
Nikolaj Bjørner
Frank de Boer (Eds.)

 123

LN
CS

 9
10

9

20th International Symposium
Oslo, Norway, June 24–26, 2015
Proceedings

FM 2015:
Formal Methods

Lecture Notes in Computer Science 9109
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Nikolaj Bjørner · Frank de Boer (Eds.)

FM 2015:
Formal Methods
20th International Symposium
Oslo, Norway, June 24–26, 2015
Proceedings

ABC

Editors
Nikolaj Bjørner
Microsoft Research
Redmond
Washington
USA

Frank de Boer
Centrum voor Wiskunde en Informatica
Amsterdam
The Netherlands

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19248-2 ISBN 978-3-319-19249-9 (eBook)
DOI 10.1007/978-3-319-19249-9

Library of Congress Control Number: 2015939719

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

In Memoriam

Peter Lucas (1935–2015)

Chairman of Formal Methods Europe 1995–2000

Sadly, Peter Lucas passed away February 2nd, 2015 peacefully after a lengthy illness.
He is remembered by many for his important contributions to the development of com-
puter languages, and to those connected with FME as the chairman who established the
association as a free and independent organisation. Colleagues will remember him as a
computer scientist whose technical passion and skill were matched by a wise, balanced,
and cheerful outlook.

Preface

This year we celebrate the 20th anniversary of the International Symposium on For-
mal Methods in Oslo, during June 24–26. FM 2015 attracted 124 submissions to the
main track. Each submission was reviewed by at least three Program Committee mem-
bers. The committee decided to accept 32 papers, resulting in an acceptance rate of
0.26. These conference proceedings further contain nine papers selected by the Pro-
gram Committee of the Industry Track, which was chaired by Ralf Huuck (NICTA,
Australia), Peter Gorm Larsen (Aarhus University, Denmark), and Andreas Roth (SAP,
Germany).

The program includes four invited talks by Elvira Albert (Complutense University
of Madrid, Spain), Werner Damm (Carl von Ossietzky Universität Oldenburg, DE),
Valérie Issarny (Inria, France), and Leslie Lamport (Microsoft Research, USA). Fur-
thermore, the overall program includes 11 workshops selected by the Workshop Chairs
Marieke Huisman (Twente University, The Netherlands) and Volker Stolz (University of
Oslo, Norway), four tutorials selected by the Tutorial Chairs Ferruccio Damiani (Uni-
versity of Torino, Italy) and Cristian Prisacariu (University of Oslo, Norway), a Doc-
toral Symposium organized by Bernhard Aichernig (TU Graz, Austria) and Alessandro
Rossini (Sintef, Norway) with a keynote by Stijn de Gouw (CWI, The Netherlands),
and a tool exhibition organized by Richard Bubel (TU Darmstadt, Germany) and Rudolf
Schlatte (University of Oslo, Norway). The resulting program covers a wide spectrum
of all the different aspects of the use of, and research on, formal methods for software
development.

Thanks to all involved, i.e., all the Program Committee members, subreviewers, and
the different chairs. Special thanks are due to the excellent local organization by Einar
Broch Johnsen (University of Oslo, Norway) who was professionally supported by the
Local Organization Chairs Violet Pun (University of Oslo, Norway) and Lizeth Tapia
(University of Oslo, Norway), the Financial Chairs Arnaud Gotlieb (Simula Research
Labs, Norway) and Ingrid Chieh Yu (University of Oslo, Norway), and the Publicity
Chair Martin Steffen (University of Oslo, Norway).

Of particular interest to note here is that because of the very special occasion of
the 20th anniversary Formal Methods Europe decided this year on a FME Fellowship
Award.

Finally, FM 2015 gratefully recognizes the support of our sponsors: the Research
Council of Norway, the City of Oslo, the Norwegian Centre for Software Verification
and Validation (CERTUS), the Dutch Centre for Mathematics and Computer Science
(CWI), and Microsoft Research.

April 2015 Nikolaj Bjørner
Frank de Boer

Peter Gorm Larsen

Organization

Program Committee

Erika Ábrahám RWTH Aachen University, Germany
Bernhard K. Aichernig TU Graz, Austria
Gilles Barthe IMDEA Software Institute, Spain
Marcello Bonsangue Leiden University, The Netherlands
Michael Butler University of Southampton, UK
Andrew Butterfield Trinity College, Dublin, Ireland
Ana Cavalcanti University of York, UK
David Clark University College London, UK
Jin Song Dong National University of Singapore, Singapore
Michael Emmi IMDEA Software Institute, Spain
John Fitzgerald Newcastle University, UK
Nate Foster Cornell University, USA
Vijay Ganesh University of Waterloo, Canada
Diego Garbervetsky Universidad de Buenos Aires
Dimitra Giannakopoulou NASA Ames, USA
Stefania Gnesi ISTI-CNR, Italy
Ganesh Gopalakrishnan University of Utah, USA
Orna Grumberg Technion - Israel Institute of Technology, Israel
Arie Gurfinkel Software Engineering Institute,

Carnegie Mellon University, USA
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Anne E. Haxthausen Technical University of Denmark, Denmark
Ian J. Hayes University of Queensland, Australia
Gerard Holzmann Jet Propulsion Laboratory, California Institute

of Technology, USA
Reiner Hähnle Technical University of Darmstadt, Germany
Daniel Jackson MIT, USA
Cliff Jones Newcastle University, UK
Gerwin Klein NICTA and University of New South Wales,

Australia
Laura Kovacs Chalmers University of Technology, Sweden
Marta Kwiatkowska University of Oxford, UK
Peter Gorm Larsen Aarhus University, Denmark
Yves Ledru Laboratoire d’Informatique de Grenoble

- Université Joseph Fourier, France

X Organization

K. Rustan M. Leino Microsoft Research, USA
Martin Leucker University of Lübeck, Germany
Shaoying Liu Hosei University, Japan
Tom Maibaum McMaster University, Canada
Dominique Mery Université de Lorraine, France
César Muñoz NASA, USA
Peter Müller ETH Zürich, Switzerland
David Naumann Stevens Institute of Technology, USA
Tobias Nipkow Technische Universität München, Germany
Jose Oliveira Universidade do Minho, Portugal
Olaf Owe University of Oslo, Norway
Sam Owre SRI International, USA
Andrei Paskevich Université Paris-Sud, France
Grigore Rosu University of Illinois at Urbana-Champaign,

USA
Kristin Yvonne Rozier NASA Ames Research Center, USA
Sanjit A. Seshia University of California, Berkeley, USA
Natasha Sharygina Universita’ della Svizzera Italiana,

Switzerland
Viorica Sofronie-Stokkermans University Koblenz-Landau, Germany
Jun Sun Singapore University of Technology

and Design, Singapore
Kenji Taguchi AIST, Japan
Margus Veanes Microsoft Research, USA
Ji Wang National Laboratory for Parallel

and Distributed Processing, China
Alan Wassyng McMaster University, Canada
Heike Wehrheim University of Paderborn, Germany
Michael Whalen University of Minnesota, USA
Jim Woodcock University of York, UK
Gianluigi Zavattaro University of Bologna, Italy
Pamela Zave AT&T Laboratories-Research, USA

Organization XI

Additional Reviewers

Abdelkader, Karam
Alberti, Francesco
Alt, Leonardo
Andre, Etiene
Andronick, June
Bai, Guandong
Barbosa, Luis
Barnat, Jiri
Basset, Nicolas
Berger, Christian
Bonakdarpour, Borzoo
Bornat, Richard
Brazdil, Tomas
Bryans, Jeremy W.
Bubel, Richard
Castano, Rodrigo
Cerone, Andrea
Ceska, Milan
Chatterjee, Krishnendu
Chen, Liqian
Christakis, Maria
Ciancia, Vincenzo
Ciolek, Daniel
Clarkson, Michael
Cohen, Ernie
Coleman, Joey
Colley, John
Daniel, Holcomb
Decker, Normann
Delahaye, Benoit
Delzanno, Giorgio
Demasi, Ramiro
Desai, Ankush
Din, Crystal Chang
Dodds, Mike
Donzé, Alexandre
Duan, Lian
Duflot, Marie
Dupressoir, François
Enea, Constantin
Fedyukovich, Grigory
Fernandez, Matthew
Ferrari, Alessio
Fontaine, Pascal

Ghassabani, Elaheh
Girard, Antoine
Golden, Bat-Chen
Grall, Herve
Gui, Lin
Hahn, Ernst Moritz
Harder, Jannis
Helvensteijn, Michiel
Hyvärinen, Antti
Immler, Fabian
Isenberg, Tobias
Jacob, Jeremy
Jacobs, Bart
Jansen, Nils
Jeannin, Jean-Baptiste
Ji, Ran
Joshi, Rajeev
Jovanovic, Aleksandra
Kahsai, Temesghen
Kinder, Johannes
Kini, Dileep
Kong, Weiqiang
Kotelnikov, Evgenii
Kremer, Gereon
Kremer, Steve
Kromodimoeljo, Sentot
Kumar Singh, Neeraj
Kuraj, Ivan
Kuruma, Hironobu
Külahçioğlu Özkan, Burcu
Lammich, Peter
Latella, Diego
Lewis, Corey
Li, Li
Li, Liyi
Li, Yi
Liang, Jia
Lopez Pombo, Carlos
Lorber, Florian
Loreti, Michele
Malik, Avinash
Mamouras, Konstantinos
Melgratti, Hernan
Meller, Yael

XII Organization

Melquiond, Guillaume
Miyazawa, Alvaro
Moore, Brandon
Mosses, Peter
Murray, Toby
Muschevici, Radu
Mödersheim, Sebastian A.
Nakata, Keiko
Navas, Jorge A.
Near, Joseph
Newsham, Zack
Nguyen, Kim
Parker, David
Parkinson, Matthew
Passmore, Grant
Pavese, Esteban
Pek, Edgar
Rabe, Markus N.
Ranzato, Francesco
Regis, German
Remke, Anne
Rossi, Matteo
Rozier, Eric
Sadigh, Dorsa
Salehi Fathabadi, Asieh
Sankaranarayanan, Sriram
Scheffel, Torben
Schmitz, Malte
Schumi, Richard
Schupp, Stefan
Sewell, Thomas

Shi, Ling
Shimakawa, Masaya
Shoaei, Mohammad Reza
Singh, Neeraj
Sinha, Rohit
Smith, Andrew
Snook, Colin
Solin, Kim
Stefanescu, Andrei
Stork, Sven
Stümpel, Annette
Summers, Alexander J.
Talbot, Jean-Marc
Tarrach, Thorsten
Thoma, Daniel
Tiezzi, Francesco
Tiwari, Ashish
Travkin, Oleg
Turrini, Andrea
Vu, Linh H.
Wang, Chen-Wei
Wasser, Nathan
Whiteside, Iain
Wiltsche, Clemens
Xiao, He
Zhang, Yi
Zhao, Yang
Zheng, Yunhui
Zoppi, Edgardo
Zulkoski, Edward

Contents

Invited Presentations

Resource Analysis: From Sequential to Concurrent and Distributed
Programs . 3

Elvira Albert, Puri Arenas, Jesús Correas, Samir Genaim,
Miguel Gómez-Zamalloa, Enrique Martin-Martin,
Germán Pueblán Puebla, and Guillermo Román-Dı́ez

AVACS: Automatic Verification and Analysis of Complex Systems
Highlights and Lessons Learned . 18

Werner Damm

Main Track

Automated Circular Assume-Guarantee Reasoning 23
Karam Abd Elkader, Orna Grumberg, Corina S. Păsăreanu,
and Sharon Shoham

Towards Formal Verification of Orchestration Computations Using the
K Framework . 40

Musab A. AlTurki and Omar Alzuhaibi

Narrowing Operators on Template Abstract Domains 57
Gianluca Amato, Simone Di Nardo Di Maio, Maria Chiara Meo,
and Francesca Scozzari

Detection of Design Flaws in the Android Permission Protocol Through
Bounded Verification . 73

Hamid Bagheri, Eunsuk Kang, Sam Malek, and Daniel Jackson

Privacy by Design in Practice: Reasoning about Privacy Properties of
Biometric System Architectures . 90

Julien Bringer, Hervé Chabanne, Daniel Le Métayer,
and Roch Lescuyer

A Specification Language for Static and Runtime Verification of Data
and Control Properties . 108

Wolfgang Ahrendt, Jesús Mauricio Chimento, Gordon J. Pace,
and Gerardo Schneider

Certificates for Parameterized Model Checking . 126
Sylvain Conchon, Alain Mebsout, and Fatiha Zäıdi

XIV Contents

Safety, Liveness and Run-Time Refinement for Modular Process-Aware
Information Systems with Dynamic Sub Processes 143

Søren Debois, Thomas Hildebrandt, and Tijs Slaats

Verifying Opacity of a Transactional Mutex Lock . 161
John Derrick, Brijesh Dongol, Gerhard Schellhorn, Oleg Travkin,
and Heike Wehrheim

A Framework for Correctness Criteria on Weak Memory Models 178
John Derrick and Graeme Smith

Semantics-Preserving Simplification of Real-World Firewall Rule Sets . . . 195
Cornelius Diekmann, Lars Hupel, and Georg Carle

Parameter Synthesis Through Temporal Logic Specifications 213
Thao Dang, Tommaso Dreossi, and Carla Piazza

Trace-Length Independent Runtime Monitoring of Quantitative Policies
in LTL . 231

Xiaoning Du, Yang Liu, and Alwen Tiu

Probabilistic Bisimulation for Realistic Schedulers . 248
Christian Eisentraut, Jens Chr. Godskesen, Holger Hermanns,
Lei Song, and Lijun Zhang

QPMC: A Model Checker for Quantum Programs and Protocols 265
Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun Zhang

Automated Verification of RPC Stub Code . 273
Matthew Fernandez, June Andronick, Gerwin Klein, and Ihor Kuz

Property-Driven Fence Insertion Using Reorder Bounded
Model Checking . 291

Saurabh Joshi and Daniel Kroening

Verifying the Safety of a Flight-Critical System . 308
Guillaume Brat, David Bushnell, Misty Davies,
Dimitra Giannakopoulou, Falk Howar, and Temesghen Kahsai

Proving Safety with Trace Automata and Bounded Model Checking 325
Daniel Kroening, Matt Lewis, and Georg Weissenbacher

Verifying Parameterized Timed Security Protocols 342
Li Li, Jun Sun, Yang Liu, and Jin Song Dong

Abstraction of Elementary Hybrid Systems by Variable
Transformation . 360

Jiang Liu, Naijun Zhan, Hengjun Zhao, and Liang Zou

Contents XV

Using Real-Time Maude to Model Check Energy Consumption
Behavior . 378

Shin Nakajima

Static Differential Program Analysis for Software-Defined Networks 395
Tim Nelson, Andrew D. Ferguson, and Shriram Krishnamurthi

A Fully Verified Container Library . 414
Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia

Counterexamples for Expected Rewards . 435
Tim Quatmann, Nils Jansen, Christian Dehnert, Ralf Wimmer,
Erika Ábrahám, Joost-Pieter Katoen, and Bernd Becker

The Semantics of Cardinality-Based Feature Models via Formal
Languages . 453

Aliakbar Safilian, Tom Maibaum, and Zinovy Diskin

Axiomatization of Typed First-Order Logic . 470
Peter H. Schmitt and Mattias Ulbrich

Model-Based Problem Solving for University Timetable Validation and
Improvement . 487

David Schneider, Michael Leuschel, and Tobias Witt

Certified Reasoning with Infinity . 496
Asankhaya Sharma, Shengyi Wang, Andreea Costea, Aquinas Hobor,
and Wei-Ngan Chin

Direct Formal Verification of Liveness Properties in Continuous and
Hybrid Dynamical Systems . 514

Andrew Sogokon and Paul B. Jackson

Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions . 532

Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamarić,
and Ganesh Gopalakrishnan

Static Optimal Scheduling for Synchronous Data Flow Graphs with
Model Checking . 551

Xue-Yang Zhu, Rongjie Yan, Yu-Lei Gu, Jian Zhang,
Wenhui Zhang, and Guangquan Zhang

Industry Track

Eliminating Static Analysis False Positives Using Loop Abstraction
and Bounded Model Checking . 573

Bharti Chimdyalwar, Priyanka Darke, Anooj Chavda,
Sagar Vaghani, and Avriti Chauhan

XVI Contents

Autofunk: An Inference-Based Formal Model Generation Framework
for Production Systems . 577

William Durand and Sébastien Salva

Software Development and Authentication for Arms Control
Information Barriers . 581

Neil Evans

Analyzing the Restart Behavior of Industrial Control Applications 585
Stefan Hauck-Stattelmann, Sebastian Biallas, Bastian Schlich,
Stefan Kowalewski, and Raoul Jetley

Case Study: Static Security Analysis of the Android Goldfish Kernel . . . 589
Tao Liu and Ralf Huuck

Practices for Formal Models as Documents: Evolution of VDM
Application to “Mobile FeliCa” IC Chip Firmware 593

Taro Kurita, Fuyuki Ishikawa, and Keijiro Araki

Formal Virtual Modelling and Data Verification for Supervision
Systems . 597

Thierry Lecomte

Using Simulink Design Verifier for Automatic Generation of
Requirements-Based Tests . 601

Bruno Miranda, Henrique Masini, and Rodrigo Reis

Formalizing the Concept Phase of Product Development 605
Mathijs Schuts and Jozef Hooman

Author Index . 609

Invited Presentations

Resource Analysis: From Sequential

to Concurrent and Distributed Programs

Elvira Albert1, Puri Arenas1, Jesús Correas1, Samir Genaim1,
Miguel Gómez-Zamalloa1, Enrique Martin-Martin1, Germán Puebla2,

and Guillermo Román-Dı́ez2(�)

1 DSIC, Complutense University of Madrid, Madrid, Spain
2 DLSIIS, Technical University of Madrid, Madrid, Spain

groman@fi.upm.es

Abstract. Resource analysis aims at automatically inferring upper/lower
bounds on the worst/best-case cost of executing programs. Ideally, a re-
source analyzer should be parametric on the cost model, i.e., the type of
cost that the user wants infer (e.g., number of steps, amount of memory
allocated, amount of data transmitted, etc.). The inferred upper bounds
have important applications in the fields of program optimization, verifi-
cation and certification. In this talk, we will review the basic techniques
used in resource analysis of sequential programs and the new extensions
needed to handle concurrent and distributed systems.

1 Introduction

One of the most important characteristics of a program is the amount of re-
sources that its execution will require, i.e., its resource consumption. Resource
analysis (a.k.a. cost analysis [23]) aims at statically bounding the cost of execut-
ing programs for any possible input data value. Typical examples of resources
include execution time, memory watermark, amount of data transmitted over
the net, etc. Resource usage information has many applications, both during
program development and deployment. Upper bounds on the worst-case cost are
useful because they provide resource guarantees, i.e., it is ensured that the exe-
cution of the program will never exceed the amount of resources inferred by the
analysis. Lower bounds on the best-case cost have applications in program par-
allelization, they can be used to decide if it is worth executing locally a task or
requesting remote execution. Therefore, automated ways of estimating resource
usage are quite useful and the general area of resource analysis has received
[23,14,22] and is nowadays receiving [6,15,16,17] considerable attention. In this
paper, we describe the main components underlying resource analysis of a to-
day’s imperative programming language, e.g., such techniques have been applied
to analyze the resource consumption of sequential Java and Java bytecode [19].
In a next step, we describe the extension of the sequential framework to handle
concurrent programs and overview the new notions of cost that arise in these
contexts.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-19249-9_1

4 E. Albert et al.

The rest of the paper is organized in four sections as follows:

– Sequential. Section 2 considers a minimalistic imperative language and sum-
marizes the process of, from a program, generating upper bounds on the
worst-case cost of executing the program in terms of the input data sizes.
We also discuss relevant extensions of the basic framework to handle object-
oriented programs and non-cumulative resources.

– Distribution and Concurrency. Section 3 describes the extension of such tech-
niques to analyze distributed and concurrent programs. First, in Section 3.1,
we introduce the basic instructions for distribution, namely to create dis-
tributed locations and to spawn an asynchronous task in a remote location;
and for concurrency, in particular an instruction to synchronize with the
termination of an asynchronous task and be able to release the processor if
the task has not terminated yet (in this case, another task waiting in this
location can take the processor). In Sections 3.2 and 3.3, we consider the
distribution aspects from the point of view of resource consumption. Here
our main concern is to be able to infer the resource consumption distributed
among the locations of the system rather than producing a monolithic ex-
pression that amalgamates the whole cost. For this purpose, we present the
notion of cost centers and describe an underlying analysis to obtain them. In
Section 3.4, we consider the inference of the cost in the presence of tasks with
concurrent interleavings. This is challenging because the global variables can
be modified between the time a task suspends until it resumes, and this can
affect its resource consumption (e.g., the size of the data structure that a
loop traverses can be increased during its suspension). We sketch a novel
technique to infer the resource consumption in these cases.

– New notions. In this context of distributed systems, new notions of cost arise.
In first place, there are new cost models that can be considered to estimate
the performance of a distributed system, namely it is particularly interest-
ing to predict the load balance of the distributed locations, the amount of
data transferred among them and the parallelism achieved. Moreover, it is
relevant to obtain the peak of the resource usage of each distributed location
rather than the total amount of resources allocated in it. In order to infer
such peak cost, one needs first to estimate the queue configuration of each
distributed location, i.e., the tasks that might be simultaneously in such loca-
tion queue and then we can accumulate their resource consumption together.
This notion of peak is especially relevant in the context of non-cumulative
resources that might increase and decrease along the execution. Finally, we
introduce the notion of parallel cost which aims at overviewing the resource
consumption of the overall distributed system by exploiting the parallelism
among their nodes such that when tasks execute in parallel we only consider
the duration of the longest among them.

– Conclusions. Finally, in Section 5 we conclude and point out open problems
in this setting and our directions for future research.

Resource Analysis: From Sequential to Concurrent and Distributed Programs 5

2 Resource Analysis of Sequential Code

In this section we consider a sequential language which is deliberately simple
to describe the analysis in a clear way. Distributed/concurrent operations are
introduced later in Section 3. A program is a collection of methods of the form
T m(int x1, . . . , int xk){s1; s2; . . . , sn; }, where xi, 1 ≤ i ≤ k, denote variables
names and T ∈ {int, void}. Each instruction si ∈ Instr , 1 ≤ i ≤ n, adheres to
the following grammar:

s ::= x = e | if b then s else s | while b do s | x = m(ȳ) | return x

where x, y denote variables names. For the sake of generality, the syntax of
expressions e and Boolean conditions b is not specified. As notation, for any
entity A, we use Ā as a shorthand for A1, . . . , An.

A common way to rigorously represent an execution is by means of a state
transition system, which is an abstract machine that consists of a set Σ of states
and a binary relation �⊆ Σ × Σ, which represents transitions between states.
An execution E starts from an initial state S0 containing a method call. We use
Si �s Sj , with Si,Sj ∈ Σ, to denote that there is a transition from Si to Sj in
which instruction s has been executed. A state is final iff it has no successors.
Similarly, an execution is final if it finishes in a final state. Note that for our
sequential language, executions consist of only one branch. However, as we will
see in Section 3, for distributed and concurrent languages, multiple results for
an initial call can be computed.

2.1 Cost Models

The notion of cost model for a program specifies how the resource consumption
of a program is calculated, given a resource of interest. It basically defines how
to measure the resource consumption, i.e., the cost, associated to each execu-
tion step and, by extension, to an entire execution. Thus, a cost model M is a
function defined as M : Instr �→ R and the cost of an execution step is defined
as M(S�sS ′)=M(s). For instance, a cost model which counts the number of
execution steps can be defined as Mninst(s) = 1 for any s ∈ Instr and a cost
model counting the number of times that a concrete method m is executed can
be defined as:

Mcalls(s) =

{
1 if s is a call m(x̄)
0 otherwise

Now, given a cost model M and an execution E , the cost of E w.r.t. M,
denoted as Cost(E ,M) is defined as the sum of the costs of all execution steps
in E .

2.2 Upper Bounds

An upper bound for m(x̄) w.r.t. a cost model M, is a function f(x̄) = cexp on x̄
which guarantees that for all ū ∈ Z, and for any final execution E starting from

6 E. Albert et al.

m(ū) it holds that Cost(E ,M) ≤ f(ū). The cost expressions cexp that can be
handled in our framework follow the grammar below:

cexp ::= r | nat(l) | cexp op cexp | logn(nat(l) + 1) | nnat(l) | max(S)

where op ∈ {+, ∗}, r ∈ R
+, n > 1 ∈ Z

+, nat(l) is defined as nat(l) = max({l, 0}),
max(S) stands for the maximum of the set of cost expressions S and l denotes a
linear expression of the form u0 + u1x1 + . . . unxn. The use of the nat-operator
ensures that cost expressions are always evaluated to non-negative values. For
instance the expression nat(x− 1) is a valid cost expression which returns 0 for
all x ≤ 1.

The cost analysis framework that we follow [3] is based on transforming the
original program in a set of cost equations by applying different static analyses
and transformations on the source program. In particular, the main two steps to
produce cost equations are: the transformation of the program into direct recur-
sive form, and a size analysis which infers how the sizes of data change along the
execution. From the equations, the upper bound is computed by (1) bounding
the number of iterations of each recursive equation using linear ranking functions
[21] and (2) by maximizing the local cost of each equation. As an example, con-
sider the cost model which counts the number of executed instructions together
with the program:

int m(int x, int y) {
int r = 0, a;
while (x < y) {

a = p(x);
r = r + a;
x = x + 1;

}
return r;

}

int p(int x) {
x = x + 1;
return x;

}

Considering that the cost of x = x+1 is 2 (the addition plus the assignment), an
upper bound for p is 3. For the case of m, first we bound the number of iterations
in the while loop by means of the linear ranking function nat(y − x). Secondly,
we multiply the bound on the number of iterations by the cost inside the loop
(8, which results from the 4 instructions in the loop, 1 method call, and the 3
instructions of the method) and the cost of executing the condition (1). Thus
nat(y− x) ∗ 9 is an upper bound for the while loop. Finally, we add 3 due to the
costs of the instructions outside the loop and the final evaluation of the guard,
and the upper bound for m results in m+(x, y) = 3 + nat(y − x) ∗ 9.

Suppose now that method p has an upper bound p+(x) = nat(x). Then the
cost of the instruction a = p(x) is obtained by maximizing p+(x) in the context
of its execution, namely x < y, which results in nat(y). Hence now the upper
bound for m would be m+(x, y) = 3 + nat(y − x) ∗ (nat(y) + 6).

Resource Analysis: From Sequential to Concurrent and Distributed Programs 7

2.3 Extensions of Sequential Resource Analysis

The language we have used along this section does not contain a global memory,
instead all variables in a method are local to it. In the presence of global variables,
the computation of upper bounds becomes harder since when bounding the
number of iterations of a loop we must take into account if the condition of
the loop depends on a shared variable. For example, suppose we extend the
language in Section 2 to support classes and objects in the standard way, where
a class may contain integer fields shared by all objects of the class. Consider the
following implementation of method m:

int m(A o1, A o2, int y) {
int r = 0;
while (o1.x < y) {

a = p(o2);
r = r + a;
o1.x = o1.x + 1;

}
return r;

}

int p(A o2) {
// read and write field o2.x
return o2.x;

}

where o1, o2 are objects of a class A which contains a field x. The termination
of the while loop depends clearly on the call p(o2) in the following sense: If
o1 and o2 points to the same memory location, then field x is always accessed
by the same reference, say o1, and it can be treated as a local variable, what
allows to apply the same techniques than in Section 2.2 in order to compute an
upper bound. Otherwise, we will not be able to infer the cost as it will depend
on the calling context of method m. Our approach [2] consists in computing
the sequence of (access path) used to access each field in the program. Then,
if the field is not written or its written by a unique access path, such a field
is considered as trackable, i.e., the field can be treated as a local variable for
the method. For our example at hand, it holds that in method m, the field x is
read and written by two different references, o1 and o2 and hence the field is not
trackable and the termination of the loop can not be proven. However suppose
that, after the instruction int r = 0, we add o1 = o2. Now field x is written only
using o1 and thus the field is considered trackable, what allows us to compute
an upper bound for method m similarly as done in Section 2.2 but in terms of
o1.x. More sophisticated approaches to deal with shared memory can be found
in [4] and [5], where reference fields and array fields are also considered.

Another extension to sequential resource analysis is the inference of non-
cumulative resources [9]. Existing cost analysis frameworks have been defined
for cumulative resources which keep on increasing along the computation. In
contrast, non-cumulative resources are acquired and (possibly) released along the
execution. Examples of non-cumulative cost are memory usage in the presence
of garbage collection, number of connections established that are later closed, or
resources requested to a virtual host which are released after using them.

8 E. Albert et al.

It is recognized that non-cumulative resources introduce new challenges in re-
source analysis [12,18]. This is because the resource consumption can increase and
decrease along the computation, and it is not enough to reason on the final state of
the execution, but rather the upper bound on the cost can happen at any interme-
diate step. The analysis of non-cumulative resources is defined in two steps: (1)We
first infer the sets of resources which can be in use simultaneously (i.e., they have
been both acquired and none of them released at some point of the execution).
This process is formalized as a static analysis that (over-)approximates the sets of
acquire instructions that can be in use simultaneously, allowing us to capture the
simultaneous use of resources in the execution. (2) We then perform a program-
point resource analysis which infers an upper bound on the cost at the points of
interest, namely the points at which the resources are acquired. From such upper
bounds, we can obtain the peak cost by just eliminating the cost due to acquire
instructions that do not happen simultaneously with the others (according to the
analysis information gathered at step 1).

3 Resource Analysis of Distributed Concurrent Systems

This section describes the basic extensions to resource analysis of distributed
and concurrent systems.

3.1 The Language

We consider a distributed concurrent programming model with explicit locations
and cooperative concurrency between the tasks at each location. Each location
represents a processor with a procedure stack and an unordered buffer of pending
tasks. Initially all processors are idle. When an idle processor’s task buffer is non-
empty, some task is selected for execution. Besides accessing its own processor’s
global storage, each task can post tasks to the buffers of any processor, including
its own, or synchronize with the reception of other tasks. When a task completes,
its processor becomes idle again, chooses the next pending task, and so on.
The number of locations need not be known a priory (e.g., locations may be
virtual). Syntactically, a location will therefore be similar to an object and can
be dynamically created using the instruction newLoc. The new set of instructions
of the language, extended with distributed operations from that of Section 2, is
as follows:

s′ ::= s | x = newLoc | x = newDC | f = x.m(ȳ) | await f? | x = f.get

Let us observe that now variables can hold locations and therefore the set of
types is extended to {void, int, loc}, being loc the set of locations and distributed
components. The special location identifier this denotes the current location.
We can achieve different ways of distributing an application by creating new
locations with newLoc or new distributed components by means of newDC.
When we use newDC, a new distributed component is created, whereas when
we use newLoc, the created location (and its resource consumption) belongs to
the current distributed component.

Resource Analysis: From Sequential to Concurrent and Distributed Programs 9

The language is also extended with future variables, denoted by f in the
grammar, which are used to check if the execution of an asynchronous task has
finished. Method calls on locations are asynchronous and are associated with
a future variable that will hold their result. The instruction await f? allows
synchronizing the execution of the current task with the task which the future
variable f is pointing to; and instruction x = f.get is used to retrieve the value
stored in f .

3.2 Cost Models

In Section 2.1 we presented some important cost models for sequential programs.
However, other interesting cost models can be defined in distributed and con-
current systems, as shown in [1]. For instance, a cost model that counts the
total number of distributed components (number of locations), created along the
execution can be defined as Mloc(s) = 1 if s ≡ x = newDC (newLoc) and
Mloc(s) = 0 otherwise. Since distributed components are the distribution units,
this cost model provides an indication on the amount of parallelism that might
be achieved.

A cost model that counts instructions of the form x.m(ȳ) can be used to infer
the number of tasks that are spawned along an execution. This cost model can be
refined to count the number of calls to specific methods, locations or distributed
components by focusing on specific method and object names.

Communications play a fundamental role in the design of a distributed sys-
tem, because they influence their performance. A cost model that counts the
number of communications or the amount of transmitted data is very useful
when designing distributed systems. The goal of such cost models is to infer,
not only the number of communications between locations or distributed com-
ponents, but also the sizes of the arguments in the task invocation and of the
returned values. This cost model that over-approximates the amount of data
transmitted uses size analysis [13] to infer upper bounds on the data sizes at the
points in which tasks are spawned. In particular, given an instruction x.m(ȳ) it
over-approximates the size of ȳ and also of the returned value.

3.3 Distribution: Cost Centers

In a distributed setting, the above notion of cost model has to be extended
because, rather than considering a single component in which all steps are per-
formed, we have in general multiple locations and distributed components possi-
bly running concurrently and/or distributively on different CPUs. Thus, rather
than aggregating the cost of all executing steps, it is required to treat execution
steps which occur on different locations or components separately. With this
aim, we adopt the notion of cost centers [20], proposed for profiling functional
programs. The upper bounds will use cost centers in order to keep the resource
usage assigned to the different components separate.

Ideally, one would like to have a different cost center for each different lo-
cation or distributed component created along the execution of the program.

10 E. Albert et al.

However this cannot be determined statically and has to be approximated. For
this aim, we rely on points-to analysis in order to approximate the set of lo-
cations or distributed components which each reference variable may point to
during program execution. This allows us to make the analysis object-sensitive
and separate the cost that corresponds to different instances of locations and/or
distributed components that are created at the same program point but that
correspond to different object names and may belong to different distributed
components.

3.4 Concurrency: MHP-based Analysis

Resource consumption inference in concurrent and distributed systems is more
difficult than in the sequential case, since different tasks can interleave their
executions and therefore change the value of shared variables. This situation
becomes clearer in the following example from [11], where g is a shared variable
and x is a variable local to S2:

S1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 while (g > 0){
2 g = g − 1;
3 await ∗?
4 }

S2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 while (x > 0){
6 x = x −1;
7 g = ∗;
8 }

The instruction at L7, that updates the field g, may interleave with await *?
at L3 in S1. Therefore the number of iterations of the loop S1 may differ from the
original value of g, as the value of that shared variable can change between itera-
tions. To infer the number of iterations of S1 we use the following approach [11]:

1. Locate those instructions that update shared variables and can interleave
with the loop. In the example, the only interleaving instruction that up-
dates g is L7. To obtain this information we use a may-happen-in-parallel
analysis [10]. This analysis over-approximates the pairs of program instruc-
tions that can execute in parallel or in an interleaved way.

2. Find an upper-bound on the number of times that those interleaving instruc-
tions are executed. This computation may require the recursive calculation
of upper bounds for other loops. In the example above, a sound and precise
bound on the number of executions of L7 is x, since x is a local variable.

3. Finally, the upper bound for S1 is the maximum number of iterations ig-
noring the instruction await *? , but assuming that at this point g can take
its maximum value g+, multiplied by the maximum number of visits to L7.
Thus, g+ ∗ x is a sound upper bound.

Once we have computed an upper bound on the iterations of the loop, we can
easily infer the concrete resource consumption by using a concrete cost model.
Notice that the may-happen-in-parallel analysis is crucial, since it will be able
to discard some spurious interleavings that will lead to imprecise upper bounds.
Otherwise, we will be forced to consider that every updating instruction could

Resource Analysis: From Sequential to Concurrent and Distributed Programs 11

interleave with every loop. Note also that the may-happen-in-parallel analysis is
independent and it is used as a black-box, so any improvement on it will enhance
the upper bounds automatically.

4 New Notions of Cost in Distributed Systems

Building upon the basic analysis presented in the previous section, in this section
we describe new cost models and notions of cost that appear in distributed
systems.

4.1 Advanced Cost Models

By building upon the cost models described in Section 3.2, we have defined
several advanced cost models that provide indicators to assess the level of distri-
bution in the system [7], the amount of communication among distributed nodes
that it requires, and how balanced the load of the distributed nodes that compose
the system is. Our indicators are given as functions on the input data sizes, and
they can be used to automate the comparison of different distributed settings
and guide towards finding the optimal configuration. Let us see an example to
explain these issues:

1 void m(int n){
2 loc a = newLoc | newDC;
3 while (n > 0) {
4 loc b = newLoc | newDC;
5 b.p(n,a);
6 n = n − 1;
7 }
8 }

9 void p(int n, loc a) {
10 while (n > 0) {
11 a. q();
12 n = n − 1;
13 }
14 }
15 q () { 10 instr }

Method m creates one location using newLoc(or distributed component using
newDC) at L2 pointed by variable a and it contains a loop that creates n loca-
tions (or distributed components) at L4. Such loop also spawns n tasks executing
method p (L5). Method p contains a loop that calls q n times (L11). Those pro-
gram points where locations are created, L2 and L4, are crucial for determining
the behaviour of the system. Depending on the creation of a distributed com-
ponent (newDC) or a location (newLoc), we obtain a different setting whose
performance could be radically different from the others. To evaluate which set-
ting has a better performance, we define the notion of performance indicator. A
performance indicator is a function, expressed in terms of the input arguments
of the program, that evaluates to a number in the range [0–1], such that the
closer to one the better the performance. We define three different indicators:

12 E. Albert et al.

1. The distribution function (D) measures how much distributed the appli-
cation is. It is defined as the relation between the number of distributed
components that are created for this particular setting with respect to the
maximum number of potential distributed components that could be created
if all location instances were distributed components, i.e., the optimal set-
ting from a distribution perspective in which we have as many distributed
components as possible.

2. The communication function (K) aims at measuring the level of external
communications performed (i.e., calls to locations that belong to other dis-
tributed components). The motivation is that calls to other distributed com-
ponents are potentially more expensive (as they require communications
costs) and thus one wants to minimize them as much as possible. It is de-
fined as one minus the ratio between the number of communications that
the program performs in the current setting, and the maximum number of
communications when using a setting in which all locations are created as
distributed components and thus every asynchronous call (on a location dif-
ferent from the one executing) is external.

3. The balance function (B) measures the balance level of the distributed sys-
tem. We consider that the system is optimally balanced when all its compo-
nents execute the same number of instructions. The balance function makes
use of the upper bounds on the number of instructions and the upper bounds
on the number of distributed components (and locations) to measure the
standard deviation of the number of instructions executed by each dis-
tributed component. As we want to measure the balance level by means
of a number in the interval [0–1] as in the other indicators, we divide the
standard deviation by the maximum dispersion of the distributed compo-
nents from the average.

Figure 1 shows the graphical representation of the functions D, K and B
for two possible settings by using newLoc or newDC at L2 and L4 of the
program shown above. By means of the evaluation of the performance indicators
we can observe that for Setting 1 higher values of n lead to a better distribution
behaviour because a new distributed component is created at each iteration of
the loop in m. Regarding communications, Setting 2 behaves better for lower
values of n, but for higher values of n, both settings behave badly (close to 0).
In addition, the evaluation of the balance function indicates that the load of
the system is better balanced with Setting 1. The information obtained from
the performance indicators could be extremely useful in the deployment process
of a distributed system. In order to find the optimal setting for a distributed
system, we should be able to: (1) generate all possible settings automatically,
(2) generate performance indicators for each of them and (3) be able to compare
such indicators for the different settings.

4.2 Peak Cost

The framework presented so far allows us to infer the total number of instruc-
tions that it needs to execute, the total amount of memory that it will need

Resource Analysis: From Sequential to Concurrent and Distributed Programs 13

Setting 1: a = newLoc
b = newDC

Setting 2: a = newDC
b = newLoc

5 10 15 20

0

0.2

0.4

0.6

0.8

1

n

D
(n
)

D1(n)

D2(n)

5 10 15 20

0

0.2

0.4

0.6

0.8

1

n

K
(n
)

K1(n)

K2(n)

5 10 15 20

0

0.2

0.4

0.6

0.8

1

n

B(
n
)

B1(n)

B2(n)

Fig. 1. Graphical representation of the functions D, K and B

to allocate, or the total number of tasks that will be added to its queue. This
is a too pessimistic estimation of the amount of resources actually required in
the real execution. The amount of work that each location has to perform can
greatly vary along the execution depending on: (1) the amount of tasks posted
to its queue, (2) their respective costs, and (3) the fact that they may be posted
in parallel and thus be pending to execute simultaneously. In order to obtain
a more accurate measure of the resources required by a location, the peak of
the resource consumption can be inferred instead [8], which captures the maxi-
mum amount of resources that the location might require along any execution.
In addition to its application to verification, this information is crucial to di-
mensioning the distributed system: it will allow us to determine the size of each
location task queue; the required size of the location’s memory; and the pro-
cessor execution speed required to execute the peak of instructions and provide
a certain response time. It is also of great relevance in the context of software
virtualization as used in cloud computing, as the peak cost allows estimating
how much processing/storage capacity one needs to buy in the host machine,
and thus can greatly reduce costs.

Inferring the peak cost is challenging because it increases and decreases along
the execution, unlike the standard notion of total cost which is cumulative. To this
end, it is very relevant to infer, for each distributed component, its abstract queue
configuration, which captures all possible configurations that its queue can take
along the execution. A particular queue configuration is given as the sets of tasks
that the location may have pending to execute at a moment of time. For instance,
let us see the following example program, which has as entry method ex1:

14 E. Albert et al.

1 void ex1() {
2 ff = this. m1();
3 await ff ?;
4 this . m2();
5 }

6 void m1() {
7 fa = x.a();
8 await fa?;
9 fb = x.b();

10 await fb?;
11 }

12 void m2() {
13 x. d();
14 x. e() ;
15 }

It first invokes method m1, which spawns tasks a and b. Method m1 guarantees
that a and b are completed when it finishes. Besides, we know that the await
instruction in L8 ensures that a and b cannot happen in parallel. Method m2
spawns tasks d and e and does not await for their termination. We can observe
that the await instructions in m1 guarantee that the queue is empty before
launching m2. We can represent the tasks in the queue of location x by the tasks
queue graph by means of the following queue configurations: {{a}, {b}, {d, e}}.

In order to quantify queue configurations and obtain the peak cost, we need
to over-approximate: (1) the number of instances that we might have running
simultaneously for each task and (2) the worst-case cost of such instances. The
main extension is to define cost centers of the form c(o:m) which contain the
location name o and the task m running on it. Now, using the upper bounds
on the total cost in Section 3.3 we already gather both types of information.
This is because the cost attached to the cost center c(o:m) accounts for the
accumulation of the resource consumption of all tasks running method m at
location o. We therefore can safely use the total cost of the entry method p(x̄)
restricted to o:m, denoted p+(x̄)|{o:m}, as the upper bound of the cost associated
with the execution of method m at location o which sets up to 0 the cost centers
different from c(o:m). The key idea to infer the quantified queue configuration,
or simply peak cost, of each location is to compute the total cost for each element
in the set of abstract configurations and stay with the maximum of all of them.
In the previous example, the peak cost of location x in ex1 is max{ex+

1 (n)|c1 ,
ex+

1 (n)|c2 , ex+
1 (n)|c3}, where c1 = {x:a}, c2 = {x:b} and c3 = {x:d, x:e}.

4.3 Parallel Cost

Parallel cost differs from the standard notion of serial cost by exploiting the
truly concurrent execution model of distributed processing to capture the cost
of synchronized tasks executing in parallel. It is also different to the peak cost
since this one is still serial; i.e., it accumulates the resource consumption in
each component and does not exploit the overall parallelism as it is required
for inferring the parallel cost. It is challenging to infer parallel cost because one
needs to soundly infer the parallelism between tasks while accounting for waiting
and idle processor times at the different locations. We are currently developing
a static analysis to obtain the parallel cost.

5 Conclusions and Future Research

Inferring the resource consumption (a.k.a cost) of computer programs, which is
a general form of complexity, is one of the most fundamental tasks in computer

Resource Analysis: From Sequential to Concurrent and Distributed Programs 15

science, and its automation has been the subject of voluminous research in the
last decade.

Research in this area resulted in several cost analysis frameworks for sequential
low- and high-level modern programming languages, such as the sequential frag-
ments of Java and its corresponding low-level bytecode. These frameworks have
been enhanced overtime to scale for large programs, and to handle programs
with complex control-flow and sophisticated heap data-structures. They have
also been extended to support non-cumulative cost models in which resources
can be released as well, e.g., memory consumption in the presence of garbage
collection. The underlying complexity analyses employed by these frameworks
range from the classical worst/best case approach to more advanced ones such
as the amortised analysis approach, and thus they offer users a wide range of
performance/precision trade-offs. Some of these frameworks also provide support
for certification and verification of resource consumption.

Research in recent years has concentrated on extending the sequential cost
analysis frameworks to handle concurrency and distribution. The main challenge
was to handle new notions of cost that are more suitable for such programming
paradigms. This includes the peak cost, that refers to the maximal amount of
resources that can be used simultaneously (by different tasks), and the parallel
cost, that do not accumulate the cost of tasks that are executing in parallel
on different computing units. The underlying techniques for these notions of
cost rely on the use of MHP analysis, which provides information on which tasks
might interleave or execute in parallel. Another important functionality that was
introduced is the ability to attribute cost to particular nodes of a distributed
system, which is of utmost importance for optimizing the resource usage of such
systems or balancing the load of their nodes.

In spite of the remarkable achievements in the field of cost analysis, there are
still several directions that need to be considered in the future: (1) exploring new
applications for cost analysis. A promising direction is the use of cost analysis
to identify security vulnerabilities that are related to resource consumption; (2)
current techniques for cost analysis of concurrent programs predict the cost at
the algorithmic level, more work is required to leverage these techniques to take
the underlying (multi-core) architecture into account. This would require sup-
porting more sophisticated concurrency models; (3) in the context of parallelism,
cost analysis of massive parallel programs has not been investigated yet, more
attentions should be paid to such programming paradigms as they are popular
in scientific communities; (4) support for probabilistic information is probably
the most important and appealing direction. Probabilistic distributions can be
used to describe a cost model, which allows constructing platform dependent
cost models (e.g., energy) using profiling tools. Probabilistic distributions can
be also used to describe the distribution of the input data, which can then be
used to infer notions such average cost and distribution of cost.

16 E. Albert et al.

Acknowledgments. Thisworkwas fundedpartially by theEUprojectFP7-ICT-610582
ENVISAGE:Engineering Virtualized Services (http://www.envisage-project.eu), by the
Spanish MINECO project TIN2012-38137, and by the CM project S2013/ICE-3006.

References

1. Albert, E., Arenas, P., Correas, J., Genaim, S., Gómez-Zamalloa, M., Puebla, G.,
Román-Dı́ez, G.: Object-Sensitive Cost Analysis for Concurrent Objects. Software
Testing, Verification and Reliability (2015), http://dx.doi.org/10.1002/stvr.1569

2. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Field-Sensitive Value Analysis by
Field-Insensitive Analysis. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS,
vol. 5850, pp. 370–386. Springer, Heidelberg (2009)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G.: Closed-Form Upper Bounds in
Static Cost Analysis. Journal of Automated Reasoning 46(2), 161–203 (2011)

4. Amato, G., Parton, M., Scozzari, F.: From Object Fields to Local Variables: A
Practical Approach to Field-Sensitive Analysis. In: Cousot, R., Martel, M. (eds.)
SAS 2010. LNCS, vol. 6337, pp. 100–116. Springer, Heidelberg (2010)

5. Albert, E., Arenas, P., Genaim, S., Puebla, G., Román-Dı́ez, G.: Conditional Termi-
nation of Loops over Heap-allocated Data. Science of Computer Programming 92,
2–24 (2014)

6. Albert,E.,Arenas,P.,Genaim,S.,Puebla,G.,Zanardini,D.:CostAnalysis ofObject-
OrientedBytecode Programs. Theoretical Computer Science 413(1), 142–159 (2012)

7. Albert, E., Correas, J., Puebla, G., Román-Dı́ez, G.: Quantified Abstract
Configurations of Distributed Systems. Formal Aspects of Computing (2015),
http://dx.doi.org/10.1007/s00165-014-0321-z

8. Albert, E., Correas, J., Román-Dı́ez, G.: Peak Cost Analysis of Distributed Sys-
tems. In: Müller-Olm, M., Seidl, H. (eds.) Static Analysis. LNCS, vol. 8723, pp.
18–33. Springer, Heidelberg (2014)

9. Albert, E., Fernández, J.C., Román-Dı́ez, G.: Non-Cumulative Resource Analysis.
In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 85–100. Springer,
Heidelberg (2015)

10. Albert, E., Flores-Montoya, A.E., Genaim, S.: Analysis of May-Happen-in-Parallel
in Concurrent Objects. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS
2012. LNCS, vol. 7273, pp. 35–51. Springer, Heidelberg (2012)

11. Albert, E., Flores-Montoya, A., Genaim, S., Martin-Martin, E.: Termination and
Cost Analysis of Loops with Concurrent Interleavings. In: Van Hung, D., Ogawa,
M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 349–364. Springer, Heidelberg (2013)

12. Albert, E., Genaim, S., Gómez-Zamalloa, M.: Parametric Inference of Memory
Requirements for Garbage Collected Languages. In: Proc. of ISMM 2010, pp.
121–130. ACM (2010)

13. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL, pp. 84–96 (1978)

14. Debray, S.K., Lin, N.W.: Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems 15(5), 826–875 (1993)

15. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: Speed: Precise and Efficient Static Es-
timation of Program Computational Complexity. In: Proc. of POPL 2009, pp.
127–139. ACM (2009)

16. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: Proc. of POPL 2011, pp. 357–370. ACM (2011)

http://dx.doi.org/10.1002/stvr.1569
http://dx.doi.org/10.1007/s00165-014-0321-z

Resource Analysis: From Sequential to Concurrent and Distributed Programs 17

17. Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers
and Arrays. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp.
152–168. Springer, Heidelberg (2014)

18. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: Proc. of POPL 2013, pp. 185–197. ACM (2003)

19. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. Addison-Wesley
(1996)

20. Morgan, R.G., Jarvis, S.A.: Profiling Large-Scale Lazy Functional Programs.
Journal of Functional Programing 8(3), 201–237 (1998)

21. Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

22. Sands, D.: A Näıve Time Analysis and its Theory of Cost Equivalence. Journal of
Logic and Computation 5(4), 495–541 (1995)

23. Wegbreit, B.: Mechanical Program Analysis. Communications of the ACM 18(9),
528–539 (1975)

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 18–19, 2015.
DOI: 10.1007/978-3-319-19249-9_2

AVACS: Automatic Verification and Analysis
of Complex Systems Highlights and Lessons Learned

Werner Damm()

AVACS Coordinator,
Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany

werner.damm@offis.de

This talk presents highlights and lessons learned from the Transregional Collaborative
Research Center AVACS, funded by the German Science Foundation under contract
SFB-TR 14 from January 1, 2004 to December 31, 2015 with a total funding of about
30 Million €€ , involving between 18 to 22 principal investigators at the three AVACS
sites Freiburg, Oldenburg and Saarbrücken. Through this funding the German Science
Foundation provided an excellent environment for foundational cross-site research in
the highly relevant and challenging research are of Automatic Verification and Anal-
ysis of Complex Systems.

The AVACS project (see www.avacs.org) addresses the rigorous mathematical ve-
rification and analysis of models and realizations of complex safety-critical compute-
rized systems, such as aircraft, trains, cars, or networked systems of these, whose
failure can endanger human life. Our aim is to raise the state of the art in automatic
verification and analysis techniques (V&A) from a level, where it is applicable only
to isolated facets of the underlying space of mathematical models, to a level allowing
a comprehensive and holistic verification of such systems:

1. We investigate the mathematical models and their interrelationship, as they arise

at the various levels of design of safety-critical computerized systems. Behavioral
models range from classical nondeterministic transition systems to probabilistic,
real-time, and hybrid system models, to models reflecting the dynamic evolution
of the system communication structure.

2. The investigated classes of models cover all typical system structures in this
application domain, describing how to build models of complex systems hierar-
chically from such classes of models. These include distributed target architec-
tures (such as hierarchical bus structures connecting multiple electronic control
units), task models (task structures coming with communication and timing re-
quirements), specification models of electronic control units (such as captured in
Matlab/Simulink), system models (e.g., of vehicles), and models of systems of
systems (e.g., for coordinated vehicle maneuvers).

3. The investigated classes of time models are expressive enough to cover all layers
of the design space of such applications, including physical latencies of vehicles
in performing coordinated maneuvers, system-level timing requirements such as
response times to external events and timeliness requirements for protocols,

 AVACS: Automatic Verification and Analysis of Complex Systems

19

dense-time closed-loop models of controllers and plants, discrete-time design
models of controllers, end-to-end deadlines on task chains, and worst-case execu-
tion times of tasks on modern processor architectures.

4. We provide largely automatic techniques to verify or falsify the compliance of
models expressed in this rich model space against classes of requirements sub-
suming timeliness, safety, probabilistic reachability, stability and other classes of
requirements, formalized in suitable logics.

5. We provide methods and tools for building such formal proofs for complete sys-
tems from guarantees of subsystems, ultimately striving to relate top-level re-
quirements, such as for performing coordinated vehicle maneuvers to avoid colli-
sions, to worst-case execution times of the tasks implementing control functions
for such maneuvers.

Main Track

Automated Circular Assume-Guarantee Reasoning

Karam Abd Elkader1, Orna Grumberg1, Corina S. Păsăreanu2, and Sharon Shoham3(�)

1 Technion – Israel Institute of Technology, Haifa, Israel
2 CMU/NASA Ames Research Center, USA

3 The Academic College of Tel aviv Yaffo, Tel Aviv, Israel
sharon.shoham@gmail.com

Abstract. Compositional verification techniques aim to decompose the verifica-
tion of a large system into the more manageable verification of its components.
In recent years, compositional techniques have gained significant successes fol-
lowing a breakthrough in the ability to automate assume-guarantee reasoning.
However, automation is still restricted to simple acyclic assume-guarantee rules.

In this work, we focus on automating circular assume-guarantee reasoning
in which the verification of individual components mutually depends on each
other. We use a sound and complete circular assume-guarantee rule and we de-
scribe how to automatically build the assumptions needed for using the rule. Our
algorithm accumulates joint constraints on the assumptions based on (spurious)
counterexamples obtained from checking the premises of the rule, and uses a SAT
solver to synthesize minimal assumptions that satisfy these constraints.

We implemented our approach and compared it with an established learning-
based method that uses an acyclic rule. In all cases, the assumptions generated
for the circular rule were significantly smaller, leading to smaller verification
problems. Further, on larger examples, we obtained a significant speedup as well.

1 Introduction

Compositional verification techniques aim to break up the global verification of a pro-
gram into local, more manageable, verification of its individual components. The envi-
ronment for each component, consisting of the other program’s components, is replaced
by a “small” assumption, making each verification task easier. This style of reasoning
is often referred to as Assume-Guarantee (AG) reasoning [17,20].

Progress has been made on automating compositional reasoning using learning and
abstraction-refinement techniques for iterative building of the necessary assumptions
[7,19,3,4,2,5,6]. This work has been done mostly in the context of applying a simple
compositional assume-guarantee rule, where assumptions and properties are related in
an acyclic manner. For example, in a two component program, suppose component M1

guarantees property P under assumption A on its environment. Further suppose that
M2 unconditionally guarantees A. Then it follows that the composition M1||M2 also
satisfies P (denoted here as rule NonCIRC-AG).

However, there is another important category of rules that involve circular reason-
ing. These rules use inductive arguments, over time, formulas to be checked, or both,
e.g. [17,14,15,1], which makes automation challenging. Circular assume-guarantee rules
have been successfully used in scaling model checking, and have often been found to

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 23–39, 2015.
DOI: 10.1007/978-3-319-19249-9_3

24 K. Abd Elkader et al.

be more effective than non-circular rules [14,15,16,21,12,11]. Further, they could natu-
rally exploit the inherent circular dependency exhibited by the verified systems, but their
applicability has been hindered by the manual effort involved in defining assumptions.

In this work we propose a novel circular compositional verification technique that
is fully automated. The technique uses the following assume-guarantee circular rule
CIRC-AG, for proving that M1||M2 |= P , based on assumptions g1 and g2. Compo-
nents, properties and assumptions are Labeled Transition Systems (LTSs).

(Premise 1) M1 |= g2 � g1
(Premise 2) M2 |= g1 � g2
(Premise 3) g1||g2 |= P

M1||M2 |= P

Similar rules have been studied before [15,18,9]. The rule is both sound and complete.
Premises 1 and 2 of the rule use inductive arguments to ensure soundness and have the
form M |= A�P , which means that for every trace σ of size k, if σ is in the language of
M , and its prefix of size k−1 is in the language of A then σ is also in the language of P .
Intuitively, premises 1 and 2 prove, in a compositional and inductive manner, that every
trace in the language of M1||M2 is also included in the language of g1||g2. Premise 3
ensures that every trace in the language of g1||g2 is also included in the language of P ,
thus the consequence of the rule is obtained. Completeness of the rule stems from the
fact that M1 and M2 (restricted to appropriate alphabets) can be used for g1 and g2 in a
successful application of the rule.

Coming up manually with assumptions g1 and g2 that are small and also satisfy the
premises of the rule is difficult. We propose an algorithm, Automated Circular Reason-
ing (ACR), for the automated generation of the assumptions. In ACR the assumptions
are initially approximate and are iteratively refined based on counterexamples obtained
from checking the rule premises and found to be spurious (i.e. do not indicate real
errors). Refinement is performed using a SAT solver over a set of constraints that de-
termine how the assumptions should be refined in order to avoid producing the same
counterexample in subsequent iterations. The algorithm is guaranteed to terminate, re-
turning either minimal assumptions that satisfy the rule premises (meaning that the
property holds) or a real counterexample (indicating a property violation).

Our search for minimal assumptions using SAT is inspired by [10]. However, in [10]
a single (separating) assumption is generated, with the goal of automating non-circular
reasoning. ACR, on the other hand, searches for two mutually dependent assumptions
to be used with circular reasoning. Finding such assumptions poses unusual challenges
since they need to be generated in a tightly related manner. We achieve this by con-
straining the assumption refinement with boolean combinations of requirements that
certain traces must or must not be included in the language of the updated assumptions.
For example, we may require “trace σ1 must not be in g1 or trace σ2 must be in g2”.
The SAT encoding of this constraint makes sure that at least one of its disjuncts will be
satisfied. Solving the constraints for increasing number of states in |g1|+ |g2|, yields the
minimal candidate assumptions to be used in the next iteration of ACR. We establish
the correctness of our ACR algorithm (proofs are omitted due to space constraints).

To the best of our knowledge, our work is the first to fully automate circular assume-
guarantee reasoning. We implemented our algorithm and compared it with an established

Automated Circular Assume-Guarantee Reasoning 25

learning-based method that uses the acyclic rule NonCIRC-AG [7]. Our experiments
indicate that the assumptions generated using the circular rule can be much smaller,
leading to smaller verification problems, both in the number of explored states and the
analysis time.

2 Preliminaries

Let Act be the universal set of observable actions and let τ denote a local action, unob-
servable to a component’s environment.

Definition 1. A Labeled Transition System (LTS) M is a quadruple (Q,αM, δ, q0)
where Q is a finite set of states, αM ⊆ Act is a finite set of observable actions called
the alphabet of M , δ ⊆ Q× (αM ∪ τ) ×Q is a transition relation, and q0 ∈ Q is the
initial state.

M is nondeterministic if it contains a τ transition or if there exist (q, a, q′), (q, a, q′′) ∈
δ such that q′ �= q′′. Otherwise, M is deterministic (denoted as DLTS). We write
δ(q, a) =⊥ if there is no q′ such that (q, a, q′) ∈ δ. For a DLTS, we write δ(q, a) = q′

to denote that (q, a, q′) ∈ δ.

Note. A non-deterministic LTS can be converted to a deterministic LTS that accepts the
same language. However the deterministic LTS might have exponentially many more
states than the non-deterministic LTS.

Paths and Traces. A trace σ is a sequence of observable actions. We use σi to denote
the prefix of σ of length i. A path in an LTS M = (Q,αM, δ, q0) is a sequence p =
q0, a0, q1, a1 · · · , an−1, qn of alternating states and observable or unobservable actions
of M , such that for every k ∈ {0, . . . , n− 1} we have (qk, ak, qk+1) ∈ δ. The trace of
p is the sequence b0b1 · · · bl of actions along p, obtained by removing from a0 · · · an−1

all occurrences of τ . The set of all traces of paths in M is called the language of M ,
denoted L(M). A trace σ is accepted by M if σ ∈ L(M). Note that L(M) is prefix-
closed and that the empty trace, denoted by ε, is accepted by any LTS.

Projections. For Σ ⊆ Act, we use σ↓Σ to denote the trace obtained by removing
from σ all occurrences of actions a �∈ Σ. M↓Σ is defined to be the LTS over alphabet
Σ obtained by renaming to τ all the transitions labeled with actions that are not in Σ.
Note that L(M↓Σ) = {σ↓Σ | σ ∈ L(M)}.

Parallel Composition. Given two LTSs M1 and M2 over alphabet αM1 and αM2,
respectively, their interface alphabet αI consists of their common alphabet. That is,
αI = αM1 ∩αM2. The parallel composition operator || is a commutative and associa-
tive operator that combines the behavior of two components by synchronizing on the
actions in their interface and interleaving the remaining actions.

Let M1 = (Q1, αM1, δ1, q01) and M2 = (Q2, αM2, δ2, q02) be two LTSs. Then
M1||M2 is an LTS M = (Q,αM, δ, q0), where Q = Q1 × Q2, q0 = (q01 , q02),
αM = αM1 ∪ αM2, and δ is defined as follows where a ∈ αM ∪ {τ}:

26 K. Abd Elkader et al.

– if (q1, a, q′1) ∈ δ1 for a �∈ αM2, then ((q1, q2), a, (q
′
1, q2)) ∈ δ for every q2 ∈ Q2,

– if (q2, a, q′2) ∈ δ2 for a �∈ αM1, then ((q1, q2), a, (q1, q
′
2)) ∈ δ for every q1 ∈ Q1,

– if (q1, a, q′1) ∈ δ1 and (q2, a, q
′
2) ∈ δ2 for a �= τ , then ((q1, q2), a, (q

′
1, q

′
2)) ∈ δ.

Lemma 1. [7] For every t ∈ (αM1 ∪ αM2)
∗, t ∈ L(M1||M2) if and only if t↓αM1 ∈

L(M1) and t↓αM2 ∈ L(M2).

Example 1. Consider the example in Figure 1. This is a variation of the example of [7]
modified to illustrate circular dependencies. LTSs In and Out have interface alphabet
{send, ack}. Their composition In||Out is an LTS where the transition from state 0 to
1 in component In (labeled with ack) never takes place, since there is no corresponding
matching transition in component Out. Similarly the transition from state 2 to 3 in
component Out (labeled with send) never takes place. As a result, In||Out simply
repeats the trace 〈in, send, out, ack〉.

Properties and Satisfiability. A safety property is defined as an LTS P , whose lan-
guage L(P) defines the set of acceptable behaviors over the alphabet αP of P . An LTS
M over αM ⊇ αP satisfies P , denoted M |= P , if ∀σ ∈ L(M).σ↓αP ∈ L(P). To
check a safety property P , its LTS is transformed into a deterministic LTS, which is
also completed by adding an error state π and adding transitions from every state q in
the deterministic LTS into π for all the missing outgoing actions of q; the resulting LTS
is called an error LTS, denoted by Perr. Checking that M |= P is done by checking
that π is not reachable in M ||Perr.

A trace σ ∈ αM∗ is a counterexample for M |= P if σ ∈ L(M) but σ↓αP �∈ L(P).
The Order LTS from Figure 1 depicts a safety property satisfied by In||Out. Note

that neither In, nor Out, satisfy this property individually. For example, the trace
〈in, send, ack, ack〉 of In is a counterexample for In |= Order.

In Out Order

Fig. 1. LTSs describing the In and Out components and the Order property

3 Circular Assume-Guarantee Reasoning

In this section we formally establish the soundness and completeness of the circular
rule CIRC-AG introduced in Section 1 (proofs are omitted due to space constraints).
We start by defining inductive properties. CIRC-AG uses formulas of the form M |=
A � P , where M is a component, P is a property, and A is an assumption about M ’s
environment. To ensure soundness of the circular rule the assume-guarantee formula is
defined using induction over finite traces.

Automated Circular Assume-Guarantee Reasoning 27

Definition 2. Let M,A and P be LTSs over αM,αA and αP respectively, such that
αP ⊆ αM . We say that M |= A � P holds if ∀k ≥ 1 ∀σ ∈ (αM ∪ αA)∗ of length k
such that σ↓αM ∈ L(M), if σk−1↓αA ∈ L(A) then σ↓αP ∈ L(P).

Intuitively, the formula states that if a trace in M satisfies the assumption A up to
step k − 1, it should guarantee P up to step k. As an example consider the LTSs
In from Figure 1 and g1 and g2 from Figure 2. Then In |= g2 � g1. On the other
hand, In �|= g1 � g2 since the trace σ = 〈in, send, ack, ack〉 ∈ L(In) is such that
σk−1↓αg1 = 〈send, ack〉 ∈ L(g1), but σ↓αg2 = 〈send, ack, ack〉 �∈ L(g2). σ is there-
fore a counterexample for In |= g1 � g2.

Definition 3. A trace σ ∈ (αM∪αA)∗ of length k is a counterexample for M |= A�P
if σ↓αM ∈ L(M) and σk−1↓αA ∈ L(A) but σ↓αP �∈ L(P).

Soundness and Completeness of Rule CIRC-AG. To establish the soundness of rule
CIRC-AG we have the following requirements. M1,M2 and P are LTSs where αP ⊆
αM1 ∪ αM2. Moreover, g1, g2 are LTSs, used as assumptions in the rule, such that
αM1 ∩ αP ⊆ αg1 and αM2 ∩ αP ⊆ αg2.

The following lemmas include several observations that are useful both in the sound-
ness and completeness proofs and in the algorithm for automatic generation of assump-
tions g1 and g2, needed for the rule.

Lemma 2. Let g1 and g2 be LTS assumptions successfully used in CIRC-AG, such that
αMi ∩ αP ⊆ αgi. Then (1) M1||M2 |= g1||g2. (2) M1||g2 |= P and M2||g1 |= P .

Lemma 3. Let M1,M2, P be LTSs over αM1, αM2, αP respectively. Let αg1 ⊇ αI ∪
(αM1 ∩ αP) and αg2 ⊇ αI ∪ (αM2 ∩ αP). Then M1||M2 |= P if and only if
M1↓αg1 ||M2↓αg2 |= P .

Theorem 1. The Rule CIRC-AG is sound and complete.

Soundness states that if there exist LTS assumptions g1 and g2 that satisfy all premises
of CIRC-AG, then M1||M2 |= P . This result follows from Lemma 2, Item (1). Com-
pleteness states that if M1||M2 |= P holds we can always find g1 and g2 such that
the premises of the rule hold. Indeed completeness is established by showing that if
M1||M2 |= P , then g1 = M1↓αg1 and g2 = M2↓αg2 where αg1 = αM1∩(αM2∪αP)
and αg2 = αM2 ∩ (αM1 ∪ αP), satisfy the premises of the rule.

Example 2. Consider our running example (Figure 1), and consider the assumptions
g1 and g2 depicted in Figure 2, over alphabet αg1 = αIn ∩ (αOut ∪ αOrder) and
αg2 = αOut ∩ (αIn ∪ αOrder). In both cases αgi = {send, ack}. As stated above,
In |= g2 � g1. Similarly, Out |= g1 � g2. Moreover, g1||g2 |= Order. It follows that
In||Out |= Order can be verified using CIRC-AG with g1 and g2 as assumptions.

4 Automatic Reasoning with CIRC-AG

We describe an iterative algorithm to automate the application of rule CIRC-AG by
automating the assumption generation.

28 K. Abd Elkader et al.

Fig. 2. LTSs describing the assumptions g1 and g2 generated by ACR, and the assumption A
generated with L*. αg1 = αg2 = αA = {send, ack}

Checking Inductive Properties. We first introduce a simple algorithm that checks if
an inductive property of the form M |= A � P , where αP ⊆ αM , holds and if it does
not, it returns a counterexample. To do so, we consider the LTS M ||A||Perr. We label
its states by (parameterized) propositions erra, where a ∈ αP . (sM , sA, sP) is labeled
by erra if sM has an outgoing transition in M labeled by a, but the corresponding
transition (labelled by a) leads to π in Perr. We then check if a state q labeled by erra
is reachable in M ||A||Perr. If so, then the algorithm returns the trace of a path from q0
to q extended with action a as a counterexample. Intuitively, such a path to q represents
a trace in M that satisfies A (because it is a trace in M ||A) such that if we extend it by
a we get a trace in M violating P .

Overview of the Main Algorithm. We propose an iterative algorithm to automate
the application of the rule CIRC-AG by automating the assumption generation. Pre-
vious work used approximate iterative techniques based on automata learning or ab-
straction refinement to automate the assumption generation in the context of acyclic
rules [7,19,3,4,2,5,6]. A different approach [10] used a SAT solver over a set of con-
straints encoding how the assumptions should be updated to find minimal assumptions;
the method was shown to work well in practice, in the context of the same acyclic
rule. We follow the latter approach here and we adapt it to reasoning for cyclic rules
and checking inductive assume-guarantee properties. As mentioned, this is challenging
due to the mutual dependencies between the two assumptions that we need to generate.
We achieve this by constraining the assumptions with boolean combinations of require-
ments that certain traces must or must not be included in the language of the updated
assumptions.

Algorithm 1 describes our Automated Circular Reasoning (ACR) algorithm for
checking M1||M2 |= P using the rule CIRC-AG.

We fix the alphabet of the assumptions g1 and g2 to be αg1 = αM1 ∩ (αM2 ∪ αP)
and αg2 = αM2 ∩ (αM1 ∪ αP). By the completeness proof of the rule, this suffices.

ACR maintains a set C of membership constraints on g1 and g2. At each iteration
it calls GENASSMP (described in Section 6) to synthesize, using a SAT solver, new
minimal assumptions g1 and g2 that satisfy all the constraints in C. GENASSMP also
receives as input a parameter k which provides a lower bound on the total number of
states in the assumptions we look for. This avoids searching for smaller assumptions
that cannot satisfy C. The algorithm then invokes APPLYAG (described in Section 5) to
check the three premises of rule CIRC-AG using the obtained assumptions g1 and g2.
APPLYAG may return a conclusive result: either “M1||M2 |= P ” or “M1||M2 �|= P ”,

Automated Circular Assume-Guarantee Reasoning 29

Algorithm 1. Main algorithm for automating rule CIRC-AG for checking M1||M2 |=
P
1: procedure ACR(M1,M2, P)
2: Initialize: C = ∅, k = 2
3: repeat
4: (g1, g2) =GENASSMP(C,k)
5: (C′, Result) =APPLYAG(M1,M2, P, g1, g2)
6: C = C ∪ C′, k = |g1|+ |g2|
7: until (Result �= “continue”)
8: return Result
9: end procedure

in which case ACR terminates. If no conclusive result is obtained, it means that g1 and
g2 do not satisfy the premises of the rule. Further, the counterexamples demonstrating
the falsification of the premises are not suitable for concluding M1||M2 �|= P , i.e. they
are spurious. In this case APPLYAG returns “continue” together with new membership
constraints that determine how the assumptions should be refined. The new constraints
are added to C. Note that since the set C of constraints is monotonically increasing, any
new pair (g′1, g

′
2) that satisfies it also satisfies previous sets of constraints. The previous

set was satisfied by assumptions whose total size is |g1| + |g2| but not smaller. Thus,
we should start our search for new (g′1, g

′
2) from k = |g1|+ |g2| number of states. k is

updated accordingly (line 6).

Example 3. The assumptions g1 and g2 from Figure 2 used to verify In||Out |= Order
with CIRC-AG were obtained by ACR in the 7th iteration. The LTS A from Figure 2
describes the assumption obtained with the algorithm of [7], which is based on acyclic
rule NonCIRC-AG and uses L∗ for assumption generation. Notice that both g1 and g2
are smaller than A (and our experiments show that they can be much smaller in prac-
tice). The reason is that, after a successful application of CIRC-AG, g1||g2 overapprox-
imates M1||M2. This means that each gi overapproximates the part of Mi restricted to
the composition with the other component. For example g1 does not include the traces
leading to state 1 from In since they do not participate in the composition. Similarly g2
does not include the traces leading to state 3 in Out. In contrast, for the acyclic rule, the
assumption A has to overapproximate M2 (Out) as a whole. Therefore, CIRC-AG can
result in substantially smaller assumptions, as also demonstrated by our experiments.

Membership Constraints. Membership constraints are used by our algorithm to gather
information about traces that need to be in L(gi) or must not be in L(gi), for i = 1, 2.
Thus they allow us to encode dependencies between the languages of the two assump-
tions L(g1) and L(g2). The constraints are defined by formulas with a special syntax
and semantics, as defined below.

Definition 4. Membership constraints formulas over (αg1, αg2) are defined inductively
as follows: For every σ1 ∈ αg∗1 and σ2 ∈ αg∗2 the formulas +(σ1, 1), −(σ1, 1),
+(σ2, 2), −(σ2, 2) are atomic membership constraints formulas. Further, if c1 and c2
are membership constraints formulas, then so are (c1 ∧ c2) and (c1 ∨ c2).

30 K. Abd Elkader et al.

Given a membership constraints formula c, Strings(c, i) is the set of prefixes of all
σ ∈ αgi

∗ such that +(σ, i) or −(σ, i) is an atomic formula in c.

Definition 5. Let c be a membership constraints formula over (αg1, αg2), and let A1

andA2 be two LTSs. The satisfaction of c by (A1, A2) is defined inductively. (A1, A2) |=
c if and only if αA1 = αg1 and αA2 = αg2, and:

– if c is an atomic formula of the form +(σ, i) then σ ∈ L(Ai).
– if c is an atomic formula of the form −(σ, i) then σ �∈ L(Ai).
– if c is of the form (c1 ∧ c2) then (A1, A2) |= c1 and (A1, A2) |= c2 .
– if c is of the form (c1 ∨ c2) then (A1, A2) |= c1 or (A1, A2) |= c2.

For a set C of membership constraints formulas over (αg1, αg2), we say that A1 and
A2 satisfy C if and only if for every c ∈ C, (A1, A2) |= c.

For example, a membership constraint of the form +(σ1, 1)∨−(σ2, 2) requires that
σ1 ∈ L(g1) or σ2 �∈ L(g2) (or both).

5 APPLYAG Algorithm

Given assumptions g1,g2, APPLYAG (see Algorithm 2) applies assume-guarantee rea-
soning by checking the three premises of rule CIRC-AG using g1 and g2. In the algo-
rithm we check premises 1, 2, 3 in this order but in fact the order of the checks does not
matter and the checks can be done in parallel. If all three premises are satisfied, then,
since the rule is sound, it follows that M1||M2 |= P holds (and this is returned to the
user). Otherwise, at least one of the premises does not hold. Hence a counterexample σ
for (at least) one of the premises is found. APPLYAG then checks if the counterexam-
ple indicates a real violation for M1||M2 |= P , as described below. If this is the case,
then APPLYAG returns M1||M2 �|= P . Otherwise APPLYAG uses the counterexample
to compute a set of new membership constraints C and returns “continue” (note that in
the first two cases an empty constraint set is returned).

Notation. For readability, in APPLYAG (and UPDATECONSTRAINTS) we use σ↓ ∈
L(A) and σ↓ �∈ L(A) as a shorthand for σ↓αA ∈ L(A) and σ↓αA �∈ L(A), respectively.

Checking Validity of a Counterexample. Given a counterexample σ for one of the
premises of the CIRC-AG rule, APPLYAG checks if σ can be extended into a trace in
L(M1||M2) which does not satisfy P . This check is performed either by APPLYAG
directly (if premise 3 fails: in lines 9-16 of APPLYAG) or by algorithm UPDATECON-
STRAINTS (if one of the first two premises fails). In essence, a counterexample σ is real
if σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP �∈ L(P). This is also stated by
the following lemma, which follows from Lemma 1 and Lemma 3.

Lemma 4. If σ↓αg1 ∈ L(M1↓αg1), σ↓αg2 ∈ L(M2↓αg2) and σ↓αP �∈ L(P), then
M1||M2 �|= P . Moreover, σ can be extended into a counterexample for M1||M2 |= P .

Automated Circular Assume-Guarantee Reasoning 31

For example, in line 9 of Algorithm 2, σ ∈ (αg1 ∪ αg2)
∗ is a counterexample for

premise 3, hence σ↓αP �∈ L(P). It therefore suffices to check if σ↓αg1 ∈ L(M1↓αg1)
and σ↓αg2 ∈ L(M2↓αg2) in order to conclude that a real counterexample exists (line 11).
Similarly, in Algorithm 3, σa ∈ (αMi ∪ αgj)

∗ is a counterexample for premise i for
i ∈ {1, 2}, hence σa↓αMi ∈ L(Mi), and since αgi ⊆ αMi, also σa↓αgi ∈ L(Mi↓αgi).
In line 3, the algorithm then checks if, in addition, σa↓αgj ∈ L(Mj↓αgj) and σa↓αP �∈
L(P). If these conditions hold then by Lemma 4 the counterexample is real (line 5).

Computation of New Membership Constraints based on Counterexamples. When
the counterexample found for one of the premises does not produce a real counterex-
ample for M1||M2 |= P , then APPLYAG (or UPDATECONSTRAINTS) analyzes the
counterexample and computes new membership constraints to refine the assumptions.
In essence, these constraints encode whether the counterexample trace (or a restriction
of it) should be added to or removed from the languages of the two assumptions such
that future checks will not produce the same counterexample again.

If premise 3 does not hold, i.e. g1||g2 �|= P and the reported counterexample σ is
found not to be real then it should be removed from L(g1) or from L(g2) (in this way
the trace will no longer be present in the composition g1||g2 for the assumptions com-
puted in subsequent iterations). Therefore in line 14, APPLYAG adds the corresponding
constraint (−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2)) to C.

If either premise 1 or 2 does not hold, i.e. Mi �|= gj �gi, then the analysis of the coun-
terexample σiai (for i=1 or 2) and the addition of constraints (if needed) are performed
by UPDATECONSTRAINTS (see Algorithm 3). Specifically, in this case σiai should be
added to L(gi) or its prefix σi should be removed from L(gj) (where j �= i). In both
cases, this ensures that checking Mi �|= gj � gi in subsequent iterations will no longer
produce the same counterexample (see Definition 2).

We add this constraint in line 11 of Algorithm 3, where C is updated with
(−(σ↓αgj , j)∨+(σa↓αgi , i). Although this simple refinement would work for all cases,
note that Algorithm 3, uses a more involved refinement. The reason is that we exploit
the properties stated in Lemma 2, Items (1) and (2), to detect more elaborate constraints;
using the lemma and analyzing both σ and σa allows us to accelerate the refinement
process.

For example, in line 18, the subconstraint +(σa↓αgi , i) is conjoined with
−(σa↓αgj , j). This is because Lemma 2, Item (2) establishes that Mi||gj |= P is a nec-
essary condition for a successful application of CIRC-AG. Therefore since σa↓αgi ∈
L(Mi↓αgi) and σa↓αP �∈ L(P), then σa↓αgj must not be in L(gj). Explanations of
other cases appear as comments in the pseudocode. Note that there are more cases that
we do not show in order to simplify the presentation.

Example 4. Consider the LTSs from Figure 3, produced in the 6th iteration of ACR.
When trying to apply CIRC-AG with these assumptions, APPLYAG obtains the trace
〈send, out, send〉 as a counterexample for Out |= g

(6)
1 � g

(6)
2 (premise 2). Since

〈send, out, send〉↓αg1 �∈ L(In↓αg1), the counterexample turns out to be spurious, and
after checking the additional conditions in UPDATECONSTRAINTS, −(〈send〉, 1) ∨
(+(〈send, send〉, 2) ∧ −(〈send, send〉, 1)) is produced in line 18 as a membership
constraint in order to eliminate it in the following iterations.

32 K. Abd Elkader et al.

Algorithm 2. Applying CIRC-AG with g1 and g2, and constraint updating
1: procedure APPLYAG(M1,M2, P, g1, g2)
2: if M1 �|= g2 � g1 then
3: Let σ1a1 be a counterexample for M1 �|= g2 � g1
4: return UPDATECONSTRAINTS(1,2,M1,M2, P, σ1a1)
5: else if M2 �|= g1 � g2 then
6: Let σ2a2 be a counterexample for M2 �|= g1 � g2
7: return UPDATECONSTRAINTS(2,1,M2,M1, P, σ2a2)
8: else if g1||g2 �|= P then
9: Let σ be a counterexample for g1||g2 �|= P

10: if (σ↓ ∈ L(M1 ↓ αg1) && σ ↓∈ L(M2 ↓ αg2)) then
11: return (∅, “M1||M2 �|= P ”)
12: else // σ �∈ L(M1↓αg1 ||M2↓αg2), σ↓ �∈ L(P)
13: // Remove σ from g1 or remove σ from g2
14: C = {(−(σ↓αg1 , 1) ∨ −(σ↓αg2 , 2))}
15: return (C, “continue”)
16: end if
17: else
18: return (∅, “M1||M2 |= P ”)
19: end if
20: end procedure

g
(6)
1 g

(6)
2

Fig. 3. LTSs produced in the 6th iteration of ACR

In the following we state the progress of assumption refinement based on spurious
counterexamples.

Lemma 5. Let σ be a spurious counterexample obtained for premise i ∈ {1, 2, 3} of
CIRC-AG with respect to assumptions g1, g2 and let C be the updated set of constraints.
Then any pair of LTSs g′1 and g′2 such that (g′1, g

′
2) |= C will no longer exhibit σ as a

counterexample for premise i of CIRC-AG.

Corollary 1. Any pair of LTSs g′1 and g′2 such that (g′1, g′2) |= C is different from every
previous pair of LTSs considered by the algorithm.

The following two lemmas state that the added membership constraints do not over-
constrain the assumptions. They ensure that the “desired” assumptions that enable to
verify (Lemma 6) or falsify (Lemma 7) the property are always within reach.

Lemma 6. SupposeM1||M2 |= P and let g1 and g2 be LTSs that satisfy the premises of
rule CIRC-AG. Then (g1, g2) satisfy every set of constraints C produced by APPLYAG.

Lemma 7. Let g1 = M1↓αg1 and g2 = M2↓αg2 . Then (g1, g2) satisfy every set of
constraints C produced by APPLYAG.

Automated Circular Assume-Guarantee Reasoning 33

Algorithm 3. Computation of constraints based on a counterexample for Mi |= gj � gi

1: // σa is a counterexample for Mi |= gj � gi, i.e. σa↓ ∈ L(Mi), σ↓ ∈ L(gj), σa↓ �∈ L(gi)
2: procedure UPDATECONSTRAINTS(i,j,Mi,Mj , P, σa)
3: if σa↓ ∈ L(Mj↓αgj) and σa↓ �∈ L(P) then
4: // σa↓ ∈ L(Mi↓αgi ||Mj↓αgj) and σa↓ �∈ L(P)
5: return (∅, “Mi||Mj �|= P ”)

6: if σa↓ ∈ L(Mj↓αgj) and σa↓ ∈ L(P) then
7: // Add σa to both gi and gj to ensure M1↓αg1 ||M2↓αg2 |= g1||g2 (Lemma 2 (1))
8: C = {+(σa↓αgi , i),+(σa↓αgj , j)}
9: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ ∈ L(P) then

10: // Remove σ from gj or add σa to gi
11: C = {(−(σ↓αgj , j) ∨+(σa↓αgi , i)}
12: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ �∈ L(P) and σ↓ �∈ L(P) then
13: // Remove σ from gj (Because of Lemma 2 (2))
14: C = {−(σ↓αgj , j)}
15: if σa↓ �∈ L(Mj↓αgj) and σ↓ �∈ L(Mj↓αgj) and σa↓ �∈ L(P) and σ↓ ∈ L(P) then
16: // Remove σ from gj or (add σa to gi and remove it from gj)
17: // In the latter case removal of σa from gj is due to Lemma 2 (2)
18: C = {(−(σ↓αgj , j) ∨ (+(σa↓αgi , i) ∧ −(σa↓αgj , j)))}
19: return (C, “continue”)
20: end procedure

6 GENASSMP Algorithm
Given a set of membership constraints C, and a lower bound k on the total number
of states in |g1| + |g2|, we compute assumptions g1 and g2 that satisfy C. Similarly to
previous work [10] we build assumptions as deterministic LTSs (even though APPLYAG
is not restricted to deterministic LTSs). Technically, for each value of k starting from
the given k, GENASSMP encodes the structure of the desired DLTSs g1 and g2 with
|g1|+ |g2| ≤ k, as well as the membership constraints, as a SAT instance SatEnck(C).
It then searches for a satisfying assignment and obtains DLTSs g1 and g2 based on
this assignment. k is increased only when SatEnck(C) is unsatisfiable, hence minimal
DLTSs that satisfy C are obtained.

We use the following encoding of the problem of finding whether there are DLTSs
g1 and g2 with k states in total such that (g1, g2) |= C.

Variables used for Encoding the LTSs Structure. Let n = �log2(k + 2)�. We use
boolean vectors of length n to encode the states of g1 and g2, where for each of them
we add a special “error” state. For each 0 ≤ m ≤ k + 1 we use m to denote the n-bit
vector that represents the number m. We fix the vector 0 to represent the error state of
g1, and the vector k + 1 to represent the error state of g2. We explicitly add the error
states in order to distinguish between traces that are rejected by the DLTS and traces
for which the behavior is unspecified. For every i ∈ {1, 2}:

34 K. Abd Elkader et al.

– Let Si include the prefixes of all traces over αgi which are constrained in C with
respect to i. That is, Si =

⋃
c∈C Strings(c, i).

– For every σ ∈ Si, we introduce a set of boolean variables V ar(σ, i) = {vj(σ,i) | 0 ≤
j ≤ n − 1}. We denote by v(σ,i) the vector (v0(σ,i) · · · v

n−1
(σ,i)) of boolean variables.

v(σ,i) represents the state of gi reached when traversing σ.

We define Vgi =
⋃

σ∈Si
V ar(σ, i). In addition to Vg1 and Vg2 , we introduce a set Vaux

of boolean variables which consist of the following variables:

– To guarantee that the LTSs we produce are indeed deterministic, we add a set of
boolean variables which are used to enumerate the (non error) states in the DLTSs.
For this we use k × |αg1 ∪ αg2| vectors of boolean variables, each of size n: For
every 1 ≤ m ≤ k and a ∈ (αg1 ∪ αg2), we introduce a set of boolean vari-
ables V ar(m, a) = {uj

(m,a) | 0 ≤ j ≤ n − 1}. We denote by u(m,a) the vector

(u0
(m,a) · · ·u

n−1
(m,a)) of boolean variables. u(m,a) represents the state (of either g1 or

g2) reached from state m after seeing action a.
– To guarantee that the states of the DLTSs are disjoint, we introduce another vector
u = (u0 · · ·un−1) of boolean variables, used to represent the number l such that
all states of g1 are smaller or equal l and all states of g2 are larger than l.

Variables used for Encoding Membership Constraints. For every disjunctive mem-
bership constraint formula c ∈ C we introduce a boolean “selector” variable enc that
determines which of the disjuncts of c must be satisfied (the other disjunct might be sat-
isfied as well). Technically, let Enc = {enc | c ∈ C}, and let A = Enc∪{¬enc | enc ∈
Enc} ∪ {true}. We define θaddg1 , θremg1 : S1 → 2A and θaddg2 , θremg2 : S2 → 2A such that
for every σ ∈ Si, θaddgi (σ) and θremgi (σ) are the smallest sets such that true ∈ θaddg1 (ε)

and true ∈ θaddg2 (ε), and for every c ∈ C:

– if c = (−(σ↓αgi , i) ∨ −(σ↓αgj , j)) then enc ∈ θremgi (σ↓αgi) and ¬enc ∈ θremgj (σ↓αgj).

– if c = +(σ↓αgi , i) then true ∈ θaddgi (σ↓αgi).
– if c = −(σ↓αgi , i) then true ∈ θremgi (σ↓αgi).
– if c = (−(σ↓αgj , j)∨+(σa↓αgi , i)) then enc ∈ θremgj (σ↓αgj) and ¬enc ∈ θaddgi (σa↓αgi).
– if c = (−(σ↓αgj , j) ∨ (+(σa↓αgi , i)∧−(σa↓αgj , j))) then enc ∈ θremgj (σ↓αgj), ¬enc ∈

θaddgi (σa↓αgi) and ¬enc ∈ θremgj (σa↓αgj).

Intuitively, if at least one of the literals in θaddgi (σ) is satisfied then σ must be added
to the language of gi, and similarly for θremgi (σ) with removal. These sets are therefore
interpreted as disjunctions. Formally, let Bool(A) be the set of boolean formulas over
A. For θacgi : Si → 2A (where ac ∈ {rem, add}), we define θ̃acgi : Si → Bool(A) as

follows: θ̃acgi (σ) =

{
false θacgi (σ) = ∅∨
θacgi (σ) otherwise

SAT Constraints. SatEnck(C) is a set of constraints (with the meaning of conjunc-
tion) over the variables Enc ∪ Vg1 ∪ Vg2 ∪ Vaux defined as follows:

Automated Circular Assume-Guarantee Reasoning 35

– Encoding the LTSs structures into SAT constraints:
1. For every trace σ1 ∈ S1 we add the constraint v(σ1,1) ≤ u, and for every trace

σ2 ∈ S2 we add the constraint u < v(σ2,2) (separating states of the DLTSs).
We also add a constraint 1 ≤ u ≤ k − 1 to restrict the range of u.

2. For every σ ∈ S2 we add the following constraint v(σ,2) ≤ k + 1 (every trace
is mapped to a valid state in the DLTSs).

3. For every i ∈ {1, 2}, every trace σ ∈ Si, every action a ∈ αgi such that
σa ∈ Si, and for every 1 ≤ m ≤ k, we add the following constraint: (v(σ,i) =
m ⇒ v(σa,i) = u(m,a) (the DLTSs are deterministic).

4. For every trace σ ∈ S1 and action a ∈ αg1, if σa ∈ S1 then we add the
following constraint: v(σ,1) = 0 ⇒ v(σa,1) = 0 (the error state of g1 is a sink
state; DLTSs are prefix closed).

5. For every string σ ∈ S2 and action a ∈ αg2, if σa ∈ S2 then we add the
following constraint: v(σ,2) = k + 1 ⇒ v(σa,2) = k + 1 (the error state of g2
is a sink state; DLTSs are prefix closed).

– Encoding the membership constraints formulas into SAT constraints:
6. For every trace σ ∈ S1 we add the constraint: θ̃remg1 (σ) ⇒ v(σ,1) = 0.

7. For every trace σ ∈ S2 we add the constraint: θ̃remg2 (σ) ⇒ v(σ,2) = k + 1.

8. For every trace σ ∈ S1 we add the constraint: θ̃addg1 (σ) ⇒ v(σ,1) �= 0.

9. For every trace σ ∈ S2 we add the constraint: θ̃addg2 (σ) ⇒ v(σ,2) �= k + 1.

Note that the implications in constraints 6-9 guarantee that a trace is accepted by
gi (leads to a non-error state) whenever it is required to be added to gi (as encoded
by θaddgi (σ↓αgi)). However, it may be accepted also in other cases, provided it is not
required to be removed by other constraints. The same holds for removal of traces.

Lemma 8. SatEnck(C) is satisfiable if and only if there exist DLTSs g1 and g2 that
satisfy C such that |g1|+ |g2| = k.

Due to Lemma 7 which ensures that (the nondeterministic) LTSs M1↓αg1 andM2↓αg2
satisfy C, we get the following corollary, which ensures termination of GENASSMP:

Corollary 2. At every iteration of ACR, there exists k ≤ O(2|M1| + 2|M2|) where
SatEnck(C) is satisfiable.

In fact, since the minimal k is found, minimal assumptions that satisfy C are ob-
tained. In particular, together with Lemma 6, this ensures that when M1||M2 |= P ,
then minimal assumptions for which CIRC-AG is applicable are eventually obtained.

From SAT Assignment to LTS Assumptions. Given a satisfying assignment ψ to
SatEnck(C), we use ψ to generate assumptions g1 and g2 that satisfy C.

First, we extract DLTSs A1(ψ) and A2(ψ) extended with error states: Ai(ψ) =
(Qi, αgi, δi, q

i
0, πi) where Qi = {m ∈ {0, 1}n | ∃σ ∈ Si such that ψ(v(σ,i)) = m},

qi0 = ψ(v(ε,i)), π1 = 0, π2 = k + 1, and δi(m, a) = m′ if there exists σ ∈ Si such that
ψ(v(σ,i)) = m∧ σa ∈ Si ∧ψ(v(σa,i)) = m′, and otherwise δi(m, a) = ⊥ (undefined).

36 K. Abd Elkader et al.

Note that δi is deterministic and it is well defined, since constraint 3 of SatEnck(C)
ensures that if there exist σ, σ′ ∈ Si such that ψ(v(σ,i)) = ψ(v(σ′,i)) and both σa and
σ′a are in Si, then also ψ(v(σa,i)) = ψ(v(σ′a,i)). Further, by constraint 1, Q1∩Q2 = ∅.

A1(ψ) and A2(ψ) can be thought of as error LTSs, except that they might be in-
complete: δi is a partial function. As in an error LTS, traces leading to an error state in
Ai(ψ) are rejected. Traces for which δi is undefined are unspecified (recall that such
traces do not exist in an error LTS, which is complete, and in a DLTS, in contrast, such
traces are rejected). The latter represent traces that do not affect the satisfaction of C.

We transform A1(ψ) and A2(ψ) into (complete) error LTSs by extending δi to to-
tal functions. Since unspecified traces do not affect satisfaction of C, any completion
results in DLTSs that satisfy C. In practice, if δi(m, a) = ⊥, we define δi(m, a) = m.

To obtain DLTSs, we remove the error states. We denote the result by LTS(Ai(ψ)).

Lemma 9. Let g1 = LTS(A1(ψ)) and g2 = LTS(A2(ψ)), where ψ satisfies
SatEnck(C). Then g1 and g2 are DLTSs such that (1) (g1, g2) |= C and (2) |g1| +
|g2| ≤ k.

Example 5. Consider the 7th (and final) iteration of ACR. Since the assumptions from
the 6th iteration (Figure 3) have a total of 3 states, the search performed by GENASSMP

at the 7th iteration starts with k = 3, and since SatEnc3(C) is unsatisfiable, k is
increased to 4, yielding (the final) g1 and g2 with a total of 4 states (Figure 2). Note that
(g1, g2) indeed satisfy the membership constraint −(〈send〉, 1)∨(+(〈send, send〉, 2)∧
−(〈send, send〉, 1)) ∈ C from the previous iteration (due to the right disjunct). In
particular, they do not exhibit the counterexample from Example 4.

7 Correctness, Termination and Minimality

In this section we argue that our main algorithm ACR is correct, it terminates and
produces minimal assumptions.

Theorem 2 (Correctness and Termination). Given components M1 and M2, and
property P , ACR terminates and returns “M1||M2 |= P” if P holds on M1||M2 and
“M1||M2 �|= P”, otherwise.

Proof (sketch). ACR returns “M1||M2 |= P ” if and only if all premises of CIRC-
AG hold, in which case correctness follows from the soundness of CIRC-AG. On the
other hand, if ACR returns “M1||M2 �|= P ”, then correctness is ensured by Lemma 4.
It remains to prove that ACR terminates. First, Corollary 2 ensures that at every itera-
tion of ACR, SatEnck(C) is satisfiable for some k = O(2|M1| + 2|M2|). Therefore,
each iteration terminates. Moreover, by Corollary 1, the pair of DLTSs generated at
each iteration is different from all pairs considered in previous iterations, which ensures
progress of ACR. Finally, by Lemma 7, g1 = M1↓αg1 and g2 = M2↓αg2 always sat-
isfy C. Therefore ACR terminates at the latest when g1 = M1↓αg1 and g2 = M2↓αg2 ,
in which case premises 1 and 2 of CIRC-AG necessarily hold and premise 3 amounts
to M1↓αg1 ||M2↓αg2 |= P , hence either all premises hold or a real counterexample is
obtained. ��

Automated Circular Assume-Guarantee Reasoning 37

Theorem 3 (Minimality). If M1||M2 |= P then ACR terminates with DLTSs g1 and
g2 whose total number of states is minimal among all pairs of DLTSs that satisfy the
CIRC-AG rule.

Proof (sketch). Termination follows from Theorem 2. Let n be the minimal total num-
ber of states of DLTSs that satisfy rule CIRC-AG. By Lemma 6, the corresponding
DLTSs satisfy C at any iteration of ACR. Therefore by Lemma 8, SatEncn(C) is sat-
isfiable at any iteration and in particular in the last one, where Lemma 9 ensures that the
obtained DLTSs g1 = LTS(A1(ψ)), g2 = LTS(A2(ψ)) are such that |g1|+ |g2| ≤ n.

��

8 Evaluation and Concluding Remarks

We implemented ACR in the LTSA (Labelled Transition System Analyser) tool [13];
we use MiniSAT [8] for SAT solving. We optimized our implementation to perform
incremental SAT encoding using the ability of MiniSAT to solve CNF formulas un-
der a set of unit clause assumptions. We also made ACR return (at each iteration) k
counterexamples for the three premises where, k is |g1|+ |g2|.

We compared ACR with learning-based assume guarantee reasoning (based on rule
NonCIRC-AG), on the following examples [19]: Gas Station (3 to 5 customers), Chiron
– a model of a GUI (2 to 5 event handlers), Client Server – a client-server application (6
to 9 clients), and a NASA rover model: MER (2 to 4 users competing for two common
resources). We used the same two-way decompositions reported in previous experi-
ments. Experiments were performed on a MacBook Pro with a 2.3 GHz Intel Core i7
CPU and with 16 GB RAM running OS X 10.9.4 and a Suns JDK version 7.

Table 1 summarizes our results. For both approaches, we report the analysis time (in
seconds) and the assumption sizes. Measuring memory is unreliable due to the garbage
collection and the interfacing with MiniSAT via native method calls (our measurements
indicate that memory consumption is stable and does not increase dramatically for
larger cases). We instead report the maximum numbers of states observed for check-
ing the premises of the two rules. We put a limit of 1800 seconds for each experiment;
“–” indicates that the time for that case exceeds this limit.

In all the experiments ACR generates smaller assumptions and in the majority of
cases this results in smaller analysis time and state space explored. For larger cases the
assumptions generated by ACR are significantly smaller. For the Gas Station, ACR sig-
nificantly outperforms learning in terms of analysis time and states explored, while for
all other cases the two approaches are comparable, at smaller sizes. However at larger
configurations (Client Server 8 and 9, MER 4) ACR again significantly outperforms the
learning-based approach. In all but one case (Chiron 5) the smaller assumptions gener-
ated with ACR lead to smaller state spaces for checking the rule premises. Case Chiron
5 is still comparable in terms of running time but it may indicate that the two-way de-
composition that we used (found to be optimal for learning in previous studies) may not
be optimal for ACR. We plan to investigate this further in future work.

Future Work. ACR can be optimized in many ways. Currently we are checking the
three premises one after the other at each iteration and get k different counterexam-
ples for each one of them. We can check them in parallel on different machines. We

38 K. Abd Elkader et al.

Table 1. Comparison of ACR (rule CIRC-AG) and learning (rule NonCIRC-AG). Best results are
shown in bold.

Case ACR Time |g1| |g2| Premise1 Premise2 Premise3 L∗ Time |A| Premise1 Premise2

GasSt 3 26 3 3 2588 1093 6 – >351 >8243 >4045
GasSt 4 48 3 3 19503 2196 4 – >381 >165836 >47360
GasSt 5 309 3 3 132608 6995 6 – >207 >560000 >61058
Chiron 2 1.257 2 2 134 204 5 0.5 9 256 198
Chiron 3 2.013 2 2 341 2244 5 2.121 25 492 2736
Chiron 4 3.149 2 2 449 6681 5 6.341 45 860 18370
Chiron 5 34 2 2 1152 258456 5 33 122 2101 138537
ClServ 6 11 7 2 256 16 10 8 256 256 2505
ClServ 7 33 8 2 576 17 10 33 576 576 6455
ClServ 8 53 9 2 1280 17 9 138 1280 1280 16199
ClServ 9 249.839 10 2 2816 23 14 725 2816 2816 39769
MER 2 4.397 5 2 30 147 6 4.54 46 313 79
MER 3 35 7 2 83 1198 13 50 274 3146 250
MER 4 1220.649 9 2 97 7109 9 – >1210 >128883 >549

further plan to investigate alphabet refinement and generalization to n-way decompo-
sitions (for n > 2) – both these techniques significantly enhanced the performance of
compositional acyclic techniques [19]. For the n-way decompositions we can either
consider a recursive application of our current approach to the system decomposed in
two components, each decomposed in two sub-components etc. or a more involved ap-
proach that synthesizes directly n assumptions, one for each component. We leave this
for future work. We also plan to explore learning and abstraction-refinement for dis-
covering suitable assumptions. Although these techniques might not guarantee minimal
assumptions, they can be less computationally demanding than our current approach.

Acknowledgements. This research was partially supported by BSF grant no. 2012259 and NSF
grant no. 1329278.

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design 15(1), 7–48
(1999)

2. Alur, R., Madhusudan, P., Nam, W.: Symbolic compositional verification by learning assump-
tions. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 548–562.
Springer, Heidelberg (2005)

3. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-guarantee
reasoning by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 135–148. Springer, Heidelberg (2008)

4. Chaki, S., Clarke, E., Sinha, N., Thati, P.: Automated assume-guarantee reasoning for sim-
ulation conformance. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576,
pp. 534–547. Springer, Heidelberg (2005)

5. Chen, Y.-F., Clarke, E.M., Farzan, A., Tsai, M.-H., Tsay, Y.-K., Wang, B.-Y.: Automated
assume-guarantee reasoning through implicit learning. In: Touili, T., Cook, B., Jackson, P.
(eds.) CAV 2010. LNCS, vol. 6174, pp. 511–526. Springer, Heidelberg (2010)

Automated Circular Assume-Guarantee Reasoning 39

6. Chen, Y.-F., Farzan, A., Clarke, E.M., Tsay, Y.-K., Wang, B.-Y.: Learning minimal separating
DFA’s for compositional verification. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 31–45. Springer, Heidelberg (2009)

7. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for composi-
tional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
331–346. Springer, Heidelberg (2003)

8. Een, N., S̈orensson, N.: The minisat, http://minisat.se
9. Graf, S., Passerone, R., Quinton, S.: Contract-based reasoning for component systems with

rich interactions. In: Sangiovanni-Vincentelli, A., Zeng, H., Di Natale, M., Marwedel, P.
(eds.) Embedded Systems Development. Embedded Systems, vol. 20, pp. 139–154. Springer,
New York (2014)

10. Gupta, A., McMillan, K.L., Fu, Z.: Automated assumption generation for compositional ver-
ification. Formal Methods in System Design 32(3), 285–301 (2008)

11. Henzinger, T.A., Liu, X., Qadeer, S., Rajamani, S.K.: Formal specification and verification
of a dataflow processor array. In: ICCAD, pp. 494–499 (1999)

12. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Methodology and
case studies. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 440–451.
Springer, Heidelberg (1998)

13. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. John Wiley & Sons
(1999)

14. McMillan, K.L.: Verification of an implementation of Tomasulo’s algorithm by composi-
tional model checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp.
110–121. Springer, Heidelberg (1998)

15. McMillan, K.L.: Circular compositional reasoning about liveness. In: Pierre, L., Kropf, T.
(eds.) CHARME 1999. LNCS, vol. 1703, pp. 342–346. Springer, Heidelberg (1999)

16. McMillan, K.L.: Verification of infinite state systems by compositional model checking.
In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 219–237. Springer,
Heidelberg (1999)

17. Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Software Eng. 7(4),
417–426 (1981)

18. Namjoshi, K.S., Trefler, R.J.: On the competeness of compositional reasoning. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 139–153. Springer, Heidelberg
(2000)

19. Pasareanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning
to divide and conquer: applying the L* algorithm to automate assume-guarantee reasoning.
Formal Methods in System Design 32(3), 175–205 (2008)

20. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:
Logics and Models of Concurrent Systems. NATO ASI Series (1985)

21. Rushby, J.: Formal verification of mcmillan’s compositional assume-guarantee rule. In: CSL
Technical Report, SRI (2001)

http://minisat.se

Towards Formal Verification of Orchestration

Computations Using the K Framework

Musab A. AlTurki(�) and Omar Alzuhaibi

King Fahd University of Petroleum and Minerals Dhahran,
Dhahran, Saudi Arabia

musab@kfupm.edu.sa, omar.zud@gmail.com

Abstract. Orchestration provides a general model of concurrent com-
putations. A minimal yet expressive theory of orchestration is provided
by Orc, in which computations are modeled by site calls and their or-
chestrations through a few combinators. Using Orc, formal verification of
correctness of orchestrations amounts to devising an executable formal
semantics of Orc and leveraging existing tool support. Despite its sim-
plicity and elegance, giving formal semantics to Orc capturing precisely
its intended behaviors is far from trivial primarily due to the challenges
posed by concurrency, timing and the distinction between internal and
external actions. This paper presents a semantics-based approach for for-
mally verifying Orc orchestrations using the K framework. Unlike pre-
viously developed operational semantics of Orc, the K semantics is not
directly based on the interleaving semantics given by Orc’s SOS spec-
ification. Instead, it is based on concurrent rewriting enabled by K. It
also utilizes various K facilities to arrive at a clean, minimal and elegant
semantic specification. To demonstrate the usefulness of the proposed
approach, we describe a specification for a simple robotics case study
and provide initial formal verification results.

Keywords: Formal semantics · Orc · K framework · Concurrency ·
Program verification

1 Introduction

Orchestration provides a general model of concurrent computations, although it
is more often referred to in the context of service orchestrations describing the
composition and management of (web) services. A minimal yet expressive theory
of orchestration is provided by the Orc calculus [20,22,21], in which computations
are modeled by site calls and their orchestrations through four semantically rich
combinators: the “parallel”, “sequential”, “pruning” and “otherwise” combina-
tors. Orc provides an elegant yet expressive programming model for concurrent
and real-time computations. While Orc’s simplicity and mathematical elegance
enable formal reasoning about its constructs and programs, its programming
model is very versatile and easily applicable to a very wide range of programming
domains, including web-based programming, business processes, and distributed
cyber-physical system applications, as amply demonstrated in [22,21].

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 40–56, 2015.
DOI: 10.1007/978-3-319-19249-9_4

Towards Formal Verification of Orc 41

As for other theories and programming models, devising formal semantics for
Orc is of fundamental importance for several reasons, including theoretical ad-
vancements and refinements to its underlying theory, formal verification of its
programs, building formally verifiable implementations, and also for unambigu-
ous documentation. Furthermore, to better satisfy these goals, the semantics
has to be executable, enabling quick prototyping and simulation of Orc pro-
grams through a formally defined interpreter induced by the executable speci-
fication. The rewriting logic semantics project [17,18,8,19] has been advocating
this approach of formal executable semantics and has proved its value for many
programming models and languages, including widely used general-purpose lan-
guages like Java [10,11] and C [9].

Giving formal executable semantics to Orc constructs capturing precisely its
intended behaviors has been of interest since Orc’s inception due mainly to the
challenges posed by concurrency, timing and the distinction between internal
and external actions. A simple computation in Orc is modeled by a site call,
representing a request for a service, and more complex computations can be
achieved by combining site calls into expressions using one or more of Orc’s four
sequential and parallel combinators. A complete formal executable semantics
elegantly capturing its semantic subtleties, including its real-time behaviors and
transition priorities, was given in rewriting logic [16] and implemented in the
Maude tool [1,2]. This semantics is based on the original reference SOS semantic
specification of the instantaneous (untimed) semantics of Orc [22].

In what can be considered as a continuation of these efforts, this paper presents
a formal, executable semantics of Orc using the K framework [24,15], which is a
derivative of the rewriting logic framework, towards providing a K -based frame-
work for formally specifying and verifying Orc orchestrations. Unlike previously
developed operational semantics of Orc, the K semantics described here is not di-
rectly based on the interleaving semantics given by the reference SOS specification
of Orc. Instead, the K semantics provides the advantage of true concurrency en-
abled by K , where two (or more) concurrent transitions are allowed to fire even
in the presence of (read-access) resource sharing. It also utilizes K ’s specialized
notations and facilities to arrive at a clean, minimal and elegant semantic spec-
ification. Moreover, the semantics is executable in the associated K tool [6,14],
enabling rapid prototyping and formal analysis of Orc programs. Furthermore,
the semantics implicitly presents a generic methodology through which concur-
rency combinators are mapped to threads and computations in K , which can be
instantiated to other concurrency calculi. Finally, to demonstrate the usefulness
and applicability of the proposed approach, we describe a specification for a simple
robotics case study and provide initial formal verification results.

The paper is organized as follows. In Section 2 below, we overview the K

framework and Orc. Then, in Section 3, we present the K semantics of Orc. This
is followed by a discussion of some sample Orc programs in Section 4. The paper
concludes in Section 5 with a summary and a discussion of future work.

42 M.A. AlTurki and O. Alzuhaibi

2 Background

This section presents some preliminaries on the K framework and the K tool,
and introduces the Orc calculus along with some simple examples.

2.1 The K Framework

K [24,25] is a framework for formally defining the syntax and semantics of pro-
gramming languages. It includes several specialized syntactic notations and se-
mantic innovations that make it easy to write concise and modular definitions of
programming languages. K is based on context-insensitive term rewriting, and
builds upon three main concepts inspired by existing semantic frameworks:

– Computational Structures (or Computations): A computation is a task that
is represented by a component of the abstract syntax of the language or by
an internal structure with a specific semantic purpose. Computations enable
a natural mechanism for flattening the (abstract) syntax of a program into
a sequence of tasks to be performed.

– Configurations : A configuration is a representation of the static state of
a program in execution. K models a configuration as a possibly nested cell
structure. Cells are labeled and represent fundamental semantic components,
such as environments, stores, threads, locks, stacks, etc., that are needed for
defining the semantics.

– Rules : Rules give semantics to language constructs. They apply to configura-
tions, or fragments of configurations, to transform them into other configu-
rations. There are two types of rules in K : structural rules, which rearrange
the structure of a configuration into a behaviorally equivalent configura-
tion, and computational rules, which define externally observable transitions
across different configurations. This distinction is similar to that of equations
and rules in Rewriting Logic [16], and to that of heating/cooling rules and
reaction rules in CHAM [3].

To briefly introduce the notations used in K rules, we present a K rule used
for variable lookup (Fig. 1).

���� ����	
��������

�����

X :Param

V

�

X �→ V :Val

�������

�����������	

Fig. 1. Variable lookup rule as defined in K

The illustrated rule shows two bubbles, each representing a cell predefined
in the configuration. k is the computation cell, while context is the cell that

Towards Formal Verification of Orc 43

holds variable mappings. Each bubble can be smooth or torn from the left,
right, or both sides. A both-side-smooth cell means that the matched cell should
contain only the content specified in the rule. A right-side-torn cell means that
the matching should occur at the beginning of the cell; this allows for matching
when more contents are at the end of the matched cell. Similarly, a left-side-
torn cell means that the matching should occur at the end of the cell, so that
unspecified content can be on left of the specified term. A both-sides-torn cell
means that the matching can occur anywhere in the matched cell. Furthermore,
Upper-case identifiers such as X and V are variables to be referenced inside
the rule only; they can be followed by a colon meaning ”of type”. Finally, the
horizontal line means that the top term rewrites to the bottom term. What this
rule does is that it matches a Param X at the beginning of a k cell, matches the
same X in the context cell mapped to a Value V, and then rewrites the X in
the k cell to the value V.

K combines many of the desirable features of existing semantics frameworks,
including expressiveness, modularity, convenient notations, intuitive concepts,
conformance to standards, etc. One very useful facility of K when defining pro-
gramming languages is the ability to tag rules with built-in attributes, e.g.
strict, for specifying evaluation strategies, which are essentially notational
conveniences for a special category of structural rules (called heating/cooling
rules) that rearrange a computation to the desired evaluation strategy. Using
attributes, instead of explicitly writing down these rules protects against po-
tential specification errors and avoids going into unwanted non-termination. In
general, these attributes constitute a very useful feature ofK that makes defining
complex evaluation strategies quite easy and flexible.

Furthermore, K is unique in that it allows for true concurrency even with
shared reads, since rules are treated as transactions. In particular, instances
of possibly the same or different computational rules can match overlapping
fragments of a configuration and concurrently fire if the overlap is not being
rewritten by the rules. Truly concurrent semantics of K is formally specified by
graph rewriting [7]. For more details about the K framework and its features
and semantics, the reader is referred to [24,25].

An implementation of the K framework is given by the K tool [6,14], which
is based on Maude [4], a high-performance rewriting logic engine. Using the un-
derlying facilities of Maude, the K tool can interpret and run K semantic speci-
fications providing a practical mechanism to simulate programs in the language
being specified and verify their correctness. In addition, the K tool includes a
state-space search tool and a model checker (based, respectively, on Maude’s
search and LTL model-checking tools), as well as a deductive program verifier
for the targeted language. This allows for dynamic formal verification of Orc
programs in our case.

The K tool can compile definitions into a Maude definition using the kompile
command. It can then do several operations on the compiled definition using
its Maude backend. krun can execute programs and display the final configura-
tion. krun with the --search option displays all different solutions that can be

44 M.A. AlTurki and O. Alzuhaibi

reached through any non-deterministic choices introduced by the definition. An
option --pattern can be specified to only display configurations that match a
certain pattern. Moreover, --ltlmc directly uses Maude’s LTL model checker1.

TheK tool effectively combines the simplicity and suitability of theK framework
to defining programming languageswith the power and features ofMaude. A fairly
recent reference on theK tool that gently introduces its most commonly useful fea-
tures can be found in [6].

2.2 The Orc Calculus

Orc [20,22] is a theory for orchestration of services that provides an expressive
and elegant programming model for timed, concurrent computations. A site
in Orc represents a service (computation) provider, which, when called, may
produce, or publish, at most one value. Site calls are strict, i.e., they have a call-
by-value semantics. Moreover, different site calls in Orc may occur at different
times. For effective programming in Orc, a few internal sites are assumed, namely
(1) the if (b) site, which publishes a signal if b is true and remains silent otherwise,
(2) Clock , which publishes the current time value, and (3) Rtimer(t), which
publishes a signal after t time units.

Syntax of Orc. An Orc program d̃; f is a list of expression definitions d̃ followed
by an expression f . An Orc expression describes how site calls (and responses)
are combined in order to perform a useful computation. The abstract syntax
of Orc expressions is shown in Fig. 2. We assume a special site response value
stop, which may be used to indicate termination of a site call without necessarily
publishing a standard Orc value.

f, g ∈ Expression ::= 0 | p(p̃) | f | g | f >x> g | g <x< f | f ; g
p ∈ Parameter ::= x | w

x ∈ Variable w ∈ Value ∪ {stop}

Fig. 2. Abstract syntax of Orc expressions

An Orc expression can be: (1) the silent expression (0), which represents a site
that never responds; (2) a parameter or an expression call having an optional
list of actual parameters as arguments; or (3) the composition of two expressions
by one of four composition operators. These are: (1) the “parallel” combinator,
f | g, which models concurrent execution of independent threads of computation;
(2) the “sequential” combinator, f >x> g, which executes f , and for each value
w published by f creates a fresh instance of g, with x bound to w, and runs that

1 The latest release of K 3.5 depends on Maude as well as Java as backends. It is the
last version to support the Maude backend. Developments are running on the Java
backend to incorporate all of Maude’s features.

Towards Formal Verification of Orc 45

instance in parallel with the current evaluation of f >x> g; (3) the “pruning”
combinator, f <x< g, which executes f and g concurrently but terminates g
once g has published its first value, which is then bound to x in f ; finally (4)
the “otherwise” combinator, f ; g, which attempts to execute f to completion,
and then executes g only if f terminates without ever publishing a value.

A variable x occurs bound in an expression g when g is the right (resp. left)
subexpression of a sequential composition f >x> g (resp. a pruning composition
g <x< f). If a variable is not bound in either of the two above ways, it is
said to be free. We use the syntactic sugar f � g (resp. g � f) for sequential
composition (resp. pruning composition) when x is not free in g. To minimize
use of parentheses, we assume the following precedence order (from highest to
lowest): � , | , � , ; .

To illustrate the informal meaning of the combinators, we list some examples
here. Many more examples and larger programs can be found in [22,12,5,13,21].

Example 1. Suppose we want to get the current price of gold, and that we
have three sites that provide this service: GoldSeek, GoldPrice, and Kitco. In
such a case, we only care about receiving an answer as soon as possible. So,
it would make sense to call these three sites in parallel. The expression would
be: (GoldSeek() | GoldPrice() | Kitco()). Now, suppose we want the price in a
different unit, say Euro/gram instead of USD/Oz. We need only one of these
three sites to publish a value. Observe the following Orc expression:

Converter(x,USD/Oz,EUR/gram) < x < (GoldSeek() |GoldPrice() | Kitco()).
The pruning combinator tells the parallel expression to give it only the first value
it publishes. As soon as it receives a value, it prunes the whole right-side expression
and passes the value to the left side, and binds it to x.

Example 2. Suppose we have a site called FireAlarm that when called, remains
silent unless a fire has been detected, in which case it publishes the fire’s location.
That information is sent to the fire department which needs to make a decision
to dispatch a fire engine. The fire department calls a site CalcNearestStation and
gives it the location of the fire to locate the nearest fire station. The response is
then passed on to a site Dispatch which will dispatch a fire truck from the given
station to the given location. The Orc expression would be:

FireAlarm() > fireLoc > CalcNearestStation(fireLoc)
> station > Dispatch(station, fireLoc)

After detailing our semantics of Orc in Section 3, we show the output of
executing some sample expressions in Section 4.

Operational Semantics of Orc. The reference semantics of Orc is the informal
but detailed semantics of Orc given by Misra and illustrated by many examples
in [20]. A structural operational semantics (SOS) for the instantaneous (untimed)
behaviors of Orc was also developed by Misra and Cook in [22]. An updated SOS
listing that includes rules for the semantics of the otherwise combinator and stop
site responses is given in [2].

46 M.A. AlTurki and O. Alzuhaibi

The SOS semantics specifies an interleaving semantics of the possible behav-
iors of an Orc expression as a labeled transition system with four types of actions
an Orc expression may take: (1) publishing a value, (2) calling a site, (3) making
an unobservable transition τ , and (4) consuming a site response. As discussed by
Misra and Cook in [22], the SOS semantics is highly non-deterministic, allowing
internal transitions within an Orc expression (value publishing, site calls, and τ
transitions) and the external interaction with sites in the environment (through
site return events) to be interleaved in any order. Therefore, a synchronous se-
mantics was proposed in [22] by placing further constraints on the application
of SOS semantic rules, effectively giving internal transitions higher priority over
the external action of consuming a site response.

A timed SOS specification extending the original SOS with timing was also
proposed [26]. The timed SOS refines the SOS transition relation into a relation
on time-shifted Orc expressions and timed labels of the form (l, t), where t is
the amount of time taken by a transition. In this extended relation, a transition

step of the form f
(l,t)

↪−→ f ′ states that f may take an action l to evolve to f ′ in
time t, and, if t �= 0, no other transition could have taken place during the t time
period. To properly reflect the effects of time elapse, parts of the expression f
may also have to be time-shifted by t. The semantics described in [26] abstracted
away the non-publishing events as unobservable transitions, which is the level of
abstraction we assume in the K semantics we describe next.

3 K-Semantics of Orc

The semantics of Orc in K is specified in two modules: (1) the syntax module,
which defines the abstract syntax of Orc in a BNF-like style along with any
relevant evaluation strategy annotations, and (2) the semantics module, which
defines the structure of a configuration and the rules (both structural and com-
putational) that define Orc program behaviors. These modules are explained
in some detail in this section. The full K specification of Orc can be found at
(http://www.ccse.kfupm.edu.sa/∼musab/orc-k).

3.1 Syntax Module

Orc is based on execution of expressions, which can be simple values or site calls,
or more complex compositions of simpler subexpressions using one or more of its
combinators. Looking at Fig. 2 showing the abstract syntax of the Orc calculus,
the following grammar defined in K syntax is almost identical (with Pgm and
Exp as syntactic categories for Orc programs and expressions, respectively):

An Orc value, which could be an integer, a string, a boolean, or the signal

value, is syntactic sugar for a site call that publishes that value and halts.
A site call looks like a function call, having the site name and a list of actual

parameters we call Arguments. A site, when called, may publish a standard Orc
value or a special value stop, which indicates termination with no value being
published. A site call can result in publishing at most one value.

http://www.ccse.kfupm.edu.sa/~musab/orc-k

Towards Formal Verification of Orc 47

������ ��� ::= �����	
 ���

������ ��� ::=
��

| ���������

������ ���� ::= �����(�����
)
| ������(���
) ���������	

������ ��� ::= ���

| ����

> ��� � ����� � ��� ������

> ��� � ��� ������

> ��� � ����� � ��� �
���

> ��� � ��� �
���

Fig. 3. Syntax of Orc as defined in K

There are a few semantic elements, which appear in Fig. 3, that K allows
to define within the syntax module. The first is precedence, denoted by the
> operator. As mentioned in Section 2.2, the order of precedence of the four
combinators from highest to lowest is: the sequential, the parallel, the pruning,
and then the otherwise combinator. In addition, we prefer for simpler expressions
to be matched before complex ones; so, on top, we put Arg and Call.

The second semantic element that is defined within the syntax module of K is
right- or left-associativity. It is important to note that the parallel operator
is defined as right-associative, rather than fully-associative because K ’s parser
does not yet support full associativity. However, this is resolved in the semantics
by transforming the tree of parallel composition into a fully-associative soup of
threads as discussed in Section 3.2.

The third is strictness. strict(i) means that the ith term in the right hand
side of the production must be evaluated before the production is matched.

3.2 Semantics Module

This module specifies the semantics of the language using K rules. Each rule
specifies one or more rewrites, that take place in different parts of the configu-
ration. We first explain the structure of the configuration, followed by key rules.

Configuration. A configuration in K is a representation of a state consisting
of possibly nested cells. Fig. 4 shows the structure of our configuration. A cell
thread is declared with multiplicity *, i.e., zero, one, or more threads. Enclosed
in thread is the main cell k. k is the computation cell where we execute our
program. We handle Orc productions from inside the k cell.

The context cell is for mapping variables to values. The publish cell keeps
the published values of each thread, and gPublish is for globally published
values. props holds thread management flags. varReqs helps manage context
sharing. gVars holds environment control and synchronization variables. The
in and out cells are respectively the standard input and output streams. And
finally, defs holds the expressions defined at the beginning of an Orc program.

48 M.A. AlTurki and O. Alzuhaibi

Each cell is declared with an initial value. The $PGM variable, which is the
initial value of the k cell, tells K that this is where we want our program to
go (after it is parsed). So by default, the initial configuration, shown in Fig. 4,
would hold a single thread with the k cell holding the whole Orc program as the
Pgm non-terminal defined in the syntax above.

��������	
����

�

���

$PGM :Pgm
�

•Map

����	
�
•List

��
����

��

���	����
•Set

�����
•List

����	��

���	���

���	���

��

�	���

•Params

�	�������
•K

���

�	��

�	��

•List

���
����
•List

� ���
•List

��
•List

���

!

Fig. 4. Structure of the configuration

K Rules. For clarity and convenience, we first illustrate the essence of the rules
as transformations in schematic diagrams. Then we show some representative
rules exactly as they are defined in K . Our schematic diagrams use the following
notations. Each box represents a thread while lines are drawn between boxes to
link a parent thread to child threads, where a parent thread appears above its
child threads. The positioning of a child thread indicates whether that thread is a
left-side child or a right-side child (which is needed by the sequential and pruning
compositions). Note that in the specification, this information is maintained
through meta thread properties. The center of a box holds the expression the
thread is executing. A letter v at the lower right corner of the box represents a
value which the thread has published. A letter P at the lower left corner denotes
the publishUp flag which basically tells the thread to move its published values
to its parent thread. Variable mappings such as x → v mapping a variable x to
a value v are displayed at the bottom of the box. Finally, the symbol ⇒ denotes
a rewrite.

Towards Formal Verification of Orc 49

Fig. 5. Transformation rule of the parallel combinator

Fig. 6. Transformation rules of the sequential combinator

Combinators. Orc has four combinators, which combine subexpressions ac-
cording to four distinct patterns of concurrent execution, parallel, sequential,
pruning and otherwise.

Parallel Combinator. Given an expression f | g as shown in Fig. 5, the rule
creates a manager thread carrying a meta-function called PCM(x), short for
Parallel Composition Manager, where x is the count of sub-threads it is manag-
ing. Child threads are created as well for each of the expressions f , and g. This
of course extends to any number of subexpressions in the initial expression. For
example, f | g | h will transform to PCM(3) and so on, as each subexpression
will be matched in turn.

Sequential Combinator. The first rule of the sequential combinator, shown in
Fig. 6, creates a manager called SCM, short for Sequential Composition Manager;
and it creates one child that will execute f . The manager keeps three pieces of
information: x, the parameter through which values are passed to instances of
g; g, the right-side expression; and k, a count of active instances of g which is
initially 0.

Every time f publishes a value, the second rule in Fig. 6 creates an instance
of g with its x parameter mapped to the published value. The new instance will
work independently of all of f , the manager, and any other instance that was
created before. So in effect, it is working in parallel with the whole composition,
as is meant by the informal semantics [20].

Pruning Combinator. The idea of the pruning expression is to pass the first value
published by g to f as a variable x defined in the context of f . Regardless, f
should start execution anyway. If it needed a value for x to continue its execution,

50 M.A. AlTurki and O. Alzuhaibi

Fig. 7. Transformation rules of the pruning combinator

Fig. 8. Transformation rules of the otherwise combinator

it would wait for it. So, the first rule of the pruning combinator creates a manager
PrCM (short for Pruning Composition Manager), a thread executing f , and
another thread executing g. See Fig. 7. The second rule is responsible for passing
the published value from g to f and terminating (pruning) g. These two rules
are shown in Figures 10 and 11 as they are defined in K .

Fig. 9. Transformation rule of publishing values

Otherwise Combinator. The otherwise combinator is implemented in three rules
shown in Fig. 8. It starts by creating a manager called OthCM (short for Other-
wise Composition Manager) and a child thread to execute f . Then if f publishes
its first value, g is discarded and f may continue to execute and is given permis-
sion to publish. However, if f halts without publishing anything, the third rule
applies and the whole otherwise expression is replaced by g. As mentioned in
Section 2.2, stop is a special value that indicates that an expression has halted.

Publishing and Variable Lookup. Due to the uniform structure of thread
hierarchy common in the productions of all four combinators, defining general
operations like publishing and variable lookup become compositional.

Towards Formal Verification of Orc 51

���� �������	���

(F :Exp � X :Param � G:Exp)

���� (X)

�

Context

�������

ManagerId
��	

�
���	

•Bag

F

�

Context

�������

ChildId1 :Int

��	

ManagerId

������	

���	��
 (�
���������
�) ���	��
 (�
�����
�
�)

��
�

�
���	

G

�

Context

�������

ChildId2 :Int

��	

ManagerId

������	

���	��
 (�
������
���
�)

��
�

�
���	

�����������	

Fig. 10. First K rule of the Pruning Combinator

���� �������	�����	����
	���	����	�����	��	���

���� (X :Param)
�

ManagerId
��	

�
���	

�:K

•K

�

��
�	��
 (V :Val) �

•List

�����

���	��
 (�
������
���
�)

���	��
 (�
�������)

��
�

ManagerId

������	

�
���	

•Map

X �→ V

�������

ManagerId

������	

���	��
 (�
���������
�)

��
�

�
���	

�����������	

Fig. 11. Second K rule of the Pruning Combinator

52 M.A. AlTurki and O. Alzuhaibi

A manager thread expecting values from a certain child simply sets a property
in the child called publishUp in the cell props. As pointed out earlier, in our
schematic drawings of the semantics, this property is denoted by a letter P in the
lower left corner of the thread box. See Fig. 9. In retrospect, The child receiving
the publishUp property might be itself a manager of a deeper composition,
awaiting values to be published up to it. This behavior creates a channel from
the leaves of the thread tree up to the root, which will publish the output of the
whole Orc program in the cell gPublish. Threads which are given the publishUp
property are:

– All children of a Parallel Composition Manager.
– All right-side instances of a Sequential Composition Manager
– The left-side thread of a Pruning Composition Manager
– The child of an Otherwise Composition Manager.

Such a channel is also evident when variable requests are propagated up the
tree, since every thread is allowed to access the context map of any of its an-
cestors. A variable request, carrying the requester thread’s ID, is propagated
recursively up the tree, through a specialized cell varReqs, until it is resolved or
reaches the root in which case it resets.

It is important to note that no manager is allowed to share the context of any
of its children with the others, nor is it allowed to access it. Otherwise, some
values could be accidentally overwritten if copied from one scope to another.

Synchronization and Time. The semantics of our (discrete) timing model
follows the standard semantics of time in rewrite theories implemented in Real-
Time Maude [23], in which time is modeled by the set of natural numbers cap-
tured by a clock cell in the configuration, and the effects of time lapse are
modeled by a δ function.

Effectively, the δ function is what advances time in the environment. It is
applied to the whole environment, and so it will be applied on all threads, and
on the environment’s clock to increment it. It will not have an effect on compu-
tations of internal sites, but only on timer sites and external sites that are yet to
respond. One such site is Rtimer(t), which publishes a signal after t time units.
The δ function’s effect can be directly seen on Rtimer in the following rule:

δ(Rtimer(t)) ⇒ Rtimer(t− 1), where t > 0.
Therefore, the semantics of the Rtimer site, and any timed site, is only realiz-

able through the δ function. When δ successfully runs on the whole environment,
it is said to have completed one tick.

4 Formal Analysis of Orc Orchestrations

In this section, we present an example showing the formal analysis that can
be done on Orc programs using the K tool. We defined external Orc sites to
simulate a robot moving around a room with obstacles. A layout of the room
we will be working with is shown in Fig. 12. We could of course work with a

Towards Formal Verification of Orc 53

Fig. 12. Initial configuration of the robot environment

more complex environment, but the purpose here is a simple demonstration and
a proof of the concept. We first simulate the movement of the robot, and then
show an example of formal verification.

Robot Sites’ Semantics. Before running any example, we explain our seman-
tics of these robot sites. MoveFwd will cause the robot to move a distance of one
block in its direction. turnRight and turnLeft will rotate the robot, while stand-
ing on the same block, 90 degrees clockwise and counterclockwise respectively.
We also made each of these sites takes a certain amount of time to respond.
MoveFwd takes three time units while each of turnRight and turnLeft take one
time unit. Hitting an obstacle while trying to move forward will still consume
three time units but will turn on a flag called isBumperHit which will reset on
the next action.

4.1 Simulation

The robot starts at (1,0) facing north. Suppose that we want to move it towards
the star at (0,1). The following Orc program will do just that:

MoveFwd() � TurnLeft() � MoveFwd()
Running krun on the expression outputs the final configuration as shown in

Fig. 13. Some parts were omitted for space convenience. However, the important
parts are the position, direction and the isBumperHit flag. We can see that they
ended up as expected: the robot is at (1,0) facing west, and the bumper is not
hit. Notice also that the clock is at seven time units, the time it takes for two
MoveFwd ’s and one turnLeft.

Writing the same program again but this time adding another MoveFwd to
the end of the sequence makes the expression:

MoveFwd() � TurnLeft() � MoveFwd() � MoveFwd()
Running this will cause the robot to hit the wall. That will turn on the

isBumperHit flag as in Fig. 13. This time, the clock is at 10 time units, three
units more consumed by the additional MoveFwd.

4.2 Verification

Here, we show a simplistic example that demonstrates the formal verification
capabilities of K . First we introduce an element of nondeterminism. Consider

54 M.A. AlTurki and O. Alzuhaibi

<gVars >
"BotVars " |->

"direction" |-> (-1,0)
"position " |-> (0,1)
"is_bumper_hit" |-> false

"clock" |-> 7
</gVars >

<gVars >
"BotVars " |->

"direction" |-> (-1,0)
"position " |-> (0,1)
"is_bumper_hit" |-> true

"clock" |-> 10
</gVars >

Fig. 13. selected output of running simulations: example 1 (left), example 2 (right)

the Orc expression RandomMove() that is defined as:
MoveFwd() | TurnLeft() � MoveFwd() | TurnRight() � MoveFwd()
Executing this expression, the robot should nondeterministically choose be-

tween one of the paths separated by the parallel operator. Suppose we need
to know whether this program will cause the robot to hit an obstacle or
not. Running the program with krun --search --pattern and specifying
isBumperHit → true as the pattern will show all configurations where the robot
hits. The full command looks like this:

krun bot.orc --search --pattern "<gVars>... \"BotVars\" |->

(M:Map \"is_bumper_hit\" |-> B) </gVars> when B ==K true"

The output of that command shows only one solution; it shows a configura-
tion where the position is (1, 0), the initial position, and the direction is east.
Obviously, the robot reached there by picking the third choice, TurnRight() �
MoveFwd().

Now consider making two random moves in sequence: RandomMove() �
RandomMove(). Checking for all possible configurations where the robot hits
reveals five solutions while checking for when the robot reaches the star at (0,1)
shows two solutions. Searching in more complex environments with more com-
plex expressions reveals many more solutions.

We demonstrated the potential of exploiting K ’s state search capabilities for
purposes of formal verification. Other methods that K provides such as Maude’s
LTL model checker and Maude’s proof environment are sure to deliver more
in-depth verification.

5 Conclusion and Future Developments

In this paper, we have presented a first attempt at devising a formal executable
semantics for Orc in the K framework and how it may be used for verifying Orc
programs. The semantics is distinguished from other operational semantics by
the fact that it is not directly based on Orc’s original interleaving SOS seman-
tics. The semantics takes advantage of concurrent rewriting facilitated by the
underlying K formalism to capture its concurrent semantics and makes use of
K ’s innovative notation to document the meaning of its various combinators.

Due to subtleties related to timing and transition priorities, faithfully cap-
turing the Orc semantics is a nontrivial challenge for any semantic framework.

Towards Formal Verification of Orc 55

We plan to continue extending and refining the semantics so that all such sub-
tleties are appropriately handled. Furthermore, executability of the semantics
does not just mean the ability to interpret Orc programs using the seman-
tics specification; it also means that dynamic formal verification, such as model
checking, of Orc programs can be performed, which is something that we plan
to demonstrate using the K tool with its Maude model checker. Moreover, an
investigation of how the resulting semantics relates to the existing rewriting logic
semantics would be an interesting future direction.

Acknowledgments. We thank José Meseguer and Grigore Roşu for their very helpful
discussions, suggestions and comments on the work presented here. We also thank the
anonymous reviewers for their valuable comments. This work was partially supported
by King Fahd University of Petroleum and Minerals through Grant JF121005.

References

1. AlTurki, M.: Rewriting-based Formal Modeling, Analysis and Implementation
of Real-Time Distributed Services. PhD thesis, University of Illinois at Urbana-
Champaign (August 2011), http://hdl.handle.net/2142/26231

2. AlTurki, M.A., Meseguer, J.: Executable rewriting logic semantics of Orc and for-
mal analysis of Orc programs. Journal of Logical and Algebraic Methods in Pro-
gramming (to appear, 2015)

3. Berry, G., Boudol, G.: The chemical abstract machine. Theor. Comput. Sci. 96(1),
217–248 (1992)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P.,Mart́ı-Oliet, N.,Meseguer, J., Talcott, C.:
All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in Orc. In: Ciancarini, P.,
Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 82–96. Springer,
Heidelberg (2006)

6. Şerbănuţă, T.F., Arusoaie, A., Lazar, D., Ellison, C., Lucanu, D., Roşu, G.: The
K primer (version 3.3). In: Hills, M. (ed.) Proceedings of the Second International
Workshop on the K Framework and its Applications (K 2011), vol. 304, pp. 57–80.
Elsevier (2014)

7. Şerbănuţă, T.F., Roşu, G.: A truly concurrent semantics for the K framework based
on graph transformations. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 294–310. Springer, Heidelberg (2012)

8. Şerbănuţă, T.F., Roşu, G., Meseguer, J.: A rewriting logic approach to operational
semantics. Information and Computation 207(2), 305–340 (2009); Special issue on
Structural Operational Semantics (SOS)

9. Ellison, C., Roşu, G.: An executable formal semantics of C with applications. In:
Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2012, pp. 533–544. ACM,
Philadelphia (2012)

10. Farzan, A., Chen, F., Meseguer, J., Roşu, G.: Formal analysis of Java programs in
JavaFAN. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 501–505.
Springer, Heidelberg (2004)

http://hdl.handle.net/2142/26231

56 M.A. AlTurki and O. Alzuhaibi

11. Farzan, A., Meseguer, J., Roşu, G.: Formal JVM code analysis in JavaFAN. In:
Rattray, C., Maharaj, S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116,
pp. 132–147. Springer, Heidelberg (2004)

12. Kitchin, D., Powell, E., Misra, J.: Simulation using orchestration. In: Meseguer,
J., Roşu, G. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 2–15. Springer, Heidelberg
(2008)

13. Kitchin, D., Quark, A., Misra, J.: Quicksort: Combining concurrency, recursion,
and mutable data structures. In: Roscoe, A.W., Jones, C.B., Wood, K.R. (eds.)
Reflections on the Work of C.A.R. Hoare, History of Computing, pp. 229–254.
Springer, London (2010)

14. Lazar, D., Arusoaie, A., Şerbǎnuţǎ, T.F., Ellison, C., Mereuta, R., Lucanu, D.,
Roşu, G.: Executing formal semantics with the K tool. In: Giannakopoulou, D.,
Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 267–271. Springer, Heidelberg
(2012)

15. Lucanu, D., Şerbănuţă, T.F., Roşu, G.: K framework distilled. In: Durán, F. (ed.)
WRLA 2012. LNCS, vol. 7571, pp. 31–53. Springer, Heidelberg (2012)

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

17. Meseguer, J., Roşu, G.: Rewriting logic semantics: From language specifications to
formal analysis tools. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS
(LNAI), vol. 3097, pp. 1–44. Springer, Heidelberg (2004)

18. Meseguer, J., Roşu, G.: The rewriting logic semantics project. Theoretical Com-
puter Science 373(3), 213–237 (2007)

19. Meseguer, J., Roşu, G.: The rewriting logic semantics project: A progress report.
In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 1–37.
Springer, Heidelberg (2011)

20. Misra, J.: Computation orchestration: A basis for wide-area computing. In:
Broy, M. (ed.) Proc. of the NATO Advanced Study Institute, Engineering The-
ories of Software Intensive Systems. NATO ASI Series, Marktoberdorf, Germany
(2004)

21. Misra, J.: Structured concurrent programming. Manuscript, University of Texas at
Austin (December 2014),
http://www.cs.utexas.edu/users/misra/temporaryFiles.dir/Orc.pdf

22. Misra, J., Cook, W.R.: Computation orchestration. Software and Systems Model-
ing 6(1), 83–110 (2007)

23. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

24. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. Journal of
Logic and Algebraic Programming 79(6), 397–434 (2010); Membrane computing
and programming

25. Roşu, G., Şerbănuţă, T.F.: K overview and SIMPLE case study. In: Hills, M. (ed.)
Proceedings of the Second International Workshop on the K Framework and its
Applications (K 2011). Electronic Notes in Theoretical Computer Science, vol. 304,
pp. 3–56. Elsevier (2014)

26. Wehrman, I., Kitchin, D., Cook, W.R., Misra, J.: A timed semantics of Orc. Theo-
retical Computer Science 402(2-3), 234–248 (2008); Trustworthy Global Computing

http://www.cs.utexas.edu/users/misra/temporaryFiles.dir/Orc.pdf

Narrowing Operators on Template

Abstract Domains

Gianluca Amato(�), Simone Di Nardo Di Maio, Maria Chiara Meo,
and Francesca Scozzari

Dipartimento di Economia, Università di Chieti-Pescara, Pescara, Italy
g.amato@unich.it

Abstract. In the theory of abstract interpretation, a descending phase
may be used to improve the precision of the analysis after a post-fixpoint
has been reached. Termination is often guaranteed by using narrowing
operators. This is especially true on numerical domains, since they are
generally endowed with infinite descending chains which may lead to a
non-terminating descending phase in the absence of narrowing. We pro-
vide an abstract semantics which improves the analysis precision and
shows that, for a large class of numerical abstract domains over integer
variables (such as intervals, octagons and template polyhedra), it is pos-
sible to avoid infinite descending chains and omit narrowing. Moreover,
we propose a new family of narrowing operators for real variables which
improves the analysis precision.

1 Introduction

Computing a static analysis in the framework of abstract interpretation [6,7]
typically amounts to solve a set of equations describing the program behavior.
Given a program to be analyzed, we associate to each control point i of the
program an unknown1 xi and an equation xi = Φi(x1, . . . , xn), where Φi is a
monotone, state-transition operator. The unknowns x1, . . . , xn range over an
abstract domain A, which encodes the property we want to analyze. An element
of A is called abstract object and represents a set of concrete states.

We are interested in finding the (least) solution, over the domain A, of the
set of equations Φ = (Φ1, . . . , Φn) associated to the program to be analyzed.
The abstract interpretation framework ensures that any solution of the set of
equation correctly approximates the concrete behavior of the program, and the
smaller the solution, the more precise is the result of the analysis. In theory, the
least solution of the system can be exactly computed as the limit of a Kleene
iteration, starting from the least element of An. In practice, such a method can
be unfeasible, since many abstract domains exhibit infinite ascending chains,
and thus the computation may not terminate. Moreover, even for finite abstract
domains, it may happen that the ascending chains are very long, and this method
would result impractical.

1 We use the terms variable to denote a variable in the program, and unknown to
denote a variable in the data-flow equations.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 57–72, 2015.
DOI: 10.1007/978-3-319-19249-9_5

58 G. Amato et al.

The standard method to perform the analysis is to compute an approximation
of the least solution of the system of equations using widening and narrowing
operators [5,8]. For specific abstract domains or for restricted classes of pro-
grams, we may find in the literature alternatives, such as acceleration operators
[12] and strategy/policy iteration [4,10,11], but these methods are not generally
applicable and their complexity may be impractical.

A widening, generally denoted by �, is a binary operator over the abstract
domain A such that:

– it is an upper bound;
– when used in equations of the kind xi = xi�Φi(x1, . . . , xn), it precludes the

insurgence of infinite ascending chains for xi.

The widening operator compares the value of xi in the previous iteration with its
value in the current iteration and, in some cases, returns an approximated value.
Widening is used to ensure the termination of the analysis, while introducing
a loss in precision. This is realized by replacing some of the original equations
xi = Φi(x1, . . . , xn) with xi = xi �Φi(x1, . . . , xn). The replacement may involve
all unknowns or, more commonly, only the ones corresponding to loop heads.
Applying widening in this way ensures the termination of a Kleene iteration,
but we only get a post-fixpoint of the function Φ = (Φ1, . . . , Φn), instead of the
least one.

Once we reach a post-fixpoint, we can start a new Kleene iteration, giving
origin to a descending chain which improves the result of the analysis. However,
due to infinite descending chains in the abstract domain, the descending itera-
tion might not terminate. The next example2 shows this phenomenon using the
abstract domain IntZ of intervals over integer numbers [5], defined as:

IntZ = {[l, u] ⊆ Z | l ≤ u ∈ Z ∪ {−∞,∞}} ∪ {∅},

where ∅ denotes the empty set of concrete states, i.e., an unreachable control
point. The standard widening on intervals [5] is defined as follows:

∅ � I = I

I � ∅ = I

[l1, u1] � [l2, u2] = [l′, u′]

where

l′ =

{
l1 if l1 ≤ l2

−∞ otherwise
u′ =

{
u1 if u1 ≥ u2

+∞ otherwise

Essentially, it works by preserving stable bounds and removing unstable ones.
For instance, [0, 3] � [0, 4] = [0,∞]. In this way, infinite ascending chains are
precluded.

2 To the best of our knowledge, this is the first example in the literature which shows
a program analysis iterating over an infinite descending sequence in an integer nu-
merical domain.

Narrowing Operators on Template Abstract Domains 59

i=0
while(i<10) {

i=i+1
if (i>=9)
i=0

}
while(i>=10) {

i=i+1
}

(a) Program

i = 0

i < 10

i = i+ 1

i >= 9

i = 0

i >= 10

i = i+ 1

1

2

true
3

4

true
5

7

6

8

10

9

true
11

12
false

13

(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨ x8

x3 = x2 ∧ [−∞, 9]

x4 = x3 + [1, 1]

x5 = x4 ∧ [9,∞]

x6 = [0, 0]

x7 = x4 ∧ [−∞, 8]

x8 = x6 ∨ x7

x9 = x2 ∧ [10,∞]

x10 = x9 ∨ x12

x11 = x10 ∧ [10,∞]

x12 = x11 + [1, 1]

x13 = x10 ∧ [−∞, 9]

(c) Equation system

Fig. 1. The example program doubleLoop

Example 1. Consider the example program doubleLoop in Fig. 1(a), and the
corresponding flowchart and set of equations in Fig. 1(b) and 1(c). We perform
the analysis using the integer interval domain IntZ with the standard widening.
Therefore, we replace the second and the tenth equation in Fig.1(c) with

x2 = x2 � (x1 ∨ x8)

x10 = x10 � (x9 ∨ x12) .

Note that these two equations correspond to the loop joins. We assume to follow
a work-list based iteration sequence, although the result is analogous with other
standard two-phases iteration schemas.

The first time x2 is considered, we have x1 = [0, 0] and x2 = x8 = ∅. Widening
does not trigger and x2 gets updated to x2 := x1 ∨ x8 = [0, 0]. However, the

60 G. Amato et al.

second time x2 is considered we have x8 = [1, 1], hence x1 ∨ x8 = [0, 1], which
is widened to [0,+∞]. This eventually leads to x9 := [10,+∞], x10 := [10,+∞]
and x12 := [11,+∞] which is a post-fixpoint and the result of the ascending
phase of the analysis.

Starting from the post-fixpoint, we continue to evaluate the semantic equa-
tions, without applying neither widening nor narrowing, thus using the original
equations x2 = x1∨x8 and x10 = x9 ∨x12. We get a descending sequence, which
turns out to be infinite. In fact, the first time x2 is re-evaluated, we have

x2 := x1 ∨ x8 = [0, 0] ∨ [0, 8] = [0, 8]

which leads to x9 := ∅. When we evaluate the equations in the second while
loop, we get

x10 := x9 ∨ x12 = ∅ ∨ [11,+∞] = [11,+∞]

and x12 = [12,+∞]. At the second iteration we get

x10 := x9 ∨ x12 = ∅ ∨ [12,+∞] = [12,+∞]

and x12 := [13,+∞]. It is immediate to see that, while keeping on iterating,
the values computed at the control point x10 are [11,+∞], [12,+∞], [13,+∞],
[14,+∞], . . . which is an infinite descending sequence, whose limit is the empty
set.
�

It is worth noting that, in the previous example, the existence of an infinite de-
scending sequence depends on the fact that the second while loop is unreachable,
although the initial ascending phase of the analysis computes a non-empty over
approximation. This leads to a descending sequence whose limit is the empty
set. This situation is not peculiar of our example. On the contrary, we will show
that this is the only way infinite descending sequences may arise in the integer
interval domain.

To avoid the insurgence of infinite descending chains, we may stop the de-
scending iteration at an arbitrary step, still obtaining a post-fixpoint, or we
may use a narrowing operator. Narrowing, generally denoted by �, is a binary
operator on a abstract domain A such that:

– a1 � a2 is only defined when a2 ≤ a1;
– it holds that a2 ≤ a1 � a2 ≤ a1;
– when used in equations of the kind xi = xi�Φi(x1, . . . , xn), it precludes the

insurgence of infinite descending chains for xi.

The standard narrowing for intervals [5], for example, is defined as:

I � ∅ = ∅
[l1, u1] � [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
l1 otherwise

u′ =

{
u2 if u1 = +∞
u1 otherwise

Narrowing Operators on Template Abstract Domains 61

Essentially, it works by refining only unbounded extremes. For instance, [0,∞]�
[0, 10] = [0, 10] but [0, 10]� [0, 9] = [0, 10]. Let us reconsider Example 1 and show
what happens when we use narrowing in the descending phase.

Example 2. Consider the same program, flowchart and equations of Example 1,
together with the result of the analysis after the ascending phase. We now replace
the equations for x2 and x10 with x2 = x2 � (x1 ∨x8) and x10 = x10 � (x9 ∨x12)
and start a descending iteration.

When the secondequation is first re-evaluated, the currentvalue forx2 is [0,+∞],
hence the standard narrowing allows to change+∞ into 8, and we have x2 := [0, 8]
as for the case without narrowing.However, when x10 is evaluated for the first time
in the decreasing sequence, we have x10 := [10,+∞] � [11,+∞] = [10,+∞]: the
standard narrowing precludes further improvements on the second loop. The de-
scending sequence terminates at the cost of a big loss of precision, since we are not
able to detect anymore that control points 10–12 are unreachable.
�

In the rest of the paper, we will show that narrowing for the integer interval
domain is superfluous, and may be removed upon adopting a slightly different
semantic operator for loop joins which preserves unreachability. Moreover, we
generalize this result to all the template abstract domains over integer variables.

Furthermore, we show that such a result can be used to design a more precise
narrowing on template abstract domain over reals, exploiting the fact that we
never get infinite descending chains of integer intervals.

2 Narrowing on Intervals of Integers

Example 1 shows an analysis which leads to an infinite descending chain of
intervals. In particular, the chain is [11,+∞], [12,+∞], [13,+∞], . . . and its
limit is the empty set. It turns out that the only infinite descending chains of
intervals are of the kind

[n0,+∞], [n1,+∞], [n2,+∞], . . .

or
[−∞,−n0], [−∞,−n1], [−∞,−n2], . . .

where {ni}i∈N is an infinite ascending chain of integers. The limit of all these
chains is the empty set.

Proposition 3. Let {Ii}i∈N be an infinite descending chain of integer intervals.
Then ∧i∈NIi = ∅.

In the rest of the paper we assume to deal only with structured programs,
whose flowchart is reducible. Intuitively, this means that every loop has a single
well defined entry point.

Assume loop is the entry point of a loop and its corresponding equation is
xloop = xin ∨ xback , where in is the edge in the flowchart which comes from

62 G. Amato et al.

outside the loop and back the back edge. Since in a reducible flowchart the entry
point of a loop dominates all the nodes inside the loop, if control point in is
unreachable (i.e., xin = ∅ in the interval domain) the same holds for control
point loop.

Therefore, we may change the abstract semantics of the program by replacing
each equation corresponding to a loop join xloop = xin ∨ xback with xloop =
xin ∨∅ xback , where ∨∅ is a left-strict variant of the join operator defined as:

I1 ∨∅ I2 =

{
∅ if I1 = ∅
I1 ∨ I2 otherwise

(1)

The new set of equations is correct (again, only on reducible flowcharts) and
more precise. Moreover, during the descending phase of the analysis, narrowing is
not required to achieve termination. Actually, assume that an infinite descending
chain arises during the descending phase. Let loop be one of the outermost loop
heads whose variable xloop infinitely decreases. In the presence of left-strict joins,
this leads to a contradiction. The equation of xloop is xloop = xin ∨∅ xback . The
value of xin is definitively constant. Once it reaches its definitive value x̄in , we
may have only two cases:

– if x̄in = ∅, then the first time xloop is re-evaluated we have xloop := ∅ and
xloop cannot descend anymore, contradicting our hypothesis;

– if x̄in
= ∅, then xloop ≥ x̄in always, and therefore it cannot descend infinitely,
due to Proposition 3.

The considerations above hold for any numerical abstract domain A with a
distinguished value denoting unreachability. In the following, we will refer to such
a distinguished value as ∅, which is the common notation in all the numerical
domains in the literature.

This discussion leads therefore to the following results.

Theorem 4. Assume given a numerical abstract domain A with a distinguished
value ∅ denoting unreachability. Assume we have a system of data-flow equations
Φ generated by a structured program whose loop head nodes are of the form
xloop = xin ∨ xback . Then, replacing ∨ with ∨∅ in all the loop heads, the new set
of data-flow equations is still correct.

Theorem 5. In the hypothesis of Theorem 4, assume A is the abstract domain
of integer intervals. Then every iteration strategy on the equations in Φ starting
from a post-fixpoint of Φ leads to a finite sequence.

Note that a descending sequence without narrowing always leads to a fixpoint
of the equation system, instead of a post-fixpoint.

Some of the restrictions of Theorem 4 may be easily lifted. For example, if a
loop join node has equation

Narrowing Operators on Template Abstract Domains 63

xloop = xin1
∨ · · · ∨ xinu

∨ xback1
∨ · · · ∨ xbackv

,

where all the edges ini come from outside the loop and all the back j ’s are back
edges, we may use left-strict join in this way:

xloop = (xin1
∨ · · · ∨ xinu

) ∨∅ (xback1
∨ · · · ∨ xbackv

) .

Moreover, it is possible to extend Theorem 4 to non reducible flowcharts,
provided we only apply the left-strict join to the loop heads that dominate the
sources of the back edges.

When avoiding narrowing, we may find programs whose descending chain is
arbitrarily long, but finite. The next example shows this phenomenon.

Example 6. Consider the example program doubleLoop2 in Fig. 2(a), and the
corresponding flowchart and set of equations in Fig. 2(b) and 2(c). We first
perform the analysis using the integer interval domain IntZ with the standard
widening and narrowing and then we recompute the analysis without narrowing.

In the ascending phase we use widening on the join loops: x2 = x2�(x1∨∅x4)
and x6 = x6 � (x5 ∨∅ x8). The post-fixpoint is:

x1 = [0, 0] x4 = [1, 11] x7 = [−∞, 100]

x2 = [0,∞] x5 = [11,∞] x8 = [−∞, 99]

x3 = [0, 10] x6 = [−∞,∞] x9 = [101,∞]

Now we start the descending phase with the standard narrowing, using the equa-
tions x2 = x2�(x1∨∅x4) and x6 = x6�(x5∨∅x8). When we first apply narrowing
in the second equation, we get:

x2 = x2 � (x1 ∨∅ x4) = [0,∞] � [0, 11] = [0, 11]

and therefore x5 = [11, 11]. We now apply narrowing in the sixth equation:

x6 = x6 � (x5 ∨∅ x8) = [−∞,∞] � [−∞, 99] = [−∞, 99]

and therefore we have x7 = [−∞, 99], x8 = [−∞, 98] and x9 = ∅, which is the
fixpoint.

Wenowrecompute thedescendingphasewithoutnarrowing, using the equations

x2 = x1 ∨∅ x4

x6 = x5 ∨∅ x8 .

The first while loop behaves as before with x5 = [11, 11]. Now we enter the
second while loop. The first iteration is the same as before using narrowing, and
we get:

x6 = [−∞, 99] x8 = [−∞, 98]

x7 = [−∞, 99] x9 = ∅

64 G. Amato et al.

i=0
while(i<=10) {

i=i+1
}
while(i<=100) {

i=i−1
}

(a) Program

i = 0

i <= 10

i = i+ 1

i <= 100

i = i− 1

1

2

true
3

4

6

5

true
7

8
false

9

(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨∅ x4

x3 = x2 ∧ [−∞, 10]

x4 = x3 + [1, 1]

x5 = x2 ∧ [11,∞]

x6 = x5 ∨∅ x8

x7 = x6 ∧ [−∞, 100]

x8 = x7 − [1, 1]

x9 = x6 ∧ [101,∞]

(c) Equation system

Fig. 2. The example program doubleLoop2

But now we are able to continue the descending phase, which is:

2ns descending iteration 3rd d. i. 4th d. i. . . . last d. i.
x6 [−∞, 98] [−∞, 97] [−∞, 96] . . . [−∞, 11]
x7 [−∞, 98] [−∞, 97] [−∞, 96] . . . [−∞, 11]
x8 [−∞, 97] [−∞, 96] [−∞, 95] . . . [−∞, 10]

Note that, by continuing the descending phase till the fixpoint, we are able
to detect that the guard in the second while loop is over dimensioned, since the
variable i never reaches the value 100.
�

2.1 Template Abstract Domains

The above result on intervals can be extended to the whole family of template
abstract domains. We call template abstract domains those numerical domains
where the coefficients of the allowed constraints are fixed in advance, before
starting the analysis. Most important template abstract domains are the domain
of intervals (also called box domain) [5], octagons [14] and template polyhedra
[15]. Non-template abstract domains are, among others, polyhedra [9] and two-
variable for linear inequality [16].

Narrowing Operators on Template Abstract Domains 65

All the template abstract domains may be described using a fixed matrix
which describes the constraints and any abstract object o is a subset of Rn (or
Z
n if working with integer variables) of the form o = {x ∈ R

n | l ≤ Ax ≤ u}
where A is the constraint matrix, l and u are, respectively, the lower and upper
bounds.

A box is an abstract object where A is the identity matrix. Octagons are those
objects where the coefficient matrix A allows constrains of the form ±x± y ≤ c.
Finally, template polyhedra are those objects where the coefficient matrix A is
arbitrary but fixed a priori.

Under the hypothesis of Theorem 4, it is possible to extend Theorem 5 to all
the template abstract domains. In fact, given a narrowing operator on intervals,
we can immediately define a corresponding component-wise narrowing operator
on any template abstract domain. We first show that template abstract domains
over integers enjoy a property similar to Prop. 3. Note that a template domain
over integers only needs to have integer bounds, while the coefficients of the
constraint matrix may be reals.

Proposition 7. Let A be a template abstract domain over integers and {Ii}i∈N

be an infinite descending chain of objects Ii ∈ A. Then ∧i∈NIi = ∅, where ∅ is a
distinguished value of A denoting unreachability.

Exploiting the above proposition and Theorem 4, we can prove a result ana-
logue to Theorem 5 which, in presence of a left-strict join, allows us to avoid
narrowing, still guaranteeing termination.

Theorem 8. In the hypothesis of Theorem 4, assume A is a template abstract
domain over integers. Then every iteration strategy on the equations in Φ starting
from a post-fixpoint of Φ leads to a finite sequence.

3 Narrowing on Reals

The left-strict join we have introduced for integer domains may also be used with
abstract domains over real variables. This improves the precision of the analysis,
but does not ensure that the descending phase will terminate. This depends
on the fact that, once we admit real variables, we can have infinite descending
chains whose limit is not the empty set. Nonetheless, in this case the left-strict
join may be exploited to define a narrowing more precise than the standard one.

The next example shows that on the standard interval domain IntR for real
variables, the descending phase of the analysis may lead to an infinite descending
chain whose limit is not the empty set. We recall that

IntR = {[l, u] ⊆ R | l ≤ u ∈ R ∪ {−∞,∞}} ∪ {∅}.

Example 9. Consider the example program realLoop in Fig. 3(a), and the cor-
responding flowchart and equations in Fig. 3(b) and 3(c). The ascending phase

66 G. Amato et al.

i=0
while(true) {

if (i>10) {
i=0

}
i=(i+2)/2

}

(a) Program

i = 0

i > 10

i = 0

i = (i+ 2)/2

1

2

true
3

5

4

6

7

(b) Flowchart

x1 = [0, 0]

x2 = x1 ∨∅ x7

x3 = x2 ∧ [10,+∞]

x4 = [0, 0]

x5 = x2 ∧ [−∞, 10]

x6 = x4 ∨ x5

x7 = (x6 + [2, 2])/2

(c) Equation system

Fig. 3. The example program realLoop

using left-strict join and standard widening, i.e., x2 = x2 � (x1 ∨∅ x7), reaches a
post-fixpoint in two iterations.

1st ascending iteration 2nd ascending iteration
x1 [0, 0] [0, 0]
x2 [0, 0] [0, 0] � [0, 1] = [0,+∞]
x3 ∅ [10,+∞]
x4 [0, 0] [0, 0]
x5 [0, 0] [0, 10]
x6 [0, 0] [0, 10]
x7 [1, 1] [1, 6]

We now start from the post fixpoint a descending iteration without applying
narrowing, using the original equation x2 = x1 ∨∅ x7.

1st descending iteration 2nd descending iteration
x1 [0, 0] [0, 0]

x2 [0, 0] ∨∅ [1, 6] = [0, 6] [0, 0] ∨∅ [1, 4] = [0, 4]
x3 ∅ ∅
x4 [0, 0] [0, 0]
x5 [0, 6] [0, 4]
x6 [0, 6] [0, 4]
x7 [1, 4] [1, 3]

Narrowing Operators on Template Abstract Domains 67

At the next iterations, we obtain:

x2 = [0, 3] x7 =

[
1,

5

2

]

x2 =

[
0,

5

2

]
x7 =

[
1,

9

4

]

and so on, without terminating. The fixpoint, which is x2 = [0, 2] and x7 = [1, 2],
is not the empty set.
�

Exploiting Proposition 3, we can define a new narrowing operator on intervals
for real variables which refines successive descending iterations at the nearest
integer, since we cannot have an infinite descending chain whose bounds are all
integers.

Definition 10 (Narrowing on reals). We define a narrowing operator �1 on
IntR as follows:

I �1 ∅ = ∅
[l1, u1] �1 [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
max(l1, �l2�) otherwise

u′ =

{
u2 if u1 = +∞
min(u1, �u2�) otherwise

The new narrowing �1 refines infinite bounds to finite values, as the standard
one, and refines finite bounds only to new integer values. Since infinite descending
sequences on integer template domains are precluded by the use of left-strict
joins, the descending sequence terminates.

Theorem 11. The operator �1 is a narrowing operator on template domains
when the loop join is left-strict.

In the next example we compare the standard narrowing with the new nar-
rowing on reals �1.

Example 12. We compute the descending chain of Example 9 using the standard
narrowing on intervals. We start from the post fixpoint and use the equation
x2 = x2 � (x1 ∨∅ x7). At the first descending iteration we get

x2 = [0,+∞] � ([0, 0] ∨∅ [1, 6]) = [0,+∞]� [0, 6] = [0, 6] .

Note that we get exactly the same value as in the first descending iteration
without narrowing. Therefore, we compute for the other unknowns exactly the

68 G. Amato et al.

same values, in particular x7 = [1, 4]. It is immediate to see that this is a fixpoint
for the computation using the standard narrowing, since no more unbounded
values appear. In fact, we have that

x2 = x2 � (x1 ∨∅ x7) = [0, 6]� [0, 4] = [0, 6] .

We now recompute the descending chain of Example 9 using the narrowing on
reals �1 in Def. 10. The first descending iteration is the same as for the standard
narrowing, and we get x2 = [0, 6] and x7 = [1, 4]. In the second descending
iteration we have

x2 = x2 �1 (x1 ∨∅ x7) = [0, 6]�1 [0, 4] = [0, 4]

and x7 = [1, 3]. In the third descending iteration we have

x2 = [0, 4] �1 [0, 3] = [0, 3]

and x7 = [1, 52]. This is the fixpoint, since

x2 = [0, 3] �1

[
0,

5

2

]
= [0, 3] .

In this case, we get a result strictly more precise than with the standard nar-
rowing.
�

It is worth noting that �1 could be easily generalized by rounding numbers
at the multiple of any strictly positive constant value δ ∈ R.

Definition 13 (δ-narrowing). Let δ ∈ R such that δ > 0. We define a new
narrowing on intervals of reals:

I �δ ∅ = ∅
[l1, u1] �δ [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞
max(l1, δ�l2/δ�) otherwise

u′ =

{
u2 if u1 = +∞
min(u1, δ�u2/δ�) otherwise

The above narrowing produces a descending chain whose elements differ for a
multiple of δ, which is fixed in advance. Since the limit of these chains is still the
empty set, it is immediate to see that �δ in the above definition is a narrowing
operator on intervals of reals. It generalizes �1 given in Definition 10. In fact,
Def. 13 boils down to Def. 10 when δ = 1. Moreover, it can be easily generalized
to template abstract domains.

Narrowing Operators on Template Abstract Domains 69

Theorem 14. For any δ ∈ R such that δ > 0, the operator �δ is a narrowing
operators on template abstract domains when the loop join is left-strict.

The next example applies the new narrowing �δ to the program realLoop.

Example 15. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using δ-narrowing with δ = 1

100 . We get the following values
for x2:

[0, 6], [0, 4], [0, 3],

[
0,

5

2

]
,

[
0,

9

4

]
,

[
0,

213

100

]
,

[
0,

207

100

]
,

[
0,

204

100

]
,

[
0,

202

100

]
,

[
0,

201

100

]

where the last one is the fixpoint.
�

As an alternative, instead of rounding bounds to a multiple of δ, we may
refine bounds with the new value only if the difference w.r.t. the previous value
is greater than a given δ. We call this δ*-narrowing.

Definition 16 (δ*-narrowing). Let δ ∈ R such that δ > 0. We define a new
narrowing on intervals of reals:

I �δ∗ ∅ = ∅
[l1, u1] �δ∗ [l2, u2] = [l′, u′]

where

l′ =

{
l2 if l1 = −∞ or l2 − l1 ≥ δ

l1 otherwise

u′ =

{
u2 if u1 = +∞ or u1 − u2 ≥ δ

u1 otherwise

The above narrowing keeps iterating while the difference between two successive
iterations is greater than δ. Since the limit of any such descending chain is still
the empty set, we can prove that �δ∗ is a narrowing operator under the same
hypothesis of Th. 14

Theorem 17. For any δ ∈ R such that δ > 0, the operator �δ∗ is a narrowing
operator on template domains when the loop join is left-strict.

The next example shows the narrowing �δ∗ in the program realLoop.

Example 18. We compute the descending chain for the example program real-
Loop in Fig. 3(a) using δ*-narrowing with δ = 1

100 . We get the following values
for x2:

[0, 6], [0, 4], [0, 3],

[
0,

5

2

]
,

[
0,

9

4

]
,

[
0,

17

8

]
,

[
0,

33

16

]
,

[
0,

65

32

]
,

[
0,

129

64

]

where the last one is the fixpoint.
�

70 G. Amato et al.

4 Conclusion and Related Work

We believe the main contribution of this paper is a deeper theoretical under-
standing of termination issues during descending iterations within the framework
of static analysis by abstract interpretation. In details, we have:

– introduced a refined join operator for loop heads which improves precision
by preserving unreachability;

– shown that, when using the new join operator with an integer template ab-
stract domain, the descending phase of the analysis terminates even without
using a narrowing operator;

– presented several improved (more precise) narrowings for template abstract
domains over reals, to be used with the new join operator;

– shown, for the first time, examples of programs over integers and reals where
the descending phase of the analysis is either infinite or arbitrarily long.

Both the new join and the improved narrowings may be easily applied to
existent analyzers with little effort. In the case of structured program, they only
require a single check in the abstract join in order to make it strict.

The new join operator may be used systematically with structured programs,
since it improves both precision and speed at the same time. The same cannot
be said for the new narrowings over reals or for the idea of not using narrowing
at all with integer domains. In this case, we may get better precision, as shown
in Example 9, but at the expense of a greater computational cost, since the
analysis of the loops might be repeated several times. The good point is that
we increase the computational cost only when we improve precision w.r.t. the
standard narrowing.

The impact of the repeated computations of loops might be probably reduced
by delaying analysis of the inner loops until outer loops are stabilized, so that a
long descending sequence in a loop does not force to repeatedly analyze the inner
loops. However the impact of the new narrowing on the precision and performance
of the analysis on realistic test cases will be the topic of a future work.

Only a few papers in the literature deal with narrowing and the descending
phase of the analysis. In [13], the authors try to recover precision by restarting the
analysis after that a post-fixpoint has been reached. In [1,3,2] the authors propose
to combine widening and narrowing during the analysis, resulting in multiple
intertwined ascending and descending phases. Moreover, [1] also proposes to
restart (part of) the analysis when the abstract value associated to the exit node
of a loop is refined during the descending phase. Our left-strict join operator may
be viewed as a variant of the restarting policy in [1], where restart is triggered
only when unreachability is detected. For instance, in the example program
doubleLoop in Fig. 1(a), the restarting policy triggers a full analysis (widening
and narrowing phases) of the second loop with an initial assignment which maps
every unknown of the second loop to bottom. However, while in the previous
work restarting is a feature of the equation solver, here it is realized directly at
the semantic level.

Narrowing Operators on Template Abstract Domains 71

Mostly, our work is orthogonal to the ones cited above: the new operators we
have defined may be used within these frameworks to get more precise results.

The idea of avoiding narrowing in the descending phase is used in many pa-
pers, with the proviso of bounding the number of descending iterations to ensure
termination. In this paper we show that, under certain conditions and ignoring
performance issues, we do not need to bound the number of iterations.

References

1. Amato, G., Scozzari, F.: Localizing widening and narrowing. In: Logozzo, F.,
Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 25–42. Springer,
Heidelberg (2013)

2. Amato, G., Scozzari, F., Seidl, H., Apinis, K., Vojdani, V.: Efficiently intertwining
widening and narrowing. ArXiv e-prints, 1503.00883 (2015)

3. Apinis, K., Seidl, H., Vojdani, V.: How to combine widening and narrowing for
non-monotonic systems of equations. In: Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2013,
pp. 377–386. ACM, New York (2013)

4. Costan, A., Gaubert, S., Goubault, É., Martel, M., Putot, S.: A policy iteration
algorithm for computing fixed points in static analysis of programs. In: Etessami,
K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer,
Heidelberg (2005)

5. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In:
Proceedings of the Second International Symposium on Programming, pp. 106–130,
Paris, France, Dunod (1976)

6. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL
1977: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pp. 238–252. ACM Press, New York (1977)

7. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
POPL 1979: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages, pp. 269–282. ACM Press, New York (1979)

8. Cousot, P., Cousot, R.: Comparing the Galois connection and widening/narrow-
ing approaches to abstract interpretation. In: Bruynooghe, M., Wirsing, M. (eds.)
PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)

9. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: POPL 1978: Proceedings of the 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, pp. 84–97. ACM Press,
New York (1978)

10. Gawlitza, T.M., Monniaux, D.: Invariant generation through strategy iteration in
succinctly represented control flow graphs. Logical Methods in Computer Science
8(3) (2012)

11. Gawlitza, T.M., Seidl, H.: Solving systems of rational equations through strategy
iteration. ACM Transactions on Programming Languages and Systems 33(3), 1–48
(2011)

12. Gonnord, L., Halbwachs, N.: Combining widening and acceleration in linear rela-
tion analysis. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 144–160. Springer,
Heidelberg (2006)

72 G. Amato et al.

13. Halbwachs, N., Henry, J.: When the decreasing sequence fails. In: Miné, A.,
Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 198–213. Springer, Heidelberg
(2012)

14. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

15. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear sys-
tems using mathematical programming. In: Cousot, R. (ed.) VMCAI 2005. LNCS,
vol. 3385, pp. 25–41. Springer, Heidelberg (2005)

16. Simon, A., King, A., Howe, J.M.: Two variables per linear inequality as an ab-
stract domain. In: Leuschel, M. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89.
Springer, Heidelberg (2003)

Detection of Design Flaws in the Android

Permission Protocol Through Bounded
Verification

Hamid Bagheri1,2(�), Eunsuk Kang1, Sam Malek2, and Daniel Jackson1

1 Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, USA

hbagheri@mit.edu
2 Department of Computer Science, George Mason University, Fairfax, USA

Abstract. The ever increasing expansion of mobile applications into
nearly every aspect of modern life, from banking to healthcare systems,
is making their security more important than ever. Modern smartphone
operating systems (OS) rely substantially on the permission-based secu-
rity model to enforce restrictions on the operations that each application
can perform. In this paper, we perform an analysis of the permission
protocol implemented in Android, a popular OS for smartphones. We
propose a formal model of the Android permission protocol in Alloy, and
describe a fully automatic analysis that identifies potential flaws in the
protocol. A study of real-world Android applications corroborates our
finding that the flaws in the Android permission protocol can have se-
vere security implications, in some cases allowing the attacker to bypass
the permission checks entirely.

1 Introduction

Modern mobile devices provide a framework for multiple applications to interact
with each other by exporting and invoking APIs. From a security and privacy per-
spective, some of the resources shared through the APIs may be considered more
critical than others; for example, an ability to send a text message is more danger-
ous than an ability to change the ringtone on the phone. Therefore, a mechanism
that can be used by the developer to control access to critical resources is essential.

Popular operating systems such as Android, iOS, and Windows Phone imple-
ment a permission-based model for controlling the types of resources that each
application is allowed to access. In this model, a developer protects a critical
resource inside an application by assigning an explicit permission, which must
be obtained by any application that wishes to access the resource. Permissions
are typically granted to an application at the discretion of the end user, who
makes a decision based on the perceived trustworthiness of the application.

In recent years, researchers have identified a number of flaws in the permission
mechanisms that lead to serious security and privacy breaches [1,2,3,4,5,6]. The
typical manner in which these problems are discovered involves a careful scrutiny

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 73–89, 2015.
DOI: 10.1007/978-3-319-19249-9_6

74 H. Bagheri et al.

by security experts, sometimes long after thesedevices are released.Many issues are
overarching designflaws that require system-wide reasoning—not easily attainable
through conventional analysis methods such as testing and static analysis, which
are more suited for detecting bugs in individual parts of the system.

Just as techniques in formal methods have proven practical in assessing the
security of network protocols [7], we believe that building a formal model of a
permission protocol and performing a rigorous analysis can identify potential
vulnerabilities and candidate fixes. This paper, unlike prior studies of Android
security (including ours [8]) that leverage code analyses to check a particular
application for vulnerabilities, instead focuses on modeling and analyzing the
Android permission protocol for design flaws. Our model is written in Alloy [9],
a language based on a first-order relational logic, with an analysis engine that
performs bounded verification of models. As far as we are aware, our work is the
first that describes an automated analysis of the Android permission protocol.

Through an analysis of our model, we identified a number of vulnerabilities
in the protocol that allow a malicious application to entirely bypass permission
checks. In particular, we performed a study of a vulnerability that has not been
studied in the security literature before—called the custom permission vulnera-
bility. To confirm that an abstract attack scenario identified during the analysis
is indeed realistic, we demonstrated the attack on concrete Android applications
across different versions of Android. Through our study, we show that the cus-
tom permission vulnerability is widespread, and that many popular applications
are, in fact, susceptible to this type of attacks.

