A Semantic-Aware Framework for Composite
Services Engineering Based on Semantic
Similarity and Concept Lattices

Ahmed Abid"*®™) | Nizar Messai', Mohsen Rouached?, Thomas Devogele!,
and Mohamed Abid?

L LI, University Francois Rabelais Tours, Tours, France
ahmed.abid@etu.univ-tours.fr,
{nizar.messai,thomas.devogele}@univ-tours.fr
2 College of Computers and Information Technology, Taif University,
Taif, Saudi Arabia
m.rouached@tu.edu.sa
3 CES Laboratory, Sfax University, Sfax, Tunisia
mohamed.abid@enis.rnu.tn

Abstract. This paper presents a semantic framework called IDECSE
for composite Web services modeling and engineering. This framework
uses semantic similarity measures and Formal Concept Analysis formal-
ism to generate classes of similar services that can be composable to
satisfy users queries and preferences. A reasoning mechanism is also pro-
posed to produce reliable composite services. By considering semantics
for describing, discovering, composing, and monitoring services, IDECSE
addresses the challenge of achieving a full governance of the composition
process.

Keywords: Semantic web services - Semantic similarity - Formal con-
cept analysis - Web services composition

1 Introduction

Today, business processes are increasingly implemented by dynamically compos-
ing Web services seen as the main contribution the Service Oriented Architecture
(SOA) brings to enterprise business process automation. Therefore, Web services
composition has became an attractive way of developing value added Web ser-
vices and would lead to substantial gains in productivity in several application
domains including e-Enterprise, e-Business, e-Government, and e-Science. How-
ever, an important problem with current services compositions concerns their
life-cycle and their management, also called their governance. The challenge is
how to achieve a full governance of the composition allowing the continuous
and dynamic improvement of the composition to support and encourage the
adoption of SOA technologies. IDECSE [1] addressed the above challenge and
proposed an integrated declarative framework to bridge the gap between the

© Springer International Publishing Switzerland 2015
S. Nurcan and E. Pimenidis (Eds.): CAiSE Forum 2014, LNBIP 204, pp. 148-164, 2015.
DOI: 10.1007/978-3-319-19270-3_10

A Semantic-Aware Framework for Composite Services Engineering 149

process modeling, verification and monitoring and thus allowing for self-healing
Web services compositions. Another challenge concerns the semantic gaps in the
definition of atomic Web services provided by autonomous and different services
providers, and therefore composition modeling frameworks should provide sup-
port for bridging such semantic gaps. Supporting environment dynamicity is also
a critical requirement since available services as well as user requirements change
frequently over time. Thus, the environment for service engineering needs to sup-
port rapid and dynamic re-design through appropriate and automatic tools for
dealing jointly with adaptation at modeling, deployment and run-time.

While numerous composition approaches have been developed, very little has
been done towards dealing with these challenges because of their complexity.
Consequently, existing frameworks need to be enhanced using new semantic-
aware methods and tools. In this paper, we propose to address this issue by
enhancing IDECSE approach with semantics in all composition steps. Mainly,
improvement of IDECSE consists in considering service similarity measures.

The rest of the paper is organized as follows. Section 2 presents the architecture
of the improved IDECSE framework and details its modules. We mainly focus on
the Service Classification Module. In Sect. 3, we discuss the current implementa-
tion and the ideas to validate the proposed approach. Section 4 exposes literature
review. Finally, Sect. 5 concludes the paper and outlines future work.

2 IDECSE Framework

A major problem with current services compositions concerns their life-cycle
and their management, also called their governance. The challenge is how to
achieve a full governance of the composition allowing the continuous and dynamic
improvement of the composition to support and encourage the adoption of SOA
technologies. Many SOA management initiatives fail to get off the drawing board
once systems architects recognize the scale of integration work to bring the dif-
ferent elements of functionality into play. IDECSE [2] addressed this challenge
by proposing an integrated framework to bridge the gap between the process
modeling, verification and monitoring and thus allowing for self-healing Web
services compositions. This framework aims also to fully integrate semantics in
all stages of the composition global life-cycle. First, user requirements are better
understood using refinement techniques such as generalization or specification
of concepts from a given ontology. IDECSE appeals for data mining techniques
for classifying and mining services into Service Registry based on semantic rela-
tions. The main components of the IDECSE architecture are depicted in Fig. 1.
Tt consists of five modules covering the global composition life-cycle (i.e. spec-
ification, modeling, composition, deployment, and monitoring). These modules
are described and detailed in the following sections.

