Nikolaj Bjerner
Frank de Boer (Eds.)

FM 2015;
Formal Methods

20th International Symposium
Oslo, Norway, June 24-26, 2015
Proceedings

o))
o
—
(@)
w
O
=
—l

@ Springer




Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Ziirich, Ziirich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

9109



More information about this series at http://www.springer.com/series/7408


http://www.springer.com/series/7408

Nikolaj Bjgrner - Frank de Boer (Eds.)

FM 2015:
Formal Methods

20th International Symposium
Oslo, Norway, June 24-26, 2015
Proceedings

@ Springer



Editors

Nikolaj Bjgrner Frank de Boer

Microsoft Research Centrum voor Wiskunde en Informatica
Redmond Amsterdam

Washington The Netherlands

USA

ISSN 0302-9743 ISSN 1611-3349  (electronic)

Lecture Notes in Computer Science

ISBN 978-3-319-19248-2 ISBN 978-3-319-19249-9  (eBook)

DOI 10.1007/978-3-319-19249-9
Library of Congress Control Number: 2015939719
LNCS Sublibrary: SL2 — Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London

(© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)



In Memoriam

Peter Lucas (1935-2015)

Chairman of Formal Methods Europe 1995-2000

Sadly, Peter Lucas passed away February 2nd, 2015 peacefully after a lengthy illness.
He is remembered by many for his important contributions to the development of com-
puter languages, and to those connected with FME as the chairman who established the
association as a free and independent organisation. Colleagues will remember him as a
computer scientist whose technical passion and skill were matched by a wise, balanced,
and cheerful outlook.



Preface

This year we celebrate the 20th anniversary of the International Symposium on For-
mal Methods in Oslo, during June 24-26. FM 2015 attracted 124 submissions to the
main track. Each submission was reviewed by at least three Program Committee mem-
bers. The committee decided to accept 32 papers, resulting in an acceptance rate of
0.26. These conference proceedings further contain nine papers selected by the Pro-
gram Committee of the Industry Track, which was chaired by Ralf Huuck (NICTA,
Australia), Peter Gorm Larsen (Aarhus University, Denmark), and Andreas Roth (SAP,
Germany).

The program includes four invited talks by Elvira Albert (Complutense University
of Madrid, Spain), Werner Damm (Carl von Ossietzky Universitidt Oldenburg, DE),
Valérie Issarny (Inria, France), and Leslie Lamport (Microsoft Research, USA). Fur-
thermore, the overall program includes 11 workshops selected by the Workshop Chairs
Marieke Huisman (Twente University, The Netherlands) and Volker Stolz (University of
Oslo, Norway), four tutorials selected by the Tutorial Chairs Ferruccio Damiani (Uni-
versity of Torino, Italy) and Cristian Prisacariu (University of Oslo, Norway), a Doc-
toral Symposium organized by Bernhard Aichernig (TU Graz, Austria) and Alessandro
Rossini (Sintef, Norway) with a keynote by Stijn de Gouw (CWI, The Netherlands),
and a tool exhibition organized by Richard Bubel (TU Darmstadt, Germany) and Rudolf
Schlatte (University of Oslo, Norway). The resulting program covers a wide spectrum
of all the different aspects of the use of, and research on, formal methods for software
development.

Thanks to all involved, i.e., all the Program Committee members, subreviewers, and
the different chairs. Special thanks are due to the excellent local organization by Einar
Broch Johnsen (University of Oslo, Norway) who was professionally supported by the
Local Organization Chairs Violet Pun (University of Oslo, Norway) and Lizeth Tapia
(University of Oslo, Norway), the Financial Chairs Arnaud Gotlieb (Simula Research
Labs, Norway) and Ingrid Chieh Yu (University of Oslo, Norway), and the Publicity
Chair Martin Steffen (University of Oslo, Norway).

Of particular interest to note here is that because of the very special occasion of
the 20th anniversary Formal Methods Europe decided this year on a FME Fellowship
Award.

Finally, FM 2015 gratefully recognizes the support of our sponsors: the Research
Council of Norway, the City of Oslo, the Norwegian Centre for Software Verification
and Validation (CERTUS), the Dutch Centre for Mathematics and Computer Science
(CWI), and Microsoft Research.

April 2015 Nikolaj Bjgrner
Frank de Boer
Peter Gorm Larsen
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Resource Analysis: From Sequential
to Concurrent and Distributed Programs

Elvira Albert!, Puri Arenas!, Jesis Correas!, Samir Genaim?
b) ) b) b

Miguel Gémez-Zamalloa', Enrique Martin-Martin!, German Puebla?,
and Guillermo Romén-Diez?(*)

1 DSIC, Complutense University of Madrid, Madrid, Spain
2 DLSIIS, Technical University of Madrid, Madrid, Spain
groman@fi.upm.es

Abstract. Resource analysis aims at automatically inferring upper/lower
bounds on the worst/best-case cost of executing programs. Ideally, a re-
source analyzer should be parametric on the cost model, i.e., the type of
cost that the user wants infer (e.g., number of steps, amount of memory
allocated, amount of data transmitted, etc.). The inferred upper bounds
have important applications in the fields of program optimization, verifi-
cation and certification. In this talk, we will review the basic techniques
used in resource analysis of sequential programs and the new extensions
needed to handle concurrent and distributed systems.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource consumption. Resource
analysis (a.k.a. cost analysis [23]) aims at statically bounding the cost of execut-
ing programs for any possible input data value. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over
the net, etc. Resource usage information has many applications, both during
program development and deployment. Upper bounds on the worst-case cost are
useful because they provide resource guarantees, i.e., it is ensured that the exe-
cution of the program will never exceed the amount of resources inferred by the
analysis. Lower bounds on the best-case cost have applications in program par-
allelization, they can be used to decide if it is worth executing locally a task or
requesting remote execution. Therefore, automated ways of estimating resource
usage are quite useful and the general area of resource analysis has received
[23,14,22] and is nowadays receiving [6,15,16,17] considerable attention. In this
paper, we describe the main components underlying resource analysis of a to-
day’s imperative programming language, e.g., such techniques have been applied
to analyze the resource consumption of sequential Java and Java bytecode [19].
In a next step, we describe the extension of the sequential framework to handle
concurrent programs and overview the new notions of cost that arise in these
contexts.

© Springer International Publishing Switzerland 2015
N. Bjgrner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 3-17, 2015.
DOI: 10.1007/978-3-319-19249-9 1
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The rest of the paper is organized in four sections as follows:

— Sequential. Section 2 considers a minimalistic imperative language and sum-

marizes the process of, from a program, generating upper bounds on the
worst-case cost of executing the program in terms of the input data sizes.
We also discuss relevant extensions of the basic framework to handle object-
oriented programs and non-cumulative resources.

— Distribution and Concurrency. Section 3 describes the extension of such tech-

niques to analyze distributed and concurrent programs. First, in Section 3.1,
we introduce the basic instructions for distribution, namely to create dis-
tributed locations and to spawn an asynchronous task in a remote location;
and for concurrency, in particular an instruction to synchronize with the
termination of an asynchronous task and be able to release the processor if
the task has not terminated yet (in this case, another task waiting in this
location can take the processor). In Sections 3.2 and 3.3, we consider the
distribution aspects from the point of view of resource consumption. Here
our main concern is to be able to infer the resource consumption distributed
among the locations of the system rather than producing a monolithic ex-
pression that amalgamates the whole cost. For this purpose, we present the
notion of cost centers and describe an underlying analysis to obtain them. In
Section 3.4, we consider the inference of the cost in the presence of tasks with
concurrent interleavings. This is challenging because the global variables can
be modified between the time a task suspends until it resumes, and this can
affect its resource consumption (e.g., the size of the data structure that a
loop traverses can be increased during its suspension). We sketch a novel
technique to infer the resource consumption in these cases.

— New notions. In this context of distributed systems, new notions of cost arise.

In first place, there are new cost models that can be considered to estimate
the performance of a distributed system, namely it is particularly interest-
ing to predict the load balance of the distributed locations, the amount of
data transferred among them and the parallelism achieved. Moreover, it is
relevant to obtain the peak of the resource usage of each distributed location
rather than the total amount of resources allocated in it. In order to infer
such peak cost, one needs first to estimate the queue configuration of each
distributed location, i.e., the tasks that might be simultaneously in such loca-
tion queue and then we can accumulate their resource consumption together.
This notion of peak is especially relevant in the context of nmon-cumulative
resources that might increase and decrease along the execution. Finally, we
introduce the notion of parallel cost which aims at overviewing the resource
consumption of the overall distributed system by exploiting the parallelism
among their nodes such that when tasks execute in parallel we only consider
the duration of the longest among them.

— Conclusions. Finally, in Section 5 we conclude and point out open problems

in this setting and our directions for future research.
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2 Resource Analysis of Sequential Code

In this section we consider a sequential language which is deliberately simple
to describe the analysis in a clear way. Distributed/concurrent operations are
introduced later in Section 3. A program is a collection of methods of the form
T m(int x1,...,int zg){s1;S2;...,5n; }, where z;, 1 < i < k, denote variables
names and T € {int,void}. Each instruction s; € Instr, 1 < i < n, adheres to
the following grammar:

su=ax =e|if b then s else s | while b do s | z = m(y) | return x

where z, y denote variables names. For the sake of generality, the syntax of
expressions e and Boolean conditions b is not specified. As notation, for any
entity A, we use A as a shorthand for A,,..., A,.

A common way to rigorously represent an execution is by means of a state
transition system, which is an abstract machine that consists of a set X of states
and a binary relation ~»C Y x Y| which represents transitions between states.
An execution & starts from an initial state Sy containing a method call. We use
Si ~s §j, with §;, S5 € X, to denote that there is a transition from S; to S; in
which instruction s has been executed. A state is final iff it has no successors.
Similarly, an execution is final if it finishes in a final state. Note that for our
sequential language, executions consist of only one branch. However, as we will
see in Section 3, for distributed and concurrent languages, multiple results for
an initial call can be computed.

2.1 Cost Models

The notion of cost model for a program specifies how the resource consumption
of a program is calculated, given a resource of interest. It basically defines how
to measure the resource consumption, i.e., the cost, associated to each execu-
tion step and, by extension, to an entire execution. Thus, a cost model M is a
function defined as M : Instr — R and the cost of an ezecution step is defined
as M(S~;8")=M(s). For instance, a cost model which counts the number of
execution steps can be defined as Muinst(s) = 1 for any s € Instr and a cost
model counting the number of times that a concrete method m is executed can
be defined as:

Maaiis(s) = {

Now, given a cost model M and an execution &, the cost of & w.r.t. M,
denoted as Cost(E, M) is defined as the sum of the costs of all execution steps
in £.

1if s is a call m(z)
0 otherwise

2.2 Upper Bounds

An upper bound for m(z) w.r.t. a cost model M, is a function f(Z) = cexp on &
which guarantees that for all @ € Z, and for any final execution £ starting from
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m(a) it holds that Cost(€, M) < f(u). The cost expressions cexp that can be
handled in our framework follow the grammar below:

cexp =7 | nat(l) | cexp op cexp | log,, (nat(l) + 1) | n"2*®) | max(S)

where op € {+,x},7 € RT, n > 1€ Z*, nat(l) is defined as nat(l) = max({/,0}),
max(S) stands for the maximum of the set of cost expressions S and [ denotes a
linear expression of the form ug + w1z + ... unx,. The use of the nat-operator
ensures that cost expressions are always evaluated to non-negative values. For
instance the expression nat(z — 1) is a valid cost expression which returns 0 for
all z < 1.

The cost analysis framework that we follow [3] is based on transforming the
original program in a set of cost equations by applying different static analyses
and transformations on the source program. In particular, the main two steps to
produce cost equations are: the transformation of the program into direct recur-
sive form, and a size analysis which infers how the sizes of data change along the
execution. From the equations, the upper bound is computed by (1) bounding
the number of iterations of each recursive equation using linear ranking functions
[21] and (2) by maximizing the local cost of each equation. As an example, con-
sider the cost model which counts the number of executed instructions together
with the program:

int m(int x, int y) {

intr=0, a;

while (x <y) { int p(int x) {
a = p(x); x=x+ 1
r=r-+a; return x;
Xx=x—4+ 1; }

}

return r;

}

Considering that the cost of x = x+1 is 2 (the addition plus the assignment), an
upper bound for p is 3. For the case of m, first we bound the number of iterations
in the while loop by means of the linear ranking function nat(y — ). Secondly,
we multiply the bound on the number of iterations by the cost inside the loop
(8, which results from the 4 instructions in the loop, 1 method call, and the 3
instructions of the method) and the cost of executing the condition (1). Thus
nat(y — x) * 9 is an upper bound for the while loop. Finally, we add 3 due to the
costs of the instructions outside the loop and the final evaluation of the guard,
and the upper bound for m results in m™(x,y) = 3 + nat(y — ) * 9.

Suppose now that method p has an upper bound p*(z) = nat(z). Then the
cost of the instruction a = p(x) is obtained by maximizing p*(z) in the context
of its execution, namely x < y, which results in nat(y). Hence now the upper
bound for m would be m*(z,y) = 3 + nat(y — z) * (nat(y) + 6).
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2.3 Extensions of Sequential Resource Analysis

The language we have used along this section does not contain a global memory,
instead all variables in a method are local to it. In the presence of global variables,
the computation of upper bounds becomes harder since when bounding the
number of iterations of a loop we must take into account if the condition of
the loop depends on a shared variable. For example, suppose we extend the
language in Section 2 to support classes and objects in the standard way, where
a class may contain integer fields shared by all objects of the class. Consider the
following implementation of method m:

int m(A o1, A o2, int y) {

intr=0;
while (01.x <) { int p(A 02) {
?f rpg??.' // read and write field 02.x
N ’ return o02.x;
01.Xx = 01.x + 1; )
}
return r;

}

where o1, 02 are objects of a class A which contains a field x. The termination
of the while loop depends clearly on the call p(o2) in the following sense: If
o1 and o points to the same memory location, then field x is always accessed
by the same reference, say o1, and it can be treated as a local variable, what
allows to apply the same techniques than in Section 2.2 in order to compute an
upper bound. Otherwise, we will not be able to infer the cost as it will depend
on the calling context of method m. Our approach [2] consists in computing
the sequence of (access path) used to access each field in the program. Then,
if the field is not written or its written by a unique access path, such a field
is considered as trackable, i.e., the field can be treated as a local variable for
the method. For our example at hand, it holds that in method m, the field x is
read and written by two different references, o; and o, and hence the field is not
trackable and the termination of the loop can not be proven. However suppose
that, after the instruction int r = 0, we add o7 = 0. Now field x is written only
using o; and thus the field is considered trackable, what allows us to compute
an upper bound for method m similarly as done in Section 2.2 but in terms of
01.x. More sophisticated approaches to deal with shared memory can be found
in [4] and [5], where reference fields and array fields are also considered.
Another extension to sequential resource analysis is the inference of non-
cumulative resources [9]. Existing cost analysis frameworks have been defined
for cumulative resources which keep on increasing along the computation. In
contrast, non-cumulative resources are acquired and (possibly) released along the
execution. Examples of non-cumulative cost are memory usage in the presence
of garbage collection, number of connections established that are later closed, or
resources requested to a virtual host which are released after using them.
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It is recognized that non-cumulative resources introduce new challenges in re-
source analysis [12,18]. This is because the resource consumption can increase and
decrease along the computation, and it is not enough to reason on the final state of
the execution, but rather the upper bound on the cost can happen at any interme-
diate step. The analysis of non-cumulative resources is defined in two steps: (1) We
first infer the sets of resources which can be in use simultaneously (i.e., they have
been both acquired and none of them released at some point of the execution).
This process is formalized as a static analysis that (over-)approximates the sets of
acquire instructions that can be in use simultaneously, allowing us to capture the
simultaneous use of resources in the execution. (2) We then perform a program-
point resource analysis which infers an upper bound on the cost at the points of
interest, namely the points at which the resources are acquired. From such upper
bounds, we can obtain the peak cost by just eliminating the cost due to acquire
instructions that do not happen simultaneously with the others (according to the
analysis information gathered at step 1).

3 Resource Analysis of Distributed Concurrent Systems

This section describes the basic extensions to resource analysis of distributed
and concurrent systems.

3.1 The Language

We consider a distributed concurrent programming model with explicit locations
and cooperative concurrency between the tasks at each location. Each location
represents a processor with a procedure stack and an unordered buffer of pending
tasks. Initially all processors are idle. When an idle processor’s task buffer is non-
empty, some task is selected for execution. Besides accessing its own processor’s
global storage, each task can post tasks to the buffers of any processor, including
its own, or synchronize with the reception of other tasks. When a task completes,
its processor becomes idle again, chooses the next pending task, and so on.
The number of locations need not be known a priory (e.g., locations may be
virtual). Syntactically, a location will therefore be similar to an object and can
be dynamically created using the instruction newlLoc. The new set of instructions
of the language, extended with distributed operations from that of Section 2, is
as follows:

s’ =8| x =newloc | x = newDC | f = z.m(y) | await f? | x = f.get

Let us observe that now variables can hold locations and therefore the set of
types is extended to {void, int, loc}, being loc the set of locations and distributed
components. The special location identifier this denotes the current location.
We can achieve different ways of distributing an application by creating new
locations with newlLoc or new distributed components by means of newDC.
When we use newDC, a new distributed component is created, whereas when
we use newloc, the created location (and its resource consumption) belongs to
the current distributed component.



Resource Analysis: From Sequential to Concurrent and Distributed Programs 9

The language is also extended with future variables, denoted by f in the
grammar, which are used to check if the execution of an asynchronous task has
finished. Method calls on locations are asynchronous and are associated with
a future variable that will hold their result. The instruction await f7 allows
synchronizing the execution of the current task with the task which the future
variable f is pointing to; and instruction z = f.get is used to retrieve the value
stored in f.

3.2 Cost Models

In Section 2.1 we presented some important cost models for sequential programs.
However, other interesting cost models can be defined in distributed and con-
current systems, as shown in [1]. For instance, a cost model that counts the
total number of distributed components (number of locations), created along the
execution can be defined as Mioc(s) = 1 if s = 2 = newDC (newloc) and
Mioc(s) = 0 otherwise. Since distributed components are the distribution units,
this cost model provides an indication on the amount of parallelism that might
be achieved.

A cost model that counts instructions of the form z.m(y) can be used to infer
the number of tasks that are spawned along an execution. This cost model can be
refined to count the number of calls to specific methods, locations or distributed
components by focusing on specific method and object names.

Communications play a fundamental role in the design of a distributed sys-
tem, because they influence their performance. A cost model that counts the
number of communications or the amount of transmitted data is very useful
when designing distributed systems. The goal of such cost models is to infer,
not only the number of communications between locations or distributed com-
ponents, but also the sizes of the arguments in the task invocation and of the
returned values. This cost model that over-approximates the amount of data
transmitted uses size analysis [13] to infer upper bounds on the data sizes at the
points in which tasks are spawned. In particular, given an instruction z.m(g) it
over-approximates the size of § and also of the returned value.