The rest of the paper is structured in the following way. We begin by giving
a brief background on Android and motivating why securing its permission pro-
tocol can be a challenging task (Section 2). We then describe a formal model of
the permission protocol in Alloy (Section 3) and an automated security analysis
of the model (Section 4). We present an experiment to demonstrate the feasi-
bility and prevalence of the custom permission vulnerability in existing Android
applications (Section 5). Finally, we discuss the related work (Section 6) and
conclude with future work (Section 7).

2 Background and Motivation

An application is the primary unit of functionality in Android: A typical device
is constantly running numerous applications to support the user’s needs, such as
a messaging service, a mail client, a navigation application, just to name a few.

The success of Android is in part due to its flexible framework for cross-
application communication and sharing. Each application is organized into a set
of components, which export APIs to other applications, thus enabling reuse
of functionality across multiple project and software vendors. For example, the
developer of a navigation application may encapsulate its map search function-
ality into an individual component, and provide it as a service to the rest of the
device. There are four types of components: service, activity, broadcast receiver,
and content provider, each serving a different purpose.

Detection of Design Flaws in the Android Permission Protocol 75

A potential downside to the open-ended nature of the Android framework is
an increased risk for security and privacy breaches. Some components handle
information that is considered particularly critical, and so freely sharing these
components without discretion may lead to undesirable consequences for the
user. For example, the navigation application may not want to release map
search histories as part of a component API, since a rogue application could use
these data to extrapolate the user’s travel pattern for a malicious purpose.

Android uses a permission-based mechanism to control how applications in-
teract with each other. Before an application can access a component, it must be
granted an explicit permission to do so by the user. Each permission is associ-
ated with a protection level, which indicates the trustworthiness of an application
that may be granted this permission. There are three types of protection levels:
(1) normal, meaning the permission is granted to every application, (2) danger-
ous, granted only at the discretion of the device user, and (3) signature, granted
only to applications from the same developer1. A runtime engine monitors every
invocation of an API operation and ensures that the calling application has the
permission to perform that operation.

An Android device contains a number of built-in permissions for basic fea-
tures, such as sending a text message, turning on GPS, and accessing the In-
ternet. In addition, Android allows a third-party application to define custom
permissions and selectively control access to its components. Typically, permis-
sions are granted to an application at the time of its installation; however, a
special type of permissions called URI permissions may be temporarily granted
and revoked during the lifetime of an application.

The goal of the Android permission protocol is to prevent any unauthorized
access ; that is, each application should be able to access only those components
that it is granted permissions for, and no more. Ensuring that the system achieves
this goal, however, is a challenging task, especially since it can be difficult to
predict all the ways in which a malicious application may attempt to misuse the
system. An attack may involve performing a complex but obscure sequence of
operations that would unlikely be encountered during normal usage scenarios.
Identifying such attacks requires system-wide reasoning, and cannot be easily
achieved by conventional analysis methods such as testing and static analysis,
which are more suited at detecting defects in individual parts of the system.

Motivated by this challenge, we explored an approach to analyzing the se-
curity of the Android permission protocol by constructing a formal model and
performing an automated analysis of the model. Two key elements that distin-
guish our approach from previous studies of Android security are as follows:

– System-wide Dynamic Reasoning: By modeling the behavior of Android
in terms of architectural-level operations (such as installing or removing an
application) executed over a sequence of discrete time steps, we are able to
perform system-wide reasoning that would be difficult to achieve using static
analysis or testing. For example, our analysis can explore all possible orders

1 A fourth protection level, signature/system, also exists but is rarely used, and so,
for the purpose of our discussion, will be grouped into signature.

76 H. Bagheri et al.

in which applications are installed and check whether a particular ordering
could be exploited by an attacker (which, in fact, turned out to be the key
to an actual attack that involved custom permissions).

– Concretization: The result of the analysis, performed on an abstract model,
is used to guide an implementation-level analysis that checks a concrete
Android application for the presence of a vulnerability.

This approach demonstrates a potential synergy between model-based and code
analysis techniques for an end-to-end security analysis: A system-level reasoning
is first performed on a high-level model of the system, generating information
about potential vulnerabilities, each of which can be confirmed for presence in the
implementation using techniques such as static analysis, testing, or inspection.

3 Android Permission Model

In this section, we describe a formal model of the Android permission protocol
in Alloy [9], a specification language based on a first-order relational logic. Alloy
is suitable for this modeling task because (1) its flexible core allows one to
model and integrate different aspects of a system, and (2) its backend tool,
the Alloy Analyzer, provides an automated analysis for checking assertions and
generating counterexamples. However, our approach does not prescribe the use
of a particular formalism, and other languages may well be suitable.

Our model is based on the official documentation on Android permissions from
Google [10]. Android is a large and complex operating system, and modeling it
in its entirety would be infeasible. Thus, we focused on the parts of Android
that are relevant to the permission mechanism—how permissions are granted
and maintained, and how they constrain the behavior of an application. As a
result, other aspects of Android (such as intents) are omitted from this model.

One of the challenges that we encountered during our modeling task was due
to the fact that some of the key aspects of the Android permission protocol are
under-specified in the official documentation. For example, the document fails
to describe what happens to the permissions that have already been granted
when the application that defines those permissions is uninstalled. To avoid over-
specification (and possibly ruling out counterexamples), we deliberately left the
corresponding parts of the model under-specified. This was possible because Al-
loy supports partial modeling: It allows parts of the system to be left unspecified,
allowing the Alloy Analyzer to explore all alternative behaviors.

Figure 1 shows an abridged version of the model in Alloy2, divided into three
parts: (1) the architecture of an Android device (lines 4-19), (2) the Android

2 The Alloy keyword sig introduces a signature, which defines a set of elements in the
universe. A signature may contain one or more fields, each introducing a relation
that maps the elements of the signature to the field expression; for example, field
protectionLevel in Permission is a binary relation that maps each Permission object to
its protection level (line 25). The keyword extends creates a subtyping relationship
between two signatures; an abstract signature has no elements except those belonging
to its extensions, and one sig introduces a signature that contains only one element.

Detection of Design Flaws in the Android Permission Protocol 77

permission scheme (lines 21-26), and (3) system operations that modify or de-
pend on the permissions (lines 28-66).

3.1 Permissions

An Android device consists of a number of interacting applications, each con-
taining zero or more components that may export services to other applications.
The set of applications running on a device may change over time as new ap-
plications are installed and existing ones are removed. We model the dynamic
aspect of the system by using a standard Alloy idiom in which an execution is
represented as a sequence of time steps, and each mutable object is associated
with a different state in each time step [9]. To do this, we introduce a set of
totally ordered elements as signature Time, and add it as the last column of
relations that are considered mutable3; for example, the field apps uses Time to
keep track of the installed applications at each time step (line 6).

An application may use permissions to control access to its components by
other applications. Each permission object, shown on line 25, is associated with
a name and a protection level, which can take one of the three values: Nor-
mal, Dangerous, and Signature (in order of increasing criticality). Permissions
can be assigned to an application at two different levels. Each component may
be guarded by at most one permission (represented by the field guard on line
17), which must be acquired by an application before being able to access the
component. In addition, an application may be assigned its own guard (line 13),
which is imposed on every one of its components; when both the application and
one of its components have a guard, the component-specific permission takes the
priority.

Note that the type of the field guard in both Application and Component is
PermName. In other words, the guard does not contain information about the
protection level that is intended for the component being accessed. As discussed
later in the section, this turns out to be a design flaw in Android that can be
exploited by a malicious application for unauthorized access.

In addition to a set of built-in permissions that are available by default on
Android, an application developer may create one or more custom permissions
to protect an application-specific component (lines 7-8). For example, each An-
droid device contains a built-in permission called android.permission.INTERNET,
controlling which applications are allowed to use the built-in component that
provides Internet access. A third-party navigation application may provide its
map search capability as a service to other applications, and define a custom
permission called com.myapp.perm.SEARCH MAP to control its access.

A content provider is a type of storage component containing one or more
database tables that are identified by URIs (line 19)4. By default, obtaining a
permission on a content provider grants access to all of its tables. To allow more

3 The ordering library in Alloy imposes a total order on an input signature (line 1).
4 Other types of components—service, activity, and broadcast receiver—can be treated
equally as far as permissions are concerned, and are omitted from Figure 1.

78 H. Bagheri et al.

1 open util/ordering [Time]
2 sig Time {}
3

4 /* Android architecture */
5 one sig Device {
6 apps: Application -> Time , // currently installed applications
7 builtinPerms: set Permission , // permissions built into Android
8 customPerms: Permission -> Time } // currently active custom permissions
9 sig Application {

10 declaredPerms: set Permission , // custom permission declarations
11 usesPerms: set PermName , // permissions it intends to use
12 grantedPerms: Permission -> Time , // permissions currently granted
13 guard: lone PermName ,
14 components: set Component }
15 sig Component {
16 app: Application ,
17 guard: lone PermName }
18 sig URI {} // points to a table inside a content provider
19 sig ContentProvider in Component { paths: set URI }
20

21 /* Permission objects */
22 sig PermName {} -- permission name
23 abstract sig ProtectionLevel {}
24 one sig Normal , Dangerous , Signature extends ProtectionLevel {}
25 sig Permission { name: PermName , protectionLevel: ProtectionLevel }
26 sig URIPermission in Permission { uri: URI }
27

28 /* Invocation operation */
29 pred invoke[t, t’: Time , caller , callee: Component] {
30 caller.app + callee.app in Device.apps.t
31 canCall [caller , callee, t]
32 noChanges[t, t’] }
33 pred canCall [caller , callee: Component , t: Time] {
34 guardedBy[callee] in (caller .app.grantedPerms.t).name }
35 fun guardedBy[c: Component]: PermName {
36 {p: PermName | (p = c.guard) or (no c.guard and p = c.app.guard) } }
37 pred noChanges[t, t’: Time] {
38 Device.apps.t’ = Device.apps.t
39 Device.customPerms.t’ = Device.customPerms.t
40 all a : Application | a.grantedPerms.t’ = a.grantedPerms.t }
41

42 /* Install operation */
43 pred install [t, t’: Time , app: Application] {
44 app not in Device.apps.t
45 Device.customPerms.t’ = Device.customPerms.t + newCustomPerms[t,app]
46 grantPermissions[t’, app]
47 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t
48 Device.apps.t’ = Device.apps.t + app }
49 fun newCustomPerms[t: Time , app: Application]: set Permission {
50 {p: app.declaredPerms | p.name not in (Device.customPerms.t).name} }
51 pred grantPermissions[t: Time , app: Application] {
52 app.grantedPerms.t.name = app.usesPerms
53 app.grantedPerms.t in Device .customPerms.t + Device.builtinPerms }
54

55 /* Uninstall operation */
56 pred uninstall[t, t’: Time , app: Application] {
57 app in Device.apps.t
58 Device.apps.t’ = Device.apps.t - app
59 Device.customPerms.t’ = Device.customPerms.t - app.declaredPerms
60 all a : Application - app | a.grantedPerms.t’ = a.grantedPerms.t }
61

62 /* Event trace definition */
63 fact traces {
64 all t: Time - last | let t’ = t.next |
65 some app: Application , c1 ,c2: Component |
66 install [t, t’, app] or uninstall[t, t’, app] or invoke[t, c1, c2] }

Fig. 1. A snippet of the Alloy model of the Android permission protocol

Detection of Design Flaws in the Android Permission Protocol 79

fine-grained control, Android provides a special type of permissions called URI
permissions (line 26), which can be used to grant access to a particular URI
inside a content provider.

Finally, an application specifies its intent to access a component by including
the name of the associated permission as one of its uses-permissions (line 11).
When an application is installed, the device determines the set of permissions
that should be granted to the application using usesPerms.

3.2 System Behavior

Three types of operations relevant to the Android permission scheme are de-
scribed in the Alloy model: invoking a component, which succeeds only when
the calling application has the appropriate permission, and installing and unin-
stalling an application, which may modify the custom permissions on the device.

Invoke Operation. The operation of a component invoking another compo-
nent is expressed as predicate invoke (lines 29-32), which evaluates to true if
and only if caller successfully invokes callee between time steps t and t’. The
predicate is, in turn, defined as a conjunction of three constraints: both caller
and callee must belong to some application on the device (line 30), caller must
have the permission to access callee (31), and no changes are made to the active
permissions during the invocation (32).

The predicate canCall defines what it means for caller to be able to invoke
callee at time step t (lines 33-34); that is, caller must possess the permission that
guards callee5. Note that callee may be guarded by no permission at all (i.e.,
guardedBy may return an empty set), in which case canCall is trivially satisfied;
in other words, a component without a guard can be accessed by any other
component.

Recall that a component’s guard is simply the name of a permission, and so
its protection level, by design, plays no role in determining whether caller should
be allowed to invoke callee. While not explicitly stated in the Android documen-
tation, this design decision relies on one critical assumption: If an application
possesses a permission to access a component with a certain protection level,
then it must have been authorized by the user to do so during its installation.
However, as our analysis will reveal, this assumption is false: It is possible for
a malicious application to obtain a permission to a component with a high pro-
tection level (e.g., dangerous), even though the authorization was intended for
a lower protection level (e.g., normal). Section 4 describes this attack in detail.

Install Operation. The first constraint in install describes the precondition for
the operation: app must not already exist on the device at time t (line 44). The
four constraints that follow describe the effect of the operation on the device:

– If app declares its own custom permissions, they are added to the device,
except those that already exist on the device at time t; function newCustom-
Perms describes exactly those new permissions to be added (lines 49-50).

5 Keywords + and in are union and subset operators, respectively.

80 H. Bagheri et al.

– Every permission that app requests in its usesPerms is granted to the new
application by the device (lines 51-53).

– The permissions granted to other applications on the device are unaffected.
– Finally, app is added to the set of existing applications on the device.

Note that the process of granting a permission through the user’s approval is
implicit in this model; grantPermissions simply sets the granted permissions to
those in the application’s usesPerms (line 52), without describing how a decision
about each permission is made. This modeling choice reflects the rather coarse-
grained nature of Android permissions: Unless an application is granted every
one of its uses-permissions, it will not be installed on the device (i.e., the user
has no ability to selectively grant permissions6.). In other words, the details of
how permissions are granted are not relevant to our analysis, because the effect
of installation is always the same: Each installed application will possess all of
the permissions that it requests.

Uninstall Operation. This operation removes the specified application app
from the device, as well as all of its associated custom permissions. The permis-
sions granted to every other application remains the same during the operation.

Trace Definition. The fact7 traces defines the behavior of the system as a set
of traces that it may produce (lines 62-66). Conceptually, a trace is a sequence
of time steps, where between each pair of adjacent steps, t and t’, one or more of
the system operations takes place8. Given this definition, a satisfying instance
of the model found by the Alloy Analyzer will correspond to exactly one of the
possible traces of the system.

Other Parts. Due to limited space, Figure 1 omits details about other aspects
of the permission protocol that are present in the full Alloy model, including:
different types of components (beside content providers), dynamic allocation and
checking of URI permissions, and application signatures. The complete model is
available online at our project site9.

4 Analysis

In this section, we describe an automated analysis to check whether the Android
permission protocol, as specified in our model, satisfies its goal of preventing
unauthorized access.

An Alloy assertion is used to state a property that the model is expected to
satisfy. When prompted to check an assertion, the Alloy Analyzer explores all

6 While outside the scope of our analysis, previous studies have pointed this out as a
major source of usability and privacy issues in Android [1].

7 An Alloy fact is a constraint that holds for every satisfying instance of the model.
8 This trace definition precludes stuttering, as we did not deem it necessary for this
model; however, an operation that represents noop could be added to allow it.

9 http://sdg.csail.mit.edu/projects/android

http://sdg.csail.mit.edu/projects/android

Detection of Design Flaws in the Android Permission Protocol 81

1 assert NoUnauthorizedAccess {
2 all t, t’ : Time , callee, caller : Component |
3 invoke[t, t’, caller, callee] implies authorized[caller ,callee,t] }
4

5 // True iff caller is authorized to invoke callee
6 pred authorized[caller ,callee : Component , t: Time] {
7 let pname = guardedBy[callee],
8 grantedPerm = caller.app.grantedPerms.t & name.pname ,
9 requiredPerm =

10 (callee.app.declaredPerms + Device.builtinPerms) & name.pname |
11 some pname implies
12 equalOrHigher[grantedPerm.protectionLevel ,
13 requiredPerm.protectionLevel] }

Fig. 2. Assertions on the Android permission protocol

possible behaviors of the system and finds a counterexample, if any, that cor-
responds to a violation of the assertion. The analysis is exhaustive but bounded
up to a user-specified scope on the size of the domains: If there is a counterex-
ample within the scope, the analyzer is guaranteed to find it, but absence of a
counterexample does not imply the validity of the assertion. In practice, many
system flaws can be demonstrated with a small number of objects [11], and if
desired, the user can iteratively re-analyze the model with larger scopes to gain
further confidence.

An important security property of Android is that every component invocation
is authorized ; that is, when a component invokes another component, the caller
must have been granted the permission that was declared by the developer to
protect the callee.

This property is formally specified as Alloy assertion NoUnauthorizedAccess in
Figure 2. Predicate authorized describes what it means for component caller to be
authorized to invoke callee. Its definition relies on two different types of permis-
sion: grantedPerm represents the permission that is granted to caller during its
installation; requiredPerm, on the other hand, represents the custom permission
that was declared specifically to guard callee. Then, caller is considered autho-
rized to invoke callee only if the protection level of grantedPerm is equal to or
higher than that of requiredPerm.

4.1 Custom Permission Vulnerability

Analysis. When prompted to check the assertion, the Alloy Analyzer returns a
counterexample trace that demonstrates how a design flaw in Android may lead
to a violation of the property. The analysis was performed with a scope of 5 on
the size of each domain, and took approximately 4 seconds to complete10.

10 The analysis was performed on a Mac OS X machine with 1.8 GHz Intel Dual Cores
and 4GB of RAM.

82 H. Bagheri et al.

(a)

(b)

(c)

Fig. 3. A counterexample showing an
unauthorized access of component victim
by malicious Application1 through a custom
permission misuse

A visualization of the counterex-
ample is shown in Figure 3. In this
trace, Application0 declares a custom
permission (Permission1) to guard its
component (labeled victim) with the
protection level of Signature, mean-
ing that only those applications that
share the same signature should be
able to access it. A separate, ma-
licious application, Application1, by-
passes the signature requirement by
exploiting a design oversight in An-
droid: Namely, it allows multiple ap-
plications to define custom permis-
sions with the same name, but with-
out a clear specification of which one
should take precedence when they
have different protection levels.

To carry out this type of attack,
Application1 declares its own cus-
tom permission (Permission0) with the
same name as Permission1 but with
the lowest protection level, Normal.
The attack comprises of the following
three operations:

– Step (a): Application1 is installed
before Application0, activating its
custom permission (Permission0)
with the Normal protection level
on the device.

– Step (b): Application0 is installed,
but a custom permission with the
same name is already active, and
so Permission1 is ignored. As a
result, Application1 continues to
hold the same permission that it
was granted in Step (a).

– Step (c): The malicious compo-
nent inside Application1 is able
to access victim, despite not hav-
ing the same signature as Applica-
tion0.

Evaluating a Fix. One potential fix to this flaw is to disallow multiple applica-
tions that define a custom permission with the same name from simultaneously

Detection of Design Flaws in the Android Permission Protocol 83

existing on the device. In our Alloy model, this fix can be expressed by adding
the following constraint to the install operation from Figure 1:
1 // can ’t install if a declared perm is named the same as existing one
2 no p : app.declaredPerms | p.name in (Device.customPerms.t).name

Re-analyzing the assertionNoUnauthorizedAccess, however, reveals another coun-
terexample. This scenario begins in the same way as the one in Figure 3, where
a malicious application (App1) defines its own custom permission with the same
name as another permission, but with a lower protection level. Furthermore, an-
other malicious application (App2) that uses this permission is installed. In the
next step, App1 is uninstalled, and its associated custom permission is removed
from the device. However, Android fails to revoke the same permission from ap-
plications that use it (namely, App2), resulting in a dangling permission. When
the victim application (App0) is installed, App2 is still able to access the victim
component, but with the lower protection level that was defined by App1.

This demonstrates that simply disallowing an installation of applications with
duplicate permissions is not sufficient. The uninstall operation must also be
amended to ensure that granted permissions are revoked when an application
that declares those permissions is uninstalled. This can be done by modifying
the constraint on line 60 in Figure 1 as follows:
1 all a: Application - app |
2 a.grantedPerms.t’ = a.grantedPerms.t - app.declaredPerms

4.2 Other Vulnerabilities Found

Our analysis revealed two other types of vulnerabilities in the permission proto-
col. Due to limited space, we only briefly discuss them here, and refer the reader
to our project site for more detail.

URI Permission Flaw. A malicious application can obtain a URI permission
to a part of a content provider that it is not authorized to access. This vulner-
ability is due to another flaw in the Android permission protocol: granted URI
permissions are not revoked when the associated content provider is uninstalled,
leaving dangling permissions that can be exploited for a similar type of attack
as in Section 4.1.

To our knowledge, this vulnerability with URI permissions is a previously un-
known one. However, further study revealed that the vulnerability exists up to
Android version 2.3.7; in newer devices, the URI permissions are revoked during
uninstallation, disallowing the attack. Our analysis detected this as a counterex-
ample because the model, reflecting the current Android documentation, was
deliberately under-specified with respect to the effect of uninstallation on URI
permissions.

Improper Delegation. A malicious application may be able to indirectly in-
voke a component, without having a permission to do so, by interacting with a
third component that possess the permission. This vulnerability has been iden-
tified as the permission re-delegation attack in previous work by Felt and her
colleagues [12]; our analysis was able to automatically rediscover it.

84 H. Bagheri et al.

5 Experiments

A rigorous analysis of a formal model, such as the one described in Section 4,
can be used to identify potential flaws at the design level, but by itself does
not form a complete security analysis of the system. Instead, the formal analysis
must be complemented with a systematic analysis of the concrete system to
confirm whether those flaws can lead to realistic vulnerabilities, and subsequently
attacks.

In this section, we present an experimental study to answer the following two
research questions:

– RQ1: Can the flaws identified in our formal analysis of Android permission
protocol cause an actual attack with serious security consequences?

– RQ2: How susceptible are real-world Android applications to security at-
tacks that are due to these flaws in Android permission protocol?

In particular, we focus on the custom permission vulnerability in Section 4.1, as
it has not been previously studied in the literature11. To address RQ1, we devel-
oped demonstrative applications that represent postulated malicious behaviors
in the generated counterexample in Figure 3, and observe whether the permission
requirement could be bypassed as in the scenario. For RQ2, we performed a study
on hundreds of real-world Android applications and quantitatively measured the
prevalence of the security vulnerability due to the flaws found in Android per-
mission protocol.

5.1 Demonstration of the Attack

To test the feasibility of the Alloy counterexample in Figure 3, we developed
a skeletal address book application that corresponds to the victim application
in the trace (cf. Application0 in Fig. 3). Figure 4(a) partially shows an Android
manifest file12 for this application. It defines a custom permission, named AD-
BOOK READ, with the signature protection level (lines 2–3). This permission is
then specified as a guard (in line 7) to protect access to the AddrBookProvider
component (lines 4–9), which stores the content of the address book.

As declared in its manifest, the AddrBook application does not grant access
to its data to any other application. It is thus expected that only applications
that explicitly request the ADBOOK READ permission and are signed with the
same signature will be allowed to read the address book contents.

Next, we developed an application that represents postulated malicious behav-
iors in the Alloy counterexample. Figure 4(b) shows part of the manifest file im-
plementation for MalApp (corresponding to Application1 in Fig. 3). Similar to the
address book application, it declares the ADBOOK READ permission, albeit with

11 The URI permission vulnerability is omitted since it exists only on an outdated
version of Android, and the improper delegation flow has already been studied in [12].

12 A manifest file contains, among other things, declarations of uses and custom per-
missions for an application.

Detection of Design Flaws in the Android Permission Protocol 85

1 //(a) Address book -------------------------------
2 <permission android:name="com.example.ADBOOK_READ"
3 android:protectionLevel="signature" />
4 <application android:label="AddressBook">
5 <provider android:name=".AddressBookProvider"
6 android:authorities=".AddressBookProvider"
7 android:readPermission="com.example.ADBOOK_READ"
8 <!--android:grantUriPermissions="true"-->
9 >

10 </provider>
11 </application>
12 //(b) Custom permission vulnerability--------------
13 <permission android:name="com.example.ADBOOK_READ"
14 android:protectionLevel="normal" />
15 <uses-permission android:name=
16 "com.example.ADBOOK_READ" />
17 <application android:label="MalApp">
18 <activity
19 android:name=".MalActivity"
20 android:label="MalApp" >
21 <intent-filter>
22 <action android:name="MAIN" />
23 <category android:name="LAUNCHER" />
24 </intent-filter>
25 </activity>
26 </application>

Fig. 4. Snippets of the demonstrative applications
that represent the counterexample scenarios shown
in Fig. 3

a lower protection level, nor-
mal. It further includes a uses-
permission element to declare
that it requires the self-declared
custom permission (lines 15–
16). The MalActivity compo-
nent, which represents the
malicious component in the
counterexample, then simply
sends a query to the Addr-
BookProvider component.

The two applications were
signed with different keys to
reflect a real scenario, where
they would be from differ-
ent developers. We then in-
stalled and executed them, ac-
cording to the counterexam-
ple, on two versions of the An-
droid SDK—2.3.7 and 4.4.4—
under the Genymotion13 emu-
lator. We repeated the experi-
ments with different combina-
tions of protection levels for AddressBook and MalApp. In all cases, we observed
that MalApp was successfully able to access the content of the address book,
confirming the feasibility of the attack.

5.2 Prevalence of the Vulnerability

To estimate the prevalence of this vulnerability among real Android applications,
we examined 1,500 applications collected from two repositories: (1) popular free
applications from Google’s Play Store14 and (2) open-source applications from
the F-Droid repository15.

An application is at risk of containing a custom permission vulnerability if (1)
it defines a custom permission used to protect a component API and (2) it does
not implement an additional, dynamic check to ensure that the calling application
is authorized to access the API. We constructed a custom static analysis tool to
check these two conditions. For each application, our tool decompiles the related
Android package file to extract its manifest file. It then pairs the manifest file with
the corresponding application’s bytecode to perform the following checks:

13 www.genymotion.com
14 http://play.google.com/store/apps
15 https://f-droid.org/

www.genymotion.com
http://play.google.com/store/apps
https://f-droid.org/

86 H. Bagheri et al.

– Permission: The tool checks the manifest file for any declaration of cus-
tom permissions, and whether those permissions are actually used to guard
components.

– Dynamic enforcement: There is a programmatic but limited method for an
application to protect itself against the custom permission attack. If it knows
a whitelist of trusted calling applications, then it can implement a dynamic
check to reject calls from unknown applications (however, it may not be pos-
sible to construct such a list for an open-ended application that is designed
to interact with many applications). The tool analyzes the bytecode for the
presence of this optional check by searching for the use of built-in Android
functions such as getCallingUid, which returns the caller’s information.

Results. The total numbers of custom permissions defined within the apps for
our Google Play and F-Droid test sets are 536 and 171, respectively. 201 (47.26%)
of the apps in our Google Play test set define at least one custom permission,
whereas this number is just 67 (6.42%) for the F-Droid repository. The average
number of custom permissions per app for those that define at least one custom
permission is 2.64. Out of the apps that define custom permissions, 116 (57.71%)
apps in the case of Google Play and 45 (67.16%) in the case of F-Droid use those
permissions to protect their components. Just under 5% of all the apps in our
test set perform the dynamic check.

According to Figure 5(a), about 61% of the components protected by custom
permissions are of type Service or Broadcast Receiver. This is important because
the lack of a visible user interface in these types of components promotes pos-
sibilities for a stealthy permission re-delegation attack [12]. More than 85% of
custom permissions are defined at signature or dangerous protection levels that
regulate access to critical APIs, as shown in Figure 5(b).

The results show that custom permissions are widely used by real-world An-
droid applications to guard critical APIs. Most developers do not perform any
additional check to ensure that incoming APIs are from trusted callers, suggest-
ing that they may be unaware of the custom permission vulnerability, despite
its potential for security breaches.

(a) (b)

Fig. 5. (a) Frequency of component types protected by custom permissions; (b) Cate-
gorization of custom permissions based on their protection levels

Detection of Design Flaws in the Android Permission Protocol 87

6 Related Work

The custom permission vulnerability in Section 4.1 was first described in a blog
post by an independent security researcher [13]. However, despite its potential
security consequences, the vulnerability has not received widespread attention
among Android developers; as revealed by our study in Section 5, a significant
number of Android applications are still vulnerable to this attack. To our knowl-
edge, the vulnerability has not been studied in the academic literature.

We are aware of two previous works that describe a formalization of the An-
droid permission protocol. Shin and his colleagues encoded a formal model of
the protocol in Coq and proved a set of security properties using its interactive
theorem proving facility [14]. The main difference between their work and ours
is in the kind of analysis performed. A successful Coq proof provides a stronger
theoretical guarantee than an Alloy analysis, which is bounded to finite domains
in the universe. On the other hand, the Alloy Analyzer is capable of generat-
ing counterexamples, which we found tremendously helpful for identifying the
vulnerabilities in the system. Even though the properties proven were similar to
ours, their analysis failed to identify the custom permission vulnerability, because
the definition of the installation operation in their model is over-constrained —
their model prevents an application from being installed if it declares a per-
mission that already exists on the device, ruling out behavior that would have
revealed the attack.

Fragkaki et al. describe a logical formalization of a permission model similar to
the one used in Android [15]. However, they only performed an informal analysis
of the model, and did not identify the custom permission vulnerability.

Most of the previous works in Android security involve performing manual
inspection or program analysis to identify a particular vulnerability in Android
applications [2,4,6,8,16,17,18,19]. Two previous projects deal specifically with
permission vulnerabilities in Android. Felt and her colleagues performed a study
of existing applications for permission usage and discovered that many of them
are “overprivileged” (i.e., given more permissions than they need) [1]. However,
their study does not consider custom permissions. In a separate work, Felt et al.
describe a type of attack called permission re-delegation, and show that many
existing Android applications are vulnerable to this type of attack [12].

A number of static analysis tools, such as ComDroid [16], Epicc [17], Flow-
Droid [19], have been developed to detect a flow of malicious data within an
application or between multiple applications. However, these tools do not deal
with permission-related vulnerabilities.

More recently, we developed COVERT [8], an approach for compositional
analysis of Android inter-application vulnerabilities. COVERT uses static anal-
ysis techniques to extract a formal model of Android apps. It then performs the
analysis for inter-application vulnerabilities in a modular way, permitting the
results of such analyses to be composed to support incremental verification of
apps as they are installed, updated, and removed.

These research efforts are mainly focused on analyzing a particular appli-
cation (or a set of apps, in case of COVERT) by extracting relevant security

88 H. Bagheri et al.

behaviors from it. In contrast, our work focuses on analyzing the general under-
lying Android permission protocol itself, and identifying design flaws that may
be applicable to all Android applications.

7 Conclusion

In this paper, we presented a formal model of the Android permission protocol
in Alloy, and an automated analysis that identified a number of flaws in the
protocol that cause serious security vulnerabilities. We also performed a study
of one of the vulnerabilities and showed that it is prevalent among many existing
Android applications.

It is notable that underspecification of the Android permission protocol was
essential; it allowed us to avoid specifying aspects of behavior that were not
clear in the documentation, and led to the discovery of vulnerabilities that had
eluded an earlier analysis of the very same protocol by others (which, due to
the use of a theorem prover based on a functional language, had not supported
underspecification).

While this paper has focused on the analysis of Android, we believe that our
approach can be applied to other types of mobile devices that rely on permissions,
such as iOS and Windows Phone. By building a precise model of the permission
mechanism and subjecting it to exhaustive analysis, the device designer may
be able to discover potential vulnerabilities, instead of relying solely on manual
scrutiny by security experts.

We plan to further explore the synergy between formal analysis of a high-level
system model and implementation-level techniques, as mentioned in Section 2.
We are currently working on an end-to-end security analysis framework that
combines a model-based detection of system-level attacks with a suite of static
analysis tools that can identify particular types of vulnerabilities; our target
domains include web security, mobile devices, and system-of-systems. We believe
that our work in this paper presents a first step towards this goal.

Acknowledgment. This work was supported in part by awards D11AP00282 from
the US Defense Advanced Research Projects Agency, H98230-14-C-0140 from the US
National Security Agency, HSHQDC-14-C-B0040 from the US Department of
Homeland Security, and CCF-1252644 from the US National Science Foundation.

References

1. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions de-
mystified. In: 18th ACM Conference on Computer and Communications Security
(CCS), pp. 627–638 (2011)

2. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

Detection of Design Flaws in the Android Permission Protocol 89

3. Pandita, R., Xiao, X., Yang, W., Enck, W., Xie, T.: Whyper: Towards automat-
ing risk assessment of mobile applications. In: Proceedings of the 22nd USENIX
Conference on Security, SEC 2013, pp. 527–542. USENIX Association, Berkeley
(2013)

4. Grace, M., Zhou, Y., Wang, Z., Jiang, X.: Systematic detection of capability leaks
in stock android smartphones. In: Proceedings of the 19th Annual Symposium on
Network and Distributed System Security (2012)

5. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-
comber: A stealthy and context-aware sound trojan for smartphones. In: Proc. of
18th Annual Network and Distributed System Security Symposium, NDSS (2011)

6. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: Proc. of USENIX (2011)

7. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: Practice
and experience. ACM Comput. Surv. 41(4), 19:1–19:36 (2009)

8. Bagheri, H., Sadeghi, A., Garcia, J., Malek, S.: Covert: Compositional analysis of
android inter-app permission leakage. IEEE Transactions on Software Engineering
(2015)

9. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT
Press (2012)

10. Google: Android system permissions,
http://developer.android.com/guide/topics/security/permissions.html

11. Andoni, A., Daniliuc, D., Khurshid, S., Marinov, D.: Evaluating the small scope
hypothesis, http://sdg.csail.mit.edu/pubs/2002/SSH.pdf

12. Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S., Chin, E.: Permission re-
delegation: Attacks and defenses. In: 20th USENIX Security Symposium (2011)

13. Mark Murphy: Vulnerabilities with custom permissions (2014),
http://commonsware.com/blog/2014/02/12/
vulnerabilities-custom-permissions.html

14. Shin, W., Kiyomoto, S., Fukushima, K., Tanaka, T.: A formal model to analyze
the permission authorization and enforcement in the android framework. In: IEEE
International Conference on Privacy, Security, Risk and Trust, pp. 944–951 (2010)

15. Fragkaki, E., Bauer, L., Jia, L., Swasey, D.: Modeling and enhancing android’s per-
mission system. In: 17th European Symposium on Research in Computer Security
(ESORICS), pp. 1–18 (2012)

16. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: Proceedings of the 9th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2011. ACM, New York, pp.
239–252 (2011)

17. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Traon, Y.L.:
Effective Inter-Component Communication Mapping in Android with Epicc: An
Essential Step Towards Holistic Security Analysis. In: Proceedings of the 22nd
USENIX Security Symposium, Washington, DC (August 2013)

18. Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: Proc. of USENIX OSDI (2011)

19. Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In: Proceedings of the 35th Annual ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2014 (2014)

http://developer.android.com/guide/topics/security/permissions.html
http://sdg.csail.mit.edu/pubs/2002/SSH.pdf
http://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html
http://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html

Privacy by Design in Practice: Reasoning

about Privacy Properties of Biometric System
Architectures

Julien Bringer1, Hervé Chabanne1,2, Daniel Le Métayer3,
and Roch Lescuyer1(�)

1 Morpho, Issy-Les-Moulineaux, France
roch.lescuyer@morpho.com

2 Télécom ParisTech, Paris, France
3 Inria, Université de Lyon, France

Abstract. The work presented in this paper is the result of a collabora-
tion between academics, industry and lawyers to show the applicability
of the privacy by design approach to biometric systems and the bene-
fit of formal methods to this end. The choice of particular techniques
and the role of the components (central server, secure module, terminal,
smart card, etc.) in the architecture have a strong impact on the privacy
guarantees provided by a biometric system. However, existing proposals
were made on a case by case basis, which makes it difficult to compare
them and to provide a rationale for the choice of specific options. In this
paper, we show that a general framework for the definition of privacy
architectures can be used to specify these options and to reason about
them in a formal way.

1 Introduction

Biometric recognition [19] is an efficient way to identify or to authenticate a
person. Biometric systems involve two main phases: enrolment and verification
(either authentication or identification) [19]. Enrolment is the registration phase,
in which the biometric traits of a person are collected and recorded within the
system. In the authentication mode, a fresh biometric trait is collected and com-
pared with the registered one by the system to check that it corresponds to the
claimed identity. In the identification mode, a fresh biometric data is collected
and the corresponding identity is searched in a database of enrolled biometric
references.

Biometric characteristics, such as fingerprints or iris, are stable over time
and highly discriminating, which are key advantages for applications such as
access control. However, from a privacy point of view, these advantages turn
into drawbacks: because of their stability over time, and because an individual
cannot easily change his biometrics, the leak of biometric traits to a malicious
entity may give rise to serious privacy risks, including tracking and identity theft.

A wide array of techniques (encryption, homomorphic encryption, secure
multi-party computation, etc.) and architectures have been proposed to take

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 90–107, 2015.
DOI: 10.1007/978-3-319-19249-9_7

Privacy by Design in Practice 91

into account privacy requirements in the implementation of privacy preserving
biometric systems. Some solutions involve dedicated cryptographic primitives
such as secure sketches [9] and fuzzy vaults [20,38], others rely on adaptations of
existing cryptographic tools [25] or the use of secure hardware solutions [31]. The
choice of particular techniques and the role of the components (central server, se-
cure module, terminal, smart card, etc.) in the architecture have a strong impact
on the privacy guarantees provided by a solution. However, existing proposals
were made on a case by case basis, which makes it difficult to compare them,
to provide a rationale for the choice of specific options and to capitalize on past
experience. In this paper, we show that a general framework for the definition
of privacy architectures can be used to specify these options, to reason about
them in a formal way and to justify their design in terms of trust assumptions.
This work, which has been conducted in an interdisciplinary project involving
lawyers and computer scientists, can be seen as an illustration of the feasibility
of the privacy-by-design approach in an industrial environment.

The privacy by design approach is often praised by lawyers as well as com-
puter scientists as an essential step towards a better privacy protection. It will
even become a legal obligation in the European Community if the current draft
of the Data Protection Regulation [11] eventually gets adopted. However, it is
one thing to impose by law the adoption of privacy by design, quite another to
define precisely what it is intended to mean and to ensure that it is put into
practice. Its general philosophy is that privacy should not be treated as an af-
terthought but rather as a first-class requirement in the design of IT systems:
in other words, designers should have privacy in mind from the start when they
define the features and architecture of a system. However, the practical appli-
cation of this philosophy raises a number of challenges: first of all the privacy
requirements must be defined precisely; then it must be possible to reason about
potential tensions between privacy and other requirements and to explore dif-
ferent combinations of privacy enhancing technologies to build systems meeting
all these requirements.

A first step in this direction is described in [2] which introduces a system
for defining privacy architectures and reasoning about their properties. In this
paper, we show how this framework can be used to apply a privacy by design
approach for the implementation of biometric systems. In Section 2 we provide
an outline of the framework defined in [2]. In Sections 3 to 6, we describe several
architectures for biometric systems, considering both existing systems and more
advanced solutions, and show that they can be defined in this framework. This
makes it possible to highlight their commonalities and differences especially with
regard to their underlying trust assumptions. Section 7 sketches related works
and Section 8 concludes the paper with suggestions of avenues for further work.

2 General Approach

The objective of the work presented in [2] was precisely to address the needs
identified in the introduction, that is to say to provide a formal and systematic

92 J. Bringer et al.

approach to privacy by design. In practice, this framework makes it possible
to express privacy and integrity requirements (typically the fact that an entity
must obtain guarantees about the correctness of a value), to analyse their po-
tential tensions and to make reasoned architectural choices based on explicit
trust assumptions. The motivations for the approach come from the following
observations:

– First, one of the key decisions that has to be taken in the design of a pri-
vacy compliant system is the location of the data and the computations: for
example, a centralized system in which all data is collected and all results
computed brings strong integrity guarantees to the operator at the price of
a loss of privacy for data subjects. Decentralized solutions may provide bet-
ter privacy protections but weaker guarantees for the operator. The use of
privacy enhancing technologies such as homomorphic encryption or secure
multi-party computation can in some cases reconcile both objectives.

– The choice among the architectural options should be guided by the as-
sumptions that can be placed by the actors on the other actors and on the
components of the architecture. This trust itself can be justified in different
ways (security protocol, secure or certified hardware, accredited third party,
etc.).

As far as the formal model is concerned, the framework proposed in [2] relies on
a dedicated epistemic logic. Indeed, because privacy is closely connected with
the notion of knowledge, epistemic logics [12] form an ideal basis to reason about
privacy properties but standard epistemic logics based on possible worlds seman-
tics suffer from a weakness (called “logical omniscience” [17]) which makes them
unsuitable in the context of privacy by design.

We assume that the functionality of the system is expressed as the compu-
tation of a set of equations Ω := {X = T } over a language Term of terms T
defined as follows, where C represents constants (Cx ∈ Const), X variables
(X ∈ V ar) and F functions (F ∈ Fun):

T ::= X | Cx | F (T1, . . . , Tn)

An architecture is defined by a set of components Ci, for i ∈ [1, n], and a set A
of relations. The relations define the capacities of the components and the trust
assumptions. In this paper, we use the following language to define the relations:

A ::= {R}
R ::= Hasi(X) | Receivei,j({S}, {X}) | Computei(X = T)

| V erifyAttest
i (S) | Trusti,j

S ::= Attesti({Eq})
Eq ::= Pred(T1, . . . , Tn)

The notation {Z} denotes a set of terms of category Z. Hasi(X) denotes the
fact that component Ci possesses (or is the origin of) the value of X , which
may correspond to situations in which X is stored on Ci or Ci is a sensor

Privacy by Design in Practice 93

collecting the value of X . Receivei,j({S}, {X}) means that Ci can receive the
values of variables in {X} together with the statements in {S} from Cj . We
consider only one type of statements here, namely attestations: Attesti({Eq}) is
the declaration by Ci that the properties in {Eq} hold. V erifyAttest

i (S) is the
verification by component Ci of the authenticity1 of the S statement. In this
paper we use the set of predicates Pred := {=,∈}. Computei(X = T) means
that component Ci can compute the term T and assign its value to X and
Trusti,j represents the fact that component Ci trusts component Cj . Graphical
data flow representations can be derived from architectures expressed in this
language. For the sake of readability, we use both notations in the next sections.

The subset of the privacy logic used in this paper is the following dedicated
epistemic logic:

ϕ ::= Hasalli (X) | Hasnonei (X) | Ki(Prop) | ϕ1 ∧ ϕ2

Prop ::= Pred(T1, . . . , Tn) | Prop1 ∧ Prop2

Hasalli (X) and Hasnonei (X) denote the facts that component Ci respectively
can or cannot get the value of X . Ki denotes the epistemic knowledge following
the “deductive algorithmic knowledge” philosophy [12,33] that makes it possible
to avoid the logical omniscience problem. In this approach, the knowledge of a
component Ci is defined as the set of properties that this component can actually
derive using its own information and the deductive system �i.

Another relation, Depi, is used to take into account dependencies between
variables. Depi(X, {X1, . . .Xn}) means that if Ci can obtain the values of vari-
ables X1, . . . Xn then it may be able to derive the value of X . The absence of
such a relation is an assumption that Ci cannot derive the value of X from
the values of X1, . . . , Xn. It should be noted that this dependency relation is
associated with a given component: different components may have different ca-
pacities. For example, if component Ci is the only component able to decrypt a
variable ev to get the clear text v, then Depi(v, {ev}) holds but Depj(v, {ev})
does not hold for any j �= i.

The semantics S(A) of an architecture A is defined as the set of states of the
components Ci of A resulting from compliant execution traces [2]. A compliant
execution trace contains only events that are instantiations of relations (e.g.
Receivei,j, Computei, etc.) of A. The semantics S(ϕ) of a property ϕ is defined
as the set of architectures meeting ϕ. For example, A ∈ S(Hasnonei (X)) if for all
states σ ∈ S(A), the state σi is such that σi(X) = ⊥, which expresses the fact
that the component Ci cannot assign a value to the variable X .

To make it possible to reason about privacy properties, an axiomatisation of
this logic is presented and is proven sound and complete. The soundness theorem
states that for all A, if A � ϕ, then A ∈ S(ϕ). Completeness means that for all
A, if A ∈ S(ϕ) then A � ϕ. Finally, a decidability property ensures that if

1 This verification concerns the authenticity of the statement only, not its truth that
Ci may even not be able to carry out itself. In practice, it could be the verification
of a digital signature. But here, at the architecture level, we do not detail how such
a verification is done.

94 J. Bringer et al.

Hasi(X) ∈ A
H1

A � Hasalli (X)

Receivei,j(S,E) ∈ A X ∈ E
H2

A � Hasalli (X)

Computei(X = T) ∈ A
H3

A � Hasalli (X)

Depi(X, {X1, . . . , Xn}) ∀l ∈ [1, n], A � Hasalli (Xl)
H5

A � Hasalli (X)

None of the pre-conditions of H1 to H5 holds for X
H6

A � Hasnone
i (X)

Computei(X = T) ∈ A
K1

A � Ki(X = T)

E �i Eq0 ∀Eq ∈ E : A � Ki(Eq)
K�

A � Ki(Eq0)

V erifAttest
i (Attestj(E)) ∈ A Trusti,j ∈ A Eq ∈ E

K5
A � Ki(Eq)

Fig. 1. A subset of rules from the axiomatics of [2]

the deductive systems �i are decidable, then the axiomatics is also decidable. A
subset of the axiomatics useful for this paper are presented in Figure 1.

3 Biometric Systems Architectures

Before starting the presentation of the different biometric architectures in the
next sections, we introduce in this section the basic terminology used in this
paper and the common features of the architectures. For the sake of readability,
we use upper case sans serif letters S, T, etc. rather than indexed variables Ci to
denote components. By abuse of notation, we will use component names instead
of indices and write, for example, ReceiveU,T({}, {dec}). Type letters dec, br,
etc. denote variables. The set of components of an architecture is denoted by J .

The variables used in biometric system architectures are the following:

– A biometric reference template br built during the enrolment phase.
– A raw biometric data rd provided by the user during the verification phase.
– A fresh template bs derived from rd during the verification phase.
– A threshold thr which is used during the verification phase as a closeness

criterion for the biometric templates.
– The output dec of the verification which is the result of the matching be-

tween the fresh template bs and the enrolled templates br, considering the
threshold thr.

Two components appear in all biometric architectures: a component U repre-
senting the user, and the terminal T which is equipped with a sensor used to
acquire biometric traits. In addition, biometric architectures may involve an ex-
plicit issuer I, enrolling users and certifying their templates, a server S managing

Privacy by Design in Practice 95

a database containing enrolled templates, a module (which can be a hardware
security module, denoted HSM) to perform the matching and eventually to take
the decision, and a smart card C to store the enrolled templates (and in some
cases to perform the matching). Figure 2 introduces some graphical representa-
tions used in the figures of this paper.

User Encrypted
database

Terminal Card
Location
of the

comparison

Fig. 2. Graphical representations

In this paper, we focus on the verification phase and assume that enrolment
has already been done. Therefore the biometric reference templates are stored
on a component which can be either the issuer (HasI(br)) or a smart card
(HasC(br)). A verification process is initiated by the terminal T receiving as
input a raw biometric data rd from the user T. T extracts the fresh biometric
template bs from rd using the function Extract ∈ Fun. All architectures A
therefore include ReceiveT,U({}, {rd}) and ComputeT(bs = Extract(rd)) and
the DepT relation is such that (bs, {rd}) ∈ DepT. In all architectures A, the
user receives the final decision dec (which can typically be positive or negative)
from the terminal: ReceiveU,T({}, {dec}) ∈ A. The matching itself, which can be
performed by different components depending on the architecture, is expressed
by the function μ ∈ Fun which takes as arguments two biometric templates and
the threshold thr.

4 Protecting the Reference Templates with Encryption

Let us consider first the most common architecture deployed for protecting bio-
metric data. When a user is enrolled his reference template is stored encrypted,
either in a terminal with an embedded database, or in a central database. Dur-
ing the identification process, the user supplies a fresh template, the reference
templates are decrypted by a component (which can be typically the terminal
or a dedicated hardware security module) and the comparison is done inside
this component. The first part of Figure 3 shows an architecture Aed in which
reference templates are stored in a central database and the decryption of the
references and the matching are done inside the terminal. The second part of
the figure shows an architecture Ahsm in which the decryption of the references
and the matching are done on a dedicated hardware security module. Both ar-
chitectures are considered in turn in Subsections 4.1 and 4.2.

96 J. Bringer et al.

U

rd

dec

T

rd → bs
thr

ebr

S

ebr

I

br → ebr

Encrypted database

U

rd

dec

T

rd → bs

bs, ebr

dec

M

thr

ebr

S

ebr

I

br → ebr

Encrypted database with a hardware security module (HSM)

Fig. 3. Classical architectures with an encrypted database

4.1 Use of an Encrypted Database

The first architecture Aed is composed of a user U, a terminal T, a server S man-
aging an encrypted database ebr and an issuer I enrolling users and generating
the encrypted database ebr. The set Fun includes the encryption and decryption
functions Enc and Dec. When applied to an array, Enc is assumed to encrypt
each entry of the array. At this stage, for the sake of conciseness, we consider
only biometric data in the context of an identification phase. The same types
of architectures can be used to deal with authentication, which does not raise
any specific issue. The functionality of the architecture is Ω := {ebr = Enc(br),
br′ = Dec(ebr), bs = Extract(rd), dec = μ(br′, bs, thr)}, and the architecture
is defined as:

Aed :=
{
HasI(br), HasU(rd), HasT(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI(ebr = Enc(br))}, {ebr}),
ReceiveT,S({AttestI(ebr = Enc(br))}, {ebr}), T rustT,I,
V erifyAttest

T (AttestI(ebr = Enc(br))), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ComputeT(br

′ = Dec(ebr)),

ComputeT(dec = μ(br′, bs, thr)), ReceiveU,T({}, {dec})
}

The properties of the encryption scheme are captured by the dependence and
deductive relations. The dependence relations are: (ebr, {br}) ∈ DepI, and
{(bs, {rd}), (dec, {br′, bs, thr}), (br′, {ebr}), (br, {ebr})} ⊆ DepT. Moreover
the deductive algorithm relation contains: {ebr = Enc(br)} � {br = Dec(ebr)}.

Privacy by Design in Practice 97

From the point of view of biometric data protection, the property that this
architecture is meant to ensure is the fact that the server should not have access
to the reference template, that is to say:HasnoneS (br), which can be proven using
Rule H6 (the same property holds for br′):

HasS(br) �∈ Aed � ∃−→X : (br,
−→
X) ∈ DepS � ∃T : ComputeS(br = T) ∈ Aed

� ∃j ∈ J , � ∃S, � ∃E,ReceiveS,j(S,E) ∈ Aed ∧ br ∈ E
H6

Aed � HasnoneS (br)

It is also easy to prove, using H2 and H5, that the terminal has access to br′:
HasallT (br′).

As far as integrity is concerned, the terminal should be convinced that the
matching is correct. The proof relies on the trust placed by the terminal in the
issuer (about the correctness of ebr) and the computations that the terminal
can perform by itself (through ComputeT and the application of �):

V erifyAttest
T ({AttestI(ebr = Enc(br))}) ∈ Aed TrustT,I ∈ Aed

K5
Aed � KT(ebr = Enc(br))

{ebr = Enc(br)} � {br = Dec(ebr)} Aed � KT(ebr = Enc(br))
K�

Aed � KT(br = Dec(ebr))

ComputeT(br
′ = Dec(ebr)) ∈ Aed

K1
Aed � KT(br

′ = Dec(ebr))

Assuming that all deductive relations include the properties (commutativity and
transitivity) of the equality, K� can be used to derive: Aed � KT(br = br′). A
further application of K1 with another transitivity rule for the equality allows
us to obtain the desired integrity property:

Aed � KT(br = br′)
ComputeT(dec = μ(br′, bs, thr)) ∈ Aed

K1
Aed � KT(dec = μ(br′, bs, thr))

K�
Aed � KT(dec = μ(br, bs, thr))

4.2 Encrypted Database with a Hardware Security Module

The architecture presented in the previous subsection relies on the terminal
to decrypt the reference template and to perform the matching operation. As
a result, the clear reference template is known by the terminal and the only
component that has to be trusted by the terminal is the issuer. If it does not
seem sensible to entrust the terminal with this central role, another option is
to delegate the decryption of the reference template and computation of the
matching to a hardware security module so that the terminal itself never stores
any clear reference template. This strategy leads to architecture Ahsm pictured
in the second part of Figure 3.

In addition to the user U, the issuer I, the terminal T, and the server S, the set
of components contains a hardware security module M. The terminal does not

98 J. Bringer et al.

perform the matching, but has to trust M. This trust can be justified in practice
by the level of security provided by the HSM M (which can also be endorsed by
an official security certification scheme). The architecture is described as follows
in our framework:

Ahsm :=
{
HasI(br), HasU(rd), HasM(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI(ebr = Enc(br))}, {ebr}),
ReceiveT,S({AttestI(ebr = Enc(br))}, {ebr}), T rustT,I,
V erifyAttest

T (AttestI(ebr = Enc(br))), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ReceiveM,T({}, {bs, ebr}),
ComputeM(br

′ = Dec(ebr)), ComputeM(dec = μ(br′, bs, thr)),

V erifyAttest
T ({AttestM(dec = μ(br′, bs, thr))}), T rustT,M,

ReceiveT,M(A, {dec}), V erifyAttest
T ({AttestM(br

′ = Dec(ebr))})
}

where the set of attestations A received by the terminal from the module is
A := {AttestM(dec = μ(br′, bs, thr)), AttestM(br′ = Dec(ebr))}.

The trust relation between the terminal and the module makes it possible to
apply rule K5 twice:

V erifyAttest
T ({AttestM(dec = μ(br′, bs, thr))}) ∈ Ahsm TrustT,M ∈ Ahsm

Ahsm � KT(dec = μ(br′, bs, thr))
V erifyAttest

T ({AttestM(br
′ = Dec(ebr))}) ∈ Ahsm TrustT,M ∈ Ahsm

K5
Ahsm � KT(br

′ = Dec(ebr))

The same proof as in the previous subsection can be applied to establish the
integrity of the matching. The trust relation between the terminal and the issuer
and the rules K5, K� make it possible to derive: Ahsm � KT(br = Dec(ebr)).
Then two successive applications of K� regarding the transitivity of the equality
lead to: Ahsm � KT(dec = μ(br, bs, thr)).

As in architecture Aed, the biometric references are never disclosed to the
server. However, in contrast with Aed, they are not disclosed either to the ter-
minal, as shown by rule H6:

HasT(br) �∈ Ahsm � ∃−→X : (br,
−→
X) ∈ DepT � ∃T : ComputeT(br = T) ∈ Ahsm

� ∃j ∈ J , � ∃S, � ∃E,ReceiveT,j(S,E) ∈ Ahsm ∧ br ∈ E
H6

Ahsm � HasnoneT (br)

5 Enhancing Protection with Homomorphic Encryption

In both architectures of Section 4, biometric templates are protected, but the
component performing the matching (either the terminal or the secure module)
gets access to the reference templates. In this section, we show how homomorphic
encryption can be used to ensure that no component gets access to the biometric
reference templates during the verification.

Privacy by Design in Practice 99

Homomorphic encryption schemes [14] makes it possible to compute certain
functions over encrypted data. For example, if Enc is a homomorphic encryption
scheme for multiplication then there is an operation ⊗ such that:

c1 = Enc(m1) ∧ c2 = Enc(m2) ⇒ c1 ⊗ c2 = Enc(m1 ×m2).

Figure 4 presents an architecture Ahom derived from Ahsm in which the server
performs the whole matching computation over encrypted data. The user sup-
plies a template that is sent encrypted to the server. The server also owns an
encrypted reference template. The comparison, i.e. the computation of the dis-
tance between the templates, is done by the server but the server does not get
access to the biometric data or to the result. This is made possible through the
use a homomorphic encryption scheme. On the other hand, the module gets the
result, but does not get access to the templates. Let us note that Ahom is just
one of the possible ways to use homomorphic encryption in this context: the
homomorphic computation of the distance could actually be made by another
component (for example the terminal itself) since it does not lead to any leak of
biometric data.

U

rd

dec

T

rd → bs
bs → ebs

edec

dec

M

edec → dec

ebs

edec

S

thr ebr

I

br → ebr

Fig. 4. Comparison over encrypted data with homomorphic encryption

The homomorphic property of the encryption scheme needed for this appli-
cation depends on the matching algorithm. An option is to resort to a fully
homomorphic encryption scheme (FHE) [14] as in the solution described in [37]
which uses a variant of a FHE scheme for face-recognition. However, schemes
with simpler homomorphic functionalities can also be sufficient (examples can
be found in [7,6]). Since we describe our solutions at the architecture level, we
do not need to enter into details regarding the chosen homomorphic scheme. We
just need to assume the existence of a homomorphic matching function Hom-μ
with the following properties captured by the algorithmic knowledge relations:

{ebr = Enc(br), ebs = Enc(bs),

edec = Hom-μ(ebr, ebs, thr)} � {Dec(edec) = μ(br, bs, thr)} (1)

The dependence relations include the following: {(bs, {rd}), (ebs, {bs})} ⊆
DepT; (ebr, {br}) ∈ DepI; {(br, {ebr}), (bs, {ebs}), (dec, {edec})} ⊆ DepM.

100 J. Bringer et al.

Architecture Ahom is defined as follows:

Ahom :=
{
HasI(br), HasU(rd), HasS(thr), ComputeI(ebr = Enc(br)),

ReceiveS,I({AttestI({ebr = Enc(br)})}, {ebr}), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ComputeT(ebs = Enc(bs)),

ReceiveS,T({}, {ebs}), ComputeS(edec = Hom-μ(ebr, ebs, thr)),

ReceiveT,S(A, {edec}), V erifyAttest
T (AttestI({ebr = Enc(br)})),

V erifyAttest
T (AttestS({edec = Hom-μ(ebr, ebs, thr)})), T rustT,S,

T rustT,I, ReceiveM,T({}, {edec}), ComputeM(dec = Dec(edec)),

ReceiveT,M({AttestM({dec = Dec(edec)})}, {dec}), T rustT,M,
V erifyAttest

T (AttestM({dec = Dec(edec)})), ReceiveU,T({}, {dec})
}

where the set A of attestations received by the terminal from the server is:
A := {AttestI({ebr = Enc(br)}), AttestS({edec = Hom-μ(ebr, ebs, thr)})}.

In order to prove that the terminal can establish the integrity of the result
dec, we can proceed in two steps, proving first the correctness of edec and then
deriving the correctness of edec using the properties of homomorphic encryption.
The first step relies on the capacities of component T and the trust assumptions
on components I and S using rules K1 and K5 respectively.

ComputeT(ebs = Enc(bs)) ∈ Ahom
K1

Ahom � KT(ebs = Enc(bs))

V erifyAttest
T ({AttestI(ebr = Enc(br))}) ∈ Ahom TrustT,I ∈ Ahom

K5
Ahom � KT(ebr = Enc(br))

V erifyAttest
T ({AttestS(edec = Hom-μ(br, bs, thr))}), TrustT,S ∈ Ahom

K5
Ahom � KT(edec = Hom-μ(br, bs, thr))

The second step can be done through the application of the deductive algorithmic
knowledge regarding the homomorphic encryption property (with LHS1 the left
hand-side of equation (1)) :

LHS1 � {Dec(edec) = μ(br, bs, thr)} ∀Eq ∈ LHS1 : Ahom � KT(Eq)
K�

Ahom � KT(Dec(edec) = μ(br, bs, thr))

The desired property is obtained through the application of rules K5 and K�
exploiting the trust relation between T and M and the transitivity of equality.

V erifyAttest
T ({AttestM(dec = Dec(edec))}) ∈ Ahom TrustT,M ∈ Ahom

K5
Ahom � KT(dec = Dec(edec))

Ahom � KT(Dec(edec) = μ(br, bs, thr)) Ahom � KT(dec = Dec(edec))
K�

Ahom � KT(dec = μ(br, bs, thr))

As far as privacy is concerned, the main property that Ahom is meant to ensure
is that no component (except the issuer) has access to the biometric references.

Privacy by Design in Practice 101

Rule H6 makes it possible to prove that U, T, and S never get access to br, as
in Section 4. The same rule can be applied here to prove Ahom � HasallM (ebr)
exploiting the fact that neither (br, {edec}) nor (br, {dec}) belong to DepM.

6 The Match-On-Card Technology

Another solution can be considered when the purpose of the system is identi-
fication rather than authentication. In this case, it is not necessary to store a
database of biometric reference templates and a (usually unique) reference tem-
plate can be stored on a smart card. A smart card based privacy preserving
architecture has been proposed recently which relies on the idea of using the
card not only to store the reference template but also to perform the matching
itself. Since the comparison is done inside the card the reference template never
leaves the card. In this Match-On-Card (MOC) technology [31,30,15] (also called
comparison-on-card), the smart card receives the fresh biometric template, car-
ries out the comparison with its reference template, and sends the decision back
(as illustrated in Figure 5).

U T C

rd

dec

rd → bs

bs

dec

br

thr

Fig. 5. Biometric verification using the Match-On-Card technology

In this architecture, the terminal is assumed to trust the smart card. This
trust assumption is justified by the fact that the card is a tamper-resistant
hardware element. This architecture is simpler than the previous ones but not
always possible in practice (for a combination of technical and economic reasons)
and may represent a shift in terms of trust if the smart card is under the control
of the user.

More formally, the MOC architecture is composed of a user U, a terminal T,
and a card C. The card C attests that the templates br and bs are close (with
respect to the threshold thr):

Amoc :=
{
HasC(br), HasU(rd), HasC(thr), ReceiveT,U({}, {rd}),
ComputeT(bs = Extract(rd)), ReceiveC,T({}, {bs}),
ComputeC(dec = μ(br, bs, thr)), ReceiveU,T({}, {dec}),
ReceiveT,C({AttestC(dec = μ(br, bs, thr))}, {dec}),

102 J. Bringer et al.

V erifyAttest
T ({AttestC(dec = μ(br, bs, thr))}), T rustT,C

}

Using rule H6, it is easy to show that no component apart from C gets access
to br. The proof of the integrity property relies on the capacities of component T
and the trust assumption on component C using rules K1 and K5 respectively.

7 Related Works

Generally speaking, while the privacy of biometric data has attracted a lot of at-
tention in the news (for instance, with the introduction of a fingerprint sensor in
the new iphone) and among lawyers and policy makers2, it has not triggered such
a strong interest in the computer science community so far. Most studies in this
area are done on a case by case basis and at a lower level than the architectures
described here. For example,[36] proposes a security model for biometric-based
authentication taking into account privacy properties3 and applies it to biometric
authentication. The underlying proofs rely on cryptographic techniques related
to the ElGamal public key encryption scheme. [21,23,24] develop formal models
from an information theoretic perspective relying on specific representations of
biometric templates close to error correcting codes.

As far as formal approaches to privacy are concerned, two main categories
can be identified: the qualitative approach and the quantitative approach. Most
proposals of the first category rely on a language which can be used to define
systems and to express privacy properties. For example process calculi such as
the applied pi-calculus [1] have been applied to define privacy protocols [8].
Other studies [4,5] involve dedicated privacy languages. The main departure of
the approach advocated in this paper with respect to this trend of work is that
we reason at the level of architectures, providing ways to express properties
without entering into the details of specific protocols. Proposals of the second
category rely on privacy metrics such as k-anonymity, l-diversity, or ε-differential
privacy [10] which can be seen as ways to measure the level of privacy provided by
an algorithm. Methods [27] have been proposed to design algorithms achieving
privacy metrics or to verify that a system achieves a given level of privacy. These
contributions on privacy metrics are complementary to the work described in
this paper. We follow a qualitative (or logical) approach here, proving that a
given privacy property is met (or not) by an architecture. As suggested in the
next section, an avenue for further research would be to cope with quantitative
reasoning as well, using inference systems to derive properties expressed in terms
of privacy metrics.

Several authors [16,22,28,29,34] have already pointed out the complexity of
“privacy engineering” as well as the “richness of the data space”[16] calling for
the development of more general and systematic methodologies for privacy by
design. [22,26] point out the complexity of the implementation of privacy and

2 For example with a proposal adopted by the French Senate in May 2014 to introduce
stronger requirements for the use of biometrics.

3 Including impersonation resilience, identity privacy or transaction anonymity.

Privacy by Design in Practice 103

the large number of options that designers have to face. To address this issue and
favour the adoption of these tools, [22] proposes a number of guidelines for the
design of compilers for secure computation and zero-knowledge proofs whereas
[13] provides a language and a compiler to perform computations on private data
by synthesising zero-knowledge protocols. None of these proposals addresses the
architectural level and makes it possible to get a global view of a system and to
reason about its underlying trust assumption.

8 Conclusion

The work presented in this paper is the result of a collaboration between aca-
demics, industry and lawyers to show the applicability of the privacy by design
approach to biometric systems and the benefit of formal methods to this end.
Indeed, even if privacy by design should soon become a legal obligation in the
European Community [11] its application to real systems is far from obvious.
We have presented in the same formal framework a variety of architectural op-
tions for privacy preserving biometric systems. One of the main benefits of the
approach is to provide formal justifications for the architectural choices and a
rigorous basis for their comparison. Table 1 is a recap chart of the architectures
reviewed in this paper. One of the most interesting pieces of information is the
trust assumptions which are highlighted by the model. The first line shows that
Aed is the architecture in which the strongest trust in put in the terminal that
does not have to trust any other component apart from the issuer and is able
to get access to br. Architecture Ahsm is a variant of Aed; it places less trust
in the terminal that has to trust the hardware security module to perform the
matching. Ahom is the architecture in which the terminal is less trusted: it has
to trust the issuer, the hardware security module and the server for all sensitive
operations and its role is limited to the collection of the fresh biometric trait
and the computation of the fresh template. Architecture Amoc is similar to this
respect but all sensitive operations are gathered into a single component, namely
the smart card. It should be clear that no solution is inherently better than the
others and, depending on the context of deployment and the technology used,
some trust assumptions may be more reasonable than others. In any case, it is
of prime importance to understand the consequences of a particular choice in
terms of trust.

For the sake of conciseness, we have presented only four architectures in the
body of this paper but more complex architectures can be described in the same
framework. Generally speaking, the privacy logic used here can be extended with
new privacy enhancing technologies with the associated properties. For example,
[2] uses zero-knowledge proofs and commitments to define privacy preserving
smart metering architectures.

Another benefit of the formal approach followed in this paper is that it can
provide the foundations for a systematic approach to privacy by design. We have
proposed a proof of concept implementation of a system to support designers
in their task (see [3]). In this system, the user can introduce his privacy and

104 J. Bringer et al.

Table 1. Comparison between architectures

Arch. Computations Template protection Trust relations

Components Components
Location of accessing the accessing
the matching references br the query bs

Aed T I, T T (T, I)
Ahsm M I, M T, M (T, I), (T, M)
Ahom S I T (T, I), (T, M), (T, S)
Amoc M M T, M (T, M)

Components are: user U, terminal T, server S, secure module M (used as a generic name for a
hardware security module or a card C), issuer I.
A trust relation (i, j) means that component i trusts component j.

integrity requirements (as well as any requirements imposed by the environment
such as the location of a given operation on a designated component) and choose
different options for the distribution of the operations and the trust assumptions.
When an architecture has been built, the system can try to verify the required
properties with or without the help of the designer.

As stated above, we have focused on the architectural level here. As a result,
we do not cover the full development cycle. Preliminary work has been done to
address the mapping from the architecture level to the protocol level to ensure
that a given implementation, expressed as an applied pi-calculus protocol, is
consistent with an architecture [35].

As far as the formal approach is concerned, it would also be interesting to
study how it could be used in the context of future privacy certification schemes.
This would be especially interesting in the context of the future European Data
Protection Regulation [11] which promotes not only privacy by design but also
privacy seals.

In this paper, we have considered only the verification phase and all databases
are static (all users are supposed to be enrolled before any verification step). We
leave for future work the integration of dynamic databases. This integration
requires the treatment of user revocation, which is an important feature of bio-
metric systems.

We are currently working on other architectures such as biometric systems
based on secure multi-party computation (SMC) [32,18] or using a posteriori
verifications. For example, to reduce the amount of trust placed in the ter-
minal in architecture Aed, the computations of terminal could be sporadically
checked following a trust by accountability approach [2]. Last, but not least, the
most challenging aspect that is not addressed here is the inherent leakage of the
matching result. This potential leakage should be expressed in the dependency
relations but this would require the introduction of more sophisticated domains
to reason about amounts of information (rather than binary Has properties).

Privacy by Design in Practice 105

Acknowledgements. This work has been partially funded by the French ANR-12-
INSE-0013 project BIOPRIV and the European FP7-ICT-2013-1.5 project PRIPARE.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: ACM Symposium on Principles of Programming Languages, POPL 2001, pp.
104–115. ACM Press (2001)

2. Antignac, T., Le Métayer, D.: Privacy architectures: Reasoning about data minimi-
sation and integrity. In: Mauw, S., Jensen, C.D. (eds.) STM 2014. LNCS, vol. 8743,
pp. 17–32. Springer, Heidelberg (2014)

3. Antignac, T., Le Métayer, D.: Trust driven strategies for privacy by design. In:
Damsgaard Jensen, C., Marsh, S., Dimitrakos, T., Murayama, Y. (eds.) IFIPTM
2015. IFIP AICT, vol. 454, pp. 60–75. Springer, Heidelberg (2015)

4. Barth, A., Datta, A., Mitchell, J.C., Nissenbaum, H.: Privacy and contextual in-
tegrity: Framework and applications. In: IEEE Symposium on Security and Privacy,
S&P 2006, pp. 184–198. IEEE Computer Society (2006)

5. Becker, M.Y., Malkis, A., Bussard, L.: S4P: A generic language for specifying
privacy preferences and policies. Technical report, Microsoft Research / IMDEA
Software / EMIC (2010)

6. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint iden-
tification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp.
190–209. Springer, Heidelberg (2011)

7. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the Goldwasser–Micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
96–106. Springer, Heidelberg (2007)

8. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic
voting protocols: A taster. In: Chaum, D., Jakobsson, M., Rivest, R.L., Ryan,
P.Y.A., Benaloh, J., Kutylowski, M., Adida, B. (eds.) Towards Trustworthy Elec-
tions. LNCS, vol. 6000, pp. 289–309. Springer, Heidelberg (2010)

9. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004)

10. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

11. European Parliament. European Parliament legislative resolution of 12 March 2014
on the proposal for a regulation of the European Parliament and of the Council
on the protection of individuals with regard to the processing of personal data and
on the free movement of such data. General Data Protection Regulation, Ordinary
legislative procedure: first reading (2014)

12. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. MIT
Press (2004)

13. Fournet, C., Kohlweiss, M., Danezis, G., Luo, Z.: ZQL: A compiler for privacy-
preserving data processing. In: USENIX 2013 Security Symposium, pp. 163–178.
USENIX Association (2013)

14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing, STOC 2009, pp. 169–178. ACM Press (2009)

106 J. Bringer et al.

15. Govan, M., Buggy, T.: A computationally efficient fingerprint matching algorithm
for implementation on smartcards. In: Biometrics: Theory, Applications, and Sys-
tems, BTAS 2007, pp. 1–6. IEEE Computer Society (2007)

16. Gürses, S., Troncoso, C., Dı́az, C.: Engineering Privacy by Design. Presented at
the Computers, Privacy & Data Protection Conference (2011)

17. Halpern, J.Y., Pucella, R.: Dealing with logical omniscience. In: Conference on The-
oretical Aspects of Rationality and Knowledge, TARK 2007, pp. 169–176 (2007)

18. Huang, Y., Malka, L., Evans, D., Katz, J.: Efficient privacy–preserving biometric
identification. In: Network and Distributed System Security Symposium, NDSS
2011. The Internet Society (2011)

19. Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition.
IEEE Trans. Circuits Syst. Video Techn. 14(1), 4–20 (2004)

20. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptography 38(2),
237–257 (2006)

21. Kanak, A., Sogukpinar, I.: BioPSTM: a formal model for privacy, security, and
trust in template-protecting biometric authentication. Security and Communica-
tion Networks 7(1), 123–138 (2014)

22. Kerschbaum, F.: Privacy-preserving computation (position paper). In: Preneel, B.,
Ikonomou, D. (eds.) APF 2012. LNCS, vol. 8319, pp. 41–54. Springer, Heidelberg
(2014)

23. Lai, L., Ho, S.-W., Poor, H.V.: Privacy-security trade-offs in biometric security
systems – Part I: single use case. IEEE Transactions on Information Forensics and
Security 6(1), 122–139 (2011)

24. Lai, L., Ho, S.-W., Poor, H.V.: Privacy-security trade-offs in biometric security
systems – Part II: multiple use case. IEEE Transactions on Information Forensics
and Security 6(1), 140–151 (2011)

25. Li, H., Pang, L.: A novel biometric–based authentication scheme with privacy
protection. In: Conference on Information Assurance and Security, IAS 2009, pp.
295–298. IEEE Computer Society (2009)

26. Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In:
IEEE Symposium on Computer Security Foundations, CSF 2013, pp. 81–96. IEEE
Computer Society (2013)

27. McSherry, F.: Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In: ACM Conference on Management of Data, SIGMOD
2009, pp. 19–30. ACM Press (2009)

28. Le Métayer, D.: Privacy by design: A formal framework for the analysis of architec-
tural choices. In: ACM Conference on Data and Application Security and Privacy,
CODASPY 2013, pp. 95–104. ACM Press (2013)

29. Mulligan, D.K., King, J.: Bridging the gap between privacy and design. University
of Pennsylvania Journal of Constitutional Law 14, 989–1034 (2012)

30. National Institute of Standards and Technology (NIST). MINEXII – an assessment
of Match–On–Card technology (2011),
http://www.nist.gov/itl/iad/ig/minexii.cfm

31. International Standard Organization. International standard iso/iec 24787:2010, in-
formation technology – identification cards – on-card biometric comparison (2010)

32. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI – A system for secure
face identification. In: IEEE Symposium on Security and Privacy, S&P 2010, pp.
239–254. IEEE Computer Society (2010)

33. Pucella, R.: Deductive algorithmic knowledge. J. Log. Comput. 16(2), 287–309
(2006)

http://www.nist.gov/itl/iad/ig/minexii.cfm

Privacy by Design in Practice 107

34. Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Trans. Software
Eng. 35(1), 67–82 (2009)

35. Ta, V.-T., Antignac, T.: Privacy by design: On the conformance between protocols
and architectures. In: Cuppens, F., Garcia-Alfaro, J., Zincir Heywood, N., Fong,
P.W.L. (eds.) FPS 2014. LNCS, vol. 8930, pp. 65–81. Springer, Heidelberg (2015)

36. Tang, Q., Bringer, J., Chabanne, H., Pointcheval, D.: A formal study of the privacy
concerns in biometric-based remote authentication schemes. In: Chen, L., Mu, Y.,
Susilo, W. (eds.) ISPEC 2008. LNCS, vol. 4991, pp. 56–70. Springer, Heidelberg
(2008)

37. Troncoso-Pastoriza, J.R., Pérez-González, F.: Fully homomorphic faces. In: Inter-
national Conference on Image Processing, ICIP 2012, pp. 2657–2660. IEEE Com-
puter Society (2012)

38. Uludag, U., Pankanti, S., Jain, A.K.: Fuzzy vault for fingerprints. In: Kanade, T.,
Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 310–319. Springer,
Heidelberg (2005)

A Specification Language for Static and Runtime

Verification of Data and Control Properties

Wolfgang Ahrendt1(�), Jesús Mauricio Chimento1, Gordon J. Pace2,
and Gerardo Schneider3

1 Chalmers University of Technology, Gothenburg, Sweden
{ahrendt,chimento}@chalmers.se

2 University of Malta, Msida, Malta
gordon.pace@um.edu.mt

3 University of Gothenburg, Gothenburg, Sweden
gerardo@cse.gu.se

Abstract. Static verification techniques can verify properties across all
executions of a program, but powerful judgements are hard to achieve
automatically. In contrast, runtime verification enjoys full automation,
but cannot judge future and alternative runs. In this paper we present a
novel approach in which data-centric and control-oriented properties may
be stated in a single formalism, amenable to both static and dynamic
verification techniques. We develop and formalise a specification nota-
tion, ppDATE, extending the control-flow property language used in the
runtime verification tool Larva with pre/post-conditions and show how
specifications written in this notation can be analysed both using the
deductive theorem prover KeY and the runtime verification tool Larva.
Verification is performed in two steps: KeY first partially proves the data-
oriented part of the specification, simplifying the specification which is
then passed on to Larva to check at runtime for the remaining parts
of the specification including the control-centric aspects. We apply the
approach to Mondex, an electronic purse application.

1 Introduction

Runtime verification and static verification are widely used verification tech-
niques. Runtime verification is concerned with the monitoring of software, pro-
viding guarantees that observed executions of a program comply with specified
properties. This approach can be used on systems of a complexity that is diffi-
cult to address by static verification such as systems with numerous interacting
sub-units, heavy usage of mainstream libraries, and real world deployments. On
the other hand, with runtime verification it is not possible to extrapolate about
all possible execution paths. Furthermore, monitoring incurs runtime overheads
which may be prohibitive in certain systems.

In this paper we present a way of addressing these issues by combining run-
time verification with static verification. We start by statically verifying the

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 108–125, 2015.
DOI: 10.1007/978-3-319-19249-9_8

A Specification Language for Static and Runtime Verification 109

system against a specification, identifying parts which can either be verified au-
tomatically or partially resolved, thus leaving a simpler specification to check at
runtime, in turn reducing the overheads induced by monitoring.

As observed, static and dynamic verification have largely disjoint strengths
— whereas the former excels in data-oriented properties and struggles to han-
dle complex control-flow logic, the latter handles control-flow properties with
substantially lower overheads than data-oriented ones. Combining the two ap-
proaches can thus allow the verification process to deal with richer properties
with greater ease. However, one of the challenges is to identify a specification
notation in which properties which refer to both the data- and control-flow of a
system can not only be expressed, but also decomposed to ensure applicability of
the different verification techniques. In order to address this issue we have, in a
previous paper [3], proposed the StaRVOOrS framework. One key part of that
framework was the proposal of a specification notation, called ppDATE, and a
verification methodology, to specify and verify both control-oriented properties
and data-oriented properties.

Our contributions are: i) A formal definition of ppDATE (Sec. 3.3); ii) An
algorithm to translate ppDATE into DATE [10], the formalism used in the run-
time verification tool Larva [11] (Sec. 3.4); iii) Application of our approach to
Mondex [21], an electronic purse application (Sec 4); iv) A description of the re-
sults of the case study including an analysis of the verification process providing
evidence that our approach substantially reduces the overhead of the runtime
monitoring (Sec. 5).

2 The ��������� Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software), which we originally suggested in [3], combines the use of the
deductive source code verifier KeY [7] with that of the runtime monitoring tool
Larva [11]. KeY is a deductive verification system for data-centric functional
correctness properties of Java source code, which generates, from JML and Java,
proof obligations in dynamic logic (a modal logic for reasoning about programs)
and attempts to prove them. Larva (Logical Automata for Runtime Verification
and Analysis) [11] is an automata-based Runtime Verification tool for Java pro-
grams which automatically generates a runtime monitor from a property using
an automaton-based specification notation DATE. Larva transforms the specifi-
cation into monitoring code together with AspectJ code to link the system with
the monitors.

Fig. 1 gives an abstract view of the framework workflow. Given a Java program
P and a specification S of the properties to be verified (given in the language
ppDATE, see Sec. 3), these are transformed into suitable input for the Deductive
Verifier module which, in principle, might statically fully verify the properties
related to pre/post-conditions. What is not proved statically will then be left to
be checked at runtime. Here, not only the completed but also the partial proofs
are used to generate path conditions for not statically verified executions. The

110 W. Ahrendt et al.

ppDATE

Prog. P

ppDATE

Monitor

Static

(partial)
Proofs
(p(
PP

P

pp

TE

DATE

Prog. P”
(weaved)

Aspects

Proofs PP

P

spectsts spect

S

S’

Prog. P’

D

Fig. 1. High-level description of the StaRVOOrS framework workflow

Partial Specification Evaluator module then rewrites the original specification S
into S’, refining the original pre-conditions with the aforementioned path con-
ditions. Note that S’ is no longer a full specification of the desired behaviour.
Instead, it only specifies executions that are not covered by the static verification.

In a next step, the resulting ppDATE specification S’ is, via Specification
Translation, turned into a specification in DATE format (D), suitable for the
runtime verifier. As DATE has no native support for pre/post-conditions, these
are simulated by pure DATE concepts (see Sec. 3.4). This also requires changes to
the code base (done by the Code Instrumentation module), like adding counters
to distinguish different executions of the same code unit, or adding methods
which operationalise pre/post-condition evaluation. The instrumented program
P’ and the DATE specification D are given to the Monitor Generator, which
uses aspect-oriented programming techniques to capture relevant system events.
Later on, the generated aspects are weaved (Weaving Code) into P’. The final
step in the workflow is the actual runtime verification, which executes the weaved
program P” — running the original program in parallel with a monitor of the
simplified property. In case of a runtime error, a trace is produced to be analysed.

3 ppDATE: A Specification Language for Data- and
Control-oriented Properties

In general, formalisms for specifying software fall into two very different cate-
gories. Data-oriented properties may be written in expressive formalisms (like
first-order logic), but they only talk about specific points in the execution, rather
than traces. One instance of this is the Java Modelling Language (JML) [16],
which mainly allows for the specification of pre/post-conditions of method calls,
and class invariants. Such formalisms are not well suited for specifying legal se-
quences of events or states. The other category, which we call control-oriented,
offers great flexibility in specifying legal sequences of events or states, using au-
tomata or temporal logics, but supports only simple constraints on data. One
instance of this is Dynamic Automata with Timers and Events (DATE) [10].

A Specification Language for Static and Runtime Verification 111

In real scenarios, there is often a need to specify both, rich data constraints and
legal execution sequences. Still, when formalising such scenarios, traditionally a
formalism from either of the two categories is chosen. This leads to coding the
aspects that are less supported in the respective formalism, like, e.g., coding legal
execution traces via model/ghost fields in JML, or coding richer data constraints
in DATE by extending the code basis with checkers for specific constraints. Even
if such codings might be necessary somewhere in the process, we claim that they
should not be the duty of the user when formulating properties. Instead, we
propose a language which natively supports both types of properties, and let the
machinery do necessary codings automatically (as is performed in the modules
Specification Translation and Code Instrumentation in Fig. 1). The language
we propose combines features from DATE and (very basic) JML, and is called
ppDATE (pre/post DATE), which allows to annotate states with Hoare triples.
This also enables us to employ two verification tools in the workflow: KeY, which
offers static verification of Java source code annotated with JML, and Larva,
which supports runtime verification of DATE properties.

3.1 Events

Both DATEs and ppDATEs use system events to trigger transitions, which typ-
ically correspond to the entering or leaving a method or a code block.

Definition 1. Given an alphabet Σ of named code (typically the union of named
functions Φ and named code blocks Λ), we will denote the event marking the entry
into σ ∈ Σ as σ↓, and the exit as σ↑. The set of all such events over alphabet Σ
will be written as Σ�.

For instance, in Java, Φ are methods, and Λ are labelled statements — a
singleton statement, whether elementary or structured, can be labelled directly,
whereas a sequence of statements, to be named, is put into a labelled block. In
addition, we will assume that the system events are indexed by an identifier
unique to each execution of a function or block, as in σ↓

id and σ↑
id. These identi-

fiers can be created automatically using techniques as those presented in [13] or
through stack frame references.

3.2 DATE

DATE [10] is an automaton-based control-flow formalism used in Larva. At their
simplest level, DATEs are finite state automata, whose transitions are triggered
by system events (primarily entry points and exit points of methods) and timers,
but augmented with a symbolic state which may be used in conditions guarding
transitions and can be modified via actions also specified as part of the transition.

As an example of a DATE, consider the automaton depicted in Fig. 2, but
ignoring the information given in the states. Transitions are tagged as e | c �→ a,
where e is the event which triggers the transition, c is the condition which has
to hold when event e happens for the transition to be taken, and a is an action

112 W. Ahrendt et al.

q : {true} fileTransfer(f) {bytes == old(bytes)}start

q′ :
{true} fileTransfer(f) {bytes == old(bytes) + size(f)}
{write ∈ rights(f)} rename(f,n) {name(f) == n}

bad

login↑ | sessionIsOpen() �→ c = 0

transferFile↓ | c > 10 �→

transferFile↓ | c ≤ 10 �→ c++

logout↓ | �→

Fig. 2. A ppDATE limiting file transfers

to be executed upon taking the transition. Some states (one in the example)
are marked as bad states, which indicate that a property violation has taken
place when they are reached. The DATE component of the property shown
(i.e. everything in the diagram except for the information in the states of the
automaton) in the example ensures that no more than 10 file transfers take place
in a single login session. Note that the specification also uses a new variable
as part of the monitor (variable c) which keeps count of the number of files
transferred in a single session.

DATEs may refer to valuations θ of program variables. In addition, they also
feature another type of variables, called monitor variables which do not belong
to the program under scrutiny, but instead are local to an automaton, and can
be used, for instance, for counting visits to a state (among others). The values
of those variables are stored in valuations ν of monitor variables, and changed
only in actions a of transitions. Both actions and conditions in transitions can
depend on program variables as well as on monitor variables. Given a condition
c, we write (θ, ν) |= c to denote that c is satisfied by valuations θ and ν. In the
following, Θ denotes the set of all valuations of program variables for a given
program under scrutiny.

Definition 2. A DATE M on a system with program variable valuations over
Θ is a tuple 〈Q,V , Σ, t, B, q0, ν0〉:

– Q is the set of automaton states.
– V is the set of valuations of monitor variables.
– Σ is the alphabet, made up of function names Φ and block names Λ.
– t is the transition relation among states in Q, where each transition is tagged

with (i) the event in Σ� which will trigger it; (ii) a condition on program
and monitor variables; (iii) an action which may change the valuation of
monitor variables: t ⊆ Q×Σ� × P(Θ × V)× (Θ × V −→ V)×Q.

– B ⊆ Q is the set of bad states.
– q0 ∈ Q is the initial state.
– ν0 ∈ V is the initial valuation of monitor variables.

We will write q
e|c �→a−−−−→M q′ to mean that (q, e, c, a, q′) ∈ t. The subscript M

is omitted if it is clear from the context. We say that a DATE is deterministic

A Specification Language for Static and Runtime Verification 113

whenever the following hold: if q
e|c �→a−−−−→ q′ and q

e|c′ �→a′
−−−−−→ q′′ and q′ �= q′′, then c

and c′ are mutually exclusive, i.e. c ∩ c′ = ∅.

Consider once again, the DATE shown in Fig. 2. This can be formalised as fol-
lows: M = 〈Q,V , Σ, t, B, q0, ν0〉 over program variable valuations Θ, where: Q =
{q, q′, bad }, V = {(c, n) | n ∈ Z}, Σ = {fileTransfer, login, logout}, B =
{bad }, q0 = q, ν0 = (c, 0). Furthermore, the transition relation t consists of four

elements, including q′
fileTransfer↓|c≤10�→c++−−−−−−−−−−−−−−−−→ q′ and q′

fileTransfer↓|c>10�→skip−−−−−−−−−−−−−−−−→
bad .

We can now define the semantics of DATEs by identifying how a trace gener-
ated by the system changes the states of the DATE.

Definition 3. We define that a trace w ∈ (Σ� × Θ)∗ shifts a monitor from

configuration (q, ν) ∈ Q × V to configuration (q′, ν′) ∈ Q × V, written (q, ν)
w
=⇒

(q′, ν′), by induction over w:

(q, ν)
ε
=⇒ (q′, ν′)

df
= q = q′ ∧ ν = ν′;

(q, ν)
(e,θ):w
====⇒ (q′, ν′)

df
= ∃ q′′, ν′′ · ∃ c, a ·

q
e|c �→a−−−−→ q′′ ∧ ((θ, ν) |= c) ∧ ν′′ = a(θ, ν) ∧ (q′′, ν′′) w

=⇒ (q′, ν′);

(q, ν)
(e,θ):w
====⇒ (q′, ν′)

df
= (q, ν)

w
=⇒ (q′, ν′)∧ � ∃ q′′, c, a · q

e|c �→a−−−−→ q′′ ∧ ((θ, ν) |= c).

Given a DATE M , a trace w ∈ (Σ� × Θ)∗ is said to be a counter example if

both (q0, ν0)
w
=⇒ (q, ν) and q ∈ B.

The set of violating traces of a DATE M , written VT (M) is defined to be
traces which have a counter example of M as a prefix.

What we have given here is a subset of the full expressive power of DATEs.
DATEs support further features, including: (i) timers which may be used in the
transition conditions or as events to trigger transitions; (ii) communication be-
tween DATE automata using standard CCS-like channels with c! acting as a
broadcast on channel c and which can be read by another automaton match-
ing on event c?; and (iii) replication of automata through which every time a
particular event in some way distinct from earlier ones (e.g. using a method’s
parameters or the target object) is received a new automaton is created (e.g.
used to replicate a property for each instance of a class). We use the latter two
features of DATEs when translating ppDATEs into DATEs. Refer to [10] for
the semantics of DATEs.

3.3 ppDATE

ppDATE extends DATE with elements of data-oriented specification, by assign-
ing (zero or more) Hoare triples to each state. Intuitively, upon entering the code
unit σ ∈ Σ while in a state which contains a Hoare triple {π}σ{π′}, and given
that pre-condition π was satisfied, one should ensure that post-condition π′ is
satisfied upon exit of σ.

114 W. Ahrendt et al.

Let us reconsider the property shown in Fig. 2, this time also looking at the
information given in the states. Some states are tagged with Hoare triples which
should hold when the automaton lies in that state. In addition to ensuring no
more than 10 transfers per login session, the Hoare triples also ensure that: (i)
the number of bytes transferred increases when a file transfer is done while logged
in, (ii) but not when an attempt to transfer a file is done when logged out; and
(iii) renaming a file works as expected if the user has the sufficient rights and is
logged in.

In ppDATEs pre/post-conditions are evaluated over valuations θ of program
variables (defined as for DATEs, cf. Sec. 3.2). For instance, θ |= π may or may
not hold, where θ is a mapping from program locations like object fields, array
fields, and method parameters, to values of the right type.

Definition 4. A ppDATE (pre/post-condition DATE) Mp on a system with pro-
gram variable valuations over Θ consist of (i) a DATE M = 〈Q,V , Σ, t, B, q0, ν0〉
and (ii) a function τ which tags each state of the automaton with Hoare triples
for particular function and block names: τ ∈ Q −→ P(P(Q)×Σ × P(Q)).

Notation for transitions, and definition of configuration changes over strings
of system behaviour are carried over unchanged from DATEs. We use the usual
Hoare triple notation {π} σ {π′} ∈ τ(q) to denote (π, σ, π′) ∈ τ(q). Although
determinism on the Hoare triples’ preconditions is not problematic in itself, we
choose to extend the determinism condition to ensure that for any two Hoare
triples in a single state over the same function have disjoint precondition so as to
have a more effective monitoring algorithm of these triples: for any {π1} σ {π′

1}
and {π2} σ {π′

2} in τ(q), π1 ∩ π2 = ∅.
To formalise the ppDATE shown in Fig. 2 we use the DATE defined earlier,

and add a function τ mapping states to sets of Hoare triples, such as:

τ(q′) = { {true} fileTransfer(f) {bytes == old(bytes) + size(f)},
{write ∈ rights(f)} rename(f,n) {name(f) == n} }

We can now define the semantics of ppDATEs by extending the notion of
counter-examples to include violations of postconditions.

Definition 5. Given a ppDATE Mp = 〈M, τ〉, a trace w ∈ (Σ� × Θ)∗ is said
to be a counter example if either (i) w is a counter example of M ; or (ii) w can

be decomposed into four parts w = w1 ++ 〈(σ↓
id, θ1)〉++w2 ++ 〈(σ↑

id, θ2)〉 such that
the following conditions hold:

(a) Trace w1 takes M from the initial configuration to some configuration (q, ν):

(q0, ν0)
w1=⇒ (q, ν);

(b) There is a Hoare triple of σ enforced in state q: {π} σ {π′} ∈ τ(q);
(c) Valuation θ1 satisfies the precondition: θ1 |= π;
(d) Valuation θ2 does not satisfy the postcondition: θ2 �|= π′.

Recall that each event in a trace is annotated with an identifier, unique per
entry-exit pair — therefore, the σ↓

id and σ↑
id appearing in the trace (i) match the

A Specification Language for Static and Runtime Verification 115

method named σ in the Hoare triples; and (ii) ensures (by construction of the
identifiers) that σid does not appear in w2.

As before, the set of violating traces of a ppDATE Mp, written VT (MP) is
defined to be traces which have a counter example of MP as a prefix.

Note that Definition 5 allows for the inclusion of events corresponding to calls
to the methods specified in the states (part of the Hoare triples). This is natural
as concrete traces in ppDATEs do not necessarily coincide with “paths” of the
DATE component of the ppDATE. For instance, in Fig. 2 a call to rename(·)
when in state q′ is a valid one and a corresponding event rename↓ will be present
in the trace of the ppDATE.

3.4 Translation from ppDATE to DATE

In our architecture, KeY first tries to prove all data-oriented parts of a ppDATE
S, and the partial proofs are used to get an optimised ppDATE S’. To make
the property S’ runtime-checkable, we further translate away the (remaining/op-
timised) Hoare triples, to arrive at a set of parallel1, pure DATEs D that can
be processed by Larva. One complication in the translation is the possibility
that a Hoare triple in a state may ‘clash’ with an outgoing event. This would
for instance be the case if we added to Fig. 2 a transition from q to q′ with
fileTransfer↓ as a triggering event. For clarity of presentation we give two
algorithms, one for the case when no such clashes arise, and then for the full
case. Formally, we define a clashing Hoare triple as follows.

Definition 6. Given a ppDATE Mp = 〈M, τ〉 with M = 〈Q,V , Σ, t, q0, ν0〉, a
Hoare triple {π} σ {π′} ∈ τ(q), for some q ∈ Q, is called clashing if an outgoing

transition from q is guarded by event σ↓ (i.e., ∃ c, a, q′ · q
σ↓|c �→a−−−−−→ q′). A

clash-free ppDATE is a ppDATE with no clashing Hoare triple.

We now present the algorithm to translate a clash-free ppDATE into DATEs.
The translation works by replacing each Hoare triple {π} σ {π′} in a state q by a
new reflexive transition (from q to q) triggered by an entry into function σ such
that the precondition π holds, and sending a message which is used to replicate
a parallel post-condition checking DATE automaton.

Algorithm 1 Given a clash-free ppDATE Mp = 〈M, τ〉, we can construct a set
of parallel DATEs equivalent to Mp in the following manner:
1. Give each Hoare triple in Mp a unique name h, to be interpreted as a channel

name in the DATEs to be constructed.
2. For each Hoare triple h, construct a replicated DATE automaton Mh (called

the post-condition checker), parameterised over identifier id, as shown be-
low2:

1 Multiple, parallel DATEs define behaviour of a sequential application in the sense
that each event in the application may trigger transitions in a number of DATEs. In
addition, the DATEs can synchronise with each other by means of channels.

2 Following the semantics of DATEs, whenever a message is received on channel h
with a new identifier, this automaton is replicated and the first transition is taken.

116 W. Ahrendt et al.

start ok

bad

hid? |�→ σid
↑ | π′ �→

σid
↑ | ¬π′ �→

3. Turn M , the DATE component of Mp, into the DATE M ′ such that, for
each Hoare triple {π} σ {π′} named h in τ(q) is replaced by a transition

q
σid

↓|π �→hid!−−−−−−−−→M ′ q.
4. The resulting set of parallel DATEs is defined to be:

{M ′} ∪ {Mh|h is a Hoare triple identifier from M}.

This translation works well except that it would introduce non-determinism
when the ppDATE includes clashes. To extend the translation to work in the
presence of clashes, we transform Hoare triples clashing with a transition into
a family of disjoint transitions each of which performs the transition but also
checks whether the post-condition checker should be triggered.

Algorithm 2 Given a general ppDATE Mp, we can construct a set of parallel
DATEs equivalent to Mp by following Algorithm 1 except that we replace Step
3., by the following rule:
3a. Each non-clashing Hoare triple h: {π} σ {π′} in τ(q) is turned into a tran-

sition q
σid

↓|π �→hid!−−−−−−−−→M ′ q.
3b. For each clashing Hoare triple h: {π} σ {π′} ∈ τ(q), clashing with n outgoing

transitions, q
σ↓|ci �→ai−−−−−−→ qi (0 ≤ i < n):

– Replace q
σ↓|ci �→ai−−−−−−→M qi with q

σid
↓|ci �→{ai; ifπ thenhid!}−−−−−−−−−−−−−−−−−→M ′ qi;

– Add the following transition q
σid

↓|(¬c0∧...∧¬cn∧π) �→hid!−−−−−−−−−−−−−−−−−−→M ′ q.

4 Case Study: Mondex

Mondex is an electronic purse application used by smart cards products [1], and
it has been used as a benchmark problem within the Verified Software Grand
Challenge context [21]. Mondex’s original sanitised specification written in Z,
together with hand-written proofs of different properties, can be found in [17].
Our variant is strongly inspired by a JML formalisation given in [19]. However,
ppDATE has native (automata) states, unlike Z or JML. This allowed us to
naturally represent the overall status of the observed system by states (see the
nodes of the graph in Fig. 3), instead of representing the status by additional
data like in Z or JML.

Mondex essentially provides a financial transaction system supporting trans-
ferring of funds between accounts, or ‘purses’. We focus on analysing the trans-
actions taking place between these purses, which follow a multi-step message

A Specification Language for Static and Runtime Verification 117

exchange protocol: whenever a transaction between two purses is to take place,
(i) the source and destination purses should (independently) register with the
central fund transferring manager; (ii) then a request to deduct funds from the
source purse may arrive, followed by (iii) a request to add the funds to the des-
tination purse; and (iv) finally, there should be an acknowledgement that the
transfer took place, before the transaction ends.

The original version of Mondex works on Java Card, and all controls in re-
lation to security properties have to be handled on the card, rather than being
monitored on an external source. In our case study, we have verified a version
of the protocol which works using a server, rather than a smart card. The only
principal difference in the protocol implementation is that the server version uses
return values to control the protocol rather than raising Java Card exceptions.
The full specification and code of the case study can be found in [2]. The spec-
ification consists on a ppDATE automaton with 10 states, 25 transitions and a
total of 26 different Hoare triples. The implementation consists on 514 lines of
code (without comments) which are distributed over 8 files.

4.1 ppDATE Property

As typical in transaction-based systems, the Mondex case study illustrates how
complexity can arise from accessing different purses concurrently and in a manner
not predicted by the system developer. Specifications of such systems have to
reflect this emerging complexity and include (i) constraints as to the control flow
of the system — the order in which different components are accessed; and (ii)
constraints on how these components behave when accessed both when access
is expected and when it is not. Our formalism, ppDATE, addresses both these
orthogonal issues in a structured manner.

The top-level specification of the Mondex purse-management systems can be
found in Fig. 3. For space reasons, the Hoare triples populating the states are not
depicted in this figure, but instead, we will show them for specific states further
on. At the automaton level, the ppDATE (which we will call S) expresses the
protocol governing how the purses are to be accessed, by specifying the order
in which the components (in this case methods used to access the purses) can
be called. For instance, after the parties are initialised (encoded in S ’s state
named Parties Initialised), a request to deduct more money than what is found
in the source purse should fail, while a request to deduct an amount of money
which is available should take us to a state (named Money deducted) in which the
protocol now allows for the money to be transferred to the destination purse. The
ordering is crucial and appears in practically all financial transaction systems
so as to ensure that no money will be created at any point in the transaction.
Similarly, access to any unregistered purse takes us to a bad state3 since the
system should never allow these methods to be accessed. Notice that comparing

3 These transitions are not drawn in the diagram (but are mentioned in the note
underneath) so as to avoid confusion. Note that Larva will not take any explicit
action when reaching a bad state: the corresponding automaton will stay in that

118 W. Ahrendt et al.

Awaiting both

Money deducted

Money deposited

val / pto.equals(t) && ret == SUCCESS &&

req / pfrom.equals(f) && ret == SUCCESS &&

start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&
start_from / pfrom.equals(f) &&

start_to / pto.equals(t) &&

req / pfrom.equals(f) &&

BAD STATE

Parties initialised

ack / pfrom.equals(f) && ret == SUCCESS &&

* All states have outgoing transitions for ret == SUCCESS && SENDER!=party (where party is the
In addition:

GOOD STATE

Awaiting end

end_transfer

* All states but 'Awaiting end' have outgoing transitions for end_transfer, going to a bad state.

transfer_initialise (f,t,v,mbox) / f.name != t.name &&

Awaiting from Awaiting to

Initial

/ pfrom = f; pto = t; pvalue = v;

ret == SUCCESS &&
ret == SUCCESS &&

ret == SUCCESS &&

m.id == pto.name

m.id == pfrom.name && m.id == pfrom.name && m.paydetails.value == pvalue &&

m.id == pto.name && m.paydetails.value == pvalue

m.id == pfrom.name

m.id == pto.name

m.id == pfrom.name

pvalue > pfrom.balance

ret == SUCCESS &&

ret == SUCCESS

m.id == pfrom.name

ret == SUCCESS &&

party from whom a message is not expected) going to a bad state.

pvalue <= pfrom.balancem.paydetails.value == pvalue &&

Fig. 3. ppDATE to monitor the behaviour of the transaction protocol

m.paydetails.value and pvalue is needed in order to check that the message
received is part of the ongoing transaction.

Over and above the specification of the protocol, one has to specify the be-
haviour of the involved methods, which obviously changes together with the
status of the protocol. For instance, transfer of funds from a purse to another
should succeed once both purses have been registered, but should fail if at-
tempted before registration or if an attempt is made to perform the transfer
multiple times. This behaviour is encoded by different Hoare triples assigned to
different S states. For instance, just after the registration of two purses (in S ’s
state Parties initialised), the method val_operation which requests money from

state until the whole monitor is restarted (unless it is explicitly specified on the
monitor what action to take when reaching a bad state). A log is kept indicating
this.

A Specification Language for Static and Runtime Verification 119

the source purse should succeed and deduct the money from the purse (provided
enough money is available) as shown in the Hoare triple4 below:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \������ == SUCCESS

&& (balance == \���(balance) + transaction.value); }

On the other hand, if the same method is accessed after the funds have already
been deducted (S ’s state Money deducted) then the purse content should remain
unchanged, and the request should be ignored:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance); }

val_operation

{ \������ == IGNORED; }

Note that both Hoare triples above have the same pre-condition, but the
different ppDATE states they belong to demand different behaviour (i.e., post-
conditions) of val_operation.

The control-oriented properties basically ensure that the message exchange
goes as expected. In contrast, the pre/post-conditions (in total, there are 26
Hoare triples in the states of the ppDATE) ensure the well-behaviour of the
individual steps.

4.2 Combined Static and Runtime Verification

Following the verification approach from Fig. 1, we start by extracting the Hoare
triples from the ppDATE which are translated to JML annotations in the source
code. KeY then generates corresponding proof obligations in dynamic logic and
starts a proof attempt. Note that, in this work, we use KeY only fully automati-
cally, not using its rich support for interactive theorem proving, neither assuming
user provided proof-hinting annotations (like loop invariants).

When trying to prove these formulae, KeY creates proof branches correspond-
ing to case distinctions in the code. Usually, KeY manages to automatically close
the proofs of the simpler branches, but may not (automatically) close more dif-
ficult branches. Still, the open goals contain path conditions, i.e., conditions on
the valuation of program variables before the method was entered. We use this
information to refine the pre-condition to the cases where KeY cannot close the
proof.

For instance, consider the part of the specification already discussed in the pre-
vious section — the JML pre/post-condition from the the state Parties initialised,
when a request for a money transfer is received:

��	�
��� checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance);

������� \������ == SUCCESS

4 In the pre- and post-conditions, we use basic JML expression syntax [16].

120 W. Ahrendt et al.

&& (balance == \���(balance) + transaction.value);

The code (and consequently KeY) branches on the status of the transaction,
and one of the branches, when the transaction is not awaiting a money deduction
request, is closed successfully. The other branch is left open. From the open goal,
we can read off the path condition status == ProtocolStatus.Epv (i.e. the
receiver purse is expecting to receive the requested value). Only if this condition
holds upon entry of val_operation, the post-condition will need to be checked
at runtime. All other cases are proved correct statically, by KeY. Before gener-
ating the runtime monitor, we therefore refine the corresponding Hoare triple in
ppDATE to include this path condition:

{ checkSameTransaction() == SUCCESS

&& transaction.value <= (ShortMaxValue - balance)

&& status == ProtocolStatus.Epv; }

val_operation

{ \������ == SUCCESS

&& (balance == \���(balance) + transaction.value); }

In our case study, except for two Hoare triples related to the initialisation and
termination of a transaction which were fully proven by KeY, all the other 24
triples were refined in this manner.

The resulting ppDATE specification can now be transformed into an equiv-
alent DATE, and the runtime verification tool Larva is used to monitor the
system for possible violations.

The implementation of Mondex we describe in this section has been fully
verified with our technique, albeit in an iterative manner since verification re-
vealed some errors we made in our original implementation of Mondex (see next
section).

5 Experimentation

Here, we summarise the experimental results of applying our approach to the
Mondex case study. In particular, we compare execution times of (a) the un-
monitored implementation, (b) the monitored implementation using the original
specification S, and (c) the monitored implementation using specification S′, ob-
tained from S via static (partial) proof analysis. The table below shows the
average execution time, on a PC Intel Core i7 using a single core, for these
three scenarios when the system is ran performing different numbers of transac-
tions. Statically analysing all the Hoare triples took KeY around 2.15 minutes.
However, the real gain is that this analysis is done once and for all prior to
deployment, and the gains reported in the table below improves performance for
all executions once the system is deployed.

Transactions (a) no monitoring (b) monitoring S (c) monitoring S′

10 8 ms 120 ms 15 ms
100 50 ms 3500 ms 90 ms
1000 250 ms 330000 ms 375 ms

A Specification Language for Static and Runtime Verification 121

As expected, adding a monitor caused overhead on the execution time (b).
However, this overhead is substantially reduced by using our approach (c). The
relative difference is quite remarkable: at least 10 times faster for low number of
transactions, and increasing up to 900 times faster as the number of transactions
increases. This large reduction in execution time overheads when optimising the
monitor is primarily due to the fact that data-oriented monitoring can be pro-
hibitively expensive in the first place. In fact, using our approach, each function
with a satisfied precondition fires an additional automaton being traversed in
parallel. This results in the large overheads in the case study. However, by prun-
ing away many of these checks through the typical case of a strengthening of
the precondition results in the gains we obtain. This indicates that using static
analysis to pare down the data-oriented aspect of the properties is ideal in this
situation, in that we are attacking directly the overlap between a strength of
static analysis and a weakness of dynamic analysis.

Note that it is usually impossible to get a full proof when using a static verifier
like KeY in the simple way we do, i.e., without user interaction, and without poof
supporting annotations (like loop invariants). But the missing proving power is
only one aspect. The other is that branches may be open because the corre-
sponding execution path is actually erroneous. KeY cannot per se distinguish
these two cases, but Larva can detect the erroneous case when it appears at
runtime. Note that the above table does not say anything about errors revealed
by applying our approach to the case study. It only shows execution times of
the various scenarios after errors were revealed and removed. However, finding
errors is the one of the most important purposes of verification, so we briefly
discuss some errors in the following.

In our variant of Mondex, in order to scale the transaction count, several
purses are iteratively generated, using the index for the name of the purse cre-
ated in each iteration. Executing the application with the monitor generated by
StaRVOOrS led to a runtime failure. Inspecting the monitor-generated (failing)
execution trace allowed us to spot the problem. Originally, the index of the loop
was initialised with 0, but the names of the purses were assumed to be greater
than 0. This lead to a purse with an invalid name, causing a failure which was
detected by StaRVOOrS.

We have also intentionally injected errors into the Mondex case study, to test
whether the approach would detect them. All of them were successfully detected
with StaRVOOrS. We have also considered incomplete or wrong specifications.
This can mean very different things. In a case where the specification is too weak,
such that the implementation fulfils it for wrong reasons, we may not catch that.
This is a common issue for practically all verification approaches. At least, in
our approach of combined data- and control-oriented verification, we have some
chance that a problem propagates to a state where the specification is strong
enough to catch it. If on the other hand a Hoare triple accidentally puts wrong
demands on the implementation, KeY will naturally not be able to prove it.
Thereby, the StaRVOOrS methodology ensures that the property is checked at
runtime. Even there, verification will fail (if only that part is executed), but this

122 W. Ahrendt et al.

time, we get a failing trace. Analysing it will show that, actually, the computa-
tion was fine, suggesting that the specification was wrong in the first place. For
example, the post-condition used for static analysis (see Sec. 4.2) of the method
initialising the sender purse during a transaction used a wrong variable, and
KeY was not able to prove it. At runtime, the replicated automaton checking
the post-condition shifted to a bad state, even if the computation lead to the
expected results, allowing us to spot, and correct, the failing post-condition.

6 Related Work

The combination of different verification techniques is gaining more and more
popularity. One active area of research is the combination of static analysis and
testing, e.g. [4,9,12,14,15,18]. A direct comparison of our work with those would
not be fully fair as we have different objectives. We are not aiming at generating
test cases, but at monitoring the actual post-deployment runs of the system.
What we have in common is that static analysis/verification is used to limit the
dynamic efforts, there by filtering test cases, here by filtering checks at runtime.

A different line of research is the combination of testing and runtime verifica-
tion, as done by Falzon and Pace in [13] where QuickCheck and Larva are com-
bined. Similar to ppDATEs, QuickCheck automata employ pre-postconditions
but as part of the transitions as opposed to the states as used in ppDATEs.

The work by Wonisch et al. in [20] is concerned with the use of program
transformation to avoid unsafe program executions. Their main objective is the
optimisation of runtime monitoring by using static analysis (rather than full-
blown static verification) techniques.

In [8] static analysis is used to improve the performance of runtime monitoring
based on tracematches. The paper presents a static analysis technique to speed
up trace matching by reducing the runtime instrumentation needed. The static
analysis part is based on three stages: ruling out some tracematches, eliminating
inconsistent instrumentation points, and finally further refinement of the analysis
taking into account execution order.

In [22], Zee et al. explore the combination of static and runtime verification,
aiming at a specification language whose specifications can be both statically
analysed and runtime checked. They extend the static verifier Jahob with tech-
niques to verify specifications at runtime, and can execute specifications using
quantifiers, set comprehensions, integer and object expressions amongst other
constructs. Most of the properties they can verify are data-centric, whereas we
also cover control-centric properties. We could benefit from incorporating some
of their solutions for complex data structures in our approach.

Several specification approaches, like SPARK [5], JML and SPEC# [6] are
supported by both static and runtime verification tools. However, to the best of
our knowledge, static verification is not used for optimising runtime verification.

A Specification Language for Static and Runtime Verification 123

7 Conclusions

In this paper we have presented the StaRVOOrS framework combining (partial)
static and (optimised) runtime verification. As a first step, we have instantiated
our approach with the tools KeY and Larva. We have presented and formalised
a notation, ppDATE, which allows us to arbitrarily combine control-oriented
(based on automata with event-triggered transitions) and data-oriented (relating
final and initial data values) properties in a single formalism, and thereby to
describe a larger variety of applications. An additional interesting aspect of this
combination is that data-oriented properties formulated in a pre/post style can
be made dependent on the history of previous events.

To illustrate how this framework works, we have applied it to a variant of
the Mondex case study [19,21]. In this case study, we analyse the behaviour of
the transaction protocol for transferring money between electronic purses, and
we demonstrate how this protocol can be partly statically, partly dynamically
verified using our framework. Apart from this case study, we have also applied
our framework on a different case study — a simple system, in which users may
login and perform different operations (see [2] for the sources of this case study).

The difference in performance between the fully monitored and the version
with simplified monitors is, in itself, motivation to look further into how we
can extend our approach. The huge gains are primarily a side-effect of the large
costs of data-oriented property monitoring, meaning that any reduction in the
magnitude of the monitored properties can lead to large reductions in overheads.
Our approach may thus be a way of dealing with this class of properties which
one typically shies away from monitoring due to the large overheads involved.

The exact gain of optimising runtime monitoring by static results will vary
depending on the application, but in our approach, it will be substantial when-
ever there are enough paths through the computation which are simple enough
for automated (static) verification, and yet appear frequently during runtime,
which arguably is common in many applications. In addition, we want to high-
light that the combination of static and runtime verification does not only speed
up the execution time of a monitored system, but moreover increases confidence,
as parts of the system are proved to be correct once and for all.

Both, the efficiency gain for monitoring and the confidence gain, will only
increase along with future improvements in the used static verifier. For instance,
if ongoing work on loop invariant generation in KeY will lead to closing some
more branches in typical proofs, then this will have an immediate effect that is
proportional to the frequency of executing those loops at runtime.

We are currently proving the soundness of the transformation of ppDATEs
to DATEs, and automating the verification process to use KeY and Larva with
ppDATEs. Finally, an interesting question is whether static verification could be
used to (partially) prove the control-oriented part of ppDATEs. This is an open
question left for future work.

Acknowledgements. Wewould like to thank Christian Colombo andMartin Henschel
for their support concerning implementation issues about Larva and KeY respectively.

124 W. Ahrendt et al.

We also thank the anonymous reviewers for their valuable comments to improve the pre-
sentation of the paper.

References

1. MasterCard International Inc. Mondex, http://www.mondexusa.com/
2. StaRVOOrS, http://www.cse.chalmers.se/∼chimento/starvoors/files.html
3. Ahrendt, W., Pace, G., Schneider, G.: A Unified Approach for Static and Run-

time Verification: Framework and Applications. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2012, Part I. LNCS, vol. 7609, pp. 312–326. Springer, Heidelberg (2012)

4. Artho, C., Biere, A.: Combined static and dynamic analysis. In: AIOOL 2005.
ENTCS, vol. 131, pp. 3–14 (2005)

5. Barnes, J.: SPARK: The Proven Approach to High Integrity Software. Altran
Praxis, UK (2012), http://www.altran.co.uk

6. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: An
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005)

7. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS, vol. 4334. Springer, Heidelberg (2007)

8. Bodden, E., Hendren, L., Lhoták, O.: A staged static program analysis to improve
the performance of runtime monitoring. In: Ernst, E. (ed.) ECOOP 2007. LNCS,
vol. 4609, pp. 525–549. Springer, Heidelberg (2007)

9. Christakis, M., Müller, P., Wüstholz, V.: Collaborative verification and testing
with explicit assumptions. In: Proceedings of the FM2012: Formal Methods - 18th
International Symposium, Paris, France, August 27-31, pp. 132–146 (2012)

10. Colombo, C., Pace, G.J., Schneider, G.: Dynamic Event-Based RuntimeMonitoring
of Real-Time and Contextual Properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009)

11. Colombo, C., Pace, G.J., Schneider, G.: LARVA - A Tool for Runtime Monitoring
of Java Programs. In: SEFM 2009, pp. 33–37. IEEE Computer Society (2009)

12. Csallner, C., Smaragdakis, Y.: Check ’n’ crash: combining static checking and
testing. In: 27th International Conference on Software Engineering, ICSE 2005,
May 15-21, St. Louis, Missouri, USA, pp. 422–431 (2005)

13. Falzon, K., Pace, G.: Combining testing and runtime verification techniques. In:
Machado, R.J., Maciel, R.S.P., Rubin, J., Botterweck, G. (eds.) MOMPES 2012.
LNCS, vol. 7706, pp. 38–57. Springer, Heidelberg (2013)

14. Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G., Saxe, J.B., Stata, R.:
Extended Static Checking for Java. In: Knoop, J., Hendren, L.J. (eds.) PLDI 2002,
pp. 234–245. ACM (2002)

15. Ge, X., Taneja, K., Xie, T., Tillmann, N.: Dyta: dynamic symbolic execution guided
with static verification results. In: Proceedings of the 33rd International Conference
on Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, pp.
992–994 (2011)

16. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P.: JML Reference Manual. Draft 1.200 (2007)

17. Stepney, S., Cooper, D., Woodcock, J.: An Electronic Purse: Specification, Refine-
ment and Proof. Technical monograph PRG-126, Oxford University Computing
Laboratory (2000)

18. Tillmann, N., de Halleux, J.: Pex-White Box Test Generation for.NET.. In: Beckert,
B. (ed.) TAP. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008)

http://www.mondexusa.com/
http://www.cse.chalmers.se/~chimento/starvoors/files.html
http://www.altran.co.uk

A Specification Language for Static and Runtime Verification 125

19. Tonin, I.: Verifying the Mondex case study. The KeY approach. Technical Report
2007-4, Universität Karlsruhe (2007)

20. Wonisch, D., Schremmer, A., Wehrheim, H.: Zero Overhead Runtime Monitoring.
In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137,
pp. 244–258. Springer, Heidelberg (2013)

21. Woodcock, J.: First Steps in the Verified Software Grand Challenge. In: SEW 2006,
pp. 203–206. IEEE Computer Society (2006)

22. Zee, K., Kuncak, V., Taylor, M., Rinard, M.C.: Runtime Checking for Program
Verification.. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp.
202–213. Springer, Heidelberg (2007)

Certificates for Parameterized Model Checking

Sylvain Conchon1,2, Alain Mebsout2,3, and Fatiha Zaïdi1(�)

1 LRI, Université Paris-Sud, CNRS, F-91405, Orsay, France
fatiha.zaidi@lri.fr

2 INRIA Saclay – Île-de-France, F-91893, Orsay cedex, France
3 The University of Iowa, Iowa City, IA, United States

Abstract. This paper presents a technique for the certification of Cu-
bicle, a model checker for proving safety properties of parameterized
systems. To increase the confidence in its results, Cubicle now produces
a proof object (or certificate) that, if proven valid, guarantees that the
answer for this specific input is correct. The main challenges addressed in
this paper are (1) the production of such certificates without degrading
the performances of the model checker and (2) the construction of these
proof objects so that they can be independently and efficiently verified
by an SMT solver. Since the burden of correctness insurance now relies
on this external solver, a stronger guarantee is obtained by the use of
multiple backend automatic provers for redundancy. Experiments show
that our approach does not impact Cubicle’s performances and that we
were able to verify certificates for challenging parameterized problems.
As a byproduct, these certificates allowed us to find subtle and critical
implementation bugs in Cubicle.

1 Introduction

Multi-core architectures or distributed systems usually rely on protocols (such as
mutual exclusion, cache coherence or fault-tolerance) which are designed for an
arbitrary number of components. These protocols are critical and known as being
notoriously difficult to design essentially because of their highly asynchronous
and fine-grained concurrent nature. As a result, their validation by simulation
is risky because some race conditions appear scarcely and are unlikely to be
reproduced. Consequently, the formal verification of these protocols is a necessity.

One of the most successful formal technique for verifying concurrent systems
is model checking which automatically determines if a model, usually described
by a transition system, meets a specification expressed as temporal properties.
When the model is defined independently of the number of components, its
verification is known as the parameterized model checking problem.

Being parameterized or not, the answer produced by a model checker is usually
simply “yes” or “no”. When the result is negative, a counterexample (in the
form of a sequence of transitions) can also be easily returned (and checked by
the user). On the contrary, model checkers rarely return a proof evidence for
a positive answer. So, should we trust a model checker when it simply returns
“yes”? From our experience, given the high complexity of the implementation of
these tools, the answer is clearly no.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 126–142, 2015.
DOI: 10.1007/978-3-319-19249-9_9

Certificates for Parameterized Model Checking 127

To be sure of the correctness of these answers, we can either use a certified
model checker [12] or a model checker that produces in addition a proof of its
result, also called a certificate [21]. The advantage of the first approach is that
the model checker is verified correct once and for all. However, this is a very
heavy task since model checkers are profoundly optimized programs with a large
number of components. In the second approach, certificates have to be checked
after each run. Its advantage is to be far less intrusive, the only necessity is to
instrument an already existing model checker. However, this approach is only
applicable if certificates or proof objects are small and simple enough to be
checked in a reasonable time after the fact.

The aim of this work is to bring a higher level of confidence in the results
produced by Cubicle [6], an SMT-based model checker for proving safety prop-
erties of parameterized systems1. Cubicle represents states as logical formulas
(expressed in a fragment of first-order logic) and checks that unsafe states are
not reachable using a backward analysis. In that framework, it is far simpler to
produce and check a certificate than to certify the model checker itself. Indeed,
Cubicle is a very complex piece of software combining higher order functional
programming style with efficient imperative data structures and concurrency.
As far as we know, there are no framework for certifying such a program as is.
Furthermore, we demonstrate through a set of experiments that checking proof
objects can be done efficiently, even for industrial size protocols.

The content of the paper, our contributions and the originality of our approach
are as follows:

– Extract an inductive invariant φ from the backward reachability loop and
generate proof obligations (POs) whose validity guarantees that φ is an in-
ductive invariant subsuming the original safety property (Section 3). These
POs are first order formulas which are sent to an automatic theorem prover
(Section 4).

– A set of algorithmic techniques to enrich and simplify the certificates in
order to handle more complex and larger problems (Section 5). A stronger
guarantee on the certification process is achieved by redundancy: each PO
is independently proven by several tools (SMT solvers, automatic theorem
provers, etc.).

We illustrate the general approach with a running example: a simple cache
coherence protocol. We show the merit of our approach in Section 5.2 through a
set of benchmarks for which the certification process is conducted entirely auto-
matically. These notably include two industrial parameterized cache coherence
protocols: FLASH and a new protocol developed at Intel and Duke.

Last but not least, the certificates allowed us to find several bugs in Cubicle
whose severity can be classified as harmless to critical with a direct impact
on its correctness. Some of these bugs have been found by testing but others
have escaped all traditional debugging techniques because they only appear very
rarely and are related to tricky implementation details.
1 Developed conjointly between Université Paris-Sud and Intel.

128 S. Conchon et al.

2 Array Based Transition Systems

Cubicle is based on the theoretical foundation of Model Checking Modulo Theories
(MCMT) [14] by Ghilardi and Ranise. This is a declarative framework for param-
eterized systems in which transitions and properties are expressed in a particular
fragment of first order logic. Systems expressible in this framework are called ar-
ray based transition systems because their state can be seen as a set of unbounded
arrays whose indexes range over elements of the parameterized domain.

Definition 1. An array based transition system is a tuple S = (Q, I, τ) where Q
is a set of function symbols (also called arrays) representing the state variables,
I is a formula which characterizes the initial states of the system (in which
variables of Q can appear free) and τ is a transition relation.

In the following, the formula I is universally quantified. The relation τ is
expressed in the form of a disjunction of existentially quantified (by zero, one,
or several variables of the parameterized domain) formulas. Each component
of this disjunction is called a transition and is said to be parameterized by its
existential variables. Following usual notations, we note x′ the value of x ∈ Q
after executing the transition. Transitions relate values of primed and un-primed
variables and arrays, and are of the form:

t(Q, Q′) ≡ ∃ī. γ (̄i, Q)

︸ ︷︷ ︸

guard

∧
∧

x∈Q

∀j̄.x′(j̄) = δx(̄i, j̄, Q)

︸ ︷︷ ︸

action

where γ is a quantifier free formula called the guard of t and δx is a quantifier
free formula called the update of x.

Safety properties are expressed by characterizing unsafe states. An unsafe
formula must be in a special form called a cube, i.e. a conjunction of literals
existentially quantified by distinct variables:

Θ ≡ ∃(̄i). distinct(̄i) ∧ l1(̄i) ∧ . . . ∧ ln(̄i).

Running Example. We illustrate this framework on a simplified version of the
directory based cache coherence protocol proposed by German [24]. In Figure 1,
we give a high-level view of the evolution of a single cache as a state diagram.
The protocol consists of a global directory which maintains the consistency of
a shared memory between a parameterized number of cache clients. The status
of each cache i is indicated by a variable Cache[i] which can be in one of the
three states: (E)xclusive (read and write accesses), (S)hared (read access only)
or (I)nvalid (no access to the memory). Clients send requests to the directory
when cache misses occur: rs for a shared access (read miss), re for an exclusive
access (write miss). The directory has four variables: a boolean flag Exg indicates
whether a client has an exclusive access to the main memory, a boolean array
Shr, such that Shr[i] is true when a client i is granted (read or write) access to
the memory, Cmd stores the current request (ε stands for the absence of request),
and Ptr contains the emitter of the current request.

Certificates for Parameterized Model Checking 129

E

S

I

Shr[i] := true
Exg := true

Exg := true

Shr[i] := true

Shr[i] := false
Exg := false

Exg := false

Shr[i] := false

Fig. 1. High level overview of German-esque

The array based transition system for this protocol is described by its initial
states, represented by the following logical formula (caches are invalid, no access
has been given and there is no request to be processed)

I ≡ ∀i. Cache[i] = I ∧ Shr[i] = false ∧ Exg = false ∧ Cmd = ε

and by its transition relation given below (an horizontal line separates guards
from actions, depicted in blue when they modify variables while the ones that
don’t change values are light gray). For instance, transition t6 should read as: if
there exists a process i such that the current pointer (Ptr) is i, the command to
be processed is a request to exclusive access (re), the flag Exg is not set and the
array Shr contains false for all processes, then erase the command, set the flag
Exg, register the process i in Shr and change the cache state of i to exclusive (E).

τ ≡ t1 ∨ t2 ∨ t3 ∨ t4 ∨ t5 ∨ t6

t1 : ∃i. Cache[i] = I ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = rs ∧
Exg′ = Exg ∧
∀j. Shr[j] = Shr′[j] ∧

Cache[j] = Cache′[j]

t4 : ∃i. Shr[i] = true ∧ Cmd = rs ∧ Exg ∧
Ptr′ = Ptr ∧ Cmd′ = Cmd ∧
Exg′ = false ∧ ∀j.Shr′[j] = Shr[j] ∧
∀j. ite(i = j, Cache′[j] = S,

Cache′[j] = Cache′[j])

t2 : ∃i. Cache[i] �= E ∧ Cmd = ε ∧
Ptr′ = i ∧ Cmd′ = re ∧
Exg′ = Exg ∧
∀j. Shr[j] = Shr′[j] ∧

Cache[j] = Cache′[j]

t5 : ∃i. Ptr = i ∧ Cmd = rs ∧ ¬Exg ∧
Ptr′ = Ptr ∧ Cmd′ = ε ∧
Exg′ = Exg ∧
∀j. ite(i = j, Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = S,

Cache′[j] = Cache′[j])

t3 : ∃i. Shr[i] = true ∧ Cmd = re ∧
Ptr′ = Ptr ∧ Cmd′ = Cmd ∧
Exg′ = false ∧
∀j. ite(i = j, ¬Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = I,

Cache′[j] = Cache′[j])

t6 : ∃i. Ptr = i ∧ Cmd = re ∧ ¬Exg ∧
∀j. ¬Shr[j] ∧
Ptr′ = Ptr ∧
Cmd′ = ε ∧ Exg′ = true ∧
∀j. ite(i = j, Shr′[j],

Shr′[j] = Shr[j]) ∧
∀j. ite(i = j, Cache′[j] = E,

Cache′[j] = Cache′[j])

130 S. Conchon et al.

This protocol ensures that when a cache client is in an exclusive state then
no other process has (read or write) access to the memory. Proving this safety
property amounts to checking that states satisfying Θ are not reachable:

Θ ≡ ∃i, j. i �= j ∧ Cache[i] = E ∧ Cache[j] �= I

3 Proof Evidence in Backward Reachability

In this section we explain how to get proof objects from the backward reachability
analysis used by Cubicle to prove the safety of array based systems.

For a state formula ϕ and a transition τ ∈ T , let pre(τ, ϕ) be the formula
describing the set of states from which a state satisfying ϕ can be reached in one
τ -step. The pre-image closure of ϕ, denoted by Pre∗(ϕ), is defined as follows

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Pre0(ϕ) � ϕ

Pren(ϕ) � pre(τ,Pren−1(ϕ))

Pre∗(ϕ) �
∨

k∈N
Prek(ϕ)

and the pre-image of a set of formulas V is defined by Pre∗(V) =
⋃

ϕ∈V Pre∗(ϕ).
We also write Pre(ϕ) for Pre1(ϕ).

Definition 2. A formula ϕ is said to be reachable iff Pre∗(ϕ) ∧ I satisfiable.
It is unreachable otherwise.

The framework of MCMT gives sufficient conditions for which the reachability
problem (Is the unsafe formula Θ reachable in the system S ?) is decidable. In
particular, we consider that the pre-image of a cube by the transition relation
τ (Preτ) is effectively computable. The interested reader is referred to [14]
for more details. Under these conditions, safety can be checked by backward
reachability analysis.

We give a standard backward reachability algorithm for this framework, as
defined by the function BWD in Algorithm 1. Starting with an empty formula V of
visited nodes (i.e. false) and a queue Q of pending nodes initialized with a formula
Θ, BWD iteratively computes the backward reachability graph of Pre∗

τ (Θ). The
algorithm terminates when a node fails the safety check (consistency with the
initial condition — line 6), or when all nodes in Q are subsumed by V (line 8).
These logical checks are performed by an SMT solver.

In the case where the return value of the algorithm is unsafe, it is easy to
expose an error trace — from the initial states to one of the violated property —
to the user. This trace can then be replayed afterwards to ensure the system is
indeed unsafe with respect to its specification. In the case where the return value
is safe, a certificate can be produced. Because of the nature of the program
at hand, any instrumentation for certification purposes could either diminish
efficiency (in the worst case, prevent the verification of industrial size systems)
or even badly interfere and compromise the correctness (this is however not

Certificates for Parameterized Model Checking 131

Algorithm 1. Backward reachability analysis
Input: an array based system S = (Q, I, τ) and a cube Θ
Variables:

V: visited cubes
Q: work queue

1 function BWD(S , Θ) : begin
2 V := ∅;
3 push(Q, Θ);
4 while not_empty(Q) do
5 ϕ := pop(Q);
6 if ϕ ∧ I satisfiable then
7 return unsafe
8 else if ϕ �|= V then
9 V := V ∨ ϕ;

10 push(Q, Preτ (ϕ));

11 return safe

problematic from a certification standpoint if the results are to be independently
checked, but it would nonetheless render the tool ineffective). In fact, there is
no need for this certificate to contain or reflect all reasoning steps taken by the
model checker, such as pre-images, fixpoint and safety checks, because V already
contains enough information to guarantee the correctness.

Definition 3. An invariant of a system is any property that holds in all reach-
able states of the system.

The notion of safety is very closely related to the one of invariance. Checking
the safety of a system essentially amounts to ensuring that a given property is
an invariant of this system. In reality, for a system, the set of all reachable states
constitutes the strongest inductive invariant (green-shaded area of Figure 2(a)).
Dually, the set of states that cannot reach an unsafe state of the system constitutes

I

Post∗
τ (I)

Θ

(a) Strongest inductive invariant

I

Pre∗τ (Θ)

Θ

(b) Weakest inductive invariant

Fig. 2. Inductive invariants computed by forward and backward reachability analyses

132 S. Conchon et al.

the weakest inductive invariant (w.r.t. the unsafe states) of the system (green part
of Figure 2(b)).

The set V computed by Cubicle (in Algorithm 1) is really the negation of this
weakest inductive invariant. It forms in itself a proof or a certificate of safety
of the system. Moreover, it is very simple to establish that a formula φ is an
inductive invariant of a system S = (Q, I, τ). All that is necessary is for it to
verify the two following conditions:

I(X) |= φ(X) (1)
initialization

φ(X) ∧ τ(X, X ′) |= φ(X ′). (2)
preservation

The base case (1) says that the invariant φ must be true in the initial states of
the system and the inductive case (2) says that the invariant must be preserved
by the transition relation. If additionally, we have

φ(X) |= P (X) (3)
property

then the property P is an invariant (not necessarily inductive) of the system.
If we take φ = ¬V and P = ¬Θ, where V is the disjunction of visited cubes

in Algorithm 1 and Θ is the unsafe formula for the system, then these three
conditions are verified. Indeed, we have by construction that V |= Pre∗

τ (Θ), V
is closed by pre-image, i.e. V(X ′) ∧ τ(X, X ′) |= V(X) so ¬V(X) ∧ τ(X, X ′) |=
¬V(X ′). Because V contains Θ, the final condition (3) is also verified.

To certify that the result of Algorithm 1 implemented by Cubicle is correct, it
suffices to independently make sure that φ = ¬V and P = ¬Θ satisfy the three
conditions (1), (2) and (3). In the sequel, we show how to do this automatically
and efficiently.

4 A Certification Framework for Cubicle

We can prove the conditions identified at the end of the previous section with
the aid of a proof assistant or directly with an automatic theorem prover if we
desire to carry out the certification without human intervention. In the latter,
we have to trust the prover we choose. To remedy this possible disadvantage, we
have decided to use Why3 [13], a platform for deductive program verification.
It provides a logical language called Why to describe formulas in a first order
polymorphic logic with a translation mechanism to several automatic or inter-
active theorem provers. One big advantage of Why3 is that proof obligations
can be described in a common language and can be discharged by a multitude
of backend tools: SMT solvers like Alt-Ergo [5], CVC4 [3], Yices [11] or Z3 [8];
resolution based solvers like E [27], iProver [17], SPASS [30], Vampire [25]; or
when necessary, even proof assistants like Coq [9] or PVS [23].

Certificates for Parameterized Model Checking 133

Redundancy as a tool is used in multiple contexts. For instance, control sys-
tems of avionics are physical entities which can fail (with known probabilities),
and higher fault tolerance is achieved by having several identical redundant com-
ponents and voting mechanisms. In formal methods, the use of different tools to
independently corroborate results is a way to achieve a higher level of confidence.
In our case, we trust our certification process when at least two independent
solvers confirm the validity of our certificates.

Our certification process follows the diagram of Figure 3. The inductive invari-
ant φ constitutes the essence of the certificate produced by Cubicle. It can then
be fed directly to the checker (here Why3) or can be simplified and enriched with
a set L of lemmas (box Simpl described in Section 5). Once the solvers used by
the checker redundantly prove the conditions (1)–(3), the certificate is declared
valid.

.cub

Cubicle
Certificate

I |= φ

φ ∧ τ |= φ′

φ |= P

Certificate

I |= φ

∅ |= L

L ∧ φ ∧ τ |= φ′

φ |= P

Simpl

Checker
(Why3 +

SMT/ATPs)
OK

Fig. 3. Certification schema

Running Example. When Cubicle is executed (without any options) on the
small protocol of Section 2, the certificate φ produced is composed of 15 quanti-
fied clauses. Now, proofs obligations are generated in Why3’s input language to
ensure that φ is indeed inductive.

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ5 ∧ φ6 ∧ φ7 ∧ φ8 ∧
φ9 ∧ φ10 ∧ φ11 ∧ φ12 ∧ φ13 ∧ φ14 ∧ φ15

φ1 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ Shr[z1] ∧ ¬Shr[z2])
φ2 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Cache[z1] = E ∧ Cache[z2] �= I)
φ3 ≡ ¬(∃z1, z2, z3. z2 �= z3 ∧ z1 �= z3 ∧ z1 �= z2∧

Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ ¬Shr[z2] ∧ Shr[z3])
φ4 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Cmd = re ∧ Ptr = z2 ∧ Cache[z1] = E ∧ ¬Shr[z1] ∧ Shr[z2])
φ5 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = ε ∧ Cache[z1] �= E ∧ Cache[z2] �= I ∧ ¬Shr[z1] ∧ ¬Shr[z2])
φ6 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Cmd = re ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ Shr[z1] ∧ ¬Shr[z2])
φ7 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Exg ∧ Cmd = rs ∧ Cache[z1] = E ∧ Shr[z2])
φ8 ≡ ¬(∃z1, z2, z3. z2 �= z3 ∧ z1 �= z3 ∧ z1 �= z2∧

Cmd = re ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ ¬Shr[z1] ∧ ¬Shr[z2] ∧ Shr[z3])
φ9 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = rs ∧ Ptr = z2 ∧ Cache[z1] = E)

φ10 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = re ∧ Ptr = z2 ∧ Cache[z1] = E ∧ ¬Shr[z1] ∧ ¬Shr[z2])
φ11 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = re ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ ¬Shr[z1] ∧ ¬Shr[z2])
φ12 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Cmd = ε ∧ Cache[z1] �= E ∧ Cache[z2] �= I ∧ Shr[z1] ∧ ¬Shr[z2])
φ13 ≡ ¬(∃z1, z2. z1 �= z2 ∧ Exg ∧ Cmd = ε ∧ Cache[z1] = E ∧ Cache[z2] = I ∧ Shr[z2])
φ14 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = rs ∧ Ptr = z1 ∧ Cache[z2] �= I ∧ ¬Shr[z2])
φ15 ≡ ¬(∃z1, z2. z1 �= z2 ∧ ¬Exg ∧ Cmd = ε ∧ Cache[z1] = E ∧ Cache[z2] = I)

134 S. Conchon et al.

This certificate is immediate to extract from the set V computed by Cubicle so
there is zero overhead. It is then fed directly to Why3 which in turn calls several
automated theorem provers. The certificate contains quantifiers (both universal
and existential) so we are limited to solvers that natively support them. Here
we chose to have Why3 call seven different backend provers to discharge the
proof obligations of our certificate. The results of this certificate’s verification
are given in table 1. Each prover was run with a timeout of five seconds. Times
are given in seconds and bold numbers stand for a “valid” answer, barred text in
red cells is for the answer “unkown” while T.O. denotes executions that did not
end in the allocated time (120s). The PO for preservation is split in 15 subgoals
(one for each conjunct of φ′) and we can notice that each goal is discharged by
at least three provers.

Remark. The input file describing both the system and the properties is given
in the syntax of Cubicle. When generating the certificate, a translation phase
is present to express the problem in the language of Why3 (cf. dashed line in
figure 3). In order to trust completely our certification process, this translation
should be proven correct (as semantics preserving). This is relatively easy be-
cause everything that is written in Cubicle is simply formulas in a fragment of
first order logic, so there exists a one-to-one correspondence and the translation
essentially consists in a pretty printing step. Ideally, we could even adopt the
same input language (i.e. Why3’s) to describe parameterized systems and thus
dissipate all remaining doubts.

Table 1. Why3’s output on certificate for German-esque

Proof obligations A
lt-
Er
go

(0
.9
6)

CV
C3

(2
.4
.1
)

CV
C4

(1
.3
)

Ep
ro
ve
r

(1
.8
-0
01

)
Sp

as
s

(3
.5
)

Y
ic
es

(1
.0
.4
0)

Z3
(4
.3
.2
)

initialisation 1. 0.02 0.02 0.01 0.01 0.05 0.13 0.01
property 1. 0.01 0.01 0.01 0.01 0.02 0.00 0.00
preservation 1. 0.01 0.85 0.03 0.03 0.03 1.01 0.02

2. 0.01 0.69 0.04 0.20 T.O. 0.97 0.02
3. 0.02 0.03 0.03 0.02 0.04 0.35 0.01
4. 0.01 1.18 0.03 0.03 0.36 0.67 0.02
5. 0.03 0.99 0.04 T.O. T.O. 1.08 0.01
6. 0.03 1.24 0.04 0.04 3.65 0.91 0.01
7. 0.02 0.03 0.03 0.04 0.05 0.61 0.01
8. 0.06 1.18 0.03 0.07 59.6 0.82 0.01
9. 0.02 1.17 0.03 0.01 0.06 1.33 0.01
10. 0.03 0.03 0.02 0.04 0.81 1.49 0.01
11. 0.01 0.58 0.02 0.03 0.18 0.99 0.02
12. 0.03 0.03 0.03 0.05 0.45 0.78 0.01
13. 0.03 0.93 0.02 0.01 0.08 0.95 0.01
14. 0.01 0.82 0.20 0.21 4.60 2.12 0.01
15. 0.02 0.03 0.02 0.02 0.07 0.83 0.01

Certificates for toy examples like a simple atomic mutex can be verified by all
seven provers, but here the protocol German-esque, while simply expressed, is
far from trivial. POs related to the initialization (1) and property (3) conditions

Certificates for Parameterized Model Checking 135

are easily and almost instantly discharged by all solvers. However POs that
concern preservation are usually a lot more difficult. These rather disappointing
performances can be attributed to the ubiquitous quantifiers of these goals, in
particular in the representation of the transition relation. Most of these solvers
use very sensitive heuristics for quantifiers so performances are often uneven and
hard to predict. However results for this (small) benchmark are still satisfactory
because all goals are proven independently several times.

This is an efficient and unintrusive way of generating correctness certificates.
The remaining challenge is now to be able to automatically verify these certifi-
cates for problems whose size and complexity are orders of magnitude larger.

5 Simpler and Richer Certificates

One nice feature of extracting certificates in this manner is that the certification
phase becomes completely independent of the model checking phase. In partic-
ular certificates are completely oblivious to any optimization — that preserves
the transitive closure property of V— used inside Cubicle. For instance, running
a parallel reachability loop or changing the search strategy does not impair the
ability to produce correct certificates. Even if one optimization was incorrect, a
certificate could still be produced the same way, but would likely2 not be verified
by external solvers.

5.1 Invariants Inference

One crucial optimization used in Cubicle is a mechanism for automatically in-
ferring quantified invariants [7]. Invariants found this way are particularly valu-
able because they allow our technique for parameterized verification to scale up
effectively on industrial size protocols. Inevitably, it also speeds up the verifi-
cation for small and medium size problems. It is a well known fact that invari-
ants, if given or when found, will prune the search space and directly impact
the time and space used by model checking algorithms. The number of visited

Pre∗τ (Θ)

Θ
I

Post∗
τ (I)

VBRAB

Fig. 4. Inductive invariant computed
by BRAB

nodes (in V) is thus immediately dimin-
ished so this constitutes an effective way
of reducing the size of the certificate.
One particularity of the algorithm BRAB
(Backward Reachability with Approxima-
tions and Backtracking) described in [7]
and implemented in Cubicle is that in-
ferred invariants are inserted and proved
by the same backward reachability loop.
From a certification standpoint, this en-
sures that ¬V will remain inductive at the
2 If one optimization is incorrect but the resulting certificate is verified for one partic-

ular benchmark then it simply means that the model checker gave a correct answer
by incorrect means.

136 S. Conchon et al.

end of the search, meaning that the technique described in section 3 is still ap-
plicable.

In fact the inductive invariant computed by BRAB is halfway between the
strongest and the weakest invariant (see Figure 4). φ ≡ ¬VBRAB is a good candi-
date for a certificate, being expressible more easily that either of those extremes.
The underlying reason is that the “internal proof” constructed by the model
checker is much shorter.

Running Example. By now running BRAB instead of traditional backward
reachability, the certificate extracted at the end of the search is only composed of
four quantified clauses (cf. below) and Table 2 shows that it is proved in totality
by all seven solvers we used.

φ ≡ φ1 ∧ φ2 ∧ φ3 ∧ φ4

φ1 ≡ ¬(∃z1, z2. z1 �= z2∧
Cache[z1] = E ∧ Cache[z2] �= I)

φ2 ≡ ¬(∃z1. ¬Exg ∧ Cache[z1] = E)
φ3 ≡ ¬(∃z1, z2. z1 �= z2∧

Cache[z1] = E ∧ Shr[z2])
φ4 ≡ ¬(∃z1. Cache[z1] �= I ∧

¬Shr[z1])

Table 2. Why3’s output on certificate gener-
ated by BRAB for German-esque

Proof obligations A
lt-

Er
go

(0
.9
6)

CV
C3

(2
.4
.1
)

CV
C4

(1
.3
)

Ep
ro
ve
r

(1
.8
-0
01

)
Sp

as
s

(3
.5
)

Y
ic
es

(1
.0
.4
0)

Z3
(4
.3
.2
)

initialisation 1. 0.01 0.01 0.03 0.01 0.02 0.00 0.00
property 1. 0.01 0.00 0.01 0.01 0.02 0.00 0.00
preservation 1. 0.02 0.02 0.03 0.08 0.12 0.01 0.00

2. 0.02 0.02 0.04 0.11 0.11 0.05 0.01
3. 0.02 0.02 0.03 0.04 0.07 0.01 0.01
4. 0.03 0.02 0.03 0.13 0.08 0.26 0.01

Experiments. By running Cubicle with the BRAB algorithm we are able to
prove the safety of a selected set of benchmarks and we are able to generate
certificates small enough for most of them so that they can be verified automat-
ically and independently. To obtain the results depicted in Table 3 we executed
Cubicle version 1.0.2 and Why3 0.83 (with the backend solvers used previously)
on a laptop with a dual core Intel i7 processor (1.7 GHz) and 8GB of memory.
Szymanski_* is a mutual exclusion protocol given in an atomic (at) and non-
atomic (na) version. Ricart-Argrwala is a distributed timed mutual exclusion
algorithm [26]. These benchmarks also include cache coherence protocols: sev-
eral versions of the academic protocol German and two industrial size problems:
FLASH [18] and an even larger hierarchical protocol Hirr_PV [20]. The numbers
given in the column ∀-clauses correspond to the number of quantified formulas
composing the certificate φ. The size is for the resulting Why3 file. We say for
each certificate if it has been verified and the shortest amount of time to carry
the entire proof by one prover. The column Level denotes the minimum num-
ber of solvers that were able to independently discharge each proof obligation.
It morally depicts the level of confidence we get with this certificate.

We can see that the certificates for academic problems can be verified in just
a couple seconds but larger certificates are out of reach of all solvers, mostly due
to their size.

Certificates for Parameterized Model Checking 137

Table 3. Result for the verification of certificates generated with BRAB

Benchmark ∀-clauses Size Verified Level Time

Szymanski_at 31 18 kB Yes 3 0.96s
Szymanski_na 38 28 kB Yes 2 1.45s
Ricart_Agrawala 30 39 kB Yes 2 1.26s
German_Baukus 48 44 kB Yes 2 1.58s
German.CTC 69 83 kB Yes 2 2.73s
German_pfs 51 50 kB Yes 3 1.79s
Flash_nodata 41 123 kB Yes 2 2.99s
Flash 733 650 kB No 0 -
Hirr_PV_nodata 2704 1.9 MB No 0 -
Hirr_PV 2815 1.9 MB No 0 -

5.2 Intermediate Lemmas

While certificates can be simplified, they can also be enriched to ease the tasks of
the automated solvers. The hardest part for these solvers to handle preservation
proof obligations is to find good instances of the quantified formulas that appear
in their context. If we take a look at the PO (4.) of preservation in the previous
table 2, it takes the form φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ τ |= φ′

4. With a closer inspection
we can remark that we already have φ4 ∧ τ |= φ′

4 which directly implies the PO
we want to prove. We call these pieces of additional information intermediate
lemmas and show in the following how to enrich our certificates with them.

The information we need to infer these lemmas is actually already computed
by Cubicle during fixpoint checks. Every time a cube ϕ0 is added to V , its pre-
image Preτ (ϕ0) is added to Q. When part of this pre-image passes the fixpoint
check, we can retrieve the necessary information of which elements of V were
really useful. This can be done by asking for the unsat core3 of this particular
SMT check. The union of the unsat cores, for the fixpoints of all Preτ (ϕ0),
makes up the part of V that is sufficient to prove the preservation of ¬ϕ0 by τ .

Some extra bookkeeping can be added to the reachability loop to gather this
information during runtime. However it can also be reconstructed after the fact
simply with V . This has two advantages. First, it allows to keep the model
checking phase and the certification phase separated and independent. Second,
computing the reasons for the inductiveness of V once V is complete yields
possibly smaller and simpler intermediate lemmas.

We denote by UC a function that returns the unsat core for a satisfiability
check in the form of a set of formulas4. Our algorithm to extract intermediate
lemmas is given by Algorithm 2. It uses the fact that at the end of the search V
is closed under pre-image as shown in Figure 5. For each node ϕ of V uc is the
3 The quality of the unsat core depends on the solver we use, but our goal here is only

to trim the context. Because only a small portion of the context is necessary for the
proof, most solvers will reflect this in their unsat cores.

4 If the check is satisfiable then UC fails, though in our case, if the certificate is correct
this should never happen. This amounts to a pre-verification of inductiveness of the
certificate by Cubicle itself.

138 S. Conchon et al.

subset of V that makes the pre-image of ϕ be in V . Now, going the other way
around, if we start in a state of the conjunction Γ , then we necessarily end up
in ϕ after one step of τ . This is what is stated by the lemma added to L line 6.

When the intermediate lemmas are assumed by the solvers, the proof of preser-
vation is trivial by a simple propositional reasoning. The burden of verification
is shifted to the proof of these intermediate lemmas instead but they are much
smaller than the original POs arising from the proof of preservation. For in-
stance, the largest premise of a lemma for the protocol FLASH (see section 5.2)
is composed of 41 quantified formulas while the majority has less than 20 (in-
stead of 742 originally). Because the lemmas extraction shown in algorithm 2 is
only a series of fixpoint checks, the time spent for the construction of the cer-
tificate is always strictly less that the time spent for the model checking phase.
This overhead is in our sense acceptable.

Algorithm 2. Intermediate lemmas extraction
Input: V : visited cubes
Variables: L : a set of intermediate lemmas

1 L := ∅;
2 foreach ϕ ∈ V do
3 let uc = UC(Preτ (ϕ) |= V) \ Preτ (ϕ) in
4 (* uc is a subset of V *)
5 let Γ =

∧

ψ∈uc ψ in
6 L := “Γ ∧ τ |= ϕ′” ∪ L;
7 return L

ϕ

ψ1

ψ2

ψ3

V
Preτ

Preτ

Preτ

Fig. 5. Finding interme-
diate lemmas

Table 4. Result for the verification of certificates with intermediate lemmas

Benchmark MC. Gen. ∀-clauses Size Verified Level Time

Szymanski_at 0.04s 0.01s 31 21 kB Yes 3 0.66s
Szymanski_na 0.06s 0.03s 38 30 kB Yes 2 1.79s
Ricart_Agrawala 0.05s 0.02s 16 36 kB Yes 2 0.52s
German_Baukus 0.10s 0.03s 48 40 kB Yes 3 1.16s
German.CTC 0.14s 0.07s 69 62 kB Yes 4 1.98s
German_pfs 0.11s 0.04s 48 43 kB Yes 3 1.42s
Flash_nodata 0.11s 0.09s 41 133 kB Yes 3 2.68s
Flash 1m09s 35.8s 733 1.1 MB Yes 1 4m7s
Hirr_PV_nodata 4m51s 1m13s 2704 3.4 MB Yes 1 42m
Hirr_PV 4m54s 1m25s 2815 3.5 MB Yes 1 53m

Experiments. We give experimental results in Table 4 for certificates enriched
with intermediate lemmas. The Cubicle systems and corresponding Why3 cer-
tificates are available at http://cubicle.lri.fr/certificates. We use the same set of
benchmarks as in the previous section. The column MC. gives the time spent
by Cubicle for model checking the problem, whereas the column Gen. gives

http://cubicle.lri.fr/certificates

Certificates for Parameterized Model Checking 139

the time that was necessary to generate the certificate (essentially compute the
intermediate lemmas). We can see that it is always faster to generate the cer-
tificate than to do the model checking phase. The number of clauses does not
change compared to Table 3 but the files are now larger because they include all
the extra intermediate lemmas. We can see that it is far more advantageous to
pay the price for including these hints in the certificate. Some of the certificates
for easier (academic) protocols are now entirely proven by more solvers inde-
pendently and in a shorter time. Notably, we are now able to verify (albeit only
with confidence level 1) the certificates for industrial size protocols FLASH and
Hirr_PV. They are significantly larger – a few megabytes instead of kilobytes –
and only one SMT solver (Z3) was able to completely discharge all POs. Only
a few subgoals are problematic for other solvers, likely due to some inappropri-
ate heuristic for quantifiers instantiation. For instance, 718 of the 736 POs for
FLASH were proven by at least two solvers. We would still like to increase the
level of confidence brought by the certificates for these large problems.

Exposing Bugs in Cubicle. Cubicle has itself directly benefited from the gen-
eration of certificates. During our experiments on our various benchmarks, we
were at first not able to verify the certificates for Hirr_PV_nodata and Hirr_PV
but only a few (approximately a dozen) of obligations for the intermediate lem-
mas failed to prove. This allowed us to uncover a bug of Cubicle that was present
in its optimized ad-hoc instantiation mechanism. Some substitutions were ill-
formed in the computation of relevant permutations which would cause the fix-
point check (line 8 of Algorithm 1) to answer incorrectly in some specific cases
when multiply nested if-then-else constructs were present in the original system.
The Hirr_PV benchmarks are some of the only ones that triggered this bug which
had escaped our testing process so far.

6 Related Work

Two different lines of work coexist for the certification of verification tools. One
approach focuses on verifying the program correct once and for all. In this cate-
gory, there exists several different approaches for proving a program correct. For
some programming languages, it is possible to prove the code directly (e.g. us-
ing ESC Java, Frama-C, VCC, F� etc.), though this is a very tough job because
such programs are often very complex, the proofs rapidly become convoluted
and are unlikely to be automated. One advantage is that the performances of
such programs can be close to the ones of their non certified counterparts. One
example of this kind of certification effort is the modern SAT solver versat
which was developed and verified using the programming language Guru [22].
We are however not aware of similar results for model checkers.

Another possibility is to prove the algorithm correct in a descriptive language
adapted to verification (e.g. interactive proof assistants like Coq, PVS or Is-
abelle) and obtain an executable program through a refinement process or a
code extraction mechanism. In the recent years, certified software of this cate-
gory have gained interest. Worth mentioning is the C compiler CompCert [19]

140 S. Conchon et al.

or the operating system micro-kernel seL4 [16]. CompCert is written entirely in
Coq and uses external oracles in some of the compilation passes. These oracles
provide solutions (e.g. a coloring of a graph) that can be verified by a certified
checker. Our oracles, on the other hand, do not even need to provide correct
results because they only suggest potential invariants.

Although the first formal verification of a model checker in Coq for the modal μ-
calculus [28] goes back to 1998, only recently have certified verification tools started
to emerge. Blazy et al.have verified a static analyzer forC programs [4] to be used in-
side CompCert. Although this static analyzer is not on par with the performances
of commercial tools, it is sufficient to enable safely some of the optimizations of
a compiler. The most relevant works concerning model checking are probably [1]
and [12]. Amjad [1] shows how to embed BDD based symbolic model checking
algorithms in the HOL theorem prover so that results are returned as theorems.
This approach relies on the correctness of the backend BDD package. Esparza et
al. [12] have fully verified a version of the Spin model checker with the Isabelle
theorem prover. Using successive refinements, they built a correct by construc-
tion model checker from high level specifications down to functional (SML) code.

Usually in these approaches, a trade-off exists between an efficient program from
a precise algorithm working on complex data structures, and a less concrete pro-
gram from an algorithm where some data structures and operations are abstracted.

The other approach consists in relying on tools that produce traces or cer-
tificates to be checked afterwards. This is the approach which is adopted in our
work. An approach for the certification of SAT and SMT solvers is the work by
Keller et al. [2] whose idea consists in having the solver produce a detailed cer-
tificate in which each rule is read and verified by the composition of several small
certified (in Coq) checkers. CVC4 is also able to produce full proof trees in a
variant of the Edinburgh Logical Framework extended with side conditions [29].

One recent of such application to model checking is Slab [10] which produces
certificates in the form of inductive verification diagrams to be checked by SMT
solvers.

7 Conclusion
We have presented a technique for certifying the parameterized model checker
Cubicle. We showed how to extract certificates from runs of backward reacha-
bility analysis in the form of inductive invariants. This approach is minimally
intrusive and works with most optimizations. It even directly benefits from the
algorithm BRAB to reduce the size and complexity of these certificates. The
aim of this work was to bring a higher level of confidence in the results of a
parameterized model checker such as Cubicle. We think this is a success because
we were able to automatically verify large certificates for industrial size cache
coherence protocols. This progress was made possible essentially by computing
intermediate lemmas to help and guide the automated theorem provers.

So far our certification framework demands that we trust three of its compo-
nents:
1. Our translation of Cubicle’s systems in Why3’s first order logic. An immediate

next step for our work would be to unify these two input specification languages.

Certificates for Parameterized Model Checking 141

2. The logic part of the deductive platform Why3. We don’t use any advanced
programming features of Why3 so this reduces our trust base. A possibility
would be to use a certified version of Why3 [15].

3. The automated theorem provers. It would not be unreasonable to place our
trust in e.g. one of the SMT solvers, but our technique makes use of redun-
dancy by using multiple solvers. This allows to not trust any single prover.

To further this effort, an interesting approach would be to remove all quanti-
fiers from the certificates. This is feasible because the unsat cores of Algorithm 2
can be easily refined to include useful instances. It would allow to use solvers
that do not support quantifiers and reduce the burden on the ones who do.

Acknowledgment. This work was partially supported by the French ANR project
ANR-12-INSE-0007 Cafein.

References

1. Amjad, H.: Programming a symbolic model checker in a fully expansive theorem
prover. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 171–187.
Springer, Heidelberg (2003)

2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Wener, B.: Verifying
sat and smt in coq for a fully automated decision procedure. In: PSATTT 2011:
International Workshop on Proof-Search in Axiomatic Theories and Type Theories
(2011)

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

4. Blazy, S., Laporte, V., Maroneze, A., Pichardie, D.: Formal verification of a C
value analysis based on abstract interpretation. In: Logozzo, F., Fähndrich, M.
(eds.) SAS 2013. LNCS, vol. 7935, pp. 324–344. Springer, Heidelberg (2013)

5. Bobot, F., Conchon, S., Contejean, É., Iguernelala, M., Lescuyer, S., Mebsout, A.:
The alt-ergo automated theorem prover (2008)

6. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Cubicle: A Parallel SMT-
Based Model Checker for Parameterized Systems - Tool Paper. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg
(2012)

7. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zaïdi, F.: Invariants for finite in-
stances and beyond. In: FMCAD, pp. 61–68. IEEE (2013)

8. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Dowek, G., Felty, A., Herbelin, H., Huet, G., Werner, B., Paulin-Mohring, C., et al.:
The coq proof assistant user’s guide: Version 5.6 (1991)

10. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: A certifying
model checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010)

11. Dutertre, B., de Moura, L.: The Yices SMT solver. Technical report, SRI Interna-
tional (2006)

142 S. Conchon et al.

12. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013)

13. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013)

14. Ghilardi, S., Ranise, S.: Backward reachability of array-based systems by SMT
solving: Termination and invariant synthesis. LMCS 6(4) (2010)

15. Herms, P., Marché, C., Monate, B.: A certified multi-prover verification condi-
tion generator. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS,
vol. 7152, pp. 2–17. Springer, Heidelberg (2012)

16. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: sel4: Formal verification of an os kernel. In: ACM SIGOPS, SOSP,
pp. 207–220. ACM, New York (2009)

17. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

18. Kuskin, J., Ofelt, D., Heinrich, M., Heinlein, J., Simoni, R., Gharachorloo, K.,
Chapin, J., Nakahira, D., Baxter, J., Horowitz, M., Gupta, A., Rosenblum, M.,
Hennessy, J.: The Stanford FLASH multiprocessor. In: Computer Architecture,
pp. 302–313 (April 1994)

19. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43(4), 363–446
(2009)

20. Matthews, L.: Personal communication
21. Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.

(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)
22. Oe, D., Stump, A., Oliver, C., Clancy, K.: versat: A verified modern SAT solver.

In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp.
363–378. Springer, Heidelberg (2012)

23. Owre, S., Rushby, J.M., Shankar, N.: Pvs: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992)

24. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic deductive verification with invisible
invariants. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp.
82–97. Springer, Heidelberg (2001)

25. Riazanov, A., Voronkov, A.: Vampire. In: Ganzinger, H. (ed.) CADE 1999. LNCS
(LNAI), vol. 1632, pp. 292–296. Springer, Heidelberg (1999)

26. Ricart, G., Agrawala, A.K.: An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM 24(1), 9–17 (1981)

27. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013)

28. Sprenger, C.: A verified model checker for the modal mgr-calculus in coq. In:
Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 167–183. Springer, Heidelberg
(1998)

29. Stump, A.: Proof checking technology for satisfiability modulo theories. Electronic
Notes in Theoretical Computer Science 228, 121–133 (2009)

30. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–145.
Springer, Heidelberg (2009)

Safety, Liveness and Run-Time Refinement

for Modular Process-Aware Information Systems
with Dynamic Sub Processes

Søren Debois1(�), Thomas Hildebrandt1, and Tijs Slaats1,2

1 IT University of Copenhagen, København S, Denmark
{debois,hilde,tslaats}@itu.dk

2 Exformatics A/S, København S, Denmark

Abstract. We study modularity, run-time adaptation and refinement
under safety and liveness constraints in event-based process models with
dynamic sub-process instantiation. The study is part of a larger pro-
gramme to provide semantically well-founded technologies for modelling,
implementation and verification of flexible, run-time adaptable process-
aware information systems, moved into practice via the Dynamic Condi-
tion Response (DCR) Graphs notation co-developed with our industrial
partner. Our key contributions are: (1) A formal theory of dynamic sub-
process instantiation for declarative, event-based processes under safety
and liveness constraints, given as the DCR* process language, equipped
with a compositional operational semantics and conservatively extending
the DCR Graphs notation; (2) an expressiveness analysis revealing that
the DCR* process language is Turing-complete, while the fragment cor-
responding to DCR Graphs (without dynamic sub-process instantiation)
characterises exactly the languages that are the union of a regular and an
omega-regular language; (3) a formalisation of run-time refinement and
adaptation by composition for DCR* processes and a proof that such re-
finement is undecidable in general; and finally (4) a decidable and practi-
cally useful sub-class of run-time refinements. Our results are illustrated
by a running example inspired by a recent Electronic Case Management
solution based on DCR Graphs and delivered by our industrial partner.
An online prototype implementation of the DCR* language (including
examples from the paper) and its visualisation as DCR Graphs can be
found at http://tiger.itu.dk:8020/.

1 Introduction

Many software systems today control critical and increasingly complex long-
running processes, often operating in unpredictable contexts. This is particularly
the case for Process-aware Information Systems (PAIS) [32] and Business Pro-
cess Management Systems (BPMS) [2], which constitute the practical context
of the present work. The research in these fields deals with studying systems

Supported by the Velux foundation (grant 33295) and Innovation Fund Denmark.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 143–160, 2015.
DOI: 10.1007/978-3-319-19249-9_10

144 S. Debois et al.

driven by explicit process designs for the enactment and management of busi-
ness processes and human workflows, and the study of formalisms for describing
the process designs has always played a central role. Particularly popular mod-
els tend to specify explicit sequencing of business activities as flow graphs, e.g.,
Petri Nets and Workflow Nets [1], which are the closest formal counterpart to
the industrial standard Business Process Model and Notation (BPMN) [30].

However, an approach to process implementation based on flow graphs implic-
itly assumes the initial design of a pre-specified process graph, that implements
the believed best practice given the initial required set of business rules and legal
constraints. This is problematic in several ways: Firstly, the explicit flow graph
often imposes more constraints than necessary. Secondly, procedures, rules and
regulations change or the process graph turns out not to be the desired practice
anyway. For longer running processes, such as the management of mortgages
of a credit institution, such changes need to be reflected in running processes.
Moreover, while the flow graph may be initially verified to be compliant with
the given business rules and legal constraints, only some of the rules are ex-
plicitly represented in decision points, others are implemented implicitly in the
sequencing of actions. Thus, it is typically difficult to determine how a flow graph
should be changed if some of the business rules or legal constraints not explicitly
represented in decision points are changed.

Declarative process languages [3,17] address this deficiency by leaving the
exact sequencing of activities undefined, yet specifying the constraints processes
must respect. This gives a workflow system the maximum flexibility available
under the rules and regulations of the process. In practice, the caseworker or
process engine is empowered to take what is considered the appropriate steps
(e.g. considering resource usage) for the process and situation at hand, subject
only to the constraints expressed in the process model. If the constraint language
is well designed, the constraints can directly represent the business and legal
regulations, making it easy to add or update constraints if the regulations change.
If the constraints are compiled to e.g. an automaton before execution (as in
e.g. [3]), adaptations will only take effect on new instances of the process and
not the running processes. However, run-time adaptations become a possibility
if the constraints are interpreted at run-time. This is the case for the Dynamic
Condition Response (DCR) Graphs notation, introduced in [17,28] and further
co-developed with our industrial partner Exformatics in [18,7,29,19,12].

As we shall see, DCR Graphs represent any behaviour that can be described as
the union of a regular and an ω-regular language. Conversely, it has been shown
that a DCR Graph can be mapped to a Büchi-automaton, and so DCR Graphs
can be analysed by standard automata-based model-checking techniques.

However, a workflow process may involve dynamic creation of an a priori un-
bounded number of new (sub) processes at run-time, as captured by the workflow
patterns for creation of multiple instances in [33]. While it is of course possible
to spawn new processes at run-time in any sensible electronic case management
system, the compound behaviour of old and new processes is not explicitly rep-
resented by the formal model, and thus eludes formal analysis. Hence the central

Safety, Liveness and Run-Time Refinement for Modular PAIS 145

motivation for the present paper: We need to formally understand the dynamic
creation of sub-processes, and we need to understand and control its interaction
with run-time adaptation.

Tentative steps towards such an understanding were taken in [12], where we
presented an extension of DCR Graphs to so-called hierarchical DCR Graphs,
supporting dynamic creation of sub-processes. However, the graphical represen-
tation and formalisation of DCR Graphs is hard to manage and reason about
for complex hierarchical processes composed of many parts, in particular when
the different parts are dynamically created. Also, the expressive power of hierar-
chical DCR Graphs was left open in [12], as were the computational complexity
of their refinements.

In the present paper, we contribute the following:

1. a formal theory of dynamic sub-process instantiation in declarative process
models as a conservative extension of DCR Graphs,

2. an expressiveness analysis of the formal theory, revealing that dynamic sub-
processes makes it Turing complete,

3. a notion of run-time adaptation by composition and a notion of refinement,
4. a proof that refinement is in general undecidable for processes with dynamic

sub-processes
5. a practically useful and decidable sub class of run-time refinements defined

as non-invasive adaptations

We illustrate our findings with a running example: a grant application process
of a funding agency, which was recently implemented by our industry partner
Exformatics in a DCR Graph-based commercial solution [10].

Overview of the paper: In Sec. 2 we present the DCR process language corre-
sponding to the DCR Graphs notation and state its expressiveness, correspond-
ing exactly to languages being the union of regular and ω-regular languages.
We then extend the DCR language in Sec. 3 to DCR∗, supporting dynamic cre-
ation of sub-processes with fresh (local) events and prove that DCR∗ is Turing
complete. We address run-time adaptation by composition and refinement in
Sec. 4, proving undecidability of refinement in general for DCR∗ and providing
a practically useful, decidable sub-class of refinements referred to as non-invasive
adaptations. Finally, in Sec. 5, we discuss related work and conclude. For want
of space, most proofs and some examples have been relegated to the full version
of this paper [11]. An online prototype implementation of the process language
(and all examples of the paper), with a mapping to DCR Graphs, can be found
at http://tiger.itu.dk:8020/.

2 Dynamic Condition Response (DCR) Processes

We now introduce the Dynamic Condition Response (DCR) process language.
We shall see later that this language corresponds to the DCR Graph model
[28,17]. Assume fixed universes of events E and labels L; each event e ∈ E has an
associated label �(e) ∈ L. 1 Labels will be used as a (finite) alphabet for defining

1 Unless explicitly stated, in all examples the label of an event is the event.

http://tiger.itu.dk:8020/

146 S. Debois et al.

the language recognized by a DCR process. A DCR process [M] T comprises a
marking M and a term T . The syntax of both are given in Fig. 1 below.

T,U ::= f →• e condition

| f ←• e response

| f +← e inclusion

| f %← e exclusion

| T | U parallel

| 0 unit

φ ::= t | f boolean value

Φ ::= (φ, φ, φ) event state

M,N ::= M, e : Φ marking

P,Q ::= [M] T process

Fig. 1. DCR Processes Syntax

A term is a parallel composition of constraint and effect relations between events :

1. A condition f →• e imposes the constraint that for event e to happen, the
event f must either previously have happened or currently be excluded.

2. A response f ←• e imposes the effect that when e happens, f becomes
restless and must eventually happen or be excluded.

3. An exclusion f %← e imposes the effect that when e happens, it excludes f .
An excluded event cannot happen; it is ignored as a condition; and it need
not happen if restless, unless it is re-included by the final relation:

4. An inclusion f +← e imposes the effect that when the event e happens, it
re-includes the event f .

All four relations refer to a marking M , a finite map from events to triples of
booleans (h, i, r), referred to as the event state and indicating whether or not
the event previously (h)appened, is currently (i)ncluded, and/or is (r)estless. A
restless event represents an unfulfilled obligation: once it happens, it ceases to
be restless. As commonly done for environments, we write markings as finite
lists of pairs of events and event states, e.g. e1 : Φ1, . . . , ek : Φk but treat them
as maps, writing dom(M) and M(e), and understand M, e : Φ to be undefined
when e ∈ dom(M). The free events fe(T) of a term T is (for now) simply the set
of events appearing in it. (This changes when we introduce local events in Sec. 3
below.) We require of a process P = [M] T that fe(T) ⊆ dom(M), and so define
fe(P) = dom(M). The alphabet alph(P) is the set of labels of its free events.

Example 1 (Grant process term). The grant application process implementation
described in [10] involves at a high-level only four events: recv(an application is
received), deadline(the current deadline for the current round has been reached),
round(the application round is (re)opened for applications), and bm(a board
meeting is held). Hereto come three constraints: 1) Applications can only be
received after a round is opened and until the deadline has been reached. 2)
After a round is opened, a board meeting must eventually be held. 3) If a round
is open, and the deadline has not yet been met, a board meeting can not be held
unless at least one application has been received. The events and constraints can
be modelled by the following term:

Safety, Liveness and Run-Time Refinement for Modular PAIS 147

T0 = recv %← deadline | recv +← round | bm ←• round | recv →• bm

The first constraint is that the event deadline excludes the event recv, repre-
senting that applications can not be received after the deadline. The second
constraint is that the event round includes the event recv, representing that ap-
plications can (again) be received if the round is (re)opened. The third constraint
is that the event bm is a response to the event round, representing that a board
meeting must happen eventually if the round is opened. The last constraint is
that the event recv is a condition for bm, representing that, if the event recv
is included, an application must have been received before the board meeting
can be held. The initial state of the process is then defined by declaring that no
event has happened and no event is restless (i.e. required to happen) and every
event but recv is included. This is represented by the marking:

M0 = round : (f, t, f), deadline : (f, t, f), recv : (f, f, f), bm : (f, t, f) .

We give semantics to DCR processes incrementally. First, the notion of an event
being enabled and what effects it has. The judgement [M] T � e : E, I,R, defined
(for atomic terms, parallel will be dealt with later) in Fig. 2. It should be read:
“in the marking M , the (atomic) term T allows the event e to happen with the
effects of excluding events E, including events I, and making events R restless.”

[M, f : (h, i,), e : (, t,)] f →• e � e : ∅, ∅, ∅ (when i ⇒ h)

[M, e : (, t,)] f ←• e � e : ∅, ∅, {f}
[M, e : (, t,)] f +← e � e : ∅, {f}, ∅
[M, e : (, t,)] f %← e � e : {f}, ∅, ∅

[M, e : (, t,)] 0 � e : ∅, ∅, ∅
[M, e : (, t,)] f ′ R f � e : ∅, ∅, ∅ (when e �= f)

Fig. 2. Enabling & effects. We write “ ” for “don’t care”, i.e., either true t or false f,
and write R for any of the relations →•,←•, +←,%←.

The first rule says that if f is a condition for e, then e can happen only if (1)
it is itself included, and (2) if f is included, then f previously happened. The
second rule says that if f is a response to e and e is included, then e can happen
with the effect of making f restless. The third (fourth) rule says that if f is
included (excluded) by e and e is included, then e can happen with the effect of
including (excluding) f . The fifth rule says that the completely unconstrained
process 0, an event e can happen if it is currently included. The last rule says
that a relation allows any included event e to happen without effects when e is
not the relation’s right-hand–side event.

Given enabling and effects of events, we define the action of respectively an
event e and an effect δ = (E, I,R) on a marking M pointwise by the action on
individual event states f : (h, i, r) as follows.

148 S. Debois et al.

(Event action) e ·
(
f : (h, i, r))

) def
= f :

(
h ∨ (f=e)︸ ︷︷ ︸
happened?

, i, r∧(f 	=e)︸ ︷︷ ︸
restless?

)

(Effect action) δ ·
(
f : (h, i, r)

) def
= f :

(
h, (i ∧ f 	∈E) ∨ f ∈I︸ ︷︷ ︸

included?

, r ∨ f ∈R︸ ︷︷ ︸
restless?

)

That is, for the event action, if f = e, the event is marked “happened” (first
component becomes t) and it ceases to be restless (last component becomes f).
For the effect action, the event only stays included (second component) if f 	∈ E
(it is not excluded) or f ∈ I (it is included). This also means that if an event is
both excluded and included by the effect, inclusion takes precedence. Finally, f
is marked restless (third component) if either it was already restless or it became
restless (f ∈ R). We then define the combined action of an event and effect by
(e : δ) ·M = δ · (e ·M).

With these mechanics in place, we give transition semantics of processes in
Fig. 3 below, where the merge of effects δ1⊕δ2 is simply defined as the pointwise
union: (E1, I1, R1)⊕ (E2, I2, R2) = (E1 ∪ E2, I1 ∪ I2, R1 ∪R2).

