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Abstract. Parameters are often used to tune mathematical models and
capture nondeterminism and uncertainty in physical and engineering
systems. This paper is concerned with parametric nonlinear dynamical
systems and the problem of determining the parameter values that are
consistent with some expected properties. In our previous works, we pro-
posed a parameter synthesis algorithm limited to safety properties and
demonstrated its applications for biological systems. Here we consider
more general properties specified by a fragment of STL (Signal Tempo-
ral Logic), which allows us to deal with complex behavioral patterns that
biological processes exhibit. We propose an algorithm for parameter syn-
thesis w.r.t. a property specified using the considered logic. It exploits
reachable set computations and forward refinements. We instantiate our
algorithm in the case of polynomial dynamical systems exploiting Bern-
stein coefficients and we illustrate it on an epidemic model.
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1 Introduction

Temporal logic [1] is a formalism used to specify and reason on properties that
involve time. It is typically adopted in the context of formal verification, where
a temporal logic formula specifies the acceptable behaviors of a system and an
algorithm is used to check whether all the behaviors of the system satisfy the
formula. Such a procedure is commonly known as model checking [2]. Recently,
temporal logic has found applications outside formal verification, for instance
monitoring. In this case, a formal model is not necessary, since the system can
be treated as a black box whose observable behaviors can be monitored by
evaluating the satisfaction of the desired temporal property. Signal Temporal
Logic (STL [3, 4]) is a recently developed logic that allows specifying properties
of dense-time real-valued signals. It is particularly suitable for monitoring both
industrial case studies (see, e.g., [5, 6]) and biological systems (see, e.g., [7,
8]). It has also been used in the study of parametric systems, (see, e.g., [9])
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where parametric disturbance rejection properties are formalized in STL and
then verified. One of its interesting aspects is its semantics. In addition to the
classical semantics, where the result of the evaluation of a formula is a truth
value, STL offers a quantitative semantics that gives the idea of “how robustly”
a property is satisfied [10, 11].

In this work we propose an application of STL in the context of parameter
synthesis for dynamical systems. More concretely, given a parametric nonlinear
dynamical system and an STL property, we want to find a set of parameter values
that guarantees that all the possible runs of the model satisfy the property. The
parameter synthesis is an important problem, since it allows the designer to fine-
tune the model so that it captures and retains only the behaviors of interest.

Dealing with nonlinear dynamical systems is not easy. If reasoning on single
trajectory can be efficiently done by standard techniques, the problem of veri-
fying sets of trajectories remains difficult despite a number of existing methods
(see, e.g., [12–14]). Adding parameter synthesis to such a context makes the
problem even more challenging. Indeed, in addition to computing the trajecto-
ries of a parametric system, one needs to determine sets of parameter values
such that the corresponding trajectories satisfy a given specification.

STL and its monitoring algorithms have been conceived to evaluate logic for-
mulas on single continuous signals [3, 4]. In order to adapt STL to our synthesis
problem, we need to introduce a new semantics defined on sets of traces rather
than on a single one. This semantical definition requires then a new algorithm,
since it is not easy to adapt the existing ones. In fact, available algorithms
compute the truth values of a formula in a bottom-up approach, where atomic
predicates are evaluated on the full-length signal and the final result is obtained
by combining the logical operators. This approach does not suit our case, since
the system traces are affected by the eventual dynamical parameter restriction
in order to satisfy the property. This means that we cannot know precisely the
complete system evolution until the valid parameter values are determined. For
this reason we propose a new algorithm that operates in a forward way where,
at each step, valid parameter sets are identified and the system evolves in the
next steps under the on-the-fly synthesized parameters. We defer a discussion
on related work in parameter synthesis to the final section, after our approach
is described.

The paper begins with the preliminaries introducing the STL logic, the new
semantics, and the parameter synthesis problem. In Section 3 we describe the
abstract synthesis algorithm, we discuss its correctness and computational com-
plexity.1 Section 4 is dedicated to the concretization of our synthesis algorithm
for nonlinear discrete-time polynomial dynamical systems. To show the effective-
ness of the proposed approach, we apply our algorithm on an epidemic model
describing the transmission of diseases through a population. We provide some
experimental results and scalability evaluations obtained from a prototype C++

1 All the proofs can be found at
http://www-verimag.imag.fr/∼dreossi/docs/papers/parasynth.pdf

http://www-verimag.imag.fr/~dreossi/docs/papers/parasynth.pdf
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tool. These results are reported in Section 5. Finally, the paper ends with related
works, a summary of our results, and possible future developments.

2 Preliminaries and Problem Statement

2.1 Parametric Dynamical Systems

Let R denote the set of reals. We consider a discrete-time parametric dynamical
system

x(k + 1) = f(x(k),p) x(0) ∈ X−,p ∈ P, (1)

where x ∈ R
n is the vector of state variables, p ∈ P ⊆ R

m is the vector of
parameters, f is a vector of functions fi : R

n × R
m → R for i = 1, . . . , n. The

set X− ⊆ R
n is called pre-initial set, and the set P is called parameter set.

We use X0 = f(X−, P ) to denote the initial set of starting states at time 0.
The distinction between pre-initial and initial sets is introduced to overcome a
technical issue, i.e., the pre-initial set may not satisfy the specification of interest,
while the initial one does.

Given x ∈ X− and p ∈ P , let

trKp (x) = 〈x(0) = f(x,p), . . . ,x(j − 1) = f j(x,p), . . . ,x(K) = fK+1(x,p)〉
be the trace of length K ∈ N of the system originating from x with parameter
values p. The set of all possible traces of the dynamical system (1) can be denoted
as TrKp (X−) = {trKp (x) | x ∈ X−} and TrKP (X−) = {TrKp (X−) | p ∈ P}.

