 if C = C′ and to 0 otherwise.

Investigating Fluid-Flow Asynchronous Semantics 27

With the definition of the update vector in place we can easily define the
population-based transitions using the following rule:

(P,D)
α� (P,D) r(P,D) = (P ,D)(P ′, D′) > 0

X
α,r(P,D)→ X+ δ((P ′, D′), (P,D))

Using the above procedure, for any system specification we can derive a
population-based CTMC (PCTMC) [2]. Such a PCTMC is defined as the tuple
(X,Zm, T ,x0), where, :

– X = (x1, . . . , xm) is the state vector, where, for i = 1, . . . , s element xi is
the count of agents in state Ci and, for i = s+1, . . . ,m = s+ t it counts the
number of instances of di−s;

– T (X) = {τ1, . . . , τh} is the set of population-based transitions enabled in
state X. Each transition τ is associated with a update vector δτ and a rate

rτ (X) =
∑

{r | X α,r→ X+ δτ for some α};
– x0 ∈ Z

m is the initial state of the PCTMC.

3.2 Mean-Field Model

The dynamics of the above PCTMC is as follows: if the PCTMC is currently in
state X, then, every 1/rτ (X) time units, on average, a change in the population
level of some agents and data items δτ occurs. We can approximate such a
discrete change in a continuous way so that for small finite time interval Δt the
change in the population level is

X(t+Δt) = X(t) + rτ (X(t)) ·Δt · δτ

from which, for Δt → 0, we get the ODE dX(t)
dt = rτ (X(t)) · δτ . Taking all

enabled transitions into account the ODE describing the approximated transient
evolution of the complete population-level system dynamics is given by the initial
value problem:

dX(t)

dt
=

h∑

k=1

rτk(X(t)) · δτk withX(0) = x0

for large populations and under suitable scalability assumptions (on the rate
functions); the interested reader is referred to [2] for the technical details.

With reference to our running example of Figure 1 we get the equations of
Figure 3. Note that there is no dynamics for the writer processes in this example,
since each of these agents has just a single state (and a self-loop). Similarly for
the resource r.

28 D. Latella et al.

dReader(t)
dt

= 10 · r(t) · Comp(t)− (10 · a(t) + 5 · b(t)) · Reader(t)

dComp(t)
dt

= (10 · a(t) + 5 · b(t)) · Reader(t)− 10 · r(t) · Comp(t)

d a(t)
dt

= 9 ·AWriter(t)− 10 · a(t) ·Reader(t)

d b(t)
dt

= 4 · BWriter(t)− 5 · a(t) ·Reader(t)

Fig. 3. ODE for the simple model of Readers and Writers of Figure 1

4 Example - Foraging Ants

As an example, we revisit a somewhat simplified model of a colony of foraging
ants inspired by earlier work in the literature [14,12,22]. The ants initially reside
at a Nest and will move between the Nest and a Food site. There are two, bidi-
rectional, paths connecting the Nest to the Food site (and vice-versa), the Fast
path and the Slow path. Each path is composed by a finite sequence of (path)
stages: the number �F of stages of the Fast path is smaller than the number �S
of stages of the Slow path. The average time it takes an ant to traverse a stage
is the same for each stage, regardless of whether it is situated on the Slow or
the Fast path; such traversal times are modelled by exponentially distributed
random variables. The situation is depicted in Fig. 4 where FPj stands for the
j-th of the �F stages of the Fast path and SPj stands for the j-th of the �S
stages of the Slow path, for �F < �S . A model for foraging ants is specified in
Fig. 5. The set of data values occurring in the model specification is the finite set
(
⋃�F

j=1{Phe@FPj}) ∪ (
⋃�S

j=1{Phe@SPj}) where tuple 〈Phe@FPj〉 (〈Phe@SPj〉,
respectively) represents a unit of pheromone in stage j of the Fast path (Slow
path, respectively). There are two process types, one modelling an ant and one
modelling the expiration, i.e. decay, of pheromones; the (finite) set of states is
as follows:

{Ant@Nest,Ant@Food} ∪
(
⋃�F

j=1{AntToFood@FPj}) ∪ (
⋃�S

j=1{AntToFood@SPj}) ∪
(
⋃�F

j=1{AntToNest@FPj}) ∪ (
⋃�S

j=1{AntToNest@SPj}) ∪
(
⋃�F

j=1{ExpPhe@FPj}) ∪ (
⋃�S

j=1{ExpPhe@SPj}).

Fig. 4. Schematic of a Fast Path and a Slow Path for ants; FPj represents stage j of
the Fast Path and SPj represents stage j of the Slow Path; �F < �S is assumed

Investigating Fluid-Flow Asynchronous Semantics 29

Ant@Nest = (NFF, read(Phe@FP1)).AntToFood@FP1 +
(NFS, read(Phe@SP1)).AntToFood@SP1

AntToFood@FPj = (NFFj , out(Phe@FPj)).AntToFood@FPj+1 j = 1 . . . �F − 1

.

.

.
AntToFood@FP�F

= (NFF�F
, out(Phe@FP�F

)).Ant@Food

AntToFood@SPj = (NFSj , out(Phe@SPj)).AntToFood@SPj+1 j = 1 . . . �S − 1

.

.

.
AntToFood@SP�S

= (NFS�F
, out(Phe@SP�F

)).Ant@Food

Ant@Food = (FNF�F
,read(Phe@FP�F

)).AntToNest@FP�F
+

(FNS�S
,read(Phe@SP�S

)).AntToNest@SP�S

AntToNest@FP�F −j = (FNF�F −j ,out(Phe@FP�F−j)).AntToNest@FP�F−(j+1) j = 1 . . . �F − 1

.

.

.
AntToNest@FP1 = (FNF1,out(Phe@FP1)).Ant@Nest

AntToNest@SP�S−j = (FNS�S−j , out(Phe@SP�F−j)).AntToNest@SP�F−(j+1)

j = 1 . . . �S − 1

.

.

.
AntToNest@SP1 = (FNS1, out(Phe@SP1)).Ant@Nest

ExpPhe@FPj = (PHF, in(Phe@FPj)).ExpPhe@FPj j = 1 . . . �F
ExpPhe@SPj = (PHS, in(Phe@SPj)).ExpPhe@SPj j = 1 . . . �S

Fig. 5. OdeLinda model for foraging ants

State Ant@Nest (Ant@Food, respectively) represents an ant at the Nest (at
the Food site, respectively). State AntToFood@FPj (AntToFood@SPj, respec-
tively) represents an ant in stage j of the Fast (Slow, respectively) path, when
travelling from the Nest to the Food. State AntToNest@FPj (AntToNest@SPj ,
respectively) represents an ant in stage j of the Fast (Slow, respectively) path,
when travelling from the Food to the Nest. For the sake of simplicity, in this
model, once an ant leaves the Nest, it can only proceed to the Food and then
come back to the Nest (i.e. an ant cannot change its mind half-way a path or
get stuck there). This is common in foraging ants models (see [22] and refer-
ences therein). Finally, processes ExpPhe@FPj and ExpPhe@SPj are used for
modelling pheromone decay. The definitions of rate functions NFF, NFS, NFFj ,
NFSj , PHF, and PHS are given below, where parameters k,m and p will be
discussed later on in this section:

NFF = (k+#Phe@FP1)
2

(k+#Phe@FP1)2+(k+#Phe@SP1)2
·#Ant@Nest

NFS = (k+#Phe@SP1)
2

(k+#Phe@FP1)2+(k+#Phe@SP1)2
·#Ant@Nest

NFFj = m ·#AntToFood@FPj

NFSj = m ·#AntToFood@SPj

PHF = p ·#ExpPhe@FPj

PHS = p ·#ExpPhe@SPj

The expressions for the definitions of NFF and NFS are written in accordance
with results from experimental studies on colonies of Argentine ants, as discussed

30 D. Latella et al.

in [14,12,22]. The definition of functions FNF,FNS,FNFj , and FNSj are similar
to those of NFF,NFS,NFFj and NFSj due to the symmetry of the model.

In the following we present some analysis results for two specific instantiations
of the model and its parameters. We consider a model where the Fast path is
composed of two stages while the Slow path is seven stages long, i.e. �F = 2 and
�S = 7.

We first assume that pheromones do not decay: they accumulate in the path
stages so that their total amount grows larger and larger. This is achieved by
setting the decay rate p to zero. The value chosen for k is 10, while the ants rate
of movement m from one path stage to the next one is set to 0.1. Fig. 6 shows
the solution of the equations for the first 500 time units for an initial number
of 1000 ants in the Nest, while no ants are assumed present in any other path
stage, neither at the Food site, initially. One unit of pheromone is assumed to
be present at time 0 at the stages of the Slow and the Fast paths closest to the
Nest. Fig. 6 (left) shows that there is a quick drop in the number of ants at
the Nest and that for a brief time frame of about 50 time units the cumulative
number of ants on the Slow path is actually higher than that on the Fast path.
This situation changes rapidly when ants start to return from the Food to the
Nest providing implicitly feedback to the system by reinforcing the pheromone
trace on the Fast path. This leads to a rather quick convergence of ants on the
Fast path. The cumulative amount of pheromones on the Fast and the Slow path
is shown in Fig. 6 (right).

0

200

400

600

800

1000

1200

0 100 200 300 400 500

P
o
p
u
l
a
t
i
o
n

s
i
z
e

Time

FAST
SLOW

ANTS IN NEST
ANTS AT FOOD

ALL

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500

P
o
p
u
l
a
t
i
o
n

s
i
z
e

Time

PF1
PS1

Fig. 6. Evolution over the first 500 time units of the number of ants in the Nest, at
the Food and on the Fast and the Slow path (left) and the amounts of pheromones on
the start of the short (PF1) and long (PS1) path (right)

Fig. 7 shows the results for a variant of the model where pheromone decays
with constant rate p = 0.03. The evolution of both the cumulative number of
ants in various locations and the amount of pheromone on the paths is shown
over a time interval of 500 time units. Also in this case the ants converge on
the Fast path and they are doing so in shorter time than in the case without
decay of pheromones. Fig. 7 (left) has been obtained using Octave4 for solving

4 See for information on Octave http://www.octave.org. Version 3.4.0 was used.

Investigating Fluid-Flow Asynchronous Semantics 31

the ODE for the model specification. Fig. 7 (right) shows the results obtained
via stochastic simulation for the same model with 1000 ants taking the average
over 100 runs5.

0 100 200 300 400 500

Time

0

200

400

600

800

1000

P
op

ul
at

io
n

si
ze

FAST
SLOW
ants in nest
ants at food
PF1
PS1

0 100 200 300 400 500

Time

0

200

400

600

800

1000

P
op

ul
at

io
n

si
ze

FAST
SLOW
ants at nest
ants at food
PF1
PS1

Fig. 7. Evolution over the first 500 time units of the system allowing decay of
pheromones with rate 0.03. Solution of the differential equations (left) and stochas-
tic simulation average over 100 runs for a model with 1000 ants (right)

We close this section showing the application of the mean field model-checker
FlyFast [19] on the foraging ants example. Fluid model-checking techniques have
recently been proposed as scalable techniques for the verification of properties
of one (or a few) agents in the context of large populations [4]. These techniques
are based on differential semantics, or on difference equations, when considering
their discrete time counterparts, as is the case for FlyFast. The input language
of the model-checker does not support the specification of models with dynamic
population size, but if we can assume sufficiently large upper bounds on the
sizes of the data sub-populations for the time horizon of interest6, it is rather
straightforward to translate the model of foraging ants shown in Fig. 5 into such
a language, modelling data by two-state (i.e. “present” and “absent”) processes
and using an appropriate scaling of rates to turn the stochastic model into an
equivalent probabilistic one [18]. We briefly illustrate the results for two prop-
erties for the ants model in Fig. 8. Property A shows how the probability of
an ant in the nest to move to the short path within 30 time units changes over
time due to the pheromones left behind by other ants. Property B shows the
probability to reach a system state within t time units, where t ranges from 0
to 500, in which an ant in the nest moves to the short path within 30 time units
with a probability of more than 0.95. Both properties can be expressed using
the standard PCTL logic, a probabilistic extension of CTL [16]. Model-checking
times for property A is 10 ms, whereas that of property B is 41,047 ms.

The purpose of the foraging ants example is to illustrate the OdeLinda lan-
guage and mean field analysis approach for asynchronous, tuple based languages.

5 Experiments were conducted with a 1.8 GHz Core i7 Intel processor and 4 GB RAM
running Mac OS X 10.7.5.

6 This can be checked using the result of an ODE analysis or simulation.

32 D. Latella et al.

0 100 200 300 400 500

Time

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Property A
Property B

Fig. 8. Mean field model-checking results for properties A and B

Results better matching those of the original experiments in [14,12] can be ob-
tained by a somewhat more complicated model in which ants leave the nest at
a constant rate and in which the length of the paths and the constant traver-
sal times are more accurately modelled by adding further path stages on each
path implicitly using an Erlang distribution with more stages to approximate
the constant traversal times. We omitted this here for the sake of simplicity.

5 Conclusions and Future Work

In this paper we have provided a differential semantics for languages with an asyn-
chronous buffered communication interaction paradigm, e.g. data-repository-/
tuple-based ones. In particular, we have defined an individual-based Markovian
as well as population based differential semantics for OdeLinda, a simple data-
repository-based language. As example of use of the language we have shown a
benchmark model of Foraging Ants and some results of its ODE-based analysis.
There are several lines of research we plan to follow for moving from a simple ex-
perimental kernel language likeOdeLinda to a complete, full fledged population
modelling language. One line of research focuses of the introduction of an appro-
priate notion of space. One possibility is to take StoKLAIM [11] as a starting point,
thus using a simple, locality based approach. Another, perhaps more interesting
possibility, instead, is to use a richer, predicate based, addressing mechanism, like
(a possibly restricted version of) the addressingmechanismof StocS [20], where the
location is just one of the agents’ attributes and its values are instances of an ap-
propriate data type, namely space. This can take different forms, from topological
spaces—includingbi- or tri-dimensional continuous space—tomore general closure
spaces—including generic graphs—as in [6]. Another issue is the inclusion of richer
data and operations including templates and pattern-matching. This implies the
definition of syntactical restrictions, or static analysis techniques, for guaranteeing
that in all computations of a model specification the set of distinct data values is
bounded, while the multiplicity of each item can of course be unbounded. This also
holds for the inclusion of process spawning and processes to be stored/retrieved

Investigating Fluid-Flow Asynchronous Semantics 33

to/from repositories. Finally, we plan to adapt fluid model-checking techniques to
tuple-based languages.

References

1. Antonaki, M., Philippou, A.: A process calculus for spatially-explicit ecological
models. In: Ciobanu, G. (ed.) Proceedings 6th Workshop on Membrane Computing
and Biologically Inspired Process Calculi, MeCBIC 2012, Newcastle, UK, vol. 100,
pp. 14–28. EPTCS (September 8, 2012), http://dx.doi.org/10.4204/EPTCS.100.2

2. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective systems behaviour: A Tutorial. Performance Evaluation - An Interna-
tional Journal 70, 317–349 (2013), doi:10.1016/j.peva.2013.01.001

3. Bortolussi, L., Policriti, A.: Dynamical systems and stochastic programming: To
ordinary differential equations and back. T. Comp. Sys. Biology 11, 216–267 (2009),
doi:10.1007/978-3-642-04186-0 11

4. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-32940-1 24

5. Carriero, N., Gelernter, D., Mattson, T.G., Sherman, A.H.: The linda® alter-
native to message-passing systems. Parallel Computing 20(4), 633–655 (1994),
http://dx.doi.org/10.1016/0167-8191(94)90032-9

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying prop-
erties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 222–235. Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-
3-662-44602-7 18

7. Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and anal-
ysis of biological systems. Theor. Comput. Sci. 410(33-34), 3065–3084 (2009),
http://dx.doi.org/10.1016/j.tcs.2009.02.037

8. De Nicola, R., et al.: The SCEL Language: Design, Implementation, Verification.
In: Wirsing, M., Hölzl, M., Koch, N., Mayer, P. (eds.) Collective Autonomic Sys-
tems. LNCS, vol. 8998, pp. 3–71. Springer, Heidelberg (2015)

9. De Nicola, R., Latella, D., Loreti, M., Massink, M.: A Uniform Definition of
Stochastic Process Calculi. ACM Computing Surveys 46(1), 5:1–5:35 (2013),
doi:10.1145/2522968.2522973

10. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998),
http://doi.ieeecomputersociety.org/10.1109/32.685256

11. De Nicola, R., Katoen, J., Latella, D., Loreti, M., Massink, M.: Model
checking mobile stochastic logic. Theor. Comput. Sci. 382(1), 42–70 (2007),
http://dx.doi.org/10.1016/j.tcs.2007.05.008

12. Deneubourg, J.L., Aron, S., Goss, S., Pasteels, J.M.: The self-organizing ex-
ploratory pattern of the argentine ant. Journal of Insects Behaviour 3(2) (1990)

13. Feng, C., Hillston, J.: PALOMA: A Process Algebra for Located Markovian Agents.
In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280.
Springer, Heidelberg (2014)

14. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the Argentine Ant. Naturwissenschaften 76, 579–581 (1989)

15. Guenther, M.C., Bradley, J.T.: Higher moment analysis of a spatial stochastic
process algebra. In: Thomas, N. (ed.) EPEW 2011. LNCS, vol. 6977, pp. 87–101.
Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-24749-1 8

http://dx.doi.org/10.4204/EPTCS.100.2
http://dx.doi.org/10.1007/978-3-642-32940-1_24
http://dx.doi.org/10.1016/0167-8191(94)90032-9
http://dx.doi.org/10.1016/j.tcs.2009.02.037
http://doi.ieeecomputersociety.org/10.1109/32.685256
http://dx.doi.org/10.1016/j.tcs.2007.05.008
http://dx.doi.org/10.1007/978-3-642-24749-1_8

34 D. Latella et al.

16. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing. The International Journal of Formal Methods 6(5), 512–535
(1994)

17. Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation.
Theor. Comput. Sci. 274(1-2), 43–87 (2002),
http://dx.doi.org/10.1016/S0304-3975(00)00305-4

18. Latella, D., Loreti, M., Massink, M.: On-the-fly Fluid Model Checking via Discrete
Time Population Models. Extended Version. Technical Report TR-QC-08-2014,
QUANTICOL (2014)

19. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314.
Springer, Heidelberg (2014), http://dx.doi.org/10.1007/978-3-319-05119-2 17

20. Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-
based communication primitives for autonomic computing. In: Bertrand,
N., Bortolussi, L. (eds.) Proceedings Twelfth International Workshop on
Quantitative Aspects of Programming Languages and Systems, QAPL
2014, Grenoble, France, April 12-13, vol. 154, pp. 1–16. EPTCS (2014),
http://dx.doi.org/10.4204/EPTCS.154.1

21. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The TOTA approach. ACM Trans. Softw. Eng. Methodol. 18(4) (2009),
http://doi.acm.org/10.1145/1538942.1538945

22. Massink, M., Latella, D.: Fluid analysis of foraging ants. In: Sirjani, M. (ed.) CO-
ORDINATION 2012. LNCS, vol. 7274, pp. 152–165. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-30829-1 11

23. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Transactions on Software Engineering. IEEE CS 38(1), 205–
219 (2012)

http://dx.doi.org/10.1016/S0304-3975(00)00305-4
http://dx.doi.org/10.1007/978-3-319-05119-2_17
http://dx.doi.org/10.4204/EPTCS.154.1
http://doi.acm.org/10.1145/1538942.1538945
http://dx.doi.org/10.1007/978-3-642-30829-1_11

Logic Fragments: A Coordination Model

Based on Logic Inference

Francesco Luca De Angelis(�) and Giovanna Di Marzo Serugendo

Institute of Information Services Science, University of Geneva, Switzerland
{francesco.deangelis,giovanna.dimarzo}@unige.ch

Abstract. Chemical-based coordination models have proven useful to
engineer self-organising and self-adaptive systems. Formal assessment of
emergent global behaviours in self-organising systems is still an issue,
most of the time emergent properties are being analysed through ex-
tensive simulations. This paper aims at integrating logic programs into
a chemical-based coordination model in order to engineer self-organising
systems as well as assess their emergent properties. Our model is gen-
eric and accommodates various logics. By tuning the internal logic lan-
guage we can tackle and solve coordination problems in a rigorous way,
without renouncing to important engineering properties such as com-
pactness, modularity and reusability of code. This paper discusses our
logic-based coordination model and shows how to engineer and verify a
simple pattern detection example and a gradient-chemotaxis example.

1 Introduction

Coordination models have been proven useful for designing and implement-
ing distributed systems. They are particularly appealing for developing self-
organising systems, since the shared tuple space on which they are based is a
powerful paradigm to implement self-organising mechanisms, particularly those
requiring indirect communication (e.g. stigmergy) [16]. Chemical-based coordin-
ation models are a category of coordination models that use the chemical reaction
metaphor and have proven useful to implement several types of self-organising
mechanisms [18]. A well-known difficulty in the design of self-organising systems
stems from the analysis, validation and verification (at design-time or run-time)
of so-called emergent properties - i.e. properties that can be observed at a global
level but that none of the interacting entities exhibit on its own. Few coordina-
tion models integrate features supporting the validation of emergent properties,
none of them relying on the chemical metaphor.

In this paper, we propose to enrich a chemical-based coordination model with
the notion of Logic Fragments (i.e. a combination of logic programs). Our logic-
based coordination model allows agents to inject Logic Fragments into the shared
space. Those fragments actually define on-the-fly ad hoc chemical reactions that
apply on matching data tuples present in the system, removing tuples and pro-
ducing new tuples, possibly producing also new Logic Fragments. Our model
is defined independently of the logic language used to define the syntax of the

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 35–48, 2015.
DOI: 10.1007/978-3-319-19282-6 3

36 F.L. De Angelis and G. Di Marzo Serugendo

Logic Fragment, an actual instantiation and implementation of the model can
use its own logic(s). The advent of new families of logic languages (e.g. [17])
has enriched the paradigm of logic programming, allowing, among other things,
practical formalisation and manipulation of data inconsistency, knowledge rep-
resentation of partial information and constraints satisfaction. By combining
those logics with a chemical-based coordination model, we argue that global
properties can be verified at design time.

Section 2 discusses related works, section 3 presents our logic-based coordin-
ation model. Section 4 shows two case studies: a simple pattern recognition
example and another one with the gradient and chemotaxis patterns. Finally,
section 5 concludes the paper.

2 Related Works

2.1 Chemical-Based Coordination Models

An important class of coordination models is represented by so-called chemical-
based coordination models, where “chemical” stands for the process of imitating
the behaviours of chemical compounds in chemical systems.

Gamma (General Abstract Model for Multiset mAnipulation) [2] and its
evolutions historically represents an important chemical-inspired coordination
model. The core of the model is based on the concept of virtual chemical reac-
tions expressed through condition-action rewriting pairs. Virtual chemical reac-
tions are applied on input multisets which satisfy a condition statement and they
produce as output multisets where elements are modified according to the corres-
ponding action (like for chemical compounds); the execution of virtual chemical
reactions satisfying a condition pair is nondeterministic. Gamma presents two
remarkable properties: (i) the constructs of the model implicitly support the
definition of parallel programs; (ii) the language was proposed in the context
of systematic program derivation and correctness as well as termination of pro-
grams is easy to prove ([8]). Its major drawback is represented by the complexity
of modeling real large applications.

The SAPERE model [4] (Figure 1a) is a coordination model for multiagent
pervasive systems inspired by chemical reactions. It is based on four main con-
cepts: Live Semantic Annotations (LSAs), LSA Tuple Space, agents and eco-
laws. LSAs are tuples of types (name, value) used to store applications data.
For example, a tuple of type (date, 04/04/1988) can be used to define a hy-
pothetical date. LSAs belonging to a computing node are stored in a shared
container named LSA Tuple Space. Each LSA is associated with an agent, an
external entity that implements some domain-specific logic program. For ex-
ample, agents can represent sensors, services or general applications that want
to interact with the LSA space - injecting or retrieving LSAs from the LSA space.
Inside the shared container, tuples react in a virtual chemical way by using a
predefined set of coordination rules named eco-laws, which can: (i) instantiate
relationships among LSAs (Bonding eco-law); (ii) aggregate them (Aggregate
eco-law); (iii) delete them (Decay eco-law) and (iv) spread them across remote

Logic Fragments: A Coordination Model Based on Logic Inference 37

LSA Tuples Spaces (Spreading eco-law). Spontaneous executions of eco-laws can
be fired when specific commands (named operators) are present in tuple values.
When a tuple is modified by an eco-law, its corresponding agent is notified: in
this way, agents react to virtual chemical reactions according to the program
they implement. The implementation of the SAPERE model, named SAPERE
middleware, has been proven to be powerful enough and robust to permit the
development of several kinds of real distributed self-adaptive and self-organising
applications, as reported in [18]. Nevertheless, the model does not aim at proving
correctness or emergence of global properties programs built on it: this means
that proving correctness of applications may turn to be a complex task.

2.2 Formal Approaches for Tuple Based Coordination Models

Coordination models based on tuple spaces are amenable to several kinds of
analytical formalisation.

PoliS [5] is a coordination model based on multiset rewriting in which co-
ordination rules consume and produce multisets of tuples; rules are expressed
in a Chemical Abstract Machine style [3]. In PoliS, properties can be proved by
using the PoliS Temporal Logic and the PoliMC model checker.

Tuples centres [15] allow the use of a specification language (named RespecT)
to define computations performed in the tuple space. Computations are asso-
ciated with events triggered internally because of reactions previously fired or
during the execution of traditional input/output operations by agents. RespecT
is based on first-order logic and unification of unitary clauses (tuple templates)
and ground atoms (tuples) represent the basic tuple matching mechanism.

In the ACLT model [7], the tuple space is treated as a container of logic
theories, which can be accessed by logic agents to perform deduction processes.
Again, the first-order logic and unification of unitary clauses and ground atoms
is used as matching mechanism; the model offers specific input-output primitives
tailored to provide different meaning for unification by allowing a certain control
in selecting the set of unitary clauses to be treated as facts in case of backtracks
or temporary missing information in the deduction process.

In our model we do not express coordination in terms of rewriting rules;
moreover, the logic layer is enhanced by considering several types of logic lan-
guages.

3 Logic- and Chemical-Based Coordination Model

3.1 Definition of the Model

The chemical-based coordination model we present in this paper is designed to
exploit several important features of the models cited above in the context of
self-organising and self-adaptive applications; our goal is to define a coordina-
tion model with the following characteristics: (i) coordination algorithms can
be described in an sufficiently abstract way starting from high-level specifica-
tions; (ii) the constructs used to express coordination algorithms are amenable

38 F.L. De Angelis and G. Di Marzo Serugendo

to formal analysis of their correctness, they incentivize the decoupling of logic
from implementation and they meet software engineering properties such as mod-
ularity, reusability and compactness. The rationale leading the definition of our
coordination model can be synthesized as the adoption of Kowalski’s termino-
logy [12]: algorithm = logic + control. This formulation promotes the dichotomy
of algorithms in: (i) logic components (formulae) that determine the meaning of
the algorithm, the knowledge used to solve a problem (i.e. what has to be done)
and (ii) control components, which specify the manner the knowledge is used
(i.e. how it has to be done).

LSA tuple space

Application

Agent

LSA

Sensor

Agent

Spreading
Eco-law

LSA

Decay
Eco-law

Aggregate
Eco-law

Bonding
Eco-law

(a) SAPERE model

LSA tuple space

Application

Agent

LSA

Sensor

Agent

Spreading
Eco-law

LSA

Decay
Eco-law

Aggregate
Eco-law

Logic
Eco-law

(b) Our model

 LSA

Application

Agent

Logic Program2
LSA

LSA

LSA

LSA

Sensor

Agent

Application

Agent

Application

Agent

Spreading
Eco-law

LSA tuple space

Logic Program1
LSA

LSA

LSA

Decay
Eco-law

Logic
Eco-law

Aggregate
Eco-law

(c) Reactions among logic programs

Fig. 1. The generalization of the SAPERE Model

The coordination model we define (Figure 1b) is a generalization of the
SAPERE model with two additional features: (i) LSAs can store not only data
tuples but actual logic programs (Section 3.2); (ii) the bonding eco-law is re-
placed by a new one named Logic eco-law, which is in charge of executing logic
programs and performing the bonding actions. The remaining components of
the model are exactly the same as the ones of the SAPERE model. The virtual
chemical reactions among tuples taking place in the shared container are now
driven by logic inferences processes, which produce either data tuples or new lo-
gic programs during the “execution” of logic programs (Figure 1c). This process
brings the idea promulgated by [12] in the context of chemical-based coordina-
tion models: the logic components of an algorithm are expressed in terms of logic
programs, here embedded in LSAs, which can react among each other in a chem-
ical fashion. Similarly, agents implement the control components (written in a
programming language such as Java), and they perform computations according
to the knowledge inferred by logic programs. This approach to separation and
mapping of concepts helps designing coordination algorithms from an abstract
point of view. On the one hand, algorithms are thought as interactions of atomic
logic entities which define the meaning (in Kowalski’s terminology) of subparts of
the original algorithm. On the other hand, once logic entities have been defined,
a specific problem-solving strategy can be chosen to be implemented for each
subpart of the original problem. The intuition of using logic programs is two-
fold: (i) tuples exchanges represent the basic mechanism to carry out indirect

Logic Fragments: A Coordination Model Based on Logic Inference 39

communication among agents, thus the state and the evolution of a coordination
process can be defined by analysing the set of tuples in the containers; (ii) tuples
are used as inputs (facts) and produced as outputs of logic programs (models
and formulae obtained by resolution rules). By considering points (i) and (ii), lo-
gic programs provide a natural formal tool to express coordination, allowing for
inferred formulae to state relationships among entities of the system, depicting
the evolution of coordination processes and proving system properties.

3.2 Logic Programs

Logic programs [14] are sets of logic formulae and are expressed in a logic lan-
guage (e.g. first-order logic). Executing a logic program means either: (i) provid-
ing queries to the program and testing whether they logically follow from the
program by using a proof engine (logic inference) or (ii) inferring all sentences
that logically follow from the program (logic semantics). An interpretation of a
formal language is an interpretation (see [14]) of constants, predicate and func-
tions of the language over a given domain. The truth-value of a logic sentence is
determined by the interpretation of the logic connectives. Given a logic program
P , a model is an interpretation M such that every formula in P is true (depicted
as M |= P). Here we are interested in Herbrand interpretations ([14]): (i) the
implicit domain is the Herbrand Universe, the closure of the set of constants
under all the functions symbols of the language; (ii) constants are interpreted
as themselves and every function symbol as the function it refers to. In classical
2-valued logic programs, Herbrand interpretation can be defined through sets of
atoms implicitly interpreted as true.

Example: P = (C(x) ← A(x), B(x); A(c) ← �;B(c) ← �;) is a definite logic
program [14]. Clauses are implicitly universally quantified. This is a definite logic
program (i.e. containing Horn clauses): x is a variable, c is a constant and here
they range over an (implicitly) defined domain. The first rule is composed of the
head C(X) and the body A(X), B(X) and it can be read as “C(X) is true if
both A(X) and B(X) are true”. Rules with empty bodies (�) are named facts
and they state sentences whose heads must be considered satisfied; in this case
A(c) and B(c) hold. M = {A(c), B(c), C(c)} is a model for the program in the
example, because it satisfies all the rules.

3.3 Logic Languages

In our model, logic programs are executed by the Logic eco-law. An import-
ant point in our approach is the generality of the coordination model w.r.t.
the logic. We consider only logic languages that support Herbrand’s interpret-
ations, whereas we do not put any constraint on the inference methods or the
semantics. Both inference methods and semantics are treated as parameters as-
sociated with logic programs. From the practical point of view, for each logic
language we require the implementation of a dedicated Logic eco-law that ex-
ecutes the corresponding logic programs. This feature makes possible to use,

40 F.L. De Angelis and G. Di Marzo Serugendo

possibly simultaneously: (i) several types of logic programs (e.g. definite, gen-
eral logic programs, several types DATALOG or DATALOG-inspired programs)
associated with two-valued, multi-valued (e.g. Belnap’s logic) or paraconsistent
logics; (ii) several inference procedures (e.g. SLD, SLDNF) and semantics (e.g.
Apt-van Emden-Kowalski, Kripke-Kleen, stable,well-founded model semantics)
[11,13,1,9,17].

3.4 Logic Fragments

In our model, logic programs are embedded in logic units named Logic Frag-
ments. The following set of definitions will be used to clarify the concept. We
assume that Prop, Const and V ar are finite mutually disjoint sets of relation
symbols, constants and variables respectively. We will identify variables with
letters x, y, . . . and constants with letters a, b,

Definition 1 (Literals, Ground Literals).A literal P̂ is an expression of type
P (X1, . . . , Xn) or ¬P (X1, . . . , Xn) where P ∈ Prop and Xi ∈ (Const ∪ V ar)
for i = 1, . . . , n. A ground literal is a literal without variables. The set of all
ground literals w.r.t. a setConst is denotedG(Const). The power set ofG(Const)
is depicted P(G).

Definition 2 (Valuations). A valuation w is a function from V ar to Const
that assigns a constant ci to each variable xi. The set of all possible valuations
is depicted as W = {w|w : V ar → Const}.

Definition 3 (Instances of Literal). If P̂ is a literal and w is a valuation, with
P̂w we identify the ground literal where every variable of P̂ has been replaced
by a constant according to the definition of w. P̂w is named an instance of P̂ .
We denote IP̂ = {P̂w|w ∈ W} ⊆ G(Const).

Definition 4 (Logic Programs). A logic program is a set of logic formulae
written in a logic language using: (i) literals P̂1, ..., P̂n defined over Prop, Const,
V ar and (ii) logic operators.

Definition 5 (A-generator). Given a literal P (X1, . . . , Xn), an A-generator
w.r.t. a function U : Constn → {T, F} is the finite set:
PU (X1, . . . , Xn) = {P (c1, . . . , cn) ∈ IP (X1,...,Xn)|U(c1, . . . , cn) = T }.

Example: AU (X) = {A(X)|X ∈ {a, b, c}} = {A(a), A(b), A(c)}, with U(a) =
U(b) = U(c) = T .

Definition 6 (I-generator). Given a literal P (X1, . . . , Xn), an I-generator
w.r.t a function V : P(G) → P(G) and a finite set H ⊆ P(G) is the set:
PH,V (X1, . . . , Xn) = {P (c1, . . . , cn) ∈ IP (X1,...,Xn) ∩ V (H)}
If V is omitted, we assume that V (H) = H (identity function).

Example: if N = {2, 3, 4} and V (N) = {Even(x)|x ∈ N ∧ x is even}, then
EvenN,V (X) = {Even(2), Even(4)}.

Logic Fragments: A Coordination Model Based on Logic Inference 41

The rationale of such definitions is to provide the program with a set of facts
built from conditions holding on tuples stored in the container. The unfolding of
these generators produces new facts for the interpretation of the logic program.

By LF we identify the algebraic structure of Logic Fragments, recursively
defined as follows:

Definition 7. (Logic Fragments LF)
(I) 	 ∈ LF
(II) (Grouping) If e ∈ LF then (e) ∈ LF
(III) (Parallel-and) If e1, e2 ∈ LF then e1
 e2 ∈ LF
(IV) (Parallel-or) If e1, e2 ∈ LF then e1 � e2 ∈ LF
(V) (Composition) If P is a logic program, M an execution modality, S a set of
A,I-generators, ϕ : P(G) → {T, F} and ep ∈ LF then (P,M, eP , S, ϕ) ∈ LF .

	 is a special symbol used only in Logic Fragments to depict all the tuples
in the container (both LSAs and Logic Fragments). M is the identifier of the
way P is “executed” (we will use M = A for the Apt-van Emden-Kowalski and
M = K for the Kripke-Kleen semantics). eP is named constituent of the Logic
Fragment and it is interpreted as a set of tuples used as support to generate the
facts for the program. S is a set of A,I-generators used to derive new facts from
P . The function ϕ : P(G) → {T, F} returns T if the tuples represented by the
constituent ep satisfy some constraints; the logic program is executed if and only
ϕ(eP) = T (Def. 8). ϕT is constant and equal to T . For style reason, we will
write PM(eP , S, ϕ) instead of (P,M, eP , S, ϕ).

Every Logic Fragment is executed by the Logic eco-law; its semantics is defined
by using the function vL.

Definition 8 (Semantic function). vL : LF → P(G) ∪ {��} associates the
fragment with the set of tuples inferred by the logic program (consequent) or
with ��, which stands for undefined interpretation. L denotes the set of actual
tuples in the container before executing a Logic Fragment. Operators are ordered
w.r.t. these priorities: grouping (highest priority), composition,
 and � (lowest
priority). vL is recursively defined as follows:
I) vL() � L
II) vL

(
(e)

)
� vL(e)

III) vL
(
e1
 ...
 en

)
n≥2

�
{
�� if ∃i ∈ {1, . . . , n}.vL

(
ei
)
=��⋃n

i=1 vL
(
ei
)
otherwise

IV) vL
(
e1 � ... � en

)
n≥2

�
{⋃

i∈I vL
(
ei
)
if I = {ei|vL(ei) =��, 0 ≤ i ≤ n} = ∅

�� otherwise

V) vL
(
PM(eP , S, ϕ)

)
� Q

Q is the consequent of PM and it is defined as follows: if M is
not compatible with the logic program P or if vL(ep) = �� or if
ϕ
(
vL(ep)

)
= F then Q = ��. ϕ “blocks” the execution of the program

as long as a certain condition over ep is not satisfied. Otherwise, based

on S = {PH0,V0

0 (X01, ..., X0t0), ..., P
Hn,Vn
n (Xn1, ..., Xntn), P0(Y01, ..., Y0z0), ...

Pm(Ym1, ..., Ymzm)}, the Logic eco-law produces the set of facts Fs =

42 F.L. De Angelis and G. Di Marzo Serugendo

⋃n
i=0 P

vL(Hi),Vi

i (Xi1, . . . , Xiti) ∪
⋃m

i=0 Pi(Yi1, . . . , Yizi). A,I-generators are then
used to define sets of ground literals for the logic program which satisfy specific
constraints; during the evaluation, for every set Hi we have either Hi = ep or
Hi = 	. Q is finally defined as the set of atoms inferred by applying M on the
new logic program P ′ = P ∪ {l ← �|l ∈ Fs}, enriched by all the facts contained
in Fs. Note that there may be no need to explicitly calculate all the literals of
A,I-generators beforehand: the membership of literals to generators sets may be
tested one literal at a time or skipped because of the short-circuit evaluation.

Lemma 1 (Properties of Operators). Given a, b ∈ LF with a ≡ b we
state that vL(a) = vL(b) for every set of literals L. Then for any a, b, c ∈ LF :
I) a � a ≡ a (Idempotence of �)
II) a � b ≡ b � a (Commutativity of �)
III) a � (b � c) ≡ (a � b) � c (Associativity of �)
IV) a
 a ≡ a (Idempotence of
)
V) a
 b ≡ b
 a (Commutativity of
)
VI) a
 (b
 c) ≡ (a
 b)
 c (Associativity of
)
VII) a
 (b � c) ≡ (a
 b) � (a
 c) ≡ (b � c)
 a (Distrib. of
 over �)
Intuitively, composing two Logic Fragments means calculating the inner one

first and considering it as constituent for the computation of the second one.
Parallel-and (
) means executing all the Logic Fragments them in a row or none,
whereas Parallel-or (�) means executing only those ones that can be executed
at a given time.

3.5 Update of the Container

In our model, all the Logic Fragments are carried on a snapshot image of the
container, i.e. given a Logic Fragment e in the container, if vL(e) =��, then it is
evaluated as an atomic operation (every symbol 	 in the sub Logic Fragments
which composes e is always translated with the same set of actual tuples). Mul-
tiple Logic Fragments ready to be evaluated are computed in a non-deterministic
order. The tuples inferred by the logic programs (with all used facts) are inserted
in the container only when the evaluation of the whole logic program termin-
ates. At that point, the Logic eco-law injects the inferred tuples in the container
and notifies the end of inference process to the agent. The Logic Fragment is
subject to a new evaluation process as soon as the set Fs changes due to up-
dates of the shared container, but there are no concurrent parallel evaluations of
the same Logic Fragment at a given time (unless it appears twice); this aspect
can potentially hide tuples updates in the evaluation process (Section 5). The
representation of the functions associated with A,I-generators depends on the
implementation.

4 Case Studies

By using Logic Fragments we can easily tackle interesting coordination problems
and properties. Additional examples are reported in [6].

Logic Fragments: A Coordination Model Based on Logic Inference 43

4.1 Palindrome Recognition

As a first example we show an easy pattern recognition scenario. Assuming that
an agent A inserts positive integers into the container, we want to discover which
ones are palindromic numbers (i.e. numbers that can be read in the same way
from left to right and from right to left). We assume that these integers are repres-
ented by tuples of type N(a), where a is a number, e.g. N(3) represents the num-
ber 3. Agent A inserts the Logic Fragment LFp : PA

p (, {N�, T estPalin}, ϕp).

ϕp(�) = T ⇔ ∃w : N(X)w ∈ �
TestPalin(x) = {TestPalin(a)|a is a positive palindromic number less than dmax}

Logic code 1.1 Definite logic program Pp

Palin(x) ← N(x), T estPalin(x)

Pp is the logic program in Code 1.1, evaluated with the Apt-van Embden
Kowalski semantics (A). The set S of A,I-generators is composed of two ele-
ments: N� contains all literals N(a) (numbers) existing in the container ();
TestPalin(x) contains all the literals of type TestPalin(a), where a is a posit-
ive palindromic number less then dmax. These two sets of literals are treated as
facts for Pp. According to ϕ, Pp is executed as soon as a number N(a) is inserted
into the container. The rule of the logic program Pp states that a number a is a
palindromic number (Palin(a)) if a is a number (N(a)) and a passes the test for
being palindromic (TestPalin(a)). We consider the tuple space shown in Figure
2a and 2b. At the beginning, agent A injects LFp (Figure 2a). At a later stage
A injects N(22) and the Logic Fragment is then executed. In this case, N� is
evaluated as {N(22)}. Moreover, TestPalin(a) will contain TestPalin(22), be-
cause it is palindromic. This means the consequent Q of LFp contains Palin(22),
along with all the facts generated by the A,I-generators used in the logic pro-
gram. If now agent A injects N(12), the Logic Fragment is re-executed and N�

is evaluated as {N(22), N(12)}. This second number does not satisfy the palin-
dromic test (N(12) ∈ TestPalin(x)), so the 12 will not be considered as palin-
dromic. Finally A injects N(414) and during the re-execution of LFp we obtain:
N� = {N(22), N(12), N(414)} and N(414) ∈ TestPalin(x), so the consequent
Q will contain Palin(22) and Palin(414) (Figure 2b). Note that if numbers were
injected by agents different from A (like a sensor), the same reactions would take
place.

Property 1. A palindromic integer a ≥ 0 exists in the container if and only if
Palin(a) exists in the least Herbrand model of P ′

p (the extension of Pp with all
the facts created by A,I-generators).

Proof Sketch. The property above states that by using the Logic Fragment LFp

we are able to correctly find out all the palindromic integers. Thanks to the logic
programs and the semantic of Logic Fragments, we can easily verify that if such
integers exist in the container then their literals are inferred in Herbrand model

44 F.L. De Angelis and G. Di Marzo Serugendo

Application

Agent
A

LSA Logic
Fragment LFp

LSA

Sensor

Agent

LSA tuple space

(a) Injection of LFp

Application

Agent
A

LSA

Sensor

Agent

LSA tuple space

LSA
Palin(22)

LSA
N(22)

LSA
N(12)

LSA Logic
Fragment LFp

Logic
Eco-law

LSA
Palin(414)

LSA
N(414)

(b) Injection of numbers

Fig. 2. Evolution of the container for the example of Section 4.1

of P ′
p. Moreover, given that such literals are only generated by LFp, if such literals

exist in the model then there must be the associated palindromic integers in the
shared space.

4.2 Gradient and Chemotaxis Patterns - General Programs

In this second example we use Logic Fragments to implement the gradient and
chemotaxis design patterns ([10]), which are two bio-inspired mechanisms used
to build and follow shortest paths among nodes in a network. The chemotaxis is
based on the gradient pattern. A gradient is a message spread from one source
to all the nodes in the network, carrying a notion of distance from the source
(hop-counter). Gradient messages can also carry user-information. Once a node
receives a gradient from a known source whose hop-counter is less than the local
one (i.e. a new local shortest-path has been found), the node updates its local
copy of the hop-counter (aggregation) and spreads it towards the remaining
neighbours with a hop-counter incremented by one unit. In these terms, the
gradient algorithm is similar to the distance-vector algorithm. The chemotaxis
pattern resorts to gradient shortest-paths to route messages towards the source
of the gradient. We can implement the gradient and chemotaxis patterns by
using an agent Agc associated with the Logic Fragment:

LFgc : PA
g

(
PA
a

(�� PK
n (�, Sn, ϕn), Sa, ϕT

)
, Sg, ϕT

)
� PA

ch(�, Sch, ϕch)

Logic code 1.2 Program Pn - Next hop initialization

GPath(x,dmax,null) ← ¬existsGPath(x)

Logic code 1.3 Program Pa - Aggregation

cmpGradient(x1, x2, y1, y2, z) ← Gmsg(x1, x2, y1, z), GPath(x1, y2, w)
updateGPath(x1, y1, x2, z) ← cmpGradient(x1, x2, y1, y2, z), less(y1, y2)

Logic Fragments: A Coordination Model Based on Logic Inference 45

Logic code 1.4 Program Pg - Spreading

spreadGradient(x1, local, z, y, x2) ← updateGPath(x1, y, x2, z)

Logic code 1.5 Program Pch - Chemotaxis

sendChemo(m,x,w) ← Cmsg(m,x), GPath(x, y, w)

ϕn(�) = T ⇔ ∃w : Gmsg(x1, x2, y, z)w ∈ �, ϕch(�) = T ⇔ ∃w : Cmsg(x, y)w ∈ �
Sch={Cmsg�, GPath�} Sg = {updateGPathePg } Sn = {existsGPath�,V , Gmsg�}
Sa = {GmsgePa , GPathePa , less} less(x, y) = {less(a, b)|a < b, a, b ∈ {1, ..., dmax}}
existsGPath(x)�,V = {¬existsGPath(a) ∈ I¬existsGPath(x) ∩ V (�)}
V (�) = {¬existsGPath(a)|∃w : Gmsg(a, x, y, z)w ∈ � ∧ ¬∃GPath(a, y,w)w ∈ �}
Gradients are represented by tuples Gmsg(a, b, c, d) where a is the ID of the
source, b is the ID of the last sender of the gradient, c is the hop-counter and d
is the content of the message. Values null, dmax and local are considered con-
stants. Local hop-counter are stored in tuples of type GPath(a, c, e), where a
and c are as above and e is the previous node in the path, this will be used
to route the chemotaxis message downhill towards the source. LFgc is com-
posed of several Logic Fragments; the parallel-or operator makes the agent Agc

to react simultaneously to chemotaxis and gradients messages. The innermost
fragment ePa = 	
 PK

n (, Sn, ϕn) is executed when a gradient message is
received from a neighbour (can be executed directly but the parallel-and op-
erator blocks the execution of outer fragments until PK

n (, Sn, ϕn) finishes);
it initializes the GPath tuple for the source of the gradient. By using the
composition operator, the literals inferred in the model of P ′

n, along with all
the tuples in the container (fragment) are then treated as constituent for
the fragment ePa = PA

a (ePe , Sa, ϕT), i.e. they are used to generate facts for
the program P ′

a. This one is used to aggregate the hop-counter for the source
with the one stored in the local container. ePa is finally treated as constitu-
ent for the fragment ePg = PA

g (ePa , Sg, ϕT). Note that aggregation happens

before spreading, imposing an order on the reactions. PA
g is used to verify

whether the gradient message must be spread to the neighbours. If so, a lit-
eral spreadGradient(a, local, d, c, b) is inferred during the computation of its
semantics, where local is translated with the name of the current node. Simultan-
eously, the Logic Fragment PA

ch(, Sch, ϕch) is executed as soon as a chemotaxis
message is received (described as Cmsg(f, g), with f content of the message and
g ID of the receiver). That Logic Fragment uses the local copy of the hop-counter
to infer which is the next hop to which the chemotaxis message must be sent
to (relay node). If the local hop-counter exists, a literal sendChemo(f, g, h) is
generated in the model of P ′

ch, with h representing the ID of the next receiver of
the chemotaxis message. Otherwise, the message remains in the container until
such a literal is finally inferred. All the literals contained in the consequent Q
of LFgc are used by the agent Agc to manage the control part of the algorithm,
described in the following code.

46 F.L. De Angelis and G. Di Marzo Serugendo

Control code 1.6 Behaviour of agent Agc

if spreadGradient(a, local, d, c, b) ∈ Q then
send Gmsg(a, local, c+ 1, d) to all neighbours but b
remove container.Gmsg(a, x, y, z)w for any w

if updateGPath(a, c, b, d) ∈ Q then
update container.GPath(a, x, y)w = GPath(a, c, b) for any w

if sendChemo(f, g, h) ∈ Q then
send Cmsg(f, g) to node h
remove container.Cmsg(f, g)

We consider the network of Figure 3; the Logic Fragment can be used to
provide the gradient and chemotaxis functionalities as services to other agents
running on the same nodes. Assuming that agent AGm on node A wants to send
a query message m1 to all the nodes of the network, it creates and injects the
gradient message Gmsg(A,A, 0,m1). At this point a reaction with LFgc takes
place, generating in the consequent Q of LFgc literals GPath(A, 0, A) (semantics
of P ′

n) and spreadGradient(A,A,m1, 0, A) (semantics of P ′
g). The second literal

causes the spreading of the gradient message to nodes B and C. Similar reac-
tions take place in the remaining nodes. If we assume that the gradient passed
by node D is the first one to reach E then GPath(A, 3, D) is inferred in the
consequent Q on node E. When the gradient message coming from B reaches
E, updateGPath(A, 1, B,m1) is inferred in the semantics of program P ′

a, so the
hop-counter tuple is updated in GPath(A, 2, B). Now assuming that agent ACm

on node E wants to send a reply-message m2 to node A, it creates and injects
a chemotaxis message Cmsg(m2, A). On the basis of the tuple GPath(A, 2, C),
the literal sendChemo(m2, A, C) is inferred in the model of P ′

g, so the message
is sent to node B. Similar reactions take place on node B, which finally sends
the chemotaxis message to node A.

Agent
GC

Logic Fragment
LFgc

GPath(A,1,A)

Agent
GC

Logic Fragment
LFgc

GPath(A,2,B)

Node B Node D

Agent
GC

Logic Fragment
LFgc

GPath(A,2,C)

Node E

Agent
GC

Logic Fragment
LFgc

GPath(A,1,A)

Node C

Agent
GC

Logic Fragment
LFgc

GPath(A,0,A)Gmsg(A,A,0,m1)

Node A

Agent
Gm

Cmsg(m2,A)

Agent
Cm

Cmsg(m2,A)Cmsg(m2,A)

Gmsg(A,A,1,m1) Gmsg(A,A,1,m1) Gmsg(A,B,2,m1)

Gmsg(A,C,2,m1)

GPath(A,3,D)

Fig. 3. Network of 5 nodes

Property 2. Let N be a network with no disconnected hosts. If we assume
that: (i) nodes do not move; (ii) every node has a Logic Fragment of type LFgc;
(iii) every information sent from one node to another one arrives at destination
in a finite time (eventually due to multiple spreading); (iv) a gradient message
is created by an agent AGm on one node S of N , then there exists a finite time
t∗ for which the following statement holds: if an agent ACm on node R creates a
chemotaxis message for A at time t > t∗, then the chemotaxis message reaches
the destination S following a shortest-path between R and S.

Logic Fragments: A Coordination Model Based on Logic Inference 47

Proof Sketch. The rationale behind the proof consists in proving two categor-
ies of properties: (i) a local property which states that the number of gradient
messages sent by each node is finite, due to the decrements of the hop-counter
caused by the applications of the aggregation-function; (ii) global properties, based
on the local property holding in each node (e.g. we prove the creation of the
shortest-path). The details are reported in [6]. Additional studies focusing on the
integration of spatial-temporal logics in Logic Fragment are needed to prove the
analogous statement when considering mobile nodes.

5 Conclusion and Future Works

In this paper we have presented a chemical-based coordination model based on
a logic framework. Virtual chemical reactions are lead by logic deductions, imple-
mented in terms of combination of logic programs. This approach combines the be-
nefits of using a chemical-based coordination model along with the expressiveness
of several distinct types of logic languages to formalise coordination logically. Intu-
itively, even though no formal verification or validation methods were presented,
the rationale behind the proof of the correctness of coordination algorithm follows
from a formalisation of the system properties to be proved in terms of logical for-
mulae. This paves the way for at least two formal analysis: (i) what-if assessment
- coordination events can be modeled in terms of injected/removed tuples and de-
ducted literals can be used to test the satisfaction of the system properties formu-
lae. This first kind of verification can be done at design time, to assess properties
of the whole system under certain conditions (events) and partially at run-time, to
infer how the system will evolve assuming a knowledge restricted to a certain sub-
set of locally perceived events; (ii) the second type of design time analysis starts
from the literals that satisfy the properties formulae and proceeds backwards, to
derive what are the events that lead the system to that given state. Future works
will focus on such aspects, to derive formal procedures for correctness verification
of algorithm built on top of Logic Fragments.

Several kinds of logics present interesting features to model and validate co-
ordination primitives: (i) paraconsistent logics (e.g. [17]) and (ii) spatial-temporal
logics, to assert properties depending on location and time parameters of system
components. We plan also to realise an implementation of the model, including
several semantics for Logic Fragments taking inspiration from the coordination
primitives presented in [7].

References

1. Apt, K.R., van Emden, M.H.: Contributions to the theory of logic programming.
J. ACM 29(3), 841–862 (1982)

2. Banâtre, J.P., Le Métayer, D.: The gamma model and its discipline of program-
ming. Sci. Comput. Program. 15(1), 55–77 (1990)

3. Berry, G., Boudol, G.: The chemical abstract machine. In: Proceedings of the 17th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1990, pp. 81–94. ACM (1990)

48 F.L. De Angelis and G. Di Marzo Serugendo

4. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Pervasive middleware goes social:
The sapere approach. In: Proceedings of the 2011 Fifth IEEE Conference on Self-
Adaptive and Self-Organizing Systems Workshops, SASOW 2011, pp. 9–14 (2011)

5. Ciancarini, P., Franzè, F., Mascolo, C.: A coordination model to specify systems
including mobile agents. In: Proceedings of the 9th International Workshop on Soft-
ware Specification and Design, IWSSD 1998, IEEE Computer Society, Washington,
DC (1998)

6. De Angelis, F.L., Di Marzo Serugendo, G.: Towards a logic and chemical based
coordination model (2015), https://archive-ouverte.unige.ch/

7. Denti, E., Natali, A., Omicini, A., Venuti, M.: Logic tuple spaces for the coordin-
ation of heterogeneous agents. In: Baader, F., Schulz, K.U. (eds.) Proceedings of
1st International Workshop (FroCoS 1996) Frontiers of Combining Systems, Ap-
plied Logic Series, Munich, Germany, March 26–29, vol. 3, pp. 147–160. Kluwer
Academic Publishers (1996)

8. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8) (1979)

9. Emden, M.H.V., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23, 569–574 (1976)

10. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M.,
Arcos, J.L.: Description and composition of bio-inspired design patterns: a com-
plete overview. Natural Computing 12(1), 43–67 (2013)

11. Fitting, M.: Fixpoint semantics for logic programming a survey. Theoretical Com-
puter Science 278(1-2), 25–51 (2002), Mathematical Foundations of Programming
Semantics 1996

12. Kowalski, R.: Algorithm = logic + control. Commun. ACM 22(7), 424–436 (1979)
13. Kowalski, R., Kuehner, D.: Linear Resolution with Selection Function. Artificial

Intelligence 2(3-4), 227–260 (1971)
14. Nilsson, U., Maluszynski, J.: Logic, Programming, and PROLOG, 2nd edn. John

Wiley & Sons, Inc., New York (1995)
15. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer

Programming 41(3), 277–294 (2001)
16. Viroli, M., Casadei, M., Omicini, A.: A framework for modelling and implementing

self-organising coordination. In: Shin, S.Y., Ossowski, S., Menezes, R., Viroli, M.
(eds.) 24th Annual ACM Symposium on Applied Computing (SAC 2009), March
8-12, vol. III, pp. 1353–1360. ACM, Honolulu (2009)

17. Vitória, A., Maluszyński, J., Sza�las, A.: Modeling and reasoning in paraconsistent
rough sets. Fundamenta Informaticae 97(4), 405–438 (2009)

18. Zambonelli, F., Omicini, A., Anzengruber, B., Castelli, G., Angelis, F.L.D.,
Serugendo, G.D.M., Dobson, S., Fernandez-Marquez, J.L., Ferscha, A., Mamei,
M., Mariani, S., Molesini, A., Montagna, S., Nieminen, J., Pianini, D., Risoldi,
M., Rosi, A., Stevenson, G., Viroli, M., Ye, J.: Developing pervasive multi-agent
systems with nature-inspired coordination. Pervasive and Mobile Computing 17,
236–252 (2015); Special Issue 10 years of Pervasive Computing In Honor of
Chatschik Bisdikian

https://archive-ouverte.unige.ch/

Coordinating Ensembles

Comingle: Distributed Logic Programming
for Decentralized Mobile Ensembles

Edmund Soon Lee Lam(�), Iliano Cervesato, and Nabeeha Fatima

Carnegie Mellon University, University in Pittsburgh, Pennsylvania, Pittsburgh, PA, USA
{sllam,nhaque}@andrew.cmu.edu, iliano@cmu.edu

Abstract. Comingle is a logic programming framework aimed at simplifying the
development of applications distributed over multiple mobile devices. Applica-
tions are written as a single declarative program (in a system-centric way) rather
than in the traditional node-centric manner, where separate communicating code
is written for each participating node. Comingle is based on committed-choice
multiset rewriting and is founded on linear logic. We describe a prototype target-
ing the Android operating system and illustrate how Comingle is used to program
distributed mobile applications. As a proof of concept, we discuss several such
applications orchestrated using Comingle.

1 Introduction

Distributed computing, the coordination of independent computations to achieve a de-
sired objective, has become one of the defining technologies of modern society. We rely
on it every time we use a search engine like Google, every time we make a purchase on
Amazon, in fact every time we use the Internet. In recent years, mobile distributed com-
puting has taken off thanks to advances in mobile technologies, from inexpensive sen-
sors and low-energy wireless links to the very smartphones we carry around: apps talk
to each other both within a phone and across phones, connected devices work together
to make our homes safer and more comfortable, and personal health monitors combine
sensor data into a picture of our well-being. Each such system constitutes a decentral-
ized mobile application which orchestrates the computations of its various constituent
nodes. As such applications gain in sophistication, it becomes harder to ensure that they
correctly and reliably deliver the desired behavior using traditional programming mod-
els. Specifically, writing separate communicating programs for each participating node
becomes more costly and error-prone as the need for node-to-node coordination grows.

In this paper, we introduce Comingle, a framework aimed at simplifying the devel-
opment of distributed applications over a decentralized ensemble of mobile devices.
Comingle supports a system-centric style of programming, where the distributed be-
havior of an application is expressed as a single program, rather than the traditional

This work was made possible by grant JSREP 4-003-2-001, Effective Parallel and Distributed
Programming via Join Pattern with Guards, Propagation and More, from the Qatar National
Research Fund (a member of the Qatar Foundation). The statements made herein are solely
the responsibility of the authors.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-19282-6_4

52 E.S.L. Lam et al.

node-centric style mentioned above. This system-centric view underlies popular frame-
works such as Google Web Toolkit [7] (for client-server web development) and Map
Reduce [4] (for parallel distributed algorithms on large-scale computing clusters). In
earlier work [9,10], we generalized this approach to a much broader class of distributed
computations by relying on a form of logic programming to orchestrate interactive dis-
tributed computations [9,10]. Comingle specializes this work to distributed applications
running on mobile devices. Comingle is based on committed-choice multiset rewriting
extended with explicit locality [9] and multiset comprehension patterns [10]. This pro-
vides declarative and concise means of implementing distributed computations, thus
allowing the programmer to focus on what computations to synchronize rather than
how to synchronize them. The present work extends [9] by introducing triggers and
actuators to integrate the Comingle multiset rewriting runtime with traditional code
from mainstream mobile development frameworks (specifically Java and the Android
SDK). This allows a developer to marry the best of both programming paradigms, us-
ing Comingle to orchestrate distributed computations among devices and traditional
native code for computations within a device (e.g., user interface functionalities, local
computations). The main contributions of this paper are as follows:

– We detail the semantics of Comingle, in particular the use of triggers and actuators
as an abstract interface between Comingle and a device’s application runtime.

– We describe a prototype implementation of Comingle, a runtime system imple-
mented in Java and integrated with the Android SDK.

– As a proof of concept, we show three case-studies of distributed applications or-
chestrated by Comingle on the Android SDK.

The rest of the paper is organized as follows: we illustrate Comingle by means of an
example in Section 2. In Section 3, we introduce its abstract syntax and its semantics,
while Section 4 outlines our compiler and runtime system for the Android SDK. In
Section 5, we examine three case-study applications implemented in Comingle. We
discuss related works in Section 6 and make some concluding remarks in Section 7.
Further details can be found in a companion technical report [12].

2 A Motivating Example

Figure 1 shows a simple Comingle program that lets two generic devices swap data
that they each possess on the basis of a pivot value P and displays on each of them
the number of items swapped, all in one atomic step. This program gives a bird eye’s
view of the exchanges that need to take place — it is system-centric. Our prototype will
then compile it into the node-centric code that needs to run at each device to realize this
behavior. The high-level Comingle program in Figure 1 relies on a few functionalities
expressed using the devices’ native programming support (Java and the Android SDK
in our case). Specifically, these functionalities are the two local functions, size and
format, imported in lines 1-4, and the code associated with triggers and actuators
(see below). This low-level code (not shown) implements purely local computations.

In Comingle, devices are identified by means of a location and a piece of informa-
tion held at location � is represented as a located fact of the form [�]p(�t) where p is

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 53

1 module comingle.lib.ExtLib import {
2 size :: A -> int,
3 format :: (string,A) -> string
4 }
5

6 predicate swap :: (loc,int) -> trigger.
7 predicate item :: int -> fact.
8 predicate display :: string -> actuator.
9

10 rule pSwap :: [X]swap(Y,P),
11 { [X]item(I) | I -> Is. I <= P },
12 { [Y]item(J) | J -> Js. J >= P }
13 --o [X]display(format("Received %s items from %s", (size(Js),Y))),
14 [Y]display(format("Received %s items from %s", (size(Is),X))),
15 { [X]item(J) | J <- Js }, { [Y]item(I) | I <- Is }.

Fig. 1. Pivot Swap, orchestrated by Comingle

a predicate name and �t are terms. The program in Figure 1 mentions two generic lo-
cations, X and Y, and uses the three predicates declared on lines 6-8. A located fact
of the form [�]swap(�′, P) represents �’s intent to swap data with device �′ based on
the pivot value P , fact [�]item(I) indicates that value I is held at location �, while
[�]display(S) represents a message S to be shown on �’s screen. From a system-
centric perspective, the set of all located facts defines the rewriting state of the system.
The rewriting state evolves through the application of Comingle rules and indirectly by
the effect of the local computation of each device.

Lines 10-15 in Figure 1 define a Comingle rule called pSwap. We call the comma-
separated expressions before “--o” the rule heads, while the expressions after it are
collectively called its body. Informally, applying a Comingle rule to the current state
rewrites an instance of its head into the corresponding instance of its body. Rule heads
and body can contain parametric facts such as [X]swap(Y,P), where X, Y and P
are variables, and comprehension patterns which stand for a multiset of facts in the
rewriting state. In our example, the comprehension pattern {[X]item(I) | I ->
Is. I <= P} identifies all of X’s items I such that I <= P. Similarly, all of Y’s
items J such that J >= P are identified by {[Y]item(J) | J -> Js. J >=
P}. The instances of I and J matched by each comprehension pattern are accumulated
in the variables Is and Js, respectively. Finally, these collected bindings are used in
the rule body to complete the rewriting by redistributing all of X’s selected data to Y and
vice versa, as well as invoking the appropriate display messages on X’s and Y’s screen.

Facts such as item(I) are meaningful only at the rewriting level. Facts are also used
as an interface to a device’s local computations. Specifically, facts like [�]swap(�′, P)
are entered into the rewriting state by a local program running at � and used to trigger
rule applications. These trigger facts, which we underline as [�]swap(�′, P) for em-
phasis, are only allowed in the heads of a rule. Dually, facts like [�]display(S) are
generated by the rewriting process for the purpose of starting a local computation at �,
here displaying a message on �’s screen. This is an actuator fact, which we underline
with a dashed line, as in [�]display(S), for clarity. Each actuator predicate is as-
sociated with a local function which is invoked when the rewriting engine deposits an
instance in the state (actuators can appear only in a rule body). For example, actuators

54 E.S.L. Lam et al.

Locations: � Terms: t Guards: g Standard / trigger / actuator predicates: ps, pt, pa

Standard facts Fs ::= [�]ps(�t) Triggers Ft ::= [�]pt (�t) Actuators Fa ::= [�]pa (�t)

Facts f, F ::= Fs | Ft | Fa

Head atoms h ::= Fs | Ft

Head expressions H ::= h | �h | g��x∈t

Comingle rule R ::= H \H|g � B

Body atoms b ::= Fs | Fa

Body expressions B ::= b | �b | g��x∈t

Comingle program P ::= R

Local state: [�]ψ

Rewriting state St ::= F Application state Ψ ::= [�]ψ Comingle state Θ ::= 〈St ;Ψ〉

Fig. 2. Abstract Syntax and Runtime Artifacts of Comingle

of the form [�]display(S) are concretely implemented using a Java callback oper-
ation (not shown here) that calls the Android SDK’s toast pop-up notification library
to display the message S on �’s screen. This callback is invoked at � every time the
Comingle runtime produces an instance [�]display(S).

By being system-centric, the code in Figure 1 lets the developer think in terms of
overall behavior rather than reason from the point of view of each device, delegating to
the compiler to deal with communication and synchronization, two particularly error-
prone aspects of distributed computing. This also enable global type-checking and other
forms of static validation, which are harder to achieve when writing separate programs.
This code is also declarative, which simplifies reasoning about its correctness and secu-
rity. Finally, this code is concise: just 15 lines. A native implementation of this example,
while not difficult, is much longer.

3 Abstract Syntax and Semantics

In this section, we describe the abstract semantics of Comingle. We begin by first intro-
ducing the notations used throughout this section. We write o for a multiset of syntactic
objects o. We denote the extension of a multiset o with an object o as “o, o”, with ∅

indicating the empty multiset. We also write “o1, o2” for the union of multisets o1 and
o2. We write �o for a tuple of o’s and [�t/�x]o for the simultaneous replacement within
object o of all occurrences of variable xi in �x with the corresponding term ti in �t. When
traversing a binding construct (e.g., a comprehension pattern), substitution implicitly
α-renames variables as needed to avoid capture. It will be convenient to assume that
terms get normalized during substitution.

3.1 Abstract Syntax

The top part of Figure 2 defines the abstract syntax of Comingle. The concrete syntax
used in the various examples in this paper maps to this abstract syntax. Locations � are
names that uniquely identify computing nodes, and the set of all nodes participating in a
Comingle computation is called an ensemble. At the Comingle level, computation hap-
pens by rewriting located facts F of the form [�]p(�t). We categorize predicate names

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 55

p into standard, trigger and actuator, indicating them with ps, pr and pa, respectively.
This induces a classification of facts into standard, trigger and actuator facts, denoted
Fs, Ft and Fa, respectively. Facts also carry a tuple �t of terms. The abstract semantics
of Comingle is largely agnostic to the specific language of terms.