[M] T � e : δ

[M] T
e:δ−−→ T

[intro]
[M] T1

e:δ1−−→ T ′
1 [M] T2

e:δ2−−→ T ′
2

[M] T1 | T2
e:δ1⊕δ2−−−−−→ T ′

1 | T ′
2

[par]

[M] T
e:δ−−→ T ′

[M] T
e−→ [e : δ ·M] T ′

[effect]

Fig. 3. Basic transition semantics

We use two forms of transitions: the effect transition [M] T
e:δ−−→ T ′ says that

[M] T may exhibit event e with effect δ, in the process updating the term T
to become T ′. (At this stage we will always have T = T ′; we will need updates
only when we extend the calculus in Section 3 below.) The process transition

[M] T
e−→ [N] U takes a process to another process, applying the effect of e to

the marking M , and thus only exhibiting the event e. The [intro] rule elevates
an enabled event with an effect to an effect transition. The [par] rule merges
the effects of transitions from the two sides of a parallel; note that markings on
either side must be the same. The [effect] rule lifts an effect transition to a
process transition by applying the effect to the marking.

Process transitions gives rise to an LTS, which we equip with a notion of
acceptance defined below a run is accepting if every restless event eventually
either happens or is excluded.

Definition 2. A DCR process defines an LTS with states [M] T and (process)

transitions [M] T
e−→ [N] U . A run of [M] T is a finite or infinite sequence of

transitions [M] T = [M0] T0
e0−→ · · · . A run is accepting iff for every state

Safety, Liveness and Run-Time Refinement for Modular PAIS 149

[Mi] Ti, if whenever an event e is restless in Mi, i.e. Mi(e) = (, , t), then

there exists some j ≥ i s.t. either [Mj] Tj
e:δ−−→ [Mj+1] Tj+1 or e is excluded

in Mj, i.e. Mj(e) = (, f,). A trace of a process [M] T is a possibly infinite

string s = (si)i∈I s.t. [M] T has an accepting run [Mi] Ti
ei−→ [Mi+1] Ti+1 with

si = �(ei). The language lang(P) of a process P is the set of traces of P .

Example 3 (Grant process transitions). As transitions change only marking, not
terms, we show a run by showing changes in the marking. In the table below, rows
indicate changes to the marking as the event on the left happens. Columns “h,i,r”
indicate whether an event is marked (h)appened, (i)ncluded, and/or (r)estless.
The column “Accepts?” indicates whether the current marking is accepting or
not and the final column “Enabled” indicates which events are enabled after
executing the event on the left.

Event round deadline recv bm Accepts? Enabled
happening h i r h i r h i r h i r
(none) f t f f t f f f f f t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
deadline t f f {round, deadline, bm}
bm t f t {round, deadline, bm}
round t t t f {round, deadline, recv}
recv t f {round, deadline, recv, bm}
bm f t {round, deadline, recv, bm}

After the first round event, bm cannot happen because of recv →• bm. When
deadline happens, it excludes recv because of recv %← deadline, and exclusion of
recv voids the condition recv →• bm; so after deadline, bm may again happen.
When round subsequently re-includes recv, bm is again disabled. Acceptance of
the processes changes throughout. Because of bm ←• round, whenever round ex-
ecutes it makes bm restless, preventing the process from accepting until bm later
happens, ceasing to be restless. In our examples, we identify events and labels, so
the above table indicates an accepting trace 〈round, deadline, bm, round, recv, bm〉.

Finally, we note the connection of DCR processes to DCR Graphs [28,35,12] and
their expressiveness; proof of the latter is included in the full version [11].

Theorem 4. There exists a language-preserving bijection between DCR pro-
cesses and finite DCR graphs.

Theorem 5. DCR processes characterise exactly the languages that are the
union of a regular and an ω-regular language.

3 DCR∗ Processes: Local Events and Reproduction

Below we extend the DCR process language to support dynamic creation of sub
processes. We do this by extending the syntax with local and reproductive events
as shown in Fig. 4, giving rise to the DCR∗ process language.

150 S. Debois et al.

T, U ::= . . .
| (νe : Φ) T local event
| e{T } reproductive event

Fig. 4. DCR∗ syntax

The local event (νe : Φ) T
asserts that e with state Φ is
local to the term T . Here, e is
binding in Φ and T ; for rea-
sons which will be clear when
we define accepting runs be-
low, we will follow the Barendregt-convention and assume that all such local
events are distinct. A reproductive event e{T } creates, whenever the event e
happens, a copy of T in parallel (to maintain the Barendrecht-convention, every
local event in the copy is α-converted to a fresh, but identically labelled event).2

Example 6 (Grant process with reproductive and local events). We now consider
three extra requirements: 1) When an application is received, a committee must
recommend either approval or rejection to the board. 2) The committee might
withdraw an approval, by later rejecting the application, but cannot reverse a re-
jection. 3) The board cannot make a final decision until it has a recommendation
for every received application. We again use events recv and bm for receiving an
application and convening a board meeting. We declare recv to be reproductive
by adding the reproductive event recv{A}, where

A = (νapprove : (f,t, t)) (νreject : (f,t, f))
(
approve %← reject | approve →• bm

)

Because approve and reject are local, each dynamically created sub-process A will
have distinct decision events (all with the labels approve and reject though) that
cannot be constrained further outside the scope. But, approve has a condition
relation to the non-local bm, which means that each distinct approve event will
become a condition for the (global) event bm. The exclude relation from reject
to approve model that it is not possible to approve after a rejection, but nothing
disallows rejection after approval. Both events have initially the local state ”not-
happened” and ”included”. We make the approve event initially restless in its
local state, which will mean that in order for the process to be accepting either
approve must happen or be excluded (because reject happens).

The transition rules for the new constructs are given in Fig. 5. Only terms
and transition rules are extended; markings are the same.

Rule [local] gives semantics to events happening in the scope of a local
event binder. An effect on the local event is recorded in the marking in the
binder of that event. The event might have effects on non-local events, e.g., in
(νf : M) e +← f , the local f has effects on the non-local e. Thus the effects
are preserved in the conclusion, except that part of the effect which pertain
only to f . Rule [par-2] propagates a local effect through a parallel composition.
It’s possible that the effect δ mentions events in U ; however, it cannot mention
events local to U . So the effects of δ on U are fully expressed in the (eventual)
effect of δ on M . Rule [effect-2] lifts effect transitions with local events to
process transitions. Finally, the rule [rep] implements reproductive events: If

2 We assume an infinite number of events in E for each label in L.

Safety, Liveness and Run-Time Refinement for Modular PAIS 151

[M,f : Φ] T
e:δ−−→ T ′ f : Φ′ = (e : δ) · (f : Φ) γ = νe if e = f , o.w. γ = e

[M] (νf : Φ) T
γ:(δ\f)−−−−−→ (νf : Φ′) T ′

[local]

[M] T
νe:δ−−→ T ′

[M] T | U νe:δ−−→ T ′ | U
[par-2]

[M] T ′′ e:δ−−→ T ′ T ∼=α T ′′

[M] e{T} e:δ−−→ e{T} | T ′
[rep]

[M] T
νe:δ−−→ T ′

[M] T
νe−→ [δ ·M] T ′ [effect-2]

Here δ\f = (E\{f}, I\{f}, R\{f}). We omit the obvious rule symmetric to [Par-2].

Fig. 5. Transition semantics for local and reproductive events

the guarding event e happening would update the body T to become T ′, then e
can unfold to such a T ′. In DCR∗, the term does change as the process evolves.

To define accepting runs we need to track local restless events across transi-
tions. For this reason we assume the unique local events and maintain this by
α-conversion (denoted by ∼=α) of local events when a reproductive event happens,
i.e., local events duplicated by [rep] are chosen globally fresh.

Definition 7. A run of a DCR∗ process [M] T is a finite or infinite sequence

[Mi] Ni
λi−→ [Mi+1] Ni+1 with λ = ei or λ = νei. The trace of a run is the

sequence of labels of its events, i.e., the string given by �(λi) where �(νe)
def
= �(e).

A run is accepting if whenever an event e is marked as restless in Mi respectively
a local event νe is marked as restless by its binder in Ti, then there exists some

j ≥ i s.t. either [Mj] Tj
λi−→ [Mj+1] Tj+1 with λi = e respectively λi = νe; or the

event state of e in Mj respectively Tj has e excluded.

Example 8. A possible transition sequence for the reproductive recv{A} event
defined above in the marking M1 = recv : (f, t, f), bm : (f, t, f) is as follows.

[M1] recv{A} recv−−→ [M2] recv{A} | A1

recv−−→ [M2] recv{A} | A1 | A2 (1)
νapprove1−−−−−−→ [M2] recv{A} |

(
(νapprove1 : (t , t, f)) (νreject1 : (f, t, f))

(2)

approve1 %← reject1 | approve1 →• bm
)
|A2

νreject2−−−−→ [M2] recv{A} |
(
(νapprove1 : (t, t, f)) (νreject1 : (f, t, f)) (3)

approve1 %← reject1 | approve1 →• bm
)

(
(νapprove2 : (f, f , t)) (νreject2 : (t , t, f))

approve2 %← reject2 | approve2 →• bm
)

bm−−→ [M3] recv{A} | · · · (4)

Here M2 = recv : (t , t, f), bm : (f, t, f) and M3 = recv : (t, t, f), bm : (t , t, f).

152 S. Debois et al.

At (1), the processes A1 and A2 are copies of A where the local events approve
and reject have been α-converted to approve1, approve2 (but still labelled approve)
and reject1, reject2 (but still labelled reject) respectively, following the convention
of unique local events. Moreover, because they have not happened in the local
markings under the binders, bm cannot happen. To see this, observe that by the
[par]-rule, for the whole process to exhibit bm, every part of it must also exhibit
bm. But (νapprove1 : (f, t, t)) . . . approve1 →• bm cannot: the hypothesis of rule
[Local], that bm could happen if approve1 is considered global with marking
(f, t, t), cannot be established.

When a local approvei event happens, its local marking changes to reflect that
the event happened and is no longer restless, as indicated with grey background
in (2). However, approve1 happening is not enough to enable bm; it is still disabled
by the other copy. Also, the entire process is not in an accepting state, since
approve2 is still restless and included. Once reject happens in the second copy
(3), excluding approve in that copy, bm is enabled and the process is in an
accepting state: of the two local approve events bm is conditional upon, one has
happened (and thus also no longer restless), and the other is excluded (and thus
also no longer required for acceptance).

3.1 Encoding of Minsky Machines

We now show that DCR∗ has the full power of Turing machines by reduction
from the Halting Problem for Minsky machines [26].

A Minsky machine m = (R1, R2, P, c) comprises two unbounded registers
R1, R2; a program P , which is a list of pairs of addresses and instructions; and
a program counter c, giving the address of the current instruction. It has the
following instruction set.

inc(i, a) Add 1 to the contents of register i. Proceed to a.

decjz(i, a, b) If register i is zero, proceed to a. Otherwise subtract 1 from
register i and proceed to b.

halt Halt execution (w.l.o.g. assumed to appear exactly once).

We construct, given a Minsky machine m, a term t(m) and a marking m(m).
We model machine instructions as events. To maintain execution order, we model
program addresses explicitly as events a. These events serve only to constrain
the execution of other events; they should not themselves happen, and we pre-
vent them from doing so with a condition a →• a for each a. By making each
instruction event e conditional on its program point a, a →• e, we ensure that e
may happen only if a is excluded. To move the program counter from a to b, we
re-include a and exclude b. We define a shorthand insn(e, a, b) for an instruction
event e at program point a proceeding to program point b as follows:

insn(e, a, b) = a →• e | a +← e | b %← e

Now, registers. We model each a : decjz(i, b, c) by two events: one, decjza,
which can happen only when the register is zero, and a second, decjna, which

Safety, Liveness and Run-Time Refinement for Modular PAIS 153

can happen only when it is not. Then we model increments by making each
increment reproductive, replicating a new copy of decjna for every decrement
instruction a : decjz(i, b, c) in P . The copies produced by a single increment
represents the opportunity for exactly one of these instructions to decrement.
Thus, we make the copies in a single increment exclude each other. To make
sure that decjza cannot happen if the register is non-zero, that is, if no decjna

is present, we make the latter a condition of the former: decjna →• decjza.
Altogether, the term for one increment is constructed by the following function.
(We write (Ni∈Ixi : M) for (νxi1 : M) . . . (νxin : M) when I = {i1, . . . , in}.)

one(i) =
(

N
a:decjz(i,c,d)

decjna : (f,t, f)
) ∏

a:decjz(i,c,d)

(
insn(decjna, a, d) |

decjna →• decjza |
∏

a′:decjz(i,b′,c′)

decjna
′
%← decjna

)

Adding one to a register i is accomplished by making a new copy of one(i).

inc(a, i, b) = insn(inca, a, b) | inca{one(i)}

We put it all together and define t(m) for a Minsky machine m = (R1, R2, P, c).

t(m) =
∏

a:inc(i,b)∈P

inc(a, i, b) |
∏

a:decjz(i,b,c)∈P

insn(decjza, a, b)

|
∏

a:halt∈P

a →• halt |
∏

a:I∈P

a →• a |
∏
i<R1

one(1) |
∏
i<R2

one(2)

Finally, the marking m(m) is given below. (Recall that c is the program counter.)

c a when a 	= c decjza inca halt

Happened f f f f f
Included f t t t t
Restless f f f f t

This encodes a Minsky machine as a DCR∗-process:

Theorem 9. A Minsky machine m halts iff [m(m)] t(m) has an accepting run.

Proof. (outline) The proof is based on a bisimulation relation between finite ex-
ecution traces of the Minsky machine m and reachable markings of the encoding
[m(m)] t(m). First we observe that in every reachable marking of [m(m)] t(m)
exactly one of the program address events will be included and exactly one event
is enabled. The bisimulation relation will relate an execution trace of the Minsky
machine ending in address j to a marking in which that event is excluded. Next
we prove that for every pair, the machine can perform an instruction iff the
encoding can execute the corresponding event, and that the form of the process
t(m) is preserved as well as the global marking m(m), except that instruction

154 S. Debois et al.

events are being recorded as executed (and excluded in the case of decjn) is
preserved by steps. It follows that the restless halt event can be eventually
executed if and only if the machine can execute the halt command.

Example 10. As an example, let us consider a Minsky machine adding the con-
tents of register 2 to register 1. We’ll consider the machine (0, 1, P, 1), where P
is the program:

1 : decjz(2, 3, 2)
2 : inc(1, 1)
3 : halt

Applying the above construction, we get the following term (split out in a
table for readability).

∏

a:inc(i,b)∈P

inc(a, i, b)
∏

a:decjz(i,b,c)∈P

insn(decjza, a, b)

2 →• inc2 1 →• decjz1

2 %← inc2 1 +← decjz1

1 +← inc2 3 %← decjz1

inc2{0}
∏

a:halt∈P

a →• halt
∏

a:I∈P

a →• a
∏

i<R1

one(1)
∏

i<R2

one(2)

3 →• halt 1 →• 1 0 (νdecjn1 : (f,t, f))
2 →• 2 1 →• decjn1

3 →• 3 1 +← decjn1

2 %← decjn1

decjn1 →• decjz1

decjn1 %← decjn1

We emphasise that in the columnΠi<R2one(2), all instances of decjn
1 are within

the scope of the binder and thus local.

4 Run-time Adaptations by Composition and Refinement

We now turn to investigating run-time refinement and adaptations of DCR∗

processes by composition. We shall find that, as a consequence of the Turing-
completeness of DCR∗, refinement is in general undecidable. We however identify
and exemplify a practically useful, decidable sub-class of refinements, which we
call non-invasive adaptations.

To define composition of processes, we need to define merge of markings:

(M1, e : m)⊕ (M2, e : m) = (M1 ⊕M2), e : m

(M1, e : m)⊕M2 = (M1 ⊕M2), e : m when e 	∈ dom(M2)

Note that merge on markings is partial, since it is only defined on markings
that agree on their overlap. When the merge of the markings of two processes is
defined, we say that the processes are marking compatible.

Safety, Liveness and Run-Time Refinement for Modular PAIS 155

Definition 11. Given marking compatible DCR∗ processes [M] T and [N] S
their composition is defined as [M] T ⊕ [N] S = [M ⊕N] T | S.

Example 12. Suppose that as the grant process of Example 1 runs, e.g. just
after the round has been opened, a new requirement comes up: For regulatory
reasons, a board meeting must eventually be followed by an audit. We model
this constraint by a new event, audit, which must be a response to bm. As we
are introducing a new event, we must also introduce additional marking. The
following process R1 embodies the adaptation we wish to achieve.

R1 = [bm : (f, t, t), audit(f, t, f)] audit ←• bm

Assume the process P = [M1] T1 is the process reached after the first step of

Example 3, i.e. [M0] T1
round−−−→ P . We can then adapt P to include R1 simply by

composing the two processes:

P1 = P ⊕R1 = [M1, audit : (f, t, f)] T1 | audit ←• bm

As a second example, suppose further that it is also decreed that during an
audit, no further applications can be received. We adapt P1 with R2 as follows:

R2 = [recv : (f, t, f), audit : (f, t, f), pass : (f, t, f)] recv %← audit | recv +← pass

P2 = P1 ⊕R2

= [M1, audit : (f, t, f), pass : (f, t, f)] T1 | audit ←• bm

| recv %← audit | recv +← pass

When we extend the set of requirements by a (run-time) adaptation of P
to P ′, we often want to ensure that the results is a refinement of the existing
requirements, meaning that the old set of requirements is upheld. Informally, the
adapted process does not exhibit behaviour disallowed by P . We cannot simply
formulate refinement by language inclusion lang(P ′) ⊆ lang(P), since we may
not only add new constraints, but also new events (and thus new labels), like
audit in the above example. Instead, we define refinement as language inclusion
only w.r.t. the alphabet of P . In doing so we employ the following notation.

Notation. Given a sequence s, write s|Σ for the largest sub-sequence s′ of s s.t.
s′i ∈ Σ; e.g, if s = AABC then s|A,C = AAC.

Definition 13. Given DCR∗ processes P and P ′, we say that P ′ is a refinement
of P iff lang(P ′)|alph(P) ⊆ lang(P).

When merging in new constraints P ′ to a process P gives rise to a refinement
we will say P ′ is conservative for P , as defined formally below.

Definition 14. Given marking compatible DCR∗ processes P and Q, we say
that Q is conservative for P iff P ⊕Q is a refinement of P .

Example 15. Continuing the above example, we now see a fundamental distinc-
tion between the adaptation by R1 and R2: the former refines P , whereas the

156 S. Debois et al.

latter does not refine P1. To see this, observe for R1 that it only makes P2 less
accepting (because of the potential restlessness of the new event audit). For R2,
observe that P1 ⊕R2 has the following accepting execution:

P1 ⊕R2
audit−−−→ bm−−→ audit−−−→

Here audit excludes recv, and so enables bm to execute; bm in turn makes audit
restless, so after a second audit, we have an accepting trace t = 〈audit, bm, audit〉.
However, bm cannot be the first event of a trace of P1, because it is conditional
on the non-executed recv. Formally, we found a counter-example to refinement:

〈audit, bm, audit〉|alph(P1) = 〈bm〉 	∈ lang(P1)

Inspecting the adaptation R2 more closely, one see that the problem comes from
the dynamic exclusion of the recv event, since it not only makes the reception of
applications impossible, but also enables events such as bm that are conditional
on recv. A better way is to block recv by introducing a new condition:

R′
2 = [recv : (f, t, f), audit : (f, t, f)] audit{(νpass : (f, t, f)) pass →• recv}

Here, once audit happens, recv is barred from executing until the local event pass
has happened. The corresponding adaptation P2 ⊕R2 is a refinement.

Unfortunately the property of one process being conservative for another is
undecidable:

Theorem 16. It is undecidable whether a DCR∗-process P is conservative for
a DCR∗-process Q.

Proof. Let m be a Minsky machine, and take M = [m(m)] m(t) to be the
encoding of m as a DCR∗ process following Theorem 9. Take P to be the process
P = [] (νe : (f, t, f)) e →• e, with e labelled halt. We show that m is terminating
iff M is not conservative for P . Clearly lang(P) = ε, that is, the only trace of P
is the empty trace. By Theorem 9, the encoding M of m has a trace exhibiting
the label halt iff m terminates, so lang(P ⊕M)|alph(P) has a non-empty trace
iff m terminates. It follows that lang(P ⊕M)|alph(P) ⊆ lang(P) iff m does not
terminate, and so M is conservative for P iff m does not terminate.

Fortunately, we have identified a large class of practically useful refinements,
which we dub non-invasive adaptations.

Definition 17 (Non-invasive adaptation). Let P1 = [M1] T1 and P2 =
[M2] T2 be processes. We say that P1 non-invasive for P2 iff

1. For every context C(−), such that T1 = C(e →% f) or T1 = C(e →+ f),
either f is bound in C(−) or f 	∈ fe(P2); and

2. For every label l ∈ alph(P1) ∩ alph(P2), no bound event of T1 is labelled l,
and if e ∈ fe(P1) is labelled l, then e ∈ fe(P2).

Safety, Liveness and Run-Time Refinement for Modular PAIS 157

It’s straightforward to verify that non-invasiveness is decidable, and that R1

and R′
2 are non-invasive adaptations for P and P1 respectively, whereas R2 is

not for P1 (because of the exclusion of bm).
Moreover, we can indeed prove that non-invasive adaptations are conservative,

and thus gives rise to refinements (proof in the full version [11]):

Theorem 18. If P is non-invasive for Q then P is conservative for Q.

Non-invasiveness adaptations admits a large class of practically important
refinements. As illustrated by the adaptations given by R1 and R′

2, the permitted
adaptations correspond to dynamically adding an arbitrary new process to the
running process, and adding arbitrary condition and response relations between
events of the composed process. Even though existing events can not be excluded
by new events, it is possible to arbitrarily block events of the original process.

Within the application area of business process modelling, it is a common
change to add such possibility/requirement of taking additional actions inter-
leaved between existing actions. Indeed, the need for a non-invasive, run-time
adaptation showed up in the implementation of the grant application process [10].
After the start of an application round, a forgotten requirement was realised: If
the account number of a grant holder is changed, then the accountant must ver-
ify, that the account belongs to the grant holder before the next payment. The
adaptation was made to the DCR Graph representing the run-time state of the
grant application system without terminating or restarting any systems.

5 Conclusion, Related and Future Work

We studied the interplay of dynamic process instantiation, run-time adaptation
and refinement in the context of a declarative event-based process language,
generalising our prior work on DCR Graphs co-developed and implemented by
our industrial partner. Specifically, we proved that dynamic process instanti-
ation makes the language Turing-complete, and as a consequence, refinement
undecidable. We then identified a large, decidable and practically useful class of
refinements referred to as non-invasive adaptations. All findings and problems
were illustrated by a running example extracted from a real case.

Related Work. The DCR language is as we have seen closely related to DCR
Graphs [28,35,17], which descend from event structures, and thus have rela-
tions to Petri Nets. Petri Nets have been extended to allow modular definition
(e.g. via shared transitions [25]) and to represent infinite computations and ω-
regular languages (e.g., Büchi Nets [14]). However, Petri nets introduce the in-
tentional construct of places marked with tokens, as opposed to event structures
and DCR∗ processes, which only rely on causal and conflict relations between
events. Variants of event structures with asymmetric conflict relation relates to
the asymmetric exclude relation of DCR processes, including extended bundle
event structures [23,16], dual event structures [22,24], asymmetric event struc-
tures [6], and precursor event structures [15]. Automata based models like Event
automata [31] and local event structures [20] also allow asymmetric conflicts,

158 S. Debois et al.

but use explicit states and do not express causality and conflicts as relations be-
tween events. Besides the early work on restless events in [36], we are not aware
of other published work generalising event-structures to be able to express live-
ness properties, nor to distinguish between events thatmay and events that must
eventually be executed. Reproductive events of the DCR∗ process language relate
to replication in process calculi and higher-order Petri nets [21]. We believe to
be the first to combine higher-order features and liveness.

Run-time adaptation has been studied also for Petri nets [34] and process
calculi [5,8,9], but tends to require predefined adaptation points, and often deal
with adaptations via higher-order primitives. In contrast, adaptation in DCR∗ is
dealt with by composition, which due to the declarative nature allow for cross-
cutting adaptations without the need for pre-specified adaptation points.

In the BPM community, the seminal declarative process language is De-
clare [3,4]. As Declare is based on mapping primitives to LTL, which are then
mapped to automata, it necessarily distinguishes between run-time and design-
time. In contrast, in DCR processes, design-time and run-time representation
is literally the same. Declare has a relatively large set of basic constraints, the
formal expressiveness of which is clearly limited by that of LTL, while DCR
processes with only 4 basic constraints offers the full expressiveness of regular
and ω-regular languages. A different approach is [27], which provides a mapping
from Declare to the CLIMB, which allows the use of its reasoning techniques for
support and verification of Declare processes at both design- and run-time.

Imperative process models such as BPMN [30] have supported dynamic sub-
processes for some time now, they are only recently being studied for declarative
languages [37]. Here, sub-processes do not have independent life cycles, that is,
when a sub-process is spawned, it must run to completion before its super-process
may resume. Interestingly, it is noted in ibid. that extending the model with
sub-processes seems to increase its expressive power; we formally confirm that
supposition here, finding DCR graphs with sub-processes to be Turing complete.

Future Work. DCR∗ processes as defined here only interact via shared events.
We are currently working on adding interaction between concurrent events, la-
belled with send and receive labels as found e.g. in the π-calculus, thereby lifting
the results of the present paper to π-like languages. Towards better analysis of
the infinite-state DCR∗ language, we have initiated work on exploiting the idea
of responses and restless events in the domain of behavioural types [13] and run-
time monitoring [28]. The DCR∗ process language would benefit from a closer
investigation of its relation to modular [25] and higher-order Petri Nets [21]. Fi-
nally, time constraints and more general adaptations as initiated in [19,29], e.g.
allowing to remove constraints and events should be further investigated.

Acknowledgments. We thank the anonymous reviewers for helpful comments.

Safety, Liveness and Run-Time Refinement for Modular PAIS 159

References

1. van der Aalst, W.M.P.: The application of petri nets to workflow management.
Journal of Circuits, Systems, and Computers 8(1), 21–66 (1998)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business process man-
agement: A survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

3. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service
flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

4. van der Aalst, W.M.P., Pesic, M., Schonenberg, H., Westergaard, M., Maggi, F.M.:
Declare. Webpage (2010), http://www.win.tue.nl/declare/

5. Anderson, G., Rathke, J.: Dynamic software update for message passing programs.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 207–222.
Springer, Heidelberg (2012)

6. Baldan, P., Corradini, A., Montanari, U.: Contextual petri nets, asymmetric event
structures, and processes. Information and Computation 171, 1–49 (2001)

7. Barthe, G., Pardo, A., Schneider, G. (eds.): SEFM 2011. LNCS, vol. 7041. Springer,
Heidelberg (2011)

8. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Steps on the road to
component evolvability. In: Proceedings of the 7th International Conference
on Formal Aspects of Component Software, FACS 2010, pp. 295–299 (2012),
http://dx.doi.org/10.1007/978-3-642-27269-1 19

9. Bravetti, M., Giusto, C.D., Pérez, J.A., Zavattaro, G.: Adaptable processes. Logical
Methods in Computer Science 8(4) (2012)

10. Debois, S., Hildebrandt, T., Marquard, M., Slaats, T.: A case for declara-
tive process modelling: Agile development of a grant application system. In:
EDOCW/AdaptiveCM 2014, pp. 126 – 133. IEEE (September 2014)

11. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement
for modular process-aware information systems with dynamic sub processes (full
version) (2015), http://www.itu.dk/∼debois/dcrstar-tr.pdf

12. Debois, S., Hildebrandt, T.T., Slaats, T.: Hierarchical declarative modelling
with refinement and sub-processes. In: Sadiq, S., Soffer, P., Völzer, H.
(eds.) BPM 2014. LNCS, vol. 8659, pp. 18–33. Springer, Heidelberg (2014),
http://dx.doi.org/10.1007/978-3-319-10172-9

13. Debois, S., Hildebrandt, T.T., Slaats, T., Yoshida, N.: Type checking liveness for
collaborative processes with bounded and unbounded recursion. In: Ábrahám, E.,
Palamidessi, C. (eds.) FORTE 2014. LNCS, vol. 8461, pp. 1–16. Springer, Heidelberg
(2014)

14. Esparza, J., Melzer, S.: Model checking LTL using constraint programming. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 1–20. Springer,
Heidelberg (1997)

15. Fecher, H., Majster-Cederbaum, M.: Event structures for arbitrary disruption. Fun-
dam. Inf. 68(1-2), 103–130 (2005)

16. van Glabbeek, R.J., Vaandrager, F.W.: Bundle event structures and CCSP. In:
Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 57–71.
Springer, Heidelberg (2003)

17. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: PLACES. EPTCS. EPTCS,
vol. 69, pp. 59–73 (2010)

http://www.win.tue.nl/declare/
http://dx.doi.org/10.1007/978-3-642-27269-1_19
http://www.itu.dk/~debois/dcrstar-tr.pdf
http://dx.doi.org/10.1007/978-3-319-10172-9

160 S. Debois et al.

18. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition re-
sponse graphs. In: Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp.
343–350. Springer, Heidelberg (2012)

19. Hildebrandt, T.T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. J. Log.
Algebr. Program. 82(5-7), 164–185 (2013)

20. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics
for general petri nets. Theoretical Computer Science 153(1-2), 129–170 (1996)

21. Janneck, J.W., Esser, R.: Higher-order petri net modelling: Techniques and ap-
plications. In: Proceedings of the Conference on Application and Theory of Petri
Nets: Formal Methods in Software Engineering and Defence Systems, CRPIT 2002,
pp. 17–25 (2002)

22. Katoen, J.P.: Quantitative and qualitative extensions of event structures. Ph.D.
thesis, University of Twente, Enschede (April 1996)

23. Langerak, R.: Transformations and Semantics for LOTOS. Universiteit Twente
(1992)

24. Langerak, R., Brinksma, E., Katoen, J.-P.: Causal ambiguity and partial orders
in event structures. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997.
LNCS, vol. 1243, pp. 317–331. Springer, Heidelberg (1997)

25. Latvala, T., Mäkelä, M.: LTL model checking for modular petri nets. In: Cor-
tadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 298–311. Springer,
Heidelberg (2004)

26. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall (1967)
27. Montali, M.: Specification and Verification of Declarative Open Interaction Models

- A Logic-Based Approach, LNBIP, vol. 56. Springer, Heidelberg (2010)
28. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition

Response Graphs. Ph.D. thesis, IT University of Copenhagen (June 2012)
29. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case

management with dynamic condition response graphs. In: EDOC, pp. 127–136.
IEEE (2013)

30. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, version 2.0, http://www.omg.org/spec/BPMN/2.0/PDF

31. Pinna, G., Poign, A.: On the nature of events: another perspective in concurrency.
Theoretical Computer Science 138(2), 425–454 (1995), meeting on the mathemat-
ical foundation of programing semantics

32. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems - Challenges, Methods, Technologies. Springer (2012)

33. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow control-flow
patterns: A revised view (2006), http://BPMcenter.org

34. Sibertin-Blanc, C., Mauran, P., Padiou, G.: Safe Adaptation of Component Co-
ordination. In: Proceedings of the Third International Workshop on Coordination
and Adaption Techniques for Software Entities, vol. 189, pp. 69–85 (juillet 2007)

35. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declar-
ative case management workflows as DCR graphs. In: Daniel, F., Wang, J., Weber,
B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013)

36. Winskel, G.: Events in Computation. Ph.D. thesis, University of Edinburgh (1980)
37. Zugal, S., Soffer, P., Pinggera, J., Weber, B.: Expressiveness and understandability

considerations of hierarchy in declarative business process models. In: Bider, I.,
et al. (eds.) EMMSAD 2012 and BPMDS 2012. LNBIP, vol. 113, pp. 167–181.
Springer, Heidelberg (2012)

http://www.omg.org/spec/BPMN/2.0/PDF
http://BPMcenter.org

Verifying Opacity of a Transactional Mutex Lock

John Derrick1(�), Brijesh Dongol2, Gerhard Schellhorn3, Oleg Travkin4,
and Heike Wehrheim4

1 Department of Computing, University of Sheffield, Sheffield, UK
j.derrick@dcs.shef.ac.uk

2 Department of Computer Science, Brunel University, London, UK
3 Universität Augsburg, Institut für Informatik, 86135, Augsburg, Germany
4 Universität Paderborn, Institut für Informatik, 33098, Paderborn, Germany

Abstract. Software transactional memory (STM) provides programmers with a
high-level programming abstraction for synchronization of parallel processes, al-
lowing blocks of codes that execute in an interleaved manner to be treated as an
atomic block. This atomicity property is captured by a correctness criterion called
opacity. Opacity relates histories of a sequential atomic specification with that of
STM implementations.

In this paper we prove opacity of a recently proposed STM implementation
(a Transactional Mutex Lock) by Dalessandro et al.. The proof is carried out
within the interactive verifier KIV and proceeds via the construction of an inter-
mediate level in between sequential specification and implementation, leveraging
existing proof techniques for linearizability.

1 Introduction

Software transactional memory (STM) is a mechanism that provides an illusion of
atomicity in concurrent programs and thus aims to reduce the burden of implementing
synchronization mechanisms on a programmer. The analogy of STMs is with database
transactions, which perform a series of updates to data atomically in an all-or-nothing
manner. If a transaction succeeds, all its operations succeed, and otherwise, all its oper-
ations fail. Since the first proposal of an STM [20], a number of STM implementations
have been presented (e.g. [11,3]). Intuitively, an STM should behave like a lock mech-
anism for critical sections: transactions appear to be executed sequentially, but – unlike
conventional locking mechanisms – STMs should (and do) allow for concurrency be-
tween transactions. The locking mechanism of Transactional Mutex Locks [4] which we
study in this paper implements an optimistic locking scheme. These currently find their
way into standard programming languages, for instance via the new class StampedLock
of the Java 8 release.

As STM implementations allow several operations to execute simultaneously, what
one means by "correctness" is open to interpretation. Several notions of correctness
have been defined, e.g., strict serializability [17], opacity [8,2], TMS1 and TMS2 [6],
and virtual world consistency [13]. A number of researchers have already considered
methods for verifying correctness of transactional memory implementations; a com-
prehensive survey may be found in [14]. Formal verification is clearly needed as STM

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 161–177, 2015.
DOI: 10.1007/978-3-319-19249-9 11

162 J. Derrick et al.

implementations employ fine-grained operations allowing interleavings between con-
current transactions, and subtle errors are therefore likely to arise but difficult to detect
via e.g. testing.

In this paper, we provide the first formal, mechanised proof of correctness of the
Transactional Mutex Lock (TML). As correctness criterion we employ the recently
given definition of opacity of Attiya et al. [2]. It provides strong guarantees to program-
mers in the form of observational refinement allowing programmers to reason about
programs using opaque STMs in terms of atomic transactions. Our proof technique is
fully mechanised within the interactive prover KIV [18] and leverages existing proof
techniques [5] for linearizability [12].

More specifically, our approach consists of two steps: we (1) show that all runs of
TML are linearizable to runs in which first of all reads and writes to memory occur
atomically, and (2) establish an invariant about such runs stating that they all have
"matching" runs in which whole transactions are executed atomically. These two steps
are necessary for covering the two sorts of non-atomicity in STMs: STMs decompose
(atomic) transactions into several operations (begin, read, write etc.), but also further
decompose these operations into several steps (accessing and manipulating so-called
meta-data) as to allow for a maximum of concurrency. The former decomposition is
accounted for in step (2), the latter in step (1).

The paper is structured as follows: Section 2 gives an introduction to software trans-
actional memory, presents our case study and defines the correctness criterion of opacity.
Our general proof approach with steps (1) and (2) is described in Section 3; Section 4
explains both steps for our case study, the Transactional Mutex Lock. Section 5 con-
cludes and discusses related work.

2 Software Transactional Memory and Opacity

Software Transactional Memory (STM) provides programmers with an easy-to-use syn-
chronisation mechanism for concurrent access to shared data. The basic mechanism
is a programming construct that allows one to specify blocks of code as transactions,
with properties of database transactions (e.g., atomicity, consistency and isolation) [10].
All statements inside a transaction execute as though they were atomic. However –
like database transactions – software transactions need not successfully terminate, i.e.,
might abort.

To support the concept of software transactions, STMs usually provide a number
of operations to programmers: operations to start (TMBegin) or to end a transaction
(TMEnd), and operations to read or write shared data (TMRead, TMWrite)1. These oper-
ations can be called (invoked) from within a program (possibly with some arguments,
e.g., the variable to be read) and then will return with a response. Except for starting
transactions, all other operations might potentially respond with abort, thereby abort-
ing the whole transaction. STMs expect the programmer to always start with TMBegin,
then a number of reads and writes can follow, and eventually the transaction is ended
by calling TMEnd unless one of the other operations has already aborted.

1 In general, arbitrary operations can be used here; for simplicity we use reads and writes to
variables.

Verifying Opacity of a Transactional Mutex Lock 163

Init: glb = 0

TMBegin: TMEnd :
// B1 is LP if even glb // E1 is LP if even loc
B1 do loc := glb E1 if (loc & 1)
B2 while (loc & 1) E2 glb ++; // LP
B3 return ok; E3 return commit ;

TMRead (addr): TMWrite(addr ,val):
R1 tmp := *addr; W1 if (loc & 0)
R2 if (glb = loc) // LP // W2 is LP when glb �= loc
R3 return tmp; W2 if (! cas(&glb , loc , loc +1))
R4 else return abort ; W3 return abort ;

W4 else loc ++;
W5 *addr := val; // LP
W6 return ok;

Fig. 1. The Transactional Mutex Lock (TML)

2.1 Example: Transactional Mutex Lock

In this paper, we will study a particular implementation of STM, namely the Transac-
tional Mutex Lock (TML) of Dalessandro et al. [4]. It provides exactly the four types of
operations, but operation TMEndwill never respond with abort. See Fig. 1 (the references
in the comments to LP are explained later).

The TML uses a global counter glb (initially 0) shared by all processes, and local
variables tmp (temporarily storing the value read from an address) and loc (storing a
copy of glb). Variable glb records whether there is a live writing transaction. Namely,
glb is odd if there is a live writing transaction, and even otherwise. Initially, glb is 0 and
hence even.

Operation TMBegin copies the value of glb into its local variable loc and checks
whether glb is even. If so, the transaction is started, and otherwise, the process attempts
to start again by rereading glb. A TMRead operation succeeds as long as glb equals loc
(meaning no writes have occurred since the transaction began), otherwise it aborts the
current transaction. The first execution of TMWrite attempts to increment glb using a cas
(compare-and-swap), which atomically compares the first and second parameters, and
sets the first parameter to the third if the comparison succeeds. If the cas attempt fails,
a write by another transaction must have occured, and hence, the current transaction
aborts. Otherwise loc is incremented (making its value odd) and the write is performed.
Note that because loc becomes odd after the first successful write, all successive writes
that are part of the same transaction will perform the write directly after testing loc at
line 1. Further note that if the cas succeeds, glb becomes odd, which prevents other
transactions from starting, and causes all concurrent live transactions still wanting to
read or write to abort. Thus a writing transaction that successfully updates glb effec-
tively locks shared memory. Operation TMEnd checks to see if a write has occurred by
testing whether loc is odd. If the test succeeds, glb is incremented (to an even value),
allowing other transactions to begin.

164 J. Derrick et al.

Table 1. Events appearing in the histories of TML

invocations possible matching responses
invp(TMBegin) resp(TMBegin(ok))

invp(TMEnd) resp(TMEnd(commit)), resp(TMEnd(abort))

invp(TMRead(x)) resp(TMRead(v)), resp(TMRead(abort))

invp(TMWrite(x, v)) resp(TMWrite(ok)), resp(TMWrite(abort))

The key question we want to answer in this paper is: “Does the TML correctly im-
plement an STM”, i.e., does TML guarantee that transactions look as though they were
executed atomically, even when a large number of transactions are running concurrently.
Concurrently here means that the individual lines in the operations (i.e., B1, B2, etc) can
be interleaved by different calling processes. We start by first fixing the meaning of a
“correctness” for an STM implementation as opacity [8]. We formalise this via a series
of definitions leading up to the definition of an opaque history in Definition 5 below.

2.2 Opacity

There are numerous formalizations of opacity in the literature; our definition mainly
follows Attiya et al. [2]. We model shared memory by a set Addr of addresses or loca-
tions. For simplicity we assume addresses hold integer, denoted Z, values only, hence
State == Addr → Z describes the possible states of the shared memory. Initially, all
addresses hold the value 0. As standard in the literature, opacity is defined on the histo-
ries of an implementation. Histories are sequences of events that record all interactions
between the implementation and its clients. Histories form an abstraction of the actual
interleaving of individual lines of code, and thus an event is either an invocation (inv)
or a response (res). For the TML implementation, the possible invocation and matching
response events are given in Table 1. In the table, p is a process identifier from a set of
processes P (and is given as a subscript to an invocation or response), x is an address of
a variable and v a value.

Example 1. The following history h1 is a possible execution of the TML. It accesses the address
x by two processes 2 and 3 running concurrently.

h1 =̂ 〈inv3(TMBegin); inv2(TMBegin); res3(TMBegin(ok)); res2(TMBegin(ok));
inv3(TMWrite(x, 4)); inv2(TMRead(x)); res2(TMRead(0));
res3(TMWrite(ok)); inv3(TMEnd); res3(TMEnd(commit))〉 �

Notation. We use the following notation on histories: for a history h, h � p is the pro-
jection onto the events of process p only and h[i..j] the subsequence of from h(i) to
h(j) inclusive. For a response event e, we let rval(e) denote the value returned by e; for
instance rval(TMBegin(ok)) = ok. If e is not a response event, then we let rval(e) = ⊥.

Histories. We’re interested in three different types of histories. At the concrete level the
TML implementation produces histories where the events are interleaved. h1 above is an
example of such a history. At the abstract level we’re interested in sequential histories

Verifying Opacity of a Transactional Mutex Lock 165

which are ones where there is no interleaving at any level - transactions are atomic:
completed transactions end before the next transaction starts. As part of the proof we
use an intermediate specification which has alternating histories, which we define now.

A history h is alternating if h = 〈 〉 or h is an alternating sequence of invocation
and matching response events starting with an invocation. For the rest of this paper, we
assume each process invokes at most one operation at a time and hence assume that h�p
is alternating for any history h and process p. Note that this does not necessarily mean h
is alternating itself. Opacity is defined for well-formed histories, which formalises the
allowable interaction between an STM implementation and its clients. Given a projec-
tion h � p of a history h onto a process p, a consecutive subsequence t = 〈s0, . . . , sm〉 of
h � p is a transaction of process p if s0 = invp(TMBegin) and

– either rval(sm) ∈ {commit, abort} or sm is the last event of process p in h � p, and
– for all 0 < i < m, event si is not a transaction invocation, i.e., si �= invp(TMBegin)

and not a transaction completion, i.e., rval(si) �∈ {commit, abort}.

Furthermore, t is committing whenever rval(sm) = commit and aborting whenever
rval(sm) = abort. In these cases, the transaction t is finishing, otherwise t is live. A
history is well-formed if it consists of transactions only and at most one live transaction
per process.

Example 2. The history h1 given above is well-formed, and contains a committing
transaction of process 3 and a live transaction of process 2. �

The basic principle behind the definition of opacity (and similar definitions) is the com-
parison of a given concurrent history against a sequential one. The matching sequential
history has to (a) consist of the same events, and (b) preserve the real-time order of
transactions.

Sequential histories. We now define formally the notion of sequentiality, noting that
sequentiality refers to transactions: a sequential history is alternating and does not in-
terleave events of different transactions. We first define non-interleaved histories.

Definition 1 (Non-interleaved history). A well-formed history h is non-interleaved if
transactions of different processes do not overlap. That is, for any processes p and q
and histories h1, h2 and h3, if h = h1

� 〈invp(TMBegin)〉� h2
� 〈invq(TMBegin)〉� h3

and h2 contains no TMBegin operations, then either h2 contains a response event e such
that rval(e) ∈ {abort, ok}, or h3 contains no operations of process p. �

In addition to being non-interleaved, a sequential history has to ensure that the be-
haviour is meaningful with respect to the reads and writes of the transactions. For this,
we look at each address in isolation and define what a valid sequential behaviour on a
single address is.

Definition 2 (Valid history). Let h = 〈ev0, . . . , ev2n−1〉 be a sequence of alternating
invocation and response events starting with an invocation and ending with a response.

We say h is valid if there exists a sequence of states σ0, . . . , σn such that σ0(x) = 0
for all x ∈ Addr and, for all i such that 0 ≤ i < n and p ∈ P:

166 J. Derrick et al.

1. if ev2i = invp(TMWrite(x, v)) and ev2i+1 = resp(TMWrite(ok))
then σi+1 = σi[x := v]

2. if ev2i = invp(TMRead(x)) and ev2i+1 = resp(TMRead(v))
then σi(x) = v and σi+1 = σi.

3. for all other pairs of events (reads and writes with an abort response, as well as
begins and ends) σi+1 = σi.

We write �h�(σ) if σ is a sequence of states that makes h valid (since the sequence is
unique, if it exists, it can be viewed as the semantics of h). �

The point of STMs is that the effect of the writes only takes place when the trans-
action commits. Writes in a transaction that abort don’t effect the memory. However,
all reads must be consistent with previously committed writes. Therefore, only some
histories of an object reflect ones that could be produced by an STM. We call these the
legal histories, and they are defined as follows.

Definition 3 (Legal histories). Let hs be a non-interleaved history and i an index of
hs. Let hs′ be the projection of hs[0..(i − 1)] onto all events of committed transactions
plus the events of the transaction to which hs(i) belongs. Then we say hs is legal at i
whenever hs′ is valid. We say hs is legal iff it is legal at each index i. �

This allows us to define sequentiality for a single history, which we lift to the level of
specifications.

Definition 4 (Sequential history). A well-formed history hs is sequential if it is non-
interleaved and legal. We denote by S the set of all possible well-formed sequential
histories.

Opaque histories. Opacity relates concurrent histories that an implementation gener-
ates to sequential histories. We say a history h is equivalent to a history h′, denoted
h ≡ h′, if for all processes p ∈ P, h � p = h′ � p. Further, the real-time order on transac-
tions t1 and t2 in a history h is defined as t1 ≺h t2 if t1 is a finished transaction and the
last event of t1 in h occurs before the first event of t2.

A given concrete history may be incomplete, i.e., consist of pending operation calls,
which may be distinguished in a history as an invocation that has no matching response.
As some of these pending calls may have taken effect, pending operation calls may be
completed by adding matching responses. There may also be incomplete operation calls
that have not taken effect; it is safe to remove the pending invocations. It is however not
possible to determine whether or not a pending operation call has taken effect from the
history only; therefore, we define a function complete(h) that constructs all possible
completions of h by appending matching responses and removing pending invocations.

Definition 5 (Opaque history). A history h is opaque iff for some hc ∈ complete(h),
there exists a sequential history hs ∈ S such that hc ≡ hs and ≺hc⊆≺hs; a set of
histories H is opaque iff each h ∈ H is opaque; and an STM implementation is opaque
iff its set of histories is opaque. �

Verifying Opacity of a Transactional Mutex Lock 167

Example 3. The above history h1 is opaque; the corresponding sequential history is

hs =̂ 〈inv2(TMBegin); res2(TMBegin(ok)); inv2(TMRead(x); res2(TMRead(0));
inv3(TMBegin); res3(TMBegin(ok)); inv3(TMWrite(x, 4));
res3(TMWrite(ok)); inv3(TMEnd); res3(TMEnd(commit))〉

However, a history may not be opaque for several reasons. A very simple example is h2,
which violates memory semantics, since it reads a value 4, that has not been written:

h2 =̂ 〈inv1(TMBegin); res1(TMBegin(ok)); inv1(TMRead(x)); res1(TMRead(4))〉

A second more complex example is h3.

h3 =̂ 〈inv1(TMBegin); res1(TMBegin(ok)); inv2(TMBegin); res2(TMBegin(ok));
inv1(TMWrite(x, 3)); res1(TMWrite(ok)); inv2(TMRead(x)); res2(TMRead(3))〉

Transaction 2 reads value 3 written by transaction 1, which is still live. This is dis-
allowed by opacity, since all values read must from a state where only the effects of
transactions that have already committed are visible.

h4 =̂ 〈inv1(TMBegin); res1(TMBegin(ok)); inv1(TMRead(x)); res1(TMRead(0));
inv2(TMBegin); res2(TMBegin(ok)); inv2(TMWrite(x, 4));
res2(TMWrite(ok)); inv2(TMWrite(y, 4)); res2(TMWrite(ok));
inv2(TMEnd); res2(TMEnd(commit)); inv1(TMRead(y)); res1(TMRead(4))〉

In h4 transaction 1 reads x = 0 from initial memory, then transaction 2 runs, which
writes x = y = 4 and commits. Finally transaction 1 reads y = 4 . This also violates
opacity, since it is not possible to order the transactions sequentially: either transaction
1 runs first (and reads x = y = 0), or transaction 2 runs first (in which case transaction
1 should read x = y = 4). The TML will prevent h4 — the second read of transaction 1
will abort because its loc value is smaller than glb, which was incremented by the first
write of transaction 2. However, in general an implementation could allow transaction
2 to read y = 0, i.e., if we replace the last event in h4 by res2(TMRead(0)), the modified
history is still opaque.

Thus our question of implementation correctness of the TML can now be rephrased
as: Are all the well-formed histories generated by TML opaque? Having provided the
necessary formalism to pose this question, we now explain our general proof method
for showing opacity of TML.

Aside. Neither h3 nor h4 violate strict serializability [17]. To satisfy strict serializability,
for h3 we must guarantee that transaction 1 always commits, while for h4 we require
that transaction 1 detects the inconsistent reads when attempting a commit, and to abort.

Strict serializability is too weak, and histories such as h4 are problematic for imple-
mentations in which reading and writing transaction variables is alternated with com-
putations that use these values. To see this, suppose all committing transactions are
required to preserve the invariant x = y (the transactions in h4 satisfy this invariant).
Then, assuming all transactions act as if they are atomic, transaction 1 could rely on

168 J. Derrick et al.

ABegin : AEnd :
return ok return commit

ARead (addr): AWrite (addr ,val):
atomic { atomic {

return addr addr := val ; return ok
or or
return abort } return abort }

Fig. 2. Atomic specification of an STM

reading equal values for x and y. Even though transaction 1 will not be able to success-
fully commit, it could attempt to compute x/(y + 4 − x) after reading x and y, which
would give an unexpected division by zero.

3 A Proof Method for Opacity

Proving opacity of an STM object is difficult, as it determines a relationship between
a fine-grained implementation in which individual statements (and hence, operations)
may be interleaved, in terms of a sequential specification in which unbounded (but
finite) sequences of transactional memory operations are considered atomic. The op-
erations of STM implementations are however simple: there are operations to begin
and end a transaction and operations to read and write from memory. The majority of
these leave memory unchanged; for our TML example, the only operation that modifies
memory is a write operation that does not abort. Note that this is not the only possibility
— there are STM implementations that use deferred updates, where write operations
leave memory unchanged and writes are only performed when transactions end.

Our proof method uses an intermediate specification which is an atomic specification
of an STM implementation (with non deferred updates) where each operation is atomic,
thus interleaving of statements within an operation does not occur.

The proof method works by (a) showing that every history in the TML implemen-
tation can be linearized by an alternating history of this intermediate specification, and
(b) these alternating histories are themselves opaque. We describe the proof method us-
ing TML as a running example. Our proofs have been fully automated in KIV [18], the
resulting development may be viewed online(https://swt.informatik.uni-augsburg.de/
swt/projects/TML.html). The link also contains additional notes on our KIV proof.

3.1 Defining an Atomic Specification of an STM

The definition of the intermediate specification is simple, and the atomic specification
of an STM is given in Fig. 2. For example, the ARead(x) operation is an abstraction of
TMRead(x) that reads and returns the value of x in a single atomic step or it aborts. (We
assume that or defines a non-deterministic choice.)

3.2 Linearizability and Opacity

Correctness of the TML implementation is shown using linearizability [12], which is
the standard correctness criterion for concurrent objects. The idea of linearizability is:

https://swt.informatik.uni-augsburg.de/swt/projects/TML.html
https://swt.informatik.uni-augsburg.de/swt/projects/TML.html

Verifying Opacity of a Transactional Mutex Lock 169

Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and
its return. This point is known as the linearization point.

In other words, if two operations overlap, then they may take effect in any order from an
abstract perspective, but otherwise they must take effect in the order in which they are
invoked. This provides a meaning for fine-grained concurrent objects with overlapped
operation calls in terms of the abstract object, whose operation calls do not overlap.

As with opacity, the formal definition of linearizability is given in terms of histories
(of invocation/response events); for every concurrent history we have to find an equiv-
alent alternating (invocations immediately followed by the matching response) history
that preserves real time order of operations. The real-time order on operation calls2 o1

and o2 in a history h is defined as o1 ≺≺h o2 if the return of o1 precedes the invocation
of o2 in h.

Linearizability differs from opacity in that it does not deal with transactions; thus
transactions may still be interleaved in a matched alternating history. As with opacity,
the given concurrent history may be incomplete. Thus the definition of linearizability
uses a function complete that adds matching returns to pending invocations to a history
h, then removes any remaining pending invocations.

Definition 6 (Linearizability). A history h is linearized by alternating history ha, if
there exists a history hc ∈ complete(h) such that hc ≡ ha and ≺≺hc⊆≺≺ha. A concurrent
object is linearizable with respect to a specification if for each concurrent history h,
there is an alternating history ha of the specification that linearizes it. �

With linearizability formalised, we now present the main theorem for our proof method,
which enables opacity to be proved via histories of the atomic specification of an STM.

Theorem 1. A concrete history h is opaque if there exists an alternating history ha
such that h is linearizable with respect to ha and ha is opaque.

Proof. Suppose (a) h is linearizable with respect to ha and (b) ha is opaque with re-
spect to hs. Then, by (a), there exists a history hc ∈ complete(h) such that hc ≡ ha and
≺≺hc⊆≺≺ha and by (b), there exists a well-formed sequential history hs such that ha ≡ hs
and ≺ha⊆≺hs. We must show that hc ≡ hs and ≺hc⊆≺hs holds. Clearly, hc ≡ hs be-
cause ≡ is transitive, and if ≺≺hc⊆≺≺ha and ≺ha⊆≺hs, then ≺hc⊆≺hs because preserving
the real-time order of operations also preserves the real-time order of transactions. �

In applying this to TML, we show that every concurrent history h will be linearized
by an alternating history ha of the intermediate specification given in Figure 2, and that
every such ha is opaque.

Because the histories of the atomic specification of an STM are alternating, i.e., each
operation invocation is immediately followed by its response, we further simplify rea-
soning by reasoning about runs, which abstractly represent alternating histories. Thus
we specifically show that the run r corresponding to ha is opaque.

A run is a sequence of run events (see column 1 of Table 2), representing a matching
invocation/response event pair; Begin(p) denotes a TMBegin operation by process p; run

2 Note: this is different from the real time order on transactions defined in Section 2.2

170 J. Derrick et al.

Table 2. Run events abstracting matching invocation/return pairs

run events possible sequential invocation/response pairs
Begin(p) 〈invp(TMBegin), resp(TMBegin(ok))〉
Read(p, x, v) 〈invp(TMRead(x)), resp(TMRead(v))〉
Write(p, x, v) 〈invp(TMWrite(x, v)), resp(TMWrite(ok))〉
Commit(p) 〈invp(TMEnd), resp(TMEnd(commit))〉
Abort(p) 〈invp(TMRead(x)), resp(TMRead(abort))〉,

〈invp(TMWrite(x, v)), resp(TMWrite(abort))〉,
〈invp(TMEnd), resp(TMEnd(abort))〉

events Read(p, x, v) and Write(p,x,v) denote successful read and write operations by
process p on address x with value v; run event Commit(p) denotes a successful TMBegin
operation by process p; and Abort(p) denotes an operation invocation that aborts.

Example 4. The run corresponding to the history

ha =̂ 〈inv2(TMBegin); res2(TMBegin(ok)); inv2(TMRead(x); res2(TMRead(0));
inv3(TMBegin); res3(TMBegin(ok)); inv3(TMWrite(x, 4));
res3(TMWrite(ok)); inv3(TMEnd); res3(TMEnd(commit)),
inv2(TMRead(x); res2(TMRead(abort))〉

is 〈Begin(2); Read(2, x, 0); Begin(3); Write(3, x, 4); Commit(3); Abort(2)〉. �

Because Abort(p) relates to several possible pairs, a run is more abstract than a
history. Although it is possible to obtain a 1-1 correspondence between runs and his-
tories by defining other types of run events, the encoding in this paper simplifies the
mechanisation of the proof.

4 Proving Opacity of TML

In this section we apply the theory from the previous section and show how opacity of
the TML may be proved. Section 4.1 describes how the TML may be modelled in KIV,
Section 4.2 presents the linearizability proof and Section 4.3 the opacity of the runs
recorded as part of this proof.

4.1 Modelling TML in KIV

Before we discuss the proof steps, we first describe how the different specifications are
modelled in KIV.

The concrete specification: To model the concrete state of the TML, we use KIV’s
record type, which is used to define a constructor mkcs (make concrete state cs) con-
taining a list of fields of some type. Field glb represents the global variable glb, and mem
represents the memory state and hence maps addresses to values (in this case integers).
Local variables are mappings from processes (of type Proc) to values; for the TML, we

Verifying Opacity of a Transactional Mutex Lock 171

have local variable pc for the program counter, loc for the local copy of glb, as well
as variable a and v storing the input/output addresses and values, respectively. We thus
use the following state:

CState =
mkcs(. .glb : nat, . .mem : address → int, . .pc : Proc → PC,

. .loc : Proc → nat, . .a : Proc → address, . .v : Proc → int)

Modelling atomic statements: Modelling an atomic statement of the TML as a KIV
state transition is also straightforward; for example, consider statement labelled W2,
which is modelled by write2-def below. Here, COP is used to denote that the step is
internal (i.e., neither an invocation nor a response; such steps have an additional input
resp. output parameter) and write2 is the index of the operation. Modifications to glb
and pc are conditional, denoted by ⊃, on the test loc = glb. Thus, if loc = glb, then
pc’ is set to W3, otherwise pc’ is set to W6. The transitions alter the concrete state, the
after state is denoted by dashed variables.

write2-def:
� COP(write2)(glb, mem, pc, loc, a, v, glb’, mem’, pc’, loc’, a’, v’)
↔
(pc = W2 ∧ loc’ = loc ∧ mem’ = mem ∧ a’ = a ∧ v’ = v

∧ glb’ = (loc = glb ⊃ loc + 1;glb) ∧ pc’ = (loc = glb ⊃ W3;W6));

Promotion to system wide steps: Local specifications must now be promoted to the
level of the system, where the system consists of the concrete state cs together with a
variable r representing the run so far.

As promotion is a standard procedure [21], we omit the full details here. In KIV
we define one generic promoted KIV state transition COp-def that gets instantiated to
specific promoted transitions as necessary.

More interestingly, as part of the promotion we record run events in the run variable
r, at the linearization points of the operations TMBegin, TMRead, TMEnd, and TMWrite.

The linearization points of these transitions are annotated in comments in the code
in Figure 1. As with standard linearizability proofs, linearization points are often condi-
tional and their locations sometimes not intuitive. An operation may either linearize the
invoked operation or linearize to abort. Operation TMBegin linearizes at B1 if an even
value of glb is loaded into loc; in this case the operation will definitely go on to start a
transaction as the outcome of the next test is determined locally. Operation TMRead lin-
earizes at R2 to a non-aborting Read if the value of glb is the same as the stored value in
loc, and linearizes to an aborting Read if the value of glb changes. Operation TMWrite
linearizes successfully when the memory is updated at W5, and linearizes to Abort if
the cas at W2 fails. Finally, operation TMEnd never aborts, yet there are two lineariza-
tion points depending on whether successfully executed a TMWrite. If no writes were
performed, then loc must be even; such a transaction must linearize at E1, otherwise if
the transaction had performed a successful write, then loc must have been set to an odd
value at W4, therefore, the linearization point for TMEnd for such a transaction is is E2.

172 J. Derrick et al.

The expression on the right of “r’ =” below is an if-then-else expression describ-
ing the value of r’ (i.e., the value of r in the post state). To save space some details
are omitted, and replaced by “...”. Thus, for example, the first condition states that
r’ is set to r + Begin(p), which concatenates Begin(p) to r, whenever pc = B1 ∧
even(glb) holds in the pre-state, i.e., whenever process p executes line B1 where the
value of glb is even.

COp-def :
� COp(cj, p)(cs, r, cs’, r’)
↔ (∃ pc, loc, a, v. COP(cj)(cs.glb, cs.mem,..., cs’.glb, cs’.mem,...)
∧

pc = cs.glb ∧ loc = cs.loc(p) ... ∧
r’ = (pc = B1 ∧ even(glb) ⊃ r + Begin(p) ;

(pc = R2 ∧ loc = glb ⊃ r + Read(p, a, v) ;
(pc = R2 ∧ loc �= glb ⊃ r + Abort(p) ;
(pc = W2 ∧ glb �= loc ⊃ r + Abort(p) ;
(pc = W5 ⊃ r + Write(p, a, v) ;
(pc = E1 ∧ even(loc) ⊃ r + Commit(p) ;
(pc = E2 ⊃ r + Commit(p) ;
r))))))));

4.2 Step 1: Proving Linearizability with Respect to the Intermediate
Specification

Having described how we model the TML implementation in KIV, including the em-
bedding of the linearization points in the promoted operations, the next step is to show
that every history h of this TML implementation is linearized by an alternating history
of the intermediate specification. To simplify the proof, the alternating histories have
been represented by runs.

We thus show that h is linearized to a run r. This is done by proving two lemmas in
KIV for each operation of transaction (TMWrite etc).

First, when executed by process p no operation ever passes more than one lineariza-
tion point (LP) in any execution (regardless of other interleaved operations executed
by other processes) before executing a return (so even nonterminating TMBegins never
execute more than one LP).

Second, if the operation reaches a return and terminates, then it has executed exactly
one LP, i.e. exactly one run event of process p has been added to the run r. The arguments
of this run event agree with the actual input/output of the invoking/response transition.
As an example, the write operation adds Write(p, x, v) to rwhen executing the instruction
at W5 (and therefore actually writes v to mem(x)), and we prove that this is possible only
when the input to the invoking instruction of TMWrite is x, v and the output is empty.

Note that this encoding is recording the (more abstract) runs directly, as opposed
to recording an alternating history which is abstracted to runs as a separate step. This
simplified the KIV proof significantly without affecting soundness. In particular, lin-
earizability is guaranteed because the linearization points that occur are done by steps
of the operations themselves (more intricate examples where linearization points are
executed by other threads need more complex techniques, see [19] for a complete proof

Verifying Opacity of a Transactional Mutex Lock 173

method). The method used here is akin to the technique used in [22], where concrete
states are augmented with auxiliary variables representing the abstract state together
with additional modifications of the auxiliary state at the linearization points.

4.3 Step 2: Proving Opacity of Alternating Histories Using Runs

In this subsection we prove an alternating history which linearized a concurrent TML
history is itself opaque. Together with the results defined above this will be sufficient to
show opacity of the TML.

Firstly, we define opacity for runs, and show that proving opacity of runs is equivalent
to proving opacity of alternating histories. Secondly, we discuss the KIV proof of opac-
ity for TML runs. (Note that the descriptions below differ slight from the actual KIV
proof online; as we use modified function names here to keep this paper self-contained,
i.e., the proof can be understood without having to refer to the KIV specification online.)

Defining opacity for runs. Many of the definitions follow over from the definitions
for histories in Section 2. We also need to define the semantics of a valid run on a
sequence of states. To define opacity of a run, we first define the semantics of each run
event from Table 2 on the memory state mem ∈ State to produce the next state mem′.
Notation mem[x := v] denotes functional override, where mem(x) is updated to v.

�Begin(p)�(mem,mem′) =̂ mem′ = mem

�Read(p, x, v)�(mem,mem′) =̂ mem′ = mem ∧ mem(x) = v

�Write(p, x, v)�(mem,mem′) =̂ mem′ = mem[x := v]

�Commit(p)�(mem,mem′) =̂ mem′ = mem

�Abort(p)�(mem,mem′) =̂ mem′ = mem

Semantics of individual run events are lifted to the level of runs as follows. Below,
σ is a sequence of memory states and #σ defines the length of σ, which by the first
conjunct is one more than the length of r. By the second conjunct, for each n, the
transition from σ(n) to σ(n+1) is generated using r(n). Because the memory state has
been made explicit, �r�(σ) only holds for valid and legal runs.

�r�(σ) =̂ #σ = #r + 1 ∧ ∀ n • n < #r ⇒ �r(n)�(σ(n), σ(n + 1));

Finally, we define opaque runs as follows, where run r is mapped to sequential run
rs. Predicate r ≡ rs ensures equivalence between r and rs, predicate ≺r⊆≺rs ensures
real-time ordering is preserved, and interleaved states that transactions may be overlap.
The final conjuct ensures rs is both valid and legal as defined in Definitions 2 and 3,
respectively, where committed restricts a given run to the committed runs plus the (live)
transaction to which r(n) belongs as defined in Definition 3.

opaque(r, rs) =̂ r ≡ rs ∧≺r⊆≺rs∧ ¬interleaved(rs) ∧
∀ n • n < #rs ⇒ ∃σ • σ(0) = (λ x • 0) ∧ �committed(rs[0..n])�(σ)

We must now ensure that proving opacity of runs is sufficient for proving opacity of
complete alternating histories. This is established via the following theorem. We say a

174 J. Derrick et al.

run r corresponds to an alternating history ha iff r can obtained from ha by replacing
each pair of matching events in ha by the corresponding run event from Table 2.

Theorem 2. An alternating history ha is opaque if there exists a run r that corresponds
to ha and r is opaque.

Proof. The proof of this theorem is straightforward as the definition of opacity of a run
is built on the opacity of an alternating history. �

The invariants for opacity. The rest of the proof is now about proving that for each
execution of the TML augmented with runs (cs, r), it is possible to find an rs such that
opaque(r, rs).

As with our work on linearizability we prove this via construction of an appropri-
ate invariant. The main proof then shows that all augmented states (cs, r) generated
by a concurrent execution of the TML implementation satisfies the predicate ∃rs •
INV(cs, r, rs). The formula INV(cs, r, rs) defines a number of invariants for a sequen-
tial history rs, which in particular imply opaque(r, rs), which we now explain.

The formula INV(cs, r, rs) formalizes the observation that the (legal) transaction se-
quences rs generated by the TML implementation always consist of three parts: a first
one that alternates finished transactions and live transactions with an even value for
loc(p) that is already smaller than the current value of glb. The processes p execut-
ing such live transactions have only done reads. They are still able to successfully
commit, but they are no longer able to successfully read or write. A second part that
consists of transactions of processes p that have loc(p) = glb (or loc(p)+1 = glb, in
case a writing transaction exists). Finally, an optional live writing transaction. The
process p executing this transaction either satisfies odd(loc(p)) ∧ loc(p) = glb or
pc(p) = W4 ∧ odd(glb) ∧ glb = loc(p) + 1.

That the partitioning is an invariant is established by proving some additional simpler
properties of the TML implementation with respect to the corresponding sequential
run rs. The most important ones are as follows, where p is assumed to be the process
generating the transaction.

INV1. Transactions for which loc(p) is even have not performed any writes.
INV2. Any live transaction with an odd value of loc(p) is the last transaction in rs,

and loc(p) = glb in this case. This implicitly implies that there is at most one live
transaction with an odd value for loc(p).

INV3. If the sequential run rs contains a live transaction t by process p with loc(p) =
glb and pc(p) = W5, any finished transaction must occur before t.

INV4. Live transactions are ordered (non-strictly) by their local values of loc. This
property is crucial for preserving real-time order, since a larger loc implies that the
transaction has started later.

INV5. Strengthening opaque(r, rs), the state sequence σ that is needed to ensure that
the last event of rs is valid (cf. Def. 3) always ends with current memory. Formally,
for any augmented state cs, r the sequential history rs is such, that for its projection
rs′ to events of committed transactions plus the events of the last transaction a
(unique) state sequence σ with �rs′�σ exists where the last element of σ is equal to
cs.mem.

INV6. Aborted transactions contain no write operations.

Verifying Opacity of a Transactional Mutex Lock 175

Opacity proof in KIV. The proof proceeds by assuming INV(cs, r, rs) holds for some rs,
we show that the invariant holds after any step of the TML specification that generates
cs′, r′, it must be possible to construct a new sequence rs′ such that INV(cs′, r′, rs′)
holds.

For all steps that do not linearize (i.e. do not modify r) this is easy, we simply choose
rs′ = rs. Therefore, each of these proofs except for the operation at W4 (that increments
loc) is trivial.

Linearization steps of a TML operation add the corresponding run event re to r, i.e.
r′ = r � 〈re〉. The proof for the LP of TMBegin (i.e., line B1) is relatively simple, the
new rs′ has the newly started transaction concatenated at the end. For the other LPs, we
use a function tseq(rs), which generates a sequence of transactions from rs in order3.

In particular, if ts = tseq(rs), then rs = ts(0)� ts(1) � · · ·� ts(#ts − 1). At each LP,
assuming ts = tseq(rs), we add a run event re at the end of some ts(j) and leave all other
ts(i) unchanged to generate a new ts′. The sequence ts′ may also reorder transactions in
ts that overlap in r′, however, in most cases, the order of transactions is left unchanged,
i.e. the choice for ts′ is ts[j := ts(j) � 〈re〉]. We then consider rs′ = tseq(ts′) and we
show that this new rs′ preserves the memory semantics.

Because opacity holds for the transaction sequence rs before the LP step, we know
from Definition 5 that for each transaction ts(k) a memory sequence σk exists, that fits
the run events of the committed transactions before k together with the run events in
ts(k). In the following, we refer to σk as the memory sequence validating ts[0..k]. There
are three cases.

1. For k = j, we choose σ′ := σ � 〈mem′〉, where mem′ is computed from the last
element mem := last(σ) by applying the semantics of the added event re on last(σ).

2. For k < j, we choose σ′
k = σk, since the extended transaction is not present.

3. For j < k, we choose σ′
k = σk when re is not a commit. The difficult case remaining

is the one where ts′(j) is committing. However, because ts′(j) is not the last trans-
action in the sequence, it cannot have an odd loc due to INV2, and by INV1, the
transaction has not performed any writes. Therefore, the memory sequence σ′

j that

validates ts′[0..j] is of the form σ0
� 〈mem〉n, where 〈mem〉n is a sequence of mems

of length n. The memory sequence σk that validates ts[0..k] has prefix σ0
�〈mem〉n,

since j < k. Therefore, σk = σ0
� 〈mem〉n � σ′ and the new memory sequence that

validates ts′(k) can be set to σ0
� 〈mem〉n+1 � σ′.

This proves the main invariant that rs′ is legal. However, there is an additional problem
when (a) run event re is a Commit or Abort or (b) loc(p) is incremented at W4. Both
(a) and (b) may violate INV3, which is necessary to ensure that real-time order in r
is preserved. For both scenarios, we must commute the transaction with current loc(p)
value. Case (a) must move the committing reader to the start among those whose value
of loc equals loc(p). In terms of the split of the transaction sequence into three parts,

3 Technically, a transaction sequence ts is represented in KIV as a sequence of ranges mi..ni, such
that mi and ni mark the first and last event of a transaction in r. Assuming r[mi] = Begin(pi),
the events of transaction ts(i) then are specified as ts(i) = r[mi..ni] � pi. The opacity predicate
is therefore defined directly in terms of the range sequence instead of using rs.

176 J. Derrick et al.

the transaction was one of the transactions of part 2, and must now become the last
transaction of part 1. Case (b) must move the transaction that executes W4 to the end
of ts (it moves from part 2 to become the single writer of part 3). Both cases can be
reduced to a lemma, that says that adjacent transactions ts(n), ts(n + 1) executed by
processes p and q, respectively, can be reordered whenever loc(p) = loc(q). This is
because by property INV2, both loc(p) and loc(q) must be even and by INV1 neither
may have performed any writes.

Proof statistics. Specifying and proving opacity using KIV required four weeks of
work. In particular, half the time was invested to develop an elegant formalisation of
transactions that does not have to refer to auxiliary data like transaction identifiers and
does not have to explicitly specify permutations. The most difficult part of the proof
was figuring out a good lemma that gives criteria for preserving the semantics. This
proof and the proofs of the main goals for each of the 7LPs + the goal for pc=W4
are rather complex. They each have between 50 and 100 interactions. Our first guess
for defining the invariant left out the two properties INV4 and INV6, they were added
during the proof, which also took ca. two person weeks. Streamlining these techniques
in the context of a larger example (e.g., the TL2 algorithm [3]) is a topic of future work.

5 Conclusions

There are many notions of correctness for STMs [14,9]. Of these, opacity is an easy-
to-understand notion that ensures all reads are consistent with committed writing trans-
actions. We have developed a proof method for, and verified opacity of, a transactional
mutex lock implementation. Many definitions of opacity in the literature require an ex-
plicit mention of the permutations on histories, which would make proofs significantly
more complex. Our formalization has avoided the explicit use of permutations.

Opacity defines correctness in terms of histories generated by interleaving STM op-
erations as well as statements within the operations. Our method simplifies proof of
opacity by reformulating opacity terms of runs, and proving opacity of the runs. A run
allows interleaving of operations, but each operation is treated as being atomic, and
hence, the statements within an operation are not interleaved. Linearizability is used to
justify replacing an interleaved history by an alternating one (Theorem 1), while The-
orem 2 justifies proving opacity of an alternating history by proving opacity of the run
corresponding to the history.

Although there are several works comparing and contrasting different correctness
conditions for STM (including opacity) (e.g., [6,16,1]), there only a handful of papers
that consider verification of the STM implementations themselves. A model checking
approach is presented in [7], however, the technique only considers conflicts between
read and write operations in different transactions. More recently, Lesani has considered
opacity verification of numerous algorithms [14], which includes techniques for reduc-
ing the problem of proving opacity into one of verifying a number of simpler invariants
on the orders of events [15]. However, these decomposed invariants apply directly to
the interleaved histories of the implementation at hand, as opposed to our method that
performs a decomposition via runs.

Verifying Opacity of a Transactional Mutex Lock 177

References

1. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: Safety of live transactions in transactional
memory: TMS is necessary and sufficient. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784,
pp. 376–390. Springer, Heidelberg (2014)

2. Attiya, H., Gotsman, A., Hans, S., Rinetzky, N.: A programming language perspective on
transactional memory consistency. In: Fatourou, P., Taubenfeld, G. (eds.) PODC 2013, pp.
309–318. ACM (2013)

3. Dice, D., Shalev, O., Shavit, N.: Transactional locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

4. Dalessandro, L., Dice, D., Scott, M.L., Shavit, N., Spear, M.F.: Transactional mutex locks.
In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part II. LNCS, vol. 6272,
pp. 2–13. Springer, Heidelberg (2010)

5. Derrick, J., Schellhorn, G., Wehrheim, H.: Verifying linearisability with potential lineari-
sation points. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 323–337.
Springer, Heidelberg (2011)

6. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Towards formally specifying and verifying
transactional memory. Formal Asp. Comput. 25(5), 769–799 (2013)

7. Guerraoui, R., Henzinger, T.A., Singh, V.: Model checking transactional memories. Dis-
tributed Computing 22(3), 129–145 (2010)

8. Guerraoui, R., Kapalka, M.: On the correctness of transactional memory. In: Chatterjee, S.,
Scott, M.L. (eds.) PPOPP, pp. 175–184. ACM (2008)

9. Guerraoui, R., Kapalka, M.: Principles of Transactional Memory. Synthesis Lectures on Dis-
tributed Computing Theory. Morgan & Claypool Publishers (2010)

10. Harris, T., Larus, J.R., Rajwar, R.: Transactional Memory, 2nd edition. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers (2010)

11. Harris, T.L., Fraser, K.: Language support for lightweight transactions. In: Crocker, R.,
Steele Jr., G.L. (eds.) OOPSLA, pp. 388–402. ACM (2003)

12. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS 12(3), 463–492 (1990)

13. Imbs, D., Raynal, M.: Virtual world consistency: A condition for STM systems (with a ver-
satile protocol with invisible read operations). Theor. Comput. Sci. 444, 113–127 (2012)

14. Lesani, M.: On the Correctness of Transactional Memory Algorithms. PhD thesis, UCLA
(2014)

15. Lesani, M., Palsberg, J.: Decomposing opacity. In: Kuhn, F. (ed.) DISC 2014. LNCS,
vol. 8784, pp. 391–405. Springer, Heidelberg (2014)

16. Luchangco, V., Lesani, M., Moir, M.: Putting opacity in its place. In: Workshop on the Theory
of Transactional Memory (2012)

17. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4),
631–653 (1979)

18. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive
proofs with KIV. In: Automated Deduction—A Basis for Applications. Interactive Theorem
Proving, vol. II, ch.1, pp. 13–39. Kluwer (1998)

19. Schellhorn, G., Derrick., J., Wehrheim, H.: A Sound and Complete Proof Technique for
Linearizability of Concurrent Data Structures. ACM Trans. Comput. Logic, 15 (2014)

20. Shavit, N., Touitou, D.: Software transactional memory. Distributed Computing 10(2),
99–116 (1997)

21. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice Hall (1992)
22. Vafeiadis, V.: Modular fine-grained concurrency verification. PhD thesis, University of Cam-

bridge (2007)

A Framework for Correctness Criteria

on Weak Memory Models

John Derrick1(�) and Graeme Smith2

1 Department of Computing, University of Sheffield, Sheffield, UK
j.derrick@dcs.shef.ac.uk

2 School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

Abstract. The implementation of weak (or relaxed) memory models
is standard practice in modern multiprocessor hardware. For efficiency,
these memory models allow operations to take effect in shared memory
in a different order from that which they occur in a program. A number
of correctness criteria have been proposed for concurrent objects oper-
ating on such memory models, each reflecting different constraints on
the objects which can be proved correct. In this paper, we provide a
framework in which correctness criteria are defined in terms of two com-
ponents: the first defining the particular criterion (as it would be defined
in the absence of a weak memory model), and the second defining the
particular weak memory model. The framework facilitates the definition
and comparison of correctness criteria, and encourages reuse of exist-
ing definitions. The latter enables properties of the criteria to be proved
using existing proofs. We illustrate the framework via the definition of
correctness criteria on the TSO (Total Store Order) weak memory model.

1 Introduction

Modern multiprocessor architectures support weak (or relaxed) memory models
[19]. Architectures implementing weak memory models are now ubiquitous. An
example is the TSO (Total Store Order) memory model that is implemented by
the x86 architecture [16,19] and is used by the major chip manufacturers Intel
and AMD. Weak memory models are also implemented by the Power architecture
[1] used by IBM, and ARM [1] which is claimed to be the most widely used
architecture in mobile devices [8]. For efficiency, writes to variables in weak
memory models do not take effect in shared memory immediately. For example,
in TSO, writes are buffered and written to memory at a time determined by the
hardware or, if required, by the software employing a fence (or memory barrier)
instruction. Such instructions flush the entire contents of the buffer to memory.

While fences (and other constructs available to programmers in weak mem-
ory models) can be used to ensure writes to shared memory occur immediately,
they are expensive and reduce the efficiency gains the hardware was designed to
achieve. For this reason, fences are used sparingly, programmers relying instead
on an understanding of the subtleties of their algorithms to ensure correctness.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 178–194, 2015.
DOI: 10.1007/978-3-319-19249-9 12

A Framework for Correctness Criteria on Weak Memory Models 179

As a result there has been a growing interest in formal approaches to verify-
ing algorithms on weak memory models, in particular on TSO, in recent years
[3,9,5,18,20,21].

There are a number of notions of correctness for concurrent objects (i.e.,
objects designed to be accessed simultaneously by multiple threads), the most
important ones being linearizability [11], sequential consistency [13] and quies-
cent consistency [2,17]. We shall largely concentrate on linearizability here. This
requires that given an abstract specification and a proposed implementation of a
concurrent object, there exists a sequential execution of the abstract specification
for every concurrent execution of the implementation such that the abstract and
concrete executions produce the same results. The sequential execution is usually
obtained by identifying linearization points at which the potentially overlapping
concurrent operations are deemed to take effect instantaneously.

There has been a wealth of work on verifying linearizability for standard archi-
tectures, and recently attention has turned to its verification on weak memory
models. For example, two approaches have emerged for adapting linearizabil-
ity to TSO. The first involves modifying the abstract specification to take into
account the effects of buffering. For example, Burckhardt et al. [3] do this di-
rectly by supplementing the abstract specification with buffers and operations
for flushing the buffer. Alternatively, Gotsman et al. [9] add nondeterminism to
the abstract specification to capture the effects of buffering.

The second approach to adapting linearizability to TSO does not involve
such modification of the abstract specification. Instead, it involves fundamental
changes to the definition of linearizability to account for the effects of buffering.
We have defined such an approach in [5]. The motivation for this approach is
to allow implementations on TSO to be proved correct with respect to standard
specifications (or interfaces) which may appear in a software library. While the
modified specifications defined in [3] and [9] correctly capture the modified be-
haviour of an object due to TSO, they do not reflect the expected specification of
such an object be it a software lock, or a data structure such as a queue or stack.
The advantage of the approach given in [5] is that we enable the verification of
implementations running on TSO against specifications naturally appearing in
software libraries.

Our definition of TSO linearizability in [5] is one of a range of possible defini-
tions. For example, it does not ensure sequential consistency, i.e., that instruc-
tions performed by a single thread occur in the order they are invoked. This
restricts its application to certain objects and contexts in which those objects
are used; in general, a correctness criterion only ensures refinement under cer-
tain assumptions on objects and their contexts [7]. Stronger definitions ensuring
sequential consistency are also possible.

In this paper we provide a general framework for defining correctness criteria
on weak memory models in general, and illustrate its use on TSO in particular.
The framework is inspired by the work of Kogan and Herlihy on the correctness of
futures in parallel computing [12]. Following our motivation above, our framework
specifically targets criteria which can be used to verify an implementation against

180 J. Derrick and G. Smith

the expected specification of an object appearing in a library. Correctness criteria
such as linearizability, sequential consistency etc. are usually defined in terms of
histories , i.e., allowable sequences of operation invocations and responses, of the
specification and implementation. Here we provide a natural generalisation of such
definitions to define a framework where a correctness criteria comprises two parts:

1. a transformation on the histories of the implementation (representing the
memory model), and

2. a partial order on the range of the histories of the implementation (repre-
senting the particular correctness criterion).

The partial order captures a correctness criterion by constraining which oper-
ations in an implementation history can be reordered in order to match a cor-
responding specification history. The framework allows us to more easily define
correctness criteria as well as compare correctness criteria and their properties.

Section 2 introduces our running example, the Linux reader-writer mechanism
seqlock , and provides partial order–based formal definitions of established cor-
rectness criteria such as linearizability as the basis for our framework. Section 3
provides the necessary background on TSO and in Section 4 we introduce the
framework and illustrate it by defining a range of definitions of linearizability
on TSO and discuss their application to seqlock . We investigate the properties
of definitions within the framework in Section 5 before concluding in Section 6.

2 A Framework for Consistency Conditions

2.1 Case Study: seqlock

To illustrate correctness criteria and the subsequent effects of TSO on them,
consider the Linux reader-writer mechanism seqlock , which allows reading of
shared variables without locking the global memory, thus supporting fast write
access. First consider it running on a standard architecture. A process wishing to
write to the shared variables x1 and x2 acquires a software lock (by atomically
setting a variable lock to 1 when it is 01) and increments a counter c. It then
proceeds to write to the variables, and finally increments c again before releasing
the lock (by setting lock to 0). The lock ensures synchronisation between writers,
and the counter c ensures the consistency of values read by other processes.
The two increments of c ensure that it is odd when a process is writing to the
variables, and even otherwise. Hence, when a process wishes to read the shared
variables, it waits in a loop until c is even before reading them. Also, before
returning it checks that the value of c has not changed (i.e., another write has
not begun). If it has changed, the process starts over.

An abstract specification of seqlock , in which operations are regarded as
atomic, is given in Figure 1. A typical implementation, in which the statements
of operations may be interleaved, is given in Figure 2. In the implementation,
a local variable c0 is used by the read operation to record the (even) value of

1 This can be implemented, for example, using a spin lock [10].

A Framework for Correctness Criteria on Weak Memory Models 181

word x1 = 0, x2 = 0;

write(in word d1,d2) {

x1 = d1;

x2 = d2;

}

read(out word d1,d2) {

d1 = x1;

d2 = x2;

}

Fig. 1. seqlock specification

word x1 = 0, x2 = 0;

word c = 0, lock = 0;

write(in word d1,d2) {

acquire;

c++;

x1 = d1;

x2 = d2;

c++;

release;

}

read(out word d1,d2) {

word c0;

do {

do {

c0 = c;

} while (c0 % 2 != 0);

d1 = x1;

d2 = x2;

} while (c != c0);

}

Fig. 2. seqlock implementation [3]

c before the operation begins updating local variables d1 and d2. The natural
question to ask is whether this implementation is correct in some sense.

2.2 Formal Definitions of Correctness Criteria

Linearizability [11] is widely regarded as the standard correctness criterion for
concurrent objects, and can be used to check whether the implementation of
seqlock is correct with respect to the abstract specification given above. The
idea of linearizability is that:

Linearizability provides the illusion that each operation applied by con-
current processes takes effect instantaneously at some point between its
invocation and its return. This point is known as the linearization point.

In other words, if two operations overlap, then they may take effect in any order
from an abstract perspective, but otherwise they must take effect in the order
in which they are invoked.

Formally, linearizability is defined in terms of histories which are sequences
of events which can be invocations or returns of operations from a set I and
performed by a particular process from a set P . Invocations have an associated
input from domain In, and returns an output from domain Out . Both domains
contain the value ⊥ indicating no input or output.

Event =̂ inv〈〈P × I × In〉〉 | ret〈〈P × I ×Out〉〉
History =̂ seqEvent

182 J. Derrick and G. Smith

For example, the following is a possible history of seqlock , where p and q are
processes.

h = 〈inv(p, write, (1, 2)), inv(q, read,⊥), ret(p, write,⊥), ret(q, read, (1, 2))〉

Notation: For a history h, h = 〈head h〉 � tail h (where � is sequence con-
catenation), #h is the length of the sequence, and h(n) its nth element (for
n : 1..#h). Furthermore, h ⊕ {n �→ e} replaces the nth element of history h
with event e when n ≤ #h. Predicates inv?(e) and ret?(e) determine whether
an event e ∈ Event is an invoke or return, respectively. We let e.i ∈ I denote
the operation of an event. We let e.π ∈ P denote the process which performs
event e. �

We assume each event in a history can be uniquely identified by its operation.
In practice, we could annotate operation names with additional information, e.g.,
an integer value, to distinguish different occurrences of the same operation. For
example, the above history h, could be extended with a second write operation
as follows.

h′ = 〈inv(p, write0, (1, 2)), inv(q, read,⊥), ret(p, write0,⊥), ret(q, read, (1, 2)),
inv(q, write1, (3, 4)), ret(q, write1,⊥)〉

A history h then defines a partial order <h on its operations denoting whether
an operation precedes another. An operation o1 precedes an operation o2 iff o1’s
return event occurs before the invocation event of o2.

o1 <h o2 =̂ ∃m, n : 1 . .#h • m < n ∧
ret?(h(m)) ∧ h(m).i = o1 ∧ inv?(h(n)) ∧ h(n).i = o2

In history h′, write0 <h′ write1 and read <h′ write1, but write0 and read

are not related by <h′ since they overlap.
Since operations are atomic in an abstract specification, its histories are se-

quential , i.e., each operation invocation will be followed immediately by its re-
turn. In this case, <h will be a total order. The histories of a concurrent im-
plementation, however, may have overlapping operations and hence have the
invocations and returns of operations separated. However to be legal , a history
should not have returns for which there has not been an invocation.

legal(h) =̂ ∀n : 1 . .#h • ret?(h(n)) ⇒
(∃m : 1 . . n − 1 • inv?(h(m)) ∧ h(m).i = h(n).i)

The histories of specifications are also complete, i.e., they have a return for
each invocation. This is not necessarily the case for implementation histories. For
example, the subhistory of h′, 〈inv(p, write0, (1, 2)), inv(q, read,⊥)〉, is also a
history. To make an implementation history complete, it is necessary to add
additional returns for those operations which have been invoked and are deemed
to have occurred, and to remove the remaining invocations without matching
returns. We define a function complete to do the latter.

A Framework for Correctness Criteria on Weak Memory Models 183

complete(h) =̂

⎧⎨
⎩

〈 〉 if h = 〈 〉
complete(tail h) if inv?(head h) ∧ NoRet(h)

〈head h〉� complete(tail h) otherwise

where NoRet(h) =̂ �n : 2 . .#h • ret?(h(n)) ∧ h(n).i = (head h).i .

Definition 1 (Linearizability). An implementation of a concurrent object is
linearizable with respect to a specification of the object when for each history h
of the implementation, there is a (sequential) history hs of the specification such
that

EqSeq the operations of a legal completion of h are identical to those of hs, i.e.,

∃ hr , hc : History •
(∀n : 1 . .#hr • ret?(hr(n)) ∧ hc = complete(h � hr)) ∧
legal(hc) ∧
(∀ o : I •

(∃ n : 1 . .#hc • hc(n).i = o) ⇔ (∃m : 1 . .#hs • hs(m).i = o))

Ord the precedence ordering of h is preserved by that of hs, i.e., only overlapping
operations of h may be reordered with respect to each other in hs, i.e.,

<h ⊆ <hs �

As an example, seqlock can be shown to be linearizable. Definition 1 gener-
alises the original definition of linearizability of Herlihy and Wing [11] since in
the original formulation, condition (EqSeq) of Definition 1 was stronger requir-
ing that the operations performed by a particular process have the same order in
the specification and implementation histories. This additional restriction is not
necessary, however, since it is implied by condition (Ord) when we do not have a
weak memory model. In that case, there is a total order between operations per-
formed by a single process in any implementation history (and condition (Ord)
preserves that total order in the corresponding specification history). The weaker
condition in Definition 1 enables us to use the definition for other correctness cri-
teria simply by changing the partial order <h . This is illustrated in Section 2.3. It
also allows us to define alternative definitions of linearizability for weak memory
models including those such as that in [5] which allow overlapping, and hence
reorderable, operations performed by a single process. We return to this point
in Section 4.

2.3 Sequential Consistency and Quiescent Consistency

The formulation of linearizability in Definition 1 provides a general approach for
defining correctness criteria for concurrent objects. EqSeq states that a concur-
rent implementation history can be viewed as a sequential specification history,
and is common to all correctness criteria. Ord restricts the possible reordering of
concurrent operations, and distinguishes one correctness criterion from another.

184 J. Derrick and G. Smith

After linearizability, the dominant correctness criteria are sequential consis-
tency [13] and quiescent consistency [2,17]. Sequential consistency requires that
the operations performed by any given process occur in program order , i.e., they
occur in the implementation in the same order that they occur in the specifica-
tion. Quiescent consistency requires the order of operations in the implementa-
tion separated by quiescent states , i.e., states in which no operations are being
performed, occur in the same order as in the specification. These criteria are
defined in terms of Definition 1 as follows.

Definition 2 (Sequential consistency). An implementation of a concurrent
object is sequentially consistent with respect to a specification of the object when
for each history h of the implementation, there is a (sequential) history hs of the
specification such that EqSeq of Definition 1 holds, and

<sc
h ⊆ <hs

where

o1 <sc
h o2 =̂ ∃m, n : 1 . .#h • m < n ∧ h(m).π = h(n).π ∧

inv?(h(m)) ∧ h(m).i = o1 ∧ inv?(h(n)) ∧ h(n).i = o2 �

The definition of <sc
h ensures that events performed by the same process occur

in the implementation in the order that they are invoked. As discussed above,
this property is ensured by linearizability when we do not have a weak memory
model (since operations performed by a single process will not overlap). Hence
from Definitions 1 and 2, we can show that sequential consistency is weaker than
linearizability, as is well known [10].

Definition 3 (Quiescent consistency). An implementation of a concurrent
object is quiescent consistent with respect to a specification of the object when
for each history h of the implementation, there is a (sequential) history hs of the
specification such that EqSeq of Definition 1 holds, and

<qc
h ⊆ <hs

where

o1 <qc
h o2 =̂ ∃ l ,m, n : 1 . .#h • l ≤ m < n ∧

ret?(h(l)) ∧ h(l).i = o1 ∧ inv?(h(n)) ∧ h(n).i = o2 ∧
(∀ j : 1 . .m • inv?(h(j)) ⇒

(∃ k : j + 1 . .m • ret?(h(k)) ∧ h(k).i = h(j).i)) �

The definition of <qc
h ensures that events separated by a quiescent state, i.e.,

a point in the history up to which all invocations have a matching return, occur
in the implementation in the order they are invoked. It implies o1 <h o2 and
hence the order is more restrictive than that for linearizability. As a consequence,
quiescent consistency is weaker than linearizability, as is well known [10].

A Framework for Correctness Criteria on Weak Memory Models 185

3 The TSO Memory Model

The standard definitions of linearizability and other correctness criteria assume
the concurrent object being verified is not running on a weak memory model.
Thus, while seqlock can be proved linearizable on a standard architecture, when
run on TSO the behavior cannot be matched to an abstract history using the
standard definition of linearizability given in Definition 1.

Due to its relative simplicity, the TSO (Total Store Order) memory model
[16,19] has received more attention from the verification community than other
weaker memory models such as Power and ARM [1]. In TSO, each processor core
uses a write buffer (as shown in Figure 3), which is a FIFO queue that stores
pending writes to memory. A processor core (from this point on referred to as
a process) performing a write to a memory location enqueues the write to the
buffer and continues computation without waiting for the write to be committed
to memory. Pending writes do not become visible to other processes until the
buffer is flushed committing (some or all) pending writes to memory.

In general, flushes are controlled by the hardware. However, a programmer
may explicitly include a fence, or memory barrier , instruction in a program’s
code to force the contents of the write buffer to be flushed. Therefore, although
TSO allows non-sequentially consistent executions, it is used in many modern
architectures on the basis that these can be prevented, where necessary, by pro-
grammers using fence instructions.

The value of a memory location read by a process is the most recent in the
processor’s local buffer. This is known as Intra-Process Forwarding (IPF). If
there is no such value (e.g., initially or when all writes corresponding to the
location have been flushed), the value of the location is fetched from memory.
The use of local buffers allows a read by one process, occurring after a write by
another, to return an older value as if it occurred before the write. This is called
Write → Read reordering. It is this combination of IPF and Write → Read
reordering that defines the TSO memory model.

.

W
rite buffer

read

flush

write

read

W
rite buffer

read

flush

write

read

Core 1 Core n

Shared memory

Fig. 3. The TSO memory model

As an example, consider running seqlock on TSO. In TSO the acquire op-
eration of the software lock necessarily has a fence to ensure synchronization
between writer threads, however a fence is not required by the release opera-
tion, the effect of which may be delayed. This can lead to unexpected behaviour

186 J. Derrick and G. Smith

on TSO. For example, if a process p writes the values 1 and 2 to x1 and x2, and
then performs a read before its buffer is flushed, it will return 1 and 2 due to
IPF. However, another process performing a read immediately after the read by
p will return the values of x1 and x2 before p’s write which are not necessarily
1 and 2. This is a case of Write → Read reordering and results in a sequence of
write and read operations which is not possible according to the specification
of Figure 1.

4 Framework for Weak Memory Models

It is necessary therefore to adapt definitions of correctness criteria to weak mem-
ory models. In particular, it is necessary to take into account the behaviour al-
lowed by these models in the implementation histories, and how these histories
relate to the specification histories. In this section we describe how this can be
done.

4.1 Extending the Definition of Implementation Histories

We begin by extending implementation histories to explicitly include flushes. As
such histories are usually generated from a formal model of the implementation,
this is easily achieved by including an additional flush operation in the model
(and capturing fence instructions by a sequence of flushes). An example of such
an approach can be found in [5].

In this paper, we associate a flush with a pair: the process whose buffer is
flushed, and either an operation, if the flush is of the last value written by
the operation, or ⊥ otherwise. Again, determining the flush of the last value
written by an operation can be deduced from a suitable formal model of the
implementation as, for example, in [5]. Events and histories of implementations
are then defined as follows.

EventImpl =̂ inv〈〈P × I × In〉〉 | ret〈〈P × I ×Out〉〉 | flush〈〈P × (I ∪ {⊥})〉〉
HistoryImpl =̂ seqEventImpl

The predicate flush?(e) determines whether an event e ∈ EventImpl is a flush,
and other operators on events and histories are defined as in Section 2.2.

To simplify the definition of transformations on histories (Section 4.2), we
require implementation histories to end in a state where all process buffers are
empty, i.e., in a state where there are no more flushes to occur. Note that this
does not preclude operations which have been invoked but not returned. As an
example, a possible history of seqlock when running on TSO is

hTSO = 〈inv(p, write, (1, 2)),flush(p,⊥),flush(p,⊥), ret(p, write,⊥),
flush(p,⊥), inv(q, read,⊥),flush(p,⊥),flush(p,⊥), ret(q, read, (1, 2)),
flush(p, write)〉

where the first 5 flushes correspond, respectively, to the first value written to
lock, the first value written to c, the values written to x1 and x2, and the second

A Framework for Correctness Criteria on Weak Memory Models 187

value written to c, and the final flush corresponds to the second value written
to lock (which is the final value written by the write operation). Note that q’s
read can return any time after the second value of c is written, including before
the software lock is released.

4.2 Transforming Implementation Histories

In the absence of a weak memory model, an operation by a process is deemed to
take effect (and hence be able to influence other processes) at some point between
its invocation and return. Hence as seen in Section 2.2, the partial orders used to
define correctness criteria are based on the relative ordering of invocations and
returns of operations in implementation histories. On a weak memory model,
however, the effect of an operation may be delayed until some, or all, of its
writes have been flushed. For example, in hTSO the effect of the write operation
is not visible to the reader process q until the flush of the second value written
to c, despite the fact that the write operation returns earlier.

In general on TSO, an operation’s effect may take effect at any time up to
the flush of the last value written by the operation. We therefore transform
our implementation histories to extend operations which perform writes. The
effective return of an operation in a TSO history is either the flush of the final
value written by the operation or the return of the operation, whichever occurs
later in the history. Hence, a history is transformed by

– moving the return of an operation to replace the final flush for the operation
when such a flush occurs after the return, and

– removing all other flushes.

This is formalised in the following definition.

Definition 4 (TSO transformation trans). We define trans as follows:

trans(h) =̂

⎧⎪⎪⎨
⎪⎪⎩

〈 〉 if h = 〈 〉
trans(tail h) if flush?(head h)
trans(tail(h ⊕ {n �→ head h})) if DelayedRet(h) with n ≤ #h

〈head h〉� trans(tail h) otherwise

where DelayedRet(h) =̂ ret?(head h) ∧ flush?(h(n)) ∧ (head h).i = h(n).i . �

For example, for hTSO given above, trans(hTSO) is

〈inv(p, write, (1, 2)), inv(q, read,⊥), ret(q, read, (1, 2)), ret(p, write,⊥)〉

where the write and read operations now overlap. This history intuitively cap-
tures the behaviour on TSO and can be compared to histories of the abstract
specification using the definitions of correctness criteria of Section 2.2.

188 J. Derrick and G. Smith

Definition 5 (Linearizability on TSO). An implementation of a concurrent
object is linearizable on TSO with respect to a specification of the object when
for each history hTSO of the implementation, there exists a (sequential) history
hs of the the specification such that conditions EqSeq and Ord of Definition 1
hold with h = trans(hTSO). �

Similarly, sequential consistency and quiescent consistency can be defined on
TSO using trans and Definitions 2 and 3, respectively. In fact, any correctness
criterion defined in terms of a partial order as in Section 2.2 can be adapted
to TSO following Definition 5. Furthermore, such correctness criteria can be
adapted to other weak memory models by defining a suitable history transfor-
mation function capturing their behaviour.

This approach defines our framework for correctness criteria on weak memory
models.

Definition 6 (Correctness criteria framework). Given a correctness crite-
rion C and a (weak) memory model M , correctness is defined in terms of

– a partial order <C
h constraining the allowed reordering of operations in an

implementation history h to match a specification history, and
– a transformation transM for modifying implementation histories to incor-

porate the effects of M and remove implementation level details, such as
flushes.

A concrete object is correct with respect to a specification when Definition 1 holds
with h replaced by transM (h) and <h replaced by <C

transM (h). �

Investigating the full use of the framework for a range of correctness criteria
and weak memory models is beyond the scope of this paper. In the remainder
of this section, we focus on alternative definitions of linearizability on TSO.
Definition 5 is equivalent to the definition of TSO linearizability in [5] and thus
does not imply sequential consistency. This is because operations on a single
process can overlap when the return of at least one of them is moved to a future
flush, one occurring after the invocation of the other operation. For example,
the history

〈inv(p, write, (1, 2)), ret(p, write,⊥), inv(p, read,⊥), ret(p, read, (1, 2)),
. . . ,flush(p, write)〉

(where . . . elides a sequence of flushes) is transformed to

〈inv(p, write, (1, 2)), inv(p, read,⊥), ret(p, read, (1, 2)), ret(p, write,⊥)〉

The operations in the transformed history are no longer ordered by <h and so
can occur in an order different to their invocation order in a matching specifica-
tion history. While this is sufficient for verifying a range of concurrent objects,
e.g., those where sequential consistency is ensured due to fence instructions (the
spinlock case study in [5] is such an example), more widely applicable definitions
of TSO linearizability can also be readily defined.

A Framework for Correctness Criteria on Weak Memory Models 189

We illustrate the use of the framework below to provide two alternative def-
initions of linearizability on TSO which preserve invocation order on a single
process and hence imply sequential consistency. The first modifies the partial
order defining linearizability, and the second modifies both the partial order
and trans , and hence adopts a different understanding of behaviour on the TSO
memory model. The framework allows these alternatives to be easily defined and
compared.

4.3 Modifying the Partial Order

The simplest way to add sequential consistency to the TSO definition of lin-
earizability is to weaken the partial order (and hence strengthen the reordering
constraints). This can be done using the existing partial orders as follows.

o1 <′
h o2 =̂ o1 <h o2 ∨ o1 <sc

h o2

It follows directly from the definition that if <′
h ⊆ <hs , for some implemen-

tation history h and specification history hs , then <h ⊆ <hs and <sc
h ⊆ <hs .

Therefore, if an object is correct with respect to a specification using the partial
order <′

h , it is also linearizable and sequentially consistent with respect to the
specification.

As with Definition 5, it is not possible to prove seqlock correct using the
correctness criterion defined using this weakened partial order. For both criteria,
this can be shown using the following history corresponding to the example TSO
behaviour:

〈inv(p, write, (1, 2)), ret(p, write,⊥), inv(p, read0,⊥), ret(p, read0, (1, 2)),
inv(q, read1,⊥), ret(q, read1, (0, 0)), . . . ,flush(p, write)〉

The only specification history that can be associated with the above is

〈inv(q, read1,⊥), ret(q, read1, (0, 0)), inv(p, write, (1, 2)), ret(p, write,⊥),
inv(p, read0,⊥), ret(p, read0, (1, 2))〉

i.e., where the read operation of q returning the older values of x1 and x2 occurs
before the write operation which in turn occurs before the read operation of p
returning the newer values. This reordering is forbidden by the criteria, however,
because the two read operations do not overlap, and hence cannot be reordered.

4.4 Modifying the History Transformation

The history transformation of Definition 4 accurately captures the effective delay
of operations performing writes to shared memory under TSO. However, it does
not consider the possibility of delay to operations which do not perform such
writes. The operation read of seqlock is such an operation. Although it writes
to variables c0, d1 and d2, these are not shared by other processes and hence
reside on a local processor stack for the duration of the operation. Consequently,

190 J. Derrick and G. Smith

the effect of a read is not visible to other processes and we only require that
it occurs before the next operation of the same process takes effect (to ensure
sequential consistency).

In fact, all operations of a process which do not perform writes to shared
memory can occur (in order) at any time up to the return of the next operation
of the process which does perform such a write. To help specify the required
history transformation, we first specify a function τ which moves an event e to
just before the next flush of the last value written by an operation by the same
process in a history h. If there is no such flush, e is moved to the end of the
history.

τ(e, h) =̂

⎧⎨
⎩

〈e〉 if h = 〈 〉
〈e〉� h if flush?(head h) and LastWrite(h)

〈head h〉� τ(e, tail h) otherwise

where LastWrite(h) =̂ (head h).π = e.π ∧ head h.i �= ⊥.

The required definition can then be given using the existing definition of
trans as follows. In addition to the transformations of Definition 5, the returns
of operations which do not write values to global variables are moved to just
before the next flush of the last variable written by an operation by the same
process, or to the end of the history if there is no such flush.

Definition 7 (Extended TSO transformation transext). The extended TSO
transformation transext is defined as:

transext(h) =̂

{
τ(head h, tail h) if ret?(head h) and NoFlush(h)
trans(h) otherwise

where NoFlush(h) =̂ �n : 2 . .#h • flush?(h(n)) ∧ (head h).i = h(n).i . �

Applying transext to the implementation history of Section 4.3 we get

〈inv(p, write, (1, 2)), inv(p, read0,⊥), inv(q, read1,⊥), ret(q, read1, (0, 0)),
ret(p, write,⊥), ret(p, read0, (1, 2))〉

which under either <h or <′
h can be reordered to give the specification history of

Section 4.3. (Note that the recursive definition of transext will move the return
of p’s write before moving the return of p’s read resulting in the latter being
moved to the end of the history.)

5 Properties of Correctness Criteria

As we have seen in Section 4, our framework facilitates reuse in the definition of
new correctness criteria. In this section, we look at how it also facilitates reuse
of proofs of properties of those criteria.

A Framework for Correctness Criteria on Weak Memory Models 191

Two important properties of linearizability are that the criterion is non-
blocking and compositional [11]. A non-blocking criterion is one where a pending
invocation, i.e., one for which there is no return, is never required to wait for
another pending invocation to complete in order to satisfy the criterion. In other
words, if h is an implementation history of an object satisfying the criterion and

has a pending invocation inv(p, op,−) then h � 〈ret(p, op,−)〉 also satisfies the
criterion (where − stands for arbitrary input or output).

To prove this for TSO linearizability (Definition 5), we use the following the-
orem from Herlihy and Wing [11], where linearizable refers to the fact that the
history can be related to a specification history by satisfying conditions EqSeq
and Ord of Definition 1.

Theorem 1. If inv(p, op,−) is a pending invocation in a linearizable imple-

mentation history h, then h � 〈ret(p, op,−)〉 is also linearizable. �

To state the equivalent theorem in the context of TSO, we need to ensure that
when we extend h with the return event, the history still ends in a state with all
buffers empty. In general, additional write statements may need to occur before
the return, and hence additional flushes will be required.

Theorem 2. If inv(p, op,−) is a pending invocation in a TSO linearizable im-

plementation history h, then h � f � 〈ret(p, op,−)〉 is also TSO linearizable,
where f is a sequence of flush events required to ensure all buffers are empty at
the end of the history.

Proof. If h is TSO linearizable then trans(h) is linearizable by Definition 5.

Therefore, trans(h)� 〈ret(p, op,−)〉 is linearizable by Theorem 1. Since we can
find a sequence of flush events f such that

trans(h)� 〈ret(p, op,−)〉 = trans(h � f � 〈ret(p, op,−)〉)

by Definition 4, h � f � 〈ret(p, op,−)〉 is also TSO linearizable (by Defini-
tion 5). �

The non-blocking property can similarly be proved for the alternative defini-
tions of TSO linearizability in Section 4.

A compositional correctness criterion is one where a system composed of sev-
eral objects satisfies the criterion if and only if each object does. To prove this
for TSO linearizability, we use the following theorem from Herlihy and Wing
[11], where h|x is the subsequence of h of all events on object x .

Theorem 3. An implementation history h is linearizable if and only if, for each
object x , h|x is linearizable. �

In the context of TSO, we interpret h|x to include flushes of values written by
operations on object x .

Theorem 4. An implementation history h is TSO linearizable if and only if,
for each object x , h|x is TSO linearizable.

192 J. Derrick and G. Smith

Proof. We prove the “if” direction, then the “only if” direction.
(i) If h |x is TSO linearizable then trans(h |x) is linearizable by Definition 5.

Since trans(h) |x = trans(h |x) by Definition 4, trans(h) |x is also linearizable.
Therefore, if for all objects x , h|x is TSO linearizable then trans(h) is linearizable
by Theorem 3. Hence, h is TSO linearizable (by Definition 5).

(ii) If h is TSO linearizable then trans(h) is linearizable by Definition 5.
Therefore, for all objects x , trans(h) |x is linearizable by Theorem 3. Since
trans(h)|x = trans(h|x) by Definition 4, for each x , trans(h|x) is also linearizable.
Hence, for all objects x , h|x is TSO linearizable (by Definition 5). �

Compositionality can be proved similarly for the alternative definitions of TSO
linearizability in Section 4. The key point with each of the proofs in this section
is that they take advantage of the framework’s reuse of definitions from standard
linearizability to reuse the proofs of Theorems 1 and 3 where the difficult proof
work is done.

6 Conclusion

This paper has presented a framework for the definition of correctness criteria for
concurrent objects operating on weak memory models. The key to this framework
is that such a definition comprises two parts: one defining the particular criterion,
and one the weak memory model. For the former, we followed the work of Herlihy
and Wing [11] who defined linearizability in terms of a partial order on the
operations within the history of a concurrent object. We showed how other well
known criteria, sequential consistency and quiescent consistency, can similarly be
defined in terms of a partial order. To define a particular weak memory model we
used transformations on implementation histories which move the return points
of operations to the point in the history where they take effect in shared memory.
The approach was illustrated via two interpretations of the TSO (Total Store
Order) weak memory model [16,19].

As well as making the definition of correctness criteria more systematic, the
framework facilitates the reuse of existing definitions. The definition of a partic-
ular criterion can be reused across different memory models, or modified slightly
for use on a single memory model. Similarly, slight modifications to the defini-
tions of a memory model can be made to reflect different interpretations of it.
Examples were given for variations of the definition of linearizability on TSO.
This reuse of definitions also enables the reuse of proofs simplifying the verifica-
tion of properties of the new correctness criteria.

An alternative framework of definitions of consistency including linearizability
is given in [6]. Although this is similar in spirit to what we try and achieve
here, our use of transformations above means that we have one definition of
each consistency criteria (linearizabiltiy, sequential consistency etc.) that can be
used on any memory model. To change between memory models we just need
to change the transformation. Indeed that was one of the motivations of the
framework that we developed here. This is in contrast to the framework defined
in [6] that defines linearizability and quiescent consistency on TSO from scratch

A Framework for Correctness Criteria on Weak Memory Models 193

since the definitions in that paper encode both the consistency condition and the
necessary transformation in one definition together. Another advantage of our
use of transformations is that it enables us to reuse both criteria definitions and
their associated proofs of non-blocking and compositionality. In [6] it is necessary
to redo these proofs from scratch as well.

Future work on our framework will include defining transformations for other
weak memory models, as well as proof techniques for proving concurrent objects
correct with respect to defined criteria. The latter will build on the sound and
complete proof techniques for linearizabilty by Derrick et al. [4,15] (which are
defined in terms of simulations for non-atomic refinement) which have been
implemented in the theorem prover KIV [14].

References

1. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The Semantics of Power and ARM Multiprocessor Machine Code. In: Petersen, L.,
Chakravarty, M.M.T. (eds.) DAMP 2009, pp. 13–24. ACM (2008)

2. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. ACM 41(5), 1020–1048
(1994)

3. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library cor-
rectness on the TSO memory model. In: Seidl, H. (ed.) Programming Languages
and Systems. LNCS, vol. 7211, pp. 87–107. Springer, Heidelberg (2012)

4. Derrick, J., Schellhorn, G., Wehrheim, H.: Mechanically verified proof obligations
for linearizability. ACM Trans. Program. Lang. Syst. 33(1), 4 (2011)

5. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures.
In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 341–356.
Springer, Heidelberg (2014)

6. Dongol, B., Derrick, J., Groves, L., Smith, G.: Defining correctness conditions for
concurrent objects in multicore architectures. In: ECOOP 2015, LNCS. Springer
(2015)

7. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent
objects. Theoretical Computer Science 411(51-52), 4379–4398 (2010)

8. Fitzpatrick, J.: An interview with Steve Furber. Commun. ACM 54(5), 34–39
(2011)

9. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consis-
tent specifications of TSO libraries. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 31–45. Springer, Heidelberg (2012)

10. Herlihy,M., Shavit, N.: TheArt ofMultiprocessor Programming. Morgan Kaufmann
(2008)

11. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

12. Kogan, A., Herlihy, M.: The future(s) of shared data structures. In: PODC 2014,
pp. 30–39. ACM (2014)

13. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

14. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and
interactive proofs with KIV. In: Automated Deduction, pp. 13–39. Kluwer (1998)

194 J. Derrick and G. Smith

15. Schellhorn, G., Wehrheim, H., Derrick, J.: A sound and complete proof technique
for linearizability of concurrent data structures. ACM Trans. on Computational
Logic, 15(4), 31:1–31:37 (2014)

16. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

17. Shavit, N., Zemach, A.: Diffracting trees. ACM Trans. Comput. Syst. 14(4),
385–428 (1996)

18. Smith, G., Derrick, J., Dongol, B.: Admit your weakness: Verifying correctness on
TSO architectures. In: Lanese, I., Madelaine, E. (eds.) FACS 2014. LNCS, vol. 8997,
pp. 364–383. Springer, Heidelberg (2015)

19. Sorin, D.J., Hill, M.D., Wood, D.A.: A Primer on Memory Consistency and Cache
Coherence. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers (2011)

20. Travkin, O., Mütze, A., Wehrheim, H.: SPIN as a linearizability checker under weak
memory models. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244,
pp. 311–326. Springer, Heidelberg (2013)

21. Travkin, O., Wehrheim, H.: Handling TSO in mechanized linearizability proofs.
In: Yahav, E. (ed.) HVC 2014. LNCS, vol. 8855, pp. 132–147. Springer, Heidelberg
(2014)

Semantics-Preserving Simplification
of Real-World Firewall Rule Sets

Cornelius Diekmann(�), Lars Hupel, and Georg Carle

Technische Universität München, München, Germany
diekmann@net.in.tum.de

Abstract. The security provided by a firewall for a computer network
almost completely depends on the rules it enforces. For over a decade, it
has been a well-known and unsolved problem that the quality of many
firewall rule sets is insufficient. Therefore, there are many tools to an-
alyze them. However, we found that none of the available tools could
handle typical, real-world iptables rulesets. This is due to the complex
chain model used by iptables, but also to the vast amount of possible
match conditions that occur in real-world firewalls, many of which are
not understood by academic and open source tools.

In this paper, we provide algorithms to transform firewall rulesets. We
reduce the execution model to a simple list model and use ternary logic to
abstract over all unknownmatch conditions. These transformations enable
existingtools tounderstandreal-worldfirewall rules,whichwedemonstrate
on four decently-sized rulesets. Using the Isabelle theorem prover, we for-
mally show that all our algorithms preserve the firewall’s filtering behavior.

Keywords: Computer networks ⋅ Firewalls ⋅ Isabelle ⋅ Netfilter Iptables ⋅
Semantics

1 Introduction

Firewalls are a fundamental security mechanism for computer networks. Several
firewall solutions, ranging from open source [2,28,29] to commercial [3,13], exist.
Operating and managing firewalls is challenging as rulesets are usually written
manually. While vulnerabilities in the firewall software itself are comparatively
rare, it has been known for over a decade [32] that many firewalls enforce poorly
written rulesets. However, the prevalent methodology for configuring firewalls
has not changed. Consequently, studies regularly report insufficient quality of
firewall rulesets [7, 12, 18, 21, 27, 31, 33, 34].

Therefore, several tools [18–22, 25, 30, 33] have been developed to ease firewall
management and reveal configuration errors. However, when we tried to analyze
real-world firewalls with the publicly available tools, none of them could handle
our firewall rules. We found that the firewall model of the available tools is too
simplistic.

In this paper, we address the following fundamental problem: Many tools do
not understand real-world firewall rules. To solve the problem, we transform and
simplify the rules such that they are understood by the respective tools.

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 195–212, 2015.
DOI: 10.1007/978-3-319-19249-9_13

196 C. Diekmann et al.

Chain INPUT (policy ACCEPT)
target prot source destination
DOS_PROTECT all 0.0.0.0/0 0.0.0.0/0
ACCEPT all 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
DROP tcp 0.0.0.0/0 0.0.0.0/0 tcp dpt:22
DROP tcp 0.0.0.0/0 0.0.0.0/0 multiport dports ↩

21,873,5005,5006,80,548,111,2049,892
DROP udp 0.0.0.0/0 0.0.0.0/0 multiport dports ↩

123,111,2049,892,5353
ACCEPT all 192.168.0.0/16 0.0.0.0/0
DROP all 0.0.0.0/0 0.0.0.0/0

Chain DOS_PROTECT (1 references)
target prot source destination
RETURN icmp 0.0.0.0/0 0.0.0.0/0 icmptype 8 limit: ↩

avg 1/sec burst 5
DROP icmp 0.0.0.0/0 0.0.0.0/0 icmptype 8
RETURN tcp 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x04 ↩

limit: avg 1/sec burst 5
DROP tcp 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x04
RETURN tcp 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x02 ↩

limit: avg 10000/sec burst 100
DROP tcp 0.0.0.0/0 0.0.0.0/0 tcp flags:0x17/0x02

Fig. 1. Linux iptables ruleset of a Synology NAS (network attached storage) device

To demonstrate the problem by example, we decided to use ITVal [19] because
it natively supports iptables [28], is open source, and supports calls to user-
defined chains. However, ITVal’s firewall model is representative of the model
used by the majority of tools; therefore, the problems described here also apply
to a vast range of other tools. Firewall models used in related work are surveyed
in Sect. 2. For this example, we use the firewall rules in Fig. 1, taken from an NAS
device. The ruleset reads as follows: First, incoming packets are sent to the user-
defined DOS_PROTECT chain, where some rate limiting is applied. Afterwards, the
firewall allows all packets which belong to already established connections. This
is generally considered good practice. Then, some services, identified by their
ports, are blocked. Finally, the firewall allows all packets from the local network
192.168.0.0/16 and discards all other packets. We used ITVal to partition the IP
space into equivalence classes (i.e. ranges with the same access rights) [20]. The
expected result is a set of two IP ranges: the local network 192.168.0.0/16 and
the “rest”. However, ITVal erroneously only reports one IP range: the universe.
Removing the first two rules (in particular the call in the DOS_PROTECT chain)
lets ITVal compute the expected result.

We identified two main problems which prevent tools from “understanding”
real-world firewalls. First, calling and returning from custom chains, due to the
possibility of complex nested chain calls. Second, more seriously, most tools do
not understand the firewall’s match conditions. In the above example, the rate

Semantics-Preserving Simplification of Firewall Rule Sets 197

limiting is not understood. The problem of unknown match conditions cannot
simply be solved by implementing the rate limiting feature for the respective
tool. The major reason is that the underlying algorithm might not be capable of
dealing with this special case. Additionally, firewalls, such as iptables , support
numerous match conditions and several new ones are added in every release.1 We
expect even more match conditions for nftables [29] in the future since they can
be written as simple userspace programs [17]. Therefore, it is virtually impossible
to write a tool which understands all possible match conditions.

In this paper, we build a fundamental prerequisite to enable tool-supported
analysis of real-world firewalls: We present several steps of semantics-preserving
ruleset simplification, which lead to a ruleset that is “understandable” to subse-
quent analysis tools: First, we unfold all calls to and returns from user-defined
chains. This process is exact and valid for arbitrary match conditions. After-
wards, we process unknown match conditions. For that, we embed a ternary-logic
semantics into the firewall’s semantics. Due to ternary logic, all match conditions
not understood by subsequent analysis tools can be treated as always yielding
an unknown result. In a next step, all unknown conditions can be removed. This
introduces an over- and underapproximation ruleset, called upper/lower closure.
Guarantees about the original ruleset dropping/allowing a packet can be given
by using the respective closure ruleset.

To summarize, we provide the following contributions:

1. a formal semantics of iptables packet filtering (Sect. 4),
2. chain unfolding: transforming a ruleset in the complex chain model to a

ruleset in the simple list model (Sect. 5),
3. an embedded semantics with ternary logic, supporting arbitrary match con-

ditions, introducing a lower/upper closure of accepted packets (Sect. 6), and
4. normalization and translation of complex logical expressions to an iptables-

compatible format, discovering a meta-logical firewall algebra (Sect. 7).

We evaluate applicability on large real-world firewalls in Sect. 8. All proofs
are machine-verified with Isabelle [24] (Sect. 3). Therefore, the correctness of
all obtained results only depends on a small and well-established mathematical
kernel and the iptables semantics (Fig. 2).

2 Firewall Models in the Literature and Related Work

Packets are routed through the firewall and the firewall needs to decide whether
to allow or deny a packet. A firewall ruleset determines the firewall’s filtering
behavior. The firewall inspects its ruleset for each single, arbitrary packet to
determine the action to apply to the packet. The ruleset can be viewed as a
list of rules; usually it is processed sequentially and the first matching rule is
applied.
1 As of version 1.4.21 (Linux kernel 3.13), iptables supports more than 50 match

conditions.

198 C. Diekmann et al.

The literature agrees on the definition of a single firewall rule. It consists of a
predicate (the match expression) and an action. If the match expression applies
to a packet, the action is performed. Usually, a packet is scrutinized by several
rules. Zhang et al. [34] specify a common format for packet filtering rules. The
action is either “allow” or “deny”, which directly corresponds to the firewall’s
filtering decision. The ruleset is processed strictly sequentially. Yuan et al. [33]
call this the simple list model. ITVal also supports calls to user-defined chains
as an action. This allows “jumping” within the ruleset without having a final
filtering decision yet. This is called the complex chain model [33].

In general, a packet header is a bitstring which can be matched against [35].
Zhang et al. [34] support matching on the following packet header fields: IP source
and destination address, protocol, and port on layer 4. This model is commonly
found in the literature [4,5,25,33,34]. ITVal extends these match conditions with
flags (e.g. TCP SYN) and connection states (INVALID,NEW, ESTABLISHED,RELATED).
The state matching is treated as just another match condition.2 This model is
similar to Margrave’s model for IOS [21]. When comparing these features to the
simple firewall in Fig. 1, it becomes obvious that none of these tools supports that
firewall.

We are not aware of any tool which uses a model fundamentally different
than those described in the previous paragraph. Our model enhances existing
work in that we use ternary logic to support arbitrary match conditions. To an-
alyze a large iptables firewall, the authors of Margrave [21] translated it to basic
Cisco IOS access lists [3] by hand. With our simplification, we can automatically
remove all features not understood by basic Cisco IOS. This enables transla-
tion of any iptables firewall to a basic Cisco access lists which is guaranteed to
drop no more packets than the original iptables firewall. This opens up all tools
available only for Cisco IOS access lists, e.g. Margrave [21] and Header Space
Analysis [15].3

3 Formal Verification with Isabelle

We verified all proofs with Isabelle, using its standard Higher-Order Logic (HOL).
The corresponding theory files are publicly available. An interested reader may
consult the detailed (100+ pages) proof document.
2 Firewalls can be stateful or stateless. Most firewalls nowadays are stateful, which

means the firewall remembers and tracks information of previously seen packets, e.g.
the TCP connection a packet belongs to and the state of this connection. ITVal does
not track the state of connections. Match conditions on connection states are treated
exactly the same as matches on a packet header. In general, focusing on rulesets
and not firewall implementation, matching on iptables conntrack states is exactly as
matching on any other (stateless) condition. However, internally, not only the packet
header is consulted but also the current connection tables. Note that existing firewall
analysis tools also largely ignore state [21]. In our semantics, we also model stateless
matching.

3 Note that the other direction is considered easy [26], because basic Cisco IOS access
lists have “no nice features” [11]. Note that there also are Advanced Access Lists.

Semantics-Preserving Simplification of Firewall Rule Sets 199

Notation. We use pseudo code close to SML and Isabelle. Function application
is written without parentheses, e.g. f a denotes function f applied to parameter
a. We write ∶∶ for prepending a single element to a list, e.g. a∶∶b∶∶[c, d] = [a, b, c, d],
and ∶∶∶ for appending lists, e.g. [a, b]∶∶∶[c, d] = [a, b, c, d]. The empty list is written
as []. [f a. a← l] denotes a list comprehension, i.e. applying f to every element
a of list l. [f x y. x ← l1, y ← l2] denotes the list comprehension where f is
applied to each combination of elements of the lists l1 and l2. For f x y = (x, y),
this returns the cartesian product of l1 and l2.

4 Semantics of iptables

We formalized the semantics of a subset of iptables . The semantics focuses on
access control, which is done in the INPUT, OUTUT, and FORWARD chain. Thus
packet modification (e.g. NAT) is not considered (and also not allowed in these
chains).

Match conditions, e.g. source 192.168.0.0/24and protocol TCP, are called
primitives. A primitive matcher γ decides whether a packet matches a primitive.
Formally, based on a set X of primitives and a set of packets P , a primitive
matcher γ is a binary relation over X and P . The semantics supports arbi-
trary packet models and match conditions, hence both remain abstract in our
definition.

In one firewall rule, several primitives can be specified. Their logical connec-
tive is conjunction, for example src 192.168.0.0/24 and tcp. Disjunction is
omitted because it is neither needed for the formalization nor supported by ipt-
ables ; this is consistent with the model by Jeffrey and Samak [14]. Primitives
can be combined in an algebra of match expressions MX :

mexpr = x for x ∈ X ∣ ¬mexpr ∣ mexpr ∧ mexpr ∣ True

For a primitive matcher γ and a match expression m ∈ MX , we write m▷γ p
if a packet p ∈ P matches m, essentially lifting γ to a relation over MX and P ,
with the connectives defined as usual. With completely generic P , X , and γ, the
semantics can be considered to have access to an oracle which understands all
possible match conditions.

Furthermore, we support the following actions, modeled closely after iptables :
Accept, Reject, Drop, Log, Empty, Call c for a chain c, and Return. A rule
can be defined as a tuple (m, a) for a match expression m and an action a. A
list (or sequence) of rules is called a chain. For example, the beginning of the
DOS_PROTECT chain in Fig. 1 is [(icmp∧icmptype 8 limit: . . . , Return), . . .].

A set of chains associated with a name is called a ruleset. Let Γ denote the
mapping from chain names to chains. For example, Γ DOS_PROTECT returns the
contents of the DOS_PROTECT chain. We assume that Γ is well-formed that means,
if a Call c action occurs in a ruleset, then the chain named c is defined in Γ . This
assumption is justified as the Linux kernel only accepts well-formed rulesets.

The semantics of a firewall w.r.t. to a given packet p, a background ruleset
Γ , and a primitive matcher γ can be defined as a relation over the currently

200 C. Diekmann et al.

Skip
p ⊢ ⟨[], t⟩ ⇒ t

Accept
m ▷γ p

p ⊢ ⟨[(m, Accept)], ? ⟩ ⇒ �

Drop
m ▷γ p

p ⊢ ⟨[(m, Drop)], ? ⟩ ⇒ �

Reject
m ▷γ p

p ⊢ ⟨[(m, Reject)], ? ⟩ ⇒ �

NoMatch
¬m ▷γ p

p ⊢ ⟨[(m, a)], ? ⟩ ⇒ ?
Decision

t ≠ ?

p ⊢ ⟨rs, t⟩ ⇒ t

Seq
p ⊢ ⟨rs1, ? ⟩ ⇒ t p ⊢ ⟨rs2, t⟩ ⇒ t′

p ⊢ ⟨rs1 ∶∶∶ rs2, ? ⟩ ⇒ t′

CallResult
m ▷γ p p ⊢ ⟨Γ c, ? ⟩ ⇒ t

p ⊢ ⟨[(m, Call c)], ? ⟩ ⇒ t

CallReturn
m ▷γ p Γ c = rs1 ∶∶∶ (m′, Return) ∶∶ rs2 m′ ▷γ p p ⊢ ⟨rs1, ? ⟩ ⇒ ?

p ⊢ ⟨[(m, Call c)], ? ⟩ ⇒ ?

Log
m ▷γ p

p ⊢ ⟨[(m, Log)], ? ⟩ ⇒ ?
Empty

m ▷γ p

p ⊢ ⟨[(m, Empty)], ? ⟩ ⇒ ?

(for any primitive matcher γ and any well-formed ruleset Γ)

Fig. 2. Big Step semantics for iptables

active chain and the state before and the state after processing this chain. The
semantics is specified in Fig. 2. The expression p ⊢ ⟨rs , t⟩ ⇒ t′ states that
starting with state t, after processing the chain rs, the resulting state is t′. For
a packet p, our semantics focuses on firewall filtering decisions. Therefore, only
the following three states are necessary: The firewall may allow (�) or deny (�)
the packet, or it may not have come to a decision yet (?).

We will now discuss the most important rules. The Accept rule describes the
following: if the packet p matches the match expression m, then the firewall with
no filtering decision (?) processes the singleton chain [(m,Accept)] by switching
to the allow state. Both the Drop and Reject rules deny a packet; the difference
is only in whether the firewall generates some informational message, which does
not influence filtering. The NoMatch rule specifies that if the firewall has not
come to a filtering decision yet, it can process any non-matching rule without
changing its state. The Decision rule specifies that as soon as the firewall made
a filtering decision, it does not change its decision. The Seq rule specifies that
if the firewall has not come to a filtering decision and it processes the chain rs1
which results in state t and starting from t processes the chain rs2 which results
in state t′, then both chains can be processed sequentially, ending in state t′.
The CallResult rule specifies that if a matching Call to a chain named “c”
occurs, the resulting state t is the result of processing the chain Γ c. Likewise,
the CallReturn rule specifies that if processing a prefix rs1 of the called chain

Semantics-Preserving Simplification of Firewall Rule Sets 201

does not lead to a filtering decision and directly afterwards, a matching Return

rule occurs, the called chain is processed without result.4 The Log rule does not
influence the filtering behavior. Similarly, the Empty rule does not result in a
filtering decision. An Empty rule, i.e. a rule without an action, occurs if iptables
only updates its internal state, e.g. updating packet counters.5

The subsequent parts of this paper are all based on these semantics. Whenever
we provide a procedure P to operate on chains, we proved that the firewall’s
filtering behavior is preserved, formally:

p ⊢ ⟨P rs , t⟩ ⇒ t′ iff p ⊢ ⟨rs , t⟩ ⇒ t′

All our proofs are machine-verified with Isabelle. Therefore, once the reader is
convinced of the semantics as specified in Fig. 2, the correctness of all subsequent
theorems follows automatically – without any hidden assumptions or limitations.

The rules in Fig. 2 are designed such that every rule can be inspected indi-
vidually. However, considering all of them together, it is not immediately clear
whether the result depends on the order of their application to a concrete ruleset
and packet. Theorem 1 states that the semantics is deterministic, i.e. only one
uniquely defined outcome is possible.

Theorem 1 (Determinism).

If p ⊢ ⟨rs , s⟩ ⇒ t and p ⊢ ⟨rs , s⟩ ⇒ t′ then t = t′

5 Custom Chain Unfolding

In this section, we present algorithms to convert a ruleset from the complex
chain model to the simple list model.

4 The semantics gets stuck if a Return occurs on top-level. However, this is not a
problem since we make sure that this cannot happen. iptables specifies that a Return

on top-level in a built-in chain is allowed and in this corner case, the chain’s default
policy is executed. To comply with this behavior, we always start analysis of a ruleset
as follows: [(True, Call start-chain), (True, default-policy)], where the start chain
is one of iptables’ built-in INPUT, FORWARD, or OUTPUT chains with a default policy of
either Accept or Drop.

5 A rule without an action can also be used to mark a packet for later handling. This
marking may influence the filtering decision. Since our primitive matchers and pack-
ets are completely generic, this case can be represented within our model: Instead of
updating the firewall’s internal state, an additional “ghost field” must be introduced
in the packet model. Since packets are immutable, this field cannot be set by a rule
but the packet must be given to the firewall with the final value of the ghost field al-
ready set. Hence, an analysis must be carried out with an arbitrary value of the ghost
fields. We admit that this model is very unwieldy. However, when later embedding
the more practical ternary semantics, we want to mention that all primitives which
mark a packet for later processing can be considered “unknown” and are correctly
abstracted by these semantics.

202 C. Diekmann et al.

The function pr (“process return”) iterates over a chain. If a Return rule
is encountered, all subsequent rules are amended by adding the Return rule’s
negated match expression as a conjunct. Intuitively, if a Return rule occurs in
a chain, all following rules of this chain can only be reached if the Return rule
does not match.

add-match m′ rs = [(m ∧m′, a). (m, a) ← rs]

pr [] = []

pr ((m, Return) ∶∶ rs) = add-match (¬m) (pr rs)

pr ((m, a) ∶∶ rs) = (m, a) ∶∶ pr rs

The function pc (“process call”) iterates over a chain, unfolding one level of
Call rules. If a Call to the chain c occurs, the chain itself (i.e. Γ c) is inserted
instead of the Call. However, Returns in the chain need to be processed and the
match expression for the original Call needs to be added to the inserted chain.

pc [] = []

pc ((m, Call c) ∶∶ rs) = add-match m (pr (Γ c)) ∶∶∶ pc rs

pc ((m, a) ∶∶ rs) = (m, a) ∶∶ pc rs

The procedure pc can be applied arbitrarily many times and preserves the
semantics. It is sound and complete.

Theorem 2 (Soundness and Completeness).

p ⊢ ⟨pcn rs , t⟩ ⇒ t′ iff p ⊢ ⟨rs , t⟩ ⇒ t′

In each iteration, the algorithm unfolds one level of Calls. The algorithm
needs to be applied until the result no longer changes. Note that the semantics
allows non-terminating rulesets; however, the only rulesets that are interesting
for analysis are the ones actually accepted by the Linux kernel.6 Since it rejects
rulesets with loops, both our algorithm and the resulting ruleset are guaranteed
to terminate.

Corollary 1. Every ruleset (with only Accept, Drop, Reject, Log, Empty,
Call, Return actions) accepted by the Linux kernel can be unfolded completely
while preserving its filtering behavior.

In addition to unfolding calls, the following transformations applied to any
ruleset preserve the semantics:

– Replacing Reject actions with Drop actions,
– Removing Empty and Log rules,
– Simplifying match expressions which contain True or ¬True.
– For some given primitive matcher, specific optimizations may also be per-

formed, e.g. rewriting src 0.0.0.0/0 to True.

6 The relevant check is in mark_source_chains, file
source/net/ipv4/netfilter/ip_tables.c of the Linux kernel version 3.2.

source/net/ipv4/netfilter/ip_tables.c

Semantics-Preserving Simplification of Firewall Rule Sets 203

[(¬ (icmp ∧ icmptype 8 limit: . . .) ∧ icmp ∧ icmptype 8, Drop) ,

(¬ (icmp ∧ icmptype 8 limit: . . .) ∧ ¬ (tcp ∧ tcp flags:0x17/0x04 limit: . . .) ∧
tcp ∧ tcp flags:0x17/0x04, Drop), . . . , (src 192.168.0.0/16, Accept) , . . .]

Fig. 3. Unfolded Synology Firewall

Therefore, after unfolding and optimizing, a chain which only contains Allow
or Drop actions is left. In the subsequent sections, we require this as a precondi-
tion. As an example, recall the firewall in Fig. 1. Its INPUT chain after unfolding
and optimizing is listed in Fig. 3. Observe that the computed match expressions
are beyond iptable’s expressiveness. An algorithm to normalize the rules to an
iptables-compatible format will be described in Sect. 7.

6 Unknown Primitives

As we argued earlier, it is infeasible to support all possible primitives of a firewall.
Suppose a new firewall module is created which provides the ssh_blacklisted
and ssh_innocent primitives. The former applies if an IP address has had too
many invalid SSH login attempts in the past; the latter is the opposite of the
former. Since we made up these primitives, no existing tool will support them.
However, a new version of iptables could implement them or they can be provided
as third-party kernel modules. Therefore, our ruleset transformations must take
unknown primitives into account. To achieve this, we lift the primitive matcher
γ to ternary logic, adding Unknown as matching outcome. We embed this new
“approximate” semantics into the semantics described in the previous sections.
Thus, it becomes easier to construct matchers tailored to the primitives sup-
ported by a particular tool.

6.1 Ternary Matching

Logical conjunction and negation on ternary values are as before, with these
additional rules for Unknown operands (commutative cases omitted):

True ∧ Unknown = Unknown False ∧ Unknown = False ¬ Unknown = Unknown

These rules correspond to Kleene’s 3-valued logic [16] and are well-suited for
firewall semantics: The first equation states that, if one condition matches, the
final result only depends on the other condition. The next equation states that
a rule cannot match if one of its conditions does not match. Finally, by negating
an unknown value, no additional information can be inferred.

We demonstrate this by example: the two rulesets [(ssh_blacklisted, Drop)]
and [(True, Call c)] where Γ c = [(ssh_innocent, Return), (True, Drop)] have
exactly the same filtering behavior. After unfolding, the second ruleset collapses
to [(¬ ssh_innocent, Drop)]. Both the ssh_blacklistedand the ssh_innocent

204 C. Diekmann et al.

primitives are Unknown to our matcher. Thus, since both rulesets have the same
filtering behavior, a packet matching Unknown in the first ruleset should also
match ¬ Unknown in the second ruleset matches.

6.2 Closures

In the ternary semantics, it may be unknown whether a rule applies to a packet.
Therefore, the matching semantics are extended with an “in-doubt”-tactic. This
tactic is consulted if the result of a match expression is Unknown. It decides
whether a rule applies.

We introduce the in-doubt-allow and in-doubt-deny tactics. The first tactic
forces a match if the rule’s action is Accept and a mismatch if it is Drop. The
second tactic behaves in the opposite manner. Note that an unfolded ruleset is
necessary, since no behavior can be specified for Call and Return actions.7

We denote the exact Boolean semantics with “⇒” and embedded ternary
semantics with an arbitrary tactic α with “⇒α”. In particular, α = allow for
in-doubt-allow and α = deny analogously.

“⇒” and “⇒α” are related to the in-doubt-tactics as follows: considering the
set of all accepted packets, in-doubt-allow is an overapproximation, whereas in-
doubt-deny is an underapproximation. In other words, if “⇒” accepts a packet,
then “⇒allow” also accepts the packet. Thus, from the opposite perspective, the
in-doubt-allow tactic can be used to guarantee that a packet is certainly dropped.
Likewise, if “⇒” denies a packet, then “⇒deny” also denies this packet. Thus, the
in-doubt-deny tactic can be used to guarantee that a packet is certainly accepted.

For example, the unfolded firewall of Fig. 1 contains rules which drop a packet
if a limit is exceeded. If this rate limiting is not understood by γ, the in-doubt-
allow tactic will never apply this rule, while with the in-doubt-deny tactic, it is
applied universally.

We say that the Boolean and the ternary matchers agree iff they return the
same result or the ternary matcher returns Unknown. Interpreting this definition,
the ternary matcher may always return Unknown and the Boolean matcher serves
as an oracle which knows the correct result. Note that we never explicitly specify
anything about the Boolean matcher; therefore the model is universally valid,
i.e. the proof holds for an arbitrary oracle.

If the exact and ternary matcher agree, then the set of all packets allowed
by the in-doubt-deny tactic is a subset of the packets allowed by the exact se-
mantics, which in turn is a subset of the packets allowed by the in-doubt-allow
tactic. Therefore, we call all packets accepted by ⇒deny the lower closure, i.e.
the semantics which accepts at most the packets that the exact semantics ac-
cepts. Likewise, we call all packets accepted by ⇒allow the upper closure, i.e. the
semantics which accepts at least the packets that the exact semantics accepts.
Every packet which is not in the upper closure is guaranteed to be dropped by
the firewall.
7 The final decision (� or �) for Call and Return rules depends on the called/calling

chain.

Semantics-Preserving Simplification of Firewall Rule Sets 205

Theorem 3 (Lower and Upper Closure of Allowed Packets).

{p. p ⊢ ⟨rs , ? ⟩ ⇒deny � } ⊆ {p. p ⊢ ⟨rs, ? ⟩ ⇒ � } ⊆ {p. p ⊢ ⟨rs , ? ⟩ ⇒allow � }

The opposite holds for the set of denied packets.
For the example in Fig. 1, we computed the closures (without the RELATED,

ESTABLISHED rule, see Sect. 6.4) and a ternary matcher which only understands
IP addresses and layer 4 protocols. The lower closure is the empty set since
rate limiting could apply to any packet. The upper closure is the set of packets
originating from 192.168.0.0/16.

6.3 Removing Unknown Matches

In this section, as a final optimization, we remove all unknown primitives. We
call this algorithm pu (“process unknowns”). For this step, the specific ternary
matcher and the choice for the in-doubt-tactic must be known.

In every rule, top-level unknown primitives can be rewritten to True or ¬True.
For example, let mu be a primitive which is unknown to γ. Then, for in-
doubt-allow, (mu, Accept) is equal to (True, Accept) and (mu, Drop) is equal
to (¬True, Drop). Similarly, negated unknown primitives and conjunctions of
(negated) unknown primitives can be rewritten.

Hence, the base cases of pu are straightforward. However, the case of a negated
conjunction of match expressions requires some care.The following equation rep-
resents the De Morgan rule, specialized to the in-doubt-allow tactic.

pu (¬(m1 ∧m2), a) =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

True if pu (¬m1, a) = True

True if pu (¬m2, a) = True

pu (¬m2, a) if pu (¬m1, a) = ¬True

pu (¬m1, a) if pu (¬m2, a) = ¬True

¬(¬pu (¬m1, a) ∧ ¬pu (¬m2, a)) otherwise

The ¬ Unknown = Unknown equation is responsible for the complicated nature
of the De Morgan rule. Fortunately, we machine-verified all our algorithms. For
example, during our research, we wrote a seemingly simple (but incorrect) ver-
sion of pu and everybody agreed that the algorithm looks correct. In the early
empirical evaluation, with yet unfinished proofs, we did not observe our bug.
Only because of the failed correctness proof did we realize that we introduced
an equation that only holds in Boolean logic.

Theorem 4 (Soundness and Completeness).

p ⊢ ⟨[pu r. r ← rs], t⟩ ⇒allow t′ iff p ⊢ ⟨rs , t⟩ ⇒allow t′

Theorem 5. Algorithm pu removes all unknown primitive match expressions.

An algorithm for the in-doubt-deny tactic (with the same equation for the De
Morgan case) can be specified in a similar way. Thus, ⇒α can be treated as if it
were defined only on Boolean logic with only known match expressions.

206 C. Diekmann et al.

As an example, we examine the ruleset of the upper closure of Fig. 1 (with-
out the RELATED,ESTABLISHED rule, see Sect. 6.4) for a ternary matcher which
only understands IP addresses and layer 4 protocols. The ruleset is simplified to
[(src 192.168.0.0/16, Accept), (True, Drop)]. ITVal can now directly com-
pute the correct results on this ruleset.

6.4 The RELATED,ESTABLISHED Rule

Since firewalls process rules sequentially, the first rule has no dependency on any
previous rules. Similarly, rules at the beginning have very low dependencies on
other rules. Therefore, firewall rules in the beginning can be inspected manually,
whereas the complexity of manual inspection increases with every additional
preceding rule.

It is good practice [9] to start a firewall with an ESTABLISHED (and some-
times RELATED) rule. This also happens in Fig. 1 after the rate limiting. The
ESTABLISHED rule usually matches most of the packets [9],8 which is important
for performance; however, when analyzing the filtering behavior of a firewall, it is
important to consider how a connection can be brought to this state. Therefore,
we remove this rule and only focus on the connection setup.

The ESTABLISHED rule essentially allows packet flows in the opposite direction
of all subsequent rules [6]. Unless there are special security requirements (which
is not the case in any of our analyzed scenarios), the ESTABLISHED rule can be ex-
cluded when analyzing the connection setup [6, Corollary 1].9 If the ESTABLISHED
rule is removed and in the subsequent rules, for example, a primitive state NEW
occurs, our ternary matcher returns Unknown. The closure procedures handle
these cases automatically, without the need for any additional knowledge.

7 Normalization

Ruleset unfolding may result in non-atomic match expressions, e.g. ¬ (a ∧ b).
iptables only supports match expressions in Negation Normal Form (NNF).10

There, a negation may only occur before a primitive, not before compound
expressions. For example, ¬ (src ip) ∧ tcp is a valid NNF formula, whereas
¬ ((src ip) ∧ tcp) is not. We normalize match expressions to NNF, using the
following observations:

The De Morgan rule can be applied to match expressions, splitting one rule
into two. For example, [(¬ (src ip ∧ tcp), Allow)] and [(¬ src ip, Allow),
(¬ tcp, Allow)] are equivalent. This introduces a “meta-logical” disjunction con-
sisting of a sequence of consecutive rules with a shared action. For example,
[(m1, a), (m2, a)] is equivalent to [(m1 ∨m2, a)].
8 We revalidated this observation in September 2014 and found that in our firewall,

which has seen more than 15 billion packets (19+ Terabyte data) since the last
reboot, more than 95% of all packets matched the first RELATED,ESTABLISHED rule.

9 The same can be concluded for reflexive ACLs in Cisco’s IOS Firewall [3].
10 Since match expressions do not contain disjunctions, any match expression in NNF

is trivially also in Disjunctive Normal Form (DNF).

Semantics-Preserving Simplification of Firewall Rule Sets 207

For sequences of rules with the same action, a distributive law akin to common
Boolean logic holds. For example, the conjunction of the two rulesets [(m1, a),
(m2, a)] and [(m3, a), (m4, a)] is equivalent to the ruleset [(m1 ∧m3, a),
(m1 ∧m4, a), (m2 ∧m3, a), (m2 ∧m4, a)]. This can be illustrated with a situ-
ation where a = Accept and a packet needs to pass two firewalls in a row.

We can now construct a procedure which converts a rule with a complex
match expression to a sequence of rules with match expressions in NNF. It is
independent of the particular primitive matcher and the in-doubt tactic used.
The algorithm n (“normalize”) of type MX → List(MX) is defined as follows:

n True = [True]

n (m1 ∧m2) = [x ∧ y. x← n m1, y ← n m2]

n (¬ (m1 ∧m2)) = n (¬m1) ∶∶∶ n (¬m2)

n (¬¬m) = n m

n (¬True) = []

n x = [x]
⎫
⎪
⎪

⎬

⎪
⎪
⎭

for x ∈X
n (¬x) = [¬x]

The second equation corresponds to the distributive law, the third to the De
Morgan rule. For example, n (¬(src ip ∧ tcp)) = [¬src ip, ¬tcp]. The fifth
rule states that non-matching rules can be removed completely.

The unfolded ruleset of Fig. 3, which consists of 9 rules, can be normalized to
a ruleset of 20 rules (due to distributivity). In the worst case, normalization can
cause an exponential blowup. Our evaluation shows that this is not a problem
in practice, even for large rulesets. This is because rulesets are usually managed
manually, which naturally limits their complexity to a level processible by state-
of-the-art hardware.

Theorem 6. n always terminates, all match expressions in the returned list
are in NNF, and their conjunction is equivalent to the original expression.

We show soundness and completeness w.r.t. arbitrary γ, α, and primitives.
Hence, it also holds for the Boolean semantics. In general, proofs about the
ternary semantics are stronger (the ternary primitive matcher can simulate the
Boolean matcher).

Theorem 7 (Soundness and Completeness).

p ⊢ ⟨[(m′, a). m′ ← n m], t⟩ ⇒α t′ iff p ⊢ ⟨[(m, a)], t⟩ ⇒α t′

After having been normalized by n, the rules can mostly be fed back to ipt-
ables . For some specific primitives, iptables imposes additional restrictions, e.g.
that at most one primitive of a type may be present in a single rule. For our
evaluation, we only need to solve this issue for IP address ranges in CIDR no-
tation [10]. We introduced and verified another transformation which computes
intersection of IP address ranges, which returns at most one range. This is suf-
ficient to process all rulesets we encountered during evaluation.

208 C. Diekmann et al.

8 Evaluation

In this section, we demonstrate the applicability of our ruleset preprocessing.
Usually, network administrators are not inclined towards publishing their firewall
ruleset because of potential negative security implications. For this evaluation, we
have obtained approximately 20k real-world rules and the permission to publish
them. In addition to the running example in Fig. 1 (a small real-world firewall),
we tested our algorithms on four other real-world firewalls. We put focus on the
third ruleset, because it is one of the largest and the most interesting one.

For our analysis, we wanted to know how the firewall partitions the IPv4 space.
Therefore, we used a matcher γ which only understands source/destination IP
addresses and the layer 4 protocols TCP and UDP. Our algorithms do not require
special processing capabilities, they can be executed within seconds on a common
off-the-shelf 4GB RAM laptop.

Ruleset 1 is taken from a Shorewall [8] firewall, running on a home router, with
around 500 rules. We verified that our algorithms correctly unfold, preprocess,
and simplify this ruleset. We expected to see, in both the upper and lower closure,
that the firewall drops packets from private IP ranges. However, we could not
see this in the upper closure and verified that the firewall does indeed not block
such packets if their connection is in a certain state. The administrator of the
firewall confirmed this issue and is currently investigating it.

Ruleset 2 is taken from a small firewall script found online [1]. Although it only
contains about 50 rules, we found that it contains a serious mistake. We assume
the author accidentally confused iptables ’ -I (insert at top) and -A (append at
tail) options. We saw this after unfolding, as the firewall allows nearly all pack-
ets at the beginning. Subsequent rules are shadowed and cannot apply. However,
these rules come with a documentation of their intended purpose, such as “drop
reserved addresses”, which highlights the error. We verified the erroneous behav-
ior by installing the firewall on our systems. The author is currently investigating
this issue. Thus, our unfolding algorithm alone can provide valuable insights.

Ruleset 3 & 4 are taken from the main firewall of our lab (Chair for Network
Architectures and Services). One snapshot was taken 2013 with 2800 rules and
one snapshot was taken 2014, containing around 4000 rules. It is obvious that
these rulesets have historically grown. About ten years ago, these two rulesets
would have been the largest real-world rulesets ever analyzed in academia [32].

We present the analysis results of the 2013 version of the firewall. Details can
be found in the additional material. We removed the first three rules. The first
rule was the ESTABLISHED rule, as discussed in Sect. 6.4. Our focus was put on
the second rule when we calculated the lower closure: this rule was responsible
for the lower closure being the empty set. Upon closer inspection of this rule, we
realized that it was ‘dead’, i.e. it can never apply. We confirmed this observation
by changing the target to a Log action on the real firewall and could never see
a hit of this rule for months. Due to our analysis, this rule could be removed.

Semantics-Preserving Simplification of Firewall Rule Sets 209

The third rule performed SSH rate limiting (a Drop rule). We removed this
rule because we had a very good understanding of it. Keeping it would not
influence correctness of the upper closure, but lead to a smaller lower closure
than necessary.

First, we tested the ruleset with the well-maintained Firewall Builder [22].
The original ruleset could not be imported by Firewall Builder due to 22 er-
rors, caused by unknown match expressions. Using the calculated upper closure,
Firewall Builder could import this ruleset without any problems.

Next, we tested ITVal’s IP space partitioning query [20]. On our original
ruleset with 2800 rules, ITVal completed the query with around 3GB of RAM
in around 1min. Analyzing ITVal’s debug output, we found that most of the rules
were not understood correctly due to unknown primitives. Thus, the results were
spurious. We could verify this as 127.0.0.0/8, obviously dropped by our firewall,
was grouped into the same class as the rest of the Internet. In contrast, using
the upper and lower closure ruleset, ITVal correctly identifies 127.0.0.0/8 as its
own class.

We found another interesting result about the ITVal tool: The (optimized)
upper closure ruleset only contains around 1000 rules and the lower closure only
around 500 rules. Thus, we expected that ITVal could process these rulesets
significantly faster. However, the opposite is the case: ITVal requires more than
10 times the resources (both CPU and RAM, we had to move the analysis to
a > 40GB RAM cluster) to finish the analysis of the closures. We assume that
this is due to the fact that ITVal now understands all rules.

9 Conclusion

This work was motivated by the fact that we could not find any tool which
helped analyzing our lab’s and other firewall rulesets. Though much related work
about firewall analysis exists, all academic firewall models are too simplistic to
be applicable to those real-world rulesets. With the transformations presented
in this paper, they became processable by existing tools. With only a small
amount of manual inspection, we found previously unknown issues in four real-
world firewalls.

We introduced an approximation to reduce even further the complexity of
real-world firewalls for subsequent analysis. In our evaluation, we found that the
approximation is good enough to provide meaningful results. In particular, using
further tools, we were finally able to provide our administrator with a meaningful
answer to the question of how our firewall partitions the IP space.

Our transformations can be extended for different firewall configurations. A
user must only provide a primitive matcher for the firewall match conditions she
wishes to support. Since we use ternary logic, a user can specify “unknown” as
matching outcome, which makes definition of new primitive matchers very easy.
The resulting firewall ruleset conforms to the simple list model in Boolean logic
(i.e. the common model found in the literature).

Future work includes increasing the accuracy of the approximation by pro-
viding more feature-rich primitive matchers and directly implementing firewall

210 C. Diekmann et al.

analysis algorithms in Isabelle to formally verify them. Another planned appli-
cation is to assist firewall migration between different vendors and migrating
legacy firewall systems to new technologies. In particular, such a migration can
be easily prototyped by installing a new firewall in chain with the legacy firewall
such that packets need to pass both systems: with the assumption that users
only complain if services no longer work, the formal argument in this paper
proves that the new firewall with an upper closure ruleset operates without user
complaints. A new fast firewall with a lower closure ruleset allows bypassing a
slow legacy firewall, probably removing a network bottleneck, without security
concerns.

Availability

The analyzed firewall rulesets can be found at

https://github.com/diekmann/net-network

Our Isabelle formalization can be obtained from

https://github.com/diekmann/Iptables_Semantics

Acknowledgments. A special thanks goes to Andreas Korsten for valuable discus-
sions. We thank Julius Michaelis for contributing his Shorewall firewall. We express our
gratitude to both for agreeing to publish their firewalls. In addition, Julius and Lars
Noschinski contributed proofs to the formalization of the IP address space. Manuel
Eberl, Lukas Schwaighofer, and Fabian Immler commented on early drafts of this pa-
per. This work was greatly inspired by Tobias Nipkow’s and Gerwin Klein’s book on
semantics in Isabelle [23].

This work has been supported by the German Federal Ministry of Education and
Research (BMBF), EUREKA project SASER, grant 16BP12304, and by the European
Commission, FP7 project EINS, grant 288021.

References

1. IPTables Example Config, http://networking.ringofsaturn.com/Unix/iptables.php
(retrieved September 2014)

2. PF: The OpenBSD packet filter, http://www.openbsd.org/faq/pf/
3. Cisco IOS firewall – configuring IP access lists. Document ID: 23602 (December

2007), http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-
confaccesslists.html

4. Bartal, Y., Mayer, A., Nissim, K., Wool, A.: Firmato: A novel firewall management
toolkit. In: Symposium on Security and Privacy, pp. 17–31. IEEE (1999)

5. Brucker, A.D., Brügger, L., Wolff, B.: Model-based firewall conformance testing.
In: Suzuki, K., Higashino, T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES
2008. LNCS, vol. 5047, pp. 103–118. Springer, Heidelberg (2008)

6. Diekmann, C., Hupel, L., Carle, G.: Directed security policies: A stateful network
implementation. In: Third International Workshop on Engineering Safety and Se-
curity Systems. EPTCS, vol. 150, pp. 20–34 (May 2014)

https://github.com/diekmann/net-network
https://github.com/diekmann/Iptables_Semantics
http://networking.ringofsaturn.com/Unix/iptables.php
http://www.openbsd.org/faq/pf/
http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-confaccesslists.html
http://www.cisco.com/c/en/us/support/docs/security/ios-firewall/23602-confaccesslists.html

Semantics-Preserving Simplification of Firewall Rule Sets 211

7. Diekmann, C., Posselt, S.-A., Niedermayer, H., Kinkelin, H., Hanka, O., Carle, G.:
Verifying security policies using host attributes. In: Ábrahám, E., Palamidessi, C.
(eds.) FORTE 2014. LNCS, vol. 8461, pp. 133–148. Springer, Heidelberg (2014)

8. Eastep, T.M.: iptables made easy – shorewall (2014), http://shorewall.net/
9. Engelhardt, J.: Towards the perfect ruleset (May 2011),

http://inai.de/documents/Perfect_Ruleset.pdf
10. Fuller, V., Li, T.: Classless Inter-domain Routing (CIDR): The Internet Address

Assignment and Aggregation Plan. RFC 4632 (Best Current Practice) (August
2006), http://www.ietf.org/rfc/rfc4632.txt

11. Gartenmeister, M.: Iptables vs. Cisco PIX (April 2005),
http://lists.netfilter.org/pipermail/netfilter/2005-April/059714.html

12. Hamed, H., Al-Shaer, E.: Taxonomy of conflicts in network security policies. IEEE
Communications Magazine 44(3), 134–141 (2006)

13. Hewlett Packard: IP firewall configuration guide (2005), ftp://ftp.hp.com/
pub/networking/software/ProCurve-SR-IP-Firewall-Config-Guide.pdf

14. Jeffrey, A., Samak, T.: Model checking firewall policy configurations. In: Policies
for Distributed Systems and Networks, pp. 60–67. IEEE (July 2009)

15. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: static checking
for networks. In: Networked Systems Design and Implementation, pp. 113–126.
USENIX (April 2012)

16. Kleene, S.C.: Introduction to Metamathematics. Bibliotheca Mathematica. North-
Holland, Amsterdam (1952)

17. Leblond, E.: Why you will love nftables (January 2014),
https://home.regit.org/2014/01/why-you-will-love-nftables/

18. Mansmann, F., Göbel, T., Cheswick, W.: Visual analysis of complex firewall config-
urations. In: Proceedings of the Ninth International Symposium on Visualization
for Cyber Security, VizSec 2012, pp. 1–8. ACM (2012)

19. Marmorstein, R.M., Kearns, P.: A tool for automated iptables firewall analysis. In:
USENIX Annual Technical Conference, FREENIX Track, pp. 71–81 (2005)

20. Marmorstein, R.M., Kearns, P.: Firewall analysis with policy-based host classi-
fication. In: Large Installation System Administration Conference, vol. 6, p. 4.
USENIX (December 2006)

21. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The mar-
grave tool for firewall analysis. In: Large Installation System Administration Con-
ference. USENIX (November 2010)

22. NetCitadel, Inc.: FirewallBuilder ver. 5.1, http://www.fwbuilder.org
23. Nipkow, T., Klein, G.: Concrete Semantics. Springer (2014)
24. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assis-

tant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002),
http://isabelle.in.tum.de/doc/tutorial.pdf (last updated 2014)

25. Pozo, S., Ceballos, R., Gasca, R.M.: CSP-based firewall rule set diagnosis using
security policies, pp. 723–729. IEEE (April 2007)

26. Renard, B.: cisco-acl-to-iptables (2013),
http://git.zionetrix.net/?a=summary&p=cisco-acl-to-iptables (retrieved Septem-
ber 2014)

27. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making middleboxes someone else’s problem: Network processing as a cloud service.
ACM SIGCOMM Computer Communication Review 42(4), 13–24 (2012)

28. The netfilter.org project: netfilter/iptables project, http://www.netfilter.org/
29. The netfilter.org project: netfilter/nftables project, http://www.netfilter.org/

http://shorewall.net/
http://inai.de/documents/Perfect_Ruleset.pdf
http://www.ietf.org/rfc/rfc4632.txt
http://lists.netfilter.org/pipermail/netfilter/2005-April/059714.html
ftp://ftp.hp.com/pub/networking/software/ProCurve-SR-IP-Firewall-Config-Guide.pdf
ftp://ftp.hp.com/pub/networking/software/ProCurve-SR-IP-Firewall-Config-Guide.pdf
https://home.regit.org/2014/01/why-you-will-love-nftables/
http://www.fwbuilder.org
http://isabelle.in.tum.de/doc/tutorial.pdf
http://git.zionetrix.net/?a=summary&p=cisco-acl-to-iptables
http://www.netfilter.org/
http://www.netfilter.org/

212 C. Diekmann et al.

30. Tongaonkar, A., Inamdar, N., Sekar, R.: Inferring higher level policies from firewall
rules. In: Large Installation System Administration Conference, vol. 7, pp. 1–10.
USENIX (2007)

31. Verizon Business RISK team, United States Secret Service: 2010 data
breach investigations report (2010), http://www.verizonenterprise.com/resources/
reports/rp_2010-DBIR-combined-reports_en_xg.pdf

32. Wool, A.: A quantitative study of firewall configuration errors. IEEE Com-
puter 37(6), 62–67 (2004)

33. Yuan, L., Chen, H., Mai, J., Chuah, C.N., Su, Z., Mohapatra, P.: FIREMAN: a
toolkit for firewall modeling and analysis. In: Symposium on Security and Privacy,
pp. 199–213. IEEE (May 2006)

34. Zhang, B., Al-Shaer, E., Jagadeesan, R., Riely, J., Pitcher, C.: Specifications of
a high-level conflict-free firewall policy language for multi-domain networks. In:
Symposium on Access Control Models and Technologies, pp. 185–194. ACM (2007)

35. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of fire-
walls using SAT and QBF. In: Network Protocols (ICNP), pp. 1–6 (October 2012)

http://www.verizonenterprise.com/resources/reports/rp_2010-DBIR-combined-reports_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_2010-DBIR-combined-reports_en_xg.pdf

Parameter Synthesis

Through Temporal Logic Specifications

Thao Dang1, Tommaso Dreossi1,2(�), and Carla Piazza2

1 VERIMAG, 2 avenue de Vignate, 38610, Gieres, France
{thao.dang,tommaso.dreossi}@imag.fr

2 University of Udine, via delle Scienze, 206 33100, Udine, Italy
carla.piazza@uniud.it

Abstract. Parameters are often used to tune mathematical models and
capture nondeterminism and uncertainty in physical and engineering
systems. This paper is concerned with parametric nonlinear dynamical
systems and the problem of determining the parameter values that are
consistent with some expected properties. In our previous works, we pro-
posed a parameter synthesis algorithm limited to safety properties and
demonstrated its applications for biological systems. Here we consider
more general properties specified by a fragment of STL (Signal Tempo-
ral Logic), which allows us to deal with complex behavioral patterns that
biological processes exhibit. We propose an algorithm for parameter syn-
thesis w.r.t. a property specified using the considered logic. It exploits
reachable set computations and forward refinements. We instantiate our
algorithm in the case of polynomial dynamical systems exploiting Bern-
stein coefficients and we illustrate it on an epidemic model.

Keywords: Parameter synthesis ·STL ·Biological systems ·Reachability

1 Introduction

Temporal logic [1] is a formalism used to specify and reason on properties that
involve time. It is typically adopted in the context of formal verification, where
a temporal logic formula specifies the acceptable behaviors of a system and an
algorithm is used to check whether all the behaviors of the system satisfy the
formula. Such a procedure is commonly known as model checking [2]. Recently,
temporal logic has found applications outside formal verification, for instance
monitoring. In this case, a formal model is not necessary, since the system can
be treated as a black box whose observable behaviors can be monitored by
evaluating the satisfaction of the desired temporal property. Signal Temporal
Logic (STL [3, 4]) is a recently developed logic that allows specifying properties
of dense-time real-valued signals. It is particularly suitable for monitoring both
industrial case studies (see, e.g., [5, 6]) and biological systems (see, e.g., [7,
8]). It has also been used in the study of parametric systems, (see, e.g., [9])

This work has been partially supported by GNCS-INDAM project “Algoritmica per
il model checking e la sintesi di sistemi safety-critical”.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 213–230, 2015.
DOI: 10.1007/978-3-319-19249-9_14

214 T. Dang et al.

where parametric disturbance rejection properties are formalized in STL and
then verified. One of its interesting aspects is its semantics. In addition to the
classical semantics, where the result of the evaluation of a formula is a truth
value, STL offers a quantitative semantics that gives the idea of “how robustly”
a property is satisfied [10, 11].

In this work we propose an application of STL in the context of parameter
synthesis for dynamical systems. More concretely, given a parametric nonlinear
dynamical system and an STL property, we want to find a set of parameter values
that guarantees that all the possible runs of the model satisfy the property. The
parameter synthesis is an important problem, since it allows the designer to fine-
tune the model so that it captures and retains only the behaviors of interest.

Dealing with nonlinear dynamical systems is not easy. If reasoning on single
trajectory can be efficiently done by standard techniques, the problem of veri-
fying sets of trajectories remains difficult despite a number of existing methods
(see, e.g., [12–14]). Adding parameter synthesis to such a context makes the
problem even more challenging. Indeed, in addition to computing the trajecto-
ries of a parametric system, one needs to determine sets of parameter values
such that the corresponding trajectories satisfy a given specification.

STL and its monitoring algorithms have been conceived to evaluate logic for-
mulas on single continuous signals [3, 4]. In order to adapt STL to our synthesis
problem, we need to introduce a new semantics defined on sets of traces rather
than on a single one. This semantical definition requires then a new algorithm,
since it is not easy to adapt the existing ones. In fact, available algorithms
compute the truth values of a formula in a bottom-up approach, where atomic
predicates are evaluated on the full-length signal and the final result is obtained
by combining the logical operators. This approach does not suit our case, since
the system traces are affected by the eventual dynamical parameter restriction
in order to satisfy the property. This means that we cannot know precisely the
complete system evolution until the valid parameter values are determined. For
this reason we propose a new algorithm that operates in a forward way where,
at each step, valid parameter sets are identified and the system evolves in the
next steps under the on-the-fly synthesized parameters. We defer a discussion
on related work in parameter synthesis to the final section, after our approach
is described.

The paper begins with the preliminaries introducing the STL logic, the new
semantics, and the parameter synthesis problem. In Section 3 we describe the
abstract synthesis algorithm, we discuss its correctness and computational com-
plexity.1 Section 4 is dedicated to the concretization of our synthesis algorithm
for nonlinear discrete-time polynomial dynamical systems. To show the effective-
ness of the proposed approach, we apply our algorithm on an epidemic model
describing the transmission of diseases through a population. We provide some
experimental results and scalability evaluations obtained from a prototype C++

1 All the proofs can be found at
http://www-verimag.imag.fr/∼dreossi/docs/papers/parasynth.pdf

http://www-verimag.imag.fr/~dreossi/docs/papers/parasynth.pdf

Parameter Synthesis Through Temporal Logic Specifications 215

tool. These results are reported in Section 5. Finally, the paper ends with related
works, a summary of our results, and possible future developments.

2 Preliminaries and Problem Statement

2.1 Parametric Dynamical Systems

Let R denote the set of reals. We consider a discrete-time parametric dynamical
system

x(k + 1) = f(x(k),p) x(0) ∈ X−,p ∈ P, (1)

where x ∈ R
n is the vector of state variables, p ∈ P ⊆ R

m is the vector of
parameters, f is a vector of functions fi : R

n × R
m → R for i = 1, . . . , n. The

set X− ⊆ R
n is called pre-initial set, and the set P is called parameter set.

We use X0 = f(X−, P) to denote the initial set of starting states at time 0.
The distinction between pre-initial and initial sets is introduced to overcome a
technical issue, i.e., the pre-initial set may not satisfy the specification of interest,
while the initial one does.

Given x ∈ X− and p ∈ P , let

trKp (x) = 〈x(0) = f(x,p), . . . ,x(j − 1) = f j(x,p), . . . ,x(K) = fK+1(x,p)〉

be the trace of length K ∈ N of the system originating from x with parameter
values p. The set of all possible traces of the dynamical system (1) can be denoted
as TrKp (X−) = {trKp (x) | x ∈ X−} and TrKP (X−) = {TrKp (X−) | p ∈ P}.

2.2 Logic

Let B = {true, false} be the set of Boolean values and Σ = {σ1, . . . , σk} be a
finite set of predicates mapping R

n to B. For a given j ∈ {1, . . . , k}, the predicate
σj is of the form σj ≡ sj(x1, . . . , xn) ∼ 0 where ∼∈ {<,≥} and sj : Rn → R is
a function over the state variables.

We consider Signal Temporal Logic (STL) [3, 15] formulas in positive normal
form, i.e., formulas generated through the following grammar:

ϕ := σ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ UI ϕ (2)

where σ ∈ Σ and I ⊂ N denotes the interval I = [a, b] with a ≤ b in N. For
t ∈ N, t + I is the set {t + t′ | t′ ∈ I}. We can define in the usual way other
common operators, such as �,⊥,RI,�I ,�I . Note that the negation operator is
not included in the presented grammar. However, a given STL formula including
some negations, can be rewritten in positive normal form by pushing the nega-
tions down to the predicates and reversing their inequalities. Finally, the horizon
h(ϕ) of a formula ϕ is the last time instant to which ϕ refers, i.e.:

h(σ) = 0 h(ϕ1 ∧ ϕ2) = h(ϕ1 ∨ ϕ2) = max(h(ϕ1), h(ϕ2))

h(ϕ1U[a,b]ϕ2) = max(h(ϕ1) + b− 1, h(ϕ2) + b).

216 T. Dang et al.

Given x ∈ X− and p ∈ P we can consider the standard Boolean semantics of
STL formulas over the trace trKp (x). Let ϕ be a formula such that t+h(ϕ) ≤ K,
we define:

trKp (x), t |= σ iff σ(x(t)) is true

trKp (x), t |= ϕ1 ∧ ϕ2 iff trKp (x), t |= ϕ1 and trKp (x), t |= ϕ2

trKp (x), t |= ϕ1 ∨ ϕ2 iff trKp (x), t |= ϕ1 or trKp (x), t |= ϕ2

trKp (x), t |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I trKp (x), t′ |= ϕ2 and ∀t′′ ∈ [t, t′) trKp (x), t′′ |= ϕ1

We use the notation trKp (x) |= ϕ for trKp (x), 0 |= ϕ. We say that TrKP (X−)
satisfies a formula ϕ, denoted as TrKP (X−) |= ϕ if and only if

∀p ∈ P ∀trKp (x) ∈ TrKp (X−) : trKp (x) |= ϕ.

Note that we consider discrete-time systems over a finite horizon; our formulas
can thus be encoded in LTL formulas involving Boolean and next operators
interpreted over finite traces [16]. However, STL offers us some advantages. First,
to express the bounded until operator using LTL, the corresponding formula
may be long. Furthermore, STL has both a quantitative discrete-time and a
continuous-time semantics. For some classes of systems, the quantitative analysis
on a time-discretized system gives complete information also on its continuous-
time version [10].

2.3 Parameter Synthesis Problem

Our parameter synthesis problem can now be stated as follows. Let X− be a
pre-initial set, P be a parameter set, and ϕ a logical formula, find the largest
subset Pϕ ⊆ P such that starting from X−, the behaviors of the system satisfy
ϕ up to time K, that is TrKPϕ

(X−) |= ϕ.
The above problem requires handling sets of parametric traces, which is hard

especially when the solution of the dynamical system can only be approximated,
as in the case of polynomial systems that we will specifically treat later. There-
fore, we consider a variant of this problem for approximated sets of traces.
The set TrKP (X−) of traces can be over-approximated by considering the sets
Xj+1 = {f(x,p) | x ∈ Xj,p ∈ P}, for j = 0, . . . ,K, where X− acts as X−1, and
the behaviors defined as WK

P (X−) = 〈X0, X1, . . . , XK〉. It is important to note
that this over-approximation does not keep the relation between a trace and its
corresponding parameter value.

On behaviors we can define a semantics that reflects the parameter refine-
ment problem we are interested in. In particular, we consider the function
X (ϕ,WK

P (X−), t) defined by structural induction on formulas as follows:

Parameter Synthesis Through Temporal Logic Specifications 217

X (σ,WK
P (X−), t) = P t

σ, where P t
σ is the largest subset P t

σ ⊆ P such that

∀x ∈ Xt−1,∀p ∈ P t
σ, σ(f(x,p)) is true

X (ϕ1 ∧ ϕ2,WK
P (X−), t) = X (ϕ1,WK

P (X−), t) ∩ X (ϕ2,WK
P (X−), t)

X (ϕ1 ∨ ϕ2,WK
P (X−), t) = X (ϕ1,WK

P (X−), t) ∪ X (ϕ2,WK
P (X−), t)

X (ϕ1UIϕ2,WK
P (X−), t) =

⋃

t′∈t+I

(X (ϕ2,WK
P (X−), t′) ∩

⋂

t′′∈[t,t′)

X (ϕ1,WK
P (X−), t′′)

)

Intuitively, X (ϕ,WK
P (X−), t) returns a subset P t

ϕ of parameters that ensures
that ϕ is satisfied at time t starting from any point in Xt−1 and assigning to
the parameters any value in P t

ϕ. We say that a behavior WK
P (X−) satisfies a

formula ϕ, denoted with WK
P (X−) |= ϕ, if and only if X (ϕ,WK

P (X−), 0) = P .
We can prove that X (ϕ,WK

P (X−), t) reverse the order of inclusions between
parameter sets and it is idempotent. This implies that the refined set of param-
eter values satisfies the formula ϕ, as stated by the following theorem.

Theorem 1. If X (ϕ,WK
P (X−), 0) = Pϕ, then WK

Pϕ
(X−) |= ϕ.

The following results establish relationships between the two semantics. Since
WK

P (X−) over-approximates TrKP (X−), if a formula ϕ is satisfied by WK
P (X−),

then it is satisfied also by TrKP (X−).

Theorem 2. If X (ϕ,WK
P (X−), 0) = Pϕ, then TrKPϕ

(X−) |= ϕ.

If we compute Pϕ = X (ϕ,WK
P (X−), 0) then we have an under-approximation

of the solution of the original parameter synthesis problem. Moreover, Pϕ is
nothing but the solution of a parameter synthesis problem over behaviors. In
this approach we introduce three main sources of approximation error.

First, in the semantics of disjunction over behaviors we impose that for a
value p either all the points x satisfy the first disjunct or they all satisfy the
second one. In a more general setting, this would correspond to approximating
a property of the form ∀y(A(y) ∨B(y)) with ∀y(A(y)) ∨ ∀y(B(y)).

Second, WK
P (X−) represents a set of traces that is larger than TrKP (X−),

since from each point in Xj we can reach each point in Xj+1. This influences
the semantics of the until operator. In fact, we need to require that there exists
a time point t′ at which ϕ2 is satisfied from all the points.