3.3 Distribution: Cost Centers

In a distributed setting, the above notion of cost model has to be extended
because, rather than considering a single component in which all steps are per-
formed, we have in general multiple locations and distributed components possi-
bly running concurrently and/or distributively on different CPUs. Thus, rather
than aggregating the cost of all executing steps, it is required to treat execution
steps which occur on different locations or components separately. With this
aim, we adopt the notion of cost centers [20], proposed for profiling functional
programs. The upper bounds will use cost centers in order to keep the resource
usage assigned to the different components separate.

Ideally, one would like to have a different cost center for each different lo-
cation or distributed component created along the execution of the program.
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However this cannot be determined statically and has to be approximated. For
this aim, we rely on points-to analysis in order to approximate the set of lo-
cations or distributed components which each reference variable may point to
during program execution. This allows us to make the analysis object-sensitive
and separate the cost that corresponds to different instances of locations and/or
distributed components that are created at the same program point but that
correspond to different object names and may belong to different distributed
components.

3.4 Concurrency: MHP-based Analysis

Resource consumption inference in concurrent and distributed systems is more
difficult than in the sequential case, since different tasks can interleave their
executions and therefore change the value of shared variables. This situation
becomes clearer in the following example from [11], where g is a shared variable
and x is a variable local to Ss:

1 while (g > 0){ 5 while (x > 0){

2 g=g-—1 6 X =x-—1;
S1 3 await *? S2 7 g =%

a} s }

The instruction at L7, that updates the field g, may interleave with await *?
at L3 in 5. Therefore the number of iterations of the loop S; may differ from the
original value of g, as the value of that shared variable can change between itera-
tions. To infer the number of iterations of S; we use the following approach [11]:

1. Locate those instructions that update shared variables and can interleave
with the loop. In the example, the only interleaving instruction that up-
dates g is L7. To obtain this information we use a may-happen-in-parallel
analysis [10]. This analysis over-approximates the pairs of program instruc-
tions that can execute in parallel or in an interleaved way.

2. Find an upper-bound on the number of times that those interleaving instruc-
tions are executed. This computation may require the recursive calculation
of upper bounds for other loops. In the example above, a sound and precise
bound on the number of executions of L7 is x, since x is a local variable.

3. Finally, the upper bound for S; is the maximum number of iterations ig-
noring the instruction await *? , but assuming that at this point g can take
its maximum value g*, multiplied by the maximum number of visits to L7.
Thus, g7 * z is a sound upper bound.

Once we have computed an upper bound on the iterations of the loop, we can
easily infer the concrete resource consumption by using a concrete cost model.
Notice that the may-happen-in-parallel analysis is crucial, since it will be able
to discard some spurious interleavings that will lead to imprecise upper bounds.
Otherwise, we will be forced to consider that every updating instruction could
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interleave with every loop. Note also that the may-happen-in-parallel analysis is
independent and it is used as a black-box, so any improvement on it will enhance
the upper bounds automatically.

4 New Notions of Cost in Distributed Systems

Building upon the basic analysis presented in the previous section, in this section
we describe new cost models and notions of cost that appear in distributed
systems.

4.1 Advanced Cost Models

By building upon the cost models described in Section 3.2, we have defined
several advanced cost models that provide indicators to assess the level of distri-
bution in the system [7], the amount of communication among distributed nodes
that it requires, and how balanced the load of the distributed nodes that compose
the system is. Our indicators are given as functions on the input data sizes, and
they can be used to automate the comparison of different distributed settings
and guide towards finding the optimal configuration. Let us see an example to
explain these issues:

1 void m(int n){ 9 void p(int n,loc a) {
2 loc a = newlLoc | newDC; 10 while (n > 0) {
s while (n > 0) { 11 a.q();
4 loc b = newloc | newDC; 12 n=n-—1;
5 b.p(n,a); 13}
6 n=n-—1; 14 }
7} 15.q () { 10 instr}
8
}

Method m creates one location using newlLoc(or distributed component using
newDC) at L2 pointed by variable a and it contains a loop that creates n loca-
tions (or distributed components) at L4. Such loop also spawns n tasks executing
method p (L5). Method p contains a loop that calls q n times (L11). Those pro-
gram points where locations are created, L2 and L4, are crucial for determining
the behaviour of the system. Depending on the creation of a distributed com-
ponent (newDC) or a location (newloc), we obtain a different setting whose
performance could be radically different from the others. To evaluate which set-
ting has a better performance, we define the notion of performance indicator. A
performance indicator is a function, expressed in terms of the input arguments
of the program, that evaluates to a number in the range [0-1], such that the
closer to one the better the performance. We define three different indicators:
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1. The distribution function (D) measures how much distributed the appli-
cation is. It is defined as the relation between the number of distributed
components that are created for this particular setting with respect to the
maximum number of potential distributed components that could be created
if all location instances were distributed components, i.e., the optimal set-
ting from a distribution perspective in which we have as many distributed
components as possible.

2. The communication function (K) aims at measuring the level of external
communications performed (i.e., calls to locations that belong to other dis-
tributed components). The motivation is that calls to other distributed com-
ponents are potentially more expensive (as they require communications
costs) and thus one wants to minimize them as much as possible. It is de-
fined as one minus the ratio between the number of communications that
the program performs in the current setting, and the maximum number of
communications when using a setting in which all locations are created as
distributed components and thus every asynchronous call (on a location dif-
ferent from the one executing) is external.

3. The balance function (B) measures the balance level of the distributed sys-
tem. We consider that the system is optimally balanced when all its compo-
nents execute the same number of instructions. The balance function makes
use of the upper bounds on the number of instructions and the upper bounds
on the number of distributed components (and locations) to measure the
standard deviation of the number of instructions executed by each dis-
tributed component. As we want to measure the balance level by means
of a number in the interval [0-1] as in the other indicators, we divide the
standard deviation by the maximum dispersion of the distributed compo-
nents from the average.

Figure 1 shows the graphical representation of the functions D, K and B
for two possible settings by using newlLoc or newDC at L2 and L4 of the
program shown above. By means of the evaluation of the performance indicators
we can observe that for Setting 1 higher values of n lead to a better distribution
behaviour because a new distributed component is created at each iteration of
the loop in m. Regarding communications, Setting 2 behaves better for lower
values of n, but for higher values of n, both settings behave badly (close to 0).
In addition, the evaluation of the balance function indicates that the load of
the system is better balanced with Setting 1. The information obtained from
the performance indicators could be extremely useful in the deployment process
of a distributed system. In order to find the optimal setting for a distributed
system, we should be able to: (1) generate all possible settings automatically,
(2) generate performance indicators for each of them and (3) be able to compare
such indicators for the different settings.

4.2 Peak Cost

The framework presented so far allows us to infer the total number of instruc-
tions that it needs to execute, the total amount of memory that it will need
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Setting 1: a = newloc
b = newDC

Setting 2: a = newDC Q
b = newlLoc

0.8

5 10 15 20 5 10 15 20
n n

Fig. 1. Graphical representation of the functions D, K and B

to allocate, or the total number of tasks that will be added to its queue. This
is a too pessimistic estimation of the amount of resources actually required in
the real execution. The amount of work that each location has to perform can
greatly vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be posted
in parallel and thus be pending to execute simultaneously. In order to obtain
a more accurate measure of the resources required by a location, the peak of
the resource consumption can be inferred instead [8], which captures the maxi-
mum amount of resources that the location might require along any execution.
In addition to its application to verification, this information is crucial to di-
mensioning the distributed system: it will allow us to determine the size of each
location task queue; the required size of the location’s memory; and the pro-
cessor execution speed required to execute the peak of instructions and provide
a certain response time. It is also of great relevance in the context of software
virtualization as used in cloud computing, as the peak cost allows estimating
how much processing/storage capacity one needs to buy in the host machine,
and thus can greatly reduce costs.

Inferring the peak cost is challenging because it increases and decreases along
the execution, unlike the standard notion of total cost which is cumulative. To this
end, it is very relevant to infer, for each distributed component, its abstract queue
configuration, which captures all possible configurations that its queue can take
along the execution. A particular queue configuration is given as the sets of tasks
that the location may have pending to execute at a moment of time. For instance,
let us see the following example program, which has as entry method ex1:
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1 void ex1() { 6 void m1() { 12 void m2() {
2 ff =this.m1(); - fa =x.a(); 13 x.d();
3 await ff 7; s await fa?; 1 x.e();
4 this. m2(); 9 fb = X.b(); 15 }
5 10 await fb?;
11 }

It first invokes method m1, which spawns tasks a and b. Method m1 guarantees
that a and b are completed when it finishes. Besides, we know that the await
instruction in L8 ensures that a and b cannot happen in parallel. Method m2
spawns tasks d and e and does not await for their termination. We can observe
that the await instructions in ml guarantee that the queue is empty before
launching m2. We can represent the tasks in the queue of location x by the tasks
queue graph by means of the following queue configurations: {{a}, {b},{d,e}}.

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task and (2) the worst-case cost of such instances. The
main extension is to define cost centers of the form ¢(o:m) which contain the
location name o and the task m running on it. Now, using the upper bounds
on the total cost in Section 3.3 we already gather both types of information.
This is because the cost attached to the cost center c¢(o:m) accounts for the
accumulation of the resource consumption of all tasks running method m at
location o. We therefore can safely use the total cost of the entry method p(Z)
restricted to o:m, denoted p* (Z)|{o:m}, as the upper bound of the cost associated
with the execution of method m at location o which sets up to 0 the cost centers
different from c(o:m). The key idea to infer the quantified queue configuration,
or simply peak cost, of each location is to compute the total cost for each element
in the set of abstract configurations and stay with the maximum of all of them.
In the previous example, the peak cost of location x in exl is maz{ez] (n)|.,,
ex] (n)|ey, ex7 (n)|es }, where ¢ = {z:a}, ca = {z:b} and c3 = {x:d, z:¢}.

4.3 Parallel Cost

Parallel cost differs from the standard notion of serial cost by exploiting the
truly concurrent execution model of distributed processing to capture the cost
of synchronized tasks executing in parallel. It is also different to the peak cost
since this one is still serial; i.e., it accumulates the resource consumption in
each component and does not exploit the overall parallelism as it is required
for inferring the parallel cost. It is challenging to infer parallel cost because one
needs to soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. We are currently developing
a static analysis to obtain the parallel cost.

5 Conclusions and Future Research

Inferring the resource consumption (a.k.a cost) of computer programs, which is
a general form of complexity, is one of the most fundamental tasks in computer
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science, and its automation has been the subject of voluminous research in the
last decade.

Research in this area resulted in several cost analysis frameworks for sequential
low- and high-level modern programming languages, such as the sequential frag-
ments of Java and its corresponding low-level bytecode. These frameworks have
been enhanced overtime to scale for large programs, and to handle programs
with complex control-flow and sophisticated heap data-structures. They have
also been extended to support non-cumulative cost models in which resources
can be released as well, e.g., memory consumption in the presence of garbage
collection. The underlying complexity analyses employed by these frameworks
range from the classical worst/best case approach to more advanced ones such
as the amortised analysis approach, and thus they offer users a wide range of
performance/precision trade-offs. Some of these frameworks also provide support
for certification and verification of resource consumption.

Research in recent years has concentrated on extending the sequential cost
analysis frameworks to handle concurrency and distribution. The main challenge
was to handle new notions of cost that are more suitable for such programming
paradigms. This includes the peak cost, that refers to the maximal amount of
resources that can be used simultaneously (by different tasks), and the parallel
cost, that do not accumulate the cost of tasks that are executing in parallel
on different computing units. The underlying techniques for these notions of
cost rely on the use of MHP analysis, which provides information on which tasks
might interleave or execute in parallel. Another important functionality that was
introduced is the ability to attribute cost to particular nodes of a distributed
system, which is of utmost importance for optimizing the resource usage of such
systems or balancing the load of their nodes.

In spite of the remarkable achievements in the field of cost analysis, there are
still several directions that need to be considered in the future: (1) exploring new
applications for cost analysis. A promising direction is the use of cost analysis
to identify security vulnerabilities that are related to resource consumption; (2)
current techniques for cost analysis of concurrent programs predict the cost at
the algorithmic level, more work is required to leverage these techniques to take
the underlying (multi-core) architecture into account. This would require sup-
porting more sophisticated concurrency models; (3) in the context of parallelism,
cost analysis of massive parallel programs has not been investigated yet, more
attentions should be paid to such programming paradigms as they are popular
in scientific communities; (4) support for probabilistic information is probably
the most important and appealing direction. Probabilistic distributions can be
used to describe a cost model, which allows constructing platform dependent
cost models (e.g., energy) using profiling tools. Probabilistic distributions can
be also used to describe the distribution of the input data, which can then be
used to infer notions such average cost and distribution of cost.
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This talk presents highlights and lessons learned from the Transregional Collaborative
Research Center AVACS, funded by the German Science Foundation under contract
SFB-TR 14 from January 1, 2004 to December 31, 2015 with a total funding of about
30 Million €, involving between 18 to 22 principal investigators at the three AVACS
sites Freiburg, Oldenburg and Saarbriicken. Through this funding the German Science
Foundation provided an excellent environment for foundational cross-site research in
the highly relevant and challenging research are of Automatic Verification and Anal-
ysis of Complex Systems.

The AVACS project (see www.avacs.org) addresses the rigorous mathematical ve-
rification and analysis of models and realizations of complex safety-critical compute-
rized systems, such as aircraft, trains, cars, or networked systems of these, whose
failure can endanger human life. Our aim is to raise the state of the art in automatic
verification and analysis techniques (V&A) from a level, where it is applicable only
to isolated facets of the underlying space of mathematical models, to a level allowing
a comprehensive and holistic verification of such systems:

1. We investigate the mathematical models and their interrelationship, as they arise
at the various levels of design of safety-critical computerized systems. Behavioral
models range from classical nondeterministic transition systems to probabilistic,
real-time, and hybrid system models, to models reflecting the dynamic evolution
of the system communication structure.

2. The investigated classes of models cover all typical system structures in this
application domain, describing how to build models of complex systems hierar-
chically from such classes of models. These include distributed target architec-
tures (such as hierarchical bus structures connecting multiple electronic control
units), task models (task structures coming with communication and timing re-
quirements), specification models of electronic control units (such as captured in
Matlab/Simulink), system models (e.g., of vehicles), and models of systems of
systems (e.g., for coordinated vehicle maneuvers).

3. The investigated classes of time models are expressive enough to cover all layers
of the design space of such applications, including physical latencies of vehicles
in performing coordinated maneuvers, system-level timing requirements such as
response times to external events and timeliness requirements for protocols,
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dense-time closed-loop models of controllers and plants, discrete-time design
models of controllers, end-to-end deadlines on task chains, and worst-case execu-
tion times of tasks on modern processor architectures.

We provide largely automatic techniques to verify or falsify the compliance of
models expressed in this rich model space against classes of requirements sub-
suming timeliness, safety, probabilistic reachability, stability and other classes of
requirements, formalized in suitable logics.

We provide methods and tools for building such formal proofs for complete sys-
tems from guarantees of subsystems, ultimately striving to relate top-level re-
quirements, such as for performing coordinated vehicle maneuvers to avoid colli-
sions, to worst-case execution times of the tasks implementing control functions
for such maneuvers.



Main Track



Automated Circular Assume-Guarantee Reasoning

Karam Abd Elkader!, Orna Grumbergl, Corina S. Pisireanu?, and Sharon Shoham3®

! Technion — Israel Institute of Technology, Haifa, Israel
2 CMU/NASA Ames Research Center, USA
3 The Academic College of Tel aviv Yaffo, Tel Aviv, Israel
sharon.shoham@gmail .com

Abstract. Compositional verification techniques aim to decompose the verifica-
tion of a large system into the more manageable verification of its components.
In recent years, compositional techniques have gained significant successes fol-
lowing a breakthrough in the ability to automate assume-guarantee reasoning.
However, automation is still restricted to simple acyclic assume-guarantee rules.

In this work, we focus on automating circular assume-guarantee reasoning
in which the verification of individual components mutually depends on each
other. We use a sound and complete circular assume-guarantee rule and we de-
scribe how to automatically build the assumptions needed for using the rule. Our
algorithm accumulates joint constraints on the assumptions based on (spurious)
counterexamples obtained from checking the premises of the rule, and uses a SAT
solver to synthesize minimal assumptions that satisfy these constraints.

We implemented our approach and compared it with an established learning-
based method that uses an acyclic rule. In all cases, the assumptions generated
for the circular rule were significantly smaller, leading to smaller verification
problems. Further, on larger examples, we obtained a significant speedup as well.

1 Introduction

Compositional verification techniques aim to break up the global verification of a pro-
gram into local, more manageable, verification of its individual components. The envi-
ronment for each component, consisting of the other program’s components, is replaced
by a “small” assumption, making each verification task easier. This style of reasoning
is often referred to as Assume-Guarantee (AG) reasoning [17,20].

Progress has been made on automating compositional reasoning using learning and
abstraction-refinement techniques for iterative building of the necessary assumptions
[7,19,3,4,2,5,6]. This work has been done mostly in the context of applying a simple
compositional assume-guarantee rule, where assumptions and properties are related in
an acyclic manner. For example, in a two component program, suppose component M
guarantees property P under assumption A on its environment. Further suppose that
M5 unconditionally guarantees A. Then it follows that the composition M7 ||M; also
satisfies P (denoted here as rule NonCIRC-AG).

However, there is another important category of rules that involve circular reason-
ing. These rules use inductive arguments, over time, formulas to be checked, or both,
e.g.[17,14,15,1], which makes automation challenging. Circular assume-guarantee rules
have been successfully used in scaling model checking, and have often been found to
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be more effective than non-circular rules [14,15,16,21,12,11]. Further, they could natu-
rally exploit the inherent circular dependency exhibited by the verified systems, but their
applicability has been hindered by the manual effort involved in defining assumptions.

In this work we propose a novel circular compositional verification technique that
is fully automated. The technique uses the following assume-guarantee circular rule
CIRC-AG, for proving that M;||M> = P, based on assumptions g; and g2. Compo-
nents, properties and assumptions are Labeled Transition Systems (LTSs).

(Premise 1) My = ga2> g1

(Premise 2) My = g1 > g2

(Premise 3) g1/|g2 = P
Mi||My = P

Similar rules have been studied before [15,18,9]. The rule is both sound and complete.
Premises 1 and 2 of the rule use inductive arguments to ensure soundness and have the
form M |= A P, which means that for every trace o of size k, if o is in the language of
M, and its prefix of size k— 1 is in the language of A then ¢ is also in the language of P.
Intuitively, premises 1 and 2 prove, in a compositional and inductive manner, that every
trace in the language of M;||M> is also included in the language of ¢1||g2. Premise 3
ensures that every trace in the language of g1||g2 is also included in the language of P,
thus the consequence of the rule is obtained. Completeness of the rule stems from the
fact that M7 and M> (restricted to appropriate alphabets) can be used for g; and g in a
successful application of the rule.