2.1 Service Request Module

The Service Request module (First layer in Fig. 1) translates the user require-
ments to an internal language to be used by the Service Classification module and

150 A. Abid et al.

Graphical Queary
e o Editor » CQuery Parser * |OPE Extractor

Consiraints, Gos
Parameatars, ..

“
A

. L ol i
Service Projactar > Service Description » Context Builder
Extractor [
Similarity
- Comparator T
Relevant Service . e —

Selector Lattice Builder

g s
g ,% Service Classification Module _ {Bervice Similarity Calculator] |
baE)
Wz Input, Cutputs, < §
» Praconditions, 4»@1—‘ 23
Effects Tores God B %

Ry
Matchmaker [{ Filter

=
i
1=
g @
Service Reasoning Module g
Flan 2
i |
o P - i
5 Executable plan Generator j€——— anstraints, " &
B QoS Paramaters,.. .
1
Matching Instances Executabla composition &
Description analyzer k]
Sarvice Exacution Module T i-'"L
I &
L =]
Execution Engine I J] E
l ;
| ; ne H—=
Ewvents Manager - Evenls | fonitoring Engine I

Service Monitoring Module

Fig. 1. IDECSE architecture

the Service Reasoning module. The Graphical Query Editor relies on a domain
ontology to analyze user requirements before enriching them through adding new
ontology concepts based on semantic relations such as generalization, specializa-
tion, etc. The query is then parsed to extract functional and non-functional
requirements. Functional requirements are modeled using the IOPE Extractor,
which extracts the Inputs, Outputs, Preconditions and Effects.

Extracted requirements are then modeled as a new requested service called
Sg. Given a domain ontology O, a user query), modeled as Sg, consists of a
set of provided inputs Sg,, C O, a set of desired outputs Sg_, C O, a set of
preconditions Sg,,.. C O, aset of effects Sg_,, C O, and a set of quality of service
constraints Sg,,, = {(q1,v1,w1), (g2, V2, w2), ..., (qk, Vi, wi) }, Where g;ii—1.2,... k)
is a quality criterion, v; is the required value for criterion ¢;, and w; is the weight
assigned to this criterion such that Zle w; = 1, and k the number of quality
criteria involved in the query. We can model Sg as Sg = > IOPE + >_ QoS.

A Semantic-Aware Framework for Composite Services Engineering 151

2.2 Service Classification Module

To deal with the important number of Web services and instead of consider-
ing the whole Service Registry, this module allows to classify available services
semantically into classes according to their similarities. Its second role is to
return only relevant services to Si from the registry. This module contains four
main components which are: Service Projector, Service Description Extractor,
Service Similarity Calculator, and Relevant Service Selector.

To introduce the functionality of the proposed module for Web service clas-
sification, an example of semantic Web services is presented in Table 1.

Table 1. A set of services with their operations

Services Id Operations 1d
AUTHOR FINDER WS1 | Find Author(B) |op11
AUTHOR PRICE FINDER | WS3 | Find Author(B) |op21

Find Price(B) op22
SEARCH BOOK WS> | Find Book(A) ops1
CURRENCY CONVERTOR | WS, | Convert (C,C,P) | opa1
DOLLAR2EURO W S5 | Dollar2euro(A) | ops:

The role of the Service Classification components is described and illustrated
in the following parts.

1. Service Projector: The Service Projector selects services capabilities based
on syntactical and semantic description for each service into one interface.
Different semantic description languages were proposed, OWL-S and WSMO
are the most important ones for this purpose. Both WSMO and OWL-S have
the aim of providing the conceptual and technical means to realize Semantic
Web services. The comparison done in [3] shows that although the aims of
both WSMO and OWL-S are the same, they present some differences in the
approach they take to achieve their goals especially in the definition of the
process model and the grounding of Web services. OWL-S is more mature and
is therefore considered in the IDECSE framework. The role of the Service
Projector Module is to select service capabilities from OWL-S and WSDL
descriptions and transmit them to the Service Description Extractor. In the
running example, the operations of each service shown in Table1 are the
results transmitted by the Service Projector.

2. Service Description Extractor: Extracting comparator parameters from
service capabilities is a mandatory step to measure similarity between ser-
vices. The Service Classification Module relies on the functional properties of
services which will be the parameters to extract from the OWL-S files.