2.2 Logic

Let B = {true, false} be the set of Boolean values and Σ = {σ1, . . . , σk} be a
finite set of predicates mapping R

n to B. For a given j ∈ {1, . . . , k}, the predicate
σj is of the form σj ≡ sj(x1, . . . , xn) ∼ 0 where ∼∈ {<,≥} and sj : Rn → R is
a function over the state variables.

We consider Signal Temporal Logic (STL) [3, 15] formulas in positive normal
form, i.e., formulas generated through the following grammar:

ϕ := σ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ UI ϕ (2)

where σ ∈ Σ and I ⊂ N denotes the interval I = [a, b] with a ≤ b in N. For
t ∈ N, t + I is the set {t + t′ | t′ ∈ I}. We can define in the usual way other
common operators, such as �,⊥,RI,�I ,�I . Note that the negation operator is
not included in the presented grammar. However, a given STL formula including
some negations, can be rewritten in positive normal form by pushing the nega-
tions down to the predicates and reversing their inequalities. Finally, the horizon
h(ϕ) of a formula ϕ is the last time instant to which ϕ refers, i.e.:

h(σ) = 0 h(ϕ1 ∧ ϕ2) = h(ϕ1 ∨ ϕ2) = max(h(ϕ1), h(ϕ2))

h(ϕ1U[a,b]ϕ2) = max(h(ϕ1) + b− 1, h(ϕ2) + b).
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Given x ∈ X− and p ∈ P we can consider the standard Boolean semantics of
STL formulas over the trace trKp (x). Let ϕ be a formula such that t+h(ϕ) ≤ K,
we define:

trKp (x), t |= σ iff σ(x(t)) is true

trKp (x), t |= ϕ1 ∧ ϕ2 iff trKp (x), t |= ϕ1 and trKp (x), t |= ϕ2

trKp (x), t |= ϕ1 ∨ ϕ2 iff trKp (x), t |= ϕ1 or trKp (x), t |= ϕ2

trKp (x), t |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I trKp (x), t′ |= ϕ2 and ∀t′′ ∈ [t, t′) trKp (x), t′′ |= ϕ1

We use the notation trKp (x) |= ϕ for trKp (x), 0 |= ϕ. We say that TrKP (X−)
satisfies a formula ϕ, denoted as TrKP (X−) |= ϕ if and only if

∀p ∈ P ∀trKp (x) ∈ TrKp (X−) : trKp (x) |= ϕ.

Note that we consider discrete-time systems over a finite horizon; our formulas
can thus be encoded in LTL formulas involving Boolean and next operators
interpreted over finite traces [16]. However, STL offers us some advantages. First,
to express the bounded until operator using LTL, the corresponding formula
may be long. Furthermore, STL has both a quantitative discrete-time and a
continuous-time semantics. For some classes of systems, the quantitative analysis
on a time-discretized system gives complete information also on its continuous-
time version [10].

2.3 Parameter Synthesis Problem

Our parameter synthesis problem can now be stated as follows. Let X− be a
pre-initial set, P be a parameter set, and ϕ a logical formula, find the largest
subset Pϕ ⊆ P such that starting from X−, the behaviors of the system satisfy
ϕ up to time K, that is TrKPϕ

(X−) |= ϕ.
The above problem requires handling sets of parametric traces, which is hard

especially when the solution of the dynamical system can only be approximated,
as in the case of polynomial systems that we will specifically treat later. There-
fore, we consider a variant of this problem for approximated sets of traces.
The set TrKP (X−) of traces can be over-approximated by considering the sets
Xj+1 = {f(x,p) | x ∈ Xj,p ∈ P}, for j = 0, . . . ,K, where X− acts as X−1, and
the behaviors defined as WK

P (X−) = 〈X0, X1, . . . , XK〉. It is important to note
that this over-approximation does not keep the relation between a trace and its
corresponding parameter value.

On behaviors we can define a semantics that reflects the parameter refine-
ment problem we are interested in. In particular, we consider the function
X (ϕ,WK

P (X−), t) defined by structural induction on formulas as follows:
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X (σ,WK
P (X−), t) = P t

σ, where P t
σ is the largest subset P t

σ ⊆ P such that

∀x ∈ Xt−1,∀p ∈ P t
σ, σ(f(x,p)) is true

X (ϕ1 ∧ ϕ2,WK
P (X−), t) = X (ϕ1,WK

P (X−), t) ∩ X (ϕ2,WK
P (X−), t)

X (ϕ1 ∨ ϕ2,WK
P (X−), t) = X (ϕ1,WK

P (X−), t) ∪ X (ϕ2,WK
P (X−), t)

X (ϕ1UIϕ2,WK
P (X−), t) =

⋃

t′∈t+I

(X (ϕ2,WK
P (X−), t′) ∩

⋂

t′′∈[t,t′)

X (ϕ1,WK
P (X−), t′′)

)

Intuitively, X (ϕ,WK
P (X−), t) returns a subset P t

ϕ of parameters that ensures
that ϕ is satisfied at time t starting from any point in Xt−1 and assigning to
the parameters any value in P t

ϕ. We say that a behavior WK
P (X−) satisfies a

formula ϕ, denoted with WK
P (X−) |= ϕ, if and only if X (ϕ,WK

P (X−), 0) = P .
We can prove that X (ϕ,WK

P (X−), t) reverse the order of inclusions between
parameter sets and it is idempotent. This implies that the refined set of param-
eter values satisfies the formula ϕ, as stated by the following theorem.

Theorem 1. If X (ϕ,WK
P (X−), 0) = Pϕ, then WK

Pϕ
(X−) |= ϕ.