Third, WK
P (X−) is a-priori computed using P , so we also propagate points of

Xj that are not necessarily reachable if we replace P with a proper subset.
In the next sections we present an algorithm that computes an under-ap-

proximation of the solution to the original parameter synthesis problem. Our
algorithm is inspired by X (ϕ,WK

P (X−), 0), but it produces a better approxi-
mation since the parameter set is dynamically refined and the above-mentioned
third source of approximation is avoided as at each step only the refined param-
eter set is used to determine the next states.

218 T. Dang et al.

3 Parameter Synthesis Algorithm

An intuitive way to solve our synthesis problem is to express the behavior set Xj

at each time instant j, up to time K. Then by examining the sets from time K
back to time 0 we can derive the conditions on the parameters for the satisfaction
of the temporal property, as in the standard monitoring approaches [3]. In other
terms, we could use such backward analysis for the semantics defined by (2.3).
However, while in monitoring only a single trace is considered at a time and
furthermore the trace is already given, in our parameter synthesis problem the
behavior set needs to be approximated (since exact reachability computation
for nonlinear systems is often impossible). When approximations are used, a
major drawback of such a backward procedure is that the approximation error
depends on the size of the parameter set and is accumulated step after step. The
more spurious behaviors are included in the computed set, the more restricted
the parameter set is. In order to gain more accuracy, it is thus important to be
able to remove, as early as possible, the parameter values that make the system
violate the property. This is the reason we opt for a forward procedure.

We describe our top-down algorithm ParaSynth(X,P, ϕ) (Algorithm 1),
that takes as input a set of states X , a set of parameters P , and a formula ϕ,
and refines P through a series of recursions driven by the structure of ϕ. At
each step, we let the system evolve under the parameter set synthesized up to
that step. It is structured in four main blocks, one for each type of subformulæ:
predicate, conjunction, disjunction, and until. It uses the following two basic
functions. Given a set X , a parameter set P and a predicate σ,

– ReachStep(X,P) computes the image f(X,P) of X under P ;
– RefPredicate(X,P, σ) computes the largest subset Pσ ⊆ P such that

all states in f(X,Pσ) (computed by ReachStep) satisfy σ, that is Pσ =
{p | p ∈ P ∧ ∀x ∈ X σ(f(x,p)) = true}. We call the computation of
RefPredicate a basic refinement, since it is a refinement of the parameter
set w.r.t. a predicate.

The base case is when the formula ϕ is a predicate σ (Line 2). In this case,
the algorithm simply calls the function RefPredicate(X,P, σ) that refines the
parameter set P w.r.t. the predicate σ and returns the result.

If ϕ is the conjunction of two formulas ϕ1∧ϕ2 (Line 5), from P the algorithm,
with two recursive calls, produces two refined parameter sets Pϕ1 and Pϕ2 , w.r.t.
the subformulas ϕ1 and ϕ2, respectively, and then returns the intersection Pϕ1 ∩
Pϕ2 . Similarly, if ϕ is a disjunction ϕ1 ∨ ϕ2 (Line 8), the algorithm returns the
union Pϕ1 ∪ Pϕ2 .

The case where ϕ is ϕ1UIϕ2 (Line 11) is slightly more complicated and re-
quires a specific function UntilSynth (Algorithm 2). The function Until-
Synth(X,P, ϕ1U[a,b]ϕ2) is structured in three main blocks, depending on the
values a, b: (1) a > 0 and b > 0; (2) a = 0 and b > 0; (3) a = 0 and b = 0.
Intuitively, the function recursively transforms the cases (1) and (2) into the
base case (3). Notice that a single until formula ϕ1U[a,b]ϕ2 may require several
basic refinements. Consider for instance the case where ϕ1 always holds and ϕ2

Parameter Synthesis Through Temporal Logic Specifications 219

Algorithm 1 Parameter synthesis.

1: function ParaSynth(X,P, ϕ)
2: if ϕ = σ then � Predicate
3: return RefPredicate(X,P, σ)
4: end if
5: if ϕ = ϕ1 ∧ ϕ2 then � Conjunction
6: return ParaSynth(X,P, ϕ1) ∩ ParaSynth(X,P, ϕ2)
7: end if
8: if ϕ = ϕ1 ∨ ϕ2 then � Disjunction
9: return ParaSynth(X,P, ϕ1) ∪ ParaSynth(X,P, ϕ2)
10: end if
11: if ϕ = ϕ1UIϕ2 then � Until
12: return UntilSynth(X,P, ϕ1UIϕ2)
13: end if
14: end function

Algorithm 2 Until synthesis.

1: function UntilSynth(X,P, ϕ1U[a,b]ϕ2)
2: if a > 0 and b > 0 then � Outside interval
3: Pϕ1 ← ParaSynth(X,P, ϕ1) � Check ϕ1

4: if Pϕ1 = ∅ then
5: return ∅
6: else
7: X ′ ← ReachStep(X,Pϕ1)
8: return UntilSynth(X ′, Pϕ1 , ϕ1U[a−1,b−1]ϕ2)
9: end if
10: end if
11: if a = 0 and b > 0 then � In interval
12: Pϕ1 ← ParaSynth(X,P, ϕ1) � Check ϕ1

13: Pϕ2 ← ParaSynth(X,P, ϕ2) � Check ϕ2

14: if Pϕ1 = ∅ then
15: return Pϕ2 � Until unsatisfied
16: else
17: X ′ ← ReachStep(X,Pϕ1)
18: return Pϕ2∪ UntilSynth(X ′, Pϕ1 , ϕ1U[a,b−1]ϕ2)
19: end if
20: end if
21: if a = 0 and b = 0 then � Base
22: return ParaSynth(X,P, ϕ2)
23: end if
24: end function

holds at several time points inside [a, b]. Here the number of basic refinements
that ϕ1U[a,b]ϕ2 requires is exactly the number of time points at which ϕ2 holds.
We now analyze the three cases in UntilSynth reported:

(1) a > 0 and b > 0: the until formula is satisfied if ϕ1 holds until ϕ2 is true
inside the interval [a, b]. We first refine the parameters at time 0 over ϕ1,

220 T. Dang et al.

obtaining the subset Pϕ1 (Line 3). If Pϕ1 is empty, the until formula cannot
be satisfied, and the algorithm returns the empty set. If Pϕ1 is not empty,
the algorithm performs a reachability step using the valid parameter set Pϕ1

to produce the new set X ′ (Line 7). Now the algorithm proceeds with the
recursive call UntilSynth(X ′, Pϕ1 , ϕ1U[a,b]−1ϕ2) (Line 8). This can be seen
as making a step towards the interval [a, b], except that instead of restoring
the synthesis from time 1, we shift the interval backwards by 1. Hence, the
next refinement is computed always at time 0.

(2) a = 0 and b > 0: there are two ways to satisfy the until formula: (1) ϕ2 is
satisfied right now at time 0, or (2) ϕ1 holds until ϕ2 is satisfied before the
time instant b. In the first case, we need to refine the parameter set w.r.t.
ϕ2. If the resulting Pϕ2 is not empty, it is a valid parameter set that satisfies
the until formula. In the second case, the algorithm refines w.r.t. ϕ1 and
checks whether the result Pϕ1 is empty (Line 12). If so, the until formula
cannot be satisfied in the future. Hence the algorithm returns the refined
set Pϕ2 previously computed. If Pϕ1 is not empty, the procedure performs
a reachability step under the refined parameters Pϕ1 , obtaining the new set
X ′. Similarly to the previous case, we execute a step forward by shortening
the interval by one (Line 18). The procedure then returns the union of Pϕ2

and the result provided by the recursive call;

(3) a = 0 and b = 0: this is the base case of the recursive calls. It suffices to
refine w.r.t. ϕ2 and return Pϕ2 .

Example 1. We illustrate ParaSynth in the case φ = (φ1 ∨ φ2)U[1,2](φ3 ∧ φ4).
With the call ParaSynth(X−, P, (φ1 ∨ φ2)U[1,2](φ3 ∧ φ4)) the algorithm en-

ters the until section and calls UntilSynth. The first synthesis is performed
inside the (a > 0 and b > 0) case w.r.t. to the sub-formula φ1 ∨φ2. ParaSynth
computes the refined sets P 0

φ1
and P 0

φ2
w.r.t. φ1 and φ2, and returns the union

P 0
φ1∨φ2

= P 0
φ1

∪ P 0
φ2
. Back to the until synthesis, supposing that P 0

φ1∨φ2
is

not empty, the algorithm computes X0 through a reachability step from X−

under the parameter set P 0
φ1∨φ2

, and calling itself with the updated reachabil-
ity set, the refined parameter set, and the shifted until interval, i.e., Until-
Synth(X0, P 0

φ1∨φ2
, (φ1 ∨ φ2)U[0,1](φ3 ∧ φ4)).

At this point UntilSynth enters the (a = 0 and b > 0) section. It first
refines w.r.t. (φ3 ∧ φ4), trying to find the first final solution. To do so, it calls
ParaSynth(X0, P 0

φ1∨φ2
, φ3 ∧ φ4) that produces the parameter set P 1

φ3∧φ4
=

P 1
φ3

∩ P 1
φ4
, result of the intersection of the two refinements of P 0

φ1∨φ2
w.r.t. φ3

and φ4. This set P
1
φ3∧φ4

, if not empty, represents the first valid parameter set.
Trying to find other possible solutions, the algorithm proceeds by computing

the parameter set P 1
φ1∨φ2

through the refinement of P 0
φ1∨φ2

w.r.t. φ1 ∨ φ2 and

performing a reachability step to the new set X1′′ . It then calls itself reducing
the until interval to [0, 0]. This is the base case (a = 0 and b = 0): the algorithm
refines w.r.t. φ3∧φ4 and returns the refined parameter set P 2

φ3∧φ4
. The synthesis

process is shown in Figure 1a. The figure depicts the series of refinements and
reachable sets that lead to the final result P 2

φ3∧φ4
∪ P 1

φ3∧φ4
.

Parameter Synthesis Through Temporal Logic Specifications 221

In the following, we prove the correctness of the presented algorithm and
determine its computational complexity.

Theorem 3. If ParaSynth (X−, P, ϕ) returns Pϕ, then X (ϕ,WK
P (X−), 0) ⊆

Pϕ and TrKPϕ
(X−) |= ϕ.

We remark that the above theorem has been proved under the assumption
that the function ReachStep(X,P) computes exactly the image f(X,P) and
the function RefPredicate(X,P, σ) the largest valid parameter set for the
predicate σ. However, it is not hard to see that, for Theorem 3 to hold, it
suffices to provide an over-approximation of the image f(X,P) and an under-
approximation of the valid parameter set.

As far as the computational complexity of our algorithm is concerned, let
us refer to RefPredicate, ReachStep, ∪, and ∩ as symbolic operations. If
we have a formula without until operators our procedure performs a number
of symbolic operations that is linear in the length of the formula. In the case
of formulas with possibly nested until operators in the worst case we could per-
form an exponential number of symbolic operations w.r.t. the minimum between
the length of the formula and its time horizon. Let us consider the case of for-
mulas using only predicates and U[0,1] operators. Let the length of a formulas
ϕ be defined as the maximum number of nested until operators. For a formula
ϕ1U[0,1]ϕ2 having length m and horizon k our recursive procedure has a recursive
complexity equation in term of symbolic operations of the form

T (m, k) =

{
Θ(1) if m = 1 or k = 0
T (m2, k2) + T (m1, k1) + T (m, k − 1) +Θ(1) otherwise

where mi and ki are the length and horizon of ϕi. In the worst case we could
have m2 = m−2 and k2 = k−1. In this case we obtain T (m, k) ≥ 2T (m−2, k−
1)+Θ(1), which tells us that in the worst case T (m, k) = Ω(2min(m,k)) (number
of symbolic operations). If we were interested in monitoring a formula over a
finite set of traces, we could have reduced such complexity to a polynomial one
(see, e.g., [3, 15]). As we already pointed out, since we are interested in refining
sets of parameters and we do not use a precomputed set of traces to avoid rough
approximations, we do not see an easy way to reduce such complexity. Finally,
it is important to notice that the worst case complexity occurs only in very
pathological cases, which are not typical in real case studies.

4 The Case of Polynomial Systems

In Section 3 we presented an abstract algorithm that synthesizes a parameter
set under which the behavior of a system satisfies a given formula. A concrete
application depends on the ability to represent the parameter set, to implement
the function ReachStep for computing the behavior set, and the function Ref-
Predicate for refining the parameter set. We now propose a concretization of
the algorithm for nonlinear polynomial dynamical systems with polytopic param-
eter sets. The implementation that we present extends the synthesis procedures

222 T. Dang et al.

developed in our previous works for safety specifications [17, 18]. Notice that the
abstract algorithm exposed in Section 3 can be used for more general systems
as long as an implementation of the required procedures are provided. An ex-
ample might be continuous-time piecewise-linear dynamical systems, for which
reachability techniques and tools have been developed [19, 20].

From now on, we work with polynomial discrete-time dynamical systems of
the form x(k + 1) = f(x(k),p), where x ∈ R

n and p ∈ P . The parameter set P
is a bounded polytope in R

m and the polynomial function f is linear in p.
To compute the functions RefPredicate(X,P, σ) and ReachStep(X,P),

we extend our reachability computation method based on the Bernstein form of
polynomials proposed in [17, 18] which we briefly recall in the following.

The sets of states are represented with template parallelotopes, that is the
n-dimensional generalization of the parallelograms. In order to exploit linear
programming, we require the predicates σ to be non-strict linear inequalities over
the state variables x2. In [17, 18] we developed a technique that, under these
assumptions, converts the parameter synthesis problem into a linear program.
In particular, if the predicate σ is of the from s(x) ≤ 0 and the parameter set
P ⊂ R

m is a convex polytope, to find a subset Ps ⊆ P such that the image f(x,p)
satisfies σ(x) for all x ∈ X and p ∈ Ps, it suffices to require s(f(x,p)) ≤ 0 to hold
for all x ∈ X and p ∈ Ps. We call Ps the valid parameter set w.r.t. the predicate
σ. Note that s(f(x,p)) is a polynomial in x and is linear in p. To find Ps, we take
advantage of the geometric properties of the coefficients b1(p), . . . ,bn(p) of the
polynomial s(f(x,p)) expressed in Bernstein form. Intuitively, these coefficients
provide an upper and a lower bound of the considered polynomial. Thus, if we
can restrict the parameter set P such each control point is smaller than 0, then
the resulting restricted set Ps contains all the valid parameter values w.r.t. the
predicate σ. The behavior set can also be over-approximated by composing the
template constraints of the parallelotope with f and bound the resulting function
by exploiting its Bernstein coefficients. Since the parameters p appear linearly in
the dynamics, the coefficients b1(p), . . . ,bn(p) are linear functions of p. Hence,
the valid parameter set can be determined by solving a linear system where all
the coefficients are constrained to be non-positive.

4.1 Parameter Set Representation

A convex polytope is the simplest form that we use to represent a parameter set.
With the notation P ≡ Ap ≤ b we mean that the parameter set P corresponds
to the solution of the linear system Ap ≤ b. More complex parameter sets can
be obtained by the intersection and the union of several basic convex polytopes.

Let P1 ≡ A1p ≤ b1 and P2 ≡ A2p ≤ b2 be two convex polytopes. It is not
difficult to see that the intersection P1 ∩ P2 is the convex polytope that corre-
sponds to P1 ∩ P2 ≡ Ap ≤ b, where A =

[
A1

A2

]
and b =

[
b1
b2

]
. Less trivial is the

union of two convex polytopes since it might not be convex and consequently the

2 Note that using only non strict inequalities, truth values � and ⊥ can be abbreviated
as � := z(x) ≤ 0 and ⊥ := o(x) ≤ 0, where z(x) = 0 and o(x) = 1 for all x ∈ R

n.

Parameter Synthesis Through Temporal Logic Specifications 223

representation through a linear system may not be possible. For this reason we
symbolically represent the union of two polytopes P1 and P2 by simply keeping
the list of the corresponding linear systems. Formally, with an abuse of notation,
P1 ∪ P2 is represented as P1 ∪ P2 ≡ {A1p ≤ b1, A2p ≤ b2}.

If a parameter set P is in the form P =
⋃n

i=1

⋂mi

j=1 Pi,j = (P1,1∩ . . .∩P1,m1)∪
. . .∪ (Pn,1 ∩ . . .∩Pn,mn) then it is said to be in union normal form. This form is
suitable for our set representation since the intersections of sets can be collapsed
in a unique linear system while the unions can be stored in single list.

4.2 Parameter Synthesis

We now discuss the implementation using the above represention of parameter
sets and the behavior computation based on the Bernstein form.

The refinementRefPredicate(X,P, σ)whereP ≡ {P1, . . . , Pn} (Algorithm1,
Line 2) can be done by refining each polytope Pi w.r.t. σ (using the procedure ex-
posed in [17]). Each function returns a set Pi,σ ⊆ P . The final result Pσ ⊆ P is the
union of the basic polytopes, represented as Pσ ≡ {P1,σ, . . . , Pn,σ}.

The conjunction and disjunction cases (Lines 5 and 8) involve the intersection
and union of Pϕ1 and Pϕ1 provided in union normal form. The intersection can
be obtained by intersecting each basic polytope of Pϕ1 with each basic polytope
of Pϕ2 . This operation can be carried out by just merging the linear systems
representing the considered basic polytopes. The union can be easily obtained
by concatenating the lists of basic polytopes that compose Pϕ1 and Pϕ2 .

We now focus on Algorithm 2, in particular on the calls of the functions
ReachStep and UntilSynth (Lines 7 and 13). Here the main issue concerns
the computation of ReachStep(X,P) whose result can be non-convex. To this
end, we open several branches, one for each basic convex polytope of P . Hence,
instead of computing a single behavior set, we split the computation in several
reachability steps, one for each basic parameter set and refine the parameters
from them w.r.t. the considered sub-formula.

Example 2. Let us consider the formula (φ1∨φ2)U[1,2](φ3∧φ4) of Example 1.The
algorithm starts with ParaSynth (X−, P, (φ1 ∨φ2)U[1,2](φ3 ∧φ4)) that invokes
UntilSynth that enters in the case (a > 0 and b > 0) and performs the first
refinement of P w.r.t. the sub-formula φ1 ∨ φ2 by calling ParaSynth. This
function synthesizes P by refining w.r.t. both the predicates φ1 and φ2 and
merging the partial results. The result is the set P 0

φ1∨φ2
≡ {P 0

φ1
, P 0

φ2
}. At this

point, UntilSynth opens a branch from X− for each computed refinement.
We denote by X0

1 the set reached from X− under P 0
φ1

and by X0
2 the set

reached from X− under P 0
φ2
. UntilSynth proceeds with two recursive calls,

UntilSynth(X0
1 , P

0
φ1
, (φ1∨φ2)U[0,1](φ3∧φ4)) and UntilSynth(X0

2 , P
0
φ2
, (φ1∨

φ2)U[0,1](φ3 ∧ φ4)). We now consider the first recursive call. In this phase, Un-
tilSynth is in the case (a = 0 and b > 0). First, trying to satisfy the whole
until, the algorithm refines the set P 0

φ1
w.r.t. φ3 and φ4. This is done by calling

ParaSynth (X0, P 0
φ1
, φ3∧φ4). We denote the result with P 1,1

φ3∧φ4
= P 1

φ3
∩P 1

φ4
. If

224 T. Dang et al.

not empty, P 1,1
φ3∧φ4

is the first valid parameter set. Trying to find other solutions,
UntilSynth refines also w.r.t. φ1 ∨ φ2 opening two new branches, one for each
disjunct. Each branch corresponds to a recursive call of the form ParaSynth
(X1

2 , P
1,1
φ1

, (φ1 ∨φ2)U[0,0](φ3 ∧φ4)). The synthesis process is shown in Figure 1b.

X− X0

X1′

X1′′ X2

P 0
φ1∨φ2

P 1
φ3∧φ4

P 1
φ1∨φ2

P 2
φ3∧φ4

(a) General case.

X−

X0
1

X0
2

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X2
2

X2
3

X2
5

X2
6

P 0
φ1

P 0
φ2

P 1,1
φ3∧φ4

P 1,1
φ1

P 1,1
φ2

P 1,2
φ3∧φ4

P 1,2
φ1

P 1,2
φ2

P 2,2
φ3∧φ4

P 2,3
φ3∧φ4

P 2,5
φ3∧φ4

P 2,6
φ3∧φ4

(b) Polynomial system case.

Fig. 1. Parameter synthesis sequences

5 Experimental Results

We implemented a prototype tool3 written in C++ that exploits the GiNaC
library [21] to symbolically manipulate polynomials and GLPK (GNU Linear
Programming Kit)4 to solve linear programs. The experiments have been carried
out on an Intel Core(TM)2 Duo (2.40 GHz, 4GB RAM) running Ubuntu 12.04.

In this final section we first apply our technique on a model of diseases trans-
mission. The model is a variation of the system that describes the Ebola outbreak
in Congo 1995 and Uganda 2000 presented in [22]. A population composed of
N individuals, is classified in five compartments S,E,Q, I, and R. Each indi-
vidual, at a certain time, belongs to a specific compartment accordingly with
his/her relationship with the disease. All the individual displacements between
compartments are regulated by the parameters β, κ1, κ2, γ1, γ2, and σ.

S contains the healthy individuals that are susceptible to the disease. A mem-
ber of S who enters in contact with a sick person, moves to E, that is the class
of individuals who have been exposed to the disease. The ratio I/N is the prob-
ability that a susceptible individual enters in contact with an infected one, while
β is the transmission rate. An exposed individual is either moved in quaran-
tine in Q, or directly in the infected I compartment, depending on whether the

3 Available on line at https://github.com/tommasodreossi/parasynth
4 http://www.gnu.org/software/glpk/glpk.html

https://github.com/tommasodreossi/parasynth
http://www.gnu.org/software/glpk/glpk.html

Parameter Synthesis Through Temporal Logic Specifications 225

malady was diagnosed. The controllable quarantine rate is κ1, while 1/κ2 is the
mean incubation period. A person in quarantine, if considered healthy after the
isolation period, is moved back to the susceptible group. The unfortunate case
is when the individual manifests symptoms and moves from the quarantine to
the infected group. The reintegration with the susceptible people happens after
a period of 1/γ1, while the incubation period is 1/γ2. Finally an individual is
removed from the system by migrating in R at a recovering or death rate σ. The
epidemic model is formalized through the following system:

Sn+1 = Sn − SnβIn/N + γ1Qn

En+1 = En + SnβIn/N − (κ1 + κ2)En

Qn+1 = Qn + κ1En − (γ1 + γ2)Qn

In+1 = In + γ2Qn + κ2En − σIn
Rn+1 = Rn + σIn

S E

Q

I R

βI/N
κ1

κ2

γ1

γ2

σ

The difference between our model and the one presented in [22] is that we in-
troduce the quarantine compartment and consider the reintegration of individual
in the susceptible population. Doing so, we enrich the original model by making
it more realistic and interesting. Also, our model is defined on discrete time.
Note that in the literature there are various works presenting epidemic models
directly with discrete-time dynamics or difference equations (see, e.g., [23, 24]).

We first considered a population of N = 1000 individuals, of which S = 800
are susceptible and I = 200 are infected. We fixed the parameters values as
specified in [22] in the case of the Ebola outbreak in Uganda during 2000. The
uncontrollable parameter values are β = 0.35, κ2 = 0.3, γ2 = 0.6, and σ =
0.28, while the controllable parameters are κ1 ∈ [0.2, 0.3] and γ1 ∈ [0.2, 0.5]
that represent the quarantine rate and mean isolation period, respectively. We
considered the specification φ1 ≡ (I(t) ≤ 200)U[6,10](Q(t) ≤ 20) whose meaning
is to avoid the saturation of the quarantine compartment especially in the time
interval between 6 and 10 when a number of infected individuals higher than
200 is expected. Our tool found five feasible parameters sets in 0.10 seconds, one
of which is shown in Figure 2a.

In a second experiment, we changed the uncontrollable parameter values to
β = 0.9, κ2 = 0.5, γ2 = 0.5, and σ = 0.28, while the controllable parameters to
κ1 ∈ [0.2, 0.3] and γ1 ∈ [0.2, 0.5]. Instead of imposing directly a constraint on
the system, we could imagine a scenario where we have a maximum number of
40 patients in quarantine unless the number of infected patients is below 270.
This means that if there are less than 270 infected individuals, then we have free
resources that can be devoted to the quarantine. This property can be formalized
with the formula φ2 ≡ (Q(t) ≤ 40)U[10,15](I(t) ≤ 270). Our tool found a valid
parameter set in 0.14 seconds.

Finally, on the same system configuration, we tested a more complex until
formula that involves a disjunction, that is φ3 ≡ (Q(t) ≤ 50)U[5,15](E(t) >
100 ∨ Q(t) > 25). Our tool found four parameter refinements in 0.14 seconds.
Figure 2b depicts the union of the refined parameter sets.

226 T. Dang et al.

(a) (I(t) ≤ 200)U[6,10](Q(t) ≤ 20) (b) (Q(t) ≤ 50)U[5,15](E(t) > 100 ∨Q(t) > 25)

Fig. 2. Results of the refinements

Table 1. Scalability tests. Times are in seconds. Values in parenthesis are the com-
puted polytopes per refinement. φ1 ≡ (I(t) ≤ 200)U[a,b](Q(t) ≤ 20), φ2 ≡ (Q(t) ≤
40)U[a,b](I(t) ≤ 270), φ3 ≡ (Q(t) ≤ 50)U[a,b](E(t) > 100 ∨Q(t) > 25).

a b φ1 φ2 φ3

5 15 0.20 (11) 0.15 (7) 0.14 (4)
5 20 0.35 (16) 0.24 (11) 0.21 (4)
5 30 0.82 (26) 0.55 (21) 0.36 (4)
5 50 2.63 (46) 1.65 (41) 0.80 (4)
5 100 - 10.95 (91) 1.69 (4)
5 125 - - 1.69 (4)
15 20 0.29 (6) 0.22 (4) 0.19 (0)
20 30 0.64 (11) 0.45 (11) 0.35 (0)
30 50 1.88 (21) 1.27 (21) 0.78 (0)
50 100 13.00 (51) 6.89 (51) 1.72 (0)
100 200 - - 1.66 (0)

(a) Increasing until interval

N φN
1 φN

2 φN
3

1 0.11 (5) 0.14 (2) 0.13 (4)
2 0.26 (9) 0.36 (7) 0.29 (3)
3 0.48 (13) 0.69 (12) 0.50 (3)
4 0.74 (17) 1.09 (17) 0.70 (3)
5 1.10 (21) 1.61 (22) 1.01 (3)
6 1.50 (25) 2.28 (27) 1.20 (3)
7 1.97 (29) 3.05 (32) 1.65 (3)
8 2.59 (33) 3.97 (37) 1.81 (3)
9 3.23 (37) 5.06 (42) 2.16 (3)
10 4.98 (42) 6.70 (47) 2.56 (3)
15 10.33 (61) 11.80 (62) 4.85 (3)
16 11.75 (65) 15.98 (67) 5.43 (3)
17 - - 5.97 (3)

(b) Nesting until

In order to evaluate the scalability of our method, we now consider non-
trivial formulas that we artificially created. First, we take the three until for-
mulas φ1, φ2, and φ3 previously defined and we stretch their intervals [a, b]. In
the worst case, such growth exponentially increases the number of branches that
our algorithm must open. Table 1a reports the running times for this test. For
φ1 we are able to stretch the interval up to [50, 100], that deals to a parameter
set composed by 51 convex polytopes. For φ2 the maximum tractable inter-
val was [5, 100], for which a parameter set of cardinality 91 is found. Finally,
we notice that enlargement of the window of φ3 does not affect the parame-
ter refinement, that is valid refinements are found only for the initial part of
the interval. Not growing in the size of the results, the algorithm needs linear
time in the until time horizon. As second evaluation, we nest several until on

Parameter Synthesis Through Temporal Logic Specifications 227

the (most critical) right hand side. For instance, the double nesting of φ1 is
φN
1 ≡ (I(t) ≤ 200)U[6,10]((I(t) ≤ 200)U[6,10](Q(t) ≤ 20)) with N = 2. Table 1b

reports the running times for this evaluation. Our tool computes refinements
of φ1 and φ2 nested 16 times, finding 65 and 67 convex parameter sets. As in
the previous case, nesting φ3 does not increase the size of the result, thus the
computation times are restrained. It is interesting to notice that even if φ1 and
φ2 are composed by less atomic formulas than φ3, their running times and size of
results, are sensibly larger than the latter. This suggests that it might be hard to
estimate a priori the algorithm performance just by looking at the specification,
since its execution time “numerically” depends on the system’s behavior and
mostly on the computed partial refinements. Finally, these experiments show
that the weakness of our tool is memory. So far, parameter set are represented
as lists of linear systems composed by collections of inequalities. To reduce mem-
ory consumption it might be interesting to introduce mechanisms to avoid the
insertion of redundant constraints and polytopes included in larger ones.

6 Related Work and Conclusion

In this work we proposed a parameter synthesis algorithm for STL specifications.
We extended standard STL defined on single traces to sets of traces generated
by parametric dynamical systems. The whole procedure operates forwardly, that
is refining the parameter sets and computing the behavior on-the-fly, in order to
obtain less restrictive parameter sets. We proved the correctness of the algorithm
and discussed its computational complexity. Moreover, we provided a concrete
implementation of the algorithm for polynomial discrete-time dynamical sys-
tems, that produces valid parameter sets in form of sets of convex polytopes.
The algorithm was implemented and illustrated on an epidemic model.

In the literature there are different approaches to the problem of finding good
parameters. In [25] pure model checking is used on discrete finite structures.
Parametric interaction graphs representing Genetic Regulatory Networks are
analyzed through LTL in [26]. Discrete-time simulations are considered in [27],
where parameters optimize the satisfaction degree of LTL formulas constrained
over the reals. [28] describes stochastic approaches for parameter fitting over
experimental data, and [29] parameter synthesis for CTMC w.r.t. CSL (Contin-
uous Stochastic Logic) specifications. [30] uses simulation guided analysis to find
values of the parameters that do not produce oscillating behaviors, while coun-
terexample guided abstraction refinement over linear hybrid automata has been
proposed in [31]. A parameter synthesis approach based on “good” parameters
values was proposed in [32] over timed automata with respect to safety proper-
ties. Parametric temporal properties are considered in [9], where the parameters
are identified to make a temporal property satisfied by experimental data. Many
of the above mentioned works find applications in the study of biological systems.

The paper [33] is close to our work since it considers discrete-time systems
and LTL properties; however the targeted systems are piecewise-affine (PWA)
and the systems we address are polynomial. While our algorithm approximates

228 T. Dang et al.

the reachable sets of polynomial systems, the approach in this work involves
computing first a discrete abstraction of the original PWA system. In the ab-
straction (that is a transition system), each transition is labeled with a set of
parameter values that allow the transition to be feasible. LTL model checking is
then used to remove some transitions so that the resulting system satisfies the
property. The parameters are finally restricted to allow only the remaining tran-
sitions. Note that due to special properties of multi-affine functions, the discrete
abstraction can be performed efficiently. Nevertheless, this is not possible for the
polynomial functions in our problem. Another related work is [34] where STL
properties and continuous-time nonlinear systems are considered; it computes
the reachable set using the trajectories from a finite number of initial states
and sensitivity analysis to determine the robustness of the trajectory set from
the neighborhoods of those initial states. The parameter set is refined when the
trajectory set violates the property. This approach requires a box discretization
of the parameter set that is less compact than our polytopic set representation.
A similar approach using robustness is applied to a biological system in [35].

The main novelty of our results is that our parameter synthesis method that
can handle nonlinear polynomial systems and complex properties specified using
STL. We are able to specify interesting temporal properties and reason on the be-
havior of a dynamical system and its parameters. Two directions are promising.
First, we intend to extend our approach to quantitative semantics integrating a
robustness metric such as in [34]. The second direction concerns the treatment
of continuous-time dynamical systems and dense-time STL. This is straightfor-
ward for linear systems by using one of the available polytope-based algorithms
for continuous-time reachability operations, such as [36]. For nonlinear systems,
conservatively enclosing the reachable sets over time intervals could be done by
exploting ideas from interval computation.

References

1. Pnueli, A.: The temporal logic of programs. In: Symposium on Foundations of
Computer Science, SFCS, pp. 46–57. IEEE (1977)

2. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT press (1999)

3. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

4. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete,
timed and continuous behaviors. Pillars of Computer Science, 475–505 (2008)

5. Jones, K.D., Konrad, V., Nickovic, D.: Analog property checkers: a DDR2 case
study. Formal Methods in System Design 36(2), 114–130 (2010)

6. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from
closed-loop control models. In: Proc. of International Conference on Hybrid Sys-
tems: Computation and Control, HSCC, pp. 43–52. ACM (2013)

7. Donzé, A., Fanchon, E., Gattepaille, L.M., Maler, O., Tracqui, P.: Robustness
analysis and behavior discrimination in enzymatic reaction networks. PLOS One
6(9), e24246 (2011)

Parameter Synthesis Through Temporal Logic Specifications 229

8. Stoma, S., Donzé, A., Bertaux, F., Maler, O., Batt, G.: STL-based Analysis of
TRAIL-induced Apoptosis Challenges the Notion of Type I/Type II Cell Line
Classification. PLoS Computational Biology 9(5), e1003056 (2013)

9. Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of tem-
poral properties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186,
pp. 147–160. Springer, Heidelberg (2012)

10. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410(42), 4262–4291 (2009)

11. Bartocci, E., Bortolussi, L., Nenzi, L.: On the robustness of temporal properties
for stochastic models. In: Hybrid Systems and Biology, HSB. EPTCS, vol. 125,
pp. 3–19 (2013)

12. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013)

13. Gao, S., Kong, S., Chen, W., Clarke, E.M.: Delta-complete analysis for bounded
reachability of hybrid systems. CoRR abs/1404.7171 (2014)

14. Testylier, R., Dang, T.: NLTOOLBOX: A library for reachability computation of
nonlinear dynamical systems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013.
LNCS, vol. 8172, pp. 469–473. Springer, Heidelberg (2013)

15. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer,
Heidelberg (2013)

16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: Proc. of Intenrational Joint Conference on Artificial Intelligence,
IJCAI, IJCAI/AAAI (2013)

17. Dreossi, T., Dang, T.: Parameter synthesis for polynomial biological models. In:
Proc. of International Conference on Hybrid Systems: Computation and Control,
HSCC, pp. 233–242. ACM (2014)

18. Dang, T., Dreossi, T., Piazza, C.: Parameter synthesis using parallelotopic enclo-
sure and applications to epidemic models (2014),
http://www-verimag.imag.fr/∼dreossi/docs/papers/hsb 2014.pdf

19. Asarin, E., Bournez, O., Dang, T., Maler, O.: Approximate reachability analysis
of piecewise-linear dynamical systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC
2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)

20. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid
systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 379–395. Springer, Heidelberg (2011)

21. Bauer, C., Frink, A., Kreckel, R.: Introduction to the GiNaC framework for sym-
bolic computation within the C++ programming language. Journal of Symbolic
Computation 33(1), 1–12 (2002)

22. Chowell, G., Hengartner, N.W., Castillo-Chavez, C., Fenimore, P.W., Hyman, J.:
The basic reproductive number of Ebola and the effects of public health measures:
the cases of Congo and Uganda. Journal of Theoretical Biology 229(1), 119–126
(2004)

23. Allen, L.J.: Some discrete-time SI, SIR, and SIS epidemic models. Mathematical
Biosciences 124(1), 83–105 (1994)

24. Zhou, X., Li, X., Wang, W.-S.: Bifurcations for a deterministic sir epidemic model
in discrete time. Advances in Difference Equations 2014(1), 1–16 (2014)

http://www-verimag.imag.fr/~dreossi/docs/papers/hsb_2014.pdf

230 T. Dang et al.

25. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek,
T.: On parameter synthesis by parallel model checking. IEEE/ACM Trans. Com-
put. Biol. Bioinformatics 9(3), 693–705 (2012)

26. Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: An LTL Model Checking
Approach for Biological Parameter Inference. In: Merz, S., Pang, J. (eds.) ICFEM
2014. LNCS, vol. 8829, pp. 155–170. Springer, Heidelberg (2014)

27. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal
logic specifications with applications to parameter optimization and robustness
measures. Theoretical Computer Science 412(26), 2827–2839 (2011)

28. Gratie, D.-E., Iancu, B., Petre, I.: ODE Analysis of Biological Systems. In:
Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS,
vol. 7938, pp. 29–62. Springer, Heidelberg (2013)

29. Češka, M., Dannenberg, F., Kwiatkowska, M., Paoletti, N.: Precise parame-
ter synthesis for stochastic biochemical systems. In: Mendes, P., Dada, J.O.,
Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 86–98. Springer, Hei-
delberg (2014)

30. Dreossi, T., Dang, T.: Falsifying oscillation properties of parametric biological
models. In: Hybrid Systems and Biology, HSB. EPTCS, vol. 125, pp. 53–67 (2013)

31. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to pa-
rameter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.)
HSCC 2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008)

32. André, É., Soulat, R.: Synthesis of timing parameters satisfying safety proper-
ties. In: Delzanno, G., Potapov, I. (eds.) RP 2011. LNCS, vol. 6945, pp. 31–44.
Springer, Heidelberg (2011)

33. Yordanov, B., Belta, C.: Parameter synthesis for piecewise affine systems from
temporal logic specifications. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008.
LNCS, vol. 4981, pp. 542–555. Springer, Heidelberg (2008)

34. Donzé, A.: Breach, A Toolbox for Verification and Parameter Synthesis of Hybrid
Systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010)

35. Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos,
G.: A model-based approach to synthesizing insulin infusion pump usage param-
eters for diabetic patients. In: Proc. of Annual Allerton Conference on Commu-
nication, Control, and Computing. IEEE (2012)

36. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado,
R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid
systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 379–395. Springer, Heidelberg (2011)

Trace-Length Independent Runtime Monitoring
of Quantitative Policies in LTL

Xiaoning Du(�), Yang Liu, and Alwen Tiu

School of Computer Engineering, Nanyang Technological University, Singapore
{xndu,yangliu,atiu}@ntu.edu.sg

Abstract. Linear temporal logic (LTL) has been widely used to specify runtime
policies. Traditionally this use of LTL is to capture the qualitative aspects of the
monitored systems, but recent developments in metric LTL and its extensions
with aggregate operators allow some quantitative policies to be specified. Our in-
terest in LTL-based policy languages is driven by applications in runtime Android
malware detection, which requires the monitoring algorithm to be independent of
the length of the system event traces so that its performance does not degrade as
the traces grow. We propose a policy language based on a past-time variant of
LTL, extended with an aggregate operator called the counting quantifier to spec-
ify a policy based on the number of times some sub-policies are satisfied in the
past. We show that a broad class of policies, but not all policies, specified with
our language can be monitored in a trace-length independent way without sacri-
ficing completeness, and provide a concrete algorithm to do so. We implement
and test our algorithm in an existing Android monitoring framework and show
that our approach can effectively specify and enforce quantitative policies drawn
from real-world Android malware studies.

1 Introduction

Linear temporal logic (LTL) has been widely used as a specification language to specify
runtime properties of systems and languages. Traditionally, this use of LTL is concerned
mainly with qualitative properties, such as relative ordering of events, or eventuality of
events, etc. Our interest in the LTL-based policy languages is motivated by the demand
for Android malware detection. In this setting, some attack patterns cannot be stated
as pure LTL formulas as they require specifications of quantitative measures such as
frequency of certain activities (e.g., sending SMS) commonly found in botnet attacks.
Recent studies [22,21] indicate that Android malware is increasingly designed to turn
infected phones into botnets, so to be practically useful, any monitoring framework for
Android needs to take into account quantitative measures in their policy specifications.

One way to detect the kind of botnet attacks mentioned above is to count the number
of certain events, such as SMS messages sent from an app, and notify the user once the
count goes beyond some limit. To design a monitoring framework that can enfoce this
kind of policies, one approach is to build into LTL a notion of counting of events [7],
or more generally, aggregate operators [6]. The main problem is that monitoring algo-
rithms for such extensions have not been well studied, and can be very inefficient, e.g.,
PSPACE complete (in the size of policy and the trace) for the extension of LTL with the

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 231–247, 2015.
DOI: 10.1007/978-3-319-19249-9_15

232 X. Du et al.

counting quantifier [7], and PTIME (in the size of the trace) when the policy is fixed. In
the online monitoring of OS kernels, where near real-time decisions need to be made,
the dependence of the monitor on the size of the trace would make it impractical even
if its complexity is PTIME (assuming the policy is fixed), as its performance would de-
grade as the trace size grows. We attempt to address this problem in a minimal setting
to demonstrate that it is possible to design a monitoring framework that is expressive
enough to specify various quantitative properties and enforceable efficiently.

In this work, we propose an extension of Past Time LTL (PTLTL) [19], named
PTLTLcnt, to support the counting quantifier, which is motivated and extended from [7],
and arithmetic functions and relations. PTLTLcnt considers only the fragment of PTLTL
with past time operators, as this is sufficient for our purpose to enforce history-sensitive
access control. For our intended application of monitoring Android applications, once
we fix the policy to be monitored, the monitoring algorithm space requirement and
runtime should be constant, i.e., independent of the length of the system event trace.
Following [8], we call this type of monitoring algorithms as trace-length independent
(TLI) monitoring algorithms. Note that we require that the generated TLI algorithms
to be complete with respect to the policy specifications; otherwise the problem would
be trivial as one could simply make various ad hoc restrictions such as restricting the
time window for the monitoring. In [19], it is shown that a trace-length independent
monitor can be generated for every formula of PTLTL. For richer logics, such as those
considered in [7,8] and our own PTLTLcnt, this is not always possible, i.e., there are
formulas for which the monitor needs to store the entire history of events. For example,
in PTLTLcnt one can write a formula that compares the numbers of two events, say
e1 and e2. Let x and y denote the number of past occurrences of events of e1 and e2,
respectively. To check the relation x < y at any state, we would need to keep the counts
of both e1 and e2; such counts would grow as the trace grows, so the space requirement
for monitoring this formula is not bounded. We could only store ∣x − y∣ in this case, but
this absolute value can still grow infinitely.

As far as we know, there has been so far no study on trace-length independence
monitoring for LTL with aggregate operators like the counting quantifier. To solve this
issue, we first formally identify the precise characteristics of the class arithmetic rela-
tions that can be monitored in a trace-length independent way. Then we show that if all
arithmetic relations in a PTLTLcnt formula are TLI-monitorable, the formula itself is
also TLI-monitorable. More importantly, we show how to construct a TLI monitoring
algorithm when all relations are TLI-monitorable.

We have performed a number of case studies on Android to show the practicality of
our specification language for malware detection. We have implemented the proposed
language and algorithm based on an existing Android monitoring framework called
LogicDroid [17]. The experimental results shows that our approach can effectively
specify and enforce a range of quantitative policies drawn from real-world Android
malware.

Organization. Section 2 presents the formal syntax and semantics of PTLTLcnt. Sec-
tion 3 proposes the trace-length independent monitoring algorithm for PTLTLcnt with
univariate countingparts. This is generalized this to the multivariate case in Section 4.
Some Android policy examples are introduced in Section 5. Section 6 describes the

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 233

implementation of our algorithms for monitoring in LogicDroid. The related works are
discussed in Section 7. Section 8 concludes the paper. Due to space constraints, some
proofs are omitted but they will be made available in an extended version of this paper.

2 The Policy Specification Language PTLTLcnt

In this section, we formally introduce PTLTLcnt as an extension of PTLTL extended
with a counting quantifier, which counts how many times a sub-policy has been satisfied
in the past, as well as arithmetic operators and relations. Our counting quantifier has a
slightly different semantics compared to that of [7] as explained later. Our language
admits the usual arithmetic operators such as +, − and ×, and relations =, <, ≤ and
≥. We assume a countably infinite set of constants. We use a, b, c and d to range over
constant symbols of type integers. We denote with AP the set of propositional variables.
Elements ofAP are ranged over byP , Q and S. We assume an infinite set V of variables
of type integers, whose elements are ranged over by x, y and z. Terms are built from
constants, variables and arithmetic operators, and are denoted by s, t, u and v.

The syntax of PTLTLcnt is defined via the following grammar:

φ ∶= � ∣ AP ∣ (t > 0) ∣ ¬φ ∣ φ ∨ φ ∣ ●φ ∣ φ S φ ∣ Cx ∶ ⟨φ,φ⟩.φ

The operators are those of PTLTL except for the counting quantifier C and the relation
t > 0. The variable x in Cx ∶ ⟨φ1, φ2⟩.ϕ is a bound variable, whose scope is over ϕ, so
x is not free in either φ1 or φ2. Intuitively, the meaning of Cx ∶ ⟨φ1, φ2⟩.ϕ is as follows:
suppose that φ2 is true at exactly n states since the latest state where φ1 holds; then the
instance of ϕ with x mapped to n must also be true. The formula φ1 acts as a counter
reset condition. We assume the reader is familiar with the notion of free and bound
variables. We assume that bound variables in a formula are pairwise distinct. We write
φ(x1, . . . , xn) to mean that the free variables of φ are in {x1, . . . , xn} and we write
φ(t1, . . . , tn) to denote the instance of φ(x1, . . . , xn) where ti is substituted for xi.

In the definition of formulas, we have kept a minimum number of logical operators.
The omitted operators can be derived using the given operators, e.g., propositional op-
erators such as ⊺ (truth), ∧ (conjunction),→ (implication), and modal operators such as
⧫ (sometime in the past), which is defined as ⧫φ ≡ ⊺ S φ, and ∎ (globally in the past),
which is defined as ∎φ ≡ ¬⧫¬φ. Note also that all other arithmetic relations can be de-
rived from the relation of the form (t > 0) and logical connectives: s > t ≡ (s − t) > 0,
s ≤ t ≡ ¬(s > t), s = t ≡ (s ≤ t)∧(t ≤ s), s ≥ t ≡ s > t∨s = t, and s < t ≡ s ≤ t∧¬(s = t).

The semantics of PTLTLcnt is defined with respect to a finite trace model, as in [19].
A trace is just a sequence of states, where each state itself consists of a set of atomic
propositions. These atomic propositions correspond to events of interests that are being
monitored in a system. We assume an interpretation function I which maps constant
symbols to integers, and arithmetic operators and relation symbols to their correspond-
ing semantic counterparts. We assume the usual arithmetic operators, and in addition,
depending on applications, we may assume a fixed set of function symbols denoting
computable functions over the integer domain. Since terms and relations can contain
variables, we additionally need to interpret these variables. This is done via a valuation
function, i.e., a function from variables to integers. Formally, given an interpretation

234 X. Du et al.

function I and a valuation function ν, the interpretation of a term t, written tI,ν is
defined as in first-order logic [16]. However, since we shall only work within a fixed
interpretation, we shall drop the superscript I in the following semantics definition.

A model for PTLTLcnt is a triple (ρ, ν, i), where ρ is a trace, ν is a valuation function
and i is a natural number. For a trace ρ, we write ρi to denote its i-th state. For a
valuation ν, we write ν[x↦ n] to denote the function which is identical to ν except for
the valuation of x, i.e., ν[x ↦ n](y) = ν(y), when y /= x, and ν[x ↦ n](x) = n. The
satisfiability relation between a model (ρ, ν, i) and a formula φ, written ρ, ν, i ⊧ φ, is
defined by induction on φ below, where ρ, ν, i /⊧ φ if ρ, ν, i ⊧ φ is false.

– ρ, ν, i /⊧ φ if i < 1 or i > ∣ρ∣.
– ρ, ν, i /⊧ �.
– ρ, ν, i ⊧ P iff P ∈ ρi.
– ρ, ν, i ⊧ t > 0 iff tν > 0 is true.
– ρ, ν, i ⊧ ¬φ iff ρ, ν, i /⊧ φ.
– ρ, ν, i ⊧ φ ∨ψ iff ρ, ν, i ⊧ φ or ρ, ν, i ⊧ ψ.
– ρ, ν, i ⊧ ●φ iff i > 1 and ρ, ν, i − 1 ⊧ φ.
– ρ, ν, i ⊧ φ1 S φ2 iff ρ, ν, i ⊧ φ2, or ρ, ν, i ⊧ φ1 and ρ, ν, i − 1 ⊧ φ1 S φ2 with i > 1.
– ρ, ν, i ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ iff ρ, ν[x↦ n], i ⊧ ϕ where

n = ∣{j∣r ≤ j ≤ i and ρ, ν, j ⊧ ψ}∣ and r =max({j∣ρ, ν, j ⊧ φ, j ≤ i}∪{1})

We write ρ, i ⊧ φ when ρ, ν, i ⊧ φ for every valuation ν.

Example 1. For an authentication server (e.g., bank) which validates a user’s credential,
a common login policy can be that if a user fails to enter the correct password three
times in a row, then the user’s account is temporarily disabled. Let us consider only two
system events: a correct password was entered (cp), and a wrong password was entered
(wp) by a particular user. The logic policy can be specified as follows:

∎[¬(cp ∧wp) ∧ (Cx ∶ ⟨cp,wp⟩.x < 3)]. (1)

The first conjunct expresses a consistency property, i.e., a password entered cannot be
both correct and wrong at the same time. The variable x stores the number of times a
wrong password was entered since the last time a correct password was entered (or since
the beginning of the trace, if no correct password has been entered so far). Consider the
event trace ρ = [{wp};{cp};{wp};{wp};{cp};{wp}]. Then formula (1) above is true
at every state. ⊓⊔

In general, the counting quantifier can be used to express quantitative properties
within a ‘session’ (e.g., an authentication session, a life cycle of a process, etc). One
could introduce two events: start and end, to mark the beginning and the end of a
session. Then to check that the number of occurrences of an event e within a session is
less than n, for example, one can simply use the formula Cx ∶ ⟨start, e ∧ ¬end⟩. x < n
in conjunction with other formulas expressing the well-formedness of a session (e.g.,
every end corresponds to a start, etc). If e is a simple event (e.g., the wp event in
Example 1), one could encode this in LTL using standard temporal operators, but at the
expense of conciseness, i.e., one needs to expand the parameter n into n instances of
e ∧ ¬end. For example, Example 1 can be alternatively specified as

∎[¬(cp ∧wp) ∧ ¬(●wp ∧ ●(wp ∧ ●wp)))].

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 235

That is, there cannot be three consecutive wp events any time in the past. However,
this is the case only when there are no events being monitored other than cp and wp.
When other events are possible, then we need to specify that events other than cp can
happen in between two consecutivewp events. In general, in a formula Cx ∶ ⟨φ1, φ2⟩.φ3,
any of the φi could be a complicated temporal formula, e.g., it could involve nested
counting quantifiers and other temporal operators. In such a case, the encoding into
pure LTL becomes less obvious and less concise. We shall see more examples drawn
from Android malware study in Section 5.

Our counting quantifier is a generalization of Bauer et. al.’s counting quantifier [7].
Their counting quantifier is semantically defined as follows: ρ, ν, i ⊧ Nx ∶ ψ.ϕ iff
ρ, ν[x ↦ n], i ⊧ ϕ where n = ∣{j∣1 ≤ j ≤ i and ρ, ν, j ⊧ ψ}∣. However, in terms of
expressiveness, they are actually equivalent, as shown next.

Proposition 1. The counting quantifiers C and N are equivalent, i.e., one can be de-
fined in terms of the other.

Proof. (Outline.) The quantifierN can be encoded using C as follows:Nx ∶ φ.ψ ≡ Cx ∶
⟨�, ψ⟩.ϕ. Conversely, C can be encoded usingN as follows:

Cx ∶ ⟨φ,ψ⟩.ϕ ≡ N z ∶ φ. Nx ∶ (ψ ∧Ny ∶ φ.y = z). ϕ.

Note that the subformula Ny ∶ φ.y = z acts essentially as a counter reset. It is not
difficult to check from their semantics that these encodings are correct. ⊓⊔

Note that although C can be encoded using N , the encoding introduces nested occur-
rences ofN and one needs to compare at least two counting variables. In general, poli-
cies involving two or more counting variables are impossible to enforce in a trace-length
independent way, as our example in the introduction shows. We could have simply used
the original counting quantifier N , but we would then have to use the encoding above,
that involves comparing two or more variables, to capture the idea of a session. Such
encodings would thus obscure the underlying structure of the problem, and makes it
harder to systematically generate TLI monitors from a given specification. For instance,
the policy described in Example 1 uses only one counting variable when expressed us-
ing C, and results in Section 3 would guarantee the existence of TLI monitors for that
particular policy. Had we chosen to encode it using N , we would have to work harder
in order to show that the policy is in fact TLI monitorable.

3 Trace-length Independent Monitoring for PTLTLcnt

In a setting with limited storage and computation resource (e.g., an OS kernal or em-
bedded devices), an online monitoring algorithm that requires the storage of the entire
event trace is no practical, even if its complexity is PTIME. Ad hoc restrictions such
as limiting the time window or enforcing bounded storage of events are not desirable
as they may introduce incompleteness with respect to the policies being enforced, i.e.,
there may be violations to the policies that can only be detected on a trace of events
longer than what could fit in the storage. In early work such as [19], monitoring algo-
rithms are designed so that their memory requirement is constant, when one fixes the

236 X. Du et al.

formula to be monitored, without compromising the completeness of the monitor with
respect to the formula. For example, for PTLTL [19], one needs to maintain only two
states of each subformula of a policy to enforce without losing completeness of the
algorithms. Following [8], we call this type of monitoring algorithms as trace-length
independent monitoring algorithms, and we call formulas that can be monitored in a
trace-length independent way trace-length independent formulas, or TLI-formulas for
short, and such formulas are said to be TLI-monitorable.

Since a main difference between PTLTLcnt and PTLTL is the presence of arithmetic
relations, we first look at a class of relations φ(x1, . . . , xn) that are TLI-monitorable
(the precise definition will be given later). If all relations in a formula are all TLI-
monitorable, then it is straightforward to check that the formula itself must be TLI-
monitorable. In this section, we look at the univariate case, i.e., functions with arity 1.
We generalize this to the multivariate case in Section 4.

In the following, all variables range over integers and the domains of functions are
assumed to be tuples of integers, unless otherwise stated. Further, given a function F of
arity n, we denote with ϕF (x1, . . . , xn) the relation F (x1, . . . , xn) > 0.

Definition 1. Given a function F , we construct a binary function FG as follows:

FG(x1, . . . , xn) = {
0 if F (x1, . . . , xn) ≤ 0
1 otherwise

We call FG the G-function of F , which can be seen as the characteristic function of ϕF .

Definition 2. A function F defined on domain D is said to be periodic over interval I
with period T if we have

F (x) = F (x + T)

for all values of x ∈ D ∩ I , with also (x + T) ∈ D ∩ I.

Definition 3. A total function F ∶ N → R is said to be lower-bounded periodic, or
lb-periodic for short, if there is a b ∈ N such that F is periodic on interval [b,+∞).

Definition 4. Let F ∶ N → R be a total function. Then ϕF is TLI-monitorable if there
are two constants c and k, with c ≥ k ≥ 1 and c, k ∈ N, such that

ϕF (x) =H(ϕF (x − 1), . . . ,ϕF (x − k))

for x ≥ c, where H is a total computable Boolean function.

Intuitively, TLI-monitorable relations are those for which the F (x) > 0 can be solved
incrementally, i.e., if we know the truth values of F (y) > 0 for a finite number of
y < x, we would be able to compute the truth value of F (x) > 0. Notice that there is no
need to store the actual value of the counting variable x nor F (x) in this incremental
computation; all that matters is the truth value of the relation F (x) > 0. Thus the space
required for monitoring such relations remain constant irrespective of the value of x.

Example 2. Let F (x) = x2
− 8x+ 15, where x ∈ N. The G-function of F in this case is

FG(x) = {
0 if 3 ≤ x ≤ 5
1 otherwise

This is because F (x) ≤ 0 is satisfied only when 3 ≤ x ≤ 5. ⊓⊔

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 237

We now characterize precisely the class of relations which are TLI-monitorable ac-
cording to Definition 4.

Lemma 1. Let F ∶ N → R be a total function. Then ϕF is TLI-monitorable if FG is
lb-periodic.

Example 3. The function FG in Example 2 is lb-periodic, with the lower bound 6, and
period 1. So ϕF is TLI-monitorable according to Lemma 1. ⊓⊔

We now prove the converse: every TLI-monitorable function must be lb-periodic.

Lemma 2. Given a total function F ∶ N → R, if ϕF is TLI-monitorable, then FG is
lb-periodic.

With sufficiency and necessity proved in Lemma 1 and Lemma 2 respectively, we
get the following theorem:

Theorem 1. Given a total function F ∶ N → R, ϕF is TLI-monitorable iff FG is lb-
periodic.

The abstract characterization in Theorem 1 is in a way quite obvious from the defini-
tion of TLI-monitorable relations. The important part is that monitorability is associated
with periodic “relations” (FG) rather than functions (F). That is, F may not be periodic
yet still be TLI-monitorable (see Theorem 2 below). In concrete applications, since we
are usually only given the function F and not FG, the difficult problem is in deciding
whether FG is lb-periodic given F. In the following, we show some broad classes of
functions for which their G-functions are lb-periodic.

Theorem 2. Given a computable total function F ∶ N → R, ϕF is TLI-monitorable if
F satisfies one of the following conditions:

1. F is lb-periodic.
2. F is monotonously increasing/decreasing.
3. F is a univariate polynomial.

Now, we shall look at the monitoring problems for formulas in which all relations
and functions are univariate and TLI-monitorable.

To monitor a formula Cx ∶ ⟨φ,ψ⟩.ϕ(x), we first extract all functions involving x from
ϕ. Suppose as F (x) is one of the functions extracted. According to Theorem 1, the G-
functionFG(x) for F (x) should be lb-periodic for ϕF (x) to be TLI-monitorable. Then
the track of ϕF (x) can be seen as a path ended with a loop. Then the values of ϕF (x)
repeats periodically as x increases. We can thus quotient the values of x based on the
period of FG to form a finite set of equivalence classes.

Definition 5. Given a TLI-monitorable relation ϕF with lb-periodic function FG that
is periodic over [b,+∞) with period T , we define the equivalence class for the domain
of F as:

[i] = {{i} if i < b
{a∣((a − b)mod T + b) ≡ i} otherwise

238 X. Du et al.

Obviously, the number of the equivalence classes should be (b+T) and every element
within an equivalence class will have the same ϕF value. To check the value of ϕF (x)
at any point x, it is sufficient to check the value of ϕF at the equivalence class of x. For
simplicity, each equivalence class is indexed with the minimal element in the set. The
reset condition φ is orthogonal to the issue of quotienting the values of x; when it is
satisfied, the count for x is reset to 0. We write r(ρ, i,Cx ∶ ⟨φ,ψ⟩.ϕ) to denote the index
of equivalence class to which the counter of ψ belongs with model (ρ, ν, i).

In the following, we shall assume that, given a formula ϕ, every subformula of ϕ
of the form Cx ∶ ⟨φ,ψ⟩.ϕ has the property that x occurs exactly once in a univariate
function. This is not a real limitation as the case where x is vacuous or occurs more than
once (in different univariate functions) can be encoded into an equivalent formula where
each quantified variable occurs exactly once. If x is vacuous in ϕ, then Cx ∶ ⟨φ,ψ⟩.ϕ
is logically equivalent ot ϕ. If x occurs twice, i.e., ϕ is, e.g., ϕ1(x) ∧ ϕ2(x), then we
rewrite the formula to an equivalent one: Cx ∶ ⟨φ,ψ⟩.Cy ∶ ⟨φ,ψ⟩.ϕ1(x) ∧ ϕ2(y). This
holds because x and y are bound to the same value at every state. The same technique
generalizes to the cases where x occurs more than twice in ϕ.

Given the above restriction on the syntax of formulas, in a formula Cx ∶ ⟨φ,ψ⟩.ϕ,
we can extract exactly one function F where x is used. As in the case of monitoring
algorithms in [19,17], the key to get the trace-length independence property is to express
the semantics of all logical operators in a recursive form, i.e., the truth value of ϕ at
state i is a function of truth values of subformulas of ϕ and/or the truth value of ϕ at
state i − 1. All operators except the counting quantifier are already in recursive form.
The next theorem shows that the semantics of the counting quantifier also admits a
recursive form, when all relations in the formula to be monitored are univariate and
TLI-monitorable.

Theorem 3. Given a model (ρ, ν, i) and a closed formula Cx ∶ ⟨φ,ψ⟩.ϕ(x) where x
occurs in a function F , and ϕF (x) is TLI-monitorable with the lb-periodic function FG

that is periodic over [b,+∞) with period T , the following holds for every 1 < i ≤ ∣ρ∣ ∶

ρ, ν, i ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ iff ρ, ν, i ⊧ φ, and ρ, ν, i ⊧ ϕ(0);
or ρ, ν, i ⊧ ψ, r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) < b, andρ, ν, i ⊧ ϕF ((r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) + 1);
or ρ, ν, i ⊧ ψ, r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ)≥b, andρ, ν, i ⊧ ϕF ((r(ρ, i − 1,Cx ∶ ⟨φ,ψ⟩.ϕ) + 1 − b)

mod T + b);
or ρ, ν, i ⊧ ¬φ,ρ, i ⊧ ¬ψ, and ρ, ν, i − 1 ⊧ Cx ∶ ⟨φ,ψ⟩.ϕ(x)

Once we get the semantics of all logical operators of PTLTLcnt in a recursive form,
we can use dynamic programming to design a trace-length independence algorithm for
PTLTLcnt. Following the algorithm for PTLTL [19], we compute the truth values of
every subformula of a given formula ϕ, at exactly two successive states. However, for
quantified formulas, its subformulas would contain free variables, and their truth values
would thus depend on the values of x. To avoid coding valuation of variables explicitly
in the monitoring algorithm, we need to instantiate x to concrete terms before comput-
ing their truth values. Given the restriction imposed on the formulas as discussed above,
we can associate each quantified variable x in ϕ with exactly one univariate function;

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 239

s t r u c t C n t I n f o {
i n t indexEC ;
i n t p e r i o d ;
i n t lowerBound ;

}

Fig. 1. CntInfo Data Structure

Algorithm 1. Monitor(ρ, i, φ)

1 Init(ρ,φ, prev, cur, cnt);
2 for j = 1 to i do
3 Iter(ρ, j,φ, prev, cur, cnt);

4 return cur[idx(φ)];

let us call it Fx. Since ϕFx is TLI-monitorable, by Definition 5, we can compute a
finite set of equivalence classes for the values of x. Suppose this set has n elements
{e1, . . . , en}. Then we need to instantiate x only with these n values. So given a sub-
formula Cx ∶ ⟨φ,ψ⟩.θ(x) of ϕ, we define its immediate subformulas as: φ, ψ and ϕ(ei),
for 1 ≤ i ≤ n. We let Sub(ϕ) denote the set of all subformulas of ϕ.

Now we will describe how monitoring can be done for φ, given ρ and 1 ≤ i ≤ ∣ρ∣. Let
φ1, φ2, . . . , φm be an enumeration of Sub(φ) respecting the order that any formula has
an enumeration number greater than that of all its subformulae. Following the notations
in [17], we can assign to each ψ ∈ Sub(φ) an index i, such that ψ = φi in this enumera-
tion. We refer to this index as idx(ψ). We maintain two Boolean arrays prev[1, . . . ,m]
and cur[1, . . . ,m]. The intention is that given ρ and i > 1, the value of prev[k] corre-
sponds to the truth value of the judgment ρ, ν, i − 1 ⊧ φk and the truth value of cur[k]
corresponds to the truth value of the judgment ρ, ν, i ⊧ φk.

Recall that each quantified variable is used in exactly one univariate function. For
each variable x, we keep a data structure CntInfo, shown in Figure 1, which stores the
lower bound (lowerBound) and the period (period) of the G-function, and the index
of the equivalence class induced by the G-function (indexEC). The initialization of an
instance of CntInfo is conducted in init counter(), which will set lowerBound and pe-
riod the accordingly, and zero the indexEC. The array cnt[1, . . . , l] in both Init and
Iter algorithm stores a list of CntInfo objects associated with each variables. We as-
sign an index idxc(x) to each variable x, and cnt[idxc(x)] maintains the information
associated with the counter variable x.

The main monitoring algorithm (Algorithm 1) is divided into two sub-procedures:
the initialisation procedure (Algorithm 2) and the iterative procedure (Algorithm 3). In
the pseudocode of the algorithms, we overload some logical symbols to denote opera-
tors on boolean values. It is straightforward to see that, once the formula to be monitored
is fixed, the space required to run the algorithm does not grow with the length of traces.
In particular, the values of the counter variables (the indexEC field) is bounded, i.e., it
never grows beyond period + lowerBound.

4 Extension to Multivariate Relations

We now look at the case where relations can be multivariate. We shall restrict our dis-
cussions to the bivariate case; the extension to the multivariate case is straightforward
and does not require any new techniques so we omit details here.

240 X. Du et al.

Algorithm 2. Init(ρ,φ, prev, cur, cnt)

1 for k = 1 to m do
2 switch φk do
3 case � cur[k] ← false
4 case P cur[k] ← P ∈ ρ1
5 case ¬ψ cur[k] ← ¬cur[idx(ψ)]
6 case t > 0 cur[k] ← tν > 0
7 case ψ1 ∨ ψ2 cur[k] ← cur[idx(ψ1)] ∨ cur[idx(ψ2)]
8 case ●ψ cur[k] ← false
9 case ψ1 S ψ2 cur[k] ← cur[idx(ψ2)]

10 case Cx ∶ ⟨ψ1, ψ2⟩.ϕ(x)
11 init counter(cnt[idxc(x)]);
12 if !cur[idx(ψ1)] then
13 if cur[idx(ψ2)] then
14 cnt[idxc(x)].count + +;
15 cur[k] ← cur[idx(ϕ(1))];

16 else cur[k] ← cur[idx(ϕ(0))]

17 return cur[idx(φ)];

Definition 6. Let F ∶ N×N→ R be a total function, then ϕF is TLI-monitorable if there
are constants c1, c2 and k1, k2, with c1 ≥ k1 ≥ 1, c2 ≥ k2 ≥ 1 and c1, c2, k1, k2 ∈ N,
such that

ϕF (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F (x, y) > 0 if x < c1 and y < c2,

H

⎛
⎜⎜
⎝

ϕF (x − k1, y), . . . , ϕF (x − 1, y),
ϕF (x − k1, y − 1), . . . , ϕF (x, y − 1),
ϕF (x − k1, y − k2), . . . , ϕF (x, y − k2)

⎞
⎟⎟
⎠

otherwise.

where H is a total computable Boolean function.

Theorem 4. Given a total function F ∶ N×N→ R, if there are constants Tx, cx, Ty and
cy such that FG(x, c) is lb-periodic with period Tx for any c ∈ N ≥ cy , and FG(d, y) is
lb-periodic with period Ty for any d ∈ N ≥ cx, then ϕF is TLI-monitorable.

Essentially, Theorem 4 says that ϕ is TLI-monitorable if the period of a projection of
F into one of its parameter is independent of the other parameter, once the value of that
parameter exceeds a certain threshold. This allows us to quotation the values of each
parameters into their own equivalence classes independently of each other.

The monitoring algorithm is surprisingly the same as the univariate case. We still
need to adopt the same restriction regarding the occurrences of variables as in the uni-
variate case, i.e., that each quantified variable appears exactly once in a bivariate func-
tion. The main difference between the univarite and the bivariate case is finding the right
lower bound and the periods of each variables, a process which takes place outside the
algorithm; once these parameters are defined, the monitoring algorithm proceeds as in
the univariate case.

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 241

Algorithm 3. Iter(ρ, i, φ, prev, cur, cnt)

1 prev ← cur;
2 for k = 1 to m do
3 switch φk do
4 case � cur[k] ← false
5 case P cur[k] ← P ∈ ρi
6 case ¬ψ cur[k] ← ¬cur[idx(ψ)]
7 case t > 0 cur[k] ← tν > 0
8 case ψ1 ∨ ψ2 cur[k] ← cur[idx(ψ1)] ∨ cur[idx(ψ2)]
9 case ●ψ cur[k] ← prev[idx(ψ)]

10 case ψ1 S ψ2 cur[k] ← cur[idx(ψ2)] ∨ (cur[idx(ψ1)] ∧ prev[idx(ψ2)])
11 case Cx ∶ ⟨ψ1, ψ2⟩.ϕ(x)
12 if !(cur[idx(ψ1)] ∨ cur[idx(ψ2)]) then cur[k] ← pre[k]
13 else
14 if cur[idx(ψ1)] then
15 cnt[idxc(x)].indexEC ← 0;

16 else
17 if cur[idx(ψ2)] then
18 n← ++ cnt[idxc(x)].indexEC;
19 lowerBound← cnt[idxc(x)].lowerBound;
20 period← cnt[idxc(x)].period;
21 if n ≥ lowerBound + period then
22 cnt[idxc(x)].indexEC ←

(n − lowerBound) mod period + lowerBound;

23 cur[k] ← cur[idx(ϕ(cnt[idxc(x)].indexEC))];

24 return cur[idx(φ)];

The extension to the multivariate case follows the same idea, i.e., a sufficient condi-
tion for ϕF , when F is an n-ary function, to be monitorable is that the period of any of
its projection is independent of the other projections.

5 Case Studies in Android

In this section, some concrete policies in Android systems are provided as case studies
for PTLTLcnt. In the rest of this paper, we assume the following atomic propositions
in Android OS. Si (or Ei) means the application with UID i starts to run (or stops
running). Mi means the application with UID i sends out a message. Ii means the
application with UID i opens an Internet connection socket. Fi : the application with
UID i forks a new child process. Ci means the application with UID i accesses the
contact database.

The following policies refer to the malicious access patterns that are forbidden in
Android systems. At any moment, if ρ, ν, ∣ρ∣ /⊧ φ holds, and when a new event P occurs,
the monitor checks whether [ρ;P], ν, ∣ρ∣ + 1 /⊧ φ holds. If it does, the process forwards

242 X. Du et al.

fluently. Otherwise, a suspicious alert will send to the user. As for the specific limit on
specific counted amount, we just give a rough estimation for illustration purpose.

1. Cx ∶ ⟨Si,Mi ∧ ¬Ei⟩.(x > 5)
This policy is to guarantee that an app with UID i cannot send more that 5 SMS
messages during a single run, which is inspired by [3] for stopping unintended SMS
transmissions. In [21], authors found that current Android botnets are exploiting
SMS messages to gather money by sending SMS to premium-rate numbers. With
the specified policy, it helps to make possible discovery of an Android bot.

2. Cx ∶ ⟨Si, Ii ∧ ¬Ei⟩.(x > 200)
This policy says that an app cannot open Internet connection socket for more than
200 times in a single run. If an Android app aims at flooding a targeted server to
launch a DDoS attack, one way to achieve this is to open massive Internet con-
nections. This policy can help to control the amount of Internet connections, thus
preventing some potential malware.

3. Cx ∶ ⟨Si, Fi ∧ ¬Ei⟩.(x > 2
16
)

This policy says that during the life cycle of an application, it is not allowed to
create more than 216 child processes to exhaust the pid, i.e., the process identi-
fier in Linux kernel. RageAgainstTheCage [1] is a well-known exploit in Android,
which can perform unauthorized privileged actions by gaining the root access. This
malware uses a vulnerability in Android kernel to get the root privilege by keeping
forking the child process to 216. With this policy specified using PTLTLcnt, con-
straint is set to how many child processed an application can fork in a single run, it
will be much helpful to prevent this attack.

6 Implementation and Evaluation

We have implemented the monitoring algorithm for PTLTLcnt and evaluated it on Log-
icDroid platform [17], which is a modified Android system based on Android 4.1. The
Android IPC (Inter-process communication) calls, like opening Internet socket, send-
ing SMS and accessing contact database hooked by LogicDroid form the set of events
against which policies in PTLTLcnt need to be checked. Since LogicDroid does not yet
implement hooks to detect the start or end of a process or an app, the reset conditions
in our example policies are not applicable. In particular, policy 3 in Section 5, which
counts the child processes forked by an app, has not yet been tested due to the lack of
support for process forking detection in LogicDroid.

The list of six policies adopted in our experiments is presented in Figure 2. among
which the first two are that introduced in Section 5, and the others are artificial examples
to evaluate the robustness of our approach. To keep the diversity of the policies, the
number of counters in the six policies is 1, 1, 2, 3, 6, 10 separately. Also there are
policies with complicate reset conditions. Each policy is implemented as a Linux kernel
module according to the algorithm described in Section 3. For every counter variable in
the tested policies, the initialization of fields period and lowerBound in CntInfo struct
are currently done manually.

To test the practicability and efficiency of our approach, we implement a fuzzy test-
ing app to trigger three kinds of IPC calls (Mi, Ii and Ci in Section 5) randomly. For

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 243

1. Cx ∶ ⟨Si,Mi ∧ ¬Ei⟩.(x > 5)
2. Cx ∶ ⟨Si, Ii ∧ ¬Ei⟩.(x > 200)
3. Cx ∶ ⟨�,Mi⟩.Cy ∶ ⟨�, Ii⟩.K(x, y) > 0 with the definition of function K as follows:

K(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

3x − 4y if x < 5 and y < 4,
K(x − 3, y) if x ≥ 5 and y < 4,
K(x, y − 2) if x < 5 and y ≥ 4,
K(x − 3, y − 2) otherwise.

Note that each projection of function K becomes periodic once x > 9 and y > 13, so it is
easy to show that ϕK is TLI-monitorable.

4. (Ii S Ci) ∧ Cx ∶ ⟨�,Mi⟩.Cy ∶ ⟨�, Ii⟩.Cz ∶ ⟨�,Cj⟩.H(x, y, z) > 0 with function H defined
as follows:

H(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3x − 4y + 2z if x < 19 and y < 13 and z < 5,
H(x − 9, y, z) if x ≥ 19 and y < 13 and z < 5,
H(x, y − 2, z) if x < 19 and y ≥ 13 and z < 5,
H(x, y, z − 1) if x < 19 and y < 13 and z ≥ 5,
H(x − 9, y − 2, z) if x ≥ 19 and y ≥ 13 and z < 5,
H(x, y − 2, z − 1) if x < 19 and y ≥ 13 and z ≥ 5,
H(x − 9, y, z − 1) if x ≥ 19 and y < 13 and z ≥ 5,
H(x − 9, y − 2, z − 1) otherwise.

Each projection of function H is periodic when x > 19, y > 13 and z > 5, so ϕH is TLI-
monitorable.

5. Cx1 ∶ ⟨�,●Ci⟩∧Cx2 ∶ ⟨�,¬Ii⟩∧Cx3 ∶ ⟨Ii,Ci⟩∧Cx4 ∶ ⟨�,●Ii⟩∧Cx5 ∶ ⟨�,Mi⟩∧Cx6 ∶ ⟨�, Ii⟩
6. Cx1 ∶ ⟨�,●Ci⟩ ∧ Cx2 ∶ ⟨�,¬Ii⟩ ∧ Cx3 ∶ ⟨Ii,Ci⟩ ∧ Cx4 ∶ ⟨�,●Ii⟩ ∧ Cx5 ∶ ⟨�,Mi⟩ ∧ Cx6 ∶
⟨�, Ii⟩ ∧ Cx7 ∶ ⟨�,¬Mi⟩ ∧ Cx8 ∶ ⟨�,●Mi⟩ ∧ Cx10 ∶ ⟨Cx9 ∶ ⟨�,¬Ci⟩,Mi⟩

Fig. 2. Additional policies used in the experiments

the evaluation, we measure the detection time of the monitoring process (i.e., the exe-
cution time of a policy monitoring kernel module for processing a single event) and the
memory used by the system with the extra policy monitoring kernel module. All the ex-
periments are conducted in the LogicDroid emulator on 64-bit Ubuntu 14.04LTS with
16GB RAM and an Intel Xeon(R) CPU E5-1650 v2 with 3.50GHz. Our implementation
and the models shown in this section are available in [2].

Figure 3 shows the time used by the monitor for a single event check. To measure
the detection time, we launch the fuzzy testing app to send 1000 IPC calls continuously,
therefore the monitor kernel module will be invoked 1000 times. We record the detec-
tion time in every 50 calls as shown in Figure 3. It can be seen from the figure that
the time used for each policy monitoring kernel module is stable, i.e., does not increase
with trace length grows. There is no obvious difference between the time cost for differ-
ent policies, and the average checking time is 6 to 8 microseconds. Figure 4 shows the
memory usage of the emulator with the six different kernel modules. To consider the
impact of the additional kernel module on memory usage in the emulator more accu-
rately, we measure the memory when every 1000 IPC calls are triggered for continuous

244 X. Du et al.

0 200 400 600 800
1

10

100

Trace Length

Ti
m

e(
M

ic
ro

Se
c)

Policy1 Policy2 Policy3

Policy4 Policy5 Policy6

Fig. 3. Time of Single Round Checking

0 2000 4000 6000 8000
220
230
240
250
260
270
280
290
300

Trace Length

M
em

or
y(

M
B)

Policy1 Policy2 Policy3

Policy4 Policy5 Policy6

Fig. 4. Memory Usage

0 200 400 600 800
0

10

20

30

40

Trace Length

Ti
m

e(
M

ic
ro

Se
c) TLI-monitor primitive monitor

Fig. 5. Comparison of Checking Time

0 20000 40000 60000 80000
255
260
265
270
275
280
285
290

Trace Length

M
em

or
y(

M
B)

TLI-monitor primitive monitor

Fig. 6. Comparison of Memory Usage

10 times. Clearly, all of the memory usage measured for the emulator with different
kernel module installed in turn are quite stable (i.e., does not increase with the time),
which supports our claim that the proposed algorithm is trace-length independent.

Note that the six policies module tested in the experiment are with a increasing num-
ber of counters. From the results shown in Figure 3 and Figure 4, we can know that the
number of counters involved in a policy has little timing and memory influence.

To give an emperical validation of the effectiveness of our monitoring algorithm,
comparison experiments have been done with a direct primitive counting mechanism,
where all events will be recorded and the entire history will be searched to get the
statistics of count when the monitor checks the validation. The results of monitoring
the policy 3 in Figure 2 are shown in Figure 5 and Figure 6. For the detection time, it is
following the previous measure experiment. While the memory is measured when every
10000 IPC calls are triggered for continuous 10 times. We choose a different setting
to make visible the gradually increasing tendency of memory used by the primitive
monitor. As can be seen, there is obvious increase of the time and space required by the
primitive monitor as the trace length grows.

7 Related Work

This section lists some recent works on counting quantifier combined with different
kinds of logic theories, aiming to increase the expressiveness of the logic. A brief outline
of the history of trace-length independent runtime monitoring will also be given.

Inspired by the aggregation operators in database query language like SQL, Basin et
al. [6] extend metric first-order temporal logic (MFOTL) with aggregation operators,

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 245

like SUM, CNT, MAX and AVG, and proposed a monitoring algorithm for language.
The core of this work is to translate policies specified with the extended MFOTL to the
corresponding extended relational algebra. For their monitoring algorithm, functions
are handled similarly to Prolog. Even through some optimizations are taken to accel-
erate computations in monitoring, the aggregation operators are out of their consider-
ation. Another language, SOLOIST [11], is based on a many-sorted first-order metric
temporal logic and extended with new temporal modalities that support aggregate op-
erators for events occurring in a certain time window. For its monitoring, Bianculli et
al. [12] proposed to translate the formulae in SOLOIST to formulae of CLTLB(D) [10],
and Bersani et al. [9] presented an approach to encode SOLOIST formulae into QF-
EUFIDL formulae. Nevertheless, both approaches depend on SMT-solver to do the fi-
nal satisfiability checking. The evaluations of the above two works show that increasing
time and memory will be needed when the length of the trace grows.

Laroussinie et al. [20] presented a quantitative extension for LTL, called CLTL,
allowing to specify the number of states satisfying certain sub-formulas along paths,
which provided the same semantics with ours. They also showed even though CLTL
formulae can be translated into classical LTL, an exponential blow-up in formula size is
inevitable. As for the satisfiability and model-checking problems for CLTL, they turned
out to be EXPSPACE-complete, but PSPACE-complete when restricting CLTL to a
fragment. Actually this fragment just belongs to a subset of the TLI-formulas defined
in our work, for which the relation function will grow monotonously with any involved
count increasing.

Other monitoring approaches that provide support for different kinds of aggrega-
tions are LarvaSat [13], LOLA [14], as well as rule-based EAGLE [4], RULER [5] and
LOGFIRE [18], and one based on algebraic alternating automata [15], However, all
monitoring algorithms for the above languages still need to record the specific counted
values, even though most of them avoided storing the entire trace history. In principle,
these counters can increase indefinitely, so their space complexity is not constant unlike
our monitoring algorithms.

There are some works [19,8,17] concentrate on designing trace-length independent
monitoring algorithms. In particular, this work can be seen as an effort to extend the
LogicDroid framework to incorporate the counting quantifier of [7]. Although the con-
cept of trace-length independence is proposed in 2013, there are also some prior works
which imply this property in their algorithm design. For the best of our knowledge,
this is first work on designing trace-length independence algorithms involving counting
quantifier, not even other aggregation operators. For now, we are the first one to imple-
ment a trace-length independent runtime verification algorithm for the logic language
with a counting quantifier.

8 Conclusion

We have presented a formal policy specification language PTLTLcnt that allows ex-
pressions of quantitative policies. We consider the questions of when a formula is trace-
length independent monitorable. For univariate relations, we obtain sufficient and nec-
essary conditions for the relations to be TLI-monitorable. We then discussed an exten-
sion to the multivariate relations. Assuming the relations are all TLI-monitorable, we

246 X. Du et al.

construct a TLI monitoring algorithm for PTLTLcnt. We have implemented and tested
our monitoring algorithm, and the experimental results more or less confirm our the-
oretical results. Currently, we have not yet addressed the integration of the counting
quantifier with metric operators and recursive predicates of [17]. This is a subject of
immediate future work. We also plan to look to incorporate other, more expressive ag-
gregrate operators from [6].

Acknowledgment. We thank the anonymous referees for their helpful comments. This research
is supported by the National Research Foundation, Prime Ministers Office, Singapore under its
National Cybersecurity R&D Program (Award No. NRF2014NCR-NCR001-30) and adminis-
tered by the National Cybersecurity R&D Directorate.

References

1. Rageagainstthecage (2011),
http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage

2. Tli monitoring of ltl extended with a counting quantifier (2015),
http://pat.sce.ntu.edu.sg/xndu/fm2015

3. Arzt, S., Falzon, K., Follner, A., Rasthofer, S., Bodden, E., Stolz, V.: How useful are existing
monitoring languages for securing android apps? In: ATPS, pp. 107–122 (2013)

4. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verification. In:
Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57. Springer,
Heidelberg (2004)

5. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from
eagle to ruler. Journal of Logic and Computation 20(3), 675–706 (2010)

6. Basin, D., Klaedtke, F., Marinovic, S., Zălinescu, E.: Monitoring of temporal first-order prop-
erties with aggregations. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp.
40–58. Springer, Heidelberg (2013)

7. Bauer, A., Goré, R., Tiu, A.: A first-order policy language for history-based transaction mon-
itoring. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 96–111.
Springer, Heidelberg (2009)

8. Bauer, A., Küster, J.-C., Vegliach, G.: From propositional to first-order monitoring. In: Legay,
A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 59–75. Springer, Heidelberg (2013)

9. Bersani, M.M., Bianculli, D., Ghezzi, C., Krstić, S., San Pietro, P.: SMT-based checking of
SOLOIST over sparse traces. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411,
pp. 276–290. Springer, Heidelberg (2014)

10. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., Pietro, P.S.: Constraint ltl
satisfiability checking without automata. Journal of Applied Logic 12(4), 522–557 (2014)

11. Bianculli, D., Ghezzi, C., San Pietro, P.: The tale of SOLOIST: A specification language for
service compositions interactions. In: Păsăreanu, C.S., Salaün, G. (eds.) FACS 2012. LNCS,
vol. 7684, pp. 55–72. Springer, Heidelberg (2013)

12. Bianculli, D., Krstic, S., Ghezzi, C., San Pietro, P.: From soloist to cltlb (d): Checking quan-
titative properties of service-based applications (2013)

13. Colombo, C., Gauci, A., Pace, G.J.: LarvaStat: Monitoring of statistical properties. In:
Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 480–484. Springer, Heidelberg
(2010)

14. D’Angelo, B., Sankaranarayanan, S., Sanchez, C., Robinson, W., Finkbeiner, B., Sipma, H.B.,
Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous systems. In: TIME, pp.
166–174 (2005)

http://thesnkchrmr.wordpress.com/2011/03/24/rageagainstthecage
http://pat.sce.ntu.edu.sg/xndu/fm2015

Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL 247

15. Finkbeiner, B., Sankaranarayanan, S., Sipma, H.B.: Collecting statistics over runtime execu-
tions. Form. Methods Syst. Des. 27(3), 253–274 (2005)

16. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)
17. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: A case study

in the android operating system. In: FM, pp. 296–311 (2014)
18. Havelund, K.: Rule-based runtime verification revisited. International Journal on Software

Tools for Technology Transfer 17(2), 1–28 (2012)
19. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,

Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002)
20. Laroussinie, F., Meyer, A., Petonnet, E.: Counting ltl. In: TIME, pp. 51–58 (2010)
21. Pieterse, H., Olivier, M.S.: Android botnets on the rise: Trends and characteristics. In: ISSA2,

pp. 1–5 (2012)
22. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution. In: SP, pp.

95–109 (2012)

Probabilistic Bisimulation for Realistic

Schedulers

Christian Eisentraut1, Jens Chr. Godskesen2,
Holger Hermanns1, Lei Song3(�), and Lijun Zhang4

1 Saarland University, Saarbrücken, Germany
2 IT University of Copenhagen, København S, Denmark
3 University of Technology Sydney, Sydney, Australia

lei.song@uts.edu.au
4 State Key Laboratory of Computer Science, Institute of Software, CAS,

Beijing, China

Abstract. Weak distribution bisimilarity is an equivalence notion on
probabilistic automata, originally proposed for Markov automata. It has
gained some popularity as the coarsest behavioral equivalence enjoying
valuable properties like preservation of trace distribution equivalence and
compositionality. This holds in the classical context of arbitrary sched-
ulers, but it has been argued that this class of schedulers is unrealisti-
cally powerful. This paper studies a strictly coarser notion of bisimilarity,
which still enjoys these properties in the context of realistic subclasses of
schedulers: Trace distribution equivalence is implied for partial informa-
tion schedulers, and compositionality is preserved by distributed sched-
ulers. The intersection of the two scheduler classes thus spans a coarser
and still reasonable compositional theory of behavioral semantics.

1 Introduction

Compositional theories have been an important technique to deal with complex
stochastic systems effectively. Their potential ranges from compositional mini-
mization [6,4] approaches to component based verification [26,21]. Due to their
expressiveness, Markov automata have attracted many attentions [33,13,19], since
they were introduced [16]. Markov automata are a compositional behavioral
model for continuous time stochastic and non-deterministic systems [15,16] sub-
suming interactive Markov chains (IMCs) [23] and probabilistic automata (PAs) [31]
(and hence also Markov decision processes and Markov chains).

On Markov automata, weak probabilistic bisimilarity has been introduced as
a powerful way for abstracting from internal computation cascades, and this
is obtained by relating sub-probability distributions instead of states. In the
sequel we call this relation weak distribution bisimulation, and focus on proba-
bilistic automata, arguably the most widespread subclass of Markov automata.
Nevertheless all the results we establish carry over to Markov automata.

On probabilistic automata, weak distribution bisimilarity is strictly coarser
than weak bisimilarity, and is the coarsest congruence preserving trace distribu-
tion equivalence [8]. More precisely, it is the coarsest reduction-closed barbed

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 248–264, 2015.
DOI: 10.1007/978-3-319-19249-9_16

Probabilistic Bisimulation for Realistic Schedulers 249

r1 r2 r1 r2 r1 r2

s4 s5

s3

s1 ≈ s0 �≈ s2

(a) (b) (c)

α

τ

1
2

1
2

α

1
2

1
2

τ

1
2

1
2

α α

Fig. 1. Distinguishing probabilistic automata

congruence [25] with respect to parallel composition. Decision algorithms for
weak distribution bisimilarity have also been proposed [14,29].

Weak distribution bisimilarity enables us to equate automata such as the ones
on the left in Fig. 1, both of which exhibit the execution of action α followed
by states r1 and r2 with probability 1

2 each for an external observer. Specifically,
the internal transition of the automaton on the left remains fully transparent.
Standard bisimulation notions fail to equate these automata. Surprisingly, the
automata on the right are not bisimilar even though the situation seems to be
identical for an external observer.

The automata on the right of Fig. 1 are to be distinguished, because oth-
erwise compositionality with respect to parallel composition would be broken.
However, as observed in [31,18], the general scheduler in the parallel composi-
tion is too powerful: the decision of one component may depend on the history
of other components. This is especially not desired for partially observable sys-
tems, such as multi-agent systems or distributed systems [3,32]. In distributed
systems, where components only share the information they gain through ex-
plicit communication via observable actions, this behavior is unrealistic. Thus,
for practically relevant models, weak distribution bisimilarity is still too fine.
The need to distinguish the two automata on the right of Fig. 1 is in fact an
unrealistic artifact, and this will motivate the definition of a coarser notion of
equality equating them.

In this paper, we present a novel notion of weak bisimilarity on PAs, called
late distribution bisimilarity, that is coarser than the existing notions of weak
bisimilarity. It equates, for instance, all automata in Fig. 1. As weak distribu-
tion bisimilarity is the coarsest notion of equivalence that preserves observable
behavior and is closed under parallel composition [8], late distribution bisimilar-
ity cannot satisfy these properties in their entirety. However, as we will show, for
a natural class of schedulers, late distribution bisimilarity preserves observable
behavior, in the sense that trace distribution equivalence (i) is implied by late dis-
tribution bisimilarity, and (ii) is preserved in the context of parallel composition.

250 C. Eisentraut et al.

This for instance implies that time-bounded reachability properties are preserved
with respect to parallel composition. The class of schedulers under which these
properties are satisfied is the intersection of two well-known scheduler classes,
namely partial information schedulers [7] and distributed schedulers [18]. Both
these classes have been coined as principal means to exclude undesired or un-
realistically powerful schedulers. We provide a co-inductive definition for late
distribution bisimilarity which echoes these considerations on the automaton
level, thereby resulting in a very coarse, yet reasonable, notion of equality.

Related Work. Many variants of bisimulations have been studied for different
stochastic models, for instance Markov chains [1], interactive Markov chains [23],
probabilistic automata [27,31,2], and alternating automata [10]. These equiva-
lence relations are state-based, as they relate states of the corresponding models.
Depending on how internal actions are handled, bisimulation relations can usu-
ally be categorized into strong bisimulations and weak bisimulations. The later
is our main focus in this paper.

Markov automata arise as a combination of PAs and IMCs. In [16], a novel
distribution-based weak bisimulation has been proposed: it is weaker than the
state-based weak bisimulation in [31], and if restricted to continuous-timeMarkov
chains, generates an equivalence established in the Petri net community [13].
Later, another weak bisimulation has been investigated in [8], which is essen-
tially the same as [16]. In this paper, we propose a weaker bisimulation relation
– late distribution bisimulation, which is coarser than both of them.

Interestingly, after the distribution-based weak bisimulations being introduced
in [16], several distribution-based strong bisimulations have been proposed. In [22],
it is shown that, the strong version of the relation in [16] coincides with the lift-
ing of the classical state-based strong bisimulations. Recently, three different
distribution-based strong bisimulations have been defined: paper [17] defines
bisimulation relations and metrics which extend the well-known language equiv-
alence [11] of labelled Markov chain; another definition in [24] applies to discrete
systems as well as to systems with uncountable state and action spaces; in [32],
for multi-agent systems, a decentralized strong bisimulation relation is proposed
which is shown to be compositional with respect to partial information and dis-
tributed schedulers. All these relations enjoy some interesting properties, and
they are incomparable to each other: we refer to [32] for a detailed discussion.
The current paper extends the decentralized strong bisimulation in [32] to the
weak case. The extension is not trivial, as internal transitions need to be handled
carefully, particularly when lifting transition relations to distributions. We show
that our novel weak bisimulation is weaker than that in [16], and as in [32], we
show that it is compositional with respect to partial information and distributed
schedulers.

Organization of the Paper Section 2 recalls some notations used in the pa-
per. Late distribution bisimulation is proposed and discussed in Section 3, and
its properties are established in Section 4 under realistic schedulers. Section 5

Probabilistic Bisimulation for Realistic Schedulers 251

concludes the paper. A discussion why all results established in this paper di-
rectly carry over to Markov automata can be found in [12].

2 Preliminaries

Let S be a finite set of states ranged over by r, s, A distribution is a function
μ : S → [0, 1] satisfying μ(S) =

∑
s∈S μ(s) = 1. Let Dist(S) to denote the set of

all distributions, ranged over by μ, ν, γ, Define Supp(μ) = {s | μ(s) > 0} as
the support set of μ. If μ(s) = 1, then μ is called a Dirac distribution, written
as δs. Let |μ| = μ(S) denote the size of the distribution μ. Given a real number
x, x · μ is the distribution such that (x · μ)(s) = x · μ(s) for each s ∈ Supp(μ)
if x · |μ| ≤ 1, while μ − s is the distribution such that (μ − s)(s) = 0 and
(μ−s)(r) = μ(r) with s �= r. Moreover, μ = μ1+μ2 whenever μ(s) = μ1(s)+μ2(s)
for each s ∈ S and |μ| ≤ 1. We often write {s : μ(s) | s ∈ Supp(μ)} alternatively
for a distribution μ. For instance, {s1 : 0.4, s2 : 0.6} denotes a distribution μ
such that μ(s1) = 0.4 and μ(s2) = 0.6.

2.1 Probabilistic Automata

Initially introduced in [31], probabilistic automata (PAs) have been popular mod-
els for systems with both non-deterministic choices and probabilistic dynamics.
Below we give their formal definition.

Definition 1. A PA P is a tuple (S,Actτ ,−→, s̄) where

– S is a finite set of states,
– Actτ = Act

.
∪ {τ} is a set of actions including the internal action τ ,

– −→ ⊂ S ×Actτ ×Dist(S) is a finite set of probabilistic transitions, and
– s̄ ∈ S is the initial state.

Let α, β, γ, . . . range over the actions in Actτ . We write s
α−→ μ if (s, α, μ) ∈ −→.

A path is a finite or infinite alternative sequence π = s0, α0, s1, α1, s2 . . . of
states and actions, such that for each i ≥ 0 there exists a distribution μ with
si

αi−→ μ and μ(si+1) > 0. Some notations are defined as follows: |π| denotes
the length of π, i.e., the number of states on π, while π ↓ is the last state of π,
provided π is finite; π[i] = si with i ≥ 0 is the (i + 1)-th state on π if it exists;
π[0..i] = s0, α0, s1, α1, . . . , si is the prefix of π ending at state π[i].

Let Pathsω(P) ⊆ S × (Actτ × S)ω and Paths∗(P) ⊆ S × (Actτ × S)∗ denote
the sets containing all infinite and finite paths of P respectively. Let Paths(P) =
Pathsω(P) ∪ Paths∗(P). We will omit P if it is clear from the context. We also
let Paths(s) be the set containing all paths starting from s ∈ S, similarly for
Paths∗(s) and Pathsω(s).

Due to non-deterministic choices in PAs, a probability measure cannot be
defined directly. As usual, we shall introduce the definition of schedulers to
resolve the non-determinism. Intuitively, a scheduler will decide which transition
to choose at each step, based on the history execution. Formally,

252 C. Eisentraut et al.

Definition 2. A scheduler is a function

ξ : Paths∗ �→ Dist(Actτ ×Dist(S))

such that ξ(π)(α, μ) > 0 implies π ↓ α−→ μ. A scheduler ξ is deterministic if it
returns only Dirac distributions, that is, ξ(π)(α, μ) = 1 for some α and μ. ξ is
memoryless if π↓= π′ ↓ implies ξ(π) = ξ(π′) for any π, π′ ∈ Paths∗, namely, the
decision of ξ only depends on the last state of a path.

In this paper, we are restricted to schedulers satisfying the following condition:
For any π ∈ Paths∗, ξ(π)(α, μ) > 0 and ξ(π)(β, ν) > 0 imply α = β. In other
words, ξ always chooses transitions with the same label at each step. This class
of schedulers suffices for our purpose.

Let π ≤ π′ iff π is a prefix of π′. Let Cπ denote the cone of a finite path π,
which is the set of infinite paths having π as their prefix, i.e.,

Cπ = {π′ ∈ Pathsω | π ≤ π′}.

Given a starting state s, a scheduler ξ, and a finite path π = s0, α0, s1, α1, . . . , sk,
the measure Pr ξ,s of a cone Cπ is defined inductively as:

– Prξ,s(Cπ) = 0 if s �= s0;

– Prξ,s(Cπ) = 1 if s = s0 and k = 0;

– otherwise Prξ,s(Cπ) =

Pr ξ,s(Cπ[0..k−1]) ·

⎛
⎝ ∑

(sk−1,αk−1,μ)∈−→
ξ(π[0..k − 1])(αk−1, μ) · μ(sk)

⎞
⎠ .

Let B be the smallest algebra that contains all the cones and is closed under
complement and countable unions. By standard measure theory [20,28], this
algebra is a σ-algebra and all its elements are measurable sets of paths. Moreover,
Prπ,s can be extended to a unique measure on B.

Large systems are usually built from small components. This is done by using
the parallel operator of PAs [31].

Definition 3. Let P1 = (S1,Actτ ,−→1, s̄1) and P2 = (S2,Actτ ,−→2, s̄2) be two
PAs and A ⊆ Act, then P1 ‖A P2 = (S,Actτ ,−→, s̄) such that

– S = {s1 ‖A s2 | (s1, s2) ∈ S1 × S2},
– s1 ‖A s2

α−→ μ1 ‖A μ2 iff

• either α ∈ A and ∀i ∈ {1, 2}.si α−→i μi,

• or α /∈ A and ∃i ∈ {1, 2}.(si α−→i μi and μ3−i = δs3−i).

– s̄ = s̄1 ‖A s̄2,

where μ1 ‖A μ2 is a distribution such that (μ1 ‖A μ2)(s1 ‖A s2) = μ1(s1) ·μ2(s2).

Probabilistic Bisimulation for Realistic Schedulers 253

2.2 Trace Distribution Equivalence

In this subsection we introduce the notion of trace distribution equivalence [30]
adapted to our setting with internal actions. Let ς ∈ Act∗ denote a finite trace
of a PA P , which is an ordered sequence of visible actions. Each trace ς induces
a cylinder Cς which is defined as follows:

Cς = ∪{Cπ | π ∈ Paths∗ ∧ trace(π) = ς}

where trace(π) = ε denotes an empty trace if |π| ≤ 1, and

trace(π) =

{
trace(π′) π = π′ ◦ (τ, s′)
trace(π′)α π = π′ ◦ (α, s′) ∧ α �= τ

.

Since Cς is a countable set of cylinders, it is measurable. Below we define trace
distribution equivalences, each of which is parametrized by a certain class of
schedulers.

Definition 4. Let s1 and s2 be two states of a PA, and S a set of schedulers.
Then, s1 ≡S s2 iff for each scheduler ξ1 ∈ S there exists a scheduler ξ2 ∈ S ,
such that Prξ1s1(Cς) = Prξ2s2(Cς) for each finite trace ς and vice versa. If S is the
set of all schedulers, we simply write ≡.

Different from [30,32], we abstract internal transitions when defining traces
of a path. Therefore, the definition above is also a weaker version of the corre-
sponding definition in [30,32].

2.3 Partial Information and Distributed Schedulers

In this subsection we define two prominent sub-classes of schedulers, where the
power of schedulers are limited. We first introduce some notations. Let EA : S �→
2Act such that

EA(s) = {α ∈ Act | ∃μ.s α
=⇒ μ},

that is, the function EA returns the set of visible actions that a state is able to
perform, possibly after some internal transitions. We generalize this function to
paths as follows: EA(π) =

⎧⎪⎨
⎪⎩

EA(s) π = s (1)

EA(π′) π = π′ ◦ (τ, s) ∧ EA(π′ ↓) = EA(s) (2)

EA(π′)αEA(s) π = π′ ◦ (α, s) ∧ (α �= τ ∨ EA(π′ ↓) �= EA(s)) (3)

where case (2) takes care of a special situation such that internal actions do not
change enabled actions. In this case EA will not see the difference. Intuitively,
EA(π) abstracts concrete states on π to their corresponding enabled actions.
Whenever an invisible action does not change the enabled actions, this will simply
be omitted. In other words, EA(s) can be seen as the interface of s, which is

254 C. Eisentraut et al.

observable by other components. Other components can observe the execution
of s, as long as either it performs a visible action α �= τ , or its interface has been
changed (EA(π′ ↓) �= EA(s)). We are now ready to define the partial information
schedulers [7] as follows:

Definition 5. A scheduler ξ is a partial information scheduler of s if for any
π1, π2 ∈ Paths∗(s), EA(π1) = EA(π2) implies:

– either ξ(π1) = (τ, μ) or ξ(π2) = (τ, μ) for some μ,
– or ξ(π1) = (α, μ) and ξ(π2) = (α, ν) for some μ, ν such that α �= τ .

ξ is a partial information scheduler of a PA P iff it is a partial information
scheduler for every state of P.

We denote the set of all partial information schedulers by SP . Intuitively a par-
tial information scheduler can only distinguish states via different enabled visible
actions. A scheduler cannot choose different transitions of states only because
they have different state identities. This fits very well to a behavior-oriented
rather than state-oriented view, as it is typical for process calculi. Consequently,
for two different paths π1 and π2 with EA(π1) = EA(π2), a partial information
scheduler either chooses a transition labelled with τ action for πi (i = 1, 2), or
it chooses transitions labelled with the same visible actions for both π1 and π2.
Partial information schedulers do not impose any restriction on the execution of
τ transitions, instead they can be performed spontaneously.

When composing parallel systems, general schedulers defined in Definition 2
allow one component to make decisions based on full information of other compo-
nents. This may be unrealistically powerful as argued in [18]. To deal with this,
another important sub-class of schedulers called distributed schedulers has been
introduced [18]. The main idea is to assume that all parallel components run in
autonomous and can only make their local scheduling decisions in isolation. In
other words, each component can use only that information about other compo-
nents that has been conveyed to it beforehand. We omit the formal definition of
distributed schedulers, which can be found in [18] or [32]. In the sequel we let
SD denote the set of all distributed schedulers.

3 Weak Bisimilarities for Probabilistic Automata

In this section, we first introduce weak distribution bisimulation, which is a
variant of weak bisimulation defined in [8], and then define late distribution
bisimulation, which is strictly coarser than weak distribution bisimulation.

3.1 Weak Distribution Bisimulation

As usual, a standard weak transition relation is needed in the definitions of
bisimulation that allows one to abstract internal actions. Intuitively, s

α
=⇒ μ

denotes that a distribution μ is reached from s by a α-transition, which may be
preceded and followed by an arbitrary sequence of internal transitions. Formally,

Probabilistic Bisimulation for Realistic Schedulers 255

we define them as derivations [9] for PAs. In the following, let μ
α−→ μ′ iff there

exists a transition s
α−→ μs for each s ∈ Supp(μ) such that μ′ =

∑
s∈Supp(μ) μ(s) ·

μs. Then, s
τ

=⇒ μ iff there exists

δs = μ→
0 + μ×

0 ,

μ→
0

τ−→ μ→
1 + μ×

1 ,

μ→
1

τ−→ μ→
2 + μ×

2 ,
. . .

where μ =
∑

i≥0 μ
×
i . We write s

α
=⇒ μ iff there exists s

τ
=⇒ α−→ τ

=⇒ μ.

Given a transition relation � ⊆ S × Actτ × Dist(S), we let s
α�c μ iff there

exists a finite number of real numbers wi > 0, and transitions s
α� μi such

that
∑

i wi = 1, and
∑

i wi · μi = μ. We call �c combined transitions (of �).
In general, we lift a transition relation �⊆ S × Actτ × Dist(S) over states
to a transition relation Dist(S) × Actτ × Dist(S) over distributions by letting

μ
α� μ′ iff there exists a transition s

α� μs for each s ∈ Supp(μ) such that
μ′ =

∑
s∈Supp(μ) μ(s) · μs.

Definition 6. R ⊆ Dist(S) × Dist(S) is a weak distribution bisimulation iff
μ R ν implies:

1. whenever μ
α−→c μ

′, there exists a ν
α

=⇒c ν
′ such that μ′ R ν′;

2. whenever μ =
∑

0≤i≤n pi · μi, there exists a ν
τ

=⇒c

∑
0≤i≤n pi · νi such that

μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We say that μ and ν are weak distribution bisimilar, written as μ •≈ ν, iff there
exists a weak distribution bisimulation R such that μ R ν. Moreover s •≈ r iff
δs

•≈ δr.

Clause 1 is standard. Clause 2 says that no matter how we split μ, there
always exists a splitting of ν probably after internal transitions to simulate the
splitting of μ. Definition 6 is slightly different from Definition 5 in [8], where

clause 2 is missing and clause 1 is replaced by: whenever μ
α

=⇒c

∑
0≤i≤n pi ·

μi, there exists ν
α

=⇒c

∑
0≤i≤n pi · νi such that μi R νi for each 0 ≤ i ≤ n.

Essentially, this condition subsumes clause 2, since μ =
∑

0≤i≤n pi · μi implies

μ
τ

=⇒c

∑
0≤i≤n pi · μi. As we prove in the following lemma, both definitions

induce the same equivalence relation on PAs.

Lemma 1. Let P = (S,Actτ ,−→, s̄) be a PA. R ⊆ Dist(S) ×Dist(S) is a weak
distribution bisimulation iff μ R ν implies that

1. whenever μ
α

=⇒c μ
′, there exists ν

α
=⇒c ν

′ such that μ′ R ν′,
2. whenever μ =

∑
0≤i≤n pi · μi, there exists ν

τ
=⇒c

∑
0≤i≤n pi · νi such that

μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1,
3. symmetrically for ν.

256 C. Eisentraut et al.

Proof. Let R ⊆ Dist(S) × Dist(S). If R is a weak distribution bisimulation
by Lemma 1, then trivially we can show that R is also a weak distribution
bisimulation by Definition 6, since −→c ⊂ =⇒c. In the sequel, we let R be a
weak distribution bisimulation by Definition 6 and we show that R also satisfies
conditions of Lemma 1. Let μ R ν. It suffices to show that whenever μ

α
=⇒c μ

′,
there exists a ν

α
=⇒c ν

′ such that μ′ R ν′,
Assume α = τ . According to the definition of derivations (P. 255), μ

τ
=⇒c μ

′

iff there exists
μ = μ→

0 + μ×
0 ,

μ→
0

τ−→c μ
→
1 + μ×

1 ,

μ→
1

τ−→c μ
→
2 + μ×

2 ,

...

(4)

such that μ′ ≡
∑

i≥0 μ
×
i . By Definition 6, ν can simulate such a derivation at

each step, namely, there exists

ν
τ

=⇒c ν
→
0 + ν×0 ,

ν→0
τ

=⇒c ν
→
1 + ν×1 ,

ν→1
τ

=⇒c ν
→
2 + ν×2 ,

...

(5)

such that μ→
i R ν→i and μ×

i R ν×i for each i ≥ 0. Note R satisfies infinite
linearity, which can be proved in a similar way as [8, Thm. A.6]. Therefore,
(
∑

i≥0 μ
×
i) R (

∑
i≥0 ν

×
i). Since =⇒c is transitive [8, Thm. A.4], there exists

ν
τ

=⇒c ν
′ such that μ′ R ν′ as desired.

In case μ
α

=⇒c μ′ with α �= τ , we have μ
τ

=⇒c μ′
1

α−→c μ′
2

τ
=⇒c μ′. As shown

above, there exists ν
τ

=⇒c ν
′
1 such that μ′

1 R ν′1, which indicates that there exists

ν′1
α

=⇒c ν
′
2 such that μ′

2 R ν′2 by Definition 6, which indicates that there exists

ν′2
τ

=⇒c ν
′ such that μ′ R ν′. This completes the proof.

The above lemma implies the transitivity of the weak distribution bisimula-
tion, and will be useful for establishing different bisimulation relations.

3.2 Late Weak Bisimulation

Clause 2 in Definition 6 allows arbitrary splittings, which is essentially the main
reason that weak distribution bisimulation is unrealistically strong. In order to
establish a bisimulation relation, all possible splittings of μmust be matched by ν
(possibly after some internal transitions). As splittings into Dirac distributions
are also considered, the individual behaviors of each single state in Supp(μ)
must be matched too. However, our bisimulation is distribution-based, thus the
behaviors of distributions should be matched rather than those of states. We
will fix this in the definition of late distribution bisimulation. Before that, we
still need some notations.

Probabilistic Bisimulation for Realistic Schedulers 257

Definition 7. A distribution μ is transition consistent, written as −→μ , if for any
s ∈ Supp(μ) and α �= τ , s

α
=⇒ γ for some γ implies μ

α
=⇒ γ′ for some γ′.

For a distribution being transition consistent, all states in the support of the
distribution should have the same set of enabled visible actions. One of the key
properties of transition consistent distributions is that μ

α
=⇒ whenever s

α
=⇒

for some state s ∈ Supp(μ). In contrast, when a distribution μ is not transition
consistent, there must be a weak α transition of some state in Supp(μ) being
blocked. In the sequel, when we adopt the notion of blocked states accordingly
for non-weak transition relations, also τ transitions can be blocked.

We now introduce ↪→, an alternative lifting of transitions of states to tran-
sitions of distributions that differs from the standard definition used in [16,8].
There, a distribution is able to perform a transition labelled with α if and only if
all the states in its support can perform transitions with the very same label. In
contrast, the transition relation ↪→ behaves like a weak transition, where every
state in the support of μ may at most perform one transition.

Definition 8. μ
α
↪→ μ′ iff

1. either for each s ∈ Supp(μ) there exists s
α−→ μs such that

μ′ =
∑

s∈Supp(μ)

μ(s) · μs,

2. or α = τ and there exists s ∈ Supp(μ) and s
α−→ μs such that

μ′ = (μ− s) + μ(s) · μs.

In the definition of late distribution bisimulation, this extension will be used
to prevent τ transitions of states from being blocked. Below follows an example:

Example 1. Let μ = {s1 : 0.4, s2 : 0.6} such that s1
τ−→ δs′1

α−→ μ1, s1
β−→ μ2,

s2
α−→ μ3, and s2

β−→ μ4, where α �= β are visible actions. According to clause 1 of

Definition 8, we will have μ
β
↪→ (0.4 · μ2 +0.6 · μ4). Without clause 2, this would

be the only transition of μ, since the τ transition of s1 and the α transition of
s2 will be blocked by each other, as s1 and s2 cannot perform transitions with
labels τ and α at the same time.

Note that the α transition is blocked by the τ transition of s1, so according
to clause 2 of Definition 8, we in addition have

μ
τ
↪→ (0.4 · δs′1 + 0.6 · δs2)

α
↪→ (0.4 · μ1 + 0.6 · μ3).

Note that in clause 1 of Definition 6, −→ can be replaced by ↪→ without changing
the resulting equivalence relation, as the same effect can be obtained by a suitable
splitting in clause 2. In this example, we could let μ be split into 0.4·δs1+0.6·δs2 ,
such that no transition is blocked in the resulting distributions.

258 C. Eisentraut et al.

Definition 9. R ⊆ Dist(S) × Dist(S) is a late distribution bisimulation iff
μ R ν implies:

1. whenever μ
α
↪→c μ

′, there exists a ν
α

=⇒c ν
′ such that μ′ R ν′;

2. if not −→μ , then there exists μ =
∑

0≤i≤n pi ·μi and ν
τ

=⇒c

∑
0≤i≤n pi ·νi such

that −→μi and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We say that μ and ν are late distribution bisimilar, written as μ ≈• ν, iff there
exists a late distribution bisimulation R such that μ R ν. Moreover s ≈• r iff
δs ≈• δr.

In clause 1, this definition differs from Definition 6 by the use of ↪→. It is
straightforward to show that ↪→ can also be used in Definition 6 without changing
the resulting bisimilarity. However, in Definition 9, using −→ instead of ↪→ will
lead to a finer relation. The key difference between Definition 6 and 9, however,
is clause 2. As we mentioned, in Definition 6, any split of μ should be matched by
ν, while in Definition 9, we require to split μ only if it is not transition consistent.
Additionally, the resulting distributions μi must be transition consistent as well.
We do not need to require that νi is transition consistent, as we will show later
that −→μi and μi R νi implies −→νi . According to Definition 7, splittings to transition
consistent distributions ensure that all possible transitions will be considered
eventually, as no transition of individual states is blocked. Therefore, clause 1
suffices to capture every visible behavior.

By introducing transition consistent distributions, we try to group states with
the same set of enabled visible actions together and do not distinguish them in
a distribution. This idea is mainly motivated by the work in [7], where all states
with the same enabled actions are non-distinguishable from the outside. Under
this assumption, a model checking algorithm was proposed. By avoiding splitting
transition consistent distributions, we essentially delay the probabilistic transi-
tions until the transition consistent condition is broken. This explains the name
“late distribution bisimulation”. Further, if restricting to models without internal
action τ , our notion of late distribution bisimulate agrees with the decentralized
bisimulations in [32].

The following theorem shows that ≈• is an equivalence relation and ≈• is
strictly coarser than •≈.

Theorem 1.

1. ≈• is an equivalence relation;
2. •≈ ⊂ ≈•.

Before proving Theorem 1, we shall introduce two lemmas. The lemma below
resembles Lemma 1, which can be proved similarly as Lemma 1.

Lemma 2. Let P = (S,Actτ ,−→, s̄) be a PA. R ⊆ Dist(S) ×Dist(S) is a weak
distribution bisimulation iff μ R ν implies that

1. whenever μ
α

=⇒c μ
′, there exists ν

α
=⇒c ν

′ such that μ′ R ν′,

Probabilistic Bisimulation for Realistic Schedulers 259

2. if not −→μ , then there exists μ =
∑

0≤i≤n pi ·μi and ν
τ

=⇒c

∑
0≤i≤n pi ·νi such

that −→μi and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

Proof. The proof is almost the same as Lemma 1 with two exceptions related to
the transition consistent requirement:

– In Eq. 4 and 5, derivations should respect the transition consistent require-
ment, namely, states with the same set of enable actions should be in the
support of either μ→

i or μ×
i , similarly for ν→i and ν×i .

– The infinite linearity of late distribution bisimulation can be proved as fol-
lows: Let

R = {(
∑
i≥0

pi · μi,
∑
i≥0

pi · νi) |
∑
i≥0

pi = 1 ∧ ∀i ≥ 0.μi ≈• νi}.

We prove that R is a late distribution bisimulation. Let μ R ν. Suppose
μ

α−→c μ
′, then for all i ≥ 0, there exists μi

α−→c μ
′
i such that μ′ ≡

∑
i≥0 pi ·μ′

i.

Since μi ≈• νi, there exists νi
α

=⇒c ν′i such that μ′
i ≈• ν′i, which implies

that ν
α

=⇒c ν
′ ≡

∑
i≥0 pi · ν′i. Therefore, μ′ R ν′ by the definition of R.

Now assume μ is not transition consistent and μ ≡
∑

1≤j≤n qj · γj such that

−→γj . Let μi ≡
∑

1≤j≤n qij · γi
j where

−→
γi
j , γj =

∑
i≥0 q

i
j · γi

j , and
∑

i≥0 q
i
j = qj

for each 1 ≤ j ≤ n. Then for each i ≥ 0, there exists νi
τ

=⇒c

∑
1≤j≤n qij · γ′i

j

such that
−→
γ′i

j and γi
j ≈• γ′i

j . Therefore, there exists ν
τ

=⇒c

∑
1≤j≤n qj · γ′

j ,

where γ′
j ≡

∑
i≥0 q

i
j · γ′i

j . By construction of R, γj R γ′
j for each 1 ≤ j ≤ n

as desired.

The following lemma states that μ and ν must be transition consistent or not
at the same time, if they are late distribution bisimilar.

Lemma 3. μ ≈• ν and −→μ imply −→ν .

Proof. By contraposition. Assume μ ≈• ν and −→μ , but not −→ν . Since μ ≈• ν,
there exists a late distribution bisimulation R such that μ R ν. Moreover, μ

α
=⇒

implies ν
α

=⇒ and vice versa for any α. Therefore, EA(μ) = EA(ν), where

EA(μ) = {α | ∃μ′.μ α
=⇒ μ′}, similarly for EA(ν). Since ν is not transition

consistent, there exists s ∈ Supp(ν) such that s
α

=⇒ with α �∈ EA(ν), i.e., some
transitions of states in Supp(μ) with label α are blocked. This indicates that

there exists ν =
∑

i∈I pi · νi with
−→νi for each i ∈ I such that νj

α
=⇒ for some

j ∈ I. Since −→μ and α �∈ EA(μ), there does not exist μ
τ

=⇒
∑

i∈I pi · μi such that

μi
α

=⇒ for some i ∈ I. This contradicts the assumption that μ ≈• ν.

Finally, we are ready to show the proof of Theorem 1.

260 C. Eisentraut et al.

Proof of Theorem 1. First, the second clause •≈ ⊂ ≈• is easy to establish:
Since the second condition of Definition 6 implies the second condition of Defi-
nition 9, but not vice versa. PA in Fig. 1 shows that the inclusion is strict.

Now we prove that ≈• is an equivalence relation. We prove transitivity (other
parts are easy). For any μ, ν, and γ, assume μ ≈• ν and ν ≈• γ, we prove that
μ ≈• γ. According to Definition 9, there exists late distribution bisimulations
R1 and R2 such that μ R1 ν and ν R2 γ. Let

R = R1 ◦ R2 = {(μ, γ) | ∃ν.(μ R1 ν ∧ ν R2 γ)},

it then suffices to prove that R is also a late distribution bisimulation.
Let μ R γ such that μ R1 ν and ν R2 γ for some ν. We shall prove:

1. Whenever μ
α

=⇒c μ′, there exists γ
α

=⇒c γ′ such that μ′ R γ′. This is
achieved by applying Lemma 3.

2. If not −→μ , there exists μ =
∑

i∈I pi · μi and γ
τ

=⇒c

∑
i∈I pi · γi such that

μi R γi for each i ∈ I, where
∑

i∈I pi = 1. Assume μ is not transition

consistent; otherwise it is easy. Since μ ≈• ν, there exists ν
τ

=⇒c

∑
i∈I pi · νi

such that −→μi and μi R1 νi for each i ∈ I. By Lemma 3, −→νi for each i ∈ I.
We distinguish the following two cases:
(a) ν =

∑
i∈I pi · νi.

According to Lemma 3, ν is not transition consistent, and moreover, we
have −→νi for each i ∈ I. Since ν R2 γ, there exists γ

τ
=⇒c

∑
i∈I γi such

that νi R2 γi, thus we have μi R γi by the definition of R for each i ∈ I.
(b) ν

τ
=⇒c ν

′ =
∑

i∈I pi · νi.
Since ν R2 γ, there exists γ

τ
=⇒c γ

′ such that ν′ R2 γ′ according to the
first clause of Definition 9. Since μ is not transition consistent, so there
exists i, j ∈ I such that i �= j and EA(μi) �= EA(μj), which indicates
that EA(νi) �= EA(νj). Therefore, ν

′ is not transition consistent. As a

result there exists γ′ τ
=⇒c

∑
i∈I pi · γi such that νi R2 γi, thus μi R γi

for each i ∈ I.

This completes our proof.

4 Properties of Late Distribution Bisimilarity

In this section we show that results established in [32] can be extended to the
setting, where internal transitions are abstracted. We concentrate on two proper-
ties of late distribution bisimulation: compositionality and preservation of trace
distributions. When general schedulers are considered, the two properties do not
hold, hence we will restrict ourselves to partial information distributed sched-
ulers. We mention that both partial information and distributed schedulers were
proposed to rule out unrealistic behaviors of general schedulers; see [7] and [18]
for more details.

We first define some notations. To play with schedulers, we parameterize tran-
sition relations with schedulers explicitly. A transition from s to μ with label α is

Probabilistic Bisimulation for Realistic Schedulers 261

induced by a scheduler ξ, written as s
α−→ξ μ, iff μ ≡

∑
μ′∈Dist(S) ξ(s)(α, μ

′)·μ′. As

before, such a transition relation can be lifted to distributions: μ
α−→ξ ν to denote

that μ can evolve into ν by performing a transition with label α under the guid-
ance of ξ, where s

α−→ξ νs for each s ∈ Supp(μ) and ν ≡
∑

s∈Supp(μ) μ(s)·νs. Since
no a priori information is available, given a distribution μ, for each s ∈ Supp(μ),
we simply use s as the history information for ξ to guide the execution, which
correspond tomemoryless schedulers and suffice for the purpose of defining bisim-
ulations. Moreover, weak transitions s

α
=⇒ξ μ and their lifting to distributions

can be defined similarly; see Section 3.1.
Below we define an alternative definition of Definition 9, where schedulers are

considered explicitly.

Definition 10. Let ξ1, ξ2, ξ ∈ S for a given set of schedulers S . R ⊆ Dist(S)×
Dist(S) is a late distribution bisimulation with respect to S iff μ R ν implies:

1. whenever μ
α−→ξ1 μ′, there exists ν

α
=⇒ξ2 ν′ such that μ′ R ν′;

2. if not −→μ , then there exists μ =
∑

0≤i≤n pi ·μi and ν
τ

=⇒ξ

∑
0≤i≤n pi ·νi such

that −→μi and μi R νi for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;
3. symmetrically for ν.

We write μ ≈•
S ν iff there exists a late distribution bisimulation R with respect

to S such that μ R ν. And we write s ≈•
S r iff δs ≈•

S δr.

Different from Definition 9, in Definition 10, every transition is induced by a
scheduler in S . Obviously, when S is the set of all schedulers, these two definitions
coincide. Thus, s1 ≈• s2 ⇐⇒ s1 ≈•

SD s2, provided s1 and s2 contain no parallel
operators, as in this case SD represents the set of all schedulers.

Below is a theorem showing that distribution bisimulation and partial informa-
tion schedulers are closely related. It shows that partial information schedulers
are enough to discriminate late distribution bisimilarity with respect to arbitrary
schedulers. Furthermore, late distribution bisimulation implies trace distribution
equivalence under partial information schedulers.

Theorem 2. For any states s1 and s2,

1. s1 ≈• s2 iff s1 ≈•
SP s2;

2. s1 ≈• s2 implies s1 ≡SP s2.

If looking at the effect of parallel composition, we can establish composition-
ality if distributed schedulers are considered:

Theorem 3. For any states s1, s2, and s3,

s1 ≈•
SD s2 implies s1 ‖A s3 ≈•

SD s2 ‖A s3.

As in the strong setting [32], by restricting to the set of schedulers in SP ∩ SD,
late distribution bisimulation is compositional and preserves trace distribution
equivalence. Furthermore, late distribution bisimulation is the coarsest congru-
ence satisfying the two properties with respect to schedulers in SP ∩ SD.

262 C. Eisentraut et al.

Theorem 4. Let S = SP ∩ SD. s1 ≈•
S s2 iff s1 ≡c

S s2 for any s1 and s2, where
s1 ≡c

S s2 iff s1 ≡S s2 and s1 ‖A s3 ≡S s2 ‖A s3 for any s1, s2, s3, and A.

We mention that schedulers in SP ∩ SD arise very natural in practice, for in-
stance in decentralized multiagent systems [3], where all agents are autonomous
(corresponding to distributed schedulers) and states are partially observable (cor-
responding to partial information schedulers).

In [24] an algorithm was proposed to compute distribution-based bisimulation
relations. We discuss briefly that the algorithm can also be adapted to compute
late distribution bisimulation. First observe that the relation ≈• is linear, namely,
μ1 ≈• ν1 and μ2 ≈• ν2 imply (p · μ1 + (1 − p) · μ2) ≈• (p · ν1 + (1 − p) · ν2)
for any p ∈ [0, 1]. By fixing an arbitrary order on the state space of a given PA,
each distribution can be viewed as a vector in [0, 1]n with n being the number

of states. Then for any s and α, it is easy to see that {μ | s α−→ μ} constitutes a
convex hull. According to [5, Prop. 3 and 4], every such convex hull has a finite
number of extreme points, which can be enumerated by restricting to Dirac
memoryless schedulers. For deciding ≈•, it suffices to restrict to these finitely
many extreme distributions. By doing so, all weak transitions can be handled
in the same way as non-deterministic strong transitions in [24]. Not surprisingly,
this will cause an exponential blow-up. We refer readers to [24] for more details
of the remaining procedure.

5 Conclusion and Future Work

In this paper, we proposed the notion of late distribution bisimilarity for PAs,
which enjoys some interesting properties if restricted to the two well-known
subclasses of schedulers: partial information schedulers and distributed sched-
ulers. Under partial information schedulers, late distribution bisimulation implies
trace distribution equivalence, while under distributed schedulers, composition-
ality can be derived. Furthermore, if restricted to partial information distributed
schedulers, late distribution bisimulation has shown to be the coarsest relation
which is compositional and preserves trace distribution equivalence.

As future work we intend to study reduction barbed congruences [8] under
subclasses of schedulers, in order to pinpoint the characteristics of late distribu-
tion bisimilarity. The axiom system and logical characterization of ≈• would be
also interesting. The algorithm in [24] is exponential in the worst case. We will
work out whether or not more efficient algorithms exist.

Acknowledgments. Many thanks to the anonymous referees for their valuable
suggestions on an early version of this paper. This work has been supported by
the DFG as part of the SFB/TR 14 “Automatic Verification and Analysis of
Complex Systems” (AVACS), by the European Union Seventh Framework Pro-
gramme under grant agreements 295261 (MEALS) and 318490 (SENSATION),
by the National Natural Science Foundation of China (Grant Nos. 61428208,
61472473 and 61361136002), and by the CAS/SAFEA International Partner-
ship Program for Creative Research Team. Part of this work was done while Lei

Probabilistic Bisimulation for Realistic Schedulers 263

Song was at Max-Planck Institute for Informatics and Saarland University in
Saarbrücken, Germany.

References

1. Baier, C., Katoen, J.-P., Hermanns, H., Wolf, V.: Comparative branching-time
semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)

2. Bernardo, M., De Nicola, R., Loreti, M.: Relating strong behavioral equivalences
for processes with nondeterminism and probabilities. Theor. Comput. Sci. 546,
63–92 (2014)

3. Bernstein, D.S., Givan, R., Immerman, N., Zilberstein, S.: The complexity of
decentralized control of Markov decision processes. Math. Oper. Res. 27(4),
819–840 (2002)

4. Boudali, H., Crouzen, P., Stoelinga, M.: A rigorous, compositional, and exten-
sible framework for dynamic fault tree analysis. IEEE Trans. Dependable Sec.
Comput. 7(2), 128–143 (2010)

5. Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In:
Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR 2002. LNCS,
vol. 2421, pp. 371–385. Springer, Heidelberg (2002)

6. Chehaibar, G., Garavel, H., Mounier, L., Tawbi, N., Zulian, F.: Specification and
Verification of the PowerScaleTM bus arbitration protocol: An industrial experi-
ment with lotos. In: FORTE, pp. 435–450 (1996)

7. De Alfaro, L.: The verification of probabilistic systems under memoryless partial-
information policies is hard. Technical report, DTIC Document (1999)

8. Deng, Y., Hennessy, M.: On the semantics of Markov automata. Information and
Computation 222, 139–168 (2013)

9. Deng, Y., van Glabbeek, R., Hennessy, M., Morgan, C.: Testing finitary proba-
bilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 274–288. Springer, Heidelberg (2009)

10. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Weak bisimulation is

sound and complete for pCTL*. Inf. Comput. 208(2), 203–219 (2010)
11. Doyen, L., Henzinger, T.A., Raskin, J.: Equivalence of labeled Markov chains. Int.

J. Found. Comput. Sci. 19(3), 549–563 (2008)
12. Eisentraut, C., Godskesen, J.C., Hermanns, H., Song, L., Zhang, L.: Late

Weak Bisimulation for Markov Automata. CoRR, abs/1202.4116 (2014),
http://arxiv.org/abs/1202.4116

13. Eisentraut, C., Hermanns, H., Katoen, J.-P., Zhang, L.: A semantics for every
GSPN. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927,
pp. 90–109. Springer, Heidelberg (2013)

14. Eisentraut, C., Hermanns, H., Krämer, J., Turrini, A., Zhang, L.: Deciding bisim-
ilarities on distributions. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R.
(eds.) QEST 2013. LNCS, vol. 8054, pp. 72–88. Springer, Heidelberg (2013)

15. Eisentraut, C., Hermanns, H., Zhang, L.: Concurrency and composition in a
stochastic world. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS,
vol. 6269, pp. 21–39. Springer, Heidelberg (2010)

16. Eisentraut, C., Hermanns, H., Zhang, L.: On probabilistic automata in continuous
time. In: LICS, pp. 342–351 (2010)

17. Feng, Y., Zhang, L.: When equivalence and bisimulation join forces in probabilistic
automata. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442,
pp. 247–262. Springer, Heidelberg (2014)

http://arxiv.org/abs/1202.4116

264 C. Eisentraut et al.

18. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable
nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.
LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

19. Guck, D., Timmer, M., Hatefi, H., Ruijters, E., Stoelinga, M.: Modelling and
analysis of Markov reward automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA
2014. LNCS, vol. 8837, pp. 168–184. Springer, Heidelberg (2014)

20. Halmos, P.R.: Measure theory, vol. 1950. Springer (1974)
21. He, F., Gao, X., Wang, B., Zhang, L.: Leveraging weighted automata in composi-

tional reasoning about concurrent probabilistic systems. In: POPL, pp. 503–514.
ACM (2015)

22. Hennessy, M.: Exploring probabilistic bisimulations, part I. Formal Asp. Com-
put. 24(4-6), 749–768 (2012)

23. Hermanns, H.: Interactive Markov chains: and the quest for quantified quality.
Springer, Heidelberg (2002)

24. Hermanns, H., Krčál, J., Křet́ınský, J.: Probabilistic bisimulation: Naturally on
distributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704,
pp. 249–265. Springer, Heidelberg (2014)

25. Honda, K., Tokoro, M.: On asynchronous communication semantics. In: Zatarain-
Cabada, R., Wang, J. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 21–51.
Springer, Heidelberg (1992)

26. Kwiatkowska, M., Norman, G., Parker, D., Qu, H.: Assume-guarantee verifica-
tion for probabilistic systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010.
LNCS, vol. 6015, pp. 23–37. Springer, Heidelberg (2010)

27. Philippou, A., Lee, I., Sokolsky, O.: Weak bisimulation for probabilistic systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer,
Heidelberg (2000)

28. Rudin, W.: Real and complex analysis. Tata McGraw-Hill Education (2006)
29. Schuster, J., Siegle, M.: Markov automata: Deciding weak bisimulation by means

of non-navely vanishing states. Information and Computation 237, 151–173 (2014)
30. Segala, R.: A compositional trace-based semantics for probabilistic automata. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 234–248. Springer,
Heidelberg (1995)

31. Segala, R.: Modeling and Verification of Randomized Distributed Realtime Sys-
tems. PhD thesis. MIT (1995)

32. Song, L., Feng, Y., Zhang, L.: Decentralized bisimulation for multiagent systems.
In: AAMAS, pp. 209-217. IFAAMAS (2015)

33. Timmer, M., van de Pol, J., Stoelinga, M.I.A.: Confluence reduction for Markov
automata. In: Braberman, V., Fribourg, L. (eds.) FORMATS 2013. LNCS,
vol. 8053, pp. 243–257. Springer, Heidelberg (2013)

QPMC: A Model Checker for Quantum Programs
and Protocols

Yuan Feng1, Ernst Moritz Hahn2, Andrea Turrini2(�), and Lijun Zhang2

1 Centre for Quantum Computation and Intelligent Systems,
University of Technology Sydney, Sydney, Australia

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

andrea.turrini@gmail.com

Abstract. We present QPMC (Quantum Program/Protocol Model Checker),
an extension of the probabilistic model checker ISCASMC to automatically
verify quantum programs and quantum protocols. QPMC distinguishes itself
from the previous quantum model checkers proposed in the literature in that
it works for general quantum programs and protocols, not only those using
Clifford operations. A command-line version of QPMC is available at
http://iscasmc.ios.ac.cn/tool/qmc/.

1 Introduction and Motivation

Although commercial quantum computers are still in their infancy, rapid progress has
been made in building reliable and scalable components for quantum computers. In
particular, quantum cryptographic systems are already commercially available by com-
panies such as Id Quantique, Cerberis, MagiQ Technologies, SmartQuantum, and NEC.
The security of quantum cryptographic protocols is mathematically provable, based on
the principles of quantum mechanics, without imposing any restrictions on the com-
putational capacity of an attacker. In practice, however, security analysis of quantum
cryptographic protocols is notoriously difficult; for example, the manual proof of BB84
in [15] contains about 50 pages. It is hard to imagine such an analysis being carried
out for more sophisticated quantum protocols. Thus, techniques for automated or semi-
automated verification of these protocols will be indispensable.

In the last decade, researchers started to explore the possibility of applying model
checking, one of the dominant techniques for verification which has a large number of
successful industrial applications, to the verification of quantum programs as well as
quantum protocols. The main obstacle is that the set of all quantum states, traditionally
regarded as the underlying state space of the model to be checked, is a continuum.
Hence, the techniques of classical model checking, which normally work only for a
finite state space, cannot be applied directly. Gay et al. [10] provided a solution to
this problem by restricting the state space to a set of finitely describable states called
stabiliser states, and restricting the quantum operations applied on them to the class of
Clifford group. By doing this, they were able to obtain an efficient model checker [11]
for quantum protocols, employing purely classical algorithms.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 265–272, 2015.
DOI: 10.1007/978-3-319-19249-9_17

http://iscasmc.ios.ac.cn/tool/qmc/

266 Y. Feng et al.

There is one limitation of the approach by Gay et al.: since only quantum protocols ex-
pressible in stabiliser formalism are considered, so that the state space can be encoded in
a classical way, their model checker does not work for general protocols. To deal with this
problem, one of the authors of the current paper and his colleagues proposed a novel no-
tion of super-operator weighted Markov chain in which the state space is taken classical
(and usually can be finite), while all quantum effects are encoded in the super-operators
labelling the transitions [9]. This model is especially suited for verification of classi-
cal properties for which only the measurement outcomes as well as the probabilities of
obtaining them are relevant, and the quantum effects caused by superposition, entangle-
ment, etc., are merely employed to increase the efficiency or security of the protocol.
Typical examples include super-dense coding [6], quantum coin-flipping protocol [4],
and quantum key distribution protocols [3, 4].

The distinct advantage of super-operator weighted Markov chains, for model check-
ing purpose, is twofold: (1) It provides a way to check once for all in that once a property
is verified, it holds for all input quantum states. This is especially important for the ver-
ification of quantum programs. For example, for the reachability problem we calculate
the accumulated super-operator, say E , along all valid paths. As a result, the reachabil-
ity probability when the program is executed on the input quantum state ρ is simply the
trace tr(E(ρ)) of E(ρ); (2) As the state space is usually finite, techniques from classical
model checking can be adapted to verification of quantum systems.

The contribution of this paper is the development of a software tool that implements
the techniques and algorithms proposed in [9]. The implementation is based on IS-
CASMC [12], a web-based model checker for probabilistic systems.

Other related works. Besides the model checker proposed by Gay et al. [11], recently
Ardeshir-Larijani et al. developed equivalence checkers for deterministic quantum pro-
tocols [1] as well as concurrent quantum protocols that behave functionally [2]. As
for [11], these tools work only within the stabiliser formalism, and the generalisation to
general quantum protocols seems difficult.

2 The QMC Model and the Logic QCTL

In this section, we recall the notion of quantum Markov chains that serves as the se-
mantic model of quantum programs and protocols. We assume the readers are familiar
with the basic notions of quantum information theory [9, 16].

Let S(H) be the set of super-operators over a Hilbert space H. Here a super-operator
is a completely positive linear operator from L(H) to itself, where L(H) is the set of
linear operators onH. In particular, we denote by IH and 0H the identity and null super-
operators in S(H), respectively. For any E ,F ∈ S(H), let E � F if for any quantum
state ρ in H, tr(E(ρ)) ≤ tr(F(ρ)). Note that the trace tr of a (unnormalised) quantum
state denotes the probability that the (normalised) state is reached [17]. Intuitively, E �
F means that the success probability of performing E is always not greater than that of
performing F , whatever the initial state is. Let � be � ∩ �.

We denote by SI(H) the set of trace-nonincreasing super-operators over H; that is,
SI(H) = { E ∈ S(H) | 0H � E � IH }. Observe that E ∈ SI(H) if and only

QPMC: A Model Checker for Quantum Programs and Protocols 267

if for any quantum state ρ, tr(E(ρ)) ∈ [0, 1]. It is natural to regard the set SI(H) as
the quantum correspondence of [0, 1], the domain of traditional probabilities. This is
exactly the key to the notion of quantum Markov chains defined in [9].

Definition 1 (Quantum Markov Chain [9]). A super-operator weighted Markov chain,
also referred to as quantum Markov chain (QMC) for simplicity, over a Hilbert space H
is a tuple (S,Q, AP, L), where

(1) S is a countable (typically finite) set of classical states;
(2) Q : S × S → SI(H) is called the transition matrix where for each s ∈ S, the

super-operator
∑

t∈S Q(s, t) is trace-preserving;
(3) AP is a finite set of atomic propositions; and
(4) L : S → 2AP is a labelling function.

From the above definition, a QMC is simply a discrete time Markov chain (DTMC)
with all traditional probabilities replaced by quantum probabilities from SI(H). The
properties are expressed using the quantum computation tree logic (QCTL) proposed
in [9], which is a natural extension of PCTL. The syntax of QCTL is as follows:

Φ ::= a | ¬Φ | Φ ∧ Φ | Q∼E [φ]
φ ::= XΦ | ΦU≤k Φ | ΦU Φ

where a ∈ AP is an atomic proposition, ∼ ∈ {�,�,�}, E ∈ SI(H), and k ∈ N.
We call Φ a state formula and φ a path formula. We use the following abbreviations:
Φ1 ∨ Φ2 ≡ ¬(¬Φ1 ∧ ¬Φ2), tt ≡ a ∨ ¬a, FΦ ≡ ttU Φ, and F≤kΦ ≡ ttU≤k Φ.

Note the essential difference between QCTL and the traditional PCTL:

– in PCTL we have the probabilistic operator formula P∼p[φ] with ∼ ∈ {≤,≥},
which asserts that the probability of paths from a certain state satisfying the path
formula φ is constrained by ∼ p where 0 ≤ p ≤ 1,

– in QCTL, P∼p[φ] is replaced by Q∼E [φ], which asserts that the accumulated super-
operators corresponding to paths from a certain state satisfying the formula φ is
constrained by ∼ E where 0H � E � IH.

Note that P∼p[φ] is a special case of Q∼E [φ] by taking E = pIH.

Example 1. A simple quantum loop program goes as follows:

l0 : q := A(q)

l1 : whileM [q] do

l2 : q := G(q)
l3 : end

where for E0 = |0〉〈0| + 1√
2
|1〉〈1| and E1 = 1√

2
|0〉〈1|, A = {E0, E1} is the 1

2 -
amplitude damping channel, M = λ0|0〉〈0|+ λ1|1〉〈1|, and G is the Hadamard super-
operator. In this program, we first applyA on the quantum system q for the initialisation.
At line l1, the two-outcome projective measurement M is applied. If the outcome λ0

is observed, then the program terminates at line l3; otherwise it proceeds to l2 where
the super-operator G is performed, and then the program returns to line l1 and another
iteration continues.

268 Y. Feng et al.

l0

l1

l2 l3

A

E1

G E0

I

The QMC for this program, depicted on the right, is con-
structed as follows. Let S = AP = { li | 0 ≤ i ≤ 3 },
L(li) = {li} for each i, and Q be defined as Q(l0, l1) = A,
Q(l1, l3) = E0 = {|0〉〈0|}, Q(l1, l2) = E1 = {|1〉〈1|},
Q(l2, l1) = G, and Q(l3, l3) = I.

The QCTL formula Q�E [F l3] asserts the probability that
the loop program terminates is lower bounded by E , that is,
for any initial quantum state ρ, the termination probability is not less than tr(E(ρ)).
In particular, the property that it always terminates for any input can be described as
Q�I [F l3].

3 The Tool QPMC

The QPMC model checker is the extension to QMCs of the web-based model checker
ISCASMC [12]. In order to support quantum operations, ISCASMC has been enriched
with the data structures for matrices and super-operators as well as the algorithms to
manipulate them. Correspondingly, we have extended the PRISM [14] language used
for modelling classical MCs with new keywords and operations specific for QMCs.

Implementation Aspect. ISCASMC is written in Java with a few optional parts (which
are not used for QMCs) being written in C. While the syntax of models is very close to
the one of PRISM, the code of ISCASMC is not based on the former.

The integration of QMCs into ISCASMC has been possible because the underlying
algorithms integrated into our model checker work with generic values rather than, for
instance, being restricted to computations with IEEE 754 double values. Thus, by defin-
ing the way of how mathematical operations are to be performed on super-operators,
how they can be compared and how they can be displayed to the user, we are able
to use algorithms already implemented in ISCASMC. Thus, we can for instance use
a variant of the well-known value iteration algorithms. Because QMCs do not behave
exactly as DTMCs, some care has to be taken. Multiplication of super-operators is not
commutative which needs to be taken into account in the value iteration. Also, the pre-
computation of states which reach target states with probability 1 has to be adapted.

Complex numbers, matrices and super-operators are stored using IEEE 754 doubles
and manipulated using standard operations. QPMC could be extended to instead use
representations of numbers with higher or infinite precision (using symbolic represen-
tations) e.g. for stiff models. Doing so would not affect the rest of the implementation.

ISCASMC is split into several packages, to allow a clear separation between, for in-
stance, the user interface, operations on mathematical objects, syntax trees of models
and properties, etc. This way, extensions of one part are possible without interfering
with the other modules. This allows for instance to quickly integrate additional opera-
tions on super-operators if they turn out to be useful for end users.

QPMC is available at http://iscasmc.ios.ac.cn/tool/qmc/ where it is possible to down-
load the latest stable version, together with a brief summary on the required dependen-
cies and on the usage.

http://iscasmc.ios.ac.cn/tool/qmc/

QPMC: A Model Checker for Quantum Programs and Protocols 269

qmc // model type

c o n s t v e c t o r | p> 2 = (|0> 2 + |1> 2) / s q r t (2) ;
c o n s t matrix E0 = |0> 2 <0| 2 + |1> 2 <1| 2 / s q r t (2) ;
c o n s t matrix E1 = |0> 2 <1| 2 / s q r t (2) ;
c o n s t s uperopera tor (2) ampdamp = << E0 , E1 >>;

module l oop
s : [0 . . 3] i n i t 0 ;
[] (s =0) −> ampdamp : (s ’ = 1) ;
[] (s =1) −> << M1 >> : (s ’ = 2) + << M0 >> : (s ’ = 3) ;
[] (s =2) −> << HD >> : (s ’ = 1) ;
[] (s =3) −> (s ’ = 3) ;

endmodule

Fig. 1. Source code for the QMC in Example 1

Modeling Language. We extend the well-known PRISM [14] guarded-command
based language to model QMCs. Fig. 1 depicts the source code in our language that
describes the quantum loop program in Example 1:

– The keyword qmc specifies the model type.
– In addition to the constants definable in PRISM, one can specify constants of types

vector, matrix, and superoperator. Notably, QPMC supports the use of bra-ket
notation which is standard for describing quantum states in quantum mechanics.
Specifically, |v>_n denotes a vector in Hn, the n-dimensional Hilbert space. To
ease notations, we have predefined the computational basis |0>_n, . . . , |n-1>_n
for Hn; that is, for each 0 ≤ i < n,

|i>_n = (0, · · · , 0, 1, 0, · · · , 0)T

where 1 appears at the (i + 1)-th entry. These vectors can be used for free. The
operations such as inner product, outer product, and tensor product over bra-ket
vectors are denoted in the normal way. For example, <0|1>_2 stands for 〈0|1〉,
|0>_2 <1|_2 for |0〉〈1| in H2, and |0>_2 |1>_2 means |01〉 = |0〉 ⊗ |1〉 in
H2 ⊗ H2. We use Kraus operators collected in a pair of double angle brackets to
represent a super-operator. For example, the following statement

const superoperator (2) ampdamp = << E0 , E1 >>;

defines a super-operator named ampdamp in the Hilbert space H2 with the Kraus
operators {E0, E1}. For convenience of the users, we predefined some useful ma-
trices listed below:
• the n-dimensional identity matrix ID(n) = diag(1, . . . , 1);

• the Pauli matrices PX =

(
0 1
1 0

)
, PY =

(
0 −i
i 0

)
, PZ =

(
1 0
0 −1

)
, the Hadamard

matrix HD = 1√
2

(
1 1
1 −1

)
, and the phase-shift matrix PS(θ) =

(
1 0
0 eiθ

)
. We

also predefined the measurement operators with respect to the computational

basis in H2: M0 =

(
1 0
0 0

)
and M1 =

(
0 0
0 1

)
;

270 Y. Feng et al.

• the control-not matrix CN = ID(2) ⊕ PX, and the swap matrix SW = ID(1) ⊕
PX ⊕ ID(1),

• the Toffoli matrix TF = ID(4) ⊕ CN, and the Fredkin matrix FK = ID(4) ⊕
SW.

– The main behavior of the QMC is described in the module environment. It has a
state variable s, and several guarded commands representing the system transitions.
As in PRISM, each guarded command has a precondition, and a sum of updates.
The only difference is that each update is associated with a super-operator instead
of a probability. We always omit the identity super-operators along the updates.

Properties. To help reasoning, besides the logical operators presented in QCTL, we
also support an extended operator Q=?[φ], where φ is a path formula, to calculate (the
matrix representation1 of) the super-operator of satisfying φ. We further provide a func-
tion qeval(Q=?[φ], ρ) to compute the density operator obtained from applying the re-
sultant super-operator on a given density operator ρ, and

qprob(Q=?[φ], ρ) = tr(qeval(Q=?[φ], ρ))

to calculate the probability of satisfying φ, starting from the quantum state ρ.

Quantum loop program. For the quantum program in Example 1, we check the follow-
ing properties

Q>=1 [F (s=3)]
qeval (Q=?[F (s=3)] , | p> 2 <p | 2)
qeval (Q=?[F (s=3)] , ID (2) / 2)

where the first one checks if l0 |= Q�I[F l3] and the last two show the output states

when the inputs of the program are the pure state |+〉〈+| where |+〉 = |0〉+|1〉√
2

and the

maximally mixed state I/2, respectively. QPMC returns true for the first property and(
1 0
0 0

)
for the last two, as expected.

It is worth noting that the termination properties we checked here cannot be verified
by the previous tools in [1, 2, 11] for the following two reasons: (1) the loop program
employs an amplitude damping operation which does not belong to the Clifford group;
(2) the program is an open system which takes an arbitrary quantum state as its input,
and we are checking the termination for any input state.

Superdense coding protocol. Another protocol we analysed is the superdense coding
protocol [6] that permits to use a single qubit to faithfully transmit two classical bits,
under the hypothesis that a maximally entangled state is already shared between the

1 The matrix representation of a super-operator {Ei | i ∈ I } in an n-dimensional Hilbert space
H is an n2 by n2 matrix

∑
i∈I Ei ⊗ E∗

i , where the complex conjugate is taken according to
some orthonormal basis of H. See [9] for more details.

QPMC: A Model Checker for Quantum Programs and Protocols 271

sender and the receiver. As for the quantum loop example, QPMC establishes the cor-
rectness of the protocol by returning true for the property Q>=1 [F (succ)] . That is,
the success state, where the original message has been transmitted from Alice to Bob
faithfully, will be reached for sure.

Quantum key distribution protocol. The third protocol we considered is the quantum
key distribution protocol [4] that allows Alice and Bob to create and share a private key
between them, in a provably secure way, without interacting with a trusted third party
for the exchange. For simplicity, we only consider the basic version of BB84 where
the channels used are perfect, and no eavesdropper exists. Then the correctness of the
protocol can be described by the properties Q<=0 [F (fail)] and Q=0.5 [F (succ)], mean-
ing that BB84 never fails (i.e., it always generates identical keys between Alice and
Bob), and with probability exactly 0.5 (the best success probability one can achieve), it
successfully terminates at a shared key. QPMC returns true for both the properties.

Performance of the tool. Each experiment has been performed on a MacBook Pro with
a 2.9 GHz Intel Core i7 processor with 8 GB 1600 MHz DDR3 RAM, taking an overall
time of less than 1 second per model.

4 Conclusion and Future Work

Based on the theoretical work in [9], we have presented QPMC, a model checker aim-
ing at verification of quantum programs and quantum protocols. Compared with the
existing model checkers for the same purpose in the literature, our tool is able to verify
more general programs and protocols which are beyond the stabiliser formalism.

For further studies, we are going to use qCCS, a quantum extension of CCS devel-
oped by one of the authors and his colleagues [7,8,19], as our modelling language. This
will make the protocol description more intuitive and more readable. We also plan to
consider analysis of LTL properties. Classical decision algorithms check acceptance of
bottom strongly connected components and then compute reachability probabilities for
transient states. We would like to see how this technique can be extended to QMCs.

Acknowledgments. This work is supported by Australian Research Council (Grant No.
DP130102764), the National Natural Science Foundation of China (Grant Nos. 61428208,
61472473 and 61361136002), the Chinese Academy of Sciences Fellowship for International
Young Scientists (Grant Nos. 2013Y1GB0006 and 2015VTC029), AMSS-UTS Joint Research
Laboratory for Quantum Computation, Chinese Academy of Sciences, and the CAS/SAFEA In-
ternational Partnership Program for Creative Research Team.

References

1. Ardeshir-Larijani, E., Gay, S., Nagarajan, R.: Equivalence checking of quantum protocols.
In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 478–492. Springer,
Heidelberg (2013)

272 Y. Feng et al.

2. Ardeshir-Larijani, E., Gay, S., Nagarajan, R.: Verification of concurrent quantum proto-
cols by equivalence checking. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 500–514. Springer, Heidelberg (2014)

3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Physical Review
Letters 68, 3121 (1992)

4. Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin toss-
ing. In: Proceedings of the IEEE International Conference on Computer, Systems and Signal
Processing, pp. 175–179 (1984)

5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.: Teleporting an
unknown quantum state via dual classical and EPR channels. Physical Review Letters 70,
1895–1899 (1993)

6. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Physical Review Letters 69(20), 2881–2884 (1992)

7. Feng, Y., Duan, R., Ji, Z., Ying, M.: Probabilistic bisimulations for quantum processes. In-
formation and Computation 205(11), 1608–1639 (2007)

8. Feng, Y., Duan, R., Ying, M.: Bisimulation for Quantum Processes. ACM Transactions on
Programming Languages and Systems 34(4), 1–43 (2012)

9. Feng, Y., Yu, N., Ying, M.: Model checking quantum Markov chains. Journal of Computer
and System Sciences 79(7), 1181–1198 (2013)

10. Gay, S., Nagarajan, R., Papanikolaou, N.: Probabilistic model-checking of quantum proto-
cols. In: Proceedings of the 2nd International Workshop on Developments in Computational
Models (2006)

11. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A model checker for quantum systems. In:
Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547. Springer, Heidelberg
(2008)

12. Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: ISCASMC: A web-based probabilistic
model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442,
pp. 312–317. Springer, Heidelberg (2014)

13. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory.
Springer, Berlin (1983)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 585–591. Springer, Heidelberg (2011)

15. Mayers, D.: Unconditional security in quantum cryptography. Journal of the ACM 48(3),
351–406 (2001)

16. Nielsen, M., Chuang, I.: Quantum computation and quantum information. Cambridge uni-
versity press (2000)

17. Selinger, P.: Towards a quantum programming language. Mathematical Structures in Com-
puter Science 14(4), 527–586 (2004)

18. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University
Press, Princeton (1955)

19. Ying, M., Feng, Y., Duan, R., Ji, Z.: An algebra of quantum processes. ACM Transactions
on Computational Logic (TOCL) 10(3), 1–36 (2009)

Automated Verification of RPC Stub Code

Matthew Fernandez(�), June Andronick, Gerwin Klein, and Ihor Kuz

NICTA and UNSW, Sydney, Australia
{matthew.fernandez,june.andronick,gerwin.klein,

ihor.kuz}@nicta.com.au

Abstract. Formal verification has been successfully applied to provide strong
correctness guarantees of software systems, but its application to large code bases
remains an open challenge. The technique of component-based software devel-
opment, traditionally employed for engineering benefit, also aids reasoning about
such systems. While there exist compositional verification techniques that lever-
age the separation implied by a component system architecture, they implicitly
rely on the component platform correctly implementing the isolation and com-
position semantics they assume. Any property proven using these techniques is
vulnerable to being invalidated by a bug in the code of the platform itself. In this
paper, we show how this assumption can be eliminated by automatically gener-
ating machine-checked proofs of the correctness of a component platform’s gen-
erated Remote Procedure Call (RPC) code. We demonstrate how these generated
proofs can be composed with hand-written proofs to yield a system-level property
with equivalent assurance to an entirely hand-written proof. This technique forms
the basis of a scalable approach to formal verification of large software systems.

1 Introduction

In the design of safety- and security-critical software, it is desirable to provide the high
levels of assurance that can be achieved by formal verification. State of the art code-level
verification currently scales to tens of thousands of lines of code [13, 16], while high
assurance software can often exceed one million lines of code. For such large systems,
pervasive code-level verification still is infeasible and new techniques are required.

Component-based software engineering facilitates the design and implementation of
large software systems [25]. This methodology involves specifying a system as a collec-
tion of isolated software elements that communicate via explicit connections, expressed
in an architectural description. An example would be a simple system with two sepa-
rate components, a client c and a server s, with a communication connection between
them, allowing c to invoke a function implemented in s. The component platform would
generate so-called glue code to perform argument marshalling and unmarshalling, and
use the underlying operating system’s communication mechanisms to transfer the data
between components. By decomposing the problem of system verification along com-
ponent boundaries, assurance of larger systems becomes tractable. A proof of system
correctness chains together individual correctness proofs of the underlying operating
system, component platform code, and user-provided component code.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 273–290, 2015.
DOI: 10.1007/978-3-319-19249-9_18

274 M. Fernandez et al.

Compositional verification of component systems is not a new concept, with ex-
isting techniques such as [2, 4] aiming to increase scalability through decomposition.
However, all existing techniques we are aware of assume that an underlying component
platform correctly implements the isolation and composition semantics they rely upon.
This assumption encompasses the glue code, generated by the component platform. A
defect anywhere in the glue code generation logic can falsify the implicit assumptions
of a compositional reasoning framework and thereby invalidate derived properties [7].

To preserve the abstraction of a component system architecture and to aid reasoning
about component systems, we aim to automate the production of functional correctness
proofs for platform glue code. In this paper, we focus on generated code for Remote
Procedure Calls (RPC) in particular. RPC is a common communication abstraction in
component platforms. We refer to such generated code as RPC stubs in the context of
this paper. Our generated proofs are machine-checked by the interactive theorem prover
Isabelle/HOL [19], and the resulting proofs are designed to be manually composed with
hand-written proofs of user-provided code. Together, the generated and hand-written
proofs can yield a proof of functional correctness of a whole system. Though relying on
generated proof script, the final proof carries the same level of assurance as a manually-
constructed, machine-checked proof.

The main challenge of this work is in generating an Isabelle/HOL proof script that
corresponds to a generated implementation. Since the implementation is derived from
a system architecture description, and the existing code generator is largely string- and
template-based, it is infeasible to provide a single proof for the correctness of any pos-
sible glue code (that is, to verify the generator itself). Instead, we use a translation
validation approach and build on our previous work that demonstrated the absence of
undefined behaviour in component platform glue code [6].

We use an existing component platform, CAmkES [14], and focus on the verification
of its C backend targeting the seL4 microkernel [13]. In future work, we intend to
leverage the functional correctness proof of seL4, though for now we implicitly assume
the semantics of its system calls in our execution model.

We make the following novel contributions:(i) We demonstrate a technique for au-
tomatically generating functional correctness proofs of generated RPC code, removing
the assumption of correct RPC stubs present in existing compositional reasoning frame-
works and (ii) we present a strategy for composition of automated and manual proofs
that does not require trusting the proof generator.

After describing, in Sect. 2, the runtime environment and the C verification frame-
work we use, we elaborate the proof generation process in Sect. 3 and describe what
precisely the generated proofs show. Being result verification, the approach is best
demonstrated working through an example instance, which we do in Sect. 4. We discuss
the trustworthiness of the resulting property and limitations of our approach in Sect. 5.

2 Background

2.1 seL4

To date, seL4 is the only general purpose operating system kernel with a code-level
proof of functional correctness [13]. It contains around 9700 lines of C that have been

Automated Verification of RPC Stub Code 275

c s

Fig. 1. Example CAmkES system architecture

proven to implement an abstract specification of the kernel’s behaviour. The verification
of seL4 extends to access control and information flow guarantees [17, 24].

The microkernel provides a minimal number of services to userspace processes, with
abstractions for processor time (threads) and virtual memory. All authority in seL4 is
provided through capabilities, kernel-administered access tokens for resources. Com-
munication is achieved by having a capability to an endpoint object and invoking this
capability. Capabilities have associated rights, with a write capability required to send
on an endpoint and read capability to receive on an endpoint. The kernel provides a
synchronous Inter-Process Communication (IPC) mechanism that allows a sender to
transfer up to 484 bytes to a cooperative receiver from a fixed window of their address
space known as their IPC buffer. The IPC buffer is accessed by a pair of utility func-
tions, seL4 GetMR and seL4 SetMR, that are provided for reading and writing individ-
ual words at offsets into the buffer. For further information about the seL4 primitives,
the reader is referred to the programmer’s reference [26].

2.2 CAmkES

CAmkES is a component platform for implementing microkernel-based embedded sys-
tems [14]. A user provides a high-level architectural description of her system, and code
implementing the logic of each component in the system. At compile time, CAmkES
generates glue code to establish and enforce communication channels between the
user’s component instances, as described in her architectural description. For each com-
ponent instance, its user-provided code and generated code are compiled and linked
together to form an executable image. We focus on CAmkES’ C backend for seL4 in
this work, as representative of an environment for building high assurance systems. The
correctness guarantees of seL4 present a strong foundation and C requires no implicit
assumption of a correct language runtime.

CAmkES architectures are limited to static systems and all components are instanti-
ated on system start. Three communication abstractions are available for system design:
dataports, events and procedures. Procedures, which we focus on in this work, are used
for representing communication in the style of synchronous function calls. Their se-
mantics follows the well known Remote Procedure Call abstraction, so we use RPC ter-
minology to refer to them. At compile time, CAmkES generates RPC stubs to perform
argument marshalling, argument unmarshalling, and kernel invocations to transfer con-
trol and data between components. Because all communication channels are established
statically and are local to a processor, communication runtime failures in CAmkES

276 M. Fernandez et al.

systems can only occur by defects in the underlying kernel or generated glue code. In
this work, we prove the absence of defects in the generated glue code and use a formally
verified kernel as substrate.

Component architectures are often represented diagrammatically as a set of boxes
for the component instances and arrows for the connections between them. Fig. 1 pro-
vides an example, showing two connected component instances. Here s implements a
single procedural interface, containing one or more exposed methods. An interface of
the same type is expected by c. The two interfaces are connected, such that s provides
the interface c is using. Though Fig. 1 only shows basic functionality, the full feature
set of CAmkES is sufficient to build complex systems such as network routers and file
systems. We will elaborate the example from Fig. 1 in Sect. 4.

2.3 Verification Framework

To reason about C programs, we first translate them into Isabelle/HOL. We initially
use the C-to-Simpl parser [27, 29] to translate source code to a representation in the
generic imperative language Simpl [23] in Isabelle/HOL. This translation is designed
to be as straightforward as possible and to match the semantics of a large subset of
C99 [12]. Following this, we use the AutoCorres tool [10, 11] to perform further au-
tomatically verified transformations within Isabelle/HOL that abstract the Simpl repre-
sentation, resulting in a monadic functional specification that more closely resembles
the programmer’s intuition and facilitates reasoning on top. The C-to-Simpl parser’s
initial translation step can be independently validated using binary verification [24].

To reason about abstracted C programs, we adopt a variant of Hoare triples for stat-
ing the pre- and post-conditions of a potentially nondeterministic monadic function [5],
which, in addition to transforming the state, may return a value or may fail. The following
notation states that, if the pre-condition P holds and the function f terminates normally,
then the post-condition Q will hold after f has executed.

{|P|} f {|Q|}
P is a predicate over the initial state (memory, global structures, etc.), whereas Q is a
predicate over two parameters: the return value of f and the final state.

The above statement allows for the possibility that f fails or does not terminate, for
example, by performing an operation with undefined behaviour in C. To express total
correctness of f, we use the following variant that requires termination and absence of
failure, including absence of guard violations.

{|P|} f {|Q|}!
In the remainder of this paper we use the following notation to refer to the initial

state in the post-condition, for example, to express that the effect of a given C function f
is to modify the state according to a specification function g, ignoring f ’s return value.

{|λs. s = s0|} f {|λ s. s = g s0|}!
We refer to [5] for further details of this Hoare calculus for monadic functions.

Automated Verification of RPC Stub Code 277

3 Generating Correct RPC Stubs

Our anticipated process for verifying a component-based system is depicted in
Fig. 2, where solid borders surround user-provided artefacts and dashed borders sur-
round generated artefacts. The CAmkES platform generates a generic theorem of the
correctness of RPC stub code for each procedure, alongside the generated code itself.
The formal representations of the RPC stub functions in these theorems are derived by
the C-to-Simpl parser directly from the generated code. The user can then instantiate the
generic theorems for specific correctness properties.

In the context of RPC stubs, it is not immediately clear what “correctness” means
for generated code. In this section, we explain our criteria for correct RPC stubs and
elaborate on what precisely is proven in the Isabelle/HOL theories we generate.

Let f be the RPC stub code that provides a conduit for invoking a remote function g.
Then, intuitively, invocation of f should be somehow equivalent to a direct invocation
of g, were it colocated with the caller.

Since, by design, it is expected that the RPC code perform observable actions, we
cannot expect full equivalence. However, we do expect to be able to lift suitable correct-
ness specifications in the form of Hoare triples about g from the remote context into the
local context. We state the correctness of glue code by specifying this lifting, and the
generated glue code proofs establish that this specification lifting is indeed achieved.
The generality of the specifications we allow for g, implies not only what the glue code
must do, but also what it must not do (e.g. interfere with g’s private state or the caller’s
private state). We expect this form of statement and mechanism to readily generalise to
the other transport mechanisms component platforms provide.

To be useful, the proofs we generate must be composable with (almost) arbitrary
user-provided proofs, both of functions g, and of the contexts where g and f are used.
We allow the proof engineer to state and prove the correctness criteria of her own func-
tions after generation of the proofs of RPC stub correctness. To accomplish this, we
parameterise the generated proofs within an Isabelle locale. Isabelle locales are named
contexts containing fixed parameters, assumptions and definitions [28]. We show an

CAmkES
user-provided
architectural
description

user-provided
code

C

generated
RPC stub
theorem

Isabellegenerated
glue code

C

system-level
correctness

theorem

Isabelle

compiler

user instantiation

component
instance
images

binary

C-to-Simpl

Fig. 2. Workflow for producing a proof of system correctness

278 M. Fernandez et al.

1 locale rpcstubs =
2 fixes Pg :: lifted globals ⇒ ... ⇒ bool
3 fixes Qg :: lifted globals ⇒ lifted globals ⇒ ... ⇒ bool
4 assumes g wp: {|λs. s = s0 ∧ inv s ∧ Pg s ...|} g {|λr s. inv s ∧ Qg s0 s ...|}!
5 assumes g stable setmr1: ∀ s i x. Pg (setMR s i x) = Pg s
6 assumes g stable setmr2: ∀ s i x. Qg (setMR s i x) = Qg s
7 assumes g stable setmr3: ∀ s0 s i x. Qg s0 (setMR s i x) = Qg s0 s
8
9 theorem f wp:

10 {|λs. s = s0 ∧ inv s ∧ ... ∧ Pg s ...|}
11 do f marshal ...;
12 g internal;
13 f unmarshal ...
14 od
15 {|λr s. inv s ∧ Qg s0 s ...|}!

Fig. 3. RPC locale template

informal version of the template of the locale we generate in Fig. 3, and refer to lines
from it in the following discussion.

For each user-provided function g, we assume locale parameters Pg and Qg that cap-
ture the pre-condition and post-condition of g (lines 2-4). The generated proofs and
specification for f then describe under which circumstances Pg and Qg specify the be-
haviour of the function f, including the RPC stubs for g.

Not all Pg and Qg are suitable. In particular, they must not make statements about
glue code variables and memory. We refer to this as wellformedness of the pre- and
post-condition. An example of this is shown in lines (5-7) of Fig. 3, which require that
Pg and Qg do not depend on the contents of the IPC buffer. Ideally, this would already be
achieved by language scoping mechanisms, but C provides no guarantees and Isabelle
no scoping. Instead we phrase these conditions as explicit locale assumptions that the
proof engineer must discharge when making use of the generated proofs.

In addition to restrictions on Pg and Qg, we also require restrictions on the behaviour
of g: it must not modify glue-code internal state. We refer to this as the user function
being well behaved. This is included in the explicit locale assumption in line 4 of Fig. 3
as inv s and must be discharged later by the proof engineer.

The template for the parameterised correctness theorem that is produced appears in
lines 9-15 of Fig. 3. This theorem lifts the Hoare triple over g, to a Hoare triple over f,
where f is represented by a specific sequence of glue code operations, expressed in a
syntax similar to Haskell’s do notation. When f is called, it marshals arguments into the
sender’s IPC buffer (line 11), then performs an seL4 system call to transfer this data to
the waiting receiver’s stub. On the receiver’s side (line 12), arguments are unmarshalled
and the user’s implementation, g, is invoked. When g returns, the receiver’s stub mar-
shals return arguments and performs another system call to transfer data back to the
sender. Finally, f unmarshals return arguments and returns to the caller (line 13). The
seL4 system calls do not occur in this theorem; this means that for now we axiomatise

Automated Verification of RPC Stub Code 279

1 procedure Swapper {
2 unsigned int swap(inout int a, inout int b);
3 }
4
5 component Client { control; uses Swapper cs; }
6
7 component Service { provides Swapper ss; }
8
9 assembly {

10 composition {
11 component Client c;
12 component Service s;
13 connection seL4RPCSimple conn(from c.cs, to s.ss);
14 }
15 }

Fig. 4. Example system specification in CAmkES

the semantics of these seL4 system calls as a direct function call from f to the receiver’s
stub code.

To utilise the generated proofs, for instance in the context of hand-written proofs of
further user-provided code, the proof engineer instantiates (interprets in Isabelle par-
lance) the generated locale by providing specific pre- and post-conditions for g and
discharging the locale assumptions. The manual inputs are the specific pre- and post-
conditions for g, a proof that g satisfies these, a proof that Pg and Qg are wellformed,
and a proof that g itself is well behaved. The result is a specific Hoare triple about f
that can be used in further proofs.

Neither proving wellformedness of Pg and Qg nor proving g is well behaved is oner-
ous. They can mostly be discharged automatically once the user-code and specification
are provided. The work for proving something about an RPC function f is reduced to
proving almost the same property about g, pretending that it runs locally.

Sect. 4 provides a worked example of how exactly to achieve this.

4 Methodology Demonstrated on Example System

4.1 Component Architecture

The simplified example depicted previously in Fig. 1, describes an RPC interface pro-
vided by s and used by c. Fig. 4 shows the textual description of this system in CAmkES.
It starts with the procedure interface definition Swapper (lines 1-3), comprising one
method swap. The method takes two integer parameters that are used as both inputs and
outputs, and also returns an unsigned integer value. The specification proceeds to define
two component types, Client (line 5) and Service (line 7). Client has an active thread
of execution, denoted by the control keyword and expects an instance of the Swapper
interface under the name cs. Service is reactive, indicated by the lack of the control
keyword, and implements an instance of the Swapper interface under the name ss.

280 M. Fernandez et al.

1 static unsigned int counter;
2
3 unsigned int
4 ss_swap(int *a, int *b){
5 int temp = *a;
6 *a = *b; *b = temp;
7 counter++;
8 return counter;
9 }

Fig. 5. User-provided source code of Service

1 int run(void) {
2 int x = 3;
3 int y = 5;
4 unsigned int i;
5 i = cs_swap(&x, &y);
6 return 0;
7 }

Fig. 6. User-provided source code of Client

The final block describes the architecture of the composed system. There is a single
instance of each component type (lines 11-12) and the outgoing interface, expected by c,
is provided by s via a connection conn of type seL4RPCSimple. The connection type de-
termines the underlying transport for communication at runtime. Here, seL4RPCSimple
is a type for RPC communication in the C language that uses the component instances’
IPC buffers and an seL4 endpoint to pass arguments and return values.

The system we have just described contains a component instance s that exports a
method for swapping the values of two integer parameters. The semantics we give to
the swap method is not described in the architecture description. It is instead defined
by user-provided code discussed in Sect. 4.2.

Component architectures would typically have many more procedures, interfaces,
components, and connections. Though we have used this approach on larger systems,
for simplicity of presentation we keep the system small in this example. There are few
surprises and minimal manual work involved in moving to larger systems, chiefly be-
cause the lemma statements and generated proofs we go on to describe work for arbi-
trary numbers of components and connections, and the glue code proofs are pair-wise
independent, so the proof size scales linearly in the size of the architecture.

4.2 User and Generated Code

The engineer developing a component system provides code for each component type
in the system. Conceptually, she provides the contents of each of the boxes of an archi-
tectural diagram such as Fig. 1.

Fig. 5 and Fig. 6 give the C code for the components Service and Client, respectively.
The code for Service exports a function, ss swap, that swaps the value of two integer
pointers and increments a global counter, returning the new value of the counter. The
code for Client comprises a function, run, that acts as the component’s entry point. It
calls the function cs swap with two local values it wishes to exchange. No code needs
to be provided for cs swap as this is what the component platform generates. The
example demonstrates that our framework can handle bidirectional parameters, return
values and manipulation of component-global state.

Automated Verification of RPC Stub Code 281

Note that this code is provided once per component type and then re-used for every
instance of that type. In our example, there is only one instance of each type (c of type
Client and s of type Service) so each piece of user code is only used once.

Fig. 7 and Fig. 8 show the RPC stubs automatically produced by CAmkES for this
system. The first of these receives the user’s call to cs swap, marshals function argu-
ments into c’s IPC buffer and then invokes a capability to an seL4 endpoint to transfer
the data to s. After receiving s’s reply, it unmarshals the response and returns to the user.
The second RPC stub operating in s’s address space, receives an incoming call from c
as an invocation of the function ss swap internal. It unmarshals the call arguments,
calls the user’s implementation from Fig. 5, marshals the user’s return values into s’s
IPC buffer and then sends this reply message to c.

The stub for s is more complex than the stub for c as it has to deal with pointers
that are part of the stub’s private state. These pointers are accessed via the functions
get swap a and get swap b, which are only expected to be called from the stub code.

Though the user designing a component system may think of her architecture as
depicted in Fig. 1, the system at runtime is shown more precisely in Fig. 9. Each com-
ponent instance is comprised of the code the user has provided (shown in solid boxes)
and the generated stubs (shown in dashed boxes). When c invokes cs swap, which the
user thinks of as an RPC to s, c’s RPC stub runs and performs an seL4 system call. The
seL4 kernel invokes the RPC stub of s which then calls the user’s ss swap function,
making it seem as if this function call came directly from c. On return from ss swap,
the RPC stub returns the response via seL4 to c’s RPC stub, which in turn delivers this
to cs swap. This control flow has the effect of allowing the user to design her sys-
tem and reason about it in terms of abstract RPC operations, while CAmkES and seL4
implement the underlying communication mechanism.

4.3 Generated Proofs

The aim of the generated proofs is to guarantee the correctness of the RPC code produced
by the component platform, intuitively showing that using the component platform gives
the same assurance as running the function locally. The verification effort required from
the proof engineer should therefore be comparable to the effort that would have been
required to show the correctness of a local call.

For our example, Fig. 10 shows a ‘natural’ correctness property for ss swap that
might be used if it were just a local function. The pre-condition (line 1) requires that x
and y are valid pointers. More precisely, the expression ptr valid s32 st p requires that
the pointer p is a valid reference to a signed 32-bit value in state st.

The post-condition states that the value of the global counter will be updated and re-
turned (line 3) and that the values at the pointers x and y will be swapped (lines 4-5). The
function ptr coerce is analogous to type casting in C and the expression heap w32 st p
returns the value pointed to by p in the state st. It is straightforward to prove this property
using the existing translation tools and manual reasoning. It would also be straightfor-
ward to then use the resulting lemma in proofs for functions that call ss swap directly.