Semantic and Syntactic functional parameters of services are given in
OWL-S description. In fact OWL-S is an ontology for services. Each service

152 A. Abid et al.

class in OWL-S refers to a declared semantic service [4]. Each service descrip-
tion is composed of three main parts: Service Profile, Service Model, and
Service Grounding. In the following sections, we select relevant data to be
compared from these parts:

a. Functionality Description in the Service Profile: The Service profile con-
sists of four main parts. The first part describes the links between the
Service profile and the service and its process model. The second part
describes the contact information, intended for human consumption.
The third part describes the functionality in terms of Input, Output,
Precondition and Effect (IOPE). The last part describes the attributes
of a profile. Relevant functional information about services exist in the
last two parts. The Profile class defines the following properties for IOPE
hasInput ranges over the Inputs, hasOutput ranges over the Output,
hasPrecondition specifies a precondition of the service, hasResult speci-
fies under which condition outputs are generated.

b. Functionality Description in the Service Model: The Service Model gives
a detailed description on how to interact with the service. It can be
used to supplement initial similarity measure by giving a more detailed
perspective on the service internal workings.

c. Functionality Description in the Service Grounding: The Service Ground-
ing specifies the details of how to access a service. It is not required in
measuring service similarity because it can be the same especially for ser-
vices from the same organization, but it provides a useful way of allowing
users to specify the way of using the service.

In the syntactic side, IDECSE relies on the types of inputs and outputs of
services. The Service Description Extractor tries to extract those parameters
with their attributes and transmits them to the Service Similarity Calculator.
Considering the previous example, Table 2 shows the different details of ser-
vices. We note that the example uses simple services based on input and
output functional parameters.

Table 2. Detailed Web services Description

Operations | Input concept | Output concept | Input Type | Output Type
op11 Book Person String String
op21 Book Person String String
op22 Book Price String Float
ops1 Text Book String String
opa1 Price, Currency | Price String/Float | Float
ops1 Price Price Float Float

3. The Service Similarity Calculator: After selecting relevant parameters
from services description, the Service Similarity Calculator measures the sim-
ilarity and uses data mining techniques in order to classify available services

A Semantic-Aware Framework for Composite Services Engineering 153

into classes according to their similarity. The main parts of this module and
their functionalities are described below:

a. Context Builder: The Context Builder is responsible for preparing the
input dataset to the classification module. It selects the main properties
of Web services and creates a tabular representation where the rows
correspond to the Web services, the columns correspond to the services
capabilities (descriptions) such as type of input or the ontology that
the input refers to, and finally table cells contain real values of these
properties for each service.

b. Similarity Comparator: It can be considered as the main component
of this module. The Similarity Comparator relies on a set of formulas
and relations used to calculate similarity between services. Two types
of formulas are taken into account by the IDECSE framework: the first
is for the semantic and the second is for the syntactic Similarity and
relatedness.

In the semantic field, and based on the selected parameters in the
Service Description Extractor module, IDECSE defines a semantic mea-
sure function. Let S be a set of services (|S| =n € N) and let o be a
similarity measure function o : S x S —[0, 1] which verify the conditions
below:

- O'(Si, Sz) =1vVie {17 ..,n},
- O'(Si, S]) = O'(Sj, Sl)v 1€ {1, e n},v Jje {1, ,n}
An OWL-S service similarity can be defined as follows: For ¢, 5 € {1,..,n},

O'(Si, S]) = UlSimp(Si, S]) + UQSZmM(Sl, S]) + U3Simg(5i, SJ) (1)
where Ei:l Up=1

The functions Simp, Simps and Simg present respectively the sim-
ilarity function between tow Services Profiles, Models and Groundings.
As Service Model and Service Grounding are used to supplement the
initial similarity and to specify details of how to access a service, their
parameters can be modeled as Quality of services thus more importance
is given to the functional similarity.

0(S;,S;) = Simp(S;,S;) = W1Sim(S;, S;) + WaSimo(S;, S;) + Ws
Szmp(S“SJ) +W4SZTTLE(SZ,S]) (2)

where Zi:l W, =1

Simy, Simo, Simp, Simpg are respectively the similarity function
between two services Input, Output, Precondition and Effects. Each
parameter is semantically annotated with respect to an OWL concept.
Thus, the functional similarity measurement between services is mapped
to Ontology-based similarity. Studying ontological concepts, their details
are divided into tow types which are: Type of Concept and Relation

154

A. Abid et al.

of Concept. Otherwise, measuring similarity between services in the
IDECSE framework is based on semantic and syntactic similarity.