The following results establish relationships between the two semantics. Since
WK

P (X−) over-approximates TrKP (X−), if a formula ϕ is satisfied by WK
P (X−),

then it is satisfied also by TrKP (X−).

Theorem 2. If X (ϕ,WK
P (X−), 0) = Pϕ, then TrKPϕ

(X−) |= ϕ.

If we compute Pϕ = X (ϕ,WK
P (X−), 0) then we have an under-approximation

of the solution of the original parameter synthesis problem. Moreover, Pϕ is
nothing but the solution of a parameter synthesis problem over behaviors. In
this approach we introduce three main sources of approximation error.

First, in the semantics of disjunction over behaviors we impose that for a
value p either all the points x satisfy the first disjunct or they all satisfy the
second one. In a more general setting, this would correspond to approximating
a property of the form ∀y(A(y) ∨B(y)) with ∀y(A(y)) ∨ ∀y(B(y)).

Second, WK
P (X−) represents a set of traces that is larger than TrKP (X−),

since from each point in Xj we can reach each point in Xj+1. This influences
the semantics of the until operator. In fact, we need to require that there exists
a time point t′ at which ϕ2 is satisfied from all the points.

Third, WK
P (X−) is a-priori computed using P , so we also propagate points of

Xj that are not necessarily reachable if we replace P with a proper subset.
In the next sections we present an algorithm that computes an under-ap-

proximation of the solution to the original parameter synthesis problem. Our
algorithm is inspired by X (ϕ,WK

P (X−), 0), but it produces a better approxi-
mation since the parameter set is dynamically refined and the above-mentioned
third source of approximation is avoided as at each step only the refined param-
eter set is used to determine the next states.
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3 Parameter Synthesis Algorithm

An intuitive way to solve our synthesis problem is to express the behavior set Xj

at each time instant j, up to time K. Then by examining the sets from time K
back to time 0 we can derive the conditions on the parameters for the satisfaction
of the temporal property, as in the standard monitoring approaches [3]. In other
terms, we could use such backward analysis for the semantics defined by (2.3).
However, while in monitoring only a single trace is considered at a time and
furthermore the trace is already given, in our parameter synthesis problem the
behavior set needs to be approximated (since exact reachability computation
for nonlinear systems is often impossible). When approximations are used, a
major drawback of such a backward procedure is that the approximation error
depends on the size of the parameter set and is accumulated step after step. The
more spurious behaviors are included in the computed set, the more restricted
the parameter set is. In order to gain more accuracy, it is thus important to be
able to remove, as early as possible, the parameter values that make the system
violate the property. This is the reason we opt for a forward procedure.

We describe our top-down algorithm ParaSynth(X,P, ϕ) (Algorithm 1),
that takes as input a set of states X , a set of parameters P , and a formula ϕ,
and refines P through a series of recursions driven by the structure of ϕ. At
each step, we let the system evolve under the parameter set synthesized up to
that step. It is structured in four main blocks, one for each type of subformulæ:
predicate, conjunction, disjunction, and until. It uses the following two basic
functions. Given a set X , a parameter set P and a predicate σ,

– ReachStep(X,P ) computes the image f(X,P ) of X under P ;
– RefPredicate(X,P, σ) computes the largest subset Pσ ⊆ P such that

all states in f(X,Pσ) (computed by ReachStep) satisfy σ, that is Pσ =
{p | p ∈ P ∧ ∀x ∈ X σ(f(x,p)) = true}. We call the computation of
RefPredicate a basic refinement, since it is a refinement of the parameter
set w.r.t. a predicate.

The base case is when the formula ϕ is a predicate σ (Line 2). In this case,
the algorithm simply calls the function RefPredicate(X,P, σ) that refines the
parameter set P w.r.t. the predicate σ and returns the result.

If ϕ is the conjunction of two formulas ϕ1∧ϕ2 (Line 5), from P the algorithm,
with two recursive calls, produces two refined parameter sets Pϕ1 and Pϕ2 , w.r.t.
the subformulas ϕ1 and ϕ2, respectively, and then returns the intersection Pϕ1 ∩
Pϕ2 . Similarly, if ϕ is a disjunction ϕ1 ∨ ϕ2 (Line 8), the algorithm returns the
union Pϕ1 ∪ Pϕ2 .

The case where ϕ is ϕ1UIϕ2 (Line 11) is slightly more complicated and re-
quires a specific function UntilSynth (Algorithm 2). The function Until-
Synth(X,P, ϕ1U[a,b]ϕ2) is structured in three main blocks, depending on the
values a, b: (1) a > 0 and b > 0; (2) a = 0 and b > 0; (3) a = 0 and b = 0.
Intuitively, the function recursively transforms the cases (1) and (2) into the
base case (3). Notice that a single until formula ϕ1U[a,b]ϕ2 may require several
basic refinements. Consider for instance the case where ϕ1 always holds and ϕ2
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Algorithm 1 Parameter synthesis.

1: function ParaSynth(X,P, ϕ)
2: if ϕ = σ then � Predicate
3: return RefPredicate(X,P, σ)
4: end if
5: if ϕ = ϕ1 ∧ ϕ2 then � Conjunction
6: return ParaSynth(X,P, ϕ1) ∩ ParaSynth(X,P, ϕ2)
7: end if
8: if ϕ = ϕ1 ∨ ϕ2 then � Disjunction
9: return ParaSynth(X,P, ϕ1) ∪ ParaSynth(X,P, ϕ2)
10: end if
11: if ϕ = ϕ1UIϕ2 then � Until
12: return UntilSynth(X,P, ϕ1UIϕ2)
13: end if
14: end function

Algorithm 2 Until synthesis.