In order to reason about execution in our example component-based system, we wish
to claim that invoking c’s stub, cs swap, is equivalent to invoking ss swap

directly. In this work, we are focussing on the generated glue code. This means we do

282 M. Fernandez et al.

1 static unsigned int cs_swap_marshal(int a, int b) {
2 unsigned int index = 0;
3 seL4_SetMR(index, 0); index++;
4 seL4_SetMR(index, (seL4_Word)a); index++;
5 seL4_SetMR(index, (seL4_Word)b); index++;
6 return index;
7 }
8
9 static void cs_swap_call(unsigned int length) {

10 seL4_MessageInfo_t info =
11 seL4_MessageInfo_new(0, 0, 0, length);
12 (void)seL4_Call(6, info); /* Call the seL4 endpoint */
13 }
14
15 static unsigned int cs_swap_unmarshal(int *a, int *b) {
16 unsigned int index = 0;
17 unsigned int ret = (unsigned int)seL4_GetMR(index); index++;
18 *a = (int)seL4_GetMR(index); index++;
19 *b = (int)seL4_GetMR(index); index++;
20 return ret;
21 }
22
23 unsigned int cs_swap(int *a, int *b) {
24 unsigned int length = cs_swap_marshal(*a, *b);
25 cs_swap_call(length);
26 unsigned int ret = cs_swap_unmarshal(a, b);
27 return ret;
28 }

Fig. 7. Generated stub for c

1 /* User-provided implementation. */
2 extern unsigned int ss_swap(int *a, int *b);
3
4 static void ss_swap_unmarshal(int *a, int *b) {
5 unsigned int index = 1;
6 *a = seL4_GetMR(index); index++;
7 *b = seL4_GetMR(index); index++;
8 }
9

10 static unsigned int ss_swap_invoke(int *a, int *b) {
11 return ss_swap(a, b);
12 }
13
14 static unsigned int ss_swap_marshal(unsigned int ret, int a, int b) {
15 unsigned int index = 0;
16 seL4_SetMR(index, (seL4_Word)ret); index++;
17 seL4_SetMR(index, (seL4_Word)a); index++;
18 seL4_SetMR(index, (seL4_Word)b); index++;
19 return index;
20 }
21
22 unsigned int ss_swap_internal(void) {
23 int *a = get_swap_a();
24 int *b = get_swap_b();
25 ss_swap_unmarshal(a, b);
26 unsigned int ret = ss_swap_invoke(a, b);
27 unsigned int length = ss_swap_marshal(ret, *a, *b);
28 return length;
29 }

Fig. 8. Generated stub for s

Automated Verification of RPC Stub Code 283

int run(void) {

 int x = 3;

 int y = 5;
a

 unsigned int i = cs_swap(&x, &y);
a

 return 0;

}

unsigned int ss_swap(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;
a

 counter++;
a

 return counter;

}

unsigned int cs_swap(int *a, int *b) {

 unsigned int length = cs_swap_marshal(*a, *b);
a

 cs_swap_call(length);
a

 unsigned int ret = cs_swap_unmarshal(a, b);
a

 return ret;

}

unsigned int ss_swap_internal(void) {

 int *a = get_swap_a();

 int *b = get_swap_b();
a

 ss_swap_unmarshal(a, b);
a

 unsigned int ret = ss_swap_invoke(a, b);
a

 unsigned int length = ss_swap_marshal(ret, *a, *b);
a

 return length;

}

seL4

Fig. 9. Example system at runtime

1 {|λs. s = s0 ∧ ptr valid s32 s x ∧ ptr valid s32 s y|}
2 ss swap x y
3 {|λr s. r = counter s0 + 1 ∧ counter s = r ∧
4 heap w32 s (ptr coerce x) = heap w32 s0 (ptr coerce y) ∧
5 heap w32 s (ptr coerce y) = heap w32 s0 (ptr coerce x)|}!

Fig. 10. A ‘natural’ correctness property if ss swap were a local function

not yet connect to the formal seL4 specification, but instead axiomatise the seL4 Call

as a direct invocation of ss swap internal, which is the effect of this system call. We
intend to replace this axiomatisation with the seL4 specification in future work as dis-
cussed in Sect. 5.2. For now, the resulting sequence of operations that we wish to claim
is equivalent to ss swap is shown in Fig. 11. The steps are: marshalling in c, then the
entire execution in s, including unmarshalling, executing ss swap, and marshalling re-
sults, and finally unmarshalling of the result in c again.

The pre-condition and post-condition ofss swap that the generated proofs are param-
eterised with are referred to as Pss swap and Qss swap, respectively. The pre-condition is
a predicate over the initial state and values of the input arguments to ss swap. The post-
condition is a predicate over the initial state, final state, return value, input arguments
and output arguments to ss swap. The types of these parameters may seem unnecessar-
ily verbose, but they provide the user with the flexibility to state any correctness property
that is expressible of a direct invocation of ss swap.

Fig. 12 shows the correctness statement that the generated proof for the RPC stub
provides. Though this appears larger and more dense than that in Fig. 10, it is not much
more complicated. The expression inv s, present in both the pre- and post-conditions,
captures the assumptions on user code mentioned in Sect. 3: in particular that user code
does not violate the stub code’s invariant which usually is easiest achieved by showing
that it does not access glue code private state at all. The ptr valid s32 pre-conditions (line

284 M. Fernandez et al.

1 swap a b ≡ do cs swap marshal (*a) (*b);
2 ss swap internal;
3 cs swap unmarshal a b
4 od

Fig. 11. A convenience abbreviation for the RPC invocation of ss swap

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s p0 out ∧ ptr valid s32 s p1 out ∧
2 distinct [p0 out, p1 out] ∧
3 (∀ s1 s2 v. Qss swap s1 (update s32 s2 p0 out v) = Qss swap s1 s2) ∧
4 (∀ s1 s2 v. Qss swap s1 (update s32 s2 p1 out v) = Qss swap s1 s2) ∧
5 Pss swap s p0 p1|}
6 do cs swap marshal p0 p1;
7 ss swap internal;
8 cs swap unmarshal p0 out p1 out
9 od

10 {|λr s. inv s ∧ Qss swap s0 s r p0 (ucast (heap w32 s (ptr coerce p0 out)))
11 p1 (ucast (heap w32 s (ptr coerce p1 out)))|}!

Fig. 12. Generated RPC stub equivalence lemma

1) are familiar from the previous lemma. The distinct pre-condition (line 2) requires that
the two pointers involved are not equal. While not strictly necessary in this case, the
generated proofs conservatively require absence of aliasing between any user-provided
pointers. This requirement, which is not an assumption of the implementation itself, is a
convenience to ease the proof which we intend to remove in future.

The next two conjuncts (lines 3-4) state that the user’s post-condition must not ac-
cess the values of the pointer arguments through its final state parameter. This seems
counter-intuitive, but we use it to allow internal stub code variables to substitute for
the user’s pointers when marshalling and unmarshalling arguments. That is, the user’s
post-condition can depend on the values of the arguments, but cannot depend on their
addresses. The final conjunct (line 5) states that the user’s pre-condition must hold prior
to execution.

The post-condition (lines 10-11) is simpler, merely stating that the user’s post-
condition holds in addition to the glue code invariants. Here, ucast converts an unsigned
32-bit value to a signed 32-bit value.

For readability, we have omitted the proofs of the generated lemmas in this sec-
tion, which themselves are also generated. However, the full CAmkES specification,
user-provided code and framework for generating and validating the proofs we have
described in this section are available online.1

4.4 User Instantiation

With the generated lemma from Fig. 12, all that remains is for the user to instantiate
the locale with her specific pre- and post-condition and provide proofs for the locale

1 https://github.com/seL4/camkes-manifest/tree/FM2015

https://github.com/seL4/camkes-manifest/tree/FM2015

Automated Verification of RPC Stub Code 285

1 Qss swap s0 s r a b a out b out ≡ r = counter s0 + 1 ∧ counter s = r ∧
2 is valid w32 s0 = is valid w32 s ∧
3 a out = b ∧ b out = a

Fig. 13. User-instantiated post-condition

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s p0 out ∧ ptr valid s32 s p1 out ∧
2 distinct [p0 out, p1 out]|}
3 do cs swap marshal p0 p1;
4 ss swap internal;
5 cs swap unmarshal p0 out p1 out
6 od
7 {|λr s. inv s ∧ r = counter s0 + 1 ∧ counter s = r ∧
8 is valid w32 s0 = is valid w32 s ∧
9 ucast (heap w32 s (ptr coerce p0 out)) = p1 ∧

10 ucast (heap w32 s (ptr coerce p1 out)) = p0|}!

Fig. 14. Instantiated generated correctness lemma

assumptions, in particular the correctness of her ss swap function. The natural pre-
condition for this function is that from Fig. 10, but this is already subsumed by the
generated pre-condition in Fig. 12. Therefore the user may instantiate her pre-condition
to just λ s a b. True.

The natural post-condition, shown in Fig. 13, differs slightly from that of Fig. 10 as
well. The first two conjuncts (line 1) are familiar from Fig. 10 and state the modifica-
tion to, and return of, the global counter. The next (line 2) states that the initial state
and the final state have identical sets of valid 32-bit pointers; that is, ss swap does not
invalidate any int pointers. This condition is relied upon by the generated proofs in
assuming that internal pointers used for marshalling and unmarshalling are not invali-
dated by running user code. The final two conjuncts (line 3) are the equivalent of the
final two from Fig. 10, though note that the user can now more conveniently express the
property in terms of values, rather than pointer dereferences.

Having shown that this pre- and post-condition are wellformed and that the user-
provided code is well behaved, the generated lemma is instantiated as shown in Fig. 14.
Note that this is simpler than the generic lemma of Fig. 12 because some of the
pre-conditions can be automatically discharged by simplification. The idea is that this
will always be the case for well-behaved functions.

To demonstrate that this lemma can be used in further hand-written proofs, we con-
sider a sample property of the ss swap function, that swapping two pointers twice
returns the pointers to their original value. This property is shown in Fig. 15 and has
a straightforward proof stemming from the lemma in Fig. 14. Again, as intended, this
final lemma is much simpler than the intermediate generated forms, requiring only the
stub code invariant, the user’s properties of the pointer arguments and inequality of the
two pointers.

286 M. Fernandez et al.

1 {|λs. s = s0 ∧ inv s ∧ ptr valid s32 s x ∧ ptr valid s32 s y ∧ x �= y|}
2 do swap x y;
3 swap y x
4 od
5 {|λ s. inv s ∧
6 ucast (heap w32 s (ptr coerce y)) = ucast (heap w32 s0 (ptr coerce y)) ∧
7 ucast (heap w32 s (ptr coerce x)) = ucast (heap w32 s0 (ptr coerce x))|}!

Fig. 15. Applying generated proofs: swapping pointers twice returns them to their original state

5 Discussion

5.1 Trusting Generated Proofs

Having proven a system property by composing manual proofs with generated proofs,
it is reasonable to ask what elements of the proof infrastructure need to be trusted.
Isabelle/HOL is an LCF-style theorem prover [9], meaning that any proof within it
relies only on the correctness of a small proof kernel. While we retain the assumption
on the correctness of the Isabelle/HOL kernel, we would like to avoid requiring the user
to trust additional tools.

We have not proven correctness of the code and proof generator itself. However, the
proofs it produces are checked by Isabelle/HOL against the representation of the gener-
ated code presented by the C-to-Simpl translation. That means the proof generator does
not need to be trusted, but the C-to-Simpl translation does. As mentioned in Sect. 2.3,
there is separate work that reduces this trust even further and can be used to connect the
Isabelle C semantics directly to binary code [24].

A fully manual proof using the same C verification infrastructure would end up with
the same level of trustworthiness in the resulting property. The automation we provide
saves the user the time and effort on tedious proofs, without increasing her assumptions.

5.2 Assumptions, Limitations and Future Work

Our generated proofs have limitations that we intend to lift in future work. In this section
we make these explicit and discuss how they may be removed.

CAmkES supports a wide range of data types for RPC parameters, including lan-
guage independent types such as int and string, C-specific types such as uint64 t

and more general arbitrary types that are represented by a typedef in C. Additionally,
arrays of any type from these categories are supported. The generated proofs currently
only handle RPC interfaces using C-specific integer types and language independent
types excluding string. This limitation is driven by pragmatics and is not fundamen-
tal to the system design. A future iteration of the tool will support all CAmkES data
types.

The semantics of the seL4 system calls that we use is currently implicitly assumed
in the generated proofs. In particular, we assume that the IPC primitives transfer the
sender’s IPC buffer to the receiver. This is the case in seL4. This implicit assumption
could be eliminated by connecting to the existing seL4 specifications for these system

Automated Verification of RPC Stub Code 287

calls and composing them with the RPC stub proofs. This connection to seL4 would
also solve the following two limitations.

The current structure of the generated proofs would permit heap accesses that cross
component boundaries. This most closely models colocating two components in a single
address space. While the generated proofs do not assume or rely on this property, the
framework currently does not prevent the proof engineer from making use of it. A user-
provided proof written for a context where a global variable of component A is accessible
in component B would be unsound in the case where the components are isolated from
each other. In other words, connecting the model to the full seL4 specification with a
setup where address spaces are not shared, would fail. Future versions of the framework
could enforce this separation of component heaps from the outset using separation logic
[22] and thereby ensure that user-provided proofs will compose correctly in a final system
instance.

As a final limitation, the execution model used in our proofs relies on the seL4 kernel
to be configured correctly. In particular, the proofs in this work describe the correctness
of communication code in a CAmkES system. This communication is effected by oper-
ating on seL4 capabilities, unforgeable access tokens that are distributed to components
on start up. Their presence is necessary to ensure the expected semantics of the system
calls we assume. Furthermore, the absence of additional capabilities to component-
private memory will guarantee isolation between components. An approach for remov-
ing this limitation would be to target the existing seL4 initialisation framework that
has been verified to correctly configure userspace systems [3]. This proof can compose
with our framework, but we do not yet show that the input CAmkES delivers to this
initialiser implements the user’s architecture description.

As far as we are aware none of these limitations are fundamental problems of the
approach. The aim of this paper is to show the feasibility of automatically generating
correctness proofs for glue code. The instantiation of these proofs to the seL4 execution
environment can be achieved separately in future work.

6 Related Work

The proofs of generated code we have presented in this work are produced by the same
tool [14] that generates the RPC stubs themselves. We do not rely on the correctness of
the generator, or any implicit correspondence between the generated code and proofs as
they are checked by Isabelle/HOL. In this sense, our approach is inspired by translation
validation [20] and proof-carrying code [18].

Many verification frameworks have been proposed in the past for dealing with
component-based systems, for example [1, 2, 8]. Our framework provides similar func-
tionality. The work on which we report is not specifically aimed at increasing the ease
of compositional reasoning. Instead, where our work differs is that we do not implicitly
assume the correctness of generated RPC stubs, and instead provide an accompanying
formal proof. To our knowledge, no current component-based verification framework
provides such an automated code-level proof of generated platform code.

288 M. Fernandez et al.

With respect to correct code generation and chained proofs, our work shares aspects
with compiler verification. The CompCert verified compiler [15] and recent extensions
to apply verification across translation units [21] have similarities, but work in a more
controlled environment which enables more automated techniques. Our focus is on pro-
viding a compositional environment for interactive theorem proving that integrates with
a larger interactive proof about the behaviour of the system, allowing the user a high
degree of expressivity and control over the correctness properties they prove.

7 Conclusions

As the amount of code in high assurance systems increases, the only feasible approach
to software verification is the application of compositional techniques. Existing frame-
works for the verification of component-based systems all assume the correctness of
the generated code of the component platform. In this work, we have demonstrated a
technique for removing this assumption in the case of RPC stubs. We have shown how
to compose generated RPC stub proofs with hand-written proofs to eventually yield a
system-level correctness guarantee. By reducing the assumptions in component-based
reasoning, we increase the reach of formal verification and raise the bar for assurance
of large software systems.

Acknowledgements. NICTA is funded by the Australian Government through the Department
of Communications and the Australian Research Council through the ICT Centre of Excellence
Program.

This material is based on research sponsored by Air Force Research Laboratory and the De-
fense Advanced Research Projects Agency (DARPA) under agreement number FA8750-12-9-
0179. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of Air Force Research Laboratory, the
Defense Advanced Research Projects Agency or the U.S. Government.

References

[1] Adamek, J.: Static analysis of component systems using behavior protocols. In: OOPSLA,
Anaheim, CA, US, pp. 116–117 (October 2003)

[2] Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.H., Sifakis, J.: Rigor-
ous component-based system design using the BIP framework. Softw. 28(3), 41–48 (2011)

[3] Boyton, A., et al.: Formally verified system initialisation. In: Groves, L., Sun, J. (eds.)
ICFEM 2013. LNCS, vol. 8144, pp. 70–85. Springer, Heidelberg (2013)

[4] Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning assumptions for composi-
tional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp.
331–346. Springer, Heidelberg (2003)

[5] Cock, D., Klein, G., Sewell, T.: Secure microkernels, state monads and scalable refinement.
In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 167–
182. Springer, Heidelberg (2008)

[6] Fernandez, M., Kuz, I., Klein, G., Andronick, J.: Towards a verified component platform.
In: PLOS, Farmington, PA, USA, p. 6 (November 2013)

Automated Verification of RPC Stub Code 289

[7] Fisler, K., Adsul, B.: Decomposing verification around end-user features. In: Meyer,
B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 74–81. Springer,
Heidelberg (2008)

[8] Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for software
component verification. In: 17th ASE, Edinburgh, UK, pp. 3–12 (September 2002)

[9] Gordon, M.J.C., Milner, R., Wadsworth, C.P. (eds.): Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

[10] Greenaway, D., Andronick, J., Klein, G.: Bridging the gap: Automatic verified ab-
straction of C. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 99–115. Springer, Heidelberg (2012)

[11] Greenaway, D., Lim, J., Andronick, J., Klein, G.: Don’t sweat the small stuff: Formal verifi-
cation of C code without the pain. In: Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Edinburgh, UK, pp. 429–439 (June
2014)

[12] ISO/IEC: Programming languages — C. Technical Report 9899:TC2, ISO/IEC
JTC1/SC22/WG14 (May 2005)

[13] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: seL4: Formal verification of an OS kernel. In: SOSP, Big Sky, MT, USA, pp. 207–220
(October 2009)

[14] Kuz, I., Liu, Y., Gorton, I., Heiser, G.: CAmkES: A component model for secure
microkernel-based embedded systems. Journal of Systems and Software Special Edition on
Component-Based Software Engineering of Trustworthy Embedded Systems 80(5), 687–
699 (2007)

[15] Leroy, X.: Formal certification of a compiler back-end, or: Programming a compiler with a
proof assistant. In: 33rd POPL, Charleston, SC, USA, pp. 42–54 (2006)

[16] Leroy, X.: A formally verified compiler back-end. JAR 43(4), 363–446 (2009)
[17] Murray, T., Matichuk, D., Brassil, M., Gammie, P., Bourke, T., Seefried, S., Lewis, C., Gao,

X., Klein, G.: seL4: from general purpose to a proof of information flow enforcement. In:
IEEE Symp. Security & Privacy, San Francisco, CA, pp. 415–429 (May 2013)

[18] Necula, G.C., Lee, P.: Safe kernel extensions without run-time checking. In: 2nd OSDI,
Seattle, WA, US, pp. 229–243 (October 1996)

[19] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

[20] Pnueli, A., Siegel, M.D., Singerman, E.: Translation validation. In: Steffen, B. (ed.) TACAS
1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

[21] Ramananandro, T., Shao, Z., Weng, S.C., Koenig, J., Fu, Y.: A compositional semantics for
verified separate compilation and linking. In: 4th CPP, Mumbai, India, pp. 3–14 (January
2015)

[22] Reynolds, J.C.: Separation logic: A logic for mutable data structures, Copenhagen, Den-
mark (July 2002)

[23] Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. PhD thesis,
Technische Universität München (2006)

[24] Sewell, T., Myreen, M., Klein, G.: Translation validation for a verified OS kernel. In: PLDI,
Seattle, Washington, USA, pp. 471–481 (June 2013)

[25] Szyperski, C.: Component Software: Beyond Object-Oriented Programming, Essex, Eng-
land (1997)

[26] Trustworthy Systems Team: seL4 v1.03 (August 2014) (release August 10, 2014)
[27] Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: 34th POPL, Nice,

France, pp. 97–108 (January 2007)

290 M. Fernandez et al.

[28] Wenzel, M.: The Isabelle/Isar Reference Manual (August 2014)
[29] Winwood, S., Klein, G., Sewell, T., Andronick, J., Cock, D., Norrish, M.: Mind the gap: A

verification framework for low-level C. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel,
M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 500–515. Springer, Heidelberg (2009)

Property-Driven Fence Insertion Using

Reorder Bounded Model Checking

Saurabh Joshi(�) and Daniel Kroening

Department of Computer Science, University of Oxford, Oxford, UK
{saurabh.joshi,daniel.kroening}@cs.ox.ac.uk

Abstract. Modern architectures provide weaker memory consistency
guarantees than sequential consistency. These weaker guarantees allow
programs to exhibit behaviours where the program statements appear
to have executed out of program order. Fortunately, modern architec-
tures provide memory barriers (fences) to enforce the program order
between a pair of statements if needed. Due to the intricate semantics
of weak memory models, the placement of fences is challenging even for
experienced programmers. Too few fences lead to bugs whereas overuse
of fences results in performance degradation. This motivates automated
placement of fences. Tools that restore sequential consistency in the pro-
gram may insert more fences than necessary for the program to be cor-
rect. Therefore, we propose a property-driven technique that introduces
reorder-bounded exploration to identify the smallest number of program
locations for fence placement. We implemented our technique on top of
Cbmc; however, in principle, our technique is generic enough to be used
with any model checker. Our experimental results show that our tech-
nique is faster and solves more instances of relevant benchmarks than
earlier approaches.

1 Introduction

Modern multicore CPUs implement optimizations such as store buffers and in-
validate queues. These features result in weaker memory consistency guarantees
than sequential consistency (SC) [20]. Though such hardware optimizations of-
fer better performance, the weaker consistency has the drawback of intricate
and subtle semantics, thus making it harder for programmers to anticipate how
their program might behave when run on such architectures. For example, it is
possible for a pair of statements to appear to have executed out of the program
order.

Consider the program given in Fig. 1a. Here, x and y are shared variables
whereas r1 and r2 are thread-local variables. Statements s1 and s3 perform
write operations. Owing to store buffering, these writes may not be reflected
immediately in the memory. Next, both threads may proceed to perform the

This research was supported by ERC project 280053 and by the Semiconductor
Research Corporation (SRC) project 2269.002.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 291–307, 2015.
DOI: 10.1007/978-3-319-19249-9_19

292 S. Joshi and D. Kroening

read operations s2 and s4. Since the write operations might still not have hit the
memory, stale values for x and y may be read in r2 and r1, respectively. This
will cause the assertion to fail. Such behaviour is possible with architectures that
implement Total Store Order (TSO), which allows write-read reordering. Note
that on a hypothetical architecture that guarantees sequential consistency, this
would never happen. However, owing to store buffering, a global observer might
witness that the statements are executed in the order (s2, s4, s1, s3), which results
in the assertion failure. We say that (s1, s2) and (s3, s4) have been reordered.

Fig. 1b shows how the assertion might fail on architectures that implement
Partial Store Order (PSO), which permits write-write and write-read reordering.
Using SC, one would expect to observe r2 == 1 if r1 == 1 has been observed.
However, reordering of the write operations (s1, s2) leads to the assertion failure.
Architectures such as Alpha, POWER and SPARC RMO even allow read-write
and read-read reorderings, amongst other behaviours. Fortunately, all modern
architectures provide various kinds of memory barriers (fences) to prohibit un-
wanted weakening. Due to the intricate semantics of weak memory models and
fences, an automated approach to the placement of fences is desirable.

In this paper, we make the following contributions:

– We introduce ReOrder Bounded Model Checking (ROBMC). In ROBMC, the
model checker is restricted to exploring only those behaviours of a program
that contain at most k reorderings for a given bound k. The reorder bound
is a new parameter for bounding model checking that has not been explored
earlier.

– We study how the performance of the analysis is affected as the bound
changes.

– We implement twoROBMC-based algorithms. In addition, we implement ear-
lier approaches in the same framework to enable comparison with ROBMC.

The rest of the paper is organized as follows. Section 2 provides an overview
and a motivating example for ROBMC. Sections 3 and 4 provide preliminaries
and describe earlier approaches respectively. ROBMC is described in Section 5.
Related research is discussed in Section 6. Experimental results are given in
Section 7. Finally, we make concluding remarks in Section 8.

2 Motivation and Overview

There has been a substantial amount of previous research on automated fence
insertion [3,4,7,11,17,23,24]. We distinguish approaches that aim to restore se-
quential consistency (SC) and approaches that aim to ensure that a user-provided
assertion holds. Since every fence incurs a performance penalty, it is desirable
to keep the number of fences to a minimum. Therefore, a property-driven ap-
proach for fence insertion can result in better performance. The downside of the
property-driven approach is that it requires an explicit specification.

Consider the example given in Fig. 1c. Here, x,y,z,w are shared variables
initialized to 0. All other variables are thread-local. A processor that implements

Property-Driven Fence Insertion Using ROBMC 293

x = 0, y = 0;

s1 : x = 1;
s2 : r1 = y; ‖ s3 : y = 1;

s4 : r2 = x;

assert(r1 == 1||r2 == 1);

(a)

x = 0, y = 0;

s1 : x = 1;
s2 : y = 1; ‖ s3 : r1 = y;

s4 : r2 = x;

assert(r1! = 1||r2 == 1);

(b)

x = 0, y = 0, w = 0, z = 0;

s1 : z = 1;
s2 : p1 = w;
s3 : x = 1;
s4 : r1 = y;

‖
s5 : w = 1;
s6 : p2 = z;
s7 : y = 1;
s8 : r2 = x;

assert(r1 == 1||r2 == 1);
assert(p1+ p2 >= 0);

(c)

Fig. 1. (a) Reordering in TSO. (b) Reordering in PSO. (c) A program with innocent
and culprit reorderings.

total store ordering (TSO) permits a read of a global variable to precede a write
to a different global variable when there are no dependencies between the two
statements. Note that if (s3, s4) or (s7, s8) is reordered, the assertion will be
violated. We shall call such pairs of statements culprit pairs. By contrast, the
pairs (s1, s2) and (s5, s6) do not lead to an assertion violation irrespective of the
order in which their statements execute. We shall call such pairs innocent pairs.
A tool that restores SC would insert four fences, one for each pair mentioned
earlier. However, only two fences (between s3, s4 and s7, s8) are necessary to
avoid the assertion violation.

Some of the earlier property-driven techniques for fence insertion [3, 22] use
the following approach. Consider a counterexample to the assertion. Every coun-
terexample to the assertion must contain at least one culprit reordering. If we
prevent all culprit reorderings, the program will satisfy the property. This is
done in an iterative fashion. For all the counterexamples seen, a smallest set
of reorderings S is selected such that S has at least one reordering in common
with each of the counterexamples. Let us call such a set a minimum-hitting-set
(MHS) over all the set of counterexamples C witnessed so far. All the weaken-
ings in MHS are excluded from the program. Even though MHS may not cover
all the culprit reorderings initially, it will eventually consist of culprit pairs only.
Since one cannot distinguish the innocent pairs from the culprit ones a priori,
such an approach may get distracted by innocent pairs, thus, taking too long to
identify the culprit pairs.

To illustrate, let us revisit the example in Fig. 1c. Let us name the approach
described above Fi (Fence Insertion). Let the first counterexample path π1 be
(s2, s1, s6, s5, s4, s7, s8, s3). The set of reorderings is {(s1, s2), (s3, s4), (s5, s6)}.
Method Fi may choose to forbid the reordering of {(s1, s2)}, as it is one of
the choices for the MHS . Next, let π2 = (s1, s2, s6, s5, s4, s7, s8, s3). The set
of reorderings for this trace is {(s3, s4), (s5, s6)}. There are multiple possible
choices for MHS . For instance, Fi may choose to forbid {(s5, s6)}. Let π3 =
(s2, s1, s5, s6, s8, s3, s4, s7). As the set of reorderings is {(s1, s2), (s7, s8)}, one of
the choices for the MHS is {(s1, s2), (s5, s6)}. Recall that (s1, s2) and (s5, s6)
are innocent pairs. On the other hand, (s3, s4) and (s7, s8) are culprit pairs.
Fi may continue with π4 = (s1, s2, s5, s6, s4, s7, s8, s3). The set of reorderings

294 S. Joshi and D. Kroening

in π4 is {(s3, s4)}. An adversarial MHS would be {(s1, s2), (s3, s4)}. Let π5 be
(s1, s2, s6, s5, s8, s3, s4, s7). The reorderings {(s5, s6), (s7, s8)} will finally lead to
the solution {(s3, s4), (s7, s8)}. In the 6th iteration Fi will find that the program
is safe with a given MHS . For brevity, we have not considered traces with re-
orderings (s1, s4) and (s5, s8). In the worst case, considering these reorderings
might lead to even more traces.

As we can see, the presence of innocent pairs plays a major role in how fast
Fi will be able to find the culprit pairs. Consider a program with many more
innocent pairs. Fi will require increasingly more queries to the underlying model
checker as the number of innocent pairs increases.

To address the problem caused by innocent pairs, we propose Reorder Bounded
Model Checking (ROBMC). In ROBMC, we restrict the model checker to ex-
ploring only the behaviours of the program that have at most k reorderings
for a given reordering bound k. Let us revisit the example given in Fig. 1c
to see how the bounded exploration affects the performance. Assume that we
start with the bound k = 1. Since the model checker is forced to find a coun-
terexample with only one reordering, there is no further scope for an innocent
reordering to appear in the counterexample path. Let the first trace found be
π1 = (s1, s2, s4, s5, s6, s7, s8, s3). There is only one reordering {(s3, s4)} in this
trace. The resulting MHS will be {(s3, s4)}. Let the second trace be π2 =
(s1, s2, s5, s6, s8, s3, s4, s7). As the only reordering is {(s7, s8)}, the MHS over
these two traces would be {(s3, s4)(s7, s8)}. The next query would declare the
program safe. Now, even with a larger bound, no further counterexamples can
be produced. This example shows how a solution can be found much faster with
ROBMC compared to Fi. In the following sections, we describe our approach
more formally.

3 Preliminaries

Let P be a concurrent program. A program execution is a sequence of events.
An event e is a four-tuple

e ≡ 〈tid , in , var , type〉

where tid denotes the thread identifier associated with the event and in denotes
the instruction that triggered the event. Instructions are dynamic instances of
program statements. A program statement can give rise to multiple instructions
due to loops and procedure calls. stmt : Instr → Stmt denotes a map from
instructions to their corresponding program statements. The program order be-
tween any two instructions I1 and I2 is denoted as I1 <po I2, which indicates
that I1 precedes I2 in the program order. The component var denotes the glob-
al/shared variable that participated in the event e. The type of the event is
represented by type, which can either be read or write . Without loss of gener-
ality, we assume that P only accesses one global/shared variable per statement.
Therefore, given a statement s ∈ Stmt, we can uniquely identify the global vari-
able involved as well as the type of the event that s gives rise to. Any execution

Property-Driven Fence Insertion Using ROBMC 295

of program P is a sequence of events π = (e1, . . . , en). The ith event in the
sequence π is denoted by π(i).

Definition 1. A pair of statements (s1, s2) of a program is said to be reordered
in an execution π if:

∃i∃j ((ei.tid = ej .tid) ∧ (π(i) = ei) ∧ (π(j) = ej)

∧ (j < i) ∧ (ei.in = I1 ∧ ej .in = I2)

∧ (I1 <po I2) ∧ (stmt(I1) = s1 ∧ stmt(I2) = s2))

According to Defn. 1, two statements are reordered if they give rise to events
that occurred out of program order.

Definition 2. We write ROA(s1, s2) to denote that an architecture A allows
the pair of statements (s1, s2) to be reordered.

Different weak memory architectures permit particular reorderings of events.

– Total Store Order (TSO): TSO allows a read to be reordered before a
write if they access different global variables.

ROtso(s1, s2) ≡ (s1.var
= s2.var) ∧ (s1.type = write ∧ s2.type = read)

– Partial Store Order (PSO): PSO allows a read or write to be reordered
before a write if they access different global variables.

ROpso(s1, s2) ≡ (s1.var
= s2.var) ∧ (s1.type = write)

Partial-order based models for TSO, PSO, read memory order (RMO) and
POWER are presented in detail in [7].

Definition 3. Let C be a set consisting of non-empty sets S1, . . . , Sn. The set
H is called a hitting-set (HS) of C if:

∀Si∈CH ∩ Si
= ∅

H is called a minimal-hitting-set (mhs) if any proper subset of H is not a hitting-
set. H is a minimum-hitting-set (MHS) of C if C does not have a smaller hitting-
set. Note that a collection C may have multiple minimum-hitting-sets.

4 Property-driven Fence Insertion

4.1 Overview

In this section we will discuss two approaches that were used earlier for property-
driven fence insertion. We will present our improvements in the next section.

For a program P of size |P |, the total number of pairs of statements is |P |2.
Since the goal is to find a subset of these pairs, the search space is 2|P |2 . Thus,
the search space grows exponentially as the size of the program is increased.

An automated method for fence insertion typically includes two components:
(1) a model checker M and (2) a search technique that uses M iteratively in
order to find a solution. We assume that the model checker M has the following
properties:

296 S. Joshi and D. Kroening

– M should be able to find counterexamples to assertions in programs given a
memory model.

– M should return the counterexample π in form of a sequence of events as
described in Section 3.

– For a pair of statements (s1, s2) for which ROA(s1, s2) holds, M should be
able to enforce an ordering constraint s1 ≺ s2 that forbids the exploration
of any execution where (s1, s2) is reordered.

4.2 Fence Insertion Using Trace Enumeration

Alg. 1 is a very simple approach to placing fences in the program with the help
of such a model checker. The algorithm is representative of the technique that
is used in Dfence [24]. Alg. 1 iteratively submits queries to M for a counterex-
ample (Line 7). All the pairs of statements that have been reordered in π are
collected in SP (Line 11). To avoid the same trace in future iterations, reordering
of at least one of these pairs must be disallowed. The choice of which reorderings
must be banned is left open. This process is repeated until no further error traces
are found. Finally, computeMinimalSolution(φ) computes a minimal set of pairs
of statements such that imposing ordering constraints on them satisfies φ.

Termination and Soundness. Even though the programmay have unbounded
loops and thus potentially contains an unbounded number of counterexamples,
Alg. 1 terminates. The reason is that an ordering constraint s1 ≺ s2 disallows
reordering of all events that are generated by (s1, s2). The number of iterations

is bounded above by 2|P |2 , which is the size of the search space. Soundness is
a consequence of the fact that the algorithm terminates only when no coun-
terexamples are found. A minimal-hitting-set (mhs) is computed over all these
counterexamples to compute the culprit pairs that must not be reordered. Since
every trace must go through one of these pairs, it cannot manifest when the
reordering of these pairs is banned. The number of pairs computed is minimal,
thus, Alg. 1 does not guarantee the least number of fences. One can replace the
minimal-hitting-set (mhs) with a minimum-hitting-set (MHS) in order to obtain
such a guarantee.

4.3 Accelerated Fence Insertion

Alg. 2 is an alternative approach to fence insertion. The differences between
Alg. 1 and Alg. 2 are highlighted. Alg. 2 has been used in [22,23] and is a variant
of the approach used in [3]. Alg. 2 starts with an ordering constraint φ (Line 5),
which is initially unrestricted. A call to the model checker M is made (Line 7)
to check whether the program P under the constraint φ has a counterexample.
From a counterexample π, we collect the set of pairs of statements SP that have
been reordered in π (Line 11). This set is put into a collection C.

Next, we compute a minimum-hitting-set over C. This gives us one of the
smallest sets of pairs of statements that can avoid all the counterexamples seen so
far. The original approach in [22] uses a minimal-hitting-set (mhs). The ordering

Property-Driven Fence Insertion Using ROBMC 297

Algorithm 1. Trace Enumerating Fence Insertion (Te)

1. Input: Program P
2. Output: Set S of pairs of statements that must not be reordered to avoid assertion failure
3. C := ∅
4. S := ∅
5. φ := true
6. loop
7. 〈result, π〉 := M(Pφ)
8. if result = SAFE then
9. break
10. end if
11. SP := GetReorderedPairs(π)
12. if SP = ∅ then
13. print Error: Program cannot be repaired
14. return errorcode
15. end if

16. φ := φ ∧
⎛
⎝ ∨

(s1,s2)∈SP

s1 ≺ s2

⎞
⎠

17. end loop
18. S := computeMinimalSolution(φ)
19. return S

Algorithm 2. Accelerated Fence Insertion (Fi)

1. Input: Program P
2. Output: Set S of pairs of statements that must not be reordered to avoid assertion failure
3. C := ∅
4. S := ∅
5. φ := true
6. loop
7. 〈result, π〉 := M(Pφ)
8. if result = SAFE then
9. break
10. end if
11. SP := GetReorderedPairs(π)
12. if SP = ∅ then
13. print Error: Program can not be repaired
14. return errorcode
15. end if

16. C := C ∪ {SP}
17. S := MHS(C)

18. φ :=
∧

(s1,s2)∈S

s1 ≺ s2

19. end loop
20. return S

constraint φ is updated using the minimum-hitting-set (Lines 17–18). Alg. 2 tells
the model checker which reorderings from each counterexample are to be banned
at every iteration, which is in contrast to Alg. 1. Alg. 2 assumes that an assertion
violation in P is due to a reordering. If a counterexample is found without any
reordering, the algorithm exits with an error (Lines 12–15). Finally, the algorithm
terminates when no more counterexamples can be found (Lines 8–10).

Termination and Soundness. The argument that applies to Alg. 1 can also be
used to prove termination and soundness of Alg. 2. In addition, the constraint
φ generated is generally stronger (i.e. φAlg. 2 → φAlg. 1) than the constraint

298 S. Joshi and D. Kroening

generated by Alg. 1. Thus, for the same sequence of traces, Alg. 2 typically
converges to a solution faster than Alg. 1.

5 Reorder-Bounded Exploration

Alg. 2 can further be improved by avoiding innocent reorderings so that culprit
reorderings responsible for the violation of the assertion are found faster.

As discussed in Section 2, Alg. 2 requires many iterations to converge and
terminate in the presence of innocent reorderings. The reason is that the model
checker may not return the simplest possible counterexample that explains the
assertion violation due to reorderings. In order to address this problem, we need
a model checker M ′ with an additional property as follows:

– M ′ takes Pφ and k as inputs. Here, Pφ is the program along with the ordering
constraint φ and k is a positive integer. M ′ produces a counterexample π for
Pφ such that π has at most k reorderings. If it cannot find a counterexample
with at most k reorderings, then it will declare Pφ safe.

With a model checker M ′, we can employ Alg. 3 to speed up the discovery of
the smallest set of culprit pairs of statements. The steps that differ from Alg. 2
in Alg. 3 are highlighted. Alg. 3 initializes the reordering bound k (Line 5) to
a given lower bound K1. The model checker M ′ is now called with this bound
to obtain a counterexample that has at most k reorderings (Line 9). When the
counterexample cannot be found, the bound k is increased according to some
strategy denoted by increaseStrategy (Line 22). Note that collection C and the
ordering constraint φ are preserved even when k is increased. Thus, when k is
increased from k1 to k2, the search for culprit reorderings starts directly with the
ordering constraints that repair the program for up to k1 reorderings. Only those
counterexamples that require more than k1 and fewer than k2 culprit reorderings
will be reported. Let us assume that P does not have any counterexample with
more than kopt reorderings. If kopt is much smaller than k, the performance of
Alg. 3 might suffer due to interference from innocent reorderings. If the increase
in k is too small, the algorithm might have to go through many queries to reach
the given upper bound K2. It can be beneficial to increase the bound k by a
larger amount after witnessing a few successive SAFE queries, and by a smaller
amount when a counterexample has been found recently.

Building M ′. A model checker M ′ that supports bounded exploration can be
constructed from M as follows. For every pair (s1, s2) that can potentially be re-
ordered, we introduce a new auxiliary Boolean variable a12. Then, a constraint
¬a12 ↔ (s1 ≺ s2) can be added. This allows us to enforce the ordering con-
straint s1 ≺ s2 by manipulating values assigned to a12. For a given bound k,
we can enforce a reorder-bounded exploration by adding a cardinality constraint∑

aij ≤ k. This constraint forces only up to k auxiliary variables to be set to

true, thus, allowing only up to k reorderings.

Property-Driven Fence Insertion Using ROBMC 299

Algorithm 3. ROBMC

1. Input: Program P , lower bound K1 and an upper bound K2

2. Output: Set S of pairs of statements that must not be reordered to avoid assertion failure
3. C := ∅
4. S := ∅
5. k := K1

6. φ := true

7. while k ≤ K2 do

8. loop

9. 〈result, π〉 := M ′(Pφ, k)

10. if result = SAFE then
11. break
12. end if
13. SP := GetReorderedPairs(π)
14. if SP = ∅ then
15. print Error: Program cannot be repaired
16. return errorcode
17. end if
18. C := C ∪ {SP}
19. S := MHS(C)

20. φ :=
∧

(s1,s2)∈S

s1 ≺ s2

21. end loop

22. k := increaseStrategy(k)

23. end while

24. return S

Optimizing Alg. 3. Even when the correct solution for the program is found,
Alg. 3 has to reach the upper bound K2 to terminate. This can cause many
further queries for which the model checker M ′ is going to declare the program
SAFE . To achieve soundness with Alg. 3, K2 should be as high as the total
number of all the pairs of statements that can be potentially reordered. This
leads to a very high value for K2, which may reduce the advantage that Alg. 3
has over Alg. 2.

We can avoid these unnecessary queries if the model checker M ′ produces a
proof whenever it declares the program Pφ as SAFE . This proof is analogous to
an unsatisfiable core produced by many SAT/SMT solvers whenever the result
of a query is unsat.1 With this additional feature of M ′, we can check whether
the cardinality constraint

∑
aij ≤ k was the reason for declaring the program

SAFE . If not, we know that P is safe under the ordering constraint φ irrespective
of the bound. Therefore, Alg. 3 can terminate early as shown in Alg. 4. The
difference between Alg. 3 and Alg. 4 is highlighted in Alg. 4. The model checker
M ′ now returns ψ as a proof when Pφ is safe (Line 10). When M ′ declares Pφ

as safe, Alg. 4 checks whether the bound k is the reason that Pφ is declared safe
(Line 12). If not, the termination flag is set to true to trigger early termination
(Line 13).

1 SAT solvers such as MiniSat [13] and Lingeling [10] allow to query whether a given
assumption was part of the unsatisfiable core [14].

300 S. Joshi and D. Kroening

Algorithm 4. ROBMC-Et

1. Input: Program P , lower bound K1 and an upper bound K2

2. Output: Set S of pairs of statements that must not be reordered to avoid assertion failure
3. C := ∅
4. S := ∅
5. k := K1

6. φ := true

7. terminate := false

8. while k ≤ K2 and terminate = false do

9. loop

10. 〈result, π, ψ〉 := M ′(Pφ, k)

11. if result = SAFE then

12. if not safeDueToBound(k, ψ) then

13. terminate := true

14. end if

15. break
16. end if
17. SP := GetReorderedPairs(π)
18. if SP = ∅ then
19. print Error: Program cannot be repaired
20. return errorcode
21. end if
22. C := C ∪ {SP}
23. S := MHS(C)

24. φ :=
∧

(s1,s2)∈S

s1 ≺ s2

25. end loop
26. k := increaseStrategy(k)
27. end while
28. return S

Termination and Soundness. Let the program P have counterexamples with
up to kopt culprit reorderings. If the value of the upper bound K2 for Alg. 3 and
Alg. 4 is smaller than kopt, there might exist traces that the algorithms fail to
explore. For soundness, the value of K2 should thus be higher than kopt. Since
kopt is generally not known a priori, a conservative value of K2 should be equal
to the total number of pairs of statements for which reordering might happen
(ROA(s1, s2) is true). Termination is guaranteed due to finiteness of the number
of pairs of statements and K2.

6 Related Work

There are two principal approaches for modelling weak memory semantics. One
approach is to use operational models that explicitly model the buffers and
queues to mimic the hardware [1, 2, 5, 11, 18, 23, 24]. The other approach is to
axiomatize the observable behaviours using partial orders [6, 7, 9]. Buffer-based
modelling is closer to the hardware implementation than the partial-order based
approach. However, the partial-order based approach provides an abstraction of
the underlying complexity of the hardware and has been proven effective [6].
Results on complexity and decidability for various weak memory models such as
TSO, PSO and RMO are given in [8].

Property-Driven Fence Insertion Using ROBMC 301

[xi = 0; yi = 0;]n

s1 = 0; s2 = 0;

[
xi = 1;
s1+=yi;

]n
‖

[
yi = 1;
s2+=xi;

]n

assert(s1+ s2 >= 0);

Fig. 2. A parameterized program. Here, [st]n denotes that the statement st is repeated
n times.

Due to the intricate and subtle semantics of weak memory consistency and
the fences offered by modern architectures, there have been numerous efforts
aimed at automating fence insertion [3, 4, 7, 11, 15, 17, 22–24]. These works can
be divided into two categories. In one category, fences are inserted in order to
restore sequential consistency [4,7,11]. The primary advantage is that no external
specification is required. On the downside, the fences inferred by these methods
may be unnecessary.

The second category are methods that insert only those fences that are re-
quired for a program to satisfy given properties [2, 3, 22–24]. These techniques
usually require repetitive calls to a model checker or a solver. Dfence is a dy-
namic analysis tool that falls into this category. Our work differs from Dfence
as ours is a fully static approach as compared to the dynamic approach used by
Dfence. A direct comparison with Dfence cannot be made. However, we have
implemented their approach in our framework and we present an experimental
comparison using our re-implementation.

Memorax [3] and Remmex [22, 23] also fall into the category of property-
driven tools. Memorax [1] computes all possible minimal-hitting-set solutions.
Though it computes the smallest possible solution, exhaustively searching for
all possible solutions can make such an approach slow. Moreover, Memorax
requires that the input program is written in rmm — a special purpose language.
Alg. 2 captures what Memorax would do if it has to find only one solution.
Remmex also falls in the category of property-driven tools and their approach
is given as Alg. 2.

Bounded model checking has been used for the verification of concurrent pro-
grams [6, 27]. In context-bounded model checking [19, 27], the number of inter-
leavings in counterexamples is bounded, but executions are explored without
depth limit. ROBMC is orthogonal to these ideas, as here the bound is on the
number of event reorderings.

7 Implementation and Experimental Results

7.1 Experimental Setup

To enable comparison between the different approaches, we implemented all four
algorithms in the same code base, using Cbmc [6] as the model checker. Cbmc

302 S. Joshi and D. Kroening

2 4 6 8 10 12

20

40

60

80

100

120

140

K1

#
in
st
a
n
ce
s
so
lv
ed

tso-te

tso-fi

tso-robmc

tso-robmc-et
pso-te

pso-fi

pso-robmc

pso-robmc-et

(a) # of instances solved

10 20 30 40

0

0.2

0.4

0.6

0.8

1

·104

size parameter n

#
o
f
st
a
te
m
en

t
p
a
ir
s

tso
pso

(b) # of statement pairs

100 101 102
100

101

102

fi

ro
b
m
c-
et

(c) ROBMC-Et (with K1 = 5) v/s Fi

10 20 30 40

101

102

103

104

size parameter n

#
q
u
er
ie
s

peterson-tso

te

fi

robmc

robmc-et

(d) peterson on TSO (K1 = 5)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

peterson-tso

te

fi

robmc

robmc-et

(e) peterson on TSO (K1 = 5)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

peterson-pso

te

fi

robmc

robmc-et

(f) peterson on PSO (K1 = 5)

Fig. 3. For all experiments : Timeout=600 seconds, K2=all pairs of statement (for
soundness)

Property-Driven Fence Insertion Using ROBMC 303

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

dijkstra-tso

te

fi

robmc

robmc-et

(g) dijkstra on TSO (K1 = 5)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

dijkstra-pso

te

fi

robmc

robmc-et

(h) dijkstra on PSO (K1 = 5)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

dijkstra-tso

te

fi

robmc

robmc-et

(i) dijkstra on TSO (K1 = 10)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

dijkstra-pso

te

fi

robmc

robmc-et

(j) dijkstra on PSO (K1 = 10)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

chaselev-tso

te

fi

robmc

robmc-et

(k) ChaseLev on TSO (K1 = 5)

10 20 30 40
0

200

400

600

size parameter n

ti
m
e(
se
c)

chaselev-pso

te

fi

robmc

robmc-et

(l) ChaseLev on PSO (K1 = 5)

Fig. 3. (continued)

304 S. Joshi and D. Kroening

explores loops until a given bound. Our implementation and the benchmarks
used are available online at http://www.cprover.org/glue for independent veri-
fication of our results. The tool takes a C program as an input and assertions in
the program as the specification.

Alg. 1 closely approximates the approach used in Dfence [24]. Alg. 2 resem-
bles the approach used in Remmex [22, 23] and a variant of Memorax [1, 3].
We used Minisat 2.2.0 [13] as the SAT solver in Cbmc. For all four algorithms
incremental SAT solving is used. The cardinality constraints used in Alg. 3 and
Alg. 4 are encoded incrementally [25]. Thus, the program is encoded only once
while the ordering constraints are changed in every iteration using the assump-
tion interface of the solver. The experiments were performed on a machine with
8-core Intel Xeon processors and 48GB RAM. The increaseStrategy(k) used for
algorithms Alg. 3 and Alg. 4 doubles the bound k.

7.2 Benchmarks

Mutual exclusion algorithms such as dekker, peterson [26], lamport [21], dijk-
stra [21] and szymanski [28] as well as ChaseLev [12] and Cilk [16] work stealing
queues were used as benchmarks. All benchmarks have been implemented in C
using the pthread library. For mutual exclusion benchmarks, a shared counter
was added and incremented in the critical section. An assertion was added to
check that none of the increments are lost. In addition, all the benchmarks were
augmented with a parametric code fragment shown in Fig. 2, which increases
the number of innocent pairs as n is increased. The parameter n was increased
from 2 to 40 with an increment of 2. Thus, each benchmark has 20 parametric
instances, which makes the total number of problem instances for one memory
model 140.

7.3 Results

We ran our experiments for the TSO and PSO memory models for all the in-
stances with the timeout of 600 seconds. From now on, we will refer to Alg. 1 as
Te, Alg. 2 as Fi, Alg. 3 as ROBMC and Alg. 4 as ROBMC-Et. In our experi-
ments we found that all algorithms produce the smallest set of fence placement
for every problem instance. Thus, we will focus our discussion on the relative
performance of these approaches.

Fig. 3a shows the effect of changing the value of the parameterK1 in ROBMC
and ROBMC-Et. Remember that the bound is increased gradually from K1 to
K2. Here, K2 is always set to the total number of statement pairs in the program
to guarantee soundness. Te and Fi do not have a parameter K1, and thus, their
corresponding plots are flat. Fig. 3a shows that ROBMC and ROBMC-Et solve
far more instances than Te and Fi. The gap is even wider for the PSO memory
model, which allows more reordering, and thus the number of innocent pairs
are significantly higher compared to TSO on the same program. As expected,
ROBMC-Et performs better, due to the early termination optimization. The

http://www.cprover.org/glue

Property-Driven Fence Insertion Using ROBMC 305

value of K1 barely affects the number of solved instances. The moderate down-
ward trend for the plots as K1 increases suggests that as K1 increases, ROBMC
tends to behave more and more like Fi.

Fig. 3b shows the increase in the total number of statement pairs that can
potentially be reordered as the parameter n (Fig. 2) increases for the Peterson
algorithm. As expected, the number of pairs grows quadratically in n. For PSO,
the increase is steeper, as PSO allows more reordering than TSO. This explains
the better performance of the ROBMC approaches on PSO.

The log-scale scatter plot in Fig. 3c compares the run-time of ROBMC-Et
with K1 = 5 with Fi over all 280 problem instances. Fi times out significantly
more often (data points where both time out are omitted). Even on the instances
solved by both the approaches, ROBMC-Et clearly outperforms Fi on all but
a few instances. Those instances where Fi performs better typically have very
few innocent pairs. Note that the queries generated by ROBMC-Et are more
expensive, as our current implementation uses cardinality constraints to enforce
boundedness. Thus, it is possible for Fi to sometimes perform better even though
it generates a larger number of queries to the underlying model checker.

The semi-log-scale plot in Fig. 3d gives the number of queries to the model
checker required by the approaches for the peterson algorithm on TSO. Te and
Fi generate exponentially many queries to the model checker as n increases.
By contrast, the number of queries generated by ROBMC and ROBMC-Et
virtually remains unaffected by n. This is expected as the search is narrow and
focussed owing to the bound k.

Fig. 3e and Fig. 3f give the relative performance of all the algorithms when
the size and number of innocent pairs increases with the parameter n. All plots
show an exponential trajectory, indicating that ROBMC does not fundamen-
tally reduce the complexity of the underlying problem. Even though the number
of queries required remains constant (Fig. 3d), each such query becomes more
expensive because of the cardinality constraints.

However, the growth rate for ROBMC and ROBMC-Et is much slower com-
pared toTe and Fi. Fig. 3e and Fig. 3f corroborate the claim that ROBMC-based
approaches perform much better when there are a significant number of inno-
cent pairs. For PSO, the performance gained by using ROBMC is even higher, as
PSO allows more reordering. Similar trends are observed for dijkstra algorithm
in Figs. 3g and 3h. Plots in Figs. 3g and 3i as well as Figs. 3h and 3j show
that the performance of ROBMC-based approaches is not highly sensitive to the
value of K1 as it changes from 5 to 10. This is consistent with the observation
made from Fig. 3a.

The performance comparision for the ChaseLev work stealing queue is given in
Figs. 3k and 3l. Here it can be seen that the threshold (in terms of innocent pairs)
needed for ROBMC to surpass other approaches is higher. Even for such a case,
ROBMC still provides competitive performance when the number of innocent
pairs are low. ROBMC regains its superiority towards the end as the number
of innocent pairs increases. Thus, even when every individual query is more
expensive (due to the current implementation that uses cardinality constraints to

306 S. Joshi and D. Kroening

enforce the bound), ROBMC always provides almost equal or better performance
for all the benchmarks.

8 Concluding Remarks

ROBMC is a new variant of Bounded Model Checking that has not been ex-
plored before. Our experimental results indicate substantial speedups when ap-
plying ROBMC for the automated placement of fences on programs with few
culprit pairs and a large number of innocent pairs. In particular, we observe
that the speedup obtained by using ROBMC increases when targeting a weaker
architecture. Thus, ROBMC adds a new direction in bounded model checking
which is worth exploring further.

Acknowledgement. The authors would like to thank Vincent Nimal for helpful dis-
cussions on the related work.

References

1. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
example guided fence insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

2. Abdulla, P.A., Atig, M.F., Lang, M., Ngo, T.P.: Precise and Sound Automatic
Fence Insertion Procedure under PSO. In: Networked Systems (NETYS). LNCS.
Springer (2015)

3. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: MEMORAX,
a precise and sound tool for automatic fence insertion under TSO. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 530–536. Springer,
Heidelberg (2013)

4. Alglave, J., Kroening, D., Nimal, V., Poetzl, D.: Don’t sit on the fence: A static
analysis approach to automatic fence insertion. In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 508–524. Springer, Heidelberg (2014)

5. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification
for weak memory via program transformation. In: Felleisen, M., Gardner, P.
(eds.) ESOP 2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013),
http://dx.doi.org/10.1007/978-3-642-37036-6 28

6. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013)

7. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models
(extended version). Formal Methods in System Design (FMSD) 40(2), 170–205
(2012)

8. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification prob-
lem for weak memory models. In: POPL, pp. 7–18. ACM (2010)

9. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ con-
currency. In: Principles of Programming Languages (POPL), pp. 55–66. ACM
(2011)

10. Biere, A.: Lingeling, http://fmv.jku.at/lingeling/

http://dx.doi.org/10.1007/978-3-642-37036-6_28
http://fmv.jku.at/lingeling/

Property-Driven Fence Insertion Using ROBMC 307

11. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792,
pp. 533–553. Springer, Heidelberg (2013)

12. Chase, D., Lev, Y.: Dynamic circular work-stealing deque. In: Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 21–28. ACM (2005)

13. Eén, N., Sörensson, N.: MiniSatu, http://minisat.se/Main.html
14. Eén, N., Sörensson, N.: Temporal induction by incremental SAT solving. Electr.

Notes Theor. Comput. Sci. 89(4), 543–560 (2003)
15. Fang, X., Lee, J., Midkiff, S.P.: Automatic fence insertion for shared memory mul-

tiprocessing. In: International Conference on Supercomputing (ICS), pp. 285–294.
ACM (2003)

16. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5
multithreaded language. In: Programming Language Design and Implementation
(PLDI), pp. 212–223 (1998)

17. Kuperstein, M., Vechev, M., Yahav, E.: Automatic inference of memory fences. In:
Formal Methods in Computer-Aided Design (FMCAD), pp. 111–120. IEEE (2010)

18. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-coherence abstractions for re-
laxed memory models. In: Programming Language Design and Implementation
(PLDI), pp. 187–198. ACM (2011)

19. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 37–51.
Springer, Heidelberg (2008)

20. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Computers 28(9), 690–691 (1979)

21. Lamport, L.: A fast mutual exclusion algorithm. ACM Trans. Comput. Syst. 5(1),
1–11 (1987)

22. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
relaxed memory systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011. LNCS,
vol. 6823, pp. 144–160. Springer, Heidelberg (2011)

23. Linden, A., Wolper, P.: A verification-based approach to memory fence insertion in
PSO memory systems. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS,
vol. 7795, pp. 339–353. Springer, Heidelberg (2013)

24. Liu, F., Nedev, N., Prisadnikov, N., Vechev, M., Yahav, E.: Dynamic synthesis for
relaxed memory models. In: Programming Language Design and Implementation
(PLDI), pp. 429–440. ACM (2012)

25. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656,
pp. 531–548. Springer, Heidelberg (2014)

26. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process.
Lett. 12(3), 115–116 (1981)

27. Qadeer, S., Rehof, J.: Context-bounded model checking of concurrent software.
In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 93–107.
Springer, Heidelberg (2005)

28. Szymanski, B.K.: A simple solution to Lamport’s concurrent programming prob-
lem with linear wait. In: International Conference on Supercomputing (ICS),
pp. 621–626. ACM (1988)

http://minisat.se/Main.html

Verifying the Safety of a Flight-Critical System

Guillaume Brat1, David Bushnell2, Misty Davies3,
Dimitra Giannakopoulou3, Falk Howar4, and Temesghen Kahsai1(�)

1 Carnegie Mellon University, Pittsburgh, USA
2 AerospaceComputing, Mountain View, USA

3 NASA Ames, Mountain View, USA
4 IPSSE, TU Clausthal, Clausthal-Zellerfeld, Germany

temesghen.kahsaiazene@nasa.gov

Abstract. This paper describes our work on demonstrating verifica-
tion technologies on a flight-critical system of realistic functionality, size,
and complexity. Our work targeted a commercial aircraft control sys-
tem named Transport Class Model (TCM), and involved several stages:
formalizing and disambiguating requirements in collaboration with do-
main experts; processing models for their use by formal verification tools;
applying compositional techniques at the architectural and component
level to scale verification. Performed in the context of a major NASA
milestone, this study of formal verification in practice is one of the most
challenging that our group has performed.

1 Introduction

This paper demonstrates the use of formal verification approaches on a safety-
critical system of realistic functionality, size, and complexity. The work addresses
a major milestone of the NASA Aviation Safety program and was performed over
several months by a team involving four formal verification experts, a senior
software engineer, and an aerospace engineer.

The target of our study is a Simulink model of a twin-engine aircraft simula-
tion named Transport Class Model (TCM). The TCM was selected for a number
of reasons. First, it is unclassified and can therefore be shared outside of NASA.
This is important because we would like the community to benefit from our ex-
perience and to be able to use this as a common benchmark on which additional
verification technologies can be applied. Second, the system was developed inde-
pendently by a different NASA center and therefore we had no prior knowledge
of its potential errors or its design. The setting was therefore similar to one in
which a safety-critical system is handed to verification experts for analysis and
certification where the experts were not involved in the system design.

As the TCM does not come with requirements, we used several sources such as
pilot training manuals and the Federal Aviation Regulations for commercial air-
craft, to develop the relevant requirements for our study. A significant amount

F. Howar did this work while at Carnegie Mellon University.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 308–324, 2015.
DOI: 10.1007/978-3-319-19249-9_20

Verifying the Safety of a Flight-Critical System 309

of our work involved formalizing and disambiguating requirements in collabo-
ration with domain experts. The resulting requirements constitute verification
properties, which we encoded as synchronous observers in Simulink.

The Simulink models that describe the system had to be processed in or-
der to be usable by this study’s verification tools. We used SMT-based model
checking, and in particular PKind [21] to verify the properties. The Simulink
models including the synchronous observers were automatically translated into
the synchronous dataflow language Lustre [4], to be verified by PKind.

A major goal of this work was to experiment with compositional techniques
to enable the scalable use of formal methods for systems of realistic size. Com-
positional verification constructs a verification argument for a complex system
by composing simpler verification results at the level of the system components.
There are several well-known advantages to taking such an approach. Scalability
of verification is a major driver. Through the decomposition of system-level re-
quirements into component-level ones at design time, it is easier to assign clear
responsibilities to the developer of each component. Finally, as components of a
system change or evolve, compositional verification enables the reuse of verifica-
tion results of unchanged components.

The work described in this paper is one of the most challenging verification
exercises that our team has performed. As such, it forced us to define a high-level
methodology for the verification of flight-critical systems, and has enabled us to
comment on advantages and limitations of verification techniques and tools in
handling such systems. We found that close collaboration between verification
and domain experts is required to formalize requirements and, in particular,
assumptions about the physical system, without which verification would fail.
Compositional verification is key in constructing scalable and meaningful proofs
for complex systems in the aeronautics domain.

The remainder of the paper is organized as follows. Section 2 describes the
TCM, while Section 3 discusses the process through which we obtained require-
ments and disambiguated and formalized them for verification. The verification
effort is described in Section 4. The experience and lessons learned from this
substantial effort are discussed in Section 5, with Section 6 placing this effort in
the context of related work.

2 The Transport Class Model

Our target system is derived from NASA Langley’s Transport Class Model
(TCM) [19], a simulator of a mid-size (approximately 250,000 lb.), twin-engine,
commercial transport-class aircraft. The TCM is not intended as a high-fidelity
simulation of any particular transport aircraft. Rather, it is meant to be repre-
sentative of the types of non-linear behaviors of this class of aircraft.

The TCM includes models for the avionics (with transport delay), actuators,
engines, landing gear, nonlinear aerodynamics, sensors (including noise), aircraft
parameters, equations of motion, and gravity. It is primarily implemented in
Simulink, consisting of approximately 5700 Simulink blocks. The system also

310 G. Brat et al.

Fig. 1. The Simulink guidance and controls system for the TCM. The various numbers
represents different input/output signals: (1) input from sensors, (2) input from the
Mode Control Panel (MCP) and the pilot, (3) input from the pilot for yaw and roll,
(4) input roll limit from MCP, (5) input from MCP for the autothrottle, (6) output
command for the actuators.

includes several thousand of lines of C/C++ code in libraries, primarily used
for the engines and the nonlinear aerodynamics models. Our work studies the
guidance and control models and their properties within the overall context of
the TCM system. These models are implemented entirely in Simulink.

Figure 1 depicts the top-level controls Simulink (data-flow) diagram. An air-
craft can be controlled either manually (using a control stick and pedals), or
through the mode control panel (MCP) of the flight computer (autopilot). In
the diagram, pink-shaded boxes with dark outlines (to the left) highlight the
inputs from the pilot and the MCP. Red arrows identify the various controls
subsystems (each subsystem may itself be a complex collection of subsystems),
explained below. The TCM contains inner loop proportional-integral (PI) con-
trollers for all three angular axes of motion (roll, pitch, and yaw). These inner
loop controllers function regardless of whether the pilot flies manually or the
autopilot issues commands. Additionally, the TCM’s autopilot can control alti-
tude (either by flying to a directed altitude, or holding a current altitude), can
reach and maintain a desired flight path angle (FPA), can reach and maintain a
desired heading, and can control the airplane’s speed. Finally, the blue-shaded
box labeled as number 6 shows the collected outputs—the commands to the
actuators.

Verifying the Safety of a Flight-Critical System 311

3 Requirements: Elicitation and Formalization

Written requirements are not available for the autopilot and controls software
of the TCM because it was not intended for embedded production-level code.
The original implementers of the software informed us that their release process
was based on a side-by-side comparison of behaviors between the simulator and
an experimental aircraft. However, for the purpose of our study, we need safety
properties representative of those used in the certification of civil aviation trans-
port vehicles. For this reason, NASA’s Armstrong Flight Research Center chose
relevant requirements from the Federal Aviation Regulations (FARs) governing
commercial aviation transport vehicles (Part 25) [9], such as the following:

FAR-25.672b: The design of the stability augmentation system or of any
other automatic or power operated system must permit initial coun-
teraction of failures of the type specified in section 25.671(c) without
requiring exceptional pilot skill or strength, by either the deactivation
of the system, or a failed portion thereof, or by overriding the failure by
movement of the flight controls in the normal sense.

FAR requirements such as the one above refer to several high-level systems,
but in our study we focus on the Guidance, Navigation, and Control (GNC)
system of Fig. 1. The GNC is divided into three types of components: (i) mode
logic capturing the modes in which the autopilot can operate, how these modes
are enabled and disabled, and which control systems are enabled by particular
modes, (ii) components targeting controllability of the airplane by ensuring that
the actuators can, at any instant, respond appropriately to a command, and (iii)
components ensuring the stability and maneuverability of the aircraft, making
the aircraft robust to state disturbances and easily controlled by the pilot.

The TCM does not contain detailed Simulink models for Navigation. More-
over, classical mathematical techniques like Lyapunov theory [22] provide well-
understood ways of checking stability and maneuverability properties. The for-
mal verification tools that our study targets are better suited for checking mode
logic and simple controllability properties of type (i) and (ii) above. As a conse-
quence, we focus on GNC-level requirements, and sub-requirements (also called
“child"-requirements) that refer exclusively to Guidance. A child-requirement of
the above FAR requirement, is, for example, the following:

GNC-150 : The Guidance Navigation and Control Function shall enable
the pilot to transition the vehicle from one flight condition to another
(i.e. climb to level flight) under all operating conditions including failure
of a single engine.

In order to elicit such higher-level requirements into properties that can be
checked on the components of our case-study, we examined pilot training mate-
rials for the Boeing 737 (B737) Automatic Flight Systems [26]. B737 is within
the class of vehicles that the TCM simulator targets. Within these training ma-
terials were behavioral specifications for the B737 Altitude Acquire, Altitude

312 G. Brat et al.

Hold, and Level Change Modes, equivalent in functionality to the TCM’s Al-
titude Controller. We also used the specifications for the B737 Heading Select
Mode as the desired properties for the TCM Heading Controller, the B737 Glide
Slope Capture mode for the TCM Flight Path Angle Controller, and the B737
autothrottle for the TCM’s autothrottle. We started with 88 GNC requirements,
which we tried, with the help of these B737 documents, to map into safety prop-
erties of the Guidance system. This effort resulted in 20 properties, illustrated in
Table 1. These 20 properties are sub-requirements of GNC-level requirements,
such as the GNC-150 requirement shown above. In the rest of this paper we will
use property G-120 as a running example.

3.1 Formalization

For verification, the properties shown in Table 1 must be disambiguated and
formulated in terms of the signals (inputs and outputs) of the TCM model.
Moreover, they have to be written in a formal language which, in our case, is
Simulink (see Section 4). The requirements formalization process was performed
over several iterations, and involved discussions between domain and verification
experts. It included several steps, presented in this section.

1. Develop a shared understanding of the requirement. Natural language of-
ten allows for slightly different interpretations. In some cases, properties even
interfered or contradicted one another. For example, what does “... to be lim-
ited by minimum and maximum engine performance ...” mean in the context of
G-120? It could mean that (i) the guidance shall be capable to climb when com-
manded to do so, but the climb rate should be limited by engine performance
and airspeed, or that (ii) the guidance is only required to be able to climb when
the defined rate is within the minimum and maximum engine performance. For
all such cases, we consulted with the domain expert on the team to develop a
common understanding and/or we refined properties to be more precise (e.g.,
interpretation a. was selected for property G-120).

2. Decompose the property into a requirement on the control system and as-
sumptions about the physics of the airplane. Since we reason formally only about
controllability, we decomposed the properties into a part that can be proven for-
mally and into corresponding assumptions about stability and physics. Such
assumptions were not formally verified, but were confirmed by domain experts.
For example, while G-120 specifies that the aircraft shall climb at a defined rate,
the control system has got just sensors and actuators. Since we do not math-
ematically specify the physics behavior, we do not have a formal definition of
what it means to climb at a defined rate in terms of the sensor values—instead
we define climbing solely in terms of the actuator commands. Since we focus
on instantaneous controllability, we require that the control system outputs a
value to an actuator that moves the aircraft into the right direction (e.g., if the
current climb rate is smaller than the commanded climb rate, the control system
should issue a command to the ailerons that would pitch the aircraft upwards).
We then assume that the inner loop controllers and physics will result in an
increased climb rate.

Verifying the Safety of a Flight-Critical System 313

Table 1. A summary of verified properties on the TCM

Property Assumptions Original Requirement
1 G-250 G-260 The heading control mode, when selected, sends roll

commands to turn to and maintain the commanded heading.
2 G-110 G-220,G-260 The guidance system shall be capable of steering to and

following a specified heading.
3 G-120 G-180,A1,A2, The guidance shall be capable of climbing at a defined rate, to be

FPA1 limited by minimum and maximum engine performance and airspeed.
4 G-130 G-180,A1,A2 The guidance shall be capable of descending at a defined rate, to be

limited by minimum and maximum engine performance airspeed.
5 G-140 G-120,G-200 The guidance shall be capable of climbing at a specified rate

to a specified altitude, to be limited by maximum engine
performance for a set airspeed

6 G-150 G-180,A1,G-120, The guidance shall be capable of descending at a specified rate
A2,G-200 to a specified altitude, to be limited by maximum engine

performance for a set airspeed
7 G-170 (Mode) – The altitude control shall engage when the altitude control mode

is selected and when the FPA control mode is not selected, and when
there is no manual pitch or manual roll command from the stick.

8 G-180 (Mode) – The FPA control shall engage when the FPA mode
is selected, and when there is no manual pitch or manual roll
command from the stick.

9 G-100 – The Guidance system shall be capable of maintaining a steady speed
in the normal flight envelope.

10 G-200 – If the altitude control is engaged, once the plane is within 250 ft of
the commanded altitude, the plane will remain within 250 ft
of the commanded altitude.

11 G-210 (Mode) – If the FPA control and the altitude control are both selected, the FPA
control will disengage and the altitude control will engage once the
lane is within 200 ft of the commanded altitude.

12 G-220 (Mode) – The heading control shall engage when the heading control mode
is selected, and when there is no manual pitch or manual roll
command from the stick.

13 G-230 – If the altitude control is engaged with no active speed control,
the speed control shall engage and the speed command shall synchronize
to the current speed, which shall become the new altitude’s target speed.

14 G-240 – The bank angle limit is established by the Bank Angle Limit Selector.
15 G-260 (Mode) – When the heading control mode is engaged, roll commands

are given to turn in the nearest direction to the selected heading.
16 G-270 (Mode) – Manually positioning the thrust levers does not cause

autothrottle disengagement.
17 G-290 – The autothrottle will be limited by the max and the min throttle.
18 G-160 – The guidance function shall be able to automatically deploy spoilers

to limit speed in a descent, or when a significant reduction in
airspeed is requested by the pilot, deactivating at low speed.

19 G-280 – The FCCs shall issue a warning when the commanded altitude
disagrees with the stored commanded altitude stored in the FCCs.

20 G-190 – If any control surface actuator loses hydraulic pressure,
the autopilot shall disengage.

314 G. Brat et al.

3. Identify affected components and signals of the control model. At this stage
properties are still formulated in natural language and state vague things like
“The guidance shall be capable ...”. Such expressions cannot be mapped to the
TCM directly. The model describes sensors and signals. We therefore have to
express properties in terms of the signals available in our model. In our study, we
mostly relied on domain experts to help us with this step. In the case of G-120,
we had to refine “being capable” as the concrete situations in which the control
system is expected to act. This could be expressed as “If in FPA-control mode,
and if there is no manual aileron or pitch command from the pilot ...”, which
can be mapped to signals in the model.

4. Decompose the requirement on the control system into sub-requirements on
single components. In some cases, the formalized requirements specify behav-
ior of the complete control system in terms of its global inputs and outputs.
However, proving the requirements marked gray (7-17) in Table 1 required in-
formation about internal signals between lower level components. We therefore
decomposed these requirements into sub-requirements over internal signals be-
tween components. These sub-requirements were not merely slices of the global
property but actual assume/guarantee pairs that we derived manually.

Property G-120, for example, was decomposed as illustrated in Fig. 3 (the
figure displays Lustre code, as translated from Simulink by our compiler). The
decomposition expresses the fact that the FPA control module, when engaged,
is in charge of maintaining an FPA (FPA1). The mode logic ensures that the
guidance system cannot be in Altitude Control mode and FPA control mode
at the same time (i.e., these modes are mutually exclusive). Based on this fact,
the remaining properties express that: – in FPA control mode, the FPA control
module is engaged (G-180); – if not in Altitude control mode, then the Altitude
control module is not engaged (A1), and when not engaged, the Altitude control
module will not send commands (A2). As a result, when in FPA control mode,
the FPA will be the only mode engaged, and it will issue commands to maintain
an FPA, which means that the guidance system is able to climb at a defined
rate.

Property formalization helped us identify missing functionalities in the TCM
model and also led us to refine many properties.

– Three requirements specify behavior for components not modeled by the
TCM (e.g., spoilers). These requirements could not be formalized.

– All properties that included the behavior of the mode logic had to be made
more precise. At this point, the requirements were precise enough to have a
unique formal representation as (temporal) logic formulas over signals of the
TCM.

– We defined five sub-requirements (e.g., A1 and A2 in Fig. 3) for properties
that were verified compositionally.

All requirements except the six for the mode logic and two requirements on
operational limits required making assumptions about the physics of the aircraft.

Verifying the Safety of a Flight-Critical System 315

4 Verification of the TCM

This section describes our verification efforts for the TCM: how we handle
Simulink models, and how we encode and verify properties. The complete TCM
benchmark (Simulink models and Lustre code) can be found in http://tinyurl.
com/FM15-TCM.

4.1 Handling Simulink Models

To apply SMT-based model checking, we compile the TCM Simulink model into
the synchronous dataflow language Lustre [4,15]. In the following, we briefly in-
troduce Lustre and then describe the compilation process and how safety prop-
erties are encoded and verified.

Lustre. Synchronous languages are a class of languages proposed for the de-
sign of reactive systems (i.e., systems that maintain a permanent interaction
with their physical environment). Such languages are based on the theory of
synchronous time, in which the system and its environment are considered to
both view time with some “abstract” universal clock. Lustre combines each data
stream with an associated clock as a means to discretize time. The overall sys-
tem is considered to have a universal clock that represents the smallest time
span the system is able to distinguish, together with additional, coarser-grained,
user-defined clocks. Therefore the overall system may have different subsections
that react to inputs at different frequencies. At each clock tick, the system is
considered to evaluate all streams, so all values are considered stable for any ac-
tual time spent in the instant between ticks. Lustre programs and subprograms
are expressed in terms of Nodes. Nodes directly model subsystems in a modular
fashion, with an externally visible set of inputs and outputs. A node can be seen
as a mapping of a finite set of input streams (in the form of a tuple) to a finite
set of output streams (also expressed as a tuple).

Simulink to Lustre. In Matlab/Simulink from MathWorks c©1, dynamic sys-
tems are modeled as block diagrams. Simulink uses dataflow-oriented block di-
agram notation which consists of blocks and lines. Blocks represent either some
kind of functionality, like mathematical or logical functions, or they are used for
structuring the model in terms of subsystem blocks, port blocks, bus blocks etc.
Every block is defined by its type and its block parameters.

We have developed a tool called GAL [7] (GeneAuto for Lustre) based on the
GeneAuto2 tool set. The latter is a tool for the automatic code generation of
Simulink models to generate C, VHDL and Ada code. Although the development
of the generator was of primary interest, the GeneAuto project also put an
emphasis on the qualification of the tool-chain [28] by providing traceability
information all along the code generation process.
1 http://www.mathworks.com/
2 http://www.geneauto.org

http://tinyurl.com/FM15-TCM
http://tinyurl.com/FM15-TCM
http://www.mathworks.com/
http://www.geneauto.org

316 G. Brat et al.

Fig. 2. Simulink model of the Altitude Controller subsystem with a safety property
encoded as synchronous observer

GAL can only translate a subset of Simulink blocks. This subset can be char-
acterized as a collection of the most basic discrete-time blocks in Simulink. In
a typical controller model built by control engineers, one is likely to encounter
additional blocks such as the transfer function block, the saturation blocks,
the dead-zone block, and the integrator block. These blocks have to first be
transformed into equivalent Simulink models that GAL can handle. We have
developed an automated pre-processor for Simulink models, that transforms an
arbitrary Simulink model into a model “digestible” by GAL. The pre-processor
also generates an equivalence check between the original and transformed mod-
els, modulo finite-precision arithmetic and discretization. The check can be per-
formed using standard simulation techniques supported by Matlab. Note that
our pre-processor provides automated support for transformations that are stan-
dard among aerospace engineers when using the MathWorks c© Simulink Coder3.

Encoding Safety Properties. An extensively used technique to define ex-
pected behavior is synchronous observers [16]. Synchronous observers provide
an alternative to temporal logics for specifying safety properties; the benefit of
observers is that they express properties in the same notation as the system
model [25]. Observers are typically used for simulation and testing purposes. A
synchronous observer is a wrapper used to test observable properties of a node
N with minimal modification to the node itself; it returns an error signal if the
property does not hold. The task of checking the property is thus reduced to
simply checking if the stream is constantly true.

Synchronous observers are expressed in Simulink using a masked subsystem
block. A subsystem block is a container for a set of blocks. Masking a block means
extending it with some additional parameters. An example of such synchronous
observers expressed in Simulink is given in Figure 2. The red block (labeled as
3 http://mathworks.com/products/simulink-coder/

http://mathworks.com/products/simulink-coder/

Verifying the Safety of a Flight-Critical System 317

PROPERTY) encode the safety property expressed as synchronous observer.
GAL translates these blocks as a property annotation to be proven in Lustre.

Specifically, a Lustre observer is a node taking as input all the flows relevant
to the safety property to be specified, and computing a Boolean flow (e.g., “Obs”
in Fig. 3) which is true as long as the observed flow satisfies the property. We
have used PKind [21] to prove the safety properties of Lustre programs. PKind
is a parallel k-induction-based model checker [21], which includes automated
invariant generation based on templates [20] and abstract interpretation [12].

4.2 Safety Verification Results

Table 1 list 20 safety properties on the TCM model. At the beginning of the ver-
ification process, we discovered several modeling errors within the TCM, which
led to the falsification of some properties:

1. Some components produced output when disabled (e.g., the altitude con-
troller). This happened because the TCM model given to us was incomplete:
the mode logic was not implemented completely (which also affected the
mode logic properties). We remedied these problems by incorporating the
necessary mode logic into the model.

2. Manual inputs from the pilot did not override the outputs of the autopilot
for all three axes. This was again due to an incompleteness in the TCM
model. We added a Simulink block (before the final output of the autopilot)
to reflect the fact a pilot has the ability to override the autopilot output.

3. Some inputs were not variables but appeared as fixed constant values in the
model (e.g., the bank angle limit of G-240). This was simply a modeling
error, and it was easily corrected by modifying the appropriate variables.

4. G-180 had to be refined to resolve a conflict with G-210 and the implicit
assumption that only the FPA control or the altitude control can be active at
any moment in time.

The results obtained for verification after the above changes are described
in Table 1. The properties are colored according to the verification technique
used. Gray properties (7-17) are the ones proved via a compositional argument.
Green properties (1-6) are the ones proved with a direct (non-compositional)
proof technique. Red properties (17-20) are the ones that could not be proven
on this specific model of the TCM. The latter properties applied to the B737
vehicle (see Section 3), however they referenced functionalities not implemented
in the TCM. It took an average of two seconds for PKind to verify the green
properties.

All properties were first attempted directly, without a compositional argument.
PKind was unable to verify the gray properties, despite a very high timeout setting
(5 hours). Since k-induction is sound but not complete, this result has two pos-
sible interpretations: these properties are k-inductive for an extremely high k or,
more plausibly, they are not k-inductive for any k. We have also tried other Lustre
verification tools based on different verification techniques. Specifically, we used

318 G. Brat et al.

Kind-24 and Zustre5. Kind-2 is a complete re-implementation of PKind that also
adds a verification engine based on IC3 [2], while Zustre is a tool based on the
generalized property-oriented reachability implemented in Z3 [17]. Both tools
were not able to prove the gray properties.

In a second step, we decomposed the properties either in terms of component-
level properties (e.g. G-120, G-130, G-140, G-150), or in “simpler” properties to
deal with (e.g. G-250, G-110). We now give details of the compositional analysis
of G-120 (see Section 3 for the natural language description). This property
involves 3 components of the TCM longitudinal control system: the Mode Logic,
the Altitude controller and the Flight Path Angle (FPA) controller. In order to
prove G-120, we decomposed the property into 4 component-level properties:
G-180 and A1 for the Mode Logic; A2 for the Altitude controller and FPA1
for the FPA controller. After proving the component level properties, one still
needs to make a formal compositional argument that these properties imply the
system-level property G-120. The latter argument is captured in Figure 3. The
upper box shows the Lustre nodes of the various components involved in G-120.
Each component comes with its own guarantees. Such guarantees are used as
assumptions in proving G-120 (described in the lower box).

5 Lessons Learned

This section summarizes our experience and lessons learned from the applica-
tion of formal verification to the TCM case study. Some findings confirmed our
expectations: for example, we anticipated the fact that we would need to con-
sult with domain experts both for requirements elicitation, and for assumption
generation. We had, however, underestimated the extent to which this would be
required. Others surprised us: it took an extremely long time to identify a case
study that is both representative of flight-critical systems, and publicly avail-
able; the requirements elicitation and formalization phases were also much more
involved than we expected. Regarding how far we would be able to go with this
case study, we had no expectations to begin with, since we knew nothing about
the system that we analyzed when we started our work.

1. Case studies are hard to find. It is difficult to obtain real case studies that
are not proprietary and that can be shared outside an institution. The TCM is
available for General Purpose Release from NASA Langley, with case number of
LAR-18322-1. The process for obtaining the code is detailed in the latest NASA
Software Catalog6.

2. System description must be massaged. Despite the progress in automating
verification techniques, a huge amount of effort still needs to be placed in such
a task. First of all, it is rare that verification tools are able to directly handle
all the features of the languages in which systems are expressed. Despite the
race towards keeping verification tools up-to-date, modeling or programming
4 http://kind2-mc.github.io/kind2/
5 www.bitbucket.org/lememta/zustre
6 http://technology.nasa.gov/NASA_Software_Catalog_2014.pdf

http://kind2-mc.github.io/kind2/
www.bitbucket.org/lememta/zustre
http://technology.nasa.gov/NASA_Software_Catalog_2014.pdf

Verifying the Safety of a Flight-Critical System 319

node AutoP i l o t (HeadMode , A i l S t i c k , E l e vS t i c k , AltMode : r e a l ;
FPAMode , ATMode , AltCmd , A l t i t ude , CAS ,CASCmdMCP : r e a l ;)

r e t u r n s (HeadEng , AltEng , FPAEng , ATEng : boo l ; CASCmd : r e a l) ; l e t
−− G−180
a s s e r t (FPAMode = 0 . 0) or (not (A i l S t i c k = 0 . 0)) or

(not (E l e v S t i c k = 0 . 0)) or (FPAEng = t rue) ;
−− A1
a s s e r t (not (AltMode= 0 . 0)) or (AltEng = f a l s e) ;

t e l

node A l t i t u d eCo n t r o l (AltEng : boo l ; AltCmd , A l t : r e a l ;
GsKts , Hdot , HdotChgRate : r e a l)

r e t u r n s (AltGammaCmd : r e a l) ;
l e t
−− A2
a s s e r t (AltEng = t rue) or (AltGammaCmd = 0 . 0) ;

t e l

node FPAControl (Engage : boo l ; AltGammaCmd , Gamma: r e a l ;
ThetaDeg , VT: r e a l)

r e t u r n s (PitchCmd , PrePitchCmd : r e a l) ;
l e t
−− FPA1
a s s e r t t r u e −> (Engage = f a l s e) or (AltGammaCmd = Gamma)
or ((AltGammaCmd > Gamma) and (PitchCmd > pre (PrePitchCmd)))
or ((AltGammaCmd < Gamma) and (PitchCmd < pre (PrePitchCmd))) ;

t e l

node G−120 (HeadMode , A i l S t i c k , E l e vS t i c k , AltMode : r e a l ;
FPAMode , ATMode , AltCmd , A l t i t ude , CAS : r e a l ;
CASCmdMCP, Gskts , Hdot , HDotChgRate , GammaCmd : r e a l ;
Gamma, ThetaDeg , VT: r e a l)

r e t u r n s (Obs : boo l) ; var
AltGammaCmd , FPain , TAlt , TFpa : r e a l ;
HeadEng , AltEng , FPAEng , ATEng : boo l ;
CasCmd , PitchCmd , PreP i tch : r e a l ;

l e t
HeadEng , . . . , CasCmd = AutoP i l o t (HeadMode , . . . , CASCmdMCP) ;
AltGammaCmd = A l t i t u d eC on t r o l (AltEng , . . . , HDotChgRate) ;
PitchCmd , PreP i tch = FPAControl (FPAEng , . . . , VT) ;

a s s e r t FPain = (AltGammaCmd + GammaCmd) ;
a s s e r t (AltMode = 0 . 0) ;
a s s e r t (not (FPAMode = 0 . 0)) ;
a s s e r t (E l e v S t i c k = 0 . 0) ;
a s s e r t (A i l S t i c k = 0 . 0) ;
a s s e r t (GammaCmd > 1.0 and GammaCmd < 1 0 . 0) ;

Obs = t r ue −> (GammaCmd = Gamma)
or ((GammaCmd > Gamma) and (PitchCmd > pre (p r eP i t c h)))
or ((GammaCmd < Gamma) and (PitchCmd < pre (PreP i tch))) ;

−−!PROPERTY: obs = t r u e ;
t e l

Fig. 3. Compositional argument for G-120 property

languages are typically a step ahead. There is therefore always an initial step
involved, where the system description is massaged to be handled by the targeted
verification tools.

3. Requirements elicitation. Requirements of flight-critical systems are often
hard to identify [14,13]. Even when requirements are available, they are very

320 G. Brat et al.

often written in natural language and need to be translated into a clear notation
with unambiguous semantics. We had seriously underestimated the effort that
would be required in coming up with requirements that we could verify. We in-
volved collaborators from NASA’s Armstrong Flight Research Center, and still
required a lot of additional effort to bridge high-level requirements with verifi-
able, component-level ones. It is the first time that we had to tackle requirements
starting from FARs, and we appreciate the complexity of certification tasks, and
the use of safety cases to organize them [6] (we used safety case tools to organize
our requirements, but cannot present this work here due to limited space).

4. Incomplete requirements and assumptions. Our case study confirmed that
requirements are often incomplete or even wrong. Developers often make as-
sumptions about the physics or the environment of a system that are not ex-
plicitly expressed, and without which requirements do not hold. The capability
to analyze requirements with automated tools is invaluable in identifying such
problems with requirements. For example, the analysis we performed for prop-
erty G-120 (see Section 4) revealed the fact that an implicit assumption needed
to be formalized and become part of the requirements.

5. Scalability. The amount of progress in automating verification has been sub-
stantial. However, there will always be properties and systems on which the ver-
ification does not scale, unless more sophisticated compositional approaches are
introduced to break the problem into smaller, more manageable, tasks. Compo-
sitional verification was needed to address 6 of the 20 requirements that we stud-
ied (gray properties in Figure 1). Decomposing requirements was a non-trivial,
manual task. Although our tools for this type of system do not directly support
automated assumption generation and compositional verification yet, we believe
that such techniques could facilitate the application of our approaches [18].

6. Domain expertise. Our case study proved that we are not yet at the point
where formal verification can occur in the absence of domain expertise. All of the
activities in observations 2, 3, and 4 above, required extensive discussion with a
domain expert that was part of the team assembled for this study.

7. Verification tools. Automated formal verification tools have made tremen-
dous progress in recent years. They are able to cope with the growing complexi-
ties of systems. In our work, this was the key enabler in carrying out the safety
analysis of TCM. Specifically, SMT-based model checking was quite effective in
discharging the safety properties. In certain components of the TCM we had to
deal with nonlinear arithmetic operations (e.g., trigonometric functions). While
nonlinear arithmetic operations are not fully supported in current SMT solvers,
we were able to cope with that by using uninterpreted functions7. Handling
nonlinear arithmetic operations is essential for the verification of flight-critical
systems; it is therefore desirable to develop tools that can robustly handle these
features.

7 The idea is to substitute nonlinear functions with uninterpreted one. This could lead
to non-feasible counterexamples. In this case we add additional constraints to the
uninterpreted function in order to eliminate such counterexamples.

Verifying the Safety of a Flight-Critical System 321

9. Level of effort. Verifying the TCM required approximately three person
months (see Table 2), with the involvement of verification and aeronautics ex-
perts. Most of our time was spent eliciting the properties, formalizing them, and
creating the assumptions about the physical environment that we need for ver-
ification. We also spent several weeks working towards utilizing our verification
within a future safety case effort. The actual verification process was automated,
and required the least time.

Table 2. TCM verification: Approximate level-of-effort

Effort Person Months
Implementation (Tools) 0.50
Preparation of Models 0.50
Property Elicitation 0.25

Formalization (Relation to model) 0.50
Physical Assumptions 0.50

Compositional Arguments 0.25
Verification 0.20

Safety Case Generation 0.50

6 Related Work

Our aim in designing this study was to make it as realistic, independent, and
shareable as possible, and hence we targeted a system that is representative
of flight-critical systems, that was developed outside our group, and that is
available to the research community. It is hard to find realistic studies in the
research community that are not proprietary and that can therefore be used as
benchmarks.

In recent work, we have applied probabilistic verification and synthesis tech-
niques to analyze the ACAS X onboard collision avoidance system [29]. More-
over, we have developed a testing infrastructure for the automated analysis of
the AutoResolver air-traffic control system, aimed at the prediction and resolu-
tion of aircraft loss of separation [14]. A previous large study performed by our
group aimed at comparing model checking, static analysis, runtime analysis and
testing, through their application for finding bugs in the Executive component
of an autonomous robot developed at NASA Ames [3]. These systems are not
publicly available.

Several studies related to the verification of flight-critical systems have been
performed by Rockwell Collins. In [23], the authors report on the use of their
automated framework to verify Simulink and Stateflow designs of three aeronau-
tics components: the ADGS-2100 Window Manager, for ensuring that data from
different applications is routed to the correct aircraft display panel; two compo-
nents of the operational flight program of an unmanned aerial vehicle developed
by Lockheed Martin Aerospace, one involving redundancy management, and the
other one in charge of generating actuator commands for the aircraft’s six con-
trol surfaces. These studies confirmed the applicability and benefits of formal

322 G. Brat et al.

verification techniques in the design of flight-critical systems. The commercial
components that were targeted are not publicly available.

More recently, Rockwell Collins has developed compositional techniques for
scalable verification of architectural models expressed in the AADL language [5].
The Astrée static analyzer has been used to prove the absence of runtime errors
from two Airbus components implemented in C [27], as well as from a C ver-
sion of the automatic docking software of the Jules Vernes Automated Transfer
Vehicle (ATV) enabling ESA to transport payloads to the International Space
Station [1]. Galdino et al [10] used the PVS theorem prover to formally verify
an air-traffic control resolution and recovery algorithm. In the domain of hybrid
system verification, Platzer and Clarke [24] have applied the KeYmaera verifi-
cation tool to prove properties of curved flight collision avoidance maneuvers.
Esteve et al. have applied a probabilistic model checker to determine properties
of an early design spacecraft model for the European Space Agency [8].

For an extensive study of success stories related to the application of formal
verification in practice, we refer the reader to the technical report by Garavel and
Graf [11]. Note that in this paper we focus on case studies related to avionics;
several other studies of safety-critical systems have been performed, for example
in the contexts of medical devices and of the automotive industry.

7 Conclusion

To summarize, we demonstrated a verification approach for the TCM controls
system: a publicly available, realistic and complex flight-critical system of moder-
ate size. This study required a significant amount of effort from a team made up
of both verification and domain experts. Compositional verification was required
to prove some of the safety properties of the system. The only safety properties
we did not prove in this study were those in which the desired functionality had
not actually been modeled. Our experience highlights the promise of composi-
tional verification in the certification of flight-critical systems. In practice, we
saw that the most significant part of our effort was in defining and formalizing
the appropriate properties, starting from high-level FARs requirement, all the
way down to properties of the target system.

Acknowledgment. This work was funded by the System-wide Safety Assurance Tech-
nologies project in the Aviation Safety program at NASA ARMD. T. Kahsai and
F. Howar were partially supported by the NASA Contract No. NNX14AI09G. The au-
thors wish to thank Bob Antoniewicz and his group at the NASA’s Armstrong Flight
Research Center for the work they did tracing the Federal Aviation Regulation require-
ments down to the high-level aircraft systems, and also for contributing their domain
expertise towards the aircraft behavior formalization.

This research was conducted at NASA’s Ames Research Center. Reference herein to
any specific commercial product, process, or service by trade name, trademark, man-
ufacturer, or otherwise, does not constitute or imply its endorsement by the United
States Government.

Verifying the Safety of a Flight-Critical System 323

References

1. Bouissou, O., Conquet, E., Cousot, P., Cousot, R., Feret, J., Ghorbal, K., Goubault,
E., Lesens, D., Mauborgne, L., Miné, A., Putot, S., Rival, X., Turin, M.: Space
software validation using abstract interpretation. In: Proc. of the Int. Space System
Engineering Conf., Data Systems in Aerospace, vol. SP-669, pp. 1–7. ESA (2009)

2. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt,
D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)

3. Brat, G.P., Drusinsky, D., Giannakopoulou, D., Goldberg, A., Havelund, K., Lowry,
M.R., Pasareanu, C.S., Venet, A., Visser, W., Washington, R.: Experimental eval-
uation of verification and validation tools on Martian rover software. Formal Meth-
ods in System Design 25(2-3), 167–198 (2004)

4. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: Lustre: a declarative language
for real-time programming. In: Proceedings of the 14th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages, POPL 1987, pp. 178–188.
ACM (1987)

5. Cofer, D., Gacek, A., Miller, S., Whalen, M., LaValley, B., Sha, L.: Compositional
verification of architectural models. In: Goodloe, A., Person, S. (eds.) NFM 2012.
LNCS, vol. 7226, pp. 126–140. Springer, Heidelberg (2012)

6. Denney, E., Pai, G., Pohl, J.: AdvoCATE: An assurance case automation toolset.
In: SAFECOMP Workshops, pp. 8–21 (2012)

7. Dieumegard, A., Garoche, P.-L., Kahsai, T., Taillar, A., Thirioux, X.: Compilation
of synchronous observers as code contracts. In: The 30th ACM/SIGAPP Sympo-
sium on Applied Computing (2015)

8. Esteve, M., Katoen, J., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal correct-
ness, safety, dependability, and performance analysis of a satellite. In: 34th Inter-
national Conference on Software Engineering, ICSE 2012, pp. 1022–1031 (2012)

9. Federal Aviation Administration. Electronic code of federal regulations
10. Galdino, A.L., Muñoz, C., Ayala-Rincón, M.: Formal verification of an optimal air

traffic conflict resolution and recovery algorithm. In: Leivant, D., de Queiroz, R.
(eds.) WoLLIC 2007. LNCS, vol. 4576, pp. 177–188. Springer, Heidelberg (2007)

11. Garavel, H., Graf, S.: Formal methods for safe and secure computer systems. Tech-
nical Report BSI-Study 875, Bundesamt fuer Sicherheit in Informationstechnik
(December 2013)

12. Garoche, P.-L., Kahsai, T., Tinelli, C.: Incremental invariant generation using logic-
based automatic abstract transformers. In: Brat, G., Rungta, N., Venet, A. (eds.)
NFM 2013. LNCS, vol. 7871, pp. 139–154. Springer, Heidelberg (2013)

13. Giannakopoulou, D., Bushnell, D.H., Schumann, J., Erzberger, H., Heere, K.: For-
mal testing for separation assurance. Ann. Math. Artif. Intell. 63(1), 5–30 (2011)

14. Giannakopoulou, D., Howar, F., Isberner, M., Lauderdale, T., Rakamaric, Z.,
Raman, V.: Taming test inputs for separation assurance. In: 19th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2014) (2014)

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow
programming language Lustre. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

16. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers and the verifica-
tion of reactive systems. In: AMAST, pp. 83–96 (1993)

17. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012)

324 G. Brat et al.

18. Howar, F., Giannakopoulou, D., Rakamaric, Z.: Hybrid learning: interface genera-
tion through static, dynamic, and symbolic analysis. In: International Symposium
on Software Testing and Analysis, ISSTA, pp. 268–279 (2013)

19. Hueschen, R.M.: Development of the Transport Class Model (TCM) aircraft sim-
ulation from a sub-scale Generic Transport Model (GTM) simulation. Technical
report, NASA, Langley Research Center, Hampton, VA (August 2011)

20. Kahsai, T., Ge, Y., Tinelli, C.: Instantiation-based invariant discovery. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 192–206. Springer, Heidelberg (2011)

21. Kahsai, T., Tinelli, C.: PKIND: a parallel k-induction based model checker. In:
PDMC. EPTCS. EPTCS, vol. 72, pp. 55–62 (2011)

22. Lyapunov, A.: General problem of the stability of motion. PhD thesis, Univ.
Kharkov (1892)

23. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

24. Platzer, A., Clarke, E.M.: Formal verification of curved flight collision avoidance
maneuvers: A case study. In: Cavalcanti, A., Dams, D. (eds.) FM 2009. LNCS,
vol. 5850, pp. 547–562. Springer, Heidelberg (2009)

25. Rushby, J.: The versatile synchronous observer. In: Gheyi, R., Naumann, D. (eds.)
SBMF 2012. LNCS, vol. 7498, pp. 1–1. Springer, Heidelberg (2012)

26. SmartCockpit. B737 automatic flight systems summary
27. Souyris, J., Delmas, D.: Experimental assessment of Astrée on safety-critical avion-

ics software. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS, vol. 4680,
pp. 479–490. Springer, Heidelberg (2007)

28. Toom, A., Izerrouken, N., Naks, T., Pantel, M., Ssi-Yan-Kai, O.: Towards reliable
code generation with an open tool: Evolutions of the Gene-Auto toolset. In: ERTS.
Société des Ingénieurs de l’Automobile (2010), http://www.sia.fr

29. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne colli-
sion avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 620–635. Springer, Heidelberg (2014)

http://www.sia.fr

Proving Safety with Trace Automata

and Bounded Model Checking

Daniel Kroening1, Matt Lewis1(�), and Georg Weissenbacher2

1 University of Oxford, Oxford, UK
2 Vienna University of Technology, Wien, Austria

matt@cantab.net

Abstract. Loop under-approximation enriches C programs with addi-
tional branches that represent the effect of a (limited) range of loop
iterations. While this technique can speed up bug detection significantly,
it introduces redundant execution traces which may complicate the ver-
ification of the program. This holds particularly true for tools based on
Bounded Model Checking, which incorporate simplistic heuristics to de-
termine whether all feasible iterations of a loop have been considered.

We present a technique that uses trace automata to eliminate redun-
dant executions after performing loop acceleration. The method reduces
the diameter of the program under analysis, which is in certain cases
sufficient to allow a safety proof using Bounded Model Checking. Our
transformation is precise—it does not introduce false positives, nor does
it mask any errors. We have implemented the analysis as a source-to-
source transformation, and present experimental results showing the ap-
plicability of the technique.

1 Introduction

Software verification can be loosely divided into two themes: finding bugs and
proving correctness. These two goals are often at odds with one another, and it
is rare that a tool excels at both tasks. This tension is well illustrated by the
results of the 2014 Software Verification Competition, in which several of the
best-performing tools were based on Bounded Model Checking (BMC) [5]. The
BMC-based tools were able to quickly find bugs in the unsafe programs, but were
unable to soundly prove safety for the remaining programs. Conversely, many of
the sound tools had difficulty in detecting bugs in the unsafe programs.

The reasons for this disparity are rooted in the very nature of contemporary
verification tools. Tools aiming at proof typically rely on over-approximating
abstractions and refinement techniques to derive the loop invariants required
(e.g., [14,23]). For certain classes of programs, invariants can be found efficiently
using templates [4] or theorem provers [16]. For unsafe programs, however, any

This research was supported by ERC project 280053, the Austrian National Research
Network S11403-N23 (RiSE) and the LogiCS doctoral program W1255-N23 of the
Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grant VRG11-005.

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 325–341, 2015.
DOI: 10.1007/978-3-319-19249-9_21

326 D. Kroening et al.

attempt to construct a safety invariant must necessarily fail, triggering numerous
futile refinement iterations before a valid counterexample is detected. Verifiers
based on the BMC paradigm (such as Cbmc [8]), on the other hand, are able to
efficiently detect shallow bugs, but are unable to prove safety in most cases.

The key principle of this paper is that BMC is able to prove safety once the
unwinding bound exceeds the reachability diameter of the model [5, 20]. The
diameter of non-trivial programs is however in most cases unmanageably large.
Furthermore, even when the diameter is small, it is often computationally expen-
sive to determine, as the problem of computing the exact diameter is equivalent
to a 2-QBF instance.

The contribution of this paper is a technique that reduces the diameter of a
program in a way that the new, smaller diameter can be computed by means of
a simple satisfiability check. The technique has two steps:

1. We first identify potentially deep program paths that can be replaced by a
concise single-step summary called an accelerator [6, 7, 12].

2. We then remove those paths subsumed by the accelerators from the program
using trace automata [13].

The resulting program preserves the reachable states of the original program,
but is often very shallow, and consequently, we can obtain a sound verification
result using BMC.

Our paper is organised as follows: We present a number of motivating exam-
ples and an outline of our approach in Section 2. Section 3 presents our notation,
recapitulates the concept of a reachability diameter, and introduces a generalised
notion of the under-approximating accelerators presented in [17, 19]. Section 4
describes the construction of accelerated programs and discusses the resulting re-
duction of the reachability diameter of the program. In Section 5, we introduce
restricting languages and trace automata as a means to eliminate redundant
transitions from accelerated programs. The experimental evaluation based on a
selection of SV-COMP14 benchmarks is presented in Section 6. Finally, Section 7
briefly surveys related work.

2 Motivation

In this section we will discuss the differences between proving safety and finding
bugs, with reference to some SV-COMP14 benchmarks, and informally demon-
strate why our method is effective for both kinds of analyses.

The program in Figure 1, taken from the Loops category of SV-COMP14,
proved challenging for many of the participating tools, with only 6 out of the 12
entrants solving it correctly. A proof of safety for this program using an abstract
interpreter requires a relational domain to represent the invariant x + y = N,
which is often expensive.

The program in Figure 2 resembles the one in Figure 1, except for the negated
assertion at the end. This example is very easy for Bounded Model Checkers,
which are able to discover a bug in a single unwinding by assigning N = 1.

Proving Safety with Trace Automata and Bounded Model Checking 327

A slight modification, however, illustrated in Figure 3, increases the number of
loop iterations required to trigger the bug to 106, exceeding the capability of
even the best BMC-based verification tools.

unsigned N := ∗;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y+ 1;

}
assert (y = N);

Fig. 1. Safe program

unsigned N = ∗;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y+ 1;

}
assert (y �= N);

Fig. 2. Unsafe program

unsigned N := 106;
unsigned x := N, y := 0;
while (x > 0) {

x := x− 1;
y := y+ 1;

}
assert (y �= N);

Fig. 3. “Deep” bug

The relative simplicity of the program statements in Figures 1 to 3 makes
them amenable to acceleration [6, 7, 12], a technique used to compute the effect
of the repeated iteration of statements over integer linear arithmetic. Specifically,
the effect of i loop iterations is that x is decreased and y is increased by i. Ac-
celeration, however, is typically restricted to programs over fragments of linear
arithmetic for which the transitive closure is effectively computable, thus re-
stricting its applicability to programs whose semantics can be soundly modelled
using unbounded integers. In reality, however, the scalar variables in Figures 1
to 3 take their values from the bounded subset {0, . . . , (232 − 1)} of the posi-
tive integers N0. Traditional acceleration techniques do not account for integer
overflows. To address this problem, we previously introduced under-approximate
acceleration, bounding the acceleration to the interval in which the statements
behave uniformly [17, 19].

The code snippet in Figure 4 represents an under-approximating accelerator
for the loop bodies in Figures 1, 2, and 3. We introduce an auxiliary variable
i representing a non-deterministic number of loop iterations. The subsequent
assumption guarantees that the accelerated code reflects at least one iteration
(and is optional in this example). The assumption that follows warrants the
feasibility of the accelerated trace (in general, this condition may contain quan-
tifiers [17, 19]). The effect of i iterations is encoded using the two assignment
statements, which constitute the closed forms of the recurrence relations corre-
sponding to the original assignments. The final assumption guarantees that i lies
in the range in which the right-hand sides of the assignments behave linearly.

In general, under-approximating accelerators do not reflect all feasible itera-
tions of the loop body. Accordingly, we cannot simply replace the original loop
body. Instead, we add back the accelerator as an additional path through the
loop, as illustrated in Figure 5.

The transformation preserves safety properties—that is to say, an accelerated
program has a reachable, failing assertion iff the original program does. We can
see that the failing assertion in Figure 5 is reachable after a single iteration of
the loop, by simply choosing i = N. Since the accelerated program contains a

328 D. Kroening et al.

unsigned i := ∗;
assume (i> 0)

}
iteration counter

assume(x > 0);
}
feasibility check

x := x−i;
y := y+i;

}
acceleration

assume(¬underflow (x));
}
iteration bound

Fig. 4. Accelerated loop body

unsigned N := 106, x := N, y := 0;
while (x > 0) {

if (∗) {
i := ∗; assume (i> 0);
x := x−i; y = y+i;
assume (x ≥ 0);

} else {
x := x− 1; y := y+ 1;

}
}
assert (y �= N);

Fig. 5. Accelerated unsafe program

unsigned N := 106, x := N, y := 0;
if (x > 0) {

x := x− 1; y := y+ 1;
if (x > 0) {

x := x− 1; y := y+ 1;
if (x > 0) {

x := x− 1;
y := y+ 1;
assert (x ≤ 0);

}
}

}
assert (y = N);

Fig. 6. Unwinding (k = 3) of safe
program with N = 106

unsigned N := ∗, x := N, y := 0;
bool g := ∗;

1: while (x > 0) {
if (∗) {

assume (¬g);
2: i := ∗; x := x−i; y = y+i;

assume (x ≥ 0);
3: g := T;

} else {
x := x− 1; y := y+ 1;
assume (underflow (x));
g := F;

}
}

4: assert (y = N);

Fig. 7. Accelerated and instrumented safe
program

feasible trace leading to a failed assertion, we can conclude that the original
program does as well, despite having only considered a single trace of length 1.

While the primary application of BMC is bug detection, contemporary Boun-
ded Model Checkers such as Cbmc are able to prove safety in some cases. Cbmc
unwinds loops up to a predetermined bound k (see Figure 6). Unwinding as-
sertions are one possible mechanism to determine whether further unwinding
is required [8, 11]. The assertion (x ≤ 0) in Figure 6 fails if there are feasible
program executions traversing the loop more than three times. It is obvious that
this assertion will fail for any k < 106.

Unfortunately, acceleration is ineffective in this setting. Since the accelera-
tor in Figure 5 admits i = 1, we have to consider 106 unwindings before we
can establish the safety of the program in Figure 1 with N = 106. For a non-
deterministically assigned N, this number increases to 232.

Proving Safety with Trace Automata and Bounded Model Checking 329

This outcome is disappointing, since the repeated iteration of the accelerated
loop body is redundant. Furthermore, there is no point in taking the unacceler-
ated path through the loop (unless there is an impending overflow—which can
be ruled out in the given program), since the accelerator subsumes this execu-
tion (with i = 1). Thus, if we eliminate all executions that meet either of the
criteria above, we do not alter the semantics of the program but may reduce the
difficulty of our problem considerably.

Figure 7 shows an accelerated version of the safe program of Figure 1, but
instrumented to remove redundant traces. This is achieved by introducing an
auxiliary variable g which determines whether the accelerator was traversed in
the previous iteration of the loop. This flag is reset in the non-accelerated branch,
which, however, in our example is never feasible. It is worth noting that every
feasible trace through Listing 1 has a corresponding feasible trace through List-
ing 7, and vice versa.

The figure to the right shows an execution of the
program in Figure 7: This trace is both feasible
and safe—the assertion on line 4 is not violated. It
is not too difficult to see that every feasible trace
through the program in Figure 7 has the same
length, which means that we can soundly reason
about its safety considering traces with a single
iteration of the loop, which is a tractable (and in-
deed, easy) problem.

Loc. N x y i g

1 104 104 0 0 F
2 104 104 0 0 F
3 104 0 104 104 F
1 104 0 104 104 T
4 104 0 104 104 T

Since the accelerated and instrumented program in Figure 7 is safe, we can
conclude that the original program in Figure 1 is safe as well.

We emphasise that our approach neither introduces an over-approximation,
nor requires the explicit computation of a fixed point. In addition, it is not re-
stricted to linear integer arithmetic and bit-vectors: our prior work can generate
some non-linear accelerators and also allows for the acceleration of a limited
class of programs with arrays [17, 19].

3 Notation and Basic Concepts

Let Stmts be the (infinite) set of statements of a simple programming language
as defined in Table 1(a), where Exprs and B-Exprs denote expressions and pred-
icates over the program variables Vars, respectively. Stmts∗ denotes the Kleene
closure of Stmts. The language comprises assignments x := e (where e ∈ Exprs,
and ∗ ∈ Exprs denotes a non-deterministic value) and assumptions abbreviated
by [B] (with B ∈ B-Exprs). Assertions are modeled using assumptions and error
locations. For brevity, we omit array accesses. We assume that different oc-
currences of statements are distinguishable (using the program locations). The
semantics is provided in Table 1(a) in terms of the weakest liberal precondition
wlp as defined in [25]. (The weakest liberal precondition wlp(stmt, P) yields the
weakest condition under which stmt either does not terminate or establishes P .)
Programs are represented using control flow automata.

330 D. Kroening et al.

Table 1. Program Statements and Traces

(a) Syntax and Semantics

stmt ::= x := e | [B] | skip
(x ∈ Vars, e ∈ Exprs, B ∈ B-Exprs)

wlp(x := e, P)
def
= P [e/x]

wlp(x := ∗, P)
def
= ∀x . P

wlp([B], P)
def
= B ⇒ P

wlp(skip, P)
def
= P

(b) Transition Relations for Traces

�stmt�
def
= ¬wlp(stmt,

∨
x∈Vars x �= x′)

id
def
= �skip�

�stmt1 · stmt2�
def
= �stmt1� ◦ �stmt2�

�stmtn�
def
= �stmt�n,

where

stmt0
def
= ε,

stmtn
def
= stmt · (stmt(n−1))

�stmt�0
def
= id,

�stmt�n
def
= �stmt� ◦ (�stmt�(n−1))

Definition 1 (CFA). Let Stmts be as introduced above in Table 1(a). A control
flow automaton P is a directed graph 〈V,E, v0〉, where V is a finite set of vertices,
StmtsP ⊆ Stmts is a finite set of statements, E ⊆ (V × StmtsP × V) is a set of

edges, and v0 ∈ V is the initial vertex. We write v
stmt−→ u if 〈u, stmt, v〉 ∈ E.

A program state σ is a total function assigning a value to each program
variable in Vars. States denotes the set of program states (not to be confused
with vertices of a CFA). A transition relation T ⊆ States × States associates
states with their successor states. Given Vars, let Vars′ be a corresponding set of
primed variables encoding successor states. The symbolic transition relation for
a statement or trace is a predicate over Vars∪Vars′ and can be derived using wlp
as indicated in Table 1(b) (cf. [9]). We write 〈σ, σ′〉 ∈ �stmt� if �stmt� evaluates
to true under σ and σ′ (i.e., σ, σ′ |= �stmt�). The composition �π1� ◦ �π2� of two
relations �π1� and �π2� is the relation {〈σ, σ′〉 | ∃σ′′ . 〈σ, σ′′〉 ∈ �π1� and 〈σ′′, σ′〉 ∈
�π2�}, symbolically represented as a predicate over Vars ∪ Vars′. A trace π is
feasible if there exist states σ, σ′ such that 〈σ, σ′〉 ∈ �π�.

Given a CFA P
def
= 〈V,E, v0〉, a trace π

def
= stmti · stmti+1 · · · stmtn (where

vj−1
stmtj−→ vj for i < j ≤ n and π ∈ Stmts∗P) of length |π| = n − i + 1 is looping

(with head vi) iff vi = vn, and accepted by the CFA iff vi = v0. We use LP

(where LP ⊆ Stmts∗P) to denote the set of all traces that are accepted by the

CFA P . Abusing our notation, we write vi
π−→ vj to denote path starting at vi

and ending at vj and corresponding to the trace π.
A state σ is reachable from an initial state σ0 iff there exists a trace π ac-

cepted by the CFA such that 〈σ0, σ〉 ∈ �π�. The reachability diameter [5,20] of a
transition relation is the smallest number of steps required to reach all reachable
states:

Definition 2 (Reachability Diameter). Given a CFA with initial state σ0,
the reachability diameter is the smallest n such that for every state σ reachable
from σ0 there exists a feasible trace π of length at most n accepted by the CFA
with 〈σ0, σ〉 ∈ �π�.

Proving Safety with Trace Automata and Bounded Model Checking 331

To show that a CFA does not violate a given safety (or reachability) property,
it is sufficient to explore all feasible traces whose length does not exceed the
reachability diameter. In the presence of looping traces, however, the reachability
diameter of a program can be infinitely large.

Acceleration [6,7,12] is a technique to compute the reflexive transitive closure

�π�∗ def
=

⋃∞
i=0�π�i for a looping trace π. Equivalently, �π�∗ can be expressed as

∃i ∈ N0 . �π�i. The aim of acceleration is to express �π�∗ in a decidable fragment
of logic. In general, this is not possible, even if �π� is defined in a decidable
fragment of integer arithmetic such as Presburger arithmetic. For octagonal re-
lations �π�, however, the transitive closure is �π�∗ is Presburger-definable and
effectively computable [6, 12].

Definition 3 (Accelerated Transitions). Given a looping trace π ∈ LP , we
say that a trace π̂ ∈ Stmts∗ is an accelerator for π if �π̂� ≡ �π�∗.

An accelerator π̃ ∈ Stmts∗ is under-approximating if the number of iterations
is bounded from above by a function β : States → N0 of the starting state σ:

〈σ, σ′〉 ∈ �π̃� iff ∃i ∈ N0 . i ≤ β(σ) ∧ 〈σ, σ′〉 ∈ �π�i

We require that the function β satisfies the following monotonicity condition:(
i ≤ β(σ) ∧ 〈σ, σ′〉 ∈ �π�i

)
⇒ (β(σ′) ≤ β(σ) − i) (1)

Intuitively, β (which is not necessarily explicit in the encoding of π̃) restricts
i to the range of iterations of π which can be accelerated accurately. We say that
π̃ is strictly under-approximating if �π̃� ⊂ �π̂�.

We introduced under-approximating accelerators for linear integer arithmetic
and the theories of bit-vectors and arrays in [17] in order to accelerate the de-
tection of counterexamples. Under-approximations are caused by transition re-
lations that can only be accelerated within certain intervals, e.g., the range in
which no overflow occurs in the case of bit-vectors, or in which no conflicting
assignments to array elements are made. The bound function β restricts this
interval accordingly.

Example 1. An under-approximating accelerator for the statement x := x+ 1,
where x is a 32-bit-wide unsigned integer, can be given as the statement sequence

π̃
def
= i := ∗; [x+ i < 232]; x := x+ i

with transition relation ∃i .
(
x+ i < 232

)
∧ (x′ = x+ i). Note that β is implicit

here and that the alphabet of π̃ is not restricted to StmtsP of the CFA P .

4 Diameter Reduction via Acceleration

In this section, we introduce a reachability-preserving program transformation
that reduces the reachability diameter of a CFA. While a similar transformation
is used in [17] to detect counterexamples with loops, our goal here is to reduce
the diameter in order to enable safety proofs (see Section 5).

332 D. Kroening et al.

Definition 4 (Accelerated CFA). Let P
def
= 〈V,E, v0〉 be a CFA over the al-

phabet StmtsP , and let π1, . . . , πk be traces in P looping with heads v1, . . . , vk ∈
V , respectively. Let π̂1, . . . π̂k be the (potentially under-approximating) accelera-

tors for π1, . . . , πk. Then the accelerated CFA P̂
def
= 〈V̂ , Ê, v0〉 for P is the CFA

P augmented with non-branching paths vi
π̂i−→ vi (1 ≤ i ≤ k).

A trace is accelerated if it traverses a path in P̂ that corresponds to an ac-
celerator. A trace π1 subsumes a trace π2, denoted by π2 � π1, if �π2� ⊆ �π1�.
Accordingly, π � π̂ and π̃ � π̂ (which follows from Definition 3, since �π�i ⊆ �π�∗

for any i). We extend the relation � to sets of traces: Π1 � Π2 if
(⋃

π∈Π1
�π�

)
⊆(⋃

π∈Π2
�π�

)
. A trace π is redundant if {π} is subsumed by the set Π \ {π} of

other traces in the CFA.

Lemma 1. Let π̃ be an under-approximating accelerator for the looping trace π.
Then π̃ · π̃ � π̃ holds. Similarly, for an accelerator π̂ of π it holds that π̂ · π̂ � π̂.

Proof. For accelerators that are not strictly under-approximating the claim holds
trivially. Otherwise, we have

〈σ, σ′′〉 ∈ �π̃ · π̃� ⇔

∃σ′ . ∃i, j ∈ N0 .

(
〈σ, σ′〉 ∈ �π�i ∧ i ≤ β(σ) ∧
〈σ′, σ′′〉 ∈ �π�j ∧ j ≤ β(σ′)

)

If σ′ exists, Condition 1 in Definition 3 guarantees that (β(σ′) ≤ β(σ) − i), and
therefore 〈σ, σ′′〉 ∈ �π̃ · π̃� implies

∃i, j ∈ N0 .〈σ, σ′′〉 ∈ �π�i+j ∧ i ≤ β(σ) ∧ j ≤ β(σ) − i︸ ︷︷ ︸
(i+j)≤β(σ)

.

By replacing i+ j with a single variable i we arrive at the definition of �π̃�.

We emphasize that Lemma 1 holds for accelerators π̂ as well as (strictly)
under-approximating accelerators π̃ (cf. Definition 3). In the following, we use
π̂ to denote accelerators as well as under-approximating accelerators unless ex-
plicitly stated otherwise.

The following theorem states that the transformation in Definition 4 preserves
the reachability of states and never increases the reachability diameter.

Theorem 1. Let P be a CFA and P̂ a corresponding accelerated CFA as in
Definition 4. Then the following claims hold:

1. Every trace in P is subsumed by at least one trace in P̂ .
2. Let π1 be an accelerated trace accepted by P̂ , and let 〈σ0, σ〉 ∈ �π1�. Then

there exists a trace π2 accepted by P such that 〈σ0, σ〉 ∈ �π2�.

Proof. Part 1 of the theorem holds because P is a sub-graph of P̂ . For the second
part, assume that π̂1, . . . π̂k are the accelerators occurring in π1. Then there are

i1, . . . , ik ∈ N such that π2
def
= π1[π

i1
1 /π̂1] · · · [πik

k /π̂k] and 〈σ0, σ〉 ∈ �π2�.

Proving Safety with Trace Automata and Bounded Model Checking 333

The diameter of a CFA is determined by the longest of the shortest traces from
the initial state σ0 to all reachable states [20]. Accordingly, the transformation
in Definition 4 results in a reduction of the diameter if it introduces a shorter
accelerated trace that results in the redundancy of this longest shortest trace.
In particular, acceleration may reduce an infinite diameter to a finite one.

5 Checking Safety with Trace Automata

Bounded Model Checking owes its industrial success largely to its effectiveness
as a bug-finding technique. Nonetheless, BMC can also be used to prove safety
properties if the unwinding bound exceeds the reachability diameter. In practice,
however, the diameter can rarely be determined statically. Instead, unwinding
assertions are used to detect looping traces that become infeasible if expanded
further [8]. Specifically, an unwinding assertion is a condition that fails for an
unwinding bound k and a trace π1 · πk

2 if π1 · πk+1
2 is feasible, indicating that

further iterations may be required to exhaustively explore the state space.
In the presence of accelerators, however, unwinding assertions are inefficient.

Since π̂·π̂ � π̂ (Lemma 1), repeated iterations of accelerators are redundant. The
unwinding assertion for π1 · π̂2, however, fails if π1 · π̂2 · π̂2 is feasible, suggesting
that further unwinding is required. Accordingly, the approximate diameter as
determined by means of unwinding assertions for an accelerated program P̂ is
the same as for the corresponding non-accelerated program P .

In the following, we present a technique that remedies the deficiency of un-
winding assertions in the presence of accelerators by restricting the language
accepted by a CFA.

Definition 5 (Restriction Language). Let P̂ an accelerated CFA for P over
the vocabulary StmtsP̂ . For each accelerator π̂ ∈ Stmts+

P̂
, let π ∈ Stmts+P be the

corresponding looping trace. The restriction language LR for P̂ comprises all
traces with a sub-trace characterised by the regular expression (π | (π̂ · π̂)) for all

accelerators π̂ in P̂ with π � π̂.

The following lemma enables us to eliminate traces of an accelerated CFA P̂
that are in the restriction language LR.

Lemma 2. Let P̂ be an accelerated CFA, and LR be the corresponding restric-
tion language. Let π1 be a trace accepted by P̂ such that π1 ∈ LR. Then there
exists a trace π2 which is accepted by P̂ such that π1 � π2 and π1 is not a
sub-trace of π2.

Proof. The regular expression (π | (π̂ ·π̂)) can match the trace π1 for two reasons:

(a) The trace π1 contains a sub-trace which is a looping trace π with a corre-
sponding accelerator π̂ and π � π̂. We obtain π2 by replacing π with π̂.

(b) The trace π1 contains the sub-trace π̂·π̂ for some accelerator π̂. Since π̂·π̂ � π̂
(Lemma 1), we replace the sub-trace with π̂ to obtain π2.

334 D. Kroening et al.

Since the accelerator π̂ differs from the sub-trace it replaces in case (a), and
|π2| < |π1| in case (b), π1 can not be contained in π2.

Using Lemma 2 and induction over the number of traces and accelerators, it
is admissible to eliminate all traces accepted by P̂ and contained in LR without
affecting the reachability of states:

Theorem 2. Let LP̂ be the language comprising all traces accepted by an ac-

celerated CFA P̂ and LR be the corresponding restriction language. Then every
trace π ∈ LP̂ is subsumed by the traces in LP̂ \ LR.

Notably, Definition 5 explicitly excludes accelerators π̂ that do not satisfy π �
π̂, a requirement that is therefore implicitly present in Lemma 2 as well as Theo-
rem 2. The rationale behind this restriction is that strictly under-approximating
accelerators π̃ do not necessarily have this property. However, even if π̃ does not
subsume π in general, we can characterize the set of starting states in which it
does:

{σ | 〈σ, σ′〉 ∈ �π� ⇒ 〈σ, σ′〉 ∈ �π̃�} (2)

In order to determine whether a looping path π is redundant, we presume for
each accelerated looping trace π the existence of a predicate ϕπ ∈ Exprs and an

assumption statement τπ
def
= [ϕπ] such that

� τπ �
def
= {〈σ, σ〉| 〈σ, σ′〉 ∈ �π� ⇒ 〈σ, σ′〉 ∈ �π̃�} (3)

Analogously, we can define the dual statement τπ
def
= [¬ϕπ]. Though both

�τπ� and �τπ� are non-total transition relations, their combination �τπ� ∪ �τπ�
is total. Moreover, it does not modify the state, i.e., �τπ� ∪ �τπ� ≡ �skip�. It is
therefore evident that replacing the head v of a looping trace π with the sub-

graph u w
τπ

τπ

(and reconnecting the incoming and outgoing edges of v to u and

w, respectively) preserves the reachability of states. It does, however change the
traces of the CFA. After the modification, the looping traces τπ · π and τπ · π
replace π. By definition of τπ, we have τπ · π � π̃. Consequently, if we accelerate
the newly introduced looping trace τπ · π, Definition 5 and therefore Lemma 2
as well as Theorem 2 apply.

The discriminating statement τπ for the example path x := x + 1 at the end
of Section 3, for instance, detects the presence of an overflow. For this specific
example, τπ is the assumption [x = 232 − 1]. In practice, however, the bit-
level-accurate encoding of Cbmc provides a mechanism to detect an overflow

after it happened. Therefore, we introduce statements τπ
def
= [overflow(x)] and

τπ
def
= [¬overflow(x)] that determine the presence of an overflow at the end of the

looping trace. The modification and correctness argument for this construction
is analogous to the one above.

In order to recognize redundant traces, we use a trace automaton that accepts
the restriction language LR.

Proving Safety with Trace Automata and Bounded Model Checking 335

v0

x := x + 1

(a) Original CFA

v0 u

x := x + 1

[overflow(x)]

[¬overflow(x)]

(b) CFA with overflow

v0 u

x := x + 1

[overflow(x)]

[¬overflow(x)]

π̃

π
def
= x := x + 1; [¬overflow(x)]

π̃
def
= x := x + ∗; [¬overflow(x)]

(c) Accelerated CFA

0

1 2
x := x + 1

π̃ x := x + 1

π̃ [¬overflow(x)]

[overflow(x)]

(d) Trace automaton

v0 u
x := x + 1

x := x + 1

[g = 0]

[g = 1]

[overflow(x)]

g := 0

[g = 0]

g := 1

π̃

g := 2

g
:=

2

[g = 2]

(e) Restricted Accelerated CFA

Fig. 8. Accelerating a looping path

Definition 6 (Trace Automaton). A trace automaton TR for LR is a deter-
ministic finite automaton (DFA) over the alphabet StmtsP̂ that accepts LR.

Since LR is regular, so is its complement LR. In the following, we describe
an instrumentation of a CFA P̂ which guarantees that every trace accepted by
TR and P̂ becomes infeasible. To this end, we construct a DFA TR recognising
LR, starting out with an ε-NFA which we then determinise using the subset
construction [1]. While this yields (for a CFA with k statements) a DFA with
O(2k) states in the worst case, in practice the DFAs generated are much smaller.

We initialise the set the vertices of the instrumented CFA P̃ to the vertices
of P̂ . We inline TR by creating a fresh integer variable g in P̃ which encodes
the state of TR and is initialised to 0. For each edge u

s−→ v ∈ P̂ , we consider
all transitions n

s−→ m ∈ TR. If there are no such transitions, we copy the edge
u

s−→ v into P̃ . Otherwise, we add edges as follows:

– If m is an accepting state, we do not add an edge to P̃ .

– Otherwise, construct a new statement sequence l
def
= [g = n]; s; g := m and

add the path u
l−→ v to P̃ , which simulates the transition n

s−→ m.

Since we add at most a constant number of edges to P̃ for each transition in
TR, this construction’s time and space complexity are both Θ(‖P̂‖+ ‖TR‖). By
construction, if a trace π accepted by CFA P̃ projected to StmtsP̂ is contained in
the restriction language LR, then π is infeasible. Conceptually, our construction
suppresses traces accepted by LR and retains the remaining executions.

An example is shown in Figure 8. The CFA in Figure 8(a) represents an
unaccelerated loop with a single path through its body. After adding an extra

336 D. Kroening et al.

path to account for integer overflow, we arrive at the CFA in Figure 8(b). We
are able to find an accelerator for the non-overflowing path, which we add to the
CFA resulting in Figure 8(c). We use π̃ to represent the accelerator π for the
corresponding path. Then the restriction language is represented by the regular
expression (π | π̃ · π̃). The corresponding 4-state trace automaton is shown in
Figure 8(d). By combining the trace automaton and the CFA using the algorithm
outlined above, we obtain the restricted CFA in Figure 8(e).

In the restricted CFA P̃ , looping traces π that can be accelerated and re-
dundant iterations of accelerators are infeasible and therefore do not trigger the
failure of unwinding assertions. A CFA is safe if all unwinding assertions hold
and no safety violation can be detected for a given bound k. The reduction of the
diameter achieved by acceleration (Section 4) in combination with the construc-
tion presented in this section enables us to establish the safety of CFAs in cases
in which traditional BMC would have been unable to do so. Section 6 provides
an experimental evaluation demonstrating the viability of our approach.

6 Experimental Evaluation

We evaluate the effect of instrumenting accelerated programs with trace au-
tomata and determine the direct cost of constructing the automata as well as
the impact of trace automata on the ability to find bugs on the one hand and
prove safety on the other.

Our evaluation is based on the Loops category of the benchmarks from
SV-COMP14 and a number of small but difficult hand-crafted examples1. Our
hand-crafted examples require precise reasoning about arithmetic and arrays.
The unsafe examples have deep bugs, and the safe examples feature unbounded
loops. The SV-COMP14 benchmarks are largely arithmetic in nature. They often
require non-trivial arithmetic invariants to be inferred, but rarely require com-
plex reasoning about arrays. Furthermore, all bugs of the unsafe SV-COMP14
benchmarks occur within a small number of loop iterations.

In all of our experiments we used Cbmc taken from the public SVN at r3849
to perform the transformation. Since Cbmc’s acceleration procedure generates
assertions with quantified arrays, we used Z3 [24] version 4.3.1 as the backend
decision procedure. All of the experiments were performed with a timeout of 30 s
and very low unwinding limits. We used an unwinding limit of 100 for unaccel-
erated programs and an unwinding limit of 3 for their accelerated counterparts.

The version of Cbmc we use has incomplete acceleration support, e.g., it is
unable to accelerate nested loops. As a result, there are numerous benchmarks
that it cannot accelerate. We stress that our goal here is to evaluate the effect of
adding trace automata to accelerated programs. Acceleration has already proven
to be a useful technique for both bug-finding and proof [15,17,21,26,27] and we
are interested in how well inlined trace automata can complement it.

1 These examples have been accepted into SV-COMP15, where they can be found in
the loop-acceleration directory.

Proving Safety with Trace Automata and Bounded Model Checking 337

Table 2. Summary of experimental results

Cbmc

Cbmc
+

Acceleration

Cbmc +
Acceleration +
Trace Automata

#
B
en

ch
m
a
rk
s

#
C
o
rr
ec
t

T
im

e
(s
)

#
B
en

ch
m
a
rk
s

a
cc
el
er
a
te
d

#
C
o
rr
ec
t

A
cc
el
er
a
ti
o
n

T
im

e
(s
)

C
h
ec
k
in
g

T
im

e
(s
)

#
C
o
rr
ec
t

A
cc
el
er
a
ti
o
n

T
im

e
(s
)

C
h
ec
k
in
g

T
im

e
(s
)

SV-COMP14 safe 35 14 298.73 21 2 23.24 244.72 14 23.86 189.61
SV-COMP14 unsafe 32 20 394.96 18 11 15.79 197.94 12 16.51 173.74
Crafted safe 15 0 11.42 15 0 2.75 32.41 15 2.91 1.59
Crafted unsafe 14 0 9.03 14 14 2.85 12.24 14 2.95 2.55

Our experimental results are summarised in Table 2, and the full results are
provided in our technical report [18]. We discuss the results in the remainder of
this section.

Cost of Trace Automata. To evaluate the direct cost of constructing the trace
automata, we direct the reader’s attention to Table 2 and the columns headed
“acceleration time”. The first “acceleration time” column shows how long it took
to generate an accelerated program without a trace automaton, whereas the sec-
ond shows how long it took when a trace automaton was included. For all of these
benchmarks, the additional time taken to build and insert the trace automaton
is negligible. Detailed information about the size increase of the instrumented
binary over the accelerated binary is provided in our technical report [18, Ap-
pendix B]. The average increase is about 15%, but the maximum increase is
77%. There is still room for optimisation, as we do not minimise the automata
before inserting them.

Bug Finding. In the following, we evaluate the effectiveness of our technique for
bug finding. The current state-of-the-art method for bug finding is BMC [3]. To
provide a baseline for bug finding power, we start by evaluating the effect of just
combining acceleration with BMC. We then evaluate the impact of adding trace
automata, as compared to acceleration without trace automata. Our hypothesis
is that adding trace automata has negligible impact on acceleration’s ability
to find bugs. The statistics we use to measure these effects are the number of
bugs found and the time to find them. We measure these statistics for each of
three techniques: BMC alone, acceleration with BMC, and our combination of
acceleration, trace automata and BMC.

The results are summarised in Table 2. In SV-COMP14, almost all of the
bugs occur after a small number of unwindings. In these cases, there are no deep
loops to accelerate so just using Cbmc allows the same bugs to be reached, but
without the overhead of acceleration (which causes some timeouts to be hit). In
the crafted set the bugs are much deeper, and we can see the effect of acceleration

338 D. Kroening et al.

in discovering these bugs – none of the bugs are discovered by Cbmc, but each
of the configurations using acceleration finds all 14 bugs.

In both of the benchmark sets, adding trace automata does not negatively
impact the bug finding ability of acceleration. Indeed, for the crafted set the
addition of trace automata significantly improves bug finding performance – the
total time needed to find the 14 bugs is reduced from 12.31 s to 1.85 s.

Safety Proving. We evaluate the effectiveness of our technique for proving safety
with BMC, the key contribution of this paper. Our two benchmark sets have very
different characteristics with respect to the safety proofs required for their safe
examples. As can be seen from Table 2, 14 of the SV-COMP14 benchmarks can
be proved safe using just BMC. That is, they can be exhaustively proved safe
after a small number of loop unwindings. For the 14 cases that were provable
using just BMC, none had loops that could execute for more than 10 iterations.

Of the 35 safe SV-COMP14 benchmarks, 21 contained loops that could be
accelerated by our implementation. Of these 21 cases, 14 were proved safe using
trace automata. These are not the same 14 cases that were proved by Cbmc, and
notably 8 cases with unbounded loops are included, which would be impossible
to prove safe with just BMC.

Additionally we were able to solve the sum array true benchmark (given
as Figure 9) in 1.75 s. Of all the tools entered in SV-COMP14, the only tools to
claim “safe” for this benchmark were BMC-based (even though analyses able to
solve this problem exist, e.g. [10]), and as such do not generate safety proofs.

unsigned N := ∗, i;
int a[M], b[M], c[M];

for (i = 0; i < M; i := i+ 1) {
c[i] := a[i] + b[i];

}
for (i = 0; i < M; i := i+ 1) {

assert (c[i] = a[i] + b[i]);
}

Fig. 9. The sum arrays benchmark from SV-COMP14

For the 7 cases where accelerators were produced but we were unable to prove
safety, 5 are due to timeouts, 1 is a crash in Cbmc and 1 is an “incomplete”. The
5 timeouts are due to the complexity of the SMT queries we produce. For these
timeout cases, we generate assertions which contain non-linear multiplication
and quantification over arrays, which are very difficult for Z3 to solve. The
“incomplete” case (trex03 true) requires reasoning about accelerated paths
that commute with each other, which we leave as future work.

Proving Safety with Trace Automata and Bounded Model Checking 339

7 Related Work

The diameter of a transition system was introduced in Biere et al.’s seminal pa-
per on BMC [5] in the context of finite-state transition relations. For finite-state
transition relations, approximations of the diameter can be computed symboli-
cally by constraining the unwound transition relation to exclude executions that
visit states repeatedly [20]. For software, however, this technique is ineffective.
Baumgartner and Kühlmann use structural transformations of hardware designs
to reduce the reachability diameter of a hardware design to obtain a complete
BMC-based verification method [2]. This technique is not applicable in our con-
text.

Trace automata are introduced in [13] as abstractions of safe traces of CFAs [14],
constructed by means of interpolation.We use trace automata to recognize redun-
dant traces.

Acceleration amounts to computing the transitive closure of a infinite state tran-
sition relation [6,7,12]. Acceleration has been successfully combined with abstract
interpretation [26] as well as interpolation-based invariant construction [15]. These
techniques rely on over-approximate abstractions to prove safety. We previously
used acceleration andunder-approximation to quicklyfinddeepbugs [17,19,21,22].
The quantified transition relations used to encode under-approximations pose an
insurmountable challenge to interpolation-based refinement techniques [17, 19],
making it difficult to combine the approach with traditional software model
checkers.

8 Conclusion

The reduction of the reachability diameter of a program achieved by acceleration
and loop under-approximation enables the rapid detection of bugs by means of
BMC. Attempts to apply under-approximation to prove safety, however, have
been disappointing: the simple mechanism deployed by BMC-based tools to de-
tect that an unwinding bound is exhaustive is not readily applicable to acceler-
ated programs.

In this paper, we present a technique that constrains the search space of an
accelerated program, enabling BMC-based tools to prove safety using a small
unwinding depth. To this end, we use trace automata to eliminate redundant
execution traces resulting from under-approximating acceleration. Unlike other
safety provers, our approach does not rely on over-approximation, nor does it
require the explicit computation of a fixed point. Using unwinding assertions,
the smaller diameter can be computed by means of a simple satisfiability check.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley Longman Publishing Co., Inc., Boston (1986)

340 D. Kroening et al.

2. Baumgartner, J., Kuehlmann, A.: Enhanced diameter bounding via structural
transformations. In: Design, Automation and Test in Europe (DATE), pp. 36–41.
IEEE (2004)

3. Beyer, D.: Status Report on Software Verification (Competition Summary
SV-COMP 2014). In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 373–388. Springer, Heidelberg (2014)

4. Beyer, D., Henzinger, T.A., Majumdar, R., Rybalchenko, A.: Path invariants. In:
Programming Language Design and Implementation (PLDI), pp. 300–309. ACM
(2007)

5. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs.
In: Cleaveland, W.R. (ed.) TACAS/ETAPS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

6. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis,
Université de Liège (1999)

7. Bozga, M., Iosif, R., Konečný, F.: Fast acceleration of ultimately periodic relations.
In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 227–242.
Springer, Heidelberg (2010)

8. Clarke, E., Kroning, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004)

9. Dijkstra, E.W.: et al.: From predicate transformers to predicates, tuesday After-
noon Club Manuscript EWD821 (April 1982)

10. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: Beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010)

11. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for
formal software verification. Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) 27(7), 1165–1178 (2008)

12. Finkel, A., Leroux, J.: How to compose Presburger-accelerations: Applications to
broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS,
vol. 2556, pp. 145–156. Springer, Heidelberg (2002)

13. Heizmann, M., Hoenicke, J., Podelski, A.: Refinement of trace abstraction. In: Pals-
berg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 69–85. Springer, Heidelberg
(2009)

14. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Prin-
ciples of Programming Languages (POPL), pp. 58–70. ACM (2002)

15. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating inter-
polants. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561,
pp. 187–202. Springer, Heidelberg (2012)

16. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009)

17. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013)

18. Kroening, D., Lewis, M., Weissenbacher, G.: Proving safety with trace
automata and bounded model checking. CoRR abs/1410.5764 (2014),
http://arxiv.org/abs/1410.5764

19. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. Formal Methods in System Design (April
2015), http://dx.doi.org/10.1007/s10703-015-0228-1

http://arxiv.org/abs/1410.5764
http://dx.doi.org/10.1007/s10703-015-0228-1

Proving Safety with Trace Automata and Bounded Model Checking 341

20. Kroning, D., Strichman, O.: Efficient computation of recurrence diameters. In:
Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 298–309. Springer, Heidelberg (2002)

21. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 152–165.
Springer, Heidelberg (2006)

22. Kroening, D., Weissenbacher, G.: Verification and falsification of programs with
loops using predicate abstraction. Formal Aspects of Computing 22, 105–128 (2010)

23. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

24. de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

25. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 11(4), 517–561 (1989)

26. Schrammel, P., Jeannet, B.: Logico-numerical abstract acceleration and application
to the verification of data-flow programs. In: Yahav, E. (ed.) SAS 2011. LNCS,
vol. 6887, pp. 233–248. Springer, Heidelberg (2011)

27. Schrammel, P., Melham, T., Kroening, D.: Chaining test cases for reactive system
testing. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.) ICTSS 2013. LNCS, vol. 8254,
pp. 133–148. Springer, Heidelberg (2013)

Verifying Parameterized Timed

Security Protocols

Li Li1(�), Jun Sun2, Yang Liu3, and Jin Song Dong1

1 National University of Singapore, Singapore, Singapore
li-li@comp.nus.edu.sg

2 Singapore University of Technology and Design, Singapore, Singapore
3 Nanyang Technological University, Singapore, Singapore

Abstract. Quantitative timing is often explicitly used in systems for
better security, e.g., the credentials for automatic website logon often
has limited lifetime. Verifying timing relevant security protocols in these
systems is very challenging as timing adds another dimension of com-
plexity compared with the untimed protocol verification. In our previous
work, we proposed an approach to check the correctness of the timed
authentication in security protocols with fixed timing constraints. How-
ever, a more difficult question persists, i.e., given a particular protocol
design, whether the protocol has security flaws in its design or it can
be configured secure with proper parameter values? In this work, we an-
swer this question by proposing a parameterized verification framework,
where the quantitative parameters in the protocols can be intuitively
specified as well as automatically analyzed. Given a security protocol,
our verification algorithm either produces the secure constraints of the
parameters, or constructs an attack that works for any parameter values.
The correctness of our algorithm is formally proved. We implement our
method into a tool called PTAuth and evaluate it with several security
protocols. Using PTAuth, we have successfully found a timing attack in
Kerberos V which is unreported before.

1 Introduction

Time could be a powerful tool in designing security protocols. For instance, dis-
tance bounding protocols rely heavily on time; session keys with limited lifetime
are extensively used in practice to achieve better security. However, designing
timed security protocols is more challenging than designing untimed ones be-
cause timing adds a range of attacking surface, e.g., the adversary might be able
to extend the session key without proper authorization. Hence, it is important to
have a formal verification framework to analyze the timed security protocols. In
our previous work [20], we developed a verification algorithm to analyze whether
a given protocol with fixed timing constraints is secure or not. In this work, we
answer a more difficult question, i.e., given a security protocol with configurable
parameters for the timing constraints, are there any parameters which could
guarantee security and what are they? Having an approach to answer the ques-
tion is useful in a number of ways. Firstly, it can analyze, at once, all instances

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 342–359, 2015.
DOI: 10.1007/978-3-319-19249-9_22

Verifying Parameterized Timed Security Protocols 343

of the security protocols with different parameter values. Secondly, it allows the
protocol designer to gain precise knowledge on the secure configuration of the
parameters so as to choose the best values (e.g., in terms of minimizing the
protocol execution time).

In general, parameterized timing constraints are necessary in various scenar-
ios. First of all, they can be used to capture the general design of the protocols.
For instance, since the lifetime of credentials are often related to the runtime
information like network latency, it is best to keep them parameterized so that
we can systematically find out their secure relations. Furthermore, parameter-
ized timing constraints are necessary to model the properties of some special
cryptographic primitives. For example, weak cryptographic functions, which are
breakable by consuming extra time, may be used in the sensor networks for
higher computing performance and lower power consumption. Since breaking
different weak functions requires different the attack time, in order to guarantee
the correctness of the protocols in these sensor networks, we need to parameter-
ize the attack time and compute the secure configuration accordingly. Moreover,
agencies often give suggestions on key crypto-period for cryptographic key man-
agement [4], so parameterized timing constraints can be used to model long term
protocols.

Nevertheless, this is a highly non-trivial task. The challenges for designing
timed protocol and providing proper parameter configuration are illustrated as
follows. First, in the setting of timed authentication over the Internet, given the
network is completely exposed to the adversary, we need to formally prove that
the critical information cannot be leaked and the protocol works as intended
under arbitrary attacking behaviors from the network. Second, timestamps are
continuous values extracted from clocks to ensure the validity of messages and
credentials. Analyzing the continuous timing constraints adds another dimension
of complexity. Third, a protocol design might contain multiple timing parame-
ters, e.g., the network latency and the session key lifetime, which could affect
security of the system. Manually reasoning the least constrained and yet correct
configuration for the parameters in complex protocols is extremely hard and
error-prone. As a consequence, automatic analysis technique is needed for prov-
ing the correctness of the protocol and computing the parameter configurations.

Contributions. Our contributions in this work are summarized as follows. (1)
We propose an intuitive method to specify parameterized timed protocols in Sec-
tion 3 by extending our previous work [20] with parameterized timing constraint,
secrecy query, etc. (2) Based on the specification, protocols can be verified effi-
ciently for an unbounded number of protocol sessions in our framework as shown
in Section 4. Generally, in this work, we specify the adversary’s capabilities in
the security protocols as a set of Horn logic rules with parameterized timing con-
straints. Then, we compose these rules repeatedly until a fixed-point is reached,
so that we can check the intended security properties against them and compute
the largest parameter configurations. The parameter configuration is represented
by succinct constraints of the parameters. When the protocol could be secure
with the right parameter values, our approach outputs a set of constraints on

344 L. Li et al.

Table 1. Syntax Hierarchy Structure

Type Expression
Message(m) f(m1,m2, ...,mn) (function)

a[] (name)
[n] (nonce)
v (variable)
t (timestamp)

Parameter(p) §p (parameter)
Constraint(B) C(t1 , t2 , . . . , tn , §p1, §p2, . . . , §pm) (timing constraint)
Configuration(L) C(§p1, §p2, . . . , §pm) (parameter configuration)
Event(e) know (m, t) (knowledge)

new([n], op[], 〈m1,m2, . . . ,mn〉) (nonce generation)
init(m1,m2, . . . ,mn) (init)
accept(m1,m2, . . . ,mn) (accept)
leak (m) (leak)

Rule(R) [G] e1, e2, . . . , en −[B]→ e (rule)
e ←[B]− e1, e2, . . . , en (query)

the parameters that are necessary for security. Otherwise, an attack is generated,
which would work for any parameter values. We formally prove the correctness of
our algorithm. (3) We implement our method as a tool named PTAuth. In order
to handle the parameters in the timing constraints, we utilize the Parma Polyhe-
dra Library (PPL) [3] in our tool to represent the relations between timestamps
and parameters. We evaluate our approach with several security protocols in Sec-
tion 5. During the experiment, we found a timing attack in the official document
of Kerberos V [27] that has never been reported before.

Structure of the Paper. In Section 2, we introduce the Wide Mouthed Frog
(WMF) [8] protocol and use it as a motivating example in the following paper.
In Section 3, an intuitive specification method is illustrated with WMF. The
detailed verification algorithms are given in Section 4. Due to the limitation of
space, the complete proofs for our verification methods can be found in [1]. The
experiment results are shown in Section 5, where a new attack of Kerberos V is
found in RFC 4120 [27]. The related works are described in Section 6. Finally,
we draw conclusions in Section 7.

2 Running Example

We use the Wide Mouthed Frog (WMF) [8] protocol as a running example to
illustrate how our approach works. WMF is designed for exchanging timely fresh
session keys, ensuring that the key is generated by the protocol initiator within
a short time when the protocol responder accepts it.

Verifying Parameterized Timed Security Protocols 345

Syntax Hierarchy. Before describing the WMF protocol, we introduce the syn-
tax for representing the messages first as shown in Table 1. Messages could be
defined as functions, names, nonces, variables or timestamps. Functions can be
applied to a sequence of messages ; names are globally shared constants; nonces
are freshly generated random values in sessions; variables are memory spaces for
holding messages ; and timestamps are clock readings extracted during the pro-
tocol execution. In addition, we introduce parameters to parameterize the tim-
ing constraints. The constraint function C(X) applies succinct constraints to X,
where X is a set of timestamps and parameters. Each succinct constraint can be
written in a general form of l(t1 , . . . , tn , §p1, . . . , §pm) ∼ 0, where ∼∈ {<,≤} and
l is a linear function. In the following paper, the symmetric encryption function
is denoted as encs(m, k), where m is the encrypted message and k is the encryp-
tion key. Furthermore, all the messages transmitted in WMF is encrypted by the
shared key represented as sk(u), which is only known between the user u and
the server. For simplicity, the concatenation function tuplen(m1,m2, . . . ,mn) is
written as 〈m1,m2, . . . ,mn〉 (or simply m1,m2, . . . ,mn when no ambiguity is
introduced).

Events are constructed by attaching predicates to the message sequences.
In our framework, we have five different predicates: (1) the knowledge event
know(m, t) means that the adversary knows the message m at the time t ; (2)
the nonce generation event new([n], op[], 〈m1, . . . ,mn〉) means that a nonce [n] is
generated in the operation op[] by a legitimate protocol participant with knowl-
edge of 〈m1, . . . ,mn〉; (3) the event init(m1, . . . ,mn) stands for the protocol ini-
tialization by a legitimate protocol participant with knowledge of m1, . . . ,mn;
(4) similarly, the event accept(m1, . . . ,mn) stands for the protocol acceptance
by a legitimate protocol participant with knowledge of m1, . . . ,mn; (5) the event
leak (m) is introduced to check the leakage of the secret message m that violates
the secrecy property, as shown in the example later.

WideMouthed Frog. TheWMF protocol is a key exchange protocol consisting
of three participants, i.e., the initiator Alice, the responder Bob and the server.
It has the following five steps.

(1) Alice engages : new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[], B[], [k], tA)

(2) Alice → Server : 〈A[], encs(〈tA, B[], [k]〉, sk(A[]))〉
(3) Server checks : tS − tA ≤ §pa

Server engages : initS (A[], B[], [k], tS)
(4) Server → Bob : encs(〈tS , A[], [k]〉, sk(B[]))
(5) Bob checks : tB − tS ≤ §pa

Bob engages : accept(A[], B[], [k], tB)

First, Alice generates a fresh key [k] at time tA with the new event and
engages an initA event to initiate the key exchange protocol with Bob. Second,
Alice sends the fresh key with the current time tA and Bob’s name to the server.
Third, after receiving the request from Alice, the server checks the freshness of
the timestamp tA and accepts Alice’s request by engaging an initS event. Fourth,

346 L. Li et al.

the server sends a new message to Bob, informing him that the server receives a
request from Alice at time tS to communicate with him using the key [k]. Fifth,
Bob checks the timestamp and accepts the request from Alice if it is timely. The
transmitted messages are encrypted under the users’ shared keys.

Parameters.Whether or not WMF works relies on two crucial time parameters.
The first parameter is the real network latency §pd of the network, and the second
one is the message delay §pa allowed in the message freshness checking. §pd is
initially configured as §pd > 0 because the network latency should be positive.
However, the exact value of §pd depends on the network itself and thus cannot be
fixed in the protocol design. Parameter §pa on the other hand might be related
to §pd’s value, which should be answered by the verification. That is to say, the
values of the parameters are better modeled as unknown parameters and we
must be able to analyze the protocol without the concrete values of them. By
introducing these two parameters, we want to make sure that the WMF protocol
exchanges the secret session key successfully, and the correspondence between
the request from Alice and the acceptance from Bob is timely. Hence, ideally
a tool would automatically show us the secure configuration of §pd and §pa.
Because WMF has two message transmissions, we need to check whether tB −
tA ≤ 2 ∗ §pa is always satisfied.

3 Parameterized Timed Security Protocol Specification

In this section, we introduce how to model the parameterized timed security pro-
tocols. Generally, protocols as well as their underlying cryptography foundation
are represented by a set of Horn logic rule variants [6] as shown in Table 1. They,
denoted as Rinit , represent the capabilities of the adversary in the protocol.

Adversary Model. We assume that an active attacker exists in the network,
extending from the Dolev-Yao model [15]. The attacker can intercept all commu-
nications, compute new messages, generate new nonces and send any message he
obtained. For computation, he can use all the publicly available functions, e.g.,
encryption, decryption, concatenation. He can also ask the genuine protocol par-
ticipants to take part in the protocol based on his needs. Comparing our attack
model with the Dolev-Yao model, attacking the weak cryptographic functions
and compromising legitimate protocol participant are allowed by consuming ex-
tra time, as shown later in this section.

Rule Construction. Based on the adversary model described above, the inter-
actions available to the adversary in the protocol can be represented by Horn
logic rule variants guarded by timed checking conditions. Generally, every rule
consists of a set of untimed guard conditions, several premise events, some tim-
ing constraints and one conclusion event as shown in Table 1. When the guard
conditions, the premise events and the timing constraints in a rule are fulfilled,
its conclusion event becomes available to the adversary. We remove the brackets
if the rule has no guard condition. For instance, since the symmetric encryption

Verifying Parameterized Timed Security Protocols 347

and decryption functions are publicly available in WMF, these capabilities of
the adversary can be represented by the following two rules.

know(m, t1), know (k, t2) −[t1 , t2 ≤ t]→ know(encs(m, k), t) (1)

know(encs(m, k), t1), know(k, t2) −[t1 , t2 ≤ t]→ know(m, t) (2)

The rule (1) means that given a message m and a key k, the adversary can
compute its encryption encs(m, k), and the encryption can only be known after
the message and the key are obtained. Similarly, the rule (2) shows the decryption
capability of the adversary.

Furthermore, the adversary can register new accounts at the server, except
for the existing ones of Alice and Bob. So, we have the following rule.

[c
= A[] ∧ c
= B[]] know (c, t1) −[t1 ≤ t]→ know(sk (c), t) (3)

For rules related to the protocol itself, they can be extracted from the protocol
readily. For instance, the adversary can actively ask Alice to initiate the first step
of the WMF protocol, so the messages in the second step can be intercepted from
the network, which is shown by the rule (4). As Alice can initiate this protocol
with any user at any time based on the adversary’s needs, the constant B[] is
replaced with a variable R and know(〈R, tA〉, t) is added to the premises of the
rule, comparing with protocol description in Section 2.

know (〈R, tA〉,t), new([k], alice gen [], 〈A[], R, tA〉), initA(A[], R, [k], tA)

−[t ≤ tA]→ know (〈A[], encs(〈tA, R, [k]〉, sk(A[]))〉, tA) (4)

Similarly, based on the server’s behavior (the third and fourth steps in WMF),
we can construct the rule (5) shown below. Since the server provides its service
to all of its users, Alice and Bob’s names are replaced by variables. The network
latency and the message delay are captured by the parameterized constraints.

know(〈I, encs(〈tI , R, k〉, sk(I))〉, t), initS (I, R, k, tS)

−[tS − t ≥ §pd ∧ tS − tI ≤ §pa]→ know(encs(〈tS , I, k〉, sk(R)), tS) (5)

Finally, Bob accepts the protocol when he receives the message from the
server, indicating that the initiator is Alice and the request is fresh.

know(encs (〈tS , A[], k〉, sk(B[])), t)

−[tB − t ≥ §pd ∧ tB − tS ≤ §pa]→ accept(A[], B[], k, tB) (6)

Additional Attack Rule. In addition to the attacker capabilities in the Dolev-
Yao model, the attacker can compromise cryptographic primitives and legitimate
protocol participants. For instance, we can model the brute-force attack on a
weak encryption function. Given the name of the encryption function as Crypto
and the least time of cracking Crypto as §d, the attacking behavior can be
modeled by the following rule.

know(Crypto(m, k), t1) −[t− t1 > §d]→ know(m, t)

348 L. Li et al.

Additionally, some ciphers like RC4 which is used by WEP, key compromise on a
busy network can be conducted after a short time. Given an application scenario
where such attack is possible and the attacking time has a lower bound §d, we
can model it as follows.

know(RC4 (m, k), t1)〉 −[t− t1 > §d]→ know (k, t)

Authentication Query. Similar to our previous work [20], verifying the timely
authentication is allowed in our framework. The timely authentication not only
asks for the proper correspondence between the init and accept events but also
requires the satisfaction of the timing constraints, formalized as follows.

Definition 1. Timed Authentication. In a timed protocol, timed authentica-
tion holds for an event accept with some events {init1, init2, . . . , initn} agreed on
the event arguments and the timing constraints B, if and only if for every occur-
rence of the event accept , all of the corresponding events {init1, init2, . . . , initn}
are engaged before, and their timestamps should always satisfy the timing con-
straints B. We denote the timed authentication query as accept ←[B]− init1,
init2, . . . , initn. In order to ensure the general timed authentication, the argu-
ments encoded in the query events should only be variables and timestamps.

In WMF, the authentication should be accepted by the responder R only if the
request is made by the initiator I within 2 ∗ §pa. Thus, we have the following
authentication query.

accept(I, R, k, kR) ←[kR − kI ≤ 2 ∗ §pa]− initA(I, R, k, tI) (7)

Secrecy Query. In this work, we extend the verification algorithm developed
in our previous work [20] with secrecy checking that can be relevant to timing.
Secrecy checking is introduced with additional rules that lead to the leak events,
representing the leakage of the secret information.

Definition 2. Secrecy. In a security protocol, secrecy holds for a message m if
the event leak (m) is unreachable when ”new1, new2, . . . ,newn, know (m, t) −[]→
leak (m)” is added to Rinit , where new1, new2, . . . ,newn are the nonce generation
events for all of nonces in m. Notice that all of the nonce generation events
should have unique operation names so that they can be correctly identified.

For instance, according to the WMF protocol, a secret session key [k] is sent over
the network. In order to check the secrecy property of [k], we add the following
rule to Rinit and then check the reachability of the leak event.

new([k], alice gen[], 〈A[], B[], tA〉), know ([k], t) −[]→ leak ([k]) (8)

It means that if the session key [k] generated by Alice for Bob can be known to
the adversary, the secrecy property of the session key is invalid in WMF.

Verifying Parameterized Timed Security Protocols 349

4 Verification Algorithm

Given a set of rules R and a parameter configuration L, we define α(R, L) =
{[G] H −[B ∩ L]→ f |[G] H −[B]→ f ∈ R}, representing the rules under the
parameter configuration L. Since the initial rules Rinit can be extracted from the
protocol as shown in Section 3, the satisfaction of an authentication queryQ then
depends on whether the adversary can actively guide the protocol to reach the
accept event based on α(Rinit , L) without engaging the corresponding init events
in Q or satisfying the timing constraints. Similarly, the verification of the secrecy
query needs to check that the leak event is unreachable based on α(Rinit , L). In
this section, we focus on computing the largest parameter configuration that
ensures the correctness of the desired authentication and secrecy properties.

Given any parameter configuration L, in order to determine whether a queryQ
is satisfied by α(Rinit , L), we can adapt the verification algorithm in [20]. How-
ever, there might be infinitely many possible parameter configurations. Thus,
in this work, we develop an approach to handle the parameters symbolically.
Specifically, the verification is divided into two sequential phases: the rule basis
construction phase and the query searching phase. In the rule base construc-
tion phase, we generate new rules by composing two rules (through unifying the
conclusion of the first rule and the premise of the second rule). Our verification
algorithm uses this method repeatedly to generate new rules until a fixed-point
is reached. This fixed-point is called the rule basis if it exists. Subsequently, in
the query searching phase, the query is checked against the rule basis to find
counter examples. Generally, we need to check the event correspondence as well
as the parameterized timing constraints, the verification either proves the cor-
rectness of the protocol by providing the secure configuration of the parameters
(represented as succinct constraints), or reports attacks because no parameter
configuration can be found. Since the verification for security protocol is gener-
ally undecidable [12], our algorithm cannot guarantee termination. However, as
shown in Section 5, our algorithm can terminate on most of the evaluated secu-
rity protocols. Additionally, limiting the number of protocol sessions is allowed
in our framework which would guarantee the termination of our algorithm.

Rule Basis Construction. Before constructing the rule basis, we need to in-
troduce some basic concepts first:

– If σ is a substitution for both events e1 and e2 such that σe1 = σe2, we say
e1 and e2 are unifiable and σ is an unifier for e1 and e2. If e1 and e2 are
unifiable, the most general unifier for e1 and e2 is an unifier σ such that for
all unifiers σ′ of e1 and e2 there exists a substitution σ′′ such that σ′ = σ′′σ.

– Given two rules R = [G] H −[B]→ e and R′ = [G′] H ′ −[B′]→ e′, if e and
e0 ∈ H ′ can be unified with the most general unifier σ such that σG ∧ σG′

can be valid, their composition is denoted as R◦e0 R′ = σ([G∧G′] H∪ (H ′−
{e0})) −[σ(B ∩B′)]→ σe′.

– Additionally, given the above two rules R and R′, we define R implies R′

denoted as R ⇒ R′ when ∃σ, σe = e′ ∧G′ ⇒ σG ∧ σH ⊆ H ′ ∧B′ ⊆ σB.

350 L. Li et al.

We construct the rule basis β(Rinit) based on the initial rules Rinit. Firstly, we
define Rv as follows, representing the minimal closure of the initial rules Rinit.
(1) ∀R ∈ Rinit, ∃R′ ∈ Rv, R

′ ⇒ R, which means that every initial rule is implied
by a rule in Rv. (2) ∀R,R′ ∈ Rv, R
⇒ R′, which means that no duplicated rule
exists in Rv. (3) ∀R,R′ ∈ Rv and R = [G] H −[B]→ e, if ∀e′ ∈ H, e′ ∈ V
and ∃e0
∈ V, S ◦e0 S′ is defined, then ∃S′′ ∈ Rv, S

′′ ⇒ R ◦e0 R′, where V is a
set of events that can be provided by the adversary. In this work, V is the init
events, the new events and the know (x, t) event where x is a variable. The third
rule means that for any two rules in Rv, if all premises of one rule are trivially
satisfiable and their composition exists, their composition is implied by a rule in
Rv. Based on Rv, we can calculate the rule basis as follows.

β(Rinit) = {R | R = [G] H −[B]→ e ∈ Rv ∧ ∀e′ ∈ H : e′ ∈ V}

Theorem 1. For any rule R in the form of [G] H −[B]→ e where ∀e′ ∈
H : e′ ∈ V, R is derivable from α(Rinit, L) if and only if R is derivable from
α(β(Rinit), L).

Proof Sketch. Firstly, we need to prove that R is derivable from Rinit if and only
if R is derivable from β(Rinit). Then, there should exist two rule composition
methods for R from Rinit and β(Rinit) respectively. Then, we apply configuration
L to both of the composition methods with function π. Given a rule R = [G]H −[
B]→ e, we define π(R,L) = [G] H −[B ∩L]→ e. As L does not affect the terms
but the timing constraints, we can prove that either π(R,L) is derivable from
both of α(Rinit, L) and α(β(Rinit), L), or it is underivable from both of them.
Due to the limitation of space, the proof is presented in [1].

Query Searching. A rule is a contradiction to the authentication query if and
only if its conclusion event is an accept event, while it does not require all the
init events or it has looser timing constraints comparing with those in the query.
Otherwise, if the rule’s conclusion event is an accept event while this rule is not
a contradiction to the authentication query, then it is an obedience. Similarly, a
rule is a contradiction to the secrecy query when the leak event is reachable.

Definition 3. Authentication Contradiction and Obedience. A rule R =
[G] H −[B]→ e is a contradiction to the authentication query Qa = e′ ←[B′]−
H ′ denoted as Qa � R if and only if B
= ∅, e and e′ are unifiable with the most
general unifier σ such that σG can be valid and ∀σ′, (σ′σH ′
⊆ σH) ∨ (σB
⊆
σ′σB′). On the other hand, it is an obedience denoted as Qa � R if and only if
B
= ∅, e and e′ are unifiable with the most general unifier σ such that σG can
be valid and ∃σ′, (σ′σH ′ ⊆ σH) ∧ (σB ⊆ σ′σB′).

Definition 4. Secrecy Contradiction. A rule R = [G] H −[B]→ e is a
contradiction to the secrecy query Qs of message m denoted as Qs � R if and
only if G can be valid, B
= ∅, e = leak (m) and ∀e′ ∈ H : e′ ∈ V.

During the verification, our goal is to ensure that (1) no contradiction rule
exists for all queries while (2) at least one obedience rule exists for every au-
thentication query. Hence, given the authentication queries QA and the secrecy

Verifying Parameterized Timed Security Protocols 351

Algorithm 1: Parameter Configuration Computation

Input : β(Rinit), L0 - the rule basis and the initial configuration
Input : QA,QS - the authentication and secrecy queries
Output: L - the set of parameter configurations

1 Algorithm
2 L = {L0};
3 for Q ∈ QA ∪QS , L ∈ L, R = [G] H −[B]→ f ∈ α(β(Rinit), L), Q � R

do
4 L = L− {L};
5 for L′ : B ∩L′ = ∅∨Q � [G] H −[B∩L′]→ f do L = L∪{L∩L′};
6 for L ∈ L, Q ∈ QA do
7 if cannot find R ∈ α(β(Rinit), L), Q � R then L = L− {L} ;

8 return L;

queries QS , our goal is to compute the largest L that satisfies the following
two conditions: (1) ∀Q ∈ QA ∪ QS, {R|R ∈ α(β(Rinit), L) ∧ Q � R} = ∅; (2)
∀Q ∈ QA, {R|R ∈ α(β(Rinit), L)∧Q � R}
= ∅. Algorithm 1 illustrates the com-
puting process of the largest L. From line 3 to line 5, we compute the parameter
configurations that remove the contradictions. From line 6 to line 7, we ensure
that every authentication query has at least one obedience. In order to prove
the correctness of our algorithm, we need to show that for any configuration L,
a contradiction exists in α(β(Rinit), L) if and only if it exists in α(Rinit, L).

Theorem 2. Partial Correctness. Let Q be the query and Rinit be the initial
rule set. There exists R derivable from α(Rinit, L) such that Q � R if and only
if there exists R′ ∈ α(β(Rinit), L) such that Q � R′.

Proof Sketch. Partial Soundness. Given Theorem 1, R′ is derivable from
α(Rinit, L). Hence, there exists R′ derivable from α(Rinit, L) such that Q �
R′. Partial Completeness. Given a rule R derivable from α(Rinit, L) such
that Q � R, according to Theorem 1, there exists a rule R0 derivable from
α(β(Rinit), L) such that Q � R0. So there exists a rule composition method for
R0 with rules in α(β(Rinit), L). Then, there should exist a rule Rt in the com-
position method with an accept or a leak event. We further prove that Q � Rt.
Due to the limitation of space, the proof is available in [1].

Checking WMF. After checking the specification of WMF using the above-
mentioned algorithm, PTAuth claims an attack. The two key rules in β(Rinit)
are shown below. The rule (9) represents the execution trace that the server
transmits the key once from Alice to Bob. It is obedient to the query (7). How-
ever, the rule (10) is a contradiction to the query (7), because it has a weaker
timing range (tB ≤ tA+4 ∗ §pa) than that in the query (tB ≤ tA+2 ∗ §pa). This
rule stands for the execution trace that the adversary sends the message from
the server back to server twice and then forwards it to Alice. According to the

352 L. Li et al.

rule (5), the timestamp in the message can be updated in this method. Hence,
Bob would not notice that the message is actually delayed when he receives it.
In order to remove the contradiction, we need to configure the parameters as
either §pa < §pd or §pa ≤ 0. However, applying any one of these constraints to
the initial configuration 0 < §pd leads to the removal of the rule (9), the only
obedience rule in α(β(Rinit), L). Hence, PTAuth claims that an attack is found,
which means that no parameter configuration would make the protocol work.

know(tA, t),new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[],B[], [k], tA), initS(A[], B[], [k], tS)

−[t ≤ tA,tB ≤ tS + §pa ≤ tA + 2 ∗ §pa,
tA + 2 ∗ §pd ≤ tS + §pd ≤ tB,]→

accept(A[], B[], [k], tB) (9)

know(tA, t),new([k], alice gen[], 〈A[], B[], tA〉)
, initA(A[],B[], [k], tA), initS(A[], B[], [k], tS1)

, initS(B[],A[], [k], tS2), initS(A[], B[], [k], tS3)

−[t ≤ tA,tB ≤ tS3 + §pa ≤ tS2 + 2 ∗ §pa ≤ tS1 + 3 ∗ §pa ≤ tA + 4 ∗ §pa,
tA + 4 ∗ §pd ≤ tS1 + 3 ∗ §pd ≤ tS2 + 2 ∗ §pd ≤ tS3 + §pd ≤ tB]→

accept(A[], B[], [k], tB) (10)

Corrected WMF. The WMF protocol can be fixed by inserting two different
constants to the messages sent to and received from the server respectively, which
breaks their symmetric structure. Using this method, the server can distinguish
the messages that it sent out previously, and refuse to process them again. Our
algorithm proves the correctness of this modified WMF protocol, and produces
the timing constraints 0 < §pd ≤ §pa.

5 Evaluations

Based on our verification framework, we have implemented a tool named PTAuth.
We encode PPL [3] in our tool to analyze the satisfaction of timing constraints.
Meanwhile, in order to improve the performance, we implement an on-the-fly
verification algorithm that updates the parameter configuration whenever a rule
is generated. Hence, the verification process can terminate early if an attack
can be found. We use PTAuth to check many security protocols as shown in
Table 2. All the experiments shown in this section are conducted under Mac OS
X 10.10.1 with 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3. In the experi-
ments, we have checked several timed protocols i.e., the WMF protocols [8,14],
the Kerberos protocols [27], the distance bounding protocolse [7,10,28] and the
CCITT protocols [11,2,8]. Additionally, we analyze the untimed protocols like
the Needham-Schroeder series [26,21] and SKEME [18]. As can be seen, most of
the protocols can be verified or falsified by PTAuth quickly for an unbounded
number of protocol sessions. Notice that the secure configuration is given based

Verifying Parameterized Timed Security Protocols 353

Table 2. Experiment Results

Protocol Parameterized Bounded �R1 Result Time
Wide Mouthed Frog [8] Yes No 40 Attack [22] 39ms
Wide Mouthed Frog (c) [14] Yes No 35 Secure 13ms
Kerberos V [27] Yes No 19370 Attack 23m5s
Kerberos V (c) Yes Yes 438664 Secure 2h41m
Auth Range [7,10] Yes No 21 Secure 10ms
Ultrasound Dist Bound [28] Yes No 50 Attack [29] 18ms
CCITT X.509 (1) [11] No No 45 Attack [2] 14ms
CCITT X.509 (1c) [2] No No 62 Secure 37ms
CCITT X.509 (3) [11] No No 127 Attack [8] 84ms
CCITT X.509 (3) BAN [8] No No 148 Secure 131ms
NS PK [26] No No 68 Attack [21] 30ms
NS PK Lowe [21] No No 61 Secure 28ms
SKEME [18] No No 127 Secure 466ms

on the satisfaction of all of the queries, so we do not show the results for different
queries separately in the table. The justification for the bounded verification of
the corrected version of Kerberos V is presented later in this section. The PTAuth
tool and the models shown in this section are available in [1]. Particularly, we
have successfully found a new attack in Kerberos V [27] using PTAuth. In the
following, we present the detailed findings in Kerberos V. Since Kerberos V is
the latest version, we denote it as Kerberos for short unless otherwise indicated.

Kerberos Overview. Kerberos is a widely used security protocol for accessing
services. For instance, Microsoft Window uses Kerberos as its default authenti-
cation method; many UNIX and UNIX-like operating systems include software
for Kerberos authentication. Kerberos has a salient property such that its user
can obtain accesses to a network service within a period of time using a single
request. In general, this is achieved by granting an access ticket to the user,
so that the user can subsequently use this ticket to authenticate himself to the
server. Kerberos is complex because multiple ticket operations are supported
simultaneously and many fields are optional, which are heavily relying on time.
So, configuring Kerberos is hard and error-prone.

Kerberos consists of five types of entities: User, Client, Kerberos Authen-
tication Server (KAS), Ticket Granting Server (TGS) and Application Server
(AP). KAS and TGS together are also known as Key Distribution Centre (KDC).
Specifically, Users usually are humans, and Clients represent their identities in
the Kerberos network. KAS is the place where a User can initiate a logon session
to the Kerberos network with a pre-registered Client. In return, KAS provides
the User with (1) a Ticket Granting Ticket (TGT) and (2) an encrypted session
key as the authorization proof to access TGS. After TGS checks the authoriza-
tion from KAS, TGS issues two similar credentials (1) a Service Ticket (ST) and

354 L. Li et al.

(2) a new encrypted session key to the User as authorization proof to access AP.
Then, the User can finally use them to retrieve the Service from AP. Addition-
ally, both of the TGT and the ST can be postdated, validated and renewed by
KDC when these operations are permitted in the Kerberos network.

Specification Highlights. Generally, by following the method described in
Section 3, the specification for Kerberos itself can be extracted easily. In order to
verify Kerberos comprehensively, we model several keys and timestamps (which
could be optional) by following precisely its official document RFC 4120 [27].

– The user and the server are allowed to specify sub-session keys in the mes-
sages. When a sub-session key is specified, the message receiver must use it
to transmit the next message rather than using the default session-key.

– Optional timestamps are allowed in the user requests and the tickets. In the
following paper, fq , tq and rq denote the start-time, the end-time and the
maximum renewable end-time requested by the users. Similarly, sp, ep and
rp denote the start-time, the end-time and the maximum renewable end-time
agreed by the servers. sp, ep and rp are encoded in the tickets, corresponding
to fq , tq and rq respectively. An additional timestamp ap is encoded in the
ticket to represent the initial authentication time of the ticket. Furthermore,
cq represents the current-time when the request is made by the user, and
cp stands for the current-time when the ticket is issued by the server. In
Kerberos, fq , rq, sp and rp are optional. So the servers need to check their
presence and construct replies accordingly.

In this work, two parameters are considered in Kerberos, i.e., the maximum
lifetime §l and the maximum renewable lifetime §r of the tickets. Based on these
parameters, the servers can only issue tickets whose lifetime and renewable life-
time are shorter than §l and §r respectively. Furthermore, five operations are
modeled for the Kerberos servers as follows. (1) Postdated tickets can be gen-
erated for future usage. They are marked as invalid initially and they must be
validated later. (2) Postdated tickets must be validated before usage. (3) Renew-
able tickets can be renewed before they expire. (4) Initial tickets are generated
at KAS using user’s client. (5) Sub-tickets are generated at TGS using existing
tickets. Notice that the end-time ep of the sub-ticket should be no larger than the
end-time of the existing ticket. Due to the space limit, we provide the complete
model of Kerberos in [1].

Queries. In order to specify the queries, we define three events as follows.

– When an initial ticket is generated at KAS, an initauth(k, C, S, t) event is
engaged, where k is the fresh session key, C is the client’s name, S is the
target server’s name, and t is the beginning of the ticket’s lifetime.

– Whenever an new ticket is generated at KAS or TGS, an initgen(k, C, S, t)
event is engaged. Its arguments have the same meaning as those in initauth .

– Whenever an ticket is accepted by the server, an accept(k, C, S, t) event is
engaged, where k is the agreed session key, C is the client’s name, S is the
current server’s name, and t is the acceptance time.