Computation in Comingle happens by applying rules of the form Hp \Hs|g � B.
We refer to Hp and Hs as the preserved and the consumed head of the rule, to g as its
guard and to B as its body. The heads and the body of a rule consist of atoms f and of
comprehension patterns of the form �f | g��x∈t. An atom f is a located fact [�]p(�t)
that may contain variables in the terms �t or even as the location �. Atoms in rule heads
are either standard or trigger facts (Fs or Ft), while atoms in a rule body are standard
or actuator facts (Fs or Ft). Guards in rules and comprehensions are Boolean-valued
expressions constructed from terms and are used to constrain the values that the vari-
ables in a rule can assume. Just like for terms we keep guards abstract, writing |= g to
express that ground guard g is satisfiable. A comprehension pattern �f | g��x∈t repre-
sents a multiset of facts that match the atom f and satisfy guard g under the bindings of
variables �x that range over t, a multiset of tuples called the comprehension range. The
scope of �x is the atom f and the guard g. We implicitly α-rename bound variables to
avoid capture. Abstractly, a Comingle program is a collection of rules.

The concrete syntax of Comingle is significantly more liberal than what we just de-
scribed. In particular, components Hp and g can be omitted if empty. We concretely
write a comprehension pattern �f | g��x∈t as {f | �x -> t. g} in rule heads and
{f | �x <- t. g} in a rule body, where the direction of the arrow acts as a reminder
of the flow of information. Terms in the current prototype include standard base types
such as integers and strings, locations, term-level multisets, and lists. Its guards are re-
lations over such terms (e.g., equality and x < y) and can contain effect-free operations
imported from the local application (e.g., size and format in Figure 1).

3.2 Abstract Semantics

We will describe the computation of a Comingle system by means of a small-step tran-
sition semantics. Its basic judgment will have the form P � Θ �→ Θ′ where P is a
program, Θ is a state and Θ′ is a state that can be reached in one (abstract) step of
computation. A state Θ has the form 〈St ;Ψ〉. The first component St is a collection of
ground located facts [�]p(�t) and is called the rewriting state of the system. Comingle
rules operate exclusively on the rewriting state. The second component, the application
state Ψ , is the collection of the local states [�]ψ of each computing node � and captures
the notion of state of the underlying computation model (the Java virtual machine in
our Android-based prototype) — it typically has nothing to do with facts. As we will
see, a local computation step transforms the application state Ψ but can also consume
triggers from the rewriting state and add actuators into it. These run-time artifacts are
formally defined at the bottom of Figure 2.

We will now describe the two types of state transitions P � Θ �→ Θ′ in Comingle:
the application of a rule and a local step — see Figure 5 for a preview.

Rewriting Steps. The application of a Comingle rule Hp \ Hs | g � B involves
two main operations: identifying fragments of the rewriting state St that match the

56 E.S.L. Lam et al.

Matching: H �lhs St H �lhs St

H �lhs St H �lhs St ′

H,H �lhs St ,St ′
(lmset-1)

∅ �lhs ∅

(lmset-2)

F �lhs F
(lfact)

[�t/�x]f �lhs F |= [�t/�x]g �f | g��x∈ts �lhs St

�f | g��x∈�t,ts �lhs St , F
(lcomp-1)

�f | g��x∈∅ �lhs ∅

(lcomp-2)

Residual Non-matching: H �¬
lhs St H �¬

lhs St

H �¬
lhs St H �¬

lhs St

H,H �¬
lhs St

(l¬mset-1)

∅ �¬
lhs St

(l¬mset-2)

F �¬
lhs St

(l¬fact)

F ��lhs �f | g��x∈ts �f | g��x∈ts �¬
lhs St

�f | g��x∈ts �¬
lhs St , F

(l¬comp-1)

�f | g��x∈ts �¬
lhs ∅

(l¬comp-2)

Subsumption: F �lhs �f | g��x∈ts iff F = θf and |= θg for some θ = [�t/�x]

Fig. 3. Matching a Rule Head

rule heads Hp and Hs, and replacing Hs in the rewriting state with the corresponding
instance of the body B. We now review how these operations are formalized in the
presence of comprehension patterns and then describe how they are combined during a
rewriting step (taking the guard g into account). Further details can be found in [10].

Matching Rule Heads. Let H be a (preserved or consumed) rule head without free
variables — we will deal with the more general case momentarily. Intuitively, matching
H against a store St means splitting St into two parts, St+ and St−, and checking
that H matches St+ completely. The latter is achieved by the judgment H �lhs St+

defined in the top part of Figure 3. Rules lmset-∗ partition St+ into fragments to be
matched by each atom in H : plain facts F must occur identically (rule lfact) while for
comprehension atoms �f | g��x∈ts the state fragment must contain a distinct instance
of f for every element of the comprehension range ts that satisfies the comprehension
guard g (rules lcomp-∗).

In Comingle, comprehension patterns must match maximal fragments of the rewrit-
ing state. Therefore, no comprehension pattern should match any fact in St−. This
check is captured by the judgment H �¬

lhs St− in the bottom part of Figure 3. Rules
l¬mset-∗ tests each individual atom and rule l¬fact ignore facts. Rules l¬comp-∗ deal with
comprehensions �f | g��x∈ts : they check that no fact in St− matches any instance of f
while satisfying g — note that the comprehension range ts is not taken into account.

Processing Rule Bodies. Applying a Comingle rule involves extending the rewriting
state with the facts corresponding to its body. This operation is specified in Figure 4 for a
closed bodyB. Rules rmset-∗ go throughB. Atomic factsF are added immediately (rule
rfact). Instead, comprehension atoms �f | g��x∈ts need to be unfolded (rules rcomp-∗):

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 57

Unfolding Rule Body: B ≫rhs St B ≫rhs St

B ≫rhs St B ≫rhs St ′

B,B ≫rhs St ,St ′
(rmset-1)

∅ ≫rhs ∅
(rmset-2) F ≫rhs F

(rfact)

|= [�t/�x]g [t/�x]b ≫rhs F �b | g��x∈ts ≫rhs St

�b | g��x∈�t,ts ≫rhs F,St
(rcomp-1)

�|= [�t/�x]g �b | g��x∈ts ≫rhs St

�b | g��x∈�t,ts ≫rhs St
(rcomp-2)

�b | g��x∈∅ ≫rhs ∅

(rcomp-3)

Fig. 4. Processing a Rule Body

for every item �t in ts that satisfies the guard g, the corresponding instance [�t/�x]f is
added to the rewriting state; instances that do not satisfy g are discarded.

Rule Application. Rule rw ens in Figure 5 brings these ingredients together and de-
scribes a step of computation that applies a rule Hp \ Hs | g � B. This involves
identifying a closed instance of the rule obtained by means of a substitution θ. The
instantiated guard must be satisfiable (|= θg) and we must be able to partition the
rewriting state into three parts Stp, Sts and St . The instances of the preserved and
consumed heads must match fragments Stp and Sts respectively (θHp �lhs Stp and
θHs �lhs Sts), while the remaining fragment St must be free of residual matchings
(θ(Hp, Hs) �¬

lhs St). The rule body instance θB is then unfolded (θB ≫rhs Stb)
into Stb which replaces Sts in the rewriting state.

Rule rw ens embodies a system-centric abstraction of the rewriting semantics of
Comingle as it atomically accesses facts at arbitrary locations. Indeed, it views the facts
of all participating locations in the ensemble as one virtual collection. Our prototype,
discussed in Section 4, is instead based on a concurrent, node-centric model of compu-
tation, where each node manipulates its local facts and exchanges message with other
nodes. We achieve this by compiling Comingle rules into the code that runs at each
participating node [9].

Local Steps. Global rewriting steps can be interleaved by local computations at any
node �. From the point of view of Comingle, such local computations are viewed as
an abstract transition 〈A;ψ〉 �→l 〈ψ′; T 〉 that consumes some actuators A located at �,
modifies �’s internal application state ψ into ψ′, and produces some triggers T . Note
that an abstract transition of this kind can (and generally will) correspond to a large
number of steps of the underlying model of computation of node �. Rule rw loc in
Figure 5 incorporate local computation into the abstract semantics of Comingle. Here,
we write [�]A for a portion of the actuators located at � in the current rewriting state —
there may be others. We similarly write [�]T for the action of locating each trigger in T
at �.

Rule rw loc enforces locality by drawing actuators strictly from � and putting back
triggers at �. In particular, local computations at a node cannot interact with other nodes.

58 E.S.L. Lam et al.

Local transitions: 〈A;ψ〉 �→l 〈T ;ψ′〉
Comingle transitions: P � 〈St ;Ψ〉 �→ 〈St ;Ψ〉

(Hp \Hs | g � B) ∈ P |= θg

θHp �lhs Stp θHs �lhs Sts θ(Hp,Hs) �¬
lhs St θB ≫rhs Stb

P � 〈Stp,Sts,St ;Ψ〉 �→ 〈Stp,Stb, St ;Ψ〉
(rw ens)

〈A;ψ〉 �→l 〈T ;ψ′〉
P � 〈St , [l]A; Ψ, [l]ψ〉 �→ 〈St , [l]T ;Ψ, [l]ψ′〉 (rw loc)

Fig. 5. Abstract Semantics of Comingle

Hence, communication and orchestration can only occur through rewriting steps, de-
fined by rule rw ens. Note also that, since local transitions are kept abstract and are
parametrized by a location, rule rw loc accommodates ensembles that comprise devices
based on different underlying models of computation.

4 Implementation

We now describe our Comingle prototype. In Section 4.1, we highlight the compilation
phase, while Section 4.2 discusses the runtime system. Source code and examples are
available for download at https://github.com/sllam/comingle.

4.1 Compilation

The Comingle front-end compiler consists of a typical lexer and parser, type-checker, an
intermediate language preprocessor and a code generator, all implemented in Python.
The type-checker enforces basic static typing of Comingle programs via a constraint
solving approach adapted from [14] that allows for concise syntax highlight of type er-
ror sites. This is achieved by having the type-checker generate typing constraints with
additional bookkeeping data to pinpoint the syntax fragments responsible for each er-
ror. Satisfiability of these typing constraints are determined by an SMT solver library
built on top of Microsoft’s Z3 [3]. Our SMT solver library includes an extension to
reason about set comprehensions [11] which we use for optimizations involving com-
prehension patterns. An example is the selection of the indexing structures used by
the Comingle runtime to carry out multiset matching with the best possible asymp-
totic time complexity [10]. Once a program has been statically checked, the compiler
first applies a high-level source-to-source transformation [9] that converts a class of
system-centric Comingle programs into node-centric rules. In addition to preserving
soundness, the resulting node-centric program explicitly implements the communica-
tions and synchronizations that are required to correctly orchestrate the distributed ex-
ecution of multi-party Comingle rules among a group of participating devices. Details
of this choreographic transformation are out of the scope of this paper, but can be found
in [9]. Finally, the code generator produces Java code that implements multiset match-
ing as specified by the node-centric encodings. This generated matching code uses a

https://github.com/sllam/comingle

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 59

Fig. 6. Runtime System of a Distributed Comingle Mobile Application

compilation scheme formalized in [10] that first compiles node-centric code into a se-
quence of procedural operations, each of which implements a part of the matching and
unfolding operations described in Section 3.2.

4.2 Runtime System

Figure 6 illustrates the organization of a running Comingle ensemble. Within each mo-
bile device, the Comingle runtime has three components: a rewriting runtime that exe-
cutes compiled rewrite rules, an application runtime that performs all local operations
on the mobile device, and a network middleware that provides the basic communica-
tion primitives between the mobile devices. In the rest of this section, we highlight the
important features of each of these components.

Rewriting Runtime. The rewriting runtime implements an operational semantics [10]
which is sound with respect to the abstract semantics highlighted in Section 3. This op-
erational semantics implements rule rw ens on the node-centric rewriting rules resulting
from the compilation process. In particular, it performs matching by incrementally pro-
cessing atoms in a rule head on the basis of newly added facts. This execution model is
highly compatible with our setup, where multiset rewriting is driven by external triggers
generated by the local application runtime. Facts are matched to rule heads in top-down,
left-to-right order, while facts in a rule body are processed left to right. The actions as-
sociated with actuators are executed in order of rule application. Each instance of the
rewriting runtime is single-threaded, which entails that actuations invoked on the same
device are guaranteed to be sequentially consistent with respect to the local ordering of
rule application.

The rewriting runtime is implemented as a set of Java libraries. During compila-
tion, the code generator produces Java code sprinkled with calls to functions from these
libraries. Matching, for instance, is realized through various library functions that ma-
nipulate the data structures that implement the rewriting state St , supporting multi-
index storage for efficiently querying facts. Communication is realized by other library
calls that interface with the network middleware to send and receive facts to and from

60 E.S.L. Lam et al.

other participating instances of Comingle. Other library functions allows the rewrit-
ing runtime to call actuators that affects the local application runtime. Furthermore,
the rewriting runtime exposes interface functions to the local application to carry out
administrative commands (e.g., start or stop rewriting) as well as interfaces to add user-
defined triggering facts to the rewriting runtime. These interface functions, called by the
rewriting runtime, are engineered to be abstract and they make no assumptions about
the local application calling them, and hence can be customized for various platforms.

Application Runtime. The application runtime is the Android application that im-
plements rule rw loc, performing all the local operations on the mobile device, from
screen rendering to managing callback routines invoked by user input (e.g., keystrokes,
taps on the display). It is implemented in Java with the Android SDK, but also uses
a library (distributed as part of Comingle) that concretizes the interface functions that
the rewriting runtime invokes. Its purpose is to allow the application developer to in-
tegrate locally-defined functions into Comingle rewriting rules (as shown in Figure 1).
Specifically, it includes a set of predefined actuation callback methods for the Android
SDK. The current prototype only supports three built-in primitive actuators (display a
toast message, cause a delay in milliseconds, play a note), but interfaces to the Comin-
gle runtime allow the application developer to implement his/her own domain-specific
actuators. The application runtime also include libraries that implement boilerplate rou-
tines that help the developer integrate the Comingle rewriting runtime to an Activity
of the Android SDK.

Network Middleware. As shown in Figure 6, the network middleware provides the
underlying communication support between devices running Comingle. We have im-
plemented a concrete instance that utilizes Android’s WiFi-direct network protocol to
establish connections and send and receive facts between mobile devices. It includes li-
braries that implement an asynchronous first-in-first-out message sending and receiving
service on top of basic network sockets, and libraries that maintains, on each participat-
ing location, an active IP address directory of the local ad-hoc network. This allows a
group of mobile devices to setup an ad-hoc WiFi-direct network, and supports peer-to-
peer communication between any two devices of the group.

5 Case Studies

In this section, we describe three mobile applications we have implemented using the
Comingle framework on the Android SDK. Two are multi-player games and one is a
networking service. In all three, the overall distributed behavior is orchestrated by the
Comingle runtime, while the user interfaces are implemented locally using traditional
Android SDK libraries. For brevity, we omit all predicate declarations. These declara-
tions, the code implementing local operations, and the details of the integration with
Java and the Android SDK are discussed at length in [12].

Drag Racing. Drag Racing is a simple multi-player game inspired by a Google Chrome
experiment called Chrome Racer [6]. A number of players compete to reach the finish

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 61

1 rule init :: [I]initRace(Ls)
2 --o {[A]next(B)|(A,B)<-Cs}, [E]last(),
3 {[I]has(P), [P]all(Ps), [P]at(I), [P]renderTrack(Ls) | P<-Ps}
4 where (Cs,E) = makeChain(I,Ls), Ps = list2mset(Ls).
5

6 rule start :: [X]all(Ps) \ [X]startRace() --o {[P]release()|P<-Ps}.
7

8 rule tap :: [X]at(Y) \ [X]sendTap() --o [Y]recvTap(X).
9

10 rule trans :: [X]next(Z) \ [X]exiting(Y),[Y]at(X) --o [Z]has(Y),[Y]at(Z).
11

12 rule win :: [X]last()\[X]all(Ps),[X]exiting(Y) --o {[P]decWinner(Y)|P<-Ps}.

Fig. 7. Drag Racing, a racing game inspired by Chrome Racer

line of a linear racing track. The device of each player shows a distinct segment of the
track, and the players advance their car by tapping on their screen. The initial configu-
ration for a three-player instance is shown in Figure 7.1 In Chrome Racer, the devices
interact via a dedicated server. By contrast, the devices in our Drag Racing game commu-
nicate with each other directly, without the need of a third party to manage coordination.

An initial configuration such as the one in Figure 7 is generated when rule init is
executed. Its head is the trigger fact [I]initRace(Ls), where node I will hold the
initial segment of the track and Ls lists all locations participating in the game (including
I). Several actions need to take place at initialization time, all implemented by the
body of init. First, the participating locations need to be arranged into a linear chain
starting at I. This is achieved by the local function makeChain in the guard (Cs,E)
= makeChain(I,Ls) where Cs is instantiated to a multiset of logically adjacent
pairs of locations and E to the end of the chain. The guard Ps = list2mset(Ls)
converts the list Ls into a multiset Ps. Second, each node other than E needs to be
informed of which location holds the segment of the track after it, while E needs to be
told that it has the finishing segment: this is achieved by the atoms {[A]next(B) |
(A,B) <- Cs} and [E]last(), respectively. Third, each location (P<-Ps) needs
to be informed of who the players are ([P]all(Ps)) and of the fact that its car is
currently at I ([P]at(I)), and it needs to be instructed to render the lane of all players
([P]renderTrack(Ls)). Fourth, location I needs to be instructed to draw the car
of all the players ([I]has(P)). The facts renderTrack and has are actuators

1 In Chrome Racer, the track loops around so that each device shows two segments. While we
could easily achieve this effect, our linear “drag” racing variant suffices to demonstrate Comin-
gle’s ability to orchestrate distributed computations.

62 E.S.L. Lam et al.

1 rule init :: [I]initGame(Ships,Ps)
2 --o [I]turn(), [I]notifyTurn(), {[A]next(B) | (A,B)<-Cs},
3 {[P]all(Ps), [P]randomFleet(Ships) | P <- Ps}
4 where Cs = makeRRchain(Ps).
5

6 rule shoot :: [A]next(B) \ [A]turn(), [A]fireAt(D,X,Y)
7 --o [D]blastAt(A,X,Y), [B]turn(), [B]notifyTurn().
8 rule miss :: [D]empty(X,Y) \ [D]blastAt(A,X,Y)
9 --o [D]missed(A,D,X,Y), [A]missed(A,D,X,Y).

10 rule goodHit :: [D]blastAt(A,X,Y), [D]hull(S,X,Y)
11 --o [D]damaged(S,X,Y), [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
12 rule dmgHit :: [D]damaged(S,X,Y) \ [D]blastAt(A,X,Y)
13 --o [D]hit(A,D,X,Y), [A]hit(A,D,X,Y).
14

15 rule sunk :: [D]all(Ps) \
16 [D]damaged(S,X,Y), {[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}
17 {[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0
18 --o {[P]sunk(D,S,Ds)|P<-Ps}, [D]checkFleet()
19 where Ds = insert((X,Y), Ds’).
20

21 rule deadFleet :: [D]all(Ps), [D]checkFleet(), {[D]checkFleet()},
22 {[D]hull(S,W,V)|(S,W,V)->Hs} | size(Hs)=0
23 --o {[P]notifyDead(D), [P]dead(D) | P<-Ps}.
24

25 rule winner :: [D]all(Ps), {[D]dead(O) | O->Os}
26 | Ps=insert(D,Os) --o {[P]notifyWinner(D) | P<-Ps}.

Fig. 8. Multi-way Battleship

since they cause a local computation in the form of screen display. Because the instances
of the last four predicate forms are determined by the same multiset (Ps), Comingle
allows combining them into a single comprehension pattern.

At this point the game has been initialized, but it has not started yet. The race starts
the first time a player X taps his/her screen. This has the effect of depositing the trigger
[X]startRace() in the rewriting state, which enables rule start. Its body broad-
casts the actuator [P]release() to every node P, which has the effect of informing
P’s local runtime that subsequent taps will cause its car to move forward. This behavior
is achieved by rule tap, which is triggered at any node X by the fact [X]sendTap(),
generated by the application runtime every time X’s player taps his/her screen. The trig-
ger [X]exiting(Y) is generated when the car of player Y reaches the right-hand
side of the track segment on X’s device. If the track continues on player Z’s screen
([X]next(Z)), rule trans hands Y’s car over to Z by ordering Z to draw it on
his/her screen ([Z]has(Y)) and by informing X of the new location of his/her car
([Y]at(Z)). Notice that, because fact [Y]at(X) is in the simplified head of the rule,
it gets consumed. If instead X holds the final segment of the track ([X]last()) when
the trigger [X]exiting(Y) materializes, Y’s victory is broadcast to all participat-
ing locations ({[P]decWinner(Y) | P <- Ps}). Besides displaying a banner, it
disables moving one’s car by tapping the screen.

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 63

Multi-way Battleship. Multi-way Battleship extends the classic battleship game with
support for more than just two players. Each player begins with an equal assortment of
battleships of varying sizes, randomly placed on a two-dimensional grid of cells. The
players then take turns selecting an opponent’s cell and firing at it. A battleship is sunk
when each cell it resides in is hit at least once. The winner of the game is the last player
with at least one unsunk ship.

Figure 8 shows a Comingle program that orchestrates this game. Rule init ini-
tializes an instance of the game. Its head is the trigger [I]initGame(Ships,Ps),
where node I is the player who will fire the first shot, Ships lists the number of ships
of each kind, and Ps is the multiset of device locations playing the game. Its body
informs I that it is its turn to play by means of the fact [I]turn() and inserts the
actuator [I]notifyTurn() which posts a notification on I’s display and enables
touchscreen input. The body of init also constructs a round robin sequence of facts
[A]next(B), distributes the location of all participants ([P]all(Ps)), and deposits
the actuator [P]randomFleet(Ships) at each node P. The application layer of
P will service this actuator by generating a random placement of the fleet in Ships
at node P and by installing triggers [P]empty(X,Y) and [P]hull(S,X,Y) to
indicate that cell (X,Y) is empty or contains a portion of ship S, respectively.

The trigger [A]fireAt(D,X,Y) is added to the rewriting state when player A
fires at cell (X,Y) of player D. It enables rule shoot, but only if it is A’s turn. This
results in the fact [D]blast(A,X,Y) added at D’s. This rule also passes the turn
to the next player ([A]next(B)) by asserting the fact [B]turn() and causing a
notification on B’s display ([B]notifyTurn()).

The next three rules implement the possible outcomes of such a shot. Specifically,
if cell (X,Y) is empty, rule miss renders an appropriate animation on A’s and B’s dis-
play via the actuator missed(A,D,X,Y). If ship S is (partially) in cell (X,Y), rule
goodHit replaces the fact [D]hull(S,X,Y)) with [D]damage(S,X,Y) and in-
forms A and D of this event via the actuator hit(A,D,X,Y). If a damaged hull is hit
again, rule dmgHit generates the hit(A,D,X,Y) actuators once more.

Rule sunk handles the sinking of a ship S. It is enabled if there is at least one fact
[D]damaged(S,X,Y) in the rewriting state. It then checks that S has no intact frag-
ment ({[D]hull(S,W,V)|(W,V)->Hs} | size(Hs)=0), collects the coordi-
nates of the other hit fragments ({[D]damaged(S,X’,Y’)|(X’,Y’)->Ds’}),
notifies each player that S has sunk ({[P]sunk(D,S,Ds)|P<-Ps}), and issues the
fact [D]checkFleet() to check if the game is over for D. The function insert
inserts an element in a multiset.

If at least one [D]checkFleet() fact is present, rule deadFleat similarly
checks that no ship fragment is intact ({[D]hull(S,W,V)|(S,W,V)->Hs} |
size(Hs)=0) and if this is the case it informs all players of D’s annihilation with
{[P]notifyDead(D), [P]dead(D) | P<-Ps}. Finally, rule winner is ex-
ecuted by the winning player D when it can ascertain that all other players are dead
([D]all(Ps) {[D]dead(O) | O->Os} where Ps=insert(D,Os)).

WiFi-Direct Directory. WiFi-Direct Directory is an implementation of a networking
service built on top of the Android SDK WiFi-direct library. In the WiFi-direct protocol,
one device is designated as the owner of a newly established group. The owner can

64 E.S.L. Lam et al.

1 rule owner :: [O]startOwner(C) --o [O]owner(C), [O]joined(O).
2 rule member :: [M]startMember(C) --o [M]member(C).
3 rule connect :: [M]member(C) \ [M]connect(N)
4 --o [O]joinRequest(C,N,M) where O = ownerLoc().
5

6 rule join :: [O]owner(C), {[O]joined(M’)|M’->Ms},
7 \ [O]joinRequest(C,N,M) | notIn(M,Ms)
8 --o {[M’]added(D)|M’<-Ms}, {[M]added(D’)|D’<-Ds},
9 [M]added(D), [O]joined(M), [M]connected()

10 where IP = lookupIP(M), D = (M,IP,N), Ds = retrieveDir().
11

12 rule quitO :: [O]owner(C), [O]quit(), {[O]joined(M)|M->Ms}
13 --o {[M]ownerQuit()|M<-Ms} .
14

15 rule quitM :: {[O]joined(M’)|M’->Ms.not(M’ = M)}
16 \ [M]member(C), [M]quit(), [O]joined(M)
17 --o {[M’]removed(M)|M’<-Ms}, [M]deleteDir().

Fig. 9. WiFi-Direct Directory

obtain the IP address of each device in the group from its network middleware, but
the other members only know the owner’s IP address and location. This means that,
initially, the group owner can communicate with all members but the members can
only communicate with the owner. WiFi-Direct Directory disseminates and maintains
an IP address table on each node of the group in order to enable peer-to-peer IP socket
communication.

Figure 9 shows the Comingle program that orchestrates this service. Once the group
has been established, the triggers[O]startOwner(C) and[M]startMember(C)
are entered in the rewriting state of the owner and of each other member M, respectively.
The argument C identifies the application this group is for (e.g., one of the two games
seen earlier) — the WiFi-direct protocols allows a node to be part of at most one group
at any time. Rule owner initializes the owner by adding the facts [O]owner(C) that
sets O’s role as the owner of the group for application C and [O]joined(O) that
identifies it as having joined the group. Rule member simply sets M’s role as a group
member ([M]member(C)).

The runtime of a member M also periodically generates triggers [M]connect(N)
where N is the device’s screen name — this is to protect against message losses while the
group owner bootstraps. Rule connect turn this trigger into the request [O]join-
Request(C,N,M) to be sent to the owner O — the library function ownerLoc
retrieves the owner of the current group, which is initially available to all members.
This request is processed in rule join: the owner O checks that a join request by
the same member has not been serviced already ([O]joinRequest(C,N,M) |
notIn(M,Ms)), it then records M as having joined the group ([O]joined(M)),
sends its location, IP address and screen name (D = (M,IP,N)) to the active mem-
bers ({[M’]added(D)|M’<-Ms}). This same data is sent to M ([M]added(D)) as
well as information about each active member ({[M]added(D’)|D’<-Ds}). The
actuator [X]added(D) updates node X’s internal routing table with entry D and the
actuator [M]connected() stops the issuance of the triggers [M]connect(N).

Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles 65

The last two rules handle a member M leaving the group, which is initiated by trigger
[M]quit(). If this member is the owner, rule quitO dismantles the group and send
the actuator ownerQuit() to each active member. If M is a regular member, rule
quitM consumes M’s [O]joined(M) fact, notifies all other members to remove M’s
entry from their local directory ({[M’]removed(M)|M’<-Ms}) and instructs M’s
runtime to delete its entire local directory ([M]deleteDir()).

6 Related Work

To the best of our knowledge, Comingle is the first framework to introduce the logic
programming paradigm to the development of applications on modern mobile devices.
However, it draws from work on distributed and parallel programming languages for
decentralized micro-systems, which we now review.

Comingle is greatly influenced by Meld [1], a logic programming language initially
designed for programming distributed ensembles of communicating robots. It used the
Blinky Blocks platform [8] as a proof of concept to demonstrate simple ensemble pro-
gramming behaviors. Meld was based on a variant of Datalog extended with sensing
and action facts. Recent refinements [2] extended Meld with comprehension patterns
and linearity, but refocused it on distributed programming of multicore architectures.

Sifteo [13] is an interactive system that runs an array of puzzle games on Lego-like
cubes. Each cube is equipped with a small LCD screen and various means of interaction
with the user (e.g., tilting, shaking) and is capable of sensing alignments with neighbor-
ing cubes. Developers can implement new games in C/C++ via the Sifteo SDK. Sifteo’s
decentralized and interactive setup makes it a suitable target platform for Comingle.

The Comingle language is a descendant of CHR [5], a logic programming language
targeting traditional constraint solving problems. Comingle extends it with multiset
comprehension, explicit locations, triggers and actuators.

7 Future Developments and Conclusions

In this paper, we introduced Comingle, a distributed logic programming language for
orchestrating decentralized ensembles. It is designed to simplify the development of
interactive applications and to provide a high-level programming abstraction for coor-
dinating distributed computations. As proof of concept, we described three distributed
applications orchestrated by Comingle and running on Android mobile devices — two
are multi-player games and one is a networking service. By segregating all communi-
cation and coordination events in a few rules, it promotes a system-centric, declarative
style of programming a distributed application, which simplifies detecting errors and
ensuring correctness.

In the immediate future, we intend to expand the language capabilities to capture
recurrent synchronization patterns and enrich the programming primitives available at
the Comingle level. We will also extend the library support for developing applications
that integrate with the Comingle rewriting runtime.

66 E.S.L. Lam et al.

References

1. Ashley-Rollman, M.P., Lee, P., Goldstein, S.C., Pillai, P., Campbell, J.D.: A Language for
Large Ensembles of Independently Executing Nodes. In: Hill, P.M., Warren, D.S. (eds.) ICLP
2009. LNCS, vol. 5649, pp. 265–280. Springer, Heidelberg (2009)

2. Cruz, F., Rocha, R., Goldstein, S.C., Pfenning, F.: A linear logic programming language for
concurrent programming over graph structures. In: ICLP 2014, Vienna, Austria (2014)

3. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI
2004. USENIX Association (2004)

5. Frühwirth, T., Raiser, F.: Constraint Handling Rules: Compilation, Execution and Analysis
(2011), BOD ISBN 9783839115916

6. New York Google. Chrome Racer, A Chrome Experiment (2013),
http://www.chrome.com/racer

7. Google Inc. Google Web Toolkit, http://code.google.com/webtoolkit/
8. Kirby, B.T., Ashley-Rollman, M., Goldstein, S.C.: Blinky blocks: A physical ensemble pro-

gramming platform. In: CHI 2011, pp. 1111–1116. ACM, New York (2011)
9. Lam, E.S.L., Cervesato, I.: Decentralized Execution of Constraint Handling Rules for En-

sembles. In: PPDP 2013, Madrid, Spain, pp. 205–216 (2013)
10. Lam, E.S.L., Cervesato, I.: Optimized Compilation of Multiset Rewriting with Comprehen-

sions. In: Garrigue, J. (ed.) APLAS 2014. LNCS, vol. 8858, pp. 19–38. Springer, Heidelberg
(2014)

11. Lam, E.S.L., Cervesato, I.: Reasoning about Set Comprehension. In: SMT 2014 (2014)
12. Lam, E.S.L., Cervesato, I.: Comingle: Distributed Logic Programming for Decentralized An-

droid Applications. Technical Report CMU-CS-15-101, Carnegie Mellon University (March
2015)

13. Merrill, D., Kalanithi, J.: Sifteo, Interactive Game Cubes (2009),
https://www.sifteo.com/cubes cubes

14. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive Type Debugging in Haskell. In: Haskell
2003, pp. 72–83. ACM, New York (2003)

Dynamic Choreographies
Safe Runtime Updates of Distributed Applications

Mila Dalla Preda1, Maurizio Gabbrielli2, Saverio Giallorenzo2,
Ivan Lanese2, and Jacopo Mauro2(�)

1 Department of Computer Science, University of Verona, Verona, Italy
mila.dallapreda@univr.it

2 Department of Computer Science and Engineering,
University of Bologna / INRIA, Bologna, Italy

{sgiallor,gabbri,lanese,jmauro}@cs.unibo.it

Abstract. Programming distributed applications free from communi-
cation deadlocks and races is complex. Preserving these properties when
applications are updated at runtime is even harder.

We present DIOC, a language for programming distributed applica-
tions that are free from deadlocks and races by construction. A DIOC
program describes a whole distributed application as a unique entity
(choreography). DIOC allows the programmer to specify which parts of
the application can be updated. At runtime, these parts may be replaced
by new DIOC fragments from outside the application. DIOC programs are
compiled, generating code for each site, in a lower-level language called
DPOC. We formalise both DIOC and DPOC semantics as labelled tran-
sition systems and prove the correctness of the compilation as a trace
equivalence result. As corollaries, DPOC applications are free from com-
munication deadlocks and races, even in presence of runtime updates.

1 Introduction

Programming distributed applications is an error-prone activity. Participants
send and receive messages and, if the application is badly programmed, par-
ticipants may get stuck waiting for messages that never arrive (communication
deadlock), or they may receive messages in an unexpected order, depending on
the speed of the other participants and of the network (races).

Recently, language-based approaches have been proposed to tackle the com-
plexity of programming concurrent and distributed applications. Languages such
as Rust [21] or SCOOP [19] provide higher-level primitives to program concur-
rent applications which avoid by construction some of the risks of concurrent
programming. Indeed, in these settings most of the work needed to ensure a
correct behaviour is done by the language compiler and runtime support. Us-
ing these languages requires a conceptual shift from traditional ones, but reduces

This work is partly supported by the MIUR FIRB project FACE (Formal Avenue
for Chasing malwarE) RBFR13AJFT and by the Italian MIUR PRIN Project CINA
Prot. 2010LHT4KM.

© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 67–82, 2015.
DOI: 10.1007/978-3-319-19282-6_5

68 M. Dalla Preda et al.

times and costs of development, testing, and maintenance by avoiding some of
the most common programming errors.

Here, we propose an approach based on choreographic programming [4,5,15,22]
following a similar philosophy, tailored for distributed applications. In choreo-
graphic programming, a whole distributed application is described as a unique
entity, by specifying the expected interactions and their order. For instance, a
price request from a buyer to a seller is written as priceReq: buyer(b_prod)
→ seller(s_prod). It specifies that the buyer sends along channel priceReq
the name of the desired product b_prod to the seller, which stores it in its
local variable s_prod. Since in choreographic languages sends and receives are
always paired, the coupling of exactly one receive with each send and vice versa
makes communication deadlocks or races impossible to write. Given a choreog-
raphy, a main challenge is to produce low-level distributed code which correctly
implements the desired behaviour.

We take this challenge one step forward: we consider updatable applications,
whose code can change while the application is running, dynamically integrating
code from the outside. Such a feature, tricky in a sequential setting and even more
in a distributed one, has countless uses: deal with emergency requirements, cope
with rules and requirements which depend on contextual properties, improve and
specialize the application to user preferences, and so on. We propose a general
mechanism, which consists in delimiting inside the application blocks of code,
called scopes, that may be dynamically replaced with new code, called update.
The details of the behaviour of the updates do not need to be foreseen, updates
may even be written while the application is running.

Runtime code replacement performed using languages not providing dedicated
support is extremely error-prone. For instance, considering the price request
example above, assume that we want to update the system allowing the buyer
to send to the seller also its fidelity card ID to get access to some special offer.
If the buyer is updated first and it starts the interaction before the seller has
been updated, the seller is not expecting the card ID, which may be sent and
lost, or received later on, when some different message is expected, thus breaking
the correctness of the application. Vice versa, if the seller is updated first, (s)he
will wait for the card ID, which the buyer will not send, leading the application
to a deadlock. In our setting, the available updates may change at any time,
posing an additional challenge. Extra precautions are needed to ensure that all
the participants agree on which code is used for a given update. For instance,
in the example above, suppose that the buyer finds the update that allows the
sending of the card ID, and applies this update before the seller does. If the
update is no more available when the seller looks for it, then the application
ends up in an inconsistent state, where the update is only partially applied, and
the seller will receive an unexpected message containing the card ID.

If both the original application and the updates are programmed using a chore-
ographic language, these problems cannot arise. In fact, at the choreographic
level, the update is applied atomically to all the involved participants. Again,
the tricky part is to compile the choreographic code to low-level distributed code

Dynamic Choreographies 69

ensuring correct behaviour. In particular, at low-level, the different participants
have to coordinate their updates avoiding inconsistencies. The present paper
proposes a solution to this problem. In particular:

– we define a choreographic language, called DIOC, to program distributed
applications and supporting code update (§ 2);

– we define a low-level language, called DPOC, based on standard send and
receive primitives (§ 3);

– we define a behaviour-preserving projection function compiling DIOCs into
DPOCs (§ 3.1);

– we give a formal proof of the correctness of the projection function (§ 4).
Correctness is guaranteed even in a scenario where the new code used for
updates dynamically changes at any moment and without notice.

The contribution outlined above is essentially theoretical, but it has already
been applied in practice, resulting in AIOCJ, an adaptation framework described
in [9]. The theoretical underpinning of AIOCJ is a specific instantiation of the
results presented here. Indeed, AIOCJ further specifies how to manage the up-
dates, e.g., how to decide when updates should be applied and which ones to
choose if many of them apply. For more details on the implementation and more
examples we refer the interested reader to the website [1]. Note that the user
of AIOCJ does not need to master all the technicalities we discuss here, since
they are embedded within AIOCJ. In particular, DPOCs and the projection are
automatically handled and hidden from the user.

Proofs, additional details, and examples are available in the companion tech-
nical report [8].

2 Dynamic Interaction-Oriented Choreography (DIOC)

This section defines the syntax and semantics of the DIOC language.
The languages that we propose rely on a set Roles, ranged over by r, s, . . . ,

whose elements identify the participants in the choreography. Roles exchange
messages over channels, also called operations: public operations, ranged over by
o, and private operations, ranged over by o∗. We use o? to range over both public
and private operations. Public operations represent relevant communications
inside the application. We ensure that both the DIOC and the corresponding
DPOC perform the same public operations, in the same order. Vice versa, private
communications are used when moving from the DIOC level to the DPOC level, for
synchronisation purposes. We denote with Expr the set of expressions, ranged
over by e. We deliberately do not give a formal definition of expressions and
of their typing, since our results do not depend on it. We only require that
expressions include at least values, belonging to a set Val ranged over by v, and
variables, belonging to a set Var ranged over by x, y, We also assume a set
of boolean expressions ranged over by b.

70 M. Dalla Preda et al.

The syntax of DIOC processes, ranged over by I, I ′, . . ., is defined as follows:

I : : = o? : r1(e) → r2(x) | I; I ′ | I|I′ | x@r = e | 1 | 0 |
if b@r {I} else {I ′} | while b@r {I} | scope @r {I}

Interaction o? : r1(e) → r2(x) means that role r1 sends a message on operation
o? to role r2 (we require r1 �= r2). The sent value is obtained by evaluating
expression e in the local state of r1 and it is then stored in variable x in r2.
Processes I; I ′ and I|I′ denote sequential and parallel composition. Assignment
x@r = e assigns the evaluation of expression e in the local state of r to its
local variable x. The empty process 1 defines a DIOC that can only terminate. 0
represents a terminated DIOC. It is needed for the definition of the operational
semantics and it is not intended to be used by the programmer. We call initial
a DIOC process where 0 never occurs. Conditional if b@r {I} else {I ′} and
iteration while b@r {I} are guarded by the evaluation of boolean expression b in
the local state of r. The construct scope @r {I} delimits a subterm I of the DIOC
process that may be updated in the future. In scope @r {I}, role r coordinates
the updating procedure by interacting with the other roles involved in the scope.

DIOC processes do not execute in isolation: they are equipped with a global
state Σ and a set of (available) updates I. A global state Σ is a map that defines
the value v of each variable x in a given role r, namely Σ : Roles×Var → Val. The
local state of role r is Σr : Var → Val and it verifies ∀x ∈ Var : Σ(r, x) = Σr(x).
Expressions are always evaluated by a given role r: we denote the evaluation of
expression e in local state Σr as [[e]]Σr . We assume [[e]]Σr is always defined (e.g.,
an error value is given as a result if evaluation is not possible) and that for each
boolean expression b, [[b]]Σr is either true or false. I denotes a set of updates,
i.e., DIOCs that may replace a scope. I may change at runtime.

Listing 1.1 gives a realistic example of DIOC process where a buyer orders a
product from a seller, paying via a bank.

1 price_ok @buyer = false; continue @buyer = true;
2 while (!price_ok and continue)@buyer {
3 b_prod@buyer = getInput ();
4 priceReq : buyer(b_prod) → seller(s_prod);
5 scope @seller {
6 s_price @seller = getPrice (s_prod);
7 offer : seller(s_price) → buyer(b_price)
8 };
9 price_ok @buyer = getInput ();

10 if (!price_ok)@buyer {
11 continue @buyer = getInput ()} };
12 if (price_ok)@buyer {
13 payReq : seller(payDesc(s_price)) → bank(desc);
14 scope @bank {
15 payment_ok @bank = true ;
16 pay : buyer(payAuth(b_price)) → bank(auth);
17 ... // code f o r the payment
18 };

Dynamic Choreographies 71

19 if (payment_ok)@bank {
20 confirm : bank(null) → seller(_) |
21 confirm : bank(null) → buyer(_)
22 } else { abort : bank(null) → buyer(_) } }

Listing 1.1. DIOC process for Buying Scenario

Before starting the application by iteratively asking the price of some goods
to the seller, the buyer at Line 1 initializes its local variables price_ok and
continue. Then, by using function getInput (Line 3) (s)he reads from the local
console the name of the product to buy and, at Line 4, engages in a communi-
cation via operation priceReq with the seller. The seller computes the price
of the product calling the function getPrice (Line 6) and, via operation offer,
it sends the price to the buyer (Line 7), that stores it in a local variable b_price.
These last two operations are performed within a scope, allowing this code to
be updated in the future to deal with changing business rules. If the offer is ac-
cepted, the seller sends to the bank the payment details (Line 13). The buyer
then authorises the payment via operation pay. We omit the details of the local
execution of the payment at the bank. Since the payment may be critical for
security reasons, the related communication is enclosed in a scope (Lines 14-18),
thus allowing the introduction of a more refined procedure later on. After the
scope successfully terminates, the application ends with the bank acknowledging
the payment to the seller and the buyer in parallel (Lines 20-21). If the pay-
ment is not successful, the failure is notified to the buyer only. Note that at Line
1, the annotation @buyer means that the variables belong to the buyer. Similarly,
at Line 2, the annotation @buyer means that the guard of the while is evaluated
by buyer. The term @seller in Line 5 instead, being part of the scope construct,
indicates the participant that coordinates the code update.

Assume now that the seller direction decides to define new business rules. For
instance, the seller may distribute a fidelity card to buyers, allowing them to get
a 10% discount on their purchases. This business need can be faced by adding
the DIOC below to the set of available updates, so that it can be used to replace
the scope at Lines 5-8 in Listing 1.1.
1 cardReq : seller(null) → buyer(_);
2 card_id@buyer = getInput ();
3 cardRes : buyer(card_id) → seller(buyer_id);
4 if isValid(buyer_id)@seller {
5 s_price@seller = getPrice (s_prod) * 0.9
6 } else { s_price @seller = getPrice(s_prod) };
7 offer : seller(s_price) → buyer(b_price)

Listing 1.2. Fidelity Card Update

When this code executes, the seller asks the card ID to the buyer. The buyer
inputs the ID, stores it into the variable card id and sends this information to
the seller. If the card ID is valid then the discount is applied, otherwise the
standard price is computed.

72 M. Dalla Preda et al.

Table 1. Auxiliary functions transI and transF

transI(o? : r1(e) → r2(x)) = transF(o? : r1(e) → r2(x)) = {r1 → r2}
transI(x@r = e) = transF(x@r = e) = {r → r}
transI(1) = transI(0) = transF(1) = transF(0) = ∅
transI(I|I′) = transI(I) ∪ transI(I′) transF(I|I′) = transF(I) ∪ transF(I′)

transI(I; I′) =
{
transI(I′) if transI(I) = ∅
transI(I) otherwise transF(I; I′) =

{
transF(I) if transF(I′) = ∅
transF(I′) otherwise

transI(if b@r {I} else {I′}) = transI(while b@r {I}) = {r → r}
transF(if b@r {I} else {I′}) =

{
{r → r} if transF(I) ∪ transF(I′) = ∅
transF(I) ∪ transF(I′) otherwise

transF(while b@r {I}) =
{

{r → r} if transF(I) = ∅
transF(I) otherwise

transI(scope @r {I}) = {r → r}
transF(scope @r {I}) =

{ {r → r} if roles(I) ⊆ {r}⋃
r′∈roles(I)�{r}{r′ → r} otherwise

2.1 Connectedness

In order to prove our main result, we require the DIOC code of the updates
and of the starting programs to satisfy a well-formedness syntactic condition
called connectedness. This condition is composed by connectedness for sequence
and connectedness for parallel. Intuitively, connectedness for sequence ensures
that the DPOC network obtained by projecting a sequence I; I′ executes first
the actions in I and then those in I ′, thus respecting the intended semantics
of sequential composition. Connectedness for parallel prevents interferences be-
tween parallel interactions. To formally define connectedness we introduce, in
Table 1, the auxiliary functions transI and transF that, given a DIOC process,
compute sets of pairs representing senders and receivers of possible initial and
final interactions in its execution. We represent one such pair as r1 → r2. Ac-
tions located at r are represented as r → r. For instance, given an interaction
o? : r1(e) → r2(x) both its transI and transF are {r1 → r2}. For conditional,
transI(if b@r {I} else {I ′}) = {r → r} since the first action executed is the eval-
uation of the guard by role r. The set transF(if b@r {I} else {I ′}) is normally
transF(I) ∪ transF(I ′), since the execution terminates with an action from one
of the branches. If instead the branches are both empty then transF is {r → r},
representing guard evaluation.

We assume a function roles(I) that computes the roles of a DIOC process I. We
also assume a function sig that given a DIOC process returns the set of signatures
of its interactions, where the signature of interaction o? : r1(e) → r2(x) is o? :
r1 → r2. For a formal definition of the functions roles and sig we refer the reader
to the companion technical report [8].
Definition 1 (Connectedness). A DIOC process I is connected if it satisfies:

– connectedness for sequence: each subterm of the form I′; I ′′ satisfies
∀r1 → r2 ∈ transF(I ′), ∀s1 → s2 ∈ transI(I ′′) . {r1, r2} ∩ {s1, s2} �= ∅;

– connectedness for parallel: each subterm of the form I′|I′′ satisfies
sig(I ′) ∩ sig(I ′′) = ∅.

Dynamic Choreographies 73

Requiring connectedness does not hamper programmability, since it naturally
holds in most of the cases (see, e.g., [1, 9]), and it can always be enforced au-
tomatically restructuring the DIOC while preserving its behaviour, following the
lines of [16]. Also, connectedness can be checked efficiently.

Theorem 1 (Connectedness-check Complexity)
The connectedness of a DIOC process I can be checked in time O(n2 log(n)),
where n is the number of nodes in the abstract syntax tree of I.

Note that we allow only connected updates. Indeed, replacing a scope with a
connected update always results in a deadlock- and race-free DIOC. Thus, there
is no need to perform expensive runtime checks to ensure connectedness of the
application after an arbitrary sequence of updates has been applied.

2.2 DIOC Semantics

We can now define DIOC systems and their semantics.

Definition 2 (DIOC Systems). A DIOC system is a triple 〈Σ, I, I〉 denoting a
DIOC process I equipped with a global state Σ and a set of updates I.

Definition 3 (DIOC Systems Semantics). The semantics of DIOC systems is
defined as the smallest labelled transition system (LTS) closed under the rules
in Table 6 in the companion technical report [8] (excerpt in Table 2), where
symmetric rules for parallel composition have been omitted.

The rules in Table 2 describe the behaviour of a DIOC system by induction on
the structure of its DIOC process. We use μ to range over labels. Also, we use A
as an abbreviation for Σ, I. We comment below on the main rules.

Rule [Interaction] executes a communication from r1 to r2 on operation o?,
where r1 sends to r2 the value v of an expression e. The value v is then stored

Table 2. DIOC system semantics (excerpt)

[Interaction]
[[e]]Σr1 = v

〈
A, o? : r1(e) → r2(x)

〉 o?:r1(v)→r2(x)−−−−−−−−−−→ 〈A, x@r2 = v〉

[Sequence]

〈A, I〉 μ−→ 〈A′, I′〉 μ �= √

〈A, I;J 〉 μ−→ 〈A′, I′;J 〉
[Assign]

[[e]]Σr = v

〈Σ, I, x@r = e〉 τ−→ 〈Σ[v/x, r], I,1〉

[Seq-end]

〈A, I〉
√
−→ 〈A, I′〉 〈A, J 〉 μ−→ 〈A, J ′〉
〈A, I;J 〉 μ−→ 〈A, J ′〉

[Up]
roles(I′) ⊆ roles(I) I′ ∈ I I′ connected

〈A, scope @r {I}〉 I′
−→ 〈A, I′〉

[NoUp]
〈A, scope @r {I}〉 no-up−−−−→ 〈A, I〉

[End]
〈A,1〉

√
−→ 〈A,0〉

[Change-Updates]
〈Σ, I, I〉 I′

−→ 〈Σ, I′, I〉

74 M. Dalla Preda et al.

in x by r2. Rule [Assign] evaluates the expression e in the local state Σr and
stores the resulting value v in the local variable x in role r ([v/x, r] represents
the substitution). The rules [Up] and [NoUp] deal with the code replacement
and thus the application of an update. Rule [Up] models the application of the
update I ′ to the scope scope @r {I} which, as a result, is replaced by the DIOC
process I ′. This rule requires the update to be connected. Rule [NoUp] removes
the scope boundaries and starts the execution of the body of the scope. Rule
[Change-Updates] allows the set I of available updates to change. This rule is
always enabled since its execution can happen at any time and the application
cannot forbid it.

In our theory, whether to update a scope or not, and which update to apply
if many are available, is completely non-deterministic. We have adopted this
view to maximize generality. However, for practical applications, one needs rules
and conditions which define when an update has to be performed. Refining the
semantics to introduce rules for decreasing (or eliminating) the non-determinism
would not affect the correctness of our approach. One such refinement has been
explored in [9].

We define DIOC traces, where all the performed actions are observed, and weak
DIOC traces, where interactions on private operations and silent actions τ are
not visible.

Definition 4 (DIOC Traces). A (strong) trace of a DIOC system 〈Σ1, I1, I1〉 is
a sequence (finite or infinite) of labels μ1, μ2, . . . such that there is a sequence of
DIOC system transitions 〈Σ1, I1, I1〉 μ1−→ 〈Σ2, I2, I2〉 μ2−→
A weak trace of a DIOC system 〈Σ1, I1, I1〉 is a sequence of labels μ1, μ2, . . .
obtained by removing all the labels corresponding to private communications,
i.e., of the form o∗ : r1(v) → r2(x), and the silent labels τ from a trace of
〈Σ1, I1, I1〉.

3 Dynamic Process-Oriented Choreography (DPOC)

This section describes the syntax and operational semantics of DPOCs. DPOCs
include processes, ranged over by P , P ′, . . ., describing the behaviour of par-
ticipants. (P, Γ)r denotes a DPOC role named r, executing process P in a local
state Γ . Networks, ranged over by N , N ′, . . ., are parallel compositions of DPOC
roles with different names. DPOC systems, ranged over by S, are DPOC networks
equipped with a set of updates I, namely pairs 〈I, N 〉.
P : : = o? : x from r | o? : e to r | o∗ : X to r | P ; P ′ | P |P ′ | x = e | while b {P }

| if b {P } else {P ′} | n : scope @r {P } roles {S} | n : scope @r {P } | 1 | 0

X : : = no | P N : : =(P, Γ)r | N ‖ N ′ S : : = 〈I, N 〉

Processes include receive action o? : x from r on a specific operation o? (ei-
ther public or private) of a message from role r to be stored in variable x, send
action o? : e to r of an expression e to be sent to role r, and higher-order send

Dynamic Choreographies 75

action o∗ : X to r of the higher-order argument X to be sent to role r. Here
X may be either a DPOC process P , which is the new code for a scope in r,
or a token no, notifying that no update is needed. P ; P ′ and P |P ′ denote the
sequential and parallel composition of P and P ′, respectively. Processes also fea-
ture assignment x = e of expression e to variable x, the process 1, that can only
successfully terminate, and the terminated process 0. We also have conditionals
if b {P } else {P ′} and loops while b {P }. Finally, we have two constructs
for scopes. Scope n : scope @r {P } roles {S} may occur only inside role r and
acts as coordinator to apply (or not apply) the update. The shorter version
n : scope @r {P } is used instead when the role is not the coordinator of the
scope. In fact, only the coordinator needs to know the set S of involved roles to
communicate which update to apply. Note that scopes are prefixed by an index
n. Indexes are unique in each role and are used to avoid interference between
different scopes in the same role.

3.1 Projection

Before defining the semantics of DPOCs, we define the projection of a DIOC
process onto DPOC processes. This is needed to define the semantics of updates at
the DPOC level. The projection exploits auxiliary communications to coordinate
the different roles, e.g., ensuring that in a conditional they all select the same
branch. To define these auxiliary communications and avoid interference, it is
convenient to annotate DIOC main constructs with unique indexes.

Definition 5 (Well-annotated DIOC). Annotated DIOC processes are obtained
by indexing every interaction, assignment, scope, and if and while constructs in
a DIOC process with a natural number n ∈ N, resulting in the following grammar:

I : : = n : o? : r1(e) → r2(x) | I; I ′ | I|I′ | 1 | 0 | n : x@r = e
| n : while b@r {I} | n : if b@r {I} else {I ′} | n : scope @r {I}

A DIOC process is well-annotated if all its indexes are distinct.

Note that we can always annotate a DIOC process to make it well-annotated.
We now define the process-projection function that derives DPOC processes

from DIOC processes. Given an annotated DIOC process I and a role s, the
projected DPOC process π(I, s) is defined by structural induction on I in Table 3.
Here, with a little abuse of notation, we write roles(I, I ′) for roles(I) ∪ roles(I ′).
We assume that operations o∗

n and variables xn are never used in the projected
DIOC and we use them for auxiliary synchronisations. In most of the cases the
projection is trivial. For instance, the projection of an interaction is an output
on the sender role, an input on the receiver, and 1 on any other role. For a
conditional n : if b@r {I} else {I ′}, role r locally evaluates the guard and then
sends its value to the other roles using auxiliary communications. Similarly, in
a loop n : while b@r {I} role r communicates the evaluation of the guard to the
other roles. Also, after an iteration has terminated, role r waits for the other
roles to terminate and then starts a new iteration. In both the conditional and

76 M. Dalla Preda et al.

Table 3. Process-projection function π

π(1, s) = 1 π(0, s) = 0

π(I; I′, s) = π(I, s);π(I′, s)

π(I|I′, s) = π(I, s) | π(I′, s)

π(n : x@r = e, s) =
{

x = e if s = r
1 otherwise

π(n : o? : r1(e) → r2(x), s) =

⎧⎨
⎩

o? : e to r2 if s = r1
o? : x from r1 if s = r2

1 otherwise

π(n : if b@r {I} else {I′}, s) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if b {(Π
r′∈roles(I,I′)\{r} o∗

n : true to r′); π(I, s)}
else {(Π

r′∈roles(I,I′)\{r} o∗
n : false to r′); π(I′, s)} if s = r

o∗
n : xn from r; if xn {π(I, s)} else {π(I′, s)} if r ∈ roles(I, I′) \ {s}

1 otherwise
π(n : while b@r {I}, s) =⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

while b {(Π
r′∈roles(I)\{r}o∗

n : true to r′);π(I, s);
Π

r′∈roles(I)\{r} o∗
n : from r′};

Π
r′∈roles(I)\{r} o∗

n : false to r′
if s = r

o∗
n : xn from r;
while xn {π(I, s); o∗

n : ok to r; o∗
n : xn from r} if s ∈ roles(I) \ {r}

1 otherwise

π(n : scope @r {I}, s) =

⎧⎪⎨
⎪⎩

n : scope @r {π(I, s)} roles {roles(I)} if s = r
n : scope @r {π(I, s)} if s∈ roles(I)\{r}

1 otherwise

the loop, indexes are used to choose names for auxiliary operations: the choice
is coherent among the different roles and interference between different loops or
conditionals is avoided.

There is a trade-off between efficiency and ease of programming that
concerns how to ensure that all the roles are aware of the evolution of the
computation. Indeed, this can be done in three ways: by using auxiliary com-
munications generated either i) by the projection (e.g., as for if and while con-
structs above) or ii) by the semantics (as we will show for scopes) or iii) by
restricting the class of allowed DIOCs (as done for sequential composition us-
ing connectedness for sequence). For instance, auxiliary communications for the
if b@r {I} else {I ′} construct are needed unless one requires that r ∈ {r1, r2}
for each r1 → r2 ∈ transI(I) ∪ transI(I ′). The use of auxiliary communications is
possibly less efficient, while stricter connectedness conditions leave more burden
on the shoulders of the programmer.

We now define the projection proj(I, Σ), based on the process-projection π, to
derive a DPOC network from a DIOC process I and a global state Σ. We denote
with ‖i∈I Ni the parallel composition of networks Ni for each i ∈ I.

Dynamic Choreographies 77

Table 4. DPOC role semantics (excerpt)

[One]
(1, Γ)r

√
−→ (0, Γ)r

[Assign]
[[e]]Γ = v

(x = e, Γ)r
τ−→ (1, Γ [v/x])r

[Out-Up]

(o? : X to r′, Γ)r
o?〈X〉@r′:r−−−−−−−−→ (1, Γ)r

[In]

(o? : x from r′, Γ)r
o?(x←v)@r′:r−−−−−−−−−−→ (x = v, Γ)r

[Out]
[[e]]Γ = v

(o? : e to r′, Γ)r
o?〈v〉@r′:r−−−−−−−→ (1, Γ)r

[Sequence]

(P, Γ)r
δ−→ (P ′, Γ ′)r δ �= √

(P ;Q, Γ)r
δ−→ (P ′;Q, Γ ′)r

[Seq-end]

(P, Γ)r

√
−→ (P ′, Γ)r (Q, Γ)r

δ−→ (Q′, Γ ′)r

(P ;Q, Γ)r
δ−→ (Q′, Γ ′)r

[Lead-Up]
I′ = freshIndex(I, n) roles(I′) ⊆ S

(n : scope @r {P } roles {S}, Γ)r
I−→

(Πri∈S\{r}o∗
n : π(I′, ri) to ri;π(I′, r);Πri∈S\{r}o∗

n : from ri, Γ)r

[Lead-NoUp]
(n : scope @r {P } roles {S}, Γ)r

no-up−−−−−→
(Πri∈S\{r}o∗

n : no to ri;P ;Πri∈S\{r}o∗
n : from ri, Γ)r

[Up]

(n : scope @r′ {P }, Γ)r
o∗
n(←P ′)@r′

−−−−−−−−−→ (P ′; o∗
n : ok to r′, Γ)r

[NoUp]

(n : scope @r′ {P }, Γ)r
o∗
n(←no)@r′

−−−−−−−−−→ (P ; o∗
n : ok to r′, Γ)r

Definition 6 (Projection). The projection of a DIOC process I with global
state Σ is the DPOC network defined by proj(I, Σ) =‖s∈roles(I) (π(I, s), Σs)s

The technical report [8] shows the DPOC processes obtained by projecting the
DIOC for the Buying scenario in Listing 1.1 on buyer, seller , and bank.

3.2 DPOC Semantics

Definition 7 (DPOC Systems Semantics). The semantics of DPOC systems
is defined as the smallest LTS closed under the rules in Table 5 here and Table 7
in the companion technical report [8] (excerpt in Table 4). Symmetric rules for
parallel composition have been omitted.

We use δ to range over labels. The semantics in the early style. We comment
below on the main rules.

Rule [In] receives a value v from role r′ and assigns it to local variable x of r.
Rules [Out] and [Out-Up] execute send and higher-order send actions, respec-
tively. The send evaluates expression e in the local state Γ . In rule [Assign],
[v/x] represents the substitution of value v for variable x.

78 M. Dalla Preda et al.

Table 5. DPOC system Semantics

[Lift]

N δ−→ N ′ δ �= I
〈I, N 〉 δ−→ 〈I, N ′〉

[Lift-Up]

N I−→ N ′ I connected I ∈ I

〈I, N 〉 I−→ 〈I, N ′〉

[Change-Updates]

〈I, N 〉 I′
−→ 〈I′, N 〉

[Synch]

〈I, N 〉 o?〈v〉@r2:r1−−−−−−−→ 〈I, N ′〉 〈I, N ′′〉 o?(x←v)@r1:r2−−−−−−−−−−→ 〈I, N ′′′〉

〈I, N ‖ N ′′〉 o?:r1(v)→r2(x)−−−−−−−−−−→ 〈I, N ′ ‖ N ′′′〉
[Synch-Up]

〈I, N 〉 o?〈X〉@r2:r1−−−−−−−−→ 〈I, N ′〉 〈I, N ′′〉 o?(←X)@r1:r2−−−−−−−−−→ 〈I, N ′′′〉

〈I, N ‖ N ′′〉 o?:r1(X)→r2()−−−−−−−−−−→ 〈I, N ′ ‖ N ′′′〉
[Ext-Parallel]

〈I, N 〉 η−→ 〈I, N ′〉 η �= √

〈I, N ‖ N ′′〉 η−→ 〈I, N ′ ‖ N ′′〉

[Ext-Par-End]

〈I, N 〉
√
−→ 〈I, N ′〉 〈I, N ′′〉

√
−→ 〈I, N ′′′〉

〈I, N ‖ N ′′〉
√
−→ 〈I, N ′ ‖ N ′′′〉

Rule [Lead-Up] concerns the role r coordinating the update of a scope. Role
r decides which update to use. It is important that this decision is taken by the
unique coordinator r for two reasons. First, r ensures that all involved roles agree
on whether to update or not. Second, since the set of updates may change at any
time, the choice of the update inside I needs to be atomic, and this is guaranteed
using a unique coordinator. Role r transforms the DIOC I into I′ using function
freshIndex(I, n), which produces a copy I ′ of I. In I ′ the indexes of scopes are
fresh, which avoids clashes with indexes already present in the target DPOC.
Moreover, to avoid that interactions in the update interfere with (parallel) in-
teractions in the context, freshIndex(I, n) renames all the operations inside I by
adding to them the index n. To this end we extend the set of operations without
changing the semantics. For each operation o? we define extended operations of
the form n · o?. The coordinator r also generates the processes to be executed
by the roles in S using the process-projection function π. The processes are sent
via higher-order communications only to the roles that have to execute them.
Then, r starts its own updated code π(I ′, r). Finally, auxiliary communications
are used to synchronise the end of the execution of the replaced process (here
denotes a fresh variable to store the synchronisation message ok). The auxiliary
communications are needed to ensure that the update is performed in a coordi-
nated way, i.e., the roles agree on when the scope starts and terminates and on
whether the update is performed or not.

Rule [Lead-NoUp] instead defines the behaviour when the coordinator r
decides to not update. In this case, r sends a token no to each other involved
role, notifying them that no update is applied. End of scope synchronisation is
as above. Rules [Up] and [NoUp] define the behaviour of the scopes for the other
roles involved in the update. The scope waits for a message from the coordinator.
If the content of the message is no, the body of the scope is executed. Otherwise,
it is a process P ′ which is executed instead of the body of the scope.

Dynamic Choreographies 79

Table 5 defines the semantics of DPOC systems. We use η to range over DPOC
systems labels. Rule [Lift] and [Lift-Up] lift roles transitions to the system
level. [Lift-Up] also checks that the update I is connected and in the set of
currently available updates I. Rule [Synch] synchronises a send with the cor-
responding receive, producing an interaction. Rule [Synch-Up] is similar, but
it deals with higher-order interactions. The labels of these transitions store the
information on the occurred communication: label o? : r1(v) → r2(x) denotes an
interaction on operation o? from role r1 to role r2 where the value v is sent by
r1 and then stored by r2 in variable x. Label o? : r1(X) → r2() denotes a similar
interaction, but concerning a higher-order value X . No receiver variable is spec-
ified, since the received value becomes part of the code of the receiving process.
Rule [Ext-Parallel] allows a network inside a parallel composition to com-
pute. Rule [Ext-Par-End] synchronises the termination of parallel networks.
Finally, rule [Change-Updates] allows the set of updates to change arbitrarily.

We can now define DPOC traces.
Definition 8 (DPOC Traces). A (strong) trace of a DPOC system 〈I1, N1〉 is
a sequence (finite or infinite) of labels η1, η2, . . . with ηi ∈ {τ, o? : r1(v) →
r2(x), o∗ : r1(X) → r2(),

√
, I, no-up, I} such that there is a sequence of transi-

tions 〈I1, N1〉 η1−→ 〈I2, N2〉 η2−→
A weak trace of a DPOC system 〈I1, N1〉 is a sequence of labels η1, η2, . . . obtained
by removing all the labels corresponding to private communications, i.e. of the
form o∗ : r1(v) → r2(x) or o∗ : r1(X) → r2(), and the silent labels τ , from a
trace of 〈I1, N1〉. Furthermore, all the extended operations of the form n · o? are
replaced by o?.

Note that DPOC traces do not include send and receive actions. We do this
since these actions have no correspondence at the DIOC level, where only whole
interactions are allowed.

In the companion technical report [8] one can find a sample execution of the
DPOC obtained by projecting the DIOC for the Buying scenario in Listing 1.1.

4 Correctness

In the previous sections we have presented DIOCs, DPOCs, and described how
to derive a DPOC from a given DIOC. This section presents the main technical
result of the paper, namely the correctness of the projection. Correctness here
means that the weak traces of a connected DIOC coincide with the weak traces
of the projected DPOC.
Definition 9 (Trace Equivalence). A DIOC system 〈Σ, I, I〉 and a DPOC sys-
tem 〈I, N 〉 are (weak) trace equivalent iff their sets of (weak) traces coincide.
Theorem 2 (Correctness). For each initial, connected DIOC process I, each
state Σ, each set of updates I, the DIOC system 〈Σ, I, I〉 and the DPOC system
〈I, proj(I, Σ)〉 are weak trace equivalent.

Trace-based properties of the DIOC are inherited by the DPOC. Examples
include termination (see the technical report [8]) and deadlock-freedom.

80 M. Dalla Preda et al.

Definition 10 (Deadlock-freedom). An internal DIOC (resp. DPOC) trace is
obtained by removing transitions labelled I from a DIOC (resp. DPOC) trace. A
DIOC (resp. DPOC) system is deadlock-free if all its maximal finite internal traces
have

√
as label of the last transition.

Intuitively, internal traces are needed since labels I do not correspond to activi-
ties of the application and may be executed also after application termination.

By construction initial DIOCs are deadlock-free. Hence:

Corollary 1 (Deadlock-freedom). For each initial, connected DIOC I, state
Σ, and set of updates I the DPOC system 〈I, proj(I, Σ)〉 is deadlock-free.

Moreover, our DIOCs and DPOCs are free from races and orphan messages.
A race occurs when the same receive (resp. send) may interact with different
sends (resp. receives). In our setting, an orphan message is an enabled send
that is never consumed by a receive. Orphan messages are more relevant in
asynchronous systems, where a message may be sent, and stay forever in the
network, since the corresponding receive operation may never become enabled.
However, even in synchronous systems orphan messages should be avoided: the
message is not communicated since the receive is not available, hence a desired
behaviour of the application never takes place due to synchronization problems.

Trivially, DIOCs avoid races and orphan messages since send and receive are
bound together in the same construct. Differently, at the DPOC level, since all
receive of the form o? : x from r1 in role r2 may interact with the sends of the
form o? : e to r2 in role r1, races may happen. However, thanks to the correctness
of the projection, race-freedom holds also for the projected DPOCs.

Corollary 2 (Race-freedom). For each initial, connected DIOC I, state Σ,
and set of updates I, if 〈I, proj(I, Σ)〉 μ1−→ · · · μn−−→ 〈I′, N 〉, then in N two sends
(resp. receives) cannot interact with the same receive (resp. send).

As far as orphan messages are concerned, they may appear in infinite DPOC
computations since a receive may not become enabled due to an infinite loop.
However, as a corollary of trace equivalence, we have that terminating DPOCs
are orphan message-free.

Corollary 3 (Orphan Message-freedom). For each initial, connected DIOC
I, state Σ, and set of updates I, if 〈I, proj(I, Σ)〉 μ1−→ · · ·

√
−→ 〈I′, N 〉, then N

contains no sends.