1: function UntilSynth(X,P, ϕ1U[a,b]ϕ2)
2: if a > 0 and b > 0 then � Outside interval
3: Pϕ1 ← ParaSynth(X,P, ϕ1) � Check ϕ1

4: if Pϕ1 = ∅ then
5: return ∅
6: else
7: X ′ ← ReachStep(X,Pϕ1)
8: return UntilSynth(X ′, Pϕ1 , ϕ1U[a−1,b−1]ϕ2)
9: end if
10: end if
11: if a = 0 and b > 0 then � In interval
12: Pϕ1 ← ParaSynth(X,P, ϕ1) � Check ϕ1

13: Pϕ2 ← ParaSynth(X,P, ϕ2) � Check ϕ2

14: if Pϕ1 = ∅ then
15: return Pϕ2 � Until unsatisfied
16: else
17: X ′ ← ReachStep(X,Pϕ1)
18: return Pϕ2∪ UntilSynth(X ′, Pϕ1 , ϕ1U[a,b−1]ϕ2)
19: end if
20: end if
21: if a = 0 and b = 0 then � Base
22: return ParaSynth(X,P, ϕ2)
23: end if
24: end function

holds at several time points inside [a, b]. Here the number of basic refinements
that ϕ1U[a,b]ϕ2 requires is exactly the number of time points at which ϕ2 holds.
We now analyze the three cases in UntilSynth reported:

(1) a > 0 and b > 0: the until formula is satisfied if ϕ1 holds until ϕ2 is true
inside the interval [a, b]. We first refine the parameters at time 0 over ϕ1,
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obtaining the subset Pϕ1 (Line 3). If Pϕ1 is empty, the until formula cannot
be satisfied, and the algorithm returns the empty set. If Pϕ1 is not empty,
the algorithm performs a reachability step using the valid parameter set Pϕ1

to produce the new set X ′ (Line 7). Now the algorithm proceeds with the
recursive call UntilSynth(X ′, Pϕ1 , ϕ1U[a,b]−1ϕ2) (Line 8). This can be seen
as making a step towards the interval [a, b], except that instead of restoring
the synthesis from time 1, we shift the interval backwards by 1. Hence, the
next refinement is computed always at time 0.

(2) a = 0 and b > 0: there are two ways to satisfy the until formula: (1) ϕ2 is
satisfied right now at time 0, or (2) ϕ1 holds until ϕ2 is satisfied before the
time instant b. In the first case, we need to refine the parameter set w.r.t.
ϕ2. If the resulting Pϕ2 is not empty, it is a valid parameter set that satisfies
the until formula. In the second case, the algorithm refines w.r.t. ϕ1 and
checks whether the result Pϕ1 is empty (Line 12). If so, the until formula
cannot be satisfied in the future. Hence the algorithm returns the refined
set Pϕ2 previously computed. If Pϕ1 is not empty, the procedure performs
a reachability step under the refined parameters Pϕ1 , obtaining the new set
X ′. Similarly to the previous case, we execute a step forward by shortening
the interval by one (Line 18). The procedure then returns the union of Pϕ2

and the result provided by the recursive call;

(3) a = 0 and b = 0: this is the base case of the recursive calls. It suffices to
refine w.r.t. ϕ2 and return Pϕ2 .

Example 1. We illustrate ParaSynth in the case φ = (φ1 ∨ φ2)U[1,2](φ3 ∧ φ4).
With the call ParaSynth(X−, P, (φ1 ∨ φ2)U[1,2](φ3 ∧ φ4)) the algorithm en-

ters the until section and calls UntilSynth. The first synthesis is performed
inside the (a > 0 and b > 0) case w.r.t. to the sub-formula φ1 ∨φ2. ParaSynth
computes the refined sets P 0

φ1
and P 0

φ2
w.r.t. φ1 and φ2, and returns the union

P 0
φ1∨φ2

= P 0
φ1

∪ P 0
φ2
. Back to the until synthesis, supposing that P 0

φ1∨φ2
is

not empty, the algorithm computes X0 through a reachability step from X−

under the parameter set P 0
φ1∨φ2

, and calling itself with the updated reachabil-
ity set, the refined parameter set, and the shifted until interval, i.e., Until-
Synth(X0, P 0

φ1∨φ2
, (φ1 ∨ φ2)U[0,1](φ3 ∧ φ4)).

At this point UntilSynth enters the (a = 0 and b > 0) section. It first
refines w.r.t. (φ3 ∧ φ4), trying to find the first final solution. To do so, it calls
ParaSynth(X0, P 0

φ1∨φ2
, φ3 ∧ φ4) that produces the parameter set P 1

φ3∧φ4
=

P 1
φ3

∩ P 1
φ4
, result of the intersection of the two refinements of P 0

φ1∨φ2
w.r.t. φ3

and φ4. This set P
1
φ3∧φ4

, if not empty, represents the first valid parameter set.
Trying to find other possible solutions, the algorithm proceeds by computing

the parameter set P 1
φ1∨φ2

through the refinement of P 0
φ1∨φ2

w.r.t. φ1 ∨ φ2 and

performing a reachability step to the new set X1′′ . It then calls itself reducing
the until interval to [0, 0]. This is the base case (a = 0 and b = 0): the algorithm
refines w.r.t. φ3∧φ4 and returns the refined parameter set P 2

φ3∧φ4
. The synthesis

process is shown in Figure 1a. The figure depicts the series of refinements and
reachable sets that lead to the final result P 2

φ3∧φ4
∪ P 1

φ3∧φ4
.
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In the following, we prove the correctness of the presented algorithm and
determine its computational complexity.