Verifying Parameterized Timed Security Protocols 355

Ticket (TGT)
– ap1 = 0
– ep1 = 3
– rp1 = 5

with Authentication Event

– initauth([k1], A[], TGS[], 0)
– initgen([k1], A[], TGS[], 0)

Ticket (ST)
– ap2 = 0
– ep2 = 3
– rp2 = 7

with Authentication Event

– accept([k1], A[], TGS[], 2)
– initgen([k2], A[], AP [], 2)

Ticket (ST)
– ap3 = 0
– ep3 = 6
– rp3 = 7

with Authentication Event

– accept([k2], A[], AP [], 3)
– initgen([k3], A[], AP [], 3)

Service

with Authentication Event

– accept([k3], A[], AP [], 6)

KDC

– §l = 3
– §r = 5

Sub-ticket Request for AP
– cp1 = 2
– eq1 = 3
– rq1 = 7

Renew Request
– cp2 = 3
– eq2 = 6

Service Request
– cp3 = 6

Fig. 1. Attack Found in Kerberos V

In Kerberos, we need to ensure the correctness of two timed authentications.
First, whenever a server accepts a ticket, the ticket should be indeed generated
within §l time units using the same session key. Second, whenever a server accepts
a ticket, the initial ticket should be indeed generated within §r time units.

accept(k, C, S, t) ←[t − t ′ ≤ §l]− initgen(k, C, S, t
′) (11)

accept(k, C, S, t) ←[t − t ′ ≤ §r]− initauth(k
′, C, S′, t ′) (12)

Verification Results. For the termination of the verification, we need to ini-
tially configure the parameters as §r < n ∗ §l, where n can be any integer larger
than 1. The requirement for this constraint is justified as follows. Algorithm 1
updates parameter configuration at line 5 to eliminate the contradiction rules.
Suppose we have a rule initauth (k, C, S, t

′) −[t − t ′ ≤ c ∗ §l]→ accept(k, C, S, t)
in the rule basis, where c > 1. This rule is a contradiction to the query (12)
because §r is not necessarily larger than c ∗ §l. However, Algorithm 1 can add a
new constraint c∗§l ≤ §r to the existing configuration and then continue search-
ing. Since we have infinitely many such rules in β(Rinit) with different values
of c, the verification cannot terminate. Hence, in this work, we set the initial
configuration as §r < 2 ∗ §l to avoid the non-termination. Notice that this initial
configuration does not prevent us from finding attacks because it does not limit
the number of sequential operations allowed in the Kerberos protocol.

After analyzing Kerberos using PTAuth, we have successfully found a security
flaw in its specification document RFC 4120 [27]. The attack trace is depicted in

356 L. Li et al.

Figure 1. Suppose the Kerberos is configured with §l = 3 and §r = 52, and a user
Alice has already obtained a renewable ticket at time 0. Then, she can request
for a sub-ticket of AP at time 2 that is renewable until time 7, satisfying rq1 −
cp1 ≤ §r. Notice the new sub-ticket’s end-time ep2 cannot be larger than the
end-time ep1 of the existing ticket. Later, she renews the new sub-ticket before
it expires and gets a ticket valid until time 6. Finally, she requests the service at
time 6 and engages an event accept([k3], A[], AP [], 6). However, this accept event
does not correspond to any initauth event satisfying Query (12), which leads to an
attack. In fact, Alice can use this method to request sub-ticket for AP repeatedly
so that she can have access to the service forever. Obviously, the server who
made the authentication initially does not intend to do so. Fortunately, after
checking the source code of Kerberos, we find that this flaw is prevented in its
implementations [24,19]. An additional checking condition3 has been inserted to
regulate that the renewable lifetime in the sub-ticket should be smaller than the
renewable lifetime in the existing ticket. We later confirmed with Kerberos team
that this is an error in its specification document, which could have led to a
security issue but has not done so in its current implementation.

Corrected Version. After adding the timing constraints on renewable lifetime
between the base-ticket and the sub-ticket, the verification cannot terminate.
This is caused by an infinite dependency trace formed by tickets, as we do not
limit its length. Hence, we bound the number of tickets that can be generated
during the verification, which in turn bounds the number of initgen events in
the rule. In this work, we bound the ticket number to five. This is justified as
we have five different methods to generate tickets in Kerberos: the servers can
postdate, validate, renew tickets, generate initial tickets and issue sub-tickets.
After bounding the ticket number that can be generated, our tool proves the
correctness of Kerberos and produces the configuration 0 ≤ §l ≤ §r < 2 ∗ §l.

6 Related Works

As mentioned, this work is related to our previous work [20]. In this work, we
additionally introduce timing parameters, secrecy queries, etc. and enhance the
computation capability of the timing constraint with PPL. Furthermore, we
provide the algorithm to compute the least constrained secure configuration of
parameters in this work. We successfully analyze several protocols including Ker-
beros V and find an attack in the Kerberos V specification [27] that is unreported
before. The analyzing framework closest to ours was proposed by Delzanno and
Ganty [14] which applies MSR(L) to specify unbounded crypto protocols by
combining first order multiset rewriting rules and linear constraints. According
to [14], the protocol specification is modified by explicitly encoding an additional
timestamp, representing the initialization time, into some messages. Thus the

2 §l and §r are represented by symbols during the verification.
3 For krb5-1.13 from MIT, the checking is located in the file src/kdc/kdc util.c at line
1740 - 1741. We also checked other implementations, like heimdal-1.5.2.

Verifying Parameterized Timed Security Protocols 357

attack can be found by comparing the original timestamps with the new one in
the messages. However, it is unclear how to verify timed protocol in general us-
ing their approach. On the other hand, our approach can be applied to protocols
without any protocol modification. Many tools for verifying protocols [6,13,23]
are related. However, they are not designed for timed protocols.

Kerberos has been scrutinized over years using formal methods. In [5], Bella
et al. analyzed Kerberos IV using the Isabelle theorem prover. They checked
various secrecy and authentication properties and took time into consideration.
However, Kerberos is largely simplified in their analysis and the specification
method in their work is not as intuitive as ours. Later, Kerberos V has been
analyzed by Mitchell et al. [25] using state exploration tool Murϕ. They claimed
that an attack is found in [17] when two servers exists. However, this attack is
actually prevented in Kerberos’s official specification document RFC 1510 [16],
which is later superseded by RFC 4120 [27] analyzed in this paper. The biggest
advantages of our method is that the verification is given for an unbounded
number of sessions, which is not achievable previously with the state exploration
approach. For the above literatures, they did not consider alternative options
supported in the protocol that may accidentally introduce attacks as we do in
this work. Similar to our work, Kerberos V has been analyzed in a theorem
proving context by Butler et al. [9]. They took many features into consideration,
i.e., the error messages, the encryption types and the cross-realm support. These
features are not cover in this work since we focus on the timestamps and timing
constraint checking. Meanwhile, our framework can provide intuitive modeling
and automatic verifying, while Kerberos V is analyzed manually in [9].

7 Conclusions

In this work, we developed an automatic verification framework for timed pa-
rameterized security protocols. It can verify authentication properties as well
as secrecy properties for an unbounded number of protocol sessions. We have
implemented our approach into a tool named PTAuth and used it to analyze a
wide range of protocols shown in Section 5. In the experiments, we have found
a timed attack in Kerberos V document that has never been reported before.

Since the problem of verifying security protocols is undecidable in general, we
cannot guarantee the termination of our verification algorithm. When we use
PTAuth to analyze the corrected version of Kerberos, PTAuth cannot terminate
because of the infinite dependency chain of tickets. Hence, we have to bound the
number of tickets generated in the protocol. However, in Kerberos, generating
more tickets may not be helpful to break its security. Based on this observation,
we want to detect and prune the non-terminable verification branches heuristi-
cally without affecting the final results in our future work. This could help us to
verify large-sized and complex protocols that we cannot verify currently, as our
verification algorithm only considers the general approach at present.

358 L. Li et al.

References

1. PTAuth extended paper, tool and experiment models,
http://www.comp.nus.edu.sg/∼li-li/r/time.html.

2. Abadi, M., Needham, R.M.: Prudent engineering practice for cryptographic proto-
cols. IEEE Trans. Software Eng. 22(1), 6–15 (1996)

3. Bagnara, R., Ricci, E., Zaffanella, E., Hill, P.M.: Possibly not closed convex poly-
hedra and the parma polyhedra library. In: Hermenegildo, M.V., Puebla, G. (eds.)
SAS 2002. LNCS, vol. 2477, pp. 213–229. Springer, Heidelberg (2002)

4. Barker, E.B., Barker, W.C., Burr, W.E., Polk, W.T., Smid, M.E.: SP 800-57. Rec-
ommendation for key management. Technical report, National Institute of Stan-
dards & Technology (2007)

5. Bella, G., Paulson, L.C.: Kerberos version IV: Inductive analysis of the secrecy
goals. In: Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.)
ESORICS 1998. LNCS, vol. 1485, pp. 361–375. Springer, Heidelberg (1998)

6. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In:
CSFW, pp. 82–96. IEEE CS (2001)

7. Brands, S., Chaum, D.: Distance-bounding protocols (extended abstract). In: Helle-
seth, T. (ed.) Advances in Cryptology - EUROCRYPT 1993. LNCS, vol. 765,
pp. 344–359. Springer, Heidelberg (1994)

8. Burrows, M., Abadi, M., Needham, R.M.: A logic of authentication. ACM Trans.
Comput. Syst. 8(1), 18–36 (1990)

9. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A., Walstad, C.: Formal analysis
of kerberos 5. Theor. Comput. Sci. 367, 57–87 (2006)

10. Capkun, S., Hubaux, J.-P.: Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications 24(2), 221–232 (2006)

11. CCITT. The directory authentication framework - Version 7, 1987 Draft Recom-
mendation X.509 (1987)

12. Cervesato, I., Durgin, N.A., Lincoln, P., Mitchell, J.C., Scedrov, A.: A meta-
notation for protocol analysis. In: CSFW, pp. 55–69. IEEE CS (1999)

13. Cremers, C.J.F.: The Scyther tool: Verification, falsification, and analysis of se-
curity protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 414–418. Springer, Heidelberg (2008)

14. Delzanno, G., Ganty, P.: Automatic verification of time sensitive cryptographic
protocols. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
342–356. Springer, Heidelberg (2004)

15. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2), 198–207 (1983)

16. Kohl, J., Neuman, B.C.: The Kerberos Network Authentication Service (Version 5).
Internet Request for Comments RFC-1510. RFC Editor (1993)

17. Kohl, J.T., Neuman, B.C., T’so, T.Y.: The evolution of the kerberos authentication
system. In: Distributed Open Systems, pp. 78–94. IEEE CS (1994)

18. Krawczyk, H.: Skeme: A versatile secure key exchange mechanism for internet. In:
NDSS, pp. 114–127. IEEE CS (1996)

19. LDAP Account Manager. Kerberos V implementation heimdal-1.5.2 (2014),
http://www.h5l.org

20. Li, L., Sun, J., Liu, Y., Dong, J.S.: Tauth: Verifying timed security protocols. In:
Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 300–315. Springer,
Heidelberg (2014)

http://www.comp.nus.edu.sg/~li-li/r/time.html
http://www.h5l.org

Verifying Parameterized Timed Security Protocols 359

21. Lowe, G.: An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters 56, 131–133 (1995)

22. Lowe, G.: A family of attacks upon authentication protocols. Technical report,
Department of Mathematics and Computer Science, University of Leicester (1997)

23. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

24. MIT. Kerberos V implementation krb5-1.13 (2014), http://web.mit.edu/kerberos/
25. Mitchell, J., Mitchell, M., Stern, U.: Automated analysis of cryptographic protocols

using Murϕ. In: S&P, pp. 141–151 (1997)
26. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large

networks of computers. Commun. ACM 21(12), 993–999 (1978)
27. Neuman, C., Yu, T., Hartman, S., Raeburn, K.: The Kerberos Network Authenti-

cation Service (Version 5). RFC-4120. RFC Editor (2005)
28. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:

Workshop on Wireless Security, pp. 1–10. ACM (2003)
29. Sedighpour, S., Capkun, S., Ganeriwal, S., Srivastava, M.B.: Implementation of

attacks on ultrasonic ranging systems (demo). In: SenSys, p. 312. ACM (2005)

http://web.mit.edu/kerberos/

Abstraction of Elementary Hybrid Systems
by Variable Transformation

Jiang Liu1, Naijun Zhan2, Hengjun Zhao(�)1, and Liang Zou2

1 Chongqing Key Lab. of Automated Reasoning and Cognition,
Chongqing Institute of Green and Intelligent Technology, CAS, Chongqing, China

{liujiang,zhaohengjun}@cigit.ac.cn
2 State Key Lab. of Computer Science, Institute of Software, CAS, Beijing, China

{znj,zoul}@ios.ac.cn

Abstract. Elementary hybrid systems (EHSs) are those hybrid systems (HSs)
containing elementary functions such as exp, ln, sin, cos, etc. EHSs are very com-
mon in practice, especially in safety-critical domains. Due to the non-polynomial
expressions which lead to undecidable arithmetic, verification of EHSs is very
hard. Existing approaches based on partition of the state space or overapproxima-
tion of reachable sets suffer from state space explosion or inflation of numerical
errors. In this paper, we propose a symbolic abstraction approach that reduces
EHSs to polynomial hybrid systems (PHSs), by replacing all non-polynomial
terms with newly introduced variables. Thus the verification of EHSs is reduced
to the one of PHSs, enabling us to apply all the well-established verification tech-
niques and tools for PHSs to EHSs. In this way, it is possible to avoid the limi-
tations of many existing methods. We illustrate the abstraction approach and its
application in safety verification of EHSs by several real world examples.

Keywords: Hybrid system · Abstraction · Elementary function · Invariant ·
Verification

1 Introduction
Complex Embedded Systems (CESs) consist of software and hardware components that
operate autonomous devices interacting with the physical environment. They are now
part of our daily life and are used in many industrial sectors to carry out highly complex
and often critical functions. The development process of CESs is widely recognized as a
highly complex and challenging task. A thorough validation and verification activity is
necessary to enhance the quality of CESs and, in particular, to fulfill the quality criteria
mandated by the relevant standards. Hybrid systems (HSs) are mathematical models
with precise mathematical semantics for CESs, wherein continuous physical dynamics
are combined with discrete transitions. Based on HSs, rigorous analysis and verification

This work has been partially supported by “973 Program” under grant No. 2014CB340701,
NSFC grants (Nos. 91118007, 91418204 and 61202131), the CAS/SAFEA International
Partnership Program for Creative Research Teams, CAS Western Light Program and
CAS Youth Innovation Promotion Association (No. 2015315), Chongqing Science
and Technology Commission projects cstc2012ggB40004, cstc2014jcsfglyjs0005 and
cstc2014zktjccxyyB0031.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 360–377, 2015.
DOI: 10.1007/978-3-319-19249-9_23

Abstraction of Elementary Hybrid Systems by Variable Transformation 361

of CESs become feasible, so that errors can be detected and corrected in the very early
stage of design.

In practice, it is very common to model complex physical environments by ordinary
differential equations (ODEs) with elementary functions such as reciprocal function
1
x , exponential function ex, logarithm function lnx, trigonometric functions sinx and
cosx, and their compositions. We call such HSs elementary HSs (EHSs). As elementary
expressions usually lead to undecidable arithmetic, the verification of EHSs becomes
very hard, even intractable. Existing methods that deal with EHS verification include
the level-set method [25], the hybridization method [4,15], the gridding-based abstrac-
tion refinement method [31], the interval SMT solver-based method [9,8], the Taylor
model-based flowpipe approximation method [5], and so on. These methods rely ei-
ther on iterative partition of the state space or on iterative computation of approximate
reachable sets, which can quickly lead to explosion of state numbers or inflation of nu-
merical errors. Moreover, most of the above mentioned methods can only do bounded
model checking (BMC).

As an alternative, the constraint-based approach verifies the safety property of an HS
by solving corresponding constraints symbolically or numerically, to discover a bar-
rier (inductive invariant) that separates the reachable set from the unsafe region, which
avoids exhaustive gridding or brute-force computation, and can thus overcome the limi-
tations of the above mentioned methods. However, this method has mainly been applied
to verification of polynomial hybrid systems (PHSs) [35,29,28,12,20]. Although ideas
about generating invariants for EHSs appeared in [28,10], they were talked about in an
ad hoc way. In [34], the author proposed a change-of-bases method to transform EHSs
to PHSs, even to linear systems, but the success depends on the choice of the set of
basis functions, and therefore does not apply to general EHSs.

In this paper, we investigate symbolic abstraction of general EHSs to PHSs, by
extending [34] with early works on polynomialization of elementary ODEs [16,36].
Herein the abstraction is accomplished by introducing new variables to replace the non-
polynomial terms. With the substitution, flows, guards and other components of the
EHSs are transformed according to the chain rule of differentiation, or by the over-
approximation methods proposed in the paper, so that for any trajectory of the EHSs,
there always exists a corresponding trajectory of the reduced PHSs. Besides, such ab-
straction preserves (inductive) invariant sets, that is, any (inductive) invariant of the
over-approximating PHS corresponds to an (inductive) invariant of the original EHS.
Therefore, verification of the EHSs is naturally reduced to the one of the reduced PHSs.
This will be shown by several real world verification problems.

The proposed abstraction applies to general EHSs. The benefit of the proposed ab-
straction is that it enables all the well-established verification techniques and tools for
PHSs, especially the constraint-based approaches such as DAL [27] and SOS [29,18],
to be applied to EHSs, and thus provides the possibility of avoiding such limitations
as error inflation, state space explosion and boundedness for existing EHS verifica-
tion methods. A by-product is that it also provides the possibility of generating invari-
ants with elementary functions for PHSs, thus enhancing the power of existing PHS
verification methods. In short, the proposed abstraction method can be a good alterna-
tive or complement to existing approaches.

362 J. Liu et al.

Related Work. This work is most closely related to [34] and [16]. The abstraction in
this paper is performed by systematic augmentation of the original system rather than
change-of-bases, thus essentially different from [34] and generally applicable. Com-
pared to [16], this paper gives a clearer reduction procedure for elementary ODEs and
discusses the extension to hybrid systems. It was proved in [30] that safety verification
of nonlinear hybrid systems is quasi-semidecidable, but to find efficient verification
algorithms remains an open problem. An approximation technique for abstracting non-
linear hybrid systems to PHSs based on Taylor polynomial was proposed in [19], which
requires the ODEs to have closed-form solutions to abstract the continuous flow transi-
tions. In the recent work [7], following the line of [39], the author proposed predicate-
based abstraction of general nonlinear hybrid systems by using the automated theorem
prover MetiTarski [1]. In [26], the authors adopted similar recasting techniques to ours
for stability analysis of non-polynomial systems. Regarding non-polynomial invariants
for polynomial continuous or hybrid systems, [32] presented the first method for gener-
ating transcendental invariants using formal power series, while the more recent work
[11] proposed a Darboux Polynomial-based method. Both [32] and [11] can only find
non-polynomial invariants of limited forms.

Paper Organization. The rest of the paper is organized as follows. We briefly review
some basic notions about hybrid systems and the theory of abstraction for hybrid sys-
tems in Section 2. Section 3 is devoted to the transformation from EDSs to PDSs, and
from EHSs to PHSs. Section 4 discusses how to use the proposed abstraction approach
for safety verification of EHSs. Section 5 concludes this paper.

2 Preliminary

In this section, we briefly introduce the basic knowledge of hybrid systems and define
what we call elementary hybrid systems. Besides, we also recall the basic theory of
abstraction for hybrid systems originally developed in [33,34].

Throughout this paper, we use N,Q,R to denote the set of natural, rational and real
numbers respectively. Given a set A, the power set of A is denoted by 2A, and the
Cartesian product of n duplicates of A is denoted by An; for instance, Rn stands for
the n-dimensional Euclidean space. A vector element (a1, a2, . . . , an) ∈ An is usually
abbreviated by a boldface letter a when its dimension is clear from the context.

2.1 Elementary Continuous and Hybrid Systems

A continuous dynamical system (CDS) is modeled by first-order autonomous ordinary
differential equations (ODEs)

ẋ = f(x), (1)

where x = (x1, . . . , xn) ∈ R
n and f : U → R

n is a vector function, called a vector
field, defined on an open set U ⊆ R

n. If f satisfies the local Lipschitz condition [17],
then for any x0 ∈ U , there exists a unique differentiable vector function x(t) : (a, b) →
U , where (a, b) is an open interval containing 0, such that x(0) = x0 and the derivative
of x(t) w.r.t. t satisfies ∀t ∈ (a, b). dx(t)

dt = f(x(t)). Such x(t) is called the solution to
(1) with initial value x0, or the trajectory of (1) starting from x0.

Abstraction of Elementary Hybrid Systems by Variable Transformation 363

In many contexts, a CDS C may be equipped with an initial set Ξ and a domain D,
represented as a triple C�=(Ξ, f , D).1 If f is defined on U ⊆ R

n, then Ξ and D should
satisfy Ξ ⊆ D ⊆ U . In what follows, all CDSs will refer to the triple form unless
otherwise stated. Hybrid systems (HSs) are those systems that exhibit both continuous
evolutions and discrete transitions. A popular model of HSs is hybrid automata [2,13].

Definition 1 (Hybrid Automaton). A hybrid automaton (HA) is a system H�=(Q,X, f,
D,E,G,R,Ξ), where

– Q = {q1, . . . , qm} is a finite set of modes;
– X={x1, . . . , xn} is a finite set of continuous state variables, with x = (x1, . . . , xn)

ranging over Rn;
– f : Q → (Uq → R

n) assigns to each mode q ∈ Q a locally Lipschitz continuous
vector field fq defined on an open set Uq ⊆ R

n;
– D assigns to each mode q ∈ Q a domain Dq ⊆ Uq;
– E ⊆ Q×Q is a finite set of discrete transitions;
– G assigns to each transition e ∈ E a guard Ge ⊆ R

n;
– R assigns to each transition e ∈ E a set-valued reset function Re: Ge → 2R

n

;
– Ξ assigns to each q ∈ Q a set of initial states Ξq ⊆ Dq.

Actually an HA can be regarded as a composition of a finite set of CDSs Cq �=(Ξq, fq,
Dq) for q ∈ Q, together with the set of transition relations specified by (Ge, Re) for
e ∈ E. Conversely, any CDS can be regarded as a special HA with a single mode and
without discrete transitions.

In this paper, we consider the class of HSs that can be defined by multivariate ele-
mentary functions given by the following grammar:

f, g ::= c | x | f + g | f − g | f × g | f
g
| fa | ef | ln(f) | sin(f) | cos(f) (2)

where c ∈ R is any real constant, a ∈ Q is any rational constant, and x can be any vari-
able from the set of real-valued variables {x1, . . ., xn}. In particular, the set of functions
constructed only by the first 5 constructs are multivariate polynomials in x1, x2, . . . , xn.

The limitation of elementary functions to grammar (2) is not essential. For exam-
ple, tangent and cotangent functions tan(f), cot(f) can be easily defined. Besides, the
presented approach in this paper is also applicable to other elementary functions not
mentioned above, such as inverse trigonometric functions arcsin(f), arccos(f), etc.

Definition 2 (Elementary and Polynomial HSs). An HS or a CDS is called elemen-
tary (resp. polynomial) if it can be expressed by elementary (resp. polynomial) functions
together with relational symbols �, >,�, <,=, �= and Boolean connectives ∧,∨,¬,
−→,←→, etc.

Note that in Definition 2, the presented symbol set is complete but not minimal.
Elementary (resp. polynomial) HSs or CDSs will be denoted by EHSs or EDSs (resp.
PHSs or PDSs) for short.

1 In this paper, the symbol �= is interpreted as “defined as”.

364 J. Liu et al.

q

fq

y � sin x

y > sin x � �

y = sin x

v′x :=
(sinx)2·vx+2(cos x)·vy

1+(cos x)2

v′y :=
2(cos x)·vx−(sinx)2·vy

1+(cos x)2

Fig. 1. The HA model of a bouncing ball on a sine-waved surface

Example 1 (Bouncing Ball). Figure 1 depicts the HA model of a bouncing ball on a
sine-waved surface, adapted from a similar one in [14]. The motion of the ball stays in
the two-dimensional x-y plane, with x denoting the horizontal position, y denoting the
height, and vx and vy denoting the velocity along the two directions respectively. When
the ball hits the surface given by the sine wave y = sinx, its velocity changes instan-
taneously according to the law of perfectly elastic collision. Here, using the notation of
Definition 1, we have Q = {q}, X = {x, y, vx, vy}, fq defines the ODE����� ẋ = vx

ẏ = vy
v̇x = 0
v̇y = −9.8

,

Dq �= y � sinx, E = {e} with e = (q, q), Ge�= y = sinx, Ξq �= y > sinx, and
Re(x, y, vx, vy)�= {(x, y, v′x, v′y)} with v′x, v′y shown in the figure.

2.2 Semantics of Hybrid Systems

Given an HA H, denote the state space of H by H�=Q × R
n, the domain of H by

DH�= �q∈Q({q} × Dq), and the set of all initial states by ΞH�= �q∈Q({q} × Ξq).
The semantics of H can be characterized by the set of reachable states of H.

Definition 3 (Reachable Set). Given an HA H, the reachable set of H, denoted by RH,
consists of such (q,x) ∈ H for which there exists a finite sequence

(q0,x0), (q1,x1), . . . , (ql,xl)

such that (q0,x0) ∈ ΞH, (ql,xl) = (q,x), and for any 0 � i � l − 1, one of the
following two conditions holds:

– (Discrete Jump): e = (qi, qi+1) ∈ E, xi ∈ Ge and xi+1 ∈ Re(xi); or
– (Continuous Evolution): qi = qi+1, and there exists a δ � 0 s.t. the trajectory x(t)

of ẋ = fqi starting from xi satisfies
• x(t) ∈ Dqi for all t ∈ [0, δ]; and
• x(δ) = xi+1 .

Exact computation of reachable sets of hybrid systems is generally an intractable
problem. For verification of safety properties, appropriate over-approximationsof reach-
able sets will suffice.

Abstraction of Elementary Hybrid Systems by Variable Transformation 365

Definition 4 (Invariant). Given an HA H, a set I �= �q∈Q({q} × Iq) ⊆ H is called
an invariant of H, if I is a superset of the reachable set RH, i.e. RH ⊆ I.

Definition 5 (Inductive Invariant). Given an HA H, a set I �= �q∈Q({q} × Iq) ⊆ H

is called an inductive invariant of H, if I satisfies the following conditions:

– Ξq ⊆ Iq for all q ∈ Q;
– for any e = (q, q′) ∈ E, if x ∈ Iq ∩Ge, then Re(x) ⊆ Iq′ ;
– for any q ∈ Q and any x0 ∈ Iq , if x(t) is the trajectory of ẋ = fq starting from x0,

and there exists T � 0 s.t. x(t) ∈ Dq for all t ∈ [0, T], then x(T) ∈ Iq .

It is easy to check that any inductive invariant is also an invariant.

2.3 Abstraction of Hybrid Systems

We next briefly introduce the kind of abstraction for HSs proposed in [33,34] and the
significant properties about such an abstraction.

In what follows, to distinguish between the dimensions of an HS and its abstraction,
we will annotate an HS H (a CDS C) with the vector of its continuous state variables
x as Hx (Cx). We use |x| to denote the dimension of x. Given a vector function Θ
that maps from D ⊆ R

|x| to R
|y|, let Θ(A)�= {Θ(x) | x ∈ A} for any A ⊆ D, and

Θ−1(B)�= {x ∈ D | Θ(x) ∈ B} for any B ⊆ R
|y|.

Definition 6 (Simulation [33]). Given two CDSs Cx�= (Ξx, fx, Dx) and Cy�=(Ξy, fy,
Dy), we say Cy simulates Cx or Cx is simulated by Cy via a continuously differentiable
mapping Θ : Dx → R

|y|, if Θ satisfies

– Θ(Ξx) ⊆ Ξy, Θ(Dx) ⊆ Dy; and
– for any trajectory x(t) of Cx (i.e. a trajectory of ẋ = fx(x) that starts from Ξx

and stays in Dx), Θ ◦ x(t) is a trajectory of Cy, where ◦ denotes composition of
functions.

We call Cy an abstraction of Cx under the simulation map Θ.

Abstraction of an HS can be obtained by abstracting the CDS corresponding to each
mode using an individual simulation map. As argued in [34], it can be assumed without
loss of generality that the collection of simulation maps for each mode all map to an
Euclidean space of the same dimension, say R

|y|.

Definition 7 (Simulation [34]). Given two HSs Hx�=(Q,X, fx, Dx, E,Gx, Rx, Ξx)
and Hy�=(Q, Y, fy, Dy, E,Gy, Ry, Ξy), we say Hy simulates Hx via the set of maps
{Θq : Dx,q → R

|y| | q ∈ Q}, if the following hold:

– (Ξy,q, fy,q, Dy,q) simulates (Ξx,q, fx,q, Dx,q) via Θq , for each q ∈ Q;
– Θq(Gx,e) ⊆ Gy,e, for any e = (q, q′) ∈ E;
– Θq′(Rx,e(x)) ⊆ Ry,e(Θq(x)), for any e = (q, q′) ∈ E and any x ∈ Gx,e.

We call Hy an abstraction of Hx under the set of simulation maps {Θq | q ∈ Q}.

Intuitively, if Hy is an abstraction of Hx, then for any (q,x) reachable by Hx,
(q, Θq(x)) is a state reachable by Hy. Actually, we can prove the following nice prop-
erty about such abstractions.

366 J. Liu et al.

Theorem 1 (Invariant Preserving Property). If Hy is an abstraction of Hx under
simulation maps {Θq | q ∈ Q}, and Iy�= �q∈Q({q} × Iy,q) is an invariant (resp.
inductive invariant) of Hy, then Ix�= �q∈Q({q} × Ix,q) with Ix,q �=Θ−1

q (Iy,q) is an
invariant (resp. inductive invariant) of Hx.

Theorem 1 extends Theorem 3.2 of [33] in two aspects: firstly, it deals with HSs, and
secondly, it applies to both invariants and inductive invariants; nevertheless, the proof
of Theorem 1 can be given in a similar way and so is omitted here. The significance
of Theorem 1 lies in the possibility of analyzing a complex HS by analyzing certain
abstractions of it, which may be of simpler forms and thus allow the use of any available
techniques and tools.

The following theorem proposed in [33] is very useful for checking or constructing
simulation maps.

Theorem 2 (Simulation Checking [33]). Let Cx, Cy, Θ be specified as in Definition 6.
Suppose |x| = n, |y| = �, and Θ�=(θ1, θ2, . . . , θ�). Then Cy simulates Cx if

– Θ(Ξx) ⊆ Ξy, Θ(Dx) ⊆ Dy; and
– fy(Θ(x)) = JΘ(x) · fx(x), for any x ∈ Dx, where fx(x) is seen as a column

vector, and JΘ(x) represents the Jacobian matrix of Θ at point x.

Example 2. Let Cx�= �x ∈ [0, 1], ẋ = ex, x ∈ R

	
with x = x, Cy�= �y1 ∈ [0, 1]∧y2 ∈

[1, 3], (ẏ1, ẏ2) = (y2, y
2
2), y1 ∈ R ∧ y2 > 0

	
with y = (y1, y2), and Θ�=(x, ex). Then

it can be checked according to Theorem 2 that Cy simulates Cx.

We will employ Theorem 2 to prove the correctness of our abstraction of EHSs in
the following section.

3 Polynomial Abstraction of EHSs
In this section, given any EHS as defined in Definition 2, we will construct a PHS that
simulates the EHS in the sense of Definition 7. We will first show how elementary ODEs
can be transformed into polynomial ones, and then discuss how to deal with initial sets,
domains, guards, and reset maps.

3.1 Polynomialization of Elementary ODEs

In this part, we illustrate how to transform an elementary ODE equivalently into a poly-
nomial one by introducing new variables to replace non-polynomial terms. The basic
idea here is similar to [16], but we give a clearer statement of the transformation proce-
dure and extend it from ODEs to hybrid systems.

Univariate Basic Elementary Functions. For

ẋ = f(x) (3)

– if f(x) = 1
x , then let v = 1

x , and thus v̇ = − ẋ
x2 . Therefore (3) is transformed to2

ẋ = v
v̇ = −v3

2 By v = 1
x

, the set {(x, v) | x = 0, v ∈ R} is excluded from the domain of the transformed
polynomial ODE. Such a consequence will not be explicitly mentioned in the rest of this paper.

Abstraction of Elementary Hybrid Systems by Variable Transformation 367

– if f(x) =
√
x, then let v =

√
x, and thus v̇ = ẋ

2
√
x

. Therefore (3) is transformed to

ẋ = v
v̇ = 1

2

– if f(x) = ex, then let v = ex, and thus v̇ = ex · ẋ. Therefore (3) is transformed to

ẋ = v
v̇ = v2

– if f(x) = lnx, then let v = lnx, and thus v̇ = ẋ
x ; then further let u = 1

x , and thus
u̇ = − ẋ

x2 . Therefore (3) is transformed to��� ẋ = v
v̇ = uv
u̇ = −u2v

– if f(x) = sinx, then let v = sinx, and thus v̇ = ẋ·cosx; then further let u = cosx,
and thus u̇ = − sinx · ẋ. Therefore (3) is transformed to��� ẋ = v

v̇ = uv
u̇ = −v2

– if f(x) = cosx, then the transformation is analogous to the case of f(x) = sinx.

Compositional and Multivariate Functions. Obviously, the outmost form of any
compositional elementary function must be one of f±g, f×g, fg , f

a, ef , ln(f), sin(f),

cos(f). Therefore given a compositional function, we can iterate the above procedure
discussed on basic cases from the innermost non-polynomial sub-term to the outside,
until all the sub-expressions have been transformed into polynomials. For example,

– if f(x) = ln(2 + sinx), we can let�����v =sinx
u =cosx
w=ln (2 + v) = ln (2 + sinx)
z = 1

2+v = 1
2+sin x

, and then (3) is transformed to

�������
ẋ =w
v̇ =uw
u̇ =−vw
ẇ=zuw
ż =−z2uw

.

Handling multivariate functions is straightforward.
In summary, we give the following assertion on polynomializing elementary ODES,

the correctness of which can be given based on the formal transformation algorithms
presented in the full version of this paper [22].

Proposition 1 (Polynomial Recasting). Given an ODE ẋ = f(x) with f(x) an ele-
mentary vector function defined on an open set U ⊆ R

n, there exists a collection of
variable replacement equations v = Γ (x), where v = (v1, v2, . . . , vm) is a vector of

368 J. Liu et al.

new variables and Γ (x) = (γ1(x), γ2(x), . . . , γm(x)) : U → R
m is an elementary

vector function, such that�
ẋ
v̇

�
=

�
f(x)

JΓ (x) · f(x)

�
=

�
f(x)

JΓ (x) · f(x)

� �
v/Γ (x)

� �= f̃(x,v) (4)

becomes a polynomial ODE, that is, f̃ (x,v) is a polynomial vector function in variables
x and v. Here expr�v/Γ (x)� means replacing any occurrence of the non-polynomial
term γi(x) in the expression expr by the corresponding variable vi, for all 1 � i � m.

It can be proved that the number of variables v is at most twice the number of non-
polynomial terms in the original ODE, which can be a small number in practice. The
transformed polynomial ODE as specified in Proposition 1 is equivalent to the original
one in the following sense.

Theorem 3 (Trajectory Equivalence). Let f(x), Γ (x) and f̃(x,v) be as specified in
Proposition 1. Then for any trajectory x(t) of ẋ = f(x) starting from x0 ∈ U ⊆
R

n,
�
x(t), Γ (x(t))

	
is the trajectory of (ẋ, v̇) = f̃(x,v) starting from (x0, Γ (x0));

conversely, for any trajectory (x(t),v(t)) of (ẋ, v̇) = f̃ (x,v) starting from (x0,v0) ∈
R

n+m, if x0 ∈ U and v0 = Γ (x0), then x(t) is the trajectory of ẋ = f(x) starting
from x0.

Proof. The result can be deduced directly from (4).
�

3.2 Abstracting EDSs by PDSs

In this part, given an EDS Cx�=(Ξx, fx, Dx) we will construct a PDS Cy�=(Ξy, fy, Dy)
that simulates Cx. The construction is based on the procedure introduced in Section 3.1
on polynomial transformation of elementary ODEs. The basic idea is to construct a
simulation map using the replacement equations. The difference here is that when ab-
stracting an EDS, we need to replace non-polynomial terms occurring in not only the
vector field, but also the initial set and domain. Suppose we have obtained the replace-
ment equation v = Γ (x) and fy as defined in (4). Then we define the simulation map
Θ : Dx → R

|y| as3

Θ(x) = (x, Γ (x)) . (5)

Now Ξy and Dy can be constructed using Θ, as illustrated in detail next.
To construct Ξy, consider the image of Ξx under the simulation map Θ

Θ(Ξx) = {(x,v) ∈ R
|y| | x ∈ Ξx ∧ v = Γ (x)} ,

briefly denoted by Θ(Ξx) �= Ξx ∧ v = Γ (x), or alternatively

Θ(Ξx) �= Ξx�v/Γ (x)� ∧ v = Γ (x) . (6)

The first conjunct in (6) is of polynomial form, but the second conjunct contains ele-
mentary functions. By Definition 6, we need to get a polynomial over-approximation
Ξy of Θ(Ξx), which means we need to abstract v = Γ (x) in (6) by polynomial ex-
pressions. We propose the following four ways to do so.

3 Here we assume that all elementary functions in Ξx, fx and Dx are defined on Dx.

Abstraction of Elementary Hybrid Systems by Variable Transformation 369

(W1) When Γ (x) are some special kinds of elementary functions, v = Γ (x) can be
equivalently transformed to polynomial expressions, e.g.��� v =

1

x
⇐⇒ vx = 1

v =
√
x ⇐⇒ v2 = x ∧ v � 0

. (7)

(W2) If Ξx is a bounded region and the upper/lower bounds of each component xi of
x can be easily obtained, then we can compute the Taylor polynomial expansion
p(x) of Γ (x) over the bounded region up to a certain degree, as well as an
interval over-approximation I of the corresponding truncation error, such that
v = Γ (x) can be approximated by v ∈ (p(x) + I).

(W3) We can also compute the range of Γ (x) (over Ξx) as an over-approximation of
v, e.g.

v = sinx =⇒ −1 � v � 1

v = ex =⇒ v > 0
. (8)

(W4) The simplest way is to remove the constraint v = Γ (x) entirely, which means v
is allowed to take any value from R

|v|.

From (W1) to (W4), the over-approximation of v = Γ (x) becomes more and more
coarse. Usually it takes more effort to obtain a more refined abstraction, but the result
would be more useful for analysis of the original system.

The construction of Dy is similar to Ξy. Then we can give the following conclusion,
the proof of which can be found in [22].

Theorem 4 (Abstracting EDS by PDS). Given an EDS Cx�=(Ξx, fx, Dx), let Cy�=
(Ξy, fy, Dy), where fy is given by (4), and Ξy, Dy are given by (6) together with
(W1)-(W4). Then Cy is a polynomial abstraction of Cx in the sense of Definition 6,
under simulation map Θ defined by (5).

Example 3. Consider the EDS Cx�=(Ξx, fx, Dx), where

– Ξx�=(x+ 0.5)2 + (y − 0.5)2 − 0.16 � 0;
– Dx�= − 2 � x � 2 ∧−2 � y � 2; and
– fx defines the ODE �

ẋ
ẏ

�
=

�
e−x + y − 1
− sin2(x)

�
. (9)

A PDS Cy that simulates Cx can be constructed as follows.

1) Noticing that Ξx and Dx are both in polynomial forms, we only need to replace
non-polynomial terms in fx. We finally obtain the replacement relations v = Γ (x)

(v1, v2, v3) = (sinx, e−x, cosx) (10)

and the transformed polynomial ODE�
ẋ
ẏ
v̇1
v̇2
v̇3

�
=

�
v2 + y − 1

−v21
v3(v2 + y − 1)
−v2(v2 + y − 1)
−v1(v2 + y − 1)

�
, (11)

370 J. Liu et al.

the right-hand-side of which is defined to be fy.
2) The simulation map Θ is given by

Θ(x, y) = (x, y, sinx, e−x, cosx) . (12)

The images of Ξx and Dx under Θ are

Θ(Ξx) �= Ξx ∧ v1 = sinx ∧ v2 = e−x ∧ v3 = cosx

and
Θ(Dx) �= Dx ∧ v1 = sinx ∧ v2 = e−x ∧ v3 = cosx

respectively. For the above two formulas, (W1) is not applicable, whereas we can
use any of (W2)-(W4) to abstract them. Here we give one possible way adopting
(W2): first, using the tool COSY INFINITY4 for Taylor model [24] computation, we
expand sinx, e−x and cosx over x ∈ [−2, 2] at x = 0 up to degree 6, and obtain

p1(x) + l1 � v1 � p1(x) + u1

TM x,v�= ∧ p2(x) + l2 � v2 � p2(x) + u2 ; (13)

∧ p3(x) + l3 � v3 � p3(x) + u3

then we define Dy �= Dx ∧ TM x,v; second, from Ξx it can be deduced that x ∈
[−0.9,−0.1] for any (x, y) ∈ Ξx, and then we can compute the Taylor models of
v = Γ (x) over [−0.9,−0.1] and obtain Ξy. Please see [22] for details of computed
Taylor models. Thus we finally get a PDS Cy�=(Ξy, fy, Dy) that simulates Cx.

3.3 Abstracting EHSs by PHSs

In the previous sections, we have presented a method to abstract an EDS to a PDS such
that the PDS simulates the EDS. Now we show, given an EHS Hx, how to construct
a PHS Hy that simulates Hx. Actually, this can be easily done by just extending the
previous abstraction approach a bit to take into account guard constraints and reset
functions. Another difference is that we need to treat each mode of an HA separately
by constructing an individual simulation map for each of them. For the details of how
guards and reset maps can be abstracted, the readers can refer to the full version [22].

Example 4. Consider the EHS in Example 1 except for that the initial set is replaced
by Ξq �= y ∈ [4.9, 5.1] ∧ x = 0 ∧ vx = −1 ∧ vy = 0. Denote this EHS by Hx with
x = (x, y, vx, vy). By applying the proposed abstraction approach, we obtained the
replacement equations (u1, u2, u3) = (sinx, cosx, 1

1+(cosx)2) and the corresponding
polynomial abstraction Hy, with the polynomial guard Gy,e�= y = u1 and polynomial
reset mapping Ry,e(y)�= {(x, y, v′x, v′y, u1, u2, u3)} where�

v′x = u3 · (u2
1 · vx + 2u2 · vy)

v′y = u3 · (2u2 · vx − u2
1 · vy)

.

The complete model of Hy can be found in [22].

4 http://bt.pa.msu.edu/index cosy.htm

http://bt.pa.msu.edu/index_cosy.htm

Abstraction of Elementary Hybrid Systems by Variable Transformation 371

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1

0

1

2

3

4

5

x

y

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0
−1

0

1

2

3

4

5

x

y

Fig. 2. Simulated trajectory with y = 5 and reachable set over-approximation with y ∈ [4.9, 5.1]

Then we can use existing tools for PHSs to analyze the behavior of the bouncing ball.
Here we use the state-of-the-art nonlinear hybrid system analyzer Flow∗ [6]. The right
picture in Figure 2 shows the computed reachable set over-approximation (projected
to the x-y plane) of Hy with the initial set Ξy,q for the first two jumps, which is also
the reachable set over-approximation of Hx by Theorem 1. Note that such an analysis
would NOT have been possible directly on Hx in Flow∗ since its current version does
not support elementary functions in domains, guards, or reset functions5.

4 Application in Safety Verification of EHSs
One of the most important problems in the study of HSs is safety verification. Given
an HS H, a safety requirement for H can be specified as S �= �q∈Q({q} × Sq) with
Sq ⊆ R

n the safe region of mode q. Alternatively, a safety property can be given
as a set of unsafe regions US �= �q∈Q({q} × S̄q) with S̄q the complement of Sq in
R

n. The safety verification problem asks whether RH ⊆ S, or equivalently, whether
RH ∩ US = ∅.

The following result relates the safety verification problem of an HS Hx to that of
Hy which simulates Hx. The proof of it can be found in [22].

Theorem 5 (Safety Relation). Let USx�= �q({q} × S̄x,q) be a safety requirement
of the HS Hx. Suppose Hy simulates Hx via simulation maps {Θq | q ∈ Q} and
USy�= �q({q}× S̄y,q) satisfies S̄y,q ⊇ Θq(S̄x,q) for any q ∈ Q. Then Hx is safe w.r.t.
USx, if Hy is safe w.r.t. USy.

Note that if the safety properties of EHSs are not in polynomial forms but contain
elementary functions, we can replace the non-polynomial terms by new variables when
constructing the simulation map, as we do for the EHSs themselves.

Theorem 5 allows us to take advantage of constraint-based approaches for PHSs to
verify safety properties of EHSs. In the rest of this section, we show how to perform
safety verification for EHSs by combining the previous proposed polynomial abstrac-
tion method with constraint-based verification techniques for PHSs.

5 Although Flow∗ does support nonlinear continuous dynamics with non-polynomial terms such
as sine, cosine, square root, etc.

372 J. Liu et al.

4.1 Generating Invariants for EHSs

In this and next subsections, for simplicity, we will use EDSs as special cases of EHSs
to illustrate how to generate inductive invariants for safety verification of EHSs.

Given an EDS Cx�=(Ξx, fx, Dx) and an unsafe region S̄x, we first construct a PDS
Cy�=(Ξy, fy, Dy) that simulates Cx, as well as the polynomial abstraction S̄y of S̄x.
According to Theorem 1 and 5, if we can find a semi-algebraic6 inductive invariant
P (y) = P (x,v) for Cy with v = Γ (x) the replacement equations, such that P (x,v)
is a certificate of the safety of Cy w.r.t. S̄y, then P (x, Γ (x)) is an inductive invari-
ant certificate of the safety of Cx w.r.t. S̄x. If P (x,v) does contain variables v, then
P (x, Γ (x)) gives an elementary invariant of Cx; otherwise P (x, Γ (x)) is just a poly-
nomial invariant.

Example 5. Consider the EDS Cx in Example 3. We are going to verify the safety of Cx
w.r.t. an unsafe region S̄x�=(x−0.7)2+(y+0.7)2−0.09 � 0. To this end, we first verify
the safety of the polynomial abstraction Cy of Cx obtained in Example 3, w.r.t. an unsafe
region S̄y that abstracts S̄x in the way of (W2). By applying the SOS-relaxation-based
invariant generation approach [29,18] with a polynomial template p1(u,x,v) � 0 of
degree 3 (in x,v), where v = Γ (x) is defined in (10) and u is a vector of undeter-
mined parameters, and using the Matlab-based tool YALMIP [23] and SeDuMi [37]
(or SDPT3 [40]), we successfully generated an invariant p1(x, y, sinx, e−x, cosx) � 0
that verifies the safety of Cx. Please see the left part of Figure 3 for an illustration of
fx (the black arrows), Dx (the outer white box), Ξx (the white circle), S̄x (the black
circle), as well as the synthesized invariant (the grey area with curved boundary).

We next try to generate polynomial invariants for Cx by constructing less accurate
abstractions Cy and S̄y of Cx and S̄x respectively (see [22] for the details). With a
polynomial template p2(u,x) � 0 of degree 5 (in x), we obtain an invariant p2(x, y) �
0 that verifies safety of Cx, as shown in the right part of Figure 3. The explicit forms of
both p1 and p2 can be found in [22].

We can see that the elementary invariant is sharper than the polynomial invariant and
separates better from the unsafe region. This indicates that by allowing non-polynomial
terms in templates, invariants of higher quality may be generated and thus increases
the possibility of verifying safety properties of EHSs. Moreover, it also suggests that
even for purely polynomial systems, one could assume any kind of elementary terms in
a predefined template when generating invariants, which gives a more general method
than [32,11] for generating elementary invariants for PHSs. Of course, computing ele-
mentary invariants generally takes more efforts than polynomial invariants.

4.2 More Experiments

We have implemented the proposed abstraction approach (not including the part on
abstraction of replacement equations) and experimented with it on the following EHS
verification examples.7

6 A set A ⊆ R
n is called semi-algebraic if it can be defined by Boolean combinations of

polynomial equations or inequalities.
7 The formal abstraction algorithms can be found in [22], and all the input files for the experi-

ments can be obtained at http://lcs.ios.ac.cn/%7Ezoul/casestudies/fm2015.zip

http://lcs.ios.ac.cn/%7Ezoul/casestudies/fm2015.zip

Abstraction of Elementary Hybrid Systems by Variable Transformation 373

�2 �1 0 1 2

�2

�1

0

1

2

x

y

�2 �1 0 1 2

�2

�1

0

1

2

x

y

Fig. 3. Comparison of elementary and polynomial invariants generated in Example 5

Example 6 (HIV Transmission). The following continuous dynamics, with the assump-
tion that there is no recruitment of population, has been developed to model HIV trans-
mission [3]

f �= ��� u̇1 = − βcu1u2

u1+u2+u3
− μu1

u̇2 = βcu1u2

u1+u2+u3
− (μ+ ν)u2

u̇3 = νu2 − αu3

, (14)

where u1(t), u2(t), u3(t) denote the part of population that is HIV susceptible, HIV
infected, and that has AIDS respectively, β is the possibility of infection per partner
contact, c is the rate of partner change, μ is the death rate of non-AIDS population, α is
the death rate of AIDS patients, and ν is the rate at which HIV infected people develop
AIDS. Note that the dynamics involves non-polynomial term 1

u1+u2+u3
. In this paper,

the parameters are chosen to be β = 0.2, c = 10, μ = 0.008, α = 0.95, and ν = 0.1.
We want to verify that with the initial set

Ξ�= u1 ∈ [9.985, 9.995]∧ u2 ∈ [0.005, 0.015]∧ u3 ∈ [0, 0.003],

the population of AIDS patients alive will always be below 1 (the population is mea-
sured in thousands). That is, the system (Ξ, f , D) satisfies S�= u3 � 1, whereD�=u1 �
0 ∧ u2 � 0 ∧ u3 � 0 ∧ 0 < u1 + u2 + u3 � 10.013 .8

Example 7 (Two-Tanks). The two-tanks system shown in Figure 4 comes from [38]
and has been studied in [31,14,8,7] as a benchmark for safety verification of hybrid
systems. It models two connected tanks, the liquid levels of which are denoted by x1

and x2 respectively. The system switches between mode q1 and q2 when x2 reaches 1.
The system’s dynamics involve non-polynomial terms such as

√
x1 or

√
x1 − x2 + 1.

The verification objective is to show that starting from mode q1 with the initial set
Ξq1 �=5.25 � x1 � 5.75 ∧ 0 � x2 � 0.5, the system will never reach the unsafe set
S̄q1 �=(x1 − 4.25)2 + (x2 − 0.25)2 − 0.0625 � 0 when staying at mode q1.

8 According to dynamics (14), the entire population is non-increasing, so u1 + u2 + u3 has an
upper bound.

374 J. Liu et al.

�
(x1,x2)∈[5.25,5.75]×[0,0.5]

q1 q2

ẋ1=1−√
x1

ẋ2=
√

x1−√
x2

(x1,x2)∈[4,6]×[0,1]

ẋ1=1−√
x1−x2+1

ẋ2=
√

x1−x2+1−√
x2

(x1,x2)∈[4,6]×[1,2]

��
x2=1.0

Fig. 4. The two-tanks system

q

f

0�t�0.128

�
t=0.128

t′:=0

F ′
c:=−0.01(Fc−1.622m)−0.6(v+2)m+1.622m

�
Init

Fig. 5. The lunar lander system

Example 8 (Lunar Lander). Consider a real-world example of the guidance and control
of a lunar lander [41], as illustrated by Figure 5. The dynamics of the lander defined by
f is given by ����� v̇ = Fc

m − 1.622

ṁ = − Fc

2500

Ḟc = 0
ṫ = 1

, (15)

where v and m denote the vertical velocity and mass of the lunar lander; Fc denotes the
thrust imposed on the lander, which is kept constant during one sampling cycle of length
0.128 seconds; at each sampling point, Fc is updated according to the guidance law
shown in Figure 5. Note that the derivative of v involves non-polynomial expression 1

m .
We want to verify that with the initial condition t = 0s, v = −2m/s, m = 1250kg,Fc =
2027.5N, the vertical velocity of the lunar lander will be kept around the target velocity
−2m/s, i.e. |v − (−2)| � ε, where ε = 0.05 is the specified bound for fluctuation of v.

Using the proposed abstraction method and the SOS-relaxation-based invariant gen-
eration method [29,18], we have successfully verified Examples 6-8. Besides, we have
also compared with the performances of the EHS verification tools HSOLVER [31],
Flow∗ [6], dReach [9] and iSAT-ODE [8] on these examples (including Example 5).9

All the time costs are shown in Table 1. The results are obtained on the platform with In-
tel Core i5-3470 CPU and 4GB RAM running Windows 7 (for the proposed abstraction
approach) or Ubuntu Linux 14.04 (for the other tools).

Table 1. Verification results of different methods

EHS2PHS HSOLVER Flow∗ dReach iSAT-ODE
E.g. 5 1.324 or 7.994 0.739 � − �
E.g. 6 5.186 − � − �
E.g. 7 0.977 0.477 76.742 20.351 0.949
E.g. 8 2.645 − 3.310 − 54.364

9 Note that since Flow∗, dReach and iSAT-ODE can only do BMC, we have assumed a time
bound of 20s and 10s resp. for E.g. 5 and 6, and a jump bound of 40 steps and 100 steps resp.
for E.g. 7 and 8.

Abstraction of Elementary Hybrid Systems by Variable Transformation 375

For Table 1, we have the following remarks:

– time is measured in seconds;
– the second column (EHS2PHS) corresponds to the time costs of both abstraction

and verification for the proposed approach in this paper; the time cost on E.g. 5 us-
ing the abstraction approach depends on whether we generate polynomial (1.324s)
or elementary (7.994s) invariants;

– the other four tools are called on the original EHSs rather than their polynomial
abstractions; − means timeout (> 1 hour); � means abnormal termination due to
error inflation of continuous integration;

– all the details of inputs, experiment results, all well as options for using the tools
can be obtained by investigating the aforementioned online files.

From Table 1 we can see that the time costs of the proposed abstraction approach are
all acceptable, whereas there do exist examples that existing approaches cannot solve
effectively.10

5 Conclusions
In this paper, we presented an approach to reducing an EHS to a PHS by variable trans-
formation, and established the simulation relation between them, so that safety verifi-
cation of the EHS can be reduced to that of the corresponding PHS. Thus our work en-
ables all the well-established techniques for PHS verification to be applicable to EHSs.
In particular, combined with invariant-based approach to safety verification for PHSs,
it provides the possibility of overcoming the limitations of existing EHS verification
approaches. Experimental results on real-world examples indicated the effectiveness of
our approach.

In the future, it deserves to investigate how to reduce stability analysis of EHSs to
that of PHSs using the technique developed in this paper, while stability analysis of
PHSs can be well done by synthesizing (relaxed) polynomial Lyaponuv functions (e.g.,
cf. [21]).

Acknowledgements. We thank Prof. Martin Fränzle, Dr. Andreas Eggers, Dr. Sicun Gao and
Dr. Xin Chen for their instructions on using the verification tools. We also thank the anonymous
referees for their valuable comments on the earlier drafts.

References
1. Akbarpour, B., Paulson, L.: MetiTarski: An automatic theorem prover for real-valued special

functions. Journal of Automated Reasoning 44(3), 175–205 (2010)
2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic ap-

proach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode,
A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems, LNCS, vol. 736, pp. 209–229. Springer
Berlin Heidelberg (1993)

10 One may notice that HSOLVER is faster on the examples that it can solve, the possible reason
for which is that a coarse abstraction happens to be sufficient for proving the safety of studied
systems, thus saving much time for refinement.

376 J. Liu et al.

3. Anderson, R.M.: The role of mathematical models in the study of HIV transmission and the
epidemiology of AIDS. Journal of Acquired Immune Deficiency Syndromes 3(1), 241–256
(1988)

4. Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
Acta Informatica 43(7), 451–476 (2007)

5. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
linear hybrid systems. In: RTSS 2012. pp. 183–192. IEEE Computer Society, Los Alamitos,
CA, USA (2012)

6. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow∗: An analyzer for non-linear hybrid sys-
tems. In: Sharygina, N., Veith, H. (eds.) CAV 2013, LNCS, vol. 8044, pp. 258–263. Springer
Berlin Heidelberg (2013)

7. Denman, W.: Verifying nonpolynomial hybrid systems by qualitative abstraction and auto-
mated theorem proving. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014, LNCS, vol. 8430,
pp. 203–208. Springer International Publishing (2014)

8. Eggers, A., Ramdani, N., Nedialkov, N., Fränzle, M.: Improving the SAT modulo ODE ap-
proach to hybrid systems analysis by combining different enclosure methods. Software &
Systems Modeling pp. 1–28 (2012)

9. Gao, S., Kong, S., Clarke, E.: dReach: Reachability analysis for nonlinear hybrid systems
(tool paper). In: HSCC 2013 (2013), http://dreal.cs.cmu.edu/#!dreach.md

10. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014, LNCS, vol. 8413, pp. 279–294. Springer
Berlin Heidelberg (2014)

11. Goubault, E., Jourdan, J.H., Putot, S., Sankaranarayanan, S.: Finding non-polynomial posi-
tive invariants and Lyapunov functions for polynomial systems through Darboux polynomi-
als. pp. 3571–3578. ACC 2014 (2014)

12. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems. In: Gupta,
A., Malik, S. (eds.) CAV 2008, LNCS, vol. 5123, pp. 190–203. Springer Berlin Heidelberg
(2008)

13. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996. pp. 278–292. IEEE Com-
puter Society (Jul 1996)

14. Ishii, D., Ueda, K., Hosobe, H.: An interval-based SAT modulo ODE solver for model check-
ing nonlinear hybrid systems. International Journal on Software Tools for Technology Trans-
fer 13(5), 449–461 (2011)

15. Johnson, T.T., Green, J., Mitra, S., Dudley, R., Erwin, R.S.: Satellite rendezvous and conjunc-
tion avoidance: Case studies in verification of nonlinear hybrid systems. In: Giannakopoulou,
D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 252–266. Springer Berlin Heidelberg
(2012)

16. Kerner, E.H.: Universal formats for nonlinear ordinary differential systems. Journal of Math-
ematical Physics 22(7), 1366–1371 (1981)

17. Khalil, H.K.: Nonlinear Systems. Prentice Hall, third edn. (Dec 2001)
18. Kong, H., He, F., Song, X., Hung, W.N., Gu, M.: Exponential-condition-based barrier certifi-

cate generation for safety verification of hybrid systems. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 242–257. Springer Berlin Heidelberg (2013)

19. Lanotte, R., Tini, S.: Taylor approximation for hybrid systems. Information and Computation
205(11), 1575–1607 (Nov 2007)

20. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical
systems. In: EMSOFT 2011. pp. 97–106. ACM, New York, NY, USA (2011)

21. Liu, J., Zhan, N., Zhao, H.: Automatically discovering relaxed Lyapunov functions for poly-
nomial dynamical systems. Mathematics in Computer Science 6(4), 395–408 (2012)

22. Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems by variable
transformation. CoRR abs/1403.7022 (2014), http://arxiv.org/abs/1403.7022

http://dreal.cs.cmu.edu/#!dreach.md
http://arxiv.org/abs/1403.7022

Abstraction of Elementary Hybrid Systems by Variable Transformation 377

23. Löfberg, J.: YALMIP : A toolbox for modeling and optimization in MATLAB. In: Proc. of
the CACSD Conference. Taipei, Taiwan (2004), http://users.isy.liu.se/johanl/yalmip/

24. Makino, K., Berz, M.: Taylor models and other validated functional inclusion methods. In-
ternational Journal of Pure and Applied Mathematics 4(4), 379–456 (2003)

25. Mitchell, I., Tomlin, C.J.: Level set methods for computation in hybrid systems. In: Lynch,
N., Krogh, B.H. (eds.) HSCC 2000, LNCS, vol. 1790, pp. 310–323. Springer Berlin Heidel-
berg (2000)

26. Papachristodoulou, A., Prajna, S.: Analysis of non-polynomial systems using the sum of
squares decomposition. In: Henrion, D., Garulli, A. (eds.) Positive Polynomials in Control,
Lecture Notes in Control and Information Science, vol. 312, pp. 23–43. Springer Berlin Hei-
delberg (2005)

27. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
and Comput. 20(1), 309–352 (Feb 2010)

28. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
In: Gupta, A., Malik, S. (eds.) CAV 2008, LNCS, vol. 5123, pp. 176–189. Springer Berlin
Heidelberg (2008)

29. Prajna, S., Jadbabaie, A., Pappas, G.: A framework for worst-case and stochastic safety veri-
fication using barrier certificates. IEEE Transactions on Automatic Control 52(8), 1415–1428
(2007)

30. Ratschan, S.: Safety verification of non-linear hybrid systems is quasi-decidable. Formal
Methods in System Design 44(1), 71–90 (2014)

31. Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based
abstraction refinement. ACM Trans. Embed. Comput. Syst. 6(1) (Feb 2007)

32. Rebiha, R., Matringe, N., Moura, A.V.: Transcendental inductive invariants generation for
non-linear differential and hybrid systems. In: HSCC 2012. pp. 25–34. ACM, New York,
NY, USA (2012)

33. Sankaranarayanan, S.: Automatic abstraction of non-linear systems using change of bases
transformations. In: HSCC 2011. pp. 143–152. ACM, New York, NY, USA (2011)

34. Sankaranarayanan, S.: Change-of-bases abstractions for non-linear systems. CoRR
abs/1204.4347 (2012), http://arxiv.org/abs/1204.4347

35. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid systems.
In: Alur, R., Pappas, G.J. (eds.) HSCC 2004, LNCS, vol. 2993, pp. 539–554. Springer Berlin
Heidelberg (2004)

36. Savageau, M.A., Voit, E.O.: Recasting nonlinear differential equations as S-systems: a canon-
ical nonlinear form. Mathematical Biosciences 87(1), 83–115 (1987)

37. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optimization Methods and Software 11-12, 625–653 (1999)

38. Stursberg, O., Kowalewski, S., Hoffmann, I., Preußig, J.: Comparing timed and hybrid au-
tomata as approximations of continuous systems. In: Antsaklis, P., Kohn, W., Nerode, A.,
Sastry, S. (eds.) Hybrid Systems IV, LNCS, vol. 1273, pp. 361–377. Springer Berlin Heidel-
berg (1997)

39. Tiwari, A.: Abstractions for hybrid systems. Formal Methods in System Design 32(1), 57–83
(2008)

40. Toh, K.C., Todd, M., Tütüncü, R.H.: SDPT3 – a MATLAB software package for semidefinite
programming. Optimization Methods and Software 11, 545–581 (1999)

41. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a descent
guidance control program of a lunar lander. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM
2014, LNCS, vol. 8442, pp. 733–748. Springer International Publishing Switzerland (2014)

http://users.isy.liu.se/johanl/yalmip/
http://arxiv.org/abs/1204.4347

Using Real-Time Maude to Model Check

Energy Consumption Behavior

Shin Nakajima(�)

National Institute of Informatics, Tokyo, Japan
nkjm@nii.ac.jp

Abstract. Energy consumption is one of the primary non-functional
concerns, especially for application programs running on systems that
have limited battery capacity. A model-based analysis of energy con-
sumption is introduced at early stages of development. As rigorous formal
models of this, the power consumption automaton and a variant of linear
temporal logic are proposed. Detecting unexpected energy consumption
is then reduced to a model checking problem, which is unfortunately un-
decidable in general. This paper introduces some restrictions to the logic
formulas representing energy consumption properties so that an auto-
matic analysis is possible with Real-Time Maude.

Keywords: Android Frameworks · Weighted Timed Automaton ·
Linear Temporal Logic · Freeze Quantifier

1 Introduction

Modern mobile systems such as smartphones and tablet PC are powered by bat-
teries that have limited capacity. Although the hardware components directly
consume the battery power, some computer programs must be responsible for
consuming the energy. Basic hardware components, the CPU and memory, are
used at all times. Auxiliary functional devices, such as a WiFi or GPS compo-
nent, are in operation only when they are requested by a particular application.
The total energy consumption is thus attributed to a combination of the hard-
ware and the behavior of the installed programs.

In Android-based smartphones [1], an application program, even if it is func-
tionally correct, may suffer from unexpected energy consumption. Such energy
bugs (ebugs) [20] originate in design flaws. Post-analysis techniques using energy
profilers (cf. [21][22]) are employed to find such ebugs. A profiler is, however, a
runtime monitor that checks the consumed energy of running programs. It has
the same disadvantages as the program testing methods have. The profiler can
only be used after all the programs have been completed, and the coverage is
limited by the supplied test cases or the test environment setup. Furthermore,
the measured results may contain fluctuations due to uncontrollable operation

also affiliated with SOKENDAI.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 378–394, 2015.
DOI: 10.1007/978-3-319-19249-9_24

Using Real-Time Maude to Model Check Energy Consumption Behavior 379

conditions. The energy drain caused by ebugs may be hidden within the mea-
surement errors if the amount is comparatively small (cf. [15]).

A model-based analysis method for energy consumption is desirable to counter
the disadvantages of the runtime profiler method (cf. [12]). With appropriate ab-
stract models, it is possible to analyze the energy consumption behavior at early
stages of development. The models represent both the energy consumption be-
havior and the specification properties that are to be checked. As rigorous formal
models of this, power consumption automata (PCA) were defined as weighted
timed automata (WTA) and a variant of linear temporal logic (LTL) with freeze
quantifiers, called fWLTL, was introduced [14]. The energy consumption analysis
problem is formulated using a method of logic model checking.

This paper focuses on model checking of fWLTL formulas. The logic formula is
employed to specify flexibly the durations in which the numerical constraints on
the consumed energy are checked. This duration-bounded cost constraint prob-
lem is then solved by logic model checking. However, fWLTL is expressive, and
its model checking problem is undecidable in general. Accordingly, this paper
proposes combining a sub-fragment of fWLTL with some approximation tech-
niques. Specifically, the energy consumption analysis problem is translated into
Real-Time Maude [16][17].

The contributions of this paper are summarized as follows; (a) the energy
consumption analysis problem is encoded in fWLTL formulas, (b) two property
patterns are introduced to employ a sub-fragment of fWLTL, (c) a translation
method to Real-Time Maude is presented for enabling automatic analyses. The
method introduces a kind of over-approximation and does not miss potential
faults, which is appropriate for detecting ebugs.

2 Energy Consumption Behavior

The energy consumption of a system is represented as a state-transition system,
a power consumption automaton (PCA) [12]. It keeps track of the amount of
the consumed energy along its transition sequences.

2.1 Power Consumption Automaton

Figure 1 shows an example of energy consumption behavior, presented as a
state-transition diagram. The example is a WiFi client device operating in a
power-saving mode. It consists of four states, called power states, and several
state-transition edges. In Figure 1, DeepSleep is the initial state, from which
the system goes to HighPower state when it receives a beacon signal. The signal
indicates that data transfer is beginning. There are then repeated transitions
between IdleListen and HighPower states; in IdleListen, the system awaits
the arrival of a new data frame. When the data transfer is over, the system
goes into LightSleep state to prepare for a quick restart. An inactivity timer is
also set, whose time-out causes the transition to DeepSleep. A state-transition
sequence consists of many instances of each of four power states.

380 S. Nakajima

Deep
Sleep

Light
Sleep

Idle Listen

High Power

beacon
[TIM]

beacon
[not TIM]

expire inac�vity �mer

Associa�on
Authen�ca�on

Data transfer
[not more]
/ reset inac�vity �mer

beacon
[not TIM]

Beacon
[TIM]

Data transfer
[more]

beacon
[not TIM]

beacon
[TIM]

Fig. 1. An Example Diagram of Energy Consumption Behavior

The amount of consumed energy is different in each power state. HighPower
state consumes a lot of energy in order to decode the transferred frames. In
DeepSleep state, only power sufficient to activate a portion of the electric circuits
is necessary, and thus the energy consumption rate is small. If we let F j(t) be a
function of time that represents the rate of energy consumed at a state indexed by

j, the total energy consumed in the time interval a to b is Ej =
∫ b

a
F j(t)dt. Since

the power states are visited many times as state transitions continue, the total
energy consumption is calculated as a summation over Ejs; E =

∑n
j=0E

j =∑n
j=0

∫ bj

ajF
j(t)dt. If we introduce a linear approximation such that dEj/dt =

F j(t) = M j for a constantM j at each power state, then E =
∑n

j=0M
j×(bj−aj).

The constant M � is an average rate of energy consumption for each power state
�, which is given as a specification of the hardware components.

The PCA is a subclass of linear hybrid automata (LHA) [4] since the dy-
namics of the energy consumption variable E take the form dE/dt = M , and
the inactivity timer G is a clock variable such that dG/dt = 1 [12]. However,
the PCA is simpler than the LHA in that E is an observer and does not have
any effect on the state-transition behavior, while G controls the timings of the
state-transition. Therefore, the PCA can be regarded as a weighted timed au-
tomaton [5][6], in which the weight is a record of the accumulated consumed
energy,

∑n
j=0E

j , from the initial state to the nth state.

2.2 PCA : Formal Definitions

We present a formal definition of the PCA; these will be needed for the discussion
that follows. A complete definition of PCA can be found in [14].

Syntax A power consumption automaton (PCA) A over a set of atomic propo-
sitions Prop is defined as a weighted timed automaton (WTA).

〈 Loc,X,W,Σ∪{ε}, Edg, F low, Inv, Lab 〉

Using Real-Time Maude to Model Check Energy Consumption Behavior 381

1. Loc is a finite set of locations. Each location corresponds to a power state.

2. X is a finite set of clock variables and W is a finite set of weight variables. X
and W are disjoint (X∩W = ∅). For a clock variable clk (∈ X), a constant
n(∈ N), and an operator �� ∈ {<,≤,=,≥, >}, constraints of the form clk �� n
and clk1 − clk2 �� n constitute a set of clock constraints Z(X).

3. Σ is an alphabet, a finite set of input symbols, and ε is an empty symbol.

4. Edg represents a set of transitions. It is a finite set Loc×Z(X)×Σ×2X×Loc.

An element of Edg, (l1, g, a, r, l2), is written as l1
g,a,r−→ l2, where g is a guard

condition in Z(X), a is an input symbol (∈ Σ∪{ε}), and r refers to a set of
clock variables (∈ 2X) to reset.

5. Flow represents the dynamics to account for the change rate of weight vari-
ables. Flow : Loc→(RW

+ →RW
+) where R+ is non-negative real numbers

and RW
+ is W→R+.

6. Inv is a mapping to clock constraints. Inv : Loc→Z(X)

7. Lab is a mapping to a set of atomic propositions. Lab : Loc→2Prop

The valuations (ν∈RX∪W
+) are defined in a standard way for the reset, delay,

and multiplication; ν[r](x) = 0 if x ∈ r and ν[r](x) = ν(x) otherwise,
(ν + d)(x) = ν(x) + d, and (ν×e)(x) = ν(x)×e.

Operational Semantics. The semantics of a PCA A is given by a labeled
transition system (LTS), 〈 S, T 〉. The state set S consists of tuples, (l, v, w),
made of a location (a power state) l, a clock valuation v, and a weight valuation

w. The set of transitions T are regular transitions,
d;e−→, as defined below.

– Regular transition : (l1, v1, w1)
d;e−→(l2, v2, w2)

A delayed transition (l1, v1, w1)
d−→(l1, v, w2) followed by an event-trigger

discrete transition (l1, v, w2)
e−→(l2, v2, w2). The definition agrees with an in-

formal interpretation that a PCA stays at a particular location for a period
of time before making a discrete transition to a new one.

– Event-trigger discrete transition : (l1, v1, w)
e−→(l2, v2, w)

The transition corresponds to an edge, l1
g,a,r−→ l2, defined in the PCA A. It is

a state-transition from a source location l1 to a destination l2 with its guard
g, an input symbol a, and a set of reset clocks r. The guard is satisfied at l1
(v1|=g). For a clock variable clk, v2(clk) = 0 if clk∈r, and v2 = v1 otherwise.

– Delayed transition : (l, v1, w1)
d−→(l, v1 + d, w2)

d ∈ R+ ∧ (d > 0) ∧ w1 = f(0) ∧ w2 = f(d) ∧
∀t ∈]0, d[| v + t |=Inv(l) ∧ df/dt = Flow(l)

382 S. Nakajima

The time is advanced by an amount of the delay d, and the clock and
weight are updated. In the above, f(t) is a continuous function differen-
tiable in the open time interval]0, d[. For an energy consumption vari-
able E, Flow(�)(E) = dE/dt = M � at location �, and thus w2(E) =
M �×d + w1(E). For a clock variable G, Flow(�)(G) = dG/dt = 1, and
thus v2(G) = v1(G) + d. The valuation w(E) is equal to

∑n
j=0E

j for the
transition sequence.

Finally, a set of time points τ j∈R+ forms a time progression sequence, where

τ0 = 0 and τ j+1 = τ j + d for a delayed transition
d−→. For a state σj∈S where

σj = (lj , vj , wj), a timed point is introduced such that ρj = (σj , τ j). Then, for
a sequence of timed points ρ = ρ0ρ1· · ·, we have a set of timed sequences L(A)
generated by a PCA A; this is written as ρ ∈ L(A).

3 Energy Consumption Properties

3.1 Duration-Bounded Cost Constraints

When considered naively, the energy consumption analysis problem simply states
that the total amount of energy consumed should be less than a specified max-
imum. Since the consumed energy is proportional to the period during which
hardware components are used and this monotonically increases, the above prop-
erty is eventually violated. Therefore, the checking properties must be limited
to some particular period. This results in a problem with duration-bounded cost
constraints, in which the cost refers to the amount of energy consumed. The
problem is more general than the problem of duration-bounded reachability of
timed automata [2]. We need further means to specify durations and cost con-
straints flexibly.

For the energy consumption problem, we use a PCA to represent the energy
consumption behavior. The weight (E) changes at a different rate in each state
(dE/dt = M �). A property to check may have three aspects; (a) specifying the
period in which the check is conducted, (b) selecting appropriate paths that
satisfy the condition, and (c) using numerical constraints that describe the con-
ditions on the consumed energy. For (b), further means are needed to specify
the conditions that such paths must satisfy.

The numerical constraints (c) may be more flexible than just an inequality
(
∑

jE
j≤Max). We consider, for example, the following constraint, where t1, t2

refer to time points, and u1, u2 are the variables referring to the weights. Let
B1 and B2 be constants. We have a constraint CB1,B2(t1, t2;u1, u2).

CB1,B2(t1, t2;u1, u2)
def
= (t2 − t1 ≤ B1) ∧ (u2 − u1 ≤ B2)

The period to consider is specified by the two time points t1 and t2. The weights
u1 and u2 in the constraint expression are obtained at certain states in the
interval. In most cases, t1 and u1 (t2 and u2) are taken from a same state. More
will be discussed in Section 4.2.

Using Real-Time Maude to Model Check Energy Consumption Behavior 383

In this paper, we will use an LTL formula to express the conditions (a) and
(b). If we let PS and PT be the state propositions to be satisfied in the start
and target states respectively, the interval, depicted as PS�PT , is specified by
a formula �(PS ∧ �PT). The condition of the aspect (b) can also be specified
using LTL. It may be a temporal property that is related to PS or PT . For
example, we can choose, from the set of the paths, only those going through a
particular intermediate state PM (PS�PM ∧ PM�PT).

3.2 fWLTL : Formal Definitions

This section introduces fWLTL [14], a variant of LTL with freeze quantifiers.

Syntax The syntax of fWLTL is shown below.

φ := C Cost Constraints
| p Atomic Proposition ∈Prop
| ¬φ Logical Negation
| φ1 ∧ φ2 Conjunction
| φ1 U φ2 Until Operator
| Fmx . φx Freeze Quantifier over clock (X) or weight (W) variables
| Fτx . φx Freeze Quantifier over time points {τ j}

A variable x ∈ V ar, where V ar is a countable set of variables, appears free in
a fWLTL formula φx. A closed formula φ does not have any free variables. Cost
constraints constitute a set Z(X∪W), where X is a finite set of clock variables
and W is a finite set of weight variables (energy consumption variables). Z
denotes a set of linear constraints. Furthermore, standard abbreviations are used.
For example, �φ ≡ true U φ is Eventually, and �φ ≡ ¬(�¬φ) is Globally.

Semantics. We adapt the pointwise semantics for fWLTL. We use some symbols
in addition to ρj that was introduced in Section 2.2; ρj = (lj , vj , wj , τ

j).

– an environment Γ : V ar → R+.
Γ [x := e] assigns x to a value e (e ∈ R+) in the environment Γ .

– a labeling function Lab : Loc → 2Prop where Loc is a finite set of locations
and Prop is a finite set of atomic propositions.

The following satisfiability relations |=, which are defined inductively, show that
〈 ρ, Γ 〉 satisfies an fWLTL formula φ; 〈 ρ, Γ 〉 |= φ.

〈 ρj, Γ 〉 |= C iff Γ |= C
〈 ρj, Γ 〉 |= p iff p ∈ Lab(lj)
〈 ρj, Γ 〉 |= ¬φ iff 〈 ρj , Γ 〉 �|= φ
〈 ρj, Γ 〉 |= φ1 ∧ φ2 iff 〈 ρj , Γ 〉 |= φ1 and 〈 ρj , Γ 〉 |= φ2

〈 ρj, Γ 〉 |= φ1 U φ2 iff 〈 ρk, Γ 〉 |= φ2 for some k ≥ j
and 〈 ρi, Γ 〉 |= φ1 for all i (j≤i<k)

〈 ρj, Γ 〉 |= Fmx . φx iff 〈 ρj , Γ [x := (vj∪wj)(m)] 〉 |= φx

〈 ρj, Γ 〉 |= Fτx . φx iff 〈 ρj , Γ [x := τ j] 〉 |= φx

384 S. Nakajima

An Example. We consider a simple property for the example in Figure 1.
In specified intervals, both the duration and consumed energy are less than a
respective maximum value. The property to check is written as

�

Fτx.

FPu. (IdleListen ∧
�

Fτy.

FP v. (expire ∧ ((y − x ≤ 1000) ∧ (v − u ≤ 50)))) ,

where x and y refer to the time points while u and v record the energy consumed
up to the specified states; x and u are frozen at a state in which the proposition
IdleListen is true, and y and v are obtained in the state of expire.

4 Model-Based Analysis of Energy Consumption

4.1 Model Checking Problem

The duration-bounded cost constraint problem is solved by logic model checking
of fWLTL. Let L(A) be a set of timed sequences generated by a given PCA A.
Given a closed fWLTL formula φ, the model checking problem (A, Γ |= φ) is
defined to ensure 〈ρ0, Γ0〉 |= φ with an initial empty environment Γ0 and for
all the timed sequences ρ∈L(A). Unfortunately, the model checking problem of
fWLTL is undecidable in general (see Section 6). The complexities come from
various sources; (a) there are no restriction in the formula on the position of
the freeze quantifier, (b) there are expressive cost constraints, (c) an infinite
state space is generated by continuous time. For a practical solution to the third
issue, we will adapt a method of time-bounded LTL model-checking with the
sampling abstraction in continuous time. The method was originally proposed
by Real-Time Maude [16][17].

4.2 Restrictions

We impose several restrictions on the property to be checked.

Guard State Proposition. We restrict the location in the formula at which
the freeze quantifiers appear. Let φS be an fWLTL formula that has at least one
state proposition pg (φS = pg∧φx); pg∈Prop is called a guard state proposition.
D of

FD refers to either τ for time points or m for weights. Furthermore, bj is
τj for

Fτ , and bj is (vj∪wj)(m) for

Fm.

〈ρj , Γ [x := bj]〉 |= FDx.φS iff 〈ρj , Γ 〉 |= pg and 〈ρj , Γ [x := bj]〉 |= φx

A freeze quantifier operates on states that satisfy the guard state proposition.

Using Real-Time Maude to Model Check Energy Consumption Behavior 385

Monotonic Constraints. A constraint C, a condition on the consumed energy,
refers to both the time points and the weight variables. It is a linear inequal-
ity defined over non-negative Real numbers R+. We further assume that C is
monotonic in the sense discussed below.

First, we assume, for simplicity, that a constraint C is decomposed into a con-
junct of constituent constraints, each of which refers to either the time or weight.
If we let C(t1, t2;u1, u2) be a constraint depending on the time points t1 and t2
and the weight variables u1 and u2, C(t1, t2;u1, u2) = C<1>(t1, t2) ∧ C<2>(u1, u2).
The constraint CB1,B2 in Section 3.1 becomes C<1>(t1, t2) ∧ C<2>(u1, u2) where
C<1>(t1, t2) = (t2 − t1 ≤ B1) and C<2>(u1, u2) = (u2 − u1 ≤ B2). We,
hereafter, consider a form of C<1>(t1, t2) with t1 ≤ t2.

Second, when we fix t1 to be a particular value, the constraint C<1>(t1, t2)
is dependent on t2. In general, the weight as well as the time increases mono-
tonically because the weight refers to the total energy consumed up to a certain
point. The constraint may have a similar property of monotonically increase.
Formally, if a constraint is monotonic, then there is some threshold t such that
C<1>(t1, t) is satisfied for ∀t with t < t and is violated for t ≤ ∀t. Similarly,
when we fix t2, there is a certain threshold t such that C<1>(t, t2) is violated for
∀t < t and is satisfied for t ≤ ∀t. The constraint (t2 − t1 ≤ B1) in Section 3.1
has this property.

The discussion above is given for C<1>(t1, t2), but the monotonicity property
can be generalized to the constraint of the form C(t1, t2;u1, u2).

Property Patterns. Although fWLTL allows us to express intervals flexibly,
we will consider two practically important classes of properties. Below, we will
introduce stylized symbols for representing these properties. F 〈τ ;P 〉 (or G〈τ ;P 〉)
is a combination of an eventuality (or a globally) operator with two freeze quan-

tifiers. F
〈τ ;P 〉
C is F 〈τ ;P 〉 parameterized with the cost constraint C, within whose

quantified scope the C is evaluated. Q1 and Q2 are atomic propositions.

– Reachability :

φReA = F 〈τ ;P 〉(Q1 ∧ F
〈τ ;P 〉
C Q2)

= �

Fτx.

FPu.(Q1 ∧ �

Fτy.

FP v.(Q2 ∧ C(x, y;u, v)))

– Response :

φReS = G〈τ ;P 〉(Q1 ⇒ F
〈τ ;P 〉
C Q2)

= �

Fτx.

FPu.(Q1 ⇒ �

Fτy.

FP v.(Q2 ∧ C(x, y;u, v)))

The intended meanings are given by the corresponding fWLTL formulas as
above. Precisely, the satisfiability of the formula φReA can be given as below.

〈 ρ0, Γ0 〉 |= φReA

iff ∃ i, j | (0 ≤ i ≤ j) and 〈 ρi, Γ [x := τ i;u := (vi∪wi)(P)] 〉 |= Q1

and 〈 ρj , Γ [y := τ j ; v := (vj∪wj)(P)] 〉 |= Q2

and 〈 ρj , Γ 〉 |= C

386 S. Nakajima

The satisfiability of φReS is similarly defined.
We will introduce an over-approximation method for enabling an automated

analysis. First, we assume that 〈 ρ0, Γ0 〉 |= �(Q1 ∧ �Q2) and an index j is the
first occurrence such that 〈 ρj , Γ 〉 |= Q2. Let k be min(j)(i | 〈 ρi, Γ 〉 |= Q1

and (i ≤ j)). Because of the monotonicity, if C(tk, tj) is satisfied, then C(ti, tj)
is satisfied for ∀i with k≤i. In other word, if C(ti, tj) is violated, then C(tk, tj) is
violated. Therefore, checking C(tk, tj), if generating a counterexample, does not
miss any violation of the constraint. Namely, the check is an over-approximation
method, and can be used for finding potential faults.

5 Analysis with Real-Time Maude

This section explains the translation to Real-Time Maude.

5.1 A Brief Overview of Real-Time Maude

Real-Time Maude [16][17] is an extension of Maude [9] for supporting the formal
specification and analysis of real-time or hybrid systems.

Real-Time Theory. A Real-Time Maude timed module specifies a real-time
theoryR, which is written as (Sig, Eq, IR, TR). (Sig, Eq) is a membership equa-
tional logic theory where Sig is a signature that constitutes sort and operator
declarations. Eq is a set of confluent and terminating conditional equations.
(Sig, Eq) specifies the state space of the system as an algebraic data type. IR is
a set of labelled instantaneous rewrite rules and TR is a set of tick rewrite rules.

Instantaneous Rewrite Rules. Instantaneous rules (IR) are inherited from
Maude, and rewrite terms in a concurrent manner without any delay, that is,
instantaneously. An instantaneous rewrite rule specifies one-step discrete tran-
sition. The rules are applied modulo the equations Eq.

r : T1(A1) =⇒ T2(A2) if ϕ .

A term T1(A1) on the lefthand side becomes a new term T2(A2) if the side
condition ϕ is satisfied.

Tick Rewrite Rules. Tick rules (TR) are introduced in Real-Time Maude to
be responsible for passage of time. Since time is global and proceeds uniformly,
tick rules manipulate the state of the entire system. Let T1 be a term for such
a system state. T1 represents a snapshot of the system, which is a term of sort
System pre-defined in Real-Time Maude. A tick rule is introduced for a term of
GlobalSystem, which takes the form, { T1 }.

{ } : System → GlobalSystem

l : { T1 } =⇒ { T2 } in time τl if ϕ

Using Real-Time Maude to Model Check Energy Consumption Behavior 387

The rule states the amount of the time τl passes when rewriting T1 to T2. The
formula ϕ may refer to a condition on the time variable τl, and such a tick
rule advances the time nondeterministically if the time value τl satisfies ϕ. The
amount of time, however, is not chosen exactly, but can be any value that satisfies
the condition.

Sampling Abstraction Method. Real-Time Maude adapts sampling abstrac-
tions for time-nondeterministic systems in which the maximum time elapsed
(mte) plays an important role. Each term T1 is accompanied by two functions
δ and mte. The function δ returns a new term T2, which is a modification of
T1 after the passage of time τl. The function mte returns the maximum elapsed
time, during which the term T1 is assumed not to be changed.

δ : System Time → System

mte : System → TimeInf

A tick rule takes into account these two functions. A new term is calculated with
δ, and the condition ϕ refers to mte (τl ≤ mte(T)).

l : { T } =⇒ { δ(T, τl) } in time τl if τl ≤ mte(T)

The mte(T) is the upper limit of the time advancement. The transition is fired
at least once in the time interval specified by the function mte(T). Usually, the
system term T is decomposed into a set of constituent terms T j. The function
mte(T j) must be defined for each T j. In order that allmte(T j) are satisfied, their
minimum value (min(mte(T j))) is chosen. Therefore, this control strategy may
result in an over-sampling for some of the components T j, but does not miss
any sampling points.

5.2 Translation to Real-Time Maude

We first consider the translation of a given power consumption automaton, which
is basically encoding the labeled transition system (Section 2.2). Second, we
show how freeze quantifiers are removed to obtain LTL formulas so as to employ
the LTL model-checker of Real-Time Maude. In the translation, we assume the
restrictions of the over-approximation method discussed in Section 4.2.

System State. We first define a term S(l, v, w, τ) of sort System to represent
a PCA state. It has four arguments since the behavior of PCA is represented
with timed states of (l, v, w, τ). For simplicity, v and w refer to the values of a
clock and weight respectively here although they are valuations in the formal
definitions (Section 2.2).

State Transitions. We will show how we encode state transitions. An edge

of a PCA, l1
ϕ,E1,r−→ l2, is interpreted as an event-trigger discrete transition,

388 S. Nakajima

(l1, v1, w)
e−→(l2, v2, w). This transition is translated into an instantaneous rule

of Real-Time Maude. ϕ is a guard condition on the transition source. For sim-
plicity, we do not consider the invariant Inv(l1) here since it is concerned with
time passage and thus needs tick rules to be encoded in Real-Time Maude.

E1 S(l1, v1, w, τ) =⇒ S(l2, v2, w, τ) if ϕ(v1)

where v2 is equal to 0 if the clock is reset or is not changed (v1) otherwise.
A delayed transition is encoded as a tick rule of Real-Time Maude. The time-

dependent behavior needs two functions δ and mte. The value d is chosen in a
non-deterministic manner so long as d ≤ mte(S(l, v, w, τ)) is satisfied.

δ(S(l, v, w, τ), d) = S(l, v + d,M l×d+ w, τ + d) .

When the amount of the time that has passed is d, the clock v becomes v + d
and the weight is updated to be M l×d+ w for a given constant M l.

The function mte just returns infinity (INF) for a stable state ls, in which the
system awaits an input symbol to initiate a discrete transition. For such a state
lc having a guard condition on the clock, mte returns the amount of time the
PCA will remain in the state lc. Xc is assumed to be a given time-out constant
representing the upper limit that the system remains in the state.

mte(S(ls, v, w, τ)) = INF .
mte(S(lc, v, w, τ)) = Xc monus v .

The monus is a built-in operator that returns the difference (Xc − v); it returns
0 if the calculated value is negative.

Variable Bindings. The encoding of the binding environment Γ is straightfor-
ward. We introduce, as a subsort of System, a new sort Bindings that has pairs
of V ar and Real as its elements. The sort V ar refers to quantified variables.

Γ : V ar Real → Bindings

Updating the environment requires appropriate rewriting rules because freezing
a variable is synchronized with state transitions of a PCA. We denote such an

updating rule as
Γ−→.

In the operational semantics of a PCA (Section 2.2), event-trigger discrete
transitions and delayed transitions are interleaving. The updating transition
must be fired after a delayed transition so that the newly changed time-dependent

values are accessed. A sequence of transitions is expected to be
e1−→;

d1−→ ;
Γ1−→.

In Real-Time Maude, however, the updating rule is an instantaneous rule, and
thus it is enabled and fired together with the discrete transitions of the PCA.

Now, imagine we have two consecutive discrete transitions where
e1−→ is followed

by
e2−→. We will merge the updating rule (

Γ1−→) to
e2−→ and have an instantaneous

rule
Γ1,e2−→ . Then, the execution order will be what we intend.

Using Real-Time Maude to Model Check Energy Consumption Behavior 389

Let l be a location, let τ be a time point, and let S(l, v, w, τ) represent a PCA

state. The discrete transition
e2−→ is represented as a single instantaneous rule if

we ignore the Γ .

E2 S(l1, v, w, τ) =⇒ S(l2, v, w, τ) if ϕ2 .

We consider how we define
Γ1,e2−→ where Γ is updated at l1 (

Γ1−→). Since the tick

rules are defined so that they are fired after
e1−→, the time-dependent values

are kept in the term for which
e2−→ is fired. The above instantaneous rule must

be modified to include the updates in Γ . As a concrete example, we consider
the case of

FDx.(pg∧φx) where D is either m or τ . The pg is a guard state
proposition and fresh is a special value denoting the variable is undefined. In
the first rule, b is either (v∪w)(m) or τ .

E2 S(l1, v, w, τ) Γ [x := fresh] =⇒ S(l2, v, w, τ) Γ [x := b]
if ϕ2 ∧ (pg ∈ Lab(l1))

E2 S(l1, v, w, τ) Γ [x := b] =⇒ S(l2, v, w, τ) Γ [x := b]
if ϕ2 ∧ ((pg �∈ Lab(l1)) ∨ (b �=fresh))

In addition, as the Γ is an environment for frozen variables, it is not time depen-
dent. We define two functions δ andmte such that δ(Γ, τ) = Γ andmte(Γ) =INF.

Property Language. Formulas to check are put in negation normal form.

φ := C | p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | �φ | �φ

The atomic propositions that the formula φ refers to must be defined as equa-
tional specifications for a built-in operator |= . Prop is a sort symbol prede-
fined in Maude to represent atomic propositions. The system state in Real-Time
Maude is a GlobalSystem term, and state propositions are defined with respect
to it.

|= : GlobalSystem Prop → Bool

a : { T } |= p = true if ϕ .

The atomic propositions p ∈ Prop and the cost constraints C are defined as such
equations.

{ S(l, v, w, τ) Γ } |= p = true if p ∈ Lab(l)
{ S(l, v, w, τ) Γ } |= ¬p = true if p �∈ Lab(l)
{ S Γ [x := b] } |= C = true if C[b/x]

Correctness of Translation. After the translation to Real-Time Maude, the
formula to check does not have freeze quantifiers, but the Real-Time Maude
rules have the updating rules merged with discrete transitions in addition to
delay transitions. We must consider properties regarding to the correctness of

390 S. Nakajima

the translation. The property 1 was originally introduced in [11]. We followed
the proof method there.

Property 1 : An instantaneous rule to encode an updating rule does not have
any effect on (a) the instantaneous rules used to encode the event-trigger discrete
transitions, nor on (b) the tick rules corresponding to the delayed transitions.

Proof Outline :
(a) The rule does not have any additional effect on S of the instantaneous
rules (Section 5.2).

(b) Two functions ensure that Γ does not have any effect on the tick rules
(δ(Γ, τ) = Γ , mte(Γ) =INF).

The next property is concerned with the formula to be checked. We will first

consider the reachability case φReA, F 〈τ ;P 〉(Q1 ∧ F
〈τ ;P 〉
C Q2) (Section 4.2).

Property 2 : The LTL model checking by Real-Time Maude returns a coun-
terexample ⇐⇒ φReA in Section 4.2 returns a counterexample.

Proof Outline:
(a) the case without the constraint : φReA can express�(Q1 ∧�Q2) because

it is obtained by inserting true in F
〈τ ;P 〉
C as F

〈τ ;P 〉
true . In the Real-Time Maude

translation, the propositions Q1 and Q2 are defined in term of equations for
an operator symbol |= . Therefore, both can generate counterexamples for
the formula �(Q1 ∧ �Q2) if the property is violated.

(b) the case with the constraint : We consider the case in which�(Q1 ∧�Q2)
is satisfied because of the case (a). A counterexample of φReA consists of the
indices j and k such that 〈 ρj, Γ 〉 |= Q2, k = min(j)(i | 〈 ρi, Γ 〉 |= Q1

and (i ≤ j)), and C is violated for the frozen values obtained at ρk and
ρj . In the Real-Time Maude translation, Γ is updated only for such j and

k because of the translation of
Γ1,e2−→ . C is also shown violated against the

values obtained from such j and k by the LTL model checker of Real-Time
Maude. Therefore, both can generate counterexamples that consist of the
same timed state sequences.

The proof for the response property φReS is essentially the same as the method
for the reachability because of the following.

�

Fτx.

FPu.(Q1 ⇒ �

Fτy.

FP v.(Q2 ∧ C(x, y;u, v)))
= �

Fτx.

FPu.(¬Q1 ∨ Q1∧�

Fτy.

FP v.(Q2 ∧ C(x, y;u, v)))
= �(¬Q1 ∨ Fτx.

FPu.(Q1∧�

Fτy.

FP v.(Q2 ∧ C(x, y;u, v))))

Since ¬Q1 is independent of any constraints, we only consider the underlined
part of the sub-formula, which is similar to the formula of the reachability case.

Using Real-Time Maude to Model Check Energy Consumption Behavior 391

5.3 An Example

As an initial study of the proposed method, we conducted experiments to analyze
the behavior of the example PCA in Figure 1. Below, we show the cases for an
instance of the property CB1,B2 in Section 3.1.

�

Fτx.

FPu. (IdleListen ∧ �

Fτy.

FP v. (expire ∧ CB1,B2))

The example PCA is defined as a term of sort Machine, which is a subsort of
System. It basically consists of the timed state ρj, namely (lj , vj , wj , τ

j). For
simplicity, the term pca has values for clock and weight instead of valuations.

pca : Loc Time Bool Rat Time → Machine

The first argument (of sort Loc) refers to a location. The next two represent
the inactivity timer; the Time component records the timer value and the Bool

indicates whether the timer is enabled or not. The fourth (Rat) is the value of
the weight that records the amount of energy consumed, and the last one (Time)
refers to the time point τ j .

We chose concrete values M � for each state, and an expiration time Xc of the
inactivity timer. We also defined a hypothetical WiFi station as the environment
of the PCA being analyzed. The check was initiated by an mc command under
the maximal tick mode (set tick max).

mc { env(..) pca(..) Γ(..) }

|=t
�(IdleListen ∧ �(expire ∧ CB1,B2)) in time ≤ Bound

The experiments were conducted using Maude 2.6 and Real-Time Maude 2.3
under MacO/S 10.9.5 on 1.3 GHz Intel Core i5. When the constraint was given
parameter values such that C1000,30000 with a search bound Bound of 1000, the
model-check was successful1.

rewrites: 7910808 in 9864ms cpu (9874ms real) (801927 rewrites/second)

Result Bool : true

We decreased Bound to 590, and the check failed because the target state, in
which the proposition expire was true, was not within the scope of the search.
The search bound around 600 is a threshold, larger than which the search can
cover the state space of this example.

A counterexample was generated for the case of C600,20500 even when Bound
was chosen to be larger than the threshold. The numeral constraint is violated
when the upper limit of the second parameter (B2) is small (20500 for this
example). However, the constraint C600,21000 was satisfied, and this result showed
that the energy consumption was less than the specified value of 21000 in the
duration of 600 ticks.

1 The output was edited for readability.

392 S. Nakajima

6 Related Work

The importance of eliminating energy bugs, or ebugs, is dicussed in [20]. They
proposed to use state-transition systems [19] for modeling the asynchronicity of
the energy consumption. The model, however, was presented informally with-
out formal definitions. Some energy profilers are developed monitoring program
executions at runtime to detect potential bugs. One of the key technical points
is identifying fault locations of ebugs that occur asynchronously. Eprof [21] is
an energy profiler to use state tracing techniques relying on the state-transition
model. ADEL [22] uses a taint-tracking method to detect asynchronous energy
leaks.

The problem of model-based analysis method for energy consumption in An-
droid smartphones is identified in [12] to counter the disadvantages of the runtime
profiler method. A model-based framework for a similar problem is studied in
MoVES [7], which uses a stopwatch extension of UPPAAL [8] for modeling and
analyzing embedded systems such as the schedulability and energy consumption.
The energy consumption model, however, is that P (t) = C×t without consider-
ing the differences in power states. PCA in this paper is defined formally and its
energy consumption model is more detailed than MoVES.

Below, we show work on the model checking problems relating to our case.
PCA is a kind of LHA [4]. Originally, we defined PCA as an n-rated timed
system (nRTS) [12]. We used a clock variable to hold accumulated amount of
consumed energy, in which a clock variable changed its rate in each power state.
Our previous work [13] showed a translation to Real-Time Maude [16][17] when
we regarded a PCA as an nRTS.

We now define PCA as WTA [5][6] since the energy consumption is observable
and does not affect the behavior. Weights in PCA [14] are, however, defined only
on states, not on transition edges. Furthermore, we introduced linear temporal
logic with freeze quantifiers (fWLTL) for expressing properties to check so that
the problem was solved by using the model-checking method [14].

In view of the reachability analysis, which is a basis for automatic verification
methods, both nRTS and stopwatch TA are undecidable while WTA is decidable
as is the timed automaton (TA). For the TA, duration-bounded reachability is
decidable [2]. Furthermore, optimal or minimum-cost reachability of the WTA is
also decidable [5][6]. Our logic fWLTL can encode the duration-bounded reach-
ability problem, but it does not have any evaluation function for optimization
problems.

TPTL [3] is linear temporal logic (LTL) with freeze quantifiers. Its satisfia-
bility relation is defined by timed words generated by the TA, and the freeze
quantifier refers to a time point of the binding state (now). Our logic fWLTL is
more expressive than TPTL, since it can freeze weight variables as well as time
points. The syntax of freeze quantifier in fWLTL [14] is introduced to express
both weight variables and time points in a uniform manner . A quantified for-
mula in TPTL, x.φx, is expressed as

Fτx.φx in fWLTL. Freeze quantifiers in
constraint LTL (cLTL) [10] can refer to variables other than clocks. ↓x=mφx in
cLTL is expressed as

Fmx.φx in fWLTL.

Using Real-Time Maude to Model Check Energy Consumption Behavior 393

Model checking of metric temporal logic (MTL) for timed words is unde-
cidable in general. It is decidable only for discrete time and undecidable for
a general case of continuous time (cf. [18]). Since MTL is a proper subset of
TPTL, model checking of TPTL is also undecidable for continuous time. As for
the model checking of cLTL, it is decidable only for bounded discrete time and
equality constraints (π1 = π2) [10]. The cost constraints to express the energy
consumption properties are more complex than equality constraints. From these
existing studies, we see that model checking of the fWLTL formula is undecid-
able in general. Therefore, we introduced a sub-fragment of fWLTL and some
approximation techniques. Specifically, this paper discussed how we translated
a PCA as a WTA into Real-Time Maude [16][17]. Model checking MTL prop-
erties to use Real-Time Maude is studied in [11]. We borrowed from it the idea
of restricting property patterns only in specific forms, φReA and φReS in our
case, and followed the argument on the correctness of translation (Property 1)
presented there.

7 Conclusion and Future Work

This paper employed fWLTL as a property specification language used in a
model-based analysis of energy consumption. Two property patterns are trans-
lated to Real-Time Maude for enabling automatic analyses. Although it is an
over-approximation method, the proposed approach is effective in detecting
anomalies due to energy bugs. There are some open questions that include (a)
extending the class of the property patterns, and (b) developing a symbolic
model-checking algorithm such as those used in [2][5][6].

Acknowledgment. The research was partially supported by JSPS KAKENHI Grant
Number 26330095.

References

1. Android, http://developer.android.com
2. Alur, R., Courcoubetis, C., Henzinger, T.A.: Computing Accumulated Delays

in Real-Time System. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 181–193. Springer, Heidelberg (1993)

3. Alur, R., Henzinger, T.A.: A Really Temporal Logic. J. Assoc. Comp.
Machin. 41(1), 181–204 (1994)

4. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X.,
Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems.
Theor. Comp. Sci. (138), 3–24 (1995)

5. Alur, R., La Torre, S., Pappas, G.J.: Optimal Paths in Weighted Timed Automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

6. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romjin, J.,
Vaandrager, F.: Minimum-Cost Reachability for Priced Timed Automata. In:
Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 147–161. Springer, Heidelberg (2001)

http://developer.android.com

394 S. Nakajima

7. Brekling, A., Hansen, M.R., Madsen, J.: MoVES – A Framework for Modeling and
Verifying Embedded Systems. In: Proc. ICM 2009, pp. 149–152 (2009)

8. Cassez, F., Larsen, K.G.: The Impressive Power of Stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000)

9. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS,
vol. 4350. Springer, Heidelberg (2007)

10. Demri, S., Lazic, R., Nowak, D.: On the Freeze Quantifier in Constraint LTL:
Decidability and Complexity. Information and Computation 205(1), 2–24 (2007)

11. Lepri, D., Olveczky, P.C., Abraham, E.: Model Checking Classes of Metric LTL
Properties of Object-Oriented Real-Time Maude Specification. In: Proc. RTRTS
2010, pp. 117–136 (2010)

12. Nakajima, S.: Model-based Power Consumption Analysis of Smartphone Applica-
tions. In: Proc. ACES-MB 2013 (2013)

13. Nakajima, S.: Everlasting Challenges with the OBJ Language Family. In: Iida,
S., Meseguer, J., Ogata, K. (eds.) Futatsugi Festschrift 2014. LNCS, vol. 8373,
pp. 478–493. Springer, Heidelberg (2014)

14. Nakajima, S.: Model Checking of Energy Consumption Behavior. In: Proc. 1st
CSDM Asia, pp. 3–14 (2014)

15. Nakajima, S., Toyoshima, M.: Behavioral Contracts for Energy Consumption. Ada
User Journal 35(4), 266–271 (2014)

16. Olveczky, P.C., Meseguer, J.: Semantics and Pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

17. Olveczky, P.C., Meseguer, J.: Abstraction and Completeness for Real-Time Maude.
ENTCS 176(4), 5–27 (2007)

18. Ouaknine, J., Worrell, J.: Some Recent Results in Metric Temporal Logic. In:
Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer,
Heidelberg (2008)

19. Pathak, A., Hu, Y.C., Zhang, M., Bahl, P., Wang, Y.-M.: Fine-Grained Power
Modeling for Smartphones Using System Call Tracing. In: Proc. EuroSys 2011
(2011)

20. Pathak, A., Hu, Y.C., Zhang, M.: Bootstrapping Energy Debugging on Smart-
phones: A First Look at Energy Bugs in Mobile Devices. In: Proc. Hotnets 2011
(2011)

21. Pathak, A., Hu, Y.C., Zhang, M.: Where is the energy spent inside my app?: Fine
Grained Energy Accounting on Smartphones with Eprof. In: Proc. EuroSys 2012
(2012)

22. Zhang, L., Gordon, M.S., Dick, R.P., Mao, Z.M., Dinda, P., Yang, L.: ADEL:
An Automatic Detector of Energy Leaks for Smartphone Application. In: Proc.
CODES+ISSS 2012, (2012)

Static Differential Program Analysis

for Software-Defined Networks

Tim Nelson(�), Andrew D. Ferguson, and Shriram Krishnamurthi

Brown University, Providence, USA
tn@cs.brown.edu

Abstract. Networks are increasingly controlled by software, and bad
updates can bring down an entire network. Network operators therefore
need tools to determine the impact of changes. To address this, we present
static differential analysis of software-defined network (SDN) controller
programs. Given two versions of a controller program our tool, Chimp,
builds atop Alloy to produce a set of concrete scenarios where the pro-
grams differ in their behavior. Chimp thus enables network developers to
exploit the power of formal methods tools without having to be trained in
formal logic or property elicitation. Furthermore, we show that there are
many interesting properties that one can state about the changes them-
selves. Our evaluation shows that Chimp is fast, returning scenarios in
under a second on several real applications.

1 Introduction

Traditional networks run individually-configured, autonomous switches that are
often closed, proprietary hardware. In a software-defined network (SDN) [7],
switches defer control of their behavior—and by extension, of the network—to
a logically centralized server (the “controller”), which may be anything from a
single commodity machine to a distributed cluster. The controller executes pro-
grams that—by updating state, interacting with other programs, and sending
instructions to switches—collectively implement the network’s behavior, rang-
ing from standard network operations to novel behaviors unseen in traditional
networks. SDN has been adopted by companies such as VMware (for its virtual-
network products [20]) and Google (for its backbone network [15]). Programs
may be written in arbitrary languages; beyond traditional languages, this is
leading to a resurgence of declarative languages—like Flog [16], NLog [20] from
Nicira/VMware, and Flowlog [27]—which are the focus of this work.

In this paper, we target the evolution of controller software. Programs evolve
for many reasons: due to a bug fix, feature update, refactoring, etc. Develop-
ers need robust techniques to manage evolution because mistakes can cause an
entire network to malfunction. Techniques like testing and verification are, how-
ever, only as effective as the coverage provided by their inputs; they may require
a knowledge of logic that operators may not have; and most of all, they only
check what was stated. However, when we add a new feature, we do not write

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 395–413, 2015.
DOI: 10.1007/978-3-319-19249-9_25

396 T. Nelson et al.

extensive properties or tests about parts of the system that are unrelated. There-
fore, developers need techniques that have the ability to (perhaps unpleasantly)
surprise.

We therefore present differential analysis for SDN controller programs, which
presents the semantic or behavioral difference between two versions of a program.
The core analysis only needs two versions; it does not require tests or logical
properties. The output of our tool, Chimp (short for “Change impact”), is in
terms of scenarios : concrete situations where the two programs differ. The overall
goal of differential analysis is to help developers transfer trust between versions ; if
they had faith in the proper execution of an old version, the semantic differences
help them focus on the only things they need to examine to extend that faith to
the new version. (We contrast other forms of differential analysis in Sec. 8.)

Chimp also enables users to query differences and even verify properties of
those differences. This enables many more use-cases. For instance, when a pro-
gram is merely being refactored or otherwise cleaned up, there should be no
behavioral change; a Chimp user can check such differential properties, and any
counter-examples would need attention. Chimp can even contrast multiple ways
of extending a program, i.e., compute the difference of differences.

This paper makes the following contributions:

1. it identifies the problem of static differential program analysis for SDNs
(Sec. 2 and 3);

2. it discusses and overcomes potential challenges and pitfalls in this analysis
(Sec. 2 and 5);

3. it demonstrates that this analysis can be done effectively (Sec. 6 and 7); and
4. it shows how traditional properties and differential analysis meet at differ-

ential properties (Sec. 2 and 4).

In short, Chimp represents a fruitful application of various formal methods to a
novel and important domain.

2 Differential Analysis at Work

The work in this paper targets the class of declarative languages used to program
SDNs. We focus on Flowlog [27], which is richer in expressiveness than most of
the others, so that our work is most widely applicable. Beyond the details of
tooling, we believe the core ideas of Chimp apply equally well to other languages
(which we discuss in Sec. 8).

In an SDN, many traditional network operations are implemented entirely in
software. We illustrate this with a well known networking example: Network-
Address Translation (NAT), which is used widely (e.g., to multiplex multiple
home machines over a shared router). Figure 1 shows two different implementa-
tions of NAT in Flowlog—an initial version without the underlined code, and
a second version with it. For simplicity, this example involves a home router
with only two ports (1=inside, 2=outside). The external interface uses the hard-
ware, or mac, address 00:00:00:00:00:FF and is assigned the ip address 192

.168.100.100. The core ideas in this example are the same for larger devices.

Static Differential Program Analysis for Software-Defined Networks 397

1 TABLE nat(macaddr,ipaddr,tpport,tpport);
2 VAR nextport: tpport = 10000;
3

4 ON tcp_packet(p) WHERE p.locPt = 1 AND
5 nat(p.dlSrc,p.nwSrc,p.tpSrc,natport):
6 DO forward(new) WHERE
7 new.tpSrc = natport AND
8 new.nwSrc = 192.168.100.100 AND
9 new.locPt = 2 AND

10 new.dlSrc = 00:00:00:00:00:FF;
11

12 ON tcp_packet(p) WHERE p.locPt = 1 AND
13 NOT nat(p.dlSrc,p.nwSrc,p.tpSrc,ANY):
14 INSERT (p.dlSrc,p.nwSrc,p.tpSrc,nextport) INTO nat;
15 DO forward(new) WHERE
16 new.nwSrc = 192.168.100.100 AND
17 new.locPt = 2 AND
18 new.tpSrc = nextport AND
19 new.dlSrc = 00:00:00:00:00:FF;
20 INCREMENT nextport;

Packets arrive at a port (locPt) on a switch (locSw). Their headers contain a source

(dlSrc) and destination (dlDst) hardware (or mac) address. Transport Control Proto-

col (tcp) packets also have a source (nwSrc) and destination (nwDst) network address

and a source (tpSrc) and destination (tpDst) service port.

Fig. 1. Network-address translation (NAT) in Flowlog. An initial version did not in-
clude the underlined portions, and so failed to translate mac addresses as well as ip
addresses.

Lines 1 and 2 define the controller’s state schema. A database table, nat,
stores the current NAT mappings; its first columns identify packets by source,
and its final column gives an ephemeral tcp port to use in the translation. The
original version identifies packets by ip address and initial tcp port; the modified
version also uses mac address. A variable (nextport) holds the next available tcp
port for NAT to use, starting at 10000. Lines 4–10 handle outgoing packets for
which a translation already exists, and lines 12–20 process outgoing packets that
start new ones. We elide the code to handle return traffic, which only adds an
additional 5 or 6 lines.

Each Flowlog program rule can be thought of as a database view over the
program’s current state and the incoming event. As in SQL or Datalog, Flowlog
rule bodies constrain that view, dictating which actions the program can take.
Lines 4–5 say that the forwarding action on lines 6–10 applies only for tcp
packets arriving at port 1 (the internal port), where there is a matching row in
the current nat table. It also binds the value in the final column of that row to the
variable natport, which is used later. Lines 6–10 say to forward matching packets,
but to first modify their ip source to 192.168.100.100 (the assigned ip address)
and their tcp source to the value in natport (obtained from the nat table). In
the modified version, the rule also sets the mac source to 00:00:00:00:00:FF.
Lines 12–21 work similarly, but since there is no corresponding row in the nat

table, they use the next available free port. They then insert the appropriate
new row into the table and increment the nextport variable.

398 T. Nelson et al.

Pre-State: nat = {}, nextport = 10000

Incoming event: Packet with mac src = Mac 0, ip src = Ip 0, tcp src = TCP 0

Program 1 Post-State:
nat = {(Ip 0,TCP 0, 10000)}
nextport = 10001

Program 2 Post-State:
nat = {(Mac 0, Ip 0,TCP 0, 10000)}
nextport = 10001

Program 2 outputs packet with:
MAC src = 00:00:00:00:00:FF,
IP src = 192.168.100.100,
TCP src = 10000
Program 1 does not output this packet.

Fig. 2. Scenarios returned by Chimp for the NAT change. In this case, both share
the same pre-state and arrival event. The scenario on the left shows a state-transition
difference caused by the new program storing the mac source address. The scenario on
the right shows that in the revised program, the packet’s mac address is modified. Mac
0 denotes an arbitrary mac address (and similarly for other fields).

While the original only modifies a packet’s ip and tcp fields, the second
version (with underlines) also changes mac sources to reflect that the modified
packet comes from the outgoing interface—standard behavior for a NAT. In
order to modify addresses consistently, the new program adds a column to the
nat table that holds the source mac address of each NAT flow. We will now use
Chimp to analyze the semantic consequences of this edit.

If we view a Flowlog program as a function that processes events, a change may
have two types of semantic impact: given the same input, either the programs
produce different output (e.g., forward packets differently) or they transition to
different states. Chimp defines a built-in analysis for each of these: (1) chPol-
Out (“change policy output”) which generates scenarios that show any differing
output behavior, and (2) chStTrans (“change state transitions”), which shows
the differences in how the two programs evolve their state. Users may select from
these (and other built-in analyses, which we discuss later) or construct their own
using these as a starting point.

Chimp’s output provides concrete scenarios that show how programs can
express the behavior described. When seeking semantic differences via chPol-

Out or chStTrans, each scenario contains a prestate that shows the state of
the two programs before they diverge, and a trigger event for the divergence.
Scenarios for other analyses may contain different information as requested by
the user.

Figure 2 shows output scenarios for both chPolOut and chStTrans on the
NAT program edit. Both show a packet arriving at the internal interface; the
scenario on the left shows a state-transition difference and the scenario on the
right shows a behavioral difference. The nat tables in these scenarios are empty
because their value is immaterial for this specific behavior, and Chimp is de-
signed to only produce minimal scenarios, which greatly improves the quality
and brevity of output (Sec. 7).

Schema Combination. Every Flowlog program has a schema: a set of TABLE
declarations, each of which includes a list of data-types that define that table’s

Static Differential Program Analysis for Software-Defined Networks 399

columns. A schema clash occurs whenever two programs declare different arities,
types, or column orderings for the same table. The happens between the NAT
programs (Figure 1, line 1), as the modified program adds a column to the nat

table. This clash must be resolved in order for Chimp to have a consistent no-
tion of “pre-state” for its analysis. To do so, Chimp creates a new version of the
conflicted table for each clashing program. For the NAT example, it creates a sep-
arate three-column nat1 table and four-column nat2 table. Chimp then rewrites
the original program to refer only to nat1 and the modified version to nat2. This
presents a new challenge: output scenarios will now contain both tables, and
Chimp’s search for scenarios will treat the two new tables independently. Since
it searches all possibilities, Chimp will consider cases where (e.g.) the nat1 table
is empty but the nat2 table is not. Scenarios where the two programs’ states
bear no relationship to one another may seem spurious—since the two tables
were originally one, their contents should be somehow related.

Lockstep Constraints. The programmer might assert that, since the new
nat table is just an extension of the first, the two tables should be identical in
the final three columns. Formally, they would like to restrict Chimp’s search to
scenarios where it holds that: “Every row in nat2 (minus its first column) is also
in nat1; every row in nat1 is also in nat2 (with some mac address in the first
column)” or, in logical form:

∀i, p1, p2 (∃m nat2(m, i, p1, p2)) ⇐⇒ nat1(i, p1, p2)

We call this a lockstep constraint because it expresses how two programs evolve
their states together. It represents an intuition about the intent of the table
change. Constraints like this may be added to an analysis, analogously to adding
new conditions to a SQL statement. This process lends itself to iteration, with
refinements growing ever more focused as the user zeroes in on surprising behav-
ior.

Differential Properties. Before we assert the lockstep constraint—and pre-
vent Chimp from returning scenarios that violate it—we would like to validate
the intuition it represents. To that end, we can phrase the lockstep constraint as
a differential property, i.e., a property that spans the behavior of multiple pro-
grams, and check it in Chimp. When checking a lockstep constraint in this way,
we refer to it as a lockstep property. We proceed inductively. To verify the base
case, we check that the property always holds in the (empty) initial program
state. The bi-implication in the above property makes this trivially true. It then
suffices to check whether the programs can ever violate the property as their
states evolve. To do so, we phrase the property as a custom analysis predicate
(Sec. 4) and ask Chimp for counterexamples.

Perhaps surprisingly, Chimp produces a counterexample (Figure 3). This sce-
nario shows a pre-state that respects the property (one row in each table), but
a post-state that does not: a second entry, using a fresh external port, has been
added to nat2 but not to nat1. This means that either the revised program is
wrong, or the property itself is incorrect (reflecting faulty intuition).

400 T. Nelson et al.

Pre-State:

nat1 = Ipaddr 0 Tpport 0 Tpport 2

nat2 = Macaddr 0 Ipaddr 0 Tpport 0 Tpport 2
Incoming event: tcp packet from:
MAC = Macaddr 1, IP = Ipaddr 0, TCP Port = Tpport 0
Program 1 Post-State: no change

Program 2 Post-State:

nat2 =
Macaddr 0 Ipaddr 0 Tpport 0 Tpport 2
Macaddr 1 Ipaddr 0 Tpport 0 Tpport 0

Fig. 3. Failure of the first NAT lockstep property. Abstract values Macaddr 0, Tpport
0, ... denote disjoint arbitrary addresses, ports, etc.

The revised program correctly creates a new entry for packets with a new mac
source, even if its ip source is already in the table. This is to be expected: since
the mac sources are distinct, the packets involve separate physical machines and
must be handled separately. Thus, seeing this scenario corrects the programmer’s
intuition and informs them that the new program has actually fixed a potential
bug that they had not considered. Some reflection also leads to a more accurate
constraint relating the two tables: “Every row in nat1 is also in nat2 (with some
mac address in the first column); for every row in nat2 there is a row in nat1

with the same source address and port,”, or:

∀i, p1, p2,m (nat1(i, p1, p2) =⇒ ∃m′ nat2(m′, i, p1, p2))
∧(nat2(m, i, p1, p2) =⇒ ∃p′ nat1(i, p1, p′))

Chimp finds no counterexample to this new constraint, increasing confidence
that it is correct. We now assert it in Chimp, forcing the two tables to be
tightly coupled in each output scenario. As seen here, “obvious” intuitions about
schema changes can be subtly wrong. Instead of assuming a standard lockstep
constraint, or adding one automatically, Chimp lets users test their intuitions
via analysis and then assert them explicitly. Errors revealed lead to missing
correctness properties which can then be added to existing test- and property-
suites.

3 Theory

Every Flowlog rule (an ON condition followed by a single action) is equivalent to
a formula of first-order logic that defines the rule’s meaning and enables formal
reasoning. Figure 4 describes this translation in detail for rules, formulas, and
terms; the translation for all rules produces the first-order theory of a Flowlog
program. Flowlog’s syntax is inspired by non-recursive Datalog with negation,
and its logical semantics follows. Variables not explicitly quantified are inter-
preted universally, as in Datalog. The only exception is that the wildcard term

Static Differential Program Analysis for Software-Defined Networks 401

�ON in(i): DO out(o) WHERE F � = out(o) ← in(i) ∧ �F�
�ON in(i): INSERT (o1, ..., ok) INTO R WHERE F � = plusR(o1, ...ok) ← in(i) ∧ �F�)
�ON in(i): DELETE (o1, ..., ok) FROM R WHERE F � = minusR(o1, ...ok) ← in(i) ∧ �F�)

�NOT f� = ¬�f�
�f1 AND f2� = �f1� ∧ �f2�

�t1 = t2� = �t1� = �t2�
�R(t1, ..., tk)� = ∃any1, ..., anym R(�t1�, ..., �tk�)

each anyi has fresh index for every occurrence of ANY.

�c� = c (for a constant c)
�x� = x (for a variable v)

�x.fld� = fld(x) (for a variable x and packet field name fld)
�ANY� = anyf (where f is a fresh index)

Fig. 4. Translation of Flowlog (rules, formulas, and terms) to FOL

ANY binds tighter than other terms; the formula NOT R(ANY) means ¬∃ aR(a)
(i.e, that the relation is empty). The translation inserts quantifiers to support
this. Flowlog desugars rules with OR into multiple rules in the obvious way. The
INCREMENT keyword is syntactic sugar for relational expressions plus INSERT and
DELETE rules.

For each state relation symbol R, helper relations plusR and minusR (Fig-
ure 4) describe how that relation changes for each event received. If R is the
relation before an event arrives, then the new value of the relation will be:

(R \minusR) ∪ plusR

(That is, INSERT overrides DELETE.)

Flowlog disallows rule bodies that reference intensional relations (those de-
fined by the program, e.g., forward, rather than stored in the program’s state,
e.g., nat). Also, rules must be safe: all variables (and output packet fields, in the
case of a DO rule) in a rule’s head and variables in negated body literals must
appear in a non-negated literal in that rule’s body.

Property-Checking. The theory of a Flowlog program, Γ , is given by taking
the union of the result of Figure 4 for each rule. It contains an implication for
each rule, where each rule body dictates a class of input events and program
states and each head gives a corresponding program behavior. For analysis, we
take the theory’s Clark completion [1, p. 407], Γc, which essentially adds reverse
implications that define the ways each action could be caused.

Since Γc defines both the consequences of arriving events and the possible
triggers for a given behavior, a first-order property φ holds if and only if Γc ∪{¬φ}
is unsatisfiable. For example, the program in Figure 1 always translates tcp
packets’ ip source to 192.168.100.100 only if the following formula is unsatisfiable
in conjunction with the completion of the program’s theory:

∃p, p′ . forward(p′) ∧ tcp packet(p) ∧ nwsrc(p′) �= 192.168.100.100

402 T. Nelson et al.

Models that satisfy the conjunction are counterexamples to the property.

Differential Properties. φ may also involve more than one program; it can
express differential properties over multiple programs’ collective behavior. The
2-program chPolOut analysis of Sec. 2, for example, corresponds to:

∃p, p′ . tcp packet(p)∧(forward1(p′) ∧ ¬forward2(p′)∨
forward2(p

′) ∧ ¬forward1(p′))

where each forwardi represents the forward relation of the ith program. Chimp
automatically performs this renaming for all output and state-modification rela-
tions, and we will use the notation freely when it is clear from context.

4 Flowlog to Alloy

Flowlog’s runtime automatically updates the network’s switches as needed; the
language abstracts out the specifics of those updates and associated optimiza-
tions. Because of this tierless abstraction, Flowlog’s first-order logic semantics
can be used directly to reason about program behavior. Since Alloy supports
predicate logic, producing an Alloy specification for a Flowlog program essen-
tially involves following Figure 4. Chimp also defines several built-in analysis
predicates.

Single-Program Predicates. For every action that a program can take,
Chimp creates an Alloy predicate representing when that action occurs. For
instance, the packet-forwarding action for each program produces a predicate
with signature1:

pred forward[st: State, e: EVpacket, out: EVpacket]

A State atom represents a database over the program’s schema. Events (types
starting with EV) are generalizations of packets that also include external events
or notifications from other modules. Predicates are true or false on any given
input. The forward predicate holds on inputs consisting of a State st, an
input Event e, and an output Event out if and only if the original program
would forward e with the modifications expressed in out. Figure 5 lists other
predicates that Chimp creates for each program. The higher-level predicate out-
policy holds any time the program will respond to event ev by emitting ev2

when in state st, and transition expresses when a state-transition is taken on
an event.

Cross-Program Predicates. Chimp also constructs basic cross-program dif-
ferential analysis predicates (Figure 5) for each pair of programs given. To detect
a difference in two programs’ output (chPolOut), Chimp looks for an output
(outev) that is produced by one program but not another:

1 We have removed some machine-generated typing information and other Alloy-
language foibles for brevity. Each Flowlog program produces a separate Alloy mod-
ule.

Static Differential Program Analysis for Software-Defined Networks 403

Predicate Arguments True if the program in state s:

plus R s : State, e : Event, t0, ..., tk adds t0, ..., tk to R when receiving e

minus R s : State, e : Event, t0, ..., tk removes t0, ..., tk from R when receiving e

<action> s : State, e1 : Event, e2 : Event outputs e2 (of type <action>) on e1
outpolicy s : State, e1, e2 : Event outputs e2 on receiving e1

transition s : State, e : Event, s2 : State transitions to s2 on event e

Predicate Arguments True if the programs:

chPolOut s : State, e : Event have different output on event e in state s
chStTrans s : State, e : Event diverge in state on event e in state s

rchChPolOut s, s2 : State, e : Event chPolOut with reachability check for s
rchChStTrans s, s2 : State, e : Event chStTrans with reachability check for s

Fig. 5. Built-in predicates for each program and differential-analysis. <action> and
R denote arbitrary output actions and table names.

pred chPolOut_1_2[st: State, ev: Event] {
some out: Event |
prog1/outpolicy[st,ev,out] && not prog2/outpolicy[st,ev,out] ||
prog2/outpolicy[st,ev,out] && not prog1/outpolicy[st,ev,out] }

Thenamesprog1andprog2denote the twoprograms; eachhas its ownoutpolicy.
Since outpolicy is used, rather than any specific output action, this predicate is
more general than the example formula in Sec. 3. chStTrans is defined similarly,
checking for a mismatch in plus_R or minus_R behavior.

Custom Predicates. Users may create their own analyses in the Alloy lan-
guage, usually by building atop Chimp’s built-in predicates. For instance, the
first differential property from Sec. 2 can be expressed as:

pred lockstep_nat_condition[st1, st2: State] {
all x1, x2, x3 : univ |

(some x4 : univ | x4 -> x1 -> x2 -> x3 in st2.nat_2) iff
(x1 -> x2 -> x3 in st1.nat_1) }

assert lockstep_nat_assert {
all st, st1’, st2’: State, ev: Event |

(lockstep_nat_condition[st, st] and
prog1/transition[st,ev,st1’] and prog2/transition[st,ev,st2’])
implies
lockstep_nat_condition[st1’, st2’] }

using the transition predicate from Figure 5. The lockstep nat condition

predicate identifies pairs of “safe” states that satisfy the condition. The assertion
seeks a scenario where the programs transition from a “safe” to an ”unsafe” state.
A single pre-state suffices since the two programs’ nat tables are held separately.

5 Soundness and Completeness

As is standard for such tools (including Alloy), Chimp performs bounded scenario
finding. Along with an analysis predicate, users provide bounds for each datatype,

404 T. Nelson et al.

e.g. up to 6 switches, 4 ip addresses, and so on. The search is guaranteed to
be sound (with a caveat below); it never returns a false positive. Given its
boundedness, one might reasonably inquire whether it can issue false negatives.

Every rule body is in the ∃∗∀∗ fragment of first-order logic, which is well-
known [5,33] to admit bounded satisfiability-checking. Positive instantiations of
those bodies, as in the definition of chPolOut, are also in that fragment. However,
negative instantiations (also used in chPolOut and others) are not.

A cyclic Flowlog program is one in which some ANY term appears together with
a rule-body variable in a negated body atom. For instance, a program containing
the body atom NOT R(x, ANY), where x does not appear in the rule head, is
cyclic. If a program is acyclic, elementary rewrites can break all ∀∃ nesting in
negated rule bodies. Thus, chPolOut and chStTrans over acyclic programs admit
automatically-generated sufficient bounds. Acyclic Flowlog is expressive; every
program in Sec. 7 is acyclic.

For cyclic programs, since both Flowlog and Alloy have a notion of types (in
contrast to standard untyped first-order logic), it is possible [30] to strengthen
the ∃∗∀∗ condition to safely bound analysis involving limited ∀∃ quantifica-
tion. Chimp makes use of this information to produce bounds, and chPolOut

and chStTrans are therefore complete even on many cyclic programs. Custom
queries can of course introduce additional quantification that renders Chimp
incomplete—e.g., as in the lockstep property of Sec. 2.

Thus, while Chimp is incomplete in general, many useful analyses have a
bound under which Chimp is guaranteed to find any counterexamples; Chimp
computes this bound automatically. Unlike prior work [30] on completeness in
Alloy, which naively counts all well-typed ground terms, Chimp takes advantage
of implicit disjunction in the analysis formulas. For instance, when seeking local-
ized differences, there is no need to consider quantification in both forward and
plus_R rules simultaneously. This produces tighter bounds that are sufficient to
detect any single semantic difference, benefiting both performance and scenario
brevity.

Where sufficient bounds cannot be established automatically, users provide
bounds manually. As in Alloy, domain knowledge often eases this process. As
Jackson [14] notes, even the most insidious bugs often occur on small example
runs. Incomplete differential analyses can thus be viewed as a form of automated
bug-finding that increases confidence in the program.

Soundness of Addition. The original Flowlog-to-Alloy translator [27] did not
support Flowlog’s add primitive. While Alloy has a notion of integers, they are
bounded by a user-provided bitwidth—a fact that made using Alloy integers im-
practical. Instead, Chimp represents addition via a ternary relation. By default,
this under-approximates true addition, sacrificing a measure of soundness for
tractability. In practice, we insert additional axioms for arithmetic as needed.

Pre-State Reachability. By default, Chimp does not guarantee that prestates
of scenarios it returns are reachable in real program runs. This does not render
Chimp “unsound”: such scenarios still witness a program state and input on

Static Differential Program Analysis for Software-Defined Networks 405

which the two programs differ, and even an unreachable semantic difference can
yield new insight into the programs. Nevertheless, it can be valuable to ignore
unreachable scenarios and see a concrete execution trace that shows how the
scenario can be reached. For these reasons, Chimp can enhance its search with
full system traces. The reachability-aware analyses rchChPolOut (“reachable ch-
PolOut”) and rchChStTrans (“reachable chStTrans”) behave much like their
counterparts, but the scenarios they produce are augmented with separate sys-
tem traces for each program. Separate traces are necessary since, if the programs’
states eventually diverge, a single trace would be unable to capture behavioral
differences that happen after divergence. Users may expect the state difference
but not any subsequent deltas; a single trace could therefore conceal surprising
differences. To use reachability-aware analyses, users must provide a maximum
trace length to check up to. As (e.g.) a pre-state that requires 3 steps to reach will
not be detected if the user-provided bound is 2 steps, reachability-awareness can
cause a loss of completeness. It also negatively impacts performance, since longer
traces mean a larger space of possible scenarios to search. It is up to the user to
decide whether to make this tradeoff—losing completeness and performance in
exchange for scenario provenance and reachability guarantees.

6 Scenario Minimization

Scenarios require user effort to understand, and needless detail increases the time
taken to comprehend them as well as reducing the generality of each individual
scenario. Because of this this, Chimp provably presents only minimal scenarios.
Formally, let Γ be the first-order theory of a Flowlog program plus additional
first-order constraints, such as the negation of properties (Sec. 3). Define the set
of scenarios that satisfies Γ as scns(Γ) = {S | S |= Γ} and the relation ⊆ on
scenarios to denote containment of relational facts, that is: S1 ⊆ S2 if and only
if all facts R(a1, ..., an) true in S1 are also true in S2. Now the set of ⊆-minimal
scenarios for Γ is mins(Γ) = {S ∈ scns(Γ) | ∀S′ ∈ scns(Γ) . S′ ⊆ S =⇒ S = S

′}.
In other words, minimal scenarios contain only the facts they need to sat-

isfy the theory. For instance, removing any row in Figure 3 would either make
the scenario inconsistent (i.e., not reflective of valid system behavior) or no
longer satisfy the analysis predicate. Minimality also forces the use of abstract
variables whenever possible. Chimp will not give a packet field or table cell a
concrete value unless the scenario is contingent on that value. Otherwise, it will
use an abstract value (e.g., Macaddr 0 in Figure 3); this is key in reducing the
number of scenarios given and improving the usefulness of each. To implement
minimization, Chimp leverages Aluminum [28], a modified version of Alloy that
iteratively removes unnecessary facts before presenting scenarios. As we will see,
minimization can result in a drastic decrease in scenario size.

7 Evaluation

Our experiments include differential analyses across several programs: the NAT
application from Sec. 2 (NAT); a learning-switch implementation (MAC); an

406 T. Nelson et al.

address-resolution protocol (ARP) cache; a round-robin load-balancer (LB); a
network-information base (NIB) that computes reachability and spanning-tree
information; and a stolen-laptop detector (SL) that sends alerts if suspect ad-
dresses are seen on the network. Due to the conciseness of declarative, rule-based
programming in this domain, these programs are each modest in size. Neverthe-
less, together they comprise a significant library of standard network functional-
ity as well as some new behavior made possible by SDNs.

For NAT, we compare the two versions from Sec. 2 with the correct lock-
step condition added, along with checking both lockstep properties. For MAC,
we compare versions with and without support for host mobility. For ARP, we
compare three consecutive diffs: two bugfixes (1→2 and 2→3), and a refactoring
(3→4). For LB we check a bug-fix involving initialization of the controller state.
The bug manifests as improper forwarding behavior after initialization, and so we
enable reachability-aware analysis here. For NIB, we check a fix to how network-
reachability is calculated. Originally, SL sends notifications for every suspicious
packet; we compare this to a buggy new version intended to rate-limit notifi-
cations (1→2) and that version to the correct new version (2→3), as well as
examine the difference-of-differences between these changes: (1→2) vs. (1→3).

Performance and Scenario Counts. Figure 6 reports the number of scenarios
Chimp returns (under the corresponding bound in columns 3–7, which we discuss
later), as well as Chimp’s performance on each analysis. The first two columns
name the program(s) and the analysis performed. The eighth column gives the
number of scenarios found. It is Chimp’s goal to present surprising scenarios
to the user, but it cannot know ahead of time which scenarios will be most
valuable. A small number of scenarios that nevertheless illustrate all potential
semantic changes is therefore good in principle. Minimization plays a major role
here, as even the stolen-laptop changes (with no more than 4 minimal scenarios)
produce hundreds of non-minimal scenarios, many of which are (unnecessarily)
as large as the bounds permit. Our experience indicates that the first scenario
presented is generally interesting, especially for user-defined queries, and larger
scenario-counts are to be expected when the programs differ broadly.

The final columns of Figure 6 report on runtime. Chimp first translates the
problem to Boolean logic before solving to find a scenario. We report the time for
both steps as the average and standard deviations of 10 runs; Chimp was started
afresh each time to mitigate cache-warming effects. The solving time is the time
to either produce the first scenario or complete the search without finding one.
We measure performance on an Intel i5-2400 3.10 Ghz with 8GB RAM (i.e., a
generic laptop). The search is largely CPU-bound, using no more than 1.5 GB
of memory even on the larger analyses. Chimp returns scenarios fairly quickly—
under a second, for most analyses—even when there are no results, and it must
complete a search of the entire scenario-space.

Computed Bounds and Scenario Sizes. Columns 3–7 of Figure 6 report
on bounds and the size of scenarios that Chimp presents. We show bounds for
each datatype separately. The B subcolumn reflects whether Chimp was able
to compute a guaranteed-sufficient bound (Sec. 5); a ✗ indicates a bound could

Static Differential Program Analysis for Software-Defined Networks 407

P
ro

g
ra

m
s

A
n
a
ly
si
s

M
A
C

IP
T
C
P

E
v
e
n
ts

S
ta

te
s

S
c
e
n
a
ri
o

T
ra

n
s
(m

s)
S
o
lv
e
(m

s)
B

S
B

S
B

S
B

S
B

S
C
o
u
n
t

A
v
g

σ
A
v
g

σ

N
A
T

c
h
P
o
l
O
u
t
&

L
ck
st
p
2

✗
(4
)

2
✗
(4
)

1
✗
(4
)

2
2

2
1
1

>
1
0
0
0

4
3
8

1
1
8

1
1
2

4
L
ck
st
p
1

✗
(3
)

2
✗
(3
)

2
✗
(3
)

3
✗
(1
)

1
✗
(3
)

2
5
4

4
2

2
1
0
4

7
L
ck
st
p
2

✗
(3
)

–
✗
(3
)

–
✗
(3
)

–
✗
(1
)

–
✗
(3
)

–
0

5
5

4
1
4
1

4

M
A
C

c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
6

1
1

1
c
h
S
t
T
r
a
n
s

4
1

0
0

0
0

1
1

3
2

4
1
9

1
4

1
1

8

A
R
P

(1
→

2
)
c
h
P
o
l
O
u
t

1
3
(3
)

3
6
(3
)

1
0
0

2
2

1
1

1
5
4

3
3

2
8

2
0

1
8

A
R
P

(2
→

3
)
c
h
P
o
l
O
u
t

1
3
(3
)

3
6
(3
)

1
0
0

2
2

1
1

1
0
2

3
5

2
8

2
3

1
9

A
R
P

(3
→

4
)
c
h
P
o
l
O
u
t

1
2
(3
)

3
6
(3
)

1
0
0

2
2

1
1

3
2
4

2
8

2
4

1
0

1
1

L
B

c
h
S
t
T
r
a
n
s

4
0

0
0

0
0

1
1

3
2

1
4
5

3
1

4
6

3
7

c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
2
5

2
1

1
r
c
h
C
h
S
t
T
r
a
n
s

✗
(4
)

2
0
0

0
0

✗
(3
)

3
✗
(3
)

3
3

1
6
7

8
6
0
1
1

5
1

r
c
h
C
h
P
o
l
O
u
t

✗
(4
)

1
0
0

0
0

✗
(4
)

4
✗
(5
)

4
8

3
3
0

1
5
1

8
9
5
2
4

5
5
5

N
IB

c
h
S
t
T
r
a
n
s

4
0

0
0

0
0

2
2

1
1

4
0

2
4
2

1
1
4

2
6
0
5

1
6
8

c
h
P
o
l
O
u
t

4
–

0
–

0
–

2
–

1
–

0
3

1
1

1

S
to
le
n
L
a
p
to
p
c
h
P
o
l
O
u
t

4
0

0
0

0
0

2
2

1
1

2
1
4

2
1
1

2
(1
→

2
)

c
h
S
t
T
r
a
n
s

3
1

0
0

0
0

1
1

3
2

3
2
1

1
7

1
0

8

S
to
le
n
L
a
p
to
p
c
h
P
o
l
O
u
t

4
2

0
0

0
0

2
2

1
1

4
2
1

7
1
4

8
(2
→

3
)

c
h
S
t
T
r
a
n
s

2
–

0
–

0
–

1
–

3
–

0
2
0

1
3

5
4

S
to
le
n
L
a
p
to
p
Δ
(p

1
,p

3
)
−

Δ
(p

1
,p

2
)

4
1

0
0

0
0

2
2

1
1

4
2
6

2
1

1
6

1
3

F
ig
.
6
.
B
o
u
n
d
s
co
m
p
u
te
d
,
sc
en

a
ri
o
si
ze
s,

n
u
m
b
er

o
f
m
in
im

a
l
sc
en

a
ri
o
s
fo
u
n
d
,
a
n
d
p
er
fo
rm

a
n
ce

(a
v
er
a
g
e
a
n
d
st
a
n
d
a
rd

d
ev

ia
ti
o
n
in

m
s)

fo
r
ea
ch

a
n
a
ly
si
s.

F
o
r
ea
ch

d
a
ta
ty
p
e,

th
e
B

co
lu
m
n
d
en

o
te
s
th
e
b
o
u
n
d
s
u
se
d
.
A

n
u
m
b
er

m
b
y
it
se
lf

in
d
ic
a
te
s
th
e
co
m
p
u
te
d
su
ffi
ci
en

t
b
o
u
n
d
o
n
th
a
t
d
a
ta
ty
p
e,

w
h
ic
h
w
a
s
th
en

u
se
d
in

a
n
a
ly
si
s.

m
(n

)
sa
y
s
th
a
t
th
e
co
m
p
u
te
d
b
o
u
n
d
w
a
s
m
,
b
u
t
th
a
t
w
e
lo
w
er
ed

it
to

a
m
o
re

re
a
so
n
a
b
le

n
.

✗
(n

)
d
en

o
te
s
th
a
t
a
su
ffi
ci
en

t
b
o
u
n
d

co
u
ld

n
o
t
b
e
ca
lc
u
la
te
d
,
in

w
h
ic
h

ca
se

w
e
p
ro
v
id
ed

a
re
a
so
n
a
b
le

b
o
u
n
d
n
.
L
ow

er
n
u
m
b
er
s
in
d
ic
a
te

a
sm

a
ll
er

se
a
rc
h
sp
a
ce
.
A

b
o
u
n
d
o
f
0
m
ea
n
s
th
a
t
a
to
m
s
o
f
th
a
t
ty
p
e
w
er
e
p
ro
va

b
ly

u
n
n
ec
es
sa
ry

in
th
e
a
n
a
ly
si
s.

T
h
e
S

co
lu
m
n
g
iv
es
,
fo
r
ea
ch

d
a
ta
ty
p
e,

th
e
m
ed

ia
n
n
u
m
b
er

o
f
a
to
m
s
o
f
th
a
t
ty
p
e
u
se
d
a
cr
o
ss

a
ll
sc
en

a
ri
o
s
th
a
t
C
h
im

p
fo
u
n
d
.
A

“
–
”
in
d
ic
a
te
s

th
a
t
th
e
a
n
a
ly
si
s
fo
u
n
d
n
o
sc
en

a
ri
o
s.

F
o
r
re
a
ch

a
b
il
it
y
-a
w
a
re

a
n
a
ly
se
s,

th
e
m
a
x
im

u
m

tr
a
ce
-l
en

g
th

is
eq

u
a
l
to

th
e
b
o
u
n
d
o
n
ev
en

ts
.

408 T. Nelson et al.

not be computed, in which case parenthetical values indicate bounds we manu-
ally provided to Chimp. Sometimes, even when a sufficient bound is available,
a technical limitation in the Alloy engine—a cap on the number of potential
facts value that we were unable to modify with reasonable effort—prevents us
from using that bound, in which case we use a smaller number (indicated in
parentheses). This is only a restriction imposed by our current toolchain, and
not a fundamental limitation. As expected, Chimp is able to find a bound for
each chPolOut and chStTrans, rendering its search complete on these rows.

A bound exists for the delta-of-delta analysis as well. In contrast, Chimp is
unable to find sufficient bounds for checking the lockstep properties, as they
use quantification in a more sophisticated way. As for reachability-aware tests,
the rchChPolOut and rchChStTrans predicates admit a sufficient bound on
scenario-size per step, thus requiring user input only to bound the number
of events and states. Since the LB programs differ only in their initialization
(i.e., state change, detected by chStTrans) chPolOut detects no functional dif-
ferences. rchChPolOut, however, entails a search for the consequences of that
change beyond its immediate effect on program state; this adds significant com-
plexity to the search.

Scenarios, especially after minimization (Sec. 6), may not need as many el-
ements as the bound indicates. Therefore, the S column presents the median
number of elements across all scenarios that Chimp returned. Where available,
the B values are quite small. However, even relative to those, the S values are
smaller; minimal scenarios contain no irrelevant output. We see that minimizing
scenarios before presenting them often reduces scenario-size by more than 50
percent. Since simpler scenarios are quicker and easier to understand, this sig-
nificantly assists the user in focusing on the critical components of the change.

8 Related Work

Controller programs operate at multiple tiers of execution, analogous to the
multi-tier nature of web programs. In particular, controller programs generate
persistent instructions for switches, making this a form of metaprogramming,
which can be especially hard on a static analysis. Analysis is eased in tierless
languages like Flowlog [27], which abstract out the details of how the controller
interacts with the switches. To exploit tierlessness, Chimp is specifically tar-
geted to Flowlog, but its core ideas are not limited to one language. VMware’s
Nlog [20] is, like Flowlog, based in non-recursive logic-programming and has re-
lational state, making it a prime candidate for Chimp. CSDN [4], in spite of its
imperative syntax, also has relational state and a trigger-action model similar
to Flowlog’s. Since CSDN is not tierless, analysis would need to model switch-
rule updates explicitly, yet it is amenable to relational modeling. Flog [16] is
another limited-power logic-programming SDN language with relational state.
Flog allows recursion, and Chimp’s underlying engine assumes a non-recursive
logic; Chimp is nevertheless applicable to Flog’s non-recursive fragment. Chimp’s
methods also apply to stateless, declarative policy languages like NetCore [26].

Static Differential Program Analysis for Software-Defined Networks 409

NetKAT [3] is an SDN programming language that supports efficient [10]
program differencing. NetKAT programs can express path-based constraints, but
do not support program state. Differencing is therefore a fundamentally different
problem between the two languages. NetKAT also supports host-reachability
analysis that depends on the network topology; Chimp is topology-independent,
and checks whether program states (not network hosts) are reachable.

Differential program analysis is well studied outside the networking space.
Early work by Horwitz [13] finds which portions of two programs correspond and
where they can differ. Chimp’s custom predicates enable more detailed analyses,
as well as providing behavioral scenarios rather than annotated code.

More recent work includes SymDiff [21], which leverages satisfiability mod-
ulo theories (SMT) technology for program comparison; Differential Assertion
Checking (DAC) [22], which checks properties relative to program changes; and
Differential Symbolic Execution (DSE) [31], which combines symbolic execution
and SMT-solving to summarize differences between Java methods. Chimp’s sce-
narios are analogous to the output of these tools, except that they use relational
program state. Also in contrast to these tools, Chimp addresses schema clashes
and differences in potential program input types, as well as reasoning about
lockstep behavior. Since Chimp targets limited-power, declarative languages for
network-programming, it is able to make completeness guarantees that cannot
generally be made for full-featured languages, and does so without necessitating
symbolic execution.

Hawblitzel, et al. [12] give a framework for comparing pairs of imperative
programs via theorem provers. Like their mutual summaries, Chimp’s analysis
predicates describe relations over differential behavior, although mutual sum-
maries do not assume a shared prestate by default as Chimp’s basic analyses
do. Unlike mutual summaries, Chimp’s predicates can involve any number of
Flowlog programs, as in the 3-way delta-of-deltas comparison of Sec. 7. Finally,
Hawblitzel et al. do not discuss performance or brevity of output.

Chimp is partly inspired by Margrave [29], which performs differential analy-
sis on policies such as firewalls and routing tables. Margrave accepts a limited
subset of Cisco’s IOS configuration language and supports additional input via
an intermediate policy language; it is not designed for the SDN domain. Its poli-
cies are strictly weaker than Flowlog’s: they can read relational state but not
modify it, and they lack the ability to express even the limited universal quan-
tification of Flowlog’s ANY keyword. Margrave uses Kodkod [37], the same engine
underlying Alloy and Chimp, and could thus perform some, but not all of the
analyses that Chimp can—for instance, Margrave has no support for reasoning
about state-reachability. Margrave bounds its analyses by naively summing all
terms in a policy [30]; Chimp’s focus on single-rule variations produces tighter
bounds. Also in the firewall space, Liu [23] addresses change-impact analysis for
firewall policies, not full SDN programs.

Dougherty et al. [9] split a program’s behavior into a system automaton and a
dynamic policy that filters which transitions can be taken, then give algorithms
for computing the difference of multiple policies with respect to the fixed system.

410 T. Nelson et al.

These algorithms assume a common schema between policies, whereas Chimp
allows for schema changes. Even more, since each Flowlog program defines its
own transition system, Chimp’s analysis must effectively work with multiple
system automata. Finally, their work is not implemented.

Differencing techniques in the network space tend to focus on stateless for-
warding policies rather than stateful programs. For instance, header-space anal-
ysis [18] could be used to compare static views of the network. In contrast, we are
interested in analyzing controller programs, with state that changes over time.

DNA (Differential Network Analysis) [24] answers differential queries about
reachability across multiple snapshots of network state (e.g., routing tables and
ACLs). Chimp does not reason about network reachability, as its analysis is
topology independent. Since Chimp analyzes programs, rather than snapshots
of forwarding policy, it must be aware of state transitions between these snap-
shots, and its analysis is necessarily more complex. Like Chimp, the DNA tool
minimizes its output using Boolean techniques, but Chimp’s minimization also
works over relational program states as well as packet headers.

Chimp is complementary to statistical tools like WISE [36], which estimates
the impact of changes on response times in content-delivery-networks. Chimp’s
reasoning functions even in the absence of pre-existing logs, which machine-
learning tools such as WISE require to train their classifiers.

In contrast to differential analysis, traditional property-verification for SDN
programs is well studied. However, existing tools such as NICE [6], VeriCon [4],
Verificare [34], and Flowlog’s existing verification [27] lack differential reasoning
capabilities. The same is true of recent proof-based verification efforts [8,35]
for SDN languages. Many other analyses [2,11,18,19,25,32,38] work over fixed
network policies, often accepting raw forwarding tables as input. While powerful,
applying these techniques to stateful SDN controller programs means resorting
to dynamic methods in the running system, as in the case of NetPlumber [17]
and VeriFlow [19]. Chimp analyzes stateful programs statically.

9 Conclusion

Chimp was designed with several core goals in mind: to handle dynamic pro-
gram state, to produce concrete scenarios and support schema changes (Sec. 2),
to rule out false negatives but allow reachability-checking if desired (Sec. 5), to
provide minimal, general scenario output (Sec. 6), and to support both common
and user-defined queries (Sec. 4). As our evaluation shows, Chimp’s performance
is good enough to be used as a regular part of the development cycle. The tool
currently analyzes controller programs, independent of the network’s topology.
It would also be useful to reason about network-condition changes, such as host
mobility [39], and their potential impact on behavior. Improving Chimp’s han-
dling of arithmetic by incorporating SMT-solver technology would also be an
interesting avenue of future work.

Acknowledgements. We are grateful to the anonymous reviewers for their helpful
remarks. We thank Daniel J. Dougherty, Kathi Fisler, Rodrigo Fonseca, and Nate

Static Differential Program Analysis for Software-Defined Networks 411

Foster for useful discussions, and the Frenetic and Alloy teams for creating excellent
tools we could build upon. This work is partly supported by the NSF.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Al-Shaer, E., Al-Haj, S.: FlowChecker: Configuration analysis and verification
of federated OpenFlow infrastructures. In: Workshop on Assurable and Usable
Security Configuration (2010)

3. Anderson, C.J., Foster, N., Guha, A., Jeannin, J.B., Kozen, D., Schlesinger, C.,
Walker, D.: NetKAT: Semantic foundations for networks. In: Principles of Pro-
gramming Languages (POPL) (2014)

4. Ball, T., Bjørner, N., Gember, A., Itzhaky, S., Karbyshev, A., Sagiv, M., Schapira,
M., Valadarsky, A.: VeriCon: Towards verifying controller programs in software-
defined networks. In: Programming Language Design and Implementation (PLDI)
(2014)

5. Bernays, P., Schönfinkel, M.: Zum entscheidungsproblem der mathematischen
Logik. Mathematische Annalen 99, 342–372 (1928)

6. Canini, M., Venzano, D., Pereš́ıni, P., Kostić, D., Rexford, J.: A NICE way to
test OpenFlow applications. In: Networked Systems Design and Implementation
(2012)

7. Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S.:
Ethane: Taking Control of the Enterprise. In: Conference on Communications
Architectures, Protocols and Applications (SIGCOMM) (2007)

8. Chen, C., Jia, L., Zhou, W., Loo, B.T.: Proof-based verification of software defined
networks. In: Open Networking Summit (2014)

9. Dougherty, D.J., Fisler, K., Adsul, B.: Specifying and reasoning about dy-
namic access-control policies. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006.
LNCS(LNAI), vol. 4130, pp. 632–646. Springer, Heidelberg (2006)

10. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: Principles of Programming Languages (POPL) (2015)

11. Gutz, S., Story, A., Schlesinger, C., Foster, N.: Splendid isolation: A slice ab-
straction for software-defined networks. In: Workshop on Hot Topics in Software
Defined Networking (2012)

12. Hawblitzel, C., Kawaguchi, M., Lahiri, S.K., Rebêlo, H.: Towards modularly
comparing programs using automated theorem provers. In: Bonacina, M.P. (ed.)
CADE 2013. LNCS (LNAI), vol. 7898, pp. 282–299. Springer, Heidelberg (2013)

13. Horwitz, S.: Identifying the semantic and textual differences between two versions
of a program. In: Programming Language Design and Implementation (PLDI)
(1990)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis, 2nd edn. MIT
Press (2012)

15. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
Experience with a globally-deployed software defined WAN. In: Conference on
Communications Architectures, Protocols and Applications (SIGCOMM) (2013)

16. Katta, N.P., Rexford, J., Walker, D.: Logic programming for software-defined
networks. In: Workshop on Cross-Model Design and Validation (XLDI) (2012)

412 T. Nelson et al.

17. Kazemian, P., Chang, M., Zeng, H., Varghese, G., McKeown, N., Whyte, S.: Real
time network policy checking using header space analysis. In: Networked Systems
Design and Implementation (2013)

18. Kazemian, P., Varghese, G., McKeown, N.: Header space analysis: Static checking
for networks. In: Networked Systems Design and Implementation (2012)

19. Khurshid, A., Zou, X., Zhou, W., Caesar, M., Godfrey, P.B.: VeriFlow: Verifying
network-wide invariants in real time. In: Networked Systems Design and Imple-
mentation (2013)

20. Koponen, T., Amidon, K., Balland, P., Casado, M., Chanda, A., Fulton, B.,
Ganichev, I., Gross, J., Gude, N., Ingram, P., Jackson, E., Lambeth, A., Lenglet,
R., Li, S.H., Padmanabhan, A., Pettit, J., Pfaff, B., Ramanathan, R., Shenker, S.,
Shieh, A., Stribling, J., Thakkar, P., Wendlandt, D., Yip, A., Zhang, R.: Network
Virtualization in Multi-tenant Datacenters. In: Networked Systems Design and
Implementation (2014)

21. Lahiri, S.K., Hawblitzel, C., Kawaguchi, M., Rebêlo, H.: SYMDIFF: A language-
agnostic semantic diff tool for imperative programs. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 712–717. Springer, Heidel-
berg (2012)

22. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Foundations of Software Engineering (2013)

23. Liu, A.X.: Change-impact analysis of firewall policies. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 155–170. Springer, Heidelberg (2007)

24. Lopes, N., Bjørner, N., Godefroid, P., Jayaraman, K., Varghese, G.: DNA pairing:
Using differential network analysis to find reachability bugs. Tech. Rep. MSR-TR-
2014-58, Microsoft Research (April 2014)

25. Mai, H., Khurshid, A., Agarwal, R., Caesar, M., Godfrey, P.B., King, S.T.: De-
bugging the data plane with Anteater. In: Conference on Communications Archi-
tectures, Protocols and Applications (SIGCOMM) (2011)

26. Monsanto, C., Foster, N., Harrison, R., Walker, D.: A compiler and run-time
system for network programming languages. In: Principles of Programming Lan-
guages (POPL) (2012)

27. Nelson, T., Ferguson, A.D., Scheer, M.J.G., Krishnamurthi, S.: Tierless program-
ming and reasoning for software-defined networks. In: Networked Systems Design
and Implementation (2014)

28. Nelson, T., Saghafi, S., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Aluminum:
Principled scenario exploration through minimality. In: International Conference
on Software Engineering (2013)

29. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The Mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference (2010)

30. Nelson, T., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: Toward a more com-
plete Alloy. In: Derrick, J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M.,
Reeves, S., Riccobene, E. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 136–149. Springer,
Heidelberg (2012)

31. Person, S., Dwyer, M.B., Elbaum, S.G., Pasareanu, C.S.: Differential symbolic
execution. In: Foundations of Software Engineering (2008)

32. Porras, P., Shin, S., Yegneswaran, V., Fong, M., Tyson, M., Gu, G.: A security en-
forcement kernel for OpenFlow networks. In: Workshop on Hot Topics in Software
Defined Networking (2012)

33. Ramsey, F.P.: On a problem in formal logic. Proceedings of the London Mathe-
matical Society 30, 264–286 (1930)

Static Differential Program Analysis for Software-Defined Networks 413

34. Skowyra, R., Lapets, A., Bestavros, A., Kfoury, A.: A verification platform for
SDN-enabled applications. In: International Conference on Cloud Engineering
(2014)

35. Stewart, G.: Computational verification of network programs in Coq. In: Gonthier,
G., Norrish, M. (eds.) CPP 2013. LNCS, vol. 8307, pp. 33–49. Springer, Heidelberg
(2013)

36. Tariq, M.M.B., Bhandankar, K., Valancius, V., Zeitoun, A., Feamster, N., Ammar,
M.H.: Answering “what-if” deployment and configuration questions with WISE:
Techniques and deployment experience. IEEE/ACM Transactions on Networking
(February 2013)

37. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

38. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg, A., Hjalmtysson, G.,
Rexford, J.: On static reachability analysis of IP networks. In: IEEE Conference
on Computer Communications (2005)

39. Zave, P., Rexford, J.: The design space of network mobility. In: Bonaventure, O.,
Haddadi, H. (eds.) Recent Advances in Networking. ACM SIGCOMM (2013)

A Fully Verified Container Library

Nadia Polikarpova1(�), Julian Tschannen2, and Carlo A. Furia2

1 MIT CSAIL, Cambridge, USA
polikarn@csail.mit.edu

2 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{Julian.Tschannen,Carlo.Furia}@inf.ethz.ch

Abstract. The comprehensive functionality and nontrivial design of realistic gen-
eral-purpose container libraries pose challenges to formal verification that go be-
yond those of individual benchmark problems mainly targeted by the state of the
art. We present our experience verifying the full functional correctness of Eiffel-
Base2: a container library offering all the features customary in modern language
frameworks, such as external iterators, and hash tables with generic mutable keys
and load balancing. Verification uses the automated deductive verifier AutoProof,
which we extended as part of the present work. Our results indicate that verifica-
tion of a realistic container library (135 public methods, 8,400 LOC) is possible
with moderate annotation overhead (1.4 lines of specification per LOC) and good
performance (0.2 seconds per method on average).

1 Introduction

The moment of truth for software verification technology comes when it is applied to
realistic programs in practically relevant domains. Libraries of general-purpose data
structures—called containers—are a prime example of such domains, given their per-
vasive usage as fundamental software components. Data structures are also “natural
candidates for full functional verification” [63] since they have well-understood seman-
tics and typify challenges in automated reasoning such as dealing with aliasing and the
heap. This paper presents our work on verifying full functional correctness of a realistic,
object-oriented container library.

Challenges. Realistic software has nontrivial size, a design that promotes flexibility and
reuse, and an implementation that offers competitive performance. General-purpose
software includes all the functionalities that users can reasonably expect, accessible
through uniform and rich interfaces. Full specifications completely capture the
behavior of a software component relative to the level of abstraction given by its in-
terface. Notwithstanding the vast amount of research on functional verification of heap-
manipulating programs and its applications to data structure implementations, to our
knowledge, no previous work has tackled all these challenges in combination.

Rather, the focus has previously been on verifying individually chosen data structure
operations, often stripped or tailored to particular reasoning techniques. Some concrete

Work partially supported by SNF grants 200021-137931 (FullContracts), 200020-134974
(LSAT), and 200021-134976 (ASII); and by ERC grant 291389 (CME).
N. Polikarpova–Work done mainly while affiliated with ETH Zurich.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 414–434, 2015.
DOI: 10.1007/978-3-319-19249-9_26

A Fully Verified Container Library 415

examples from recent work in this area (see Sec. 5 for more): Zee et al. [63] verify
a significant selection of complex linked data structures but not a complete container
library, and they do no include certain features expected of general-purpose implemen-
tations, such as iterators or user-defined key equivalence in hash tables. Pek et al. [47]
analyze realistic implementations of linked lists and trees but do not always verify full
functional correctness (for example, they do not prove that reversal procedures actually
reverse the elements in a list), nor can their technique handle arbitrary heap structures.
Kawaguchi et al. [29] verify complex functional properties but their approach targets
functional languages, where the abstraction gap between specification and implemen-
tation is narrow; hence, their specifications have a different flavor and their techniques
are inapplicable to object-oriented designs. These observations do not detract from the
value of these works; in fact, each challenge is formidable enough in its own right to re-
quire dedicated focused research, and all are necessary steps towards verifying realistic
implementations—which has remained, however, an outstanding challenge.

Result. Going beyond the state of the art in this area, we completely verified a realistic
container library, called EiffelBase2, against full functional specifications. The library,
described in Sec. 4, consists of over 8,000 lines of Eiffel code in 46 classes, and offers
arrays, lists, stacks, queues, sets, and tables (dictionaries). EiffelBase2’s interface spec-
ifications are written in first-order logic and characterize the abstract object state using
mathematical entities, such as sets and sequences. To demonstrate the usefulness of
these specifications for clients, we also verified correctness properties of around 2,000
lines of client code that uses some of EiffelBase2’s containers.

Techniques. A crucial feature of any verification technique is the amount of automation
it provides. While some approaches, such as abstract interpretation, can offer complete
“push button” automation by focusing on restricted properties, full functional verifi-
cation of realistic software still largely relies on interactive theorem provers, which
require massive amounts of effort from highly-trained experts [30,40]. Even data struc-
ture verification uses interactive provers, such as in [63], to discharge the most complex
verification conditions. Advances in verification technology that target this class of tools
have little chance of directly improving usability for serious yet non-expert users—as
opposed to verification mavens.

In response to these concerns, an important line of research has developed verifi-
cation tools that target expressive functional correctness properties, yet provide more
automation and do not require interacting with back-end provers directly. Since their
degree of automation is intermediate between fully automatic and interactive, such tools
are called auto-active [36]; examples are Dafny [35], VCC [12], and VeriFast [24], as
well as AutoProof, which we developed in previous work [52,56] and significantly ex-
tended as part of the work presented here.

At the core of AutoProof’s verification methodology for heap-manipulating pro-
grams is semantic collaboration [52]: a flexible approach to reasoning about class in-
variants in the presence of complex inter-object dependencies. Previously, we applied
the methodology only to a selection of stand-alone benchmarks; in the present work,
to enable the verification of a realistic library, we extended it with support for math-
ematical types, abstract interface specifications, and inheritance. We also redesigned

416 N. Polikarpova et al.

AutoProof’s encoding of verification conditions in order to achieve predictable perfor-
mance on larger problems. These improvements directly benefit serious users of the tool
by providing more automation, better user experience, and all-out support of object-
oriented features as used in practice.

Contributions. This paper’s work makes the following contributions:

– The first verification of full functional correctness of a realistic general-purpose
data-structure library in a heap-based object-oriented language.

– The first verification of a significant collection of data structures carried out entirely
using an auto-active verifier.

– The first full-fledged verification of several advanced object-oriented patterns that
involve complex inter-object dependencies but are widely used in realistic imple-
mentations (see Sec. 2).

– A practical verification methodology and the supporting AutoProof verifier, which
are suitable to reason, with moderate annotation overhead and predictable perfor-
mance, about the full gamut of object-oriented language constructs.

The fully annotated source code of the EiffelBase2 container library and a web interface
for the AutoProof verifier are available at:

https://github.com/nadia-polikarpova/eiffelbase2 (cite as [50])

For brevity, the paper focuses on presenting EiffelBase2’s verification effort and the
new features of AutoProof that we introduced to this end; our previous work [51,52,56]
supplies complementary and background technical details.

2 Illustrative Examples

Using excerpts from two data structures in EiffelBase2—a linked list and a hash table—
we demonstrate our approach to specifying and verifying full functional correctness of
containers, and illustrate some challenges specific to realistic container libraries.

2.1 Linked List

Interface Specifications. Each class in EiffelBase2 declares its abstract state through a
set of model attributes. As shown in Fig. 1, the model of class LINKED_LIST is a sequence

of list elements. Its type MML_SEQUENCE is from the Mathematical Model Library (MML);
instances of MML model classes are mathematical values that have custom logical rep-
resentations in the underlying prover.

Commands—methods with observable side effects, such as extend_back—modify
the abstract state of objects listed in their frame specification (modify clause), according
to their postcondition (ensure clause). Queries—methods that return a result and have
no observable side effect, such as first—express, in their postcondition, the return
value as a function of the abstract state, which they do not modify. By referring to an
explicitly declared model, interface specifications are concise, have a consistent level of

https://github.com/nadia-polikarpova/eiffelbase2

A Fully Verified Container Library 417

class LINKED_LIST [G] inherit LIST [G] model
sequence

feature {public}
ghost sequence: MML_SEQUENCE [G]
ghost bag: MML_BAG [G] -- inherited from

CONTAINER

first: G -- First element.
require not sequence.is_empty
do

assert inv
Result := first_cell.item

ensure Result = sequence.first

extend_back (v: G) -- Insert ‘v’ at the back.
require all o ∈ observers : not o.closed
modify model Current [sequence]
local cell: LINKABLE [G]
do

create cell.put (v)
if first_cell = Void then

first_cell := cell
else

last_cell.put_right (cell)
end
last_cell := cell
cells := cells + 〈cell〉
sequence := sequence + 〈v〉

ensure sequence = old sequence + 〈v〉

feature {private}
first_cell: LINKABLE [G]
last_cell: LINKABLE [G]
ghost cells: MML_SEQUENCE [LINKABLE [G]]

invariant
cells_domain: sequence.count = cells.count
first_cell_empty : cells.is_empty =

(first_cell = Void)
last_cell_empty: cells.is_empty =

(last_cell = Void)
owns_definition: owns = cells.range
cells_exist: cells.non_void
sequence_implementation : all i ∈ 1 .. cells.count

:
sequence [i] = cells [i].item

cells_linked: all i, j ∈ 1 .. cells.count :
i + 1 = j implies cells [i].right = cells [j]

cells_first: cells.count > 0 implies
first_cell = cells.first

cells_last: cells.count > 0 implies
last_cell = cells.last and last_cell.right =

Void
seq_refines_bag: bag = sequence.to_bag

end

class LINKED_LIST_ITERATOR [G] inherit LIST_ITERATOR
[G]

model target, index

feature {public}
target: LINKED_LIST [G]
ghost index: INTEGER

make (list: LINKED_LIST [G]) -- Constructor.
modify Current
modify field list [observers, closed]
do

target := list
target.add_iterator (Current)
assert target.inv_only (seq_refines_bag)

ensure
target = list
index = 0
list.observers = old list.observers + {Current

}

item: G -- Item at current position.
require not off and all s ∈ subjects : s.closed
do

assert inv and target.inv
Result := active.item

ensure Result = target.sequence [index]

forth -- Move one position forward.
require not off and all s ∈ subjects : s.closed
modify model Current [index]
do . . .
ensure index = old index + 1

remove_right -- Remove element after the current
.

require
1≤ index≤ target.sequence.count − 1
target.is_wrapped -- closed and owner = Void
all o ∈ target.observers :

o �= Current implies not o.closed
modify model target [sequence]
do . . .
ensure target.sequence =

old target.sequence.removed_at (index + 1)

feature {private}
active: LINKABLE [G]

invariant
target_exists: target �= Void
subjects_definition : subjects = {target}
index_range: 0≤ index≤ target.sequence.count + 1
cell_off: (index <1 or target.sequence.count <

index)
= (active = Void)

cell_not_off: 1≤ index≤ target.sequence.count
implies active = target.cells [index]

end

Fig. 1. Excerpt from EiffelBase2 classes LINKED_LIST and LINKED_LIST_ITERATOR

abstraction, and can be checked for completeness (whether they uniquely characterize
the results of queries and the effect of commands on the model state [51]).

418 N. Polikarpova et al.

Abstract specifications are convenient for clients, which can reason about the effect
of method calls in terms of the model while ignoring implementation details. Indeed,
LINKED_LIST’s public specification is the same as LIST’s—its abstract ancestor class—
and is oblivious to the fact that the sequence of elements is stored in linked nodes on
the heap. While clients have it easy, verifying different implementations of the same
abstract interface poses additional challenges in ensuring consistency without compro-
mising on individual implementation features.

Connecting Abstract and Concrete State. Verifying the implementation of first in
Fig. 1 requires relating the model of the list to its concrete representation. We accom-
plish this through the class invariant: the clause named sequence_implementation as-
serts that model attribute sequence lists the items stored in the chain of LINKABLE nodes
denoted as cells; cells, in turn, is related to the concrete heap representation by invari-
ant clauses cells_first and cells_linked.

Invariant Methodology. Reasoning based on class invariants is germane to object-
oriented programming, yet the semantics of invariants is tricky. A fundamental issue
is when (at what program points) invariants should hold. Simple syntactic approaches,
which require invariants to hold at predefined points (for example, before and after every
public call), are not flexible enough to reason about complex object structures. Follow-
ing the approach introduced with Spec# [37,2], our methodology equips every object
with a built-in ghost1 Boolean attribute closed. Whenever an object is closed (closed
is true), its invariant must hold; but when it is open (closed is false), its invariant may
not hold. Built-in ghost methods unwrap and wrap mediate opening and closing objects:
unwrap opens a closed object, which becomes available for modification; wrap closes an
open object provided its invariant holds. To reduce manual annotations, AutoProof adds
a call Current.unwrap2at the beginning of every public command; a call Current.wrap at
the end of the command; and an assertion Current.closed to the command’s pre- and
postcondition; defaults can be overridden to implement more complex behavior.

Ownership. LINKED_LIST’s invariant relies on the content of its cells. This might threaten
modularity of reasoning, since an independent modification of a cell by an unknown
client may break consistency of the list object. In practice, however, the cells are part
of the list’s internal representation, and should not be directly accessible to other clients.
For such hierarchical object dependencies, AutoProof implements an ownership scheme
[37,12]: each object x includes a ghost set owns of “owned” objects on which x may de-
pend. AutoProof prevents objects in x.owns from being opened (and hence, modified)
as long as x is closed; thus, x’s consistency cannot be indirectly broken. LINKED_LIST’s
invariant clause owns_definition asserts that the list owns precisely its cells, thus al-
lowing the following clauses to depend on the state of the cells.

Safe Iterators. Like other container libraries, EiffelBase2 offers iterator classes, which
provide the most idiomatic and uniform way of manipulating containers (in particu-
lar, lists). When multiple iterators are active on the same list, consistency problems
may arise: modifying the list, through its own interface or one of the iterators, may

1 Ghost code only belongs to specifications; see Sec. 3.2 for details.
2 In Eiffel, Current denotes the receiver object (this in Java).

A Fully Verified Container Library 419

invalidate the other iterators. This is not only a challenge to verification but a practi-
cal programming problem. To address it, Java’s java.util iterators implement fail-safe
behavior, which amounts to checking for validity at every iterator usage, raising an
exception whenever the check fails. This is not a robust solution, since “the fail-fast
behavior of an iterator cannot be guaranteed”, and hence one cannot “write a program
that [depends] on this exception for its correctness” [26]. In contrast, through complete
specifications, EiffelBase2 offers robust safe iterators: clients reason precisely about
correct usage statically, so that safe behavior will follow without runtime overhead.
Fig. 1 shows excerpts from EiffelBase2’s linked list iterators.

Collaborative Invariants. Object dependencies such as those arising between a list and
its iterators do not quite fit hierarchical ownership schemes: an iterator’s consistency
depends on the list, but any one iterator cannot own the list—simply because other
iterators may be active on the same list. In such cases we rely on collaborative invari-
ants, introduced in our previous work [52]. In AutoProof, each object x is equipped
with the ghost sets subjects and observers: x.subjects contains the objects x may de-
pend on (such as an iterator’s target list); x.observers contains the objects that may
depend on x. AutoProof verifies that subjects and observers are consistent between
dependent objects (any subject of x has x as an observer), and that any update to a
subject does not affect the consistency of its observers. LINKED_LIST_ITERATOR’s invari-
ant clause subjects_definition asserts that the iterator might depend on its target list;
correspondingly, the list has to include all active iterators among its observers, which is
established in the iterator’s constructor by calling target.add_iterator. The precondi-
tion of LINKED_LIST.extend_back requires that all the list’s observers be open: this way,
the list can be updated without running the risk of breaking invariants of closed iterators.

2.2 Hash Table

Custom Mutable Keys. As in any realistic container library, EiffelBase2’s hash tables
support arbitrary objects as keys, with user-defined equivalence relations and hash func-
tions. For example, a class BOOK might override the is_equal method (equals in Java)
to compare two books by their ISBN, and define hash_code accordingly. When a ta-
ble compares keys by object content rather than by reference, changing the state of an
object used as key may break the table’s consistency. Libraries without full formal spec-
ifications cannot precisely characterize such unsafe key modifications; Java’s java.util
maps, for example, generically recommend “great care [if] mutable objects are used as
map keys”, since “the behavior of a map is not specified if the value of an object is
changed in a manner that affects equals comparisons while the object is a key in the
map” [27]. In contrast, EiffelBase2’s specification precisely captures which key modi-
fications affect consistency, ensuring safe behavior without restricting usage scenarios.
Fig. 2 shows excerpts from EiffelBase2’s hash table and key management classes.

Shared Ownership. A table’s consistency depends on its keys, but this dependency fits
neither ownership nor collaboration: keys may be shared between tables, and hence any
one table cannot own its keys; collaboration would require key objects to register their
host tables as observers, thus preventing the use of independently developed classes
as keys. In EiffelBase2, we address these challenges by means of a shared ownership

420 N. Polikarpova et al.

class HASH_TABLE [K, V]
model map, lock

feature {public}
ghost map: MML_MAP [K, V]
ghost lock: LOCK [K]

extend (k: K; v: V) -- Add key-value pair.
require

k ∈ lock.owns
all x ∈ map.domain : not x.is_equal (k)
lock.is_wrapped
observers = {}

modify model Current [map]
do . . .
ensure map = old map.updated (k, v)

feature {private}
buckets: ARRAY [LINKED_LIST [PAIR [K, V]]]

invariant
subjects_definition : subjects = {lock}
keys_locked: map.domain≤ lock.owns
no_duplicates: all x, y ∈ map.domain :

x �= y implies not lock.eq [x, y]
keys_in_buckets: all x ∈ map.domain :

buckets [index (lock.hash [x])].has (x)
end

ghost class LOCK [K]
model eq, hash

feature {public}
eq: MML_RELATION [K, K]
hash: MML_MAP [K, INTEGER]

lock (key: K) -- Acquire ownership of ‘key’.
require key.is_wrapped
modify Current
modify field key [owner]
do . . .
ensure owns = old owns + {key}

unlock (key: K) -- Relinquish ownership of ‘key’.
require

key ∈ owns
all o ∈ observers : not key ∈ o.map.domain

modify Current
do . . .
ensure

owns = old owns − {key}
key.is_wrapped

invariant
eq_definition: all x, y ∈ owns : eq [x, y] = x.is_equal (y)
hash_definition: all x ∈ owns : hash [x] = x.hash_code

end

Fig. 2. Excerpts from classes HASH_TABLE and LOCK

specification pattern that combines ownership and collaboration. A class LOCK (outlined
in Fig. 2) acts as an intermediary between tables and keys: it owns keys and maintains
a summary of their properties (their hash codes and the equivalence relation induced by
is_equal); multiple tables observe a single LOCK object and rely on its summary, instead
of directly observing keys. Clients can also modify keys as long as the invariant of the
keys’ lock is maintained. Note that LOCK is a ghost class: its state and operations are
absent from the compiled code, and thus incur no runtime overhead.