Regarding semantics, being machine interpretable and constructed
by experts, ontologies present a very reliable and organized knowledge
source system. For these reasons, ontologies have been extensively exploi-
ted in knowledge-based systems and, more precisely, to compute seman-
tic similarity. Measures on the ontology based similarity are divided
into three main categories which are: Edge-counting approaches [5,6],
Features-based approaches [7] and Information Content approaches [8,9].
After surveying different Ontological similarity measures and their appli-
cation situations and based on experimental results and benchmarks
tests [10,11], the measure proposed in [12] gives pertinent results in our
case. The formula is given below:

Let A and B be two concepts, represented by the nodes a and b in a
predefined is-a semantic taxonomy (ontologies). Let C be a set of con-
cepts of a given ontology, (<) is defined as a binary relation <: C'x C'. For
two concepts ¢; and ¢;, ¢; < ¢; is fulfilled if ¢; is a hierarchical specializa-
tion of ¢; or if ¢; = ¢; (i.e. same concept). The set of taxonomical features
describing the concept a is defined in terms of the relation < in (3).

¢(a) ={ceCla<c} 3)
[12] defines the semantic similarity between tow concepts as follow:

[6(@)\&(b)] + |¢(b)\(a)|

[6(a)\o(O)] + [(0)\p(a)] + |¢(a) N ¢(b()4|))

Sim(a, b) sanchez = 1 — log(1 +

Compared to other measures based on taxonomical knowledge, the
exploitation of the whole amount of unique and shared subsumers seems
to give solid semantic evidences of semantic resemblance. Results show
that the measure proposed by [12] surpasses basic Edge-Counting Fea-
tures and Information content measures.

Moving to syntactical similarity, [13] proposed a practical measure
between different data types, Table3 groups different data types and
Table 4 gives the similarity between different data types.

Table 3. Simple DataType groups [13]

Group Simple Data Types

Integer Group | Integer, Byte, Short, Long
Real Group Real, Float, Double, Decimal
String Group | String, NormalizedString

Date Group Date, DateTime, Duration, Time

Boolean Group | Boolean

A Semantic-Aware Framework for Composite Services Engineering 155

Table 4. Simple DataType groups similarity [13]

Int. | Real | Str. | Date | Bol.
Int. |1.0 |0.5 0.3 /0.1 |0.1
Real |1.0 /1.0 0.1 |0.0 |0.1
Str. |0.7 |0.7 |1.0 0.8 |0.3
Date | 0.1 |0.0 |0.1 |[1.0 |0.0
Bol. |0.1 /0.0 0.1 0.0 |0.1

Finally to compute semantic similarity between services, IDECSE
framework combines the tow measures proposed in [12] and in [13]. The
first one is used as a semantic measure based on the ontological features
of concepts and the second is based on the syntactic measure between
inputs and outputs types of services. Based on similarity measure given
in (4), we redefine our similarity measure (2) in (5).

o(Si,8;) = Wi[NuSimy,, (Si, Sj) + Ni2Simi,, (Si; S;)] + Wa
[Nglsimom] (S:,55) + NaoSimo,,, (Si, Si)| + Ws
[N31Simpyeqy (Sir S5) + NaoSimpyens, (S, S5)]+
Wa[Nau1Simgy g, (S, S5) + NaaSimpyy,, (Si, S;)] - (5)

where Y Wi =1, 37| Noj =1 and a € {1,2,34}.

The function o is used then to calculate similarity between concepts
that are referred by functional parameters of services. Finally, this mod-
ule returns a Similarity Matrix (SimMat) containing similarity measures
between available services. The Similarity Matrix generated from the
proposed example using (5) is given in Table 5.

From SimMat, we can mainly extract several binary contexts using
a threshold 0 €[0,1]. Values of SimMat, which are greater or equal to
the fixed threshold 6, are scaled to 1 and other values are scaled to
0. The binary context that corresponds to an arbitrary threshold for
operations and services are shown in Tables6 and 7. The SimCxt is
a triple (O,0,Rgim,), where O is a set of operations and Rgim, is a
binary relation indicating whether an operation is similar to another
operation or not. The Context Matrix (Table7 in our example) is the
result transmitted to the next module to build the Lattice.

c. Lattice Builder: In this sub-module a Lattice of operations is built accord-
ing to the Formal Concept Analysis (FCA)[14] formalism and its exten-
sion to complex data called Similarity-based Formal Concept Analysis
(SFCA)[15]. An example of obtained Lattice for a binary context using
the ConExp! tool is given in Fig. 2. This Lattice shows the grouping of
similar operations.