Theorem 3. If ParaSynth (X−, P, ϕ) returns Pϕ, then X (ϕ,WK
P (X−), 0) ⊆

Pϕ and TrKPϕ
(X−) |= ϕ.

We remark that the above theorem has been proved under the assumption
that the function ReachStep(X,P ) computes exactly the image f(X,P ) and
the function RefPredicate(X,P, σ) the largest valid parameter set for the
predicate σ. However, it is not hard to see that, for Theorem 3 to hold, it
suffices to provide an over-approximation of the image f(X,P ) and an under-
approximation of the valid parameter set.

As far as the computational complexity of our algorithm is concerned, let
us refer to RefPredicate, ReachStep, ∪, and ∩ as symbolic operations. If
we have a formula without until operators our procedure performs a number
of symbolic operations that is linear in the length of the formula. In the case
of formulas with possibly nested until operators in the worst case we could per-
form an exponential number of symbolic operations w.r.t. the minimum between
the length of the formula and its time horizon. Let us consider the case of for-
mulas using only predicates and U[0,1] operators. Let the length of a formulas
ϕ be defined as the maximum number of nested until operators. For a formula
ϕ1U[0,1]ϕ2 having length m and horizon k our recursive procedure has a recursive
complexity equation in term of symbolic operations of the form

T (m, k) =

{
Θ(1) if m = 1 or k = 0
T (m2, k2) + T (m1, k1) + T (m, k − 1) +Θ(1) otherwise

where mi and ki are the length and horizon of ϕi. In the worst case we could
have m2 = m−2 and k2 = k−1. In this case we obtain T (m, k) ≥ 2T (m−2, k−
1)+Θ(1), which tells us that in the worst case T (m, k) = Ω(2min(m,k)) (number
of symbolic operations). If we were interested in monitoring a formula over a
finite set of traces, we could have reduced such complexity to a polynomial one
(see, e.g., [3, 15]). As we already pointed out, since we are interested in refining
sets of parameters and we do not use a precomputed set of traces to avoid rough
approximations, we do not see an easy way to reduce such complexity. Finally,
it is important to notice that the worst case complexity occurs only in very
pathological cases, which are not typical in real case studies.

4 The Case of Polynomial Systems

In Section 3 we presented an abstract algorithm that synthesizes a parameter
set under which the behavior of a system satisfies a given formula. A concrete
application depends on the ability to represent the parameter set, to implement
the function ReachStep for computing the behavior set, and the function Ref-
Predicate for refining the parameter set. We now propose a concretization of
the algorithm for nonlinear polynomial dynamical systems with polytopic param-
eter sets. The implementation that we present extends the synthesis procedures
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developed in our previous works for safety specifications [17, 18]. Notice that the
abstract algorithm exposed in Section 3 can be used for more general systems
as long as an implementation of the required procedures are provided. An ex-
ample might be continuous-time piecewise-linear dynamical systems, for which
reachability techniques and tools have been developed [19, 20].

From now on, we work with polynomial discrete-time dynamical systems of
the form x(k + 1) = f(x(k),p), where x ∈ R

n and p ∈ P . The parameter set P
is a bounded polytope in R

m and the polynomial function f is linear in p.
To compute the functions RefPredicate(X,P, σ) and ReachStep(X,P ),

we extend our reachability computation method based on the Bernstein form of
polynomials proposed in [17, 18] which we briefly recall in the following.

The sets of states are represented with template parallelotopes, that is the
n-dimensional generalization of the parallelograms. In order to exploit linear
programming, we require the predicates σ to be non-strict linear inequalities over
the state variables x2. In [17, 18] we developed a technique that, under these
assumptions, converts the parameter synthesis problem into a linear program.
In particular, if the predicate σ is of the from s(x) ≤ 0 and the parameter set
P ⊂ R

m is a convex polytope, to find a subset Ps ⊆ P such that the image f(x,p)
satisfies σ(x) for all x ∈ X and p ∈ Ps, it suffices to require s(f(x,p)) ≤ 0 to hold
for all x ∈ X and p ∈ Ps. We call Ps the valid parameter set w.r.t. the predicate
σ. Note that s(f(x,p)) is a polynomial in x and is linear in p. To find Ps, we take
advantage of the geometric properties of the coefficients b1(p), . . . ,bn(p) of the
polynomial s(f(x,p)) expressed in Bernstein form. Intuitively, these coefficients
provide an upper and a lower bound of the considered polynomial. Thus, if we
can restrict the parameter set P such each control point is smaller than 0, then
the resulting restricted set Ps contains all the valid parameter values w.r.t. the
predicate σ. The behavior set can also be over-approximated by composing the
template constraints of the parallelotope with f and bound the resulting function
by exploiting its Bernstein coefficients. Since the parameters p appear linearly in
the dynamics, the coefficients b1(p), . . . ,bn(p) are linear functions of p. Hence,
the valid parameter set can be determined by solving a linear system where all
the coefficients are constrained to be non-positive.

4.1 Parameter Set Representation

A convex polytope is the simplest form that we use to represent a parameter set.
With the notation P ≡ Ap ≤ b we mean that the parameter set P corresponds
to the solution of the linear system Ap ≤ b. More complex parameter sets can
be obtained by the intersection and the union of several basic convex polytopes.

Let P1 ≡ A1p ≤ b1 and P2 ≡ A2p ≤ b2 be two convex polytopes. It is not
difficult to see that the intersection P1 ∩ P2 is the convex polytope that corre-
sponds to P1 ∩ P2 ≡ Ap ≤ b, where A =

[
A1

A2

]
and b =

[
b1
b2

]
. Less trivial is the

union of two convex polytopes since it might not be convex and consequently the

2 Note that using only non strict inequalities, truth values � and ⊥ can be abbreviated
as � := z(x) ≤ 0 and ⊥ := o(x) ≤ 0, where z(x) = 0 and o(x) = 1 for all x ∈ R

n.
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representation through a linear system may not be possible. For this reason we
symbolically represent the union of two polytopes P1 and P2 by simply keeping
the list of the corresponding linear systems. Formally, with an abuse of notation,
P1 ∪ P2 is represented as P1 ∪ P2 ≡ {A1p ≤ b1, A2p ≤ b2}.