5 Related Works and Discussion

This paper presents an approach for the dynamic update of distributed ap-
plications. It guarantees the absence of communication deadlocks and races by
construction for the running distributed application, even in presence of updates
that were unknown when the application was started. More generally, the DPOC
is compliant with the DIOC description, and inherits its properties.

Dynamic Choreographies 81

The two approaches closest to ours we are aware of are in the area of mul-
tiparty session types [4–6, 13], and deal with dynamic software updates [2] and
with monitoring of self-adaptive systems [7]. The main difference between [2]
and our approach is that [2] targets concurrent applications which are not dis-
tributed. Indeed, it relies on a check on the global state of the application to
ensure that the update is safe. Such a check cannot be done by a single role,
thus is impractical in a distributed setting. Furthermore, the language in [2] is
much more constrained than ours, e.g., requiring each pair of participants to
interact on a dedicated pair of channels, and assuming that all the roles not
involved in a choice behave the same in the two branches. The approach in [7] is
very different from ours, too. In particular, in [7] all the possible behaviours are
available since the very beginning, both at the level of types and of processes,
and a fixed adaptation function is used to switch between them. This difference
derives from the distinction between self-adaptive applications, as they discuss,
and applications updated from the outside, as in our case.

We also recall [10], which uses types to ensure safe adaptation. However, [10]
allows updates only when no session is active, while we change the behaviour of
running DIOCs. Our work shares with [18] the interest in choreographies compo-
sition. However, [18] uses multiparty session types and only allows static parallel
composition, while we replace a term inside an arbitrary context at runtime.

In principle, our update mechanism can be used to inject guarantees of free-
dom from deadlocks and races into existing approaches to adaptation, e.g., the
ones in the surveys [11, 17]. However, this task is cumbersome, due to the huge
number and heterogeneity of those approaches, and since for each of them the in-
tegration with our techniques is far from trivial. Nevertheless, we already started
it. Indeed, in [9], we apply our technique to the adaptation mechanism described
in [14]. While applications in [14] are not distributed and there are no guarantees
on the correctness of the application after adaptation, applications in [9], based
on the same adaptation mechanisms, are distributed and free from deadlocks
and races by construction.

Furthermore, on the website [1], we give examples of how to integrate our
approach with distributed [20] and dynamic [23] Aspect-Oriented Programming
(AOP) and with Context-Oriented Programming (COP) [12]. In general, we
can deal with cross-cutting concerns like logging and authentication, typical of
AOP, viewing pointcuts as empty scopes and advices as updates. Layers, typical
of COP, can instead be defined by updates which can fire according to contextual
conditions. We are also planning to apply our techniques to multiparty session
types [4–6, 13]. The main challenge here is to deal with multiple interleaved
sessions. An initial analysis of the problem is presented in [3].

References
1. AIOCJ website, http://www.cs.unibo.it/projects/jolie/aiocj.html
2. Anderson, G., Rathke, J.: Dynamic software update for message passing programs.

In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 207–222.
Springer, Heidelberg (2012)

http://www.cs.unibo.it/projects/jolie/aiocj.html

82 M. Dalla Preda et al.

3. Bravetti, M., Carbone, M., Hildebrandt, T., Lanese, I., Mauro, J., Pérez, J.A.,
Zavattaro, G.: Towards global and local types for adaptation. In: Counsell, S.,
Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 3–14. Springer, Heidelberg
(2014)

4. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centered pro-
gramming for web services. ACM Trans. Program. Lang. Syst. 34(2), 8 (2012)

5. Carbone, M., Montesi, F.: Deadlock-Freedom-by-Design: Multiparty Asynchronous
Global Programming. In: POPL, pp. 263–274. ACM (2013)

6. Castagna, G., Dezani-Ciancaglini, M., Padovani, L.: On global types and multi-
party session. Logical Methods in Computer Science 8(1) (2012)

7. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Self-adaptive multiparty sessions.
In: Service Oriented Computing and Applications, pp. 1–20 (2014)

8. Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I., Mauro, J.: Dynamic
Choreographies - Safe Runtime Updates of Distributed Applications. Technical
report (2014), http://arxiv.org/abs/1407.0970

9. Dalla Preda, M., Giallorenzo, S., Lanese, I., Mauro, J., Gabbrielli, M.: AIOCJ:
A choreographic framework for safe adaptive distributed applications. In: Combe-
male, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706,
pp. 161–170. Springer, Heidelberg (2014)

10. Di Giusto, C., Pérez, J.A.: Disciplined structured communications with consistent
runtime adaptation. In: SAC, pp. 1913–1918. ACM (2013)

11. Ghezzi, C., Pradella, M., Salvaneschi, G.: An evaluation of the adaptation capa-
bilities in programming languages. In: SEAMS, pp. 50–59. ACM (2011)

12. Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented Programming.
Journal of Object Technology 7(3), 125–151 (2008)

13. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In:
POPL, pp. 273–284. ACM (2008)

14. Lanese, I., Bucchiarone, A., Montesi, F.: A Framework for Rule-Based Dynamic
Adaptation. In: Wirsing, M., Hofmann, M., Rauschmayer, A. (eds.) TGC 2010,
LNCS, vol. 6084, pp. 284–300. Springer, Heidelberg (2010)

15. Lanese, I., Guidi, C., Montesi, F., Zavattaro, G.: Bridging the Gap between
Interaction- and Process-Oriented Choreographies. In: SEFM, pp. 323–332. IEEE
(2008)

16. Lanese, I., Montesi, F., Zavattaro, G.: Amending choreographies. In: WWV.
EPTCS, vol. 123, pp. 34–48 (2013)

17. Leite, L.A.F., et al.: A systematic literature review of service choreography adap-
tation. Service Oriented Computing and Applications 7(3), 199–216 (2013)

18. Montesi, F., Yoshida, N.: Compositional choreographies. In: D’Argenio, P.R.,
Melgratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 425–439. Springer,
Heidelberg (2013)

19. Nienaltowski, P.: Practical framework for contract-based concurrent object-
oriented programming. PhD thesis, ETH Zurich (2007)

20. Pawlak, R., et al.: JAC: an aspect-based distributed dynamic framework. Softw.,
Pract. Exper. 34(12), 1119–1148 (2004)

21. Rust website, http://www.rust-lang.org/
22. Scribble website, http://www.jboss.org/scribble
23. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., Sowell, J., Sadjadi, S.M., McKinley,

P.K.: An aspect-oriented approach to dynamic adaptation. In: WOSS, pp. 85–92.
ACM (2002)

http://arxiv.org/abs/1407.0970
http://www.rust-lang.org/
http://www.jboss.org/scribble

Type Reconstruction Algorithms
for Deadlock-Free and Lock-Free Linear π-Calculi

Luca Padovani1(�), Tzu-Chun Chen1,2, and Andrea Tosatto1

1 Università di Torino, Torino, Italy
2 Technische Universität Darmstadt, Germany

luca.padovani@di.unito.it

Abstract. We define complete type reconstruction algorithms for two type sys-
tems ensuring deadlock and lock freedom of linear π-calculus processes. Our
work automates the verification of deadlock/lock freedom for a non-trivial class
of processes that includes interleaved binary sessions and, to great extent, multi-
party sessions as well. A Haskell implementation of the algorithms is available.

1 Introduction

Type systems help finding potential errors during the early phases of software devel-
opment. In the context of communicating processes, typical errors are: making invalid
assumptions about the nature of a received message; using a communication channel
beyond its nominal capabilities. Some type systems are able to warn against subtler
errors, and sometimes can even guarantee liveness properties as well. For instance, the
type systems presented in [18] for the linear π-calculus [14] ensure well-typed pro-
cesses to be deadlock and lock free. Such stronger guarantees come at the cost of a
richer type structure, hence of a greater programming effort, when programmers are
supposed to explicitly annotate programs with types. In this respect, type reconstruc-
tion becomes a most wanted tool in the programmer’s toolkit: type reconstruction is the
procedure that automatically synthesizes, whenever possible, the types of the entities
used by a program; in particular, the types of the channels used by a communicating
process. In the present work, we describe type reconstruction algorithms for the type
systems presented in [18], thereby automating the static deadlock and lock freedom
analysis for a non-trivial class of communicating processes.

A deadlock is a configuration with pending communications that cannot complete.
A paradigmatic example of deadlock modeled in the π-calculus is illustrated below

(νa,b)(a?(x).b!x | b?(y).a!y) (1.1)

where the input on a blocks the output on b, and the input on b blocks the output on a.
The key idea used in [18] for detecting deadlocks, which is related to earlier works by
Kobayashi [11,13], is to associate each channel with a number – called level – specify-
ing the relative order in which different channels should be used. In (1.1), this mech-
anism requires a to have smaller level than b in the left subprocess, and greater level
than b in the right one. Since no level assignment can simultaneously satisfy both re-
quirements, (1.1) is flagged as ill typed. This mechanism does not prevent locks, namely

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 83–98, 2015.
DOI: 10.1007/978-3-319-19282-6_6

84 L. Padovani et al.

configurations where some communication remains pending although the process as a
whole can make progress. A deadlock-free configuration that is not lock free is

(νa)(*c?(x).c!x | c!a | a!42) (1.2)

where the communication pending on a cannot complete. There are no interleaved com-
munications on different channels in (1.2), therefore the level-based mechanism spots
no apparent issue. The idea put forward in [18] to reject (1.2) is to also associate each
channel with another number – called ticket – specifying the maximum number of times
the channel can travel in a message. With this mechanism in place, (1.2) is ill typed be-
cause a would need an infinite number of tickets to travel infinitely many times on c.

Finding appropriate level and tickets for the channels used by a process can be diffi-
cult. We remedy to such difficulty with three contributions. First, we develop complete
type reconstruction algorithms for the type systems in [18] so that appropriate level and
tickets are synthesized automatically, whenever possible. The linear π-calculus [14], for
which the type systems are defined, can model a variety of communicating systems with
both static and dynamic network topologies. In particular, binary sessions [5] and, to a
large extent, also multiparty sessions [18, technical report], can be encoded in it. Sec-
ond, we purposely use a variant of the linear π-calculus with pairs instead of a polyadic
calculus. While this choice has a cost in terms of technical machinery, it allows us to
discuss how to deal with structured data types, which are of primary importance in con-
crete languages but whose integration in linear type systems requires some care [19].
We give evidence that our algorithms scale easily to other data types, including dis-
joint sums and polymorphic variants. Third, we present the algorithms assuming the
existence of type reconstruction for the linear π-calculus [9,19]. This approach has two
positive upshots: (1) we focus on the aspects of the algorithms concerning deadlock
and lock freedom, thereby simplifying their presentation and the formal study of their
properties; (2) we show how to combine in a modular way increasingly refined type
reconstruction stages and how to address some of the issues that may arise in doing so.

In what follows we review the linear π-calculus with pairs (Section 2) and the type
systems for deadlock and lock freedom of [18] (Section 3). Such type systems are un-
suitable to be used as the basis for type reconstruction algorithms. So, we reformulate
them to obtain reconstruction algorithms that are both correct and complete (Section 4).
Then, we sketch an algorithm for solving the constraints generated by the reconstruction
algorithms (Section 5) We conclude presenting a few benchmarks, further connections
with related work, and directions of future research (Section 6).

The algorithms have been implemented and integrated in a tool for the static anal-
ysis of π-calculus processes. The archive with the source code of the tool, available at
the page http://di.unito.it/hypha, includes a wide range of examples, of which we can
discuss only one in the paper because of space constraints.

2 The Simply-Typed Linear π-calculus with Pairs

The process language we work with is the asynchronous π-calculus extended in two
ways: (1) we generalize names to expressions to account for pairs and other data types;
(2) we assume that names are explicitly annotated with simple types possibly inferred in

http://di.unito.it/hypha

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 85

a previous reconstruction phase (“simple” means without level/ticket decorations). We
annotate free names instead of bound names because, in a behavioral type system, each
occurrence of a name may be used according to a different type. Typically, two distinct
occurrences of the same linear channel are used for complementary I/O actions. We use
m, n, . . . to range over integer numbers; we use sets of variables x, y, . . . and channels
a, b, . . . ; names u, v, . . . are either channels or variables; we let polarities p, q, . . .
range over subsets of {?,!}; we abbreviate {?} with ?, {!} with !, and {?,!} with #.
Processes P, Q, . . . , expressions e, f, . . . , and simple types t, s, . . . are defined below:

Process P,Q ::= 0 | e?(x).P | e!f | P|Q | (νa)P | *P
Expression e, f ::= n | ut | (e,f) | fst(e) | snd(e)

Simple type t,s ::= int | p[t] | p[t]* | t × s

Expressions include integer constants, names, pairs, and the two pair projection oper-
ators fst and snd. Simple types are the regular, possibly infinite terms built using the
rightmost productions in grammar above and include the type int of integers, the type
p[t] of linear channels to be used according to the polarity p and carrying messages
of type t, the type p[t]* of unlimited channels to be used according to the polarity p
and carrying messages of type t, and the type t × s of pairs whose components have re-
spectively type t and s. Recall that linear channels are meant to be used for one commu-
nication, whereas unlimited channels can be used any number of communications. We
require every infinite branch of a type to contain infinitely many occurrences of channel
constructors. For example, the term t satisfying the equation t = ?[t] is a valid type
while the one satisfying the equation t = t ×int is not. We impose this requirement to
simplify the formal development, but it can be lifted (for example, the implementation
supports ordinary recursive types such as lists and trees).

Since we are only concerned with type reconstruction, we do not give an operational
semantics of the calculus. The interested reader may refer to [14,19] for generic prop-
erties of the linear π-calculus and to [18] for the formalization of (dead)lock freedom.
We conclude this section with a comprehensive example that is representative of a class
of processes for which our type systems are able to prove deadlock and lock freedom.

Example 2.1 (full duplex communication). The term

*c?(x).(νa)(fst(x)!a | snd(x)?(y).c!(a,y)) | c!(e, f) | c!(f,e)

(where we have omitted simple type annotations) models a system composed of two
neighbor processes connected by channels e and f . The process spawned by c!(e, f)
uses e for sending a message to the neighbor. Simultaneously, it waits on f for a mes-
sage from the neighbor. The process spawned by c!(f,e) does the opposite. Each ex-
changed message consists of a payload (omitted) and a continuation channel on which
subsequent messages are exchanged. Above, each process sends and receives a fresh
continuation a. Once the two communications have been performed, each process iter-
ates with a new pair of corresponding continuations. �

3 Type Systems for Deadlock and Lock Freedom

In this section we review the type systems ensuring deadlock and lock freedom [18] for
which we want to define corresponding reconstruction algorithms. Both type systems

86 L. Padovani et al.

rely on refined linear channel types of the form p[t]n
m where the decorations n and m

are respectively the level and the tickets of a channel with this type. Intuitively, levels are
used for imposing an ordering on the input/output operations performed on channels:
channels with lower level must be used before channels with higher level; tickets limit
the number of “travels” for channels: a channel with m tickets can be sent at most m
times in a message. From now on, we use T , S, . . . to range over types, which have
the same structure and constructors as simple types, but where linear channel types are
decorated with levels and tickets. We write �T� for the stripping of T , namely for the
simple type obtained by removing all level and ticket decorations from T . For example,
�?[int×![int]n

m]
�= ?[int×![int]]. Note that �·� is a non-injective function.

We need some auxiliary operators. First, we extend the notion of level from channel
types to arbitrary types. The level of a type T , written |T |, is an element of the set
Z∪{⊥,�} ordered in the obvious way and formally defined thus:

|T | def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if T = p[S]* and ? ∈ p

n if T = p[S]n
m and p �= /0

min{|T1|, |T2|} if T = T1 ×T2

� otherwise

(3.1)

As an example, we have |int × ?[![int]1
0]

0
0| = min{|int|, |?[![int]1

0]
0
0|}

= min{�,0} = 0. Intuitively, the level of T measures the inverse urgency for using
values of type T in order to ensure (dead)lock freedom: the lowest level (and highest
urgency) ⊥ is given to unlimited channels with input polarity, for which we want to
guarantee input receptiveness; finite levels are reserved for linear channels; the highest
level (and lowest urgency) � is given to values such as numbers or channels with empty
polarity whose use is not critical as far as (dead)lock is concerned. Note that |T | is well
defined because every infinite branch of T has infinitely many channel constructors.

We also need an operator to shift the topmost levels and tickets in types. We define

$n
m T

def
=

⎧
⎪⎨

⎪⎩

p[S]n+h
m+k if T = p[S]h

k

($n
m T1)× ($n

m T2) if T = T1 ×T2

T otherwise

(3.2)

so that, for example, we have $2
1 (int×?[![int]1

0]
0
0) = int×?[![int]1

0]
2
1.

Next, we define an operator for combining the types of different occurrences of the
same object. If an object is used according to type T in one part of a process and
according to type S in another part, then it is used according to the type T + S overall,
where T + S is inductively defined thus:

T + S
def
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

int if T = S = int

(T1 + S1)× (T2 + S2) if T = T1 ×T2 and S = S1 × S2

(p∪q)[T]n
h+k if T = p[T]n

h and S = q[T]n
k and p∩q = /0

(p∪q)[T]* if T = p[T]* and S = q[T]*

undefined otherwise

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 87

Table 1. Typing rules for the deadlock-free (k = 0) and lock-free (k = 1) linear π-calculus

Typing rules for expressions Γ
 e : t

[T-INT]

Γ
 n : int
un(Γ)

[T-NAME]

Γ ,u : T
 u�T� : T
un(Γ)

[T-PAIR]

Γi
 ei : Ti
(i=1,2)

Γ1 + Γ2
 (e1,e2) : T1 ×T2

[T-FST]

Γ
 e : T ×S

Γ
 fst(e) : T
un(S)

[T-SND]

Γ
 e : T ×S

Γ
 snd(e) : S
un(T)

Typing rules for processes Γ
k P

[T-IN]

Γ1
 e : ?[T]n
m Γ2,x : $n

0 T
k P

Γ1 + Γ2
k e?(x).P
n < |Γ2|

[T-OUT]

Γ1
 e : ![T]n
m Γ2
 f : $n

k T

Γ1 + Γ2
k e!f
n < |Γ2|

[T-IN*]

Γ1
 e : ?[T]* Γ2,x : T
k P

Γ1 + Γ2
k *e?(x).P
un(Γ2)

[T-OUT*]

Γ1
 e : ![T]* Γ2
 f : $n
k T

Γ1 + Γ2
k e!f
⊥< |Γ2|

[T-IDLE]

Γ
k 0
un(Γ)

[T-PAR]

Γ1
k P Γ2
k Q

Γ1 + Γ2
k P|Q

[T-NEW]

Γ ,a : #[T]m
n
k P

Γ
k (νa)P

[T-NEW*]

Γ ,a : #[T]*
k P

Γ
k (νa)P

Type combination is partial and is only defined when the combined types have the
same structure. In particular, channel types can be combined only if they have equal
message types; linear channel types can be combined only if they have disjoint polarities
and equal level. Also, the combination of two channel types has the union of their
polarities and, in the case of linear channels, the sum of their tickets. For example, a
channel that is used both with type ?[int]0

1 and with type ![int]0
2 is used overall

according to the type ?[int]0
1 +![int]0

2 = #[int]0
3.

Lastly, we define type environments Γ , . . . as finite maps from names to types written
u1 : T1, . . . ,un : Tn. As usual, dom(Γ) is the domain of Γ and Γ1,Γ2 is the union of Γ1 and
Γ2 when dom(Γ1)∩dom(Γ2) = /0. We extend type combination to type environments:

Γ1 + Γ2
def
= Γ1,Γ2 if dom(Γ1)∩dom(Γ2) = /0

(Γ1,u : T)+ (Γ2,u : S)
def
= (Γ1 + Γ2),u : T + S

We let |Γ | def
= min{|Γ(u)| | u ∈ dom(Γ)} be the level of a type environment, we write

un(Γ) if |Γ | = � and un(Γ) if un(Γ) and Γ has no top-level linear channel types. Note
that un(Γ) is strictly stronger than un(Γ). For example, if Γ

def
= x : int× /0[int]0

0 we
have un(Γ) but not un(Γ) because Γ(x) has a top-level linear channel type.

The type systems for deadlock and lock freedom are defined by the rules in Table 1
deriving judgments Γ
 e : T for expressions and Γ
k P for processes. The type system
for deadlock freedom is obtained by taking k = 0, whereas the type system for lock

88 L. Padovani et al.

freedom is obtained by taking k = 1 and restricting all levels in linear channel types to
be non negative. We illustrate the typing rules as we work through the typing deriva-
tion of the replicated process in Example 2.1. The interested reader may refer to the
implementation or [18] for more examples and detailed descriptions of the rules.

Let T and S be the types defined by the equations T = ![S]0
0×?[S]0

0 and S = ?[S]1
1.

We build the derivation bottom up, from the judgment stating that the whole process is
well typed. Since the process is a replicated input, we apply [T-IN*] thus:

c : ?[T]*
 c : ?[T]* c : ![T]*,x : T
1 (νa)(fst(x)!a|snd(x)?(y).c!(a,y))

c : #[T]*
1 *c?(x).(νa)(fst(x)!a|snd(x)?(y).c!(a,y))

In applying this rule we have Γ2 = c : ![T]* so the side condition un(Γ2) of [T-IN*]

is satisfied: since a replicated input process is permanently available, its body cannot
contain any free linear channel except those possibly received through the unlimited
channel. The side condition un(Γ2), which is stronger than simply un(Γ2), makes sure
that a replicated input process does not contain linear channels and therefore is level
polymorphic. We will see a use of this feature at the very end of the derivation. The
continuation of the process gains visibility of the message x with type T and is a re-
striction of a linear channel a. Hence, the next step is an obvious application of [T-NEW]:

c : ![T]*,x : T,a : #[S]1
3
1 fst(x)!a|snd(x)?(y).c!(a,y)

c : ![T]*,x : T
1 (νa)(fst(x)!a|snd(x)?(y).c!(a,y))
(3.3)

We guess level 1 and 3 tickets for a. The rationale is that a is a continuation channel
that will be used after the channels in x, which have level 0, so a must have strictly
positive level. Also, in Example 2.1 the channel a travels three times. At this point the
typing derivation forks, for we deal with the parallel composition of two processes.
This means that we have to split the type environment in two parts, each describing the
resources used by the corresponding subprocess in (3.3). We have Γ = Γ1 + Γ2 where

Γ
def
= c : ![T]*,x : T,a : #[S]1

3
Γ1

def
= x : ![S]0

0 × /0[S]0
0, a : ?[S]1

2

Γ2
def
= c : ![T]*, x : /0[S]0

0 ×?[S]0
0, a : ![S]1

1

Observe that Γ is split in such a way that: c only occurs in Γ2, because it is only used
in the right subprocess in (3.3); in each subprocess, the unused linear channel in the
pair x is given empty polarity; the type of the continuation a has input polarity (and 2
tickets) in Γ1 and output polarity (and 1 ticket) in Γ2. The type of a in Γ1 is the same as
$0

1 S, and we use the latter form from now on. We complete the typing derivation for the
left subprocess in (3.3) using Γ1 and applying [T-OUT]:

x : ![S]0
0 × /0[S]0

0
 fst(x) : ![S]0
0 a : $0

1 S
 a : $0
1 S

x : ![S]0
0 × /0[S]0

0,a : $0
1 S
1 fst(x)!a

0 < |$0
1 S|= 1

The side condition 0 < 1 ensures that the message has higher level than the channel
on which it travels, according to the intuition that the message can only be used after
the communication has occurred and the message has been received. In this case, the
level of fst(x) is 0 that is smaller than the level of a, which is 1. Shifting the tickets

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 89

from the type of a consumes one of its tickets, meaning that after this communication a
gets closer to the point where it must be the subject of a communication.

Concerning the right subprocess in (3.3), we use Γ2 above and apply [T-IN] to obtain

x : /0[S]0
0 ×?[S]0

0
 snd(x) : ?[S]0
0 c : ![T]*,a : ![S]1

1,y : S
1 c!(a,y)

c : ![T]*,x : /0[S]0
0 ×?[S]0

0,a : ![S]1
1
1 snd(x)?(y).c!(a,y)

0 < 1

The side condition 0 < 1 checks that the level of the linear channel used for input is
smaller than the level of any other channel occurring free in the continuation of the pro-
cess. In this case, c has level � because it is an unlimited channel with output polarity,
whereas a has level 1. To close the derivation we must type the recursive invocation of
c. We do so with an application of [T-OUT*]:

c : ![T]*
 c : ![T]* a : ![S]1
1,y : S
 (a,y) : $1

1 T

c : ![T]*,a : ![S]1
1,y : S
1 c!(a,y)

⊥< 1

The side condition ⊥ < 1 ensures that no unlimited channel with input polarity is
sent in the message. This is necessary to guarantee input receptiveness on unlimited
channels. There is a mismatch between the actual type $1

1 T and the expected type T of
the message. The shifting on the tickets is due, once again, to the fact that 1 ticket is
required and consumed for the channels to travel. The shifting on the levels realizes a
form of level polymorphism whereby we are allowed to send on c a pair of channels with
level 1 even if c expects a pair of channels with level 0. This is safe because we know,
from the side condition of [T-IN*], that the receiver of the message does not own any linear
channel except those possibly contained in the message itself. Therefore, the exact level
of the channels in the message is irrelevant, as long as it is obtained by shifting of the
expected message type. Level polymorphism is a key distinguishing feature of our type
systems that makes it possible to deal with non-trivial recursive processes.

4 Type Reconstruction

We now face the problem of defining a type reconstruction algorithm for the type sys-
tem presented in the previous section. The input of the algorithm is a process P where
names are explicitly annotated with simple types, possibly resulting from a previous
reconstruction stage [9,19]. Notwithstanding such explicit annotations, the typing rules
in Table 1 rely on guesses concerning (i) the splitting of type environments, (ii) lev-
els and tickets that decorate linear channel types, and (iii) how tickets are distributed
in combined types. We address these issues using standard strategies. Concerning (i),
we synthesize type environments for expressions and processes by looking at the free
names occurring in them. Concerning (ii) and (iii), we proceed in two steps: first, we
transform each simple type t in P into a type expression T that has the same structure
as t, but where we use fresh level and ticket variables in every slot where a level or
a ticket is expected; we call this transformation dressing. Then, we accumulate (rather
than check) the constraints that these level and ticket variables should satisfy, as by the
side conditions of the typing rules (Table 1). Finally, we look for a solution of these

90 L. Padovani et al.

constraints. It turns out that the accumulated constraints can always be expressed as an
integer programming problem for which there exist dedicated solvers.

There is still a subtle source of ambiguity in the procedure outlined so far. We have
remarked that stripping is a non-injective function, meaning that different types may be
stripped to the same simple type. For example, if we take T = ?[T]1

1 and S = ?[T]0
0 we

have �T�= �S�= s where s = ?[s]. Now, if we were to reconstruct either T or S from
s, we would have to dress s with level and ticket variables in every slot where a level
or a ticket is expected. But since s is infinite, such dressing is not unique. For example,
T = ?[T]η1

θ1
and S = ?[T]η2

θ2
are just two of the infinitely many possible dressings of

s with level and ticket variables: in T we have used two distinct variables η1 and θ1,
one for each slot; in S we have used four. The problem is that from the dressing T we
can only reconstruct T , by taking η1 = θ1 = 1, whereas from the dressing S we can
reconstruct both T (by assigning all variables to 1) as well as S, by taking η1 = θ1 = 1
and η2 = θ2 = 0. This means that the choice of the number of integer variables we
use in dressing (infinite) simple types constrains the types that we can reconstruct from
them, which is a risk for the completeness of the type reconstruction algorithms. To
cope with this issue, we dress simple types lazily, only to their topmost linear channel
constructors, and we put fresh type variables in place of message types, leaving them
undressed. It is only when the message is used that we (lazily) dress its type as well.
The introduction of fresh type variables for message types means that we redo part of
the work already carried out for reconstructing simple types [19]. This appears to be
an inevitable price to pay to have completeness of the type reconstruction algorithms,
when they build on top of (instead of being performed together with) previous stages.

To formalize the algorithms, we introduce countable sets of type variables α , β and
of integer variables η , θ ; type expressions and integer expressions are defined below:

Type expression T,S ::= int | α | p[T]λ
τ | p[T]* | T×S

Integer expression λ ,ε,τ ::= n | η | ε + ε | ε − ε

Type expressions differ from types in three ways: they are always finite, they have
integer expressions in place of levels and tickets, and they include type variables α
denoting unknown types awaiting to be lazily dressed. Integer expressions are linear
polynomials of integer variables.

We say that T is proper, written prop(T), if all the type variables in T are guarded by
a channel constructor. For example, both int and p[α]* are proper (all type variables
occur within channel types), but α and int×α are not. Since the level and tickets
of a type expression are solely determined by its top-level linear channel constructors,
properness characterizes those type expressions that are “sufficiently dressed” so that it
is possible to extract their level and to combine them with other type expressions, even
if these type expressions contain type variables.

We now revisit and adapt all the auxiliary operators and notions defined for types to
type expressions. Recall that the level of T is the minimum level of any topmost linear
channel type in T , or ⊥ if T has a topmost unlimited channel type with input polar-
ity. Since a type expression T may contain unevaluated level expressions, we cannot
compute a minimum level in general. However, a quick inspection of Table 1 reveals
that minima of levels always occur on the right hand side of inequalities, and an in-
equality like n < min{mi | i ∈ I} can equivalently be expressed as a set of inequalities

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 91

{n < mi | i ∈ I}. Following this observation, we define the level |T| of a proper type
expression T as the set of level expressions that decorate the topmost linear channel
types in T, and possibly the element ⊥. Formally:

|T| def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{⊥} if T= p[S]* and ? ∈ p

{λ} if T= p[S]λ
τ and p �= /0

|T1| ∪ |T2| if T= T1 ×T2

/0 otherwise

(4.1)

We write un(T) if |T| = /0, in which case T denotes an unlimited type. Shifting for
proper type expressions is defined just like for types, except that we symbolically record
the sum of level/ticket expressions instead of computing it:

$λ
τ T

def
=

⎧
⎪⎨

⎪⎩

p[S]λ+λ ′
τ+τ ′ if T= p[S]λ ′

τ ′

($λ
τ T1)× ($λ

τ T2) if T= T1 ×T2

T otherwise

(4.2)

Because type expressions may contain type and integer variables, we cannot deter-
mine a priori whether the combination of two type expressions is possible. For instance,
the combination of ?[T]λ1

τ1 and ![S]λ2
τ2 is possible only if T and S denote the same type

and if λ1 and λ2 evaluate to the same level. We cannot check these conditions right away,
when T, S and the level expressions contain variables. Instead, we record these condi-
tions into a constraint. Constraints ϕ , . . . are conjunctions of type constraints T = S
(equality relations between type expressions) and integer constraints ε ≤ ε ′ (inequality
relations between integer expressions). Formally, their syntax is defined by

Constraint ϕ ::= true | T= T | ε ≤ ε | ϕ ∧ϕ

We write ε < ε ′ in place of ε + 1 ≤ ε ′ and ε = ε ′ in place of ε ≤ ε ′ ∧ ε ′ ≤ ε; if
E = {εi}i∈I is a finite set of integer expressions, we write ε < E for the constraint
∧

i∈I ε < εi; finally, we write dom(ϕ) for the set of type expressions occurring in ϕ .
The combination operator T�S for type expressions returns a pair R;ϕ made of the

resulting type expression R and the constraint ϕ that must be satisfied for the combina-
tion to be possible. The definition of � mimics exactly that of + in Section 3, except
that all non-checkable conditions accumulate in constraints:

T�S
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

int ; true if T= int and S= int

(p∪q)[T′]λ
τ+τ ′ ; T′ = S′ ∧λ = λ ′ if T= p[T′]λ

τ and S= q[S′]λ ′
τ ′

and p∩q = /0
(p∪q)[T′]* ; T′ = S′ if T= p[T′]* and S= q[S′]*

R1 ×R2 ; ϕ1 ∧ϕ2 if T= T1 ×T2 and S= S1 ×S2

and Ti �Si = Ri;ϕi

undefined otherwise

Like type combination, also � is a partial operator: T� S is undefined if T and S
are structurally incompatible (e.g., if T = int and S = p[int]*) or if T and S are not
proper. When T�S is defined, though, the resulting type expression is always proper.

92 L. Padovani et al.

We use Δ, . . . to range over type expression environments (or just environments,
for short), namely finite maps from names to type expressions, and we inherit all the
notation introduced for type environments. We let |Δ| def

=
⋃

u∈dom(Δ) |Δ(u)| and write
un(Δ) if |Δ| = /0 and Δ has no top-level linear channel type in its range. By now, the
extension of � to environments is easy to imagine: when defined, Δ1 �Δ2 is a pair
Δ;ϕ made of the resulting environment Δ and of a constraint ϕ that results from the
combination of the type expressions in Δ1 and Δ2. More precisely:

Δ1 �Δ2
def
= Δ1,Δ2 ; true if dom(Δ1)∩dom(Δ2) = /0

(Δ1,u : T)� (Δ2,u : S)
def
= Δ,u : R ; ϕ ∧ϕ ′ if Δ1 �Δ2 = Δ;ϕ and T�S= R;ϕ ′

The last notion we need to formalize, before introducing the reconstruction algo-
rithms, is that of dressing. Dressing a simple type t means placing fresh integer vari-
ables in the level/ticket slots of t. Formally, we say that T is a dressing of t if t ↑ T is
inductively derivable by the following rules which pick globally fresh variables:

int ↑ int
α fresh

p[t]* ↑ p[α]*
α , η , θ fresh

p[t] ↑ p[α]
η
θ

ti ↑ Ti
(i=1,2)

t1 × t2 ↑ T1 ×T2

Note that the decoration of t with fresh integer variables stops at the topmost channel
types in t and that message types are left undecorated. By definition, the dressing of a
simple type is always a proper type expression.

We can now present the type reconstruction algorithms, defined by the rules in
Table 2. The rules in the upper part of the table derive judgments of the form e : T �
Δ;ϕ , stating that e has type T in the environment Δ if the constraint ϕ is satisfied. The
expression e is the only “input” of the judgment, while T, Δ, and ϕ are synthesized
from it. There is a close correspondence between these rules and those for expressions
in Table 1. Observe the use of � where + was used in Table 1, the accumulation of con-
straints from the premises to the conclusion of each rule and, most notably, the dressing
of the simple type that annotates u in [I-NAME]. Type expressions synthesized by the rules
are always proper, so the side conditions in [I-FST] and [I-SND] can be safely checked.

The rules in the lower part of the table derive judgments of the form P �k Δ;ϕ ,
stating that P is well typed in the environment Δ if the constraint ϕ is satisfied. The
parameter k plays the same role as in the type system (Table 1). The process P and the
parameter k are the only “inputs” of the judgments, and Δ and ϕ are synthesized from
them. All rules except [I-WEAK] have a corresponding one in Table 1. Like for expressions,
environments are combined through � and constraints accumulate from premises to
conclusions. We focus on the differences with respect to the typing rules.

In rule [T-IN], the side condition verifies that the level of the channel e on which an
input is performed is smaller than the level of any channel used for typing the con-
tinuation process P. This condition can be decomposed in two parts: (1) no unlimited
channel with input polarity must be in P; this condition is necessary to ensure input
receptiveness on unlimited channels in the original type system [18] and is expressed
in [I-IN] as the side condition ⊥ �∈ |Δ2|, which can be checked on type expressions en-
vironments directly; (2) the level of e must satisfy the ordering with respect to all the
linear channels in P; this is expressed in [I-IN] as the constraint λ < |Δ2|, where λ is the
level of e. The same side condition and constraint are found in [I-OUT].

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 93

Table 2. Type reconstruction rules for expressions and processes

Reconstruction rules for expressions e : T� Δ;ϕ

[I-INT]

n : int� /0;true

[I-PAIR]

ei : Ti � Δi;ϕi
(i=1,2)

(e1,e2) : T1 ×T2 � Δ;
∧

1≤i≤3 ϕi
Δ1 �Δ2 = Δ;ϕ3

[I-NAME]

ut : T� u : T;true
t ↑ T

[I-FST]

e : T×S� Δ;ϕ
fst(e) : T�Δ;ϕ

un(S)

[I-SND]

e : T×S �Δ;ϕ
snd(e) : S� Δ;ϕ

un(T)

Reconstruction rules for processes P �k Δ;ϕ

[I-WEAK]

P �k Δ;ϕ
P �k Δ,u : T;ϕ

un(T)
prop(T)

[I-IDLE]

0 �k /0;true

[I-PAR]

Pi �k Δi;ϕi
(i=1,2)

P1 |P2 �k Δ;
∧

1≤i≤3 ϕi
Δ1 �Δ2 = Δ;ϕ3

[I-IN]

e : ?[T]λ
τ � Δ1;ϕ1 P �k Δ2,x : S;ϕ2

e?(x).P �k Δ;
∧

1≤i≤3 ϕi ∧T= $−λ
0 S∧λ < |Δ2|

⊥ �∈ |Δ2|
Δ1 �Δ2 = Δ;ϕ3

[I-OUT]

e : ![T]λ
τ � Δ1;ϕ1 f : S� Δ2;ϕ2

e!f �k Δ;
∧

1≤i≤3 ϕi ∧T= $−λ
−k S∧λ < |Δ2|

⊥ �∈ |Δ2|
Δ1 �Δ2 = Δ;ϕ3

[I-NEW]

P �k Δ,a : #[T]λ
τ ;ϕ

(νa)P �k Δ;ϕ

[I-IN*]

e : ?[T]* � Δ1;ϕ1 P �k Δ2,x : S;ϕ2

*e?(x).P �k Δ;
∧

1≤i≤3 ϕi ∧T= S

un(Δ2)
Δ1 �Δ2 = Δ;ϕ3

[I-OUT*]

e : ![T]* � Δ1;ϕ1 f : S� Δ2;ϕ2

e!f �k Δ;
∧

1≤i≤3 ϕi ∧T = $
−η
−k S

⊥ �∈ |Δ2|
Δ1 �Δ2 = Δ;ϕ3
η fresh

[I-NEW*]

P �k Δ,a : #[T]*;ϕ
(νa)P �k Δ;ϕ

In [T-IN], [T-OUT], and [T-OUT*], shifting is used for updating message levels, consuming
tickets, and realizing level polymorphism. In rules [I-IN], [I-OUT], and [I-OUT*], analogous
shiftings are performed on type expressions, except that they are inverted and recorded
in constraints. For example, when typing the continuation P of a process e?(x).P us-
ing [T-IN], if e has type ?[T]n

m then the type of x is required to be $n
0 T . In the recon-

struction algorithm, we record this requirement as the constraint T = $−λ
0 S, where S

is the type synthesized for x in P. We invert the shifting because shifting is defined
only on proper type expressions, and in [I-IN] (and the other rules mentioned) only S is
guaranteed to be proper, while T in general is not.

Finally, note that [I-WEAK] has no correspondent rule in Table 1. This rule is neces-
sary because the premises of [I-IN], [I-IN*], [I-NEW], and [I-NEW*] assume that bound names
occur in their scope. Since type environments are generated by the algorithm as it

94 L. Padovani et al.

works through an expression or a process, this assumption may not hold if a bound
name is never used in its scope. Naturally, the type T of an unused name must be
unlimited, whence the constraint un(T). We also require T to be proper, to preserve the
invariant that all environments synthesized by the algorithms have proper types. In prin-
ciple, [I-WEAK] makes the rule set in Table 2 not syntax directed, which is a problem if we
want to consider this as an algorithm. In practice, the places where [I-WEAK] may be nec-
essary are easy to spot (in the premises of all the aforementioned rules for the binding
constructs). What we gain with [I-WEAK] is a simpler presentation of the rules.

To state the properties of the reconstruction algorithm, we need a notion of con-
straint satisfiability. A variable assignment σ is a map from type/integer variables to
types/integers. We say that σ covers X if σ provides assignments to all the type/integer
variables occurring in X, where X may be a constraint, a type/integer expression, or an
environment. When σ covers X, the application of σ to X, written σX, substitutes all
type/integer variables according to σ and evaluates all integer expressions in X. When
σ covers ϕ , we say that σ satisfies ϕ if σ � ϕ is derivable by the rules:

σ � true σ � T= S
σT= σS

σ � ε ≤ ε ′
σε ≤ σε ′

σ � ϕi
(i=1,2)

σ � ϕ1 ∧ϕ2

Whenever we apply an assignment σ to a set of type expressions in reference to a
derivation that is parametric on k, we will implicitly assume that all integer expressions
in ticket slots evaluate to non-negative integers and that, if k = 1, all integer expres-
sions in level slots evaluate to non-negative integers. The value of k and the set of type
expressions will always be clear from the context.

The reconstruction algorithm is correct, namely each derivation obtained through the
algorithm such that the resulting constraint is satisfiable corresponds to a derivation in
the type system:

Theorem 4.1 (Correctness). If P �k Δ;ϕ and σ � ϕ and σ covers Δ, then σΔ
k P.

The algorithm is also complete, meaning that if there exists a typing derivation for the
judgment Γ
k P, then the algorithm is capable of synthesizing an environment Δ from
which Γ can be obtained by means of a suitable variable assignment:

Theorem 4.2 (Completeness). If Γ
k P, then P �k Δ;ϕ for some Δ, ϕ , and σ such
that σ � ϕ and Γ = σΔ.

Note that the above results do not give any information about how to verify whether
there exists a σ such that σ � ϕ and, in this case, how to find such σ . These problems
will be addressed in Section 5. We conclude this section showing the reconstruction
algorithm at work on the replicated process in Example 2.1.

Example 4.1. Below is the replicated process in Example 2.1, where we have numbered
and named the relevant rules used by the algorithm as it visits the process bottom-up,
left-to-right:

*c?(x).(νa)(fst(x)!a|snd(x)?(y).c!(a,y))
(1) [I-OUT] (2) [I-OUT*](3) [I-IN]

(4) [I-PAR]

(5) [I-IN*]

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 95

Table 3. Type environment and constraints generated for the process in Example 2.1

i c x a y Constraint

(1) ![α1]
η1
θ1
× /0[α2]

η2
θ2

?[α3]
η3
θ3

α1 = ?[α3]
η3−η1
θ3−k ∧η1 < η3

(2) ![α4]
* ![α5]

η5
θ5

?[α6]
η6
θ6

α4 = ![α5]
η5−η4
θ5−k ×?[α6]

η6−η4
θ6−k

(3) /0[α7]
η7
θ7
×?[α8]

η8
θ8

α8 = ?[α6]
η6−η8
θ6

∧η8 < η5

(4) ![α1]
η1
θ1+θ7

×?[α2]
η2
θ2+θ8

#[α3]
η3
θ3+θ5

α1 = α7 ∧α2 = α8 ∧α3 = α5

∧η1 = η7 ∧η2 = η8 ∧η3 = η5
(5) #[α9]

* α9 = ![α1]
η1
θ1+θ7

×?[α2]
η2
θ2+θ8

∧α9 = α4

Table 4. Constraint entailment rules

[S-LEVEL]

ϕ
1 0 ≤ λ
p[T]λ

τ ∈ dom(ϕ)
[S-TICKET]

ϕ
k 0 ≤ τ
p[T]λ

τ ∈ dom(ϕ)

[S-CONJ]

ϕ1 ∧ϕ2
k ϕi
i ∈ {1,2}

[S-SYMM]

ϕ
k T= S

ϕ
k S= T

[S-TRANS]

ϕ
k T = R ϕ
k R= S

ϕ
k T= S
[S-CHAN]

ϕ
k p[T]λ1
τ1

= p[S]λ2
τ2

ϕ
k T= S∧λ1 = λ2 ∧ τ1 = τ2

[S-CHAN*]

ϕ
k p[T]* = p[S]*

ϕ
k T= S

[S-PAIR]

ϕ
k T1 ×T2 = S1 ×S2

ϕ
k T1 = S1 ∧T2 = S2

Each subprocess triggers one rule of the reconstruction algorithm which synthesizes
a type environment and possibly generates some constraints. Table 3 summarizes the
parts of the environments and the constraints produced at each step of the reconstruction
algorithm with parameter k. We have omitted the step concerning the restriction on a,
which just removes a from the environment and introduces no constraints. �

5 Constraint Solving

We sketch an algorithm that determines whether a constraint ϕ is satisfiable and, in
this case, computes an assignment that satisfies it. The presentation is somewhat less
formal since the key steps of the algorithm are instances of well-known techniques.
The algorithm is structured in three phases, saturation, verification, and synthesis.

The constraint ϕ produced by the reconstruction algorithm does not necessarily men-
tion all the relations that must hold between integer variables. For example, the con-
straint η3 −η1 = η6 −η8 ∧ θ3 − k = θ6 is implied by those in Table 3, but it appears
nowhere. Finding all the integer constraints entailed by a given ϕ , regardless of whether
such constraints are implicit or explicit, is essential because we use an external solver
for solving them. The aim of the saturation phase is to find all such integer constraints.
Table 4 defines an inference system for deriving entailments ϕ
k ϕ ′. The parameter k
plays the same role as in the type system. Rules [S-LEVEL] and [S-TICKET] introduce non-
negativity constraints for integer expressions that occur in level and ticket slots; level
expressions are required to be non-negative only for lock freedom analysis, when k = 1;
rule [S-CONJ] decomposes conjunctions; rules [S-SYMM] and [S-TRANS] compute the symmet-
ric and transitive closure of type equality; finally, [S-CHAN], [S-CHAN*], and [S-PAIR] state

96 L. Padovani et al.

expected congruence rules. We let ϕ̂ def
=

∧
ϕ
kϕ ′ ϕ ′. Clearly ϕ̂ can be computed in finite

time and is satisfiable by the same assignments as (i.e., it is equivalent to) ϕ .
The verification phase checks whether ϕ̂ is satisfiable and, in this case, computes an

assignment σint that satisfies the integer constraints in it. In ϕ̂ all the integer constraints
are explicit. These are typical constraints of an integer programming problem, for which
it is possible to use dedicated (complete) solvers that find a σint when it exists (our
tool supports GLPK1 and lpsolve2). When this is the case, the type constraints in ϕ̂
are satisfiable if, for each type constraint of the form T = S, either T or S are type
variables, or T and S have the same topmost constructor, i.e. they are either both int,
or both unlimited/linear channel types with the same polarity, or both product types.

The synthesis phase computes an assignment that satisfies ϕ . This is found by ap-
plying σint to all the type constraints in ϕ̂ , by choosing a canonical constraint of the
form α = T where T is proper for each α ∈ dom(ϕ̂), and then by solving the resulting
system {αi = Ti} of equations. By [4, Theorem 4.2.1], this system has exactly one so-
lution σtype and now σint ∪σtype � ϕ . There may be type variables α for which there is
no α = T constraint with T proper. These type variables denote values not used by the
process, like a message that is received from one channel and just forwarded on another
one. These variables are assigned a type that can be computed canonically.

Example 5.1. The constraints shown in Table 3 entail 0 ≤ θ3 − k and 0 ≤ θ5 − k and
0≤ θ6−k namely k≤ θ3 and k≤ θ5 and k≤ θ6 must hold. When k= 0, these constraints
can be trivially satisfied by assigning 0 to all ticket variables. When k = 1, from the type
of a at step (4) of the reconstruction algorithm we deduce that a must have at least 2
tickets. Indeed, a is sent in two messages. It is only considering the remaining processes
c!(e, f) and c!(f,e) that we learn that y is instantiated with a. Then, a needs one more
ticket, to account for the further and last travel in the recursive invocation c!(a,y). �

6 Concluding Remarks

A key distinguishing feature of the type systems in [18] is the use of polymorphic recur-
sion. Type reconstruction in presence of polymorphic recursion is notoriously undecid-
able [10,7]. In our case, polymorphism solely concerns levels and reconstruction turns
out to be doable. A similar situation is known for effect systems [1], where polymorphic
recursion restricted to effects does not prevent complete type reconstruction [2].

We have conducted some benchmarks on generalizations of Example 2.1 to N-
dimensional hypercubes of processes using full-duplex communication. The table be-
low reports the reconstruction times for the analysis of an hypercube of side 5 and
N varying from 1 to 4. The table details the dimension, the number of processes and
channels, and the times (in seconds) spent for linearity analysis [19], constraint genera-
tion (Section 4) and saturation, solution of level and ticket constraints (Section 5). The
solver used for level and ticket constraints is GLPK 4.48 and times were measured on a
13” MacBook Air running a 1.8 GHz Intel Core i5 with 4 GB of 1600MHz DDR3.

1 http://www.gnu.org/software/glpk/
2 http://sourceforge.net/projects/lpsolve/

http://www.gnu.org/software/glpk/
http://sourceforge.net/projects/lpsolve/

Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear π-Calculi 97

N Processes Channels Linearity Gen.+Sat. Levels Tickets Overall

1 5 8 0.021 0.006 0.002 0.003 0.032
2 25 80 0.128 0.051 0.009 0.012 0.200
3 125 600 1.439 0.844 0.069 0.124 2.477
4 625 4000 33.803 26.422 1.116 3.913 65.254

Reconstruction times scale almost linearly in the number of channels as long as there
is enough free main memory. With N = 4, however, the used memory exceeds 10GB
causing severe memory (de)compression and swapping. The running time inflates con-
sequently. We have not determined yet the precise causes of such disproportionate con-
sumption of memory, which the algorithms do not seem to imply. We suspect that they
are linked to our naive implementation of the algorithms in a lazy language (Haskell),
but a more rigorous profiling analysis is left for future investigation. Integer program-
ming problems are NP-hard in general, but the time used for integer constraint resolu-
tion appears negligible compared to the other phases. As suggested by one reviewer,
the particular nature of such constraints indicates that there might be more clever way
of solving them, for example by using SMT solvers.

Our work has been inspired by previous type systems ensuring (dead)lock freedom
for generic π-calculus processes [11,13] and corresponding type reconstruction algo-
rithms [12]. These type systems and ours are incomparable: [11,13] use sophisticated
behavioral types that provide better accuracy with respect to unlimited channels as used
for modeling mutual exclusion and concurrent objects. On the other hand, our type sys-
tems exploit level polymorphism for dealing with recursive processes in cyclic topolo-
gies, often arising in the modeling of parallel algorithms and sessions. Whether and how
the strengths of both approaches can be combined together is left for future research. A
more thorough comparison between these works can be found in [18].

There is a substantial methodological difference between our approach and those ad-
dressing sessions, particularly multiparty sessions [8,6]. Session-based approaches are
top down and type driven: types/protocols come first, and are used as a guidance for de-
veloping programs that follow them. These approaches guarantee by design a number
of properties, among which (dead)lock freedom when different sessions are not inter-
leaved. Our approach is bottom up and program driven: programs come first, and are
used for inferring types/protocols. The two approaches can integrate and complement
each other. For example, type reconstruction may assist in the verification of legacy or
third-party code (for which no type information is available) or for checking the impact
of code changes due to refactoring and/or debugging. Also, some protocols are hard to
describe a priori. For example, describing the essence of full-duplex communications
(Example 2.1) is far from trivial [6]. In general, processes making use of channel mo-
bility (delegation) and session interleaving, or dynamic network topologies with vari-
able number of processes, are supported by our approach (within the limits imposed
by the type systems), but are challenging to handle in top-down approaches. Inference
of progress properties akin to lock freedom for session-based calculi has been studied
in [17,3], although only finite types are considered in these works.

The reconstruction of global protocol descriptions from local session types has been
studied in [15,16]. In this respect, our work fills the remaining gap and provides a re-
construction tool from processes to local session types. We plan to investigate the inte-
gration with [15,16] in future work.

98 L. Padovani et al.

Acknowledgments. The authors are grateful to the reviewers for their detailed comments and
useful suggestions. The first two authors have been supported by Ateneo/CSP project SALT. The
first author has also been supported by ICT COST Action IC1201 BETTY and MIUR project
CINA.

References

1. Amtoft, T., Nielson, F., Nielson, H.: Type and effect systems: behaviours for concurrency.
Imperial College Press (1999)

2. Amtoft, T., Nielson, F., Nielson, H.R.: Type and behaviour reconstruction for higher-order
concurrent programs. J. Funct. Program. 7(3), 321–347 (1997)

3. Coppo, M., Dezani-Ciancaglini, M., Padovani, L., Yoshida, N.: Inference of global progress
properties for dynamically interleaved multiparty sessions. In: De Nicola, R., Julien, C. (eds.)
COORDINATION 2013. LNCS, vol. 7890, pp. 45–59. Springer, Heidelberg (2013)

4. Courcelle, B.: Fundamental properties of infinite trees. Theor. Comp. Sci. 25, 95–169 (1983)
5. Dardha, O., Giachino, E., Sangiorgi, D.: Session types revisited. In: PPDP 2012,

pp. 139–150. ACM (2012)
6. Deniélou, P.-M., Yoshida, N.: Multiparty session types meet communicating automata. In:

Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 194–213. Springer, Heidelberg (2012)
7. Henglein, F.: Type inference with polymorphic recursion. ACM Trans. Program. Lang.

Syst. 15(2), 253–289 (1993)
8. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL

2008, pp. 273–284. ACM (2008)
9. Igarashi, A., Kobayashi, N.: Type reconstruction for linear π-calculus with I/O subtyping.

Inf. and Comp. 161(1), 1–44 (2000)
10. Kfoury, A.J., Tiuryn, J., Urzyczyn, P.: Type reconstruction in the presence of polymorphic

recursion. ACM Trans. Program. Lang. Syst. 15(2), 290–311 (1993)
11. Kobayashi, N.: A type system for lock-free processes. Inf. and Comp. 177(2), 122–159

(2002)
12. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta Informat-

ica 42(4-5), 291–347 (2005)
13. Kobayashi, N.: A new type system for deadlock-free processes. In: Baier, C., Hermanns, H.

(eds.) CONCUR 2006. LNCS, vol. 4137, pp. 233–247. Springer, Heidelberg (2006)
14. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM Trans. Pro-

gram. Lang. Syst. 21(5), 914–947 (1999)
15. Lange, J., Tuosto, E.: Synthesising choreographies from local session types. In: Koutny, M.,

Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 225–239. Springer, Heidelberg
(2012)

16. Lange, J., Tuosto, E., Yoshida, N.: From communicating machines to graphical choreogra-
phies. In: POPL 2015, pp. 221–232. ACM (2015)

17. Mezzina, L.G.: How to infer finite session types in a calculus of services and sessions.
In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231.
Springer, Heidelberg (2008)

18. Padovani, L.: Deadlock and lock freedom in the linear π-calculus. In: CSL-LICS 2014, pp.
72:1–72:10. ACM (2014), http://hal.archives-ouvertes.fr/hal-00932356v2/

19. Padovani, L.: Type reconstruction for the linear π-calculus with composite and equi-recursive
types. In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS). LNCS, vol. 8412, pp. 88–102.
Springer, Heidelberg (2014)

http://hal.archives-ouvertes.fr/hal-00932356v2/

Constraints

A Fixpoint-Based Calculus

for Graph-Shaped Computational Fields

Alberto Lluch Lafuente1(�), Michele Loreti2, and Ugo Montanari3

1 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
albl@dtu.dk

2 University of Florence, Firenze Italy
3 Computer Science Department, University of Pisa, Pisa, Italy

Abstract. Coordination is essential for dynamic distributed systems
exhibiting autonomous behaviors. Spatially distributed, locally interact-
ing, propagating computational fields are particularly appealing for al-
lowing components to join and leave with little or no overhead. In our
approach, the space topology is represented by a graph-shaped field,
namely a network with attributes on both nodes and arcs, where arcs
represent interaction capabilities between nodes. We propose a calculus
where computation is strictly synchronous and corresponds to sequential
computations of fixpoints in the graph-shaped field. Under some condi-
tions, those fixpoints can be computed by synchronised iterations, where
in each iteration the attributes of a node is updated based on the at-
tributes of the neighbours in the previous iteration. Basic constructs are
reminiscent of the semiring μ-calculus, a semiring-valued generalisation
of the modal μ-calculus, which provides a flexible mechanism to spec-
ify the neighbourhood range (according to path formulae) and the way
attributes should be combined (through semiring operators). Additional
control-flow constructs allow one to conveniently structure the fixpoint
computations. We illustrate our approach with a case study based on a
disaster recovery scenario, implemented in a prototype simulator that we
use to evaluate the performance of a disaster recovery strategy.

1 Introduction

Coordination is essential in all the activities where an ensemble of agents inter-
acts within a distributed system. Particularly interesting is the situation where
the ensemble is dynamic, with agents entering and exiting, and when the en-
semble must adapt to new situations and must have in general an autonomic
behavior. Several models of coordination have been proposed and developed in
the last years. Following the classification of [10] we mention (i) direct coor-
dination, (ii) connector-based coordination, (iii) shared data space, (iv) shared
deductive knowledge base, and (v) spatially distributed, locally interacting, prop-
agating computational fields. Among them, computational fields are particularly

Research supported by the European projects IP 257414 ASCENS and STReP
600708 QUANTICOL, and the Italian PRIN 2010LHT4KM CINA.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 101–116, 2015.
DOI: 10.1007/978-3-319-19282-6_7

102 A. Lluch Lafuente et al.

appealing for their ability of allowing new interactions with little or no need of
communication protocols for initialization. Computational fields are analogous
to fields in physics: classical fields are scalars, vectors or tensors, which are
functions defined by partial differential equations with initial and/or boundary
conditions. Analogously, computational fields consist of suitable space dependent
data structures where interaction is possible only between neighbors.

Computational fields have been proposed as models for several coordination
applications, like amorphous computing, routing in mobile ad hoc and sensor
networks, situated multi agent ecologies, like swarms, and finally for robotics ap-
plications, like coordination of teams of modular robots. Physical fields, though,
have the advantage of a regular structure of space, e.g. the one defined by Eu-
clidean geometry, while computational fields are sometimes based on some (log-
ical) network of connections. The topology of such a network may have little to
do with Euclidean distance, in the sense that a node can be directly connected
with nodes which are far away, e.g. for achieving a logarithmic number of hops
in distributed hash tables. However, for several robotics applications, and also
for swarms and ad hoc networking, one can reasonably assume that an agent
can interact only with peers located within a limited radius. Thus locality of
interaction and propagation of effects become reasonable assumptions.

Contributions. The main contribution of the paper is the Soft Mu-calculus for
Computational fields (SMuC) calculus, where computation is strictly
synchronous and corresponds to sequential computations of fixpoints in a graph-
shaped field that represents the space topology. Our graph-based fields are es-
sentially networks with attributes on both nodes and arcs, where arcs represent
interaction capabilities between nodes. In particular, fixpoints can be computed
by synchronised iterations under reasonable conditions, where in each iteration
the attribute of a node is updated based on the attributes of the neighbours in the
previous iteration. Basic constructs are reminiscent of the semiring μ-calculus [8],
a semiring-valued generalisation of the modal μ-calculus, which provides a flexi-
ble mechanism to specify the neighbourhood range (according to path formulae)
and the way attributes should be combined (through semiring operators). Ad-
ditional control-flow constructs allow one to conveniently structure the fixpoint
computations.

An additional contribution is a novel disaster recovery coordination strategy
that we use here as a case study. The goal of the coordination strategy is to
direct several rescuers present in the network to help a number of victims, where
each victim may need more than one rescuer. While an optimal solution is not
required, each victim should be reached by its closest rescuers, so to minimise
intervention time. Our proposed approach may need several iterations of a se-
quence of three propagations: the first to determine the distance of each rescuer
from its closest victim, the second to associate to every victim v the list of res-
cuers having v as their closest victim, so to select the best k of them, if k helpers
are needed for v; finally, the third propagation is required for notifying each
selected rescuer to reach its specific victim.

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 103

We have also developed a prototype tool for our language, equipped with a
graphical interface that provides useful visual feedback to users of the language.
We use indeed those visual features to illustrate the application of our approach
to the aforementioned case study.

Last, we discuss several aspects related to possible distributed implementation
of our calculus. In particular, we sketch a simple endpoint projection that would
automatically generate distributed code to be deployed on the agents of the
network and we discuss the possibility of using spanning tree based techniques
to efficiently implement some of the global synchronisations involved in such
endpoint projection.

Structure of the Paper. The rest of the paper is structured as follows. Sect. 2
presents the SMuC calculus. Sect. 3 presents the SMuC specification of our
disaster recovery case study, which is illustrated with figures obtained with our
prototypical tool. Sect. 4 discusses several performance and synchronisation is-
sues related to distributed implementations of the calculus. Sect. 5 discusses
related works. Sect. 6 concludes the paper, describes our current work and iden-
tifies opportunities for future research.

2 SMuC: A Soft µ-calculus for Computations Fields

Our computational fields are essentially networks of inter-connected agents,
where both agents and their connections have attributes. One key point in our
proposal is that the domain of attributes and their operations have the alge-
braic structure of a class of semirings usually known as absorptive semirings or
constraint semirings. Such class of semirings has been shown to be very flexible,
expressive and convenient for a wide range of problems, in particular for opti-
misation and solving in problems with soft constraints and multiple criteria [4].

Definition 1 (Semiring). An absorptive semiring is a set A with two operators
+, × and two constants ⊥, � such that

– + : 2A → A is an associative, commutative, idempotent operator to “choose”
among values;

– × : A×A → A is an associative, commutative operator to “combine” values;
– × distributes over +;
– �+ a = a, ⊥+ a = ⊥, ⊥× a = a, �× a = � for all a ∈ A;
– ≤, which is defined as a ≤ b iff a + b = b, provides a lattice of preferences

with top � and bottom ⊥;

We will use the term semiring to refer to absorptive semirings. Typical exam-
ples are the Boolean semiring 〈{true, false},∨,∧, false, true〉, the tropical semir-
ing 〈R+∪{+∞},min,+,+∞, 0〉, and the fuzzy semiring 〈[0, 1],max,min, 0, 1〉. A
useful property of semirings is that Cartesian products and power constructions
yield semirings, which allows one for instance to lift techniques for single criteria
to multiple criteria.

104 A. Lluch Lafuente et al.

We are now ready to provide our notion of field, which is essentially a graph
equipped with semiring-valued node and edge labels. The idea is that nodes play
the role of agents, and (directed) edges play the role of (directional) connections.
The node labels will be used as attributes of the agents, while the node labels
correspond to functions associated to the connections, e.g. representing how
attribute values are transformed when traversing a connection.

Definition 2 (Field). A field is a tuple 〈N,E,A, L = LN LE , I = IN IE〉
formed by

– a set N of nodes;
– a relation E ⊆ N ×N of edges;
– a set L of node labels LN and edge labels LE;
– a semiring A;
– an interpretation function IN : LN → N → A associating a function from

nodes to values to every node label in LN ;
– an interpretation function IE : LE → E → A → A associating a function

from edges to functions from values to values to every edge label in P ;

where node, edge, and label sets are drawn from a corresponding universe, i.e.
N ⊆ N , E ⊆ E, LN ⊆ L, LE ⊆ L′.

As usual, we may refer to the components of a field F using subscripted
symbols (i.e. NF , EF , . . .). We will denote the set of all fields by F .

It is worth to remark that while standard notions of computational fields
tend to be restricted to nodes (labels) and their mapping to values, our notion
of field includes the topology of the network and the mapping of edge (labels) to
functions. As a matter of fact, the topology plays a fundamental role in our field
computations as it defines how agents are connected and how their attributes
are combined when communicated. On the other hand, in our approach the role
of node and edge labels is different. In fact, some node labels are computed
as the result of a fixpoint approximation which corresponds to a propagation
procedure. They thus represent the genuine computational fields. Edge labels,
instead, are assigned directly in terms of the data of the problem (e.g. distances)
or in terms of the results of previous propagations. They thus represent more
properly equation coefficients and boundary conditions as one can have in partial
differential equations in physical fields.

SMuC (Soft μ-calculus for Computations fields) is meant to specify global
computations on fields. One key aspect of our calculus are atomic computations
denoted with expressions reminiscent of the semiring modal μ-calculus proposed
in [8], a semiring-valued generalisation of the modal μ-calculus, used to reason
about quantitative properties of graph-based structures (e.g. transition systems,
network topologies, etc.). In SMuC similar expressions will be used to specify
the functions being calculated by global computations, to be recorded by updat-
ing the interpretation functions of the nodes. Such atomic computations can be
embedded in any language. To ease the presentation we present a global calcu-
lus where atomic computations are embedded in a simple imperative language
reminiscent of While [12].

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 105

Table 1. Rules of the operational semantics

(μStep)
�Ψ�IF∅ = f I ′F = IF [

f/i]

〈i ← Ψ, F 〉 → 〈skip, F [I
′
F /IF]〉

(Seq1)
〈P, F 〉 → 〈P ′, F ′〉

〈P ;Q,F 〉 → 〈P ′;Q,F ′〉

(Seq2)
〈P, F 〉 → 〈P ′, F ′〉

〈skip;P, F 〉 → 〈P ′, F ′〉

(IfT)
�Ψ�F∅ = λn.a for some a ∈ AF

〈if · agree · on Ψ then P else Q,F 〉 → 〈P, F 〉

(IfF)
�Ψ�F∅ �= λn.a for some a ∈ AF

〈if · agree · on Ψ then P else Q,F 〉 → 〈Q,F 〉

(UntilF)
�Ψ�F∅ �= λn.a for some a ∈ AF

〈until · agree · on Ψ do P, F 〉 → 〈(P ; until · agree · on Ψ do P), F 〉

(UntilT)
�Ψ�F∅ = λn.a for some a ∈ AF

〈until · agree · on Ψ do P, F 〉 → 〈skip , F 〉

Definition 3 (SMuC Syntax). The syntax of SMuC is given by the following
grammar

P,Q ::= skip | i ← Ψ | P ; P ′ | if · agree · on Ψ then P else Q
| until · agree · on Ψ do P

where i ∈ L, Ψ is a SMuC formula (cf. Def 4).

We remark that the main difference with respect to the while language are
the agree · on variants of the traditional control flow constructs. We explicitly
use a different syntax in order to remark the characteristic semantics of those
constructs, where the global control flow depends on the existence of agreements
among all agents in the field.

The semantics of the calculus is straightforward, along the lines of While [12]
with fields (and their interpretation functions) playing the role of memory stores.
In addition we have that the right-hand side of assignments are SMuC formulas
that we will introduce next.

Given a semiring A, a function N → A is called a node valuation. Given a
set Z of variables, a set M of function symbols, an environment is a function
ρ : Z → N → A.

106 A. Lluch Lafuente et al.

Definition 4 (Syntax of SMuC Formulas). The syntax of SMuC formulas
is as follows:

Ψ ::= i | z | f(Ψ, . . . , Ψ) | [a]Ψ | 〈a〉Ψ | [[a]]Ψ | 〈〈a〉〉.Ψ | μz.Ψ | νz.Ψ

with i ∈ L, a ∈ L′, f ∈ M and z ∈ Z.

We remark that the set of functions symbols may include, among others, the
semiring operator symbols+ and × and possibly some additional ones, for which
an interpretation on the semiring of interest can be given.

Definition 5 (Semantics of SMuC Formulas). Let F be a field. The se-
mantics of SMuC formulas is given by the interpretation function �·�Fρ : Ψ →
NF → AF defined by

�i�Fρ = IF (i)
�z�Fρ = ρ(z)

�f(Ψ1, . . . , Ψn)�
F
ρ = �f�AF (�Ψ1�

F
ρ , . . . , �Ψn�Fρ)�

F
ρ

�[a]Ψ�Fρ = λn.
∏

{n′|(n,n′)∈EF } .IF (a)(n, n
′)(�Ψ�Fρ (n

′))
�〈a〉.Ψ�Fρ = λn.

∑
{n′|(n,n′)∈EF } .IF (a)(n, n

′)(�Ψ�Fρ (n
′))

�[[a]]Ψ�Fρ = λn.
∏

{n′|(n′,n)∈EF } .IF (a)(n
′, n)(�Ψ�Fρ (n

′))
�〈〈a〉〉Ψ�Fρ = λn.

∑
{n′|(n′,n)∈EF} .IF (a)(n

′, n)(�Ψ�Fρ (n
′))

�μz.Ψ�Fρ = lfp λd.�Ψ�Fρ[d/z]

�νz.Ψ�Fρ = gfp λd.�Ψ�Fρ[d/z]

where lfp and gfp stand for the least and greatest fixpoint, respectively.

