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Abstract. In their classic form, reducts as well as typical testors are min-
imal subsets of attributes that retain the discernibility condition. Con-
structs are a special type of reducts and represent a kind of generalization
of the reduct concept. A construct reliably provides sufficient amount of
discrimination between objects belonging to different classes as well as suf-
ficient amount of resemblance between objects belonging to the same class.
Based on the relation between constructs, reducts and typical testors this
paper focuses on a practical use of this relation. Specifically, we propose
a method that allows applying typical testor algorithms for computing
constructs. The proposed method involves modifying the classic defini-
tion of pairwise object comparison matrix adapting it to the requirements
of certain algorithms originally designed to compute typical testors. The
usefulness of our method is shown through some examples.

1 Introduction

All data analyses in the Rough Sets Theory [14] start with the so-called closed
world assumption. According to this assumption any two objects described by
two identical vectors of parameter values must be treated equal in all the sub-
sequent analyses. Formally, the main tool that ensures this property in data
analysis is the relation of indiscernibility between objects.

The partition of objects into classes is very interesting for the data analysts,
and represents a key aspect in classification problems, since the classes generally
represent concepts. The Rough Set Theory makes an effort to examine whether
a set of descriptive attributes is sufficient to classify objects into the same classes
as the original partition. In this effort, reducts play an important role.

Meanwhile, the theory of pattern recognition study the same problems and
uses its own tools. Particularly in the logical combinatorial approach [16], the
concept of testor [10] makes an important contribution to the problem of feature
selection, reduction of the space of representation and other related problems.

Both concepts, reducts and testors have been widely studied separately. How-
ever, in the literature the study of these concepts including their points of con-
vergence and their differences have been also studied [9)].
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The property to discern objects belonging to different classes is a common
point between both concepts while the information provided by the pairs of
objects belonging to the same class is sidelined. Just this point is the main con-
tribution of the concept of construct [24]. Constructs take into account more
information contained in the object pairwise comparisons, because they utilizes
inter-class and intra-class information together, considering discriminating rela-
tions between objects belonging to different classes and resembling relations
between objects belonging to the same class.

From the computational point of view, the most challenging problem related
to testors, reducts and constructs is that of generating full sets of typical testors,
reducts and constructs. This problem has been proven to be NP-hard (it is equiv-
alent to the problem of calculate the set of all prime implicants of a disjunctive
normal form) [23].

This paper addresses the problem of computing the whole set of constructs.
We specifically study the relation between typical testors and constructs, and
show how the algorithms for computing typical testors, designed in the logical-
combinatorial pattern recognition approach, can be used to compute constructs.

Even though we do not propose a new algorithm, this research expands the
set of available algorithms to calculate constructs and re-valorizes the existing
typical testor algorithms, bringing new elements to the study of the relationship
between the rough set theory and the testor theory.

The rest of the document is organized as follows. Section?2 provides the
formal background for the study, including the definitions of reduct, testor and
construct. An example is discussed. Section3 presents the proposed method
that allows using typical testor algorithms for computing constructs, illustra-
tive examples are included. Our conclusions are summarized in Sect. 4.

2 Theoretical Foundations

2.1 Reducts

The main dataset considered in this paper is a decision table, which is a special
case of an information table [8]. Formally, a decision table is defined as

Definition 1. (decision table) A decision table is a pair Sq = (U, Ay = AfU{d})
where U is a finite non-empty set of objects, Ay is a finite non-empty set of
attributes. Ay is a set of conditional attributes and d is a decision attribute indi-
cating the decision class for each object in the universe. Fach a € Ay corresponds
to the function I, : U — V, called evaluation function, where V, is called the
value set of a. The decision attribute allows partitioning the universe into blocks
(classes) determined by all possible decisions.

Sometimes we will use D for denoting {d}, i.e. ({d} = D).

A decision table can be implemented as a two-dimensional array (matrix), in
which one usually associates rows to objects, columns to attributes and cells to
values of attributes on objects.
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When considering decision tables, it is important to distinguish between the
so called consistent and the inconsistent ones. A decision table is said to be
consistent, if each combination of values of descriptive attributes uniquely deter-
mines the value of the decision attribute, and inconsistent, otherwise. For the
purpose of this paper we only consider consistent decision tables.

