
Analyzing the Restart Behavior
of Industrial Control Applications

Stefan Hauck-Stattelmann1(�), Sebastian Biallas2, Bastian Schlich1,
Stefan Kowalewski2, and Raoul Jetley3

1 ABB Corporate Research Germany, Research Area Software, Ladenburg, Germany
stefan.hauck-stattelmann@de.abb.com

2 Embedded Software Laboratory, RWTH Aachen University, Aachen, Germany
3 ABB Corporate Research India, Research Area Software, Bangalore, India

Abstract. Critical infrastructure such as chemical plants, manufactur-
ing facilities or tidal barrages are usually operated using specialized
control devices. These devices are programmed using domain-specific
programming languages for which static code analysis techniques are
not widely used yet. This paper compares a sophisticated academic tool
to a lightweight compliance check approach regarding the detection of
programming errors that only occur after program restart. As this is a
common problem in industrial control code, the paper proposes a way to
improve the accuracy of analyses for this class of errors.

Keywords: Static Analysis · Abstract Interpretation · Programmable
Logic Controllers

1 Introduction

Programmable Logic Controllers (PLCs) are widely used for industrial automa-
tion tasks, e. g., for controlling equipment or supervising production processes.
Most PLC programs are written in programming languages defined in the IEC
61131-3 standard [1]. As these languages are rarely used in other domains, the
number of available tools for static code analysis is quite limited in comparison
to other languages. The authors previously investigated the use of static code
analysis for PLC programs using abstract interpretation [2] and more lightweight
techniques [3]. This work discusses the detection of problems that are only trig-
gered after a PLC restart and proposes a way to improve this detection.

PLC programs have several interesting properties distinguishing them from
standard applications. PLC programs are always executed cyclically, i. e., they
are executed over and over again as long as the PLC is running. From an anal-
ysis perspective, this means that there is an implicit loop around the entry and
exit point of a program. Interaction with the environment, e. g., sensors and
actuators interfacing with machinery, is cleanly separated from program execu-
tion through the runtime system. Additionally, many PLCs have battery-backed
memory regions, which means that certain program variables can retain their

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 585–588, 2015.
DOI: 10.1007/978-3-319-19249-9_38



586 S. Hauck-Stattelmann et al.

values even after the PLC is restarted. This is a very important capability of a
PLC and required, e. g., to document the operating hours of machinery.

While retain variables are often necessary to implement the required func-
tionality, they are also the source of problems in the code that are hard to detect.
The reason for this is that the interaction between variables with and without
the retain attribute is sometimes difficult to understand and even harder to test.
A simplified example of this kind of problem is shown in Fig. 1. The variable
fs is erroneously marked with the retain attribute and thus is only set to the
initial value when the program is started the first time. All other variables are set
to the value specified in their declaration whenever the PLC is restarted. This
leads to a division by zero in the last assignment of the program after a restart,
yielding unexpected results.

2 Comparison of Available Analysis Tools
To the best of our knowledge, Bornot et al. [4]

1 PROGRAM Program1
2 VAR RETAIN
3 fs : BOOL := TRUE;
4 END_VAR
5 VAR
6 a : INT := 0;
7 b : INT := 0;
8 END_VAR
9 IF fs THEN

10 b := 2;
11 END_IF;
12 fs := FALSE;
13 a := 1234 / b;
14 END_PROGRAM

Fig. 1. Example Program

were the first to describe static analysis of PLC
programs based on abstract interpretation. More
recently, Prahofer et al. [5] discuss the appli-
cability of static code analysis for IEC 61131-
3 languages and also assess the available com-
mercial tools in this area. Existing commercial
tools focus on syntactic checks, e. g., enforcing
naming conventions for variables or looking for
error-prone code patterns such as dividing by a
variable that has not been compared to zero.

The authors were involved in the development
of different research tools for the static analysis
of PLC programs. The Arcade.PLC tool1 de-
veloped by RWTH Aachen University focuses on
formal methods. A prototype tool developed by
ABB corporate research [3] is a hybrid analysis
combining abstract interpretation and syntactic checks. The example from Fig. 1
will be used to discuss the different approaches regarding retain variables.

Arcade.PLC can detect the division by zero problem shown in the exam-
ple by first performing a value-set analysis and then using this information to
perform further checks, e. g., detecting divisions where zero is part of the poten-
tial value range of the divisor. Since the value-set analysis is based on abstract
interpretation, it can calculate a sound over-approximation of the value ranges
without considering the semantics of the retain attribute. The analysis will sim-
ply deduce that fs can have the value true or false while b can have the value
0 or 2 at program entry. Thus, the division by zero cannot be ruled out and a
warning is issued.