Coming up manually with assumptions g; and g that are small and also satisfy the
premises of the rule is difficult. We propose an algorithm, Automated Circular Reason-
ing (ACR), for the automated generation of the assumptions. In ACR the assumptions
are initially approximate and are iteratively refined based on counterexamples obtained
from checking the rule premises and found to be spurious (i.e. do not indicate real
errors). Refinement is performed using a SAT solver over a set of constraints that de-
termine how the assumptions should be refined in order to avoid producing the same
counterexample in subsequent iterations. The algorithm is guaranteed to terminate, re-
turning either minimal assumptions that satisfy the rule premises (meaning that the
property holds) or a real counterexample (indicating a property violation).

Our search for minimal assumptions using SAT is inspired by [10]. However, in [10]
a single (separating) assumption is generated, with the goal of automating non-circular
reasoning. ACR, on the other hand, searches for two mutually dependent assumptions
to be used with circular reasoning. Finding such assumptions poses unusual challenges
since they need to be generated in a tightly related manner. We achieve this by con-
straining the assumption refinement with boolean combinations of requirements that
certain traces must or must not be included in the language of the updated assumptions.
For example, we may require “trace o; must not be in g; or trace o must be in gs”.
The SAT encoding of this constraint makes sure that at least one of its disjuncts will be
satisfied. Solving the constraints for increasing number of states in |g1|+ |g2|, yields the
minimal candidate assumptions to be used in the next iteration of ACR. We establish
the correctness of our ACR algorithm (proofs are omitted due to space constraints).

To the best of our knowledge, our work is the first to fully automate circular assume-
guarantee reasoning. We implemented our algorithm and compared it with an established
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learning-based method that uses the acyclic rule NonCIRC-AG [7]. Our experiments
indicate that the assumptions generated using the circular rule can be much smaller,
leading to smaller verification problems, both in the number of explored states and the
analysis time.

2 Preliminaries

Let Act be the universal set of observable actions and let 7 denote a local action, unob-
servable to a component’s environment.

Definition 1. A Labeled Transition System (LTS) M is a quadruple (Q,aM,d, qo)
where Q) is a finite set of states, aM C Act is a finite set of observable actions called
the alphabet of M, § C Q x (aM U T) X Q is a transition relation, and qo € Q is the
initial state.

M is nondeterministic if it contains a 7 transition or if there exist (¢, a, ¢'), (¢, a,q") €
d such that ¢ # ¢". Otherwise, M is deterministic (denoted as DLTS). We write
4(g,a) =L if there is no ¢’ such that (¢, a,q’) € 6. For a DLTS, we write 6(gq,a) = ¢’
to denote that (¢, a,q’) € 4.

Note. A non-deterministic LTS can be converted to a deterministic LTS that accepts the
same language. However the deterministic LTS might have exponentially many more
states than the non-deterministic LTS.

Paths and Traces. A trace o is a sequence of observable actions. We use o; to denote
the prefix of o of length i. A path in an LTS M = (Q,aM, 0, qp) is a sequence p =
qo,a0,q1,01 - - - ,an—1, gy of alternating states and observable or unobservable actions
of M, such that for every k € {0,...,n — 1} we have (qx, ak, qx+1) € 9. The trace of
p is the sequence bgb; - - - b; of actions along p, obtained by removing from ag - - - ap,—1
all occurrences of 7. The set of all traces of paths in M is called the language of M,
denoted L(M). A trace o is accepted by M if o € L(M). Note that L(M) is prefix-
closed and that the empty trace, denoted by e, is accepted by any LTS.

Projections. For ) C Act, we use ol x to denote the trace obtained by removing
from o all occurrences of actions a ¢ X'. My is defined to be the LTS over alphabet
2’ obtained by renaming to 7 all the transitions labeled with actions that are not in 2.
Note that L(M|x) = {ols | o0 € L(M)}.

Parallel Composition. Given two LTSs M; and Ms over alphabet My and oMo,
respectively, their interface alphabet ol consists of their common alphabet. That is,
al = aM; N aMy. The parallel composition operator || is a commutative and associa-
tive operator that combines the behavior of two components by synchronizing on the
actions in their interface and interleaving the remaining actions.

Let M7 = (Q1,aMi,01,q0,) and Ma = (Q2,aMs, 02, qo,) be two LTSs. Then
My||My is an LTS M = (Q,aM,d,qo), where Q@ = Q1 X Q2, g0 = (4o, 90,)s
aM = aM; U aMs, and ¢ is defined as follows where a € aM U {7}:
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/

- if (q1,a,q}) € 41 for a & aMy, then ((¢1,42), a, (¢}, q2)) € 0 for every ¢z € Qa,
- if (g2, a,qb) € s for a € aMy, then ((q1,42), a, (q1,¢5)) € 0 for every 1 € Q1,
- if (q1,a,4}) € 61 and (g2, a,¢3) € d2 fora # 7, then ((q1, ¢2), a, (41, ¢3)) € 0.

Lemma 1. [7] For every t € (aM; U aMs)*, t € L(M;||Ms) if and only if t}on, €
L(Ml) and t\l,a]yb € L(MQ)

Example 1. Consider the example in Figure 1. This is a variation of the example of [7]
modified to illustrate circular dependencies. LTSs In and Out have interface alphabet
{send, ack}. Their composition In||Out is an LTS where the transition from state 0 to
1 in component I'n (Iabeled with ack) never takes place, since there is no corresponding
matching transition in component Out. Similarly the transition from state 2 to 3 in
component Out (labeled with send) never takes place. As a result, In||Out simply
repeats the trace (in, send, out, ack).

Properties and Satisfiability. A safety property is defined as an LTS P, whose lan-
guage L(P) defines the set of acceptable behaviors over the alphabet aP of P. An LTS
M over aM D «P satisfies P, denoted M = P, if Vo € L(M).cloap € L(P). To
check a safety property P, its LTS is transformed into a deterministic LTS, which is
also completed by adding an error state 7w and adding transitions from every state ¢ in
the deterministic LTS into 7 for all the missing outgoing actions of g; the resulting LTS
is called an error LTS, denoted by P.... Checking that M = P is done by checking
that 7 is not reachable in M || Py,

A trace 0 € aM™* is a counterexample for M = P if o € L(M) but olop & L(P).

The Order LTS from Figure 1 depicts a safety property satisfied by In||Out. Note
that neither In, nor Out, satisfy this property individually. For example, the trace
(in, send, ack, ack) of In is a counterexample for In = Order.

ack

S send
0 send 1 out 5 send 3

ack

Out Order

Fig. 1. LTSs describing the In and Out components and the Order property

3 Circular Assume-Guarantee Reasoning

In this section we formally establish the soundness and completeness of the circular
rule CIRC-AG introduced in Section 1 (proofs are omitted due to space constraints).
We start by defining inductive properties. CIRC-AG uses formulas of the form M |=
A P, where M is a component, P is a property, and A is an assumption about M’s
environment. To ensure soundness of the circular rule the assume-guarantee formula is
defined using induction over finite traces.
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Definition 2. Let M, A and P be LTSs over aM,aA and aP respectively, such that
aP C aM. We say that M |= A P holds if Vk > 1 Vo € (aM U aA)* of length k
such that olop € L(M), if 0k,—1daa € L(A) then olop € L(P).

Intuitively, the formula states that if a trace in M satisfies the assumption A up to
step k — 1, it should guarantee P up to step k. As an example consider the LTSs
In from Figure 1 and g; and g from Figure 2. Then In = g2 > g1. On the other
hand, In [~ g1 > g since the trace o = (in, send, ack, ack) € L(In) is such that
Ok—1dag = (send,ack) € L(g1), but 0lag, = (send, ack, ack) ¢ L(gs). o is there-
fore a counterexample for In = g1 > go.

Definition 3. A trace o € (aMUaA)* of length k is a counterexample for M = A>P
ifolanm € L(M) and o.—1laa € L(A) but 0lop ¢ L(P).

Soundness and Completeness of Rule CIRC-AG. To establish the soundness of rule
CIRC-AG we have the following requirements. M7, My and P are LTSs where aP C
aM; U aMs. Moreover, g1, go are LTSs, used as assumptions in the rule, such that
aM; NaP C agy and aMs NaP C ags.

The following lemmas include several observations that are useful both in the sound-
ness and completeness proofs and in the algorithm for automatic generation of assump-
tions g7 and gs, needed for the rule.

Lemma 2. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG, such that
aM; NaP C ag;. Then 1) M1||M2 = g1||g2- 2) Mi||g2 = P and Ma||g1 = P.

Lemma 3. Let My, Mo, P be LTSs over aMy, aMs, aP respectively. Let g1 2 ol U
(aMy N aP) and ags 2 ol U (aMy N aP). Then M||M2 = P if and only if
Ml\L@QlHMQ*LOtg'z ': P.

Theorem 1. The Rule CIRC-AG is sound and complete.

Soundness states that if there exist LTS assumptions g; and g» that satisfy all premises
of CIRC-AG, then M;||Mz = P. This result follows from Lemma 2, Item (1). Com-
pleteness states that if M;||M2 = P holds we can always find g7 and g such that
the premises of the rule hold. Indeed completeness is established by showing that if
M, ||M = P, then g1 = Milag, and go = Mslag, where agr = aM;N(aMoUaP)
and agy = aM> N (aMy U aP), satisfy the premises of the rule.

Example 2. Consider our running example (Figure 1), and consider the assumptions
g1 and go depicted in Figure 2, over alphabet agy = aln N (aOut U aOrder) and
ags = aOut N (aln U aOrder). In both cases ag; = {send, ack}. As stated above,
In | g2 > g1. Similarly, Out |= g1 > g2. Moreover, g1]|g2 = Order. It follows that
In||Out = Order can be verified using CIRC-AG with g; and g2 as assumptions.

4 Automatic Reasoning with CIRC-AG

We describe an iterative algorithm to automate the application of rule CIRC-AG by
automating the assumption generation.
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ack {ack,send}
2 send M
D) (=)
g1 g2 A

Fig. 2. LTSs describing the assumptions g1 and g generated by ACR, and the assumption A
generated with L*. ag1 = ags = oA = {send, ack}

Checking Inductive Properties. We first introduce a simple algorithm that checks if
an inductive property of the form M = A P, where aP C aM, holds and if it does
not, it returns a counterexample. To do so, we consider the LTS M||A||P,,. We label
its states by (parameterized) propositions err,, where a € aP. (spr, S4, sp) is labeled
by err, if sp; has an outgoing transition in M labeled by a, but the corresponding
transition (labelled by a) leads to 7 in P,,... We then check if a state ¢ labeled by err,
is reachable in M || A|| P.... If so, then the algorithm returns the trace of a path from g
to g extended with action a as a counterexample. Intuitively, such a path to g represents
a trace in M that satisfies A (because it is a trace in M||A) such that if we extend it by
a we get a trace in M violating P.

Overview of the Main Algorithm. We propose an iterative algorithm to automate
the application of the rule CIRC-AG by automating the assumption generation. Pre-
vious work used approximate iterative techniques based on automata learning or ab-
straction refinement to automate the assumption generation in the context of acyclic
rules [7,19,3,4,2,5,6]. A different approach [10] used a SAT solver over a set of con-
straints encoding how the assumptions should be updated to find minimal assumptions;
the method was shown to work well in practice, in the context of the same acyclic
rule. We follow the latter approach here and we adapt it to reasoning for cyclic rules
and checking inductive assume-guarantee properties. As mentioned, this is challenging
due to the mutual dependencies between the two assumptions that we need to generate.
We achieve this by constraining the assumptions with boolean combinations of require-
ments that certain traces must or must not be included in the language of the updated
assumptions.

Algorithm 1 describes our Automated Circular Reasoning (ACR) algorithm for
checking M;|| M2 |= P using the rule CIRC-AG.

We fix the alphabet of the assumptions ¢; and gz to be gy = My N (aMz U aP)
and aga = aM> N (aM; U aP). By the completeness proof of the rule, this suffices.

ACR maintains a set C' of membership constraints on g; and go. At each iteration
it calls GENASSMP (described in Section 6) to synthesize, using a SAT solver, new
minimal assumptions g; and gs that satisfy all the constraints in C. GENASSMP also
receives as input a parameter £ which provides a lower bound on the total number of
states in the assumptions we look for. This avoids searching for smaller assumptions
that cannot satisfy C'. The algorithm then invokes APPLYAG (described in Section 5) to
check the three premises of rule CIRC-AG using the obtained assumptions g; and gs.
APPLYAG may return a conclusive result: either “M;||Ms = P” or “M;|| M2 £ P”,
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Algorithm 1. Main algorithm for automating rule CIRC-AG for checking M ||Ms |

: procedure ACR(M:, M, P)
Initialize: C =0, k =2
repeat
(91, 92) =GENAssMP(C, k)
(C', Result) =APPLYAG (M1, M>, P, g1, g2)
C=CUC k=l|g|+]|g|
until (Result # “continue”)
return Result
end procedure

CENUE Wy =T

in which case ACR terminates. If no conclusive result is obtained, it means that g; and
g2 do not satisfy the premises of the rule. Further, the counterexamples demonstrating
the falsification of the premises are not suitable for concluding M; || M [~ P, i.e. they
are spurious. In this case APPLYAG returns “continue” together with new membership
constraints that determine how the assumptions should be refined. The new constraints
are added to C'. Note that since the set C' of constraints is monotonically increasing, any
new pair (g7, g5) that satisfies it also satisfies previous sets of constraints. The previous
set was satisfied by assumptions whose total size is |g1| + |g2| but not smaller. Thus,
we should start our search for new (g1, g5) from k = |g1| + |g2| number of states. & is
updated accordingly (line 6).

Example 3. The assumptions g; and g2 from Figure 2 used to verify In||Out = Order
with CIRC-AG were obtained by ACR in the 7th iteration. The LTS A from Figure 2
describes the assumption obtained with the algorithm of [7], which is based on acyclic
rule NonCIRC-AG and uses L* for assumption generation. Notice that both g; and go
are smaller than A (and our experiments show that they can be much smaller in prac-
tice). The reason is that, after a successful application of CIRC-AG, ¢1||g2 overapprox-
imates M;||M>. This means that each g; overapproximates the part of M; restricted to
the composition with the other component. For example g; does not include the traces
leading to state 1 from In since they do not participate in the composition. Similarly go
does not include the traces leading to state 3 in Out. In contrast, for the acyclic rule, the
assumption A has to overapproximate Mo (Out) as a whole. Therefore, CIRC-AG can
result in substantially smaller assumptions, as also demonstrated by our experiments.

Membership Constraints. Membership constraints are used by our algorithm to gather
information about traces that need to be in L(g;) or must not be in L(g;), fori = 1,2.
Thus they allow us to encode dependencies between the languages of the two assump-
tions L(g1) and L(gz). The constraints are defined by formulas with a special syntax
and semantics, as defined below.

Definition 4. Membership constraints formulas over (g1, age) are defined inductively
as follows: For every o1 € agi and oy € agj the formulas +(o1,1), —(01,1),
+(02,2), —(02,2) are atomic membership constraints formulas. Further, if ¢c; and co
are membership constraints formulas, then so are (c1 A c2) and (¢1 V ¢2).
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Given a membership constraints formula ¢, Strings(c, ) is the set of prefixes of all
o € ag;* such that +(o,7) or — (o, %) is an atomic formula in c.

Definition 5. Let ¢ be a membership constraints formula over (ag1, ags), and let Ay
and As be two LTSs. The satisfaction of c by (A1, Aa) is defined inductively. (A1, As) =
cifand only if €Ay = agy and aAs = ags, and:

— if cis an atomic formula of the form +(o, i) then o € L(A4;).
— if ¢ is an atomic formula of the form —(o,1) then o & L(A;).
— if cis of the form (c1 N c2) then (A1, A2) = ¢1 and (A1, A2) E ca.
— if cis of the form (c1 V c2) then (A1, A2) = ¢1 or (A1, A2) [ ca.

For a set C of membership constraints formulas over (agi, ags), we say that Ay and
Ay satisfy C if and only if for every ¢ € C, (A1, A2) E ¢

For example, a membership constraint of the form + (o1, 1) V — (02, 2) requires that
o1 € L(g1) or o3 & L(g2) (or both).

S APPLYAG Algorithm

Given assumptions g1,92, APPLYAG (see Algorithm 2) applies assume-guarantee rea-
soning by checking the three premises of rule CIRC-AG using ¢g; and g». In the algo-
rithm we check premises 1, 2, 3 in this order but in fact the order of the checks does not
matter and the checks can be done in parallel. If all three premises are satisfied, then,
since the rule is sound, it follows that M;||Mz |= P holds (and this is returned to the
user). Otherwise, at least one of the premises does not hold. Hence a counterexample o
for (at least) one of the premises is found. APPLYAG then checks if the counterexam-
ple indicates a real violation for M ||Ms = P, as described below. If this is the case,
then APPLYAG returns M ||Ms = P. Otherwise APPLYAG uses the counterexample
to compute a set of new membership constraints C' and returns “continue” (note that in
the first two cases an empty constraint set is returned).

Notation. For readability, in APPLYAG (and UPDATECONSTRAINTS) we use o €
L(A)and o] ¢ L(A) asashorthandforolaa € L(A) and 0)o4 & L(A), respectively.

Checking Validity of a Counterexample. Given a counterexample o for one of the
premises of the CIRC-AG rule, APPLYAG checks if o can be extended into a trace in
L(M,||Mz) which does not satisfy P. This check is performed either by APPLYAG
directly (if premise 3 fails: in lines 9-16 of APPLYAG) or by algorithm UPDATECON-
STRAINTS (if one of the first two premises fails). In essence, a counterexample o is real
if 0lag € L(Milag, ), 0lag, € L(Ma2lag,) and olop ¢ L(P). This is also stated by
the following lemma, which follows from Lemma 1 and Lemma 3.

Lemma 4. Ifa\l/a!h € L(Ml\lfa!h)’ O—\LOégz € L(M2\L0492) and O—\LozP ¢ L(P)r then
M || My (£ P. Moreover, o can be extended into a counterexample for M || Mz = P.
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For example, in line 9 of Algorithm 2, o € (ag1 U ag2)* is a counterexample for
premise 3, hence olop & L(P). It therefore suffices to check if 0)qg, € L(Milag,)
and 0} g, € L(M2lag,) in order to conclude that a real counterexample exists (line 11).
Similarly, in Algorithm 3, oca € (aM; U ag;)* is a counterexample for premise ¢ for
i € {1,2}, hence oalan, € L(M;), and since ag; C oM, also oalag, € L(Milag,)-
In line 3, the algorithm then checks if, in addition, 0alag, € L(Mjlag,) and calap &
L(P). If these conditions hold then by Lemma 4 the counterexample is real (line 5).