It is important to introduce the definition of the indiscernibility relation.

Definition 2. (indiscernibility relation) Given a subset of conditional attributes
A C A%, the indiscernibility relation is defined as IND(A|D) = {(u,v) €e UxU :
Va € A, [Io(u) = 1a(v)] V [La(u) = 1a(v)]}

The indiscernibility relation is an equivalence relation, so it induces a partition
over the universe. Being Sy a consistent decision table, the partition induced by
any subset of conditional attributes is finer than (or at maximum equal to) the
relation determined by all possible values of the decision attribute d.

We can find several definitions of reduct (see for example, [13]), nevertheless,
according to the aim of this paper, we refer to reducts assuming the classical
definition of discerning decision reduct [15] as follows.

Definition 3. (reduct for a decision table) Given a decision table Sq, an attribute
set R C A} is called a reduct, if R satisfies the following two conditions:

(i) IND(R|D) = IND(A}|D);
(i1) For any a € R, IND((R — {a})|D) # IND(A;|D).

This definition ensures that a reduct has no lower ability to distinguish objects
belonging to different classes than the whole set of attributes, being minimal
with regard to inclusion, i.e. a reduct does not contain redundant attributes or,
equivalently, a reduct does not include other reducts. The original idea of reduct
is based on inter-class comparisons.

2.2 Testors

The concept of testor (initially test) was created by S. V. Yablonskii as a tool
for analysis of problems connected with control and diagnosis of faults in cir-
cuits [26]. In publications related to this area the original term test is used instead
of testor and the minimal ones (typical testors) are called dead-end tests.

The concept of testor (and typical testor) has had numerous generalizations
and adaptations to different environments [10]. In this paper, we focus on the
classical concept defined into the pattern recognition area, derived from [5], but
using a notation similar to that used for reducts to make this presentation more
coherent and understandable.

Definition 4. (testor for a decision table) Let Sq = (U, Ay = Ay U{d}) a deci-
sion table and let T C Af. It (u) denotes the partial description of u considering
only attributes belonging to T'. T C A} is a testor with respect to a decision table
Sq if Vu,v € U : [Ip(u) = I7(v)] = [La(u) = 14(v)]. If T is a testor such that
none of its subsets is a testor, then T is a typical (irreducible) testor.
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This definition means that attributes belonging to a testor are jointly sufficient
to discern between any pair of objects belonging to different classes; if a testor
is typical, each attribute is individually necessary. That is exactly the same as
a reduct. This means that in their classical formulations the concepts of reduct
and typical testor coincide.

A more detailed study about the relation between reducts and typical testors
can be found in [9].

2.3 Constructs

Both, reducts and testors are defined from an inter-class object comparison point
of view. They ensure sufficient discernibility of objects belonging to different
classes. The novelty of the concept of construct (introduced by R. Susmaga in
2003 [24]) is the combination of inter-class and intra-class comparisons in such a
way that a resulting subset of conditional attributes would ensure not only the
ability to distinguish objects belonging to different classes, but also preserves
certain similarity between objects belonging to the same class.

Let us now consider the following similarity relation defined between objects
belonging to the same class in a decision table Sy = (U, A} U {d}).

Definition 5. (similarity relation) Given a subset of conditional attributes A C
A¥, the similarity relation is defined as SIM (A|D) = {(u,v) € U x U : [I4(u) =
Ii(v)] and Ja € A [I,(u) = I,(v)]}.

If a pair of objects belongs to SIM(A|D) then these objects belong to the same
class and they are indiscernible on at least one attribute from the set A. This
relation is reflexive and symmetric, but it is not transitive.

The definition of construct may be stated as follows.

Definition 6. (cosntruct) Given a decision table Sq, an attribute set C C A} is
called a construct, if C' satisfies the following conditions:

(i) IND(C|D) = IND(A?|D);
(ii) SIM(C|D) = SIM(A}|D);
(#ii) For anya € C,IND((C—{a})|D) # IND(A;|D) and SIM((C—{a})|D) #
SIM(Af|D);

Condition (7) means that a construct retains the discernibility of objects belong-
ing to different classes. In addition, a construct ensures similarity between objects
belonging to the same class, at least at level that the whole set of condition
attributes does. Condition (¢i7) ensures the construct’s minimality regarding to
inclusion relation.