As usual, the semantics is well defined if so are all fixpoints. A sufficient condi-
tion for fixpoints to be well-defined is for functions λd.�Ψ�Fρ[d/z]

to be continuous

and monotone (cf. Tarski’s theorem). This implies, for instance, that if a nega-
tion operation is part of the function symbols f used in a formula, as reasonable
with some but not all semiring instances, then we should ensure that all fixpoint
variables have positive polarity. Another desirable property is for functions to be
computable by iteration. This requires the fixpoint to be equal to Ψn for n ∈ N,
where Ψ i+1 = �Ψ�F

ρ[Ψi/z]
and Ψ0 = �Ψ�Fρ[α/z]

, with α = ⊥ if we are computing a

least fixpoint and α = � if we are computing a greatest fixpoint. The formulae
we use in our case study satisfy the above mentioned properties.

The semantics of our calculus is a transition system whose states are pairs of
calculus terms and fields and whose transitions →⊆ (P ×F)2 are defined by the
rules of Table 1. Most rules are standard. Rule IfT and IfT are similar to the
usual rules for conditional branching. However, the condition is not a Boolean
value but the existence of an agreement on the same value a to be assigned on
each agent n in the field F . If such agreement exists, the then branch is taken,
otherwise the else branch is followed. Similarly for the until · agree · on operator
(cf. rules UntilT and UntilF). States of the form (skip, I) represent termination.
Initial states must have all node and edge labels interpreted.

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 107

x
finish ← false ;
until · agree · on finish do

/* 1st Stage: */
/* Establishing the distance to victims */
D ← μZ.min1(source, 〈dist〉Z);

/* 2nd Stage: */
/* Computing the rescuers paths */
rescuers ← μZ.init ∪ 〈〈grad〉〉Z;

/* 3rd Stage: Engaging rescuers */
finish ← false;
/* engaging the rescuers */
engaged ← μZ.choose ∪ 〈cograd〉Z;
/* updating victims and available rescuers */
victim’ ← victim;
victim ← victim ∧ ¬saved;
rescuer ← rescuer ∧ engaged
= ∅;
/* determining termination */
finish ← (victim′ == victim);

/* 4th Stage: Checking success */
if · agree · on ¬victim

/* ended with success */
else

/* ended with failure */

/* Semiring types of labels */

source,D : N → T ×1 N≤N

init, rescuers : N → 2T×N∗

choose, engaged : N → 2N
∗

dist : E → T ×1 N≤N
→ T ×1 N≤N

grad : E → 2T×N∗ → 2T×N∗

cograd : E → 2N
∗ → 2N

∗

Fig. 1. Robot Rescue SMuC Program

3 SMuC at Work: Rescuing Victims

The left side of Fig. 2 depicts a simple instance of the considered scenario. There,
victims are rendered as black circles while landmarks and rescuers are depicted
via grey and black rectangles respectively. The length of an edge in the graph is
proportional to the distance between the two connected nodes. The main goal is
to assign rescuers to victims, where each victim may need more than one rescuer
and we want to minimise the distance that rescuers need to cover to reach their
assigned victims. We assume that all relevant information of the victim rescue
scenario is suitably represented in field F . More details on this will follow, but
for now it suffices to assume that nodes represent rescuers, victims or landmarks
and edges represent some sort of direct proximity (e.g. based on visibility w.r.t.
to some sensor).

It is worth to remark that in practice it is convenient to define A as a Cartesian
product of semirings, e.g. for differently-valued node and edge labels. This is
indeed the case of our case study. However, in order to avoid explicitly dealing
with these situations (e.g. by resorting to projection functions, etc.) which would
introduce a cumbersome notation, we assume that the corresponding semiring is
implicit (e.g. by type/semiring inference) and that the interpretation of functions
and labels are suitably specialised. For this purpose we decorate the specification
in Fig. 1 with the types of all labels.

We now describe the coordination strategy specified in the algorithm of Fig. 1.
The algorithm consists of a loop that is repeated until an iteration does not

108 A. Lluch Lafuente et al.

Fig. 2. Execution of Robot Rescue SMuC Program (part 1)

produce any additional matching of rescuers to victims. The body of the loop
consist of different stages, each characterised by a fixpoint computation.

1st Stage: Establishing the distance to victims. In the first stage of the algorithm
the robots try to establish their closest victim. Such information is saved in to D,
which is valued over the total ordering semiring obtained by the lexicographical
construction applied to the tropical semiring T and to the semiringN≤N given by
some total ordering on the nodes N . We denote such construction by N → T ×1

N≤N . In order to compute D some information is needed on nodes and arrows of
the field, in particular the decorations are source and dist whose interpretation
is defined as follows:

– I(source)(n) = if n ∈ victim then (0, n) else (+∞, n), i.e. victims point to
themselves with no cost, while the rest of the nodes point to themselves with
infinite cost;

– I(dist)(n, n′) = λ(v,m).(distance(n, n′) + v, n′) where distance(n, n′) is the
weight of (n, n′). Intuitively, dist provides a function to add the cost asso-
ciated to the transition. The second component of the value encodes the
direction to go for the shortest path, while the total ordering on nodes is
used for solving ties.

The desired information is then computed as D ← μZ.min1(source, 〈dist〉Z).
This fix point calculation is very similar to the standard ones used to calculate
reachability or shortest paths. Here min1 is the additive operation of semiring
N → T ×1 N≤N , specifically for a set B ⊆ (R ∪ {+∞})×N the function min1
is defined as min1(B) = (a, n) ∈ B such that ∀(a′, n′) ∈ B : a ≤ a′ and if a = a′

then n ≤ n′.
At the end of this stage, D associates each element with the distance to its

closest victim. In the right side of Fig. 2 each node of our example is labeled
with the computed distance. We do not include the second component of D (i.e.

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 109

the identity of the closest neighbour) to provide a readable figure. In any case,
the closest victim is easy to infer from the depicted graph: the closest victim
of the rescuer in the top-left corner of the inner box formed by the rescuers is
the victim at the top-left corner of the figure, and respectively for the top-right,
bottom-left and bottom-right corners.

2nd Stage: Computing the rescuers paths to the victims. In this second stage of
the algorithm, the robots try to compute, for every victim v, which are the paths
from every rescuer u to v — but only for those u for which v is the closest victim
— and the corresponding costs, as established by D in the previous stage. Here
we use the semiring 2T×N∗

with union as additive operator, i.e. 〈2T×N∗
,∪,∩, T×

N∗, ∅〉. We use here decorations init and grad whose interpretation is defined as

– I(init)n = if n ∈ rescuer then {(D(n), ε)} else ∅;
– I(grad)(n, n′) = λC. if D(n) = (u, n′) then n;C else ∅, where operation ; is

defined as n;C = {(cost, n; path) | (cost, path) ∈ C}.

The idea of label rescuers is to compute, for every node n, the set of rescuers
whose path to their closest victim passes through n (typically a landmark).
However, the name of a rescuer is meaningless outside its neighbourhood, thus a
path leading to it is constructed instead. In addition, each rescuer is decorated
with its distance to its closest victim. Function init associates to a rescuer its
name and its distance, the empty set to all the other nodes. Function grad checks
if an arc (n, n′) is on the optimal path out of n. In the positive case, the rescuers
in n are considered as rescuers also for n′, but with an updated path; in the
negative case they are discarded.

In left side of Fig. 3 the result of this stage is presented. There, the edges that
are part of path from one rescuer to a victim are now marked. We can notice
that some victims can be reached by more than one rescuer.

3rd Stage: Engaging the rescuers. The idea of the third stage of the algorithm
is that each victim n, which needs k rescuers, will choose the k closest rescuers,
if there are enough, among those that have selected n as target victim. For this
computation we use the decorations choose and cograd.

– I(choose)(n) = if n ∈ victim and saved(n) then opt(rescuer(n), howMany(n))
else ∅, where:
• saved(n) =

∣
∣rescuers(n)

∣
∣ ≤ howMany(n) and howMany(n), n ∈ victim

returns the number of rescuers n needs;
• opt(C, k) = {path | (cost , path) ∈ C and∣

∣{(cost ′, path ′) | (cost ′, path ′) < (cost , path)}
∣
∣ < k}

where (cost , path) < (cost ′, path ′) if cost < cost ′ or cost = cost ′ and
path < path ′, and paths are totally ordered lexicographically;

– I(cograd(n, n′) = λC.{path | n; path ∈ C}.

Intuitively, choose allows a victim n that has enough rescuers to choose and
to record the paths leading to them. The annotation cograd associates to each
edge (n, n′) a function to select in a set C of paths those of the form n; path.

110 A. Lluch Lafuente et al.

Fig. 3. Execution of Robot Rescue SMuC Program (part 2)

The computation in this step is engaged ← μZ.choose ∪ 〈cograd〉Z, which
computes the desired information: in each node n we will have the set of rescuer-
to-victim paths that pass through n and that have been chosen by a victim.

The result of this stage is presented in the right side of Fig. 3. Each rescuer
has a route, that is presented in the figure with black edges, that can be followed
to reach the assigned victim. Again, for simplicity we just depict some relevant
information to provide an appealing and intuitive representation.

Notice that this phase, and the algorithm, may fail even if there are enough
rescuers to save some additional victims. For instance if there are two victims,
each requiring two rescuers, and two rescuers, the algorithm fails if each rescuer
is closer to a different victim.

These three stages are repeated until there is agreement on whether to finish.
The termination criteria is that an iteration did not update the set of victims.
In that case the loop terminates and the algorithm proceeds to the last stage.

4th Stage: Checking succes. The algorithm terminates with success when victim′

= ∅ and with failure when victim′ is not empty. In Fig. 4 we present the result of
the computation of program of Fig. 1 on a randomly generated graph composed
by 1000 landmarks, 5 victims and 10 rescuers. We can notice that, each victim
can be reached by more than one rescuer and that the closer one is selected.

4 On Distributing SMuC Computations

We discuss in this section some aspects of a distributed implementation of SMuC

computations. Needless to say, an obvious implementation would be based on

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 111

Fig. 4. Execution of Robot Rescue SMuC Program on a random graph

a centralised algorithm. In particular, the nodes could initially send all their
information to a centralised coordinator that would construct the field, compute
the SMuC computations, and distribute the results back to the nodes. This
solution is easy to realise and could be based on our prototype which indeed
performs a centralised, global computation, as a sequential program acting on
the field. However, such a solution has several obvious drawbacks: first, it creates
a bottleneck in the coordinator. Second, there are many applications in which
the idea of constructing the whole field is not feasible and each agent needs to
evolve independently. We discuss here some possible alternatives.

A Näıve Distributed Implementation. We start with a näıve distributed imple-
mentation based on an endpoint projection of SMuC computations on local
programs on the nodes. Such projection is sketched informally in Fig. 5 where a
projection function ·� maps SMuC programs and formulas into local code to be
executed on agents. We neglect the formal presentation of the local programming
language and rely on the intuition of the reader since the main goal is to make
explicit the (high) amount of synchronisation points in such an approach. Those
synchronisation points are marked by underlining the corresponding statements.

Note that every occurrence of a sequential composition, every control flow
construct and every fixpoint iteration involves a global synchronisation like a
global barrier (e.g. sync) or a global commit (e.g. global · agree · on). Indeed,

112 A. Lluch Lafuente et al.

P�F = ||n∈NF n : P�n
skip�n = skip

i ← Ψ�n = self.i ← Ψ�n
P ; P ′�n = P�n ; sync ; P ′�n

if · agree · on Ψ then P else Q�n = ν global z;
self.z ← Ψ�n;
if · global · agree · on z then P�n else Q�n

until · agree · on Ψ do P�n = ν global z;

self.z ← Ψ�n;
until · global · agree · on z do

P�n;
self .z ← Ψ�n;

i�n = self.i
z�n = self.z

f(Ψ1, . . . , Ψm)�n = f(Ψ1�n, . . . , Ψm�n)
[a]Ψ�n =

∏
{n′|(n,n′)∈EF } .IF (a)(n, n

′)(n′.Ψ�′n)
〈a〉Ψ�n =

∑
{n′|(n,n′)∈EF } .IF (a)(n, n

′)(n′.Ψ�′n)
[[a]]Ψ�n =

∏
{n′|(n,n′)∈EF } .IF (a)(n

′, n)(n′.Ψ�′n)
〈〈a〉〉.Ψ�n =

∑
{n′|(n′,nn)∈EF } .IF (a)(n, n

′)(n′.Ψ�′n)
ιz.Ψ�n = ν global z;

self.z ← α(ι);
until · global · fixpoint(z) do

self .z ← Ψ�n;
sync;

where ι ∈ {μ, ν} and α(μ) = �, α(μ) = ⊥.

Fig. 5. Näıve end point projection of SMuC computations

each agent has to locally check if a step of the computation has been completely
computed or if other iterations are needed to compute the correct value. This
holds, in particular, when fixpoints formulas are considered. In what follows we
discuss opportunities to optimise and relax those synchronisation points.

Spanning-tree Based Synchronisations. We describe now a technique that, by re-
lying on a specific structure, can be used to perform SMuC computations in an
improved way. The corner stone of the proposed algorithm is a tree-based infras-
tructure that spans the complete field. In this infrastructure each node/agent,
that is identified by a unique identifier, is responsible for the coordination of the
computations occurring in its sub-tree. In the rest of this section we assume that
this spanning tree is computed in a set-up phase executed when the system is
deployed. We also assume that each agent only interacts with its neighbours and
that it knows their identities.

It should be clear from the endpoint projection in Figure 5 that when a SMuC

program consists of a sequence of assignments v0 ← Ψ0 . . . vk ← Ψk, a global

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 113

barrier needs to be used to ensure that all processes proceed synchronously to
guarantee that the computation of vi+1 is started only when the computation
of vi has been globally completed. We now discuss a technique that uses a tree
infrastructure to implement such global barrier in an efficient way. The optimi-
sation regards also the possible local iterations due to the necessity to compute
fixpoints.

As sketched in Fig. 5 each agent sends to (and receives from) its neighbours
local values computed in Ψi (cf. the use of n′. . . . in the projection of modal
operators). Since each Ψi may contain several fixpoints, these values have to be
computed iteratively.

An alternative to the projection in Fig. 5 would be as follows. Each value
within an iteration could be sent together with the index k of the computational
step and with the actual iteration. Following this approach each agent would be
able to compute the values at some iteration when all the values corresponding
to the previous iteration have been collected from its neighbours. When a local
fixpoint is reached (i.e. its value did not change with respect to the previous
iteration) an agent would reach a local stability point. An agent becomes stable
when it is locally stable and all its children in the spanning tree are stable (for
the leaves of the spanning tree, local stability and stability coincides). Note that
an agent can be stable at a given iteration and unstable in the next one. This
happens when an update of local values is propagated in the field.

The node devoted to check the global stability in the field is the root of the
spanning tree. We can observe that each update in the field is propagated to the
root in a number of steps that equates the height of the spanning tree. For this
reason, when the root of the spanning tree is stable for a number of iterations
that is greater than the height of the spanning tree, a global stability can be
assured. After that the root informs all the nodes in the spanning tree that
computation of step i is terminated and the index of the current step is updated
accordingly. Each node starts the computation of step i+1 just after the commit
for the step i has been received.

5 Related Works

In recent years, spatial computing has emerged as a promising approach to model
and control systems consisting of a large number of cooperating agents that are
distributed over a physical or logical space [3]. This computational model starts
from the assumption that, when the density of involved computational agents
increases, the underlying network topology is strongly related to the geometry
of the space through which computational agents are distributed. Goals are
generally defined in terms of the system’s spatial structure. A main advantage
of these approaches is that their computations can be seen both as working on
a single node, and as computations on the distributed data structures emerging
in the network (the so-called “computational fields”).

One of the main examples in this area is Proto [1,2]. This language aims at
providing links between local and global computations and permits the specifi-
cation of the individual behaviour of a node, typically in a sensor-like network,

114 A. Lluch Lafuente et al.

via specific space-time operators to situate computation in the physical world.
In [15] a minimal core calculus has been introduced to capture the key ingredi-
ents of languages that make use of computational fields. In [14] a typed variant of
the core calculus of [15] is presented. The new proposed calculus is also equipped
with a type-system ensuring self-stabilisation of any well-typed program.

The calculus proposed in this paper starts from a different perspective with
respect to the ones mentioned above. In these calculi, computational fields result
from (recursive) functional composition. These functions are typically used to
compute a single field, which may consists of a tuple of different values. In our
approach, at each step of a SMuC program a different field can be computed
and then used in the rest of the computation. This is possible because in SMuC

only monotone continuous functions over the appropriate semirings are consid-
ered. This guarantees the existence of fixpoints and the possibility to identify a
global stability in the field computation. This is not possible in other approaches.
Of course, monotonicity and continuity do not guarantee computability of the
fixpoints by iteration. Other methods may be needed. Further investigations are
needed to compare the expressive power of SMuC with respect to the languages
and calculi previously proposed in literature.

Different middleware/platforms have been proposed to support coordination
of distributed agents via computational fields [9,13,11]. In [9] the framework
TOTA (Tuples On The Air), is introduced to provide spatial abstractions for a
novel approach to distributed systems development and management, and is suit-
able to tackle the complexity of modern distributed computing scenarios, and
promotes self-organisation and self-adaptation. In [13] a similar approach has
been extended to obtain a chemical-inspired model. This extends tuple spaces
with the ability of evolving tuples mimicking chemical systems and provides
the machinery enabling agents coordination via spatial computing patterns of
competition and gradient-based interaction. Finally, in [11] a framework for dis-
tributed agent coordination via eco-laws has been proposed. This kind of laws
generalise the chemical-inspired ones [13] in a framework where self-organisation
can be injected in pervasive service ecosystems in terms of spatial structures and
algorithms for supporting the design of context-aware applications. The proposed
calculus considers computational fields at a more higher level of abstraction with
respect to the above mentioned frameworks. However, these frameworks could
provide the means for developing a distributed implementation of SMuC.

6 Conclusion

We have presented a simple calculus, named SMuC, that can be used to pro-
gram and coordinate the activities of distributed agents via computational fields.
In SMuC a computation consists of a sequence of fixpoints computed in a graph-
shaped field that represents the space topology modelling the underlying net-
work. Our graph-based fields have attributes on both nodes and arcs, where the
latter represent interaction capabilities between nodes. Under reasonable condi-
tions, fixpoints can computed via synchronised iterations. At each iteration the

A Fixpoint-Based Calculus for Graph-Shaped Computational Fields 115

attributes of a node are updated based according to the values of neighbours in
the previous iteration. SMuC is also equipped with a set of control-flow con-
structs allow one to conveniently structure the fixpoint computations. We have
also developed a prototype tool for our language, equipped with a graphical
interface that provides useful visual feedback to users of the language. We use
indeed those visual features to illustrate the application of our approach to a
robot rescue case study, for which we provide a novel rescue coordination strat-
egy, specified in SMuC.

The general aspects related to possible distributed implementation of our cal-
culus have been also discussed. We have sketched a näıve (overly synchronised)
distributed implementation and an improvement based on a spanning tree struc-
ture aimed at minimising communication and accelerating the detection of fix-
points. We are currently investigating further distribution techniques. The first
one is to perform the updates in the fixpoint iterations sequentially but respect-
ing fairness. The stable result should be the same, but efficiency should be sig-
nificantly improved if causality of iteration updates is traced, e.g. using a queue
as in Dijkstra’s shortest path algorithm. The second idea is to update variables
looking at one neighbour at a time. Under suitable conditions again the result
should be the same, but the amount of asynchrony, and thus efficiency, should
increase remarkably. Of course, particular instances of the fixpoint iterations
(e.g. when considering associative, commutative, idempotent operations) would
allow more drastic improvements by allowing agents to proceed asynchronously,
synchronising to ensure a barrier between to sequential programs.

Acknowledgments. The authors wish to thank Carlo Pinciroli for interesting discus-
sions in preliminary stages of the work.

References

1. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intelligent Systems 21, 10–19 (2006)

2. Beal, J., Michel, O., Schultz, U.P.: Spatial computing: Distributed systems that
take advantage of our geometric world. ACM Transactions on Autonomous and
Adaptive Systems 6, 11:1–11:3 (2011)

3. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
Languages for spatial computing. CoRR, abs/1202.5509 (2012)

4. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2), 201–236 (1997)

5. Canal, C., Villari, M. (eds.): ESOCC 2013. Communications in Computer and
Information Science, vol. 393. Springer, Heidelberg (2013)

6. Kühn, E., Pugliese, R. (eds.): COORDINATION 2014. LNCS, vol. 8459. Springer,
Heidelberg (2014)

7. Liò, P., Yoneki, E., Crowcroft, J., Verma, D.C. (eds.): BIOWIRE 2007. LNCS,
vol. 5151. Springer, Heidelberg (2008)

8. Lluch-Lafuente, A., Montanari, U.: Quantitative mu-calculus and CTL defined over
constraint semirings. Theor. Comput. Sci. 346(1), 135–160 (2005)

116 A. Lluch Lafuente et al.

9. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The TOTA approach. ACM Transactions on Software Engingeering and
Methodology 18, 15:1–15:56 (2009)

10. Mamei, M., Zambonelli, F.: Field-based coordination for pervasive computing ap-
plications. In: Liò et al (eds.) [7], pp. 376–386

11. Montagna, S., Viroli, M., Fernandez-Marquez, J.L., Di Marzo Serugendo, G.,
Zambonelli, F.: Injecting self-organisation into pervasive service ecosystems.
MONET 18(3), 398–412 (2013)

12. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Undergrad-
uate Topics in Computer Science. Springer (2007)

13. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. TAAS 6(2), 14 (2011)

14. Viroli, M., Damiani, F.: A calculus of self-stabilising computational fields. In: Kühn,
E., Pugliese (eds.) [6], pp. 163–178

15. Viroli, M., Damiani, F., Beal, J.: A calculus of computational fields. In: Canal, Villari
(eds.) [5], pp. 114–128

Take Command of Your Constraints!

Sung-Shik T.Q. Jongmans(�) and Farhad Arbab

Centrum Wiskunde and Informatica, Amsterdam, Netherlands
{jongmans,farhad}@cwi.nl

Abstract. Constraint automata (CA) are a coordination model based
on finite automata on infinite words. Although originally introduced for
compositional modeling of coordinators, an interesting new application
of CA is actually implementing coordinators (i.e., compiling CA to exe-
cutable code). Such an approach guarantees correctness-by-construction
and can even yield code that outperforms hand-crafted code. The extent
to which these two potential advantages arise depends on the smartness
of CA-compilers and the existence of proofs of their correctness.

We present and prove the correctness of a critical optimization for
CA-compilers: a sound and complete translation from declarative con-
straints in transition labels to imperative commands in a sequential lan-
guage. This optimization avoids expensive calls to a constraint solver at
run-time, otherwise performed each time a transition fires, and thereby
significantly improves the performance of generated coordination code.

1 Introduction

Context. A promising application domain for coordination languages is pro-
gramming protocols among threads in multicore applications. One reason for
this is a classical software engineering advantage: coordination languages typ-
ically provide high-level constructs and abstractions that more easily compose
into correct—with respect to programmers’ intentions—protocol specifications
than do conventional lower-level synchronization mechanisms (e.g., locks or sem-
aphores). However, not only do coordination languages simplify programming
protocols, but their high-level constructs and abstractions also leave more room
for compilers to perform optimizations that conventional language compilers
cannot apply. Eventually, sufficiently smart compilers for coordination languages
should be capable of generating code (e.g., in Java or in C) that can compete
with carefully hand-crafted code. Preliminary evidence for feasibility of this goal
appears elsewhere [1,2]. A crucial step toward adoption of coordination languages
for multicore programming, then, is the development of such compilers.

To study the performance advantages of using coordination languages for mul-
ticore programming, in ongoing work, we are developing compilation technology
for constraint automata (ca) [3]. Constraint automata are a general coordination
model based on finite automata on infinite words. Every ca models the behav-
ior of a single coordinator; a product operator on ca models the synchronous
composition of such coordinators (useful to construct complex coordinators out

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 117–132, 2015.
DOI: 10.1007/978-3-319-19282-6 8

118 S.-S.T.Q. Jongmans and F. Arbab

{x1; ;x2} ,
dx2 ≈ dx1

{x1; ; } ,
dy′ ≈ dx1

{; ;x2} ,
dx2 ≈ dy

{x1; ;x2, x3} ,
dx2 ≈ dx1∧ dx3 ≈ dx1

{x1, x2; ;x3} ,
dx3 ≈ f(dx1 , dx2)

{x1; ; x2} ,
R(dx1)∧ dx1 ≈ dx2

{x1; ; } , ¬R(dx1)

Sync(x1; ; x2) Fifo[y](x1;x2) Repl(x1; ;x2, x3) BinOpf (x1, x2; ;x3) FilterR(x1; ;x2)

(a) Abstract/parametric primitives

{A,B;C,D; E, F} ,
dC ≈ add(dA, dB) ∧ dD ≈ dC

∧ dE ≈ dC ∧ Odd(dD) ∧ dD ≈ dF

{A,B;C,D; E} ,
dC ≈ add(dA, dB) ∧ dD ≈ dC

∧ dE ≈ dC ∧ ¬Odd(dD)

{A; ; } , dm′ ≈ dA

λ1

λ2

λ3

λ4

λ1 : dm ≈ dB ∧ dC1 ≈ dB ∧ dC2 ≈ dB
∧ Mandarin(dC1) ∧ dD1 ≈ dC1
∧ Spanish(dC2) ∧ dD2 ≈ dC2

λ2 : dm ≈ dB ∧ dC1 ≈ dB ∧ dC2 ≈ dB
∧ Mandarin(dC1) ∧ dD1 ≈ dC1
∧ ¬Spanish(dC2)

λ3 : dm ≈ dB ∧ dC1 ≈ dB ∧ dC2 ≈ dB
∧ ¬Mandarin(dC1)
∧ Spanish(dC2) ∧ dD2 ≈ dC2

λ4 : dm ≈ dB ∧ dC1 ≈ dB ∧ dC2 ≈ dB
∧ ¬Mandarin(dC1) ∧ ¬Spanish(dC2)

Example Languages2

(b) Concrete/instantiated composites

Fig. 1. Example ca. Semicolons separate input/internal/output ports.

of simpler ones). Structurally, a ca consists of a finite set of states, a finite set
of transitions, a set of directed ports, and a set of local memory cells. Ports rep-
resent the boundary/interface between a coordinator and its coordinated agents
(e.g., computation threads). Such agents can perform blocking i/o-operations
on ports: a coordinator’s input ports admit put operations, while its output
ports admit get operations. Memory cells represent internal buffers in which a
coordinator can temporarily store data items. Different from classical automata,
transition labels of ca consist of two elements: a set of ports, called a synchro-
nization constraint, and a logical formula over ports and memory cells, called a
data constraint. A synchronization constraint specifies which ports need an i/o-
operation for its transition to fire (i.e., those ports synchronize in that transition
and their pending i/o-operations complete), while a data constraint specifies
which particular data items those i/o-operations may involve. Figure 1 already
shows some examples; details follow shortly. Essentially, a ca constrains when
i/o-operations may complete on which ports. As such, ca quite literally mate-
rialize Wegner’s definition of coordination as “constrained interaction” [4].

Given a library of “small” ca, each of which models a primitive coordina-
tor with its own local behavior, programmers can compositionally construct
“big” ca, each of which models a composite coordinator with arbitrarily com-
plex global behavior, fully tailored to the needs of these programmers and their
programs. Our current ca-compilers can subsequently generate Java/C code.
Afterward, these compilers either automatically blend their generated code into
programs’ computation code or provide programmers the opportunity to do
this manually. At run-time, the code generated for a big ca (i.e., a composite

Take Command of Your Constraints! 119

x1 x2 x1 x2

d

y x1

x2

x3

x3f

x1

x2

x1 x2φ

Sync(x1; ;x2) Fifo[y](x1;x2) Repl(x1; ;x2, x3) BinOpf (x1, x2; ;x3) FilterR(x1; ;x2)

(a) Abstract/parametric primitives (cf. Figure 1a)

A

addB C
D

E

F

Odd

d

1

1

0

A B

C1

C2

D1

D2

d
Mandarin

Spanish

Example (in black) and Fibonacci (in black+gray) Languages2

(b) Concrete/instantiated composites (cf. Figure 1b)

Fig. 2. Reo syntax for the ca in Figure 1. White vertices represent input/output ports;
black vertices represent internal ports.

coordinator) executes a state machine that simulates that ca, repeatedly firing
transitions as computation threads perform i/o-operations. Straightforward as
this may seem, one needs to overcome a number of serious issues before this
approach can yield practically useful code. Most significantly, these issues in-
clude exponential explosion of the number of states or transitions of ca, and
oversequentialization or overparallelization of generated code. We have already
reported our work on these issues along with promising results elsewhere [5,6,1,7].

Instead of programming with ca directly, one can adopt a more programmer-
friendly syntax for which ca serve as semantics. In our work, for instance, we
adopted the syntax of Reo [8,9], a graphical calculus of channels. Figure 2 already
shows some examples; details follow shortly. (Other ca syntaxes beside Reo exist
though [10,11,12,13], which may be at least as programmer-friendly.)

Problem. To fire a transition at run-time, code generated for a ca must evaluate
the data constraint of that transition: it must ensure that the data involved in
blocking i/o-operations pending on the transition’s ports satisfy that constraint.

A straightforward evaluation of data constraints requires expensive calls to a
constraint solver. Such calls cause high run-time overhead. In particular, because
transitions fire sequentially, avoiding constraint solving to reduce this sequential
bottleneck is crucial in getting good performance for the whole program.

Contribution and Organization. In this paper, we introduce a technique for
statically translating a data constraint, off-line at compile-time, into a data com-
mand : an imperative implementation (in a sequential language with assignment

120 S.-S.T.Q. Jongmans and F. Arbab

and guarded failure) of a data constraint that avoids expensive calls to a con-
straint solver at run-time. As with our previous optimization techniques [5,1,7],
we prove that the translation in this paper is sound and complete. Such correct-
ness proofs are important, because they ensure that our compilation approach
guarantees correctness-by-construction (e.g., model-checking results obtained for
pre-optimized ca also hold for their generated, optimized implementations). We
also give preliminary performance results to show our optimization’s potential.

In Section 2, we discuss data constraints and ca. In Sections 3 and 4, we
discuss our translation algorithm. In Section 5, we give preliminary performance
results. Section 6 concludes this paper. Some relatively lengthy formal definitions
and detailed proofs of Theorems 1 and 2 appear in a technical report [14].

2 Preliminaries: Data Constraints, Constraint Automata

Data constraints. Let D denote the finite set of all data items, typically ranged
over by d. Let nil /∈ D denote a special object for the empty data item. Let P

denote the finite set of all places where data items can reside, typically ranged
over by x or y; every place models either a port or a memory cells. We model
atomic coordination steps—the letters in the alphabet of ca—with elements
from the partial function space Distr = P ⇀ D ∪ {nil}, called distributions,
typically ranged over by δ. Informally, a distribution δ associates every place x
involved in the step modeled by δ with the data item δ(x) observable in x.

Let F =
⋃
{Dk → D | k > 0} and R =

⋃
{℘(Dk) | k > 0} denote the sets

of all data functions and data relations of finite arity. Let Data, Fun, and Rel

denote the sets of all data item symbols, data function symbols and data relation
symbols, typically ranged over by d, f , and R. Let arity : Fun∪Rel → N+ denote
a function that associates every data function/relation symbol with its positive
arity. Let I : Data ∪ Fun ∪Rel → D ∪ F ∪R denote a bijection that associates
every data item/function/relation symbol with its interpretation. A data term
is a word t generated by the following grammar:

t ::= dx | nil | d | f(t1 , . . . , tk) if arity(f) = k

Let Term denote the set of all data terms. Let eval : Distr × Term → D ∪
{nil} denote a function that evaluates every data term t to a data item evalδ(t)
under distribution δ. For instance, evalδ(dx) = δ(x)—if δ is defined for x—and
evalδ(d) = I(d). If a data term t contains nil or dx for some x /∈ Dom(δ), we
have evalδ(t) = nil. This ensures that eval is a total function, even though the
deltas in Distr are partial functions. See also [14, Definition 7]. We call a term
of the form dx a free variable. Intuitively, dx represents the data item residing
in place x. Let Free : Term → ℘(Term) denote a function that maps every data
term t to its set of free variables.

A data constraint is a word φ generated by the following grammar:

a ::= ⊥ | � | t ≈ t | t �≈ nil | R(t1 , . . . , tk) if arity(R) = k
φ ::= a | ¬φ | φ ∨ φ | φ ∧ φ

Take Command of Your Constraints! 121

Let DC denote the set of all data constraints. We often call t1 ≈ t2 atoms
equalities. We define the semantics of data constraints over distributions. Let
|=dc ⊆ Distr×DC denote the satisfaction relation on data constraints. Its defini-
tion is standard for ⊥ (contradiction), � (tautology), ¬ (negation), ∨ (disjunc-
tion), and ∧ (conjunction). For other atoms, we have the following:

δ |=dc t1 ≈ t2 iff evalδ(t1) = evalδ(t2) �= nil
δ |=dc t �≈ nil iff evalδ(t) �= nil (i.e., notation for δ |=dc t ≈ t)
δ |=dc R(t1 , . . . , tk) iff I(R)(evalδ(t1) , . . . , evalδ(tk))

In the second rule, if a ti evaluates to nil, the right-hand side is undefined—hence
false—because the domain of data relation I(R) excludes nil. If δ |=dc φ, we call
δ a solution for φ. Let �·� : DC → ℘(Distr) denote a function that associates
every data constraint φ with its meaning �φ� = {δ | δ |=dc φ}. We write φ ⇒ φ′ iff
�φ� ⊆ �φ′�. We also extend function Free from data terms to data constraints.

Constraint Automata. A constraint automaton (ca) is a tuple (Q , X , Y , −→ ,
ı) with Q a set of states, X ⊆ P a set of ports, Y ⊆ P a set of memory cells,
−→ ⊆ Q× (℘(X)×DC)×Q a transition relation labeled with pairs (X , φ), and
ı ∈ Q an initial state. For every label (X , φ), no ports outside X may occur in
φ. Set X consists of three disjoint subsets of input ports Xin, internal ports Xint,
and output ports Xout. We call a ca for which Xint = ∅ a primitive; otherwise,
we call it a composite.

Although generally important, we skip the definition of the product opera-
tor on ca, because it does not matter in this paper. Every ca accepts infinite
sequences of distributions [3]: (Q , X , Y , −→ , ı) accepts δ0δ1· · · if an infinite
sequence of states q0q1· · · exists such that q0 = ı and for all i ≥ 0, a transition
(qi , (X , φ) , qi+1) exists such that Dom(δi) = X and δi |=dc φ.

Without loss of generality, we assume that all data constraints occur in dis-
junctive normal form. Moreover, because replacing a transition (q , (X , φ1∨φ2) ,
q′) with two transitions (q , (X , φ1) , q

′) and (q , (X , φ2) , q
′) preserves behav-

ioral congruence on ca [3], without loss of generality, we assume that the data
constraint in every label is a conjunction of literals, typically ranged over by �.

Figure 1a shows example primitives; Figure 2a shows their Reo syntax. Sync
models a synchronous channel from an input x1 to an output x2. Fifo models
an asynchronous channel with a 1-capacity buffer y from x1 to x2. Repl models
a coordinator that, in each of its atomic coordination steps, replicates the data
item on x1 to both x2 and x3. BinOp models a coordinator that, in each of its
atomic coordination steps, applies operation f to the data items on x1 and x2

and passes the result to x3. Filter models a lossy synchronous channel from x1

to x2; data items pass this channel only if they satisfy predicate R.
Figure 1b shows example composites; Figure 2b shows their Reo syntax.

Example—our running example in this paper—consists of instantiated primi-
tives BinOpadd(A,B; ;C), Repl(C; ;D,E), and FilterOdd(D; ;F), where add and Odd

have the obvious interpretation. In each of its atomic coordination steps, if
the sum of the data items (supposedly integers) on its inputs A and B is odd,

122 S.-S.T.Q. Jongmans and F. Arbab

Example passes this sum to its outputs E and F. Otherwise, if the sum is even,
Example passes this value only to E. Figure 2b shows that Example constitutes
Fibonacci. Fibonacci coordinates two consumers by generating the Fibonacci se-
quence. Whenever Fibonacci generates an even number, it passes that number to
only one consumer; whenever it generates an odd number, it passes that num-
ber to both consumers. Finally, Languages2 consists of instantiated primitives
Fifo[m](A; ;B), Repl(B; ;C1,C2), FilterMandarin(C1; ;D1), and FilterEnglish(C2; ;D2).
Languages2 coordinates a producer and two consumers. If the producer puts
a Mandarin (resp. English) data item on input A, Languages2 asynchronously
passes this data item only to the consumer on output D1 (resp. D2). Languages2
easily generalizes to Languagesi, for i different languages; we do so in Section 5.

3 From Data Constraints to Data Commands

At run-time, compiler-generated code executes in one or more ca-threads, each of
which runs a state machine that simulates a ca. (We addressed the challenge of
deciding the number of ca-threads elsewhere [5,6,7].) The context of a ca-thread
is the collection of put/get operations on implementations of its input/output
ports, performed by computation threads. Every time the context of a ca-thread
changes, that ca-thread examines whether this change enables a transition in
its current state q: for each transition (q , (X , φ) , q′), it checks whether every
port x ∈ X has a pending i/o-operation and if so, whether the data items
involved in the pending put operations and the current content of memory cells
can constitute a solution for φ. For the latter, the ca-thread calls a constraint
solver, which searches for a distribution δ such that δ |=dc φ and δinit ⊆ δ, where:

δinit = {x �→ d | the put pending on input port x involves data item d}
∪ {y �→ d | memory cell y contains data item d} (1)

Constraint solving over a finite discrete domain (e.g., D) is np-complete [15].
Despite carefully and cleverly optimized backtracking searches, using general-
purpose constraint solving techniques for solving a data constraint φ inflicts not
only overhead proportional to φ’s size but also a constant overhead for prepar-
ing, making, and processing the result of the call itself. Although we generally
cannot escape using conventional constraint solving techniques, a practically rel-
evant class of data constraints exists for which we can: the data constraints of
many ca in practice are in fact declarative specifications of sequences of im-
perative instructions (including those in Figure 1). In this section, we therefore
develop a technique for statically translating such a data constraint φ, off-line at
compile-time, into a data command : a little imperative program that computes
a distribution δ such that δ |=dc φ and δinit ⊆ δ, without conventional constraint
solving hassle. Essentially, we formalize and automate what a programmer would
do if he/she were to write an imperative implementation of a declarative spec-
ification expressed as a data constraint. By the end of Section 4, we make the
class of data constraints supported by our translation precise.

Take Command of Your Constraints! 123

3.1 Data Commands

A data command is a word P generated by the following grammar:

P ::= skip | x := t | if φ -> P fi | P ; P

(We often write “value of x” instead of “the data item assigned to x”.)
We adopt the following operational semantics of Apt et al. [16]. True to the

idea that data commands compute solutions for data constraints, the state that
a data command executes in is either a function from places to data items—a
distribution!—or the distinguished symbol fail, which represents abnormal ter-
mination. A configuration is a pair of a data command and a state to execute
that data command in. Let ε denote the empty data command, and equate ε ;P
with P . Let δ[x := evalδ(t)] denote an update of δ as usual. The following rules
define the transition relation on configurations, denoted by =⇒.

(skip , δ) =⇒ (ε , δ) (x := t , δ) =⇒ (ε , δ[x := evalδ(t)])

δ |=dc φ

(if φ -> P fi , δ) =⇒ (P , δ)

δ �|=dc φ

(if φ -> P fi , δ) =⇒ (ε , fail)

(P , δ) =⇒ (P ′ , δ′)
(P ; P ′′ , δ) =⇒ (P ′ ; P ′′ , δ′)

Note that if φ -> P fi commands are failure statements rather than conditional
statements: if the current state violates the guard φ, execution abnormally ter-
minates. The partial correctness semantics, which ignores abnormal termination,
of a data command P in a state δ is the set of final states M(P , {δ}) = {δ′ |
(P , δ) =⇒∗ (ε , δ′)}; its total correctness semantics is the set consisting of fail
or its final states Mtot(P , {δ}) = {fail | (P , {δ}) =⇒∗ (ε , fail)} ∪M(P , {δ}).

Shortly, to prove the correctness of our translation from data constraints to
data commands, we use Hoare logic [17], where triples {φ} P {φ′} play a central
role. In such triples, φ characterizes the set of input states, P denotes the data
command to execute in those states, and φ′ characterizes the set of output states.
A triple {φ} P {φ′} holds in the sense of partial (resp. total) correctness, ifM(P ,
�φ�) ⊆ �φ′� (resp. Mtot(P , �φ�) ⊆ �φ′�). To prove properties of data commands,
we use the following sound proof systems for partial (resp. total) correctness,
represented by � (resp. �tot) and adopted from Apt et al. [16].

� {φ} skip {φ}

� {φ[dx := t]} x := t {φ}

� {φ′} P {φ′′}
and φ ⇒ φ′

and φ′′ ⇒ φ′′′

� {φ} P {φ′′′}

� {φ} P {φ′}
and � {φ′} P ′ {φ′′}
� {φ} P ; P ′ {φ′′}

� {φ ∧ φg} P {φ′}
� {φ} if φg -> P fi {φ′}

φ ⇒ φg and �tot {φ} P {φ′}
�tot {φ} if φg -> P fi {φ′}

The first four rules apply not only to � but also to �tot. We use � to prove the
soundness of our upcoming translation; we use �tot to prove its completeness.

124 S.-S.T.Q. Jongmans and F. Arbab

3.2 Precedence

Recall the following typical data constraint over ports A, B, C, D, and E, where
A and B are inputs, from Example in Figure 1b (its lower transition):

φ = dC ≈ add(dA , dB) ∧ dD ≈ dC ∧ dE ≈ dC ∧ ¬Odd(dD) (2)

To translate data constraints to data commands, the idea is to enforce equalities,
many of which occur in practice, with assignments and to check all remaining
literals with failure statements. In the case of φ, for instance, we first assign
the data items involved in their pending put operations to A and B, whose
symbols are denoted by I-1(δinit(A)) and I-1(δinit(B)), with δinit as defined in
(1), page 122. Next, we assign the evaluation of add(dA , dB) to C. The order in
which we subsequently assign the value of C to D and E does not matter. After
the assignment to D, we check ¬Odd(dD) with a failure statement. The following
data command corresponds to one possible order of the last three steps.

P = A := I-1(δinit(A)) ; B := I-1(δinit(B)) ; C := add(dA , dB) ;
D := dC ; if ¬Odd(dD) -> skip fi ; E := dC

If execution of P in an empty initial state successfully terminates, the resulting
final state δ should satisfy φ (soundness). Moreover, if a δ′ exists such that δ′ |=dc φ
and δinit ⊆ δ′, execution of P should successfully terminate (completeness).

Soundness and completeness crucially depend on the order in which assign-
ments and failure statements occur in P . For instance, changing the order of
D := dC and if ¬Odd(dD) -> skip fi yields a data command whose execu-
tion always fails (because D does not have a value yet on evaluating the guard
of the failure statement). Such a data command is trivially sound but incom-
plete. Another complication is that not every equality can become an assign-
ment. In a first class of cases, no operand matches dx. An example is add(dA ,
dB) ≈ mult(dA , dB): this equality should become a failure statement, because
neither of its two operands can be assigned to the other. In a second class of
cases, multiple equality literals have an operand that matches dx. An example
is C ≈ add(dA , dB) ∧ C ≈ mult(dA , dB): only one of these equalities should be-
come an assignment, while the other should become a failure statement, to avoid
conflicting assignments to C.

To deal with these complications, we define a precedence relation on literals
that formalizes their dependencies. Recall that the data constraint in every tran-
sition label (X , φ) is a conjunction of literals. Let Lφ denote the set of literals in
φ, and let Xin ⊆ X denote the set of input places (i.e., input ports and memory
cells) involved in the transition. From Lφ and Xin, we construct a set of literals
L to account for (i) symmetry of ≈ and (ii) the initial values of input places.

L = Lφ ∪ {t2 ≈ t1 | t1 ≈ t2 ∈ Lφ} ∪ {dx ≈ I-1(δinit(x)) | x ∈ Xin} (3)

Obviously, δ |=dc
∧
L implies δ |=dc φ for all δ (i.e., extending Lφ to L is sound).

Now, let ≺L denote the precedence relation on L defined by the following rules:

dx ≈ t , � ∈ L and dx ∈ Free(�)

dx ≈ t ≺L �

�1 ≺L �2 ≺L �3 and �2 /∈ {�1 , �3}
�1 ≺L �3

(4)

Take Command of Your Constraints! 125

dA ≈ I-1(δinit(A))

dB ≈ I-1(δinit(B))

dC ≈ add(dA , dB)

dD ≈ dC

dE ≈ dC

¬Odd(dD)

dC ≈ dD

dC ≈ dE

Fig. 3. Fragment of a digraph for an example precedence relation ≺L (e.g., without
loops and without add(dA , dB) ≈ dC, for simplicity). An arc (� , �′) corresponds to
� ≺L �′. Bold arcs represent a strict partial order extracted from ≺L.

Informally, dx ≈ t ≺L � means that assignment x := t must precede � (i.e., �
depends on x). Note also that the first rule deals with the first class of equali-
ties-that-cannot-become-assignments; shortly, we comment on the second class.

For the sake of argument—generally, this is not the case—suppose that ≺L is
a strict partial order on L. In that case, we can linearize ≺L to a total order <
on L (i.e., embedding ≺L into < such that ≺L ⊆ <) with a topological sort on
the digraph (L , ≺L) [18,19]. Intuitively, such a linearization gives us an order in
which we can translate literals in L to data commands in a sound and complete
way. In Section 3.3, we give an algorithm for doing so and indeed prove its
correctness. Problematically, however, ≺L is generally not a strict partial order
on L: it is generally neither asymmetric nor irreflexive (i.e., graph-theoretically,
it contains cycles). For instance, Figure 3 shows a fragment of the digraph (L ,
≺L) for φ in (2), page 124, which contains cycles. For now, we defer this issue
to Section 4, because it forms a concern orthogonal to our translation algorithm
and its correctness. Until then, we simply assume the existence of a procedure for
extracting a strict partial order from ≺L, represented by bold arcs in Figure 3.

Henceforth, we assume that every dxi ≈ ti literal precedes all differently
shaped literals in a linearization of≺L. Although this assumption is conceptually
unnecessary, it simplifies some of our notation and proofs. Formally, we can
enforce it by adding a third rule to the definition of ≺L:

dx ≈ t , � ∈ L and
[
� �= dx′ ≈ t′ for all x′ , t′

]

dx ≈ t ≺L �
(5)

Proposition 1. The rule in (5) introduces no cycles.

(A proof appears in the technical report [14].)

3.3 Algorithm

We start by stating the precondition of our translation algorithm. Suppose that
L as defined in (3), page 124, contains n dx ≈ t literals and m differently shaped
literals. Let ≺L denote a strict partial order on L such that for every dx ≈ t ∈ L
and for every dy ∈ Free(t), a dy ≈ t′ literal precedes dx ≈ t according to ≺L.
Then, let �1 < · · · < �n < �n+1 < · · · < �n+m denote a linearization of ≺L,

126 S.-S.T.Q. Jongmans and F. Arbab

where �i = dxi ≈ ti for all 1 ≤ i ≤ n. The three rules of ≺L in Section 3.2 induce
precedence relations for which all previous conditions hold, except that ≺L does
not necessarily denote a strict partial order; we address this issue in the next
section. The previous conditions aside, we also assume {dx1 , . . . , dxn} =

⋃
{

Free(�i) | 1 ≤ i ≤ n +m}. This extra condition means that for every free vari-
able dxi in every literal in L, a dxi ≈ ti literal exists in the linearization. If this
condition fails, some places can get a value only through search—exactly what
we try to avoid—and not through assignment. In such cases, the data constraint
is underspecified, and our translation algorithm is fundamentally inapplicable.
Finally, we trivially assume that nil does not occur syntactically in any lit-
eral. A formal definition of this precondition appears in the technical report
[14, Figure 10].

P ← skip
i ← 1
while i ≤ n do

if dxi
∈ {dxj

| 1 ≤ j < i} then

P ← P ; if dxi
≈ ti -> skip fi

else
P ← P ; xi := ti

i ← i+ 1

while i ≤ n + m do
P ← P ; if �i -> skip fi
i ← i+ 1

Fig. 4. Algorithm to translate data
constraints to data commands

Figure 4 shows our algorithm. It first
loops over the first n (according to <)
dx ≈ t literals. If an assignment for x
already exists in data command P , the
algorithm translates dx ≈ t to a failure
statement; if not, it translates dx ≈ t
to an assignment. This approach resolves
issues with the second class of equali-
ties-that-cannot-become-assignments. Af-
ter the first loop, the algorithm uses a
second loop to translate the remaining m
differently shaped literals to failure state-
ments. The algorithm runs in time linear in n+m, and it clearly terminates.

The desired postcondition of the algorithm consists of its soundness and com-
pleteness. We define soundness as � {�} P {�1 ∧ · · · ∧ �n+m}: after running the
algorithm, execution of data command P yields a state that satisfies all literals
in L on successful termination. We define completeness as

[[
δ′ |=dc �1∧· · ·∧ �n+m

implies �tot {�} P {�}
]
for all δ′

]
: after running the algorithm, if a dis-

tribution δ′ exists that satisfies all literals in L, data command P successfully
terminated. Although soundness subsequently guarantees that the final state δ
satisfies all literals in L, generally, δ �= δ′. We use a different proof system for
soundness (partial correctness, �) than for completeness (total correctness, �tot).

Theorem 1 ([14, Theorem 3]). The algorithm is sound and complete.

(A proof appears in the technical report [14].)

4 Handling Cycles

Our algorithm assumes that a precedence relation ≺L as defined in Section 3.2
is a strict partial order. However, this is generally not the case. In this section,
we describe a procedure for extracting a strict partial order from ≺L without
losing essential dependencies. We start by adding a distinguished symbol � to

Take Command of Your Constraints! 127

�

dA ≈ I-1(δinit(A))

dB ≈ I-1(δinit(B))

dC ≈ add(dA , dB)

dD ≈ dC

dE ≈ dC

¬Odd(dD)

dC ≈ dD

dC ≈ dE

Fig. 5. Fragment of the b-graph corresponding to the digraph in Figure 3 (e.g., without
looping b-arcs and without add(dA , dB) ≈ dC, for simplicity). Bold b-arcs represent an
arborescence.

the domain of ≺L, and we extend the definition of ≺L with the following rules:

� ∈ L and Free(�) = ∅
� ≺L �

dx ≈ t ∈ L and Free(t) = ∅
� ≺L dx ≈ t

(6)

These rules state that literals without free variables (e.g., dx ≈ I-1(δinit(x))) do
not depend on other literals. Now, ≺L is a strict partial order if the digraph (L∪
{�} , ≺L) is a�-arborescence: a digraph consisting of n−1 arcs such that each of
its n vertices is reachable from � [20]. Equivalently, in a �-arborescence, � has
no incoming arcs, every other vertex has exactly one incoming arc, and the arcs
form no cycles [20]. The first formulation is perhaps most intuitive here: every
path from � to some literal � represents an order in which our algorithm should
translate the literals on that path to ensure the correctness of the translation of
�. The second formulation simplifies observing that arborescences correspond to
strict partial orders (by their cycle-freeness).

A naive approach to extract a strict partial order from ≺L is to compute a
�-arborescence of the digraph (L∪{�} , ≺L). Unfortunately, however, this ap-
proach generally fails for dx ≈ t literals where t has more than one free variable.
For instance, by definition, every arborescence of the digraph in Figure 3 has
only one incoming arc for dC ≈ add(dA , dB), even though assignments to both A
and B must precede an assignment to C. Because these dependencies exist as two
separate arcs, no arborescence of a digraph can capture them. To solve this, we
should somehow represent the dependencies of dC ≈ add(dA , dB) with a single
incoming arc. We can do so by allowing arcs to have multiple tails (i.e., one for
every free variable). In that case, we can replace the two separate incoming arcs
of dC ≈ add(dA , dB) with a single two-tailed incoming arc as in Figure 5. The
two tails make explicit that to evaluate an add-term, we need values for both its
arguments: multiple tails represent a conjunction of dependencies of a literal.

By replacing single-tail-single-head arcs with multiple-tails-single-head arcs,
we effectively transform the digraphs considered so far into b-graphs , a special
kind of hypergraph with only b-arcs (i.e., backward hyperarcs, i.e., hyperarcs
with exactly one head) [21]. Deriving a b-graph over literals from a precedence
relation as defined in Section 3.2 is generally impossible though: their richer
structure makes b-graphs more expressive—they give more information—than
digraphs. In contrast, one can easily transform a b-graph to a precedence relation
by splitting b-arcs into single-tailed arcs in the obvious way. Deriving precedence

128 S.-S.T.Q. Jongmans and F. Arbab

relations from more expressive b-graphs is therefore a correct way of obtaining
strict partial orders that satisfy the precondition of our algorithm. Doing so just
eliminates information that this algorithm does not care about anyway.

Thus, we propose the following. Instead of formalizing dependencies among
literals in a set L ∪ {�} directly as a precedence relation, we first formalize
those dependencies as a b-graph. If the resulting b-graph is a �-arborescence,
we can directly extract a precedence relation ≺L. Otherwise, we compute a
�-arborescence of the resulting b-graph and extract a precedence relation ≺L

afterward. Either way, because ≺L is extracted from a �-arborescence, it is a
strict partial order whose linearization satisfies the precondition of our algorithm.

Let �L denote a set of b-arcs on L∪ {�} defined by the following rules, plus
the straightforward b-arcs adaptation of the rules in (6), page 127:

� ∈ L
and Free(�) = {dx1 , . . . , dxk

}
and dx1 ≈ t1 , . . . , dxk

≈ tk ∈ L

{dx1 ≈ t1 , . . . , dxk
≈ tk} �L �

dx ≈ t ∈ L
and Free(t) = {dx1 , . . . , dxk

}
and dx1 ≈ t1 , . . . , dxk

≈ tk ∈ L

{dx1 ≈ t1 , . . . , dxk
≈ tk} �L dx ≈ t

(7)

The first rule generalizes the first rule in (4), page 124, by joining sets of depen-
dencies of a literal in a single b-arc. The second rule states that dx ≈ t literals do
not necessarily depend on dx (as implied by the first rule) but only on the free
variables in t: intuitively, a value for x can be derived from values of the free vari-
ables in t (cf. assignments). Note that literals can have multiple incoming b-arcs.
Such multiple incoming b-arcs represent a disjunction of conjunctions of depen-
dencies. Importantly, as long as all dependencies represented by one incoming
b-arc are satisfied, the other incoming b-arcs do not matter. An arborescence,
which contains one incoming b-arc for every literal, therefore preserves enough
dependencies. Shortly, Theorem 2 makes this more precise. Figure 5 shows a
fragment of the b-graph for data constraint φ in (2), page 124.

One can straightforwardly compute an arborescence of a b-graph (L ∪ {�} ,
�L) with a graph exploration algorithm reminiscent of breadth-first search. Let
�arb

L ⊆ �L denote the aborescence under computation, and let Ldone ⊆ L denote
the set of vertices (i.e., literals in L) that have already been explored; initially,
�arb

L = ∅ and Ldone = {�}. Now, given some Ldone, compute a set of vertices
Lnext that are connected only to vertices in Ldone by a b-arc in �L. Then, for
every vertex in Lnext, add an incoming b-arc to �arb

L .1 Afterward, add Lnext to
Ldone. Repeat this process until Lnext becomes empty. Once that happens, either
�arb

L contains an arborescence (if Ldone = L) or no arborescence exists. This
computation runs in linear time, in the size of the b-graph. See also Footnote 1.

1 If a vertex � in Lnext has multiple incoming b-arcs, the choice among them matters
not: the choice is local, because every b-arc has only one head (i.e., adding an �-
headed b-arc to �arb

L cannot cause another vertex to get multiple incoming b-arcs,
which would invalidate the arborescence). General hypergraphs, whose hyperarcs
can have multiple heads, violate this property (i.e., the choice of which hyperarc
to add is global instead of local). Computing arborescences of such hypergraphs is
np-complete [22], whereas one can compute aborescences of b-graphs in linear time.

Take Command of Your Constraints! 129

Given �arb
L , the following rules yield a cycle-free precedence relation on L∪{�}:

{�1 , . . . , �k} �arb
L � and 1 ≤ i ≤ k

�i ≺L �

�1 ≺L �2 ≺L �3 and �2 /∈ {�1 , �3}
�1 ≺L �3

(8)

Theorem 2 ([14, Theorem 4]). ≺L as defined by the rules in (5)(8), pages 125
and 129, is a strict partial order and a large enough subset of ≺L as defined by
the rules in (4)(5)(6), pages 124, 125, and 127, to satisfy the precondition of our
translation algorithm in Section 3.3.

(A proof appears in the technical report [14].) For instance, the bold arcs in
Figure 3 represent the precedence relation for the arborescence in Figure 5.

If a �-arborescence of (L ∪ {�} , �L) does not exist, every |L|-cardinality
subset of �L has at least one vertex � that is unreachable from �. In that case,
by the rules in (6), page 127, � depends on at least one free variable (otherwise,
{�} �L �). Because no b-graph equivalent of a path [23] exists from � to �, the
other literals in L fail to resolve at least one of �’s dependencies. This occurs, for
instance, when � depends on dy, while L contains no dy ≈ t literal. Another ex-
ample is a recursive literal dx ≈ t with dx ∈ Free(t): unless another literal dx ≈ t′

with t �= t′ exists, all its incoming b-arcs contain loops to itself, meaning that no
arborescence exists. In practice, such cases inherently require constraint solving
techniques to find a value for dx. Nonexistence of a �-arborescence thus signals
a fundamental boundary to the applicability of our translation algorithm (al-
though more advanced techniques of translating some parts of a data constraint
to a data command and leaving other parts to a constraint solver are imaginable
and left for future work). Thus, the set of data constraints to which our trans-
lation algorithm is applicable contains exactly those (i) whose b-graph has a
�-arborescence, which guarantees linearizability of the induced precedence, and
(ii) that satisfy also the rest of the precondition of our algorithm in Section 3.3.

5 Preliminary Performance Results

In the work that we presented in this paper, we focused on the formal definition
of our translation and its proof of correctness. A comprehensive quantitative
evaluation remains future work. Indeed, constructing a set of representative ex-
amples, identifying independent variables that may influence the outcome (e.g.,
number of cores, memory architecture, etc.), setting up and performing the cor-
responding experiments, processing/analyzing the measurements, and eventually
presenting the results is a whole other challenge. Still, presenting an optimization
technique and not shedding any light on its performance may leave the reader
with an unsatisfactory feeling. Therefore, in this section, we provide preliminary
performance results to give a rough indication of our translation’s merits.

We extended our most recent ca-to-Java compiler and used this compiler to
generate both constraint-based coordination code (i.e., generated without our
translation) and command-based coordination code (i.e., generated with our
translation) for ten coordinators modeled as ca: three elementary primitives

130 S.-S.T.Q. Jongmans and F. Arbab

Constr. Comm. ×
Sync 33119333 39800986 1.20
Fifo 33050122 41398084 1.25
Replicator 17961129 21803913 1.21
Example 10573857 12687767 1.20
Fibonacci 1818671 88947751 48.91

Constr. Comm. ×
Language2 17278247 24646838 1.43
Language4 4423326 11512506 2.60
Language6 1062306 5294838 4.98
Language8 194374 1746440 8.98
Language10 25649 362050 14.12

Fig. 6. Preliminary performance results for ten coordinators. Column “Constr.” shows
results for constraint-based implementations (in number of coordination steps com-
pleted in four minutes); column “Comm.” shows restults for command-based imple-
mentations; column “×” shows the ratio of the second over the first.

from Figures 1a and 2a (to see how our optimization affects such basic cases)
and seven more complex composites, including those in Figures 1b and 2b. See
Section 2 for a discussion of these coordinators’ behavior. The constraint-based
implementations use a custom constraint solver with constraint propagation [24],
tailored to our setting of data constraints. The data commands in the generated
command-based implementations are imperative Java code, very similar to what
programmers would hand-craft (modulo style).

In total, thus, we generated twenty coordinators in Java. We ran each of
those implementations ten times on a quadcore machine at 2.4 ghz (no Hyper-
Threading; no Turbo Boost) and averaged our measurements. In every run, we
warmed up the Jvm for thirty seconds before starting to measure the number
of coordination steps that an implementation could finish in the subsequent
four minutes. Figure 6 shows our results. The command-based implementations
outperform their constraint-based versions in all cases. The Languagei coordi-
nators furthermore show that the speed-up achieved by their command-based
implementations increases as i increases. This may suggest that our optimiza-
tion becomes relatively more effective as the size/complexity of a coordinator
increases, as also witnessed by Fibonacci. Figure 6 shows first evidence for the
effectiveness of our translation in practice, although further study is necessary.

6 Discussion

In constraint programming, it is well-known that “if domain specific methods are
available they should be applied instead [sic] of the general methods” [24, page 2].
The work presented in this paper takes this guideline to an extreme: essentially,
every data command generated for a data constraint φ by our translation algo-
rithm is a little constraint solver capable of solving only φ, with good perfor-
mance. This good performance comes from the fact that the order of performing
assignments and failure statements has already been determined at compile-time.
Moreover, this precomputed order guarantees that backtracking is unnecessary:
the data constraint for φ finds a solution if one exists without search (i.e., The-
orem 1). In contrast, general constraint solvers need to do this work, which our
approach does at compile-time, as part of the solving process at run-time.

Execution of data commands bears similarities with constraint propagation
techniques [24], in particular with forward checking [25,26]. Generally, in

Take Command of Your Constraints! 131

constraint propagation, the idea is to reduce the search space of a given con-
straint satisfaction problem (csp) by transforming it into an equivalent “sim-
pler” csp, where variables have smaller domains, or where constraints refer to
fewer variables. With forward checking, whenever a variable x gets a value v,
a constraint solver removes values from the domains of all subsequent variables
that, together with v, violate a constraint. In the case of an equality x = y, for
instance, forward checking reduces the domain of y to the singleton {v} after an
assignment of v to x. That same property of equality is implicitly used in exe-
cuting our data commands (i.e., instead of representing the domain of a variable
and the reduction of this domain to a singleton explicitly, we directly make an
assignment).

Our translation from data constraints to data commands may also remind
one of classical Gaussian eliminination for solving systems of linear equations
over the reals [24]: there too, variables are ordered and values/expressions for
some variables are substituted into other expressions. The difference is that we
have functions, relations, and our data domain may include other data types,
which makes solving data constraints directly via Gaussian elimination at least
not obvious. However, Gaussian elimination does seem useful as a preprocessing
step for translating certain data constraints to data commands that our current
algorithm does not support. Future work should clarify this possibility.

Clarke et al. worked on purely constraint-based implementations of coordi-
nators [27]. Essentially, they specify not only the transition labels of a ca as
boolean constraints but also its state space and transition relation. In recent
work, Proença and Clarke developed a variant of compile-time predicate abstrac-
tion to improve performance [28]. They used this technique also to allow a form
of interaction between the constraint solver and external components during con-
straint solving [29]. The work of Proença and Clarke resembles ours in the sense
that we all try to “simplify” constraints at compile-time. Main differences are
that (i) we fully avoid constraint solving and (ii) we consider a richer language
of data constraints. For instance, Proença and Clarke have only unary functions
in their language, which would have cleared our need for b-graphs.

References

1. Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-Based Optimization of Inter-
action Protocols for Scalable Multicore Platforms. In: Kühn, E., Pugliese, R. (eds.)
COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014)

2. Jongmans, S.S., Halle, S., Arbab, F.: Reo: A Dataflow Inspired Language for Mul-
ticore. In: DFM, 42–50. IEEE (2013)

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. SCP 61, 75–113 (2006)

4. Wegner, P.: Coordination as Constrained Interaction (Extended Abstract). In:
Hankin, C., Ciancarini, P. (eds.) COORDINATION 1996. LNCS, vol. 1061,
pp. 28–33. Springer, Heidelberg (1996)

5. Jongmans, S.-S.T.Q., Arbab, F.: Global consensus through local synchronization.
In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 174–188. Springer,
Heidelberg (2013)

132 S.-S.T.Q. Jongmans and F. Arbab

6. Jongmans, S.S., Arbab, F.: Toward Sequentializing Overparallelized Protocol Code.
In: ICE. EPTCS, vol. 166. CoRR, 38–44 (2014)

7. Jongmans, S.-S., Santini, F., Arbab, F.: Partially-Distributed Coordination with
Reo. In: PDP 2014, pp. 697–706. IEEE (2014)

8. Arbab, F.: Reo: a channel-based coordination model for component composition.
MSCS 14(3), 329–366 (2004)

9. Arbab, F.: Puff, The Magic Protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.)
Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000,
pp. 169–206. Springer, Heidelberg (2011)

10. Arbab, F., Kokash, N., Meng, S.: Towards Using Reo for Compliance-Aware Busi-
ness Process Modeling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS,
vol. 17, pp. 108–123. Springer, Heidelberg (2008)

11. Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model
Formalization. In: Buhnova, B., Happe, J. (eds.) FESCA 2010, pp. 147–156 (2010)

12. Meng, S., Arbab, F., Baier, C.: Synthesis of Reo circuits from scenario-based in-
teraction specifications. SCP 76(8), 651–680 (2011)

13. Bliudze, S., Sifakis, J.: Causal semantics for the algebra of connectors. FMSD 36(2),
167–194 (2010)

14. Jongmans, S.S., Arbab, F.: Take Command of Your Constraints (Technical Re-
port). Technical Report FM-1501, CWI (2015)

15. Russell, S., Norvig, P.: Artificial Intelligence, 2nd edn. Prentice-Hall (2003)
16. Apt, K., de Boer, F., Olderog, E.-R.: Verification of Sequential and Concurrent

Programs, 3rd edn. Springer (2009)
17. Hoare, T.: An Axiomatic Basis for Computer Programming. CACM 12(10),

576–580 (1969)
18. Kahn, A.: Topological Sorting in Large Networks. CACM 5(11), 558–562 (1962)
19. Knuth, D.: Fundamental Algorithms, 3rd edn. The Art of Computer Programming,

vol. 1. Addison-Wesley (1997)
20. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th

edn. Algorithms and Combinatorics, vol. 21. Springer (2008)
21. Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and appli-

cations. DAM 42, 177–201 (1993)
22. Woeginger, G.: The complexity of finding arborescences in hypergraphs. IPL 44,

161–164 (1992)
23. Ausiello, G., Franciosa, P.G., Frigioni, D.: Directed Hypergraphs: Problems, Algo-

rithmic Results, and a Novel Decremental Approach. In: Restivo, A., Ronchi Della
Rocca, S., Roversi, L. (eds.) ICTCS 2001. LNCS, vol. 2202, pp. 312–328. Springer,
Heidelberg (2001)

24. Apt, K.: Principles of Constraint Programming. Cambridge University Press (2009)
25. Bessière, C., Meseguer, P., Freuder, E., Larrosa, J.: On forward checking for non-

binary constraint satisfaction. Artificial Intelligence 141, 205–224 (2002)
26. McGregor, J.: Relational consistency algorithms and their application in finding

subgraph and graph isomorphism. Information Science 19, 229–250 (1979)
27. Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via

constraint satisfaction. SCP 76(8), 681–710 (2011)
28. Proença, J., Clarke, D.: Data Abstraction in Coordination Constraints. In: Canal,

C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 159–173. Springer,
Heidelberg (2013)

29. Proença, J., Clarke, D.: Interactive Interaction Constraints. In: De Nicola, R.,
Julien, C. (eds.) COORDINATION 2013. LNCS, vol. 7890, pp. 211–225. Springer,
Heidelberg (2013)

A Labelled Semantics
for Soft Concurrent Constraint Programming

Fabio Gadducci1(�), Francesco Santini2, Luis F. Pino3, and Frank D. Valencia4

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
fabio.gadducci@unipi.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
francesco.santini@iit.cnr.it

3 Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
luis.pino@unica.it

4 CNRS and LIX, École Polytechnique de Paris, Palaiseau, France
frank.valencia@lix.polytechnique.fr

Abstract. We present a labelled semantics for Soft Concurrent Constraint
Programming (SCCP), a language where concurrent agents may synchro-
nize on a shared store by either posting or checking the satisfaction of (soft)
constraints. SCCP generalizes the classical formalism by parametrising the
constraint system over an order-enriched monoid: the monoid operator is
not required to be idempotent, thus adding the same information several
times may change the store. The novel operational rules are shown to
offer a sound and complete co-inductive technique to prove the original
equivalence over the unlabelled semantics.