Computation of New Membership Constraints based on Counterexamples. When
the counterexample found for one of the premises does not produce a real counterex-
ample for M;||My = P, then APPLYAG (or UPDATECONSTRAINTS) analyzes the
counterexample and computes new membership constraints to refine the assumptions.
In essence, these constraints encode whether the counterexample trace (or a restriction
of it) should be added to or removed from the languages of the two assumptions such
that future checks will not produce the same counterexample again.

If premise 3 does not hold, i.e. g1||g2 [~ P and the reported counterexample o is
found not to be real then it should be removed from L(g;1) or from L(g2) (in this way
the trace will no longer be present in the composition g1 ||g2 for the assumptions com-
puted in subsequent iterations). Therefore in line 14, APPLYAG adds the corresponding
constraint (—(0lag,, 1) V —(0lags;2)) to C.

If either premise 1 or 2 does not hold, i.e. M; B~ g, g;, then the analysis of the coun-
terexample o;a; (for i=1 or 2) and the addition of constraints (if needed) are performed
by UPDATECONSTRAINTS (see Algorithm 3). Specifically, in this case o;a; should be
added to L(g;) or its prefix o; should be removed from L(g;) (where j # ¢). In both
cases, this ensures that checking M, (= g; > g; in subsequent iterations will no longer
produce the same counterexample (see Definition 2).

We add this constraint in line 11 of Algorithm 3, where C' is updated with
(—(0lag;»3)V+(oalag,,i). Although this simple refinement would work for all cases,
note that Algorithm 3, uses a more involved refinement. The reason is that we exploit
the properties stated in Lemma 2, Items (1) and (2), to detect more elaborate constraints;
using the lemma and analyzing both ¢ and oa allows us to accelerate the refinement
process.

For example, in line 18, the subconstraint +(calag,,%) is conjoined with
—(0alag,, j)- This is because Lemma 2, Item (2) establishes that M;||g; = P is a nec-
essary condition for a successful application of CIRC-AG. Therefore since calag, €
L(Milag,) and calop & L(P), then 0alag, must not be in L(g;). Explanations of
other cases appear as comments in the pseudocode. Note that there are more cases that
we do not show in order to simplify the presentation.

Example 4. Consider the LTSs from Figure 3, produced in the 6th iteration of ACR.
When trying to apply CIRC-AG with these assumptions, APPLYAG obtains the trace
(send, out, send) as a counterexample for Out |= g%ﬁ) > 956) (premise 2). Since
(send, out, send)lag, & L(Inlag, ), the counterexample turns out to be spurious, and
after checking the additional conditions in UPDATECONSTRAINTS, —({send),1) V
(+((send, send),2) N —((send, send), 1)) is produced in line 18 as a membership

constraint in order to eliminate it in the following iterations.
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Algorithm 2. Applying CIRC-AG with g; and g2, and constraint updating
1: procedure APPLYAG(M1, M2, P, g1, g2)
2 ifM1 %92 > g1 then
3 Let o1a1 be a counterexample for My = g2 > g1
4. return UPDATECONSTRAINTS(1,2, M1, M2, P,01a1)
5: else if My = g1 > g2 then
6: Let o2a2 be a counterexample for Mz = g1 > g2
7 return UPDATECONSTRAINTS(2,1, M2, M1, P, 02a2)
8 else if g1||g2 = P then

9: Let o be a counterexample for g1 ||g2 = P
10: if (0] € L(M; | ag1) && o J€ L(Ms | ags)) then
11: return (0, “M1|| M2 = P”)
12: else o & L(Milag, ||M2ldag,), 0l & L(P)
13: // Remove o from g; or remove o from gz
14: C={(-(0lag;1) V —(0lag,2))}
15: return (C, “continue”)
16: end if
17: else
18: return (), “M; || M2 = P”)
19: end if

20: end procedure

ack,send
A O30
9% g5

Fig. 3. LTSs produced in the 6th iteration of ACR

In the following we state the progress of assumption refinement based on spurious
counterexamples.

Lemma 5. Let o be a spurious counterexample obtained for premise i € {1,2,3} of
CIRC-AG with respect to assumptions g1, go and let C be the updated set of constraints.
Then any pair of LTSs ¢} and g4 such that (g1, g5) = C will no longer exhibit o as a
counterexample for premise i of CIRC-AG.

Corollary 1. Any pair of LTSs g and g4 such that (g, g5) |= C is different from every
previous pair of LTSs considered by the algorithm.

The following two lemmas state that the added membership constraints do not over-
constrain the assumptions. They ensure that the “desired” assumptions that enable to
verify (Lemma 6) or falsify (Lemma 7) the property are always within reach.

Lemma 6. Suppose M, ||Ms |= P and let g1 and go be LTSs that satisfy the premises of
rule CIRC-AG. Then (g1, g2) satisfy every set of constraints C produced by APPLYAG.

Lemma 7. Let g1 = Milag, and g = Mslag,. Then (g1, g2) satisfy every set of
constraints C produced by APPLYAG.
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Algorithm 3. Computation of constraints based on a counterexample for M; = g; > g;

1: // oa is a counterexample for M; = g; > gi, i.e. oal € L(M;), 0l € L(g;),0al & L(g:)
2: procedure UPDATECONSTRAINTS(%, 7, M;, M;, P, oa)

3: ifoal € L(Mjlag;) and gal € L(P) then

4: loal € L(Milag;||Mjlag;) and cal ¢ L(P)

5: return (), “M; || M; ¥ P”)

6: ifoal € L(M;lag;) and gal € L(P) then

7: // Add oa to both g; and g; to ensure M1lag, ||M2lag, = g1]|g2 (Lemma 2 (1))
8: C ={+(0alay;,i), +(0alag;, )}

9: ifoal & L(Mjlag;) and o) & L(Mjlag;) and cal € L(P) then

10: // Remove o from g; or add oa to g;

11: C= {(_(Uiagwj)V+(0a¢a9ivi)}

12: ifoal € L(Mjlag;) and o) & L(M;jlag;) and cal & L(P) and o ¢ L(P) then
13: // Remove o from g; (Because of Lemma 2 (2))

14: C = {~(0dag; )}

15: ifoal & L(Mjlag;) and 0} & L(Mjlag;) and cal & L(P) and 0| € L(P) then
16: / Remove o from g; or (add oa to g; and remove it from g;)

17: /I In the latter case removal of oa from g; is due to Lemma 2 (2)

18: C={(—(olag;,7) V (+(0alag;, i) AN —(0alag,, 7))}

19: return (C, “continue”)

20: end procedure

6 GENASSMP Algorithm

Given a set of membership constraints C', and a lower bound k on the total number
of states in |g1| + |g2|, we compute assumptions g; and g that satisfy C. Similarly to
previous work [10] we build assumptions as deterministic LTSs (even though APPLYAG
is not restricted to deterministic LTSs). Technically, for each value of & starting from
the given k, GENASSMP encodes the structure of the desired DLTSs ¢ and go with
lg1]+ |g2| < k, as well as the membership constraints, as a SAT instance Sat Ency(C).
It then searches for a satisfying assignment and obtains DLTSs g; and g» based on
this assignment. & is increased only when SatEnc(C') is unsatisfiable, hence minimal
DLTSs that satisfy C' are obtained.

We use the following encoding of the problem of finding whether there are DLTSs
g1 and go with k states in total such that (g1, g2) E C.

Variables used for Encoding the LTSs Structure. Let n = [log,(k + 2)]. We use
boolean vectors of length n to encode the states of g; and go, where for each of them
we add a special “error” state. For each 0 < m < k + 1 we use m to denote the n-bit
vector that represents the number m. We fix the vector 0 to represent the error state of
g1, and the vector k£ + 1 to represent the error state of go. We explicitly add the error
states in order to distinguish between traces that are rejected by the DLTS and traces
for which the behavior is unspecified. For every i € {1, 2}:
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— Let S; include the prefixes of all traces over arg; which are constrained in C' with
respect to i. That is, S; = (J, . Strings(c,i).
- Forevery o € S;, we introduce a set of boolean variables Var(o,4) = {v] 0=

TL

j < n —1}. We denote by v(,; the vector (v] A
V(0,s) Tepresents the state of g; reached when traversing o.

') of boolean variables.

We define Vy, = |, g, Var(o,i). In addition to V,;, and V,,, we introduce a set Vo
of boolean variables which consist of the following variables:

— To guarantee that the LTSs we produce are indeed deterministic, we add a set of
boolean variables which are used to enumerate the (non error) states in the DLTSs.
For this we use k X |ag1 U ags| vectors of boolean variables, each of size n: For
every ]l < m < kanda € (g1 U ags), we introduce a set of boolean vari-
ables Var(m,a) = {ujm o) | 0 < j < n— 1} We denote by u,, ) the vector

(u? Ul ) u?;la)) of boolean variables. u,, ) represents the state (of either g; or

g2) reached from state m after seeing action a.

— To guarantee that the states of the DLTSs are disjoint, we introduce another vector
u = (u®---u""1) of boolean variables, used to represent the number [ such that
all states of g; are smaller or equal [ and all states of g, are larger than /.

Variables used for Encoding Membership Constraints. For every disjunctive mem-
bership constraint formula ¢ € C we introduce a boolean “selector” variable en,. that
determines which of the disjuncts of ¢ must be satisfied (the other disjunct might be sat-
isfied as well). Technically, let En. = {en. | ¢ € C},andlet A = En.U{—en. | en. €
Enc} U {true}. We define 0294, 67 : Sy — 24 and fadd grem Sy — 24 such that
for every o € S;, 0294(0) and 6™ () are the smallest sets such that true € 029%(e)

and true € G;Qdd(e), and for every ¢ € C:

- ifc=(—(0lag,,1) V —(0lag;,])) then enc € 057" (0lag,) and menc € 057" (0l ag; )-

- if ¢ = +(0lag,, 1) then true € 0394 (c|ag,).

- ifc= —(0lag,,?) then true € 655 (0lag,)-

- ife=(—(0lag;,J) V+(0alag,, 1)) then enc € 057" (0lag,) and —en. € 029 (calag,).

— ife = (—(0hagy, J) V (+(70kag,,8) A —(0abag,, 1)) then ene € 05 (0 Ly, ), ene €
037 (0alag,) and —en. € 0" (0alag,)-

Intuitively, if at least one of the literals in 9“dd( ) is satisfied then o must be added
to the language of g;, and similarly for 67" (o ) with removal. These sets are therefore
interpreted as disjunctions. Formally, let Bool(A) be the set of boolean formulas over
A. For 05¢ : S; — 24 (where ac € {rem,add}), we define 05¢ : S; — Bool(A) as

Fac false  0%(o) =10
follows: #2¢(0) = { ae gi v
gi V 05¢(o) otherwise

SAT Constraints. SatEncy(C) is a set of constraints (with the meaning of conjunc-
tion) over the variables En. U Vy, UV, U Vi, defined as follows:
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— Encoding the LTSs structures into SAT constraints:

1. For every trace o1 € S7 we add the constraint V(sy,1) < u, and for every trace
o9 € S we add the constraint u© < V(02,2) (separating states of the DLTSs).
We also add a constraint 1 < u < k — 1 to restrict the range of w.

2. For every o € S we add the following constraint v(, 2y < k + 1 (every trace
is mapped to a valid state in the DLTSs).

3. For every i € {1,2}, every trace o € S;, every action a € «g; such that
oa € S;, and for every 1 < m < k, we add the following constraint: (v(a,i) =
M = V(gq,i) = U(m,q) (the DLTSs are deterministic).

4. For every trace o € 57 and action a € ag, if ca € S7 then we add the
following constraint: v(5,1) = 0 = v(54,1) = 0 (the error state of g; is a sink
state; DLTSs are prefix closed).

5. For every string o € S5 and action a € «ags, if ca € S, then we add the
following constraint: v(5,2) = k + 1 = v(q,2) = k + 1 (the error state of g2
is a sink state; DLTSs are prefix closed).

— Encoding the membership constraints formulas into SAT constraints:
6. For every trace o € S; we add the constraint: égfm (0) = v(1) = 0.

7. For every trace o € Sy we add the constraint: égjm(a) = V(o) =k + 1.
) = V(o,1) 7§ 0.
) = V(0,2) < k+1

8. For every trace o € S7 we add the constraint: égldd(o

9. For every trace o € Sy we add the constraint: égjd(a

Note that the implications in constraints 6-9 guarantee that a trace is accepted by
g; (leads to a non-error state) whenever it is required to be added to g; (as encoded
by BZfld(oiagi)). However, it may be accepted also in other cases, provided it is not
required to be removed by other constraints. The same holds for removal of traces.

Lemma 8. SatEncy(C) is satisfiable if and only if there exist DLTSs g1 and g that
satisfy C such that |g1| + |gz2| = k.

Due to Lemma 7 which ensures that (the nondeterministic) LTSs M | ag, and M2 g,
satisfy C, we get the following corollary, which ensures termination of GENASSMP:

Corollary 2. At every iteration of ACR, there exists k < O(21M1 4 2IMz1) ywhere
SatEncy(C) is satisfiable.

In fact, since the minimal k is found, minimal assumptions that satisfy C' are ob-
tained. In particular, together with Lemma 6, this ensures that when M;||M2 = P,
then minimal assumptions for which CIRC-AG is applicable are eventually obtained.

From SAT Assignment to LTS Assumptions. Given a satisfying assignment 1) to
SatEncy(C), we use ¢ to generate assumptions g; and g» that satisfy C.

First, we extract DLTSs A;(¢)) and As(%) extended with error states: A;(v)) =
(Qi, g, 6i, gy, mi) where Q; = {m € {0,1}" | Jo € S; such that ¢ (v(, ;) = m},
qs = Y(V(esy)> T = 0,12 = k + 1, and 6;(m, a) = m/ if there exists o € .S; such that
Y(V(e) =mAca € S; AP(V(sq,:y) = m’, and otherwise d;(m, a) = L (undefined).
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Note that d; is deterministic and it is well defined, since constraint 3 of SatEncy(C)
ensures that if there exist 0,0’ € .S; such that ¥(v(,;)) = ¥(v(, ;) and both oa and
o'aarein S;, then also ¥ (v(gq,i)) = ¥(V(0a,i)). Further, by constraint 1, Q1 NQ2 = (.

A1(v) and As(1)) can be thought of as error LTSs, except that they might be in-
complete: §; is a partial function. As in an error LTS, traces leading to an error state in
A; (1) are rejected. Traces for which ¢; is undefined are unspecified (recall that such
traces do not exist in an error LTS, which is complete, and in a DLTS, in contrast, such
traces are rejected). The latter represent traces that do not affect the satisfaction of C.

We transform A; (¢) and As(v) into (complete) error LTSs by extending d; to to-
tal functions. Since unspecified traces do not affect satisfaction of C, any completion
results in DLTSs that satisfy C. In practice, if §;(m, a) = L, we define §;(m, a) = m.

To obtain DLTSs, we remove the error states. We denote the result by LTS (A4;(v))).

Lemma9. Ler g1 = LTS(A1(¢))) and go = LTS(A2(v)), where 1) satisfies
SatEncy(C). Then g1 and g2 are DLTSs such that (1) (g1,92) E C and (2) |g1| +
|g2| < F.

Example 5. Consider the 7th (and final) iteration of ACR. Since the assumptions from
the 6th iteration (Figure 3) have a total of 3 states, the search performed by GENASSMP
at the 7th iteration starts with & = 3, and since SatEnc3(C) is unsatisfiable, k is
increased to 4, yielding (the final) g; and gs with a total of 4 states (Figure 2). Note that
(g1, g2) indeed satisfy the membership constraint —({send), 1)V (+({send, send), 2) A
—((send, send), 1)) € C from the previous iteration (due to the right disjunct). In
particular, they do not exhibit the counterexample from Example 4.

7 Correctness, Termination and Minimality

In this section we argue that our main algorithm ACR is correct, it terminates and
produces minimal assumptions.

Theorem 2 (Correctness and Termination). Given components My and Ms, and
property P, ACR terminates and returns “M;||Mz = P” if P holds on M||Mz and
“M;||Ms = P”, otherwise.

Proof (sketch). ACR returns “M;||M; = P” if and only if all premises of CIRC-
AG hold, in which case correctness follows from the soundness of CIRC-AG. On the
other hand, if ACR returns “M; || My ~ P”, then correctness is ensured by Lemma 4.
It remains to prove that ACR terminates. First, Corollary 2 ensures that at every itera-
tion of ACR, SatFEncy,(C) is satisfiable for some k = O(2/M:| 4- 2121 Therefore,
each iteration terminates. Moreover, by Corollary 1, the pair of DLTSs generated at
each iteration is different from all pairs considered in previous iterations, which ensures
progress of ACR. Finally, by Lemma 7, g1 = Milag, and go = M3l.g, always sat-
isfy C. Therefore ACR terminates at the latest when g1 = M1lag, and g2 = Malag,,
in which case premises 1 and 2 of CIRC-AG necessarily hold and premise 3 amounts
t0 M1lag, ||M2lag, = P, hence either all premises hold or a real counterexample is
obtained. O
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Theorem 3 (Minimality). [f M;||My = P then ACR terminates with DLTSs g, and
go whose total number of states is minimal among all pairs of DLTSs that satisfy the
CIRC-AG rule.

Proof (sketch). Termination follows from Theorem 2. Let n be the minimal total num-
ber of states of DLTSs that satisfy rule CIRC-AG. By Lemma 6, the corresponding
DLTSs satisfy C' at any iteration of ACR. Therefore by Lemma 8, Sat Enc, (C) is sat-
isfiable at any iteration and in particular in the last one, where Lemma 9 ensures that the
obtained DLTSs g1 = LT S(A1(v)), g2 = LT S(A2(t))) are such that |g1] + |g2| < n.

O

8 Evaluation and Concluding Remarks

We implemented ACR in the LTSA (Labelled Transition System Analyser) tool [13];
we use MiniSAT [8] for SAT solving. We optimized our implementation to perform
incremental SAT encoding using the ability of MiniSAT to solve CNF formulas un-
der a set of unit clause assumptions. We also made ACR return (at each iteration) k
counterexamples for the three premises where, & is [g1] + |g2|-

We compared ACR with learning-based assume guarantee reasoning (based on rule
NonCIRC-AG), on the following examples [19]: Gas Station (3 to 5 customers), Chiron
—amodel of a GUI (2 to 5 event handlers), Client Server — a client-server application (6
to 9 clients), and a NASA rover model: MER (2 to 4 users competing for two common
resources). We used the same two-way decompositions reported in previous experi-
ments. Experiments were performed on a MacBook Pro with a 2.3 GHz Intel Core i7
CPU and with 16 GB RAM running OS X 10.9.4 and a Suns JDK version 7.