If a parameter set P is in the form P =
⋃n

i=1

⋂mi

j=1 Pi,j = (P1,1∩ . . .∩P1,m1)∪
. . .∪ (Pn,1 ∩ . . .∩Pn,mn) then it is said to be in union normal form. This form is
suitable for our set representation since the intersections of sets can be collapsed
in a unique linear system while the unions can be stored in single list.

4.2 Parameter Synthesis

We now discuss the implementation using the above represention of parameter
sets and the behavior computation based on the Bernstein form.

The refinementRefPredicate(X,P, σ)whereP ≡ {P1, . . . , Pn} (Algorithm1,
Line 2) can be done by refining each polytope Pi w.r.t. σ (using the procedure ex-
posed in [17]). Each function returns a set Pi,σ ⊆ P . The final result Pσ ⊆ P is the
union of the basic polytopes, represented as Pσ ≡ {P1,σ, . . . , Pn,σ}.

The conjunction and disjunction cases (Lines 5 and 8) involve the intersection
and union of Pϕ1 and Pϕ1 provided in union normal form. The intersection can
be obtained by intersecting each basic polytope of Pϕ1 with each basic polytope
of Pϕ2 . This operation can be carried out by just merging the linear systems
representing the considered basic polytopes. The union can be easily obtained
by concatenating the lists of basic polytopes that compose Pϕ1 and Pϕ2 .

We now focus on Algorithm 2, in particular on the calls of the functions
ReachStep and UntilSynth (Lines 7 and 13). Here the main issue concerns
the computation of ReachStep(X,P ) whose result can be non-convex. To this
end, we open several branches, one for each basic convex polytope of P . Hence,
instead of computing a single behavior set, we split the computation in several
reachability steps, one for each basic parameter set and refine the parameters
from them w.r.t. the considered sub-formula.

Example 2. Let us consider the formula (φ1∨φ2)U[1,2](φ3∧φ4) of Example 1.The
algorithm starts with ParaSynth (X−, P, (φ1 ∨φ2)U[1,2](φ3 ∧φ4)) that invokes
UntilSynth that enters in the case (a > 0 and b > 0) and performs the first
refinement of P w.r.t. the sub-formula φ1 ∨ φ2 by calling ParaSynth. This
function synthesizes P by refining w.r.t. both the predicates φ1 and φ2 and
merging the partial results. The result is the set P 0

φ1∨φ2
≡ {P 0

φ1
, P 0

φ2
}. At this

point, UntilSynth opens a branch from X− for each computed refinement.
We denote by X0

1 the set reached from X− under P 0
φ1

and by X0
2 the set

reached from X− under P 0
φ2
. UntilSynth proceeds with two recursive calls,

UntilSynth(X0
1 , P

0
φ1
, (φ1∨φ2)U[0,1](φ3∧φ4)) and UntilSynth(X0

2 , P
0
φ2
, (φ1∨

φ2)U[0,1](φ3 ∧ φ4)). We now consider the first recursive call. In this phase, Un-
tilSynth is in the case (a = 0 and b > 0). First, trying to satisfy the whole
until, the algorithm refines the set P 0

φ1
w.r.t. φ3 and φ4. This is done by calling

ParaSynth (X0, P 0
φ1
, φ3∧φ4). We denote the result with P 1,1

φ3∧φ4
= P 1

φ3
∩P 1

φ4
. If
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not empty, P 1,1
φ3∧φ4

is the first valid parameter set. Trying to find other solutions,
UntilSynth refines also w.r.t. φ1 ∨ φ2 opening two new branches, one for each
disjunct. Each branch corresponds to a recursive call of the form ParaSynth
(X1

2 , P
1,1
φ1

, (φ1 ∨φ2)U[0,0](φ3 ∧φ4)). The synthesis process is shown in Figure 1b.

X− X0

X1′

X1′′ X2

P 0
φ1∨φ2

P 1
φ3∧φ4

P 1
φ1∨φ2

P 2
φ3∧φ4

(a) General case.

X−

X0
1

X0
2

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X2
2

X2
3

X2
5

X2
6

P 0
φ1

P 0
φ2

P 1,1
φ3∧φ4

P 1,1
φ1

P 1,1
φ2

P 1,2
φ3∧φ4

P 1,2
φ1

P 1,2
φ2

P 2,2
φ3∧φ4

P 2,3
φ3∧φ4

P 2,5
φ3∧φ4

P 2,6
φ3∧φ4

(b) Polynomial system case.

Fig. 1. Parameter synthesis sequences

5 Experimental Results

We implemented a prototype tool3 written in C++ that exploits the GiNaC
library [21] to symbolically manipulate polynomials and GLPK (GNU Linear
Programming Kit)4 to solve linear programs. The experiments have been carried
out on an Intel Core(TM)2 Duo (2.40 GHz, 4GB RAM) running Ubuntu 12.04.

In this final section we first apply our technique on a model of diseases trans-
mission. The model is a variation of the system that describes the Ebola outbreak
in Congo 1995 and Uganda 2000 presented in [22]. A population composed of
N individuals, is classified in five compartments S,E,Q, I, and R. Each indi-
vidual, at a certain time, belongs to a specific compartment accordingly with
his/her relationship with the disease. All the individual displacements between
compartments are regulated by the parameters β, κ1, κ2, γ1, γ2, and σ.