Ezample 1. The matrix M represents a decision table, for which U = {uy, us, us,
Ug, us, Ug, Ur, ug }, Ay = {a1,az,a3,a4} and D = {d}.
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ay as as aq d
up fa 1 25 red 1
ug | a 0 19 yellow 1
us | b 1 25 green 1
ug | b 0 19 red 1

M= us | a 0 25  blue 2 (1)

ug | d 0 29 pink 2
uyp | ¢ 0 7 blue 3
ug \ ¢ 1 5 wyellow 3

From (Eq.1) we have that {aj,as} is not a reduct, see for example that
I, (ug) = I, (us) = a and I, (uz) = I, (us) = 0 being Iy(uz) = 1 and I(us) =
2. For this table {as,as}, {a1,a4} and {as,as} are the reducts (also typical
testors). Moreover, {as,as}, for example, is not a construct, see for example
that 1 = I, (us) # Ia,(ua) = 0 and 25 = I, (u3) # I4,(us) = 19 being Ig(us) =
Ii(ug) =1 and I, (ug) = I, (uyg). For M the only construct is {a1,as, a4}

3 Proposed Method

In [9] the authors study the relation between reducts and typical testors. Among
the practical applications that results as consequence of this relation, they men-
tion that algorithms for computing reducts can be used for computing typical
testors, and vice versa.

In this section, we propose a method that allows using testor algorithms for
computing constructs, particularly algorithms that use the binary discernibility
matrix [6].

Originally, the binary discernibility matrix was defined as the distinction
table [25] for an information table by comparing all objects regrading all attributes.
If we focus on computing reducts, binary discernibility matrices only need compar-
isons between objects belonging to different classes. In these matrices, it is com-
mon to denote by 0 if values corresponding to the same attribute are equal and 1
otherwise.

As it is known, discernibility matrices contain redundant information, and
the binary ones are not an exception, so testor algorithms usually work on basic
binary discernibility matrices instead of the original discernibility ones (for more
details see [12]).

Using this basic binary discernibility matrix, some testor algorithms are
easily adapted for computing reducts [2,11,12,19-21]. The novelty of the research
reported in this paper is to provide a method that allows algorithms originally
designed for computing typical testors to be used to compute constructs too.
For that, we need to pre-calculate a new type of binary comparison matrix as
follows.

Let Sg = (U, A7 U{d}) be a decision table, and let us define for each attribute
a in A} a dissimilarity function ¢, as follows:

a1 Vo xV, —{0,1}
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0 ifz=y
1 otherwise

eale) = { )

Thus, we can introduce the following definition which constitutes the basis
of our proposed method.

Definition 7. (Binary comparison matriz) Given a decision table Sq = (U, Ay =
Aru{d}), with Af = {a1,az,...,a,}. The binary comparison matriz M°* of Sy is
a matriz, in which each row is associated to a pair of objects (u,v) with u # v and

25 deﬁned by (Cal ({ay (1), 10y (v) 5 Cay (Lay (0), Lay (0)) 5 -+ Ca, (La, (w), La, (v))),
eing

ctunon = {3 ORI o

Definition 7 states that pairs of objects are compared taking into account if both
objects belong to different classes or to the same class. In this way, when we
are comparing objects, if an attribute distinguishes two objects belonging to
different classes, we put a one in the corresponding entry of the matrix, this
means that this attribute should be taken into account when we are building
constructs.

On the other hand, if an attribute does not distinguish between two objects
(belonging to the same class), we put a one, because this attribute contributes to
preserve the similarity between these objects, this means that this attribute also
should be taken into account when we are building constructs. The complexity
of computing the binary comparison matrix is O(n|U|?)

Let us examine the following example.