Table 1 summarizes our results. For both approaches, we report the analysis time (in
seconds) and the assumption sizes. Measuring memory is unreliable due to the garbage
collection and the interfacing with MiniSAT via native method calls (our measurements
indicate that memory consumption is stable and does not increase dramatically for
larger cases). We instead report the maximum numbers of states observed for check-
ing the premises of the two rules. We put a limit of 1800 seconds for each experiment;
“~” indicates that the time for that case exceeds this limit.

In all the experiments ACR generates smaller assumptions and in the majority of
cases this results in smaller analysis time and state space explored. For larger cases the
assumptions generated by ACR are significantly smaller. For the Gas Station, ACR sig-
nificantly outperforms learning in terms of analysis time and states explored, while for
all other cases the two approaches are comparable, at smaller sizes. However at larger
configurations (Client Server 8 and 9, MER 4) ACR again significantly outperforms the
learning-based approach. In all but one case (Chiron 5) the smaller assumptions gener-
ated with ACR lead to smaller state spaces for checking the rule premises. Case Chiron
5 is still comparable in terms of running time but it may indicate that the two-way de-
composition that we used (found to be optimal for learning in previous studies) may not
be optimal for ACR. We plan to investigate this further in future work.

Future Work. ACR can be optimized in many ways. Currently we are checking the
three premises one after the other at each iteration and get k different counterexam-
ples for each one of them. We can check them in parallel on different machines. We
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Table 1. Comparison of ACR (rule CIRC-AG) and learning (rule NonCIRC-AG). Best results are
shown in bold.

Case  ACR Time |g1| |g2| Premisel Premise2 Premise3 L* Time |A| Premisel Premise2

GasSt 3 26 3 3 2588 1093 6 - >351 >8243 >4045
GasSt 4 48 3 3 19503 2196 4 - >381 >165836 >47360
GasSt 5 309 3 3 132608 6995 6 - >207 >560000 >61058
Chiron2  1.257 2 2 134 204 5 0.5 9 256 198
Chiron3  2.013 2 2 341 2244 5 2.121 25 492 2736
Chiron4  3.149 2 2 449 6681 5 6.341 45 860 18370
Chiron 5 34 2 2 1152 258456 5 33 122 2101 138537
ClServ 6 11 7 2 256 16 10 8 256 256 2505
ClServ 7 33 8 2 576 17 10 33 576 576 6455
ClServ 8 53 9 2 1280 17 9 138 1280 1280 16199
ClServ9 249839 10 2 2816 23 14 725 2816 2816 39769
MER 2 4.397 5 2 30 147 6 4.54 46 313 79
MER 3 35 7 2 83 1198 13 50 274 3146 250
MER 4 1220649 9 2 97 7109 9 - >1210 >128883 >549

further plan to investigate alphabet refinement and generalization to n-way decompo-
sitions (for n > 2) — both these techniques significantly enhanced the performance of
compositional acyclic techniques [19]. For the n-way decompositions we can either
consider a recursive application of our current approach to the system decomposed in
two components, each decomposed in two sub-components etc. or a more involved ap-
proach that synthesizes directly n assumptions, one for each component. We leave this
for future work. We also plan to explore learning and abstraction-refinement for dis-
covering suitable assumptions. Although these techniques might not guarantee minimal
assumptions, they can be less computationally demanding than our current approach.

Acknowledgements. This research was partially supported by BSF grant no. 2012259 and NSF
grant no. 1329278.
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Abstract. Orchestration provides a general model of concurrent com-
putations. A minimal yet expressive theory of orchestration is provided
by Orc, in which computations are modeled by site calls and their or-
chestrations through a few combinators. Using Orc, formal verification of
correctness of orchestrations amounts to devising an executable formal
semantics of Orc and leveraging existing tool support. Despite its sim-
plicity and elegance, giving formal semantics to Orc capturing precisely
its intended behaviors is far from trivial primarily due to the challenges
posed by concurrency, timing and the distinction between internal and
external actions. This paper presents a semantics-based approach for for-
mally verifying Orc orchestrations using the K framework. Unlike pre-
viously developed operational semantics of Orc, the K semantics is not
directly based on the interleaving semantics given by Orc’s SOS spec-
ification. Instead, it is based on concurrent rewriting enabled by K. It
also utilizes various K facilities to arrive at a clean, minimal and elegant
semantic specification. To demonstrate the usefulness of the proposed
approach, we describe a specification for a simple robotics case study
and provide initial formal verification results.

Keywords: Formal semantics - Orc - K framework - Concurrency -
Program verification

1 Introduction

Orchestration provides a general model of concurrent computations, although it
is more often referred to in the context of service orchestrations describing the
composition and management of (web) services. A minimal yet expressive theory
of orchestration is provided by the Orc calculus [20,22,21], in which computations
are modeled by site calls and their orchestrations through four semantically rich
combinators: the “parallel”, “sequential”, “pruning” and “otherwise” combina-
tors. Orc provides an elegant yet expressive programming model for concurrent
and real-time computations. While Orc’s simplicity and mathematical elegance
enable formal reasoning about its constructs and programs, its programming
model is very versatile and easily applicable to a very wide range of programming
domains, including web-based programming, business processes, and distributed
cyber-physical system applications, as amply demonstrated in [22,21].
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As for other theories and programming models, devising formal semantics for
Orec is of fundamental importance for several reasons, including theoretical ad-
vancements and refinements to its underlying theory, formal verification of its
programs, building formally verifiable implementations, and also for unambigu-
ous documentation. Furthermore, to better satisfy these goals, the semantics
has to be executable, enabling quick prototyping and simulation of Orc pro-
grams through a formally defined interpreter induced by the executable speci-
fication. The rewriting logic semantics project [17,18,8,19] has been advocating
this approach of formal executable semantics and has proved its value for many
programming models and languages, including widely used general-purpose lan-
guages like Java [10,11] and C [9].

Giving formal executable semantics to Orc constructs capturing precisely its
intended behaviors has been of interest since Orc’s inception due mainly to the
challenges posed by concurrency, timing and the distinction between internal
and external actions. A simple computation in Orc is modeled by a site call,
representing a request for a service, and more complex computations can be
achieved by combining site calls into expressions using one or more of Orc’s four
sequential and parallel combinators. A complete formal executable semantics
elegantly capturing its semantic subtleties, including its real-time behaviors and
transition priorities, was given in rewriting logic [16] and implemented in the
Maude tool [1,2]. This semantics is based on the original reference SOS semantic
specification of the instantaneous (untimed) semantics of Orc [22].

In what can be considered as a continuation of these efforts, this paper presents
a formal, executable semantics of Orc using the K framework [24,15], which is a
derivative of the rewriting logic framework, towards providing a K -based frame-
work for formally specifying and verifying Orc orchestrations. Unlike previously
developed operational semantics of Orc, the K semantics described here is not di-
rectly based on the interleaving semantics given by the reference SOS specification
of Orc. Instead, the K semantics provides the advantage of true concurrency en-
abled by K, where two (or more) concurrent transitions are allowed to fire even
in the presence of (read-access) resource sharing. It also utilizes K ’s specialized
notations and facilities to arrive at a clean, minimal and elegant semantic spec-
ification. Moreover, the semantics is executable in the associated K tool [6,14],
enabling rapid prototyping and formal analysis of Orc programs. Furthermore,
the semantics implicitly presents a generic methodology through which concur-
rency combinators are mapped to threads and computations in K , which can be
instantiated to other concurrency calculi. Finally, to demonstrate the usefulness
and applicability of the proposed approach, we describe a specification for a simple
robotics case study and provide initial formal verification results.

The paper is organized as follows. In Section 2 below, we overview the K
framework and Orc. Then, in Section 3, we present the K semantics of Orc. This
is followed by a discussion of some sample Orc programs in Section 4. The paper
concludes in Section 5 with a summary and a discussion of future work.
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2 Background

This section presents some preliminaries on the K framework and the K tool,
and introduces the Orc calculus along with some simple examples.

2.1 The K Framework

K [24,25] is a framework for formally defining the syntax and semantics of pro-
gramming languages. It includes several specialized syntactic notations and se-
mantic innovations that make it easy to write concise and modular definitions of
programming languages. K is based on context-insensitive term rewriting, and
builds upon three main concepts inspired by existing semantic frameworks:

— Computational Structures (or Computations): A computation is a task that
is represented by a component of the abstract syntax of the language or by
an internal structure with a specific semantic purpose. Computations enable
a natural mechanism for flattening the (abstract) syntax of a program into
a sequence of tasks to be performed.

— Configurations: A configuration is a representation of the static state of
a program in execution. K models a configuration as a possibly nested cell
structure. Cells are labeled and represent fundamental semantic components,
such as environments, stores, threads, locks, stacks, etc., that are needed for
defining the semantics.

— Rules: Rules give semantics to language constructs. They apply to configura-
tions, or fragments of configurations, to transform them into other configu-
rations. There are two types of rules in K : structural rules, which rearrange
the structure of a configuration into a behaviorally equivalent configura-
tion, and computational rules, which define externally observable transitions
across different configurations. This distinction is similar to that of equations
and rules in Rewriting Logic [16], and to that of heating/cooling rules and
reaction rules in CHAM [3].

To briefly introduce the notations used in K rules, we present a K rule used
for variable lookup (Fig. 1).

RULE BASIC VARIABLE LOOKUP
context
X — V:Val

[structural]

Fig. 1. Variable lookup rule as defined in K

The illustrated rule shows two bubbles, each representing a cell predefined
in the configuration. k is the computation cell, while context is the cell that
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holds variable mappings. Each bubble can be smooth or torn from the left,
right, or both sides. A both-side-smooth cell means that the matched cell should
contain only the content specified in the rule. A right-side-torn cell means that
the matching should occur at the beginning of the cell; this allows for matching
when more contents are at the end of the matched cell. Similarly, a left-side-
torn cell means that the matching should occur at the end of the cell, so that
unspecified content can be on left of the specified term. A both-sides-torn cell
means that the matching can occur anywhere in the matched cell. Furthermore,
Upper-case identifiers such as X and V are variables to be referenced inside
the rule only; they can be followed by a colon meaning ”of type”. Finally, the
horizontal line means that the top term rewrites to the bottom term. What this
rule does is that it matches a Param X at the beginning of a k cell, matches the
same X in the context cell mapped to a Value V, and then rewrites the X in
the k cell to the value V.

K combines many of the desirable features of existing semantics frameworks,
including expressiveness, modularity, convenient notations, intuitive concepts,
conformance to standards, etc. One very useful facility of K when defining pro-
gramming languages is the ability to tag rules with built-in attributes, e.g.
strict, for specifying evaluation strategies, which are essentially notational
conveniences for a special category of structural rules (called heating/cooling
rules) that rearrange a computation to the desired evaluation strategy. Using
attributes, instead of explicitly writing down these rules protects against po-
tential specification errors and avoids going into unwanted non-termination. In
general, these attributes constitute a very useful feature of K that makes defining
complex evaluation strategies quite easy and flexible.

Furthermore, K is unique in that it allows for true concurrency even with
shared reads, since rules are treated as transactions. In particular, instances
of possibly the same or different computational rules can match overlapping
fragments of a configuration and concurrently fire if the overlap is not being
rewritten by the rules. Truly concurrent semantics of K is formally specified by
graph rewriting [7]. For more details about the K framework and its features
and semantics, the reader is referred to [24,25].

An implementation of the K framework is given by the K tool [6,14], which
is based on Maude [4], a high-performance rewriting logic engine. Using the un-
derlying facilities of Maude, the K tool can interpret and run K semantic speci-
fications providing a practical mechanism to simulate programs in the language
being specified and verify their correctness. In addition, the K tool includes a
state-space search tool and a model checker (based, respectively, on Maude’s
search and LTL model-checking tools), as well as a deductive program verifier
for the targeted language. This allows for dynamic formal verification of Orc
programs in our case.

The K tool can compile definitions into a Maude definition using the kompile
command. It can then do several operations on the compiled definition using
its Maude backend. krun can execute programs and display the final configura-
tion. krun with the --search option displays all different solutions that can be
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reached through any non-deterministic choices introduced by the definition. An
option --pattern can be specified to only display configurations that match a
certain pattern. Moreover, —-1t1mc directly uses Maude’s LTL model checker®.

The K tool effectively combines the simplicity and suitability of the K framework
to defining programming languages with the power and features of Maude. A fairly
recent reference on the K tool that gently introduces its most commonly useful fea-
tures can be found in [6].

2.2 The Orc Calculus

Orc [20,22] is a theory for orchestration of services that provides an expressive
and elegant programming model for timed, concurrent computations. A site
in Orc represents a service (computation) provider, which, when called, may
produce, or publish, at most one value. Site calls are strict, i.e., they have a call-
by-value semantics. Moreover, different site calls in Orc may occur at different
times. For effective programming in Orc, a few internal sites are assumed, namely
(1) the if (b) site, which publishes a signal if b is true and remains silent otherwise,
(2) Clock, which publishes the current time value, and (3) Rtimer(t), which
publishes a signal after ¢ time units.

Syntax of Orc. An Orc program d; f is a list of expression definitions d followed
by an expression f. An Orc expression describes how site calls (and responses)
are combined in order to perform a useful computation. The abstract syntax
of Orc expressions is shown in Fig. 2. We assume a special site response value
stop, which may be used to indicate termination of a site call without necessarily
publishing a standard Orc value.

fr9 € Expression == 0 | p(p) [ flg | f>>>g | g<a<f | f59
p € Parameter :=z | w

z € Variable w € Value U {stop}

Fig. 2. Abstract syntax of Orc expressions

An Orc expression can be: (1) the silent expression (0), which represents a site
that never responds; (2) a parameter or an expression call having an optional
list of actual parameters as arguments; or (3) the composition of two expressions
by one of four composition operators. These are: (1) the “parallel” combinator,
f | g, which models concurrent execution of independent threads of computation;
(2) the “sequential” combinator, f >x> g, which executes f, and for each value
w published by f creates a fresh instance of g, with x bound to w, and runs that

! The latest release of K 3.5 depends on Maude as well as Java as backends. It is the
last version to support the Maude backend. Developments are running on the Java
backend to incorporate all of Maude’s features.
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instance in parallel with the current evaluation of f >x> g¢; (3) the “pruning”
combinator, f <x< g, which executes f and g concurrently but terminates g
once g has published its first value, which is then bound to x in f; finally (4)
the “otherwise” combinator, f; g, which attempts to execute f to completion,
and then executes g only if f terminates without ever publishing a value.

A variable x occurs bound in an expression g when g is the right (resp. left)
subexpression of a sequential composition f >z> g (resp. a pruning composition
g <x< f). If a variable is not bound in either of the two above ways, it is
said to be free. We use the syntactic sugar f > g (resp. g < f) for sequential
composition (resp. pruning composition) when x is not free in g. To minimize
use of parentheses, we assume the following precedence order (from highest to
lowest): >, |, <, ;.

To illustrate the informal meaning of the combinators, we list some examples
here. Many more examples and larger programs can be found in [22,12,5,13,21].

Ezxample 1. Suppose we want to get the current price of gold, and that we
have three sites that provide this service: GoldSeek, GoldPrice, and Kitco. In
such a case, we only care about receiving an answer as soon as possible. So,
it would make sense to call these three sites in parallel. The expression would
be: (GoldSeek() | GoldPrice() | Kitco()). Now, suppose we want the price in a
different unit, say Euro/gram instead of USD/Oz. We need only one of these
three sites to publish a value. Observe the following Orc expression:

Converter(x, USD/ Oz, EUR/ gram) < x < (GoldSeek()| GoldPrice() | Kitco()).
The pruning combinator tells the parallel expression to give it only the first value
it publishes. As soon as it receives a value, it prunes the whole right-side expression
and passes the value to the left side, and binds it to z.

Ezample 2. Suppose we have a site called FireAlarm that when called, remains
silent unless a fire has been detected, in which case it publishes the fire’s location.
That information is sent to the fire department which needs to make a decision
to dispatch a fire engine. The fire department calls a site CalcNearestStation and
gives it the location of the fire to locate the nearest fire station. The response is
then passed on to a site Dispatch which will dispatch a fire truck from the given
station to the given location. The Orc expression would be:
FireAlarm() > fireLoc > CalcNearestStation(fireLoc)
> station > Dispatch(station, fireLoc)

After detailing our semantics of Orc in Section 3, we show the output of
executing some sample expressions in Section 4.

Operational Semantics of Orc. The reference semantics of Orc is the informal
but detailed semantics of Orc given by Misra and illustrated by many examples
in [20]. A structural operational semantics (SOS) for the instantaneous (untimed)
behaviors of Orc was also developed by Misra and Cook in [22]. An updated SOS
listing that includes rules for the semantics of the otherwise combinator and stop
site responses is given in [2].
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The SOS semantics specifies an interleaving semantics of the possible behav-
iors of an Orc expression as a labeled transition system with four types of actions
an Orc expression may take: (1) publishing a value, (2) calling a site, (3) making
an unobservable transition 7, and (4) consuming a site response. As discussed by
Misra and Cook in [22], the SOS semantics is highly non-deterministic, allowing
internal transitions within an Orc expression (value publishing, site calls, and 7
transitions) and the external interaction with sites in the environment (through
site return events) to be interleaved in any order. Therefore, a synchronous se-
mantics was proposed in [22] by placing further constraints on the application
of SOS semantic rules, effectively giving internal transitions higher priority over
the external action of consuming a site response.

A timed SOS specification extending the original SOS with timing was also
proposed [26]. The timed SOS refines the SOS transition relation into a relation
on time-shifted Orc expressions and timed labels of the form (I, ¢), where ¢ is
the amount of time taken by a transition. In this extended relation, a transition

step of the form f &0 f’ states that f may take an action [ to evolve to f’ in
time ¢, and, if £ # 0, no other transition could have taken place during the ¢ time
period. To properly reflect the effects of time elapse, parts of the expression f
may also have to be time-shifted by t. The semantics described in [26] abstracted
away the non-publishing events as unobservable transitions, which is the level of
abstraction we assume in the K semantics we describe next.

3 K-Semantics of Orc

The semantics of Orc in K is specified in two modules: (1) the syntax module,
which defines the abstract syntax of Orc in a BNF-like style along with any
relevant evaluation strategy annotations, and (2) the semantics module, which
defines the structure of a configuration and the rules (both structural and com-
putational) that define Orc program behaviors. These modules are explained
in some detail in this section. The full K specification of Orc can be found at
(http://www.ccse.kfupm.edu.sa/~musab/orc-k).

3.1 Syntax Module

Orec is based on execution of expressions, which can be simple values or site calls,
or more complex compositions of simpler subexpressions using one or more of its
combinators. Looking at Fig. 2 showing the abstract syntax of the Orc calculus,
the following grammar defined in K syntax is almost identical (with Pgm and
Ezp as syntactic categories for Orc programs and expressions, respectively):

An Orc value, which could be an integer, a string, a boolean, or the signal
value, is syntactic sugar for a site call that publishes that value and halts.