! http://conexp.sourceforge.net /.

http://conexp.sourceforge.net/

156 A. Abid et al.

Table 5. The operations SimMat

Op11 | Op21 | Op22 | OP31 | OP41 | OP51
op11 |1 1 0.40 /10.35 |0 0
opa1 | 1 1 0.40/0.35 |0 0
op22 | 0.40 |0.40 | 1 0.320 0
op310.3535 10.32|1 0 0
opa1 | 0 0 0 0 1 0.45
ops1 | 0 0 0 0 0.45 |1

Table 6. The operation SimCxt for § = 0.4

Op11 | Op21 | Op22 | OP31 | OpP41 | OP51
op11 | X X X
op21 | X X X
op21 | X X X

op31 X
Op41 X X
Op51 X X

Fig. 2. Generated lattice for (SimCxt) shown in Table 7

4. Relevant Service Selector: Once the Lattice of services is built, the Rele-
vant Service Selector identifies the most relevant classes of services from the
Lattice. The Relevant Service Selector has two main roles. The first role is
to select the most relevant services for the purpose of substitution process
and thus to maintain a composite Web service application functionality as
much as possible. The second role is about finding equivalent, similar and
composable services to Sg requested by users in order to transmit them to
the reasoning module.

A Semantic-Aware Framework for Composite Services Engineering 157

Table 7. The service SimCxt for § = 0.4

Op11 | Op21 | OP22 | OP31 | OP41 | OPs1
WS | X X X
WSy X X X

W Ss X
WS, X X
WSs X X
5. Example of User Query: We consider a simple user query Q = “Find an

author of a Book based on its title” in order to demonstrate the usefulness of
the Service Classification Module in the IDECSE framework.

Table 8. Sr detailed descriptions

Op |Input | Output | In. Type | Out. Type

opr | Title | Author | String | String

Parsing the query is the role of the Service Request Module. Table 8 details
SR description generated from this module. Then Table8 is transmitted to
the Service Similarity Calculator sub-module. After adding Sg to the existing
context, a similarity measure is then calculated between Sg and the rest of
available services. We suppose here that available services are those given in
Table 1. Results of similarity measures are shown in Table 9.

Table 9. Si similarity measures

Op11 | Op21 | Op22 | OP31 | OP41 | OP51
opr | 0.7 0.7 10.35/0.56 0 0

Now, we add the Si to the context and build the Lattice to ensure returning
relevant results. We fix the threshold 6 at 0.45. Table11 presents the new
context builder which will be transmitted to the Lattice Builder.
The Relevant Service Selector is charged then to identify most relevant service
to Sk using appropriate algorithms for browsing Lattices. In our case only
and according to the generated lattice in Fig. 3 three operations are selected
and then transmitted to the Reasoning Module. Those operations are {op11,
op31, opa1 }. Thus, the composition process is reduced to reason only on three
operations in which ops; can be composed with opy1 or ops;.

The example illustrates the advantage of the Service Classification Mod-
ule in anticipating the composition task, maintaining the composition plan

158 A. Abid et al.

Table 10. The operation SimCxt for 8 = 0.45

Op11 | Op21 | Op22 | OP31 | OP41 | OP51 | OPR
op11 | X X
op21 | X X
op22 X
op31 X
opa1 X X
ops1 X X
opr | X X X X

Table 11. The service SimCxt for 6 = 0.45

Op11 | Op21 | OP22 | OP31 | OpP41 | OP51 | OPR
WSi | X X
WSy | X X X
WSs X
WSa X X
WSs X X
Sr | X X X X

Fig. 3. The generated lattice including Sr

working as much as possible by notifying the reasoner that op,1 and ops; are

similar.

2.3 Service Reasoning Module

The Service Reasoning module identifies the candidate composition plans that
realize the goal (Sg) based on a logic reasoner. IDECSE relies on a logic Reasoner
that takes into account results given from the Service Classification Module.

A Semantic-Aware Framework for Composite Services Engineering 159

In order to enable working with large collections of Web services, IDECSE
distinguish between Web services types and instances. A Web service type is
a set of Web service instances with identical functionality. A Web service type
is semantically described by the inputs, outputs, preconditions and effects that
capture the functionality offered by this type of services. Web services instances
are the actual services that can be invoked. This separation allows reducing the
search space, which helps ensuring the scalability of the composition process
[16]. The main components of the Service Reasoning Module are:

— Reasoner: is responsible for checking the ontology consistency in addition
to handling the maintenance of the state including preconditions and effects
application.