1 Introduction

Concurrent Constraint Programming (CCP) [21] is a language based on a shared-
memory communication pattern: processes may interact by either posting or
checking partial information, which is represented as constraints in a global
store. CCP belongs to the larger family of process calculi, thus a syntax-driven
operational semantics represents the computational steps. For example, the term
tell(c) is the process that posts c in the store, and the term ask(c) → P is the
process that executes P if c can be derived from the information in the store.

The formalism is parametric with respect to the entailment relation. Under the
name of constraint system, the information recorded on the store is structured as a
partial order (actually, a lattice) ≤, where c ≤ d means that c can be derived from
d. Under a few requirements over such systems, CCP has been provided with
(coincident) operational and denotational semantics. More recently, a labelled
semantics has also been provided, and the associated weak bisimilarity proved
to coincide with the original semantics [1].

The research has been partially supported by the MIUR PRIN 2010LHT4KM CINA
and PRIN 2010XSEMLC “Security Horizons”, by the ANR 12IS02001 PACE, and by
the Aut. Reg. of Sardinia P.I.A. 2010 “Social Glue”.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 133–149, 2015.
DOI: 10.1007/978-3-319-19282-6_9

134 F. Gadducci et al.

A key aspect of CCP is the idempotency of the operator for composing con-
straints: adding the same information twice does not change the store. On the
contrary, the soft variant of the formalism (Soft CCP, or just SCCP [7]) drops
idempotency: constraint systems in SCCP may distinguish the number of oc-
currences of a piece of information. Dropping idempotency requires a complete
reworking of the theory. Although an operational semantics for SCCP has been
devised [7], hitherto neither the denotational nor the labelled one has been
reintroduced. This is unfortunate since due to its generality, SCCP has been suc-
cessfully applied as a specification formalism for negotiation of Service Level
Agreements [10], or the enforcement of ACL-based access control [8].

The objective of our work is the development of a general theory for the
operational as well as the denotational semantics of SCCP, via the introduction
of suitable behavioral equivalences. Reaching this objective is technically chal-
lenging, since most of the simplicity of CCP is based precisely on the premise
that posting an information multiple times is the same as posting it only once.

As a language, SCCP has been used as a specification formalism for agents
collaborating via a shared knowledge basis, possibly with temporal features [4].
Thus, on a methodological level, the development of behavioural equivalences
for SCCP may result in the improvement on the analysis techniques for agents
that need to reason guided by their preferences, more so if their knowledge (e.g.
of their environment) is not complete. Indeed, the paper shows that systems
specified by SCCP may benefit from the feasible proof and verification methods
typically associated with bisimilarity, compared with the classical analysis based
on (possibly infinite) sequences of computations. This is true also whenever
agents have to coordinate despite the global problem being over-constrained
(i.e., admitting no solution), and simulation may serve as a powerful mechanism
for distilling suitable approximated solutions.

Contribution.The work in [21] establishes a denotational semantics for CCP and
an equational theory for infinite agents. More recently, in [1] the authors prove
that the axiomatisation is underlying a specific weak bisimilarity among agents,
thus providing a clear operational understanding. The key ingredients are a
complete lattice as the domain of the store, with least upper bound for constraint
combination, and a notion of compactness such that domain equations for the
parallel composition of recursive agents would be well-defined. On the contrary,
the soft version [7] drops the upper bound for combination in exchange of a more
general monoidal operator. Thus, the domain is potentially just a (not necessarily
complete) partial order, possibly with finite meets and a residuation operator
(a kind of inverse of the monoidal one) in order to account for algorithms
concerning constraint propagation. Indeed, the main use of SCCP has been in
the generalisation of classical constraint satisfaction problems, hence the lack of
investigation about e.g. compactness and denotational semantics.

Therefore, in this paper we connect the works on the soft [7] and the classical
(also indicated in the literature as “crisp”) [21,1] paradigm by investigating a
labelled semantics for SCCP. In particular, the results will be a mix of those
investigated in the two communities, namely, a monoid whose underlying set

A Labelled Semantics for Soft Concurrent Constraint Programming 135

of elements form a complete lattice. We will recast the notion of compactness,
and afterwards the SCCP semantics, thus making the work a direct extension
of the proposal for the crisp language. We will then introduce a novel labelled
semantics for SCCP which will allow us to give a sound and complete technique
to prove the equivalence over the unlabelled semantics.

2 A Few Technical Remarks (with Some Novelty)

This section recalls the main notions we are going to need later on. First of all,
we present some basic facts concerning monoids [15] enriched over complete
lattices. These are used to recast the standard presentation of the soft constraints
paradigm, and to generalise the classical crisp one.

2.1 Lattice-Enriched Monoids

Definition 1 (Complete Lattices). A partial order (PO) is a pair 〈A,≤〉 such that A
is a set of values and≤ ⊆ A×A is a reflexive, transitive, and anti-symmetric relation. A
complete lattice (CL) is a PO such that any subset of A has a least upper bound (LUB).

We denote as
∨

X the necessarily unique LUB of a subset X ⊆ A, and explicitly
⊥ and 	 if we are considering the empty set and the whole A, respectively: the
former is the bottom and the latter is the top of the PO. Obviously, CLs also
have the greatest lower bound (GLB) for any subset Y ⊆ A, denoted as

∧
Y.

In the following we fix a CL C = 〈A,≤〉.
Definition 2 (Compact Elements). An element a ∈ A is compact (or finite) if when-
ever a ≤ ∨Y there exists a finite subset X ⊆ Y such that a ≤ ∨X.

Note that for complete lattices the definition of compactness given above
coincides with the one using directed subsets. It will be easier to generalise it,
though, to compactness with respect to the monoidal operator (see Def. 6). We
let AC ⊆ A denote the set of compact elements ofC. Note that AC might be trivial.
Consider e.g. the CL 〈[0, 1],≥〉 (the segment of the reals with the inverse of the
usual order), used for probabilistic constraints [12]: only the bottom element 1
is compact. As we will see, the situation for the soft paradigm is more nuanced.

Definition 3 (Monoids). A commutative monoid with identity (IM) is a triple 〈A,
⊗, 1〉 where ⊗ : A × A → A is a commutative and associative function and ∀a ∈
A. ⊗ (a, 1) = a.

We will often use an infix notation, such as a ⊗ b for a, b ∈ A. The monoidal
operator can be defined for any multi-set: it is given for a family of elements
ai ∈ A indexed over a finite, non-empty set I, and it is denoted by

⊗

i∈I ai.
Whenever for an index set I all the ai’s are different, we write

⊗
S instead of⊗

i∈I ai for the set S = {ai | i ∈ I}. Conventionally, we also denote
⊗ ∅ = ⊥.

We now move our attention to the domain of values we are going to consider.

136 F. Gadducci et al.

Definition 4 (CL-enriched IMs). A CL-enriched IM (CLIM) is a triple S = 〈A,≤,⊗〉
such that 〈A,≤〉 is a CL, 〈A,⊗,⊥〉 is an IM, and furthermore the following holds

(distributivity) ∀a ∈ A.∀X ⊆ A. a ⊗∧X =
∧{a ⊗ x | x ∈ X}

Remark 1. The reader who is familiar with the soft constraint literature may
have noticed that we have basically rewritten the standard presentation using a
CLIM instead of an absorptive semiring, recently popularized as c-semiring [6],
where the a ⊕ b operator is replaced by the binary LUB a ∨ b. Besides what we
consider a streamlined presentation, the main advantage in the use of CLIMs is
the easiness in defining the LUB of infinite sets and, as a consequence, the notion
of ⊗-compactness given below. An alternative solution using infinite sums can
be found in [14, Section 3], and a possible use is sketched in [5].

Thanks to distributivity, we can show that ⊗ is monotone, and since ⊥ is the
identity of the monoid, monotonicity implies that the combination of constraints
is increasing, i.e., ∀a, b ∈ A.a ≤ a ⊗ b holds. Finally, we recall that by definition∧ ∅ = 	, so that ∀a ∈ A.a ⊗ 	 = 	 also holds.1

In the following, we fix a CLIM S = 〈A,≤,⊗〉. The next step is to provide a
notion of infinite composition. Our definition is from [15] (see also [14, p. 42]).

Definition 5 (Infinite Composition). Let I be a (countable) set of indexes. Then,
composition

⊗

i∈I ai is given as
∨

J⊆I

⊗

j∈J aj for all finite subsets J.

Should I be finite, the definition gives back the usual multiset composition,
since ⊗ is monotone and increasing. Indeed, as the infinitary composition is also
monotone and increasing, and by construction

⊗
A =
∨

A = 	 holds. We now
provide a notion of compactness with respect to the monoidal operator.

Definition 6 (⊗-compact Elements). An element a ∈ A is ⊗-compact (or ⊗-finite) if
whenever a ≤⊗i∈I ai then there exists a finite subset J ⊆ I such that a ≤⊗ j∈J aj.

We let A⊗ ⊆ A denote the set of⊗-compact elements of S. It is easy to show that
a compact element is also ⊗-compact, i.e. AC ⊆ A⊗. Indeed, the latter notion is
definitively more flexible. Consider e.g. the CLIM 〈[0, 1],≥,×〉 examined above,
which corresponds to the segment of the reals with the inverse of the usual
order and multiplication as monoidal product. Since any infinite multiplication
tends to 0, then all the elements are ⊗-compact, except the top element itself,
that is, precisely 0.

Remark 2. It is easy to show that idempotency implies that
⊗

coincides with
LUBs, that is,

⊗
S =
∨

S for all subsets S ⊆ A. In other words, the whole soft
structure collapses to a complete distributive lattice. Indeed, requiring distribu-
tivity makes the soft paradigm not fully comparable with the crisp one. We are
going to discuss it again in the concluding remarks.

1 A symmetric choice 〈A,⊗,	〉with distributivity with respect to
∨

(and thus a⊗⊥ = ⊥)
is possible: the monoidal operator would be decreasing, so that for example a⊗ b ≤ a.
Indeed, this is the usual order in the semiring-based approach to soft constraints [5].

A Labelled Semantics for Soft Concurrent Constraint Programming 137

2.2 Some Operators: Residuation and Cylindrification

We close this section by presenting two operators on CL-enriched IMs.
The first is a simple construction for building a weak inverse of the monoidal

operator in CL-enriched monoids, known in the literature as residuation [14,13].

Definition 7 (Residuation). Let a, b ∈ A. The residuation of a with respect to b is
defined as a�÷ b =

∧{c ∈ A | a ≤ b ⊗ c}.
The definition conveys the intuitive meaning of a division operator: indeed,

a ≤ b ⊗ (a�÷ b), thanks to distributivity. Also, (a ⊗ b)�÷ b ≤ a and a�÷ (b ⊗ c) =
(a�÷ b)�÷ c. Residuation is monotone on the first argument: if a ≤ b then a�÷ c ≤
b�÷ c and a�÷ b = ⊥. For more properties of residuation we refer to [3, Tab. 4.1].

Most important for our formalism is the following result on ⊗-compactness.

Lemma 1. Let a, b ∈ A. If a is ⊗-compact, so is a�÷ b.

Proof. If a�÷ b ≤⊗i∈I ai, then by monotonicity a ≤⊗i∈I�{∗} ai for a∗ = b. By ⊗-
compactness of a there exists a finite J ⊆ I such that a ≤⊗ j∈J�{∗} aj, and by the
definition of division a�÷ b ≤⊗ j∈J aj, hence the result holds. ��

Most standard soft instances (boolean, fuzzy, probabilistic, weighted, and so
on) are described by CL-enriched monoids and are residuated: see e.g. [5]. For
these instances the �÷ operator is used to (partially) remove constraints from the
store, and as such is going to be used in Section 4. In fact, in the soft literature it is
required a tighter relation of (full) invertibility, also satisfied by all the previous
CLIMs instances, stated in our framework by the definition below.

Definition 8. A CLIM S is invertible if b ≤ a implies b ⊗ (a�÷b) = a for all a, b ∈ A⊗.

We now consider two families of operators for modelling the hiding of local
variables and the passing of parameters in soft CCP. They can be considered as
generalised notions of existential quantifier and diagonal element [21], which
are expressed in terms of operators of cylindric algebras [18]. 2

Definition 9 (Cylindrification). Let V be a set of variables. A cylindric operator ∃
over S and V is given by a family of monotone, ⊗-compactness preserving functions
∃x : A→ A indexed by elements in V such that for all a, b ∈ A and x, y ∈ V

1. ∃xa ≤ a;
2. ∃x(a ⊗ ∃xb) = ∃xa ⊗ ∃xb;
3. ∃x∃ya = ∃y∃xa.

Let a ∈ A. The support of a is the set of variables sv(a) = {x ∈ V | ∃xa � a}.
For a finite X ⊆ V we denote by ∃Xa any sequence of function applications.

Also, we fix a set of variables V and a cylindric operator ∃ over CLIM S and V.

2 However, since we consider monoids instead of groups, the set of axioms of diagonal
operators is included in the standard one for cylindric algebras.

138 F. Gadducci et al.

Definition 10 (Diagonalisation). A diagonal operator δ for ∃ is given by a family
of idempotent elements δx,y ∈ A indexed by pairs of elements in V such that δx,y = δy,x

and for all a ∈ A and x, y, z ∈ V

1. δx,x = ⊥;
2. if z � {x, y} then δx,y = ∃z(δx,z ⊗ δz,y);
3. if x � y then a ≤ δx,y ⊗ ∃x(a ⊗ δx,y).

Axioms 1 and 2 above plus idempotency imply that ∃xδx,y = ⊥, which in turn
implies (again with axiom 2 and idempotency of ∃) that sv(δx,y) = {x, y} for x � y.
Diagonal operators are going to be used for modelling variable substitution and
parameter passing. In the following, we fix a diagonal operator δ for ∃.

Definition 11 (Substitution). Let x, y ∈ V and a ∈ A. The substitution a[y/x] is
defined as a if x = y and as ∃x(δx,y ⊗ a) otherwise.

We now rephrase some of the laws holding for the crisp case (see [1, p.140]).

Lemma 2. Let x, y ∈ V and a ∈ A. Then it holds

1. y � sv(a) implies (a[y/x])[x/y] = a;
2. a[y/x] ⊗ b[y/x] = (a ⊗ b)[y/x];
3. x � sv(a[y/x]).

Proof. Consider e.g. the most difficult item 2. By definition a[y/x] ⊗ b[y/x] =
∃x(δx,y ⊗ a) ⊗ ∃x(δx,y ⊗ b), which in turn coincides with ∃x(δx,y ⊗ a ⊗ ∃x(δx,y ⊗ b))
by axiom 2 of ∃; by axiom 3 of δx,y we have that (a ⊗ b)[y/x] = ∃x(δx,y ⊗ a ⊗ b) ≤
∃x(δx,y⊗a⊗∃x(δx,y⊗b)), while the vice versa holds by the monotonicity of ∃x. ��

3 Deterministic Soft CCP

We now introduce our language. We fix an invertible CLIM S = 〈C,≤,⊗〉, which
is also cylindric over a set of variables V, denoting by c an element in C⊗.

A� stop | tell(c) | ask(c)→ A | A ‖ A | ∃xA | p(x).

Let A be the set of all agents, which is parametric with respect to a set P of
(unary) procedure declarations p(x) = A such that f v(A) = {x}.3

In Tab. 1 we provide a reduction semantics for SCCP: a pair 〈Γ,→〉, for Γ =
A × C⊗ the set of configurations and −→ ⊆ Γ × Γ a family of binary relations
indexed over sets of variables, i.e., −→= ⋃Δ⊆V −→Δ and −→Δ ⊆ Γ × Γ.

In R1 a constraint c is added to the store σ. R2 checks if c is entailed by σ: if
not, the computation is blocked. Rules R3 and R4 model the interleaving of two
agents in parallel. Rule R5 replaces a procedure identifier with the associated
body, renaming the formal parameter with the actual one: A[y/x] stands for the

3 The set of free variables of an agent is defined in the expected way by structural
induction, assuming that f v(tell(c)) = sv(c) and f v(ask(c)→ A) = sv(c) ∪ f v(A).

A Labelled Semantics for Soft Concurrent Constraint Programming 139

Table 1. Reduction semantics for SCCP

R1 sv(σ) ∪ sv(c) ⊆ Δ
〈tell(c), σ〉 −→Δ 〈stop, σ ⊗ c〉 Tell

R3
〈A, σ〉 −→Δ 〈A′, σ′〉 ∧ f v(B) ⊆ Δ
〈A ‖ B, σ〉 −→Δ 〈A′ ‖ B, σ′〉 Par1

R5
{y} ∪ sv(σ) ⊆ Δ ∧ p(x) = A ∈ P
〈p(y), σ〉 −→Δ 〈A[y/x], σ〉 Rec

R2 c ≤ σ ∧ sv(σ) ∪ sv(c) ⊆ Δ
〈ask(c)→ A, σ〉 −→Δ 〈A, σ〉 Ask

R4
〈A, σ〉 −→Δ 〈A′, σ′〉 ∧ f v(B) ⊆ Δ
〈B ‖ A, σ〉 −→Δ 〈B ‖ A′, σ′〉 Par2

R6
f v(A) ∪ sv(σ) ⊆ Δ ∧ w � Δ
〈∃xA, σ〉 −→Δ 〈A[w/x], σ〉 Hide

agent obtained by replacing all the occurrences of x with y.4 Rule R6 hides the
variable x occurring in A. The variable w that replaces x is globally fresh, as
ensured by requiring w � Δ. The latter is more general than just requiring that
w � f v(A) ∪ sv(σ), since 〈B, ρ〉 −→Δ implies that f v(B) ∪ sv(ρ) ⊆ Δ.5

We denote f v(A)∪ sv(σ) as f v(γ) for a configuration γ = 〈A, σ〉, and by γ[z/w]
the component-wise application of substitution [z/w]. Clearly γ →Δ γ′ implies
f v(γ) ⊆ Δ, and we now further provide three lemmata on reduction.

Lemma 3 (Mono). Let 〈A, σ〉 →Δ 〈B, σ′〉 be a reduction. Then, σ ≤ σ′ and sv(σ′) ⊆ Δ.

The proof is straightforward: only rule R1 can modify the store, and σ ≤ σ⊗ c
as well as sv(σ⊗c) ⊆ sv(σ)∪sv(c) hold, since as shown above f v(tell(c))∪sv(σ) ⊆ Δ.

Lemma 4 (Operational Mono). Let 〈A, σ〉 →Δ 〈B, σ′〉 be a reduction and ρ ∈ C⊗
such that sv(ρ) ⊆ Δ. Then, there exists a reduction 〈A, σ ⊗ ρ〉 →Δ 〈B, σ′ ⊗ ρ〉.

The proof is straightforward, since as before sv(σ ⊗ ρ) ⊆ sv(σ) ∪ sv(ρ) and
moreover σ, ρ ∈ C⊗ ensure that σ ⊗ ρ ∈ C⊗.

3.1 Observational Semantics

To define fair computations (Def. 12), we introduce enabled and active agents.
Note that any transition is generated by an agent of the shape tell(c) or ask(c)→
A or p(x) or ∃xA via the application of precisely one instance of one of the axioms
R1, R2, R5, and R6 of Tab. 1. An agent of such shape is active in a transition
t = γ → γ′ if it generates such transition, i.e. if there is a derivation of t where
that agent is used in the building axiom. Moreover, an agent is enabled in a
configuration γ if there is a transition γ→ γ′ such that the agent is active in it.

Definition 12 (Fair Computations). Let γ0 →Δ1 γ1 →Δ2 γ2 →Δ3 . . . be a (possibly
infinite) computation. It is fair if it is increasing (i.e.,Δk ⊆ Δk+1 for any k) and whenever
an agent A is enabled in some γi then A is active in γ j →Δ j+1 γ j+1 for some j ≥ i.

Note that fairness is well given: the format of the rules allows us to always
trace the occurrence of an agent along a computation.

4 With the usual conventions, so that e.g. (∃yA)[y/x] = ∃w((A[w/y])[y/x]) for w � sv(A) ∪
{x, y} and tell(c)[y/x] = tell(c[y/x]), the latter defined according to Def. 11.

5 Our rule is reminiscent of (8) in [21, p. 342].

140 F. Gadducci et al.

Definition 13 (Observables). Let ξ = γ0 →Δ1 γ1 →Δ2 . . . be a (possibly infinite)
computation with γi = 〈Ai, σi〉. Result(ξ) is

∨
i(∃Xiσi), for Xi = (f v(γi)) \ (f v(γ0)).

Similarly to crisp programming [21], if a finite computation is fair then it is
deadlocked and its result coincides with the store of the last configuration.

Proposition 1 (Confluence). Let γ be a configuration and ξ1, ξ2 two (possibly infi-
nite) computations of γ. If ξ1 and ξ2 are fair, then Result(ξ1) = Result(ξ2).

The proposition is an immediate consequence of the lemma below.

Lemma 5. Let γ→Δi γi be reductions for i = 1, 2. Then one of the following holds

1. ξi = γ→Δi γi[z/wi] and γ1[z/w1] = γ2[z/w2] for wi � Δi and z fresh;
2. ξi = γ→Δi γi[zi/wi]→Δ1∪Δ2∪{zi} γ3 for wi � (Δ1 ∩ Δ2) ∪ f v(γ3) and zi’s fresh.

In both cases, Result(ξ1) = Result(ξ2).

Proof. First of all, note that the calculus is deterministic except for the parallel
and the hiding operators. Consider the latter. The problem may arise if different
fresh variables are chosen, let us say w1 and w2. However, γ1[z/w1] = γ2[z/w2] by
replacing the new variables with a globally fresh one, as in item 1.

So, let us assume that the two reductions occur on the opposite sides of a
parallel operator. Also, let γ →Δ1 γ1 replace a hiding operator with a variable
w1 (hence we have w1 � Δ1). If w1 ∈ f v(γ2), since w1 � γ and the only reduction
enlarging the set of free variables is the replacement of a hiding operator, also
γ→Δ2 γ2 must replace a hiding operator with variable w1, and thus it suffices to
replace w1 with fresh variables z1 and z2 in the two reductions, in order for item
2 to be verified. If w1 � f v(γ2), then ξ2 is obtained by replacing in γ2 the hiding
operator with z1 instead of w1. As for obtaining ξ1, the only problematic case
is if γ →Δ2 γ2 also replaces a hiding operator with a variable w2 ∈ Δ1 ∪ f v(γ1).
However, we have that w2 � f v(γ1) since otherwise (as shown above) w1 = w2,
thus ξ1 is obtained by replacing in γ1 the hiding operator with z2 instead of w2,
and item 2 is then verified.

Among the remaining cases, the only relevant one is whenever both actions
add different constraints to the store. So, let us assume that γ = 〈A1 ‖ A2, σ〉
such that 〈A1, σ〉 →Δ1 〈B1, σ1〉 and 〈A2, σ〉 →Δ2 〈B2, σ2〉. Note that since reduction
semantics is monotone (Lemma 3) and σ is ⊗-compact, also σ1 is ⊗-compact
and furthermore we have σ1 = σ ⊗ (σ1 �÷σ). Now, operational monotonicity
(Lemma 4) ensures us that 〈B1 ‖ A2, σ ⊗ (σ1 �÷σ)〉 →Δ1∪Δ2 〈B1 ‖ B2, σ ⊗ (σ1 �÷σ) ⊗
(σ2 �÷σ)〉 and by symmetric reasoning the latter configuration is the one we were
looking for. ��

The result above is a local confluence theorem, which is expected, since the
calculus is essentially deterministic. The complex formulation is due to the
occurrence of hiding operators: as an example, different fresh variables may be
chosen for replacing ∃x, such as w1 and w2 in the first item above, and then a
globally fresh variable z has to be found for replacing them.

A Labelled Semantics for Soft Concurrent Constraint Programming 141

As a final remark, note that γ →Δ γ′ with z ∈ f v(γ) and w � f v(γ′) implies
γ[w/z] →(Δ\{z})∪{w} γ′[w/z]. Combined with the proposition above, they ensure
that fair computations originating from a configuration are either all finite or
all infinite, and furthermore they have the same result. So, in the following we
denote as Result(〈A, σ〉) the unique result of the fair computations originating
from 〈A, σ〉. This fact allows to define an observation-wise equivalence.

Definition 14 (Observational Equivalence). Let A,B ∈ A be agents. They are
observationally equivalent (A ∼o B) if Result(〈A, σ〉) = Result(〈B, σ〉) for all σ ∈ C⊗.

It is easily shown that ∼o is preserved by all contexts, i.e., it is a congruence.6

3.2 Saturated Bisimulation

As proposed in [1] for crisp languages, we define a barbed equivalence between
two agents [17]. Since barbs are basic observations (predicates) on the states of
a system, in this case they correspond to the compact constraints in C⊗, and we
say that 〈A, σ〉 verifies c, or that 〈A, σ〉 ↓c holds, if c ≤ σ. However, since barbed
bisimilarity is an equivalence already for CCP, along [1] we propose the use of
saturated bisimilarity in order to obtain a congruence: Defs. 15 and 16 respectively
provide the strong and weak definition of saturated bisimilarity.

Definition 15 (Saturated Bisimilarity). A saturated bisimulation is a symmetric
relation R on configurations such that whenever (〈A, σ〉, 〈B, ρ〉) ∈ R

1. if 〈A, σ〉 ↓c then 〈B, ρ〉 ↓c;
2. if 〈A, σ〉 −→ γ′1 then there exists γ′2 such that 〈B, ρ〉 −→ γ′2 and (γ′1, γ

′
2) ∈ R;

3. (〈A, σ ⊗ d〉, 〈B, ρ ⊗ d〉) ∈ R for all d ∈ C⊗.

We say that γ1 and γ2 are saturated bisimilar (γ1 ∼s γ2) if there exists a saturated
bisimulation R such that (γ1, γ2) ∈ R. We write A ∼s B if 〈A,⊥〉 ∼s 〈B,⊥〉.

We now let −→∗ denote the reflexive and transitive closure of −→, restricted
to increasing computations. We say that γ ⇓c holds if there exists γ′ = 〈A, σ〉
such that γ −→∗ γ′ and c ≤ ∃Xσ for X = f v(γ′) \ f v(γ).

Definition 16 (Weak Saturated Bisimilarity). Weak saturated bisimilarity (≈s) is
obtained from Def. 15 by replacing −→ with −→∗ and ↓c with ⇓c.

Since ∼s (and ≈s) is itself a saturated bisimulation, it is obvious that it is
upward closed, and it is also a congruence with respect to all the contexts of
SCCP (i.e., it is preserved under any context): indeed, a context C[•] can modify
the behaviour of a configuration only by adding constraints to its store.

6 Recall that a context C[•] is a syntactic expression with a single hole • such that
replacing • with an agent A in the context produces an agent, denoted by C[A]. For
example if C[•] is the context tell(c) ‖ • then C[A] = tell(c) ‖ A. An equivalence �
between agents is a congruence if A � B implies C[A] � C[B] for every context C[•].

142 F. Gadducci et al.

We now show that ≈s, as given in Def. 16, coincides with the observational
equivalence ∼o (see Def. 14). First we recall the notion of and a classic result on
cofinality: two (possibly infinite) chains c0 ≤ c1 ≤ . . . and d0 ≤ d1 ≤ . . . are said
to be cofinal if for all ci there exists a dj such that ci ≤ dj and, viceversa, for all di

there exists a cj such that di ≤ cj.

Lemma 6. Let c0 ≤ c1 ≤ . . . and d0 ≤ d1 ≤ . . . be two chains. (1) If they are cofinal,
then they have the same limit, i.e.,

∨
i ci =

∨
i di. (2) If the elements of the chains are

⊗-compact and
∨

i ci =
∨

i di, then the two chains are cofinal.

Proof. Let us tackle (2), and consider the sequence e0 = c0 and ei = ci+1 �÷ ci. Each
ei is the difference between two consecutive elements of a chain. Since the CLIM
is invertible we have ck =

⊗

i≤k ei and thus
∨

i ci =
⊗

i ei. Since each dj is ⊗-
compact and dj ≤

⊗

i ei, there is a k such that dj ≤
⊗

i≤k ei. The same reasoning
is applied to the chain d0 ≤ d1 ≤ . . . , thus the result holds. ��

For proving Proposition 2 we now relate weak barbs and fair computations.

Lemma 7. Let ξ = γ0 −→ γ1 −→ γ2 −→ . . . be a (possibly infinite) fair computation.
If γ0 ⇓d then there exists a store σi in ξ such that d ≤ ∃Xiσi for Xi = f v(γi) \ f v(γ0).

The lemma holds since the language is deterministic and computations fair.

Proposition 2. A ∼o B if and only if A ≈s B.

Proof. The proof proceeds as follows.

From ≈s to ∼o. Assume 〈A,⊥〉 ≈s 〈B,⊥〉 and take a ⊗-compact c ∈ C⊗. Let

〈A, c〉 −→ 〈A0, σ0〉 −→ 〈A1, σ1〉 −→ . . . −→ 〈An, σn〉 . . . −→ . . . (1)

〈B, c〉 −→ 〈B0, ρ0〉 −→ 〈B1, ρ1〉 −→ . . . −→ 〈Bn, ρn〉 . . . −→ . . . (2)

be two fair computations. Since ≈s is upward closed, 〈A, c〉 ≈s 〈B, c〉 and
thus 〈B, c〉 ⇓σi for all σi. By Lemma 7, it follows that there exists an ρ j (in the
above computation) such that ∃Γiσi ≤ σi ≤ ∃Γ′jρ j, and analogously for all ρi.
Then σ0 ≤ σ1 ≤ . . . and ρ0 ≤ ρ1 ≤ . . . are cofinal and by Lemma 6, it holds
that
∨

i ∃Γiσi =
∨

i ∃Γ′iρi, which means Result(〈A, c〉) = Result(〈B, c〉).
From ∼o to ≈s. Assume A ∼o B. First, we show that 〈A, c〉 and 〈B, c〉 satisfy the

same weak barbs for all c ∈ C. Let (1) and (2) be two fair computations.
Since A ∼o B, then

∨
i ∃Γiσi =

∨
i ∃Γ′jρi. Since all (the projections of) the

intermediate stores of the computations are ⊗-compact, then by Lemma 6,
for all σi there exists anρ j such that∃Γiσi ≤ ∃Γ′jρ j. Now suppose that 〈A, c〉 ⇓d.
By Lemma 7, there exists a σi such that d ≤ ∃Γiσi. Thus 〈B, c〉 ⇓d.
It is now easy to prove that R = {(γ1, γ2) | ∃c.〈A, c〉 −→∗ γ1&〈B, c〉 −→∗ γ2} is a
weak saturated bisimulation (Def. 16). Take (γ1, γ2) ∈ R. Ifγ1 ⇓d then 〈A, c〉 ⇓d
and, by the above observation, 〈B, c〉 ⇓d. Since SCCP is confluent, also γ2 ⇓d.
The fact that R is closed under −→∗ is evident from the definition of R. While
for proving that R is upward-closed take γ1 = 〈A′, σ′〉 and γ2 = 〈B′, ρ′〉. By
Lemma 4 for all a ∈ C, 〈A, c⊗ a〉 −→∗ 〈A′, σ′ ⊗ a〉 and 〈B, c⊗ a〉 −→∗ 〈B′, ρ′ ⊗ a〉.
Thus, by definition of R, (〈A′, σ′ ⊗ a〉, 〈B′, ρ′ ⊗ a〉) ∈ R. ��

A Labelled Semantics for Soft Concurrent Constraint Programming 143

4 A Labelled Transition System for Soft CCP

Although ≈s is fully abstract, it is to some extent unsatisfactory because of the
upward-closure, namely, the for-all quantification in condition 3 of Def. 16.

In Tab. 2 we refine the notion of transition (given in Tab. 1) by adding a
label that carries additional information about the constraints that cause the
reduction. Hence, we define a new labelled transition system (LTS) obtained by
the family of relations α−→Δ ⊆ Γ × Γ indexed over 〈C⊗, 2V〉; as a reminder, Γ is
the set of configurations, C⊗ the set of ⊗-compact constraints, and, as for the
unlabelled semantics in Section 3, transitions are indexed by sets of variables.
Rules in Tab. 2 are identical to those in Tab. 1, except for a constraint α that
represents the minimal information that must be added to σ in order to fire an
action from 〈A, σ〉 to 〈A′, σ′〉, i.e., 〈A, σ ⊗ α〉 −→Δ 〈A′, σ′〉.

Table 2. An LTS for SCCP

LR1 sv(σ) ∪ sv(c) ⊆ Δ
〈tell(c), σ〉 ⊥−−→Δ 〈stop, σ ⊗ c〉 Tell

LR3
〈A, σ〉 α−→Δ 〈A′, σ′〉 ∧ f v(B) ⊆ Δ
〈A ‖ B, σ〉 α−→Δ 〈A′ ‖ B, σ′〉 Par1

LR5
{y} ∪ sv(σ) ⊆ Δ ∧ p(x) = A ∈ P
〈p(y), σ〉 ⊥−→Δ 〈A[y/x], σ〉 Rec

LR2 sv(σ) ∪ sv(c) ⊆ Δ
〈ask(c)→ A, σ〉 c �÷ σ−−−→Δ 〈A, σ ⊗ (c �÷ σ)〉 Ask

LR4
〈A, σ〉 α−→Δ 〈A′, σ′〉 ∧ f v(B) ⊆ Δ
〈B ‖ A, σ〉 α−→Δ 〈B ‖ A′, σ′〉 Par2

LR6
f v(A) ∪ sv(σ) ⊆ Δ ∧ w � Δ
〈∃xA, σ〉 ⊥−→Δ 〈A[w/x], σ〉 Hide

Rule LR2 says that 〈ask(c)→ A, σ〉 can evolve to 〈A, σ⊗α〉 if the environment
provides a minimal constraint α that added to the store σ entails c, i.e., α = c�÷σ.
Notice that, differently from [1], here the definition of this minimal label comes
directly from a derived operator of the underlying CLIM (i.e., from �÷), which
by Lemma 1 preserves ⊗-compactness.

The LTS is sound and complete with respect to the unlabelled semantics.

Lemma 8 (Soundness). If 〈A, σ〉 α−→Δ 〈A′, ρ〉 then 〈A, σ ⊗ α〉 −→Δ 〈A′, ρ〉.

Proof. We proceed by induction on (the depth) of the inference of 〈A, σ〉 α−→Δ
〈A′, ρ〉. We consider LR2: the other cases are easier to verify.

Using LR2 then A = (ask(c) → A′), α = c�÷σ and ρ = (σ ⊗ (c�÷σ)) = (σ ⊗ α).
We know that c ≤ (σ ⊗ (c�÷σ)) then by using R2 〈A, σ ⊗ α〉 −→Δ 〈A′, ρ〉. ��
Lemma 9 (Completeness). If 〈A, σ⊗ d〉 −→Δ 〈A′, ρ〉 then there exist α, a ∈ C⊗ such
that 〈A, σ〉 α−→Δ 〈A′, ρ′〉 and α ⊗ a = d and ρ′ ⊗ a = ρ.

Proof. We proceed by induction on (the depth) of the inference of 〈A, σ⊗d〉 −→Δ
〈A′, ρ〉. We consider LR2: The other cases are easier to verify.

144 F. Gadducci et al.

Using LR2 then A = ask(c) → A′, ρ = σ ⊗ d and c ≤ ρ. Now consider
〈A, σ〉 α−→Δ 〈A′, ρ′〉, where α = (c�÷σ) ≤ d and ρ′ = (σ ⊗ α). Take a = d�÷ (c�÷σ)
then we can check that the conditions verify. First by invertibility α ⊗ a =
(c�÷σ) ⊗ (d�÷ (c�÷σ)) = d and finally ρ′ ⊗ a = σ ⊗ α ⊗ a = σ ⊗ d = ρ. ��

Theorem 1. 〈A, σ〉 ⊥−−→Δ 〈A′, σ′〉 if and only if 〈A, σ〉 −→Δ 〈A′, σ′〉.

Strong and Weak Bisimilarity on the LTS. We now proceed to define an equiv-
alence that characterises ∼s without the upward closure condition. Differently
from languages such as Milner’s CCS, barbs cannot be removed from the defini-
tion of bisimilarity because they cannot be inferred by the transitions.

Definition 17 (Strong Bisimilarity). A strong bisimulation is a symmetric relation
R on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈A, σ〉 and γ2 = 〈B, ρ〉
1. if γ1 ↓c then γ2 ↓c,
2. if γ1

α−−→ γ′1 then ∃γ′2 such that 〈B, ρ ⊗ α〉 −→ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are strongly bisimilar (γ1 ∼ γ2) if there exists a strong bisimu-
lation R such that (γ1, γ2) ∈ R.

Whenever σ and ρ are ⊗-compact elements, the first condition is equivalent
to require σ ≤ ρ. Thus (γ1, γ2) ∈ R would imply that γ1 and γ2 have the same
store. As for the second condition, we adopted a semi-saturated equivalence,
introduced for CCP in [1]. In the bisimulation game a label can be simulated by
a reduction including in the store the label itself.

Definition 18 (Weak Bisimilarity). A weak bisimulation is a symmetric relation R
on configurations such that whenever (γ1, γ2) ∈ R with γ1 = 〈A, σ〉 and γ2 = 〈B, ρ〉
1. if γ1 ↓c then γ2 ⇓c,
2. if γ1

α−−→ γ′1 then ∃γ′2 such that 〈B, ρ ⊗ α〉 −→∗ γ′2 and (γ′1, γ
′
2) ∈ R.

We say that γ1 and γ2 are weakly bisimilar (γ1 ≈ γ2) if there exists a weak bisimulation
R such that (γ1, γ2) ∈ R.

With respect to the weak equivalence for crisp constraints, some of its charac-
teristic equivalences do not hold, so that e.g. ask(c) → tell(c) � stop. As usual,
this is linked to the fact that the underlying CLIM may not be idempotent.

We can now conclude by proving the equivalence between ∼s and ∼ and
between ≈s and ≈ (hence, ≈ is further equivalent to ∼o, using Proposition 2). We
start by showing that ∼ is preserved under composition.

Lemma 10. If 〈A, σ〉 ∼ 〈B, ρ〉, then 〈A, σ ⊗ a〉 ∼ 〈B, ρ ⊗ a〉 for all a ∈ C⊗.

Proof. We need to show that R = {(〈A, σ⊗a〉 ∼ 〈B, ρ⊗a〉) | 〈A, σ〉 ∼ 〈B, ρ〉} satisfies
the two properties in Def. 17.

A Labelled Semantics for Soft Concurrent Constraint Programming 145

i) From the hypothesis 〈A, σ〉 ∼ 〈B, ρ〉, we have that ρ = σ, thus 〈A, σ ⊗ a〉 and
〈B, ρ ⊗ a〉 satisfy the same barbs.

ii) Supposing 〈A, σ ⊗ a〉 α−−→ 〈A′, σ′〉, we need to prove the existence of B′ and
ρ′ such that 〈B, ρ ⊗ a ⊗ α〉 → 〈B′, ρ′〉 and (〈A′, σ′〉, 〈B′, ρ′〉) ∈ R. By Lemma 8

and Lemma 9 we obtain 〈A, σ〉 α′−−−→ 〈A′, σ′′〉, and there exists b′ such that
α′ ⊗ b′ = a ⊗ α (1) and σ′′ ⊗ b′ = σ′ (2). From the labelled transition of 〈A, σ〉
and the hypothesis 〈A, σ〉 ∼ 〈B, ρ〉, we have that 〈B, ρ⊗ α′〉 → 〈B′, ρ′′〉, with
〈A, σ′′〉 ∼ 〈B, ρ′′〉 (3). By (1) we have 〈B, ρ ⊗ a ⊗ α〉 = 〈B, ρ ⊗ α′ ⊗ b′〉 and
〈B, ρ⊗ α′ ⊗ b′〉 → 〈B, ρ′′ ⊗ b′〉 (due to operational monotonicity). Finally, by
the definition of R and (3), we conclude that (〈A′, σ′′ ⊗ b′〉, 〈B′, ρ′′ ⊗ b′〉) ∈ R,
and, by (2), 〈A′, σ′′ ⊗ b′〉 = 〈A′, σ′〉. ��

Theorem 2. ∼s = ∼
Proof. The equivalence ∼s=∼ can be proved by using Lemma 10.

From ∼ to ∼sb. We show that R = {(〈A, σ〉, 〈B, ρ〉) | 〈A, σ〉 ∼ 〈B, ρ〉} is a saturated
bisimulation, i.e., for (〈A, σ〉, 〈B, ρ〉) ∈ R the conditions in Def. 15 are satisfied

i) If 〈A, σ〉 ↓c, then we have 〈B, ρ〉 ↓c by the hypothesis 〈A, σ〉 ∼ 〈B, ρ〉.
ii) Suppose that 〈A, σ〉 → 〈A′, σ′〉. By Theorem 1 we have 〈A, σ〉 ⊥−−→ 〈A′, σ′〉.

Since 〈A, σ〉 ∼ 〈B, ρ〉, then 〈B, ρ ⊗ ⊥〉 → 〈B′, ρ′〉 with 〈A′, σ′〉 ∼ 〈B′, ρ′〉.
Since ρ = ρ ⊗ ⊥, we have 〈B, ρ〉 → 〈B′, ρ′〉.

iii) By Lemma 10, (〈A, σ ⊗ c′〉, 〈B, ρ ⊗ c′〉) ∈ R for all c′ ∈ C⊗.
From ∼sb to ∼. We show that R = {(〈A, σ〉, 〈B, ρ〉) | 〈A, σ〉 ∼sb 〈B, ρ〉} is a strong

bisimulation, i.e., for (〈A, σ〉, 〈B, ρ〉) ∈ R the conditions in Def. 17 are satisfied
i) If 〈A, σ〉 ↓c, then we have 〈B, ρ〉 ↓c by the hypothesis 〈A, σ〉 ∼sb 〈B, ρ〉.

ii) Suppose that 〈A, σ〉 α−→ 〈A′, σ′〉. Then by Lemma 8 we have 〈A, σ⊗ α〉 →
〈A′, σ′〉. Since 〈A, σ〉 ∼sb 〈B, ρ〉, then 〈A, σ ⊗ α〉 ∼sb 〈B, ρ ⊗ α〉 and thus
〈B, ρ ⊗ α〉 → 〈B′, ρ′〉with 〈A′, σ′〉 ∼sb 〈B′, ρ′〉. ��

In order to prove the correspondence between weak bisimulations, we need
a result analogous to Lemma 10. The key issue is the preservation of weak barbs
by the addition of constraints to the store, which is trivial in strong bisimulation.

Lemma 11. Let 〈A, σ〉 ≈ 〈B, ρ〉 and a, c ∈ C⊗. If 〈A, σ ⊗ a〉 ↓c, then 〈B, ρ ⊗ a〉 ⇓c.

Proof. If 〈A, σ ⊗ a〉 ↓c, then c ≤ σ ⊗ a. Since 〈A, σ〉 ≈ 〈B, ρ〉 and 〈A, σ〉 ↓σ, then
there exists 〈B′, ρ′〉 such that 〈B, ρ〉 →∗ 〈B′, ρ′〉 and σ ≤ ∃Γρ′ for Γ = f v(〈B′, ρ′〉) \
f v(〈B, ρ〉). Let us assume, without loss of generality, that Γ ∩ (sv(a)) = ∅; since
reductions are operationally monotone (Lemma 4), we have 〈B, ρ⊗a〉 →∗ 〈B′, ρ′⊗
a〉. Finally, c ≤ σ ⊗ a = σ ⊗ ∃Γa ≤ ∃Γρ′ ⊗ ∃Γa ≤ ∃Γ(ρ′ ⊗ a), hence 〈B, ρ ⊗ a〉 ⇓c. ��

The result below uses Lemma 11 and a rephrasing of the proof of Lemma 10

Lemma 12. If 〈A, σ〉 ≈ 〈B, ρ〉, then 〈A, σ ⊗ a〉 ≈ 〈B, ρ ⊗ a〉 for all a ∈ C⊗.

Theorem 3. ≈s = ≈

146 F. Gadducci et al.

Labelled versus Saturated Semantics. The main appeal of saturated semantics
resides in always being a congruence and, in fact, the minimal congruence
contained in standard bisimulation [19]. The main drawback of this approach
is that it is in principle necessary to check the behaviour of a process under
every context. The problem is somewhat mitigated for SCCP, since it suffices to
close the store with respect to any possible compact element (item 3 of Def. 15).
At the same time, checking the feasibility of a reduction may require some
computational effort, either for solving the combinatorial problem associated
with calculating σ ⊗ d, or for verifying if c ≤ σ, as with agent ask(c) → A.

This is the reason for searching labelled semantics and suitable notions of
bisimilarity that may alleviate such a burden. The key intuition is to consider
labels which somehow represent the “minimal context allowing a process to
reduce”, so that a bisimilarity-checking algorithm in principle needs to verify
this minimal context only, instead of every one. The idea has been exploited in
the simpler framework of crisp CCP [1], and it is based on [16,9].

Example 1. Let us consider the agents ask(c) → stop and stop. To prove that
they are weakly bisimilar, it has to be proved that γ ≈̇γ′ for configurations
γ = 〈ask(c) → stop,⊥〉 and γ′ = 〈stop,⊥〉. Consider the following relation

R = {(〈ask(c) → stop,⊥〉, 〈stop,⊥〉), (〈stop, c〉, 〈stop, c〉)}
It is quite easy to prove that it is a bisimulation, and in fact the smallest one
identifying the two configurations. It suffices to note that by definition c�÷⊥ = c.

In order to prove that γ ≈̇s γ′, instead, we surely need to consider an infinite
relation. Indeed, the smallest saturated bisimulation equating the two configu-
ration is given by the relation below

S = {(〈ask(c) → stop, d〉, 〈stop, d〉), (〈stop, e〉, 〈stop, e〉) | d, e ∈ C⊗& c ≤ e}
The relation above clearly is a saturated bisimulation, but any naive automatic
check for that property might involve rather complex calculations.

Another reason for the complexity of checking saturated bisimilarity is the
need of considering the closure −→∗ of the reduction relation, which may cause
a combinatorial explosion. Think e.g. of the agents

∏
i∈I ask(ci) → stop and

stop. Of course, they might be proved equivalent by exploiting the fact that
saturated bisimilarity is a congruence, and by verifying that stop ‖ A ≈̇s A for
all the agents A. A direct proof would instead require a check for each store of
the reductions arising from all the possible interleaving of the ci elements.

5 Towards an Axiomatisation for Weak Bisimilarity

Once the behaviour of an agent is captured by an observational equivalence, it
is natural to look for laws characterizing it. Given its correspondence with the
standard equivalence via fair computations, weak bisimilarity is the preferred
behavioural semantics for soft CCP. A sound and complete axiomatisation was
proposed for CCP in [21]. Unfortunately, the lack of idempotence in the soft
formalism makes unsound some of the axioms presented in that classical paper.

A Labelled Semantics for Soft Concurrent Constraint Programming 147

ask(c)→ stop = stop (1) tell(⊥) = stop (2)

ask(⊥)→ A = A (3) A ‖ stop = A (4)

A ‖ B = B ‖ A (5) A ‖ (B ‖ C) = (A ‖ B) ‖ C (6)

tell(c) ‖ tell(d) = tell(c ⊗ d) (7) ask(c)→ (A ‖ B) = (ask(c)→ A) ‖ (ask(c)→ B) (8)

∃xtell(c) = tell(∃xc) (9) ∃x(ask(c)→ A) = ask(∀xc)→ ∃xA (10)

∃x(tell(c) ‖i∈I ask(ci)→ tell(di)) = tell(∃xc) ‖ ∃x(‖i∈I ask(c⇒x ci)→ tell(di)) (11)

Fig. 1. Axioms for simple agents (1-8) and for agents with quantifiers (9-11)

Consider e.g. the law ask(c)→ ask(d)→ tell(e) = ask(c⊗d)→ tell(e), denoted
as L3 in [21], and let us assume that c = d. Since c � c ⊗ c, only the agent in the
left-hand side of the law is guaranteed to add e, starting from a store σ such
that c ≤ σ. On a similar note, most of the axioms in [21] involving the parallel
composition also do not hold, since as a general remark posting a constraint
twice is different from adding it just once.7

We now introduce a set of sound axioms for SCCP in Figure 1. As for those
of CCP in [21], they rely on an additional operator which is intuitively the dual
of the existential quantifier of cylindric algebras.

Definition 19 (Co-cylindrification). Let V be a set of variables. A co-cylindric op-
erator ∀ over S and V is given by a family of monotone, ⊗-compactness preserving
functions ∀x : A→ A indexed by elements in V such that for all a, b ∈ A and x ∈ V

1. ∀xa ≤ b if and only if a ≤ ∃xb.

If the ∀ operators play the role of universal quantifiers, a further family of
operators had been introduced in [21] for providing the role of implication,
in order to provide a complete set of axioms for CCP. In our context, such an
operator can be derived by means of residuation.

Lemma 13. Let a, b, c ∈ C, x ∈ V and a⇒x b = ∃xa ⊗ ∀x(b�÷ a). Then, b ≤ a ⊗ ∃xc if
and only if a⇒x b ≤ ∃xa ⊗ ∃xc.

Clearly, a ⇒x b ∈ C⊗ if a and b do. These properties for a ⇒x b are the
immediate extensions of those holding for the crisp setting. Exploiting co-
cylindrification and the latter operator we can now state Eq. 10 and Eq. 11.
In Eqs. 1-3 we present the axioms related to ask and tell. Axioms on paral-
lel composition are instead represented in Eqs. 4-6. In Eqs. 7-8 we show how
adding two constraints and prefixing distributes though parallel composition.

Proposition 3. Axioms 1-11 in Figure 1 are sound with respect to weak bisimilarity.

As for completeness, again the lack of idempotency made it impossible to rest
the proof schema adopted for the CCP case, since the normal form exploited
in [21] for proving completeness cannot be lifted to SCCP agents.

7 As an example, the law L1 of [21] states ask(c) → tell(d) = ask(c) → (tell(c) ‖ tell(d)),
which is false precisely for the lack of idempotence: c ≤ σ does not imply σ = σ ⊗ c.
For the sake of completeness, the other unsound axioms are L10, L11, and L12.

148 F. Gadducci et al.

6 Conclusions and Further Work

Inspired by [1] that investigated the crisp variant of the language, in this paper
we studied the behavioural semantics of the deterministic fragment of soft
CCP [7], and proposed a sound axiomatisation in the spirit of [21].

Using residuation theory (as e.g. in [5] for soft constraints problems) pro-
vides an elegant way to define the minimal information that enables the firing
of actions in the LTS shown in Sec. 4. This choice allowed for the study of the
observational equivalence of agents in terms of weak and strong bisimilarity
on such LTS, and it allowed for relating them to the corresponding barbed
bisimilarities of (unlabelled) reductions and with the standard semantics via
fair computations. The two kinds of equivalences, as well as the sound axioma-
tisation for weak bisimilarity, are presented in this paper for the first time.

For future work, we plan to provide a complete axiomatisation and a denota-
tional semantics for soft CCP by building on the work for the crisp case in [21].
Concerning the axioms, we will try and investigate the relationship between
soft CCP and a logical system whose fundamental properties are closely related
to the ones we have investigated in this paper; namely affine linear logic [11].
This logical system rejects contraction but admits weakening, which intuitively
correspond to dropping idempotence and preserving monotonicity in the soft
formalism. The denotational model of CCP is based on closure operators: Each
agent is compositionally interpreted as a monotonic, extensive and idempo-
tent operator/function on constraints. We shall then investigate a denotational
model for soft CCP processes based on pre-closure operators [2] (or Čech closure
operators), i.e., closure operators that are not required to be idempotent.

Finally, we plan to consider two extensions of the language, checking how
far the results given in this paper can be adapted. As evidenced by [20] a
non-deterministic extension is an interesting challenge since the closure under
any context for the saturated bisimilarity gets more elaborated than just clos-
ing with respect to the addition of constraints (Defs. 15 and 16, condition 3),
and similarly one also needs to find the right formulation of bisimilarity for
the labelled transitions systems. Also, the presence of residuation makes intu-
itive the definition of a retract operator for the calculus. Even if the operational
semantics would be less affected, retraction would require a complete reformu-
lation of the denotational semantics via fair computations, since monotonicity
(as stated in Lemma 3) would not hold anymore [8]. Finally, we might consider
languages with temporal features, such as timed SCCP [4], where a reduction
takes a bounded period of time and it is measured by a discrete global clock.
Maximal parallel steps are adopted there with a new construct that can e.g.
express time-out and pre-emption, and developing suitable temporal variants
of bisimilarity might reveal a worthwhile, albeit difficult task.

A Labelled Semantics for Soft Concurrent Constraint Programming 149

References

1. Aristizábal, A., Bonchi, F., Palamidessi, C., Pino, L.F., Valencia, F.D.: Deriving
labels and bisimilarity for concurrent constraint programming. In: Hofmann, M.
(ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 138–152. Springer, Heidelberg (2011)

2. Arkhangelskii, A.V., Pontryagin, L.S.: General Topology I. Springer (1990)
3. Baccelli, F., Cohen, G., Olsder, G., Quadrat, J.P.: Synchronization and Linearity: An

Algebra for Discrete Event Systems. Wiley (1992)
4. Bistarelli, S., Gabbrielli, M., Meo, M.C., Santini, F.: Timed soft concurrent constraint

programs. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052,
pp. 50–66. Springer, Heidelberg (2008)

5. Bistarelli, S., Gadducci, F.: Enhancing constraints manipulation in semiring-based
formalisms. In: ECAI 2006. FAIA, vol. 141, pp. 63–67. IOS Press (2006)

6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. Journal of ACM 44(2), 201–236 (1997)

7. Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. ACM
Transactions on Computational Logic 7(3), 563–589 (2006)

8. Bistarelli, S., Santini, F.: A secure non-monotonic soft concurrent constraint language.
Fundamamenta Informaticae 134(3-4), 261–285 (2014)

9. Bonchi, F., Gadducci, F., Monreale, G.V.: Reactive systems, barbed semantics, and the
mobile ambients. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 272–287.
Springer, Heidelberg (2009)

10. Buscemi, M.G., Montanari, U.: CC-pi: A constraint-based language for specify-
ing service level agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 18–32. Springer, Heidelberg (2007)

11. Dal Lago, U., Martini, S.: Phase semantics and decidability of elementary affine logic.
Theoretical Computer Science 318(3), 409–433 (2004)

12. Fargier, H., Lang, J.: Uncertainty in constraint satisfaction problems: a probabilistic
approach. In: Moral, S., Kruse, R., Clarke, E. (eds.) ECSQARU 1993. LNCS, vol. 747,
pp. 97–104. Springer, Heidelberg (1993)

13. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics, vol. 151. Elsevier (2007)

14. Golan, J.: Semirings and Affine Equations over Them: Theory and Applications.
Kluwer (2003)

15. Karner, G.: Semiring-based constraint satisfaction and optimization. Semigroup Fo-
rum 45(XX), 148–165 (1992)

16. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS,
vol. 623, pp. 685–695. Springer, Heidelberg (1992)

18. Monk, J.D.: An introduction to cylindric set algebras. Logic Journal of IGPL 8(4),
451–496 (2000)

19. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
CCS. Fundamenta informaticae 16(2), 171–199 (1992)

20. Pino, L.F., Bonchi, F., Valencia, F.D.: A behavioral congruence for concurrent con-
straint programming with nondeterministic choice. In: Ciobanu, G., Méry, D. (eds.)
ICTAC 2014. LNCS, vol. 8687, pp. 351–368. Springer, Heidelberg (2014)

21. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Wise, D.S. (ed.) POPL 1991, pp. 333–352. ACM Press
(1991)

Agent-Oriented Techniques

Parallelisation and Application of AD3 as a Method
for Solving Large Scale Combinatorial Auctions

Francisco Cruz-Mencia1,2(�), Jesus Cerquides2, Antonio Espinosa1,
Juan Carlos Moure1, and Juan A. Rodriguez-Aguilar2

1 IIIA-CSIC, Campus de la UAB, s/n, Bellaterra, Barcelona, Spain
{fcruz,cerquide,jar}@iiia.csic.es

2 CAOS-UAB, Campus de la UAB, s/n,Bellaterra, Barcelona, Spain
{antoniomiguel.espinosa,juancarlos.moure}@uab.cat

Abstract. Auctions, and combinatorial auctions (CAs), have been successfully
employed to solve coordination problems in a wide range of application domains.
However, the scale of CAs that can be optimally solved is small because of the
complexity of the winner determination problem (WDP), namely of finding the
bids that maximise the auctioneer’s revenue. A way of approximating the solution
of a WDP is to solve its linear programming relaxation. The recently proposed
Alternate Direction Dual Decomposition algorithm (AD3) has been shown to ef-
ficiently solve large-scale LP relaxations. Hence, in this paper we show how to
encode the WDP so that it can be approximated by means of AD3. Moreover, we
present PAR-AD3, the first parallel implementation of AD3. PAR-AD3 shows to
be up to 12.4 times faster than CPLEX in a single-thread execution, and up to
23 times faster than parallel CPLEX in an 8-core architecture. Therefore PAR-
AD3 becomes the algorithm of choice to solve large-scale WDP LP relaxations
for hard instances. Furthermore, PAR-AD3 has potential when considering large-
scale coordination problems that must be solved as optimisation problems.

Keywords: Combinatorial auctions · Large-scale coordination · Large-scale op-
timisation · Linear programming

1 Introduction

Auctions are a standard technique to solve coordination problems that has been success-
fully employed in a wide range of application domains [24]. Combinatorial auctions
(CAs) [7] are a particular type of auctions that allow to allocate entire bundles of items
in a single transaction. Although computationally very complex, auctioning bundles has
the great advantage of eliminating the risk for a bidder of not being able to obtain com-
plementary items at a reasonable price in a follow-up auction (think of a CA for a pair
of shoes, as opposed to two consecutive single-item auctions for each of the individual
shoes). CAs are expected to deliver more efficient allocations than non-combinatorial
auctions complementarities between items hold.

Research supported by MICINN projects TIN2011-28689-C02-01, TIN2013-45732-C4-4-P
and TIN2012-38876-C02-01.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 153–168, 2015.
DOI: 10.1007/978-3-319-19282-6_10

154 F. Cruz-Mencia et al.

CAs have been also employed to solve a variety of coordination problems (e.g. trans-
portation [31], emergency resource coordination in disaster management [26], or agent
coordination in agent-driven robot navigation [32]). However, although such applica-
tion domains claim to be large-scale, namely involving thousands and even millions
of bids, current results indicate that the scale of the CAs that can be optimally solved
is small [19,25]. For instance, CPLEX (a state-of-the-art commercial solver) requires
a median of around 3 hours to solve the integer linear program encoding the Winner
Determination Problem (WDP) of a hard instance of a CA with only 1000 bids and
256 goods. This fact seriously hinders the practical applicability of current solvers to
large-scale CAs.

Linear Programming (LP) relaxations are a standard method for approximating com-
binatorial optimisation problems in computer science [5]. Yanover et al. [36] report that
realistic problems with a large number of variables cannot be solved by off-the-shelf,
commercial LP solvers (such as CPLEX). Instead, they propose the usage of TRBP, a
message-passing, dual-decomposition algorithm, to solve LP relaxations, and show that
TRBP significantly outperforms CPLEX. Since then, many other message-passing and
dual decomposition algorithms have been proposed to address this very same problem
[17,18,13,28]. The advantage over other approximate algorithms is that the underlying
optimisation problem is well-understood and the algorithms are convergent and pro-
vide certain guarantees. Moreover, there are ways of tightening the relaxation toward
the exact solution [34].

In order to solve LP relaxations, there has been a recent upsurge of interest in the Al-
ternating Direction Method of Multipliers (ADMM), which was invented in the 1970s
by Glowinski and Marroco [14] and Gabay and Mercier [12]. As discussed in [6],
ADMM is specially well suited for application in a wide variety of large-scale dis-
tributed modern problems. Along this line, Martins has proposed AD3 [22], a novel
algorithm based on ADMM, which proves to outperform off-the-shelf, commercial LP
solvers for problems including declarative constraints. AD3 has the same modular archi-
tecture of previous dual decomposition algorithms, but it is faster to reach consensus,
and it is suitable for embedding in a branch-and-bound procedure toward the optimal
solution. Martins derives efficient procedures for handling logic factors and a general
procedure for dealing with dense, large, or combinatorial factors. Notice that until [21],
the handling of declarative constraints by message-passing algorithms was barely ad-
dressed, and not well understood. This hindered their application to combinatorial auc-
tion WDPs, which typically require this type of constraints. Therefore, AD3 constitutes
a promising tool to solve WDPs in CAs.

As discussed in [21] (see section 7.5), AD3 is largely amenable to parallelisation,
since AD3 separates an optimisation problem into subproblems that can be solved in
parallel. Nonetheless, to the best of our knowledge there is no parallel implementation
of AD3. Therefore, the potential speedups that AD3 may obtain when running on multi-
core environments remain unexplored. And yet, this path of research is encouraged
by recent experiences in parallelisation of ADMM applied to solve an unconstrained
optimisation problem [23]. Indeed, Miksik et al. show that a parallel implementation of
ADMM delivers large speedups for large-scale problems. Notice though that the work

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 155

in [23] cannot be employed to solve the WDP for CAs because it cannot handle hard
constraints.

The main purpose of this paper is to demonstrate that the optimisation and paral-
lelisation of AD3 can deliver enormous benefits when solving relaxations of large-scale
combinatorial optimisation problems, and in particular WDPs in large-scale CAs. With
this aim, we make the following contributions:

– We show how to encode the WDP for CAs so that it can be approximated by AD3.
For this endeavour we employ the computationally-efficient factors provided by
AD3 to handle hard constraints.

– We propose an optimised, parallel implementation of AD3, the so-called PAR-AD3.
Our implementation is based on a mechanism for distributing the computations
required by AD3 as well as on a data structure organisation that together favor
parallelism.

– We show that while AD3 is up to 12.4 times faster than CPLEX in a single-thread
execution, PAR-AD3 is up to 23 times faster than parallel CPLEX in an 8-core
architecture. Therefore PAR-AD3 becomes the algorithm of choice to solve large-
scale WDP LP relaxations.

To summarise, our results indicate that PAR-AD3 obtains significant speed-ups on
multi-core environments, hence increasing AD3’s scalability and showing its potential
for application to large-scale combinatorial optimisation problems in particular and for
large-scale coordination problems that can be cast as combinatorial optimisation prob-
lems. The rest of the paper is organised as follows. First, we introduce some background
on AD3. Next, we detail how to encode the WDP for CAs by means of AD3. Thereafter,
we thoroughly describe PAR-AD3 and afterwards we present empirical results. Finally,
we draw some conclusions and set paths to future research.

2 Background

Graphical models are widely used in computer vision, natural language processing and
computational biology, where a fundamental problem is to find the maximum a posteri-
ori probability (MAP) given a factor graph. Since finding the exact MAP is frequently
an intractable problem, significant research has been carried out to develop algorithms
that approximate the MAP.

Linear Programming (LP) relaxations have been extensively applied to approximate
the MAP for graphical models since [30]. Typically, such application domains lead to
sparse problems with a large number of variables and constraints (i.e beyond 104). As
shown in [36], message passing algorithms have been proved to outperform state-of-
the-art commercial LP solvers (such as e.g. CPLEX) when approximating the MAP for
large-scale problems. This advantage stems from the fact that message-passing algo-
rithms better exploit the underlying graph structure representing the problem.

Along this direction, several message passing algorithms have been proposed in the
literature: ADMM [10], TRBP [35], MPLP [13], PSDD [18], Norm-Product BP [16],
and more recently Alternate Direction Dual Decomposition (AD3) [2].

156 F. Cruz-Mencia et al.

As discussed in [22], the recently-proposed AD3 has some very interesting features
in front of other message passing algorithms: it reaches consensus faster than other
algorithms such as ADMM, TRBP and PSDD; it does have neither the convergence
problems of MPLP nor the instability problems of Norm-Product BP; and its anytime
design allows to stop the optimisation process whenever a pre-specified accuracy is
reached. Furthermore, as reported in [22], AD3 has been empirically shown to outper-
form state-of-the-art message passing algorithms on large-scale problems.

Besides these features, AD3 also provides a library of computationally-efficient fac-
tors that allow to handle declarative constraints within an optimisation problem. This
opens the possibility of employing AD3 to approximate constrained optimisation
problems.

Algorithm 1 outlines the main operations performed by AD3 on a factor graph G
with a set of factors F, a set of variables V , and a set of edges E ⊆ F ×V . AD3 receives
a set of parameters θ that encode variable coefficients and a penalty constant η able to
regulate the update step size. We use the function ∂(x) to denote all the neighbours (i.e.
connected nodes) of a given graph node. The primal variables q and p, the dual λ as
well as the unary log-potentials ξ are vectors which are updated during the execution.
We refer the reader to [22] for a detailed description of the algorithm. AD3 is an iterative
three-step algorithm designed to approximate an objective function encoded as a factor
graph. A key aspect of AD3 is that it separates the optimisation problem into indepen-
dent subproblems that progress to reach consensus on the values to assign to primal and
dual variables. Thus, during the first step, broadcast, the optimisation problem is split
into separate subproblems, each one being distributed to a factor. Thereafter, each factor
locally solves its local subproblem. In AD3, this computations is carried on solving a
quadratic problem. During the second step, gather, each variable gathers the subprob-
lems’ solutions of the factors it is linked to. Finally, during the third step, Lagrange
updates, the Lagrange multipliers for each subproblem are updated.

Algorithm 1. Alternating Directions Dual Decomposition(AD3)
input: factor graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: repeat � Broadcast
3: for each factor α ∈ F do
4: for each i ∈ ∂(α) do
5: set unary log-potentials ξiα := θiα + λiα

6: end for
7: q̂α := SolveQP(θα + ξα, (pi)i∈∂(α))
8: end for
9: for each variable i ∈ V do � Gather

10: compute avg pi := |∂(i)|−1∑
α∈∂(i) q̂iα

11: for each α ∈ ∂(i) do � Lagrange updates
12: λiα := λiα − η(q̂iα − pi)
13: end for
14: end for
15: until convergence
output: primal variables p and q, dual variable λ

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 157

A distinguishing feature of AD3 is that both the broadcast and update steps can be
safely run in parallel. Indeed, notice that, since subproblems are independent, they can
be safely distributed in different factors so that each one independently computes a
local solution. AD3 provides a collection of factors for which their quadratic problems
are defined. As an example we present how the quadratic problem for the XOR factor is
solved in Algorithm 2, where the input of the algorithm are the potentials Zα : z0, . . . , zK

relative to the factor α. Note that in Algorithm 1 the call to the SolveQP method has
two parameters, the second parameter is omitted here since it is not needed to solve
the XOR. Algorithm 2 proceeds as follows. Lines 11-13 are responsible of checking if
the constraint XOR is already satisfied. Then, if not satisfied, the Zα vector is trans-
formed using the projection onto simplex method described by [9]. This method nav-
igates through Zα in decreasing order, to find the pivot element yi and the value of τ.
Afterwards this τ is used to perform the actual projection. To this end, two auxiliary
vectors Z′α and Yα are used: the former will contain the algorithm output and the latter
is used to contain a sorted copy of Zα. Although there are ways to obtain the pivot with-
out the need of sorting the vector Zα (described in [9]), in AD3 is preferable to have a
persistent sorted vector since order of elements is commonly preserved or barely altered
across the iterations. Therefore efficient sorting methods on nearly-ordered sequences
can be applied. An important feature of the XOR factor is that its quadratic problem can
be solved in O(K · logK), where K stands for the number of variables connected to the
factor.