A site call looks like a function call, having the site name and a list of actual
parameters we call Arguments. A site, when called, may publish a standard Orc
value or a special value stop, which indicates termination with no value being
published. A site call can result in publishing at most one value.
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SYNTAX Pgm ::= EzpDefs Exp
SYNTAX FEzp = Arg

Call

Ezp > Param > Exp [right]

SYNTAX Arg::= Val |
>
> Ezp | Ezp [right]
>
>

| Identifier

SYNTAX  Call ::= Ezpld(Params)
| Siteld(Args) [strict(2)]

Ezp < Param < Ezp [left]
Ezp ; Exp [left]

Fig. 3. Syntax of Orc as defined in K

There are a few semantic elements, which appear in Fig. 3, that K allows
to define within the syntax module. The first is precedence, denoted by the
> operator. As mentioned in Section 2.2, the order of precedence of the four
combinators from highest to lowest is: the sequential, the parallel, the pruning,
and then the otherwise combinator. In addition, we prefer for simpler expressions
to be matched before complex ones; so, on top, we put Arg and Call.

The second semantic element that is defined within the syntax module of K is
right- or left-associativity. It is important to note that the parallel operator
is defined as right-associative, rather than fully-associative because K ’s parser
does not yet support full associativity. However, this is resolved in the semantics
by transforming the tree of parallel composition into a fully-associative soup of
threads as discussed in Section 3.2.

The third is strictness. strict (i) means that the i*" term in the right hand
side of the production must be evaluated before the production is matched.

3.2 Semantics Module

This module specifies the semantics of the language using K rules. Each rule
specifies one or more rewrites, that take place in different parts of the configu-
ration. We first explain the structure of the configuration, followed by key rules.

Configuration. A configuration in K is a representation of a state consisting
of possibly nested cells. Fig. 4 shows the structure of our configuration. A cell
thread is declared with multiplicity *, i.e., zero, one, or more threads. Enclosed
in thread is the main cell k. k is the computation cell where we execute our
program. We handle Orc productions from inside the k cell.

The context cell is for mapping variables to values. The publish cell keeps
the published values of each thread, and gPublish is for globally published
values. props holds thread management flags. varRegs helps manage context
sharing. gVars holds environment control and synchronization variables. The
in and out cells are respectively the standard input and output streams. And
finally, defs holds the expressions defined at the beginning of an Orc program.
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Each cell is declared with an initial value. The $PGM variable, which is the
initial value of the k cell, tells K that this is where we want our program to
go (after it is parsed). So by default, the initial configuration, shown in Fig. 4,
would hold a single thread with the k cell holding the whole Orc program as the
Pgm non-terminal defined in the syntax above.

CONFIGURATION:

thread*

tid k context pub“Sh
0 $PGM ‘Pgm *Map *List
®Set ®List

defs
def*
defParams body
®Params X
gPubhsh gVars in out
®List ®List ®List ®List

Fig. 4. Structure of the configuration

K Rules. For clarity and convenience, we first illustrate the essence of the rules
as transformations in schematic diagrams. Then we show some representative
rules exactly as they are defined in K . Our schematic diagrams use the following
notations. Each box represents a thread while lines are drawn between boxes to
link a parent thread to child threads, where a parent thread appears above its
child threads. The positioning of a child thread indicates whether that thread is a
left-side child or a right-side child (which is needed by the sequential and pruning
compositions). Note that in the specification, this information is maintained
through meta thread properties. The center of a box holds the expression the
thread is executing. A letter v at the lower right corner of the box represents a
value which the thread has published. A letter P at the lower left corner denotes
the publishUp flag which basically tells the thread to move its published values
to its parent thread. Variable mappings such as * — v mapping a variable = to
a value v are displayed at the bottom of the box. Finally, the symbol = denotes
a rewrite.
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flg | = | Peme)

Fig. 5. Transformation rule of the parallel combinator

f & f g
v Px—v

Fig. 6. Transformation rules of the sequential combinator

Combinators. Orc has four combinators, which combine subexpressions ac-
cording to four distinct patterns of concurrent execution, parallel, sequential,
pruning and otherwise.

Parallel Combinator. Given an expression f | g as shown in Fig. 5, the rule
creates a manager thread carrying a meta-function called PCM(x), short for
Parallel Composition Manager, where z is the count of sub-threads it is manag-
ing. Child threads are created as well for each of the expressions f, and g. This
of course extends to any number of subexpressions in the initial expression. For
example, f | g | h will transform to PCM(3) and so on, as each subexpression
will be matched in turn.

Sequential Combinator. The first rule of the sequential combinator, shown in
Fig. 6, creates a manager called SCM, short for Sequential Composition Manager;
and it creates one child that will execute f. The manager keeps three pieces of
information: x, the parameter through which values are passed to instances of
g; g, the right-side expression; and k, a count of active instances of g which is
initially 0.

Every time f publishes a value, the second rule in Fig. 6 creates an instance
of g with its z parameter mapped to the published value. The new instance will
work independently of all of f, the manager, and any other instance that was
created before. So in effect, it is working in parallel with the whole composition,
as is meant by the informal semantics [20].

Pruning Combinator. The idea of the pruning expression is to pass the first value
published by ¢ to f as a variable x defined in the context of f. Regardless, f
should start execution anyway. If it needed a value for x to continue its execution,
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f<z<g = PrCM(z) PrCM(z) = PrCM(z)
N\ N\ /
g g f g
P P v Pz—ov

Fig. 7. Transformation rules of the pruning combinator

fig | = |othoM(g) | |OthCM(g) | — |OthCM()| [OthCM(g) | = | ¢

f f f stop

v P v

Fig. 8. Transformation rules of the otherwise combinator

it would wait for it. So, the first rule of the pruning combinator creates a manager
PrCM (short for Pruning Composition Manager), a thread executing f, and
another thread executing g. See Fig. 7. The second rule is responsible for passing
the published value from g to f and terminating (pruning) g. These two rules
are shown in Figures 10 and 11 as they are defined in K .

Parent Parent
thread —> | thread v

Child Child
F,thread " Pthread

Fig. 9. Transformation rule of publishing values

Otherwise Combinator. The otherwise combinator is implemented in three rules
shown in Fig. 8. It starts by creating a manager called OthCM (short for Other-
wise Composition Manager) and a child thread to execute f. Then if f publishes
its first value, g is discarded and f may continue to execute and is given permis-
sion to publish. However, if f halts without publishing anything, the third rule
applies and the whole otherwise expression is replaced by g. As mentioned in
Section 2.2, stop is a special value that indicates that an expression has halted.

Publishing and Variable Lookup. Due to the uniform structure of thread
hierarchy common in the productions of all four combinators, defining general
operations like publishing and variable lookup become compositional.
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RULE PRUNING PREP
thread

k context tid
(F:Ezp < X:Param < G:Ezp)) Context Managerld

PrCM (X)

®Bag

thread

k context tid parentld

F Context ChildId1 :Int Managerld
props

SetItem ("prunlLeftExp") SetItem ("publishUp") )

thread
k context tid parentld
G Context ChildId2:Int Managerld
props
SetItem ("prunRightExp") )

Fig. 10. First K rule of the Pruning Combinator

[structural]

RULE PRUNING PRUNE RiGHT AND PAss VALUE To LEFT

thread
k tid
PrCM (X:Param) ) ( Managerld )

props
SetItem ("prunRightExp”)%

SetItem ("pruneMe")
parentld
Managerld

parentld props]
Managerld SetItem (”prunLeftExp”)i

ListItem (V:Val)

®List

[structural]

Fig.11. Second K rule of the Pruning Combinator
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A manager thread expecting values from a certain child simply sets a property
in the child called publishUp in the cell props. As pointed out earlier, in our
schematic drawings of the semantics, this property is denoted by a letter P in the
lower left corner of the thread box. See Fig. 9. In retrospect, The child receiving
the publishUp property might be itself a manager of a deeper composition,
awaiting values to be published up to it. This behavior creates a channel from
the leaves of the thread tree up to the root, which will publish the output of the
whole Orc program in the cell gPublish. Threads which are given the publishUp
property are:

— All children of a Parallel Composition Manager.

— All right-side instances of a Sequential Composition Manager
— The left-side thread of a Pruning Composition Manager

— The child of an Otherwise Composition Manager.

Such a channel is also evident when variable requests are propagated up the
tree, since every thread is allowed to access the context map of any of its an-
cestors. A variable request, carrying the requester thread’s ID, is propagated
recursively up the tree, through a specialized cell varReqgs, until it is resolved or
reaches the root in which case it resets.

It is important to note that no manager is allowed to share the context of any
of its children with the others, nor is it allowed to access it. Otherwise, some
values could be accidentally overwritten if copied from one scope to another.

Synchronization and Time. The semantics of our (discrete) timing model
follows the standard semantics of time in rewrite theories implemented in Real-
Time Maude [23], in which time is modeled by the set of natural numbers cap-
tured by a clock cell in the configuration, and the effects of time lapse are
modeled by a ¢ function.

Effectively, the § function is what advances time in the environment. It is
applied to the whole environment, and so it will be applied on all threads, and
on the environment’s clock to increment it. It will not have an effect on compu-
tations of internal sites, but only on timer sites and external sites that are yet to
respond. One such site is Rtimer(t), which publishes a signal after ¢ time units.
The § function’s effect can be directly seen on Rtimer in the following rule:

d(Rtimer(t)) = Rtimer(t — 1), where t > 0.

Therefore, the semantics of the Rtimer site, and any timed site, is only realiz-
able through the § function. When ¢ successfully runs on the whole environment,
it is said to have completed one tick.

4 Formal Analysis of Orc Orchestrations

In this section, we present an example showing the formal analysis that can
be done on Orc programs using the K tool. We defined external Orc sites to
simulate a robot moving around a room with obstacles. A layout of the room
we will be working with is shown in Fig. 12. We could of course work with a
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0 1 2

Fig. 12. Initial configuration of the robot environment

more complex environment, but the purpose here is a simple demonstration and
a proof of the concept. We first simulate the movement of the robot, and then
show an example of formal verification.

Robot Sites’ Semantics. Before running any example, we explain our seman-
tics of these robot sites. MoveFwd will cause the robot to move a distance of one
block in its direction. turnRight and turnLeft will rotate the robot, while stand-
ing on the same block, 90 degrees clockwise and counterclockwise respectively.
We also made each of these sites takes a certain amount of time to respond.
MoveFwd takes three time units while each of turnRight and turnLeft take one
time unit. Hitting an obstacle while trying to move forward will still consume
three time units but will turn on a flag called isBumperHit which will reset on
the next action.

4.1 Simulation

The robot starts at (1,0) facing north. Suppose that we want to move it towards
the star at (0,1). The following Orc program will do just that:

MoveFwd() > TurnLeft() > MoveFwd|()

Running krun on the expression outputs the final configuration as shown in
Fig. 13. Some parts were omitted for space convenience. However, the important
parts are the position, direction and the isBumperHit flag. We can see that they
ended up as expected: the robot is at (1,0) facing west, and the bumper is not
hit. Notice also that the clock is at seven time units, the time it takes for two
MoveFwd’s and one turnLeft.

Writing the same program again but this time adding another MoveFwd to
the end of the sequence makes the expression:

MoveFwd() > TurnLeft() > MoveFwd() > MoveFwd()

Running this will cause the robot to hit the wall. That will turn on the
isBumperHit flag as in Fig. 13. This time, the clock is at 10 time units, three
units more consumed by the additional MoveFwd.

4.2 Verification

Here, we show a simplistic example that demonstrates the formal verification
capabilities of K . First we introduce an element of nondeterminism. Consider



54 M.A. AlTurki and O. Alzuhaibi

<gVars> <gVars>
"BotVars" |-> "BotVars" |->
"direction" |-> (-1,0) "direction" |-> (-1,0)
"position" |-> (0,1) "position" |-> (0,1)
"is_bumper_hit" |-> false "is_bumper_hit" |-> true
"clock" |-> 7 "clock" |[-> 10
</gVars> </gVars>

Fig. 13. selected output of running simulations: example 1 (left), example 2 (right)

the Orc expression RandomMove() that is defined as:

MoveFwd() | TurnLeft() > MoveFwd() | TurnRight() > MoveFwd()

Executing this expression, the robot should nondeterministically choose be-
tween one of the paths separated by the parallel operator. Suppose we need
to know whether this program will cause the robot to hit an obstacle or
not. Running the program with krun --search --pattern and specifying
1isBumperHit — true as the pattern will show all configurations where the robot
hits. The full command looks like this:

krun bot.orc --search --pattern "<gVars>... \"BotVars\" |->

(M:Map \"is_bumper_hit\" |-> B) </gVars> when B ==K true"

The output of that command shows only one solution; it shows a configura-
tion where the position is (1,0), the initial position, and the direction is east.
Obviously, the robot reached there by picking the third choice, TurnRight() >
MoveFuwd|().

Now consider making two random moves in sequence: RandomMove() >
RandomMove(). Checking for all possible configurations where the robot hits
reveals five solutions while checking for when the robot reaches the star at (0,1)
shows two solutions. Searching in more complex environments with more com-
plex expressions reveals many more solutions.

We demonstrated the potential of exploiting K ’s state search capabilities for
purposes of formal verification. Other methods that K provides such as Maude’s
LTL model checker and Maude’s proof environment are sure to deliver more
in-depth verification.

5 Conclusion and Future Developments

In this paper, we have presented a first attempt at devising a formal executable
semantics for Orc in the K framework and how it may be used for verifying Orc
programs. The semantics is distinguished from other operational semantics by
the fact that it is not directly based on Orc’s original interleaving SOS seman-
tics. The semantics takes advantage of concurrent rewriting facilitated by the
underlying K formalism to capture its concurrent semantics and makes use of
K ’s innovative notation to document the meaning of its various combinators.
Due to subtleties related to timing and transition priorities, faithfully cap-
turing the Orc semantics is a nontrivial challenge for any semantic framework.
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We plan to continue extending and refining the semantics so that all such sub-
tleties are appropriately handled. Furthermore, executability of the semantics
does not just mean the ability to interpret Orc programs using the seman-
tics specification; it also means that dynamic formal verification, such as model
checking, of Orc programs can be performed, which is something that we plan
to demonstrate using the K tool with its Maude model checker. Moreover, an
investigation of how the resulting semantics relates to the existing rewriting logic
semantics would be an interesting future direction.
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Abstract. In the theory of abstract interpretation, a descending phase
may be used to improve the precision of the analysis after a post-fixpoint
has been reached. Termination is often guaranteed by using narrowing
operators. This is especially true on numerical domains, since they are
generally endowed with infinite descending chains which may lead to a
non-terminating descending phase in the absence of narrowing. We pro-
vide an abstract semantics which improves the analysis precision and
shows that, for a large class of numerical abstract domains over integer
variables (such as intervals, octagons and template polyhedra), it is pos-
sible to avoid infinite descending chains and omit narrowing. Moreover,
we propose a new family of narrowing operators for real variables which
improves the analysis precision.

1 Introduction

Computing a static analysis in the framework of abstract interpretation [6,7]
typically amounts to solve a set of equations describing the program behavior.
Given a program to be analyzed, we associate to each control point i of the
program an unknown! z; and an equation x; = ®@;(x1,...,2,), where &; is a
monotone, state-transition operator. The unknowns z1,...,z, range over an
abstract domain A, which encodes the property we want to analyze. An element
of A is called abstract object and represents a set of concrete states.

We are interested in finding the (least) solution, over the domain A, of the
set of equations ¢ = (P4,...,P,) associated to the program to be analyzed.
The abstract interpretation framework ensures that any solution of the set of
equation correctly approximates the concrete behavior of the program, and the
smaller the solution, the more precise is the result of the analysis. In theory, the
least solution of the system can be exactly computed as the limit of a Kleene
iteration, starting from the least element of A™. In practice, such a method can
be unfeasible, since many abstract domains exhibit infinite ascending chains,
and thus the computation may not terminate. Moreover, even for finite abstract
domains, it may happen that the ascending chains are very long, and this method
would result impractical.

! We use the terms wvariable to denote a variable in the program, and unknown to
denote a variable in the data-flow equations.

© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-19249-9 5
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The standard method to perform the analysis is to compute an approximation
of the least solution of the system of equations using widening and narrowing
operators [5,8]. For specific abstract domains or for restricted classes of pro-
grams, we may find in the literature alternatives, such as acceleration operators
[12] and strategy/policy iteration [4,10,11], but these methods are not generally
applicable and their complexity may be impractical.

A widening, generally denoted by V, is a binary operator over the abstract
domain A such that:

— it is an upper bound;
— when used in equations of the kind x; = x; V ®;(z1, ..., ), it precludes the
insurgence of infinite ascending chains for x;.

The widening operator compares the value of x; in the previous iteration with its
value in the current iteration and, in some cases, returns an approximated value.
Widening is used to ensure the termination of the analysis, while introducing
a loss in precision. This is realized by replacing some of the original equations
z; = Di(x1, ..., x,) with z; = x; V&;(x1,...,z,). The replacement may involve
all unknowns or, more commonly, only the ones corresponding to loop heads.
Applying widening in this way ensures the termination of a Kleene iteration,
but we only get a post-fixpoint of the function & = (P4, ...,P,,), instead of the
least one.

Once we reach a post-fixpoint, we can start a new Kleene iteration, giving
origin to a descending chain which improves the result of the analysis. However,
due to infinite descending chains in the abstract domain, the descending itera-
tion might not terminate. The next example? shows this phenomenon using the
abstract domain Intz of intervals over integer numbers [5], defined as:

Intz ={[l,u] CZ |l <u€eZU{—c0,c0}}U{0},

where () denotes the empty set of concrete states, i.e., an unreachable control
point. The standard widening on intervals [5] is defined as follows:

PvIi=1I
Ivh=1I
[ll,ul] \Y [ZQ,UQ} = [l’,u’]

where

’ {ll if ll S lg / {ul if Ul Z u
l'= U

—o0o otherwise +o00  otherwise

Essentially, it works by preserving stable bounds and removing unstable ones.
For instance, [0,3] V [0,4] = [0,00]. In this way, infinite ascending chains are
precluded.

2 To the best of our knowledge, this is the first example in the literature which shows
a program analysis iterating over an infinite descending sequence in an integer nu-
merical domain.
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T = [050]
ro =x1 VI8

3 = 2 A [—00,9]

x4 =3+ [1,1]
5 = x4 A [9, 0]
z6 = [0,0]
=0 T7 = T4 N [—00,8}
Wl.lilf?,(i<10) { xrs = xg V T7
lifT(ljJ;lzg) 9 = 2 A [10, 0]
i=0 Ti0 = X9 V T12

11 = T10 N [10, OO}
212 = 211 + [1,1]

13 = T10 N [—00,9]

while(i>=10) {
i=it+1
}

(a) Program (b) Flowchart (c) Equation system

Fig. 1. The example program doubleLoop

Ezample 1. Consider the example program doubleLoop in Fig. 1(a), and the
corresponding flowchart and set of equations in Fig. 1(b) and 1(c). We perform
the analysis using the integer interval domain Intz with the standard widening.
Therefore, we replace the second and the tenth equation in Fig.1(c) with

XTo = X2 V ($1 \/xs)

x10 =210 V (9 V Z12) .