The ABB tool supports data flow analyses, but also can check purely syntactic
compliance rules. One such rule, which is already used by ABB business units
1 http://arcade.embedded.rwth-aachen.de, example can be tested there

http://arcade.embedded.rwth-aachen.de


Analyzing the Restart Behavior of Industrial Control Applications 587

Entry

Exit

BodyNew Cycle

Entry 1

Exit 1

Body 1

New Cycle

Entry n + 1

Exit n + 1

Body n +1New Cycle

Entry r

Exit r

Body r

New Cycle

Entry r + 1

Exit r + 1

Body r +1New Cycle

Restart

Retain Entry 
+ 

Unrolling

Fig. 2. Proposed Inlining and Unrolling of the Control Flow Graph for a PLC Program

for manual code reviews, is that every variable declaration has to specify the
retain attribute (or a similar one). Applying this rule on the example program
yields warnings for the variables a and b. Automating this check can help in
detecting problematic statements in control code, in particular when combined
with checks for programming errors like a potential division by zero. While the
latter is also supported by the tool, the correlation between a potential error
and the missing retain attribute still has to be done manually.

Neither of these tools cannot provide a developer with the information that
certain problems are only triggered when a program has been running for some
time and the PLC is restarted. Unexpected behavior due to incorrectly specified
retain attributes, however, is a common problem in PLC programs. Detecting
these errors manually is very difficult, in particular if the behavior of a program
relates to certain characteristics of the equipment it is controlling.

3 Improving Accuracy Through Context Information

Detecting problems during restart can be automated by making the restart ex-
plicit during analysis. To achieve this, the analysis has to be made context-
sensitive with respect to PLC restart behavior by adding disjoint analysis con-
texts for the execution cycles after a restart. This technique allows detecting ini-
tialization problems and problems that only manifest themselves after a restart.
It is similar to the VIVU (Virtual Inlining and Virtual Unrolling) approach pro-
posed in [6] which aims at improving the results for cache modeling.

Improved analysis accuracy can be achieved by building a supergraph from
the regular control flow graph (CFG) of the program, as illustrated in Fig. 2.
This is achieved through the following steps:

– Unroll the implicit loop around the program once (left hand side of the
supergraph).

– Duplicate the unrolled CFG to consider the restart context (right hand side
of the supergraph).



588 S. Hauck-Stattelmann et al.

– Add edges to the graph so data flow information can be propagated to the
entry of the subgraph for restart, but variables without the retain attribute
are set to their initial value (Restart edges).

Performing data flow analysis on the supergraph makes the analysis of PLC
programs more accurate in several ways. First of all, if certain problems such as
a potential division by zero are only detected in one of the duplicated subgraphs,
this information can be made available to the developer to ease debugging. Most
importantly, the analysis results, e. g., value sets of variables, for the correspond-
ing parts of the supergraph with and without a restart can be compared. Thus,
divergent behavior between program execution with and without a restart can be
detected automatically, which was not possible before. The proposed technique
is applicable to all forms of data flow analysis.

4 Conclusion

This paper discussed the capabilities of formal static code analysis based on
abstract interpretation and lightweight analysis using code compliance checks
regarding errors in PLC programs rooted in PLC restart behavior. Both ap-
proaches can detect code smells hinting at these problems, but directly present-
ing this information to the developer has not been possible so far. To overcome
this issue, this paper proposed handling the PLC restart in a separate analy-
sis context by virtual inlining of the restart entry and virtual unrolling of the
cyclic code execution. Considering the restart behavior of PLC in the analysis
enables the automatic detection of divergent program behavior after a restart.
This improvement has already been integrated into Arcade.PLC with little de-
velopment effort and without significantly impacting the runtime of the analysis.

References

1. International Electrotechnical Commission, IEC 61131-3 Programmable Con-
trollers Part 3: Programming languages (2003)

2. Stattelmann, S., Biallas, S., Schlich, B., Kowalewski, S.: Applying Static Code
Analysis on Industrial Controller Code. In: Emerging Technology and Factory Au-
tomation (2014)

3. Nair. S., Jetley, R., Nair, A., Hauck-Stattelmann, S.: A Static Code Analysis Tool
for Control System Software. In: 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (2015)

4. Bornot, S., Huuck, R., Lakhnech, Y., Lukoschus, B.: Utilizing Static Analysis for
Programmable Logic Controllers. In: 4th International Conference on Automation
of Mixed Processes (2000)

5. Prahofer, H., Angerer, F., Ramler, R., Lacheiner, H., Grillenberger, F.: Opportuni-
ties and Challenges of Static Code Analysis of IEC 61131-3 programs. In: Emerging
Technology and Factory Automation (2012)

6. Martin, F., Alt, M., Wilhelm, R., Ferdinand, C.: Analysis of Loops. In: Koskimies,
K. (ed.) CC 1998. LNCS, vol. 1383, pp. 80–94. Springer, Heidelberg (1998)


	Analyzing the Restart Behavior of Industrial Control Applications
	1 Introduction
	2 Comparison of Available Analysis Tools
	3 Improving Accuracy Through Context Information
	4 Conclusion