Algorithm 2. SolveQP for an XOR factor
input: Zα : z0, . . . , zK , vector with α log-potentials

1: function FindTau(Yα)
2: τ = 0.0;
3: sum :=

∑
yi∈Yα

yi
4: for each yi ∈ Yα do
5: τ := sum−1

K−i
6: if yi > τ then break
7: update sum := sum − yi
8: end for
9: return τ

10: end function
11: z′i := max(0, zi), for each zi ∈ Zα

12: sum :=
∑

z′i∈Z′α z′i
13: if sum > 1.0 then � Projection onto simplex
14: sort Zα into Yα: y0 ≤ . . . ≤ yK
15: τ := FindTau(Yα)
16: z′i := max(zi − τ,0) , for each zi ∈ Zα

17: end if
output: Z′α

As to gather, the step in which the subproblems communicate their local results, each
variable can independently (from the rest of variables) gather and aggregate the results
computed by the factors it is linked to. Despite being highly prone to parallelisation,

158 F. Cruz-Mencia et al.

to the best of our knowledge there is only one public implementation of AD3 and can-
not run in parallel 1. The recent contributions to the parallelisation of ADMM to solve
unconstrained optimisation problems [23] are very encouraging because they show that
it is possible to obtain very significant speedups by exploiting nowadays parallel hard-
ware. This finding spurs and motivates the need for a parallel implementation of AD3.

But before that, in the next section we show that the WDP for CAs can be solved by
means of AD3.

3 Solving Combinatorial Auctions with AD3

A Combinatorial Auction (CA) is an auction in which bidders can place bids for a
combination of items instead of individual ones. In this scenario, one of the fundamental
problems is the Winner Determination Problem (WDP), which consists in finding the set
of bids that maximise the auctioneer’s benefit. Notice that the WDP is anNP-complete
problem.

Although special-purpose algorithms have addressed the WDP (e.g. [11,29]), the
state-of-the-art method for solving a WDP is to encode it as an integer linear program
(ILP) and solve it using an off-the-shelf commercial solver (such as CPLEX [1] or
Gurobi [15]). Nonetheless, this approach fails to scale to large CA instances. Indeed, as
noticed in [31], real problems may involve up to millions of bids. Therefore, such real
problems are out of reach for state-of-the-art optimal solvers, and hence the need for
heuristic approaches arise.

As observed in [4], ”The simplest and, perhaps most tempting approach, to an
optimization-based heuristic is to round the solution to a linear programming relax-
ation”. Furthermore, solutions to an LP relaxation can provide a very effective start to
finding a good feasible solution to the non-relaxed optimisation problem. Hereafter we
focus on solving the LP relaxation of the WDP by means of AD3. Since AD3 requires a
factor graph to operate, we first show how to encode the WDP as a factor graph. Then
we show how AD3 can run on top of this factor graph. We shall start by showing such
encoding by means of an example to finally derive a general procedure.

Consider an auctioneer puts on sale a pair of goods g1, g2. Say that the auctioneer
receives the following bids: b1 offering $20 for g1 ; b2 offering $10 for g2; and finally
b3 offering $35 for goods g1 and g2 together. The WDP for this CA can be encoded as
the following ILP:

maximise 20 · x1 + 10 · x2 + 35 · x3

subject to x1 + x3 ≤ 1 [constraint c1]

x2 + x3 ≤ 1 [constraint c2]

x1, x2, x3 ∈ {0, 1}
where x1, x2, and x3 stand for binary decision variables that indicate whether each bid
is selected or not; constraint c1 expresses that good g1 can only be allocated to either
bid b1 or bid b3 and constraint c2 encodes that good g2 can only be allocated to either
bid b2 or bid b3.

1 Available at http://www.ark.cs.cmu.edu/AD3/

http://www.ark.cs.cmu.edu/AD3/

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 159

x1

AtMost1AtMost1

x2 x3

c1

Decision
Variables

Constraint
Factors

c2

20 10 35

Fig. 1. Factor graph encoding of our CA example

Now we can encode the optimisation problem above into a factor graph as illustrated
in Figure 1. First, we create a variable node for each bid. Each variable contains its bid’s
offer (indicates the value that the auctioneer obtains when the variable is active). For
instance, variable x1 for bid b1 contains value 20. Then we create a factor node per good,
connecting the bids that compete for the good, and which are therefore incompatible.
For instance, factor c1 is linked to the variables corresponding to bids b1 and b3.

We observe that each factor representing a constraint in the factor graph in figure
1 corresponds to the ”AtMost1” function introduced by Smith and Eisner [33], which
is satisfied if there is at most one active input. Although AD3 does not directly support
”AtMost1” constraints, as seen in [21], an XOR factor can be used to define it by adding
a slack variable to the factor. The XOR factor complexity is O(K ·logK), where K stands
for the number of variables connected to the XOR factor. Notice that the operation of
AD3 when solving the WDP only involves computationally-efficient factors.

4 Parallel Realisation of AD3

The AD3 algorithm is amenable to general, architecture-level optimisation and paral-
lelisation [21]. We propose an efficient realisation of the message-passing algorithmic
pattern using shared variables and targeting multicore computer architectures. The so-
called PAR-AD3, that exploits the inherent parallelism at two dimensions: thread-level
and data-level. For that, we reorganise both the data structures layout and the order of
operations. The approach is generalisable to other similar graph processing algorithms.
The key insights of our design are:

– An edge-centric representation of the shared variables that improves memory ac-
cess performance.

– A reorganisation of the operations that promotes parallel scaling (thread paral-
lelism) and vectorising (data parallelism).

4.1 Edge-centric Shared Data Layout

AD3 is a message passing algorithm that iterates on three steps: broadcast, gather and
Lagrange multiplier update. The message passing pattern isolates the operations ap-
plied to the different elements of the graph (factors, variables and edges), so that mul-
tiple operations can be performed concurrently on the graph data. These operations

160 F. Cruz-Mencia et al.

and data can then be physically distributed along different computation and storage
elements.

The memory requirements of AD3 are approximately proportional to the number of
edges, and, for the problem sizes considered, they are fulfilled by most current shared-
memory computer systems. In this situation, the fastest and most efficient mechanism
for communication and synchronisation between processing cores is using shared vari-
ables (instead of explicit messages). The different processing cores of the computer will
operate concurrently on the different elements of the graph (factors, variables or edges),
both reading input data and generating new results stored in the shared memory. Exe-
cution performance is improved with a careful selection of synchronisation operations
at the right point and an appropriate data structures layout.

Memory access performance is very sensitive to the data layout and data access pat-
tern. When a loop has to iterate along a large regular data structure, the best performance
is achieved when the next elements of the structure are naturally fetched from the next
memory positions at each step of the iteration. Since AD3 demands more computation
work operating in edge data than in vertex or factor data, we adopt an edge-centric
data representation, as reported in [27]. We want all information related to edges, such
as unary log-potentials or lagrangian components, to be stored in consecutive memory
positions. With this purpose, we apply a memory layout transformation that converts
data structures originally designed in an Array of Structures (AOS) representation to a
Structure of Arrays (SOA) representation.

Figure 2 illustrates how data was stored in memory in AD3 and how the data layout
is modified in PAR-AD3. For the sake of clarity, we present data regarding 2 variables
and 4 edges. AD3 encodes the information following an AOS representation, where all
properties related to each variable or edge are stored consecutively (see figure 2a). As
the design is variable-centric, iterating on all the edges in the graph requires an indirect
and scattered access to the variables (edges are accessed using the pointers associated
to each variable). In contrast, the PAR-AD3 SOA memory layout (figure 2b) stores
the properties of variables and edges sequentially, thus resulting in a different array for
each edge or variable property. Now, iterating on all edges of the graph requires consec-
utive accesses to array elements. The AOS memory representation of AD3 benefits from
memory access patterns where all the variable properties are used together, meanwhile
the SOA memory representation of PAR-AD3 benefits from the access of any property
traversing all variables or edges.

To summarise, the PAR-AD3 data representation transforms many scattered memory
accesses into sequential, improving the memory access throughput. A derived advan-
tage of the simplified edge access pattern is to foster better parallel scaling and vectori-
sation, but we need additional algorithmic transformations that are described in the next
section.

4.2 Reordering Operations

Parallel scaling means distributing compute operations on large chunks of data along
different computational units sharing the same memory space. Vectorising applies data
parallelism strategies inside the same computational unit, and consists in using in-
structions that operate simultaneously on a small vector of consecutive data elements.

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 161

ID Degree Var potential Pointer to
edges pi

Variable #1

ID Degree Var potential Pointer to
edges pi

Variable #2
a) AD3 data layout

b) PAR-AD3 data layout

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #1

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #2

. . .

. . .

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #3

Factor IDVar ID
unary
log-

potential
qi,alpha

Edge #4

. . .

Degree

ID

Variable #1 Variable #2

. . .

. . .

Var potentials

pi

Variable #1 Variable #2

. . .

. . .

Edge #3 Edge #4Edge #1 Edge #2

VarID . . .

FactorID . . .

Edge #3 Edge #4Edge #1 Edge #2

Unary log-
potentials

. . .

qi,alpha . . .

Edge Dependent data Variable Dependent data

Fig. 2. a) AOS data representation of AD3, compared to b) SOA data representation of PAR-AD3

GatherBroadcast

Iterating
Edges

Iterating
Variables

Iterating
Variables

Iterating
Factors

Iterating
Edges

Iterating
Edges

Update
Edges

Sort
Potentials

Solve
Factors

Phases: Accumulate Average Update Multipliers

Update Multipliers

Fig. 3. Processing phases and parallelism in PAR-AD3

Both parallel scaling and vectorising are usually applied to simple loop iterations with
clearly separated inputs and outputs, no recurrent dependencies, and sequential accesses
to vector elements.

Our proposal reshapes the way the algorithm defines the graph operations towards
a new structure of many simple consecutive loops, outlined in figure 3. The original
Broadcast step is now split in three phases: update edge, sort potential and solve factors.
Also, the original Gather step is now split in two phases: accumulate and average. Note
that we iterate on factors twice and also iterate on variables twice: this makes the loops
simpler and provides more data locality. As a result, all phases are now parallelised
for concurrent execution (thread parallelism) and four out of six are vectorised: update
edge, accumulate, average and update multiplier.

Algorithm 3 shows a pseudo-code of PAR-AD3 as a result of the optimizations ap-
plied. A pool of parallel threads is created outside of the main loop (line 2). Whenever
a parallel loop inside the main loop is reached (lines 4, 9, 12, 19, 24, 27), the loop
iterations are distributed to the threads for parallel execution. There is an implicit syn-
chronisation after each loop, so that all threads wait for the generation of the results in
one loop before starting the execution of the next.

As thoroughly described in the next section, these contributions have a significant
impact in the sequential execution as well as allow good parallel scalability when an
increasingly large number of threads are used. Since a clear trend in computer archi-
tecture is an increase of parallelism both at instruction and thread level, (for example,

162 F. Cruz-Mencia et al.

Algorithm 3. PAR-AD3 pseudo-code
input: factor graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: create threads
3: repeat
4: parallel for iα ∈ E do � Update edges
5: Update log-potentials ξiα := θiα + λiα

6: compute q̂iα = θiα + ξiα
7: compute q̂′iα = max(0, q̂iα)
8: end for
9: parallel for factor α ∈ F do � Sort potentials

10: q̂ sortedα := sort(q̂α)
11: end for
12: parallel for factor α ∈ F do � Solve factors
13: sum =

∑
i∈∂(α)(q̂

′
iα)

14: if sum > 1.0 then
15: τ := FindTau(q̂ sortedα)
16: q′iα := max(qiα − τ,0), for each qiα ∈ qα

17: end if
18: end for
19: parallel for variable i ∈ V do � Acummulate
20: for i ∈ ∂(α) do
21: p̃i := p̃i + q̂iα

22: end for
23: end for
24: parallel for variable i ∈ V do � Average
25: pi := p̃i/ |∂(i)|
26: end for
27: parallel for iα ∈ E do
28: λiα := λiα − η(q̂iα − pi) � Update multipliers
29: end for
30: update η
31: until convergence
output: primal variables p and q, dual variable λ

the intel Xeon Phi accelerator operates with 512-bit vector registers and contains more
than 60 execution cores) the methodology applied to PAR-AD3 makes it ready to benefit
from upcoming improvements.

5 Empirical Evaluation

In this section, we assess PAR-AD3 performance against the state-of-the-art optimisa-
tion software CPLEX with the aim of determining the scenarios for which PAR-AD3

is the algorithm of choice. We also quantify its current gains, both in sequential and
parallel executions. To this end, we first find the data distributions and range of prob-
lems that are best suited for PAR-AD3. Thereafter, we briefly analyse two algorithmic
key features: convergence and solution quality. Afterwards, we quantify the speedups of
PAR-AD3 with respect to CPLEX in sequential and parallel executions. From this anal-
ysis we conclude that PAR-AD3 does obtain larger benefits from parallelisation than

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 163

CPLEX. Indeed, PAR-AD3 achieves a peak speedup of 23X above CPLEX barrier, the
state-of-the-art solver for sparse problems.

s
c
h
e
d
u
li
n
g

p
a
th

s

re
g
io

n
s
-n

p
v

a
rb

it
ra

ry
-n

p
v

m
a
tc

h
in

g

L
1

L
3

L
4

L
5

L
6

L
710

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Simplex solving time

s
c
h
e
d
u
li
n
g

p
a
th

s

re
g
io

n
s
-n

p
v

a
rb

it
ra

ry
-n

p
v

m
a
tc

h
in

g

L
1

L
3

L
4

L
5

L
6

L
710

-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

Barrier solving time

Fig. 4. Solving time for different distributions, single thread. a) Simplex b) Barrier

Experiment Setup. In order to generate CA WDP instances, we employ CATS, the
CA generator suite described in [20]. Each instance is generated out of the following
list of distributions thoroughly described in [19]: arbitrary, matching, paths, regions,
scheduling, L1, L3, L4, L5, L6 and L7. We discarded to employ the L2 distribution,
because the CATS generator is not capable of generating large instances. While the
first five distributions were designed to generate realistic CA WDP instances, the latter
ones generate artificial instances. The main difference between the two distribution cat-
egories is the use of dummy goods that add structure to the problem inspired in some
real life scenarios. i.e. Paths models the transportation links between cities; Regions
models an auction of real estate or an auction where the basis of complementarity is
the two-dimensional adjacency of goods; Arbitrary extends regions by removing the
two-dimensional adjacency assumption, and it can be applied to model electronic parts
design or procurement; Matching models airline take-off and landing rights auctions;
and Scheduling models a distributed job-shop scheduling domain. Artificial (or Legacy)
distributions have been often criticised [3,20,8] mainly due to their poor applicability,
specially in the economic field. However they are interesting in order to study the al-
gorithm performance in different situations. Both AD3 and PAR-AD3 are well suited
for large-scale hard problems. For this reason, we first determine which of these distri-
butions are hard to solve, putting special attention to the realistic ones. For our exper-
imentation, we considered a number of goods within [103, 104] in steps of 103 goods.
Furthermore, the number of bids ranged within [104, 4 · 104] in steps of 104 bids. Each
problem scenario is characterised by a combination of distribution, number of goods,
and number of bids. Our experiments consider 5 different instances for each problem
scenario and we analyse their mean value. Experiments are executed in a computer
with two four-core Intel Xeon Processors L5520 @2.27GHz with 32 GB RAM with
the hyper-threading mechanism disabled.

Different Distributions Hardness. We empirically determine the hardness of the re-
laxation for our experimental data by solving the LP using CPLEX simplex (simplex

164 F. Cruz-Mencia et al.

Simplex

Barrier

b)

a)

SI
N

G
LE

-T
H

RE
AD

M
U

LT
I-T

H
RE

AD

PAR-AD
3

Simplex

Barrier

PAR-AD
3

Fig. 5. Fastest algorithm solving different distributions and problem sizes. a) Single-thread, b)
Multi-thread.

henceforth), CPLEX barrier (barrier henceforth), the state-of-the art algorithms. Results
are plot in figures 4a and 4b. According to the results, scheduling and matching from
the realistic distributions and L1, L4 from the legacy ones are very well addressed by
simplex, where solving time is, in general, less than one second. Both AD3 and PAR-
AD3 are not competitive in this scenario. Applicability of PAR-AD3 will be shown to
be effective to the rest of distributions, especially in hard instances. Barrier is also do-
ing a good job when the problems are hard, particularly in the arbitrary and regions
distributions, where the representation matrix is more sparse.

Single-thread Analysis. After comparing the publicly-available version of AD3 against
sequential PAR-AD3, we observed that PAR-AD3 outperformed AD3 even in sequential
execution, reaching an average speedup of 3X and a peak speedup of 12.4X. More-
over, we observed that the harder the instances, the larger the speedups of PAR-AD3

with respect to AD3. Since both algorithms are well suited for hard instances, this is
particularly noticeable. Next, we compared the single-thread average performance of
PAR-AD3 against simplex and barrier. The results are plot in Figure 5a ,where we dis-
play the best algorithm for the different distributions and problem sizes. PAR-AD3 is
shown to be well suited for larger problems (the upper-right corner) in almost all the
distributions. In general, barrier is the best algorithm in the mid-sized problems, while
simplex applicability is limited to a small number of cases. Distribution paths presents
a different behaviour, where adding goods increases the average bid arity and this is
beneficial for simplex, which runs better in dense problems.

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 165

Fig. 6. Speedup of PAR-AD3 for different distributions against barrier in a multi-thread execution

In general, the larger the WDP instances, the larger the PAR-AD3 benefits. Single-
threaded PAR-AD3 reaches a peak speedup of 12.4 for the hardest distribution when
compared to barrier, the best of the two state-of-the-art solvers.

Convergence

Fig. 7. Convergence of simplex, barrier and PAR-AD3

Convergence and Solution Quality. Figure 7 shows a trace of an execution that illus-
trates the way the different solvers approximate the solution over time (using a regions
distribution, 5× 103 goods, and 104 bids). We chose this run because the similar perfor-
mance of the three algorithms made them comparable. Note that PAR-AD3 converges to
the solution in 29 sec., while barrier requires 102 sec. and simplex 202 sec. (not visible
in the figure). Furthermore, notice that PAR-AD3 quickly reaches a high-quality bound,
hence promptly guaranteeing close-to-the-solution anytime approximations. In general,
our experimental data indicate that the initial solution provided by PAR-AD3 is always
significantly better than the one assessed by both simplex and barrier. Finally, upon
convergence, there is a maximum deviation of 0.02% between PAR-AD3 solutions and
those assessed by CPLEX. Note that we run CPLEX with default parameters, has the

166 F. Cruz-Mencia et al.

feasibility tolerance set to 10−6. This means that CPLEX solutions may be infeasible up
to a range of 10−6 per variable. In the same sense, PAR-AD3 feasibility tolerance is set
to 10−12. This good initial solution is a nice property that makes PAR-AD3 suitable to
be used as a method able to obtain quick bounds, either to be embedded in a MIP solver
or also to provide a fast solution able to be used towards an approximate solution.
Multi-thread Analysis. We have run PAR-AD3, simplex and barrier with 8 parallel
threads each, hence using the full parallelism offered by our computer. The results are
displayed in figure 5b. When comparing with figure 5a (corresponding to the single-
thread execution), we observe that PAR-AD3 outperforms simplex and barrier in many
more scenarios, and in general PAR-AD3 applicability grows in concert with the parallel
resources in all cases. Hence, we infer that PAR-AD3 better benefits from parallelisation
than simplex and barrier. The case of the paths distribution is especially remarkable
since simplex is faster than other algorithms when running in a single-thread scenario.
Nonetheless, as PAR-AD3 better exploits parallelism, it revealed to be the most suitable
algorithm for hard distributions when running in multi-threaded executions, including
paths. In accordance with those results, it is expected that increasing the number of
computational units will widen the range of applicability of PAR-AD3.

Finally, we compared PAR-AD3 performance against barrier using 8 threads. We
only compare PAR-AD3 to barrier since it is the best suited algorithm for the selected
distributions (i.e in some executions PAR-AD3 can be up to three orders of magni-
tude faster than simplex). Figure 6 shows the average performance speedup of PAR-
AD3 versus barrier as a function of the total running time of the execution of barrier
(shown in the X-axis). We observe a clear trend in all scenarios: the harder the problem
becomes for barrier, the larger the speedups obtained by PAR-AD3. Our peak speedup
is 23X (16X when taking the mean execution time of the different instances). The best
results are achieved in the arbitrary distribution, which in addition was significantly bet-
ter solved by barrier than by simplex according to figure 4. We recall that arbitrary is a
distribution that can be applied to the design of electronic parts or procurement since it
removes the two-dimensional adjacency of regions. In arbitrary, larger speedups corre-
spond to the more sparse scenario, i.e. the bottom-right corner in figure 5.

6 Conclusions

In this paper we have tried to open up a path towards solving large-scale CAs. We
have proposed a novel approach to solve the LP relaxation for the WDP. Our approach
encodes the optimisation problem as a factor graph and uses AD3, a dual-decomposition
message-passing algorithm, to efficiently find the solution.

In order to achieve higher efficiency, we identified some of the bottlenecks found
in message-passing graph-based algorithms and proposed some techniques to achieve
good performance and scalability, in particular when executing in parallel. As a result
of this analysis, we rearranged the operations performed by AD3 providing a new algo-
rithm, the so-called PAR-AD3, which is an optimised and parallel version of AD3.

Our experimental results validate PAR-AD3 efficiency gains in large scale scenar-
ios. We have shown that PAR-AD3 performs better than CPLEX for large-scale CAs
in the computationally hardest distributions, both in single- and multi-threaded scenar-
ios, with a peak speedup of 23X. Furthermore, the speedup is larger in multi-threaded

Parallelisation and Application of AD3 as a Method for Solving Large Scale CAs 167

scenarios, showing that PAR-AD3 scales better with hardware than CPLEX. Therefore,
PAR-AD3 has much potential to solve large-scale coordination problems that can be
cast as optimisation problems.

References

1. IBM ILOG CPLEX Optimizer,
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/ (last 2010)

2. Aguiar, P., Xing, E.P., Figueiredo, M., Smith, N.A., Martins, A.: An augmented lagrangian
approach to constrained map inference. In: Proceedings of the 28th International Conference
on Machine Learning (ICML 2011), pp. 169–176 (2011)

3. Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction win-
ner determination. In: Proceedings of the Fourth International Conference on MultiAgent
Systems, pp. 39–46. IEEE (2000)

4. Ball, M.O.: Heuristics based on mathematical programming. Surveys in Operations Research
and Management Science 16(1), 21–38 (2011)

5. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization, 1st edn. Athena Scientific
(1997)

6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical
learning via the alternating direction method of multipliers. Foundations and Trends R© in
Machine Learning 3(1), 1–122 (2011)

7. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial auctions. MIT Press (2006)
8. De Vries, S., Vohra, R.V.: Combinatorial auctions: A survey. INFORMS Journal on Comput-

ing 15(3), 284–309 (2003)
9. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball

for learning in high dimensions. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 272–279. ACM (2008)

10. Eckstein, J., Bertsekas, D.P.: On the douglas?rachford splitting method and the proxi-
mal point algorithm for maximal monotone operators. Mathematical Programming 55(1-3),
293–318 (1992)

11. Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of com-
binatorial auctions: Optimal and approximate approaches. In: International Joint Conferences
on Artificial Intelligence (IJCAI), pp. 548–553 (1999)

12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems
via finite element approximation. Computers & Mathematics with Applications 2(1), 17–40
(1976)

13. Globerson, A., Jaakkola, T.S.: Fixing max-product: Convergent message passing algorithms
for map lp-relaxations. In: Advances in Neural Information Processing Systems, pp. 553–560
(2008)

14. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires.
ESAIM: Mathematical Modelling and Numerical Analysis-Modélisation Mathématique et
Analyse Numérique 9(R2), 41–76 (1975)

15. Gu, Z., Rothberg, E., Bixby, R.: Gurobi 4.0.2. software (December 2010)
16. Hazan, T., Shashua, A.: Norm-product belief propagation: Primal-dual message-passing for

approximate inference. IEEE Transactions on Information Theory 56(12), 6294–6316 (2010)
17. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization.

IEEE Transactions on Pattern Analysis and Machine Intelligence 28(10), 1568–1583 (2006)
18. Komodakis, N., Paragios, N., Tziritas, G.: Mrf optimization via dual decomposition:

Message-passing revisited. In: IEEE 11th International Conference on Computer Vision,
ICCV 2007, pp. 1–8. IEEE (2007)

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

168 F. Cruz-Mencia et al.

19. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM (JACM) 56(4), 22 (2009)

20. Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a universal test suite for combinatorial
auction algorithms. In: Proceedings of the 2nd ACM Conference on Electronic Commerce,
pp. 66–76. ACM (2000)

21. Martins, A.F.T.: The Geometry of Constrained Structured Prediction: Applications to Infer-
ence and Learning of Natural Language Syntax. PhD thesis, Columbia University (2012)

22. Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A., Xing, E.P.: Ad3: Alternat-
ing directions dual decomposition for map inference in graphical models. Journal of Machine
Learning Research 46 (2014) (to appear)

23. Miksik, O., Vineet, V., Perez, P., Torr, P.H.S.: Distributed non-convex admm-inference in
large-scale random fields. In: British Machine Vision Conference, BMVC (2014)

24. Parsons, S., Rodriguez-Aguilar, J.A., Klein, M.: Auctions and bidding: A guide for computer
scientists. ACM Comput. Surv. 43(2), 10:1–10:59 (2011)

25. Ramchurn, S.D., Mezzetti, C., Giovannucci, A., Rodriguez-Aguilar, J.A., Dash, R.K., Jen-
nings, N.R.: Trust-based mechanisms for robust and efficient task allocation in the presence
of execution uncertainty. Journal of Artificial Intelligence Research 35(1), 119 (2009)

26. Ramchurn, S.D., Rogers, A., Macarthur, K., Farinelli, A., Vytelingum, P., Vetsikas, I., Jen-
nings, N.R.: Agent-based coordination technologies in disaster management. In: Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems:
Demo Papers, pp. 1651–1652 (2008)

27. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centric graph processing using
streaming partitions. In: Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pp. 472–488. ACM (2013)

28. Rush, A.M., Sontag, D., Collins, M., Jaakkola, T.: On dual decomposition and linear pro-
gramming relaxations for natural language processing. In: Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1–11. Association for
Computational Linguistics (2010)

29. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Cabob: A fast optimal algorithm for com-
binatorial auctions. In: International Joint Conference on Artificial Intelligence, vol. 17,
pp. 1102–1108 (2001)

30. Santos Jr., E.: On the generation of alternative explanations with implications for belief revi-
sion. In: Proceedings of the Seventh conference on Uncertainty in Artificial Intelligence, pp.
339–347. Morgan Kaufmann Publishers Inc. (1991)

31. Sheffi, Y.: Combinatorial auctions in the procurement of transportation services. Inter-
faces 34(4), 245–252 (2004)

32. Sierra, C., Lopez de Mantaras, R., Busquets, D.: Multiagent bidding mechanisms for robot
qualitative navigation. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS
(LNAI), vol. 1986, pp. 198–212. Springer, Heidelberg (2001)

33. Smith, D., Eisner, J.: Dependency parsing by belief propagation. In: Proceedings of the Con-
ference on Empirical Conference on Empirical Methods in Natural Language Processing,
pp. 145–156 (October 2008)

34. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T.S., Weiss, Y.: Tightening lp relaxations
for map using message passing. arXiv preprint arXiv:1206.3288 (2012)

35. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Tree-reweighted belief propagation algo-
rithms and approximate ml estimation by pseudo-moment matching. In: Workshop on Artifi-
cial Intelligence and Statistics, vol. 21, p. 97. Society for Artificial Intelligence and Statistics
(2003)

36. Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation
– an empirical study. J. Mach. Learn. Res. 7, 1887–1907 (2006)

Handling Agent Perception in Heterogeneous
Distributed Systems: A Policy-Based Approach

Stephen Cranefield1(�) and Surangika Ranathunga2

1 Department of Information Science, University of Otago, Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

2 Department of Computer Science & Engineering, Faculty of Engineering,
University of Moratuwa, Moratuwa, Sri Lanka

surangika@cse.mrt.ac.lk

Abstract. Multi-agent systems technologies have been widely investi-
gated as a promising approach for modelling and building distributed sys-
tems. However, the benefits of agents are not restricted to systems solely
comprised of agents. This paper considers how to ease the task of devel-
oping agents that perceive information from asynchronously executing
external systems, especially those producing data at a high frequency. It
presents a design for a percept buffer that, when configured with domain-
specific percept metadata and application-specific percept management
policies, provides a generic but customisable solution. Three application
case studies are presented to illustrate and evaluate the approach.

1 Introduction

Multi-agent systems (MAS) technologies have been widely investigated as a
promising approach for modelling and building distributed systems. In particu-
lar, much MAS research focuses on developing theories and tools that address
the requirements of autonomous distributed software components that must act,
interact and coordinate with each other in complex domains. Typically, agents
are conceptualised as having incomplete and changing knowledge, the ability to
act proactively to satisfy explicit goals, adaptive behaviour through the selec-
tion of plans that best respond to goals in a given situation, and the ability to
communicate knowledge and requests to each other.

This paper considers, in particular, agents based on the popular Belief-Desire-
Intention (BDI) agent model [4], which is inspired by human practical reasoning.
Agent development platforms implementing this model, such as Jason [3], allow
programmers to write code in terms of a dynamic belief base that is updated
as percepts are received from the external environment, and plans are triggered
by changes in beliefs and the creation of new goals by other plans. Plans can
also cause actions to be performed in the environment. The developer must
provide an environment class that models the application state visible to the
agent and/or affected by its actions. At its simplest, this is a simulation of
a physical environment. However, BDI agents have proven their value beyond
simple simulated systems. They have been used for implementing robots [16,15],
“intelligent virtual agents” [13,7,2] that control avatars in virtual worlds and

© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 169–185, 2015.
DOI: 10.1007/978-3-319-19282-6_11

170 S. Cranefield and S. Ranathunga

multi-player games, and even for real-time control of satellites [6]. As well as
these situations where an agent’s ‘body’ is controlled by software external to the
agent, it may also be the case that an agent is only a component of a larger
distributed system involving multiple technologies and protocols. In this case,
it may be most convenient for the agent programmer to regard the external
systems as part of its environment, and therefore a source of percepts and the
target of actions [5].

This paper therefore considers the problem of providing an agent with a view
of one or more external system components as a source of percepts, extending our
previous architecture in which agent ‘endpoints’ act as a bridge between agents
and message-based routing and mediation middleware [5]1. There are several
aspects to this problem:
1) Agents perceive the environment periodically and asynchronously from the
changes occurring in the external systems. Therefore, multiple changes may occur
between agent perceptions, and it is necessary to buffer these changes. 2) BDI
agents have a relatively slow execution cycle, and thus information from external
systems such as virtual worlds and robot sensors may arrive much faster than the
agent’s perception rate. Delivering all buffered percepts to the agent on each per-
ception may exceed its ability to trigger and execute plans. Therefore, buffered
percepts should be amalgamated or summarised between perceptions. 3) The
question of whether a percept should replace an older buffered one is dependent
on the domain ontology. Thus, percept buffering requires domain knowledge. 4)
The logic for summarising related buffered percepts is application-dependent.
Thus, percept buffering needs application knowledge.

The first two issues above have been repeatedly encountered by researchers
[6,8,12,13,10]. However, as yet, agent development tools do not provide any
platform-level solution to these problems, leaving the agent programmer to im-
plement their own application-level solutions.

This paper provides a solution to this problem, informed by the third and
fourth observations above, by introducing the concepts of a percept buffer and
configurable percept management policies. Together, these control the number
and form of percepts provided to an agent. Given a generic percept buffer, a
developer can use this in conjunction with common policies from a library or
custom application-specific ones, to configure the buffer to avoid information
loss and reduce the cognitive load needed for percept handling. A percept buffer
therefore provides a general platform-, domain- and application-independent
framework for tackling the problems of handling percepts representing infor-
mation from external systems in a flexible way.

2 Related Work

The difficulty of handling high frequency percepts in BDI agent systems has been
acknowledged by researchers implementing situated agents [12,13]. However, we
are not aware of any implemented concrete solution to this problem.
1 Our previous work also addresses interpreting actions as requests to external systems,

but here we focus on percepts.

Handling Agent Perception in Heterogeneous Distributed Systems 171

There is some research on abstracting the low-level sensor data received from
an external environment before providing it to a BDI agent [13,16]. Similar to
receiving low-level sensor data, it is also possible that the agent could receive a
continuous data stream from the environment. In such a case, this continuous
data stream should be discretized before providing it to the agent as percepts.
Such an abstraction engine has been described by Dennis et al. [6] in the context
of using BDI agents to control a satellite. By providing only abstract environment
information and/or discretized information to an agent, the problem of cognitive
overload can be minimised. However, this does not directly address the problem
of high frequency perception—the abstracted environment information may still
arrive at too high a frequency for a relatively slow BDI agent. Moreover, this
previous work implements the sensor data abstraction components outside the
BDI agent system, thus providing it with no control over the type and amount
of the percepts it provides to agents.

An alternative approach to minimising the cognitive overload is actively fil-
tering out percepts that do not fit certain criteria. Percept filtering is discussed
alongside attention theories, where it is argued that given the fact that agent
attention is a limited resource, the agent should be able to filter-out informa-
tion that falls outside its current attention. Filtering can be of two-forms: top-
down (goal-driven), or bottom-up. Top-down filtering refers to retaining only
those percepts that are relevant to the currently pursued goals of the agent [14].
Bottom-up filtering refers to identifying salient information in the incoming per-
cept stream that should catch the agent’s attention. The work of van Oijen and
Dignum [11] presents an example for goal-driven filtering of percepts by an in-
telligent virtual agent (IVA). When an agent adopts a new goal, it can specify
the type of percepts required for that goal. This filtering is terminated as soon
as the agent stops pursuing the current goal. Ideally, an IVA should be able to
strike a balance between the two types of filtering.

The use of a cache or a buffer to keep environment information required
by an agent is not new. For example, Oijen et al. [12] present the use of a
cache to store a high level domain model derived from lower-level game state
data. This information is kept until game state changes invalidate the cached
derived data. Their ontology loosely corresponds to our percept metadata (see
Sect. 5). However, although agents can filter the percepts they wish to perceive
via subscriptions, there is no counterpart to our policies for summarising or
aggregating multiple percepts received between perceptions.

3 Managing Agent Perception Using Policies

At the heart of our approach is the use of policies to manage the number of per-
cepts produced for the deliberation process of an agent. Policies may be generic
ones that are useful across a range of applications, and may be parameterised to
configure them for specific applications. On the other hand, agent programmers
may develop their own application-specific policies, which can be plugged into
our framework via a simple interface. We also allow agents to dynamically change

172 S. Cranefield and S. Ranathunga

the policies used to pre-process their incoming percepts in order to change the
focus of their attention—an example of this is given in Sect. 9.2.

Some useful application-independent policies are listed below.

Keep latest percept. This policy will simply replace the previously processed
matching percepts with the new one. This might be appropriate, for example,
for percepts that represent sensor readings (with the sensor identifier treated
as a percept key). If multiple readings for the same sensor arrive between two
agent perceptions, the agent may only need to perceive the latest reading.

Keep latest with history. As above, this policy will ensure that at most one
percept for a given functor (predicate name), arity (number of arguments)
and list of key argument values is kept in the queue of percepts waiting to be
perceived. However, in case the agent wishes to inspect the full recent history
of matching percepts (since the previous perception), the policy records this
history in the percept as an additional argument. This policy could also be
refined to associate a time stamp with each percept in the history list. This
policy illustrates an important feature of the design of our percept buffer:
we support the use of policies that change the structure of percepts, e.g. by
changing their functors and arities.

Keep most significant. Rather than keeping only the most recent percept
(e.g. from a sensor), this policy will keep the one with the most significant
value. For example, for a sensor monitoring Nitrogen Dioxide concentrations
at a city intersection, the agent may be interested in the highest reading
since the last perception.

4 Architecture

Figure 1 shows our architecture for using percept buffers to handle percept
buffering, amalgamation and summarisation. We assume that percepts relevant
to the agent are received via one or more channels, shown on the left hand side of
the figure. These are responsible for delivering percepts obtained from external
sources, such as virtual worlds, complex event detection engines and enterprise
messaging systems, to the appropriate agents’ percept buffers. It is the respon-
sibility of these channels to perform whatever data preprocessing is necessary to
produce percepts in an appropriate format for the agent platform used2.

The channels also have the role of adding specific metadata to each percept
to specify how the agents’ percept buffers should combine this new information
with any percepts that are in the buffer waiting for the agent to perceive them.
Most importantly, this metadata includes the name of a policy to be used to
amalgamate matching percepts (if required). The notion of a matching percept
is defined by indicating the key argument indices, i.e. the argument positions
that form a (possibly compound) key for a percept with that functor and arity,

2 Eventually it may be possible to use a platform-independent format for percepts,
such as the “interface intermediate language” proposed by Behrens et al. [1].

Handling Agent Perception in Heterogeneous Distributed Systems 173

Agent 3's percept buffer

Agent 2's percept buffer

Agent 1's percept buffer

Policy function:

percept x percept list
percept list

Incoming percepts

...

Policy-processed but
unperceived percepts

...

Persistent percepts
...

Policy A's thread

poll

o Policy
o Persistence
o Predicate’s key arguments
o Functional predicate?
o Arrival time
o Tenure

...

Once
perceived

Policy B's thread

Policy C's thread

...

...

Incoming
percept

channels

 Application-specific
configuration for percept
metadata generation

push

Agents

Generic, domain-specific
or application-specific

poll

poll

Change percept policy assignmment logic

Change policy thread priority

Fig. 1. The architecture and interfaces of a percept buffer

and whether or not the percept’s predicate is functional, i.e. whether it can only
have a single value at any time for given arguments at the key argument indices.
Percepts are also specified as being transient or persistent. Transient percepts
are only stored until the agent’s next perception, whereas persistent percepts are
treated as part of the environment’s state, and are also perceived by the agent
in subsequent perceptions (unless replaced by newer percepts, or they expire
as specified by the percept’s arrival time and tenure). Note that the aim of the
percept buffer is not to act as the agent’s memory in general. However, we see its
role as providing an agent environment that encapsulates the external sources of
percepts. We therefore allow an agent developer the option of using the buffer to
store persistent state that may not be made available repeatedly by the external
system.

The percept metadata, and the implementations of the policies used (con-
forming to a simple interface—see Sect. 6), provide the domain- and application-
specific information used by the percept buffers. Therefore, configuring our ap-
proach for a specific application involves providing a mechanism for the channels
to add the required metadata, e.g. application-specific rules. More detail on our
metadata scheme is given in Sect. 5.

The architecture allows agents to dynamically control their perception by
changing how channels assign policies to percepts (based on their functor and
arity), and the priorities of the threads that execute policies. The mechanisms
for providing this functionality will depend on the agent platform used. Our im-
plementation, using Jason [3], provides agent “internal actions” for this purpose.

Each agent has its own percept buffer, which has percepts, along with their
metadata, pushed to it from the channels. A single percept may be delivered at
a time, e.g. when a stream of data is being consumed by a channel, or a set of
percepts may be delivered together, with the intention that these represent a
complete state update for the agent. In the latter case, we assume that there is

174 S. Cranefield and S. Ranathunga

a single channel or that the channels have been designed so that the buffer does
not need to synchronise state updates from different channels. We also assume
that all percepts in the state update are to be processed by the same policy3,
or that it does not matter if a single state update results in different policies’
outputs being perceived by the agent at different times4.

For each percept-processing policy in use, a percept buffer maintains a (thread-
safe) queue of incoming percept sets that have been pushed on the queue by the
channels. Each percept set on the queue is either a singleton set (in the case
of percept streaming) or represents a state update. In addition, for each policy,
there is a list of processed but unperceived percepts and a list of previously
perceived but persistent percepts. These contain the buffered percepts that are
waiting to be delivered to the agent when it next perceives the environment. The
latter list contains percepts that should be repeatedly delivered to the agent, ac-
cording to the percept metadata. The percept buffer creates a thread for each
policy that repeatedly takes percept sets from the incoming queue and combines
them with the buffered percepts to produce an updated list of buffered percepts.

When the agent perceives, it consumes the percepts in the unperceived percept
list. It also receives percepts from the persistent percept list. At this time, the
persistent percept set is updated with the newly perceived percepts that are
annotated as being persistent. This may involve some instances of functional
percepts being replaced with new ones. As there is a separate perceived persistent
percept set for each policy, we require that functional persistent percepts with
a given functor and arity are always associated with the same policy; otherwise
the updating of persistent percepts cannot be guaranteed to be done correctly.

5 Percept Metadata

The following metadata scheme is used by channels when annotating percepts
before delivering them to the agents’ percept buffers. In this way, domain-
and application-specific knowledge can be provided on how percepts should be
treated.

Policy This metadata element specifies the name of the policy that should
be used to combine a new percept with any ‘matching’ ones that have been
processed by the policy but not yet perceived.

Persistent This element can be true or false, depending on whether the percept
should be stored in the percept buffer persistently and repeatedly perceived
by the agent until it is replaced by newer information or it expires.

KeyArgs As described above, the key arguments for a percept are those that
comprise a compound key. The value of this optional element is a list of argu-
ment indices. This defines which processed but unperceived percepts match a

3 It is possible for a single policy to process percepts with different functors.
4 Our current implementation adds an additional assumption: that all percepts in an

incoming percept set have the same persistence (transient or persistent), but this is
simpler to remove than the other assumptions.

Handling Agent Perception in Heterogeneous Distributed Systems 175

new one: percepts match if they have the same functor, arity, and values at
the key argument indices.

FuncPred This has value true if the percept is an instance of a predicate
that is functional, i.e. only one instance of the predicate can exist for any
specific values of the key arguments. Subsequent percepts with the same key
arguments must replace older ones. This is only used when updating the per-
ceived persistent percepts. This is because policies have the responsibility of
deciding how to resolve the co-existence of new and old matching unperceived
percepts—the developer may wish the agent to receive all percepts that have
arrived since the last perception, or an aggregation or summary of them.

ArrivalTime This records the time at which the percept arrived.
Tenure This optionally specifies an interval after which the percept is no longer

useful and should be deleted even if not perceived. This is most useful for
persistent percepts.

public interface Policy {
public List<WrappedPercept> applyPolicy(

WrappedPercept percept,
List<WrappedPercept> queuedPercepts);

public List<WrappedPercept> eventToStatePercepts(WrappedPercept p);

public WrappedPercept transformPerceptAfterPerception(WrappedPercept p);
}

Fig. 2. The policy interface

6 Defining and Applying Policies

A policy is defined by a class that implements the interface shown in Java in
Fig. 25. The key method is applyPolicy. This is called for each percept in the
new percept set in turn. The first argument, of class WrappedPercept, represents
a newly received percept, wrapped by another object recording its metadata.
The second argument, queuedPercepts, should be a list of the percepts that
have been previously output by this method, are not yet perceived by the agent,
and which match the new percept based on the functor, arity and KeyArgs
metadatum. As new percepts arrive, the applyPolicy method will be repeatedly
called to combine newly arrived percepts with those queued for perception by
the agent. For some policies this will result in reducing the number of percepts
received by the agent on each perception. By providing application-specific policy
classes, the developer can customise how this is done. Some example policies were
outlined in Sect. 3.

The other two methods in the policy interface are optional (they can just
return a null value) and are discussed in Sections 7 and 8.

Pseudocode for the run method of a policy thread is shown in Algorithm 1.
The key line of the algorithm is line 19, which obtains the application-specific
5 A separate policy factory class is used to associate names with policy classes.

176 S. Cranefield and S. Ranathunga

Algorithm 1. The policy thread’s algorithm

����: ��������	
: Name of policy handled by this thread
�
�
��
����
�
: Blocking queue of percept sets
���
��
��
�
��
���: Concurrent map from policy names to percept list
partitions

1 ������� 	�

2 �
�
��
��� ← �
�
��
����
�
.������
3 ���
��
��� ← ���
��
��
�
��
���.������������	
�

4
� ���
��
��� = ���� ����

5 ���
��
��� ← empty percept list partition
6 ��	

7 ���	
��	�
���		�����������������	
 �
�
��
��� ���
��
����

8 �������
 ← ���
��
��
�
��
���.���	������������	
 ���
��
����

9
� �������
 = ���� ��	 ���
��
��� �= ���� ����

// The agent has concurrently consumed old percepts
10 ���
��
��� ← empty percept list partition
11 ���	
��	�
���		����������
�
��
��� ���
��
����

12 ���
��
��
�
��
���.������������	
 ���
��
����

13 ��	

14 ��	

15 �����	��� ���	
��	�
���		�����������������	
 �
�
��
��� ���
��
����

16 ������� � ∈ �
�
��
��� 	�

17 �
� ← ���������
���

18 	�������
��
��� ← ���
��
��� [�
�]
19 ����
��
�
��
��� ← �����	�
���������������	
�.

���	
��	�
�� 	�������
��
����

20 ���
��
��� [�
�] ← ����
��
�
��
���

21 ��	

policy object for the given policy name and calls the applyPolicy method. For
brevity, in the algorithm we write “percept” to mean wrapped percept (a percept
with its metadata). The percepts processed by the policy but not yet perceived,
as well as the perceived persistent percepts, are represented as “percept list par-
titions”. This data structure stores a list of percepts as a set of sublists. Each
sublist contains the percepts with a given partition key: a triple combining a
functor, arity and specific tuple of values for the key arguments of the predicate
with that functor and arity, e.g. 〈sensor_reading, 2, 〈sensor72〉〉. This is a spe-
cial case of a map, and we write p[k] for the sublist of percept list partition p
with partition key k.

The algorithm runs an infinite loop that takes each (possibly singleton) set of
new percepts from the new percepts queue and processes it. Line 2 retrieves a
set of new percepts and line 3 looks up the percepts that have been previously
processed by this thread but not yet perceived. Lines 4–6 create a new percept list

Handling Agent Perception in Heterogeneous Distributed Systems 177

partition if there are no previously processed but unperceived percepts. Line 7
calls a procedure (lines 15–21) that, for each new percept, looks up the matching
percepts in the percept list partition, gets the policy object and applies it, and
then updates the percept list partition with the results. The main algorithm
(line 8) then checks whether the list of previously processed percepts for this
policy, stored in unperceivedPercepts with the policy name as a key, has been
consumed by the agent since the policy thread last retrieved it. The agent signals
that this has occurred by removing the concurrent map entry for that key. In
this case, the policy thread applies the policy to all new percepts starting with
an empty percept partition list as the list of old percepts (lines 10–12). These
policy applications cannot be skipped in case the policy is designed to change
the structure of the incoming percepts, as in the “keep latest with history” policy
described in Sect. 3.

The policy thread runs concurrently with the channels, which add new percept
sets to newPerceptQueue, and the agent, which consumes the percepts stored in
unperceivedPercepts for each policy. Therefore, the algorithm must be defined
in terms of thread-safe data structures to ensure correct behaviour. In particular,
we have chosen the BlockingQueue and ConcurrentMapdata structures provided
by Java for the implementations of newPerceptQueueand unperceivedPercepts,
respectively. The take method (line 2) is used to retrieve a set of new percepts,
and if the queue is empty, this method will block until a channel adds new percepts
to the queue. Line 8 calls the replace operation on a concurrent map. This is an
atomic operation that replaces the value for a given key in the map, and returns
the previous value, or null if there was no previous value.

7 Agent Perception

Algorithm 2 presents the procedure run when the agent initiates a perception.
For each policy in use, the percepts output by the policy but not yet perceived
are retrieved, along with the persistent percepts, and added to the result set
to be returned to the agent. In line 5, the remove method is called on the
concurrent map unperceivedPercepts. This is an atomic operation to remove
the map’s value for the given key (the policy name in this case) and return the
value retrieved, or null if there was no value. Removing the value signals to
the policy thread that the percepts have been (or are in the process of being)
perceived.

Lines 10–18 handle persistent percepts. In line 10 the policy’s eventToState-
Percepts method is invoked on the percept. This allows a single percept
from a channel (e.g. an update for some element of the state) to be trans-
lated to a set of percepts representing the updated (persistent) state informa-
tion. This is described further in Sect. 8. If there is a non-null result from
this call, the original policy-processed but unperceived percept p is treated
as a representation of a transient event and added to the set of percepts
to be returned to the agent. The transformed ‘state percept’ is then passed
to procedure updatePersistentPercepts to update the persistent state. If

178 S. Cranefield and S. Ranathunga

Algorithm 2. Handling an agent request for percepts

����: ����������	
�������, ����������
�������: Concurrent maps from policy
names to percept list partitions

1 ������	� ����������: Set of percepts

2 ����� ← empty list
3 �������� ← current time
4
	���� ��������� �� ���� 	
 ����������	
������� �	

5 ���
�������
�������� ← ����������	
�������.��	
�������������

6 ����
�������
�������� ← ����������
�������.��������������

7 �
 ���
�������
�������� �= �� ���

8
	���� � ∈ ���
�������
�������� �	

9 �
 ������������� ���

10 �����
������� ←
����
���������������������.������
���������������

11 �
 �����
������� �= �� ���

// There are separate event and state representations
// The event percept goes directly to the agent

12 ����������������������
����������� ������ ���������

13
	���� �����
������ ∈ �����
������� �	

14 ��������������������������
������� ���������

����
�������
���������
15 ���

16 ����

17 ����������������������� ���������

����
�������
���������

18 ���

19 ����

20 ����������������������
����������� ������ ���������

21 ���

22 ���

23 ���

24
	���� � ∈ ����
�������
�������� �	

25 �����
���������
������ ← ����
���������������������.
26 �����
�	�������!������������
����

27 �
 �����
���������
������ �= �� ���

28 Remove � from ����
�������
��������

29 Add �����
���������
������ to ����
�������
��������

30 ���

31 ����������������������
����������� ������ ���������

32 ���

33 ����������
�������.� ������������ ����
�������
���������

34 ���

35 ������ �����

eventToStatePercepts returned null, the unmodified percept is passed to that
procedure.

Handling Agent Perception in Heterogeneous Distributed Systems 179

The algorithm for updatePersistentPercepts is not shown due to lack of
space. This uses the percept’s partition key (its functor, arity and key argu-
ment values) to obtain the sublist of persPerceptsPartition that matches the
percept. If the percept’s predicate is functional (according to the percept meta-
data), the matching percepts are removed from that sublist. If not, any expired
percepts are removed from the sublist (using their ArrivalTime and tenure
metadata, if present, and currTime). In either case, the (still wrapped) percept
is added to the sublist if it has not expired.

Transient percepts are handled in line 20. They are added to the result set if
not already expired.

Finally, in lines 24–32 all persistent percepts are added to the result set. There
is one wrinkle here. The policy may have added extra information to the percept,
as in the “keep latest with history” policy described in Sect. 3. The policy method
transformPerceptAfterPerception gives developers the option to remove this
extra information from persistent percepts if it should only be perceived once.

8 Events and States

As discussed above, Algorithm 2 calls two optional policy methods:
eventToStatePercepts and transformPerceptAfterPerception. The role
played by these methods has been explained above. In this section we briefly
explain the motivation for these methods.

Plans in a BDI agent program can be triggered by the addition of new beliefs
to the agent’s belief base. The belief base can also be queried from within the
context conditions or bodies of its plans. These illustrate two different uses of
percepts within a BDI program: (i) to react to new information by triggering
a plan, and (ii) to look up previously received information in the course of
instantiating or executing a plan. We believe that in many agent programs this
distinction corresponds to the difference between using percepts to encode (i)
events, and (ii) state information. However, it is also the case that some percepts
can represent both an event and state information. In particular, a percept may
encode a change of state, and may be used in the agents’ plans both to trigger
a plan and for looking up the current state at a later time. Our design for
percept management policies aims to support developers in achieving separation
of concerns when handling event and state information in their agent plans.
Specifically, the policy method eventToStatePercepts, shown in Fig. 2 and used
in Algorithm 2, will be applied to a policy-processed persistent percept p, just
before the agent perceives it. The method can return null if this functionality
is not required. Otherwise, the result is a list of percepts, which encode the
information in the original percept in a different way for storage in the persistent
percept list. The original percept p is treated as transient and sent to the agent
once only.

For example, a percept approved(ag , doc, stg) received from a channel may
indicate that agent ag has approved document doc to move to stage stg of a pub-
lishing workflow. The policy method eventToStatePercepts can be used to gen-
erate a persistent record of the state of the document, e.g. doc_state(doc, stg).

180 S. Cranefield and S. Ranathunga

9 Case Studies

We have implemented a prototype percept buffer by extending our open source
camel-agent software [5]. This provides a connection between the Jason BDI
agent platform [3] and the Apache Camel message routing and mediation engine
[9]. We use Camel message-processing routes as our channels. These routes re-
ceive information from external systems using Camel’s wide range of endpoints
for various networking technologies and protocols. The resulting Camel messages
are transformed and filtered as required, using one of Camel’s domain-specific
languages. Percept metadata is added in the form of message headers, and the
messages are then delivered to camel-agent’s agent percept endpoints. These use
endpoint configuration information or Camel message headers to identify the
recipient agents(s), and the messages are then delivered to these agents’ percept
buffers.

We also provide Java implementations for Jason internal actions to dynam-
ically control the processing of percepts within the percept buffer by altering
the logic used by channels to assign policies to percepts, and by changing the
priorities of policy threads.

To demonstrate and evaluate the use of percept buffers, we developed policies
to handle three different sources of streaming data: two demonstration data
streams on the web and a live stream of events from a Minecraft server.

9.1 Demo Data Streams

We first evaluated the utility of our approach by configuring channels to con-
sume data from two data streams streamed live over the web by PubNub, Inc.6:
the Game State Sync stream and the Sensor Network stream. These provide
simulated data streams described as (respectively) “updated state information
of clients in a sample online multiplayer role-playing game” and “sensor informa-
tion from artificial sensors”. For each of these data streams we used the PubNub
Java client library to create a channel that subscribes to the stream and sends
the data received (translated to Jason syntax), along with the required percept
metadata, to the queue of incoming percepts for the single agent used in this
scenario. For the Game State Sync stream, the channel produces a single per-
cept for each data item on the stream. For the Sensor Network stream, a single
data item is converted to four percepts recording different aspects of the sensor
reading.

The formats of the data items in the two streams are shown below, after
translation to Jason literals.

Game State Sync:

action(PlayerId,CoordX,CoordY,
ActionName,ActionType,ActionValue)

6 http://www.pubnub.com/developers/demos/

http://www.pubnub.com/developers/demos/

Handling Agent Perception in Heterogeneous Distributed Systems 181

Sensor Network:

radiation(SensorUUID,Radiation)
humidity(SensorUUID,Humidity)
photosensor(SensorUUID, LightLevel)
temperature(SensorUUID,Temperature)

Consuming the Game State Stream. As the messages received from the
Game State Sync stream represent events, we configured the channel connected
to this stream to mark all action percepts as transient (and so the FuncPred
metadata element is not relevant). As the stream uses (seemingly) randomly
generated three digit numbers as identifiers in action percepts, the chance of two
or more matching agent IDs occurring between consective agent perceptions is
very low, so we did not specify any key arguments for the action predicate. This
means that all action percepts match each other. A simple, but non-trivial, Jason
agent program was used to handle the percepts received7. We investigated the
effect of three different policies for handling these percepts. Our purpose here is
not to analyse or criticise the operation of any specific agent platform (and Jason
in particular), but to illustrate the problems that arise when handling streams
of percepts.

First, using the policy “keep latest percept” as a baseline case confirmed (not
surprisingly) that buffering is needed when percepts are being produced and
consumed asynchronously. This policy stores no more than one percept between
consecutive agent perceptions. During a ten minute run, 5625 messages were
received from the Game State channel (9.4 messages per second). Although Ja-
son’s perception rate was significantly higher (an average of 60.2 per second),
404 percepts were lost (7.2%) due to the lack of buffering. In addition, although
5221 action percepts were delivered to the agent, there were only 5216 plan in-
vocations8. The missing plan invocations were not just delayed slightly—after
an additional minute the count was the same.

In another ten minute run using the default policy (to queue all percepts until
they are perceived), 5369 messages (all distinct) were received on the channel
and these were all delivered to the agent. However, there were only 5260 plan
invocations, suggesting that Jason was unable to cope with this load. For this,
and the previous policy, similar results were observed in a previous run (which
used an older version of Jason).

A final run was performed using the “keep latest with history” policy. For each
set of matching percepts (as determined by the KeyArgs metadata element), this
policy retains only the latest percept in the unperceived percepts data structure,
but stores a list of older matching percepts within an additional argument (or by
using some other method provided by the agent platform for adding information
7 The plan handling action percepts updates a belief counting plan invocations, checks

that the player ID is not in a given five-element list (chosen to never match any player
IDs), and calls a subgoal that is handled by a plan with the trivial body ‘true’. Ten
other trivial plans handle belief additions that never occur.

8 All percepts were distinct, and therefore were genuinely new beliefs.

182 S. Cranefield and S. Ranathunga

to percepts—we used a Jason annotation). The result is fewer percepts for the
agent plans to handle, and the programmer can choose under what conditions
the history of older recent percepts should be examined.

When using this policy, 5597 messages were received on the channel during
a 10 minute run. Fewer percepts, 5111, were delivered to the agent when using
this policy, but there were still two plan invocations missing. Similar results
were observed in a second run, when three plan invocations were missing. In
this case the percept buffer and choice of policy have not completely solved the
problem of missing plan invocations. Jason has a configuration option to set
the number of BDI reasoning cycles that are performed beween two consecutive
perceptions. Setting this to 2 allowed the “keep latest with history” to further
amalgamate percepts between perceptions, and 5416 percepts from the channel
were amalgamated into 1096 percepts delivered to the agent. All these led to
plan invocations, Two more runs produced similar results.

These results show that setting appropriate policies in a percept buffer can
significantly reduce the number of percepts that a BDI plan must handle. How-
ever, it may also be necessary to control the rate of agent perception to allow
the buffer time to amalgamate or summarise percepts over a longer period of
time.

Consuming the Sensor Network Stream. In this section we use the sen-
sor network stream to demonstrate how the percept buffer gives developers the
flexibility to customise the delivery of percepts to the agent.

First, we consider default percept metadata settings that label all percepts
as being transient and to be queued until perceived (the default policy). As the
first argument of each of the sensor reading predicates is the sensor identifier, we
declare this to be the key argument. However, for this setting to be useful we had
to customise the channel to replace the sensor identifier with a random number
from 0 to 19—the stream unrealistically uses random IDs that never appear to
reoccur. For the purposes of our discussion, we assume that the agent is only
interested in monitoring radiation settings, and the agent has a plan to count
these percepts, as well as two more plans that handle percepts related to report-
ing (and which only consist of a println action). With these settings, during a
ten minute run, 22508 percepts were delivered to the percept buffer. A quarter
of these (the 5627 radiation percepts) should have triggered plan invocations, but
only 5307 plan invocations were counted.

We next considered the combined use of two policies. The radiation percepts
were handled by a policy that, for given key argument values, keeps a single
percept with an added timestamp in the unperceived percepts list (using a Ja-
son annotation). Also, when a new percept arrives and a matching unperceived
percept is present, the policy keeps whichever of the two has the maximum radi-
ation reading. This assumes that the agent is monitoring for peak readings and
should not miss any. The other percepts were sent to a policy that ignores them
by simply removing them from the incoming queue. With this combination of
policies, 5622 messages on the channel resulted in 5613 percepts delivered to

Handling Agent Perception in Heterogeneous Distributed Systems 183

the agent, all of which resulted in plan invocations. This demonstrates that for
this application, filtering out the unwanted percepts by using the “ignore” policy
achieved a better outcome than delivering them and letting the agent code ignore
them. The use of a “keep maximum” policy had little effect on reducing percept
numbers, but ensured the agent would not miss the most significant events.

The final policy we consider is one that converts events to state information
using the eventToStatePercepts method. We note that the stream does not
deliver information for all sensors at once—sensor readings arrive one at a time.
We assume that the developer wishes to treat the received sensor readings as
state information that can be queried in plan context conditions and bodies and
not just as events that trigger plans. Therefore we configured the channel to label
the radiation percepts as persistent. However, the readings are time-dependent
and lose their validity over time, so we set a 10 second tenure period for per-
cepts. We specify that the first argument of the radiation predicate has no key
arguments. This allows a policy to collect all unperceived percepts with this
predicate into a list, wrapped in a radiation_list percept. On agent perception,
this is sent as a one-off percept to the agent, while a set of persistent percepts
are produced by the eventToStatePercepts method. The persistent percepts
use a functor (radiation_state) that is different from the original percepts. This
predicate is specified as functional with its first argument being the key argu-
ment, so that the persistent percepts are appropriately maintained over time.
With this configuration, over a ten minute run, 5748 messages were collected
into 5491 radiation_list percepts that were delivered to the agent, all of which
resulted in plan invocations (although, it should be noted that the plan is very
simple: it just updates a count belief). In addition, the persistent percepts ac-
counted for another 500087 percepts. These included repeated percept deliveries,
which would cause no “new percept” events to be output from Jason’s belief up-
date function, but also prevented Jason from removing these percepts from the
agent’s belief base.

9.2 Sensing Data from Minecraft

An additional case study involved connecting the percept buffer to a chan-
nel linked (via a web socket) to a mineflayer9 JavaScript bot for Minecraft.
Minecraft10 is a single or multiplayer game in which players mine the environ-
ment for materials, construct buildings, and (in “survival mode”) fight monsters.
We investigated the impact of the percept buffer on the speed of an agent per-
forming a specific sensory task over a stream of events from Minecraft. The events
represented the position of the bot and the movements of various creatures in
the simulated world, and the task was to detect ten distinct squid and then ten
distinct bats within a certain range. This task can be achieved using a simple
Jason program comprising two short plans, but as 100–200 events arrive per
second, we endeavoured to provide a policy to ease the task. Our policy treated

9 https://github.com/andrewrk/mineflayer
10 https://minecraft.net

https://github.com/andrewrk/mineflayer
https://minecraft.net

184 S. Cranefield and S. Ranathunga

the percepts as transient, and ignored percepts from outside the specified range
as well as percepts related to creatures other than the target species (initially
squid). It also kept only the latest unperceived percept for a given individual
creature. We connected two agents to the same Minecraft event stream. One
used our special policy, while the other used the null policy (buffering only).
The channel was configured to treat percepts recording the bot’s own position
as persistent for both agents. The Jason plan for the null policy agent performed
range checking as well as counting and tracking which of the target creatures
had already been seen (using their identifiers). The plan for the agent with the
special policy did not need to perform range checking, and received a smaller
number of percepts. Once the first part of the task was completed (counting
10 distinct squid), the plan used an internal action to request the channel to
change the policy used for its percepts so that only bat percepts were delivered
to it. This demonstrates the ability to change policies dynamically to change an
agent’s focus of attention.

Unfortunately the task performance times for the two agents were almost
identical to within a few milliseconds for each of eight runs. This is probably
due to the task needing only simple plans that can do all necessary percept
filtering using plan “context conditions”, for which Jason is (presumably) well
optimised. However, this case study demonstrates that the use of the percept
buffer allowed the agent code to be simplified and did not add any overhead for
the performance of the task, even though the performance was not improved.

10 Conclusion

This paper has presented a design for an agent percept buffer to simplify the
handling of percepts from external systems—especially high frequency streams.
Rather than relying on programmers to build a custom agent environment encap-
sulating external sources of percepts, a percept buffer provides a generic solution
that can be customised for a given application. This is done by (a) configuring
the channels that deliver percepts to the buffer to attach domain-specific infor-
mation about those percepts, and (b) providing appropriate application-specific
policies. This work provides the first platform-independent and detailed proposal
for addressing a problem that is often faced, but which must currently be tackled
in an ad hoc application-specific manner.

We defined the architecture and algorithms for processing percepts in the
percept buffer and for responding to perception requests from agents. We also
defined a percept metadata scheme used for providing the buffer with domain-
specific information about the percepts. Three case studies were presented to
illustrate the flexibility offered by our approach for handling percept streams,
and to evaluate its benefits.

Future work includes extending the metadata scheme to allow the absence of
certain percepts in a stream to be considered significant, based on some form
of local closed world reasoning. Further experimentation with larger and more
realistic applications is also needed.

Handling Agent Perception in Heterogeneous Distributed Systems 185

References

1. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard
for agent platforms. Annals of Mathematics and Artificial Intelligence 61, 261–295
(2011)

2. Bogdanovych, A., Rodriguez-Aguilar, J.A., Simoff, S., Cohen, A.: Authentic in-
teractive reenactment of cultural heritage with 3D virtual worlds and artificial
intelligence. Applied Artificial Intelligence 24(6), 617–647 (2010)

3. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley (2007)

4. Bratman, M.: Intention, plans, and practical reason. Harvard University Press
(1987)

5. Cranefield, S., Ranathunga, S.: Embedding agents in business processes using en-
terprise integration patterns. In: Winikoff, M. (ed.) EMAS 2013. LNCS, vol. 8245,
pp. 97–116. Springer, Heidelberg (2013)

6. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres, S.M.: Declarative
abstractions for agent based hybrid control systems. In: Omicini, A., Sardina,
S., Vasconcelos, W. (eds.) DALT 2010. LNCS, vol. 6619, pp. 96–111. Springer,
Heidelberg (2011)

7. Gemrot, J., Brom, C., Plch, T.: A periphery of Pogamut: From bots to agents
and back again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS,
vol. 6525, pp. 19–37. Springer, Heidelberg (2011)

8. Hindriks, K.V., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N.,
Pasman, W., de Rijk, L.: UnREAL Goal bots: Conceptual design of a reusable in-
terface. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS, vol. 6525,
pp. 1–18. Springer, Heidelberg (2011)

9. Ibsen, C., Anstey, J.: Camel in Action. Manning Publications Co. (2010)
10. Jason-users: Update rate of Jason. Thread on Jason-users mailing list (2014),

http://sourceforge.net/p/jason/mailman/message/29859084/
11. van Oijen, J., Dignum, F.: A perception framework for intelligent characters in

serious games. In: Proceedings of the 10th International Conference on Autonomous
Agents and Multiagent Systems, IFAAMAS, pp. 1249–1250 (2011)

12. Oijen, J., Poutré, H., Dignum, F.: Agent perception within CIGA: Performance
optimizations and analysis. In: Müller, J.P., Cossentino, M. (eds.) AOSE 2012.
LNCS, vol. 7852, pp. 99–117. Springer, Heidelberg (2013)

13. Ranathunga, S., Cranefield, S., Purvis, M.: Identifying events taking place in
Second Life virtual environments. Applied Artificial Intelligence 26(1-2), 137–181
(2012)

14. So, R., Sonenberg, L.: The roles of active perception in intelligent agent systems.
In: Lukose, D., Shi, Z. (eds.) PRIMA 2005. LNCS, vol. 4078, pp. 139–152. Springer,
Heidelberg (2009)

15. Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Dastani,
M., Hübner, J.F., Logan, B. (eds.) ProMAS 2012. LNCS, vol. 7837, pp. 54–71.
Springer, Heidelberg (2013)

16. Ziafati, P., Dastani, M., Meyer, J.J., van der Torre, L.: Event-processing in au-
tonomous robot programming. In: Proceedings of the 12th International Conference
on Autonomous Agents and Multiagent Systems, IFAAMAS, pp. 95–102 (2013)

http://sourceforge.net/p/jason/mailman/message/29859084/

Blending Event-Based and Multi-Agent Systems

Around Coordination Abstractions

Andrea Omicini1(�), Giancarlo Fortino2, and Stefano Mariani1

1
Alma Mater Studiorum–Università di Bologna, Italy

{andrea.omicini, s.mariani}@unibo.it
2 Università della Calabria, Rende (CS), Italy

g.fortino@unical.it

Abstract. While event-based architectural style has become prevalent
for large-scale distributed applications, multi-agent systems seemingly
provide the most viable abstractions to deal with complex distributed
systems. In this position paper we discuss the role of coordination ab-
stractions as a basic brick for a unifying conceptual framework for agent-
based and event-based systems, which could work as the foundation of a
principled discipline for the engineering of complex software systems.

Keywords: Multi-agent systems · Event-based systems · Coordination
models · TuCSoN

1 Introduction

In order to address some of the most common sources of accidental complexity –
such as distributed interaction and large-scale concurrency [2] – the event-based
architectural style has become prevalent for large-scale distributed applications
in the last years [10]. At the same time, multi-agent systems (MAS) are ex-
pected to provide the most viable abstractions to deal with the modelling and
engineering of complex software systems [14,15]. As a result, MAS and event-
based system (EBS) stand nowadays as the two most likely candidate paradigms
for modelling and engineering complex systems—the targets of many research
activities on coordination models and technologies, too.