Note that these two equations correspond to the loop joins. We assume to follow
a work-list based iteration sequence, although the result is analogous with other
standard two-phases iteration schemas.

The first time x5 is considered, we have x1 = [0, 0] and zo = zg = (. Widening
does not trigger and x2 gets updated to z2 := x1 V g = [0,0]. However, the
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second time x5 is considered we have xzg = [1,1], hence 1 V 25 = [0, 1], which
is widened to [0,400]. This eventually leads to zg := [10, 4+00], x19 := [10, +00]
and z12 := [11,400] which is a post-fixpoint and the result of the ascending
phase of the analysis.

Starting from the post-fixpoint, we continue to evaluate the semantic equa-
tions, without applying neither widening nor narrowing, thus using the original
equations o = x1 Vg and x19 = g V x12. We get a descending sequence, which
turns out to be infinite. In fact, the first time x5 is re-evaluated, we have

x9 =21 Vag =[0,0] vV [0,8] = [0, 8]

which leads to zg := ). When we evaluate the equations in the second while
loop, we get
Z10 := Tg Vw12 = 0V [11, +00] = [11, +00]

and x12 = [12, +00]. At the second iteration we get

Z10 := Tg Vw12 = 0V [12, +00] = [12, +00]

and z12 = [13,+00]. It is immediate to see that, while keeping on iterating,
the values computed at the control point x1¢ are [11, +00], [12, +0o0], [13, +00],
[14,4+00], ... which is an infinite descending sequence, whose limit is the empty
set. O

It is worth noting that, in the previous example, the existence of an infinite de-
scending sequence depends on the fact that the second while loop is unreachable,
although the initial ascending phase of the analysis computes a non-empty over
approximation. This leads to a descending sequence whose limit is the empty
set. This situation is not peculiar of our example. On the contrary, we will show
that this is the only way infinite descending sequences may arise in the integer
interval domain.

To avoid the insurgence of infinite descending chains, we may stop the de-
scending iteration at an arbitrary step, still obtaining a post-fixpoint, or we
may use a narrowing operator. Narrowing, generally denoted by A, is a binary
operator on a abstract domain A such that:

— a1 A ag is only defined when as < aq;

— it holds that as < ay A as < ay;

— when used in equations of the kind z; = x; A ;(x1, ..., x,), it precludes the
insurgence of infinite descending chains for x;.

The standard narrowing for intervals [5], for example, is defined as:
IAnD=0
[ll,ul] A [ZQ,UQ} = [l',u’]

where

up otherwise

/ lo ifly = -0 o = ug  if ug = 40
{1 otherwise N
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Essentially, it works by refining only unbounded extremes. For instance, [0, co] A
[0,10] = [0, 10] but [0,10] A [0, 9] = [0, 10]. Let us reconsider Example 1 and show
what happens when we use narrowing in the descending phase.

Example 2. Consider the same program, flowchart and equations of Example 1,
together with the result of the analysis after the ascending phase. We now replace
the equations for xo and z19 with 22 = z2 A (x1 Vag) and 210 = z19 A (29 V x12)
and start a descending iteration.

When the second equation is first re-evaluated, the current value for z2 is [0, +00],
hence the standard narrowing allows to change +oo into 8, and we have z2 := [0, 8]
as for the case without narrowing. However, when x1¢ is evaluated for the first time
in the decreasing sequence, we have z19 := [10, +00] A [11, +00] = [10, +00]: the
standard narrowing precludes further improvements on the second loop. The de-
scending sequence terminates at the cost of a big loss of precision, since we are not
able to detect anymore that control points 10-12 are unreachable. g

In the rest of the paper, we will show that narrowing for the integer interval
domain is superfluous, and may be removed upon adopting a slightly different
semantic operator for loop joins which preserves unreachability. Moreover, we
generalize this result to all the template abstract domains over integer variables.

Furthermore, we show that such a result can be used to design a more precise
narrowing on template abstract domain over reals, exploiting the fact that we
never get infinite descending chains of integer intervals.

2 Narrowing on Intervals of Integers

Example 1 shows an analysis which leads to an infinite descending chain of
intervals. In particular, the chain is [11,+00], [12,400], [13,400],... and its
limit is the empty set. It turns out that the only infinite descending chains of
intervals are of the kind

[ng, +00], [n1, +00], [n2, <], . ..

[—00, —ng), [—00, —n1], [—00, —na, . ..

where {n;};en is an infinite ascending chain of integers. The limit of all these
chains is the empty set.

Proposition 3. Let {I;}ien be an infinite descending chain of integer intervals.
Then NienI; = 0.

In the rest of the paper we assume to deal only with structured programs,
whose flowchart is reducible. Intuitively, this means that every loop has a single
well defined entry point.

Assume Joop is the entry point of a loop and its corresponding equation is
Tioop = Tin V Tpack, Where in is the edge in the flowchart which comes from
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outside the loop and back the back edge. Since in a reducible flowchart the entry
point of a loop dominates all the nodes inside the loop, if control point in is
unreachable (i.e., T;; = @ in the interval domain) the same holds for control
point loop.

Therefore, we may change the abstract semantics of the program by replacing
each equation corresponding to a loop join Zisp = Tin V Tpack With Zigep =
Zin VO Zpack, where V0 is a left-strict variant of the join operator defined as:

LI, = {V) i1 =0 (1)

I VI, otherwise

The new set of equations is correct (again, only on reducible flowcharts) and
more precise. Moreover, during the descending phase of the analysis, narrowing is
not required to achieve termination. Actually, assume that an infinite descending
chain arises during the descending phase. Let loop be one of the outermost loop
heads whose variable 2,0, infinitely decreases. In the presence of left-strict joins,
this leads to a contradiction. The equation of Z;,0p IS Zioop = Tin VP Zpaer. The
value of x;, is definitively constant. Once it reaches its definitive value Z;,, we
may have only two cases:

— if Ty, = 0, then the first time 2,0, is re-evaluated we have 50, := 0 and
Zi00p cannot descend anymore, contradicting our hypothesis;

— if Z;, # 0, then xjp0p > T, always, and therefore it cannot descend infinitely,
due to Proposition 3.

The considerations above hold for any numerical abstract domain A with a
distinguished value denoting unreachability. In the following, we will refer to such
a distinguished value as (), which is the common notation in all the numerical
domains in the literature.

This discussion leads therefore to the following results.

Theorem 4. Assume given a numerical abstract domain A with a distinguished
value § denoting unreachability. Assume we have a system of data-flow equations
@ generated by a structured program whose loop head nodes are of the form
Tloop = Tin V Tback- 1hen, replacing V with VP in all the loop heads, the new set
of data-flow equations is still correct.

Theorem 5. In the hypothesis of Theorem 4, assume A is the abstract domain
of integer intervals. Then every iteration strategy on the equations in @ starting
from a post-fizpoint of @ leads to a finite sequence.

Note that a descending sequence without narrowing always leads to a fixpoint
of the equation system, instead of a post-fixpoint.

Some of the restrictions of Theorem 4 may be easily lifted. For example, if a
loop join node has equation
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Lloop = Lin, Vo VZin, V Thack, V-V Thack

v 7

where all the edges in; come from outside the loop and all the back;’s are back
edges, we may use left-strict join in this way:

Lloop = (l'inl \ARERY xinu) \/@ (xbackl \ARERY :Ebackl,) .

Moreover, it is possible to extend Theorem 4 to non reducible flowcharts,
provided we only apply the left-strict join to the loop heads that dominate the
sources of the back edges.

When avoiding narrowing, we may find programs whose descending chain is
arbitrarily long, but finite. The next example shows this phenomenon.

Ezxample 6. Consider the example program doubleLoop2 in Fig. 2(a), and the
corresponding flowchart and set of equations in Fig. 2(b) and 2(c). We first
perform the analysis using the integer interval domain Int; with the standard
widening and narrowing and then we recompute the analysis without narrowing.

In the ascending phase we use widening on the join loops: x5 = 22 V (21 Vi Z4)
and zg = xg V (25 V? z5). The post-fixpoint is:

x1 = 1[0,0] x4 = [1,11] 27 = [—00,100]
x2 = [0, 0] x5 = [11, 00] xg = [—00,99]
z3 = [0, 10] zg = [—00, 00] zg = [101, oc]

Now we start the descending phase with the standard narrowing, using the equa-
tions xy = oA (21VPxy) and 6 = 26 A (25V? ). When we first apply narrowing
in the second equation, we get:

29 =29 A (21 VO 24) = [0,00] A [0,11] = [0, 11]
and therefore x5 = [11,11]. We now apply narrowing in the sixth equation:
x6 = 16 O (x5 VP 28) = [—00, 00] A [—00,99] = [—00, 99]

and therefore we have z7 = [—00,99], x5 = [—00,98] and xzg = 0}, which is the
fixpoint.
We now recompute the descending phase without narrowing, using the equations

xQ:xl\/Qu
$6:Z‘5\/ml‘8 .

The first while loop behaves as before with x5 = [11,11]. Now we enter the
second while loop. The first iteration is the same as before using narrowing, and
we get:

[—00, 98]
0

rs
T9
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T = [0,0}
To = X1 \/0 T4

3 = 22 A [—00, 10]

T4 = x3 + [1, 1}
i=0
— 22 A 11
while(i<=10) { o= 0[ ol
i=i+1 T =I5 V' g

x7 = x6 N\ [—00, 100]
while(i<=100) {
i=i—1

}

zg = x7 — [1,1]
9 = xs A [101, 0]

(a) Program (b) Flowchart (¢) Equation system

Fig. 2. The example program doubleLoop2

But now we are able to continue the descending phase, which is:

275 descending iteration 37 d.i. 4" d.i. ... last d. i.
T6 [—00, 98] [—00,97] [—00,96] ... [—o0, 11]
x7 [—00, 98] [—00,97] [—00,96] ... [—o0, 11]
xg [—00,97] [—00,96] [—00,95] ... [—o0,10]

Note that, by continuing the descending phase till the fixpoint, we are able
to detect that the guard in the second while loop is over dimensioned, since the
variable ¢ never reaches the value 100. O

2.1 Template Abstract Domains

The above result on intervals can be extended to the whole family of template
abstract domains. We call template abstract domains those numerical domains
where the coefficients of the allowed constraints are fixed in advance, before
starting the analysis. Most important template abstract domains are the domain
of intervals (also called box domain) [5], octagons [14] and template polyhedra
[15]. Non-template abstract domains are, among others, polyhedra [9] and two-
variable for linear inequality [16].
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All the template abstract domains may be described using a fixed matrix
which describes the constraints and any abstract object o is a subset of R™ (or
7" if working with integer variables) of the form o = {& € R | I < Az < u}
where A is the constraint matrix, I and w are, respectively, the lower and upper
bounds.

A box is an abstract object where A is the identity matrix. Octagons are those
objects where the coeflicient matrix A allows constrains of the form +z +y < c.
Finally, template polyhedra are those objects where the coefficient matrix A is
arbitrary but fixed a priori.

Under the hypothesis of Theorem 4, it is possible to extend Theorem 5 to all
the template abstract domains. In fact, given a narrowing operator on intervals,
we can immediately define a corresponding component-wise narrowing operator
on any template abstract domain. We first show that template abstract domains
over integers enjoy a property similar to Prop. 3. Note that a template domain
over integers only needs to have integer bounds, while the coefficients of the
constraint matrix may be reals.

Proposition 7. Let A be a template abstract domain over integers and {I;};en
be an infinite descending chain of objects I; € A. Then NienI; = 0, where () is a
distinguished value of A denoting unreachability.

Exploiting the above proposition and Theorem 4, we can prove a result ana-
logue to Theorem 5 which, in presence of a left-strict join, allows us to avoid
narrowing, still guaranteeing termination.

Theorem 8. In the hypothesis of Theorem 4, assume A is a template abstract
domain over integers. Then every iteration strategy on the equations in @ starting
from a post-fizpoint of @ leads to a finite sequence.

3 Narrowing on Reals

The left-strict join we have introduced for integer domains may also be used with
abstract domains over real variables. This improves the precision of the analysis,
but does not ensure that the descending phase will terminate. This depends
on the fact that, once we admit real variables, we can have infinite descending
chains whose limit is not the empty set. Nonetheless, in this case the left-strict
join may be exploited to define a narrowing more precise than the standard one.

The next example shows that on the standard interval domain Intg for real
variables, the descending phase of the analysis may lead to an infinite descending
chain whose limit is not the empty set. We recall that

Intg = {[l,u] CR|I<ueRU{-o00,00}} U{0}.

Ezample 9. Consider the example program realLoop in Fig. 3(a), and the cor-
responding flowchart and equations in Fig. 3(b) and 3(c). The ascending phase
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z1 = [0, 0]
=0 Ty = X1 Vw 7
1=
while(true) { x3 = z2 A [10, 4-00]
if (i>10) { 24 = [0,0)
i=0 s = x2 A [—00, 10]
} oy
i=(i42)/2 To = T4V T5
} z7 = (z6 + [2,2])/2
a) Program owchart c quation system
Prog b) Flowch E -

Fig. 3. The example program realLoop

using left-strict join and standard widening, i.e., zo3 = 22 V (21 Vi x7), reaches a
post-fixpoint in two iterations.

1t ascending iteration 2" ascending iteration

21 [0,0] [0,0]
5 [0,0] [0,0] v [0,1] = [0, +o0]
x5 0 (10, +o0]

4 [0, 0] [0,0]

x5 [0,0] [0, 10]

z [0,0] [0, 10]

x7 [1,1] [1,6]

We now start from the post fixpoint a descending iteration without applying
narrowing, using the original equation zy = 1 V% 27.

1°¢ descending iteration 2"¢ descending iteration

x1 [0,0] [0,0]

x5 [0,0] VP [1,6] =[0,6]  [0,0] V? [1,4] = [0,4]
I3 @ @

x4 [0,0] [0, 0]

x5 [0, 6] [0, 4]

xg [0, 6] [0, 4]

x7 [1,4] [1,3]
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At the next iterations, we obtain:

29 = [0, 3] x7 = {1, 5}

5 9
T2 = {0,2] e {1’4}

and so on, without terminating. The fixpoint, which is zo = [0, 2] and z7 = [1, 2],
is not the empty set. a

Exploiting Proposition 3, we can define a new narrowing operator on intervals
for real variables which refines successive descending iterations at the nearest
integer, since we cannot have an infinite descending chain whose bounds are all
integers.

Definition 10 (Narrowing on reals). We define a narrowing operator A* on
Intg as follows:

IA'D=0
(11, u1] A [lo, ug] = [I/, 4]
where

y_{b ifl; = —o0

max(ly, |l2]) otherwise

o Us if uy = +00
min(uy, [uz]) otherwise
The new narrowing A® refines infinite bounds to finite values, as the standard
one, and refines finite bounds only to new integer values. Since infinite descending
sequences on integer template domains are precluded by the use of left-strict
joins, the descending sequence terminates.

Theorem 11. The operator A' is a narrowing operator on template domains
when the loop join is left-strict.

In the next example we compare the standard narrowing with the new nar-
rowing on reals Al

Ezxample 12. We compute the descending chain of Example 9 using the standard
narrowing on intervals. We start from the post fixpoint and use the equation
To =29 A (21 vid 27). At the first descending iteration we get

x9 = [0,400] & ([0,0] VP [1,6]) = [0,400] A [0,6] = [0,6] .

Note that we get exactly the same value as in the first descending iteration
without narrowing. Therefore, we compute for the other unknowns exactly the
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same values, in particular x7 = [1,4]. It is immediate to see that this is a fixpoint
for the computation using the standard narrowing, since no more unbounded
values appear. In fact, we have that

2o =x9 A (21 VP 27) = [0,6] A [0,4] = [0,6] .

We now recompute the descending chain of Example 9 using the narrowing on
reals A' in Def. 10. The first descending iteration is the same as for the standard
narrowing, and we get o = [0,6] and z7 = [1,4]. In the second descending
iteration we have

T = T2 Al ($1 Vo .1‘7) = [0,6] Al [0,4] = [0,4}
and z7 = [1,3]. In the third descending iteration we have
xy = [0,4] A [0,3] = [0,3]

and z7 = [1, 3]. This is the fixpoint, since
1 5
xz2 =1[0,3] A 0,2 =1[0,3] .

In this case, we get a result strictly more precise than with the standard nar-
rowing. a

It is worth noting that A! could be easily generalized by rounding numbers
at the multiple of any strictly positive constant value ¢ € R.

Definition 13 (é-narrowing). Let § € R such that 6 > 0. We define a new
narrowing on intervals of reals:

IN =0
[ll,ul] A6 [lz, UQ} = [l’,u’]
where
l/ _ 12 Zf ll = —0
max(ly,0]l2/0]) otherwise

o Us if up = +o00

min(uy,0[us/d]) otherwise
The above narrowing produces a descending chain whose elements differ for a
multiple of §, which is fixed in advance. Since the limit of these chains is still the
empty set, it is immediate to see that A% in the above definition is a narrowing
operator on intervals of reals. It generalizes A! given in Definition 10. In fact,
Def. 13 boils down to Def. 10 when § = 1. Moreover, it can be easily generalized
to template abstract domains.
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Theorem 14. For any § € R such that § > 0, the operator A% is a narrowing
operators on template abstract domains when the loop join is left-strict.

The next example applies the new narrowing A°® to the program realLoop.

Ezxample 15. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using d-narrowing with § = |1 . We get the following values

100°
for zo:
5 9 213 207 204 202 201
4
10,61, 10, 41, [0, 3], {0’ 2]’ {0’ 4}’ {0’ 100]’ {0’ 100]’ {O’ 100}’ {O’ 100]’ {0’ 100]
where the last one is the fixpoint. O

As an alternative, instead of rounding bounds to a multiple of §, we may
refine bounds with the new value only if the difference w.r.t. the previous value
is greater than a given §. We call this é*-narrowing.

Definition 16 (é*-narrowing). Let 6 € R such that 6 > 0. We define a new
narrowing on intervals of reals:

IA* D=0
[l1,U1} A(S* [ZQ,UQ] = l’,u/]

where

/— loy iflij=—-c0orly—13>6
B {1  otherwise

o — ug if up =400 oruy —ugs >0
uy  otherwise

The above narrowing keeps iterating while the difference between two successive
iterations is greater than . Since the limit of any such descending chain is still
the empty set, we can prove that A%* is a narrowing operator under the same
hypothesis of Th. 14

Theorem 17. For any § € R such that 6 > 0, the operator A% is a narrowing
operator on template domains when the loop join is left-strict.

The next example shows the narrowing A%* in the program realLoop.