— Filter: avoids redundancy from the plan by identifying service types with poten-
tial relevance to the goal and checks the dependency relationships between each
two consecutive service types.

— Matchmaker: allows querying the Service Registry for available services in
order to match the preconditions of a Web service with the effects of another
service.

— Abstract planner: can be considered as the main component of this module
and is responsible for generating a set of abstract plans.

IDECSE relies on a planning algorithm [1] to create a composition of the avail-
able service types by providing an abstract plan that meets the functional
requirements. In this algorithm, inputs and outputs are distinguished conditions
where inputs are attempted to be achieved before preconditions since precon-
ditions may have arguments consisting of several inputs. A plan of composite
services is formalized as a proof of the goal to answer the user query. Thus, a
Plan {P} = {A;};=1..» is a sequence of n actions A;. Each action applies on a
state F; to produce a state F;1: Vi € {0,..,n—1}, E;AA; = E;y1. Starting from
an initial state Ey the plan produces the goal G: Ey A{P} = G. Therefore com-
posite services generated are new services that meet all the query requirements.
Finally, generated plans are transmitted to the service execution module.

2.4 Service Execution Module

The Service Execution Module translates the abstract plan into an executable
one by associating to each service type its specific instances using the Service
Instances Registry. The plan generated by the previous module is considered as
a template for the composite service and drives the process of matching each
service type to a corresponding service instance. The Service Execution Module
is mainly composed of the two following components:

— The Executable Plan Generator considers non-functional requirements of the
goal (provided by Service Request Module) and enables to concretize the
abstract plan generated by the abstract Reasoning Module.

— The Executable Composition Analyzer generates executable code and invokes
the execution engine.

160 A. Abid et al.

In IDECSE, the Executable Plan Generator implementation is based on the
algorithm presented in [17]. This algorithm takes as input a composition plan,
the QoS permissible values imposed by the user, and their weights and generates
as output a composition plan that satisfies the requirements of the user.

2.5 Service Monitoring Module

Monitoring deals with the actual execution of the composite service and is
responsible for monitoring the execution and recording violation of any require-
ment of the goal service at run-time. For this purpose, we plan to propose an
event-based monitoring framework that allows specifying and reasoning about
the monitoring properties during composition process execution. Properties to
be monitored are specified by the user and added to process specification at
both design and execution time. These properties include functional constraints
(invocation and execution order), non-functional properties (security, QoS...),
temporal constraints (response time, invocations delay), data constraints (data
availability, validity and expiry). These properties can be also combined such as
monitoring the data validity and access control within specific time frame.
Services providers can also specify additional assumptions about the compo-
sition process in terms of events extracted from its specification. Run-time devi-
ations and inconsistencies will be monitored by using a variant of techniques
developed for checking integrity constraints in temporal deductive databases.
When requirements variations are detected, a deviation notification is sent to the
composition manager. This notification indicates: (i) the requirement that has
been violated, (ii) the malfunctioning service(s) that violated it, and (iii) diag-
nostic information regarding the violation. Based on the type of the deviation
notification and service monitoring policies, recovery policies will be triggered.

3 Implementation and Validation

The overall architecture for the IDECSE approach is under development as a
java application that presents all the functionalities from design phase to mon-
itoring and recovery phases. This application contains a user friendly interface
to specify the composition design (services/constraints/ and control/ data flow),
to automatically generate the corresponding models, to invoke the reasoner, and
show the results returned. The application provides also an assumption editor
to specify assumptions and check their correctness.

Once each type in the selected plan is bound to a concrete Web service
instance, a generator produces a concrete workflow that can be deployed onto a
runtime infrastructure, to realize the composite service. For that, we first gen-
erate the WSDL description (name, interface, port types) for the composite
service. Then, we define partner link types to link the component services, and
proceed to the generation of the composition flow (BPEL flow for instance). The
selected plan gives the invocation order. We use an Eclipse Modeling Framework
(EMF) model of BPEL (WSDL) that is automatically created from a BPEL