The relevance of interaction issues in both MAS and EBS suggests that co-
ordination abstractions and mechanisms could play an essential role in making
agent-based and event-based models coexist without harming conceptual integ-
rity of systems. Starting from the essential of both paradigms, we point out
the role of coordination in a unifying conceptual framework for MAS and EBS,
which could work in principle as the foundation of a coherent discipline for the
modelling and engineering of complex software systems.

2 MAS as Coordinated Systems

A common way to look at MAS is to interpret them according to the main
first-class abstractions: agents, societies, and environment [34].

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 186–193, 2015.
DOI: 10.1007/978-3-319-19282-6_12

Blending EBS and MAS Around Coordination 187

Agents are computational entities whose defining feature is autonomy [24].
Agents model activities for the MAS, expressed through their actions along
with their motivations—namely, the goals that determine and explain the agent’s
course of actions. When goals are explicitly represented through mentalistic ab-
stractions – as in the case of BDI agent architectures [28] – intelligent agents [35]
are involved, which set their course of actions according to their beliefs, desires,
goals, intentions, available actions, and plans.

A critical issue in MAS is handling dependencies between agents: that is, un-
derstanding how (intelligent) agent actions mutually interfere when each agent
aims at pursuing its own goal, and ruling them so as to make MAS achieve its
overall system goal. Handling dependencies is first of all a coordination problem
[16]. Through the notion of social action [4], MAS capture dependencies in terms
of agent societies, built around coordination artefacts [23]. Societies represent
then the ensembles where the collective behaviours of the MAS are coordin-
ated towards the achievement of the overall system goals. Generally speaking,
coordination models are the most suitable tools to harness complexity in MAS
[6], as they are explicitly meant to provide the coordination media that “glue”
agents together [12,5] by governing agent interaction in a MAS [33].

Besides agents and societies, environment is an essential abstraction for MAS
modelling and engineering [34], to be suitably represented, and related to agents.
The notion of environment captures the unpredictability of the MAS context, by
modelling the external resources and features relevant for the MAS, along with
their dynamics. Along with the notion of situated action – as the realisation
that coordinated, social, intelligent action arises from strict interaction with the
environment, rather than from rational practical reasoning [29] – this leads to the
requirement of situatedness for agents and MAS, often translated into the need
of being sensitive to environment change [9]. This basically means dependency,
again: so, agent behaviour should be affected by environment change.

In all, this means that (i) things happen in a MAS because of either agent
activity or environment change, (ii) complexity arises from both social and situ-
ated interaction. Also, this suggests that coordination – in charge of managing
dependencies [16] – could be used to deal with both forms of dependency in a
uniform way; so, furthermore, that coordination artefacts could be exploited to
handle both social and situated interaction [17].

3 EBS as Coordinated Systems

According to [10], an EBS is “a system in which the integrated components
communicate by generating and receiving event notifications” where an event
is an occurrence of a happening relevant for the system – e.g., a state change
in some component –, and a notification is the reification of an event within
the system, and provides for the event description and data. Components in
EBS basically act as either producers or consumers of notifications: producers
publish notifications, and provide an output interface for subscription; consumers
subscribe to notifications as specified by producers. According to the event-based

188 A. Omicini et al.

architectural style, producers and consumers do not interact directly, since their
interaction is mediated by the event bus, which abstracts away all the complexity
of the event notification service.

In distributed event-based systems (DEBS) [19], a fundamental issue is repres-
ented by distributed notification routing, that is, the way in which notifications
are routed to distributed consumers. Issues such as event aggregation and trans-
formation have to be addressed by making individual event notifications mean-
ingful for consumers. Relationships between events should be detected, and event
hierarchies could be required to provide for different levels of abstraction.

In the overall, EBS are basically coordinated systems, where coordination is
event-based [18]: process activities are mostly driven by event notifications gen-
erated by producers; transformed, aggregated, filtered, distributed by the event
bus; and finally interpreted and used by consumers. Producer / consumer co-
ordination is then mediated by the event bus, working as the system coordinator,
which encapsulates and possibly automates most of the coordination activities
in an EBS. As an aside, it should be noted that role of the event bus in EBS
typically raises the well-known issues of the inversion of control : that is, control
over the logic of program execution is somehow inverted [13].

4 EBS and MAS: Towards a Unifying Framework

Following [17], three are the steps for integrating MAS and EBS: recognising the
sources of events, defining the boundary artefacts mediating the interaction with
the event sources, and providing expressive event-based coordination models.

The first step is looking at agents and environment as event sources. MAS
could then be seen as EBS where agents encapsulate internal events, while en-
vironment models external events through dedicated abstractions – environment
resources – capturing the unpredictable dynamics of relevant external events.
Dually, producers in an EBS are to be classified as either agents – if responsible
for the designed, internal events – or environment resources—if used to model
external, unpredictable events. This induces a higher-level of expressiveness in
EBS: since agents encapsulate control along with the criteria for its manage-
ment – expressed in terms of high-level, mentalistic abstractions –, articulated
events histories can be modelled along with their motivations. In addition, since
MAS environment is modelled as a first-class event-based abstraction, all causes
of change and disruption in a MAS are modelled in a uniform way as event
prosumers (producers and consumers)—thus improving conceptual integrity.

The second main step deals with the need for a general event model, requir-
ing architectural abstractions mediating between event producers and the whole
system, aimed at uniformly handling hugely-heterogeneous event sources—both
agents and resources. Denoted as boundary artefacts, they make it possibile to
translate every sorts of occurrences into a uniform system of notifications accord-
ing to a common event model. This is, for instance, how Agent Communication
Contexts [8] and Agent Coordination Contexts [21] work for agents, and how
event mediators (or, correlators) work in the Cambridge Event Architecture [1].

Blending EBS and MAS Around Coordination 189

Thus, boundary artefacts could be conceived (i) in EBS as the abstraction me-
diating between components and the event bus, accounting for the many diverse
models for data in event notifications, (ii) in MAS as the constrainers for agent
interaction, accounting for environment diversity and agent autonomy [33].

5 EBS and MAS: The Role of Coordination

If agents and environment work as event prosumers, coordination abstractions
should deal with interaction of any sort – agent-agent, agent-environment,
environment-environment interaction – taking care of their mutual dependen-
cies, by coordinating the many resulting flows of events [16].

According to [10], the potential of event-based coordination is recognised both
in academia and industry, and there exists a considerable amount of related re-
lated literature on event notification systems. In fact, a number of event-based
middleware providing such services (e.g., JEDI [7]), as well as a number of event-
based coordination models [27,31], technologies [11], and formalisms [20,32], wit-
ness the role of event-based middleware in the engineering of complex distrib-
uted systems, as well as the event-based nature of the most relevant coordination
models, including tuple-based ones [20].

Along this line, the third step in the integration of MAS and EBS is the
comprehension that coordination media [5] can handle multiple event flows [25]
according to their mutual dependencies in both MAS and EBS. From the MAS
viewpoint, this means that the role of coordination models in MAS [6] is to
provide event-driven coordination media governing event coordination in MAS.
From the EBS viewpoint, coordination in EBS is event-based [18], and the event
bus and service work as the system coordinators. This means that coordination
media could work as the core for an event-based architecture, and that EBS could
be grounded in principle upon a suitably-expressive coordination middleware,
designing the event bus around the coordination services [30].

As a result, since all events are uniformly represented through the same gen-
eral event model, coordination artefacts can be used to deal with both social
and situated dependencies, governing every sorts of interaction through the
same set of coordination abstractions, languages, and mechanisms [17]—thus
enforcing conceptual integrity. Then, coordination artefacts provide a specific
computational model for dealing with event observation, manipulation, and
coordination—which should make life easier for programmers and engineers.

In the context of EBS, coordination media provide a suitable way to automat-
ise event handling, and to encapsulate the logic for the coordination of multiple
related flows of events, thus counterfeiting the negative effects of inversion of
control on the large scale for EBS.

6 Case Study: TuCSoN Coordination as Event-Based

The TuCSoN coordination model and infrastructure [26] can be used to illustrate
in short the role of coordination in blending MAS and EBS, in particular pointing
out the notions of boundary and coordination artefacts.

190 A. Omicini et al.

In detail, the basic TuCSoN architecture can be represented as in Figure 1,
and explained in terms of the following MAS-EBS components.

Agents. A TuCSoN agent is any computational entity exploiting TuCSoN co-
ordination services. To act within a TuCSoN-coordinated MAS, agents should
obtain an ACC from the TuCSoN node. Any action from any agent towards the
MAS – either social or situated – is mediated by its associated ACC.

ACC. Agent coordination contexts [21]) represent TuCSoN boundary artefacts
devoted to agents. ACC both enable and constraint agents interactions, mapping
every agent operation into events asynchronously dispatched to tuple centres.
ACC thus decouple agents from MAS in control, reference, space, and time.

Probes. TuCSoN environmental resources. They are handled as sources of per-
ceptions (sensors) or makers of actions (actuators) in a uniform way. Probes do
not directly interact with the MAS, but through mediation of their transducer.

Transducers. The boundary artefacts devoted to probes [3]. Each probe is as-
signed to a transducer, specialised to handle events from that sort of probe, and
to act on probes through situation operations. Transducers thus decouple probes
from tuple centres in terms of control, reference, space and time.

Events. TuCSoN adopts and generalises the ReSpecT event model [22]. Re-
SpecT is the logic-based language used to program the behaviour of TuCSoN
tuple centres [22]. ACC and transducers translate external events (activities and

Fig. 1. TuCSoN event-based architecture

Blending EBS and MAS Around Coordination 191

change) into internal events that tuple centres can handle to implement the
policies required for MAS coordination. Thus, internal events essentially corres-
pond to event notifications in standard EBS.

Tuple Centres. Tuple centres [22] constitute TuCSoN architectural component
implementing coordination artefacts, thus in charge of managing dependencies.
As such, they are meant to govern both social and situated interactions [17].
By adopting ReSpecT tuple centres, TuCSoN relies on (i) the ReSpecT language
to program coordination laws, and (ii) the ReSpecT situated event model to
implement events [3].

By looking at a TuCSoN-coordinated MAS with a event-based perspective,

– ACC and transducers are the boundary artefacts representing agents and
environment, respectively, in the MAS, by translating activities and changes
in a common event (notification) model;

– tuple centres are the coordination artefacts dealing with both social and
situated dependencies by making it possible to program the coordination of
events of any sorts in a clean and uniform way.

Under such a perspective, TuCSoN already provides in some way both a model
and a technology to engineer coordinated MAS as EBS. Essentially, this means
that when using TuCSoN for the coordination of a distributed system, either per-
spectives – event-based and agent-based – can be adopted by engineers according
to their specific design needs, and blended together in a coherent way around
the coordination abstractions provided by the TuCSoN model and middleware.1

7 Conclusion

Many large-scale distributed systems are nowadays designed and developed
around event-based methods and technologies. At the same time, agent-based
abstractions (and, in spite of their limited maturity, agent technologies, too) are
more and more adopted to face the intricacies of complex systems engineering, in
particular when requirements such pervasiveness, intelligence, mobility, and the
like, have to be addressed. Altogether, this suggests that a conceptual framework
blending together abstractions and technologies from both EBS and MAS could
represent a fundamental goal for the research on complex system engineering.

In this position paper we suggest that a fundamental role in such a conceptual
framework could be played by coordination models and technologies, with the
focus on coordination artefacts working as both event-based and agent-based ab-
stractions. Coordination models and middleware could then provide the technical
grounding for a principled, comprehensive methodology for complex system en-
gineering, allowing for the integration of event-based and agent-based tools and
techniques without harming conceptual integrity.

1 http://tucson.unibo.it

http://tucson.unibo.it

192 A. Omicini et al.

References

1. Bacon, J., Moody, K., Bates, J., Heyton, R., Ma, C., McNeil, A., Seidel, O.,
Spiteri, M.: Generic support for distributed applications. Computer 33(3), 68–76
(2000)

2. Brooks, F.P.: No Silver Bullet Essence and Accidents of Software Engineering.
Computer 20(4), 10–19 (1987)

3. Casadei, M., Omicini, A.: Situated tuple centres in ReSpecT. In: Shin, S.Y.,
Ossowski, S., Menezes, R., Viroli, M. (eds.) 24th Annual ACM Symposium on
Applied Computing (SAC 2009), vol. III, pp. 1361–1368. ACM, Honolulu (2009)

4. Castelfranchi, C.: Modelling social action for AI agents. Artificial Intelli-
gence 103(1-2), 157–182 (1998)

5. Ciancarini, P.: Coordination models and languages as software integrators. ACM
Computing Surveys 28(2), 300–302 (1996)

6. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: The
coordination viewpoint. In: Jennings, N.R., Lespérance, Y. (eds.) Intelligent Agents
VI. LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000)

7. Cugola, G., Di Nitto, E., Fuggetta, A.: The JEDI event-based infrastructure and
its application to the development of the OPSS WFMS. IEEE Transactions on
Software Engineering 27(9), 827–850 (2001)

8. Di Stefano, A., Pappalardo, G., Santoro, C., Tramontana, E.: The transparent
implementation of agent communication contexts. Concurrency and Computation:
Practice and Experience 18(4), 387–407 (2006)

9. Ferber, J., Müller, J.P.: Influences and reaction: A model of situated multiagent
systems. In: Tokoro, M. (ed.) 2nd International Conference on Multi-Agent Systems
(ICMAS 1996), pp. 72–79. AAAI Press, Tokio (1996)

10. Fiege, L., Mühl, G., Gärtner, F.C.: Modular event-based systems. The Knowledge
Engineering Review 17(4), 359–388 (2002)

11. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice:
Principles, Patterns and Practices. The Jini Technology Series. Addison-Wesley
Longman (June 1999)

12. Gelernter, D., Carriero, N.: Coordination languages and their significance. Com-
munications of the ACM 35(2), 97–107 (1992)

13. Haller, P., Odersky, M.: Event-based programming without inversion of control.
In: Lightfoot, D.E., Ren, X.-M. (eds.) JMLC 2006. LNCS, vol. 4228, pp. 4–22.
Springer, Heidelberg (2006)

14. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2),
277–296 (2000)

15. Jennings, N.R.: An agent-based approach for building complex software systems.
Communications of the ACM 44(4), 35–41 (2001)

16. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1), 87–119 (1994)

17. Mariani, S., Omicini, A.: Coordinating activities and change: An event-driven ar-
chitecture for situated MAS. Engineering Applications of Artificial Intelligence 41,
298–309 (2015)

18. Milicevic, A., Jackson, D., Gligoric, M., Marinov, D.: Model-based, event-driven
programming paradigm for interactive Web applications. In: 2013 ACM Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (Onward! 2013), pp. 17–36. ACM Press, New York (2013)

Blending EBS and MAS Around Coordination 193

19. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer,
Heidelberg (2006)

20. Omicini, A.: On the semantics of tuple-based coordination models. In: 1999 ACM
Symposium on Applied Computing (SAC 1999), pp. 175–182. ACM, New York
(1999)

21. Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C.,
Lee, C. (eds.) Process Coordination and Ubiquitous Computing, chap. 12, pp.
187–200. CRC Press, Boca Raton (2002)

22. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Science of Computer
Programming 41(3), 277–294 (2001)

23. Omicini, A., Ricci, A., Viroli, M.: Coordination artifacts as first-class abstractions
for MAS engineering: State of the research. In: Garcia, A., Choren, R., Lucena, C.,
Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005. LNCS, vol. 3914,
pp. 71–90. Springer, Heidelberg (2006)

24. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent
systems. Autonomous Agents and Multi-Agent Systems 17(3), 432–456 (2008)

25. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordin-
ation artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006.
LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006)

26. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

27. Papadopoulos, G.A., Arbab, F.: Coordination models and languages. In: Zelkowitz,
M.V. (ed.) The Engineering of Large Systems. Advances in Computers, vol. 46, pp.
329–400. Academic Press (1998)

28. Rao, A.S., Georgeff, M.P.: BDI agents: From theory to practice. In: Lesser, V.R.,
Gasser, L. (eds.) 1st International Conference on Multi Agent Systems (ICMAS
1995), pp. 312–319. The MIT Press, San Francisco (1995)

29. Suchman, L.A.: Situated actions. In: Plans and Situated Actions: The Problem of
Human-Machine Communication, chap. 4, pp. 49–67. Cambridge University Press,
New York (1987)

30. Viroli, M., Omicini, A.: Coordination as a service. Fundamenta Informaticae 73(4),
507–534 (2006); special issue: Best papers of FOCLASA 2002

31. Viroli, M., Omicini, A., Ricci, A.: On the expressiveness of event-based coordination
media. In: Arabnia, H.R. (ed.) International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA 2002), vol. III, pp. 1414–1420.
CSREA Press, Las Vegas (2002)

32. Viroli, M., Ricci, A.: Tuple-based coordination models in event-based scenarios.
In: 22nd International Conference on Distributed Computing Systems, Workshop
Proceedings, pp. 595–601. IEEE CS (2002)

33. Wegner, P.: Coordination as constrained interaction. In: Hankin, C., Ciancarini, P.
(eds.) COORDINATION 1996. LNCS, vol. 1061, pp. 28–33. Springer, Heidelberg
(1996)

34. Weyns, D., Omicini, A., Odell, J.J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30
(2007)

35. Wooldridge, M.J., Jennings, N.R.: Intelligent agents: Theory and practice. Know-
ledge Engineering Review 10(2), 115–152 (1995)

Shared Spaces

Klaim-DB: A Modeling Language

for Distributed Database Applications

Xi Wu2, Ximeng Li1, Alberto Lluch Lafuente1(�),
Flemming Nielson1, and Hanne Riis Nielson1

1 DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
{ximl,albl,fnie,hrni}@dtu.dk

2 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University, Shanghai, China

xiwu@sei.ecnu.edu.cn

Abstract. We present the modelling language, Klaim-DB, for distrib-
uted database applications. Klaim-DB borrows the distributed nets of
the coordination language Klaim but essentially re-incarnates the tuple
spaces of Klaim as databases, and provides high-level language abstrac-
tions for the access and manipulation of structured data, with integrity
and atomicity considerations. We present the formal semantics of Klaim-
DB and illustrate the use of the language in a scenario where the sales
from different branches of a chain of department stores are aggregated
from their local databases. It can be seen that raising the abstraction
level and encapsulating integrity checks (concerning the schema of ta-
bles, etc.) in the language primitives for database operations benefit the
modelling task considerably.

1 Introduction

Today’s data-intensive applications are becoming increasingly distributed.
Multi-national collaborations on science, economics, military etc., require the
communication and aggregation of data extracted from databases that are ge-
ographically dispersed. Distributed applications including websites frequently
adopt the Model-View-Controller (MVC) design pattern in which the “model”
layer is a database. Fault tolerance and recovery in databases also favors the
employment of distribution and replication. The programmers of distributed
database applications are faced with not only the challenge of writing good
queries, but also that of dealing with the coordination of widely distributed
databases. It is commonly accepted in the formal methods community that the
modelling of complex systems in design can reduce implementation errors con-
siderably [1,11].

Klaim [2] is a kernel language for specifying distributed and coordinated pro-
cesses. In Klaim, processes and information repositories exist at different lo-
calities. The information repositories are tuple spaces, that can hold data and

X. Wu – Part of the work was done when Xi Wu was a visiting researcher at DTU
compute.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 197–212, 2015.
DOI: 10.1007/978-3-319-19282-6_13

198 X. Wu et al.

code. Processes can read tuples from (resp. write tuples to) local or remote
tuple spaces, or spawn other processes to be executed at certain localities. Many
distributed programming paradigms can be modelled in Klaim.

While Klaim provides an ideal ground for the modelling of networked ap-
plications in general, the unstructured tuple spaces and low-level operations
mostly targeting individual tuples create difficulty in the description of the data-
manipulation tasks usually performed using a high-level language such as SQL.
A considerable amount of meta-data needed by databases has to be maintained
as particular tuples or components of tuples, the sanity checks associated with
database operations have to be borne in mind and performed manually by the
programmer, difficulties arise when batch operations are performed and atomic-
ity guarantees are needed, and so on.

To support the modelling of applications operating on distributed, structured
data, we propose the language Klaim-DB, which is inspired by Klaim in that
it allows the distribution of nodes, and remote operations on data. Its succinct
syntax eases the precise formulation of an operational semantics, giving rigor
to high-level formal specification and reasoning of distributed database applica-
tions. The language also borrows from SQL, in that it provides structured data
organized as databases and tables, and high-level actions that accomplish the
data-definition and data-maniputation tasks ubiquitous in these applications.

We use a running example of database operations in the management of a
large-scale chain of department stores. Each individual store in the chain has
its local database containing information about the current stock and sales of
each kind of product. The semantic rules for the core database operations will
be illustrated by the local query and maintenance of these individual databases,
and our final case study will be concerned with data aggregation across multiple
local databases needed to generate statistics on the overall product sales.

This paper is structured as follows. In Section 2, the syntax of Klaim-DB is
presented, which is followed by the structural operational semantics specified in
Section 3, with illustration of the semantic rules for the main database opera-
tions. Our case study is then presented in Section 4. Extensions of Klaim-DB
and a discussion of alternative language design choices are covered in Section 5.
We conclude in Section 6 with a discussion of related works.

2 Syntax

The syntax of Klaim-DB is presented in Table 1. A net N models a database
system that may contain several databases situated at different localities. As in
standard Klaim [2], we distinguish between physical localities, also called sites
(s ∈ S), and logical localities (� ∈ L) that are symbolic names used to reference
sites. At each site s, there is an “allocation environment” ρ : L ↪→ S mapping
the logical localities known at s to the sites referred to by them.

We assume for simplicity that there is only one database at each site. The
syntax s ::ρ C for a node of the net captures the ensemble C of processes and
tables of the database at the site s, where the allocation environment is ρ.

Klaim-DB: A Modeling Language for Distributed Database Applications 199

Table 1. The Syntax of Klaim-DB

N ::= nil | N1||N2 | (νs)N | s ::ρ C

C ::= P | (I,R) | C1|C2

P ::= nil | a.P | A(ẽ) | foreachs T in R : P | foreachp T in R : P | P1;P2

a ::= insert(t, tb)@� | insert tb(TBV , tb)@� | delete(T, ψ, tb, !TBV)@� |
sel ext(T, ψ, tb, t, !TBV)@� | sel int(T, ψ,TBV , t, !TBV ′) |
update(T, ψ, t, tb)@� | aggr(T, ψ, tb, f, T ′)@� | create(I)@� | drop(tb)@�

t ::= e | t1, t2
T ::= e | !x | T1, T2

The parallel composition of different nodes is represented using the || operator.
With the restriction operator (νs)N , the scope of s is restricted to N . Each
table is represented by a pair (I, R) where I is an interface that publishes certain
structural information about the table as attributes (for example, I.id stands
for the table identifier and I.sk is a schema describing the data format of the
table), and R is a multiset of tuples, in which each tuple corresponds to one row
of data. The construct C1|C2 is the parallel composition of different components.

We distinguish between tuples t and templates T . A template T can contain
not only actually fields that are expressions e, but also formal fields !x where x
is a variable that can be bound to values.

A process P can be an inert process nil, an action prefixing a.P , a param-
eterized process invocation A(ẽ), a looping process foreachs T in R : P , or
foreachp T in R : P , or a sequential composition P1;P2, for which we require
that bv(P1) ∩ fv (P2) = ∅. Looping is introduced in addition to recursion via
process invocation, to ease the task of traversing tables or data selection results
in a natural way. We also allow both prefixing and sequential composition in our
language, as in CSP [4]. Sequential composition is needed to facilitate the speci-
fication of possible continuation after the completion of a loop, whereas prefixing
is retained and used in situations where substitutions need to be applied after
receiving an input. The difference between the two variants of looping process
is that the sequential loop foreachs T in R : P goes through the different rounds
sequentially, while the parallel loop foreachp T in R : P forks one parallel process
for each round.

A process can perform nine different kinds of actions. Actions insert(t, tb)@�,
insert tb(TBV , tb)@�, delete(T, ψ, tb, !TBV)@�, sel ext(T, ψ, tb, t, !TBV)@�,
sel int (T, ψ,TBV , t, !TBV ′), update(T, ψ, t, tb)@� and aggr(T, ψ, tb, f, T ′)@� are
used to access/manipulate the data inside a table; they resemble the operations
performed by the “Data-Manipulation Language” in SQL. On the other hand,
actions create(I)@�, and drop(tb)@� are used for the creation and deletion of a
table — they correspond to the operations performed by the “Data-Definition
Language” in SQL.

The actions insert(t, tb)@� and insert tb(TBV , tb)@� are used to insert a new
row t, or all the rows of a table bound to the table variable TBV , into a table

200 X. Wu et al.

Fig. 1. Running Example

named tb inside the database at �, respectively. On the other hand, the action
delete(T, ψ, tb, !TBV)@� deletes all rows matching the pattern T and the predi-
cate ψ from table tb in the database located at �, and binds the deleted rows to
the table variable TBV .

The language has two variants of “selection”: an “external” one that selects
data from tables actually existing in databases, identified by their table iden-
tifiers, and an “internal” one that selects data from temporary tables bound
to table variables. The action sel ext(T, ψ, tb, t, !TBV)@� performs the “exter-
nal” selection. It picks all rows matching the pattern T as well as satisfying
the predicate ψ, from the table identified by tb of the database located at �,
and binds the resulting table into the table variable TBV . On the other hand,
sel int(T, ψ,TBV , t, !TBV ′) performs the “internal” selection, i.e., from the con-
tent of the table variable TBV , and binds the resulting table further into the
table variable TBV ′. In sel int(T, ψ,TBV , t, !TBV ′), the meanings of T , ψ, and t
are the same as those in sel ext(T, ψ, tb, t, !TBV)@�. In both variants, we require
that each component of t should be a value or a bound variable of T .

The action update(T, ψ, t, tb)@� replaces each row matching T yet satisfying ψ
in table tb (at �) with a new row t, while leaving the rest of the rows unchanged.
It is required that fv(t) ⊆ bv(T).

The action aggr(T, ψ, tb, f, T ′)@� applies the aggregation function f on the
multiset of all rows meeting T and ψ in table tb (at �) and binds the aggregation
result to the pattern T ′.

The action create(I)@� (resp. drop(tb)@�) creates a table identified by I (resp.
drops the table identified by tb) in the database at �. An item is a row in a table
containing sequences of values, which can be obtained from the evaluation of
an expression e. Pattern-matching is used to manage the data inside a table by
means of a given template T , which is a sequence of values and variables.

Setting the Scene for the Running Example. Consider the management
of a large-scale chain of department stores, in which the head office can manage
the sales of different imaginative brands (e.g., KLD, SH,...) in its individual
branches, as shown in Figure 1.

We will use underlined symbols for logical and physical localities, as well as
allocation environments, to distinguish between their uses in the example and

Klaim-DB: A Modeling Language for Distributed Database Applications 201

elsewhere (e.g., in the semantics). Suppose the database of the head office is
maintained on machine s0 and the databases of its branches are maintained on
machines s1 to sn. The site s0 has the local environment ρ0 = [self �→ s0][�1 �→
s1]...[�n �→ sn]. We use ρj = [self �→ sj] as the local environment for each
site sj — this restricts database accesses across different local databases and
corresponds to a centralized architecture.

City Address Shop Name Brand Logical Locality

CPH ABC DEF 2, 1050 Shop1 {KLD, SH, ...} �1
CPH DEF HIJ 13, 2800 Shop2 {KLD, SH, ...} �2
CPH HIJ KLM 26, 1750 Shop3 {KLD, SH, ...} �3
AAL KLM NOP 3, 3570 Shop4 {LAM, IMK, ...} �4
AAL NOP QUW 18, 4500 Shop5 {LAM, IMK, ...} �5
...

Fig. 2. The Table Stores

A table with identifier Stores exists in the database of the head office, and
records the information of its branches, as shown in Figure 2. The header
partially describes the schema I0 of the table, and the subsequent rows, con-
stituting the multiset R0, contain the information of the different branches.
Formally, we have I0.id = Stores, I0.sk =< “City” : String, “Address” :
String, “Shop name” : String, “Brand” : Set, “Logical Locality” : String >.

Each database of a branch has several tables identified by the name of the
brand, which record the information of the stock and sales of the corresponding
brand. The table of one shoe brand, KLD, in one branch, is shown in Fig-
ure 3. The identifier of this table is KLD and the schema is < “Shoe ID” :
String, “Shoe name” : String, “Y ear” : String, “Color” : String, “Size” :
Int, “In-stock” : Int, “Sales” : Int >.

Shoe ID Shoe name Year Color Size In-stock Sales

001 HighBoot 2015 red 38 5 2

001 HighBoot 2015 red 37 8 5

001 HighBoot 2015 red 36 3 1

001 HighBoot 2015 black 38 3 2

001 HighBoot 2015 black 37 5 2

002 ShortBoot 2015 green 38 2 0

002 ShortBoot 2015 brown 37 4 3

...

Fig. 3. The Table KLD in one branch

To sum up, the network of databases and operating processes can be repre-
sented by

s0 ::ρ0 ((I0, R0)|C′
0) || s1 ::ρ1 ((I1, R1)|C′

1) || ... || sn ::ρn ((In, Rn)|C′
n),

where for j ∈ {1, ..., n}, (Ij , Rj) describes the local table for the brand KLD
inside its database at sj , and for each k ∈ {0, ..., n}, C′

k stands for the remaining
processes and tables at the site sk.

202 X. Wu et al.

3 Semantics

We devise a structural operational semantics [8] for Klaim-DB, as shown in
Table 3 and Table 4. The semantics is defined with the help of a structural
congruence — the smallest congruence relation satisfying the rules in Table 2,
where the α-equivalence of N and N ′ is denoted by N ≡α N ′.

Table 2. The Structural Congruence

N1||N2 ≡ N2||N1 (νs1)(νs2)N ≡ (νs2)(νs1)N
(N1||N2)||N3 ≡ N1||(N2||N3) N1||(νs)N2 ≡ (νs)N1||N2 (if s �∈ fn(N1))
N ||nil ≡ N s ::ρ C ≡ s ::ρ C|nil
N ≡ N ′ (if N ≡α N ′) s ::ρ (C1|C2) ≡ s ::ρ C1 || s ::ρ C2

We start by explaining our notation used in the semantic rules. The evaluation
function E�·�ρ evaluates tuples and templates under the allocation environment
ρ. The evaluation is performed pointwise on all the components of tuples t and
templates T , much in the manner of standard Klaim [2]. We denote by [a/b]
the substitution of a for b; in particular, when a and b are tuples of the same
length, point-wise substitution is represented. Pattern matching is performed
with the help of the predicate match(eT, et) where eT is an evaluated template
and et is an evaluated tuple. This match(eT, et) can be defined in a manner
much like that of [2]. In more detail, match(eT, et) gives a boolean value indi-
cating whether the pattern matching succeeded. In case it did, the substitution
σ = [et/eT] can be resulted. For example, match((3, !x, !y), (3, 5, 7)) = true and
[(3, 5, 7)/(3, !x, !y)] = [5/x, 7/y]. We denote by ψσ the fact that the boolean for-
mula ψ is satisfied after the substitution σ is applied to it. We will use 	, ∩
and \ to represent the union, intersection and substraction, of multisets and the
detailed definitions are given in Appendix A.

The notation I[a �→ b][...] represents the update of the interface I that maps its
attribute a to b; multiple updates are allowed. In addition, we will use I.sk ↓ T

t

to represent the projection of the schema I.sk according to the template T
(matching the format requirements imposed by I.sk) and the tuple t. When t
only contains constants or the bound variables of T as its components, I.sk ↓T

t

is a new schema that describes only the columns referred to in the variable
components of t. Since we have left the schema under-specified, this projection
operation is illustrated in Example 1, rather than formally defined.

Example 1. Suppose I.sk =< “Shoe ID” : String , “Shoe name” : String ,
“Y ear” : String , “Color” : String , “Size” : Int , “In-stock” : Int , “Sales” :
Int >, which specifies that the table having I as its interface has seven columns:
“Shoe ID′′ of type String , “Shoe name” of type String , “Year” of type String ,
“Color” of type String , “Size” of type Int , “In-stock” of type Int , “Sales” of
type Int . Suppose in addition that T = (“001”, “HighBoot”, !x, !y, !z, !w, !p) and
t = (y, z, p). Then I.sk ↓T

t =< “Color” : String , “Size” : Int , “Sales” : Int >.
��

Klaim-DB: A Modeling Language for Distributed Database Applications 203

Table 3. The Semantics for Actions

(INS)
ρ1(l) = s2 I.id = tb t |= I.sk R′ = R � {E�t�ρ1}

s1 ::ρ1 insert(t, tb)@�.P || s2 ::ρ2 (I,R) → s1 ::ρ1 P || s2 ::ρ2 (I,R′)

(INS TB)
ρ1(l) = s2 I.id = tb I ′.sk = I.sk R′′ = R �R′

s1 ::ρ1 insert tb((I ′, R′), tb)@�.P || s2 ::ρ2 (I,R) → s1 ::ρ1 P || s2 ::ρ2 (I,R′′)

(DEL)

R′ = {t | t ∈ R ∧ ¬(match(E�T �ρ1 , t) ∧ ψ[t/E�T �ρ1])}
R′′ = {t | t ∈ R ∧match(E�T �ρ1 , t) ∧ ψ[t/E�T �ρ1]}
ρ1(l) = s2 I.id = tb σ′ = [(I,R′′)/TBV]

s1 ::ρ1 delete(T, ψ, tb, !TBV)@�.P || s2 ::ρ2 (I,R) → s1 ::ρ1 Pσ′ || s2 ::ρ2 (I,R′)

(SEL EXT)

ρ1(l) = s2 I.id = tb I ′ = I [id �→ ⊥][sk �→ I.sk ↓Tt] σ′ = [(I ′, R′)/TBV]
R′ = {E�tσ�ρ1 | ∃t′ : t′ ∈ R ∧match(E�T �ρ1, t

′) ∧ σ = [t′/E�T �ρ1] ∧ ψσ}
s1 ::ρ1 sel ext(T, ψ, tb, t, !TBV)@�.P || s2 ::ρ2 (I,R) → s1 ::ρ1 Pσ′ || s2 ::ρ2 (I,R)

(SEL INT)

I ′ = I [id �→ ⊥][sk �→ I.sk ↓Tt] σ′ = [(I ′, R′)/TBV]
R′ = {E�tσ�ρ1 | ∃t′ : t′ ∈ R ∧match(E�T �ρ1, t

′) ∧ σ = [t′/E�T �ρ1] ∧ ψσ}
s1 ::ρ1 sel int(T, ψ, (I,R), t, !TBV).P → s1 ::ρ1 Pσ′

(UPD)

ρ1(l) = s2 I.id = tb
R′

1 = {t′ | t′ ∈ R ∧ ¬(∃σ : match(E�T �ρ1, t
′) ∧ σ = [t′/E�T �ρ1] ∧ ψσ ∧ E�tσ�ρ1 |= I.sk)}

R′
2 = {E�tσ�ρ1 | ∃t′ : t′ ∈ R ∧match(E�T �ρ1, t

′) ∧ σ = [t′/E�T �ρ1] ∧ ψσ ∧ E�tσ�ρ1 |= I.sk}
s1 ::ρ1 update(T, ψ, t, tb)@�.P || s2 ::ρ2 (I,R) → s1 ::ρ1 P ||s2 ::ρ2 (I,R′

1 �R′
2)

(AGGR)

t′ = f({t | ∃σ′ : t ∈ R ∧match(E�T �ρ1 , t) ∧ σ′ = [t/E�T �ρ1] ∧ ψσ′)
ρ(l) = s2 I.id = tb match(E�T ′�ρ1 , t

′)

s1 ::ρ1 aggr(T, ψ, tb, f, T ′)@�.P || s2 ::ρ2 (I,R) →
s1 ::ρ1 P [t′/E�T ′�ρ1] || s2 ::ρ2 (I,R)

(CREATE)
ρ1(l) = s2

s1 ::ρ1 create(I)@�.P ||s2 ::ρ2 nil → s1 ::ρ1 P ||s2 ::ρ2 (I, ∅)

(DROP)
ρ1(l) = s2 I.id = tb

s1 ::ρ1 drop(tb)@�.P ||s2 ::ρ2 (I,R) → s1 ::ρ1 P ||s2 ::ρ2 nil

We proceed with a detailed explanation of the semantic rules in Table 3 that
account for the execution of Klaim-DB actions and the ones in Table 4 that
mainly describe the execution of the control flow constructs. In the explanation,
we will avoid reiterating that each table resides in a database located at some �,
but directly state “table ... located at �”.

3.1 Semantics for Actions

Insertion and Deletion. The rule (INS) of Table 3 says that to insert a
row t into a table tb at s2, the logical locality � needs to be evaluated to s2
under the local environment ρ1, the table identifier tb must agree with that of
a destination table (I, R) already existing at s2, and the tuple t needs to satisfy

204 X. Wu et al.

the requirements imposed by the schema I.sk. If these conditions are met, then
the evaluated tuple is added into the data set R.

Example 2 (Adding new Shoes). The local action at s1 that inserts an entry for
KLD high boots of a new color, white, sized “37”, produced in 2015, with 6 in
stock, is insert(T0,KLD)@self , where T0 = (“001”, “HighBoot”, “2015”, “white”,
“37”, 6, 0). By (INS), we have

s1 ::ρ1 insert(T0,KLD)@self .nil || s1 ::ρ1 (I1, R1) → s1 ::ρ1 nil || s1 ::ρ1 (I1, R
′
1),

where R′
1 = R1 	 {T0}, since ρ1(self) = s1, KLD = I1.id and T0 |= I1.sk . ��

Deletion operations are performed according to the rule (DEL). A deletion
can be performed if the logical locality � refers to the physical locality s2 under
the local environment ρ1, and the specified table identifier tb agrees with that of
the table (I, R) targeted. The rows that do not match the pattern T or do not
satisfy the condition ψ will constitute the resulting data set of the target.

Example 3 (Deleting Existing Shoes). The local action at �1, deleting all entries
for white KLD high boots sized “37” produced in 2015, from the resulting table
of Example 2, is delete(T0, true,KLD)@self , where T0 = (“001”, “HighBoot”,
“2015”, “White”, “37”, !x, !y).

We have the transition:

s1 ::ρ1 delete(T0, true,KLD)@self .nil || s1 ::ρ1 (I1, R
′
1) → s1 ::ρ1 nil || s1 ::ρ1 (I1, R1).

This reflects that the original table is recovered after the deletion. ��

Selection, Update and Aggregation. The rule (SEL EXT) describes the
way the “external” selection operations are performed. It needs to be guaranteed
that the logical locality � is evaluated to s2 (under the local environment ρ1),
and the identifier tb is identical to that of the table (I, R) existing at s2. If
the conditions are met, all the rows that match the pattern T and satisfy the
predicate ψ, will be put into the result data set R′. The schema of the resulting
table is also updated according to the pattern T and the tuple t. The resulting
table (I ′, R′) is substituted into each occurrence of the table variable TBV used
in the continuation P .

Example 4 (Selection of Shoes in a Certain Color). The Klaim-DB action per-
formed from the head office, selecting the color, size, and sales of the types of
high boots that are not red, at the local database at s1, is

sel ext((“001”, “HighBoot”, !x, !y, !z, !w, !p), y �= “red”,KLD, (y, z, p), !TBV)@�1.

According to the rule (SEL EXT), we have the transition:

s0 ::ρ0 sel ext((“001”, “HighBoot”, !x, !y, !z, !w, !p), y �= “red”,KLD, (y, z, p), !TBV)@�1.nil

|| s1 ::ρ1 (I1, R1)

→ s0 ::ρ0 nil || s1 ::ρ1 (I1, R1).

Klaim-DB: A Modeling Language for Distributed Database Applications 205

The conditions ρ0(�1) = s1 and KLD = I.id in the premises of the rule are
satisfied. The I ′ in (SEL EXT) is such that I ′.id = ⊥, I ′.sk =< “Color” :
String, “Size” : Int, “Sales” : Int >, and I ′ agrees with I on the other at-
tributes. The table variable TBV is replaced by (I ′, R′), for some R′ = {(“black”,
“38”, “2”), (“black”, “37”, “2”)}. ��

“Internal” selections are performed according to the rule (SEL INT). No con-
straints concerning localities/identifiers are needed. All the rows that match the
pattern T and satisfy the predicate ψ are selected into the resulting data set R′.
The schema of the result table is produced by using the projection operation
introduced in the beginning of this section. All occurrences of the table variable
TBV in the continuation P will be replaced by the resulting table (I ′, R′) before
continuing with further transitions. We use ⊥ for I ′.id to indicate that (I ′, R′)
is a “temporary” table that can be thought of as existing in the query engine,
rather than in the database.

The updates of data stored in tables are executed according to the rule (UPD).
Again, it is checked that the specified logical locality of the table (I, R) to be
updated corresponds to the site where the table actually resides, and that the
specified table identifier matches the actual one. An update goes through all the
elements t′ of R. This t′ is updated only if it matches the template T , resulting
in the substitution σ that makes the predicate ψ satisfied, and tσ is evaluated
to a tuple that satisfies the schema I.sk. The evaluation result of tσ will then
replace t′ in the original table, which is captured by R′

2 . If at least one of the
above mentioned conditions is not met, then t′ will be left intact (described by
R′

1).

Example 5 (Update of Shoes Information). Suppose two more red KLD high
boots sized 37 are sold. The following local action informs the database at s1 of
this.

update((“001”, “HighBoot”, “2015”, “red”, “37”, !x, !y), true,
(“001”, “HighBoot”, “2015”, “red”, “37”, x− 2, y + 2),KLD)@self .

We have the transition:

s1 ::ρ1 update((“001”, “HighBoot”, “2015”, “red”, “37”, !x, !y), true, (“001”,
“HighBoot”, “2015”, “red”, “37”, x− 2, y + 2),KLD)@self .nil || s1 ::ρ1 (I,R) →
s1 ::ρ1 nil || s1 ::ρ1 (I,R′

1 �R′
2).

The multiset R′
1 consists of all the entries that are intact — shoes that are not

red high boots sized 37, while R′
2 contains all the updated items. ��

The rule (AGGR) describes the way aggregation operations are performed.
The matching of localities and table identifiers is still required. The aggregation
function f is applied to the multiset of all tuples matching the template T , as
well as satisfying the predicate ψ. The aggregation result t′ obtained by the
application of f is bound to the specified template T ′ only if the evaluation of
T ′ matches t′. In that case the substitution reflecting the binding is applied to
the continuation P and the aggregation is completed.

206 X. Wu et al.

Example 6 (Aggregation of Sales Figures).
The local aggregation returning the total sales of the shoes with ID “001”,

can be modelled by the Klaim-DB action aggr(T0, true,KLD, sum7, (!res))@self ,
where T0 = (“001”, !x, !y, !z, !w, !q, !o), and sum7 = λR.(sum({v7|(v1, ..., v7) ∈
R})), i.e., sum7 is a function from multisets R to unary tuples containing the
summation results of the 7-th components of the tuples in R.

It is not difficult to derive:

s1 ::ρ1 aggr(T0, true,KLD, sum7, (!res))@�1.nil || s1 ::ρ1 (I,R)

→ s1 ::ρ1 nil || s1 ::ρ1 (I,R).

The variable !res is then bound to the integer value 12 (2 + 5 + 1 + 2 + 2). ��

Example 7 (Selection using Aggregation Results). Consider the query from s0
that selects all the colors, sizes and sales of the types of high boots produced
in the year 2015, whose ID is “001” and whose sales figures are above average.
This query can be modelled as a sequence of actions at s0, as follows.

s0 ::ρ0 aggr(T0, true,KLD, avg7, !res)@�1.sel ext(T0, w ≥ res ,KLD, (x, y,w), !TBV)@�1.nil

|| s1 ::ρ1 (I1, R1),

where T0 = (“001′′, “HighBoot”, “2015”, !x, !y, !z, !w) and

avg7 = λR.(sum({v7|(v1,...,v7)∈R})
|R|) is a function from multisets R to unary tuples

containing the average value of the 7-th components of the tuples in R. ��

Adding and Dropping Tables. To create a new table, the rule (CREATE)
ensures that the physical site s2 corresponding to the logical locality � mentioned
in the action create(I)@� does exist. Then a table with the interface I and an
empty data set is created at the specified site. It remains an issue to ascertain
that there are no existing tables having the same identifier I.id at the target
site. This is achieved with the help of the rule (PAR) in Table 4.

To drop an existing table, the rule (DROP) checks that a table with the
specified identifier tb does exist at the specified site ρ1(l) = s2. Then the table
is dropped by replacement of it with nil.

3.2 Semantics for Processes and Networks

Directing our attention to Table 4, the rules (FORtt
s) and (FORff

s) specify when
and how a loop is to be executed one more time, and has finished, respectively.
The rule (FORtt

s) says that if there are still more tuples (e.g., t0) in the multiset
R matching the pattern specified by the template T , then we first execute one
round of the loop with the instantiation of variables in T by corresponding values
in t0, and then continue with the remaining rounds of the loop by removing t0
from R. The rule (FORff

s) says that if there are no more tuples in R matching T ,
then the loop is completed. The rules (FORtt

p) and (FORff
p) can be understood

similarly.

Klaim-DB: A Modeling Language for Distributed Database Applications 207

Table 4. The Semantics for Processes and Nets (Continued)

(FORtt
s)

t0 ∈ R match(E�T �ρ, t0)

s ::ρ foreachs T in R :P → s ::ρ P [t0/E�T �ρ]; foreachs T in R \ {t0} : P

(FORtt
p)

t0 ∈ R match(E�T �ρ, t0)

s ::ρ foreachp T in R :P → s ::ρ P [t0/E�T �ρ] | foreachp T in R \ {t0} : P

(FORff
s)

¬(∃t0 ∈ R : match(E�T �ρ, t0))

s ::ρ foreachs T in R : P → s ::ρ nil
(FORff

p)
¬(∃t0 ∈ R : match(E�T �ρ, t0))

s ::ρ foreachp T in R : P → s ::ρ nil

(SEQtt)
s ::ρ P1 || N → s ::ρ P ′

1 || N ′

s ::ρ P1;P2 || N → s ::ρ P ′
1;P2 || N ′ (SEQff)

s ::ρ P1 || N → s ::ρ nil || N ′

s ::ρ P1;P2 || N → s ::ρ P2 || N ′

(CALL) s ::ρ A(t̃) → s ::ρ P [ṽ/x̃] if A(x̃) � P ∧ E�t̃�ρ = ṽ

(PAR)
N1 → N ′

1

N1||N2 → N ′
1||N2

if Lid(N ′
1) ∩ Lid(N2) = ∅

(RES)
N → N ′

(νs)N → (νs)N ′ (EQUIV)
N1 ≡ N2 N2 → N3 N3 ≡ N4

N1 → N4

The rules (SEQtt) and (SEQff) describe the transitions that can be performed
by sequential compositions P1;P2. In particular, the rule (SEQtt) accounts for
the case where P1 cannot finish after one more step; whereas the rule (SEQff)
accounts for the opposite case. We require that no variable bound in P1 is used
in P2, thereby avoiding the need for recording the substitutions resulting from
the next step of P1, that need to be applied on P2.

The rule (PAR) says that if a net N1 can make a transition, then its parallel
composition with another netN2 can also make a transition, as long as no clashes
of table identifiers local to each site in N1||N2 are introduced. It makes use of the
function Lid(...) that gives the multiset of pairs of physical localities and table
identifiers in networks and components. This function is overloaded on networks
and components, and is defined inductively as follows.

Lid(nil) = ∅ Lid(s, P) = ∅
Lid(N1||N2) = Lid(N1) � Lid(N2) Lid(s, (I,R)) = {(s, I.id)}
Lid((νs)N) = Lid(N) Lid(s,C1|C2) = Lid(s, C1) � Lid(s, C2)
Lid(s ::ρ C) = Lid(s,C)

The rules (CALL), (RES) and (EQUIV) are self-explanatory.
It is a property of our semantics that no local repetition of table identifiers

can be caused by a transition (including the creation of a new table). Define
no rep(A) = (A = set(A)), which expresses that there is no repetition in the
multiset A, thus A coincides with its underlying set. This property is formalized

208 X. Wu et al.

in Lemma 1 whose proof is straightforward by induction on the derivation of the
transition.

Lemma 1. For all nets N and N ′, if no rep(Lid(N)) and N → N ′, then it
holds that no rep(Lid(N ′)).

Thus, imposing “non-existence of local repetition of table identifiers” as an in-
tegrity condition for the initial network will guarantee the satisfaction of this
condition in all possible derivatives of the network.

Example 8 (Transition of Networks). Continuing with Example 2, we illustrate
how our semantics help establish global transitions.

Suppose there is no other table at s1 with the identifier KLD. By (PAR), and
the structural congruence, we have

s0 ::ρ0 (I0, R0)|C′
0 || s1 ::ρ1 (I1, R1)|insert(t1,KLD)@self .nil|C′′

1 || ... || sn ::ρn (In, Rn)|C′
n

→ s0 ::ρ0 (I0, R0)|C′
0 || s1 ::ρ1 (I1, R

′
1)|C′′

1 || ... || sn ::ρn (In, Rn)|C′
n,

where t1 = (“001”, “HighBoot”, “2015”, “white”, “37”, “6”, “0”). ��

4 Case Study

Continuing with our running example, we illustrate the modelling of data aggre-
gation over multiple databases local to different branches of the department store
chain in Klaim-DB. In more detail, a manager of the head office wants statis-
tics on the total sales of KLD high boots from the year 2015, in each branch
operating in Copenhagen.

We will think of a procedure stat at the site s0 of the head office, carrying out
the aggregation needed. Thus the net for the database systems of the department
store chain, as considered in Section 2, specializes to the following, where C′′

0 is
the remaining tables and processes at s0 apart from Stores and stat .

s0 ::ρ0 (stat |(I,R)|C′′
0) || s1 ::ρ1 ((I1, R1)|C′

1) || ... || sn ::ρn ((In, Rn)|C′
n)

A detailed specification of the procedure stat is then given in Figure 4.

stat � create(Ires)@self .
sel ext((!x, !y, !z, !w, !p),KLD ∈ w ∧ x = “CPH”, Stores, (z, p), !TBV)@self .
foreachp (!q, !u) in TBV .R :

aggr((“001”, “HighBoot”, “2015”, !x, !y, !z, !w), true,KLD, sum7, (!res))@u.
insert((q, “HighBoot”, res), result)@self ;

...
drop(result)@self

Fig. 4. The Procedure for Distributed Data Aggregation

First of all, a result table with the interface Ires is created, where Ires.id =
result and I.sk =< “Brand” : String , “City” : String , “Shop name” : String ,

Klaim-DB: A Modeling Language for Distributed Database Applications 209

“Sales” : Int >. Then all the logical localities of the local databases used by the
branches in Copenhagen that actually sell KLD shoes are selected, together with
the shop names of such branches. This result set is then processed by a parallel
loop. The number of KLD high boots from 2015 that are sold is counted at each
of these localities (branches), and is inserted into the resulting table together
with the corresponding shop name and the information “High Boot” describing
the shoe type concerned. The resulting table, displayed in Figure 5, can still be
queried/manipulated before being dropped.

Shop name Shoe name Sales

Shop1 HighBoot 12
Shop2 HighBoot 53
Shop3 HighBoot 3
...

Fig. 5. The Table result

In the end of this case study, we
would like to remark that the use
of the parallel loop in carrying out
all the individual remote aggregations
has made the overall query more ef-
ficient. Hence some performance is-
sues can be captured by modelling in
Klaim-DB.

5 Extension and Discussion

Joining Tables. Our modelling language can be extended to support querying
from the “join” of tables. For this extension, we make use of under-specified join
expressions je, that can have table identifiers or table variables as parameters.
The syntax of the new selection actions is shown below.

a ::= ... | sel ext(T, ψ, je(tb1, ..., tbn), t, !TBV)@�1, ..., �n
| sel int(T, ψ, je(TBV 1, ...,TBV n), t, !TBV

′) | ...
For an external selection, we allow to use a list �1, ..., �n of localities (abbreviated
as �), to join tables located in multiple databases. In more detail, for i ∈ {1, ..., n},
tbi is supposed to be the identifier of a table located at �i.

We use �je�R and �je�I to represent the interpretation of je in terms of how
the datasets and the schemas of the joined tables should be combined. As an
example, a plain list of table identifiers or tables (substitution of table variables)
corresponds to taking the concatenation of all the schemas and selecting from
the cartesian product of all the data sets.

�je�I(I1, ..., In) =
⊕

j∈{1,...,n}
Ij .sk �je�R(R1, ..., Rn) = R1 × ...×Rn

The pattern matching against the template T and the satisfaction of the
predicate ψ will be examined on tuples from �je�R(R1, ..., Rn), and the predicate
ψ can now impose constraints on the fields from different tables.

The adaption needed for the semantics is fairly straightforward. The seman-
tic rules (SELJ EXT) and (SELJ INT) that describe selection operations from
joined tables are presented in Table 5. In the rule (SELJ EXT), although it is
stipulated that the j-th table identifier specified in the list tb must be identi-
cal to the j-th table (Ij , Rj) listed as parallel components, no undesired stuck
configurations are caused because of the structrual congruence.

210 X. Wu et al.

Table 5. The Semantic Rules for Selection from Joins

(SELJ EXT)

n = |tb| = |�| ∧ ∀j ∈ {1, ..., n} : ρ0(lj) = sj ∧ tbj = Ij .id

I ′ = [id �→ ⊥][sk �→ (�je�I(I))↓Tt] σ′ = [(I ′, R′)/TBV]

R′ = {E�tσ�ρ1 | ∃t′ : t′ ∈ �je�R(R) ∧match(E�T �ρ1 , t
′) ∧ σ = (t′/E�T �ρ1) ∧ ψσ}

s0 ::ρ0 sel ext(T, ψ, je(tb), t, !TBV)@�.P || s1 ::ρ1 (I1, R1) || ... || sn ::ρn (In, Rn)
→ s0 ::ρ0 Pσ′ || s1 ::ρ1 (I1, R1) || ... || sn ::ρn (In, Rn)

(SELJ INT)

I ′ = [id �→ ⊥][sk �→ (�je�I(I))↓Tt] σ′ = [(I ′, R′)/TBV]

R′ = {E�tσ�ρ1 | ∃t′ : t′ ∈ �je�R(R) ∧match(E�T �ρ1, t
′) ∧ σ = (t′/E�T �ρ1) ∧ ψσ}

s1 ::ρ1 sel int(T, ψ, je((I,R)), t, !TBV).P → s1 ::ρ1 Pσ′

This extension paves the way for the general ability to operate on multiple
databases by a single action, which is in line with the design philosophy of multi-
database systems (e.g., [5]).

Discussion. We could have required whole tables to be received into local
variables by using the standard Klaim actions out(t)@� and in(t)@�, and made
the selection and aggregation operations work only on table variables. In this way
we could have gotten rid of “external selection”. However, “external selection”
on remote localities can potentially reduce the communication cost considerably,
since only one tuple (for aggregation) or a part of a table (for selection) need
to be returned. For selection the reduction is particularly meaningful when the
resulting data set is small.

Concerning the result of selection operations, an alternative that we have not
adopted is the direct placement of the result in a separate table. This table is
either created automatically by the selection operation itself, with an identifier
specified in the selection action, or a designated “result table” at each site.
However, a problem is that the removal of the automatically created tables
will need to be taken care of by the system designer making the specification,
using drop(I)@� actions. And similar problems arise with the maintenance of
the designated “result table” local to each site (e.g., the alteration of its schema,
the cleaning of old results, etc.). To abstain from these low-level considerations,
table variables are introduced and binding is used for the selection results.

The interoperability between database systems and ordinary applications can
also be realized by bringing back the primitive Klaim actions (out(t)@�, in(T)@�,
and eval(P)@�) and allowing the co-existence of tables and plain tuples at dif-
ferent localities. Via the re-introduction of the eval action, we would also be able
to send out mobile processes to perform complex data processing on-site.

6 Conclusion

We have proposed Klaim-DB— a modelling language that borrows insights from
both the coordination language Klaim and database query languages like SQL,

Klaim-DB: A Modeling Language for Distributed Database Applications 211

to support the high-level modelling and reasoning of distributed database appli-
cations. The semantics is illustrated with a running example on the query and
management of the databases used by a department store chain. Data aggrega-
tion across the geographically scattered databases at the individual stores, as
performed by a coordinator, is then modelled in the language. In the model, the
local aggregations at the store-owned databases are performed in parallel with
each other, benefiting the performance.

Our use of templates in the query actions of Klaim-DB is in line with the spirit
of the QBE language (Query by Example [12]). The choice of using multiset
operations for the semantics of these actions, on the other hand, has the flavor
of the Domain Relational Calculus underlying QBE. The work presented in [9]
discusses typical coordination issues in distributed databases in Linda, from an
informal, architectural viewpoint. This work is marginally related to ours.

The specification and enforcement of security policies is an important concern
in distributed database systems. A simple example is: when inserting data into
a remote table, it is important to know whether the current site trusts the
remote site with respect to confidentiality, and whether the remote site trusts the
current site with respect to integrity. Recently, [3] and [7] address privacy and
information flow issues in database applications. Another work, [10], provides
an information flow analysis for locality-based security policies in Klaim. By
elaborating on the language design, we provide in this paper a solid ground for
any future work aiming to support security policies and mechanisms.

Another interesting line of future work is the specification of transactions
(e.g., [6]). This is needed for the modelling of finer-grained coordination between
database accesses.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able feedback. Xi Wu is partly supported by the IDEA4CPS project, ECNU Project
of Funding Overseas Short-term Studies, Domestic Academic Visit and NSFC Project
(No.61361136002 and No.61321064). Ximeng Li is partly funded by SESAMO, a
European Artemis project.

References

1. Abrial, J.-R.: Formal methods: Theory becoming practice. J. UCS 13(5), 619–628
(2007)

2. De Nicola, R., Ferrari, G.L., Pugliese, R.: KLAIM: A kernel language for agents
interaction and mobility. IEEE Trans. Software Eng. (1998)

3. Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security,
2nd edn., pp. 338–340 (2011)

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
5. Kuhn, E., Ludwig, T.: Vip-mdbs: A logic multidatabase system. In: Proceedings

of the First International Symposium on Databases in Parallel and Distributed
Systems, DPDS 1988, pp. 190–201. IEEE Computer Society Press (1988)

6. Kühn, E., Elmagarmid, A.K., Leu, Y., Boudriga, N.: A parallel logic language for
transaction specification in multidatabase systems. Journal of Systems Integra-
tion 5(3), 219–252 (1995)

212 X. Wu et al.

7. Lourenço, L., Caires, L.: Information flow analysis for valued-indexed data security
compartments. In: Trustworthy Global Computing - 8th International Symposium,
TGC 2013, pp. 180–198 (2013)

8. Plotkin, G.D.: A structural approach to operational semantics. J. Log. Algebr.
Program. 60-61:17–139 (2004)

9. Thirukonda, M.M., Menezes, R.: On the use of linda as a framework for distributed
database systems (2002)

10. Tolstrup, T.K., Nielson, F., Hansen, R.R.: Locality-based security policies. In:
Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006.
LNCS, vol. 4691, pp. 185–201. Springer, Heidelberg (2007)

11. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: Prac-
tice and experience. ACM Comput. Surv. 41(4) (2009)

12. Zloof, M.M.: Query by example. In: Proceedings of the National Computer
Conference and Exposition, AFIPS 1975, pp. 431–438. ACM, New York (1975)

A Multiset Notation

We use 	, ∩ and \ to represent the union, intersection and substraction, respec-
tively, of multisets. For a multiset S, and an element s, the applicationM(S, s) of
the multiplicity function M gives the number of repetitions of s in S. Note that
for s �∈ S, M(S, s) = 0. Then our notions of union, intersection and subtraction
are such that

M(S1 	 S2, s) = M(S1, s) +M(S2, s)
M(S1 ∩ S2, s) = min(M(S1, s),M(S2, s))
M(S1 \ S2, s) = abs(M(S1, s)−M(S2, s))

Here abs(v) gives the absolute value of the integer v.

Open Transactions on Shared Memory

Marino Miculan, Marco Peressotti(�), and Andrea Toneguzzo

Laboratory of Models and Applications of Distributed Systems
Department of Mathematics and Computer Science, University of Udine, Italy

{marino.miculan,marco.peressotti}@uniud.it

Abstract. Transactional memory has arisen as a good way for solving
many of the issues of lock-based programming. However, most implemen-
tations admit isolated transactions only, which are not adequate when we
have to coordinate communicating processes. To this end, in this paper
we present OCTM , an Haskell-like language with open transactions over
shared transactional memory: processes can join transactions at runtime
just by accessing to shared variables. Thus a transaction can co-operate
with the environment through shared variables, but if it is rolled-back,
also all its effects on the environment are retracted. For proving the
expressive power of OCTM we give an implementation of TCCSm , a
CCS-like calculus with open transactions.

1 Introduction

Coordination of concurrent programs is notoriously difficult. Traditional fine-
grained lock-based mechanisms are deadlock-prone, inefficient, not composable
and not scalable. For these reasons, Software Transactional Memory (STM)
has been proposed as a more effective abstraction for concurrent programming
[1,9,17]. The idea is to mark blocks of code as “atomic”; at runtime, these blocks
are executed so that the well-known ACID properties are guaranteed. Trans-
actions ensure deadlock freedom, no priority inversion, automatic roll-back on
exceptions or timeouts, and greater parallelizability. Among other implemen-
tations, we mention STM Haskell [7], which allows atomic blocks to be com-
posed into larger ones. STM Haskell adopts an optimistic evaluation strategy:
the blocks are allowed to run concurrently, and eventually if an interference is
detected a transaction is aborted and its effects on the memory are rolled back.

However, standard ACID transactions are still inadequate when we have to
deal with communicating processes, i.e., which can exchange information during
the transactions. This is very common in concurrent distributed programming,
like in service-oriented architectures, where processes dynamically combine to
form a transaction, and all have to either commit or abort together. In this
scenario the participants cannot be enclosed in one transaction beforehand, be-
cause transactions are formed at runtime. To circumvent this issue, various forms
of open transactions have been proposed, where the Isolation requirement is re-
laxed [2–4,10,12]. In particular, TransCCS and TCCSm are two CCS-like calculi
recently introduced to model communicating transactions [4, 5, 10]. These cal-
culi offer methodologies for proving important properties, such as fair-testing for
proving liveness and bisimulations for proving contextual equivalences.

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 213–229, 2015.
DOI: 10.1007/978-3-319-19282-6_14

214 M. Miculan et al.

Now, if we try to implement cross-transaction communications a la TCCSm

in STM Haskell or similar languages, it turns out that isolated transactions are
not expressive enough. As an example, let us consider two TCCSm transactions
〈〈〈〈〈c̄.P � 0〉〉〉〉〉|〈〈〈〈〈c.Q � 0〉〉〉〉〉 synchronizing on a channel c. Following the standard prac-
tice, we could implement this synchronization as two parallel processes using a
pair of semaphores c1,c2 (which are easily realized in STM Haskell):

〈〈〈〈〈c̄.P � 0〉〉〉〉〉 = atomic {

up c1 -- 1.1

down c2 -- 1.2

P

}

〈〈〈〈〈c.Q � 0〉〉〉〉〉 = atomic {

down c1 -- 2.1

up c2 -- 2.2

Q

}

This implementation is going to deadlock: the only possible execution order is
1.1-2.1-2.2-1.2, which is possible outside transactions but it is forbidden for ACID
transactions1. The problem is that ordinary STM transactions are kept isolated,
while in TCCSm they can merge at runtime.

In order to address this issue, in this paper we introduce software trans-
actional memory with open transactions: processes can join transactions and
transactions can merge at runtime, when they access to shared variables. To
this end, we present OCTM , a higher-order language extending the concurrency
model of STM Haskell with composable open (multi-thread) transactions in-
teracting via shared memory. The key step is to separate the isolation aspect
from atomicity: in OCTM the atomic construct ensures “all-or-nothing” execu-
tion, but not isolation; when needed, isolated execution can be guaranteed by a
new constructor isolated. An atomic block is a participant (possibly the only
one) of a transaction. Notice that transaction merging is implicitly triggered by
accessing to shared memory, without any explicit operation or a priori coordina-
tion. For instance, in OCTM the two transactions of the example above would
merge becoming two participants of the same transaction, hence the two threads
can synchronize and proceed. In order to prove formally the expressivity of open
memory transactions, we define an implementation of TCCSm in OCTM , which
is proved to correctly preserve behaviours by means of a suitable notion of sim-
ulation. We have based our work on STM Haskell as a paradigmatic example,
but this approach is general and can be applied to other STM implementations.

Lesani and Palsberg [12] have proposed transactions communicating through
transactional message-based channels called transactional events. These mecha-
nisms are closer to models like TransCCS and TCCSm , but on the other hand
they induce a strict coupling between processes, which sometimes is neither ad-
visable nor easy to implement (e.g., when we do not know all transaction’s partic-
ipants beforehand). In fact, most STM implementations (including STM Haskell)
adopt the shared memory model of multi-thread programming; this model is also
more amenable to implementation on modern multi-core hardware architectures
with transactional memory [8]. For these reasons, in OCTM we have preferred
to stick to loosely coupled interactions based on shared memory only.

1 This possibility was pointed out also in [7]: “two threads can easily deadlock if each
awaits some communication from the other”.

Open Transactions on Shared Memory 215

Value V ::= r | λx.M | return M | M >>= N |
newVar M | readVar r | writeVar r M |
fork M | atomic M N | isolated M | abort M | retry

Term M,N ::= x | V | MN | . . .

Fig. 1. Syntax of OCTM values and terms

The rest of the paper is structured as follows. In Section 2 we describe the
syntax and semantics of OCTM . The calculus TCCSm , our reference model
for open transactions, is recalled in Section 3. Then, in Section 4 we provide
an encoding of TCCSm in OCTM , proving that OCTM is expressive enough
to cover open transactions. Conclusions and directions for future work are in
Section 5. Longer proofs are in the extended version of this paper [15].

2 OCTM : Open Concurrent Transactional Memory

In this section we introduce the syntax and semantics of OCTM , a higher-order
functional language with threads and open transaction on shared memory. The
syntax is Haskell-like (in the wake of existing works on software transactional
memories such as [7]) and the semantics is a small-step operational semantics

given by two relations:
β−→ models transaction auxiliary operations (e.g. creation)

while −→ models actual term evaluations. Executions proceeds by repeatedly
choosing a thread and executing a single (optionally transactional) operation;
transitions from different threads may be arbitrarily interleaved as long as atom-
icity and isolation are not violated where imposed by the program.

2.1 Syntax

The syntax can be found in Figure 1 where the meta-variables r and x range
over a given countable set of locations Loc and variables Var respectively. Terms
and values are inspired to Haskell and are entirely conventional2; they include
abstractions, application, monadic operators (return and >>=), memory oper-
ators (newVar , readVar , writeVar), forks, transactional execution modalities
(atomic and isolated) and transaction operators (abort and retry).

Effectfull expressions such as fork or isolated are glued together by the
(overloaded) monadic bind >>= e.g.:

newVar 0 >>= λx.(fork (writeVar x 42) >>= λy.readVar x)

whereas values are “passed on” by the monadic unit return .
Akin to Haskell, we will use underscores in place of unused variables (e.g. λ .0)

and M >> N as a shorthand for M >>= λ .N , and the convenient do-notation:

do{x ← M ;N} ≡ M >>= (λx.do{N})
do{M ;N} ≡ M >>= (λ .do{N})

do{M} ≡ M

2 Although we treat the application of monadic combinators (e.g. return) as values
in the line of similar works [7].

216 M. Miculan et al.

possibly trading semicolons and brackets for the conventional Haskell layout. For
instance, the above example is rendered as

do

x ← newVar 0

fork (writeVar x 42)

readVar x

2.2 Operational Semantics

We present the operational semantics of OCTM in terms of an abstract machine
whose states are triples 〈P ;Θ,Δ〉 formed by

– thread family (process) P ;

– heap memory Θ : Loc ⇀ Term;

– distributed working memory Δ : Loc ⇀ Term× TrName

where Term denotes the set of OCTM terms (cf. Figure 1) and TrName denotes
the set of names used by the machine to identify active transactions. We shall
denote the set of all possible states as State.