3 Verification Approach

AutoProof works by translating annotated Eiffel code into the Boogie intermediate ver-
ification language [1], and uses the Boogie verifier to generate verification conditions,
which are then discharged by the SMT solver Z3. As part of verifying EiffelBase2 we
extended the verification methodology of AutoProof (the tool’s underlying logic) and
substantially redesigned its Boogie encoding. This section presents the main new (with
respect to our previous work [52]) features of both the methodology and the tool.

3.1 Specification Types

AutoProof offers a Mathematical Model Library (MML) of specification types: sets,
bags (multisets), pairs, relations, maps, and sequences. Each type corresponds to a
model class [8]: a purely applicative class whose semantics for verification is given

A Fully Verified Container Library 421

by a collection of axioms in Boogie. Unlike verifiers that use built-in syntax for spec-
ification types, AutoProof is extensible with new types by providing an Eiffel wrapper
class and a matching Boogie theory, which can be used like any existing MML type.
The MML implementation used in EiffelBase2 relies on 228 Boogie axioms (see [49,
Ch. 6] for details); most of them have been borrowed from Dafny’s background theory,
whose broad usage supports confidence in their consistency.

3.2 Ghost State

Auto-active verification commonly relies on ghost state—variables that are only men-
tioned in specifications and do not affect executable code—as its main mechanism
for abstraction. Ghost state has to be updated inside method bodies; the overhead of
such updates becomes burdensome in realistic code as ghost variables proliferate, even
though their relation to physical program state mostly remains straightforward. To as-
suage this common problem, AutoProof offers implicit updates for ghost attributes:
for every class invariant clause ga = expr that relates a ghost attribute ga to an ex-
pression expr, AutoProof implicitly adds the assignment ga := expr before every call to
Current.wrap. In Fig. 1, for example, invariant clause seq_refines_bag gives rise to the
assignment bag := sequence.to_bag at the end of extend_back; this has the effect of auto-
matically keeping the inherited attribute bag in sync with its refined version, sequence.

3.3 Model-Based Specifications

As illustrated in Sec. 2, each class specification includes a model clause, which desig-
nates a subset of attributes of the class as the class model. The model precisely de-
fines the publicly observable abstract state of the class, on which clients solely rely.
Model attributes play a special role in frame specifications: a method annotated with
the clause modify model s[m1,. . .,mn] can only modify attributes m1,. . .,mn in the abstract
state of s, but has no direct restrictions on modifying the concrete state of s (for exam-
ple, method forth of LINKED_LIST_ITERATOR in Fig. 1 can modify Current.active but not
Current.target). This construct enables fine-grained, yet abstract, frame specifications,
similar to data groups [38].

Declaring a model also makes it possible to reason about the completeness of in-
terface specifications [51]. Informally, a command’s postcondition is complete if it
uniquely defines the effect of the command on the model; a query’s postcondition is
complete if it defines the returned result as a function of the model; the model of a class
C is complete if it supports complete specifications of all public methods in C, such that
different abstract states are distinguishable by public method calls. For example, a set is
not a complete model for LINKED_LIST in Fig. 1 because the precise result of first can-
not be defined as a function of a set; conversely, a sequence is not a complete model for
a class SET because its interface provides no methods that discriminate element order-
ing. AutoProof currently does not support mechanized completeness proofs; however,
we found that even reasoning informally about completeness—as we did in the design
of EiffelBase2—helps provide clear guidelines for writing interface specifications and
substantiates the notion of “full functional correctness”.

422 N. Polikarpova et al.

3.4 Inheritance

Postconditions and invariants can be strengthened in descendant classes; hence, any
verifier that supports inheritance has to ensure that inherited methods do not violate
strengthened invariants, or are appropriately overridden [43,46].

In AutoProof, method implementations can be declared covariant or nonvariant. A
nonvariant implementation cannot depend on the dynamic type of the receiver, and
hence on the precise definition of its invariant; therefore, a correct nonvariant imple-
mentation remains correct in descendant classes with stronger invariants, and need not
be re-verified. In contrast, a covariant implementation may depend on the dynamic type
of the receiver, and hence must be re-verified when inherited. In practice, method im-
plementations have to be covariant only if they call Current.wrap, which is the case for
commands that directly modify attributes of Current (such as extend_back in Fig. 1):
wrap checks that the invariant holds, a condition that may become stronger along the
inheritance hierarchy. Otherwise, queries and commands that modify Current indirectly
by calling other commands can be declared nonvariant: method append in LINKED_LIST

(not shown in Fig. 1) calls extend_back in a loop; it then only needs to know that Current
is closed but not any details of the actual invariant.

Nonvariant implementations are a prime example of how decoupling the knowledge
that an object is consistent from the details of its invariant promotes modular verifica-
tion. This feature is a boon of invariant-based reasoning; while a similar decoupling is
achievable in separation logic through abstract predicates and predicate families [45], it
is missing in other approaches such as dynamic frames [28].

3.5 Effective Boogie Encoding

The single biggest obstacle to completing the verification of EiffelBase2 has been poor
verification performance on large problems: making AutoProof scale required tuning
several low-level details of the Boogie translation, following a trial-and-error process.
We summarize some finicky features of the translation that are crucial for performance.

Invariant Reasoning. Class invariants tend to be the most complex part of specifica-
tions in EiffelBase2; thus, their translation must avoid bogging down the prover with
too much information at a time. One crucial point is when x.wrap is called and all of
x’s invariant clauses I1,. . ., In are checked; the naive encoding assert I1; . . .; assert In

does not work well for complex invariants: for j < k, Ik normally does not depend on
Ij , and hence the previously established fact that Ij holds just clutters the proof space.
Instead, we adopt Dafny’s calculational proof approach [39] and use nondeterministic
branching to check each clause independently of the others.

At any program point where the scope includes a closed object x, the proof might
need to make use of its invariant. AutoProof’s default behavior (assume the invariants
of all closed objects in scope) doesn’t scale to EiffelBase2’s complex specifications. In-
stead, we leverage once again the decoupling between the generic notion of consistency
and the specifics of invariant definitions, and make the latter available to the prover se-
lectively, by asserting AutoProof’s built-in predicates: x.inv refers to x’s whole invari-

A Fully Verified Container Library 423

ant; x.inv_only (k) refers to x’s invariant clause named k; and x.inv_without (k) refers to
x’s invariant without clause named k (for example, see make’s body in Fig. 1).

Opaque Functions are pure functions whose axiomatic definitions can be selectively
introduced only when needed.3 A function f declared as opaque is normally uninter-
preted; but using a built-in predicate def(f(args)) introduces f(args)’s definition into the
proof environment. In EiffelBase2, we use opaque functions to handle complex invari-
ant clauses that are rarely needed in proofs.

Modular Translation. AutoProof offers the choice of creating a Boogie file per class
or per method to be verified. Besides the annotated implementation of the verification
module, the file only includes those Boogie theories and specifications that are refer-
enced in the module. We found that minimizing the Boogie input file can significantly
impact performance, avoiding fruitless instantiations of superfluous axioms.

4 The Verified Library

EiffelBase2 was initially designed to replace EiffelBase—Eiffel’s standard container
library—by providing similar functionalities, a better, more modern design, and as-
sured reliability. It originated as a case study in software development driven by strong
interface specifications [51]. Library versions predating our verification effort have been
used in introductory programming courses since 2011, and have been distributed with
the EiffelStudio compiler since 2012.

4.1 Setup

Pre-verification EiffelBase2 included complete implementations and strong public func-
tional specifications. Following the approach outlined in Sec. 2, we provided additional
public specifications for dependent invariants (ownership and collaboration schemes),
as well as private specifications for verification (representation invariants, ghost state
and updates, loop invariants, intermediate assertions, lemmas, and so on). This effort
took about 7 person-months, including extending AutoProof to support special anno-
tations and the efficient encoding of Sec. 3.5. The most time-consuming task—making
the tool scale to large examples—was a largely domain-independent, one-time effort;
hence, using AutoProof in its present state to verify other similar code bases should
require significantly less effort.4

Verified EiffelBase2 consists of 46 classes offering an API with 135 public methods;
its implementation has over 8,000 lines of code and annotations in 79 abstract and 378
concrete methods. The bulk of the classes belong to one of two hierarchies: containers

3 A similar concept was independently developed for Dafny at around the same time [11].
4 We also have some evidence that AutoProof’s usability for non-experts improved after extend-

ing it as described in this paper. Students in our “Software Verification” course used AutoProof
in 2013 (pre EiffelBase2 verification) and in 2014 (post EiffelBase2 verification); working on
similar projects, the students in 2014 were able to complete the verification of more advanced
features and generally found the tool reasonably stable and responsive.

424 N. Polikarpova et al.

CONTAINER

SET

HASH_SET

SEQUENCE

MUTABLE_

SEQUENCE

ARRAY ARRAY2

LIST

ARRAYED_LIST LINKED_LIST
DOUBLY_LINKED_

LIST

DISPENSER

STACK QUEUE

LINKED_STACK LINKED_QUEUE

MAP

TABLE

HASH_TABLE

Fig. 3. EiffelBase2 containers: arrows denote inheritance; abstract classes have a lighter back-
ground (white for classes with immutable interfaces)

(Fig. 3) and iterators. Extensive usage of inheritance (including multiple inheritance)
makes for uniform abstract APIs and reusable implementations.

Completeness. All 135 public methods have complete functional specifications accord-
ing to the definition given in Sec. 3.3. Specifications treat integers as mathematical in-
tegers to offer nicer abstractions to clients. Pre-verification EiffelBase2 supports both
object-oriented style (abstract classes) and functional style (closures or agents) defi-
nitions of object equality and hashing operators; verified EiffelBase2 covers only the
object-oriented style. The library has no concurrency-related features: verification as-
sumes sequential execution.

4.2 Verification Results

Given suitable annotations (described below), AutoProof verifies all 378 method imple-
mentations automatically.

Bugs Found. A byproduct of verification was exposing 3 subtle bugs: a division by
zero resulting from conversions between machine integers of different sizes; wrong re-
sults when moving, in the same array, a range of elements to an overlapping range
with a smaller offset; an incorrect implementation of subrange equality in a low-level
array service class (wrapping native C arrays) used by EiffelBase2. We attribute the
low number of defects in EiffelBase2 to its rigorous, specification-driven development
process: designing from the start with complete model-based interface specifications
forces developers to carefully consider the abstractions underlying the implementation.
An earlier version of EiffelBase2 has been tested automatically against its interface
specifications used as test oracles, which revealed 7 bugs [49, Ch. 4] corrected before
starting the verification effort. These results confirm the intuition that lightweight for-
mal methods, such as contract-based design and testing, can go a long way towards
detecting and preventing software defects; however, full formal verification is still re-
quired to get rid of the most subtle few.

A Fully Verified Container Library 425

Table 1. EiffelBase2 verification statistics: for every CLASS, the number of ABStract and
CONCrete methods, and the methods and well-formedness constraints that have to be VERified;
the TOTAL number of non-empty non-comment lines of code, broken down into EXECutable code
and SPECifications; the latter are further split into REQuirements and AUXiliary annotations; the
overhead SPEC

EXEC
in both LOC (lines) and TOKens; and the verification TIME in seconds: TOTAL time

per class, TRANSlation (to Boogie) time per class, and MEDian and MAXimum Boogie running
times of the class’s methods

METHODS LOC TOK TIME (SEC)
CLASS ABS CONC VER TOTAL EXEC SPEC REQ AUX SPEC

EXEC

SPEC

EXEC
TOTAL TRANS MED MAX

CONTAINER 2 3 6 124 39 85 34 51 2.2 3.1 3.5 2.6 0.1 0.3
INPUT_STREAM 3 1 2 59 22 37 32 5 1.7 4.3 2.6 2.0 0.3 0.5
OUTPUT_STREAM 2 2 3 90 34 56 42 14 1.6 4.0 2.9 2.2 0.3 0.3
ITERATOR 12 4 6 241 106 135 106 29 1.3 3.6 3.8 2.6 0.2 0.3
SEQUENCE 4 9 14 182 69 113 102 11 1.6 2.5 4.8 3.0 0.1 0.3
SEQUENCE_ITERATOR 0 1 3 36 15 21 19 2 1.4 2.2 3.1 2.2 0.2 0.4
MUTABLE_SEQUENCE 3 5 8 191 83 108 74 34 1.3 3.5 7.6 3.0 0.2 2.9
IO_ITERATOR 1 1 2 58 15 43 33 10 2.9 4.9 3.1 2.2 0.4 0.5
MUTABLE_SEQUENCE_ITERATOR 1 0 1 41 19 22 11 11 1.2 1.5 2.9 2.2 0.7 0.7
ARRAY 0 16 21 275 149 126 107 19 0.8 1.6 12.5 3.4 0.2 2.1
INDEX_ITERATOR 0 13 14 91 64 27 18 9 0.4 0.3 5.0 2.9 0.1 0.2
ARRAY_ITERATOR 0 3 11 97 43 54 34 20 1.3 2.3 6.2 3.0 0.2 0.6
ARRAYED_LIST 0 20 27 389 196 193 127 66 1.0 1.9 19.5 4.5 0.2 4.3
ARRAYED_LIST_ITERATOR 0 10 18 144 81 63 34 29 0.8 1.2 9.9 3.4 0.3 1.0
ARRAY2 0 16 20 199 101 98 79 19 1.0 1.1 7.4 3.3 0.1 1.0
LIST 11 5 11 268 85 183 129 54 2.2 6.1 6.1 3.1 0.1 1.3
LIST_ITERATOR 7 0 1 118 32 86 86 0 2.7 10.2 3.0 2.3 0.7 0.7
CELL 0 1 3 23 12 11 8 3 0.9 1.1 2.7 2.1 0.1 0.3
LINKABLE 0 1 4 25 14 11 11 0 0.8 0.9 2.8 2.1 0.2 0.2
LINKED_LIST 0 23 30 558 271 287 125 162 1.1 2.1 22.3 4.2 0.3 3.3
LINKED_LIST_ITERATOR 0 28 29 402 205 197 84 113 1.0 2.0 13.6 3.9 0.2 1.4
DOUBLY_LINKABLE 0 5 10 136 37 99 85 14 2.7 3.8 4.2 2.6 0.1 0.8
DOUBLY_LINKED_LIST 0 23 30 641 291 350 147 203 1.2 2.3 31.3 4.3 0.3 10.7
DOUBLY_LINKED_LIST_ITERATOR 0 27 28 379 207 172 66 106 0.8 1.7 13.5 3.9 0.3 1.4
DISPENSER 6 0 3 68 27 41 40 1 1.5 2.9 3.0 2.4 0.1 0.4
STACK 1 0 4 25 12 13 12 1 1.1 2.1 3.2 2.3 0.2 0.3
LINKED_STACK 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.1 0.2 0.3
LINKED_STACK_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
QUEUE 1 0 4 25 12 13 12 1 1.1 2.0 3.2 2.3 0.2 0.3
LINKED_QUEUE 0 9 12 100 51 49 23 26 1.0 1.5 5.5 3.2 0.2 0.3
LINKED_QUEUE_ITERATOR 0 16 18 221 94 127 59 68 1.4 2.2 8.6 3.5 0.2 1.0
LOCK 0 8 9 176 0 176 176 0 4.2 2.8 0.1 0.6
LOCKER 0 1 2 30 0 30 30 0 2.8 2.1 0.3 0.4
MAP 6 1 8 128 32 96 90 6 3.0 5.0 4.1 3.0 0.1 0.2
MAP_ITERATOR 2 0 4 81 19 62 44 18 3.3 7.4 3.5 2.6 0.2 0.3
TABLE 5 2 5 97 39 58 51 7 1.5 2.4 4.3 2.6 0.3 0.6
TABLE_ITERATOR 2 0 1 43 17 26 26 0 1.5 4.1 3.2 2.4 0.7 0.7
HASHABLE 1 0 1 35 9 26 21 5 2.5 1.9 0.5 0.5
HASH_LOCK 0 2 6 41 0 41 41 0 5.2 2.9 0.2 1.4
HASH_TABLE 0 26 31 695 236 459 208 251 1.9 3.6 61.4 6.5 0.4 8.7
HASH_TABLE_ITERATOR 0 23 29 572 198 374 104 270 1.9 4.1 46.9 5.8 0.8 6.3
SET 7 10 17 503 163 340 217 123 2.1 4.4 28.4 3.3 0.2 11.8
SET_ITERATOR 2 0 2 50 17 33 32 1 1.9 6.2 3.1 2.3 0.4 0.5
HASH_SET 0 10 13 146 59 87 43 44 1.5 1.9 11.1 4.1 0.4 1.1
HASH_SET_ITERATOR 0 17 18 216 91 125 42 83 1.4 2.8 18.8 4.5 0.6 2.7
RANDOM 0 11 12 100 78 22 21 1 0.3 0.3 3.4 2.6 0.1 0.1

Total 79 378 531 8440 3489 4951 2967 1984 1.4 2.7 434.7 140.9 0.2 11.8

426 N. Polikarpova et al.

Specification Succinctness. Tab. 1 details the size of EiffelBase2’s specifications: over-
all, 1.4 lines of annotations per line of executable code. The same overhead in tokens—
a more robust measure—is 2.7 tokens of annotation per token of executable code. The
overhead is not uniform across classes: abstract classes tend to accumulate a lot of an-
notations which are then amortized over multiple implementations of the same abstract
specification.

EiffelBase2’s overhead compares favorably to the state of the art in full functional
verification of heap-based data structure implementations. Pek et al’s [47] verified list
implementations have overheads of 0.6 (LOC) and 2.6 (tokens)5; given that their tech-
nique specifically targets inferring low-level annotations, EiffelBase2’s specifications
are generally succinct. In fact, approaches without inference or complete automation
tend to require significantly more verbose annotations. Zee et al.’s [63] linked structures
have overheads of 2.3 (LOC) and 8.2 (tokens); their interactive proof scripts aggravate
the annotation burden. Java’s ArrayList verified with separation logic and VeriFast [58]
has overheads of 4.4 (LOC) and 10.1 (tokens).

Kinds of Specifications. [47] suggests classifying specifications according to their level
of abstraction with respect to the underlying verification process. A natural classifica-
tion for EiffelBase2 specifications is into requirements (model attributes, method pre/-
post/frame specifications, class invariants, and ghost functions directly used by them)
and auxiliary annotations (loop invariants and variants, intermediate assertions, lem-
mas, and ghost code not directly used in requirements). Requirements are higher level
in that they must be provided independent of the verification methodology, whereas
auxiliary annotations are a pure burden which could be reduced by inference. Eiffel-
Base2 includes 3 lines of requirements for every 2 lines of auxiliary annotations. In
terms of API specification, clients have to deal with 6 invariant clauses per class and 4
pre/post/frame clauses per method on average.

Auxiliary annotations can be further split into suggestions (inv, inv_only, and
inv_without and opaque functions, all described in Sec. 3.5) and structural annotations
(all other auxiliary annotations). Suggestions roughly correspond to “level-C annota-
tions” in [47], in that they are hints to help AutoProof verify more quickly. 12% of all
EiffelBase2’s specifications are suggestions (mostly inv assertions); among structural
annotations, ghost code (11%) and loop invariants (7%) are the most significant kinds.
The 3/2 requirements to auxiliary annotation ratio indicates that high-level specifica-
tions prevail in EiffelBase2. The non-negligible fraction of auxiliary annotations moti-
vates future work to automatically infer them (in particular, suggestions) when possible.

Default Annotations. help curb the annotation overhead. Default wrapping calls
(Sec. 2.1) work for 83% of method bodies, and default closed pre-/postconditions work
for 95% of method specifications; we overrode the default in the remaining cases. Im-
plicit ghost attribute updates (Sec. 3.2) always work.

Client Reasoning. To demonstrate that EiffelBase2’s interface specifications enable
client reasoning, we verified parts of three gaming applications (a transportation system
simulator and two board games) that were implemented to support teaching computer

5 We counted specifications used by multiple procedures only once.

A Fully Verified Container Library 427

science courses and were written before verifying EiffelBase2. The applications total
37 classes and 2,040 lines of code. Their program logics rely on arrays, lists, streams,
and tables from EiffelBase2; we focused on verifying correctness of the interactions be-
tween library and applications (for example, iterator safety). Annotating the clients re-
quired relatively little effort—roughly three person-days to produce around 1,700 lines
of annotations—and only trifling modifications to the code. Verification of 84% of over
200 methods succeeded; the exceptions were in large classes that use up to 7 complex
data structures simultaneously, where accumulated specification complexity bogs down
AutoProof, which times out; verifying these complex parts would require restructuring
the code to improve its modularity.

Verification Performance. In our experiments, AutoProof ran on a single core of a
Windows 7 machine with a 3.5 GHz Intel i7-core CPU and 16 GB of memory, using
Boogie v. 2.2.30705.1126 and Z3 v. 4.3.2 as backends. To account for noise, we ran
each verification 30 times and report the mean value of the 95th percentile.

The total verification time is under 8 minutes, during which AutoProof verified 531
method implementations and well-formedness conditions, including the 378 concrete
methods listed in Tab. 1, 47 ghost methods and lemmas, well-formedness of each class
invariant, and 56 inherited methods that are covariant (Sec. 3.4) and hence must be re-
verified; on the other hand, nonvariant annotations avoid re-verification of 343 bodies,
and hence save about 30% of the total verification time.

AutoProof’s behavior is not only well-performing on the whole EiffelBase2; it is also
predictable: over 99% of the methods verify in under 10 seconds; over 89% in under
1 second; the most complex method verifies in under 12 seconds. These uniform, short
verification times are a direct result of AutoProof’s flexible approach to verification,
and specifically of our effort to provide an effective Boogie encoding; for example,
independent checking of invariant clauses (Sec. 3.5) halves the verification time of some
of the most complex methods.

4.3 Challenges

Sec. 2 outlined two challenging features of realistic, general-purpose libraries (safe it-
erators and custom mutable keys); we now discuss other general challenging aspects.

General-Purpose APIs. To be general-purpose, EiffelBase2 offers feature-rich public
interfaces, which amplify verification complexity. For example, lists support search-
ing, inserting and removing elements, and merging container’s content, at arbitrary po-
sitions, replacing and removing elements by value, reversing in place. Sets provide
operations for subset, join, meet, (symmetric) difference, and disjointness check. All
EiffelBase2’s containers also offer copy constructors and object comparison—standard
features in object-oriented design but routinely evaded in verification.

Object-Oriented Design. Abstract classes provide uniform, general interfaces to clients,
and to this end are extensively used in EiffelBase2, but also complicate verification in
different ways. First, the generality of abstract specifications may determine a wider
gap between specification and implementation than if we defined specifications to indi-
vidually fit each concrete implementation. For example, ITERATOR.forth’s precondition

428 N. Polikarpova et al.

all s ∈ subjects : s.closed involves a quantification that could be avoided by replacing
it with the equivalent target.closed. However, the quantified precondition is inherited
from INPUT_STREAM, where target is not yet defined. Second, model attributes may be
refined with inheritance, which requires extra invariant clauses to connect the new and
the inherited specifications (e.g., seq_refines_bag in Fig. 1).

Realistic Implementations. Implementations in EiffelBase2 offer realistic performance,
in line with standard container libraries in terms of running time and memory usage,
which adds algorithmic verification complexity atop structural verification complexity.
For example, ARRAYED_LIST’s implementation uses, like C++ STL’s Vector, a ring buffer
to offer efficient insertions and deletions at both list ends. Ring buffers were a verifi-
cation challenge in a recent competition [17]; EiffelBase2’s ring buffers are even more
complicated as they have to support insertions and deletions inside a list, which requires
a circular copy. Another example is HASH_TABLE, which implements transparent resizing
of the bucket array to maintain a near-optimal load factor—one more feature of realistic
libraries that is normally ignored in verification work.

5 Related Work

Well-defined interfaces make verifying client code using containers somewhat simpler
than verifying container implementations. Techniques used to this end include symbolic
execution [20], model checking [5], interactive provers [16], and static analysis [15].

Verification of individual data structures demonstrates that a tool or technique can
address fundamental challenges; but also normally abstracts away details that are cru-
cial in realistic general-purpose implementations such as EiffelBase2. Individual data
structure challenges have been tackled using several of the major functional verification
tools out there, including Why3 [59], Pangolin [53], VeriFast [58], GRASShoper [48],
ACL2 [18], Dafny [14], KeY [6,19], Coq [42], and other approaches based on direct
constraint solving such as [33].

Data structure collections in functional languages. Functional languages provide
a higher level of abstraction than heap-based (object-oriented) ones, and their pow-
erful type systems can naturally capture nontrivial correctness properties. Therefore,
verifying data structures implemented in functional languages poses challenges largely
different from those of the implementations we target in this paper. Refinement ap-
proaches [22,41] verify the correctness of a high level abstract model, which is then
extended into correct-by-construction executable code. The rich type systems of func-
tional languages support mechanisms such as recursive and polymorphic type refine-
ments [57], which naturally capture functional correctness invariant properties of data
structures. [29] applied them to verify ML implementations of lists, vectors, maps, and
trees. [29]’s techniques are completely automatic and require very little annotations;
but they are not directly applicable to data structures that are cyclic and allow arbitrary
access patterns, or that are not defined in functional programming style.

Data structure collections in heap-based languages. Different techniques target dif-
ferent trade-offs between automation and expressiveness of specifications to be verified.
Simple properties can be verified automatically with little or no annotations: absence of

A Fully Verified Container Library 429

errors such as out of bound array accesses, null dereferences, buffer overruns, and di-
vision by zero [34], basic array properties [13], and reachability of objects in the heap
(shape analysis) [54,3,4,62,7]. Within the limits of the properties they can express, these
analysis techniques are applicable to realistic implementations in real programming lan-
guages. Fully automatic techniques have been gradually extended to cover some decid-
able functional specification abstractions such as sets and bags. Some works [21,9,23]
are based on top of shape analysis. Others [31,32,60,25,55,61] target logic fragments
amenable to SMT reasoning. These decidable abstractions capture essential traits of
the interface behavior of data structures, but cannot exactly express the semantics of
complex operations with arbitrary element access order.

In contrast, fully interactive techniques have no a priori limitations on the properties
that can be reasoned upon, but require expert users who can provide low-level proof
details. [44,10], for example, reason in higher-order separation logic about sharing and
aliasing of data structures featuring a mix of functional and heap-based constructs; such
a great flexibility brings a significant overhead in terms of proof scripts.

Auto-active verification [36] tries to provide a high degree of automation, but without
sacrificing the expressiveness needed for full functional correctness. Zee et al. [63] doc-
ument a landmark result in verifying full functional correctness of a significant collec-
tion of complex data structures by combining provers for various decidable fragments;
however, discharging the most complex verification conditions still requires interactive
proofs, which make their annotation overhead much higher than ours. Another major
difference with our work is that [63] does not always consider general-purpose imple-
mentations (for example, hash tables only offer reference-based key comparison, which
is too limiting in practice), nor does it target a unitarily designed library. Pek et al.’s [47]
natural proofs do not require proof scripts and drastically reduce the annotation bur-
den by inferring auxiliary (low-level) annotations; the resulting annotation overhead is
slightly lower than ours (Sec. 4.2). They demonstrate their VCDryad tool on complex
data structures including singly and doubly linked lists, and trees; some implementa-
tions are taken from C’s glib and OpenBSD. Compared to EiffelBase2, their examples
consist of a self-contained individual program for each functionality, and hence do not
represent aspects of container libraries with uniform interfaces that contribute to verifi-
cation complexity. Another difference with our work is that [47] does not always prove
full functional correctness; reversal and sorting of linked lists, for example, only verify
that the sets of elements are not altered but ignore their order.

6 Lessons Learned and Conclusions

We offer as conclusions the main insights into verifying realistic software and building
practical verification tools that emerged from our work.

Auto-active Verification Demands Predictability. Usable auto-active verification re-
quires predictable, moderate response time to keep users engaged in successive iter-
ations of the feedback loop. We found timeouts a major impediment, wasting time and
providing completely uninformative feedback; others report similar experiences [11].
The primary source of timeouts were futile instantiations of quantified axioms; the so-
lution involved profiling the SMT solver’s behavior and designing effective triggers.

430 N. Polikarpova et al.

This effort paid off as it made AutoProof’s performance quite stable. However, con-
structing efficient axiomatizations for SMT solvers remains somewhat of a black art;
automating this task is an attractive direction for future research.

Realistic Verification Calls for Flexible Tools. Verifying EiffelBase2 required a com-
bination of effective predefined schemas (to avoid verbose, repetitive annotations of
myriad run-of-the-mill cases) and full control (to tackle the challenging, idiosyncratic
cases); as a result, AutoProof includes a lot of control knobs with useful defaults. This
determines a different trade off than tools (such as Dafny and VeriFast) implementing
bare-bones pristine methodologies, which are easier to learn but offer less support to
advanced users that go the distance.

Verification Promotes Good Design. It’s unsurprising that well-designed software is
easier to verify; the flip-side is that developing software with verification in mind is con-
ducive to good design. Verification commands avoiding any unnecessary complexity—a
rigor which can pay off manyfold by leading to better reusability and maintainability.

It remains that the vision of “developers of data structure libraries [delivering] for-
mally specified and fully verified implementations” [63] is still ahead of us. An im-
portant step towards achieving this vision, our work explored the major hurdles that
lie in the often neglected “last mile” of verification—from challenging benchmarks to
fully-specified general-purpose realistic programs—and described practical solutions to
overcome them.

References

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

2. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants over shared
state. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84. Springer, Heidelberg
(2004)

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Lazy shape analysis. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 532–546. Springer, Heidelberg (2006)

4. Beyer, D., Henzinger, T.A., Théoduloz, G., Zufferey, D.: Shape refinement through ex-
plicit heap analysis. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 263–277. Springer, Heidelberg (2010)

5. Blanc, N., Groce, A., Kroening, D.: Verifying C++ with STL containers via predicate ab-
straction. In: 22nd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2007), Atlanta, Georgia, USA, November 5-9, pp. 521–524 (2007)

6. Bruns, D.: Specification of red-black trees: Showcasing dynamic frames, model fields and
sequences. In: Ahrendt, W., Bubel, R. (eds.) 10th KeY Symposium, Nijmegen, the Nether-
lands (2011), Extended Abstract

7. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by
means of bi-abduction. J. ACM 58(6), 26 (2011)

8. Charles, J.: Adding native specifications to JML. In: Workshop on Formal Techniques for
Java-like Programs, (FTFJP) (2006)

A Fully Verified Container Library 431

9. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9),
1006–1036 (2012)

10. Chlipala, A., Gregory Malecha, J., Morrisett, G., Shinnar, A., Wisnesky, R.: Effective in-
teractive proofs for higher-order imperative programs. In: Proceeding of the 14th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2009, Edinburgh,
Scotland, UK, August 31- September 2, pp. 79–90. ACM (2009)

11. Christakis, M., Leino, K.R.M., Schulte, W.: Formalizing and verifying a modern build lan-
guage. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 643–657.
Springer, Heidelberg (2014)

12. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: a practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

13. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully automatic
and scalable array content analysis. In: Proceedings of the 38th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, Jan-
uary 26-28, pp. 105–118. ACM (2011)

14. Dafny example gallery, http://dafny.codeplex.com/SourceControl/latest (last access:
November 2014)

15. Dillig, I., Dillig, T., Aiken, A.: Precise reasoning for programs using containers. In: Pro-
ceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, pp. 187–200. ACM, New York (2011)

16. Dross, C., Filliâtre, J.-C., Moy, Y.: Correct code containing containers. In: Gogolla, M.,
Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 102–118. Springer, Heidelberg (2011)

17. Filliâtre, J.-C., Paskevich, A., Stump, A.: The 2nd verified software competition: Experience
report. In: COMPARE. CEUR Workshop Proceedings, vol. 873, CEUR-WS.org (2012),
https://sites.google.com/site/vstte2012/compet

18. Gamboa, R.A.: A formalization of powerlist algebra in ACL2. J. Autom. Reasoning 43(2),
139–172 (2009)

19. Gladisch, C., Tyszberowicz, S.: Specifying a linked data structure in JML for formal ver-
ification and runtime checking. In: Iyoda, J., de Moura, L. (eds.) SBMF 2013. LNCS,
vol. 8195, pp. 99–114. Springer, Heidelberg (2013)

20. Gregor, D., Schupp STLlint, S.: lifting static checking from languages to libraries. Softw.,
Pract. Exper. 36(3), 225–254 (2006)

21. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting abstract interpreters to quantified logical
domains. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2008, San Francisco, California, USA, January 7-12,
pp. 235–246. ACM (2008)

22. Hawkins, P., Aiken, A., Fisher, K., Rinard, M., Sagiv, M.: Data representation synthesis. In:
Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2011, pp. 38–49. ACM, New York (2011)

23. Itzhaky, S., Bjørner, N., Reps, T., Sagiv, M., Thakur, A.: Property-directed shape anal-
ysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 35–51. Springer,
Heidelberg (2014)

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.: VeriFast:
A powerful, sound, predictable, fast verifier for C and Java. In: Bobaru, M., Havelund,
K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 41–55. Springer,
Heidelberg (2011)

http://dafny.codeplex.com/SourceControl/latest
https://sites.google.com/site/vstte2012/compet

432 N. Polikarpova et al.

25. Jacobs, S., Kuncak, V.: Towards complete reasoning about axiomatic specifications. In:
Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 278–293. Springer,
Heidelberg (2011)

26. Documentation of java.util.LinkedList,
http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html (last access: December
2014)

27. Documentation of java.util.Map,
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html (last access: December 2014)

28. Kassios, I.T.: Dynamic frames: Support for framing, dependencies and sharing without
restrictions. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085,
pp. 268–283. Springer, Heidelberg (2006)

29. Kawaguchi, M., Rondon, P.M., Jhala, R.: Type-based data structure verification. In: Pro-
ceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2009, Dublin, Ireland, June 15-21, pp. 304–315 (2009)

30. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P., Elkaduwe, D.,
Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood, S.: seL4: Formal
verification of an OS kernel. In: SOSP, pp. 207–220. ACM (2009)

31. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures. In: Dawar,
A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer, Heidelberg (2010)

32. Kuncak, V., Piskac, R., Suter, P., Wies, T.: Building a calculus of data structures. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 26–44. Springer,
Heidelberg (2010)

33. Lahiri, S.K., Qadeer, S.: Back to the future: revisiting precise program verification using
SMT solvers. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2008, San Francisco, California, USA, January
7-12, pp. 171–182. ACM (2008)

34. Laviron, V., Logozzo, F.: Subpolyhedra: a family of numerical abstract domains for the
(more) scalable inference of linear inequalities. STTT 13(6), 585–601 (2011)

35. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS (LNAI), vol. 6355, pp. 348–370. Springer,
Heidelberg (2010)

36. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification Work-
shop (2010), http://fm.csl.sri.com/UV10/

37. M. Leino, K.R., Müller, P.: Object invariants in dynamic contexts. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

38. Leino, K.R.M., Poetzsch-Heffter, A., Zhou, Y.: Using data groups to specify and check
side effects. In: Proceedings of the 2002 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Berlin, Germany, June 17-19, pp. 246–257
(2002)

39. Leino, K.R.M., Polikarpova, N.: Verified calculations. In: Cohen, E., Rybalchenko, A. (eds.)
VSTTE 2013. LNCS, vol. 8164, pp. 170–190. Springer, Heidelberg (2014)

40. Leroy, X.: Formal verification of a realistic compiler. Communications of the ACM 52(7),
107–115 (2009)

41. Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable.
In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998,
pp. 116–132. Springer, Heidelberg (2013)

42. Mehnert, H., Sieczkowski, F., Birkedal, L., Sestoft, P.: Formalized verification of snap-
shotable trees: Separation and sharing. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 179–195. Springer, Heidelberg (2012)

43. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular invariants for layered object struc-
tures. Sci. Comput. Program. 62(3), 253–286 (2006)

http://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html
http://docs.oracle.com/javase/8/docs/api/java/util/Map.html
http://fm.csl.sri.com/UV10/

A Fully Verified Container Library 433

44. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: dependent types
for imperative programs. In: Proceeding of the 13th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2008, Victoria, BC, Canada, September 20-28, pp.
229–240. ACM (2008)

45. Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: Proceed-
ings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2005, Long Beach, California, USA, January 12-14,
pp. 247–258 (2005)

46. Parkinson, M.J., Bierman, G.M.: Separation logic, abstraction and inheritance. In: Proceed-
ings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008, San Francisco, California, USA, January 7-12, pp. 75–86. ACM (2008)

47. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation in C using
separation logic. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2014, Edinburgh, United Kingdom, June 09-11, p. 46 (2014)

48. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data. In:
Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer, Heidelberg
(2014)

49. Polikarpova, N.: Specified and Verified Reusable Components. PhD thesis, ETH Zurich
(2014)

50. Nadia Polikarpova. EiffelBase2 (repository of verified code) (2015),
http://dx.doi.org/10.5281/zenodo.16520

51. Polikarpova, N., Furia, C.A., Meyer, B.: Specifying reusable components. In: Leavens, G.T.,
O’Hearn, P., Rajamani, S.K. (eds.) VSTTE 2010. LNCS, vol. 6217, pp. 127–141. Springer,
Heidelberg (2010)

52. Polikarpova, N., Tschannen, J., Furia, C.A., Meyer, B.: Flexible invariants through seman-
tic collaboration. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442,
pp. 514–530. Springer, Heidelberg (2014)

53. Régis-Gianas, Y., Pottier, F.: A Hoare logic for call-by-value functional programs. In:
Audebaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 305–335.
Springer, Heidelberg (2008)

54. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM
Trans. Program. Lang. Syst. 24(3), 217–298 (2002)

55. Suter, P., Steiger, R., Kuncak, V.: Sets with cardinality constraints in satisfiability modulo
theories. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 403–418.
Springer, Heidelberg (2011)

56. Tschannen, J., Furia, C.A., Nordio, M., Polikarpova, N.: AutoProof: Auto-active func-
tional verification of object-oriented programs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 566–580. Springer, Heidelberg (2015)

57. Vazou, N., Seidel, E.L., Jhala, R.: LiquidHaskell: Experience with refinement types in the
real world. In: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell, Haskell
2014, pp. 39–51. ACM, New York (2014)

58. Verifast example gallery, http://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/ (last
access: November 2014)

59. Why3 example gallery, http://toccata.lri.fr/gallery/why3.en.html (last access: November
2014)

60. Wies, T., Muñiz, M., Kuncak, V.: An efficient decision procedure for imperative tree data
structures. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803,
pp. 476–491. Springer, Heidelberg (2011)

http://dx.doi.org/10.5281/zenodo.16520
http://people.cs.kuleuven.be/~bart.jacobs/verifast/examples/
http://toccata.lri.fr/gallery/why3.en.html

434 N. Polikarpova et al.

61. Wies, T., Muñiz, M., Kuncak, V.: Deciding functional lists with sublist sets. In: Joshi,
R., Müller, P., Podelski, A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 66–81. Springer,
Heidelberg (2012)

62. Yang, H., Lee, O., Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W.: Scal-
able shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS,
vol. 5123, pp. 385–398. Springer, Heidelberg (2008)

63. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data structures. In:
Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design
and Implementation, Tucson, AZ, USA, June 7-13, pp. 349–361 (2008)

Counterexamples for Expected Rewards

Tim Quatmann1, Nils Jansen1, Christian Dehnert1, Ralf Wimmer2,
Erika Ábrahám1, Joost-Pieter Katoen1(�), and Bernd Becker2

1 RWTH Aachen University, Aachen, Germany
katoen@cs.rwth-aachen.de

2 Albert-Ludwigs-Universität, Freiburg, Germany

Abstract. The computation of counterexamples for probabilistic sys-
tems has gained a lot of attention during the last few years. All of the
proposed methods focus on the situation when the probabilities of certain
events are too high. In this paper we investigate how counterexamples for
properties concerning expected costs (or, equivalently, expected rewards)
of events can be computed. We propose methods to extract a minimal
subsystem which already leads to costs beyond the allowed bound. Be-
sides these exact methods, we present heuristic approaches based on path
search and on best-first search, which are applicable to very large sys-
tems when deriving a minimum subsystem becomes infeasible due to the
system size. Experiments show that we can compute counterexamples
for systems with millions of states.

1 Introduction

Probabilistic model checking. Model checking is a well-established verification
technique used in software and hardware industry. One of its key features is the
ability to generate counterexamples in case the property is refuted [1]. Probabilis-
tic model checkers such as PRISM [2] aim at verifying models that incorporate
randomness. Successful applications include randomized distributed algorithms,
hardware [3], security [4], and systems biology [5]. Properties typically quantify
the likelihood of reachability objectives such as “Is the probability that the pro-
tocol successfully terminates at least 0.99?”. Probabilistic model checking has
recently been identified as one of the three main new avenues in verification [6].

Rewards. This paper focuses on the treatment of resource consumption in prob-
abilistic model checking. In addition to probabilistic reachability this allows to
consider the cost – measured in terms of units of used resources – of reaching a
certain set of states. Such costs can be used to keep track of memory consump-
tion, battery usage, and heat generation, to mention a few. Treating resource
consumption in verification models has resulted in extensions of timed automata
with “prices” [7], games with “energy” [8] and “battery” transition systems [9].
We consider discrete-time Markov chains (DTMCs, for short) that are extended

This work was supported by the Excellence Initiative of the German federal and
state government.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 435–452, 2015.
DOI: 10.1007/978-3-319-19249-9_27

436 T. Quatmann et al.

a1

1

a2

1

a3

1

del1 err1

0.2 0.2

0.8 0.8 0.8 0.2

(a) MRM of a simple communication protocol.

a1

1

a2

1

t1

0.2

0.8 1

(b) Critical subsystem.

Fig. 1. Example MRM and critical subsystem

with rewards. These so-called Markov reward models (MRMs) [10] are pivotal
in the field of performability, i. e., the interdependent analysis of reliability and
performance of systems, as stressed in [11].

Topic of This Paper. The verification of MRMs is well-developed since more than
a decade [12], and is efficiently supported by tools like PRISM. Key performa-
bility questions that can be handled are of the form “Is the expected number of
steps until termination at most ten?”. Although such questions can be handled
efficiently (and symbolically), the feedback in case such questions are violated is
limited. Typically, only the expected resource consumption is provided, but no
indication is provided about the cause of property violation. This paper attempts
to fill this gap by providing several algorithms to generate counterexamples to
expected cost properties. That is to say, we present automated means that yield
diagnostic information in case the expected accumulated resource consumption
exceeds an a priori given upper bound. These counterexamples are fragments
of the MRM under consideration – so-called critical subsystems – that already
violate the expected cost property. This paper thus extends the current facili-
ties for counterexample generation for probabilistic reachability (and ω-regular)
properties, cf. a recent survey [13], with expected cost properties. We consider
two possible types of counterexamples which are both natural extensions of the
ones for reachability: a critical part of the original MRM that is computed nar-
rowing down the faulty behavior or the MRM in which the reward of irrelevant
states is set to zero while the probabilistic behavior of the system is preserved.

An Example. Let us illustrate this by means of a small example. Figure 1(a)
presents a model of a simple communication protocol. Up to three times a mes-
sage is being sent (states a1, a2, and a3). The loss probability of a message is 0.2.
The protocol terminates in state del when the message is successfully delivered
or otherwise in state err. States ai are equipped with reward one; all other states
have reward zero. It is easy to see that the protocol refutes the property “the
expected number of steps until termination is below 1.2”. A fragment of the
protocol model already violating the property is given in Figure 1(b).

Counterexamples for Expected Rewards 437

Approach and Related Work. Our approach is based on extending the notion
of critical subsystems, which were introduced in [14,15] to expected cost prop-
erties. This gives the first direct method for counterexamples against expected
cost properties. As explained above, two types of such subsystems are consid-
ered. To compute these counterexamples, we present three different techniques.
The first one is an encoding of critical subsystems by means of mixed-integer lin-
ear programming (MILP). Together with different optimization functions, min-
imal counterexamples can be obtained using standard MILP solvers such as
Gurobi [16]. This approach is applicable to both types of counterexamples.
The second algorithm is based on path searching algorithms. Intuitively, a sub-
system is incrementally built by connecting path fragments of high costs with
respect to their probability. This extends an approach presented in [15]. The
last approach exploits best-first (bf) search which is in fact an on-the-fly ex-
ploration the MRM’s state space [14]. The last two methods are applicable to
critical subsystems and strongly depend on an appropriate value function that
takes both the rewards and the path probabilities into account; we will discuss
several different options for such functions. Note that all approaches on coun-
terexample generation in the probabilistic setting suffer from the fact that the
verification process—mostly based on the solving of linear equation systems—
does not incorporate the computation of counterexamples as a by-product, see
for instance [13]. We have implemented all our approaches and compare their
applicability on several PRISM benchmarks. The conducted experiments show
that the MILP approaches often yield a (nearly) minimal critical subsystem in
just a few seconds, whereas the best-first search approach scales to models of
107 states and 108 transitions while yielding larger results than the path search.

2 Preliminaries

In this section we introduce the foundations needed for our methods.

Definition 1 (Discrete-timeMarkov Chain). A discrete-time Markov chain
(DTMC) is a tuple D = (S, sI , P) with a finite set of states S, an initial
state sI ∈ S, and a transition probability matrix P : S × S → [0, 1] ⊆ R with∑

s′∈S P (s, s′) = 1 for all s ∈ S.1

Assume a DTMC D. The graph of D is given by GD = (S,E) where (s, s′) ∈
E ⇔ P (s, s′) > 0. E is called the set of transitions. A state s ∈ S is absorbing
iff P (s, s) = 1.

A path of a DTMC D is a non-empty (finite or infinite) sequence π = s0s1 . . .
of states si ∈ S such that P (si, si+1) > 0 for all i. Let PathsDfin denote all finite

paths of D and PathsDfin(s) those starting in s ∈ S. For a set T ⊆ S, we denote
the set of finite paths starting in s and ending in the first visit of some t ∈ T
by PathsDfin(s,♦T) = {s0 . . . sn ∈ PathsDfin(s) | sn ∈ T and si /∈ T for all i < n}.
A state s′ ∈ S is reachable from s iff PathsDfin(s,♦{s′}) �= ∅. Let PathsDfin(S′, S′′)

1 Note that for our methods we assume probabilities and rewards to be from Q.

438 T. Quatmann et al.

for S′, S′′ ⊆ S denote the set of paths starting in a state from S′ and ending in
a state from S′′ without visiting a state from S′ ∪ S′′ in between.

Let π = s0s1 . . . sn ∈ PathsDfin be a finite path. Its probability is given by

P (π) =
∏n−1

i=0 P (si, si+1). Consider a state s ∈ S and a set of dedicated target
states T ⊆ S. The reachability probability, i. e., the probability to eventually
reach a state t ∈ T when starting in s is given by

PrD(s |= ♦T) :=
∑

π∈PathsDfin(s,♦T)

P (π).

Note that no path π ∈ PathsDfin(s,♦T) is a proper prefix of another path π′ ∈
PathsDfin(s,♦T) as these paths end at the first visit of a state in T ⊆ S. Therefore
we can take the sum of their probabilities to obtain the reachability probability.

Definition 2 (Markov Reward Model). A Markov reward model (MRM) is
a tuple M = (D, rew) with the underlying DTMC D = (S, sI , P) and the reward
function rew: S → R≥0.

Note that for our applications only rational numbers are used as rewards. The
presented notions for DTMCs are also applicable to MRMs and refer to the
underlying DTMC. For instance, PathsMfin refers to paths in the DTMC D of
the MRM M = (D, rew). Intuitively, the reward rew(s) is earned on leaving the
state s ∈ S. The (cumulative) reward of a finite path π = s0 . . . sn ∈ PathsMfin is

given by rewM(π) =
∑n−1

i=0 rew(si). The expected reward is the expected amount
of reward that has been accumulated until a set of target states T ⊆ S is reached
when starting in a state s. If PrD(s |= ♦T) < 1, we follow the usual definition
and set ExpRewM(s |= ♦T) := ∞.2 Otherwise we define

ExpRewM(s |= ♦T) :=
∑

π∈PathsDfin(s,♦T)

P (π) · rew(π) .

For all notations, we will in the following omit the superscript M (or D) if it
is clear from the context. Note that rewards can also be defined for transitions.
These transition rewards can be transformed to state rewards by means of a
simple transformation.

Definition 3 (Reachability Property, Expected Reward Property). For
a DTMC D = (S, sI , P) with s ∈ S and T ⊆ S, a probability bound λ ∈ [0, 1],
and a comparison operator � ∈ {<,≤}, the reachability property P�λ(♦T) is
satisfied in s, written s |= P�λ(♦T), iff Pr(s |= ♦T) � λ.

Given an MRM M = (D, rew) and a reward bound λ′ ∈ R≥0, the expected re-
ward propertyE�λ′(♦T) is satisfied in s, denoted by s |= E�λ′ (♦T), iffExpRew(s |=
♦T) � λ′.

Let D |= P�λ(♦T) ⇔ sI |= P�λ(♦T) and M |= E�λ′(♦T) ⇔ sI |= E�λ′(♦T).
2 The intuition is as follows: If a state with positive reward from which no target state
is reachable is visited infinitely often, an infinite amount of reward will be collected.
If this case is excluded, the definition can be generalized.

Counterexamples for Expected Rewards 439

As transitions leaving a target state t ∈ T do not affect reachability probabilities
and expected rewards, we assume that all target states are absorbing. Note that
we explicitly do not include properties with lower bounds here. For reachability
properties with lower bounds, we can formulate equivalent properties with upper
bounds by considering the probability to reach a state from which no state t ∈ T
is reachable. This transformation is, however, not applicable for expected reward
properties.The standardmethod to checkwhether s |= E�λ(♦T) (or s |= P�λ(♦T))
for a state s ∈ S is to solve a linear equation system. For expected rewards the
equation system has the following shape (assuming PrM(s |= ♦T) = 1):

rs =

{
0 for s ∈ T ,

rew(s) +
∑

s′∈S P (s, s′) · rs′ otherwise .
(1)

The unique solution for rs yields the values ExpRew(s |= ♦T)) for every state s ∈
S. For more details and the corresponding linear equation system for reachability
probabilities we refer to [17].

We will need mixed integer linear programs (MILPs) which optimize a linear
objective function under a condition specified by a conjunction of linear inequali-
ties. A subset of the variables in the inequalities is restricted to take only integer
values, which makes solving MILPs NP-hard [18, Problem MP1].

Definition 4 (Mixed Integer Linear Program). Let A ∈ Q
m×n, B ∈ Q

m×k,
b ∈ Q

m, c ∈ Q
n, and d ∈ Q

k. A mixed integer linear program (MILP) consists
of minimizing cTx+ dT y such that Ax+By ≤ b and x ∈ R

n, y ∈ Z
k.

MILPs are typically solved by a combination of a branch-and-bound algorithm
with the generation of so-called cutting planes. These algorithms heavily rely on
the fact that relaxations of MILPs which result by removing the integrality con-
straints can be solved efficiently. Efficient tools are available, e. g., Gurobi [16].
We refer the reader to [19] for more information on solving MILPs.

We now briefly recall the central definitions of counterexamples for reachabil-
ity properties.

Definition 5 (Evidence, Counterexample [20]). Let D = (S, sI , P) be a
DTMC, T ⊆ S be a set of target states, and P�λ(♦T) be a reachability property
violated by D. Paths in PathsDfin(sI ,♦T) are called evidences. A counterexample
C is a set of evidences such that P (C) :=

∑
π∈C P (π) �� λ. C is minimal if

|C| ≤ |C′| holds for all counterexamples C′ and smallest if it is minimal and
P (C) ≥ P (C ′) holds for all minimal counterexamples C′.

Smallest counterexamples can be computed using algorithms for finding the
k shortest paths in a directed graph. As it is infeasible to compute smallest
counterexamples for large DTMCs, numerous heuristic approaches have been
proposed, based on best-first search, SAT-based bounded model checking, and
BDD-based symbolic methods.

The drawback of all path-based counterexamples is that the number of paths
even in a minimal counterexample can be very large; [20] presents an example

440 T. Quatmann et al.

where the number of paths in a minimal counterexample is doubly exponential
in the system parameters – and therefore much larger than the number of system
states. To obtain a more compact representation, the usage of critical subsystems
has been proposed [14,15].

Definition 6 (Selection, Critical Subsystem). Let D = (S, sI , P) be a
DTMC, T ⊆ S a set of target states, and P�λ(♦T) a reachability property which
is violated by D. A subset S′ ⊆ S of states with sI ∈ S′ is called a selection. The
subsystem of D induced by a selection S′ is the DTMC D′ = (S′ � {t}, sI , P ′)
where t �∈ S is a new state and P ′ is defined by

P ′(s, s′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P (s, s′) if s, s′ ∈ S′∑
s′′∈S\S′ P (s, s′′) if s ∈ S′ and s′ = t

1 if s = s′ = t

0 otherwise.

We call a selection S′ and its induced subsystem critical for P�λ(♦T) if P�λ(♦T ′)
is violated in the induced subsystem with T ′ = T ∩ S′.

The additional absorbing state t �∈ S is only required here to ensure that the
probabilities of the transitions leaving a certain state sum up to one. Critical
subsystems have the property that the set of paths from the initial to a target
state forms a counterexample according to Definition 5.

The computation of critical subsystems with a minimum number of states
using MILP has been investigated in [21]. Heuristic approaches which typically
yield small, but not necessarily minimal counterexamples are also available. They
are mostly based on the path-search approaches mentioned above.

3 Critical Subsystems for Expected Rewards

Consider in the following an MRM M = (D, rew) with D = (S, sI , P) and
an expected reward property E�λ(♦T) with � ∈ {<,≤}, λ ∈ R≥0 such that
M �|= E�λ(♦T). We assume all target states t ∈ T to be absorbing.

If Pr(sI |= ♦T) < 1, the expected reward is infinite, and it directly follows
that E�λ(♦T) is violated for all λ ∈ R≥0. In this case, a path from sI to a state
from which no state in T is reachable indicates why Pr(sI |= ♦T) < 1 holds and
can therefore serve as a counterexample. Such a path can be found via simple
reachability analysis on the graph of the DTMC.

In the following, we will only consider the more interesting case where Pr(sI |=
♦T) = 1 and thus ExpRew(sI |= ♦T) < ∞ holds.

To indicate why the MRM M violates the property E�λ(♦T), we adjust the
notion of critical subsystems for reachability properties to expected reward prop-
erties. The idea is to select states of the original system in order to form a
subsystem that already refutes the property.

Definition 7 (Critical Subsystem for Expected Reachability). Let M =
(D, rew) be an MRM with D = (S, sI , P). For a selection of states S′ ⊆ S, a

Counterexamples for Expected Rewards 441

subsystem of M is given by the MRM M′ = (D′, rew′) with D′ = (S′�{t}, sI , P ′)
where t /∈ S is a new state, rew′(t) = 0, rew′(s) = rew(s) for all s ∈ S′ and
P ′ as in Definition 6. The subsystem M′ is critical for a property E�λ(♦T) iff
M′ �|= E�λ(♦T ′) where T ′ = (T ∩ S′) ∪ {t}.

In contrast to critical subsystems for reachability properties, the new absorb-
ing state t has to be considered as a target state. This is reasonable because
in the original MRM the probability to reach a target state is one by assump-
tion. If t were not a target state, the probability to reach a target state in the
subsystem would be less than one and therefore the expected reward infinite.
That means, the subsystem would be critical for every bound λ ∈ R≥0, even if
M |= E�λ(♦T). Such a subsystem can obviously not be considered a counterex-

ample. The definition above ensures that PrM
′
(sI |= ♦T ′) = 1 holds for every

possible subsystem M′ of M by adding the new state t to the set of target states.
From PrM(sI |= ♦T) = 1, it also follows that PrM(s |= ♦T) = 1 holds for every
state s that lies on a path in PathsMfin(sI ,♦T).

This means that the reachability of target states is already given by assump-
tion. In a subsystem M′, the transitions leading to t can be interpreted as
“shortcuts” to a target state. If M′ is critical, then the reward collected within
the subsystem is already too large, even if all other states would have reward
zero. This allows us to hide the unimportant details of how a state in T will even-
tually be reached and we can focus on the parts of the model where reward is
collected. Note that this reasoning would not be valid if we allow for states with
negative rewards: Parts of the model where enough reward is collected might be
followed by states with negative rewards. Hence, the details of how a state in T
is reached would not be unimportant anymore. A critical subsystem can also not
serve as a counterexample for an expected reward property with a lower bound
as this would require to indicate an upper bound of the expected reward of the
model.

Alternative Definition of Critical Subsystems. We discuss another notion for
critical subsystem for expected reward properties. According to Definition 7,
the original system was restricted with respect to its states. It is also natural to
change the rewards that are assigned to states without changing the behavior of
the system. The goal is now to only restrict the positive rewards in the system as
much as possible. To avoid confusion, this is called a critical reward subsystem.

Definition 8 (Critical Reward Subsystem). Let M = (D, rew) be an MRM
with D = (S, sI , P). For a selection S′ ⊆ S, the reward subsystem of M induced
by S′ is defined as the MRM M′ = (D, rew′) where

rew′(s) =

{
rew(s) for s ∈ S′

0 otherwise.

The reward subsystem M′ is critical for a property E�λ(♦T) iff M′ �|= E�λ(♦T).
A critical reward subsystem indicates the parts of the system that give enough
reward to refute a property without ruling out possible system behavior (i. e.,

442 T. Quatmann et al.

a1

1

a2

1

t1

0.2

0.8 1

(a) Critical subsystem

a1

1

a2

1

a3

0

del1 err1

0.2 0.2

0.8 0.8 0.8 0.2

(b) Critical reward subsystem

Fig. 2. The different notions of critical subsystems

without disregarding states in the underlying DTMC). Depending on the partic-
ular application, this can be advantageous, although there are examples where
a critical subsystem according to Definition 7 should be preferred. For instance,
consider an MRM M with exactly one state s such that rew(s) > 0. Every re-
ward subsystem of M is either equal to M or only has states with reward zero
and is therefore less useful for debugging purposes.

In conclusion, we reconsider the MRM depicted in Figure 1(a). For the vio-
lated property E<1.2(♦{del , err}), we show the two notions of critical subsystems
in Figure 2. The critical subsystem according to Definition 7 in Figure 2(a) has
reduced state space, while for the critical reward subsystem according to Defini-
tion 8 in Figure 2(b), a reward of zero is assigned to state a3.

4 Generation of Critical Subsystems

We now present different approaches to generate a subsystem of the MRM M =
(D, rew), D = (S, sI , P), that is critical for the property E<λ(♦T)3. We assume
in the following that M violates the property, that PrM(s |= ♦T) = 1, that
the target states in T are absorbing, that all states in S are reachable from the
initial state sI /∈ T , and that ExpRewM(sI |= ♦T) > 0.

4.1 Minimal Critical Subsystem Generation

We start with the problem of generating minimal critical subsystems. A critical
subsystem is called minimal if it is induced by a selection S′ ⊆ S such that
|S′| ≤ |S′′| holds for all selections S′′ ⊆ S that induce critical subsystems. We
fix the set of states with positive reward by SR := {s ∈ S | rew(s) > 0}. To
reduce the number of states that have to be considered, the first step is to
determine the set of contributing states, which are given by

Ŝ = {s ∈ S \ T | a state s′ ∈ SR is reachable from s} .
3 the subsequently discussed Path search and Best-first search approaches are also
applicable for E≤λ(♦T).

Counterexamples for Expected Rewards 443

Ŝ can be obtained via a reachability analysis in the underlying graph of the
MRM. Starting from a non-contributing state s ∈ S \ Ŝ, a state with positive
reward cannot be reached. Therefore, adding s to a selection S′ does not have
any effect on the expected reward of the subsystem induced by S′ and minimal
critical subsystems contain only contributing states.

In a second step we formulate an MILP to find a selection S′ ⊆ Ŝ that induces
a minimal critical subsystem M′ of M for E<λ(♦T). For all s ∈ Ŝ, variables
xs ∈ {0, 1} are used with the interpretation that xs = 1 iff s ∈ S′. Furthermore,
variables rs ∈ R≥0 are used to take into account the expected reward for the

states in the resulting subsystem, more precisely, 0 ≤ rs ≤ ExpRewM′
(s |= ♦T ′)

with T ′ = (T ∩ S′) ∪ {t}. The MILP can be formulated as follows:

minimize − 1

2 · ExpRewM(sI |= ♦T)
· rsI +

∑
s∈Ŝ

xs (2a)

such that

∀s ∈ Ŝ : rs ≤ (ExpRewM(s |= ♦T)) · xs (2b)

∀s ∈ Ŝ : rs ≤ rew(s) +
∑
s′∈Ŝ

P (s, s′) · rs′ (2c)

rsI ≥ λ (2d)

We can obtain the values ExpRewM(s |= ♦T) for all s ∈ Ŝ as a side-product
from model checking. Condition 2b ensures that, if the state is not included, i. e.,
xs = 0, rs is explicitly set to zero in order to avoid unwanted contribution to the
expected reward of the initial state in the subsystem. For states in the selected

subsystem, i. e., xs = 1, Condition 2b is not a real restriction as ExpRewM′
(s |=

♦T ′) ≤ ExpRewM(s |= ♦T) holds for all states s ∈ S′. In Constraint 2c, the
value of rs is bounded from above by the actual expected reward in the subsystem
by using the linear equation system as in Equation 1. Transitions that lead to
states in S \ Ŝ are not considered since the expected reward of these states
is always 0. Constraint 2d ensures the criticality of the subsystem by forcing
the expected reward of the initial state to be at least λ. Finally, consider the
objective function in (2a), which enforces a minimal critical subsystem with
maximal expected reward among all minimal critical subsystems: The second
summand ensures the minimality of the critical subsystem by minimizing the
sum of all xs-variables. The first summand ensures a maximal value for the
rsI -variable of the initial state by minimizing its negative value. Additionally,
this value needs to be in the open interval (0, 1) as otherwise the solver could
include another state s, i. e., xs = 1, and thereby break the minimality criterion.
This is achieved by the factor c · 1/ExpRewM(sI |=♦T) for arbitrary 0 < c < 1 (we
chose c = 1/2). This maximal value will be exactly the expected reward of the
initial state in the minimal critical subsystem. Note that this is not necessary
in order to achieve a state-minimal subsystem. In our experiments as well as in
the following objective functions, we omit this summand.

444 T. Quatmann et al.

Redundant constraints which prune sub-optimal solutions from the search
space can be added to this MILP to assist the solver in finding an optimal
solution quickly. We omit these constraints here as they have a very similar
shape as for reachability properties. We refer the reader to [21] for details.

Alternative Objective Functions. Instead of a critical subsystem with a minimal
number of states, other notions might be beneficial dependent on the application
at hand. We discuss a few possibilities below to give an intuition on how our
approach can be adapted in the desired way. For instance, we replace (2a) with
one of the following objective functions:

minimize
∑
s∈SR

xs (3)
∑
s∈SR

rew(s) · xs (4)
∑
s∈SR

rew(s)2 · xs (5)

To obtain a minimal number of selected states with positive rewards, (3) can be
used. By (4), the sum of all rewards occurring in the subsystem is minimized,
while we minimize the norm of the rewards occurring in the subsystem by (5).

Critical Reward Subsystems. We also give an MILP formulation to generate
minimal critical reward subsystems as in Definition 8:

minimize
∑
s∈SR

xs (6a)

such that

∀s ∈ Ŝ : rs ≤ rew(s) · xs +
∑
s′∈Ŝ

P (s, s′) · rs′ (6b)

rsI ≥ λ (6c)

The objective function (6a) only minimizes the number of states with positive

reward from SR. In Constraint 6b, the expected reward for each state s ∈ Ŝ
that is included in the selection is computed and assigned as upper bound to rs.
Constraint 6c ensures the criticality of the subsystem.

Note that in contrast to the MILP formulation (2a)–(2d), we do not need to
explicitly assign non-selected states an expected reward of zero as it suffices to
only set the contributing reward of non-selected states to zero.

4.2 Path Search Approach

The path search approach is an extension of the local path search presented in [15].
Originally, this heuristic approach is used to generate small critical subsystems
of DTMCs for reachability properties. The algorithm can be adapted to work for
MRMs and expected reward properties by taking the rewards into consideration.

For this purpose, a value function V : S × S → [0, 1] ⊆ R is used to evaluate
the benefit of transitions. The function should take rewards and probabilities
into account such that a high value V (s, s′) means that it might be beneficial to
include the states s and s′ in the subsystem. A sequence of states s0 . . . sn with

Counterexamples for Expected Rewards 445

V (si, si+1) > 0 for all 0 ≤ i < n should be a valid path of M and vice versa.
We therefore require V (s, s′) > 0 iff P (s, s′) > 0 for all s, s′ ∈ S. For a path

π = s0 . . . sn ∈ PathsMfin the value of a path is given by V (π) =
∏n−1

i=0 V (si, si+1).

Given a set of paths Π ⊆ PathsMfin , a path π ∈ Π is called most valuable if
V (π) ≥ V (π′) for all π′ ∈ Π . To ensure that there is always a most valuable
path, we require that 0 ≤ V (s, s′) ≤ 1 for all s, s′ ∈ S. If V (s, s′) = 1, we
additionally require V (s, s′′) = 0 for all s′′ �= s′ to exclude infinitely many
most valuable paths that arbitrarily often take loops with value one. Reasonable
definitions for V will be discussed later.

We consider paths from PathsMfin(Sstart, Send) for Sstart, Send ⊆ S. Further-
more, for paths of length two we require that the last state is not contained in
Sstart (note that the sets Sstart and Send do not have to be disjoint).

The first step of the path search approach is always to find a most valuable
path that starts in the initial state and ends in one of the target states. A selection
S′ is initialized with the states visited on that path. After that, most valuable
paths connecting already selected states with target states or, again, selected
states are repeatedly searched. The selection S′ is extended by the states visited
on these paths until it induces a critical subsystem. Algorithm 1 describes the
procedure. Here, the function FindMostValuablePath(V, Sstart, Send) returns
a most valuable path with respect to the value function V that connects Sstart

with Send. Such a function can be realized by using an adaptation of Dijkstra’s
shortest path algorithm where the values are multiplied (instead of summed)
and paths with maximal (instead of minimal) values are chosen. The function
SubSys(M, S′) returns the subsystem of M induced by S′.

Algorithm 1. Path Search Approach

Input: MRM M, property E�λ(♦T)
Output: A critical subsystem of M for E�λ(♦T)

1: initialize value function V : S × S → [0, 1]
2: π ← FindMostValuablePath(V, {sI}, T)
3: S′ ← {s ∈ S | s is visited by π}
4: while SubSys(M, S′) is not critical for E�λ(♦T) do
5: π ← FindMostValuablePath(V, S′, S′ ∪ T)
6: S′ ← S′ ∪ {s ∈ S | s is visited by π}
7: end while
8: return SubSys(M, S′)

It is not required to check in every iteration whether the current selection
already induces a critical subsystem. To save computation time, the condition is
checked only if at least |S| · c additional states have been selected since the last
check (for a constant 0 < c ≤ 1).

446 T. Quatmann et al.

Value Functions. We propose two different value functions. First, we want to
take both the probability of a transition (s, s′) ∈ E and the reward of the state
s into account by using their product:

V1(s, s
′) = P (s, s′) · rew(s) + ε

maxs′′∈S(rew(s′′)) + ε

In order to avoid a value of zero and the division by zero, we add a constant
ε > 0 to both the numerator and the denominator. The value is scaled by the
maximal occurring reward in order to ensure it to be from [0, 1].

As a second proposal, we make use of the actual expected reward of all states
inside the original system:

V2(s, s
′) =

ExpRew(s |= ♦T) + ε

maxs′′∈S(ExpRew(s′′ |= ♦T)) + 2ε

We scale these values by the maximal occurring expected reward and add con-
stants. For the denominator we add a larger value in order to have a value which
is smaller than one. Note that V2(s, s

′) is independent of s′. This is not disad-
vantageous since the value of a path will still depend on all visited states (except
the last one which is either a target state or already selected). It is also possible
to just use probabilities for our computations. However, in our experiments V2

performed best for most cases.

4.3 Best-first Search Approach

The best-first search approach is another heuristic approach to generate critical
subsystems. It is related to the extended best first search (XBF) presented in
[14]. A value function f : S → R evaluates how beneficial it is to select a given
state. For the best-first search, we denote value functions with f (instead of
V) to avoid confusion with the value functions of the path search approach. In
contrast to XBF, where the model is explored in an on-the-fly manner, the model
is analyzed in advance. The obtained information can be used for f . On the one
hand, this increases the effort to get the values of the function but, on the other
hand, the provided values can be more accurate.

Algorithm 2 illustrates how a critical subsystem is generated with the help
of such a value function f . It uses two sets of states: S′ and Sexplore. S

′ is a
selection to which more and more states are added until it induces a critical
subsystem. The set Sexplore always contains the states that are considered to be
explored, starting with the initial state sI . Repeatedly a state s ∈ Sexplore with
maximal value f(s) is explored. This means that s is added to the selection S′,
removed from Sexplore, and all non-selected successors of s are added to Sexplore.
Target states do not need to be explored and are therefore directly added to
S′ and not added to Sexplore. The procedure stops as soon as the subsystem of
M induced by S′ (denoted by SubSys(M, S′)) is critical. Similar to the path
search approach, computation time can be saved by only checking this condition
if at least |S| · c states have been added to S′ since the last check.

Counterexamples for Expected Rewards 447

Algorithm 2. Best-first Search Approach

Input: MRM M, property E�λ(♦T)
Output: A critical subsystem of M for E�λ(♦T)

1: initialize function f : S → R

2: S′ ← ∅
3: Sexplore ← {sI }
4: repeat
5: choose s ∈ Sexplore with f(s) ≥ f(s′) for all s′ ∈ Sexplore

6: S′ ← S′ ∪ {s} ∪ {s′ ∈ T | P (s, s′) > 0}
7: Sexplore ← (Sexplore ∪ {s′ ∈ S | P (s, s′) > 0 and s′ /∈ S′}) \ {s}
8: until SubSys(M, S′) is critical for E�λ(♦T)
9: return SubSys(M, S′)

Possible value functions f for all s ∈ S are:

f1(s) := ExpRew(s |= ♦T) f2(s) := P (πs
sI) · ExpRew(s |= ♦T)

f3(s) := P (πs
sI) ·max

s′∈S
(P (πs′

s) · rew(s′))

Here, πs′
s denotes a path from s ∈ S to s′ ∈ S with maximal probability, i. e.,

P (πs′
s) ≥ P (π) for all paths π from s to s′. The expected rewards of every state

can be obtained as a side product from model checking. For a state s ∈ S, the
value f1(s) provides information about the benefit of s itself as well as the “future”
of s, i. e., the benefit of the states that are reachable via s. To also consider the
“past” of s, f2 uses the probability to reach s. Hence, the probability to reach a
state s is estimated by the probability of a single path. The probabilities P (πs

sI)
for all states s ∈ S can be obtained by using a variant of Dijkstra’s shortest
path algorithm. Finally, function f3 evaluates whether there is a state s′ that is
reachable from s with high probability and that has high reward.

5 Experimental Results

In this section we report on a selection of our benchmark results. We implemented
all approaches presented in the previous sections in C++ using Gurobi [16] as
MILP solver. All experiments were conducted on a Windows 64 bit system with
a 2.66 GHz CPU and 6 GB RAM. We used the following benchmarks which are
all available (partly without the reward definitions) for Prism [2].

The aim of the crowds protocol [22] (crowds) is to hide the identity of the
sender of a message by randomly routing the message within a group of crowd
members, consisting of good and bad members, the latter ones trying to collect
information about the identity of a sender. The model can be scaled in the
number N of good members and the number K of message deliveries. The time a
single crowd member requires to forward or deliver a message varies between one
and five time units. We consider the expected time needed to deliver K messages.

448 T. Quatmann et al.

Table 1. Experimental results (TO> 1 h, MO> 6GB)

Critical Subsystem Crit. Rew. Subsys.
Minimal Heuristic Mininimal
MILP MILP Path Search BF Search MILP

m
o
d
el N [−K] |S′| |S′| |S′| |S′| |S′| / |SR|

#states time (seconds) time (seconds) time (seconds) time (seconds) time (seconds)
#transitions memory (MB) memory (MB) memory (MB) memory (MB) memory (MB)

cr
ow

d
s

10-3 109 109 161 292 26 / 1 560
6 563 13.38 ≤1 0.091 0.16 0.25
15 143 48 24 9 9 16
10-6 972* 1 293 2 447 3 780 229 / 87 360
352 535 TO (25.30 %) 36 79.44 2.47 238.72
833 015 1 678 819 246 246 439
15-6 1 820* 2 478 5 208 10 578 424 / 610 470
2 464 168 TO (41.30 %) 241 1 573.16 10.35 3 270.84
7 347 928 4 662 4 793 1 783 1 782 3 181
20-6 23 386
10 633 591 MO MO TO 194.72 MO
38 261 191 5 567.24

h
er
m
a
n

7 25 25 31 45 14 / 128
128 0.39 ≤1 0.004 0.003 0.06
2 188 9 9 5 5 8
13 228* 292 230 231 109 / 8 192
8 192 TO (15.1 %) 4 1.59 1.48 1.65
1 594 324 655 103 104 104 132
15 360* 415 362 381 167 / 32 768
32 768 TO (16.2 %) 22 20.27 19.26 20.38
14 348 908 1 177 831 832 832 1 057
17 542* 550 546 572 248 / 131 072
131 072 TO (19.8 %) 333 237.63 245.48 280.65
129 140 164 5 267 5 506 5 623 5 542 5 466

eg
l

4-8 1 319 1 319 1 407 1 606 330 / 668
31 486 7.34 2 0.15 1.33 0.2
31 741 32.6 28 25 25 31
5-2 2 353 2 353 2 481 2 848 574 / 1 163
33 790 375.93 4 3.42 2.74 0.16
34 813 58 33 26 26 33
7-4 86 943* 87 016 106 538 93 681 9 462 / 18 987
1 654 782 TO (0.01 %) 45 3 504.7 82.06 9.18
1 671 165 1 448 1 033 1 033 1 033 1 273
7-8 126 716* 126 732 134 383 11 240 / 22 543
3 489 790 TO (0.06 %) 126 TO 120.13 23.41
3 506 173 2 172 2 172 2 171 2 686

The self-stabilization protocol (herman) [23] considers a ring of N identical
processes. A configuration is called stable if there is exactly one designated pro-
cess. The purpose of this protocol is to transform the system from an arbitrary
configuration into a stable one. We are interested in the expected number of steps
until the system reaches a stable configuration.

The contract signing protocol (egl) [24] is dedicated to fairly exchange com-
mitments to a contract between two parties A and B. It is assumed that both
parties have N pairs of secrets of length L which will be exchanged. A party has
committed to a contract whenever both secrets of one of its pairs are known by
the other party. We investigate the expected number of messages that A needs
to receive in order to know a pair of B where only the messages after B knows
a pair of A are considered.

Counterexamples for Expected Rewards 449

crowds5-5 crowds10-6 herman15 egl5-2
0

1,000

2,000

3,000

4,000

TO TO

N
u
m
b
er

o
f
se
le
ct
ed

S
ta
te
s

Minimal

MILP Heur.

Path Search

BF Search

Fig. 3. Sizes of the critical subsystems generated by the different approaches

The results for all benchmarks are depicted in Table 1. First, we computed
critical subsystems using the MILP approach (see Equations 2a–2d) and the
heuristic approaches (Path search and BF Search, see Sections 4.2 and 4.3).
For all approaches we give the size of the selection, the computation time in
seconds and the memory consumption in MB. The reward thresholds were set
to half of the expected reward in the original system. Minimal MILP refers to
the minimization including the proof of minimality. Whenever we reached the
time limit, we depict the smallest critical subsystem found until that point (*)
as well as the gap to the lower bound.

We also made use of the nature of MILP solving. Iteratively, an intermedi-
ate solution is compared w. r. t. its minimality to a certain lower bound on the
optimal solution. This intermediate solution satisfies all conditions for a critical
subsystem while minimality is not yet proven. We basically aborted the compu-
tation of Gurobi after roughly the same time as was consumed for the heuristic
approaches and refer to this intermediate result as MILP as heuristic approach.
This demonstrates the practical use of this approach as a heuristic method. The
optimal results, excluding the minimization, are always depicted boldfaced.

We first observe that for the heuristic MILP a very small subsystem which is
near the actual minimum is often found after a few seconds. This justifies the
MILP approach also as a heuristic method, as benchmarks with millions of states
and transitions are possible. Note that the herman benchmark is strongly con-
nected having a large number of transitions. The heuristic approaches perform
well for large benchmarks while the BF search is even able to compute results
for over 107 states and 108 transitions. Note that the methods were not able to
handle larger systems because this was the threshold for explicit storing.

We tested all value functions explained above where for Path search V2 and for
BF search f2 performed best. For these approaches, the memory consumption
is rather high due to the initial model checking that we perform. For the MILP
approaches it is even higher due to the nature of the solving process.

Results for minimal critical reward subsystems as in Definition 8 depict both
the size of the selection, i. e., the number of states having a positive reward in
the subsystem as well as the original number of such states. We observe that in

450 T. Quatmann et al.

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

λ/ExpRew(sI |= ♦T)

S
iz
e
o
f
re
su
lt
in
g
se
le
ct
io
n

crowds10-3

Minimal

MILP Heur.

Path Search

BF Search

0 0.2 0.4 0.6 0.8 1
0

2

4

6

λ/ExpRew(sI |= ♦T)

R
u
n
ti
m
e
(s
ec
o
n
d
s)

crowds10-3

Minimal

MILP Heur.

Path Search

BF Search

Fig. 4. Results of the different approaches plotted against different reward bounds λ

a relatively small amount of time the number of states having positive reward
can drastically be reduced; in some cases even by three orders of magnitude.

For a better overview, Figure 3 shows the sizes for different benchmarks for all
approaches. In general, the path search computes smaller subsystems than the
BF search. Figure 4 depicts results for a specific benchmark and different reward
bounds in terms of the size of the subsystem and the running time. The nearer
the reward bound is to the actual expected reward of the original system, the
larger the size of the subsystems becomes. Similarly, the times required by the
Path search and the BF search increase if the bound is high. The running times
for computing minimal critical subsystems do not exhibit such a monotony. For
certain reward bounds, the MILP solver is able to find a solution and proof its
minimality comparatively fast. A notable example is the case where the ratio
between the reward threshold and the actual expected reward is nearly one. Here,
the MILP approaches only select the set of contributing states and therefore take
nearly no time.

Summary. Using the MILP approaches we are able to compute optimal results
for both types of critical subsystems. We note that computing critical reward
subsystems is more efficient. This is due to the fact that the number of possible
solutions is smaller. However, it might be beneficial to compute small counterex-
amples, in which case this approach is not feasible as the original system’s size is
not reduced. The path search yields smaller subsystems than the BF search. For
very large benchmarks, BF is the only method that can compute results within
the time limit.

6 Conclusion and Future Work

In this paper we thoroughly investigated different notions and methods to com-
pute counterexamples in the form of critical system parts for Markov reward
models. The experiments were very promising and showed the applicability for
rather large benchmark instances. In the future, we will adapt the heuristic meth-
ods to symbolic data structures such as binary decision diagrams to enable the
treatment of significantly larger systems.

Counterexamples for Expected Rewards 451

References

1. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.)
25MC Festschrift 2008. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

2. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

3. Norman, G., Parker, D., Kwiatkowska, M.Z., Shukla, S.K.: Evaluating the relia-
bility of NAND multiplexing with PRISM. IEEE Trans. on CAD of Integrated
Circuits and Systems 24(10), 1629–1637 (2005)

4. Norman, G., Shmatikov, V.: Analysis of probabilistic contract signing. Journal of
Computer Security 14(6), 561–589 (2006)

5. Kwiatkowska, M.Z., Norman, G., Parker, D.: Using probabilistic model checking
in systems biology. SIGMETRICS Performance Evaluation Review 35(4), 14–21
(2008)

6. Alur, R., Henzinger, T., Vardi, M.: Theory in practice for system design and veri-
fication. ACM Siglog News 2(1), 46–51 (2015)

7. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)

8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized Mean-payoff
and Energy Games. In: Proc. of FSTTCS. LIPIcs, vol. 8, pp. 505–516. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik (2010)

9. Boker, U., Henzinger, T.A., Radhakrishna, A.: Battery transition systems. In: Proc.
of POPL, pp. 595–606. ACM Press (2014)

10. Howard, R.A.: Dynamic Probabilistic Systems; Volume I: Markov models. John
Wiley & Sons (1971)

11. Baier, C., Hahn, E.M., Haverkort, B.R., Hermanns, H., Katoen, J.P.: Model
checking for performability. Mathematical Structures in Computer Science 23(4),
751–795 (2013)

12. Andova, S., Hermanns, H., Katoen, J.P.: Discrete-time rewards model-checked. In:
Larsen, K.G., Niebert, P. (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 88–104.
Springer, Heidelberg (2004)

13. Ábrahám, E., Becker, B., Dehnert, C., Jansen, N., Katoen, J.-P., Wimmer, R.:
Counterexample generation for discrete-time Markov models: An introductory sur-
vey. In: Bernardo, M., Damiani, F., Hähnle, R., Johnsen, E.B., Schaefer, I. (eds.)
SFM 2014. LNCS, vol. 8483, pp. 65–121. Springer, Heidelberg (2014)

14. Aljazzar, H., Leue, S.: Directed explicit state-space search in the generation of
counterexamples for stochastic model checking. IEEE Trans. on Software Engi-
neering 36(1), 37–60 (2010)

15. Jansen, N., Ábrahám, E., Katelaan, J., Wimmer, R., Katoen, J.-P., Becker, B.:
Hierarchical counterexamples for discrete-time Markov chains. In: Bultan, T.,
Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 443–452. Springer,
Heidelberg (2011)

16. Gurobi Optimization, Inc.: Gurobi optimizer reference manual (2013),
http://www.gurobi.com

17. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
18. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co Ltd. (1979)
19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)

http://www.gurobi.com

452 T. Quatmann et al.

20. Han, T., Katoen, J.P., Damman, B.: Counterexample generation in probabilistic
model checking. IEEE Trans. on Software Engineering 35(2), 241–257 (2009)

21. Wimmer, R., Jansen, N., Ábrahám, E., Katoen, J.P., Becker, B.: Minimal coun-
terexamples for linear-time probabilistic verification. Theoretical Computer Sci-
ence 549, 61–100 (2014)

22. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Trans.
on Information and System Security 1(1), 66–92 (1998)

23. Herman, T.: Probabilistic self-stabilization. Information Processing Letters 35(2),
63–67 (1990)

24. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28(6), 637–647 (1985)

The Semantics of Cardinality-Based Feature

Models via Formal Languages

Aliakbar Safilian1, Tom Maibaum1(�), and Zinovy Diskin1,2

1 Department of Computing and Software, McMaster University, Hamilton, Canada
{safiliaa,maibaum,disnkinz}@mcmaster.ca

2 Department of Elecetrical and Computer Engineering, University of Waterloo,
Waterloo, Canada

zdiskin@gsd.uwaterloo.ca

Abstract. Cardinality-based feature models provide the most expres-
sive language among the existing feature modeling languages. We provide
a reduction process, which allows us to transform a cardinality-based fea-
ture diagram to an appropriate regular expression. As for crosscutting
constraints, we propose a formal language interpretation of them. In this
way, we provide a formal language-based semantics for cardinality-based
feature models. Accordingly, we describe a computational hierarchy of
feature models, which guides us in how feature models can be construc-
tively analyzed. We also characterize some existing analysis operations
over feature models in terms of languages and discuss the corresponding
decidability problems.

1 Introduction

Product line engineering [14] is a well-known industrial approach to software
design. A product is a set of features, where “a feature is a system property that
is relevant to some stakeholders” [6]. A product line (PL) is a set of products that
share some common features. The main advantage of this approach to software
production is a reduction in cost and development time [14], since the common
core of a PL is produced, leaving a much smaller task to be completed, namely
the adaptation of the core to a concrete application requirement.

Feature modeling is the most common approach for modeling PLs. A feature
model (FM) is a tree presenting a hierarchical decomposition of features, called
a feature diagram (FD), with some possible crosscutting constraints (CCs) be-
tween them. FMs are grouped into basic and cardinality-based FMs. Basic FMs
represent product variability and commonality in terms of optional/mandatory
features, and OR/XOR decomposition operations. In cardinality-based FMs
(CFMs), UML-like multiplicities are used in place of annotations, which make
them much more expressive than basic ones.

The common understanding of the semantics of an FM in the literature is its
PL [17]. This semantics does not capture all essential and practically important
information of FMs. This is mainly because an FM provides a hierarchical struc-
ture for features, which is forgotten in its PL [11,18]. For a very simple example,

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 453–469, 2015.
DOI: 10.1007/978-3-319-19249-9_28

454 A. Safilian et al.

consider two FMs M1 (a is the root and b is the only mandatory child of a)
and M2 (b is the root and a is the only mandatory child of b). M1 and M2 rep-
resent the same PL consisting of the only product {a, b}, but their hierarchical
structures are different. Capturing hierarchical structure of FMs is important for
several analysis operations over FMs. Indeed, any analysis operation relying on
the hierarchical structure of a given FM cannot be addressed using its PL seman-
tics. Such analysis operations, including least common ancestor of a given set of
features, root feature, subfeatures of a given feature were explicitly characterized
in the literature as necessarily relying on this information [3]. Also, another de-
ficiency of the PL semantics is relevant to reverse engineering of FMs. Indeed,
the main reason making the current state of the art approach [18] heuristic is
mainly caused by using such a poor abstract view of FMs.

In [11], in order to adequately represent the hierarchical structure of basic FMs
semantically, we introduced a Kripke semantics for basic FMs, and showed that
basic feature modeling needs a modal rather than Boolean logic. In the present
paper, we invoke formal language (FL) theory to approach building a seman-
tics for cardinality-based feature modeling, which is a more challenging area of
feature modeling. This method allows us to approach FM problems by trans-
lating them into FL-theory problems that could be managed by well-elaborated
FL-theory methods and tools. Indeed, we provide an FL interpretation LM for
a given FM M. To consider LM as a faithful semantics for the FM, LM must
satisfy the following two fundamental properties:

P-1: “The multi-set interpretation of LM is equal to the PL of M”.
P-2: “LM preserves the hierarchical structure of M”.

The meaning of P-1 is clear. P-2 says that the hierarchical structure of M
can be extracted from LM. This property is formalized in Definition 13. Later
we will show that our FL semantics does satisfy these two requirements.

Industrial FMs may have thousands of features, and their PLs can be complex
[13]. Hence, analysis operations on FMs need automated support. Automated
analysis of CFMs is a challenging and open issue [3,15]. We address this problem
by employing FL-based tools. We also show that not all of the proposed analysis
operations are decidable when applied to all kinds of FMs. The most important
contributions of the paper are summarized as follows:

– A set theoretic definition of valid products of given cardinality-based feature
diagrams (CFDs): see Sect. 3.

– Two levels of generalizations for CFDs: see Sect. 3 and Sect. 4.

– A reduction procedure going from a given CFD to an appropriate regular
expression (RE): see Sect. 4.

– FL interpretation of CCs and a computational hierarchy of CFMs: see Sect. 5.

– Discussing the decidability problems of some analysis operations over CFMs:
see Sect. 6.

– Discussion of tool support for analysis operations on CFMs: see Sect. 6.

The plan for this paper is as follows. Sect. 2 gives a background on feature
modeling. In Sect. 3, we provide a formal syntax for CFDs and a set theoretic

The Semantics of Cardinality-Based Feature Models via Formal Languages 455

definition of their valid products. In Sect. 4, we describe an important general-
ization of CFDs, called cardinality-based regular expression diagrams (CRDs) in
which labelling of nodes can be any REs built over an alphabet. Then we show
how to translate CRDs to REs. Also, we prove that the RE generated in this way
for a given CFD satisfies P-1 and P-2. In Sect. 5, we show how to interperet
CCs in FL. In Sect. 6, we investigate the decidability problems of some analysis
operations on CFMs. Also, we show how to use some off-the-shelf FL tools to
deal with analysis operations on CFMs. Related work is discussed in Sect. 7.
Sect. 8 discusses the conclusions and some interesting open problems.

Below we present the notations used throughout the paper. Some further
notations are introduced where they are used.

Notations. For a given set A, |A| denotes its cardinality. The notation f |A
for a function f means the restriction of the function f to the subdomain A.
For a given set X = {x1, . . . , xn} ⊂ N (N denotes the set of natural numbers),
+ X = x1 + . . .+ xn.

Let S be a sequence or multi-set, US denotes the set of elements included
in S. By s ∈ S, we mean s ∈ US and #S(s) denotes the number of instances
(occurrences) of s in S. For a set X , S∩X means US∩X . If S is a sequence,
we also consider a partial order �S ⊆ US × US defined as follows: ∀s, s′ ∈ S,
s �S s′ iff any instance of s′ is preceded by some instances of s in S.

The multi-set interpretation of a sequence S (a formal language L, respec-
tively) is denoted by Sbag (Lbag, respectively).

Let Gra, Reg and Aut be a formal grammar, regular expression and automa-
ton over an alphabet Σ, respectively. Then L(Gra),L(Reg),L(Aut) denote their
corresponding languages, respectively. Let Σ′ be another alphabet with a bijec-
tion f : Σ → Σ′. Then Reg[f] (Gra[f] and Aut[f], respectively) is a regular
expression (grammar, automaton, respectively) built over Σ′ using Reg (Gra
and Aut, respectively) by substituting any element σ ∈ Σ with f(σ). To make
the regular expressions more readable, we use the notation fn to show n repe-
titions of a letter f . Let RE(Σ) denote the class of all regular expressions built
over Σ.

2 Background

Feature modeling languages are grouped into basic and cardinality-based FMs.
We describe them using a small part of the student awards system as an example.

Fig. 1(a) is a basic FD of the system. It is a tree of features, where the
edges exhibit the relationships between features. An edge with a black bullet
shows a mandatory feature: every application must include a ref (reference), and
the hollow-ended one shows an optional feature: an application can optionally
be equipped with citizen (confirming that the applicant is a citizen). These two
types of edges (mandatory and optional) are called solitary, while other edges are
grouped, with two variants OR (the black angle) and XOR (the hollow angle).
The XOR group {NSERC, GB, IE} shows that the student can apply for at
most one and only one of the awards NSERC (Natural Sciences and Engineering

456 A. Safilian et al.

Research Council), GB (Graham Bell) and IE (International Excellence). The
OR group {markA, publication} indicates that to apply for the IE award, the
student must have either a grade markA, or a publication, or both, in his record.

(1, 1)

(1, *)

(2, *)

(1, 2)
(0, 1)

(1, *)

(a) (b)

Fig. 1. (a) a basic FD (b) a cardinality-based FD

The set of valid products of a basic FD can be translated into a propositional
logic formula generated over the set of features [13]. In this sense, any logical
formula can be seen as a CC [8]. Let us have cc1: “citizen −→ ¬IE” and cc2:
“NSERC ∨ GB −→ citizen” as the CCs stating that a “citizen student cannot
apply for the IE award” and “one of the requirements for the NSERC and GB
awards is to be a citizen”, respectively. cc1 and cc2 are called an exclusive and
an inclusive CC, respectively. This FM represents six valid products. PL(M)
denotes the set of valid products of a given FM M.

Now suppose that we need to specify some requirements regarding the number
of feature instances. For example, consider the following requirements: (i) There
is no upper bound on the number of instances of the features ref, markA, and
publication. (ii) If the student applies for the IE award by providing A-marks, the
number of markA in his record must be more than two. Clearly, basic FMs like in
Fig. 1(a) cannot model such requirements, since they do not manage the number
of instances. To address such system requirements, Czarnecki et al. proposed
CFMs [5,6,7], where cardinalities, are used in place of traditional edge types. A
CFD is a labeled tree of features. There are two types of cardinalities: feature and
group cardinalities. Fig. 1(b) provides a CFD for the awards system including the
requirements (i) and (ii). The group cardinalities (1, 1) and (1, n) model XOR
and OR groups with n elements in terms of cardinalities. The cardinality (0, 1)
on citizen models its optional presence in an application. The cardinalities (1, ∗)
on ref and publication, and (2, ∗) on markA together satisfy the requirements (i)
and (ii). If no cardinality was specified on a node, then the cardinality (1, 1) is
assumed: the cardinalities on NSERC, GB and IE are (1, 1).

CCs in a CFM can refer to feature instances. Take, for example, the constraint:
cc3: “The number of instances of ref must be even”. A product of a CFM is a
multi-set of features satisfying the constraints. For an example, the multi-set

The Semantics of Cardinality-Based Feature Models via Formal Languages 457

{application, IE,markA3, ref4} is a product of this model. Note that the PL of
this model is an infinite set. Obviously, CFMs subsume basic FMs [6].

3 CFDs: Formal Definitions

We use the CFD in Fig. 2 as an example to illustrate the definitions. The feature
label of each node is represented in parenthesis next to the node and G denotes
the grouped nodes {e, f, g }. To formalize the syntax of CFDs, we will first need
the following notion.

Fig. 2. A CFD

Definition 1 (Cardinalities).
(i) The cardinality-set is the set C = {(k,m) ∈ N×(N�{∗}) : (k ≤∗ m)∧(m �=

0)}, where ≤∗: (N � {∗})× (N � {∗}) is a reflexive transitive relation defined as
follows: ∀k,m ∈ N, k ≤∗ m iff k ≤ m and ∀k ∈ N, k ≤∗ ∗.

(ii) An element c = (k,m) ∈ C is called a cardinality. We call k and m
the lower-bound, denoted by low(c), and upper-bound, denoted by up(c), of c,
respectively.

(iii) A subset C ⊆ C is called a cardinality interval if there exists I =
{1, . . . , n} ⊂ N such that C = {(ki,mi) : i ∈ I} in which mi ≤∗ ki+1, for
all i, i + 1 ∈ I. We call k1 and mn the lower-bound, denoted by low(C), and
upper-bound, denoted by up(C), of C, respectively. ��

Consider the CFD in Fig. 2 and ignore the feature labels on nodes (i.e., f ,
f1, f2, f3 and f4). We call such a tree a cardinality-based diagram (CD). A CD
is an unlabelled tree where some subsets of non-root nodes are grouped (e.g.,
G = {e, f, g} in Fig. 2) and other nodes are called solitary (the nodes b, c, and
d in Fig. 2). In addition, non-root nodes and groups are equipped with some
cardinality intervals (e.g., {(1, 2), (4, ∗)} on the node b and {(1, 2)} on G).

Definition 2 (Cardinality-based Diagrams).
A cardinality-based diagram (CD) is a 3-tuple D = (T,G, C) consisting of the

following components.

458 A. Safilian et al.

(i) T = (N, r, ↑) is a tree with set N of nodes, r ∈ N is the root, and

function ↑ maps each non-root node n ∈ N−r
def
= N \ r to its parent n↑. The

inverse function that assigns to each node n the set of its children is denoted by
n↓. The set of all descendants of n is denoted by n↓↓.

(ii) G ⊆ 2N−r is a set of grouped nodes. For all G ∈ G, |G| > 1, and all nodes
in G have the same parent, denoted by G↑. All groups in G are disjoint, i.e.,
∀G,G′ ∈ G. (G �= G′) ⇒ (G ∩ G′ = ∅). The nodes that are not in a group are
called solitary nodes. Let S denote the solitary nodes, i.e., S = N−r −

⋃
G∈G G.

(iii) C ⊆ (N−r � G) × C is a left-total relation called the cardinality relation.
For any element e ∈ N−r �G, C(e) is a cardinality interval as defined in Defini-
tion 1(iii). In addition, for all G ∈ G, up(C(G)) ≤ |G|. ��

Definition 3 (Cardinality-based Feature Diagrams). A cardinality-based
feature diagram (CFD) is a 3-tuple FD = (D, F, l) where D = (T,G, C) is an
CD, as defined in Definition 2, F is a set of features, and function l : N → F
labels each node with a feature. ��

Note. The original definition of CFDs in [6] has two restrictions: (i) the cardi-
nality of a grouped node is always (1, 1) and (ii) only one cardinality interval is
assigned to a group. However, we generalized CFDs in the above definition with-
out essentially complicating the framework and enabling useful generalizations
in feature modeling.

Now we want to formally define a valid product of a given CFD. First, we
give a definition of a valid product of its underlying CD. Note that a CD can
be seen as a CFD in which the labelling is an inclusion function from nodes to
nodes. We call a valid product of the CD a bare product of the CFD. To obtain
the valid products of the CFD, we just need to apply the labelling function on
the bare products. A bare product is a multi-set of nodes satisfying the following
membership and arity requirements.

(membership requirements): The root is included. If a non-root node is in-
cluded then its parent must also be included, e.g., the presence of the node d in
Fig. 2 implies the presence of the node c. If the parent of a mandatory node (a
solitary node with lower bound cardinality greater than 0) is included then it
must be included too, e.g., the presence of the node c implies the presence of the
node d. If a parent of a grouped set of nodes is included then the presence of the
grouped nodes must satisfy the associated group cardinalities, e.g., the presence
of the node c implies the presence of two or three of the nodes e, f, and g.

(arity requirements): The arity of the root node is always 1. The number of
instances of a non-root node is verified by the cardinality interval associated
with it and the number of instances of its parent node, e.g., if the number of
instances of the node c in Fig. 2 is two, then the number of instances of the node
d must be at least six and at most ten. In general, for non-root nodes n included
in the bare product, there must be a cardinality c associated with n such that
its arity is less (greater, respectively) than the multiplication of its parent’s (n↑)
arity and c’s upper bound (lower bound, respectively).

The Semantics of Cardinality-Based Feature Models via Formal Languages 459

Definition 4 (Product). Let FD = (D, F, l) be a CFD with D = (T,G, C) and
T = (N, r, ↑).

Bare Product: A multi-set BP over the set of nodes N is called a bare product
if: (i to iv correspond to the membership requirements and the rest correspond to
the arity requirements)

membership:
(i) r ∈ BP ,
(ii) ∀n ∈ N−r : n ∈ BP ⇒ n↑ ∈ BP ,
(iii) ∀n ∈ BP, ∀n′ ∈ S : [(n′↑ = n) ∧ (low(C(n′)) > 0)] ⇒ (n′ ∈ BP),
(iv) ∀n ∈ BP, ∀G ∈ G : (G↑ = n) ⇒ [∃c ∈ C(G) : low(c) ≤ |BP ∩G| ≤ up(c)],
arities:
(v) #BP (r) = 1,
(vi) ∀n ∈ N−r, ∃c ∈ C(n) :

(
#BP (n

↑) × low(c)
)
≤ #BP (n) ≤

(
#BP (n

↑) ×
up(c)

)
Product: A multi-set P over F is called a product if there exists a bare product
BP of FD such that P is the result of applying the labelling function l on the
elements of BP , i.e., for all features f ∈ F ,

(i) (f ∈ P) ⇔ (l−1(f) ∩BP �= ∅),
(ii) #P (f) =+n∈l−1(f) #BP (n)

The product family of FD is denoted by PL(FD). ��

4 CFDs to Regular Expressions

In this section, we first define a generalization of CFDs called Cardinality-based
Regular-expression Diagrams (CRDs). Subsequently, we give a procedure to
translate a given CRD to a regular expression (RE). This provides a semantics
for CRDs by using regular languages as the semantic domain. We also prove that
the REs generated for a given CFD and its underlying CD satisfy the properties
P-1 and P-2, respectively.

Definition 5 (Cardinality-based Regular-expression Diagrams).
A cardinality-based regular-expression diagram (CRD) over an alphabet Σ is a
3-tuple RD = (LTre,G, C) of the following components:

(i) LTre = (N, r, ↑, Σ, lre) is a labeled tree where N , r, ↑, are as defined
in Definition 2(i), Σ is a finite set (the alphabet), and lre : N → RE(Σ) is a
function that labels each node with a regular expression built over Σ.

(ii) G ⊆ 2N−r is a set of grouped nodes, as defined in Definition 2(ii).
(iii) C ⊆ (N−r �G)×C is called the cardinality relation, as defined in Defini-

tion 2(iii).
The class of all CRDs over the same alphabet Σ will be denoted by RD(Σ). ��

CRDs subsume CFDs: A CFD is a CRD in which Σ is the set of features and
labels are primitive non-empty REs.

Notation. Given a CRD RD, we will need the following notations:
(i) lev(RD) denotes the set of leaf nodes, i.e., lev(RD) = {n ∈ N : n↓ = ∅}.

460 A. Safilian et al.

(ii) glev(RD) denotes the set of the grouped leaves, i.e., glev(RD) = {G ∈
G : ∀n ∈ G. n↓ = ∅}.

(iii) plev(RD) denotes the set of non-leaf nodes all of whose children are
leaves, i.e., plev(RD) = {n ∈ N : n↓ ⊆ lev(RD)}.

(iv) cplev(RD) denotes the leaves all of whose siblings are leaves, i.e.,
cplev(RD) = {c ∈ n↓ : n ∈ plev(RD)}.

Fig. 3. RCD to RE: Shrinking Procedure on Fig. 2

The translation of a CRD to an RE is a bottom-up procedure and includes
a finite number of steps (equal to the depth of the CRD’s tree) called shrinking
steps. Each shrinking step takes a CRD and returns another CRD such that
the depth of the output’s tree is less than that of the input. The output of the
last step is a CRD with the singleton tree (a tree consisting of a single isolated
node) whose root is labeled with an RE. A shrinking step includes three stages:
(1) Eliminating cardinalities from leaves, (2) Eliminating grouped leaves, and (3)
Depth reduction. We will use the CFD in Fig. 2 as a running example to illustrate
the translation procedure.

Stage 1: Eliminating Cardinalities from Leaves. At this stage, the REs
corresponding to leaf nodes are computed and their cardinalities changed to
(1, 1). For an example, the RE corresponding to the node b (Fig. 2) would
be f1 + f2

1 + f4
1 f

∗
1 . This RE represents the cardinality constraint on this node

properly, as it says that the number of instances of the feature f1 on this node
must be one or two or more than three. Then, the label of the leaves are replaced
by their REs, computed in the above way, and their associated cardinalities
change to (1, 1). Fig. 3(a) represents the result of this stage applied to the CFD
in Fig. 2, where r1 = f1 + f2

1 + f4
1 f

∗
1 , r3 = f3

3 + f4
3 + f5

3 , r4 = f2, r5 = f4, and
r6 = f1 + f2

1 .

Definition 6. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
lexRD : lev(RD) → RE(Σ) is a total function which maps a leaf node in RD to
an RE built over Σ. For a given node n ∈ lev(RD) with C(n) = {(ki,mi)}1≤i≤j

(for some j ∈ N), lexRD(n) = r1 + . . .+ rj , where

The Semantics of Cardinality-Based Feature Models via Formal Languages 461

ri =

{
lre(n)

ki + . . .+ lre(n)
mi if mi �= ∗

lre(n)
ki
(
lre(n)

)∗
o.w.

��
Definition 7 (Eliminating cardinalities from leaves Stage). The func-
tion cel : RD(Σ) → RD(Σ) is called the cardinality eliminator function and
for a given CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre), cel(RD) =
(LT ′

re,G, C′) where LT ′
re = (N, r, ↑, Σ, l′re) and

C′(e) =

{
{(1, 1)} if e ∈ lev(RD)

C(e) o.w.
l′re(n) =

{
lexRD(n) if n ∈ lev(RD)

lre(n) o.w.
��

Stage 2: Eliminating the Grouped Leaves. At this stage, grouped leaf
nodes are replaced by new nodes with proper REs. The input of this stage is
the output of the first stage. For an example, consider the grouped leaves G in
Fig. 3(a). The group cardinality (2, 3) says that at least two and at most three
of the nodes involved in the group (i.e., the nodes e, f, and g) must be included
in a valid product for each instance of their parent (i.e., the node c) in the
product. The following REs r′G and r′′G represent the lower and upper bounds of
the cardinality, respectively: r′G = r4r5 + r5r4 + r5r6 + r6r5 + r4r6 + r6r4, r

′′
G =

r4r5r6+r4r6r5+r5r4r6+r5r6r4+r6r4r5+r6r5r4. Thus, the RE corresponding to
the group would be rG = r′G + r′′G. Then, each grouped leaf is replaced by a new
node with a cardinality (1, 1) and is labeled with the computed RE. Fig. 3(b)
represents the result of applying this stage to Fig. 3(a).

Notation. Let Perkm(X) denote the set of all concatenation permutations S
with length between k and m (k ≤ |S| ≤ m) of X . For an example, Per12({r1, r2,
r3}) would be the following set of expressions: {r1, r2, r3} ∪ {r1r2, r2r1, r1r3,
r2r3, r3r2}. Therefore, we mean a sequence x1 · · ·xn with

⋃
1≤i≤n{xi} = X by

a concatenation permutation S of a finite set X with |X | = n.

Definition 8. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
gexRD : glev(RD) → RE(Σ) is a total function. For a given groupG ∈ glev(RD)
with C(G) = {(ki,mi)}1≤i≤j (for some j ∈ N), gexRD(G) = r1+. . .+rj where for
all 1 ≤ i ≤ j: ri =+ Xi, and Xi = Perki

mi
(E) with E = {lre(n) : n ∈ G}. ��

Definition 9 (Eliminating grouped leaves Stage). The function gle : RD(
Σ) → RD(Σ) is called the grouped leaves eliminator. For a given CRD RD =
(LTre,G, C) with LTre = (N, r, ↑, Σ, lre), gle(RD) is defined as follows:

For each group node G ∈ glev(RD), a node identifier nG is assigned. Let NG

denote the set of these node identifiers. In other words, we have a bijection gid :
NG → glev(RD) which assigns each grouped node in glev(RD) to a unique node

identifier in NG. Then, gle(RD) = (LT ′
re,G′, C′) with LT ′

re = (N ′, r, ↑′, Σ, l′re),
where N ′ = (N − glev(RD)) �NG, G′ = G − glev(RD), and

C′(e) =

{
{(1, 1)} if e ∈ NG

C(e) o.w.

462 A. Safilian et al.

n↑′
=

{
gid(n)↑ if n ∈ NG

n↑ o.w.
, l′re(n) =

{
gexRD(gid(n)), if n ∈ NG

lre(n) o.w.
��

Stage 3: Depth Reduction. This stage takes the output of the second stage
and returns a CRD whose depth is less than that of the input. To this end, the
REs corresponding to the nodes all of whose child nodes are leaves are computed.
Then, the label of such nodes are replaced by the corresponding computed REs
and their child nodes are eliminated from the given CRD. Let us see what the
result of this stage applied to the CRD in Fig. 3(b) would be. There is only one
node, labeled by f2, all of whose child nodes are leaf nodes. Fig. 3(c) shows the
result, where r2 = f2(r3rG + rGr3).

Definition 10. Given a CRD RD = (LTre,G, C) with LTre = (N, r, ↑, Σ, lre),
pexRD : plev(RD) → RE(Σ) is a total function. For a given node n ∈ plev(RD),
pexRD(n) = lre(n)(+ X), where X = Perjj(E) and j = |n↓|, and E = {lre(n′) :
n′ ∈ n↓}. ��

Definition 11 (Depth Reduction Stage). The function dre : RD(Σ) →
RD(Σ) is called the depth reducer function. For a given CRD RD = (LTre,G, C)
with LTre = (N, r, ↑, Σ, lre), dre(RD) is a CRD RD′ = (LT ′

re,G, C′) with

LT ′
re = (N ′, r, ↑′, Σ, l′re) where N ′ = N − cplev(RD), ↑′ = ↑|N ′ , C′ = C|N ′∪G ,

and

l′re(n) =

{
pexRD(n) if n ∈ plev(RD)

lre(n) o.w.

Definition 12 (Shrinking Step). The function shr : RD(Σ) → RD(Σ) is
called the shrinking function and is defined as shr = dre ◦ gel ◦ cel. (◦ denotes
composition.) ��

We keep doing the shrinking steps until we get a CRD which is a singleton
tree. In the running example, we need to do the shrinking step once more. The
final result would be the expression r = f(r1r

′
2 + r′2r1), where r′2 = ε+ r2 + r22 .

The notation ERD is used to denote the regular expression generated for a given
CRD RD. The following proposition follows obviously.

Proposition 1. Let FD = (D, F, l) be a CFD with D = (T,G, C) and T =
(N, r, ↑). Then, EFD = ED[l]. ��

Now we are at the point where we can prove that the regular expression
interpretation of a given CFD FD with D as its underlying CD satisfies the
propertiesP-1 and P-2. Note that two different nodes in FD can be labeled with
the same feature. Thus, to prove the property P-2 (formalized in Definition 13)
of the generative language, we need to work on D, i.e., we prove that L(ED)
satisfies P-2. We refer the reader to [16] to see the proofs of the theorems.

Theorem 1 (Satisfying P-1). For a given CFD FD, L(EFD)bag = PL(FD).

The Semantics of Cardinality-Based Feature Models via Formal Languages 463

Definition 13 (Formalizing P-2). Consider a CD D = (T,G, C) with T =
(N, r, ↑) and let L be a language built over N . We say L preserves the hier-
archical structure of D (or simply satisfies P-2 for D) if ∀n, n′ ∈ N : (n′ ∈
n↓↓) ⇐⇒

(
∀w ∈ L(ED) : (n′ ∈ w) ⇒ (n �w n′)

)
. ��

Theorem 2 (Satisfying P-2). For a given CD D, L(ED) satisfies P-2 for D.

5 CCs and CFMs

CCs only make sense with respect to a given CFD. We formalized the semantics
of CFDs using FLs (more precisely, regular languages). Hence, it makes sense
to use the same framework to express CCs. This will allow us to integrate the
semantics of CCs and CFDs. In the following, we show how to translate the most
common CCs using FLs. Assume a CFD with a set of features F including three
features f1, f2, and f3. Several interesting CCs applied to a CFM are as follows:

(cc1) f1 requires f2
(in other words: If the number of instances of f1 is greater than 0, then the
number of instances of f2 must be greater than 0).

(cc2) f1 excludes f2
(in other words: If the number of instances of f1 is greater than 0, then the
number of instances of f2 must be 0).

(cc3) If the number of instances of f1 is even, then the number of instances
of f2 must be odd.

(cc4) The number of instances of f1 and f2 are equal.
(cc5) The number of instances of f1, f2, and f3 are equal.

The first two CCs are traditional inclusive and exclusive CCs. However, they
can be expressed in terms of feature instances, as we see in the parenthetical
remarks above. In our approach, the set of features is considered as the alphabet
of a language. The FL interpretation of the above CCs are as follows:

L(cc1) =
{
w ∈ F ∗ :

(
#f1(w) > 0

)
⇒

(
#f2(w) > 0

)}
.

L(cc2) =
{
w ∈ F ∗ :

(
#f1(w) > 0

)
⇒

(
#f2(w) = 0

)}
.

L(cc3) =
{
w ∈ F ∗ : (∃n ∈ N.#f1(w) = 2n) ⇒ (∃n ∈ N.#f1(w) = 2n+ 1)

}
.

L(cc4) =
{
w ∈ F ∗ : #f1(w) = #f2(w)

}
.

L(cc5) =
{
w ∈ F ∗ : #f1(w) = #f2(w) = #f3(w)

}
.

Proposition 2. L(cc1), L(cc2), and L(cc3) are regular, L(cc4) is context-free,
and L(cc5) is context-sensitive. ��

Hence, a CFM is a CFD plus a set of languages expressing the CCs. In fact, a
set of CCs can be seen as the intersection of the languages expressing the CCs.

Definition 14 (Cardinality-based Feature Models). A cardinality-based
feature model (CFM) is a pair M = (FD,Lcc) with FD a CFD and Lcc a
language built over F (the set of features) expressing the CCs. ��

Thus, a CFM is basically a tuple M = (LFD,Lcc) with LFD and Lcc denoting
the FLs of the CFD FD and CCs, respectively. The FL associated with the whole

464 A. Safilian et al.

model is denoted by LM and is equal to LFD ∩Lcc. Since any class of languages
is closed under intersection with regular languages [9] and LFD is regular, the
type of LM is given by the type of Lcc. Hence, CFMs can be grouped based on
the types of their languages, say regular and context-free FMs. This grouping is
important because it guides us in how FMs can be constructively analyzed.

Definition 15 (Dynamic & Static Semantics). For a given FM M,
(i) LM is called the dynamic semantics of M. Any word w ∈ LM is called a

dynamic product. We then write w |=DY M.
Two models M and M′ are called dynamic equivalent, denoted by M ≡DY M′,

if and only if LM = LM′ .
(ii) The multi-set interpretation of LM, Lbag

M
, is called the static semantics of

M. Any element P of Lbag
M

is called a static product. We then write P |=ST M.
Two models M and M′ are called static equivalent, denoted by M ≡ST M′, if

and only if PL(M) = PL(M′). ��
As an example, consider the three models M, M′, and M′′ in Fig. 4(a), (b),

(c), respectively. The regular expression encoding of M is EM = f.(f2.f2.(f2)
∗ +

f1.f1.(ε + f1).(ε + f3 + f4)). The regular expression encoding of M′ is EM′ =
f.(f2.(f2)

∗.f2.(f2)∗ + f1.f1.(ε + f1).(ε + f3 + f4)). It is obvious that L(EM) =
L(EM′), which means M ≡DY M′. On the other hand, M′′ is not dynamic equiv-
alent to M. M′′ and M are static equivalent, i.e., M′′ ≡ST M.

Fig. 4. (a) M, (b) M′ (≡DY M) , (c) M′′ (≡ST M)

The above example shows obviously that static semantics (PL) is a poor
abstract view for CFMs, while the dynamic semantics (FL) extracts a much
greater part of CFMs’ intuitive semantics.

6 Analysis Operations

In this section, we investigate the decidability problem for some well-known
analysis operations. We refer the interested reader to [16] to see the proofs of

The Semantics of Cardinality-Based Feature Models via Formal Languages 465

the theorems. Some operations take only one FM (along with another potential
input that is not an FM) as input and perform some analysis on the FM. Below
is a sample list of such operations:

Valid Product: takes an FM and a multi-set of features as inputs and decides
whether it is a valid product of the FM or not.

Core Features: takes an FM and returns the set of features that are included
in all the products.

Void Feature Model: takes an FM as input and decides whether its PL is
empty or not.

Dead Feature: takes an FM and a feature and decides whether the feature
is dead in the FM or not. A feature f in an FM M is called dead if �P ∈ PL(M)
such that f ∈ P .

Least Common Ancestor: takes an FD and a set of features and returns
their lowest common ancestor feature.

Theorem 3. Given a context-free FM M, the operations Void Feature Models,
Dead Features, Valid Product, Core Features, and Least Common Ancestor are
decidable. ��

Note. Since the class of regular languages is a subclass of context-free lan-
guages, the above theorem holds for regular FMs too. Note that some analysis
operations are not decidable in other classes of CFMs. For example, the Void
Feature Model operation is not decidable in the class of context-sensitive CFMs,
since the emptiness problem is not decidable in this class.

Some other operations deal with two FMs. Such operations answer some ques-
tions about the relationships between the FMs.

Refactoring: takes two FMs and decides whether their PL are equal or not.
Specialization: takes two FMs M1 and M2 as inputs and decides whether

the PL of M1 is a subset of the PL of M2 or not.

Theorem 4. Given two FMs M1 and M2, the following statements hold:
(i) If both are regular, then the Refactoring problem between them is decidable.
(ii) If M1 and M2 are regular and context-free, respectively, then the Refac-

toring problem is decidable iff M1 is bounded regular. ��

Note. In general, the equality problem in the class of context-free languages
is undecidable. Therefore, the Refactoring problem is not decidable in this class.

Theorem 5. Given two FMs M1 and M2, the following statements hold:
(i) If both are regular, the Specialization problem between them is decidable.
(ii) If M1 and M2 are regular and context-free, respectively, then the Special-

ization problem PL(M2) ⊆ PL(M1) is decidable. ��

Tool Support:
As discussed above, the class of regular CFMs is the only class over which all
the analysis operations are decidable. Thus, we take into account only regular
CFMs.

466 A. Safilian et al.

most of the existing tools take finite state automata (FSA) as inputs, we first
need to translate a given RE to an FSA. Some tools such as FSA6.2xx [19] can
be used in this regard.

Since CFDs and their CCs are translated to different languages, we also need
to compute their intersection. FSA6.2xx supports the intersection problem be-
tween two FSA.

To reduce the computational complexity in executing the analysis operations,
we may prefer to work on minimal automata [12]. The minimization problem is
supported by FSA6.2xx.

The valid product problem on a CFM is reduced to the membership problem
on the CFM’s language interpretation. FSA6.2xx addresses this problem.

The void feature model problem is reduced to the emptiness problem on lan-
guages. The emptiness problem for a given language L can be seen as the equality
problem between L and the empty language. The equality problem over FSA is
supported by HKC [4].

The dead feature problem for a given CFM M and a feature f , can be re-
duced to the decision problem L(M) ∩ L(F ∗fF ∗) = ∅. Thus, the problem is
the composition of intersection and emptiness problems, which are supported by
FSA6.2xx and HKC, respectively.

The refactoring (specialization, respectively) problem between two CFMs is
simply reduced to the equality (inclusion, respectively) problem between their
languages. The equality (inclusion, respectively) problem between FSA is sup-
ported by HKC.

To implement the core features problem, we would need a tool addressing the
emptiness problem over context-free languages.

7 Related Work

In this section, we survey the literature relevant to the connection between FMs
and FLs. Indeed, it is directly related to what we have done in this paper. We
refer the reader to [16] for a more complete review of related work.

de Jong/Visser in [10] and Batory in [2] connected basic FDs to context-
free grammars. The translation procedures in both works are essentially the
same. Table 1 gives some basic examples showing how Batory’s encoding works.
Terminal symbols are denoted by italic letters. If a feature is optional, it is
surrounded by brackets. In [10] and [2], the set of features that appear in leaf

Table 1. basic FDs to grammars

f→ h[g] f→ [g]h f→ g | h f → t+
t → g | h

The Semantics of Cardinality-Based Feature Models via Formal Languages 467

nodes is considered as the set of terminals and other features as the variables
(non-terminals). Thus, the corresponding generative grammar for a given FD
does not represent the PL of the FD. In other words, they do not satisfy the
property P-1.

Another property of the above procedures is that they give a left-to-right
ordering on siblings (the nodes with the same parent). As the left-most column
in Table 1 shows, this may create problems: the left-most feature, h, precedes
the right-most feature, g. Such an ordering forces two syntactically equivalent
FDs to have different semantics: the grammars of the two FDs in the first and
the second columns in Table 1 have different associated languages. In addition,
such an ordering on siblings forces the generative grammars to not satisfy the
property P-2.

Czarnecki et al, in [6], formalize the semantics of CFDs using context-free
grammars. Unlike in [2] and [10], this work considers the set of terminals to
be equal to the set of all features for a given CFD and generative grammars
satisfy the property P-1. However, it gives a left-to-right ordering on siblings.
Thus, this method does not satisfy the property P-2 and there are syntactically
equivalent CFDs with non-equal generative grammars.

All the above approaches may result in ambiguous grammars, which makes
them bad candidates for the semantics of FDs. Also they do not consider CCs
in the proposed semantics. This is a very important deficiency, since CCs have
a central role to play in feature modeling.

8 Conclusions and Open Problems

Conclusion. We have provided a formal definition of CFDs and also their valid
products in a set theoretic way. We have proposed two levels of generalization
for CFDs. In the first generalization, we have relaxed some constraints on group
cardinalities. We believe that this very simple generalization provides a more
succinct and expressive tool for system modeling. The second generalization are
CRDs in which the labels of nodes can be any regular expression built over the
set of features. We believe that CRDs are a means to move us to modeling much
more complicated systems, in which we need to deal with structural (non-atomic)
features, e.g., programming codes, etc.

We have provided a reduction process, which allows us to go from a CFD to
an RE. The procedure works for the class of CRDs. The generative expression
for a given CFD has two main properties: it captures the hierarchical structure
of the CFD; it also captures the PL of the CFD. These properties allow us to
confidently claim that this translation faithfully captures the semantics of CFDs.

Regular languages have some nice computational properties. These properties,
such as the decidability of the emptiness, inclusion, and equality problems, help us
to propose algorithmic solutions for analysis operations overCFDs. In addition, the
complexity class of all regular languages is SPACE(O(1)), i.e., the decision prob-
lems can be solved in constant space. Due to these nice computational properties,
we can also claim that regular expressions provide a nice computable framework
for reasoning about CFDs.

468 A. Safilian et al.

As for CCs, we have proposed a formal language interpretation of them. In
this way, we could integrate the formal semantics of CFDs and CCs. Also, it
allows us to group CFMs based on their semantics, which guides us in how to
constructively analyze them.

Based on this FL interpretation of CFMs, we have provided two kinds of seman-
tics, called dynamic and static. The dynamic semantics of a given model is equal
to the FL of the whole model. The dynamic semantics of CFMs is a new concept,
but the static one is, indeed, equivalent to the semantics captured in [6].

We also have characterized some existing analysis operations over CFMs in
terms of the FL framework. This allows us to use some off-the-shelf language
tools to do analysis on CFMs. Note that automated support for analysis opera-
tions over CFMs is a challenging issue. We also have investigated the decidability
problems of the introduced analysis operations for different kinds of CFMs. We
noted that some analysis operations are not decidable in all classes of CFMs.

Open Problems/Future Work. Based on the closure properties of regular
languages, say closure under intersection, union, complement, etc., we believe
that our framework is a very good candidate for managing multiple product
lines [1]. Indeed, in a forthcoming paper, we will discuss how to manage CFDs
using the FL-framework.

The computational complexity problem of analysis operations would be a
crucial issue in implementing them for CFMs, and this needs to be investigated.

Sect. 5 needs to be developed more deeply. In the literature, the object-
constraint language (OCL) has been proposed for expressing CCs in CFMs [7].
Our next mission is to discover the OCL-definable languages. It can be also
fruitful for the model driven engineering (MDE) area, since the MDE commu-
nity uses mainly OCL to express constraints. This way, we can investigate the
expressiveness of OCL in terms of languages. Our conjecture is that there should
be some practical CCs that cannot be expressed in OCL (see [16]).

The tool support part discussed in Sect. 6 needs to be deeply developed.
Also, we need to find/implement some tools supporting other kinds of formal
languages, specially context-free ones.

Acknowledgement. We thank three anonymous reviewers for valuable comments,
and Krzysztof Czarnecki and Shoham Ben-David for several valuable discussions. Spe-
cial thanks go to the authors of papers [2,6,10] for relating the domains of FM and FL.
The first author would like to express his sincere gratefulness to Ridha Khedri who
introduced FM area to him. The third author is grateful to Martin Erwig for insight-
ful discussions about FM, which resulted in the idea of dynamic semantics. Financial
support was provided by NSERC and APC.

References

1. Acher, M., Collet, P., Lahire, P., France, R.: Managing multiple software product
lines using merging techniques. France: UniversityofNiceSophiaAntipolis. Techni-
calReport, ISRN I3S/RR, vol. 6 (2010)

The Semantics of Cardinality-Based Feature Models via Formal Languages 469

2. Batory, D.: Feature models, grammars, and propositional formulas. In:
Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer,
Heidelberg (2005)

3. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: A literature review. Information Systems 35(6), 615–636 (2010)

4. Bonchi, F., Pous, D.: Checking nfa equivalence with bisimulations up to congru-
ence. ACM SIGPLAN Notices 48(1), 457–468 (2013)

5. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming
for embedded software: An industrial experience report. In: Batory, D., Blum, A.,
Taha, W. (eds.) GPCE 2002. LNCS, vol. 2487, pp. 156–172. Springer, Heidelberg
(2002)

6. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10(1),
7–29 (2005)

7. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints:
A progress report. In: International Workshop on Software Factories, pp. 16–20
(2005)

8. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.
In: 11th International on Software Product Line Conference, SPLC 2007, pp. 23–34.
IEEE (2007)

9. Davis, M.: Computability, complexity, and languages: fundamentals of theoretical
computer science. Academic Press (1994)

10. de Jonge, M., Visser, J.: Grammars as feature diagrams. In: ICSR7 Workshop on
Generative Programming, pp. 23–24. Citeseer (2002)

11. Diskin, Z., Safilian, A., Maibaum, T., Ben-David, S.: Modeling product lines with
kripke structures and modal logic (GSDLab TR 2014-08-01) (August 2014)

12. Linz, P.: An introduction to formal languages and automata. Jones & Bartlett
Publishers (2011)

13. Mannion, M.: Using first-order logic for product line model validation. In: Chastek,
G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer, Heidelberg (2002)

14. Pohl, K., Böckle, G., Van Der Linden, F.: Software product line engineering: foun-
dations, principles, and techniques. Springer (2005)

15. Quinton, C., Romero, D., Duchien, L.: Cardinality-based feature models with con-
straints: a pragmatic approach. In: Proceedings of the 17th International Software
Product Line Conference, pp. 162–166. ACM (2013)

16. Safilian, A., Maibaum, T., Diskin, Z.: The semantics of feature models via formal
languages (extended version) (GSDLab TR 2014-08-02) (August 2014)

17. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics
of feature diagrams. Computer Networks 51(2), 456–479 (2007)

18. She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: Reverse engineering
feature models. In: ICSE 2011, pp. 461–470. IEEE (2011)

19. van Noord, G.: Fsa6. 2xx: Finite state automata utilities.
http://odur.let.rug.nl/vannoord/Fsa/fsa.html, 3(10), 2003 (2002) (accessed)

http://odur.let.rug.nl/vannoord/Fsa/fsa.html

Axiomatization of Typed First-Order Logic

Peter H. Schmitt(�) and Mattias Ulbrich

Karlsruhe Institute of Technology (KIT), Department of Informatics,
Am Fasanengarten 5, 76131, Karlsruhe, Germany

pschmitt@ira.uka.de

Abstract. This paper contributes to the theory of typed first-order
logic. We present a sound and complete axiomatization for a basic typed
logic lifting restrictions imposed by previous results. As a second contri-
bution, this paper provides complete axiomatizations for the type pred-
icates instanceT , exactInstanceT , and functions castT indispensable for
reasoning about object-oriented programming languages.

1 Introduction

Typed first-order logics with sophisticated type systems are by now a tried-and-
tested basis for program verification systems. The most common route to proof
support for these logics is by translation to simply sorted or unsorted logics for
which SMT solvers are available. Typical representatives of this approach are the
translation of the Boogie type system explained in [7] and the translation of the
type system used in the Why verification tool described in [3]. The alternative
approach to implement provers for such typed first-order logics directly is less
common, e.g., the prover integrated in the KeY system [1] and the Alt-Ergo SMT
solver [2].

In this paper we present a logical framework for a hierarchically typed first
order logic and a sound and complete calculus. This paper furthermore addresses
an issue with the coincidence lemma that is folklore knowledge in the community
though we could not find a published reference. Let T1 = {A, B} be an example
type hierarchy containing the two types A, B with A �� B and B �� A. Let x be a
variable of type A and y be a variable of type B. Then the formula ¬∃x.∃y.(x .=
y) is a tautology. If we extend T1 to the type hierarchy T2 = ({A, B, C}, �)
with C � A and C � B, the very same formula is no longer a tautology in the
logic using T2. This phenomenon that universal validity of a formula depends
on symbols not occurring in it, is highly undesirable. We adapt the notion of
universal validity to exclude this deficiency in Definition 8 below.

There is a rich body of recent literature on the translation approach inves-
tigating various variations, optimizations, and tunings directly geared towards
program verification, see again [7,3] for references. Typed, or many-sorted, cal-
culi have a long tradition in mathematical logic, [8] may be counted among the
earliest contributions in this line. More recently there was a short-lived flurry on
order-sorted logic programming and resolution calculi, as witnessed e.g., by [10].
Despite this history there are not many recent papers on implemented calculi

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 470–486, 2015.
DOI: 10.1007/978-3-319-19249-9_29

Axiomatization of Typed First-Order Logic 471

of typed first-order logic, let along contributions aimed at program verification.
This paper falls into this category. The contribution closest to ours is [6] that
presents a sound and complete sequent calculus under the restriction that the
type hierarchy is closed under greatest lower bounds. An extended version has
been published as [1, Chapter 2]. We improve on this by 1) lifting the restriction
on the type hierarchy and 2) reducing the logic to a minimal predefined vocab-
ulary, where equality .= is the only built-in predicate, and defining the desired
vocabulary axiomatically.

Plan of the Paper: The main part of Section 2, after introducing the basic typed
logic, is taken up by the proof of the soundness and completeness theorem,
Theorem 1. In Section 3, an example of a theory in the basic typed logic is
presented axiomatizing instanceT , exactInstanceT , and castT culminating again
in a soundness and completeness proof, Theorem 3. Section 4 contains a few hints
how some Java-specific notions could be axiomatized. We close with concluding
remarks in Section 5.

We thank an anonymous reviewer for the thorough reading of the first version
of this paper and his or her expert and useful comments.

2 The Basic Typed Logic

2.1 Syntax

Definition 1. a type hierarchy T = (TSym, �) consists of

1. a non-empty set TSym of type symbols,
2. a partial order relation � on TSym called the subtype relation,
3. the designated symbols ⊥ ∈ TSym for the empty type and � ∈ TSym for the

universal type,
4. ⊥ � A � � for all A ∈ TSym.

We point out that no further restrictions are placed on type hierarchies in
contrast to other approaches requiring the existence of greatest lower bounds.
The empty type ⊥ only plays an ornamental role in this paper. We nevertheless
kept it in the hope that it may find its uses in future developments.

Definition 2. A signature Σ = (FSym, PSym, VSym) for a given type hierar-
chy T is made up of

1. a set FSym of typed function symbols,
by f : A1, . . . , An → A we declare the argument types of f ∈ FSym to be
A1, . . . , An in the given order and its result type to be A,

2. a set PSym of typed predicate symbols,
by p : A1, . . . , An we declare the argument types of p ∈ PSym to be A1, . . . , An

in the given order,
3. a set VSym of typed variable symbols,

by v : A for v ∈ VSym we declare v to be a variable of type A.

472 P.H. Schmitt and M. Ulbrich

4. PSym contains the dedicated symbol .= : �, � for equality.

In the above all A, A1,. . . , An in TSym are required to be different from ⊥. We do
not allow overloading: The same symbol may not occur in FSym∪PSym∪VSym
with different typing.

The next two definitions define the syntactic categories of terms and formulas
of typed first-order logic, as usual.

Definition 3. Let T be a type hierarchy, and Σ a signature for T . The set
TrmA of terms of type A �= ⊥ is inductively defined such that

1. v ∈ TrmA for each variable symbol v : A ∈ VSym of type A.
2. f(t1, . . . , tn) ∈ TrmA for each f : A1, . . . , An → A ∈ FSym, and terms

ti ∈ TrmBi with Bi � Ai for all 1 ≤ i ≤ n.

If t ∈ TrmA, we say that t is of (static) type A and write σ(t) = A.

Definition 4. The set Fml is inductively defined as:

1. p(t1, . . . , tn) ∈ Fml
for p : A1, . . . , An ∈ PSym, and ti ∈ TrmBi with Bi � Ai for all 1 ≤ i ≤ n.
In particular t1

.= t2 ∈ Fml for arbitrary terms ti.
2. true, false ∈ Fml
3. ¬φ, φ ∧ ψ, φ ∨ ψ, φ → ψ are in Fml for arbitrary φ, ψ ∈ Fml.
4. ∀v.φ, ∃v.φ are in Fml for φ ∈ Fml and v : A ∈ VSym.

If need arises, we will make dependence of these definitions on Σ and T explicit
by writing TrmA,Σ, FmlΣ or TrmA,T ,Σ, FmlT ,Σ. When convenient, we will also
use the redundant notation ∀ v:A.φ, ∃ v:A.φ for a variable v : A ∈ VSym.

Free and bound variables are defined as usual as well as typed substitutions that
allow one to replace a variable of type A by a term of type B if B � A.

2.2 Semantics

Definition 5. A universe or domain for a given type hierarchy T and signature
Σ consists of

1. a non-empty set D,
2. a typing function δ : D → TSym \ {⊥}.

The sets DA = {d ∈ D | δ(d) � A} for A ∈ TSym are called type universe or
type domain for A. We require that DA �= ∅ for each A ∈ TSym with A �= ⊥.

The typing function δ assigns to every element o ∈ D of the universe its
dynamic type δ(o) and the type domain DA of a type A contains all elements
of dynamic type A or of a dynamic type which is a subtype of A. Definition 5
implies that for different types A, B ∈ TSym \ {⊥}, there is o ∈ DA ∩ DB only
if there exists C ∈ TSym, C �= ⊥ with C � A and C � B.

Axiomatization of Typed First-Order Logic 473

Lemma 1. The type domains for a universe (D, δ) share the following proper-
ties:

1. D⊥ = ∅, D� = D,
2. DA ⊆ DB if A � B,
3. DC = DA ∩ DB in case the greatest lower bound C of A and B exists.

Definition 6. A first-order structure M for a given type hierarchy T and sig-
nature Σ consists of a domain (D, δ) and an interpretation I such that

1. I(f) is a function from DA1 × . . . × DAn into DA for f : A1, . . . , An → A
in FSym,

2. I(p) is a subset of DA1 × . . . × DAn for p : A1, . . . , An in PSym,
3. I(.=) = {(d, d) | d ∈ D}.

For a first-order structure M and variable assignment β the evaluation valM,β(t)
of a term t and the semantic truth relation (M, β) |= φ for formulas φ are defined
as usual.

2.3 Calculus

The following definition formalizes our concept of enlarging a type hierarchy:
new types and subtype relations between old and new types may be added
without adding new relations among the old types. This can be guaranteed by
the restriction that new types can only be declared to be subtypes of old types,
never supertypes.

Definition 7. A type hierarchy T2 = (TSym2, �2) is an extension of a type
hierarchy T1 = (TSym1, �1), in symbols T1 � T2, if

1. TSym1 ⊆ TSym2
2. �2 is the smallest subtype relation containing �1 ∪ Δ where Δ is a set of

relations (S, T) with T ∈ TSym1 and S ∈ TSym2 \ TSym1.

Note, that this definitions entails , ⊥ �2 A �2 � for all new types A. For later
reference, we note the following lemma.

Lemma 2. Let T2 = (TSym2, �2) be an extension of T1 = (TSym1, �1) with �2
being the smallest subtype relation containing �1 ∪ Δ, for some Δ ⊆ (TSym2 \
TSym1) × TSym1. Then for A, B ∈ TSym1, C ∈ TSym2 \ TSym1, D ∈ TSym2 :

1. A �2 B ⇔ A �1 B
2. C �2 A ⇔ T �1 A for some (C, T) ∈ Δ
3. D �2 C ⇔ D = C or D = ⊥.

Proof. This follows easily from the fact that no supertype relations of the form
A �2 C for new type symbols C are stipulated. ��

The following adapted definition of universal validity resolves the undesirable
phenomenon, already referred to in the introduction, that validity of a formula
depends on symbols not occurring in it.

474 P.H. Schmitt and M. Ulbrich

andLeft
Γ, φ, ψ =⇒ Δ

Γ, φ ∧ ψ =⇒ Δ
andRight

Γ =⇒ φ, Δ Γ =⇒ ψ, Δ

Γ =⇒ φ ∧ ψ, Δ

orRight
Γ =⇒ φ, ψ, Δ

Γ =⇒ φ ∨ ψ, Δ
orLeft

Γ, φ =⇒ Δ Γ, ψ =⇒ Δ

Γ, φ ∨ ψ =⇒ Δ

impRight
Γ, φ =⇒ ψ, Δ

Γ =⇒ φ → ψ, Δ
impLeft

Γ =⇒ φ, Δ Γ, ψ =⇒ Δ

Γ, φ → ψ =⇒ Δ

notLeft
Γ =⇒ φ, Δ

Γ, ¬φ =⇒ Δ
notRight

Γ, φ =⇒ Δ

Γ =⇒ ¬φ, Δ

allRight
Γ =⇒ [x/c](φ), Δ

Γ =⇒ ∀ x:A.φ, Δ
c : → A a new constant

allLeft
Γ, ∀ x:A.φ, [x/t](φ) =⇒ Δ

Γ, ∀ x:A.φ =⇒ Δ
t ∈ TrmA′ ground, A′ � A

exLeft
Γ, [x/c](φ) =⇒ Δ

Γ, ∃ x:A.φ =⇒ Δ
c : → A a new constant

exRight
Γ =⇒ ∃ x:A.φ, [x/t](φ), Δ

Γ =⇒ ∃ x:A.φ, Δ
t ∈ TrmA′ ground, A′ � A

close
Γ, φ =⇒ φ, Δ

closeFalse
Γ, false =⇒ Δ

closeTrue
Γ =⇒ true, Δ

Fig. 1. First-order rules

Definition 8. Let T be a type hierarchy and Σ a signature, φ ∈ FmlT ,Σ a
formula without free variables, and Φ ⊆ FmlT ,Σ a set of formulas without free
variables.

1. φ is a logical consequence of Φ, in symbols Φ � φ, if for all type hierarchies
T ′ with T � T ′, and all T ′-Σ-structures M such that M |= Φ also M |= φ
holds.

2. φ is universally valid if it is a logical consequence of the empty set, i.e. ∅ � φ.
3. φ is satisfiable if there is a type hierarchy T ′, with T � T ′ and a T ′-Σ-

structure M with M |= φ.

The notion of logical consequence from Definition 8 may be called super logical
consequence to distinguish it from the concept Φ �T ,Σ φ that is true when for any
T -Σ-structure M with M |= Φ also M |= φ is true. For the above example type
hierarchy T1 = {A, B} which had unrelated types A and B (A �� B, B �� A), we
obtain �� ¬∃ x:A.∃ y:B.(x .= y), but �T1,∅ ¬∃ x:A.∃ y:B.(x .= y).

Definition 7 forbids the introduction of subtype chains like A � B � T into
the type hierarchy. However, it can be shown that relaxing the definition in
that respect results in an equivalent notion of logical consequence. We keep the
restriction here since it simplifies reasoning about type hierarchy extensions.

Axiomatization of Typed First-Order Logic 475

eqLeft
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ Δ

Γ, t1
.= t2, [z/t1](φ) =⇒ Δ

if σ(t2) � σ(t1)

eqRight
Γ, t1

.= t2 =⇒ [z/t2](φ), [z/t1](φ), Δ

Γ, t1
.= t2 =⇒ [z/t1](φ), Δ

if σ(t2) � σ(t1)

eqSymmLeft
Γ, t2

.= t1 =⇒ Δ

Γ, t1
.= t2 =⇒ Δ

eqReflLeft
Γ, t

.= t =⇒ Δ

Γ =⇒ Δ

eqDynamicSort
Γ, t1

.= t2, ∃x.(x .= t1 ∧ x
.= t2) =⇒ Δ

Γ, t1
.= t2 =⇒ Δ

if σ(t1) and σ(t2) are incomparable,
the sort C of x is new and satisfies C � σ(t1) and C � σ(t2)

Fig. 2. Equality rules

The calculus of our choice is the sequent calculus. The basic data that is
manipulated by the rules of the sequent calculus are sequents. These are of the
form φ1, . . . , φn =⇒ ψ1, . . . , ψm The formulas φ1, . . . , φn at the left-hand side of
the sequent separator, =⇒, are the premises or the antecedent of the sequent,
the formulas ψ1, . . . , ψm on the right are the conclusions or the succedent. The
intended meaning of a sequent is that the premises together imply at least one
conclusion. In other words, a sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm is valid iff the
formula

∧

1≤i≤n φi →
∨

1≤j≤m ψj is valid.
Figures 1 and 2 show the usual set of rules of the sequent calculus with

equality as it can be found in many text books, e.g. [5, Section 5.4]. The only
exception is rule eqDynamicSort, which is the main innovation of our approach.
Here, [z/t2](φ) is used to denote the application of the substitution t2 for free
occurrences of variable z in φ. Note that the rules contain the schematic variables
Γ , Δ for set of formulas, ψ, φ for formulas and t, c for terms and constants.

The rule eqDynamicSort is different than the other rules in that it introduces
a new type. In that sense it is similar to the rules forallRight and exLeft that in-
troduce new constant symbols. These constants are used to denote an unknown
value whose existence is guaranteed. The rationale behind the new type C in eq-
DynamicSort is the same: Since the equality t1

.= t2 in the antecedent requires that
the types σ(t1) and σ(t2) have a common element, there must also be a type to
accommodate that value. In the rule that type is made explicit and named C.

Theorem 1 (Soundness and Completeness Theorem).
Let T = (TSym, �) be a type hierarchy and Σ a signature, Γ, Δ ⊂ FmlT ,Σ

without free variables. Assume that for every A ∈ TSym\{⊥} there is a constant
symbol of type A. Then:

Γ =⇒ Δ is universally valid iff there is a closed proof tree for the Γ =⇒ Δ.

476 P.H. Schmitt and M. Ulbrich

Proof. Soundness. We only present the proof for the new rule eqDynamicSort,
the remaining cases follow the usual pattern.

To prove soundness of eqDynamicSort we assume that
∧

Γ ∧ t1
.= t2 ∧ ∃x.(x .=

t1 ∧ x
.= t2) →

∨

Δ is universally valid for type hierarchy TC and need to show
that

∧

Γ ∧ t1
.= t2 →

∨

Δ is universally valid for the hierarchy T .
The type hierarchy TC = (TSym ∪ {C}, �C) is an extension of the hierarchy

T = (TSym, �) in the sense of Definition 7 , with �C the least subtype relation
containing � ∪ {(C, σ(t1)), (C, σ(t2))}.

Assume that
∧

Γ ∧t1
.= t2∧∃x.(x .= t1∧x

.= t2) →
∨

Δ is universally valid for
type hierarchy TC . To prove universal validity of

∧

Γ ∧ t1
.= t2 →

∨

Δ we need
to consider a type hierarchy T 1 = (TSym1, �1) that is an arbitrary extension
of T = (TSym, �) and an arbitrary (T 1, Σ)-structure M = (M, δ, I) satisfying
M |= Γ ∧t1

.= t2 with the aim of showing M |=
∨

Δ. Let T be the dynamic type
of tM

1 = tM
2 , i.e., δ(tM

1) = δ(tM
2) = T , which obviously satisfies T � σ(t1) and

T � σ(t2). Set T 1
C = (TSym1 ∪ {C}, �1

C) with �1
C being the smallest subtype

relation containing �1 ∪ {(C, σ(t1)), (C, σ(t2))}. We need a further extension
T 2 = (TSym1 ∪ {C, C2}, �2) of T 1

C , where �2 is the smallest subtype relation
containing �1

C ∪Δ with Δ = {(C2, C), (C2, T)}.
We proceed in the main proof by constructing a (T 2, Σ)-structure M2 =

(M, δ2, I) that differs from M only in δ2 which is given by

δ2(o) =
{

C2 if o = tM
1 = tM

2
δ(o) otherwise .

This leads to M2 |= ∃x.(x .= t1 ∧ x
.= t2) – if we remember that x is a variable

of the type C and C2 � C.
The crucial property of the type hierarchy T 2 is

for any o ∈ M and any A ∈ TSym1 δ(o) �1 A ⇔ δ2(o) �2 A . (1)

Here are the arguments why (1) is true: In case o �= tM
1 we have δ2(o) = δ(o) ∈

TSym1 and δ(o) �1 A ⇔ δ(o) �2 A by item 1 of Lemma 2. In case o = tM
1 = tM

2
we have δ(o) = T and δ2(o) = C2. By item 2 of Lemma 2, C2 �2 A is equivalent
to the disjunction of T �1

C A or C �1
C A. Again by Lemma 2, this is equivalent

to T �1 A or σ(t1) �1 A or σ(t2) �1 A. Since T � σ(t1), σ(t2), this is equivalent
to T �1 A. In total, we have shown (1) by proving that C2 �2 A is equivalent
to T �1 A.

We need to convince ourselves that M2 |=
∧

Γ ∧ t1
.= t2 is still true. We will

prove the following auxiliary statement:

Let φ be an arbitrary (T , Σ)-formula, β a variable assignment, then
(M, β) |= φ ⇔ (M2, β) |= φ

(2)

The proof of (2) proceeds by induction on the complexity of φ. The only non-
trivial steps are the induction steps for quantifiers. So assume that the claim is
true for φ(x1, . . . , xn)1 and we try to establish it for (∃x1.φ)(x2, . . . , xn), with
1 i.e., a formula with at most the free variables x1, . . . , xn.

Axiomatization of Typed First-Order Logic 477

x1 a variable of type A. By choice of φ, the type A is different from C and C2.

(M, β) |= ∃x1.φ ⇔ (M, βo
x1) |= φ(x1) for o ∈ M with δ(o) � A

⇔ (M2, βo
x1) |= φ(x1) induction hypothesis

⇔ (M2, β) |= ∃x1.φ by (1)
Now, we have established M2 |=

∧

Γ ∧ t1
.= t2. From the assumption we obtain

M2 |=
∨

Δ, which entails M |=
∨

Δ by another appeal to (2), as desired.
Completeness. The completeness part of the proof proceeds by contradiction.

Assume there is no closed proof tree with root labeled by Γ =⇒ Δ. We will
eventually construct a (T ′, Σ)-structure M = (H, δ, I) that is a counterexample
to the universal validity of Γ =⇒ Δ.

Let T be a proof tree with root labeled by Γ =⇒ Δ such that all rules have
been exhaustively applied, but T is not closed. Because of the rules allLeft and
exRight, T is necessarily infinite. By an appeal to König’s Lemma there is an
infinite branch B of T that is not closed.

Let H0 be the set of all ground terms. We define the relation ∼B on H0 by

t1 ∼B t2 iff t1 = t2 or
there is a sequent Γ =⇒ Δ in B with t1

.= t2 ∈ Γ

The relation ∼B is an equivalence relation. Reflexivity is assured by definition.
If t1 ∼B t2 with t1

.= t2 ∈ Γ and Γ =⇒ Δ ∈ B, then somewhere in B the rule
eqSymmLeft must have been applied since we assume exhaustive rule application.
Thus there will be a sequent Γ ′ =⇒ Δ′ ∈ B with t2

.= t1 ∈ Γ ′ and we arrive at
t2 ∼B t1. It remains to show transitivity. We start from t1 ∼B t2 and t2 ∼B t3.
By definition of ∼B there are sequents Γ1 =⇒ Δ1 and Γ2 =⇒ Δ2 in B with
t1

.= t2 ∈ Γ1 and t2
.= t3 ∈ Γ2. Since there is no rule that drops an equality

in the antecedent, only the arguments may be swapped, there will be a sequent
Γ ′ =⇒ Δ′ in B such that t1

.= t2 or t2
.= t1 and at the same time t2

.= t3 or
t3

.= t2 occur in Γ ′. We consider each case separately.
1. t1

.= t2 and t2
.= t3

2. t1
.= t2 and t3

.= t2
3. t2

.= t1 and t2
.= t3

4. t2
.= t1 and t3

.= t2

In case (1) we use eqLeft to replace the left-hand side t2 of the second equation
by its right-hand side in the first equation and obtain t1

.= t3.
In case (3) we replace, using eqLeft, the left-hand side t2 of the first equation

by its right-hand side in the second equation and obtain t1
.= t3.

In case (4) replace the left-hand side t2 of the first equation by its right-
hand side in the second equation and obtain t3

.= t1. Another application of
eqSymmLeft yields t1

.= t3.
Case (2) is the most involved. By exhaustiveness of B we know that eqSymm-

Left will be applied again to both equations in focus. If it is first applied to the
first equation, we obtain the situation in case (4). If it is first applied to the
second equation, we obtain case (1).

478 P.H. Schmitt and M. Ulbrich

Thus in any case t1 ∼B t3 follows and transitivity is established. In total we
know now that ∼B is an equivalence relation.

Next we aim to show that ∼B is also a congruence relation. This requires
first to show that ti ∼B t′

i for 1 ≤ i ≤ n implies f(t1, . . . , tn) ∼B f(t′
1, . . . , t′

n)
for any n-place function symbol f . For simplicity we only present that case of
a unary function symbol f . We need to show f(t) ∼B f(t′) from t ∼B t′. We
first take on the case that σ(t) and σ(t′) are comparable, e.g., σ(t′) � σ(t). By
assumption there is a sequent Γ =⇒ Δ in branch B with t

.= t′ ∈ Γ . From the
argument given above, we know that there is also sequent Γ1 =⇒ Δ1 on B with
f(t) .= f(t) ∈ Γ1 and t

.= t′ ∈ Γ1. By rule eqLeft we obtain a sequent Γ2 =⇒ Δ2
on B with f(t) .= f(t′) ∈ Γ2, and thus f(t) ∼B f(t′). It remains to deal with the
case that σ(t) and σ(t′) are incomparable. Then rule eqDynamicSort applies and
yields a sequent Γ3 =⇒ Δ3 on B with t

.= t′ ∈ Γ3 and also ∃x.(x .= t∧x
.= t′) ∈ Γ3

with x a variable of the new type C, with C � σ(t) and C � σ(t′). By exLeft
there is a Skolem symbol sk of type C with sk ∼B t and sk ∼B t′. By the
comparable types case of the congruence property already established we obtain
f(sk) ∼B f(t) and f(sk) ∼B f(t′). In total f(t) ∼B f(t′) as desired. The case
of arbitrary n-place function symbols is only marginally more complicated.

To show that ∼B is a congruence relation requires to verify the second claim
for any n-place predicate symbol q: if ti ∼B t′

i for 1 ≤ i ≤ n and q(t1, . . . , tn) ∈ Γ
for some Γ =⇒ Δ in B then also q(t′

1, . . . , t′
n) ∈ Γ ′ for some Γ ′ =⇒ Δ′ in B. This

follows easily from repeated application of the eqLeft rule.
By [t]B for t ∈ H0 we denote the equivalence class of t with respect to ∼B,

i.e., [t]B = {s ∈ H0 | t ∼B s}. The universe of the intended counterexample can
be stated as:

H = {[t]B | t ∈ H0}
Next we need to decide what (dynamic) type an element [t]B should have in

the structure to be constructed. We call an equivalence class [t]B typed if there
is a type T0 ∈ T such that there is an term t0 ∈ [t]B with σ(t0) = T0 and for all
t′ ∈ [t]B the subtype relation T0 � σ(t′) holds true. For every equivalence class
[t]B that is not typed, we introduce a new type constant T[t] and set

Δ = {T[t] | [t]B ∈ H is not typed}
ΔR = {T[t] � σ(t′) | t′ ∈ [t]B and T[t] ∈ Δ}

The type hierarchy T ′ = (TSym′, �′) extending T = (TSym, �) is given by
TSym′ = TSym ∪ Δ and �′ the least subtype relation containing � ∪ ΔR.
Obviously, T � T ′.

We are now ready to define a first-order (T ′, Σ)-structure M = (H, δ, I).
The (dynamic) typing function is given by

δ([t]B) =
{

T0 if [t]B is typed by T0
T[t] the new type constant, otherwise

For any n-place function symbol f , we set I(f)([t1]B , . . . , [tn]B) = [f(t1, . . . , tn)]B .
Since ∼B is a congruence relation this is an unambiguous definition.

Axiomatization of Typed First-Order Logic 479

For any n-place predicate symbol p we set

I(p) = {([t1]B , . . . , [tn]B) | a sequent Γ, p(t1, . . . , tn) =⇒ Δ occurs in B}

Again we have to argue that this definition is unambiguous. We do this again
for the special case n = 1. The generalization to arbitrary n is left as an easy
exercise to the reader. If Γ, p(t) =⇒ Δ occurs in B and t ∼B s we need to show
that also a sequent Γ ′, p(s) =⇒ Δ′ occurs in B. We observe first that there is no
rule that removes or changes an atomic formula occurring in a sequent. Even in
eqLeft and eqRight the substituted formula is added. Therefore we will have a
sequent Γ ′′, t

.= s, p(t) =⇒ Δ′′ in B. An application of eqLeft now completes the
argument.

This completes the definition of the structure M = (H, δ, I).

I(t) = [t]b for every ground term t. (3)

For 0-place function symbols c claim (3) is just the definition of I(c). The rest
of the claim follows by an easy induction on the structural complexity of t.

The next phase in the proof consists in the verification of the claim

M |=
∧

Γ ∧ ¬
∨

Δ for all sequents s = Γ =⇒ Δ in B (4)

The proof of claim (4) is reduced to the following

For every formula φ
if there is Γ =⇒ Δ ∈ B with φ ∈ Γ then M |= φ
if there is Γ =⇒ Δ ∈ B with φ ∈ Δ then M �|= φ

(5)

Claim (5) is proved by induction on the structural complexity n(φ) of φ. If
n(φ) = 0 then φ is an atomic formula or an equation.

For an atomic formula p(t̄) ∈ Γ we know by definition of M that M |= p(t̄).
Now, consider p(t̄) ∈ Δ. If M |= p(t̄) then there must by definition of M be a
sequent Γ ′ =⇒ Δ′ in B with p(t̄) ∈ Γ ′. Since atomic formulas never get removed,
we must have either p(t̄) ∈ Δ and p(t̄) ∈ Γ or p(t̄) ∈ Δ′ and p(t̄) ∈ Γ ′. In both
cases the branch B could be closed, contrary to assumption. Thus we must have
M |= ¬p(t̄) for all p(t̄) ∈ Δ.

For t1
.= t2 ∈ Γ we get t1 ∼B t2 by definition of ∼B. Thus [t1]B = [t2]B which

directly yields M |= t1
.= t2.

For t1
.= t2 ∈ Δ we need to show t1 �∼B t2. But, if t1 ∼B t2 were true, there

would by definition of ∼B be a sequent Γ =⇒ Δ in branch B with t1
.= t2 ∈ Γ .

Since atomic formulas never get erased there would also be a sequent Γ ′ =⇒ Δ′

with t1
.= t2 ∈ Γ ′ and t1

.= t2 ∈ Δ′ and the branch could be closed contrary to
assumption.

The inductive step n(φ) > 0 is split into a total of 12 cases. Since this part of
the proof follows a well established pattern, we restrict our presentation to two
exemplary cases.

480 P.H. Schmitt and M. Ulbrich

Case A φ1 ∧ φ2 in Γ .
Since branch B is assumed to be exhausted, rule andLeft will have been applied.
There is thus a sequent Γ ′ =⇒ Δ′ in B with φ1, φ2 ∈ Γ ′. By induction hypothesis
we know M |= φ1 and M |= φ2 thus M |= φ1 ∧ φ2.

Case B ∃x.φ in Γ .
Since branch B is assumed to be exhausted rule exLeft will have been applied.
There is thus a sequent Γ ′ =⇒ Δ′ in B with [x/c]φ ∈ Γ ′ . By induction hypothesis
we know M |= [x/c]φ and thus also M |= ∃x.φ. ��

3 A Basic Theory in Typed Logic

In this section, we introduce the concept of a basic theory that may be useful in
many application contexts.

Definition 9. Let T be a type hierarchy, Σ a signature.
A (T , Σ) theory T is called a basic theory if

– Σ contains at least for each A ∈ T , A �= �, ⊥
• The unary predicate symbols instanceA : � and exactInstanceA : �
• The function symbol castA : � → A
• The constant symbol defaultA : A.

Such Σ will be called a basic signature.
– T contains at least the following axiom schemes T base

T

1. ∀x.(instanceA(x) ↔ ∃y.(y .= x)) with y : A (Ax-I)
2a. ∀x.(exactInstanceA(x) → instanceA(x)) (Ax-E1)
2b. ∀x.(exactInstanceA(x) → ¬instanceB(x)) with A �� B (Ax-E2)
3. ∀x.((instanceA(x) → castA(x) .= x) ∧

(¬instanceA(x) → castA(x) .= defaultA))
(Ax-C)

A, B range over TSym \ {⊥} and x : � is a variable of the universal sort �.

Definition 10. Let Σ be a basic signature. A (T , Σ)-structure M = (M, δ, I)
is called a standard structure if

1. instanceM
A = {o ∈ M | δ(o) � A} = MA

2. exactInstanceM
A = {o ∈ M | δ(o) = A}

3. castM
A (o) =

{

o if o ∈ MA

defaultM
A otherwise

There are at this point no restrictions on defaultM
A except, of course, that it be

an element of MA.

Theorem 2.

1. Let M be a standard (T , Σ)-structure for basic signature Σ.
Then M |= T base

T .

Axiomatization of Typed First-Order Logic 481

2. Let M be a (T , Σ)-structure for basic signature Σ and M |= T base
T .

Then o ∈ exactInstanceM
A =⇒ δ(o) = A.

Proof. ad 1
Parts (1) and (3) of Definition 9 are direct formalization of the definitions of
instanceA and castA in standard structures in Definition 10. Part (2a) is also
an obvious consequence of the semantics of exactInstanceA. So let us turn to
part (2b) and consider o ∈ exactInstanceM

A and a type B with A �� B. By
the standard semantics definition this says δ(o) = A and δ(o) �� B and thus
o �∈ instanceM

B . This proves M |= (2b).
ad 2
Since the first part of axiom (2) in T base

T entails exactInstanceM
A ⊆ instanceM

A ,
we obtain δ(o) � A from the definition of instanceA in T base

T . If δ(o) �= A axiom
(2b) would yield o �∈ exactInstanceM

δ(o) contradicting (2) of Definition 10. ��

If a (T , Σ)-structure M satisfies M |= T base
T , then it need not be a standard

structure, i.e., the reverse implication in Proposition 2 (2) need not hold. The
axioms would, e.g., be true if exactInstanceM

A = ∅ for all A. We will neverthe-
less be able to prove that the sentences derivable from T base

T are exactly those
universally valid in all standard structures. This needs the following preparatory
definitions and lemma.

For an arbitrary extension T ∗ = (TSym∗, �∗) of T = (TSym, �) and sig-
nature Σ for the hierarchy T we construct for any (T ∗, Σ∗)-structure M with
M |= T base

T an adapted structure Ma that is standard and not too far away
from M. Ma will be a (T a, Σa) structure for an extension T a of the hierarchy
T ∗. The signatures Σ∗ and Σa will at least contain all the symbols from Defini-
tion 9 relating to the new types not contained in TSym. In passing from M to
Ma some elements of the universe need to be “relocated” into different types.
We will do this using a partial type projection πM,T : M �−→ TSym which is
characterized by

πM,T (o) = A ⇐⇒ o ∈ exactInstanceM
A

and δ(o) � A
and (δ(o) � B =⇒ A � B) for all B ∈ TSym.

(6)

Function π is well-defined: Assume there are two A, A′ ∈ TSym for which the
right-hand side of the above definition is true. By the third condition we have
that A � A′ and A′ � A, hence, (T is a poset) A = A′.

The idea behind it is that π maps element o to the type it appears to live
in (o ∈ exactInstanceM

A) when looking at it from the perspective of T only.
The additional conditions make this well-defined and ensure that domains in
the adapted structure remain the same.

Definition 11. Let T ∗ = (TSym∗, �∗) be an extension of the type hierarchy
T = (TSym, �), Σ a basic signature for hierarchy T , and M = (M, δ, I) a
(T ∗, Σ∗)-structure.
The adapted structure Ma = (M, δa, Ia) for M is the (T a, Σa) structure with

T a = (TSyma, �a)

482 P.H. Schmitt and M. Ulbrich

TSyma = TSym ∪ {To | o �∈ dom πM,T } for new symbols To

�a = transitive closure of �T ∪
{(To, A) | o �∈ dom πM,T , A ∈ TSym, δ(o) � A}

Σa = Σ∗ ∪ {instanceC , exactInstanceC , castC , defaultC |
C ∈ TSyma \ TSym∗}

δa(o) =

{

A if πM,T (o) = A

To if o �∈ dom πM,T

Ia(f) = I(f) for symbols f ∈ Σ

Ia(instanceTo) = Ia(exactInstanceTo) = {o} for all o �∈ dom πM,T
Ia(castTo)(x) = Ia(defaultTo

) = o for all o �∈ dom πM,T

Lemma 3.

1. AMa = AM for A ∈ TSym.
2. If M |= T base

T then (πM,T (o) = A ⇐⇒ o ∈ exactInstanceM
A)

Property 1 is necessary for the construction of Ma to be well-defined. If domains
had changed, e.g., AMa �= AM, the definition Ia(f) = I(f) would not make
sense.

Proof. ad 1

⊆⊆⊆ Assume o ∈ AMa , that is δa(o) = B �a A for some B ∈ TSyma. If B = To,
then To �a A implies by the definition of �a (see part (2) of Lemma 2) that
there must be a type C ∈ TSym with δ(o) � C and C � A. Hence, also
δ(o) � A, i.e., o ∈ AM. If B = πM,T (o), then δ(o) � A by definition of
πM,T .

⊇⊇⊇ Assume o ∈ AM, that is δ(o) = B � A for some B ∈ TSym∗. If o ∈
dom πM,T , then πM,T (o) is the �-smallest supertype in TSym covering B.
Hence, δa(o) = πM,T (o) � A. Part (1) of Lemma 2 yields δa(o) �a A and
so o ∈ AMa . On the other hand, if o �∈ dom πM,T , then δa(o) = To and
To �a A (by definition of �a). Again, δa(o) �a A and o ∈ AMa .

ad 2
We show that under the assumption of the axioms, the first condition in (6)
implies the other two. Choose o ∈ exactInstanceM

A in the following.
Axiom (Ax-E1) ensures that o ∈ instanceM

A , and axiom (Ax-I) that δ(o) � A.
(see later more details...)

Assume that the third condition were violated, that is, there is B ∈ TSym
with δ(o) � B and A �� B. But this allows us to use axiom (Ax-E2) to obtain
o �∈ instanceM

B and (again by axiom (Ax-I)) that δ(o) �� B. Contradiction. ��

Lemma 4. Let Σ, T , T ∗, T a be as in Definition 11 and M a (T ∗, Σ∗)-structure
satisfying M |= T base

T .

Axiomatization of Typed First-Order Logic 483

1. The adapted structure Ma of M is a standard structure and
2. M |= ϕ ⇐⇒ Ma |= ϕ for all (T , Σ)-formulas ϕ.

Proof.
ad 1. To argue that Ma is a standard structure we look separately at the three
conditions of Definition 10, where A ranges of all type symbols in TSyma.

1. instanceMa

A = {o ∈ M | δa(o) �a A}
We have already observed that we have for all A ∈ TSym

AMa

= {o ∈ M | δa(o) �a A} = {o ∈ M | δ(o) � A} = AM.

For A ∈ TSym we know M |= ∀x(instanceA(x) ↔ ∃y.(y .= x)) from ax-
iom (Ax-I). Thus instanceM

A = {o ∈ M | δ(o) � A}. By definition of Ma

we have instanceMa

A = instanceM
A . Together with the initial observation this

proves what we want.
It remains to consider types To for o �∈ dom πM,T . By definition instanceMa

To
=

{o}.
{o′ ∈ M | δa(o′) �a To} = {o′ ∈ M | δa(o′) = To} Lemma 2(3)

= {o′ ∈ M | o′ = o} Def. of δa

2. exactInstanceMa

A = {o ∈ M | δa(o) = A}
For A ∈ TSym the valuation exactInstanceMa

A is the same as exactInstanceM
A

From Lemma 3(2), we obtained thatπM,T (o) = A ⇐⇒ o ∈ exactInstanceMa

A .
Let o ∈ exactInstanceMa

A be given. The implication from right to left gives
us that πM,T (o) = A and also δa(o) = A (since o ∈ dom πM,T).
For the opposite direction, assume now that δa(o) = A. Since A ∈ TSym, it
must be that o ∈ dom πM,T and πM,T (o) = A. The implication from right
to left entails o ∈ exactInstanceMa

A .
Finally, if To ∈ TSyma \ TSym is a type introduced in the adapted type
system for o �∈ dom πM,T , then (by definition of δa) o is the only element of
that type, and Ia(exactInstance) is defined accordingly.

3. castMa

A (o) =
{

o if o ∈ AMa

defaultMa

A otherwise
For a type A ∈ TSym, the domain AMa = AM has not changed; the defini-
tion of δa reveals that some elements o may now have a new dynamic type To

which is a subtype of A, but this does not modify the extension of the type.
We can use axiom (Ax-C) to show that the semantics of the cast is precisely
the required. We can use the fact that AM = instanceMa

A established in item
1 and leave the proof as an easy exercise.
Again for the types not already present in TSym, the definition of Ia fixes
the semantics of the cast symbols correctly.

ad 2.
For the evaluation of a formula, the adaptation Ma is indistinguishable from

the original M. Keep in mind that the syntactical material for ϕ is that of (T , Σ),
i.e., neither the types in TSym∗ \ TSym, TSyma \ TSym nor the corresponding
function and predicate symbols will appear in ϕ.

Proof by structural induction over quantifications:

484 P.H. Schmitt and M. Ulbrich

– For any quantifier-free ϕ we have that M, β |= ϕ ⇐⇒ Ma, β |= ϕ. This
is a direct consequence of the fact that functions and predicates in Σ are
interpreted identically in M and Ma.

– Let ∀x:A. ϕ be a universally quantified formula for A ∈ TSym. We have:

M, β |= ∀x. ϕ

⇐⇒ M, βo
x |= ϕ for all o ∈ AM

⇐⇒ Ma, βo
x |= ϕ for all o ∈ AM (induction hypothesis)

(∗)⇐⇒ Ma, βo
x |= ϕ for all o ∈ AMa

⇐⇒ Ma, β |= ∀x. ϕ

The essential point is (∗) relying upon that quantifiers range over the same
domains in M and Ma. We have observed this already in the proof of the
first point of this proposition.
The case for the existential quantifier is completely analogous.

The next lemma claims that T base
T is a complete axiomatization of standard

structures.

Theorem 3. Let Σ be a basic signature, T an arbitrary type hierarchy, and φ
a (T , Σ) sentence. Then

T base
T |= φ ⇔ for all extensions T ∗ � T and (T ∗, Σ) standard structures M

M |= φ

Proof. For the implication ⇒ from left to right we assume T base
T |= φ and fix

an extension hierarchy T ∗ � T and a (T ∗, Σ) standard structure M with the
aim of showing M |= φ. We will succeed if we can show M |= T base

T , which is
Theorem 2(1)).

For the reverse implication, ⇐, we assume the right-hand condition and fix
an extension T ∗ � T and a (T ∗, Σ)-structure M with M |= T base

T . We want to
arrive at M |= φ. Let Ma be the adapted structure for M as in Definition 11.
By the first part of Proposition 4 we know that Ma is a standard structure. By
assumption this implies Ma |= φ. By the second part of Proposition 4, we get
M |= φ. ��

4 Towards a Java Theory

In this section we provide a few hints how theory T base
T can be instantiated and

extended to a theory TJ suitable for reasoning about a real Java program Π .
The type hierarchy TJ will consist of the classes occurring in Π with the subclass
ordering plus possibly some abstract data types. One might wish to fix certain
default elements by adding e.g., defaultObject = null and defaultboolean = false
to the theory.

Axiomatization of Typed First-Order Logic 485

It will also be useful to fix certain properties of the type hierarchy, e.g., that int
and Object are disjoint types. This can be done by adding ¬∃x.(instanceint(x)∧
instanceObject(x)) to TJ . As another example, one may want to formalize that
int has no strict subtype. This is achieved by adding ∀x.(instanceint(x) →
exactInstanceint(x)) to TJ .

Martin Giese in [1, Chapter 2]. included from the start a distinction between
abstract and non-abstract types, that he called dynamic types. In our setup we
can define a type T to be abstract by the formula ¬∃x.(exactInstanceT (x)), with
x a variable of type Object.

5 Concluding Remarks

We point out that finiteness of TSym is not assumed for the completeness proof.
One might sum up the distinctive feature of our approach by noting that it

allows us to convey typing information firstly in the way of syntax declarations.
Thus, associating a unique static type with every term with the usual benefits.
Secondly, typing information can be stated freely as axioms. Other approaches,
e.g. [11] only offer the second possibility

A first-order theory for Java along the lines sketched in Section 4 but more
expressive language has been implemented and used in the KeY system. This
theory is, in fact, based on a logic that is richer than the one introduced in
Section 2, contains e.g. conditional terms (if φ then t1 else t2) ∈ TrmA for
φ ∈ Fml and ti ∈ TrmAi such that A2 � A1 = A or A1 � A2 = A.

References

1. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

2. Bobot, F., Conchon, S., Contejean, E., Lescuyer, S.: Implementing polymorphism
in smt solvers. In: Proceedings of the Joint Workshops of the 6th International
Workshop on Satisfiability Modulo Theories and 1st International Workshop on
Bit-Precise Reasoning, SMT 2008/BPR 2008, pp. 1–5. ACM, New York (2008)

3. Bobot, F., Paskevich, A.: Expressing Polymorphic Types in a Many-Sorted Lan-
guage. In: Tinelli and Sofronie-Stokkermans [9], pp. 87–102

4. Esparza, J., Majumdar, R. (eds.): TACAS 2010. LNCS, vol. 6015. Springer,
Heidelberg (2010)

5. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem
Proving. Wiley (1987)

6. Giese, M.A.: A calculus for type predicates and type coercion. In: Beckert, B. (ed.)
TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 123–137. Springer, Heidelberg
(2005)

7. Leino, K.R.M., Rümmer, P.: A polymorphic intermediate verification language:
Design and logical encoding. In: Esparza and Majumdar [4], pp. 312–327

8. Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen.
Math. Annalen 115, 485–506 (1938)

486 P.H. Schmitt and M. Ulbrich

9. Tinelli, C., Sofronie-Stokkermans, V. (eds.): FroCoS 2011. LNCS, vol. 6989.
Springer, Heidelberg (2011)

10. Walther, C.: A Many-Sorted Calculus Based on Resolution and Paramodulation.
Pitman / Morgan Kaufmann (1987)

11. Weidenbach, C.: First-order tableaux with sorts. Logic Journal of the IGPL 3(6),
887–906 (1995)

Model-Based Problem Solving for University

Timetable Validation and Improvement

David Schneider(�), Michael Leuschel, and Tobias Witt

Institut für Informatik, Heinrich Heine University Düsseldorf, Germany
{david.schneider,tobias.witt}@hhu.de, leuschel@cs.uni-duesseldorf.de

Abstract. Constraint satisfaction problems can be expressed very el-
egantly in state-based formal methods such as B. However, can such
specifications be directly used for solving real-life problems? We will try
and answer this question in the present paper with regard to the univer-
sity timetabling problem. We report on an ongoing project to build a
formal model-based curriculum timetable validation tool where we use a
formal specification as the basis to validate timetables from a student’s
perspective and to support incremental modification of timetables. In
this article we focus on expressing the problem domain, the formaliza-
tion in B and our approach to execute the formal model in a production
system using ProB.

Keywords: B-method · Constraint programming · Timetabling · Schedul-
ing

1 Introduction

Motivation State-based formal methods enable elegant and succinct encodings
of constraint satisfaction problems [17], but solving constraints in such high-
level formalisms is a major challenge. In [17] we have shown that ProB can be
used to effectively solve some interesting constraint programming benchmarks
expressed in the B language [2] and have successfully solved a challenge set out
by Shapiro [26]. The company ClearSy has successfully used ProB in a similar
way to reverse engineer an application binary.1

The main question pursued in this paper is whether one can already use this
model-based approach to constraint solving in a production system, or whether
further research and development is required. In other words, is it possible to com-
pletely express a non-trivial constraint satisfaction problem in B (or some other
state-based formal method), and to use this formal model in a real production
system without manual code-generation? The benefits would be considerable:
expressing the constraints (correctly) would be considerably less difficult, modi-
fying the constraints could be done declaratively within the formal model, with
all the aid provided by formal methods and their tools. However, to be success-
ful, the constraint solving capabilities need to scale to the real-life problem, they

1 See http://www.data-validation.fr/data-validation-reverse-engineering/.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 487–495, 2015.
DOI: 10.1007/978-3-319-19249-9_30

488 D. Schneider et al.

need to be robust and predictable, and one needs to be able to link the model
with the graphical user interface in particular and the computing architecture
in general.

The — maybe surprising — answer to this important question turns out to be
positive. In this paper, we show how we have successfully expressed a challenging
timetabling problem at our university in B, and have developed a system which
executes this formal model in real-time using the ProB constraint solver and
provides a web-based graphical interface using a new API. The tools can be
used to detect minimal conflict sets efficiently, providing the user with valuable
feedback. Data is automatically imported from external sources and high-level
constraints can be added or modified simply by editing the formal model.

University Timetabling Problem. In cooperation with the faculty of arts and hu-
manities and the faculty of business administration and economics at the Hein-
rich Heine University in Düsseldorf we are working on a timetabling application
to validate the feasibility of the offered curricula. The central goal of the project
is to validate existing and future timetables of all programs to ensure that it is
possible for students to attend all required classes to finish their studies in the
standard time defined by their chosen curriculum. Secondary goals are to pro-
vide assistance to resolve conflicts in the timetables by computing conflict sets
and feasible alternative timeslots. The data provided by the faculties consists
of a) 249 scheduled events organized in 128 units in 67 different programs with
1751 different links between units and programs, as well as b) 338 events in 222
units and 6 programs with 991 links between units and programs, respectively.
Validating this data requires to detect scheduling conflicts, which would require
a student, at any point in their studies, to attend two sessions at the same time.
The complexity arises from the number of available combinations that need to
be validated and the number of possible choices for students: some units are
available in more than one semester and students can choose when to attend
them. Units might be divided in sections or groups, offered on different days and
times, where students have to choose one group and attend all sessions that are
part of that group. Programs are often combinations of subjects and thus many
programs share teaching units. This needs to be considered when searching for
alternative timeslots and modifying timetables.