A Semantic-Aware Framework for Composite Services Engineering 161

(WSDL) schema. The model provides in-memory representation of constructs
and support for persistence to files (serialization) and loading from files (de-
serialization). BPEL and WSDL manipulation become significantly simplified
with the corresponding EMF models. In case of conflicts, the monitoring process
is initiated by the monitoring manager after receiving a request to start a moni-
toring activity as specified by a monitoring policy. First, it checks if the requested
constraint or property can be monitored or not. This checking is based on the
composition process identified in the policy, and the event reporting capabilities
indicated by the type of the execution environment of the composition process.
If the requested constraint can be monitored, the monitoring manager triggers
an event listener to capture events from the composition execution environment
and passes to it the events that should be collected. It also sends to the monitor
the specification of the constraint to be checked.
These components are still under refinement and tests. Then, we plan to
compare our results with important approaches close to our contribution such
s [18]. Also, it will be interesting to measure the performance of the IDECSE
framework before and after incorporating the similarity based approach in order
to show its added value. To conduct fair experiments, we need a sufficient number
of services and ontologies with a variety of sizes. However, it is very hard to col-
lect or manually construct appropriate data. For this reason, we may randomly
generate experimental data.

4 Related Work

A considerable number of research efforts have focused on various aspects of
Web service compositions ranging from semantic service discovery to service
specification, composition, deployment, and monitoring [19-25]. A deep analysis
of these efforts shows that some has focused on the execution aspects of com-
posite Web services by considering WSDL to describe Web services and BPEL
to compose them, without much consideration for requirements that drive the
development process. Some other efforts are concerned by the feasibility of the
composition process by considering semantics and Al approaches without taking
into account the run-time deployment and execution. However, we believe that
these two approaches can be complementary and can be combined for manag-
ing the global life-cycle of the composition i.e. specifying, composing, verifying,
deploying, monitoring, and analyzing to achieve a full governance of the com-
position. Semantic classification of services was also investigated. For instance,
[26] uses FCA formalism to highlight the relationships between services and per-
mits the identication of different categorizations of a certain service. Lattice of
services is built in [27], by extracting keywords from their specification. [28] com-
bines text mining and machine learning techniques for classifying services. This
approach improves the performance of Web-service clustering by considering
the two main steps in the clustering process. It introduces first a Web-service
similarity-measuring approach that uses both ontology learning and IR-based
term similarity. Second, it proposes an approach to identifying cluster centers by
using similarity values for service names to improve the performance in a second

162 A. Abid et al.

step. Using ant-based algorithm, [29] considers the degree of semantic similarity
between services as the main clustering criterion. The semantic description is
based on measuring similarity between ontological concepts referred by input
and output parameters of the service. A matching method and metrics are used
to measure the semantic similarity. Other approaches rely on measuring simi-
larity between service, [13] proposes a novel approach for Web service retrieval
based on measuring similarity between services interfaces. The evaluation of the
similarity between Web services considers both the semantic and the structure
of a WSDL description with a semantic annotation.

5 Conclusion and Future Work

This paper describes IDECSE, a new semantic integrated approach for compos-
ite services engineering. Compared to existing approaches, IDECSE considers
semantics in all the composition global life-cycle, addresses the challenge of fully
automating the composition processes, and proposes and adapts reasoning, mon-
itoring, and adaptation techniques. The main new added values are on the Web
services classification level. In fact, we propose to enhance IDECSE with seman-
tic measures and FCA for building Web service Lattices according to function-
ality domains. Similarity measures are used to calculate semantic and syntactic
similarity based on OWL-S. Our work in progress includes the enrichment of
service Lattices with QoS aspects and user preferences. We also plan to extend
the framework to include additional features such as failure handling, and an
interactive visual environment for testing composite services.

References

1. Rouached, M., Messai, N.: SCoME: a web services composition modeling and engi-
neering framework. In: 2013 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), IEEE (2013)

2. Abid, A., Messai, N., Rouached, M., Devogele, T., Abid, M.: IDECSE: a semantic
integrated development environment for composite services engineering

3. Lara, R., Roman, D., Polleres, A., Fensel, D.: A conceptual comparison of WSMO
and OWL-S. In: (LJ) Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS, vol.
3250, pp. 254-269. Springer, Heidelberg (2004)

4. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T\, et al.: OWL-S: semantic markup
for web services. W3C member submission, vol. 22 (2004)

5. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19, 17-30 (1989)

6. Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the

32nd Annual Meeting on Association for Computational Linguistics, Association

for Computational Linguistics (1994)

Tversky, A.: Features of similarity. Psychol. Rev. 84, 327-352 (1977)

8. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. arXiv preprint cmp-1g/9511007 (1995)

9. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and
lexical taxonomy. arXiv preprint cmp-lg/9709008 (1997)

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A Semantic-Aware Framework for Composite Services Engineering 163

Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun.
ACM 8, 627-633 (1965)