Ezample 2. As an example, we can build the binary comparison matrix M°" for
the decision table (Eq. 1) shown in Example 1. For reasons of space we show M !
in form of a table, the last two rows indicates the pair of objects that corresponds
to the comparison in this column.

a11 0001110001111 11111111011111
a0 1. 01 110010001011 1000O011O01O01O0
a0 1 0011 1011111001111 111011110O0
ag0 01111 1001110011111 111001110

Ul U1 Ul Ul Ul UL UL U2 U2 U2 U2 U2 U2 U3 U3 U3 U3 U3 U4 U4 U4 U4 U5 U5 U5 U UG UT

U2 U3 U4 U5 U UT U U3 U4 U5 UG UT U U4 U5 U U7 UK U5 UG UT U8 UG UT U UT U U

As usually, the comparison matrix contains redundant information, so we can
apply a process of simplification that is equivalent to applying absorption laws
for obtaining a matrix that just contains the information needed to compute the
whole set of constructs. Obviously, rows containing only zeros are not considered.
This kind of matrix is known as basic matrix [12]. For obtaining the basic binary
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comparison matrix from the binary comparison matrix it is necessary to compare

each row of M0 against the remaining rows, therefore, the complexity of this
transformation is O(n|U|*).

Ezxample 3. For the matrix M T in the previous example, we have the following
basic binary comparison matrix. From this matrix is immediate that the only
construct is {a1, as, a4} as we previously said in Example 1.

1000
0001 (4)
0100

So, we can enunciate the principal result of this research.

Proposition 1. Let Sq = (U, Ay = A U {d}) be a decision table and MOt
binary comparison matriz. Then the set CONST (Sy ) of all constructs of Sd 18
the same as the set TT(MOI) of all typical testors of MOT,

Proof. The proposition is a straightforward consequence of the original defin-
itions of typical testor and construct, because both may be interpreted as the
prime implicantsAof the same disjunctive normal form. Notice that the proposi-
tion considers M°' instead of the basic binary comparison matriz, nevertheless
theoretically one can substitutes one matrixz for the other one since the associated
disjunctive normal forms are the same. Normally, the basic binary comparison
matriz is used because it is simpler and usually much more smaller.

Summarizing, given a decision table, the steps that comprise the proposed method
for computing constructs by using typical testor algorithms are as follows:

1. Compute the binary comparison matrix (Definition 7).
2. From matrix computed in step 1, compute the corresponding basic matrix.
3. Apply a typical testor algorithm.

3.1 TIllustrative Examples

As a manner of illustrative examples, we include in this section the results
obtained for three datasets from the UCI Repository of Machine Learning [3].

In Table1, columns A, B and C contain general information of the datasets
(number of condltlonal attributes, classes and objects respectively); columns D
and E show the number of typical testors and constructs computed for each
dataset, respectively. In all cases, both typical testors (reducts) and constructs
were computed by using the algorithm CT-EXT [19]. Results for reducts were
verified by using RSES [4,22].

These results are shown as a small example of how an area can be bene-
fited from other one, in this case the results in the area of testors, specifically
algorithms for computing typical testors, can be applied through our proposed
method in the area of reducts-constructs.
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Table 1. Reducts and constructs for several datasets

Data set Conditional attributes | Classes | Objects | |[TT| | [CONST]|
(A) ® (© (D ®
Australian 14 2 690 44 | 2
German(Statlog) | 20 2 1000 |846 |17
Shuttle 9 7 43500 19 1

However, this is not an exhausted matter, the exploration of algorithms for
computing different types of typical testors [1,7,8,17,18] could be a source for
further contributions in this direction.

Similarly, further study of the relation between testors and constructs can
bring new benefits, not only in the area of attribute reduction but possibly also
for classification.

4 Conclusions

The main purpose of the research reported in this paper has been a presenta-
tion of a novel method for computing constructs, which involves modifying the
classic definition of pairwise object comparison matrix, specifically the binary
comparison matrix, adapting it to the requirements of certain algorithms origi-
nally designed to compute typical testors.

As we have discussed along the paper, reducts and typical testors are concepts
closely related, and in certain environments they coincide. From another point
of view constructs constitute a different contribution to the attribute reduction
problem.

In this paper, we show that the relation between these different concepts,
which has been insufficiently studied to date, can be exploited. Specifically, we
illustrate a way in which algorithms that originally were designed for computing
typical testors in the framework of pattern recognition, through our proposed
method can be used in a straightforward way for computing constructs, by a
different implementation of the pairwise comparison matrix.

It is expected that this is not the unique benefit we can obtain of this relation
therefore a deeper study is mandatory as future work.
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