S contains the healthy individuals that are susceptible to the disease. A mem-
ber of S who enters in contact with a sick person, moves to E, that is the class
of individuals who have been exposed to the disease. The ratio I/N is the prob-
ability that a susceptible individual enters in contact with an infected one, while
β is the transmission rate. An exposed individual is either moved in quaran-
tine in Q, or directly in the infected I compartment, depending on whether the

3 Available on line at https://github.com/tommasodreossi/parasynth
4 http://www.gnu.org/software/glpk/glpk.html

https://github.com/tommasodreossi/parasynth
http://www.gnu.org/software/glpk/glpk.html
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malady was diagnosed. The controllable quarantine rate is κ1, while 1/κ2 is the
mean incubation period. A person in quarantine, if considered healthy after the
isolation period, is moved back to the susceptible group. The unfortunate case
is when the individual manifests symptoms and moves from the quarantine to
the infected group. The reintegration with the susceptible people happens after
a period of 1/γ1, while the incubation period is 1/γ2. Finally an individual is
removed from the system by migrating in R at a recovering or death rate σ. The
epidemic model is formalized through the following system:

Sn+1 = Sn − SnβIn/N + γ1Qn

En+1 = En + SnβIn/N − (κ1 + κ2)En

Qn+1 = Qn + κ1En − (γ1 + γ2)Qn

In+1 = In + γ2Qn + κ2En − σIn
Rn+1 = Rn + σIn

S E

Q

I R

βI/N
κ1

κ2

γ1

γ2

σ

The difference between our model and the one presented in [22] is that we in-
troduce the quarantine compartment and consider the reintegration of individual
in the susceptible population. Doing so, we enrich the original model by making
it more realistic and interesting. Also, our model is defined on discrete time.
Note that in the literature there are various works presenting epidemic models
directly with discrete-time dynamics or difference equations (see, e.g., [23, 24]).

We first considered a population of N = 1000 individuals, of which S = 800
are susceptible and I = 200 are infected. We fixed the parameters values as
specified in [22] in the case of the Ebola outbreak in Uganda during 2000. The
uncontrollable parameter values are β = 0.35, κ2 = 0.3, γ2 = 0.6, and σ =
0.28, while the controllable parameters are κ1 ∈ [0.2, 0.3] and γ1 ∈ [0.2, 0.5]
that represent the quarantine rate and mean isolation period, respectively. We
considered the specification φ1 ≡ (I(t) ≤ 200)U[6,10](Q(t) ≤ 20) whose meaning
is to avoid the saturation of the quarantine compartment especially in the time
interval between 6 and 10 when a number of infected individuals higher than
200 is expected. Our tool found five feasible parameters sets in 0.10 seconds, one
of which is shown in Figure 2a.

In a second experiment, we changed the uncontrollable parameter values to
β = 0.9, κ2 = 0.5, γ2 = 0.5, and σ = 0.28, while the controllable parameters to
κ1 ∈ [0.2, 0.3] and γ1 ∈ [0.2, 0.5]. Instead of imposing directly a constraint on
the system, we could imagine a scenario where we have a maximum number of
40 patients in quarantine unless the number of infected patients is below 270.
This means that if there are less than 270 infected individuals, then we have free
resources that can be devoted to the quarantine. This property can be formalized
with the formula φ2 ≡ (Q(t) ≤ 40)U[10,15](I(t) ≤ 270). Our tool found a valid
parameter set in 0.14 seconds.

Finally, on the same system configuration, we tested a more complex until
formula that involves a disjunction, that is φ3 ≡ (Q(t) ≤ 50)U[5,15](E(t) >
100 ∨ Q(t) > 25). Our tool found four parameter refinements in 0.14 seconds.
Figure 2b depicts the union of the refined parameter sets.
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(a) (I(t) ≤ 200)U[6,10](Q(t) ≤ 20) (b) (Q(t) ≤ 50)U[5,15](E(t) > 100 ∨Q(t) > 25)

Fig. 2. Results of the refinements

Table 1. Scalability tests. Times are in seconds. Values in parenthesis are the com-
puted polytopes per refinement. φ1 ≡ (I(t) ≤ 200)U[a,b](Q(t) ≤ 20), φ2 ≡ (Q(t) ≤
40)U[a,b](I(t) ≤ 270), φ3 ≡ (Q(t) ≤ 50)U[a,b](E(t) > 100 ∨Q(t) > 25).

a b φ1 φ2 φ3

5 15 0.20 (11) 0.15 (7) 0.14 (4)
5 20 0.35 (16) 0.24 (11) 0.21 (4)
5 30 0.82 (26) 0.55 (21) 0.36 (4)
5 50 2.63 (46) 1.65 (41) 0.80 (4)
5 100 - 10.95 (91) 1.69 (4)
5 125 - - 1.69 (4)
15 20 0.29 (6) 0.22 (4) 0.19 (0)
20 30 0.64 (11) 0.45 (11) 0.35 (0)
30 50 1.88 (21) 1.27 (21) 0.78 (0)
50 100 13.00 (51) 6.89 (51) 1.72 (0)
100 200 - - 1.66 (0)

(a) Increasing until interval

N φN
1 φN

2 φN
3

1 0.11 (5) 0.14 (2) 0.13 (4)
2 0.26 (9) 0.36 (7) 0.29 (3)
3 0.48 (13) 0.69 (12) 0.50 (3)
4 0.74 (17) 1.09 (17) 0.70 (3)
5 1.10 (21) 1.61 (22) 1.01 (3)
6 1.50 (25) 2.28 (27) 1.20 (3)
7 1.97 (29) 3.05 (32) 1.65 (3)
8 2.59 (33) 3.97 (37) 1.81 (3)
9 3.23 (37) 5.06 (42) 2.16 (3)
10 4.98 (42) 6.70 (47) 2.56 (3)
15 10.33 (61) 11.80 (62) 4.85 (3)
16 11.75 (65) 15.98 (67) 5.43 (3)
17 - - 5.97 (3)