Miller, G.A., Charles, W.G.: Contextual correlates of semantic similarity. Lang.
cogn. process. 6, 1-28 (1991)

Sanchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a
new feature-based approach. Expert Syst. Appl. 39, 7718-7728 (2012)

Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21, 1629-1642 (2009)

Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, New York (1999)

Azmeh, Z., Hamoui, F., Huchard, M., Messai, N., Tibermacine, C., Urtado, C.,
Vauttier, S.: Backing composite web services using formal concept analysis. In:
Jaschke, R. (ed.) ICFCA 2011. LNCS, vol. 6628, pp. 26-41. Springer, Heidelberg
(2011)

Agarwal, V., Chafle, G., Dasgupta, K., Karnik, N., Kumar, A., Mittal, S., Srivas-
tava, B.: Synthy: a system for end to end composition of web services. Web Semant.
Sci. Serv. Agents World Wide Web 3, 311-339 (2011)

Ko, J.M., Kim, C.O., Kwon, I.H.: Quality-of-service oriented web service compo-
sition algorithm and planning architecture. J. Syst. Softw. 81, 2079-2090 (2008)
Cugola, G., Ghezzi, C., Pinto, L.S.: DSOL: a declarative approach to self-adaptive
service orchestrations. Comput. 94(7), 579-617 (2012)

Xiaoming, P., Qiqing, F., Yahui, H., Bingjian, Z.: A user requirements oriented
dynamic web service composition framework. In: Proceedings of the 2009 Interna-
tional Forum on Information Technology and Applications, IFITA 2009, vol. 1, pp.
173-177. IEEE Computer Society, Washington, DC (2009)

Hatzi, O., Vrakas, D., Nikolaidou, M., Bassiliades, N., Anagnostopoulos, D., Vla-
havas, I.: An integrated approach to automated semantic web service composition
through planning. IEEE Trans. Serv. Comput. 5(3), 319-332 (2012)

Marconi, A., Pistore, M.: Synthesis and composition of web services. In: Bernardo,
M., Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 89-157.
Springer, Heidelberg (2009)

Rabah, S.; Ni, D., Jahanshahi, P., Guzman, L.F.: Current state and challenges of
automatic planning in web service composition. CoRR (2011)

Kuang, L., Li, Y., Wu, J., Deng, S., Wu, Z.: Inverted indexing for composition-
oriented service discovery. In: 2007 IEEE International Conference on Web Ser-
vices, Salt Like City, USA, pp. 257-264 (2007)

Kona, S., Bansal, A., Gupta, G.: Automatic composition of semantic web services.
In: ICWS, pp. 150-158 (2007)

Lecue, F., Mehandjiev, N.: Towards scalability of quality driven semantic web
service composition. In: Proceedings of the 2009 IEEE International Conference
on Web Services, ICWS 2009, pp. 469-476. IEEE Computer Society, Washington,
DC (2009)

Aversano, L., Bruno, M., Canfora, G., Di Penta, M., Distante, D.: Using concept
lattices to support service selection. Int. J. Web Serv. Res. (IJWSR) 3, 32-51
(2006)

Bruno, M., Canfora, G., Di Penta, M., Scognamiglio, R.: An approach to support
web service classification and annotation. In: Proceedings of the 2005 IEEE Inter-
national Conference on e-Technology, e-Commerce and e-Service, EEE 2005. IEEE
(2005)

164

28.

29.

A. Abid et al.

Kumara, B.T., Paik, I., Chen, W.: Web-service clustering with a hybrid of ontol-
ogy learning and information-retrieval-based term similarity. In: 2013 IEEE 20th
International Conference on Web Services (ICWS). IEEE (2013)

Pop, C.B., Chifu, V.R., Salomie, I., Dinsoreanu, M., David, T., Acretoaie, V.:
Semantic web service clustering for efficient discovery using an ant-based method.
In: Essaaidi, M., Malgeri, M., Badica, C. (eds.) Intelligent Distributed Computing
IV. SCI, vol. 315, pp. 23-33. Springer, Heidelberg (2010)

	A Semantic-Aware Framework for Composite Services Engineering Based on Semantic Similarity and Concept Lattices
	1 Introduction
	2 IDECSE Framework
	2.1 Service Request Module
	2.2 Service Classification Module
	2.3 Service Reasoning Module
	2.4 Service Execution Module
	2.5 Service Monitoring Module

	3 Implementation and Validation
	4 Related Work
	5 Conclusion and Future Work
	References