Threads. Threads are the smaller unit of execution the machine scheduler oper-
ates on; they execute OCTM terms and do not have any private transactional
memory. Threads are given unique identifiers (ranged over by t or variations
thereof) and, whenever they take part to some transaction, the transaction iden-
tifier (ranged over k, j or variations thereof). Threads of the former case are
represented by ([M])t where M is the term being evaluated and the subscript t is
the thread identifier. Threads of the latter case have two forms: ([M �M ′;N])t,k,
called and ([M �M ′])t,k where:

– M is the term being evaluated inside the transaction k;

– M ′ is the term being evaluated as compensation in case k is aborted;

– N is the term being evaluated as continuation after k commits or aborts.

Threads with a continuation are called primary participants (to transaction k),
while threads without continuation are the secondary participants. The former
group includes all and only the threads that started a transaction (i.e. those
evaluated in an atomic), while the latter group encompasses threads forked
inside a transaction and threads forced to join a transaction (from outside a
transactional context) because of memory interactions. While threads of both
groups can force a transaction to abort or restart, only primary participants can
vote for its commit and hence pass the transaction result to the continuation.

We shall present thread families using the evocative CCS-like parallel operator
‖ (cf. Figure 2) which is commutative and associative. Notice that this operator is
well-defined only on operands whose thread identifiers are distinct. The notation
is extended to thread families with 0 denoting the empty family.

Open Transactions on Shared Memory 217

Thread Tt ::= ([M])t | ([M �M ′;N])t,k | ([M �M ′])t,k
Thread family P ::= Tt1 ‖ · · · ‖ Ttn ∀i, j ti �= tj
Expressions E ::= [−] | E >>= M
Processes Pt ::= ([E])t
Transactions Tt,k ::= ([E �M ;N])t,k | ([E �M])t,k

Fig. 2. Threads and evaluation contexts

M �≡ V V[M] = V

M → V
(Eval)

return M >>= N → NM
(BindReturn)

retry >>= M → retry
(BindRetry)

abort N >>= M → abort N
(BindAbort)

Fig. 3. OCTM semantics: rules for term evaluation

Memory. The memory is divided in the heap Θ and in a distributed working
memory Δ. As for traditional closed (acid) transactions (e.g. [7]), operations
inside a transaction are evaluated againstΔ and effects are propagated to Θ only
on commits. When a thread inside a transaction k accesses a location outside
Δ the location is claimed for k and remains claimed for the rest of k execution.
Threads inside a transaction can interact only with locations claimed by their
transaction. To this end, threads outside any transaction can join an existing one
and different active transactions can be merged to share their claimed locations.

We shall denote the pair 〈Θ,Δ〉 by Σ and reference to each projected compo-
nent by a subscript e.g. ΣΘ for the heap. When describing updates to the state
Σ, we adopt the convention that Σ′ has to be intended as equal to Σ except if
stated otherwise, i.e. by statements like Σ′

Θ = ΣΘ[r �→ M]. Formally, updates
to location content are defined on Θ and Δ as follows:

Θ[r �→ M](s) �
{
M if r = s

Θ(s) otherwise
Δ[r �→ (M,k)](s) �

{
(M,k) if r = s

Δ(s) otherwise

for any r, s ∈ Loc, M ∈ Term and k ∈ TrName. Likewise, updates on transaction
names are defined on Σ and Δ as follows:

Σ[k �→ j] � (Θ,Δ[k �→ j]) (Δ[k �→ j])(r) �
{
Δ(r) if Δ(r) = (M, l), l
= k

(M, j) if Δ(r) = (M,k)

for any r ∈ Loc, M ∈ Term and k, j ∈ TrName. Note that j may occur in Δ
resulting in the fusion of the transactions denoted by k and j respectively. Finally,
∅ denotes the empty memory (i.e. the completely undefined partial function).

Behaviour. Evaluation contexts are shown in Figure 2 and the transition rela-
tions are presented in Figures 3, 4, 5. The first (cf. Figures 3) is defined on terms
only and models pure computations. In particular, rule (Eval) allows a term
M that is not a value to be evaluated by an auxiliary (partial) function, V [M]
yielding the value V of M whereas the other three rules define the semantic of

218 M. Miculan et al.

M → N

〈Pt[M]‖P ;Σ〉 −→ 〈Pt[N]‖P ;Σ〉 (TermP)
M → N

〈Tt,k[M]‖P ;Σ〉 −→ 〈Tt,k[N]‖P ;Σ〉 (TermT)

t′ /∈ threads(P) t �= t′

〈Pt[fork M] ‖ P ;Σ〉 −→ 〈Pt[return t′] ‖ ([M])t′ ‖ P ;Σ〉 (ForkP)

t′ /∈ threads(P) t �= t′

〈Tt,k[fork M] ‖ P ;Σ〉 −→ 〈Tt,k[return t′] ‖ ([M � return])t′,k ‖ P ;Σ〉 (ForkT)

threads(Tt1 ‖ · · · ‖ Ttn) � {t1, . . . , tn}
r /∈ dom(ΣΘ) ∪ dom(ΣΔ) Σ′

Θ = ΣΘ[r �→ M]

〈Pt[newVar M] ‖ P ;Σ〉 −→ 〈Pt[return r] ‖ P ;Σ′〉 (NewP)

r /∈ dom(ΣΘ) ∪ dom(ΣΔ) Σ′
Δ = ΣΔ[r �→ (M,k)]

〈Tt,k[newVar M] ‖ P ;Σ〉 −→ 〈Tt,k[return r] ‖ P ;Σ′〉 (NewT)

r /∈ dom(ΣΔ) ΣΘ(r) = M

〈Pt[readVar r] ‖ P ;Σ〉 −→ 〈Pt[return M] ‖ P ;Σ〉 (ReadP)

r /∈ dom(ΣΔ) ΣΘ(r) = M Σ′
Δ = ΣΔ[r �→ (M,k)]

〈Tt,k[readVar r] ‖ P ;Σ〉 −→ 〈Tt,k[return M] ‖ P ;Σ′〉 (ReadT)

M = E[readVar r] ΣΔ(r) = (M ′, k)
〈([M])t ‖ P ;Σ〉 −→ 〈([E[return M ′] � λ .M])t,k ‖ P ;Σ〉 (ReadJoin)

ΣΔ(r) = (M, j) Σ′ = Σ[k �→ j]

〈Tt,k[readVar r] ‖ P ;Σ〉 −→ 〈Tt,j [return M] ‖ P [k �→ j];Σ′〉 (ReadMerge)

r /∈ dom(ΣΔ) ΣΘ(r) = N Σ′
Θ = ΣΘ[r �→ M]

〈Pt[writeVar r M] ‖ P ;Σ〉 −→ 〈Pt[return ()] ‖ P ;Σ′〉 (WriteP)

r /∈ dom(ΣΔ) ΣΘ(r) = N Σ′
Δ = ΣΔ[r �→ (M,k)]

〈Tt,k[writeVar r M] ‖ P ;Σ〉 −→ 〈Tt,k[return ()] ‖ P ;Σ′〉 (WriteT)

M = E[writeVar r M ′] ΣΔ(r) = (M ′′, k) Σ′
Δ = ΣΔ[r �→ (M ′, k)]

〈([M])t ‖ P ;Σ〉 −→ 〈([E[return ()] � λ .M])t,k ‖ P ;Σ′〉 (WriteJoin)

ΣΔ(r) = (N, j) Σ′ = Σ[k �→ j] Σ′
Δ = ΣΔ[k �→ (M, j)]

〈Tt,k[writeVar r M] ‖ P ;Σ〉 −→ 〈Tt,j [return ()] ‖ P [k �→ j];Σ′〉 (WriteMerge)

Fig. 4. OCTM semantics: rules for −→

the monadic bind. The transition relation modelling pure computations can be
thought as accessory to the remaining two for these model transitions between
the states of the machine under definition.

Derivation rules in Figure 4 characterize the execution of pure (effect-free)
terms, forks and memory operations both inside, and outside of some transaction;
Derivation rules in Figure 5 characterize auxiliary operations for transaction
management (e.g. creation) and their coordination (e.g distributed commits).
Note that there are no derivation rules for retry. In fact, the meaning of retry
is to inform the machine that choices made by the scheduler led to a state from
which the program cannot proceed. From an implementation perspective this
translates in the transaction being re-executed from the beginning (or a suitable
check-point) following a different scheduling of its operations.

Open Transactions on Shared Memory 219

k /∈ transactions(P)

〈([atomic M N >>= N ′])t ‖ P ;Σ〉 newk−−−→ 〈([M �N ;N ′])t,k ‖ P ;Σ〉
(Atomic)

〈([M])t;Σ〉 →∗ 〈([return N])t;Σ
′〉

〈Pt[isolated M];Σ〉 → 〈Pt[return N];Σ′〉 (IsolatedP)

op ∈ {abort, return} 〈([M � return])t,k;Σ〉 →∗ 〈([op N � return])t,k;Σ
′〉

〈Tt,k[isolated M];Σ〉 → 〈Tt,k[op N];Σ′〉 (IsolatedT)

Σ′
Δ = clean(k,ΣΔ)

〈([abort M �N ;N ′])t,k;Σ〉 abkM−−−−→ 〈([N(M) >>= N ′])t;Σ′〉
(RaiseAbort1)

Σ′
Δ = clean(k,ΣΔ)

〈([abort M � N])t,k;Σ〉 abkM−−−−→ 〈([N(M)])t;Σ′〉
(RaiseAbort2)

Σ′
Δ = clean(k,ΣΔ)

〈([M � N ;N ′])t,k;Σ〉 âbkM−−−−→ 〈([N(M) >>= N ′])t;Σ′〉
(SigAbort1)

Σ′
Δ = clean(k,ΣΔ)

〈([M �N])t,k;Σ〉 âbkM−−−−→ 〈([N(M)])t;Σ′〉
(SigAbort2)

〈P ;Σ〉 abkM−−−−→ 〈P ′;Σ′〉 〈Q;Σ〉 âbkM−−−−→ 〈Q′;Σ′〉
〈P ‖ Q;Σ〉 abkM−−−−→ 〈P ′ ‖ Q′;Σ′〉

(AbBroadcast)

Σ′
Θ = commit(k, ΣΘ, ΣΔ) Σ′

Δ = clean(k,ΣΔ)

〈([return M �N ;N ′])t,k;Σ〉 cok−−→ 〈([return M >>= N ′])t;Σ′〉
(Commit1)

Σ′
Θ = commit(k, ΣΘ, ΣΔ) Σ′

Δ = clean(k,ΣΔ)

〈([M �N])t,k;Σ〉 cok−−→ 〈([M])t;Σ′〉
(Commit2)

〈P ;Σ〉 cok−−→ 〈P ′;Σ′〉 〈Q;Σ〉 cok−−→ 〈Q′;Σ′〉
〈P ‖ Q;Σ〉 cok−−→ 〈P ′ ‖ Q′;Σ′〉

(CoBroadcast)

〈P ;Σ〉 β−→ 〈P ′;Σ′〉 transactions(β) /∈ transactions(Q)

〈P ‖ Q;Σ〉 β−→ 〈P ′ ‖ Q;Σ〉
(TrIgnore)

transactions(Tt1 ‖ · · · ‖ Ttn) �⋃
1≤i≤n transactions(Tti)

transactions(([M])t) � ∅
transactions(([M �M ′;N])t,k) � {k}
transactions(([M � N])t,k) � {k}

clean(k,Δ)(r) �
{
⊥ if Δ(r) = (M,k)

Δ(r) otherwise

commit(k,Θ,Δ)(r) �
{
M if Δ(r) = (M,k)

Θ(r) otherwise

Fig. 5. OCTM semantics: rules for
β−→

Due to lack of space we shall describe only a representative subset of the
derivation rules from Figure 4 and Figure 5.

Reading a location falls into four cases depending on the location being
claimed (i.e. occurring in Δ) and the reader being part of a transaction. The
rule (ReadP) characterize the reading of an unclaimed location from outside
any transaction; the read is performed as expected leaving it unclaimed. Rule
(ReadT) describes the reading of an unclaimed location r by a thread belonging

220 M. Miculan et al.

to some transaction k; the side effect of the reading is r being claimed for k. Rules
(ReadMerge) and (ReadJoin) cover the cases of readings against claimed lo-
cations. In the first scenario, the reading thread belongs to a transaction resulting
in the two being merged, which is expressed by renaming its transaction via a
substitution. In the remaining scenario, the reading thread does not belong to
any transaction and hence joins the transaction k which claimed the location.
The newly created participant does not have any continuation since the whole
term is set to be executed inside k; any other choice for splitting the term sin-
gling out a compensation would impose an artificial synchronization with the
transaction commit. For a counter example, consider executing only the read
operation inside the transaction and delaying everything after the commit; then
concurrency will be clearly reduced. Because of the same reasoning, the whole
term M is taken as the compensation of the participant.

Atomic transactions are created by the rule (Atomic); threads participating
in this transaction are non-deterministically interleaved with other threads. The
stronger requirement of isolation is offered by (IsolatedP) and (IsolatedT);
note that their premises forbid thread or transaction creation.

Committing or aborting a transaction require a synchronization of its partic-
ipants. In particular, an abort can be read as a participant vetoing the outcome
of the transaction; this corresponds to (RaiseAbort1) and (RaiseAbort2).
The information is then propagated by (AbBroadcast) and (TrIgnore) to
any other participant to the transaction being aborted; these participants abort
performing a transition described by either (SigAbort1) or (SigAbort2).

3 TCCSm : CCS with Open Transactions

In order to assess the expressive power of OCTM , we have to compare it with a
formal model for open transactions. To this end, in this section we recall TCCSm

[10], a CCS-like calculus with open flat transactions: processes can synchronize
even when belonging to different transactions, which in turn are joined into a
distributed one. We refer to [10] for a detailed description of TCCSm .

The syntax of TCCSm is defined by the following grammar

P ::=
∑n

i=1αi.Pi |
∏m

i=0Pi | P\L | X | μX.P | 〈〈〈〈〈P1 � P2〉〉〉〉〉 | 〈〈P1 �k P2〉〉 | co.P (1)

where αi ::= a | ā | τ , a ranges over a given set of visible actions A, L over sub-
sets of A and the bijection (·) : A → Amaps every action to its coaction as usual.
The calculus extends CCS with three constructs which represent inactive trans-
actions, active transactions and commit actions respectively. Transactions such
as 〈〈P1�kP2〉〉 are formed by two processes with the former being executed atomi-
cally and the latter being executed whenever the transaction is aborted, i.e. as a
compensation. Terms denoting active transactions expose also a name (k in the
previous example) which is used to track transaction fusions. For instance, con-
sider the process denoted by 〈〈P1�jP2〉〉|〈〈Q1�kQ2〉〉 where P1 and Q1 synchronize
on some a ∈ A; the result of this synchronization is the fusion of the transac-
tions j and k i.e. 〈〈P ′

1�lP2〉〉|〈〈Q′
1�lQ2〉〉. The fusion makes explicit the dependency

Open Transactions on Shared Memory 221

Γ � P : p

Γ � P : τ

Γ � P : p

Γ � co.P : c

Γ � P : τ

Γ � P\L : τ

Γ � X : Γ (X)

Γ [X : p] � P : p

Γ � μX.P : p

Γ [X : c] � P : c

Γ � μX.P : c

∀i Γ � Pi : τ

Γ � ∏
Pi : τ

∀i Γ � Pi : p

Γ � ∑
αi.Pi : p

∀i Γ � αi.Pi : c

Γ � ∑
αi.Pi : c

Γ � P : c Γ � Q : p

Γ � 〈〈P �k Q〉〉 : t
Γ � P : c Γ � Q : p

Γ � 〈〈〈〈〈P �Q〉〉〉〉〉 : p

Fig. 6. Simple types for TCCSm

between j and k introduced by the synchronization and ties them to agree on
commits. In this sense, P ′

1 andQ′
1 are participants of a distributed transaction [6].

As in [10] we restrict ourselves to well-formed terms. Intuitively, a term is
well-formed if active transactions occur only at the top-level and commit actions
occur only in a transaction (active or inactive). To this end we introduce a type
system for TCCSm , whose rules are in Figure 6. Terms that cannot occur inside
a transaction have type t, terms that cannot occur outside a transaction have
type c, and terms without such restrictions have type p; τ ranges over types.

Definition 1 (Well-formed TCCSm terms). A TCCSm term P , described
by the grammar in (1), is said to be well-formed if, and only if, ∅ � P : t.
Well-formed terms form the set Proc.

The operational semantics of well-formed TCCSm terms is given by the SOS
in Figure 7 (further details can be found in [10]). The reduction semantics is
given as a binary relation → defined by

P → Q
�⇐⇒ P

τ−→σ Q ∨ P
β−→ Q ∨ P

k(τ)−−−→σ Q.
The first case is a synchronization between pure CCS processes. The second

case corresponds to creation of new transactions and distributed commit or
abort (β ∈ {newk, cok, abk}). The third case corresponds to synchronizations of
processes inside a named (and possibly distributed) transaction. Notice that by
(TSync) transaction fusion is driven by communication and that by (TSum)
any pure CCS process can join and interact with a transaction.

4 Encoding TCCSm in OCTM .

In this section, we prove that OCTM is expressive enough to cover open trans-
actions a la TCCSm . To this end, we provide an encoding of TCCSm in OCTM .
Basically, we have to implement transactions and CCS-like synchronizations us-
ing shared transactional variables and the atomic and isolated operators. The
encoding is proved to be correct, in the sense that a TCCSm process presents a
reduction if and only if also its encoding has the corresponding reduction.

Synchronization is implemented by means of shared transactional variables,
one for each channel, that take values of type ChState (cf. Figure 9); this type
has four constructors: one for each of the three messages of the communication
protocol below plus a “nothing” one providing the default value. Let t1 and t2 be

222 M. Miculan et al.

∑
αi.Pi

αi−→ε Pi

(Sum)
P

a−→ε P ′ Q
ā−→ε Q′

P |Q τ−→ε P ′|Q′ (Sync)
μX.P

τ−→ε P [μX.P/X]
(Rec)

P
α−→σ P ′ img(σ) ∩ tn(Q) = ∅

P |Q α−→σ P ′|Q[σ]
(ParL)

τ �= αj∑
αi.Pi

k(αj)−−−→ε�→k 〈〈Pj |co �k
∑

αi.Pi〉〉
(TSum)

P
α−→ε P ′ τ �= α l �= k

〈〈P �l Q〉〉 k(α)−−−→l �→k 〈〈P ′ �k Q〉〉
(TAct)

P
k(a)−−−→i�→k P ′ Q

k(ā)−−−→j �→k Q′

P |Q k(τ)−−−→i,j �→k P ′[j �→ k]|Q′[i �→ k]
(TSync)

P
α−→σ P ′ α /∈ L

P\L α−→σ P ′\L (Res)
P

τ−→ε P ′

〈〈P �k Q〉〉 τ−→ε 〈〈P ′ �k Q〉〉 (TTau)

〈〈P �k Q〉〉 abk−−→ Q
(TAb)

P
β−→ P ′

P\L β−→ P ′\L
(TRes)

k fresh

〈〈〈〈〈P �Q〉〉〉〉〉 newk−−−→〈〈P �k Q〉〉
(TNew)

∃i Pi = co.P ′
i

〈〈∏Pi �k Q〉〉 cok−−→ Ψid(P)
(TCo)

P
β−→ P ′ Q

β−→ Q′ β �= newk

P |Q β−→ P ′|Q′
(TB1)

P
β−→ P ′ tn(β) /∈ tn(Q)

P |Q β−→ P ′|Q
(TB2)

Ψσ(P) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q if P =co.Q

Ψσ(Q)\L if P =Q\L∑
αi.Ψσ(Pi) if P =

∑
αi.Pi∏

Ψσ(Pi) if P =
∏
Pi

μX.Ψσ[P/X](Q) if P =μX.Q

P [σ] otherwise

tn(P) �

⎧⎪⎨
⎪⎩
{k} if P = 〈〈P �k Q〉〉⋃

tn(Pi) if P =
∏
Pi

∅ otherwise

tn(β) �

⎧⎪⎨
⎪⎩
k if β=newk

k if β=abk

k if β=cok

Fig. 7. TCCSm operational semantics

the identifiers of two threads simulating a.P and a.Q respectively. The protocol
is composed by the following four steps:

1. t1 checks whether the channel is free and writes on the transactional variable
modelling the channel a a nonce tagged with the constructor M1;

2. t2 reads the variable for a and accepts the synchronization offered by the
challenge (M1 np) adding a fresh nonce to it and writing back (M2 np nq);

3. t1 reads the answer to its challenge and acknowledges the synchronization
writing back the nonce it read tagged with the constructor M3;

4. t2 reads the acknowledgement and frees the channel.

Each step has to be executed in isolation with respect to the interactions with
the shared transactional variable a. Nonces are meant to correlate the steps only
and hence can be easily implemented in OCTM by pairing thread identifiers
with counter a la logical clock. If at any step a thread finds the channel in
an unexpected state it means that the chosen scheduling has led to a state
incoherent with respect to the above protocol; hence the thread executes a retry.
This tells the scheduler to try another execution order; by fairness, we eventually
find a scheduling such that the two processes do synchronize on a and these are
the only executions leading to P | Q. The protocol is illustrated in Figure 8.

Open Transactions on Shared Memory 223

a.P a.Q
var a

M0

(M1 np)
(M1 nx)

(M2 nx nq)
(M2 np ny)

(M3 ny)
(M3 nq)

M0

1

2

3

4

Fig. 8. Implementing TCCSm synchronization

If the synchronizing parties are involved in distinct transactions these are fused
as a side effect of the interaction via the shared variable.

A choice like
∑m

i=1αi.Pi can be seen as a race of threads t1, . . . , tm, each
simulating a branch, to acquire a boolean transactional variable l (private to the
group). Each ti proceeds as follows. First, it checks l and if it is set, it returns
void and terminates (another thread has already acquired it); otherwise it tries
to set it while carrying out αi, i.e. right before executing its last step of the
communication protocol. If the variable is acquired by another thread while ti is
finalizing αi then ti issues a retry to retract any effect of αi. The OCTM code
implementing this protocol is shown in Figure 9.

Encoding of TCCSm . We can now define the encoding η : Proc → State, map-
ping well-formed TCCSm terms to states of the OCTM abstract machine. Intu-
itively, a process P ≡

∏m
i=1Pi is mapped into a state with a thread for each Pi

and a variable for each channel in P . Clearly, a state of this form can be easily
generated by a single OCTM term which allocates all variables and forks the m
threads. We have preferred to map TCCSm terms to OCTM states for sake of
simplicity.

The map η is defined by recursion along the derivation of ∅ � P : t and
the number m of parallel components in P ≡

∏m
i=1Pi. This is handled by the

auxiliary encoding ς : Proc× Heap → State (up to choice of fresh names) whose
second argument is used to track memory allocations. The base case is given by
m = 0 and yields a state with no threads i.e. 〈0, Θ,∅〉. The recursive step is
divided in three subcases depending on the structure and type of P1 (m > 0).

1. If ∅ � P1 : c without top-level restrictions (i.e. P1
≡ Q \ {a1, . . . , an+1}) then

ς(
∏m+1

i=1 Pi, Θ) � 〈([(P1)])t1 ‖ S;Σ〉

where 〈S;Σ〉 = ς(
∏m−1

j=1 Pj+1, Θ) is the translation of the rest of P and t1 is
unique w.r.t. S (i.e. t1 /∈ threads(S)). By hypothesis P1 does not contain any
top-level active transaction or parallel composition and hence can be trans-
lated directly into a OCTM -term by means of the encoding (cf. Figure 10)
– (P) contain a free variable for each unrestricted channel occurring in P .

224 M. Miculan et al.

data Channel = OTVar ChState

data ChState = M1 Nonce | M2 Nonce Nonce | M3 Nonce | M0

tau l P = isolated do

case (readVar l) of

False → return ()

True → chooseThis l >> P

chooseThis l = writeVar l False

eqOrRetry x y
| x == y = return ()

| otherwise = retry

bang x = fork x >> bang x

recv c l P = do

nq ← newNonce

isolated do

case (readVar l) of

False → return ()

True → do

chooseThis l
case (readVar c) of

(M1 nx) → writeVar c (M2 nx nq)
_ → retry

isolated do

case (readVar c) of

(M3 ny) → eqOrRetry ny nq >> writeVar c M0 >> P
_ → retry

send c l P = do

np ← newNonce

isolated do

case (readVar l) of

False → return ()

True → do

chooseThis l
case (readVar c) of

M0 → writeVar c (M1 np)
_ → retry

isolated do

case (readVar c) of

(M2 nx ny) → eqOrRetry nx np >> writeVar c (M3 ny) >> P
_ → retry

Fig. 9. Encoding channels and communication

Open Transactions on Shared Memory 225

(
∑m

i=1αiPi) � do

l ← newVar True

∀i ∈ {1, . . . , m}
fork ξ(αi, l, Pi)

(
∏m

i=0Pi) � do

∀i ∈ {0, . . . , m}
fork (Pi)

(P \ L) � do

∀c ∈ L

c ← newVar M0

(P)

(X) � X

(P)

(co.P) � do

l ← newVar True

send co l (P)

(μX.P) � let X = (P) in

(〈〈〈〈〈P �Q〉〉〉〉〉) � do

co ← newVar M0

atomic p (Q)

bang psi

where

p = do

(P)

fork (abort ())

psi

psi = do

l ← newVar True

recv co l return

ξ(αi, l, Pi) �

⎧⎪⎨
⎪⎩
recv αi l (Pi) if αi = c

send αi l (Pi) if αi = c

tau l (Pi) if αi = τ

Fig. 10. Encoding TCCSm terms of type c

2. If P1 has a top-level restriction (i.e. P1 ≡ Q \ {a1, . . . , an+1}) then

ς(
∏m+1

i=1 Pi, Θ) � 〈S1[r1/a1, . . . rn+1/an+1] ‖ S2;Θ2[r1, . . . , rn+1 �→ M0],∅〉

where 〈S1;Θ1,∅〉 = ς(Q,Θ) is the translation of the unrestricted process Q,

〈S2;Θ2,∅〉 = ς(
∏m−1

j=1 Pj+1, Θ1) is the translation of the rest of P , all threads
have a unique identifier threads(S1) ∩ threads(S2) = ∅, the heap is extended
with n channel variables fresh (r1, . . . , rn+1 /∈ dom(Θ2)) and known only to
the translation of Q.

3. If P1 ≡ 〈〈Q1 �k Q2〉〉 is an active transaction then

ς(
∏m+1

i=1 Pi, Θ) � 〈Sco ‖ Sab ‖ S1[rco/co] ‖ S2;Θ2[rl �→ True, rco �→ M0],∅〉
Sco = ([recv rl rco � (Q1); bang (recv (newVar True) rco)])tco,k

Sab = ([abort () � return])tab,k

where 〈S1;Θ1,∅〉 = ς(Q1, Θ), 〈S2;Θ2,∅〉 = ς(
∏m−1

j=1 Pj+1, Θ2) (like above),
the thread Sab is always ready to abort k as in (TAb) and Sco awaits on the
private channel rco a thread from S1 to reach a commit and, after its commit,
collects all remaining synchronizations on rco to emulate the effect of Ψ
(cf. Figure 7). Finally, all threads have to be uniquely identified: threads(S1)∩
threads(S2) = ∅ and tco, tab /∈ threads(S1) ∪ threads(S2)

Remark 1. The third case of the definition above can be made more precise (at
the cost of a longer definition) since the number of commits to be collected

226 M. Miculan et al.

can be inferred from Q mimicking the definition of Ψ . This solution reduces the
presence of dangling auxiliary processes and transaction fusions introduced by
the cleaning process.

Like , ς(P,Θ) contains a free variable for each unrestricted channel in P . Finally,
the encoding η is defined on each P ∈ Proc as:

η(P) � 〈S[r1/a1, . . . rn/an];Θ[r1, . . . , rn �→ M0],∅〉

where 〈S;Θ,∅〉 = ς(P,∅), {a1, . . . , an} ⊆ A is the set of channels occurring in
P , and {r1, . . . , rn} ⊆ Loc.

Adequacy of translation. In order to prove that the translation η preserves the
behaviour of TCCSm processes, we construct a simulation relation S between
well-formed TCCSm processes and states of OCTM . The basic idea is that a
single step of P is simulated by a sequence of reductions of η(P), and η(P) does
not exhibit behaviours which are not exhibited by P . To this end we define an
appropriate notion of star simulation, akin to [11]:

Definition 2 (Star simulation). A relation S ⊆ Proc× State is a star simu-
lation if for all (P, 〈S;Σ〉) ∈ S:
1. for all Q such that P

τ−→σ Q or P
k(τ)−−−→σ Q, there exist S′, Σ′ such that

〈S;Σ〉 →∗ 〈S′;Σ′〉 and (Q, 〈S′;Σ′〉) ∈ S;
2. for all Q such that P

β−→ Q, there exist S′, Σ′ such that 〈S;Σ〉 β−→∗ 〈S′;Σ′〉
and (Q, 〈S′;Σ′〉) ∈ S.

3. for all S′, Σ′ such that 〈S;Σ〉 → 〈S′;Σ′〉, there exist Q,S′′, Σ′′ such that
(Q, 〈S′′;Σ′′〉) ∈ S and one of the following holds:

– P
τ−→σ Q or P

k(τ)−−−→σ Q, and 〈S′;Σ′〉 →∗ 〈S′′;Σ′′〉
– P

β−→ε Q and 〈S′;Σ′〉 β−→∗ 〈S′′;Σ′′〉.

where β-labels of the two transition relations are considered equivalent when-
ever are both commits or both aborts for the same transaction name. We say
that P is star-simulated by 〈S;Σ〉 if there exists a star-simulation S such that
(P, 〈S;Σ〉) ∈ S. We denote by

∗≈ the largest star simulation.

Another technical issue is that two equivalent TCCSm processes can be trans-
lated to OCTM states which differ only on non-observable aspects, like name
renamings, terminated threads, etc. To this end, we need to consider OCTM
states up-to an equivalence relation ∼=t⊆ State× State, which we define next.

Definition 3. Two OCTM states are transaction-equivalent, written
〈S1;Σ1〉 ∼=t 〈S2;Σ2〉, when they are equal up to:

– renaming of transaction and thread names;
– terminated threads, i.e. threads of one of the following forms: ([return M])t,

([abort M])t, ([return � return])t,k, ([abort � return])t,k, ([psi])t;
– threads blocked in synchronizations on co variables.

Open Transactions on Shared Memory 227

Definition 4. Let P ∈ Proc be a well-formed process and 〈S;Σ〉 be a state. P
is star simulated by 〈S;Σ〉 up to ∼=t if (P, 〈S;Σ〉) ∈ ∗≈◦ ∼=t.

We are now ready to state our main adequacy result, which is a direct conse-
quence of the two next technical lemmata.

Lemma 1. For all P,Q ∈ Proc the following hold true:

1. if P
τ−→σ Q or P

k(τ)−−−→σ Q, there exist S,Σ such that η(P) →∗ 〈S;Σ〉 and
〈S;Σ〉 ∼=t η(Q);

2. if P
β−→ Q, there exist S,Σ such that η(P)

β−→∗ 〈S;Σ〉 and 〈S;Σ〉 ∼=t η(Q).

Proof. By induction on the syntax of P ; see [15]. ��

Lemma 2. For P ∈ Proc, for all S,Σ, if η(P) → 〈S;Σ〉 then there exist
Q,S′, Σ′ such that 〈S′;Σ′〉 ∼=t η(Q) and one of the following holds:

– P
τ−→σ Q or P

k(τ)−−−→σ Q, and 〈S;Σ〉 →∗ 〈S′;Σ′〉;
– P

β−→ε Q and 〈S;Σ〉 β−→∗ 〈S′;Σ′〉.

Proof. By induction on the semantics of η(P); see [15]. ��

Theorem 1. For all P ∈ Proc, P is star simulated by η(P) up to ∼=t.

5 Conclusions and Future Work

In this paper we have introduced OCTM , a higher-order language extending
the concurrency model of STM Haskell with composable open (multi-thread)
transactions. In this language, processes can join transactions and transactions
can merge at runtime. These interactions are driven only by access to shared
transactional memory, and hence are implicit and loosely coupled. To this end,
we have separated the isolation aspect from atomicity: the atomic construct
ensures “all-or-nothing” execution but not isolation, while the new constructor
isolated can be used to guarantee isolation when needed. In order to show
the expressive power of OCTM , we have provided an adequate implementation
in it of TCCSm , a recently introduced model of open transactions with CCS-
like communication. As a side result, we have given a simple typing system for
capturing TCCSm well-formed terms.

Several directions for future work stem from the present paper. First, we plan
to implement OCTM along the line of STM Haskell, but clearly the basic ideas
of OCTM are quite general and can be applied to other STM implementations,
like C/C++ LibCMT and Java Multiverse. Then, we can use TCCSm as an
exogenous orchestration language for OCTM : the behaviour of a transactional
distributed system can be described as a TCCSm term, which can be translated
into a skeleton in OCTM using the encoding provided in this paper; then, the
programmer has only to “fill in the gaps”. Thus, TCCSm can be seen as a kind
of “global behavioural type” for OCTM .

228 M. Miculan et al.

In fact, defining a proper behavioural typing system for transactional lan-
guages like OCTM is another interesting future work. Some preliminary ex-
periments have shown that TCCSm is not enough expressive for modelling the
dynamic creation of resources (locations, threads, etc.). We think that a good
candidate could be a variant of TCCSm with local names and scope extrusions,
i.e., a “transactional π-calculus”.

Being based on CCS, communication in TCCSm is synchronous; however,
nowadays asynchronous models play an important rôle (see e.g. actors, event-
driven programming, etc.). It may be interesting to generalize the discussion so
as to consider also this case, e.g. by defining an actor-based calculus with open
transactions. Such a calculus can be quite useful also for modelling speculative
reasoning for cooperating systems [13, 14]. A local version of actor-based open
transactions can be implemented in OCTM using lock-free data structures (e.g.,
message queues) in shared transactional memory.

Acknowledgement. We thank the anonymous referees for useful remarks and sug-
gestions on the preliminary version of this paper. This work is partially supported by
MIUR PRIN project 2010LHT4KM, CINA.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. ACM Trans. Program. Lang. Syst. 33(1), 2 (2011)

2. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi: Ex-
tending join. In: Lévy, J., Mayr, E.W., Mitchell, J.C. (eds.) Proc. TCS. IFIP,
vol. 155, pp. 563–576. Springer, Heidelberg (2004)

3. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

4. de Vries, E., Koutavas, V., Hennessy, M.: Communicating transactions (extended
abstract). In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269,
pp. 569–583. Springer, Heidelberg (2010)

5. de Vries, E., Koutavas, V., Hennessy, M.: Liveness of communicating transactions
(extended abstract). In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 392–407.
Springer, Heidelberg (2010)

6. Gray, J., Lamport, L.: Consensus on transaction commit. ACM Transactions
Database Systems 31(1), 133–160 (2006)

7. Harris, T., Marlow, S., Jones, S.L.P., Herlihy, M.: Composable memory transac-
tions. In: Proc. PPOPP, pp. 48–60 (2005)

8. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Smith, A.J. (ed.) Proceedings of the 20th Annual Interna-
tional Symposium on Computer Architecture, pp. 289–300. ACM (1993)

9. Herlihy, M., Shavit, N.: Transactional memory: beyond the first two decades.
SIGACT News 43(4), 101–103 (2012)

10. Koutavas, V., Spaccasassi, C., Hennessy, M.: Bisimulations for communicating
transactions - (extended abstract). In: Muscholl, A. (ed.) FOSSACS 2014 (ETAPS).
LNCS, vol. 8412, pp. 320–334. Springer, Heidelberg (2014)

11. Leroy, X.: A formally verified compiler back-end. Journal of Automated Reason-
ing 43(4), 363–446 (2009)

Open Transactions on Shared Memory 229

12. Lesani, M., Palsberg, J.: Communicating memory transactions. In: Cascaval, C.,
Yew, P. (eds.) Proc. PPOPP, pp. 157–168. ACM (2011)

13. Ma, J., Broda, K., Goebel, R., Hosobe, H., Russo, A., Satoh, K.: Speculative abduc-
tive reasoning for hierarchical agent systems. In: Dix, J., Leite, J., Governatori, G.,
Jamroga, W. (eds.) CLIMA XI. LNCS, vol. 6245, pp. 49–64. Springer, Heidelberg
(2010)

14. Mansutti, A., Miculan, M., Peressotti, M.: Multi-agent systems design and pro-
totyping with bigraphical reactive systems. In: Magoutis, K., Pietzuch, P. (eds.)
DAIS 2014. LNCS, vol. 8460, pp. 201–208. Springer, Heidelberg (2014)

15. Miculan, M., Peressotti, M., Toneguzzo, A.: Open transactions on shared memory.
CoRR, abs/1503.09097 (2015)

16. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer,
Heidelberg (1980)

17. Shavit, N., Touitou, D.: Software transactional memory. Distributed Comput-
ing 10(2), 99–116 (1997)

VISIRI - Distributed Complex Event Processing

System for Handling Large Number of Queries

Malinda Kumarasinghe, Geeth Tharanga, Lasitha Weerasinghe(�),
Ujitha Wickramarathna, and Surangika Ranathunga

Department of Computer Science and Engineering, Faculty of Engineering,
University of Moratuwa, Katubedda, Sri Lanka

Abstract. Complex event processing (CEP) systems are used to process
event data from multiple sources to infer events corresponding to more
complicated situations. Traditional CEP systems with central processing
engines have failed to cater to the requirement of processing large num-
ber of events generated from a large number of geographically distributed
sources. Distributed CEP systems have been identified as the best alter-
native for this. However, designing an optimal distributed CEP system is
a non-trivial task, and many factors have to be considered when design-
ing the same. This paper presents the VISIRI distributed CEP system,
which focuses on the problem of optimally processing a large number of
different type of event streams using a large number of CEP queries in a
distributed manner. The CEP query distribution algorithm in VISIRI is
able to distribute a large number of queries among a set of CEP nodes in
such a way that the event duplication in the network is minimized while
not compromising the overall throughput of the system.

Keywords: Complex Event Processing,Distributed systems,Algorithms

1 Introduction

Complex event processing (CEP) systems are used to process event data from
multiple sources to infer events corresponding to more complicated situations.
Traditional CEP systems with central processing engines have failed to cater
to the requirement of processing large number of events generated from a large
number of geographically distributed sources [2,4]. Distributed CEP systems
have been identified as the best alternative for this.

The middleware of complex event processing systems can be internally built
around several distributed complex event processors. These processors cooperate
in processing and routing events sent from event sources, and finally in deliv-
ering results to the required event sinks [1]. A processor makes use of a CEP
engine internally to process the incoming events. This is done using CEP queries.
Query is a mechanism for extracting events that satisfy a rule or a pattern, from
incoming events. A query may contain operators such as filter, window, join,
pattern and sequence.

However, simply having a middleware is not sufficient to have a distributed
CEP system. Crucial decisions have to be taken on how to distribute the load

c© IFIP International Federation for Information Processing 2015
T. Holvoet and M. Viroli (Eds.): COORDINATION 2015, LNCS 9037, pp. 230–245, 2015.
DOI: 10.1007/978-3-319-19282-6_15

Distributed Complex Event Processing System for Handling Large Number 231

among the complex event processing nodes in the system. There are two ap-
proaches in distributing the processing load among nodes : operator distribution
and query distribution [1,4]. Operator distribution refers to the approach of di-
viding a query into a distinct sequence of steps to handle complex queries. Each
step is allocated to a node in the system. Query distribution allocates a set of
queries among the nodes of the distributed system. There are several applica-
tion scenarios in distributing complex event processing as well: (1) handling large
number of CEP queries and event streams, (2) handling event streams that have
high event frequencies and/or large events, and (3) handling complex resource
intensive queries.

VISIRI is a distributed complex event processing system for handling large
number of queries and large number of different types of event streams. It
presents a lightweight middleware for a distributed CEP system, and the com-
munication among the nodes in the system is achieved via Hazelcast [3].

Its approach on distributing the processing load is by query distribution.
Distributing queries in an optimal manner is a NP-Hard problem [8]. When
distributing a large number of queries among a set of CEP nodes, many con-
cerns have to be addressed. These include the throughput of the overall system,
network latency in transmitting events from event sources to CEP nodes, bal-
ancing resource utilization at processing nodes, and reducing event duplication
when transmitting events from sources to nodes. Existing research on query dis-
tribution focused on optimizing a subset of these concerns. For example, the
COSMOS project [8] focused on reducing network latency and reducing commu-
nication between the nodes. The SCTXPF system [4] focused only on reducing
the event duplication network traffic within the system.

The most important aspect of the VISIRI system is its query distribution
algorithm. It focuses on reducing the event duplication network traffic within
the system while making sure that the processing load is evenly distributed
among the nodes. Load on a node is calculated by considering the cost of the
CEP queries. The cost of queries is calculated by the cost model, which is based
on the empirical studies done by Mendes et al. [5] and Schilling et al. [6]. With
this query distribution algorithm, VISIRI balances the resource utilization of
the CEP nodes, so that no node gets overloaded (given that there is no sudden
change in the incoming event streams) and adversely affects the throughput of
the overall system.

The rest of the paper is organized as follows. Section 2 discusses literature
related to query distribution in distributed CEP systems, and empirical studies
on the cost of CEP queries. Section 3 presents the design and implementation
of the VISIRI distributed CEP system, along with detailed descriptions of its
query distribution algorithm and the cost model. Section 4 presents evaluation
results and finally section 5 concludes the paper.

232 M. Kumarasinghe et al.

2 Related Work

SCTXPF [4] and COSMOS [8] are examples of distributed CEP systems based
on query distribution.

The query distribution algorithm in the SCTXPF system is optimized for
large number of complex event processing queries and for very high events rates.
It parallelizes the event processors (EPs) and then allocates certain number of
CEP queries to each of them. In this algorithm, queries with common sets of
attributes are assigned to the same node. This minimizes the number of EPs
that need the same event streams and thus minimizes the number of multicasts.
Therefore the system is able to reduce the event duplication network traffic
within it. However, this algorithm assumes that all the queries require the same
processing power, which is not the case most of the times. Even if two queries
consume the same set of attributes, their computational intensiveness (i.e. the
amount of computer resources it requires) could have very large differences.
This is because the computational intensiveness of a query heavily depends on
its operators. However, when the set of queries are simply divided among the
nodes by the SCTXPF algorithm, each node has the same number of queries,
and some nodes that have lot of high cost queries could easily get overloaded.

In contrast to the SCTXPF algorithm, VISIRI query distribution algorithm
considers the cost of each query when distributing the queries among the pro-
cessing nodes. This is the main difference between the two algorithms.

The COSMOS distributed CEP system employs a heuristic based graph map-
ping algorithm to distribute the load among CEP nodes. In this approach, pro-
cessors are represented by vertices and communication latency is represented by
the weight of the edges. When distributing queries, this network latency is con-
sidered. Furthermore this algorithm filters out the events from the initial nodes
so that network traffic of the internal system is reduced. This model suits a prob-
lem where a particular set of queries are interested in the output of another set
of queries. However, this algorithm also does not consider the cost of individual
queries when distributing them among CEP nodes.

Schilling et al. [6] have studied about the cost of executing different query
operators in their empirical study. According to their study, filter rules have the
lowest latency and logical rules have much higher latency. Temporal windows
have the highest latency. Therefore such temporal windows should be given the
highest weight when considering the latency and computational intensiveness.
When considering the cost versus size of the history of the temporal windows,
this study suggests an exponential growth in cost. Cost versus the number of
attributes has no such growth and it is almost the same for any number of
attributes. However, when the number of queries in a CEP node increases, the
cost increases linearly.

Furthermore Marcelo et al. [5] have studied about different engine types and
how they perform on different query types. They have identified that sliding win-
dows and jumping windows have huge differences in performance, where sliding
windows take much computational power.

Distributed Complex Event Processing System for Handling Large Number 233

3 VISIRI Distributed CEP System

Figure 1 shows the VISIRI high level architecture. It consists of event sources,
dispatchers, CEP nodes and event sinks. Here, event sources generate the low-
level events, and the complex events identified by the CEP nodes are received
by the event sources.

Fig. 1. VISIRI high level architecture

VISIRI CEP system assumes nearly homogeneous CEP nodes. User can freely
select one CEP node and deploy the queries. After deploying the queries, that
particular CEP node plays the role as the main node, which executes the query
distribution algorithm (discussed later in this section). This query distribution
algorithm distributes the queries among all the active CEP nodes in the system.
Then the allocated queries are automatically deployed in the CEP nodes and
the dispatcher is notified about the query allocation.

Dispatcher creates the forwarding table according to query allocation. For-
warding table is a map of event stream ID to the list of CEP node IPs. Job of
the dispatcher is to forward the relevant event streams only to the relevant CEP
nodes. Thus in contrast to directly sending events from sources to CEP nodes,
employing a dispatcher reduces network traffic. Event sources send event streams
to the dispatcher and using its forwarding table dispatcher forwards these event
streams to relevant CEP nodes where event processing happens according to the
deployed queries in CEP nodes. After processing the event streams, the resulted
event streams from the CEP nodes are sent to the event sink.

234 M. Kumarasinghe et al.

3.1 Low Level Architecture

Figure 2 shows how the low-level architectural components are integrated within
the system. Arrows show the flow of the event streams among different compo-
nents.

Fig. 2. VISIRI low level architecture

– Siddhi CEP engine [7] - In a CEP node, the light-weight Siddhi CEP engine
is used as the processing engine. As shown in Figure 2, there is a Siddhi
engine per one query in one CEP node. Siddhi engine processes the input
event streams and results the output event stream. This architecture allows
our system to extend to make dynamic adjustments on query distribution
in runtime.

– Event client/Server - Uses TCP binary communication protocol to transport
event streams.

– Environment - Each node in the system(processing node/dispatcher node)
includes a its own Environment component and all data sharing tasks and
message passing tasks between nodes are achieved via this component. It
uses hazelcast as an intermediate interface for this communication.

Distributed Complex Event Processing System for Handling Large Number 235

3.2 Query Distribution Algorithm

The VISIRI query distribution algorithm considers the SCTXPF algorithm as
its starting point. As described earlier, the SCTXPF algorithm aims at minimiz-
ing the number of event processors that need the same event streams and also
reducing the difference between the numbers of queries deployed in the event
processing nodes. The major improvement of the VISIRI algorithm over the
SCTXPF algorithm is that it considers the cost of individual queries to make
sure that queries with higher costs are not deployed in the same node. This
prevents one node getting overloaded while some other nodes of the system are
under-utilized.

VISIRI algorithm takes following inputs when distributing queries1.

– Set of queries to be distributed
– Set of processing nodes and dispatchers
– Queries currently allocated for each node

The algorithm considers the following important factors:

– Costs of the queries (depending on the complexity of query operators)
– Number of existing queries in each node
– Number of common event types required for the query

A suitable cost model calculator is required to measure the complexity and
costs of the queries. These costs may also depend on the underlying imple-
mentation of the complex event processing engine. However, this aspect is not
considered in the VISIRI cost model. The cost model is discussed in the next
section.

Algorithm 1 gives the pseudo code of our query distribution algorithm.
Line 3 finds the minimum number of queries currently assigned to a single

node.
Lines 5-9 remove all nodes that have queries above a certain threshold. This is
to balance the overhead of having large number of queries in the same node.
Lines 11-18 refer to the procedure to find the minimum total cost of a node.
Here the total cost of a node is calculated by taking the sum of the costs of the
queries deployed in that node.
In lines 20-24, all nodes having costs more than a certain threshold value are re-
moved from the candidate list to balance the cost distribution among the nodes.
Lines 26-38 finds the nodes having maximum number of input streams in com-
mon with the given query. For example, if the query has input streams s1, s2
and s3, and queries already deployed in a Node A have s2, s3 and s4 as input
streams, then node A and the query has 2 common input streams (s2 and s3).
Here the input streams of a node are the union of all input streams of deployed
queries. In this code segment, nodes with maximum number of common input
streams are selected so that the number of new events that need to be sent over
the network as inputs is minimized. This reduces event duplication and preserves
network bandwidth. Here we assume all event types arrive in same frequency.

1 The algorithm iteratively distributes queries, with one iteration per query.

236 M. Kumarasinghe et al.

Algorithm 1. Query distribution algorithm
Require: Query q, Node[] nodes
1: candidates = nodes;

2: //find minimum queries
3: min-queries = min(nodes[0].queryCount,nodes[1].queryCount,...)
4: //filter nodes with too many queries
5: for node in candidates do
6: if node.queryCount >minQueries + QueryVariability then
7: candidates.remove(node)
8: end if
9: end for
10: //find minimum total cost
11: minCost = infinity
12: for node in candidates do
13: cost = sum(node.queries[0].cost,node.queries[1].cost, ...)
14: node.cost = cost
15: if minCost >cost then
16: minCost = cost
17: end if
18: end for
19: //filter nodes with too much cost
20: for node in candidates do
21: if node.cost >minCost + CostVariability then
22: candidates.remove(node)
23: end if
24: end for
25: //find maximum common event types
26: qInputs = q.inputStreams
27: maxCommonNodes =[]
28: maxCommonInputs = 0
29: for node in candidates do
30: node.allInputs = union(node.queries[0].inputStreams,node.queries[1].inputStreams.)
31: commons = count(intersect(qInputs,node.allInputs))
32: if maxCommonInputs == commons then
33: maxCommonNodes.add(node)
34: else if maxCommonInputs >commons then
35: maxCommonNodes.clear()
36: maxCommonNodes.add(node)
37: maxCommonInputs = commons
38: end if
39: end for
40: candidates = maxCommonNodes
41: //select one randomly from the candidates
42: target = random.select(candidates)
43: return target

3.3 Cost Model

In order to calculate the cost of a given query, we have developed a cost model
that gives a numeric value for a query based on the empirical studies done by
Schilling et al. [6] and Marcelo et al. [5].

Distributed Complex Event Processing System for Handling Large Number 237

The cost model first identifies the queries that have filtering parts and assigns
them cost values depending on the number of filtering attributes. Furthermore, a
cost value is assigned to the number of attributes in the input stream definitions
and the output stream definitions. This is because the literature [6] suggests
that when the number of attributes in the event streams for a particular query
increases the resource requirement for that query increases. Apart from that, the
number of input streams and the output streams count is also added to the cost
value. These values are expected to give an indication of the impact of handling
large number of event streams in a query.

The cost model gives a much higher priority to queries with windows. De-
pending on the window length, an exponential cost is added to the query so
that windows with higher length will get a higher number. Our cost model can
support window queries of time or length with the expiration mode of sliding or
batch.

Finally the logarithmic value of the total cost value is obtained so that the
cost value can be restricted to a more meaningful range. Our cost model still
does not give exact accurate values for pattern queries and join queries, but
a simple numerical value depending on the aforementioned factors is given to
them. In order to obtain a more accurate number, a good performance analysis
has to be done on those types of queries.

Table 1 shows how the cost value changes for three different sample queries
with different time windows1.

Table 1. Sample queries and their costs generated by the cost model

Query Cost Value

1 from cseEventStream[price==foo.price and
foo.try <5 in foo] select symbol, avg(price) as
avgPrice

3.1986731175506815

2 from car [Id >=10]#window.length(10000) select
brand,Id insert into filterCar;

13.815633550400394

3 from StockExchangeStream[symbol ==
IBM]#window.time(1 year) select max(price)
as maxPrice, avg(price) as avgPrice, min(price)
as minPrice insert into IBMStockQuote for
all-events

31.664045840884167

4 Evaluation

4.1 Event and Query Model

Since our target is to handle large number of queries, we used randomly generated
events and randomly generated queries to evaluate our system. Our system is ca-
pable of configuring the number of input event streams and the number of output

1 Queries are expressed in Siddhi event processing language.

238 M. Kumarasinghe et al.

stream definitions. For evaluation purposes, we used 1000 event stream defini-
tions and 500 output stream definitions. When generating the random queries
we use those input stream definitions and produce results to the output stream
definitions.

In our query model we initially generated a set of simple queries with around
two maximum filtering conditions and with only the length batch windows. But
later we increased the complexities of the queries to get the proper advantage
from our cost estimation model.

In our random query generator, several types of queries such as filter queries,
window queries and windows with filter queries can be created. A query may
contain either one filtering condition or two filtering conditions. In the window
queries scenario, the random query generator gives either length windows or
length batch windows and it outputs the aggregated result like maximum, sum
or average value within the window. The window length is also given by a random
value.

Below given are some of the sample Siddhi queries that were generated by the
random query generator.

from stream2
[a t t r 3 < 45.18 and a t t r 1 > 71 .6 and a t t r 5 > 63.37
and a t t r 4 > 35.71 and a t t r 1 > 83.35 and a t t r 2 > 89.95
and a t t r 3 < 50 .0 and a t t r 2 < 15 . 83]
s e l e c t a t t r 1 i n s e r t in to stream46

from stream2
[a t t r 4 < 94.05 and a t t r 1 > 83.05 and a t t r 5 > 46.27
and a t t r 2 < 34.01 and a t t r 2 < 32.74 and a t t r 3 > 59.25
and a t t r 5 > 94.62 and a t t r 1 > 4.06]#window . lengthBatch (104)
s e l e c t max(a t t r 1) as attr1 , max(a t t r 2) as a t t r 2
i n s e r t in to stream3

from stream2 # window . lengthBatch (210)
s e l e c t max(a t t r 1) as attr1 , max(a t t r 2) as a t t r 2
i n s e r t in to stream14

The queries were generated with the same seed value for the random generator
therefore the same set of queries is obtained all the time for the same number of
queries, input definitions and output definitions. Having exact queries and events
was important have a fair comparison when evaluating different algorithms and
over different configurations. Event sources were configured to generate events
in maximum rate possible.

4.2 Query Distribution Algorithm Comparison

To evaluate our algorithm we compared it with the SCTXPF algorithm and a
random query distribution algorithm. When comparing the algorithms, mainly
two factors were considered: total query execution cost variance and event du-
plication. As the execution cost variance we measured how much variance the
processing nodes have when the queries are distributed with respect to the es-

Distributed Complex Event Processing System for Handling Large Number 239

timated cost values. Cost threshold value (highest total cost of the queries de-
ployed in a CEP node) for our algorithm was kept at 400 while keeping query
count threshold (highest number of queries deployed in a CEP node) at 80 for
both our and SCTXPF algorithm. Those values were selected to get maximum
performance from the machines we used for the performance evaluation later in
the evaluation process.

Multicasting of events from dispatcher to CEP nodes is a critical factor for
network overhead of the system. Our algorithm focuses on minimizing the num-
ber of CEP nodes that needs same type of events by placing similar type of
queries in a single node. Figure 3, Figure 4 and Figure 5 show how the event
duplication changes in the system for the three different algorithms for 1000,
5000 and 10000 queries.

Fig. 3. Event stream duplication for 1000 queries

As can be seen in the figures, our algorithm and SCTXPF algorithm have
given similar results for the event duplication as expected. Random algorithm
shows clear difference in event duplication, which suggests that randomly dis-
tributing queries leads to network traffic increase within the system. Furthermore
when the number of queries increases, the event duplication almost remains same
for our algorithm and SCTXPF algorithm but in the random query distribution
algorithm it increases drastically.

When the cost variance among the processing nodes is considered, our algo-
rithm was able to gain a considerable advantage over the other two algorithms
when the number of queries increases. Figure 6, Figure 7 and Figure 8 show how
the cost variance behaves when the number of nodes increases for 1000, 5000
and 10000 queries.

According to these results we can conclude that when the number of queries
increases, our algorithm is able to deploy the queries among the processing nodes

240 M. Kumarasinghe et al.

Fig. 4. Event stream duplication for 5000 queries

Fig. 5. Event stream duplication for 10000 queries

with minimum cost variance. Therefore all the processing nodes will receive
queries with relatively equal estimated processing cost according to our cost
model.

4.3 Performance Evaluation

For this performance evaluation we used the same event and query model that
we used for the algorithm evaluation described above in the section 4.1.

Distributed Complex Event Processing System for Handling Large Number 241

Fig. 6. Total cost variance for 1000 queries

Fig. 7. Total cost variance for 5000 queries

System Configurations: For this evaluation we have used a computer lab
that has Core i3 machines of 3.2 GHz. The operating system was Ubuntu 12.04
32 bit version. Each machine had 2GB RAM and the machines were connected
using a 100Mbps Ethernet connection.

Results: For the performance analysis we have sent 15 sets of 1,000,000 events
through the system and evaluated the throughput by averaging the total time
taken for processing those sets of events.

242 M. Kumarasinghe et al.

Fig. 8. Total cost variance for 10000 queries

Initially we evaluated the system for 5000 simple queries, which had around
two filtering conditions and smaller length batch windows. Figure 9 shows results
for this set of queries. For this set of queries, our algorithm and the SCTXPF
algorithm performed in a similar manner. This is because for those simple queries
our algorithm was not able to get a clear advantage from the cost model we have
generated. However, both our algorithm and the SCTXPF algorithm perform
better than the random query distribution algorithm.

Fig. 9. Throughput for simple 5000 queries

Distributed Complex Event Processing System for Handling Large Number 243

As shown in Figure 10, the throughput changes according to the number
of nodes for 2500 queries. There is a clear improvement of throughput in our
algorithm for this case.

Fig. 10. Throughput for 2500 queries

Figure 11 shows how our system behaves in the case of 5000 queries and both
the algorithms show less improvement when moving from 8 nodes to 12 nodes.

Figure 12 is from the results that were taken for 10000 queries. We were
not able to run the case of four nodes due to the low memory capacities of the
machines. And we observed a slight decrement of throughput from nodes 8 to 12.

Results Evaluation: According to the results, it can be said that our algorithm
is able to deploy queries among the set of processing nodes with minimum cost
variation while keeping event duplication at a low level when compared with the
SCTXPF and random algorithms.

Furthermore when system throughput is considered, our algorithm has a clear
advantage over the SCTXPF for all three cases- 2500 queries, 5000 queries and
10000 queries. Also we can observe that in that evaluation scenario, almost in all
the cases when the number of nodes increases the throughput of the system with
our algorithm increases. Therefore with higher number of nodes our algorithm
is able to provide much higher throughput. However bottleneck situations with
respect to network bandwidth at event sinks may arise when the number of
nodes increases due to large number of queries being processed and all of them
producing outputs. In the case of 10000 queries when increasing nodes 8 to 12
we can observe this kind of scenario.

244 M. Kumarasinghe et al.

Fig. 11. Throughput for 5000 queries

Fig. 12. Throughput for 10000 queries

5 Conclusion

This paper discussed the architecture of the VISIRI distributed CEP system,
which aims at handling large number of queries and large number of different
types of event streams. It includes a query distribution algorithm that takes event
stream duplication and the estimated query execution cost into consideration
when allocating queries among a set of processing nodes.

With that query distribution algorithm, VISIRI system is able to keep the
event stream duplication below a certain level while the total cost variance among

Distributed Complex Event Processing System for Handling Large Number 245

the processing nodes is kept low when compared to some other algorithms for
distributing number of CEP queries. Furthermore we evaluated our system for
the performance by considering the throughput as the measuring factor and our
algorithm had a clear advantage over the existing algorithms.

As a future enhancement, VISIRI can be improved to support query rewrit-
ing at the dispatcher level so that unnecessary events can be filtered from the
dispatcher thus reducing the internal network traffic further. Apart from that,
the VISIRI system architecture can also be extended to support heterogeneous
event processing engines so that different types of queries can be processed by
different processing engines according to the types of queries they are best at
processing. Furthermore our query distribution algorithm can also be extended
to support factors such as network latency. However, we once again emphasize
that coming up with an optimal query distribution algorithm that considers all
these factors is a NP-hard problem.

References

1. Cugola, G., Margara, A.: Deployment strategies for distributed complex event
processing. Computing 95(2), 129–156 (2013)

2. Etzion, O., Niblett, P.: Event processing in action. Manning Publications Co.
(2010)

3. Hazelcast.com. Hazelcast - leading in-memory data grid IMDG (January 2015)
4. Isoyama, K., Kobayashi, Y., Sato, T., Kida, K., Yoshida, M., Tagato, H.: A scal-

able complex event processing system and evaluations of its performance. In:
Proceedings of the 6th ACM International Conference on Distributed Event-Based
Systems, pp. 123–126. ACM (2012)

5. Mendes, M.R.N., Bizarro, P., Marques, P.: A performance study of event process-
ing systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 221–236. Springer, Heidelberg (2009)

6. Schilling, B., Koldehofe, B., Pletat, U., Rothermel, K.: Distributed heterogeneous
event processing. DEBS (2012)

7. Suhothayan, S., Gajasinghe, K., Narangoda, I.L., Chaturanga, S., Perera, S.,
Nanayakkara, V.: Siddhi: A second look at complex event processing architectures.
In: Proceedings of the 2011 ACMWorkshop on Gateway Computing Environments,
pp. 43–50. ACM (2011)

8. Zhou, Y., Aberer, K., Tan, K.-L.: Toward massive query optimization in large-
scale distributed stream systems. In: Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, pp. 326–345. Springer-Verlag New York,
Inc. (2008)

Author Index

Andrić, Marina 3
Arbab, Farhad 117

Cerquides, Jesus 153
Cervesato, Iliano 51
Chen, Tzu-Chun 83
Cranefield, Stephen 169
Cruz-Mencia, Francisco 153

De Angelis, Francesco Luca 35
De Nicola, Rocco 3

Espinosa, Antonio 153

Fatima, Nabeeha 51
Fortino, Giancarlo 186

Gabbrielli, Maurizio 67
Gadducci, Fabio 133
Giallorenzo, Saverio 67

Jongmans, Sung-Shik T.Q. 117

Kumarasinghe, Malinda 230

Lam, Edmund Soon Lee 51
Lanese, Ivan 67
Latella, Diego 19
Li, Ximeng 197
Lluch Lafuente, Alberto 3, 101, 197
Loreti, Michele 19, 101

Mariani, Stefano 186
Massink, Mieke 19
Mauro, Jacopo 67
Miculan, Marino 213
Montanari, Ugo 101
Moure, Juan Carlos 153

Nielson, Flemming 197
Nielson, Hanne Riis 197

Omicini, Andrea 186

Padovani, Luca 83
Peressotti, Marco 213
Pino, Luis F. 133
Preda, Mila Dalla 67

Ranathunga, Surangika 169, 230
Rodriguez-Aguilar, Juan A. 153

Santini, Francesco 133
Serugendo, Giovanna Di Marzo 35

Tharanga, Geeth 230
Toneguzzo, Andrea 213
Tosatto, Andrea 83

Valencia, Frank D. 133

Weerasinghe, Lasitha 230
Wickramarathna, Ujitha 230
Wu, Xi 197

	Foreword
	Preface
	Organization
	Contents
	Tuple-Based Coordination
	Replica-Based High-Performance Tuple Space Computing
	1 Introduction
	2 RepliKlaim: Klaim with Replicas
	2.1 RepliKlaim: Syntax
	2.2 RepliKlaim: Semantics
	2.3 RepliKlaim: Examples

	3 Performance Evaluation
	4 Related Works
	5 Conclusion

	Investigating Fluid-Flow Semantics of Asynchronous Tuple-Based Process Languages for Collective Adaptive Systems
	1 Introduction and Related Work
	2 Syntax and Markovian Semantics of OdeLinda
	2.1 Syntax
	2.2 Stochastic Semantics

	3 Differential Semantics of OdeLinda
	3.1 Population Semantics
	3.2 Mean-Field Model

	4 Example - Foraging Ants
	5 Conclusions and Future Work

	Logic Fragments: A Coordination Model Based on Logic Inference
	1 Introduction
	2 Related Works
	2.1 Chemical-Based Coordination Models
	2.2 Formal Approaches for Tuple Based Coordination Models

	3 Logic- and Chemical-Based Coordination Model
	3.1 Definition of the Model
	3.2 Logic Programs
	3.3 Logic Languages
	3.4 Logic Fragments
	3.5 Update of the Container

	4 Case Studies
	4.1 Palindrome Recognition
	4.2 Gradient and Chemotaxis Patterns - General Programs

	5 Conclusion and Future Works

	Coordinating Ensembles
	Comingle: Distributed Logic Programming for Decentralized Mobile Ensembles
	1 Introduction
	2 A Motivating Example
	3 Abstract Syntax and Semantics
	3.1 Abstract Syntax
	3.2 Abstract Semantics

	4 Implementation
	4.1 Compilation
	4.2 Runtime System

	5 Case Studies
	6 Related Work
	7 Future Developments and Conclusions

	Dynamic Choreographies
	1 Introduction
	2 Dynamic Interaction-Oriented Choreography (DIOC)
	2.1 Connectedness
	2.2 DIOC Semantics

	3 Dynamic Process-Oriented Choreography (DPOC)
	3.1 Projection
	3.2 DPOC Semantics

	4 Correctness
	5 Related Works and Discussion

	Type Reconstruction Algorithms for Deadlock-Free and Lock-Free Linear -Calculi
	1 Introduction
	2 The Simply-Typed Linear -calculus with Pairs
	3 Type Systems for Deadlock and Lock Freedom
	4 Type Reconstruction
	5 Constraint Solving
	6 Concluding Remarks

	Constraints
	A Fixpoint-Based Calculus for Graph-Shaped Computational Fields
	1 Introduction
	2 SMuC: A Soft -calculus for Computations Fields
	3 SMuC at Work: Rescuing Victims
	4 On Distributing SMuC Computations
	5 Related Works
	6 Conclusion

	Take Command of Your Constraints!
	1 Introduction
	2 Preliminaries: Data Constraints, Constraint Automata
	3 From Data Constraints to Data Commands
	3.1 Data Commands
	3.2 Precedence
	3.3 Algorithm

	4 Handling Cycles
	5 Preliminary Performance Results
	6 Discussion

	A Labelled Semantics for Soft Concurrent Constraint Programming
	1 Introduction
	2 A Few Technical Remarks (with Some Novelty)
	2.1 Lattice-Enriched Monoids
	2.2 Some Operators: Residuation and Cylindrification

	3 Deterministic Soft CCP
	3.1 Observational Semantics
	3.2 Saturated Bisimulation

	4 A Labelled Transition System for Soft CCP
	5 Towards an Axiomatisation for Weak Bisimilarity
	6 Conclusions and Further Work

	Agent-Oriented Techniques
	Parallelisation and Application of AD3 as a Method for Solving Large Scale Combinatorial Auctions
	1 Introduction
	2 Background
	3 Solving Combinatorial Auctions with AD3
	4 Parallel Realisation of AD3
	4.1 Edge-centric Shared Data Layout
	4.2 Reordering Operations

	5 Empirical Evaluation
	6 Conclusions

	Handling Agent Perception in Heterogeneous Distributed Systems: A Policy-Based Approach
	1 Introduction
	2 Related Work
	3 Managing Agent Perception Using Policies
	4 Architecture
	5 Percept Metadata
	6 Defining and Applying Policies
	7 Agent Perception
	8 Events and States
	9 Case Studies
	9.1 Demo Data Streams
	9.2 Sensing Data from Minecraft

	10 Conclusion

	Blending Event-Based and Multi-Agent Systems around Coordination Abstractions
	1 Introduction
	2 MAS as Coordinated Systems
	3 EBS as Coordinated Systems
	4 EBS and MAS: Towards a Unifying Framework
	5 EBS and MAS: The Role of Coordination
	6 Case Study: TuCSoN Coordination as Event-Based
	7 Conclusion

	Shared Spaces
	Klaim-DB: A Modeling Language for Distributed Database Applications
	1 Introduction
	2 Syntax
	3 Semantics
	3.1 Semantics for Actions
	3.2 Semantics for Processes and Networks

	4 Case Study
	5 Extension and Discussion
	6 Conclusion
	A Multiset Notation

	Open Transactions on Shared Memory
	1 Introduction
	2 OCTM: Open Concurrent Transactional Memory
	2.1 Syntax
	2.2 Operational Semantics

	3 TCCSm: CCS with Open Transactions
	4 Encoding TCCSm in OCTM.
	5 Conclusions and Future Work

	VISIRI - Distributed Complex Event Processing System for Handling Large Number of Queries
	1 Introduction
	2 Related Work
	3 VISIRI Distributed CEP System
	3.1 Low Level Architecture
	3.2 Query Distribution Algorithm
	3.3 Cost Model

	4 Evaluation
	4.1 Event and Query Model
	4.2 Query Distribution Algorithm Comparison
	4.3 Performance Evaluation

	5 Conclusion

	Author Index