(b) Nesting until

In order to evaluate the scalability of our method, we now consider non-
trivial formulas that we artificially created. First, we take the three until for-
mulas φ1, φ2, and φ3 previously defined and we stretch their intervals [a, b]. In
the worst case, such growth exponentially increases the number of branches that
our algorithm must open. Table 1a reports the running times for this test. For
φ1 we are able to stretch the interval up to [50, 100], that deals to a parameter
set composed by 51 convex polytopes. For φ2 the maximum tractable inter-
val was [5, 100], for which a parameter set of cardinality 91 is found. Finally,
we notice that enlargement of the window of φ3 does not affect the parame-
ter refinement, that is valid refinements are found only for the initial part of
the interval. Not growing in the size of the results, the algorithm needs linear
time in the until time horizon. As second evaluation, we nest several until on
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the (most critical) right hand side. For instance, the double nesting of φ1 is
φN
1 ≡ (I(t) ≤ 200)U[6,10]((I(t) ≤ 200)U[6,10](Q(t) ≤ 20)) with N = 2. Table 1b

reports the running times for this evaluation. Our tool computes refinements
of φ1 and φ2 nested 16 times, finding 65 and 67 convex parameter sets. As in
the previous case, nesting φ3 does not increase the size of the result, thus the
computation times are restrained. It is interesting to notice that even if φ1 and
φ2 are composed by less atomic formulas than φ3, their running times and size of
results, are sensibly larger than the latter. This suggests that it might be hard to
estimate a priori the algorithm performance just by looking at the specification,
since its execution time “numerically” depends on the system’s behavior and
mostly on the computed partial refinements. Finally, these experiments show
that the weakness of our tool is memory. So far, parameter set are represented
as lists of linear systems composed by collections of inequalities. To reduce mem-
ory consumption it might be interesting to introduce mechanisms to avoid the
insertion of redundant constraints and polytopes included in larger ones.

6 Related Work and Conclusion

In this work we proposed a parameter synthesis algorithm for STL specifications.
We extended standard STL defined on single traces to sets of traces generated
by parametric dynamical systems. The whole procedure operates forwardly, that
is refining the parameter sets and computing the behavior on-the-fly, in order to
obtain less restrictive parameter sets. We proved the correctness of the algorithm
and discussed its computational complexity. Moreover, we provided a concrete
implementation of the algorithm for polynomial discrete-time dynamical sys-
tems, that produces valid parameter sets in form of sets of convex polytopes.
The algorithm was implemented and illustrated on an epidemic model.

In the literature there are different approaches to the problem of finding good
parameters. In [25] pure model checking is used on discrete finite structures.
Parametric interaction graphs representing Genetic Regulatory Networks are
analyzed through LTL in [26]. Discrete-time simulations are considered in [27],
where parameters optimize the satisfaction degree of LTL formulas constrained
over the reals. [28] describes stochastic approaches for parameter fitting over
experimental data, and [29] parameter synthesis for CTMC w.r.t. CSL (Contin-
uous Stochastic Logic) specifications. [30] uses simulation guided analysis to find
values of the parameters that do not produce oscillating behaviors, while coun-
terexample guided abstraction refinement over linear hybrid automata has been
proposed in [31]. A parameter synthesis approach based on “good” parameters
values was proposed in [32] over timed automata with respect to safety proper-
ties. Parametric temporal properties are considered in [9], where the parameters
are identified to make a temporal property satisfied by experimental data. Many
of the above mentioned works find applications in the study of biological systems.

The paper [33] is close to our work since it considers discrete-time systems
and LTL properties; however the targeted systems are piecewise-affine (PWA)
and the systems we address are polynomial. While our algorithm approximates
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the reachable sets of polynomial systems, the approach in this work involves
computing first a discrete abstraction of the original PWA system. In the ab-
straction (that is a transition system), each transition is labeled with a set of
parameter values that allow the transition to be feasible. LTL model checking is
then used to remove some transitions so that the resulting system satisfies the
property. The parameters are finally restricted to allow only the remaining tran-
sitions. Note that due to special properties of multi-affine functions, the discrete
abstraction can be performed efficiently. Nevertheless, this is not possible for the
polynomial functions in our problem. Another related work is [34] where STL
properties and continuous-time nonlinear systems are considered; it computes
the reachable set using the trajectories from a finite number of initial states
and sensitivity analysis to determine the robustness of the trajectory set from
the neighborhoods of those initial states. The parameter set is refined when the
trajectory set violates the property. This approach requires a box discretization
of the parameter set that is less compact than our polytopic set representation.
A similar approach using robustness is applied to a biological system in [35].

The main novelty of our results is that our parameter synthesis method that
can handle nonlinear polynomial systems and complex properties specified using
STL. We are able to specify interesting temporal properties and reason on the be-
havior of a dynamical system and its parameters. Two directions are promising.
First, we intend to extend our approach to quantitative semantics integrating a
robustness metric such as in [34]. The second direction concerns the treatment
of continuous-time dynamical systems and dense-time STL. This is straightfor-
ward for linear systems by using one of the available polytope-based algorithms
for continuous-time reachability operations, such as [36]. For nonlinear systems,
conservatively enclosing the reachable sets over time intervals could be done by
exploting ideas from interval computation.
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