Ezxample 18. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using §*-narrowing with ¢ = 1(1)0. We get the following values
for zs:

oo 040,35 .5 ] 0.5 o ] o] Jo 5B fo )

where the last one is the fixpoint. O
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4 Conclusion and Related Work

We believe the main contribution of this paper is a deeper theoretical under-
standing of termination issues during descending iterations within the framework
of static analysis by abstract interpretation. In details, we have:

— introduced a refined join operator for loop heads which improves precision
by preserving unreachability;

— shown that, when using the new join operator with an integer template ab-
stract domain, the descending phase of the analysis terminates even without
using a narrowing operator;

— presented several improved (more precise) narrowings for template abstract
domains over reals, to be used with the new join operator;

— shown, for the first time, examples of programs over integers and reals where
the descending phase of the analysis is either infinite or arbitrarily long.

Both the new join and the improved narrowings may be easily applied to
existent analyzers with little effort. In the case of structured program, they only
require a single check in the abstract join in order to make it strict.

The new join operator may be used systematically with structured programs,
since it improves both precision and speed at the same time. The same cannot
be said for the new narrowings over reals or for the idea of not using narrowing
at all with integer domains. In this case, we may get better precision, as shown
in Example 9, but at the expense of a greater computational cost, since the
analysis of the loops might be repeated several times. The good point is that
we increase the computational cost only when we improve precision w.r.t. the
standard narrowing.

The impact of the repeated computations of loops might be probably reduced
by delaying analysis of the inner loops until outer loops are stabilized, so that a
long descending sequence in a loop does not force to repeatedly analyze the inner
loops. However the impact of the new narrowing on the precision and performance
of the analysis on realistic test cases will be the topic of a future work.

Only a few papers in the literature deal with narrowing and the descending
phase of the analysis. In [13], the authors try to recover precision by restarting the
analysis after that a post-fixpoint has been reached. In [1,3,2] the authors propose
to combine widening and narrowing during the analysis, resulting in multiple
intertwined ascending and descending phases. Moreover, [1] also proposes to
restart (part of) the analysis when the abstract value associated to the exit node
of a loop is refined during the descending phase. Our left-strict join operator may
be viewed as a variant of the restarting policy in [1], where restart is triggered
only when unreachability is detected. For instance, in the example program
doubleLoop in Fig. 1(a), the restarting policy triggers a full analysis (widening
and narrowing phases) of the second loop with an initial assignment which maps
every unknown of the second loop to bottom. However, while in the previous
work restarting is a feature of the equation solver, here it is realized directly at
the semantic level.
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Mostly, our work is orthogonal to the ones cited above: the new operators we

have defined may be used within these frameworks to get more precise results.

The idea of avoiding narrowing in the descending phase is used in many pa-

pers, with the proviso of bounding the number of descending iterations to ensure
termination. In this paper we show that, under certain conditions and ignoring
performance issues, we do not need to bound the number of iterations.
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Abstract. The ever increasing expansion of mobile applications into
nearly every aspect of modern life, from banking to healthcare systems,
is making their security more important than ever. Modern smartphone
operating systems (OS) rely substantially on the permission-based secu-
rity model to enforce restrictions on the operations that each application
can perform. In this paper, we perform an analysis of the permission
protocol implemented in Android, a popular OS for smartphones. We
propose a formal model of the Android permission protocol in Alloy, and
describe a fully automatic analysis that identifies potential flaws in the
protocol. A study of real-world Android applications corroborates our
finding that the flaws in the Android permission protocol can have se-
vere security implications, in some cases allowing the attacker to bypass
the permission checks entirely.

1 Introduction

Modern mobile devices provide a framework for multiple applications to interact
with each other by exporting and invoking APIs. From a security and privacy per-
spective, some of the resources shared through the APIs may be considered more
critical than others; for example, an ability to send a text message is more danger-
ous than an ability to change the ringtone on the phone. Therefore, a mechanism
that can be used by the developer to control access to critical resources is essential.

Popular operating systems such as Android, i0S, and Windows Phone imple-
ment a permission-based model for controlling the types of resources that each
application is allowed to access. In this model, a developer protects a critical
resource inside an application by assigning an explicit permission, which must
be obtained by any application that wishes to access the resource. Permissions
are typically granted to an application at the discretion of the end user, who
makes a decision based on the perceived trustworthiness of the application.

In recent years, researchers have identified a number of flaws in the permission
mechanisms that lead to serious security and privacy breaches [1,2,3,4,5,6]. The
typical manner in which these problems are discovered involves a careful scrutiny

© Springer International Publishing Switzerland 2015
N. Bjgrner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 73—-89, 2015.
DOI: 10.1007/978-3-319-19249-9 6
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by security experts, sometimes long after these devices are released. Many issues are
overarching design flaws that require system-wide reasoning—not easily attainable
through conventional analysis methods such as testing and static analysis, which
are more suited for detecting bugs in individual parts of the system.

Just as techniques in formal methods have proven practical in assessing the
security of network protocols [7], we believe that building a formal model of a
permission protocol and performing a rigorous analysis can identify potential
vulnerabilities and candidate fixes. This paper, unlike prior studies of Android
security (including ours [8]) that leverage code analyses to check a particular
application for vulnerabilities, instead focuses on modeling and analyzing the
Android permission protocol for design flaws. Our model is written in Alloy [9],
a language based on a first-order relational logic, with an analysis engine that
performs bounded verification of models. As far as we are aware, our work is the
first that describes an automated analysis of the Android permission protocol.

Through an analysis of our model, we identified a number of vulnerabilities
in the protocol that allow a malicious application to entirely bypass permission
checks. In particular, we performed a study of a vulnerability that has not been
studied in the security literature before—called the custom permission vulnera-
bility. To confirm that an abstract attack scenario identified during the analysis
is indeed realistic, we demonstrated the attack on concrete Android applications
across different versions of Android. Through our study, we show that the cus-
tom permission vulnerability is widespread, and that many popular applications
are, in fact, susceptible to this type of attacks.

The rest of the paper is structured in the following way. We begin by giving
a brief background on Android and motivating why securing its permission pro-
tocol can be a challenging task (Section 2). We then describe a formal model of
the permission protocol in Alloy (Section 3) and an automated security analysis
of the model (Section 4). We present an experiment to demonstrate the feasi-
bility and prevalence of the custom permission vulnerability in existing Android
applications (Section 5). Finally, we discuss the related work (Section 6) and
conclude with future work (Section 7).

2 Background and Motivation

An application is the primary unit of functionality in Android: A typical device
is constantly running numerous applications to support the user’s needs, such as
a messaging service, a mail client, a navigation application, just to name a few.

The success of Android is in part due to its flexible framework for cross-
application communication and sharing. Each application is organized into a set
of components, which export APIs to other applications, thus enabling reuse
of functionality across multiple project and software vendors. For example, the
developer of a navigation application may encapsulate its map search function-
ality into an individual component, and provide it as a service to the rest of the
device. There are four types of components: service, activity, broadcast receiver,
and content provider, each serving a different purpose.
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A potential downside to the open-ended nature of the Android framework is
an increased risk for security and privacy breaches. Some components handle
information that is considered particularly critical, and so freely sharing these
components without discretion may lead to undesirable consequences for the
user. For example, the navigation application may not want to release map
search histories as part of a component API, since a rogue application could use
these data to extrapolate the user’s travel pattern for a malicious purpose.

Android uses a permission-based mechanism to control how applications in-
teract with each other. Before an application can access a component, it must be
granted an explicit permission to do so by the user. Each permission is associ-
ated with a protection level, which indicates the trustworthiness of an application
that may be granted this permission. There are three types of protection levels:
(1) normal, meaning the permission is granted to every application, (2) danger-
ous, granted only at the discretion of the device user, and (3) signature, granted
only to applications from the same developer!. A runtime engine monitors every
invocation of an API operation and ensures that the calling application has the
permission to perform that operation.

An Android device contains a number of built-in permissions for basic fea-
tures, such as sending a text message, turning on GPS, and accessing the In-
ternet. In addition, Android allows a third-party application to define custom
permissions and selectively control access to its components. Typically, permis-
sions are granted to an application at the time of its installation; however, a
special type of permissions called URI permissions may be temporarily granted
and revoked during the lifetime of an application.

The goal of the Android permission protocol is to prevent any unauthorized
access; that is, each application should be able to access only those components
that it is granted permissions for, and no more. Ensuring that the system achieves
this goal, however, is a challenging task, especially since it can be difficult to
predict all the ways in which a malicious application may attempt to misuse the
system. An attack may involve performing a complex but obscure sequence of
operations that would unlikely be encountered during normal usage scenarios.
Identifying such attacks requires system-wide reasoning, and cannot be easily
achieved by conventional analysis methods such as testing and static analysis,
which are more suited at detecting defects in individual parts of the system.

Motivated by this challenge, we explored an approach to analyzing the se-
curity of the Android permission protocol by constructing a formal model and
performing an automated analysis of the model. Two key elements that distin-
guish our approach from previous studies of Android security are as follows:

— System-wide Dynamic Reasoning: By modeling the behavior of Android
in terms of architectural-level operations (such as installing or removing an
application) executed over a sequence of discrete time steps, we are able to
perform system-wide reasoning that would be difficult to achieve using static
analysis or testing. For example, our analysis can explore all possible orders

L' A fourth protection level, signature/system, also exists but is rarely used, and so,
for the purpose of our discussion, will be grouped into signature.
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in which applications are installed and check whether a particular ordering
could be exploited by an attacker (which, in fact, turned out to be the key
to an actual attack that involved custom permissions).

— Concretization: The result of the analysis, performed on an abstract model,
is used to guide an implementation-level analysis that checks a concrete
Android application for the presence of a vulnerability.

This approach demonstrates a potential synergy between model-based and code
analysis techniques for an end-to-end security analysis: A system-level reasoning
is first performed on a high-level model of the system, generating information
about potential vulnerabilities, each of which can be confirmed for presence in the
implementation using techniques such as static analysis, testing, or inspection.

3 Android Permission Model

In this section, we describe a formal model of the Android permission protocol
in Alloy [9], a specification language based on a first-order relational logic. Alloy
is suitable for this modeling task because (1) its flexible core allows one to
model and integrate different aspects of a system, and (2) its backend tool,
the Alloy Analyzer, provides an automated analysis for checking assertions and
generating counterexamples. However, our approach does not prescribe the use
of a particular formalism, and other languages may well be suitable.

Our model is based on the official documentation on Android permissions from
Google [10]. Android is a large and complex operating system, and modeling it
in its entirety would be infeasible. Thus, we focused on the parts of Android
that are relevant to the permission mechanism—how permissions are granted
and maintained, and how they constrain the behavior of an application. As a
result, other aspects of Android (such as intents) are omitted from this model.

One of the challenges that we encountered during our modeling task was due
to the fact that some of the key aspects of the Android permission protocol are
under-specified in the official documentation. For example, the document fails
to describe what happens to the permissions that have already been granted
when the application that defines those permissions is uninstalled. To avoid over-
specification (and possibly ruling out counterexamples), we deliberately left the
corresponding parts of the model under-specified. This was possible because Al-
loy supports partial modeling: It allows parts of the system to be left unspecified,
allowing the Alloy Analyzer to explore all alternative behaviors.

Figure 1 shows an abridged version of the model in Alloy?, divided into three
parts: (1) the architecture of an Android device (lines 4-19), (2) the Android

2 The Alloy keyword sig introduces a signature, which defines a set of elements in the
universe. A signature may contain one or more fields, each introducing a relation
that maps the elements of the signature to the field expression; for example, field
protectionLevel in Permission is a binary relation that maps each Permission object to
its protection level (line 25). The keyword extends creates a subtyping relationship
between two signatures; an abstract signature has no elements except those belonging
to its extensions, and one sig introduces a signature that contains only one element.
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permission scheme (lines 21-26), and (3) system operations that modify or de-
pend on the permissions (lines 28-66).

3.1 Permissions

An Android device consists of a number of interacting applications, each con-
taining zero or more components that may export services to other applications.
The set of applications running on a device may change over time as new ap-
plications are installed and existing ones are removed. We model the dynamic
aspect of the system by using a standard Alloy idiom in which an execution is
represented as a sequence of time steps, and each mutable object is associated
with a different state in each time step [9]. To do this, we introduce a set of
totally ordered elements as signature Time, and add it as the last column of
relations that are considered mutable®; for example, the field apps uses Time to
keep track of the installed applications at each time step (line 6).

An application may use permissions to control access to its components by
other applications. Each permission object, shown on line 25, is associated with
a name and a protection level, which can take one of the three values: Nor-
mal, Dangerous, and Signature (in order of increasing criticality). Permissions
can be assigned to an application at two different levels. Each component may
be guarded by at most one permission (represented by the field guard on line
17), which must be acquired by an application before being able to access the
component. In addition, an application may be assigned its own guard (line 13),
which is imposed on every one of its components; when both the application and
one of its components have a guard, the component-specific permission takes the
priority.

Note that the type of the field guard in both Application and Component is
PermName. In other words, the guard does not contain information about the
protection level that is intended for the component being accessed. As discussed
later in the section, this turns out to be a design flaw in Android that can be
exploited by a malicious application for unauthorized access.

In addition to a set of built-in permissions that are available by default on
Android, an application developer may create one or more custom permissions
to protect an application-specific component (lines 7-8). For example, each An-
droid device contains a built-in permission called android.permission.INTERNET,
controlling which applications are allowed to use the built-in component that
provides Internet access. A third-party navigation application may provide its
map search capability as a service to other applications, and define a custom
permission called com.myapp.perm.SEARCH MAP to control its access.

A content provider is a type of storage component containing one or more
database tables that are identified by URIs (line 19)*. By default, obtaining a
permission on a content provider grants access to all of its tables. To allow more

3 The ordering library in Alloy imposes a total order on an input signature (line 1).
4 Other types of components—service, activity, and broadcast receiver—can be treated
equally as far as permissions are concerned, and are omitted from Figure 1.
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1 open util/ordering [Time]

2 sig Time {}

3

4 /* Android architecture */

5 one sig Device {

6 apps: Application -> Time, // currently installed applications
7 builtinPerms: set Permission, // permissions built into Android
8 customPerms: Permission -> Time } // currently active custom permissions
9 sig Application {

10 declaredPerms: set Permission, // custom permission declarations
11 usesPerms: set PermName, // permissions it intends to use
12 grantedPerms: Permission -> Time, // permissions currently granted
13 guard: lone PermName,

14 components: set Component }

15 sig Component {

16 app: Application,

17 guard: lone PermName }

18 sig URI {} // points to a table inside a content provider

19 sig ContentProvider in Component { paths: set URI }

20

21 /* Permission objects */

22 sig PermName {} -- permission name

23 abstract sig ProtectionLevel {}

24 one sig Normal, Dangerous, Signature extends ProtectionLevel {}

25 sig Permission { name: PermName, protectionLevel: ProtectionLevel }
26 sig URIPermission in Permission { uri: URI }

27

28 /* Invocation operation */

29 pred invoke[t, t’: Time, caller, callee: Component] {

30 caller.app + callee.app in Device.apps.t

31 canCall[caller, callee, t]

32 noChanges[t, t’] }

33 pred canCall[caller, callee: Component, t: Time] {

34 guardedBy[callee] in (caller.app.grantedPerms.t).name }

35 fun guardedBy[c: Component]: PermName {

36 {p: PermName | (p = c.guard) or (no c.guard and p = c.app.guard) } }
37 pred noChanges[t, t’: Time] {

38 Device.apps.t’ = Device.apps.t

39 Device.customPerms.t’ = Device.customPerms.t

40 all a : Application | a.grantedPerms.t’ = a.grantedPerms.t }
41

42 /* Install operation */
43 pred install[t, t’: Time, app: Application] {

44 app not in Device.apps.t

45 Device.customPerms.t’ = Device.customPerms.t + newCustomPerms[t,app]
46 grantPermissions[t’, appl

47 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t

48 Device.apps.t’ = Device.apps.t + app }

49 fun newCustomPerms[t: Time, app: Application]: set Permission {

50 {p: app.declaredPerms | p.name not in (Device.customPerms.t).name} }
51 pred grantPermissions[t: Time, app: Application] {

52 app.grantedPerms.t.name = app.usesPerms

53 app.grantedPerms.t in Device.customPerms.t + Device.builtinPerms }

55 /* Uninstall operation */
56 pred uninstalll[t, t’: Time, app: Application] {

57 app in Device.apps.t

58 Device.apps.t’ = Device.apps.t - app

59 Device.customPerms.t’ = Device.customPerms.t - app.declaredPerms
60 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t }
61

62 /* Event trace definition */
63 fact traces {

64 all t: Time - last | let t’ = t.next |
65 some app: Application, c1,c2: Component
66 install[t, t’, app] or uninstalll[t, t’, appl] or invokel[t, cl1l, c2] }

Fig.1. A snippet of the Alloy model of the Android permission protocol
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fine-grained control, Android provides a special type of permissions called URI
permissions (line 26), which can be used to grant access to a particular URI
inside a content provider.

Finally, an application specifies its intent to access a component by including
the name of the associated permission as one of its uses-permissions (line 11).
When an application is installed, the device determines the set of permissions
that should be granted to the application using usesPerms.

3.2 System Behavior

Three types of operations relevant to the Android permission scheme are de-
scribed in the Alloy model: invoking a component, which succeeds only when
the calling application has the appropriate permission, and installing and unin-
stalling an application, which may modify the custom permissions on the device.

Invoke Operation. The operation of a component invoking another compo-
nent is expressed as predicate invoke (lines 29-32), which evaluates to true if
and only if caller successfully invokes callee between time steps t and t'. The
predicate is, in turn, defined as a conjunction of three constraints: both caller
and callee must belong to some application on the device (line 30), caller must
have the permission to access callee (31), and no changes are made to the active
permissions during the invocation (32).

The predicate canCall defines what it means for caller to be able to invoke
callee at time step t (lines 33-34); that is, caller must possess the permission that
guards callee®. Note that callee may be guarded by no permission at all (i.e.,
guardedBy may return an empty set), in which case canCall is trivially satisfied;
in other words, a component without a guard can be accessed by any other
component.

Recall that a component’s guard is simply the name of a permission, and so
its protection level, by design, plays no role in determining whether caller should
be allowed to invoke callee. While not explicitly stated in the Android documen-
tation, this design decision relies on one critical assumption: If an application
possesses a permission to access a component with a certain protection level,
then it must have been authorized by the user to do so during its installation.
However, as our analysis will reveal, this assumption is false: It is possible for
a malicious application to obtain a permission to a component with a high pro-
tection level (e.g., dangerous), even though the authorization was intended for
a lower protection level (e.g., normal). Section 4 describes this attack in detail.

Install Operation. The first constraint in install describes the precondition for
the operation: app must not already exist on the device at time t (line 44). The
four constraints that follow describe the effect of the operation on the device:

— If app declares its own custom permissions, they are added to the device,
except those that already exist on the device at time t; function newCustom-
Perms describes exactly those 