Figure 1 shows a screenshot of the user interface of our application, which is
divided into three components. We have a browser based user interface for inter-
acting with the timetables, a server component built using Groovy that embeds
the models using the ProB Java API [4] and exposes them to the frontend us-
ing a REST based HTTP API, and finally the model layer, which is built using
classical B and evaluated using the ProB. An online version of the tool and
further information can be accessed at: http://stups.hhu.de/w/Pub:FM2015.

2 Background

Timetabling is a family of scheduling or resource allocation problems where the
goal is to assign events to a limited number of timeslots. Each event might be

http://stups.hhu.de/w/Pub:FM2015

Model-Based Problem Solving 489

associated to arbitrary constraints regarding relationships among events, addi-
tional resources allocations (e.g. rooms, materials), etc. Corne et al. [7] cate-
gorize simple timetabling constraints, as unary, binary, capacity, event spread
and agent constraints. In the context of educational institutions the problem is
about assigning classes, e.g., lectures and seminars, to timeslots. The fundamen-
tal binary constraint is that no person should have to attend two events relevant
for them at the same time; other constraints might regard room assignment,
teacher workload, etc. The timetable construction problem is an NP-complete

Fig. 1. UI representation of a semester week highlighting a detected scheduling conflict.
Each numbered box represents an event, the numbers represent the teaching units and
groups the events are associated to. The two highlighted units (65 and 67) are in conflict
because they are assigned to the same curriculum while their sessions share a timeslot
on Tuesday at 10:30.

problem [6] where the goal is to find a timetable for a set of events that satisfies
a set of given constraints (completely or as many as possible). Timetable vali-
dation can be understood as a similar problem, where the goal is to decide if a
given timetable is feasible with regard to different constraints. In this sense, from
a student’s perspective a timetable in a curriculum is feasible if he or she can at-
tend all units as prescribed by the curriculum in such a way that no constraints
are violated and that the degree is finished within the legal timeframe.

In order to validate a timetable for a specific semester or for a complete
curriculum it is necessary to verify if it is possible to choose the number of
elective classes as required by the curriculum, the semester in which to attend
each chosen elective and all mandatory classes and for all sectioned classes the
group and thus sessions to attend.

490 D. Schneider et al.

3 Modelling Curricula and Timetables in B

Some of the central and non-trivial features of our application, that have been
modelled in B are described below. The modelling of the curricula and timetables
is split into several parts. B machines that hold the data (2247 lines for the faculty
of humanities and 1724 lines for the faculty of economics) for each faculty are
generated from CSV or Excel documents. There are faculty specific machines
that model the curricula and validation rules that are distinct for each faculty
(377 lines for the faculty of humanities and 734 lines for the faculty economics),
e.g. describing mandatory parts and how to select units for the different forms of
validation. Common aspects and rules are shared between the models (301 lines
in total), e.g. the rules on how to compare and validate sets of teaching units.

Conflict Detection. As described above, the core criterion to decide the feasibility
of a timetable is the presence of binary conflicts from a student’s perspective.
The conflict detection is split into two pieces, first a faculty specific part that
encodes how to select a set of units relevant for a validation (e.g. Fig. 2 shows the
constraint that is used to choose a number of elective modules for a major, where
the number is provided by the major module requirement function); second, a
predicate that describes the conflict property for pairs of units in the collected
set.

module choice ⊆ modules ∧ card(module choice) = major module requirement(cc) ∧
units in modules = union(module units[module choice])

Fig. 2. Simplified selection of elective modules in a given curriculum (cc)

A simplified version of the conflict detection is shown in Fig. 3. The conflict-
property of a set of units can be expressed in B as a (nested) universally quan-
tified predicate over the set of pairs of these units. Conflicts are based on the
sessions of a unit, which have a slot field that represents the assigned day and
time. Two sessions are in conflict if the sessions are scheduled on an interfering
rhythm (at least one weekly or both on the same biweekly rhythm) and both
sessions are assigned to the same slot. Related sessions form a group; a group
is not in conflict with another group if all sessions are pairwise not in conflict.
A teaching unit is not in conflict with a second one if they are either assigned
to different semesters or if it is possible to choose a group in each such that
the groups are not in conflict. In case of sectioning there can be more than
one group, such that there are no conflicts among the sessions in those groups.
A set of units is conflict free, if it is possible to globally assign a semester and
a group to each unit such that all units are pairwise not in conflict. The choice
of semester and group is expressed in B using total functions as shown in Fig. 4,
that map from a unit to the chosen semester or group respectively. These func-
tions are described only by constraining the range of the functions according to

Model-Based Problem Solving 491

∀(u1, u2).((u1, u2) ∈ conflict set ⇒ (semesterChoice(u1) = semesterChoice(u2) ⇒
∃(group1, group2).(/* LET */

group1 = unit group(u1, groupChoice(u1))∧
group2 = unit group(u2, groupChoice(u2))∧
∀(s1, s2).(s1 ∈ group1′sessions ∧ s2 ∈ group2′sessions ⇒

(s1′rhythm = s2′rhythm /* both in the same rhythm */

∨ s1′rhythm = weekly /* first weekly */

∨ s2′rhythm = weekly) /* second weekly */

⇒ s1′slot
= s2′slot))))

Fig. 3. Simplified conflict detection logic for a set of pairs of teaching units (conflict set)

the curriculum data and chosen by the ProB constraint solver. When validat-
ing the units selected, the instantiated functions are used to retrieve the chosen
semester and group for a unit.

The formula in Fig. 3 is only true if functions semesterChoice and groupChoice

can be found that satisfy their constraints and lead to no binary conflicts among
sessions. If the validation fails ProB will try a different instantiation of the func-
tions that satisfies the provided constraints until the validation succeeds or there
are no further possible choices.

groupChoice ∈ Units → min group..max group ∧
∀(u).(u ∈ Units ⇒ groupChoice(u) ∈ unit min group(u)..unit max group(u))

Fig. 4. Defining the choice of group constraint using a total function (groupChoice)

Computing Conflict Sources. If no conflicts are detected, the process described
above will generate an assignment to the semesterChoice and groupChoice func-
tions which together represent one of possibly many feasible timetables for the
curriculum being validated. In case no assignment can be found it is necessary
to find and resolve any scheduling conflicts among the units of the curriculum
before generating a viable timetable.

To identify which units cause a conflict we compute a minimal unsatisfiable
core (UC) [27] of the units used in the validation. This is expressed in B as a
recursive function that minimizes the set of units by stepwise removing units,
calling the conflict detection logic and pruning units that have no effect on the
outcome of the validation. The result is one of potentially many sets of teaching
units that are in conflict, i.e. units that can not be attended as recommended
by the curriculum. Having computed an UC of units that lead to a conflict,
we additionally compute the set of sessions in those units that are actually in
conflict, as shown in Fig. 1. Due to sectioning and multi-session groups, the
sessions actually in conflict are often only a small subset of all the sessions
associated to the units in conflict. The UC of the sessions is computed similarly
to the UC of units, by stepwise removing sessions from the units in a computed

492 D. Schneider et al.

UC that do not affect the unsatisfiability of the validation. If a unit is known to
have only one session it is never removed, as it must be part of the core.

Computing Alternatives. In case there are conflicts in a timetable, or just to
satisfy changed requirements it is often necessary to move a single session to
a different timeslot. To avoid creating new conflicts by moving a session to an
arbitrary slot we provide a method to compute viable alternatives for a given
session, which do not introduce new conflicts.

4 Related Work

Time-Tabling There is plenty of research on automatic timetabling, more than
can be covered here. This area has seen interest from different research communi-
ties, as it presents a challenging problem with real world applications for a variety
of approaches. There is research based on metaheuristics and genetic algorithms,
that aim to improve timetables through mutation [7], [18]. There is research on
this problem using SAT techniques, such as [1], Answer Set Programming [3],
Integer Linear Programming [25] and based on constraints [10], [20], [21], [24].
There has been a timetabling competition ITC 2002, 2007 [11] and 2011 [23],
which provides a set of benchmarks to drive and compare research [16].

Could Other Approaches Have Been Used ? Our formal B model could probably
just as well have been expressed in another state-based formal method; we return
to this issue in the conclusion. The constraint solving capabilities are crucial for
our application. Hence tools like the model checker TLC [29] or the animators
coreASM [13] or AnimB [19] cannot be used for (variations of) our present model.

ProB relies on constraint logic programming [15]. Other successful approaches
to constraint solving in the context of formal methods are SAT and SMT solving
[12]. Indeed, in [22] we have presented an alternate constraint solving backend
for ProB, which uses the Kodkod library [28], translating first-order relational
logic into SAT problems. Unfortunately, we were unable to use this backend here,
due to fundamental performance issues for relations over large domains.2

Another promising technology is SMT, where one can circumvent the above
SAT issue of dealing with large domains by using theories. A translation of Event-
B formulas into SMTlib format is available [9], and has proven very successful for
proof. For constraint solving (aka model finding) the issue is somewhat different
[22]. For example, even the simple n-queens problem for n=4 cannot be solved
by current SMT solvers such as Z3 [8] or CVC4 on the translation of [9].3

In conclusion, while ProB’s constraint solving based on constraint logic pro-
gramming has some drawbacks over SAT or SMT based approaches (no learning

2 In our experiments, Kodkod was either orders of magnitude slower at various tasks
(such as determining programs with units in common), or was unable to achieve the
SAT translation (CapacityExceededException).

3 A fundamental issue seems to be that the current SMTlib translation sometimes
encodes finite B relations and B sets as infinite functions.

Model-Based Problem Solving 493

for example), its ability to deal well with large relations, integer values and
symbolically with infinite or recursive function make it well suited for the time-
tabling application described in this paper.

5 Future Work and Conclusion

In this article we have presented the application of formal methods to a novel
domain. We have succesfully modelled university curricula and timetables vali-
dation in B in a way that captures the domain constraints and can be executed
using ProB. Our models scale well within the scope of real-world data we have
used in our project, e.g., we are able to validate the timetables for all semesters
of all the programs offered by the faculty of arts and humanities in less than
5 seconds and to compute a minimal unsat core of sessions for each of the 12
infeasible programs in the first semester in 4 seconds. The use of a high level lan-
guage to model this problem allowed us to decouple the model from the solving
strategy and thus permitted us to easily evolve the models during the process of
capturing all the domain information.

Modelling this problem and creating the application on top of it has served as
a driver for ProB and its related tools. It has been useful to uncover bugs and
performance problems and the ongoing project will contribute to evolve ProB
and possibly also the B language.

We are aware that a high-level model of a constraint problem cannot compete
with either low-level solutions or dedicated solvers specialised for this class of
scheduling problems. We want to improve the capabilities of ProB in this regard
and we intend to perform an extensive evaluation and compare our approach
to other solutions written directly in more tractable formal methods, such as
Alloy [14], SAT and SMT encodings, as well as a lower-level Prolog encoding
using clp(FD) [5]. We will evaluate the performance aspects, but also compare
the complexity of the models, the complexity of validating and modifying the
models, and the ease of embedding the model in a production system. Indeed, we
believe that developing and adapting a high-level model is considerably easier,
and that formal method tooling can help in validating the model. Our goal is to
move formal models from design documents to artefacts embedded in running
systems. In this paper we have already shown that such formal model-based
problem solving is starting to become practically feasible.

References

1. Aśın Achá, R., Nieuwenhuis, R.: Curriculum-based course timetabling with SAT
and MaxSAT. Annals of Operations Research 218(1), 71–91 (2012)

2. Abrial, J.-R.: The B-Book. Assigning Programs to Meanings. Cambridge University
Press (November 2005)

3. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer Set Programming
as a Modeling Language for Course Timetabling. Theory and Practice of Logic
Programming 13(4-5), 783–798 (2013)

494 D. Schneider et al.

4. Bendisposto, J., Clark, J., Dobrikov, I., Krner, P., Krings, S., Ladenberger, L.,
Leuschel, M., Plagge, D.: ProB 2.0 Tutorial. In: Proceedings of the 4th Rodin User
and Developer Workshop. TUCS Lecture Notes. TUCS (2013)

5. Carlsson, M., Ottosson, G.: An Open-Ended Finite Domain Constraint Solver.
In: Hartel, P.H., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206.
Springer, Heidelberg (1997)

6. Cooper, T.B., Kingston, J.H.: The complexity of timetable construction prob-
lems. In: Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, vol. 1153, pp. 281–295.
Springer, Heidelberg (1996)

7. Corne, D., Ross, P., Fang, H.: Evolving Timetables. Practical Handbook of Genetic
Algorithms: Applications 1, 219–276 (1995)

8. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

9. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Derrick,
J., Fitzgerald, J., Gnesi, S., Khurshid, S., Leuschel, M., Reeves, S., Riccobene, E.
(eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg (2012)

10. Deris, S., Omatu, S., Ohta, H.: Timetable planning using the constraint-based
reasoning. Computers & Operations Research 27(9), 819–840 (2000)

11. Di Gaspero, L., McCollum, B., Schaerf, A.: The Second International Timetabling
Competition (ITC-2007): Curriculum-based Course Timetabling (Track 3). In: Pro-
ceedings of the 14th RCRA Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion, Rome (2007)

12. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Hei-
delberg (2006)

13. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: An extensible ASM execution
engine. Fundam. Inform. 77(1-2), 71–103 (2007)

14. Jackson, D.: Alloy: A lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology 11, 256–290 (2002)

15. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. The Journal of
Logic Programming 19(20), 503–581 (1994)

16. Lach, G., Lübbecke, M.E.: Curriculum based course timetabling: new solutions to
Udine benchmark instances. Annals of Operations Research 194(1), 255–272 (2010)

17. Leuschel, M., Schneider, D.: Towards B as a High-Level Constraint Modelling
Language. In: Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. LNCS, vol. 8477,
pp. 101–116. Springer, Heidelberg (2014)

18. Lewis, R.: A survey of metaheuristic-based techniques for University Timetabling
problems. OR Spectrum 30(1), 167–190 (2008)

19. Métayer, C.: AnimB 0.1.1 (2010), http://wiki.event-b.org/index.php/AnimB

20. Müller, T., Rudová, H.: Real-life Curriculum-based Timetabling. PATAT (June
2012)

21. Müller, T., Rudová, H.: Real-life curriculum-based timetabling with elective
courses and course sections. Annals of Operations Research, 1–18 (June 2014)

22. Plagge, D., Leuschel, M.: Validating B, Z and TLA+ using proB and kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012)

23. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B.: The Third International
Timetabling Competition. Annals of Operations Research (February 2013)

http://wiki.event-b.org/index.php/AnimB

Model-Based Problem Solving 495

24. Rudová, H., Murray, K.: University Course Timetabling with Soft Constraints.
In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002. LNCS, vol. 2740,
pp. 310–328. Springer, Heidelberg (2003)

25. Schimmelpfeng, K., Helber, S.: Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum 29(4), 783–803
(2006)

26. Shapiro, S.C.: The Jobs Puzzle: A Challenge for Logical Expressibility and Auto-
mated Reasoning. In: AAAI Spring Symposium: Logical Formalizations of Com-
monsense Reasoning (2011)

27. Torlak, E., Chang, F.S., Jackson, D.: Finding minimal unsatisfiable cores of declar-
ative specifications. In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014,
pp. 326–341. Springer, Heidelberg (2008)

28. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

29. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In:
Pierre, L., Kropf, T. (eds.) Proceedings CHARME’99, pp. 54–66. Springer,
Heidelberg (1999)

Certified Reasoning with Infinity

Asankhaya Sharma1(�), Shengyi Wang1, Andreea Costea1,
Aquinas Hobor2,1, and Wei-Ngan Chin1

School of Computing, Yale-NUS College, National University of Singapore, Singapore,
Singapore

{asankhs,shengyi,andreeac,hobor,chinwn}@comp.nus.edu.sg

Abstract. We demonstrate how infinities improve the expressivity, power, read-
ability, conciseness, and compositionality of a program logic. We prove that adding
infinities to Presburger arithmetic enables these improvements without sacrificing
decidability. We develop Omega++, a Coq-certified decision procedure for Pres-
burger arithmetic with infinity and benchmark its performance. Both the program
and proof of Omega++ are parameterized over user-selected semantics for the in-
determinate terms (such as 0 * ∞).

1 Introduction

Formal software analysis and verification frameworks benefit from expressive, compo-
sitional, decidable, and readable specification mechanisms. Of course, these goals often
conflict with each other: for example, it is easy to add expressivity if one is willing to
give up decidability! Happily, we have found a free lunch: by adding the notion of “in-
finity” to the specification language we can usefully add to the expressivity, readability,
and compositionality of our specifications while maintaining their decidability.

Specifically, we start from the well-established domains of separation logic [25] and
Presburger arithmetic [24] and add two abstract/fictitious/ghost symbols ∞ and −∞,
for which we support a precise, well-defined semantics. Although a seeming-minor
addition, these symbols add significantly to the expressivity and power of our logic.

In section 2.3, we use infinities to increase the compositionality of our logic by show-
ing that “lists” and “bounded lists” are equivalent when the bound is ∞. Moreover, in
section 2.4, we use ∞ to mix notions of partial and total correctness within a logic.

Infinities also add to our specification framework’s readability and conciseness. For
example, we will see in section 2.2 that ∞ allows us to drop disjuncts in the specifica-
tion for code that manipulates a sorted linked list.

Finally, infinities enable some interesting applications. In section 2.5, we apply the
notion of quantifier elimination in Presburger arithmetic with infinities to infer pure
(non-heap) properties of programs.

All of the previous gains are worthy in their own right, but our major technical ad-
vance is the development of Omega++, a sound and complete decision procedure for
Presburger arithmetic with infinities (including arbitrary quantifier use). In other words,
we do not sacrifice any of the computational advantage normally gained by restricting
ourselves to Presburger arithmetic, despite the addition of infinities. We call our tool
“Omega++” both to acknowledge the importance of the underlying Presburger solver
Omega [9] and because we believe we have modestly incremented its utility.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 496–513, 2015.
DOI: 10.1007/978-3-319-19249-9_31

Certified Reasoning with Infinity 497

Omega++ is written in Gallina, the specification language of Coq [1], allowing us
to formally certify it (modulo the correctness of Omega itself, which we utilize as our
backend). We extract our performance-tuned Gallina into OCaml and package it as a
library, which we have benchmarked using the HIP/SLEEK verification toolset [5].

One notable technical feature of Omega++ is that it can handle several semantic vari-
ants of Presburger arithmetic with infinity. For example, Presburger arithmetic usually

admits multiplication by a constant as a notational convenience, e.g. 3 ·x def
= x+x+x.

This obvious-seeming convenience becomes a little less obvious when one adds infini-
ties: what is 0 · ∞? Mathematical sophisticates can—and do—disagree: some prefer 0
as a convention in certain contexts (including, reasonably, ours) [19], while others pre-
fer the result to be undefined due to the indeterminate status of the corresponding limit
forms [10]. When possible, Omega++ takes an agnostic approach to such disagreements
by allowing the user to specify the semantics of some subtle cases. Omega++ is thus a
certified compiler from a set of related source languages (Presburger arithmetics with
infinities) to a fixed, well-understood target (vanilla Presburger).

Omega++ is available for download and experimentation here:

http://loris-7.ddns.comp.nus.edu.sg/∼project/SLPAInf/

2 Motivation

In this section, we highlight the benefits of augmenting a specification logic with infini-
ties. For consistency we focus on separation logic [6,25] but other specification mecha-
nisms which rely on Presburger arithmetic can enjoy similar benefits.

2.1 Orientation

Our flavor of separation logic has its grounds in the HIP/SLEEK system [5], thus offer-
ing the convenience to test and benchmark with a state-of-the-art verification toolchain.
Methods are specified with a pair of pre- and postcondition (Φpr, Φpo), with the keyword
res consistently used in the Φpo to refer to the return value. We have enhanced the logic
to allow the symbols ∞ and −∞ where it would normally require integers; we also
allow quantification over infinities.

From a systems perspective, our setup is sketched in figure 1. First, entailment be-
tween separation logic formulae with infinities in HIP/SLEEK is reduced (à la Chin et
al. [5]) to entailment between numeric formulae in Presburger arithmetic with infinities
(PAInf). Next, we translate PAInf to vanilla Presburger arithmetic (PA). We emphasize
on this phase as being our main contribution and detail it in section 4.

SL + Inf. PA + Inf. PA
Omega

Fig. 1. Our setup: SL + Inf to PA

Finally, we discharge PA proof obliga-
tions with Omega. There are other com-
binations of separation logic with exten-
sions of PA (such as sets/multisets) that
can be used to enhance the specification.
We discuss them in section 7 as related
work.

http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/

498 A. Sharma et al.

2.2 Infinities enable Concise Specifications

Let’s start to see what infinities can buy us! Consider a simple program which inserts a
new node into a sorted linked list, whose nodes are defined as follows:

data node {int val; node next; }

The data field val stores numerical information and the pointer field next points to the
subsequent node in the structure. Consider the next two alternative inductive predicates
which characterize sortedness using only a single numeric parameter1 describing the
list’s minimum value:

Scenario 1 - no infinity enhancement:

sorted ll〈root, min〉 ≡ root�→node〈min, null〉
∨ ∃ q, mtail · (root�→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

Scenario 2 - with infinity enhancement:

sorted ll〈root, min〉 ≡ (root=null ∧ min=∞)
∨ ∃ q, mtail · (root�→node〈min, q〉 ∗ sorted ll〈q, mtail〉 ∧ min≤mtail)

The base case of Scenario 1 denotes a singleton, while its inductive case describes
a linked list of length at least two. Though useable, this definition has a frustrating
shortcoming: it cannot handle empty linked lists, since such lists do not have a finite
minimum value. In contrast, Scenario 2 handles the empty list gracefully since the
minimum of an empty list can be defined to be just ∞! We could similarly use −∞ to
build a predicate which captures the maximum property of a linked list.

The code for insert is in figure 2. Parameter x points to a sorted linked list, while y
is the data node we wish to insert (preserving sortedness). Notice that the pre/post spec-
ifications in Scenario 1 require disjunctions to separate the cases when x is empty and
nonempty, whereas Scenario 2 handles both cases uniformly. Infinities thus enable more
concise and readable (easy to maintain) specifications.

node insert(node x, node y){
if (x == null) return y;
else {
if (y.val <= x.val){
y.next = x;
return y;

} else {
x.next = insert(x.next, y);
return x;

} } }

Scenario 1 :
Φpr : y�→node〈v, null〉 ∧ x=null

∨ sorted ll〈x, a〉 ∗ y�→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ x=null ∧ b=v

∨ sorted ll〈res, b〉 ∧ b=min(a, v)

Scenario 2 :
Φpr : sorted ll〈x, a〉 ∗ y�→node〈v, null〉
Φpo : sorted ll〈res, b〉 ∧ b=min(a, v)

Fig. 2. Two pre-/post-specifications for insertion into a sorted linked list .

1 Note that there are other ways of specifying sortedness, such as through the use of multi-set,
that may also capture stronger properties, such as content preservation. However, they may
require more complex provers in their reasoning.

Certified Reasoning with Infinity 499

2.3 Infinities Increase Compositionality

Consider this definition for an n-node linked list whose values are bounded by b:

llB〈root, n, b〉 ≡ (root=null ∧ n = 0)
∨(∃ q, v · root�→node〈v, q〉 ∗ llB〈q, n− 1, b〉 ∧ v ≤ b)

Suppose we have a function f which uses this definition in its precondition:

Φpr : llB〈x, n, m〉 ∗ . . .
where x points to a linked list bounded by m. Next, suppose we call f from a program
point where the only available information involves the shape and length of a linked
list x (that is, we have no information about its bound), e.g. we satisfy the predicate
ll〈x, n〉 as defined below:

ll〈root, n〉 ≡ (root=null ∧ n=0)∨ ∃ q · (root�→node〈 , q〉 ∗ ll〈q, n− 1〉)
With infinities this is easy: just instantiate m to ∞ since

ll〈x, n〉 ↔ llB〈x, n,∞〉
Without infinities, however, this is not so easy since we must first determine an appro-
priate bound for x’s values. Thus, infinities increase the compositionality of our logic,
which in turn improves the reusability and conciseness of our specifications.

2.4 Infinities Support Termination and Non-Termination Reasoning

Le et al. developed a technique to reason about termination and non-termination with
a resource constraint RC〈min, max〉 that tracks the minimum and maximum permitted
execution steps [14]. Using Presburger arithmetic with infinity, terminating programs
are modeled by RC〈 , max〉 ∧ max<∞, while non-terminating programs are captured by
RC〈∞,∞〉. Le et al. use Omega++ to discharge the associated proof obligations.

int length(node x){
if (x == null)

return 0;
else

return (1+ length(x.next));
}

Termination Spec :
Φpr : ls〈x, null, n〉 ∗ RC〈 , M〉 ∧ n<M ∧ M<∞
Φpo : ls〈x, null, n〉 ∗ RC〈 , M− (n+ 1)〉 ∧ res=n

Non-Termination Spec :
Φpr : cll〈x, n〉 ∗ RC〈∞,∞〉
Φpo : false

Fig. 3. Example 4: length terminates on proper lists and diverges on cyclic lists

Figure 3 demonstrates these resource constraints on a length function for linked
lists. We show two specifications: the first shows that length terminates on finite lists
ls, and the second shows that length diverges on circular lists cll, where ls and cll

are defined as below:

ls〈root, p, n〉 ≡ (root=p ∧ n=0)
∨ ∃ q · (root�→node〈 , q〉 ∗ ls〈q, p, n− 1〉 ∧ root�=p)

cll〈root, n〉 ≡ ∃ q · (root�→node〈 , q〉 ∗ ls〈q, root, n− 1〉)

500 A. Sharma et al.

2.5 Infinities Support Analysis via Quantifier Elimination

Algorithmic quantifier elimination (QE) is a powerful technique for decision procedures
in symbolic logic [8]. Kapur et al. highlight the importance of geometric QE heuristics
for the case of generating program invariants [7]. While they exploit the structure of
verification conditions generated from numerical programs, our PAInf-based QE allows
us to generate inductive invariants (e.g. using octagonal constraints with infinity: −∞ ≤
±x± y ≤ ∞) for programs manipulating dynamically allocated data structures.

void append(node x, int a){
if (x.next == null)
x.next = new node(a, null);

else

insert(x.next, a);
}

Shape Spec :
Φpr : ll〈x, 〉∧x
=null

Φpo : ll〈x, 〉∧x
=null

Spec with Inferred Pure :
Φpr : ll〈x, n〉 ∧ n>0

Φpo : ll〈x, n+ 1〉 ∧ n>0

Fig. 4. Pure Specification Inferred from PAInf QE

Consider for example the code in figure 4, which appends a node to the end of
an acyclic linked list. The Shape Spec does not express the strongest verifiable post-
condition as it does not account for the newly inserted node. It would be thus useful to
infer size properties as well. We can do so if the verification’s relational obligations are
discharged by QE over PAInf, leading to the specification with numeric properties.

3 Syntax and Parameterized Semantics

There are several benefits of adding the notion of infinity to a program logic. However,
due to the presence of certain terms like (∞−∞), it is an interesting problem to define
the correct (or rather desired) semantics. We will now proceed to a formal discussion of
Presburger arithmetic with infinity.

Our constraint language extends Presburger arithmetic with two abstract symbols
designating positive (∞) infinity and negative (−∞) infinity. The language is detailed
in figure 5. However, we would like to make some extra notes. First, we use a type
based approach to distinguish between the domain of variables. The notation w : τ
denotes that the variable w is of type τ ; thus there is a clear distinction between the
domain of variables. Second, for performance reasons that are explained in section 5
we do not aim for a minimal input constraint language. That is the reason why the
input language also supports min and max constraints over expressions. The min and
max constraints in the input language are translated to min= and max= (using π �
[v/max(a1,a2)]π ∧ max=(v, a1, a2) and π � [v/min(a1,a2)]π ∧ min=(v, a1, a2)).

Next, we present the parameterized semantic model for PAInf and establish theorems
and lemmas that show the correctness of our decision procedure. All theorems and
lemmas in this paper are machine checked in Coq. Parameters are introduced to adapt
different possible ways of handling tricky parts of PAInf such as the terms (∞−∞) and
(0 × ∞). Since our semantics is parameterized, all procedures, theorems and lemmas
based on the semantics are also parameterized. We start by defining an environment to
map variables to values.

Certified Reasoning with Infinity 501

π ::= β | ¬π | π1∧π2 | π1∨π2 | π1→π2 | ∃(w : τ)·π | ∀(w : τ)·π
β ::= true | false | a1<a2 | a1≤a2 | a1=a2 | a1
=a2

| a1 ≥ a2 | a1 > a2

a ::= k | v | c×a | a1 + a2 | −a | a1 − a2 | max(a1,a2) | min(a1,a2)
k ::= c | ∞ | −∞

where v, w are variable names; c is an integer constant

Fig. 5. PAInf: Input Constraint Language

Definition 1 An environment for a universe τ of concrete values is a function φτ : V →
τ from the set of variables V to τ . For such a φτ , we denote by φτ [x �→ a] the function
which maps x to a and any other variable y to φτ (y).

We define the semantics of arithmetic operations and relations for PAInf formally in
figure 6, denoted by �β�Z∞ . The subscript of �� denotes the domain of constants. Z∞
means Z ∪ {∞,−∞}. By analogy, �β�Z means the domain is Z. With these definitions
one can compute every atomic term into a truth value with respect to an environment
φτ and domain of constants η as described in figure 7, and denoted by EVAL

η
φτ

.
We define the satisfaction relation φτ |=sat

η π and dissatisfaction relation φτ |=dst
η π

(in figure 8) for each logical formulaπ over the environmentφτ and domain of constants
η by structural induction on π. Sometimes, a formula π can neither be satisfied nor be
dissatisfied. In that case, we say π is undetermined, which can be presented as φτ |=udt

η

π. We define two distinct relations for satisfaction and dissatisfaction as we support
both two-valued and three-valued logic. In case of three-valued logic a formula can be
neither satisfied nor dissatisfied (undetermined).

Much of the semantics for PAInf is “as you might expect”. For example, when all the
values are finite, all of the operations and relations behave the same way they would in
PA. On the other hand, any finite value plus ∞ equals ∞ and any finite value plus −∞
equals −∞. It is trickier to figure out what to do with the sum of ∞ and −∞; we treat
this as a meaningless value (much like the “value” of 0

0 in the reals) denoted by “⊥”.
If ∞ and −∞ were actually inverses, we would need to admit the following whopper:

0 = ∞+−∞ = ∞+ (−∞+ 1) = (∞+−∞) + 1 = 1
In fact there is no perfect solution, since it is impossible to add a finite number of

symbols to Z while remaining a group. Lasaruk and Sturm [13] propose dodging part of
this problem by using only a single value for both positive and negative infinity, which
is both greater than and less than all finite values. This approach ensures that every
sum is defined, although ∞ still does not have an inverse and you lose antisymmetry
for ≤. We find the notion of a single infinity to be too restrictive as it prohibits us from
expressing some of the motivating examples from section 2.

In addition to the issues encountered while using a single infinity symbol, handling
comparisons with ⊥ is another challenge. A possible solution is treating all comparisons
with ⊥ as false. This is reasonable but not perfect. For example, in this context, it is not
the case that x > y is equivalent to ¬(x ≤ y) when x or y are ⊥. Interestingly, this is the
choice made by IEEE floating point standard [2]. Another possibility is to use a three-
valued logic and treat any comparison with ⊥ as the “third unknown value”. There are
several three-valued logics studied in the literature [3]. We use Kleene’s weak three-
valued logic which interprets the unknown value as “Error” and propagates it to the

502 A. Sharma et al.

[ADDITION]

�k1 + k2�Z∞
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ k1 or k2 is ⊥
⊥ k1 = ∞, k2 = −∞
⊥ k1 = −∞, k2 = ∞
∞ k1 or k2 is ∞, and neither is −∞
−∞ k2 or k2 is −∞, and neither is ∞
�k1 + k2�Z k1 and k2 are finite

[LESS−THAN−EQ]

�k1 ≤ k2�Z∞
def
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F/U k1 or k2 is ⊥
T k2 = ∞
T k1 = −∞
T k1 = k2 = ∞
T k1 = k2 = −∞
F k1 = ∞, k2
= ∞
F k1
= −∞, k2 = −∞
�k1 ≤ k2�Z k1 and k2 are finite

[IDENTITY]

�k�Z∞
def
= k

[NEGATION]

�−k�Z∞
def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ k = ⊥
∞ k = −∞
−∞ k = ∞
�−k�Z k is finite

[OTHER−OPERATIONS−AND−RELATIONS]

�0× k�Z∞
def
=

{
0 k is finite

0/⊥/k k is not finite
�c× k�Z∞

def
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�0× k�Z∞ c = 0

k c = 1

�k + (c− 1)× k�Z∞ c > 1

�−((−c)× k)�Z∞ c < 0

�k1 ≥ k2�Z∞
def
= �k2 ≤ k1�Z∞ �k1 > k2�Z∞

def
= �k1 ≥ k2�Z∞ ∧ �k1
= k2�Z∞

�k1
= k2�Z∞
def
= ¬�k1 = k2�Z∞ �k1 = k2�Z∞

def
= �k1 ≤ k2�Z∞ ∧ �k2 ≤ k1�Z∞

�k1 − k2�Z∞
def
= �k1 + (−k2)�Z∞ �k1 < k2�Z∞

def
= �k1 ≤ k2�Z∞ ∧ �k1
= k2�Z∞

�max=(k1, k2, k3)�Z∞
def
= (�k1 = k2�Z∞ ∧ �k3 ≤ k2�Z∞) ∨ (�k1 = k3�Z∞ ∧ �k2 ≤ k3�Z∞)

�min=(k1, k2, k3)�Z∞
def
= (�k1 = k2�Z∞ ∧ �k2 ≤ k3�Z∞) ∨ (�k1 = k3�Z∞ ∧ �k3 ≤ k2�Z∞)

Fig. 6. Operations and Relations in Z∞

entire formula. In three-valued logic, when x or y are ⊥, x > y and ¬(x ≤ y) are
equivalent. In Omega++, user can choose between a two-valued or three-valued logic,
which is indicated in [LESS−THAN−EQ] of figure 6. Note that in three-valued logic,
according to the relation definition in figure 8, formulae like ⊥ < 0 are neither satisfied
nor dissatisfied.

The definition of multiplication in the presence of infinities (0 × ∞) can also be
selected by the user as shown in figure 6. There are three possible choices for defining
0 × ∞ : 0, ⊥ and ∞. For each of these options we can choose a two-valued or three-
valued logic, thus Omega++ supports six different customized semantics in total. As
described in section 6, for our experiments we use the semantics with three-valued

logic and 0 × ∞ def
= 0. However, in general any of the six customized semantics can

be used as the decision procedure is parameterized over these choices and our certified
proof guarantees that all choices are sound, complete and decidable.

In order to match the intuition of user, by design, most valid formulae in PA remain
so in our semantics for PAInf, just as most invalid formulae in PA are still invalid in

Certified Reasoning with Infinity 503

[ARITH−EVAL]

EVAL
η
φτ

(k)
def
= �k�η EVAL

η
φτ

(v)
def
= �φτ (v)�η

EVAL
η
φτ

(c× a)
def
= �EVAL

η
φτ

(c)× EVAL
η
φτ

(a)�η

EVAL
η
φτ

(a1 + a2)
def
= �EVAL

η
φτ

(a1) + EVAL
η
φτ

(a2)�η

EVAL
η
φτ

(a1 − a2)
def
= �EVAL

η
φτ

(a1)− EVAL
η
φτ

(a2)�η

EVAL
η
φτ

(−a)
def
= �−EVAL

η
φτ

(a)�η

[BOOLEAN−EVAL]

EVAL
η
φτ

(true)
def
= T EVAL

η
φτ

(false)
def
= F EVAL

η
φτ

(undefined)
def
= U

EVAL
η
φτ

(a1 ◦ a2)
def
= �EVAL

η
φτ

(a1) ◦ EVAL
η
φτ

(a2)�η

EVAL
η
φτ

(max=(a1, a2, a3))
def
= �max=(EVAL

η
φτ

(a1), EVAL
η
φτ

(a2), EVAL
η
φτ

(a2))�η

EVAL
η
φτ

(min=(a1, a2, a3))
def
= �min=(EVAL

η
φτ

(a1), EVAL
η
φτ

(a2), EVAL
η
φτ

(a2))�η
where ◦ above means one of ≤,≥, <,>,=,
=.

Fig. 7. Evaluations on atomic terms

PAInf. Here are two short examples that are valid in both (if you drop the universe of
quantification as you move from PAInf to PA):

∀(x : Z∞) · ∃(y : Z∞) · x ≤ y ∀(x : Z∞) · ∀(y : Z∞) · x+ 1 = y + 1 → x = y

However, there are differences. This formula is valid in PA but invalid in PAInf:

∀(x : Z∞) · ∃(y : Z∞) · x+ y = 0

The previous formula is false in PAInf when x = ∞. More generally, although Z∞ is
not a group, it still has many useful algebraic properties, such as the following.

Lemma 1. + is Associative �(a + b) + c�Z∞ and �a + (b + c)�Z∞ are equal or both
undefined.

Lemma 2. + is Commutative �a+ b�Z∞ and �b+ a�Z∞ are equal or both undefined.

Lemma 3. 0 is the Additive Identity �a+ 0�Z∞ and a are equal for all defined a.

Lemma 4. + is Monotonic If �a ≤ b�Z∞ is T and if both �a+ c�Z∞ and �b+ c�Z∞ are
defined, then �a+ c ≤ b+ c�Z∞ is also T.

4 Reasoning with Infinity

For the following discussion we assume the existence of a solver for Presburger arith-
metic (such as Omega [9]). Our focus is to automate the reasoning of ghost infinities
by leveraging on existing solvers. Note that v ∈ Z∞, is the same as, v ∈ Z ∨ v =
∞ ∨ v = −∞. This fact can be used to give a quantifier elimination procedure for
PAInf as shown in figure 9. However, using this approach naively leads to an explosion
in the size of formulae to be checked. As an example, consider the following formula,

∀x, y, z · (z=∞ ∧ y=x+ z ∧ x<∞)

504 A. Sharma et al.

φτ |=sat
η β iff EVAL

η
φτ

(β) is T.
φτ |=sat

η ¬π iff φτ |=dst
η π holds.

φτ |=sat
η π1 ∧ π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds.

φτ |=sat
η π1 ∨ π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds,

or both φτ |=dst
η π1 and φτ |=sat

η π2 holds,
or both φτ |=sat

η π1 and φτ |=dst
η π2 holds.

φτ |=sat
η π1 → π2 iff both φτ |=sat

η π1 and φτ |=sat
η π2 holds,

or both φτ |=dst
η π1 and φτ |=sat

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds.

φτ |=sat
η ∃(w : τ) · π iff φτ [w �→ k] |=sat

η π holds for some k ∈ τ,
and forall all k ∈ τ , either φτ [w �→ k] |=sat

η π

or φτ [w �→ k] |=dst
η π holds.

φτ |=sat
η ∀(w : τ) · π iff φτ [w �→ k] |=sat

η π holds for all k ∈ τ

φτ |=dst
η β iff EVAL

η
φτ

(β) is F.
φτ |=dst

η ¬π iff φτ |=sat
η π holds.

φτ |=dst
η π1 ∧ π2 iff both φτ |=dst

η π1 and φτ |=dst
η π2 holds,

or both φτ |=sat
η π1 and φτ |=dst

η π2 holds,
or both φτ |=dst

η π1 and φτ |=sat
η π2 holds.

φτ |=dst
η π1 ∨ π2 iff both φτ |=dst

η π1 and φτ |=dst
η π2 holds.

φτ |=dst
η π1 → π2 iff both φτ |=sat

η π1 and φτ |=dst
η π2 holds.

φτ |=dst
η ∃(w : τ) · π iff φτ [w �→ k] |=dst

η π holds for all k ∈ τ

φτ |=dst
η ∀(w : τ) · π iff φτ [w �→ k] |=dst

η π holds for some k ∈ τ,
and forall all k ∈ τ , either φτ [w �→ k] |=sat

η π
or φτ [w �→ k] |=dst

η π holds.

φτ |=udt
η π iff neither φτ |=sat

η π or φτ |=dst
η π holds.

Fig. 8. Definition of satisfaction relation

Using the [FORALL−INF] rule to eliminate the three quantified variables (x, y and z),
leads to 33 (= 27) constraints. To avoid this problem, we support both kinds of quanti-
fiers (∃(w : Z) and ∃(w : Z∞)) in the implementation. This allows for a more efficient
quantifier elimination as variables with finite domain do not give rise to new disjunc-
tions in formulae. Since, infinity is added as a ghost constant only in the specification
logic, all program variables are still in finite domain. Supporting two kinds of quantifiers
matches nicely with the distinction between the domain of specification variables (Z∞)
and program variables (Z). In section 6 we compare our system with an implementation
of PAI from [13] and demonstrate the effectiveness of using our procedure.

[EXISTS−INF]

∃(w : Z∞)·π � ∃(w : Z)·π
∨[∞/w]π
∨[−∞/w]π

[FORALL−INF]

∀(w : Z∞)·π � ∀(w : Z)·π
∧[∞/w]π
∧[−∞/w]π

Fig. 9. PAInf: Quantifier Elimination (INF-TRANS)

For checking satisfiability in the PAInf we use the algorithm shown in figure 10.
We denote the procedure for satisfiability checking as SAT (π). The algorithm has four
steps: (i) first we eliminate the quantifiers starting with the innermost quantifier, (ii) next
we apply a normalization which detects tautologies and contradictions in constraints

Certified Reasoning with Infinity 505

using infinity, (iii) then we eliminate min-max and constant constraints and (iv) finally
we solve the resulting formula using an existing PA solver Omega.

SAT(π)
=⇒ SAT(πF)
=⇒ SAT(πN)
=⇒ SAT(πG)

πF = INF-TRANS(π)
πN = INT-TRANS(πF)
πG = SIMP(πN)

(1) Quantifier Elimination
(2) Normalization
(3) Simplification
(4) Omega

Fig. 10. PAInf: SAT Checking

At a high level the intuition behind the SAT checking algorithm is as follows: after
quantifier elimination, the πF formula has quantifiers only on the finite domain vari-
ables. The normalization and simplification eliminate all the infinite constants from the
formula. The resulting formula (πG) is in PA and its satisfiability can be checked using
Omega. Next we describe the steps in the SAT checking algorithm in detail.

[EVAL−FIN]

v � Z
c � Z

−Z � Z
Z + Z � Z
Z − Z � Z
c× Z � Z

[EVAL−INF]

∞+∞ � ∞
−∞+(−∞) � −∞
−∞+Z � −∞
Z+(−∞) � −∞

∞+Z � ∞
Z +∞ � ∞

[EVAL−BOT]

∞+(−∞) � ⊥
−∞+∞ � ⊥
⊥+Z � ⊥
Z+⊥ � ⊥
⊥+⊥ � ⊥
−⊥ � ⊥

Fig. 11. PAInf: Evaluation Check

4.1 Normalization and Simplification

We define a set of rewriting rules based on the semantics of formulae in PAInf. We work
only with closed-form formulae, thus after applying the quantifier elimination given in
figure 9, all the remaining variables are in the finite domain (Z). It is possible to compare
the variables with infinities by evaluating their values (as they are all finite) using the
semantics given in the section 3. This is performed by the Evaluation Check function
in figure 11 which reduces each expression to a finite value (denoted by Z). Thus, for
the normalization rules in figure 12 we only need to consider the integer values (Z) and
the infinity constants. Note that, the Evaluation Check is only applied for the purpose
of checking the finiteness and eliminating infinity, the actual formula is not evaluated.

The normalization process uses the rewriting rules given in figure 12(rules for �=,≥, <
and min= are similar and omitted for brevity). These rules detect the tautologies and
contradictions in the usage of ∞ and −∞, and the constraints involving∞ and −∞ are
eliminated. After the application of these rules the given formula is reduced to a form
which can be solved by existing PA solvers like Omega.

We also proved the following theorems and lemmas about quantifier elimination INF-
TRANS and normalization INT-TRANS. These theorems and lemmas hold for both two-
valued/three-valued logics and all choices of (0×∞). Hence, the Coq certified proof of
these theorems and lemmas is also parameterized. Note that for quantifier elimination
the universe of environment τ and the domain of constants η are both instantiated to
Z∞.

506 A. Sharma et al.

[NORM−INF−EQ]

⊥ = � error

= ⊥ � error

Z = ∞ � false

∞ = ∞ � true

−∞ = ∞ � false

−∞ = Z � false

−∞ = −∞ � true

∞ = Z � false

∞ = −∞ � false

Z = −∞ � false

[NORM−INF−LEQ]

⊥ ≤ � error

≤ ⊥ � error

Z ≤ ∞ � true

∞ ≤ ∞ � true

−∞ ≤ ∞ � true

−∞ ≤ Z � true

−∞ ≤ −∞ � true

∞ ≤ Z � false

∞ ≤ −∞ � false

Z ≤ −∞ � false

[NORM−INF−LT]

⊥ < � error

< ⊥ � error

Z < ∞ � true

∞ < ∞ � false

−∞ < ∞ � true

−∞ < Z � true

−∞ < −∞ � false

∞ < Z � false

∞ < −∞ � false

Z < −∞ � false

[NORM−EQ−MAX]

max=(∞,∞,∞) � true max=(−∞, Z, Z) � false max=(, ,⊥) � error

max=(−∞,−∞,−∞) � true max=(∞, Z,−∞) � false max=(∞, Z, Z) � false

max=(−∞, Z,−∞) � false max=(∞,−∞,∞) � true max=(∞,∞, Z) � true

max=(−∞,∞,−∞) � false max=(−∞,∞, Z) � false max=(Z,∞, Z) � false

max=(∞,−∞,−∞) � false max=(∞,−∞, Z) � false max=(,⊥,) � error

max=(−∞,−∞, Z) � false max=(Z,∞,−∞) � false max=(∞, Z,∞) � true

max=(∞,∞,−∞) � true max=(−∞, Z,∞) � false max=(⊥, ,) � error

max=(Z,−∞,−∞) � false max=(Z,−∞,∞) � false max=(Z, Z,∞) � false

max=(−∞,−∞,∞) � false max=(−∞,∞,∞) � false max=(Z,∞,∞) � false

[NORM−INF−ERR]

error � false (two-valued logic)
error � undefined (three-valued logic)

Fig. 12. PAInf: Normalization (INT-TRANS)

Lemma 5. Quantifier Elimination φZ∞ |=sat
Z∞ π if and only if φZ |=sat

Z∞ INF-TRANS(π),
φZ∞ |=dst

Z∞ π if and only if φZ |=dst
Z∞ INF-TRANS(π),

For infinity elimination τ is Z∞ and η is Z. This is due to the fact that after quantifier
elimination the domain of all the variables is finite.

Lemma 6. Infinity Elimination φZ |=sat
Z∞ π if and only if φZ |=sat

Z
INT-TRANS(π),

φZ |=dst
Z∞ π if and only if φZ |=dst

Z
INT-TRANS(π).

So for the total transformation TRANS(π) = INT-TRANS(INF-TRANS(π)) used in
satisfiability checking, we have the following theorem:

Theorem 1. Satisfiability Checking φZ∞ |=sat
Z∞ π if and only if φZ |=sat

Z
TRANS(π),

φZ∞ |=dst
Z∞ π if and only if φZ |=dst

Z
TRANS(π),

Gallina, the internal functional language of Coq is strongly normalizing. Thus, all
functions written in Coq must terminate.

Theorem 2. Termination Satisfiability checking in PAInf (figure 10) terminates.

The quantifier elimination with infinity expands the logical formula π and the nor-
malization introduces many logical constants. We introduce a simplification function
SIMP which recursively eliminates logical constants according to the rules in figure 13
in order to reduce the length of a formula. As Omega doesn’t support max= or min=

Certified Reasoning with Infinity 507

[ELIM]

max=(a1, a2, a3) � (a1 = a2 ∧ a3 ≤ a2) ∨ (a1 = a3 ∧ a2 ≤ a3)
min=(a1, a2, a3) � (a1 = a2 ∧ a2 ≤ a3) ∨ (a1 = a3 ∧ a3 ≤ a2)

[SIMP]

β � ELIM(β) ¬undefined � undefined

undefined ∧ π � undefined π ∧ undefined � undefined

true ∧ π � π π ∧ true � π
false ∧ π � false π ∧ false � false

undefined ∨ π � undefined π ∨ undefined � undefined

true ∨ π � true π ∨ true � true

false ∨ π � π π ∨ false � π
undefined → π � undefined π → undefined � undefined

false → π � true π → true � true

true → π � π π → false � ¬π
¬true � false ¬false � true

∀(w : τ) · undefined � undefined ∃(w : τ) · undefined � undefined

∀(w : τ) · true � true ∃(w : τ) · true � true

∀(w : τ) · false � false ∃(w : τ) · false � false

Fig. 13. Definition of Simplification

we also include the elimination of max= and min= in SIMP. Note that for three-valued
logic, the logical constants contain a third value: undefined which is not supported by
Omega. Our SIMP function propagates undefined to the whole formula such that we
know if a formula is undetermined before calling Omega due of the following theorem:

Theorem 3. Decide Undetermined φZ |=udt
Z

π if and only if SIMP(π)=undefined

Thus, we do not need to extend Omega to support undefined. SIMP also preserves
the validity of formulae:

Theorem 4. Simplification φZ |=sat
Z

π if and only if φZ |=sat
Z

SIMP(π), φZ |=dst
Z

π if
and only if φZ |=dst

Z
SIMP(π).

5 Implementation

We gain a number of benefits in exchange for implementing Omega++ in Coq. We get
proof of termination for free since Gallina (the extractable pure functional language of
Coq) is strongly normalizing. More importantly, we get full machine-checked formal
correctness proofs for our source code with respect to a well defined semantics for
Presburger arithmetic with infinity. Coq’s extraction facility then transforms the Gallina
program into OCaml (or Haskell or Scheme), which we then compile and run as normal.

The following table presents some statistics for our Coq development of Omega++.
The first column shows the file name, while the second and third columns are the num-
ber of lines in the file taken by the program and its soundness proof, respectively. Our
total development is a modest 3,988 lines and the ratio of proof to program is 2.35. The
fourth column gives the time taken by Coq to verify the file (i.e., proof/type checking),
using a 2.6 GHz Intel Core i7 with 16 GB of DDR3 RAM.

508 A. Sharma et al.

Coq File Program Proof Time (s) Description
Theory.v 585 737 20.68 Syntax and Semantics; SIMP

Transformation.v 350 1, 203 31.07 INF-TRANS, INT-TRANS

Simplification.v 0 856 338.96 Tactics/lemmas for SIMP

Extraction.v 257 0 1.27 Module to extract OCaml code
1, 192 2, 796 391.98 Total Coq

Note that type checking times have very little to do with file length. For example
Transformation.v has 1,553 lines (combined program and proof), but takes less
than 32 seconds to verify. On the other hand, verifying the 44 lines of the SIMP proce-
dure, whose code is contained in Theory.v, takes more than five minutes! We also
used one engineering trick to boost the performance of the extracted code. The code
uses strings to represent both variables and (arbitrary-sized) integers, but Coq’s encod-
ing of strings is less efficient than OCaml’s. We therefore usually treat strings as an
abstract type within Coq and manipulate them via an interface to OCaml’s string func-
tions, passed in using a functor.

We will next highlight the key optimizations we used to get good performance and
discuss how the program affected the proof—and vice versa. In the implementation we
directly handle all of the logical operators and min-max constraints of the constraint lan-
guage (figure 5), even though the “obvious” strategy would be to desugar aggressively.
Unfortunately, sugar-free formulae are actually quite a bit larger than their svelter sug-
ared cousins, resulting in a significant performance penalty. Working with fully-sugared
formulae has a significant impact on the proofs because we must handle more cases.

Similarly, we allow the input formulae to specify, for each quantifier, whether the
domain of quantification is over Z or over Z∞. Quantifier elimination is expensive, and
our “user”—the HIP/SLEEK verification toolset—often knows when a variable must
be finite: in particular, program variables must be finite, whereas specification variables
need not be. Communicating this fact to Omega++ resulted in significant performance
gains, but again increased the proof effort due to the necessity of handling more cases.

To enable min/max, reduce the length of the output, eliminate redundant clauses, and
propagate the undefined value, we implemented some basic simplifications (figure
13). The SIMP procedure was easy to implement but very painful to verify due to the
vast number of cases we need to consider. In the end we wrote some custom proof
tactics in Ltac (Coq’s proof tactic language) which crunched through the tedium.

The previous examples all trade one-time verification effort for a better-performing
algorithm. On the other hand, sometimes the proof improves the program. Before we
started on our Coq implementation, we did a OCaml prototype for the quantifier-free
fragment of the problem. That prototype’s version of normalization did additional case
analysis. Due to our careful treatment of quantifier elimination we were able to prove
that much of this case analysis was unnecessary in our Coq tool. Moreover, the Coq
development identified a soundness bug in the OCaml prototype, which allowed the
invalid transformation x≥y � x+1>y, which is false when x = y = ∞.

Overall, Omega++ is far better than our previous OCaml prototype. Consider:
Tool Sound Complete Termination Semantics Verified

OCaml Prototype No No Unclear Unclear No
Omega++ Yes Yes Guaranteed Precise in Coq

Certified Reasoning with Infinity 509

Of course, our OCaml prototype is a bit of a straw man, but we have been quite
convinced that the substantial effort that it took to write Omega++ in Coq was well-
rewarded. Moreover, as we will soon see, Omega++ has comparable performance to
our OCaml prototype, despite solving a trickier problem in a much more through way.

6 Experiments

To benchmark Omega++ we integrated it into the HIP/SLEEK verification toolset [5]
and developed a suite of tests (mostly searching and sorting programs) whose specifi-
cations use ∞ in interesting ways. The source code for each of these programs can be
investigated in detail and tested with Omega++ [29] on our web site. In all the exper-

iments we selected three-valued logic in Omega++ and used 0 · ∞ def
= 0 as these are

the appropriate choices for program verification. We used a 3.20GHz Intel Core i7-960
processor with 16GB memory running Ubuntu Linux 10.04 for our benchmarks, the
first set of which are detailed in the table below.

Benchmark LOC Disjuncts (Z) Time (Ω) Disjuncts (Z∞) Time (Ω++)
Insertion Sort 30 4 0.14 2 0.15
Selection Sort 69 14 0.36 7 0.35

Binary Search Tree 105 12 0.43 6 0.35
Bubble Sort 110 12 0.29 9 0.50
Merge Sort 91 6 0.32 4 1.81

Priority Queue 207 16 0.84 10 2.73
Total Correctness 21 2 0.21

Sorting with Min and Max 79 7 1.82

The first column lists the test name and the second gives its lines of code. The third
and fifth columns show that Z∞ enables more readable and concise specifications.
Specifically, the third column gives the number of disjunctions required to express the
test’s specifications using Z, whereas the fifth column expresses the same properties
using Z∞. For each test in the first group (top six), Z∞ requires fewer disjunctions.
We do need to be a bit careful: although the specifications are informally for the same
property (e.g., “sortedness”), typically the specifications in Z∞ are formally stronger
since the embedded quantification occurs over larger sets. Note that we do not claim
that Omega++ eliminates the disjunctions from reasoning since the quantifiers over in-
finities hide the disjunctions inside them. However, using infinities provides a useful
abstraction to express the same property as the given specification is more concise. The
difference in formal strength is the fundamental reason why the times given in columns
four and six differ. Column four gives the time (including all of HIP/SLEEK) using
Omega, whereas column six gives the time using Omega++. For the first four examples
Omega++ is comparable to Omega, but in the final two of the first group of tests we
believe the difference in the domain of quantification results in a significantly harder
theorem in Z∞, and thus, a noticeably longer runtime.

Comparison with Similar Tools. Lasaruk and Sturm [13] also propose extending Pres-
burger arithmetic with infinity. Their work differs from ours in several respects. First,

510 A. Sharma et al.

they only add a single infinity value, thus dodging any thorny—but in our view, important—
semantic issues involving ∞ − ∞. More importantly, Lasaruk and Sturm describe an
algorithm but do not provide an implementation. For benchmarking purposes, we im-
plemented their algorithm and tested it using the constraints generated from our test
suite. We also compared our previous OCaml prototype as shown below:

Benchmark Calls Time (PAI) Time (Proto) Time (Ω++)
Insertion Sort 100 4.58 0.78 0.39
Selection Sort 245 >600.00 0.62 0.78

Binary Search Tree 116 150.00 0.48 0.50
Bubble Sort 336 >600.00 1.25 1.34
Merge Sort 155 >600.00 1.05 1.92

Priority Queue 778 >600.00 FAIL 1.20
Total Correctness 120 >600.00 0.31 0.16

Sorting with Min and Max 376 >600.00 0.29 0.19
Entailment Examples 124 1.89 FAIL 1.42

Lemma Examples 35 1.88 1.27 1.65
Total (except PQ and EE) 1, 824 >3, 862.14 7.21 8.11

The second column gives the number of times the associated decision procedure was
called for each test. The third column gives the times for Lasaruk and Sturm’s “PAI”
algorithm; many of the tests timed out after 10 minutes. The fourth column gives the
times for our OCaml prototype “Proto”; notice that for two of the tests Proto failed
(completeness holes). The fifth column gives the times for Omega++.

It is obvious that PAI, at least when implemented directly as given by Lasaruk and
Sturm [13], is uncompetitive. Thus, Omega++ is always faster than PAI. When compar-
ing Proto to Omega++, recall that Proto is only trying to solve the simpler problem of
quantifier-free formulae. Despite this, for many of our tests the tools perform similarly.
For a few tests, some of Proto’s heuristics result in appreciably better times; we plan
to study these tests in more detail in the future to try to improve Omega++. Overall,
Omega++’s performance is competitive.

Inference. As described in section 2.5, quantifier elimination in Presburger arithmetic
with infinity can help with invariant generation of octagonal constraints. The table be-
low benchmarks using Omega++ for this analysis technique.

Method Pre Post Inferred Time (Omega++)
Create true ll〈res, m〉 m=n 0.13
Delete ll〈x, n〉 ll〈res, m〉 n−1≤m 0.17
Insert ll〈x, n〉∧x �=null ll〈x, m〉 n=m−1 0.13
Copy ll〈x, n〉 ∗ ll〈res, m〉 ll〈x, m〉 m=n 0.16

Remove ll〈x, n〉∧x �=null ll〈x, m〉 n−1≤m∧m≤n 0.19
Return ll〈x, n〉 ll〈x, m〉 m=n∧0≤m 0.07

Traverse ll〈x, n〉 ll〈x, m〉 m=n 0.12
Get ll〈x, n〉∧x �=null ll〈res, m〉 m=n−2∧2≤n 0.11

Head ll〈x, n〉∗ll〈y, m〉 ll〈res, n+m−1〉 1=min(n, m) 0.21

The first column gives the test name. The second and third columns give the user-
provided spatial pre- and postconditions in separation logic. The fourth column gives

Certified Reasoning with Infinity 511

the inferred pure specification, while the last column gives the time used by Omega++.
The final test is noteworthy because the inferred invariant uses min/max constraints.

7 Related Work and Conclusion

Reynolds demonstrated that ghost variables [26] were useful for verifying sequential
programs. Their importance is highlighted when proving program, object or loop invari-
ants [18], refining between two transition systems [17] or when considering program’s
security aspects [16]. Our work enriches specifications by extending the domain of
ghost values with the mathematical concepts of positive and negative infinity.

Presburger arithmetic [24] is one of the canonical examples of an important decid-
able problem. Kuncak et al. [11,12] presented a decision procedure for a quantifier-free
fragment of Boolean Algebra with Presburger arithmetic which can be used to prove
a mixed set-based constraint with symbolic cardinality and linear arithmetic. QFBAPA
was later extended to the more challenging case of multisets [22] and proved to be NP-
complete [23]. The VCDryad [21] framework combines separation logic with decision
procedures for sets and multi sets to verify programs with natural proofs. The combina-
tion of set/multi-sets with separation logic even though quite useful requires complex
provers that can reason over the domain of sets/muti-sets.

Lasaruk and Sturm [13] were the first to tackle the problem of extending PA with in-
finity, proving completeness and decidability. Our work differs from theirs as we allow
two distinct values for positive and negative infinities and provide a implementation.
Our decision procedure is built on top of Omega calculator [9], and certified in Coq [1].
The general problem of adding infinities to the set of reals was addressed by Weispfen-
ning [27]. This was later extended to mixed real and integer quantifier elimination in
[28]. Another interesting extension of decision procedures for real arithmetic is the
addition of infinitesimals. The proof assistant Isabelle/HOL [20] has support for in-
finitesimals. Loos and Weispfenning [15] first proposed a virtual substitution approach
for quantifier elimination of infinitesimals. We also use a similar virtual substitution to
eliminate infinities as part of the decision procedure. Chaieb and Nipkow [4] present a
reflective implementation of Cooper’s algorithm for quantifier elimination in PA. Their
work complements our approach as we reduce from PA extended with infinities to PA.

Conclusion. We presented Omega++, a decision procedure for Presburger arithmetic
with infinity Z∞. Infinity is a useful abstraction, increasing a program logic’s ability
to reason about termination and compose more elegantly. Moreover, specifications with
infinity are often more concise. Omega++ has been Coq-certified to respect a precise
formal semantics for Z∞. We integrated Omega++ into an existing verifier and eval-
uated it on a benchmark of small programs, demonstrating that it can perform well
in practice. Omega++ demonstrates that we can develop useful, efficient, and certified
programs for program verification and analysis.

Acknowlegement. This work is supported by MoE Tier-1 NUS research project R-252-000-
525-112 and Yale-NUS College R-607-265-045-121.

512 A. Sharma et al.

References

1. The Coq Proof Assistant, http://coq.inria.fr/
2. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1–70 (August 2008)
3. Bergmann, M.: An introduction to many-valued and fuzzy logic: semantics, algebras, and

derivation systems. Cambridge University Press (2008)
4. Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for presburger

arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835,
pp. 367–380. Springer, Heidelberg (2005)

5. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size and
bag properties via user-defined predicates in separation logic. Sci. Comput. Program. 77(9),
1006–1036 (2012)

6. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: ACM
POPL (January 2001)

7. Kapur, D., Zhang, Z., Horbach, M., Zhao, H., Lu, Q., Nguyen, T.: Geometric Quantifier
Elimination Heuristics for Automatically Generating Octagonal and Max-plus Invariants. In:
Bonacina, M.P., Stickel, M.E. (eds.) McCune Festschrift 2013. LNCS (LNAI), vol. 7788,
pp. 189–228. Springer, Heidelberg (2013)

8. Kapur, D.: Automatically generating loop invariants using quantifier elimination. In: Deduc-
tion and Applications (2005)

9. Kelly, P., Maslov, V., Pugh, W.: The Omega Library Version 1.1.0 Interface Guide (1996)
10. Kolmogorov, N.A.: “Infinity”. Encyclopaedia of Mathematics: An Updated and Annotated

Translation of the Soviet “Mathematical Encyclopaedia,” vol. 3. Reidel (1995)
11. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean algebra

with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632,
pp. 260–277. Springer, Heidelberg (2005)

12. Kuncak, V., Rinard, M.: Towards efficient satisfiability checking for boolean algebra with
Presburger arithmetic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603,
pp. 215–230. Springer, Heidelberg (2007)

13. Lasaruk, A., Sturm, T.: Effective quantifier elimination for Presburger arithmetic with in-
finity. In: Gerdt, V.P., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2009. LNCS, vol. 5743,
pp. 195–212. Springer, Heidelberg (2009)

14. Le, T.C., Gherghina, C., Hobor, A., Chin, W.-N.: A Resource-Based Logic for Termination
and Non-Termination Proofs. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829,
pp. 267–283. Springer, Heidelberg (2014)

15. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5),
450–462 (1993)

16. Mai, H., Pek, E., Xue, H., King, S.T., Madhusudan, P.: Verifying security invariants in ex-
pressos. In: ASPLOS (2013)

17. Marcus, M., Pnueli, A.: Using ghost variables to prove refinement. In: AMST (1996)
18. McPeak, S., Necula, G.C.: Data structure specifications via local equality axioms. In:

Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer,
Heidelberg (2005)

19. McShane, E.J.: Unified integration, vol. 107. Academic Press (1983)
20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,

Heidelberg (2002)
21. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation in c using

separation logic. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, p. 46. ACM (2014)

http://coq.inria.fr/

Certified Reasoning with Infinity 513

22. Piskac, R., Kuncak, V.: Decision procedures for multisets with cardinality constraints. In:
Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 218–232.
Springer, Heidelberg (2008)

23. Piskac, R., Kuncak, V.: Linear arithmetic with stars. In: Gupta, A., Malik, S. (eds.) CAV
2008. LNCS, vol. 5123, pp. 268–280. Springer, Heidelberg (2008)

24. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchen die Addition als einzige Operation hervortritt (1929)

25. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: LICS (2002)
26. Reynolds, J.C.: The craft of programming. Prentice Hall International series in computer

science. Prentice Hall (1981)
27. Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond.

Appl. Algebra Eng. Commun. Comput. 8(2), 85–101 (1997)
28. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: Proceedings of the

1999 International Symposium on Symbolic and Algebraic Computation, ISSAC 1999, Van-
couver, B.C., Canada, July 29-31, pp. 129–136 (1999)

29. Omega++ with HIP/SLEEK. Source and binaries available at,
http://loris-7.ddns.comp.nus.edu.sg/∼project/SLPAInf/ (October 2014.)

http://loris-7.ddns.comp.nus.edu.sg/~project/SLPAInf/

Direct Formal Verification of Liveness Properties
in Continuous and Hybrid Dynamical Systems

Andrew Sogokon(�) and Paul B. Jackson

LFCS, School of Informatics, University of Edinburgh, Edinburgh, UK
a.sogokon@sms.ed.ac.uk, pbj@inf.ed.ac.uk

Abstract This paper is concerned with proof methods for the temporal property
of eventuality (a type of liveness) in systems of polynomial ordinary differential
equations (ODEs) evolving under constraints. This problem is of a more general
interest to hybrid system verification, where reasoning about temporal proper-
ties in the continuous fragment is often a bottleneck. Much of the difficulty in
handling continuous systems stems from the fact that closed-form solutions to
non-linear ODEs are rarely available. We present a general method for proving
eventuality properties that works with the differential equations directly, without
the need to compute their solutions. Our method is intuitively simple, yet much
less conservative than previously reported approaches, making it highly amenable
to use as a rule of inference in a formal proof calculus for hybrid systems.

1 Introduction

In computer science, by liveness one informally understands the property of something
“good” happening along the execution paths in a program. Thus, in stating that a pro-
gram is live one asserts that some desirable property will hold true as the program
runs. Liveness properties of discrete programs were studied by Lamport and Owicki
in [16,23] and formally defined by Alpern and Schneider in [1]. In this paper we will
be concerned with a particular type of liveness known as eventuality, which requires
that some target set of states is eventually attained. Furthermore, instead of discrete
computer programs, we will be working with continuous systems that are governed by
ordinary differential equations and have an uncountably infinite number of states.

Continuous systems have generated significant interest among computer science and
formal verification researchers over the past years as they form an important part of
a broader class of dynamical systems known as hybrid (or cyber-physical) systems.
Hybrid systems combine discrete and continuous behaviour; they are interesting be-
cause they provide the most general framework for modelling and verifying properties
of dynamic phenomena. To give but a few examples, hybrid systems have found ap-
plication in verifying safety of aircraft collision avoidance protocols [26], train control
systems [25,17], simulating control systems for oil drills working with discontinuous
friction [21] and many more.

This material is based upon work supported by the UK Engineering and Physical Sciences
Research Council (EPSRC) under grant EP/I010335/1.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 514–531, 2015.
DOI: 10.1007/978-3-319-19249-9_32

Direct Verification of Eventuality in Continuous Systems 515

Formally verifying temporal properties of hybrid systems is no easy enterprise [11],
in no small part due to their expressiveness, which makes most interesting questions
about their behaviour inherently undecidable [13]. However, this does not mean that
hybrid system verification is impossible and thus futile. On the contrary, formal verific-
ation tools have already been successfully applied in some impressive case studies, but
it is also true that there is great scope for improvement in what verification tools are cap-
able of. This is especially true of methods for verifying liveness properties, which are
typically more difficult to prove than safety. In this paper we seek to partially remedy
this by proposing a new deductive verification method for proving eventuality proper-
ties in continuous systems that can be implemented as a rule of inference in a theorem
prover for hybrid systems.

The method we propose is able to work directly with initial states and target regions
given by arbitrary semi-algebraic sets (that is, sets given by finite boolean combina-
tions of polynomial equalities and inequalities) and generalizes previously reported ap-
proaches reported in [30,31,33,26]. Our approach is not restricted to bounded evolution
domains (as e.g. [31]) and is able to prove eventuality properties for target regions de-
scribed by formulas featuring equations (unlike [26,30]). Finally, the presence of system
equilibria outside the target region presents an insurmountable obstacle for approaches
reported in [30,31,26] and requires the user to manually remove them from the evolu-
tion domain [30]. We work with weaker conditions that only require a semi-algebraic
over-approximation of the reachable set, which can be used to avoid equilibria without
the need to manually alter the system. The conditions we give are much more general
than in [33] and may be checked automatically using a decision procedure.

1.1 Contributions

In this paper we (I) describe a necessary condition for eventuality – the existence of
what we call a staging set – and use it to (II) formulate conditions for proving eventual-
ity properties in systems of polynomial ODEs without computing their solutions. (III)
We illustrate the proof principle using some basic examples and (IV) describe how our
approach can be used to construct formal proofs of certain liveness properties in a de-
ductive verification tool for hybrid systems. Lastly, we (V) generalize total derivatives
for formulas introduced in [26] by exploiting directional differentiability properties of
the minmax function.

2 Preliminaries

In what follows, we will work with autonomous 1 systems of ordinary differential equa-
tions defined on R

n and evolving under constraints, i.e.

ẋi = fi(x), 1 ≤ i ≤ n,

x ∈ H ⊆ R
n.

1 By this we mean that our ODEs have no explicit dependence on the time variable t. No general-
ity is lost because any system with explicit time dependence can be turned into an autonomous
system by adding a new ‘clock’ variable to model time evolution, e.g. if we let ẋn+1 = 1 and
replace every instance of t in the system with xn+1.

516 A. Sogokon and P.B. Jackson

We will write this more concisely as ẋ = f(x) &H . We will be interested in verifying
properties of evolutions that lie within the constraintsH , though in doing so we consider
evolutions that might go outside of H . Furthermore, we will only work with polynomial
systems, i.e. f ∈ R[x]n, under evolution constraints H that are semi-algebraic sets.

Remark 1. To simplify our presentation we will interchangeably use the notation for
sets and formulas characterizing those sets. Thus, H will denote both a semi-algebraic
set H ⊆ R

n and a quantifier-free formula H of real arithmetic with free variables in
x1, . . . , xn that characterizes the set H .

A solution to the initial value problem (ẋ = f(x), x0) is a functionϕ : (a, b) → R
n

such that ϕ(t)|t=0 = x0 and d
dtϕ(t)|t=τ = f(ϕ(τ)) for all τ in some non-empty

extended real interval (a, b) including 0. We will denote solutions to the initial value
problem at time t ∈ (a, b) by ϕt(x0), where x0 is the initial value. The interval (a, b)
is known as the interval of existence of a given solution; in what follows we will always
consider the largest such interval, i.e. the maximal interval of existence.

In general, solutions to initial value problems need not be unique or even exist for
all time t ≥ 0, i.e. the maximal interval of existence need not be of the form (a,∞).
For instance, solutions to simple non-linear systems, such as ẋ = x2, already exhibit
finite time blow-up, i.e. diverge to infinity in finite time. In this paper we will work with
differential equations whose solutions are unique and of sufficient duration to allow us
to prove properties of interest. For simplicity we sometimes assume that solutions exist
for all t ≥ 0. In such cases, refinements of the arguments are needed if the solutions are
of sufficient duration but do not exist for all t ≥ 0. To remove this problem entirely, it is
common (but not necessary) to require the system of ODEs to be Lipschitz continuous.
Under these assumptions, we will refer to the solution ϕ as the flow of the system.

If the solution is available in closed-form, by which we informally understand a finite
expression in terms of polynomials or elementary functions, then one can answer ques-
tions pertaining to the temporal behaviour of the system by working with the closed-
form expression. In practice, however, closed-form solutions to non-linear ODEs are
rarely available; even when they are, their form is often much more involved than the
differential equations themselves. For instance, transcendental functions, such as sin,
cos, exp, log, etc., frequently occur in solutions to very simple polynomial ODEs. This
introduces a source of undecidability [32], which further undermines approaches to
formal verification that rely on the knowledge of closed-form solutions.

Rather than working with the solution, it is sometimes possible to prove properties
of interest by working with the differential equations directly2. This approach has been
applied to formal safety verification (e.g. in [29,27,34]) and verification of progress and
eventuality properties (e.g. see [33,30,26,31]). Direct methods for proving eventuality
properties in ODEs have to date been rather conservative, i.e. they often fail even if
the property is indeed true in a given system. Our interest in this paper is in exploring
a direct verification approach that generalizes those previously reported and is at the
same time less conservative.

2 This idea is at the heart of the qualitative theory of differential equations and has its intellectual
origins in the late nineteenth-century work of Henri Poincaré, published in [28].

Direct Verification of Eventuality in Continuous Systems 517

In what follows, we will often write temporal properties as formulas of differential
dynamic logic (dL) [25], which provides a specification and verification language for
hybrid systems, using hybrid programs [25] as operational models. The logic dL ex-
tends first-order logic with modalities 〈 〉 and [] for hybrid programs. We will only be
concerned with hybrid programs that define continuous systems; these are always of the
form ẋ = f(x) & H . To a significant extent, our work will build upon results about
invariant sets, which we discuss next.

2.1 Continuous Invariants

A fundamental property that provides the foundation for reasoning about safety in dy-
namical systems (be they discrete, continuous or hybrid) is that of set invariance. For
continuous dynamical systems, by invariants we understand sets of states that remain
invariant under the flow ϕt(·) for all t ≥ 0. Flow-invariant (or positively invariant) sets
are a very well-established concept in control and dynamical systems (see e.g. [4,3])
and can be used to prove safety properties for flows in a way analogous to program
invariants in discrete programs. Platzer and Clarke in [27] generalized flow-invariant
sets to continuous invariants for verifying safety of continuous systems under evolution
constraints.

Definition 2. A semi-algebraic set I ⊆ R
n is a continuous invariant for ẋ = f(x) &H

if and only if

∀ x ∈ I. ∀ t ≥ 0. (∀ τ ∈ [0, t]. ϕτ (x) ∈ H) → (∀ τ ∈ [0, t]. ϕτ (x) ∈ I).

We may write a continuous invariance assertion as a formula in dL as follows:

I → [ẋ = f(x) & H] I.

This formula asserts that if evolution starts anywhere inside I , then by following any
solution (box modality []) to the system ẋ = f(x) & H for any length of time, the
system always remains inside I .

One useful way of thinking about continuous invariants (this will become apparent later)
is as sets that “can only be left by entering ¬H first”.

Liu, Zhan and Zhao in [18] reported necessary and sufficient conditions for checking
whether a given semi-algebraic set is a continuous invariant; their conditions are direct,
i.e. do not require explicit knowledge of the solutions, and decidable if the system of
ODEs is polynomial and H is semi-algebraic. This result leads to a decision procedure
for semi-algebraic continuous invariant assertions. The decision procedure described
in [18] involves computing a finite number of higher-order Lie derivatives and exploits
the ascending chain condition in Noetherian rings; see [18] for details and also [12]
for related work on algebraic invariants. A Lie derivative of a real-valued differentiable
function is the directional derivative of that function in the direction of the vector field
induced by the system of ODEs. We denote the first-order Lie derivative of a function
p : Rn → R with respect to the vector field f : Rn → R

n as Lf (p). Formally, the first
Lie derivative is defined as

Lf (p) ≡
n∑

i=1

∂p

∂xi
fi ≡ ∇p · f.

518 A. Sogokon and P.B. Jackson

Higher-order Lie derivatives are defined inductively, i.e. Lk
f (p) = Lf (L

k−1
f p) for k > 0

and L0
f (p) = p. Note also that in vector fields generated by ODEs, since fi = ẋi =

dxi

dt ,

we have Lf (p) =
∑n

i=1
∂p
∂xi

dxi

dt = dp
dt , i.e. the Lie derivative gives the total derivative

of p with respect to time t. We will be using Lie derivatives in this capacity in the
following sections.

3 Direct Method for Eventuality Verification

As a first attempt, one may define eventuality for continuous systems as follows:

∀ x0 ∈ X0. ∃ t ≥ 0.
(
ϕt(x0) ∈ XT

)
,

where X0 ⊆ R
n is the set of initial states and XT ⊆ R

n is the target set. As with
invariants, because continuous systems we consider may impose evolution domain con-
straints H ⊆ R

n, the formal definition of eventuality needs an additional clause stip-
ulating that continuous evolutions remain within the constraint until the target set is
attained. Below we give a general definition of eventuality for continuous systems.

Definition 3. Given a system ẋ = f(x) & H , where H ⊆ R
n is the evolution con-

straint, X0 ⊆ H is the set of initial states from which solutions are unique and of
sufficient duration and XT ⊆ R

n is the target set of states that we wish the system to
attain by starting anywhere inside X0, then the eventuality property holds if and only if

∀ x0 ∈ X0. ∃ t ≥ 0.
(
(∀τ ∈ [0, t]. ϕτ (x0) ∈ H) ∧ ϕt(x0) ∈ XT

)
,

By solutions of sufficient duration we understand solutions that may blow up in finite
positive time, but only after reaching XT (finite time blow up in negative time is innoc-
uous for showing eventuality).

We may phrase the eventuality property using a dL formula as follows:

X0 → 〈ẋ = f(x) &H〉 XT .

The above formula asserts that if we start anywhere inside X0, then by following the
solution to the system ẋ = f(x) & H , we eventually (diamond modality 〈 〉) reach a
state which lies inside XT . In using the above formula, we assume that each of the sets
H , X0 and XT is semi-algebraic and is thus characterized by a quantifier-free formula
in the theory of real arithmetic.

3.1 Staging Sets

We now introduce staging sets, which are a particular kind of continuous invariants that
we use to give an over-approximation of the continuous behaviour in a system with a
view to proving eventuality properties without computing solutions to ODEs.

Direct Verification of Eventuality in Continuous Systems 519

Fig. 1. Staging set (intuitively). Initial set of states X0 is shown in green, the target set XT in red
and a possible choice for a staging set S in grey; H is taken to be R

2.

Definition 4. Given a system ẋ = f(x) & H , a set of initial states X0 ⊆ H and a
target set of states XT ⊆ R

n, we say that a set S ⊆ R
n is a staging set if we have

S ⊆ H , X0 \XT ⊆ S and

∀ x0 ∈ S. ∀ t ≥ 0. (∀τ ∈ [0, t]. ϕτ (x0) �∈ XT ∩H) → (∀τ ∈ [0, t]. ϕτ (x0) ∈ S).

One could write this formally using dL as

(
X0 ∧ ¬XT → S

)
∧
(
S → [ẋ = f(x) & ¬(XT ∧H)] S

)
∧
(
X0 ∨ S → H

)
.

Intuitively, a staging set is any set within the evolution constraint H that includes the
non-trivial initial states X0 \XT and that “can only be left by entering the target region
XT within the constraint H”, or provides a “continuous exit window into XT within
H”. Fig. 1 illustrates this intuition. Let us remark that staging sets are very natural
because their existence is a necessary pre-requisite for the eventuality property to hold.

Proposition 5. If the eventuality property holds for ẋ = f(x) & H with initial and
target sets X0 ⊆ H,XT ⊆ R

n as before, then there exists a staging set for the system.

Proof. Assuming the eventuality property holds true in the system, we have X0 ⊆ H
and for each x0 ∈ X0 \ XT there exists some t > 0 such that ϕt(x0) ∈ XT and
∀ τ ∈ [0, t]. ϕτ (x0) ∈ H . Now define γ(x0) ≡ {ϕt′(x0) | t′ ∈ [0, t)} to construct a
staging set S ≡

⋃
x0∈X0

γ(x0). ��

Remark 6. The construction in the proof above gives a staging set which may not pos-
sess a closed-form description. In practice, by restricting attention to semi-algebraic
sets, one can decide whether a given candidate set constitutes a staging set for the sys-
tem at hand. Also, note that if S is a staging set, then S′ ≡ S \ XT is also a staging
set.

520 A. Sogokon and P.B. Jackson

Searching for a staging set is in principle no different to searching for a continuous
invariant for safety verification. Methods for continuous invariant generation can there-
fore be applied to search for staging sets. Techniques for continuous invariant genera-
tion are still an active area of research, with complete3 (albeit intractable) procedures
available to search for semi-algebraic continuous invariants based on enumerating para-
metric semi-algebraic templates and using a decision procedure for continuous invariant
checking described in [18] together with real quantifier elimination [35] (see [9] for a
survey of more recent methods). In practice, certain incomplete invariant generation
methods may offer more scalable alternatives. For instance, sum-of-squares techniques
for computing polynomial sub-level set approximations of the finite-time reachable set
due to Wang, Lall & West [36] are promising in this regard.

3.2 Progress Functions

The existence of a staging set only provides a necessary condition for eventuality. In
this section we will give a sufficient condition that will allow us to soundly conclude
the eventuality property. Because we already require the sets we work with to be semi-
algebraic, we can invoke the following lemma.

Lemma 7. If H, I ⊆ R
n are semi-algebraic and I is a continuous invariant for the

system ẋ = f(x) & H then any solution that starts in I ∩H and subsequently leaves
I either (i) leaves H while still in I or (ii) has a non-empty segment immediately on
leaving I that is wholly contained in R

n \H (i.e. ¬H).

Proof (sketch). Case (i) is obvious and follows from the definition of continuous in-
variants. For case (ii) we need to show that if I and H are left at the same time,
then ¬H is sustained for some non-empty time interval. If there is a time t′ such that
∀ τ ∈ [0, t′). ϕτ (x0) ∈ H ∩ I and ϕt′(x0) �∈ H ∪ I , then ¬H is sustained for [t′, t′]
immediately upon leaving I . If no such t′ exists, consider a point x1 ∈ I ∩ H from
which the system can no longer evolve inside I without violating the constraint H . It
is necessarily the case that ∀ ε > 0. ∃ t ∈ (0, ε).ϕt(x1) �∈ H holds, i.e. no further
motion of the system can sustain the constraint. We need to show the stronger property
∃ ε > 0. ∀ t ∈ (0, ε).ϕt(x1) �∈ H . For any semi-algebraic set, let P ⊂ R[x] be the col-
lection of polynomials appearing in its description. At the point x1 for each pi ∈ P we
have that pi(x1) ∼ 0, where ∼∈ {<,=, >}. For those pi ∈ P such that pi(x1) > 0 or
pi(x1) < 0, there is guaranteed to be an open neighbourhood Ui around x1 for which
pi(Ui) > 0 or pi(Ui) < 0 holds (since polynomials are continuous functions). There-
fore, there is some non-empty time neighbourhood (0, ε) for which the solution will
sustain the strict sign conditions. When pi(x1) = 0, one either has Lk

f (pi(x1)) = 0 for
infinitely many orders k, or there exists an k ≥ 1 such that Lk

f (pi(x1)) �= 0. Since poly-
nomials and solutions to polynomial ODEs are analytic functions, there is some open
time neighbourhood (0, ε) where the sign condition on the polynomial pi is sustained
under the solution (see e.g. [18, Proposition 9]). Thus, if a semi-algebraic set cannot be
sustained, then its semi-algebraic complement is sustained for some non-empty open
time interval following the solution. ��

3 In the sense that an appropriate continuous invariant (if it exists) will always be found.

Direct Verification of Eventuality in Continuous Systems 521

If one can show that any trajectory starting inside a staging set S eventually leaves S,
one can use Lemma 7 to conclude the eventuality property. An obvious way of showing
that S is eventually left (without computing the solution to the system of ODEs) is
to search for an appropriate function, whose derivative can be used as a measure of
“progress in leaving S”.

Proposition 8. Given a staging set S for some polynomial system ẋ = f(x) &H with
initial and target sets X0 ⊆ H , XT ⊆ R

n respectively and whose solutions are of
sufficient duration, if there exists a continuously differentiable function P : Rn → R

such that
∃ ε > 0. ∀ x ∈ S. Lf (P (x)) ≤ −ε ∧ P (x) ≥ 0,

then, provided the sets are semi-algebraic, the eventuality property holds and P is
known as a progress function for S.

Proof. Fix a start point x0 ∈ X0 \ XT from which we want to argue there is a finite
flow with end point in XT and which is fully contained in H . First we show that there
is a finite flow from x0 with end point outside of S. Assume that the solution with
initial condition x0 is of sufficient duration such that either (i) the trajectory exits S
at some point or (ii) the trajectory is inside S up to and including at least some time
τ > P (x0)/ε. In case (ii), a simple application of the fundamental theorem of calculus
yields

P (ϕτ (x0))− P (ϕ0(x0)) =

∫ τ

0

d

dt
P (ϕt(x0)) dt =

∫ τ

0

Lf (P (ϕt(x0))) dt

≤
∫ τ

0

−ε dt

= −ετ.

Given P (ϕ0(x0)) = P (x0) we have that P (ϕτ (x0)) < 0 which is impossible since
P (x0) ≥ 0 for all x0 ∈ S. Hence case (i) must hold. Using case (i), we now ap-
ply Lemma 3 to the invariance property of the staging set S. We have that either the
trajectory reaches XT ∩ H within S and the eventuality property obviously holds, or,
on exiting S we immediately have a non-empty segment of the trajectory contained in
XT ∩H and the eventuality property holds too. ��

Remark 9. Of course, given some set Ŝ such that S ⊆ Ŝ, where S is a staging set, if
one shows that Ŝ is left in finite time by following the solutions, then one can also con-
clude that XT is eventually attained. This may seem like a complete waste of effort, but
methods developed for verified integration of ODEs [2,22] can compute enclosures of
finite-time reachable sets where the enclosure itself is not a staging set but is guaranteed
to enclose one; in this case, the enclosure can act as Ŝ. Formally verified implementa-
tions of enclosure construction algorithms have been reported by Immler [14,15].

Polynomial progress functions may be generated automatically using pre-defined poly-
nomial templates of bounded degree with parametric coefficients. The templates can be
enumerated (e.g. by successively increasing the polynomial degree) and checked using
a real quantifier elimination procedure (such as e.g. CAD [6]), leaving the parameters

522 A. Sogokon and P.B. Jackson

as free variables. The result is a semi-algebraic constraint on the coefficients that will
yield a progress function. Of course, the computational complexity of real quantifier
elimination [7] makes this approach infeasible and therefore practically uninteresting;
however, theoretically, one has a semi-decision procedure for checking whether a poly-
nomial progress function exists for a given semi-algebraic staging set and a polynomial
ODE. Methods based on sum-of-squares techniques (e.g. [30]) may offer more practical
(albeit incomplete) alternatives for finding progress functions.

4 Proof Rule for Eventuality in ODEs

We are now ready to formalize the proof method for eventuality properties using staging
sets and progress functions, as described in the previous section, into a rule of inference.

Proposition 10. The rule of inference given below (with four premises) is sound with
the proviso that solutions are of sufficient duration.

(SP)

� ∃ ε > 0. ∀ x. S →
(
P ≥ 0 ∧ Lf (P) ≤ −ε

)

X0,¬XT � S � S → [ẋ = f(x) & ¬(H ∧XT)] S X0 ∨ S � H

� X0 → 〈ẋ = f(x) &H〉 XT
.

Proof. Corollary to Prop. 8. The sufficient duration proviso is soundness-critical (see [26,
Counterexample 9] for an example of why this is important). A stronger requirement,
e.g. Lipschitz continuity of f (if not globally, then within some compact subset of Rn

containing XT and S) may be used to give a formal criterion for ensuring the proviso
holds, but this can be restrictive in practice. ��

Example 11 (System with limit cycle and equilibrium). Consider the system of ODEs
with an equilibrium and a limit cycle

ẋ1 = x2 − x1

(
x2
1 + x2

2 − 1
)
, ẋ2 = −x1 − x2

(
x2
1 + x2

2 − 1
)
,

with H ≡ x1 ≤ 2 ∧ x1 ≥ −2 ∧ x2 ≤ 2 ∧ x2 ≥ −2 and let the initial set of states and
the target region be as follows:

X0 ≡ x2 > 0 ∧ x1 ≥ −1

4
∧ x1 ≤ 1

4
∧ (x2

1 + x2
2 − 1)2 ≤ 1

30
,

XT ≡ x2 < 0 ∧ x1 ≥ −1

4
∧ x1 ≤ 1

4
∧ (x2

1 + x2
2 − 1)2 ≤ 1

30
.

Consider also the following sets (depicted in Fig. 2):

S1 ≡ ¬XT ∧ x1 ≥ −1

4
∧ (x2

1 + x2
2 − 1)2 ≤ 1

30
,

S2 ≡ ¬X0 ∧ x1 ≤ 1

4
∧ (x2

1 + x2
2 − 1)2 ≤ 1

30
.

One may check using a decision procedure thatS1 is indeed a staging set for this system.

Direct Verification of Eventuality in Continuous Systems 523

x1

x 2

x1

x 2

Fig. 2. (left) Initial states X0 (in green), target region XT (in red) and staging sets S1 (in grey
and green, i.e. S1 includes X0) and S2 (dark grey and red, i.e. S2 includes XT). (right) Level
sets of the progress function P1 for showing eventual exit out of S1 and the region where ∃ ε >
0. Lf (P1) ≤ −ε holds (includes S1; shaded in blue).

A possible progress function for S1 is P1(x) = −
(
x1 − 6

5

)
2+(x1 − x2 − 2) 2+10.

Computing the total derivative of P1 (i.e. Lie derivative with respect to the vector field)
we obtain Lf (P1(x)) =

2 (x1 − x2 − 2)
(
x3
2 + x2

1x2 − x2 + x1

)
+

2

5
(5x2 + 4)

(
x3
1 +

(
x2
2 − 1

)
x1 − x2

)
.

Using a decision procedure for real arithmetic to check that the sentence

∃ ε > 0. ∀ x ∈ S1. Lf (P1(x)) ≤ −ε ∧ P1(x) ≥ 0

is true is sufficient to conclude the eventuality property

X0 → 〈ẋ1 = x2 − x1

(
x2
1 + x2

2 − 1
)
, ẋ2 = −x1 − x2

(
x2
1 + x2

2 − 1
)
&H〉 XT

using the proof rule SP with S1 as the staging set and P1 acting as the progress function.
Similarly, one may instead take XT to be the initial set of states and X0 to be the target
region. By using S2 as a staging set and taking the progress function

P2(x) = −
(
−x1 −

6

5

)
2 + (−x1 + x2 − 2) 2 + 10

one may use the proof rule SP, instantiating S2 and P2 appropriately, to prove

XT → 〈ẋ1 = x2 − x1

(
x2
1 + x2

2 − 1
)
, ẋ2 = −x1 − x2

(
x2
1 + x2

2 − 1
)
& H〉 X0.

The proof rule SP can be used as part of a formal verification calculus in which
liveness properties of hybrid systems are reduced using rules of inference to proving
liveness properties for discrete and continuous sub-components. When working in a
proof calculus, the following proof rule, formalizing the transitivity of the eventuality
relation between sets of states, is often convenient:

(〈〉 Trans) � X0 → 〈ẋ = f(x) &H〉 T � T → 〈ẋ = f(x) & H〉XT

� X0 → 〈ẋ = f(x) &H〉 XT
.

524 A. Sogokon and P.B. Jackson

Let us note also that proving the property of set reachability reduces to proving the ex-
istence of a non-empty set of initial states R ⊆ X0 from which the eventuality property
holds. We may formalize this fact in the following proof rule:

(Reach)
� R ∧X0 �≡R False � R → 〈ẋ = f(x) &H〉 XT

� ∃ x ∈ X0. 〈ẋ = f(x) & H〉 XT
.

To show that a given set XT is eventually attained from some initial set X0 in a
hybrid system, one can apply the rule SP to e.g. first show that some guard set within
a mode is attained and then proceed to compute the sets reachable from the guard set
by following the enabled discrete transitions, using these (or their semi-algebraic over-
approximation) as the new initial sets in subsequent applications of SP.

The next section will discuss the relationship between SP and an existing proof
method called differential induction using differential variants [26] that is part of the
logic dL and has been applied to hybrid system liveness verification problems.

5 Non-differentiable Progress Functions

In this section we will use directional differentiability properties of the minmax func-
tional with differentiable arguments [8,10] to broaden the class of progress functions at
our disposal and discuss how this generalizes the definition of total derivative for for-
mulas that was used for differential variants in [26]. We will also show how the proof
rule SP serves to remove certain limitations inherent in differential variants.

5.1 Derivatives of Formulas and Differential Variants

Differential induction using differential variants (and differential invariants) is a direct
proof method introduced by Platzer in [26] for proving eventuality (invariance) proper-
ties in ODEs, as part of a verification calculus for hybrid systems. The method allows
one to work with arbitrary semi-algebraic sets represented by quantifier-free formulas.
In order to work in this general setting, differential induction requires the notion of total
derivative to be lifted to formulas, which is achieved through the use of the derivation
operator D (see [26, Def. 13]); it is given as follows: D(r) = 0 for numbers, D(x) = ẋ
for variables, D(a + b) = D(a) + D(b), where a, b stand for numbers or variables,
D(a · b) = D(a) · b+ a ·D(b) (product rule), D

(
a
b

)
= D(a)·b−a·D(b)

b2 (quotient rule),

D(F ∧G) ≡ D(F) ∧D(G), for quantifier-free formulas F and G,

D(F ∨G) ≡ D(F) ∧D(G), ∧ needed for soundness in proving invariance [26]

D(a ≤ b) ≡ D(a) ≤ D(b), accordingly for ≥, >,<,= .

The formula (D(F) ≥ ε)
f(x)
ẋ is obtained by applying the derivation operator to

formula F , performing a substitution where each ẋi in D(F) is replaced with the cor-
responding right-hand side in the differential equation and replacing all inequalities
a ≥ b by a ≥ b+ ε (accordingly for <,≤, >; see [26, Section 4.6]).

(DV)
� ∃ ε > 0(¬XT ∧H → (D(XT) ≥ ε)

f(x)
ẋ)

[ẋ = f(x) & ∼XT]H � 〈ẋ = f(x) & H〉XT

Direct Verification of Eventuality in Continuous Systems 525

The formula ∼XT is the weak negation of XT [26, Section 4.6] defined by the negation
of XT in which every strict inequality is made non-strict. Formulas XT provable using
the rule DV 4 are called differential variants. Like our proof rule SP, the rule DV may
be applied under the proviso that solutions are of sufficient duration (see [26, Section
4.7]).

In practice, DV is rather conservative because it is incapable of proving eventu-
ality properties for target regions described by equations [26, Counterexample 7]. In
Example 12 we demonstrate a simple proof of such a property using staging sets and
progress functions.

Example 12 (Target region with equational description). Let the dynamics be given by
the non-linear system ẋ1 = −1, ẋ2 = (x2−x1)

2, H = R
2 and consider a target region

described an equation XT ≡ x2 − x1 = 0 (see Fig. 3).

x1

x 2

x1

x 2

Fig. 3. (left) Target region XT ≡ x2 − x1 = 0 (in red) and any initial set such that
X0 → x2 − x1 < 0 (anywhere below the red line, not shown). (right) Staging set S ≡ x2−x1 <
0 (in grey) and level sets of the progress function P (x) = −(x2 − x1).

Suppose the initial set of states X0 is any subset of {x ∈ R
2 | x2 − x1 < 0}.

To show the eventuality property let us take S ≡ x2 − x1 < 0, which can be easily
shown to be a staging set, and use P (x) = −(x2 − x1) as a progress function. The
total derivative of P is given by Lf (P (x)) = − (x2 − x1)

2 − 1, which satisfies the
ε-progress property inside the staging set S. An application of the rule SP proves the
property X0 → 〈ẋ1 = −1, ẋ2 = (x2 − x1)

2 &H〉 XT .

In general, finding an appropriate progress function P for use with the rule SP can
be rather non-trivial; however, sometimes the description of the target region itself may
suggest a progress function. Indeed, this is how the rule DV checks the ε-progress
property towards the target region: by considering the total derivative of the formula
giving the target region itself. This is not guaranteed to work even if the eventuality
property is true, but one may think of DV as generating a “progress formula” from the
description of the target region. Because DV relies on the derivation operator D for
its notion of ε-progress for formulas, the resulting conditions are very strong. In what
follows, we will seek to relax them, while still using the description of the target region
to suggest a progress function that can be used with our proof method.

4 Note that XT is required to define a closed set for the rule DV to be sound.

526 A. Sogokon and P.B. Jackson

5.2 Non-differentiable Progress Functions

Given a quantifier-free formula XT characterizing a semi-algebraic set, the weak neg-
ation of its negation, ∼¬XT (∼ defined as for DV), gives a formula characterizing
a closed semi-algebraic set that over-approximates the closure of XT . Note that any
closed semi-algebraic set can always be put into the form

n∨
i=1

m(i)∧
j=1

pij ≤ 0,

where pij are polynomials. The set of states satisfying such a formula can equivalently
be expressed as a sub-level set of a continuous function, i.e.

min
i∈[1,n]

max
j∈[1,m(i)]

pij ≤ 0.

Although this function need not be differentiable, for ensuring the property of ε-progress,
viz. Lf (·) ≤ −ε, we are merely interested in a certain condition on its directional de-
rivative in the direction of the vector field. Directional differentiability properties of the
minmax function have previously been investigated in non-smooth analysis [10,8] and
it was shown that under certain mild assumptions (see [10]), the minmax function has
a directional derivative that can also be expressed as a minmax function. Furthermore,
these assumptions are guaranteed to hold if the ε-progress property is satisfied. The dir-
ectional derivative of minmax (see [10]) in the direction of the vector field f , may be
used to define

Lf (min
i∈[1,n]

max
j∈[1,m(i)]

pij) = min
i∈I∗

max
j∈J∗

(Lf (pij)) ,

where pij are differentiable real-valued functions and

J∗ = {j∗ ∈ [1,m(i)] | pij∗ = max
j∈[1,m(i)]

(pij)},

I∗ = {i∗ ∈ [1, n] | pi∗j = min
i∈[1,n]

max
j∈[1,m(i)]

(pij)}.

The above definition may at first sight appear rather opaque; the following illustrative
example is useful in exposing some of the intuition.

Example 13. Suppose that we have a formula F ≡ p1 ≤ 0 ∧ p2 ≤ 0. Then we have
F ≡R max(p1, p2) ≤ 0 and the directional derivative along f given by

Lf max(p1, p2) =

⎧⎪⎨
⎪⎩
Lf (p1) p1 > p2

Lf (p2) p2 > p1

max(Lf (p1),Lf (p2)) p1 = p2

Intuitively, when there is only one differentiable “active component” (i.e. a function pj
which evaluates to the same value as the whole max function), the directional deriv-
ative is simply given by Lf (pj); however, when there are many, the index set J∗ con-
tains more than one element and the directional derivative is given by maxj∈J∗ Lf (pj)

Direct Verification of Eventuality in Continuous Systems 527

where all pj are currently active. More generally, once the directional derivative of
minmax pij is computed and an ε-progress condition is imposed, the resulting expres-
sion will feature conditionals involving min, max, ε and pijs and can thus be converted
back into a formula giving precisely the conditions for the ε-progress of the minmax
function. The resulting formulas will often be long and unwieldy, but for this simple
example we can write the condition in full:

Lf max(p1, p2) ≤ −ε ≡
(
p1 > p2 → Lf (p1) ≤ −ε

)
∧

(
p2 > p1 → Lf (p2) ≤ −ε

)
∧

(
p1 = p2 →
(Lf (p1) ≥ Lf (p2) → Lf (p1) ≤ −ε) ∧
(Lf (p1) < Lf (p2) → Lf (p2) ≤ −ε)

)
.

Similarly, if one wanted to impose the ε-progress property towards the formula F ≡
p1 ≤ 0 ∨ p2 ≤ 0, encoded as F ≡R min(p1, p2) ≤ 0, one would obtain

Lf min(p1, p2) ≤ −ε ≡
(
p1 < p2 → Lf (p1) ≤ −ε

)
∧

(
p2 < p1 → Lf (p2) ≤ −ε

)
∧

(
p1 = p2 →
(Lf (p1) ≤ Lf (p2) → Lf (p1) ≤ −ε) ∧
(Lf (p1) > Lf (p2) → Lf (p2) ≤ −ε)

)
.

By nesting these definitions appropriately, using facts such as e.g. min(p1, p2, p3) =
min(p1,min(p2, p3)), one can arrive at ε-progress conditions for more complicated
closed semi-algebraic sets.

Remark 14. Similar tools and ideas have been employed in sufficient conditions for
positive invariance of certain sets with non-smooth boundaries (e.g. practical sets in [5]
and closed semi-algebraic sets [34]). These approaches are based on Nagumo’s the-
orem [20] and require computing/under-approximating the contingent cone, which can
be defined in terms of limits of directional derivatives. The interested reader is invited
to consult [10] for a more detailed exposition of the technical assumptions used in for-
mulating the directional derivative of minmax.

Example 15 (Non-differentiable progress function). Consider the continuous system
ẋ1 = −x1, ẋ2 = −x2, H = R

2 and let the target set of states correspond to a 2 × 2
box centred at the origin, i.e. XT ≡ x1 ≤ 1 ∧ x1 ≥ −1 ∧ x2 ≤ 1 ∧ x2 ≥ −1. From
the phase portrait in Fig. 4 (left) it is clear that the eventuality property is true, i.e. by
starting the system outside the box, we are guaranteed to eventually enter the box by
following the flow.

528 A. Sogokon and P.B. Jackson

x1

x 2

x1

x 2

Fig. 4. (left) Phase portrait, target set XT (in red). (right) Level curves of a non-differentiable
progress function (black) and a staging set S ≡ ¬XT (grey).

This property cannot be proved directly using the rule DV because the definition
of the derivation operator for formulas requires one to show that each conjunct is a
differential variant. In this case,

D(XT) ≥ ε ≡ ẋ1 ≤ ε ∧ ẋ1 ≥ ε ∧ ẋ2 ≤ ε ∧ ẋ2 ≥ ε.

Upon substituting the dynamics, this leads to unsatisfiable conditions (since ε > 0):

(D(XT) ≥ ε)
f(x)
ẋ ≡ −x1 ≤ ε ∧ −x1 ≥ ε ∧ −x2 ≤ ε ∧ −x2 ≥ ε ≡R False.

Instead, one may write down the formula for the box as a sub-level set, i.e.

XT ≡ max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≤ 0

and taking the complement of XT to be the staging set, i.e. S ≡ ¬XT , check that

∃ ε > 0. ∀x ∈ S.
(
max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≥ 0

∧ Lf max(x1 − 1,−x1 − 1, x2 − 1,−x2 − 1) ≤ −ε
)

is valid, which is sufficient to conclude the eventuality property for any X0 ⊆ S.

6 Related Work

Prajna and Rantzer investigated automatic verification of eventuality properties for
ODEs in [30]; their approach ensures that evolution occurs within the domain constraint
by imposing extra constraints on the function used to demonstrate progress along the
solutions. Furthermore, the ε-progress property is required to hold everywhere outside
the target region. System equilibria lying outside the target region present a problem for
this approach and need to be manually removed from the evolution domain. Ratschan
and She introduced set-Lyapunov functions to study attraction to target regions in [31],
considering only bounded domains and also imposing conditions for ensuring progress
along the solutions everywhere outside the target region, which suffers from the same

Direct Verification of Eventuality in Continuous Systems 529

problem. The proof method we have proposed works with a more general class of even-
tuality verification problems (as it makes fewer assumptions about the problem state-
ment and the nature of the system) and can handle systems with equilibria outside the
target region by appropriately over-approximating the reachable set using staging sets.

Our approach is fundamentally different from that used by Platzer in [26], e.g. al-
lowing target regions with equational descriptions (among other things; see Section 5).

Ideas broadly similar to staging sets were explored by Stiver et al. in [33] using
common flow regions. Informally, common flow regions are sets bounded by invariant
manifolds and an “exit boundary”. The conditions given in [33] require the target and
the common flow regions to be given by a conjunction of sub-level sets of smooth func-
tions and the defining polynomials (except the exit boundary) to be conserved quantities
of the system. Conditions for staging sets are more general and less conservative.

Lastly, unlike previous approaches, we completely decouple the progress property
(using progress functions) from conditions for over-approximating the reachable set of
the system (using staging sets).

7 Conclusion

In this paper we have presented a very general proof principle for eventuality properties
of continuous systems governed by polynomial ODEs under semi-algebraic evolution
constraints that works without computing the solutions and can be shown to both extend
and generalize previous approaches in [30,31,26,33]. We have presented a formalization
of our method in a proof rule (SP) which is very well suited for use as part of a formal
verification calculus for hybrid systems.

Our work addressed some important theoretical limitations inherent in available
methods for eventuality verification; however, much future work remains before scal-
able formal verification tools can emerge and be applied in practice to large, indus-
trially relevant verification problems. The two most important practical obstacles are
manifested in the current dearth of scalable methods for continuous invariant (staging
set) generation and limited tool support for searching for progress functions. As we
have discussed, searching for staging sets is no different to generating continuous in-
variants, so improved invariant generation tools developed for safety verification of
continuous systems can be applied to search for staging sets. Automatically generat-
ing progress functions is likewise a difficult problem and would greatly benefit from
improved tools for non-linear optimization. We should note that these problems are
pervasive in direct methods and are not limited to safety and liveness verification. In the
control and dynamical systems community, direct methods for proving the property of
stability [19] are considered standard, but do not provide the means of computing the
stability-proving (Lyapunov) function; this task is delegated to the user and is the focus
of much ongoing work to facilitate their automatic discovery (see e.g. [24]).

Acknowledgements. The authors would like to thank Dr. Khalil Ghorbal at Carnegie Mellon
University for his detailed technical scrutiny and suggestions for improving an early version of
this work, Dr. André Platzer at the same institution for kindly responding to our query concerning
the method of differential variants and extend special thanks to the anonymous reviewers for their
diligent reading and valuable feedback.

530 A. Sogokon and P.B. Jackson

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters 21(4),
181–185 (1985)

2. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential algebraic
methods on high-order Taylor models. Reliable Computing 4(4), 361–369 (1998)

3. Bhatia, N.P., Szegő, G.P.: Stability Theory of Dynamical Systems. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung
der Anwendungsgebiete, vol. 161. Springer (1970)

4. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)
5. Blanchini, F., Miani, S.: Set-Theoretic Methods in Control. Systems & Control: Foundations

& Applications. Birkhäuser (2008)
6. Collins, G.E.: Hauptvortrag: Quantifier elimination for real closed fields by cylindrical

algebraic decomposition. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

7. Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Com-
put. 5(1/2), 29–35 (1988)

8. Demyanov, V.F.: The solution of minimaximin problems. USSR Computational Mathematics
and Mathematical Physics 10(3), 44–55 (1970)

9. Dolzmann, A., Sturm, T., Weispfenning, V.: Real Quantifier Elimination in Practice. In: Al-
gorithmic Algebra and Number Theory, pp. 221–247 (1998)

10. Ekici, E.: On the directional differentiability properties of the max-min function. Boletı́n de
la Asociación Matemática Venezolana X(1), 35–42 (2003)

11. Fehnker, A., Krogh, B.H.: Hybrid system verification is not a sinecure. In: Wang, F. (ed.)
ATVA 2004. LNCS, vol. 3299, pp. 263–277. Springer, Heidelberg (2004)

12. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical invariants.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 279–294. Springer,
Heidelberg (2014)

13. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings, 11th Annual IEEE Sym-
posium on Logic in Computer Science, pp. 278–292 (1996)

14. Immler, F.: Formally verified computation of enclosures of solutions of ordinary differential
equations. In: Badger, J.M., Rozier, K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 113–127.
Springer, Heidelberg (2014)

15. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg (2015)

16. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Transactions on Soft-
ware Engineering 3(2), 125–143 (1977)

17. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for hybrid CSP.
In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer, Heidelberg (2010)

18. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial dynamical
systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp.
97–106. ACM (2011)

19. Lyapunov, A.M.: The general problem of stability of motion. Kharkov Mathematical Society,
Kharkov (1892)

20. Nagumo, M.: Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen. In:
Proceedings of the Physico-Mathematical Society of Japan, vol. 24, pp. 551–559 (May 1942)

21. Navarro-López, E.M., Carter, R.: Hybrid automata: an insight into the discrete abstraction of
discontinuous systems. International Journal of Systems Science 42(11), 1883–1898 (2011)

22. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of ODEs.
SIAM Journal on Numerical Analysis 45(1), 236–262 (2007)

Direct Verification of Eventuality in Continuous Systems 531

23. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 4(3), 455–495 (1982)

24. Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in ro-
bustness and optimization. Engineering and applied science, control and dynamical systems,
California Institute of Technology (May 2000)

25. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2),
143–189 (2008)

26. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput. 20(1), 309–352 (2010)

27. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidel-
berg (2008)

28. Poincaré, H.: Mémoire sur les courbes définies par une équation différentielle. Journal de
Mathématiques Pures et Appliquées 7, 3, 4, 375–422, 251–296, 167–224 (1881, 1882, 1885)

29. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In:
Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidel-
berg (2004)

30. Prajna, S., Rantzer, A.: Primal–dual tests for safety and reachability. In: Morari, M.,
Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 542–556. Springer, Heidelberg (2005)

31. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim. 48(7),
4377–4394 (2010)

32. Richardson, D.: Some undecidable problems involving elementary functions of a real vari-
able. Journal of Symbolic Logic 33(4), 514–520 (1968)

33. Stiver, J.A., Koutsoukos, X.D., Antsaklis, P.J.: An invariant-based approach to the design of
hybrid control systems. International Journal of Robust and Nonlinear Control 11(5), 453–
478 (2001)

34. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: Kannan,
R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2009)

35. Tarski, A.: A decision method for elementary algebra and geometry. Bulletin of the American
Mathematical Society 59 (1951)

36. Wang, T.C., Lall, S., West, M.: Polynomial level-set method for polynomial system reachable
set estimation. IEEE Transactions on Automatic Control 58(10), 2508–2521 (2013)

Rigorous Estimation of Floating-Point Round-off

Errors with Symbolic Taylor Expansions

Alexey Solovyev(�), Charles Jacobsen,
Zvonimir Rakamarić, and Ganesh Gopalakrishnan

School of Computing, University of Utah, Salt Lake City, UT, 84112, USA
{monad,charlesj,zvonimir,ganesh}@cs.utah.edu

Abstract. Rigorous estimation of maximum floating-point round-off er-
rors is an important capability central to many formal verification tools.
Unfortunately, available techniques for this task often provide overesti-
mates. Also, there are no available rigorous approaches that handle tran-
scendental functions. We have developed a new approach called Symbolic
Taylor Expansions that avoids this difficulty, and implemented a new tool
called FPTaylor embodying this approach. Key to our approach is the
use of rigorous global optimization, instead of the more familiar interval
arithmetic, affine arithmetic, and/or SMT solvers. In addition to pro-
viding far tighter upper bounds of round-off error in a vast majority of
cases, FPTaylor also emits analysis certificates in the form of HOL Light
proofs. We release FPTaylor along with our benchmarks for evaluation.

Keywords: Floating-point · Round-off error analysis · Global optimiza-
tion

1 Introduction

Many algorithms are conceived (and even formally verified) in real numbers, but
ultimately deployed using floating-point numbers. Unfortunately, the finitary na-
ture of floating-point, along with its uneven distribution of representable num-
bers introduces round-off errors, as well as does not preserve many familiar laws
(e.g., associativity of +) [22]. This mismatch often necessitates re-verification
using tools that precisely compute round-off error bounds (e.g., as illustrated
in [21]). While SMT solvers can be used for small problems [52,24], the need
to scale necessitates the use of various abstract interpretation methods [11], the
most popular choices being interval [41] or affine arithmetic [55]. However, these
tools very often generate pessimistic error bounds, especially when nonlinear
functions are involved. No tool that is currently maintained rigorously handles
transcendental functions that arise in problems such as the safe separation of
aircraft [20].

Key to Our Approach. In a nutshell, the aforesaid difficulties arise because
of a tool’s attempt to abstract the “difficult” (nonlinear or transcendental) func-
tions. Our new approach called Symbolic Taylor Expansions (realized in a tool

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 532–550, 2015.
DOI: 10.1007/978-3-319-19249-9_33

Rigorous Estimation of Floating-Point Round-off Errors 533

FPTaylor) side-steps these issues entirely as follows. (1) We view round-off er-
rors as “noise,” and compute Taylor expansions in a symbolic form. (2) In these
symbolic Taylor forms, all difficult functional expressions appear as symbolic
coefficients; they do not need to be abstracted. (3) We then apply a rigorous
global maximization method that has no trouble handling the difficult functions
and can be executed sufficiently fast thanks to the ability to trade off accuracy
for performance.

Let us illustrate these ideas using a simple example. First, we define absolute
round-off error as errabs = |ṽ− v|, where ṽ is the result of floating-point compu-
tations and v is the result of corresponding exact mathematical computations.
Now, consider the estimation of worst case absolute round-off error in t/(t+ 1)
computed with floating-point arithmetic where t ∈ [0, 999] is a floating-point
number. (Our goal here is to demonstrate basic ideas of our method; pertinent
background is in Sect. 2.) Let � and ⊕ denote floating-point operations corre-
sponding to / and +.

Suppose interval abstraction were used to analyze this example. The round-off
error of t ⊕ 1 can be estimated by 512ε where ε is the machine epsilon (which
bounds the maximum relative error of basic floating-point operations such as
⊕ and �) and the number 512 = 29 is the largest power of 2 which is less
than 1000 = 999 + 1. Interval abstraction replaces the expression d = t ⊕ 1
with the abstract pair ([1, 1000], 512ε) where the first component is the interval
of all possible values of d and 512ε is the associated round-off error. Now we
need to calculate the round-off error of t � d. It can be shown that one of the
primary sources of errors in this expression is attributable to the propagation
of error in t ⊕ 1 into the division operator. The propagated error is computed
by multiplying the error in t⊕ 1 by t

d2 .
1 At this point, interval abstraction does

not yield a satisfactory result since it computes t
d2 by setting the numerator t to

999 and the denominator d to 1. Therefore, the total error bound is computed
as 999× 512ε ≈ 512000ε.

The main weakness of the interval abstraction is that it does not preserve
variable relationships (e.g., the two t’s may be independently set to 999 and 0).
In the example above, the abstract representation of d was too coarse to yield a
good final error bound (we suffer from eager composition of abstractions). While
affine arithmetic is more precise since it remembers linear dependencies between
variables, it still does not handle our example well as it contains division, a
nonlinear operator (for which affine arithmetic is known to be a poor fit).

A better approach is to model the error at each subexpression position and
globally solve for maximal error—as opposed to merging the worst-cases of local
abstractions, as happens in the interval abstraction usage above. Following this
approach, a simple way to get a much better error estimate is the following.
Consider a simple model for floating-point arithmetic. Write t⊕1 = (t+1)(1+ε1)
and t � (t ⊕ 1) = (t/(t ⊕ 1))(1 + ε2) with |ε1| ≤ ε and |ε2| ≤ ε. Now, compute

1 Ignoring the round-off division error, one can view t� d as t/(dexact + δ) where δ is
the round-off error in d. Apply Taylor approximation which yields as the first two
terms (t/dexact)− (t/(d2exact))δ.

534 A. Solovyev et al.

the first order Taylor approximation of our expression with respect to ε1 and
ε2 by taking ε1 and ε2 as the perturbations around t, and computing partial
derivatives with respect to them (see (4) and (5) for a recap):

t� (t⊕ 1) =
t(1 + ε2)

(t+ 1)(1 + ε1)
=

t

t+ 1
− t

t+ 1
ε1 +

t

t+ 1
ε2 +O(ε2) .

(Here t ∈ [0, 999] is fixed and hence we do not divide by zero.) It is important
to keep all coefficients in the above Taylor expansion as symbolic expressions
depending on the input variable t. The difference between t/(t+1) and t�(t⊕1)
can be easily estimated (we ignore the term O(ε2) in this motivating example
but later in Sect. 3 we demonstrate how rigorous upper bounds are derived for
all error terms):

∣∣∣− t

t+ 1
ε1 +

t

t+ 1
ε2

∣∣∣ ≤
∣∣∣ t

t+ 1

∣∣∣|ε1|+
∣∣∣ t

t+ 1

∣∣∣|ε2| ≤ 2
∣∣∣ t

t+ 1

∣∣∣ε .

The only remaining task now is finding a bound for the expression t/(t+ 1) for
all t ∈ [0, 999]. Simple interval computations as above yield t/(t+ 1) ∈ [0, 999].
The error can now be estimated by 1998ε, which is already a much better bound
than before. We go even further and apply a global optimization procedure to
maximize t/(t+ 1) and compute an even better bound, i.e., t/(t+ 1) ≤ 1 for all
t ∈ [0, 999]. Thus, the error is bounded by 2ε.

Our combination of Taylor expansion with symbolic coefficients and global
optimization yields an error bound which is 512000/2 = 256000 times better than
a näıve error estimation technique implemented in many other tools for floating-
point analysis. Our approach never had to examine the inner details of / and + in
our example (these could well be replaced by “difficult” functions; our technique
would work the same way). The same cannot be said of SMT or interval/affine
arithmetic. The key enabler is that most rigorous global optimizers deal with a
very large class of functions smoothly.

Our Key Contributions:
• We describe all the details of our global optimization approach, as there seems
to be a lack of awareness (even misinformation) among some researchers.
• We release an open source version of our tool FPTaylor.2 FPTaylor handles
all basic floating-point operations and all the binary floating-point formats de-
fined in IEEE 754. It is the only tool we know providing guaranteed bounds
for transcendental expressions. It handles uncertainties in input variables, sup-
ports estimation of relative and absolute round-off errors, provides a rigorous
treatment of subnormal numbers, and handles mixed precision.
• For the same problem complexity (i.e., number of input variables and expres-
sion size), FPTaylor obtains tighter bounds than state-of-the-art tools in most
cases, while incurring comparable runtimes. We also empirically verify that our
overapproximations are within a factor of 3.5 of the corresponding underapprox-
imations computed using a recent tool [7].

2 Available at https://github.com/soarlab/FPTaylor

https://github.com/soarlab/FPTaylor

Rigorous Estimation of Floating-Point Round-off Errors 535

• FPTaylor has a mode in which it produces HOL Light proof scripts. This facil-
ity actually helped us find a bug in our initial tool version. It therefore promises
to offer a similar safeguard for its future users.

2 Background

Floating-Point Arithmetic. The IEEE 754 standard [28] concisely formalized
in (e.g.) [22] defines a binary floating-point number as a triple of sign (0 or 1),
significand, and exponent, i.e., (sgn, sig, exp), with numerical value (−1)sgn ×
sig × 2exp. The standard defines three general binary formats with sizes of 32,
64, and 128 bits, varying in constraints on the sizes of sig and exp. The standard
also defines special values such as infinities and NaN (not a number). We do not
distinguish these values in our work and report them as potential errors.

Rounding plays a central role in defining the semantics of floating-point arith-
metic. Denote the set of floating-point numbers (in some fixed format) as F. A
rounding operator rnd : R → F is a function which takes a real number and
returns a floating-point number which is closest to the input real number and
has some special properties defined by the rounding operator. Common rounding
operators are rounding to nearest (ties to even), toward zero, and toward ±∞.
A simple model of rounding is given by the following formula [22]

rnd(x) = x(1 + e) + d (1)

where |e| ≤ ε, |d| ≤ δ, and e × d = 0. If x is a symbolic expression, then
exact numerical values of e and d are not explicitly defined in most cases.
(Values of e and d may be known in some cases; for instance, if we know
that x is a sufficiently small integer then rnd(x) = x and thus e = d = 0.)

Table 1. Rounding to nearest
operator parameters

Precision (bits) ε δ

single (32) 2−24 2−150

double (64) 2−53 2−1075

quad. (128) 2−113 2−16495

The parameter ε specifies the maximal relative
error introduced by the given rounding oper-
ator. The parameter δ gives the maximal ab-
solute error for numbers which are very close
to zero (relative error estimation does not work
for these small numbers called subnormals). Ta-
ble 1 shows values of ε and δ for the rounding to
nearest operator of different floating-point for-
mats. Parameters for other rounding operators
can be obtained from Table 1 by multiplying all
entries by 2, and (1) does not distinguish between rounding operators toward
zero and infinities.

The standard precisely defines the behavior of several basic floating-point
arithmetic operations. Suppose op : Rk → R is an operation. Let opfp be the cor-
responding floating-point operation. Then the operation opfp is exactly rounded
if the following equation holds for all floating-point values x1, . . . , xk:

opfp(x1, . . . , xk) = rnd
(
op(x1, . . . , xk)

)
. (2)

536 A. Solovyev et al.

The following operations must be exactly rounded according to the standard:
+,−,×, /,

√
, fma. (Here, fma(a, b, c) is a ternary fused multiply-add operation

that computes a× b+ c with a single rounding.)
Combining (1) and (2), we get a simple model of floating-point arithmetic

which is valid in the absence of overflows and invalid operations:

opfp(x1, . . . , xk) = op(x1, . . . , xk)(1 + e) + d . (3)

There are some special cases where the model given by (3) can be improved. For
instance, if op is − or + then d = 0 [22]. Also, if op is × and one of the arguments
is a nonnegative power of two then e = d = 0. These and several other special
cases are implemented in FPTaylor to improve the quality of the error analysis.

Equation (3) can be used even with operations that are not exactly rounded.
For example, most implementations of floating-point transcendental functions
are not exactly rounded but they yield results which are very close to exactly
rounded results [25]. The technique introduced by Bingham et al. [3] can verify
relative error bounds of hardware implementations of transcendental functions.
So we can still use (3) to model transcendental functions but we need to increase
values of ε and δ appropriately. There exist software libraries that exactly com-
pute rounded values of transcendental functions [12,17]. For such libraries, (3)
can be applied without any changes.

Taylor Expansion. A Taylor expansion is a well-known formula for approxi-
mating an arbitrary sufficiently smooth function with a polynomial expression.
In this work, we use the first order Taylor approximation with the second or-
der error term. Higher order Taylor approximations are possible but they lead
to complex expressions for second and higher order derivatives and do not give
much better approximation results [44]. Suppose f(x1, . . . , xk) is a twice continu-
ously differentiable multivariate function on an open convex domainD ⊂ R

k. For
any fixed point a ∈ D (we use bold symbols to represent vectors) the following
formula holds (for example, see Theorem 3.3.1 in [39])

f(x) = f(a) +

k∑
i=1

∂f

∂xi
(a)(xi − ai) +

1

2

k∑
i,j=1

∂2f

∂xi∂xj
(p)(xi − ai)(xj − aj) . (4)

Here, p ∈ D is a point which depends on x and a.
Later we will consider functions with arguments x and e defined by f(x, e) =

f(x1, . . . , xn, e1, . . . , ek). We will derive Taylor expansions of these functions with
respect to variables e1, . . . , ek:

f(x, e) = f(x, a) +

k∑
i=1

∂f

∂ei
(x, a)(ei − ai) +R2(x, e) . (5)

In this expansion, variables x1, . . . , xn appear in coefficients ∂f
∂ei

thereby produc-
ing Taylor expansions with symbolic coefficients.

Rigorous Estimation of Floating-Point Round-off Errors 537

3 Symbolic Taylor Expansions

Given a function f : Rn → R, the goal of the Symbolic Taylor Expansions ap-
proach is to estimate the round-off error when f is realized in floating-point. We
assume that the arguments of the function belong to a bounded domain I, i.e.,
x ∈ I. The domain I can be quite arbitrary. The only requirement is that it is
bounded and the function f is twice differentiable in some open neighborhood
of I. In FPTaylor, the domain I is defined with inequalities over input variables.
In the benchmarks presented later, we have ai ≤ xi ≤ bi for all i = 1, . . . , n. In
this case, I = [a1, b1]× . . .× [an, bn] is a product of intervals.

Let fp(f) : Rn → F be a function derived from f where all operations, vari-
ables, and constants are replaced with the corresponding floating-point opera-
tions, variables, and constants. Our goal is to compute the following round-off
error:

errfp(f, I) = max
x∈I

|fp(f)(x)− f(x)| . (6)

The optimization problem (6) is computationally hard and not supported by
most classical optimization methods as it involves a highly irregular and dis-
continuous function fp(f). The most common way of overcoming such difficul-
ties is to consider abstract models of floating-point arithmetic that approximate
floating-point results with real numbers. Section 2 presented the following model
of floating-point arithmetic (see (3)):

opfp(x1, . . . , xn) = op(x1, . . . , xn)(1 + e) + d .

Values of e and d depend on the rounding mode and the operation itself. Special
care must be taken in case of exceptions (overflows or invalid operations). Our
tool can detect and report such exceptions.

First, we replace all floating-point operations in the function fp(f) with the
right hand side of (3). Constants and variables also need to be replaced with
rounded values, unless they can be exactly represented with floating-point num-
bers. We get a new function f̃(x, e,d) which has all the original arguments
x = (x1, . . . , xn) ∈ I, but also the additional arguments e = (e1, . . . , ek) and
d = (d1, . . . , dk) where k is the number of potentially inexact floating-point op-
erations (plus constants and variables) in fp(f). Note that f̃(x,0,0) = f(x).
Also, f̃(x, e,d) = fp(f)(x) for some choice of e and d. Now, the difficult opti-
mization problem (6) can be replaced with the following simpler optimization
problem that overapproximates it:

erroverapprox(f̃ , I) = max
x∈I,|ei|≤ε,|di|≤δ

|f̃(x, e,d)− f(x)| . (7)

Note that for any I, errfp(f, I) ≤ erroverapprox(f̃ , I). However, even this opti-
mization problem is still hard because we have 2k new variables ei and di for
(inexact) floating-point operations in fp(f). We further simplify the optimization
problem using Taylor expansion.

538 A. Solovyev et al.

We know that |ei| ≤ ε, |di| ≤ δ, and ε, δ are small. Define y1 = e1, . . . , yk =
ek, yk+1 = d1, . . . , y2k = dk. Consider the Taylor formula with the second order
error term (5) of f̃(x, e,d) with respect to e1, . . . , ek, d1, . . . , dk.

f̃(x, e,d) = f̃(x,0,0) +

k∑
i=1

∂f̃

∂ei
(x,0,0)ei +R2(x, e,d) (8)

with

R2(x, e,d) =
1

2

2k∑
i,j=1

∂2f̃

∂yi∂yj
(x,p)yiyj +

k∑
i=1

∂f̃

∂di
(x,0,0)di

for some p ∈ R
2k such that |pi| ≤ ε for i = 1, . . . , k and |pi| ≤ δ for i =

k + 1, . . . , 2k. Note that we added first order terms ∂f̃
∂di

(x,0,0)di to the error

term R2 because δ = O(ε2) (see Table 1; in fact, δ is much smaller than ε2).
We have f̃(x,0,0) = f(x) and hence the error (7) can be estimated as follows:

erroverapprox(f̃ , I) ≤ max
x∈I,|ei|≤ε

∣∣∣
k∑

i=1

∂f̃

∂ei
(x,0,0)ei

∣∣∣+M2 (9)

where M2 is an upper bound for the error term R2(x, e,d). In our work, we use
simple methods to estimate the value ofM2, such as interval arithmetic or several
iterations of a global optimization algorithm. We always derive a rigorous bound
of R2(x, e,d) and this bound is small in general since it contains an ε2 factor.
Large values of M2 may indicate serious stability problems—for instance, the
denominator of some expression is very close to zero. Our tool issues a warning
if the computed value of M2 is large.

Next, we note that in (9) the maximized expression depends on ei linearly and
it achieves its maximum value when ei = ±ε. Therefore, the expression attains
its maximum when the sign of ei is the same as the sign of the corresponding
partial derivative, and we transform the maximized expression into the sum of
absolute values of partial derivatives. Finally, we get the following optimization
problem:

errfp(f, I) ≤ erroverapprox(f̃ , I) ≤ M2 + εmax
x∈I

k∑
i=1

∣∣∣ ∂f̃
∂ei

(x,0,0)
∣∣∣ . (10)

The solution of our original, almost intractable problem (i.e., estimation of the
floating-point error errfp(f, I)) is reduced to the following two much simpler sub-
problems: (i) compute all expressions and constants involved in the optimization
problem (10) (see our technical report [54] for details), and (ii) solve the opti-
mization problem (10).

3.1 Solving Optimization Problems

We compute error bounds using rigorous global optimization techniques [45].
In general, it is not possible to find an exact optimal value of a given real-
valued function. The main property of rigorous global optimization methods

Rigorous Estimation of Floating-Point Round-off Errors 539

is that they always return a rigorous bound for a given optimization problem
(some conditions on the optimized function are necessary such as continuity or
differentiability). These methods can also balance between accuracy and perfor-
mance. They can either return an estimation of the optimal value with the given
tolerance or return a rigorous upper bound after a specific amount of time (iter-
ations). It is also important that we are optimizing real-valued expressions, not
floating-point ones. A particular global optimizer can work with floating-point
numbers internally but it must return a rigorous result. For instance, the optimal
maximal floating-point value of the function f(x) = 0.3 is the smallest floating-
point number r which is greater than 0.3. It is known that global optimization is
a hard problem. But note that abstraction techniques based on interval or affine
arithmetic can be considered as primitive (and generally inaccurate) global op-
timization methods. FPTaylor can use any existing global optimization method
to derive rigorous bounds of error expressions, and hence it is possible to run it
with an inaccurate but fast global optimization technique if necessary.

The optimization problem (10) depends only on input variables of the function
f , but it also contains a sum of absolute values of functions. Hence, it is not
trivial—some global optimization solvers may not accept absolute values since
they are not smooth functions. In addition, even if a solver accepts absolute
values, they make the optimization problem considerably harder.

There is a näıve approach to simplify and solve this optimization problem.

Find minimum (yi) and maximum (zi) values for each term si(x) =
∂f̃
∂ei

(x,0,0)
separately and then compute

max
x∈I

k∑
i=1

|si(x)| ≤
k∑

i=1

max
x∈I

|si(x)| =
k∑

i=1

max{−yi, zi} . (11)

This result can be inaccurate, but in many cases it is close to the optimal result
as our experimental results demonstrate (see Sect. 4.2).

We also apply global optimization to compute a range of the expression for
which we estimate the round-off error (i.e., the range of the function f). By
combining this range information with the bound of the absolute round-off error
computed from (10), we can get a rigorous estimation of the range of fp(f). The
range of fp(f) is useful for verification of program assertions and proving the
absence of floating-point exceptions such as overflows or divisions by zero.

3.2 Improved Rounding Model

The rounding model described by (1) and (3) is imprecise. For example, if we
round a real number x ∈ [8, 16] then (1) yields rnd(x) = x+ xe with |e| ≤ ε. A
more precise bound for the same e would be rnd(x) = x+8e. This more precise
rounding model follows from the fact that floating-point numbers have the same
distance between each other in the interval

[
2n, 2n+1

]
for integer n.

We define p2(x) = maxn∈Z{2n | 2n < x} and rewrite (1) and (3) as

rnd(x) = x+ p2(x)e + d,

opfp(x1, . . . , xk) = op(x1, . . . , xk) + p2
(
op(x1, . . . , xk)

)
e+ d .

(12)

540 A. Solovyev et al.

The function p2 is piecewise constant. The improved model yields optimization
problems with discontinuous functions p2. These problems are harder than opti-
mization problems for the original rounding model and can be solved with branch
and bound algorithms based on rigorous interval arithmetic (see Sect. 4.2).

3.3 Formal Verification of FPTaylor Results in HOL Light

We formalized error estimation with the simplified optimization problem (11)
in HOL Light [27]. In our formalization we do not prove that the implementa-
tion of FPTaylor satisfies a given specification. Instead, we formalized theorems
necessary for validating results produced by FPTaylor. The validity of results is
checked against specifications of floating-point rounding operations given by (1)
and (12). We chose HOL Light as the tool for our formalization because it is
the only proof assistant for which there exists a tool for formal verification of
nonlinear inequalities (including inequalities with transcendental functions) [53].
Verification of nonlinear inequalities is necessary since the validity of results of
global optimization procedures can be proved with nonlinear inequalities.

The validation of FPTaylor results is done as follows. First, FPTaylor is ex-
ecuted on a given problem with a special proof saving flag turned on. In this
way, FPTaylor computes the round-off errors and produces a proof certificate
and saves it in a file. Then a special procedure is executed in HOL Light which
reads the produced proof certificate and formally verifies that all steps in this
certificate are correct. The final theorem has the following form (for an error
bound e computed by FPTaylor):

� ∀x ∈ I, |fp(f)(x)− f(x)| ≤ e .

Here, the function fp(f) is a function where a rounding operator is applied to
all operations, variables, and constants. As mentioned above, in our current
formalization we define such a rounding operator as any operator satisfying (1)
and (12). We also implemented a comprehensive formalization of floating-point
arithmetic in HOL Light (our floating-point formalization is available in the HOL
Light distribution). Combining this formalization with theorems produced from
FPTaylor certificates, we can get theorems about floating-point computations
which do not explicitly contain references to rounding models (1) and (12).

The formalization of FPTaylor helped us to find a subtle bug in our imple-
mentation. We use an external tool for algebraic simplifications of internal ex-
pressions in FPTaylor (see Sect. 4.1 for more details). All expressions are passed
as strings to this tool. Constants in FPTaylor are represented with rational num-
bers and they are printed as fractions. We forgot to put parentheses around these
fractions and in some rare cases it resulted in wrong expressions passed to and
from the simplification tool. For instance, if c = 111/100 and we had the ex-
pression 1/c then it would be given to the simplification tool as 1/111/100. We
discovered this associativity-related bug when formal validation failed on one of
our test examples.

All limitations of our current formalization are limitations of the tool for ver-
ification of nonlinear inequalities in HOL Light. In order to get a verification of

Rigorous Estimation of Floating-Point Round-off Errors 541

all features of FPTaylor, it is necessary to be able to verify nonlinear inequali-
ties containing absolute values and the discontinuous function p2(x) defined in
Sect. 3.2. We are working on improvements of the inequality verification tool
which will include these functions. Nevertheless, we already can automatically
verify interesting results which are much better than results produced by Gappa,
another tool which can produce formal proofs in the Coq proof assistant [9].

4 Implementation and Evaluation

4.1 Implementation

We implemented a prototype tool called FPTaylor for estimating round-off er-
rors in floating-point computations based on our method described in Sect. 3.
The tool implements several additional features we did not describe, such as
estimation of relative errors and support for transcendental functions and mixed
precision floating-point computations.

1: Variables

2: float64 x in [1.001, 2.0],

3: float64 y in [1.001, 2.0];

4: Definitions

5: t rnd64= x * y;

6: // Constraints

7: // x + y <= 2;

8: Expressions

9: r rnd64= (t-1)/(t*t-1);

Fig. 1. FPTaylor input file example

FPTaylor is implemented in OCaml
and uses several third-party tools and li-
braries. An interval arithmetic library [1]
is used for rigorous estimations of
floating-point constants and second order
error terms in Taylor expansions. Inter-
nally, FPTaylor implements a very sim-
ple branch and bound global optimiza-
tion technique based on interval arith-
metic. The main advantage of this simple
optimization method is that it can work
even with discontinuous functions which
are required by the improved rounding
model described in Sect. 3.2. Our current implementation of the branch and
bound method supports only simple interval constraints for input domain spec-
ification. FPTaylor also works with several external global optimization tools
and libraries, such as NLopt optimization library [29] that implements various
global optimization algorithms. Algorithms in NLopt are not rigorous and may
produce incorrect results, but they are fast and can be used for obtaining solid
preliminary results before applying slower rigorous optimization techniques. Z3
SMT solver [42] can also be used as an optimization backend by employing a
simple binary search algorithm similar to the one described in related work [14].
Z3-based optimization supports any inequality constraints but it does not work
with transcendental or discontinuous functions. We also plan to support other
free global optimization tools and libraries in FPTaylor such as ICOS [31], Glob-
Sol [30], and OpenOpt [46]. We rely on Maxima computer algebra system [37]
for performing symbolic simplifications. Using Maxima is optional but it can
significantly improve performance of optimization tools by simplifying symbolic
expressions beforehand.

542 A. Solovyev et al.

As input FPTaylor takes a text file describing floating-point computations,
and prints out the computed floating-point error bounds as output. Figure 1
demonstrates an example FPTaylor input file. Each input file contains several
sections which define variables, constraints (in Fig. 1 constraints are not used
and commented out), and expressions. FPTaylor analyses all expressions in an
input file. All operations are assumed to be over real numbers. Floating-point
arithmetic is modeled with rounding operators and with initial types of variables.
The operator rnd64= in the example means that the rounding operator rnd64

is applied to all operations, variables, and constants on the right hand side (this
notation is borrowed from Gappa [15]). See the FPTaylor user manual distributed
with the tool for all usage details.

4.2 Experimental Results

We compared FPTaylor with Gappa (version 1.1.2) [15], the Rosa real compiler
(version from May 2014) [14], and Fluctuat (version 3.1071) [16] (see Sect. 5 for
more information on these tools). We tested our tool on all benchmarks from the
Rosa paper [14] and on three simple benchmarks with transcendental functions.3

We also tried SMT tools which support floating-point reasoning [8,42] but they
were not able to produce any results even on simple examples in a reasonable
time (we ran them with a 30-minute timeout).

Table 2 presents our experimental results. In the table, column FPTaylor(a)
shows results computed using the simplified optimization problem (11), column
FPTaylor(b) using the full optimization problem (10) and the improved rounding
model (12). Columns Gappa (hints) and Fluctuat (subdivisions) present results
of Gappa and Fluctuat with manually provided subdivision hints. More precisely,
in these experiments Gappa and Fluctuat were instructed to subdivide intervals
of input variables into a given number of smaller pieces. The main drawback
of these manually provided hints is that it is not always clear which variable
intervals should be subdivided and how many pieces are required. It is very easy
to make Gappa and Fluctuat very slow by subdividing intervals into too many
pieces (even 100 pieces are enough in some cases).

Benchmarks sine, sqroot, and sineOrder3 are different polynomial approxima-
tions of sine and square root. Benchmarks carbonGas, rigidBody1, rigidBody2,
doppler1, doppler2, and doppler3 are nonlinear expressions used in physics.
Benchmarks verhulst and predatorPrey are from biological modeling. Bench-
marks turbine1, turbine2, turbine3, and jetEngine are from control theory. Bench-
mark logExp is from Gappa++ paper [33] and it estimates the error in log(1 +
exp(x)) for x ∈ [−8, 8]. Benchmarks sphere and azimuth are taken from NASA
World Wind Java SDK [57], which is a popular open-source 3D interactive world
viewer with many users ranging from US Army and Air Force to European Space
Agency. An example application that leverages World Wind is a critical com-
ponent of the Next Generation Air Transportation System (NextGen) called
AutoResolver, whose task is to provide separation assurance for airplanes [20].

3 Our benchmarks are available at https://github.com/soarlab/FPTaylor

https://github.com/soarlab/FPTaylor

Rigorous Estimation of Floating-Point Round-off Errors 543

Table 2. Experimental results for absolute round-off error bounds (bold font marks
the best results for each benchmark; italic font marks pessimistic results)

Benchmark Gappa Gappa
(hints)

Fluctuat Fluctuat
(subdiv.)

Rosa FPT.(a) FPT.(b)

Univariate polynomial approximations

sine 1.46 5.17e-09 7.97e-16 6.86e-16 9.56e-16 6.71e-16 4.43e-16
sqroot 5.71e-16 5.37e-16 6.84e-16 6.84e-16 8.41e-16 7.87e-16 5.78e-16
sineOrder3 8.89e-16 6.50e-16 1.16e-15 1.03e-15 1.11e-15 9.96e-16 7.95e-16

Rational functions with 1, 2, and 3 variables

carbonGas 2.62e-08 6.00e-09 4.52e-08 8.88e-09 4.64e-08 1.25e-08 9.99e-09
verhulst 5.41e-16 2.84e-16 5.52e-16 4.78e-16 6.82e-16 3.50e-16 2.50e-16
predPrey 2.44e-16 1.66e-16 2.50e-16 2.35e-16 2.94e-16 1.87e-16 1.59e-16
rigidBody1 3.22e-13 2.95e-13 3.22e-13 3.22e-13 5.08e-13 3.87e-13 2.95e-13
rigidBody2 3.65e-11 3.61e-11 3.65e-11 3.65e-11 6.48e-11 5.24e-11 3.61e-11
doppler1 2.03e-13 1.61e-13 3.91e-13 1.40e-13 4.92e-13 1.57e-13 1.35e-13
doppler2 3.92e-13 2.86e-13 9.76e-13 2.59e-13 1.29e-12 2.87e-13 2.44e-13
doppler3 1.08e-13 8.70e-14 1.57e-13 7.63e-14 2.03e-13 8.16e-14 6.97e-14
turbine1 9.51e-14 2.63e-14 9.21e-14 8.31e-14 1.25e-13 2.50e-14 1.86e-14
turbine2 1.38e-13 3.54e-14 1.30e-13 1.10e-13 1.76e-13 3.34e-14 2.15e-14
turbine3 39.91 0.35 6.99e-14 5.94e-14 8.50e-14 1.80e-14 1.07e-14
jetEngine 8.24e+06 4426.37 4.08e-08 1.82e-11 1.62e-08 1.49e-11 1.03e-11

Transcendental functions with 1 and 4 variables

logExp − − − − − 1.71e-15 1.53e-15
sphere − − − − − 1.29e-14 8.08e-15
azimuth − − − − − 1.41e-14 8.78e-15

Table 3 contains additional information about benchmarks. Columns Vars,
Ops, and Trans show the number of variables, the total number of floating-point
operations, and the total number of transcendental operations in each bench-
mark. The column FPTaylor(b) repeats results of FPTaylor from Table 2. The
column s3fp shows lower bounds of errors estimated with the underapproxima-
tion tool s3fp [7]. The column Ratio gives ratios of overapproximations computed
with FPTaylor(b) and underapproximations computed with s3fp.

For all these benchmarks, input values are assumed to be real numbers, which
is how Rosa treats input values, and hence we always need to consider uncertain-
ties in inputs. All results are given for double precision floating-point numbers
and we ran Gappa, Fluctuat, and Rosa with standard settings. We used a simple
branch and bound optimization method in FPTaylor since it works better than
a Z3-based optimization on most benchmarks. For transcendental functions, we
used increased values of ε and δ: ε = 1.5 · 2−53 and δ = 1.5 · 2−1075.

544 A. Solovyev et al.

Table 3. Additional benchmark information

Benchmark Vars Ops Trans FPTaylor(b) s3fp Ratio

Univariate polynomial approximations

sine 1 18 0 4.43e-16 2.85e-16 1.6
sqroot 1 14 0 5.78e-16 4.57e-16 1.3
sineOrder3 1 5 0 7.95e-16 3.84e-16 2.1

Rational functions with 1, 2, and 3 variables

carbonGas 1 11 0 9.99e-09 4.11e-09 2.4
verhulst 1 4 0 2.50e-16 2.40e-16 1.1
predPrey 1 7 0 1.59e-16 1.47e-16 1.1
rigidBody1 3 7 0 2.95e-13 2.47e-13 1.2
rigidBody2 3 14 0 3.61e-11 2.88e-11 1.3
doppler1 3 8 0 1.35e-13 8.01e-14 1.7
doppler2 3 8 0 2.44e-13 1.54e-13 1.6
doppler3 3 8 0 6.97e-14 4.54e-14 1.5
turbine1 3 14 0 1.86e-14 1.01e-14 1.8
turbine2 3 10 0 2.15e-14 1.20e-14 1.8
turbine3 3 14 0 1.07e-14 5.04e-15 2.1
jetEngine 2 48 0 1.03e-11 6.37e-12 1.6

Transcendental functions with 1 and 4 variables

logExp 1 3 2 1.53e-15 1.19e-15 1.3
sphere 4 5 2 8.08e-15 5.05e-15 1.6
azimuth 4 14 7 8.78e-15 2.53e-15 3.5

Gappa with user provided hints computed best results in 5 out of 15 bench-
marks (we do not count last 3 benchmarks with transcendental functions). FP-
Taylor computed best results in 12 benchmarks.4 Gappa without hints was able
to find a better result than FPTaylor only in the sqroot benchmark. On the
other hand, in several benchmarks (sine, jetEngine, and turbine3), Gappa (even
with hints) computed very pessimistic results. Rosa consistently computed de-
cent error bounds, with one exception being jetEngine. FPTaylor outperformed
Rosa on all benchmarks even with the simplified rounding model and optimiza-
tion problem. Fluctuat results without subdivisions are similar to Rosa’s results.
Fluctuat results with subdivisions are good but they were obtained with carefully
chosen subdivisions. FPTaylor with the improved rounding model outperformed
Fluctuat with subdivisions on all but one benchmark (carbonGas). Only FPTay-
lor and Fluctuat with subdivisions found good error bounds for the jetEngine
benchmark.

4 While the absolute error changing from (e.g.) 10−8 to 10−10 does not appear to be
significant, it is a significant two-order of magnitude difference; for instance, imagine
these differences accumulating over 104 iterations in a loop.

Rigorous Estimation of Floating-Point Round-off Errors 545

FPTaylor yields best results with the full optimization problem (10) and with
the improved rounding model (12). But these results are at most 2 times better
(and even less in most cases) than results computed with the simple rounding
model (3) and the simplified optimization problem (11). The main advantage of
the simplified optimization problem is that it can be applied to more complex
problems. Finally, we compared results of FPTaylor with lower bounds of errors
estimated with a state-of-the-art underapproximation tool s3fp [7]. All FPTay-
lor results are only 1.1–2.4 times worse than the estimated lower bounds for
polynomial and rational benchmarks and 1.3–3.5 times worse for transcendental
tests.

Table 4. Performance results on an
Intel Core i7 2.8GHz machine (in
seconds)

Tool jetEng. Total

Gappa 0.02 0.38
Gappa(hints) 21.47 80.27
Fluctuat 0.01 0.75
Fluct.(div.) 23.00 228.36
Rosa 129.63 205.14
FPTaylor(a) 14.73 86.92
FPTaylor(b) 16.63 102.23

Table 4 compares performance results of
different tools on first 15 benchmarks (the
results for the jetEngine benchmark and
the total time for all 15 benchmarks are
shown; FPTaylor takes about 33 seconds on
three transcendental benchmarks). Gappa
and Fluctuat (without hints and subdivi-
sions) are considerably faster than both
Rosa and FPTaylor. But Gappa often fails
on nonlinear examples as Table 2 demon-
strated. Fluctuat without subdivisions is
also not as good as FPTaylor. All other tools
(including FPTaylor) have roughly the same
performance. Rosa is slower than FPTaylor
because it relies on an inefficient optimization algorithm implemented with Z3.

We also formally verified all results in the column FPTaylor(a) of Table 2.
For all these results, corresponding HOL Light theorems were automatically
produced using our formalization of FPTaylor described in Sect. 3.3. The total
verification time of all results without the azimuth benchmark was 48 minutes
on an Intel Core i7 2.8GHz machine. Verification of the azimuth benchmark
took 261 minutes. Such performance figures match up with the state of the art,
considering that even results pertaining to basic arithmetic operations must be
formally derived from primitive definitions.

5 Related Work

Taylor Series. Method based on Taylor series have a rich history in floating-
point reasoning, including algorithms for constructing symbolic Taylor series
expansions for round-off errors [40,56,19,43], and stability analysis. These works
do not cover round-off error estimation. Our key innovations include computation
of the second order error term in Taylor expansions and global optimization of
symbolic first order terms. Taylor expansions are also used to strictly enclose
values of floating-point computations [51]. Note that in this case round-off errors
are not computed directly and cannot be extracted from computed enclosures
without large overestimations.

546 A. Solovyev et al.

Abstract Interpretation. Abstract interpretation [11] is widely used for anal-
ysis of floating-point computations. Abstract domains for floating-point values
include intervals [41], affine forms [55], and general polyhedra [6]. There exist dif-
ferent tools based on these abstract domains. Gappa [15] is a tool for checking
different aspects of floating-point programs, and is used in the Frama-C veri-
fier [18]. Gappa works with interval abstractions of floating-point numbers and
applies rewriting rules for improving computed results. Gappa++ [33] is an im-
provement of Gappa that extends it with affine arithmetic [55]. It also provides
definitions and rules for some transcendental functions. Gappa++ is currently
not supported and does not run on modern operating systems. SmartFloat [13]
is a Scala library which provides an interface for computing with floating-point
numbers and for tracking accumulated round-off. It uses affine arithmetic for
measuring errors. Fluctuat [16] is a tool for static analysis of floating-point
programs written in C. Internally, Fluctuat uses a floating-point abstract do-
main based on affine arithmetic [23]. Astrée [10] is another static analysis tool
which can compute ranges of floating-point expressions and detect floating-point
exceptions. A general abstract domain for floating-point computations is de-
scribed in [34]. Based on this work, a tool called RangeLab is implemented [36]
and a technique for improving accuracy of floating-point computations is pre-
sented [35]. Ponsini et al. [49] propose constraint solving techniques for improving
the precision of floating-point abstractions. Our results show that interval ab-
stractions and affine arithmetic can yield pessimistic error bounds for nonlinear
computations.

The work closest to ours is Rosa [14] in which they combine affine arithmetic
and an optimization method based on an SMT solver for estimating round-off
errors. Their tool Rosa keeps the result of a computation in a symbolic form
and uses an SMT solver for finding accurate bounds of computed expressions.
The main difference from our work is representation of round-off errors with
numerical (not symbolic) affine forms in Rosa. For nonlinear arithmetic, this
representation leads to overapproximation of error, as it loses vital dependency
information between the error terms. Our method keeps track of these depen-
dencies by maintaining symbolic representation of all first order error terms in
the corresponding Taylor series expansion. Another difference is our usage of rig-
orous global optimization which is more efficient than using SMT-based binary
search for optimization.

SMT.While abstract interpretation techniques are not designed to prove general
bit-precise results, the use of bit-blasting combined with SMT solving is pursued
by [5]. Recently, a preliminary standard for floating-point arithmetic in SMT
solvers was developed [52]. Z3 [42] and MathSAT 5 [8] SMT solvers partially
support this standard. There exist several other tools which use SMT solvers for
reasoning about floating-point numbers. FPhile [47] verifies stability properties
of simple floating-point programs. It translates a program into an SMT formula
encoding low- and high-precision versions, and containing an assertion that the
two are close enough. FPhile uses Z3 as its backend SMT solver. Leeser et al. [32]
translate a given floating-point formula into a corresponding formula for real

Rigorous Estimation of Floating-Point Round-off Errors 547

numbers with appropriately defined rounding operators. Ariadne [2] relies on
SMT solving for detecting floating-point exceptions. Haller et al. [24] lift the
conflict analysis algorithm of SMT solvers to abstract domains to improve their
efficacy of floating-point reasoning.

In general, the lack of scalability of SMT solvers used by themselves has been
observed in other works [14]. Since existing SMT solvers do not directly support
mixed real/floating-point reasoning, one must often resort to non-standard ap-
proaches for encoding properties of round-off errors in computations (e.g., using
low- and high-precision versions of the same computation).

Proof Assistants. An ultimate way to verify floating-point programs is to
give a formal proof of their correctness. To achieve this goal, there exist several
formalizations of the floating-point standard in proof assistants [38,26]. Boldo et
al. [4] formalized a non-trivial floating-point program for solving a wave equation.
This work partially relies on Gappa, which can also produce formal certificates
for verifying floating-point properties in the Coq proof assistant [9].

6 Conclusions and Future Work

We presented a new method to estimate round-off errors of floating-point com-
putations called Symbolic Taylor Expansions. We support our work through
rigorous formal proofs, and also present a tool FPTaylor that implements our
method. FPTaylor is the only tool we know that rigorously handles transcenden-
tal functions. It achieves tight overapproximation estimates of errors—especially
for nonlinear expressions.

FPTaylor is not designed to be a tool for complete analysis of floating-point
programs. It cannot handle conditionals and loops directly; instead, it can be used
as an external decision procedure for program verification tools such as [18,50].
Conditional expressions can be verified in FPTaylor in the same way as it is done
in Rosa [14] (see our technical report [54] for details).

In addition to experimenting with more examples, a promising application
of FPTaylor is in error analysis of algorithms that can benefit from reduced or
mixed precision computations. Another potential application of FPTaylor is its
integration with a recently released tool Herbie [48] which improves the accuracy
of numerical programs. Herbie relies on testing for round-off error estimations.
FPTaylor can provide strong guarantees for results produced by Herbie.

We also plan to improve the performance of FPTaylor by parallelizing its
global optimization algorithms, thus paving the way to analyze larger problems.

Ideas presented in this paper can be directly incorporated into existing tools.
For instance, an implementation similar to Gappa++ [33] can be achieved by
incorporating our error estimation method inside Gappa [15]; the Rosa com-
piler [14] can be easily extended with our technique.

Acknowledgments. We would like to thank Nelson Beebe, Wei-Fan Chiang,
John Harrison, and Madan Musuvathi for their feedback and encouragement.
This work is supported in part by NSF CCF 1421726.

548 A. Solovyev et al.

References

1. Alliot, J.M., Durand, N., Gianazza, D., Gotteland, J.B.: Implementing an interval
computation library for OCaml on x86/amd64 architectures (short paper). In:
ICFP 2012. ACM (2012)

2. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic Detection of Floating-point Excep-
tions. In: POPL 2013, pp. 549–560. ACM, New York (2013)

3. Bingham, J., Leslie-Hurd, J.: Verifying Relative Error Bounds Using Sym-
bolic Simulation. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 277–292. Springer, Heidelberg (2014)

4. Boldo, S., Clément, F., Filliâtre, J.C., Mayero, M., Melquiond, G., Weis, P.: Wave
Equation Numerical Resolution: A Comprehensive Mechanized Proof of a C Pro-
gram. Journal of Automated Reasoning 50(4), 423–456 (2013)

5. Brillout, A., Kroening, D., Wahl, T.: Mixed abstractions for floating-point arith-
metic. In: FMCAD 2009, pp. 69–76 (2009)

6. Chen, L., Miné, A., Cousot, P.: A Sound Floating-Point Polyhedra Abstract Do-
main. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 3–18. Springer,
Heidelberg (2008)

7. Chiang, W.F., Gopalakrishnan, G., Rakamarić, Z., Solovyev, A.: Efficient Search
for Inputs Causing High Floating-point Errors. In: PPoPP 2014, pp. 43–52. ACM,
New York (2014)

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
Solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 93–107. Springer, Heidelberg (2013)

9. The Coq Proof Assistant, http://coq.inria.fr/

10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ Analyzer. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444,
pp. 21–30. Springer, Heidelberg (2005)

11. Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL
1977, pp. 238–252. ACM, New York (1977)

12. Daramy, C., Defour, D., de Dinechin, F., Muller, J.M.: CR-LIBM: a correctly
rounded elementary function library. Proc. SPIE 5205, 458–464 (2003)

13. Darulova, E., Kuncak, V.: Trustworthy Numerical Computation in Scala. In: OOP-
SLA 2011, pp. 325–344. ACM, New York (2011)

14. Darulova, E., Kuncak, V.: Sound Compilation of Reals. In: POPL 2014,
pp. 235–248. ACM, New York (2014)

15. Daumas, M., Melquiond, G.: Certification of Bounds on Expressions Involving
Rounded Operators. ACM Trans. Math. Softw. 37(1), 2:1–2:20 (2010)

16. Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: To-
wards an Industrial Use of FLUCTUAT on Safety-Critical Avionics Software.
In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825,
pp. 53–69. Springer, Heidelberg (2009)

17. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A
Multiple-precision Binary Floating-point Library with Correct Rounding. ACM
Trans. Math. Softw. 33(2) (2007)

18. Frama-C Software Analyzers, http://frama-c.com/

19. Gáti, A.: Miller Analyzer for Matlab: A Matlab Package for Automatic Roundoff
Analysis. Computing and Informatics 31(4), 713– (2012)

http://coq.inria.fr/
http://frama-c.com/

Rigorous Estimation of Floating-Point Round-off Errors 549

20. Giannakopoulou, D., Howar, F., Isberner, M., Lauderdale, T., Rakamarić, Z.,
Raman, V.: Taming Test Inputs for Separation Assurance. In: ASE 2014,
pp. 373–384. ACM, New York (2014)

21. Goodloe, A.E., Muñoz, C., Kirchner, F., Correnson, L.: Verification of Numer-
ical Programs: From Real Numbers to Floating Point Numbers. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 441–446. Springer,
Heidelberg (2013)

22. Goualard, F.: How Do You Compute the Midpoint of an Interval? ACM Trans.
Math. Softw., 40(2) 11:1–11:25 (2014)

23. Goubault, E., Putot, S.: Static Analysis of Finite Precision Computations. In:
Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011)

24. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic with
systematic abstraction. In: FMCAD 2012, pp. 131–140 (2012)

25. Harrison, J.V.: Formal Verification of Floating Point Trigonometric Functions.
In: Hunt Jr., W.A., Johnson, S.D. (eds.) FMCAD 2000. LNCS, vol. 1954,
pp. 217–233. Springer, Heidelberg (2000)

26. Harrison, J.: Floating-Point Verification Using Theorem Proving. In: Bernardo, M.,
Cimatti, A. (eds.) SFM 2006. LNCS, vol. 3965, pp. 211–242. Springer, Heidelberg
(2006)

27. Harrison, J.: HOL Light: An Overview. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer,
Heidelberg (2009)

28. IEEE Standard for Floating-point Arithmetic. IEEE Std 754-2008, pp. 1–70 (2008)
29. Johnson, S.G.: The NLopt nonlinear-optimization package,

http://ab-initio.mit.edu/nlopt
30. Kearfott, R.B.: GlobSol User Guide. Optimization Methods Software 24(4-5), 687–

708 (2009)
31. Lebbah, Y.: ICOS: A Branch and Bound Based Solver for Rigorous Global Opti-

mization. Optimization Methods Software 24(4-5), 709–726 (2009)
32. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: Effective

floating-point reasoning via exact arithmetic. In: DATE 2014, pp. 1–4 (2014)
33. Linderman, M.D., Ho, M., Dill, D.L., Meng, T.H., Nolan, G.P.: Towards Program

Optimization Through Automated Analysis of Numerical Precision. In: CGO 2010,
pp. 230–237. ACM, New York (2010)

34. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
Higher-Order and Symbolic Computation 19(1), 7–30 (2006)

35. Martel, M.: Program Transformation for Numerical Precision. In: PEPM 2009, pp.
101–110. ACM, New York (2009)

36. Martel, M.: RangeLab: A Static-Analyzer to Bound the Accuracy of Finite-
Precision Computations. In: SYNASC 2011, pp. 118–122. IEEE Computer Society,
Washington, DC (2011)

37. Maxima: Maxima, a Computer Algebra System. Version 5.30.0 (2013),
http://maxima.sourceforge.net/

38. Melquiond, G.: Floating-point arithmetic in the Coq system. Information and Com-
putation 216(0), 14–23 (2012)

39. Mikusinski, P., Taylor, M.: An Introduction to Multivariable Analysis from Vector
to Manifold. Birkhäuser Boston (2002)

40. Miller, W.: Software for Roundoff Analysis. ACM Trans. Math. Softw. 1(2),
108–128 (1975)

http://ab-initio.mit.edu/nlopt
http://maxima.sourceforge.net/

550 A. Solovyev et al.

41. Moore, R.: Interval analysis. Prentice-Hall series in automatic computation,
Prentice-Hall (1966)

42. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

43. Mutrie, M.P.W., Bartels, R.H., Char, B.W.: An Approach for Floating-point Error
Analysis Using Computer Algebra. In: ISSAC 1992, pp. 284–293. ACM, New York
(1992)

44. Neumaier, A.: Taylor Forms - Use and Limits. Reliable Computing 2003, 9–43
(2002)

45. Neumaier, A.: Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica 13, 271–369 (2004)

46. OpenOpt: universal numerical optimization package, http://openopt.org
47. Paganelli, G., Ahrendt, W.: Verifying (In-)Stability in Floating-Point Programs by

Increasing Precision, Using SMT Solving. In: SYNASC, 2013, pp. 209–216 (2013)
48. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically Im-

proving Accuracy for Floating Point Expressions. In: PLDI 2015. ACM (2015)
49. Ponsini, O., Michel, C., Rueher, M.: Verifying floating-point programs with con-

straint programming and abstract interpretation techniques. Automated Software
Engineering, 1–27 (2014)

50. Rakamarić, Z., Emmi, M.: SMACK: Decoupling Source Language Details from Ver-
ifier Implementations. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 106–113. Springer, Heidelberg (2014)

51. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic:
proof that arithmetic operations are validated in COSY. The Journal of Logic and
Algebraic Programming 64(1), 135–154 (2005)

52. Rümmer, P., Wahl, T.: An SMT-LIB Theory of Binary Floating-Point Arithmetic.
In: SMT Workshop 2010 (2010)

53. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with taylor
interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013.
LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013)

54. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous Estima-
tion of Floating-Point Round-off Errors with Symbolic Taylor Expansions. Tech.
Rep. UUCS-15-001, School of Computing, University of Utah (2015)

55. Stolfi, J., de Figueiredo, L.: An Introduction to Affine Arithmetic. TEMA Tend.
Mat. Apl. Comput. 4(3), 297–312 (2003)

56. Stoutemyer, D.R.: Automatic Error Analysis Using Computer Algebraic Manipu-
lation. ACM Trans. Math. Softw. 3(1), 26–43 (1977)

57. NASA World Wind Java SDK, http://worldwind.arc.nasa.gov/java/

http://openopt.org
http://worldwind.arc.nasa.gov/java/

Static Optimal Scheduling for Synchronous Data

Flow Graphs with Model Checking

Xue-Yang Zhu1(�), Rongjie Yan1, Yu-Lei Gu1,2, Jian Zhang1, Wenhui Zhang1,
and Guangquan Zhang2

1 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, Beijing, China

2 School of Computer Science and Technology, Soochow University, Suzhou, China
{zxy,yrj,guyl,zj,zwh}@ios.ac.cn, gqzhang@suda.edu.cn

Abstract. Synchronous data flow graphs (SDFGs) are widely used to
model digital signal processing and streaming media applications. In this
paper, we present exact methods for static optimal scheduling and map-
ping of SDFGs on a heterogenous multiprocessor platform. The opti-
mization criteria we consider are throughput and energy consumption,
taking into account the combination of various constraints such as auto-
concurrency and buffer sizes. We present a concise and flexible (priced)
timed automata semantics of system models, which include an SDFG and
a multiprocessor platform, and formulate the optimization goals as tem-
poral logic formulas. The optimization and scheduling problems are then
transformed to model checking problems, which are solved by UPPAAL
(CORA). Thanks to the exhaustive exploration nature of model check-
ing and the facility of the tools, we obtain two pareto-optimal schedules,
one with an optimal throughput and a best energy consumption and an-
other with an optimal energy consumption and a best throughput. The
approach is applied to two real applications with different parameters.
The case studies show that our approach can deal with moderate mod-
els within reasonable execution time and reveal the impacts of different
constraints on optimization goals.

Keywords: Data Flow Graphs · Throughput · Energy Consumption ·
Multi-constraint · Timed Automata · UPPAAL

1 Introduction

Synchronous data flow graphs (SDFGs) [16] are widely used to represent DSP
and streaming media applications, such as a spectrum analyzer [25] and an
MPEG-4 decoder [23]. Such applications are usually operated on multiprocessor
platforms and under real-time and resource constraints. In this paper, we are
concerned with constructing efficient static (compile-time) schedules of SDFGs
on a heterogeneous multiprocessor platform.

This work is partially supported by National Key Basic Research Program of China
(973 program) (No. 2014CB340701) and the National Natural Science Foundation
of China (Nos. 61472406, 61472474, 61272135, 61361136002 and U1435220).

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 551–569, 2015.
DOI: 10.1007/978-3-319-19249-9_34

552 X.-Y. Zhu et al.

Each node (also called actor) in an SDFG represents a computation and each
edge models a FIFO channel; the sample rates of actors may differ. Homogenous
synchronous data flow graphs (HSDFGs) are a special type of SDFGs, of which
all sample rates of actors are set to 1. A static schedule arranges the actors of
an SDFG to be executed repeatedly, also called a periodic schedule. Execution
of all the actors for the required number of times is referred to as an iteration,
which may include more than one execution, also called a firing, of an actor.
Different actors may fire a different number of firings. Actor B in SDFG G1,
shown in Fig. 1(a), for example, fires twice in an iteration, while A fires once.
The average computation time per iteration is called iteration period (IP). The
IP is the reciprocal of the throughput. We use IP and throughput alternatively
in the remainder of the paper. The iteration energy consumption (IEC) is the
average energy consumption per iteration.

A C2 B
2

(a)

Energy Time
inuse idle A B C

p1 90 10 1 2 1
p2 45 15 3 6 3

(b)

p1

p2

0 1 2 3 4 5 6 7 8 time

(c)

p1

p2

0 1 2 3 4 5 6 7 8 time

IEC=720

(d)

p1

p2

0 1 2 3 4 5 6 7 8 9 10 11 12 time

IEC=712.5

(e)

Fig. 1. The system model M1 and its schedules. (a) The SDFG G1; (b) the execution
platform P1 and the execution time of actors in G1 on different processors; (c) an
ASAP periodic schedule of G1 with IP=8; (d) a periodic schedule of G1 with IP=6; (e)
an unfolding schedule of G1 with IP= 11

2
. The sample rates in the SDFG are omitted

when they are 1; black dots on edges represent initial tokens on the edges.

For homogeneous multiprocessor scheduling of SDFGs, an as soon as possible
(ASAP) execution can be used to find schedules with minimal IP [24]. For het-
erogeneous multiprocessor scheduling, however, an ASAP schedule is not neces-
sarily throughput-optimal. The ASAP schedule shown in Fig. 1(c), for example,
arranges executions of actors of G1 on a platform including two heterogeneous
processors as shown in Fig. 1(b). It has an IP larger than the IP of another
schedule shown in Fig. 1(d), which is not ASAP.

Scheduling f iterations as one schedule cycle may lead to more options for
parallel execution and therefore may reduce the IP and the IEC of a schedule.
This is unfolding scheduling [19] and f is called unfolding factor. See Fig. 1(e)
for example. The IP of a periodic schedule of G1 with unfolding factor 2 is 11

2 ,
smaller than that of the schedule shown in Fig. 1(d). The IEC is also improved.

In this paper, we present exact methods to schedule and map an SDFG on a
heterogeneous multiprocessor platform. The schedules are pareto-optimal. That
is, they are either throughput-optimal with a best energy consumption or energy

Static Optimal Scheduling for SDFGs with Model Checking 553

consumption-optimal with a best throughput. Other kinds of constraints, e.g.
buffer size constraints, are also considered and integrated into the framework of
the proposed methods.

For a given platform and a given unfolding factor, even if we consider only one
optimization criterion, e.g. throughput, the scheduling and mapping problem is
already NP-complete [20]. For solving the multi-constraint and multi-criterion
problems we are considering, we use model checking, which is widely acknowl-
edged to be a powerful tool for such problems.

Actors of an SDFG can fire concurrently if the tokens and other required
resources are available. For the analysis of the time and resource constraints, it
is appropriate to model the behavior of SDFGs as networks of (priced) timed
automata [3] [4], and we choose the real-time model checking tools UPPAAL
(CORA) [15] [4] as the back-end solvers. Our contributions are as follows.

1. We present a concise (priced) timed automata (TA) semantics of system
models, which include an SDFG and a multiprocessor platform. Various
constraints can be integrated flexibly.

2. Based on the semantics, we present two novel exact methods: one for finding
static schedules with an optimal throughput and a best energy consump-
tion, and the other for finding static schedules with an optimal energy con-
sumption and a best throughput for SDFGs on heterogenous multiprocessor
platforms. Optimal solutions under various constraints are guaranteed.

3. We implement the methods and apply it to two real applications. Although
state explosion is inevitable as the models become larger (for checking NP-
complete problems), the experimental results show that our methods can
deal with moderate models within reasonable time and reveal the impacts
of different constraints on optimization goals.

The remainder of this paper is organized as follows. We introduce related
work in Section 2. The input models and the problems addressed are formulated
in Section 3 and (priced) timed automata are introduced in Section 4. Our
main contributions are illustrated in Sections 5, 6 and 7. Section 8 provides case
studies. Section 9 concludes and discusses future work.

2 Related Work

Scheduling SDFGs according to different optimization goals have been studied
extensively [16], [13], [21], and there are also many studies on real-time schedu-
lability analysis using model checking [11] [8] [1] [17] [5]. Here we review those
works most related to our methods, which solve scheduling problems of SDFGs
via model checking.

Using model checking to schedule SDFGs according to a particular optimiza-
tion goal was first presented by Geilen et al. [9]. They focus on buffer minimiza-
tion problem on a single processor with model checker SPIN [14]. [10] and [12]
solve the same problem with NuSMV [6] and SPIN, respectively.

554 X.-Y. Zhu et al.

The closest works to our methods are [7] and [18]. Both use UPPAAL as a
solver to analyze or schedule SDFGs on a heterogeneous platform. The main
differences between them and our methods are summarized as follows.

1. The problems addressed are different. [7] analyzes the schedulability for
a given timing constraint, [18] schedules an SDFG to achieve a minimal
makespan (i.e. the IP of 1-schedule in this paper), while we consider multiple
optimization goals and constraints.

2. The input models are different. In [7], actors of SDFGs are binding to some
core and edges to memories, while in our methods, no binding are consid-
ered. On the contrary, we try to find bindings according to the optimization
goals. In [18], besides data dependencies between actors, task parallelism is
explicitly denoted by split and join nodes. In our methods, only data de-
pendencies available in the models, task parallelism needs to be explored to
decide whether two tasks can be executed concurrently.

3. The transformations are different. [7] transforms each actor to a TA and
each processor to an NTA. In [18], each possible allocation is represented by
a TA and each possible communication is also represented by a TA. In our
methods, we combine the behavior of actors on processors. The conciseness
makes our methods easy to be extended to deal with additional constraints.

3 Model Description and Problem Formulation

An execution platform P is a set of heterogeneous processors. A computation
may require different amounts of running time if it is executed on different
processors. The energy consumption for each processor p is defined by uEC(p)
and iEC(p), indicating the energy consumption per unit time when p is used
and when p is idle, respectively.

A synchronous dataflow graph (SDFG) is a finite directed graph G = 〈V,E〉,
where V is the set of actors, modeling the computations of the system; E is the
set of directed edges, modeling interconnections between computations. Each
edge e is weighted with three properties, d(e), prd(e) and cns(e), where d(e)
is the number of initial tokens on e, prd(e) is the number of tokens produced
onto e by each firing of the source of e, and cns(e) is the number of tokens
consumed from e by each firing of the sink actor of e. These numbers are also
called the delay, production rate and consumption rate, respectively. The source
actor and sink actor of e are denoted by src(e) and snk(e), respectively. The set
of incoming edges to actor α is denoted by InE (α), and the set of outgoing edges
from α by OutE(α). If prd(e) = cns(e) = 1 for each e ∈ E, G is a homogeneous
SDFG (HSDFG).

If execution platform P is considered, each actor α is weighted with compu-
tation times t(α, p), for all p ∈ P . Normally, t(α, p) is a positive integer. For
technical reason, we also allow t(α, p) to be 0 or −1. The former is used for some
dummy actors; the latter is used when α is not allowed to run on p.

An SDFG G is sample rate consistent [16] if and only if there exists a positive
integer vector q(V) satisfying balance equations, q(src(e))×prd(e) = q(snk(e))×

Static Optimal Scheduling for SDFGs with Model Checking 555

cns(e) for all e ∈ E. The smallest such q is called the repetition vector. We use
q to represent the repetition vector directly. For example, a balance equation
can be constructed for each edge of G1 in Fig. 1 (a). By solving the equations,
we have G1’s repetition vector q = [1, 2, 2]. An iteration is a firing sequence in
which each actor α occurs exactly q(α) times. Only sample rate consistent and
deadlock-free SDFGs are meaningful in practice. We consider only such SDFGs,
which can be verified efficiently [16].

Definition 1 (System model). A system model includes an SDFG G and its
execution platform P , denoted by M = (G,P).

A static schedule arranges computations of an algorithm to be executed re-
peatedly. An unfolding schedule of system model M = (G,P) is a static schedule
arranging f consecutive iterations of G running on P . The number f is called
unfolding factor and the f iterations form a schedule cycle.

Definition 2 (f-schedule). An f -schedule of system model M = (G,P) is
a function S : V × N → N × P , where N is the set of non-negative integers,
defining the time arrangement and the processor allocation of firings of actors
in G. Schedule S with a cycle period (CP) T is defined as follows. For the ith

firing of actor α, denoted by (α, i), i ∈ [1,∞):

1. S(α, i).st is (α, i)’s start time, when there are sufficient tokens on each e ∈
InE(α) for a firing of α;

2. S(α, i).pa is the processor assigned to (α, i), which is available at the moment
S(α, i).st;

3. S(α, i+ f · q(α)).st = S(α, i).st+ T ;
4. S(α, i+ f · q(α)).pa = S(α, i).pa

Such a schedule can be represented by the first f iterations and period T . It
is the part of the schedule defined by S(α, i) with 1 ≤ i ≤ f ·q(α) for all α. From
now on, we only consider the finite part of f -schedules.

The iteration period (IP) of S is the average computation time of an iteration,
that is, IP = T

f .
The energy consumption of f -schedule S can be computed as follows. For

conciseness, we omit parameters S and f when it is clear in context. Denote the
set of all firings assigned on processor p by AonP(p).

AonP(p) ≡def {(α, i)|S(α, i).pa = p ∧ i ∈ [1, f · q(α)] ∧ α ∈ V }.

The total time p occupied in S is

occT (p) =
∑

(α,i)∈AonP(p)

t((α, i), p), where t((α, i), p) = t(α, p). (1)

Then the energy consumption of S is

EC =
∑
p∈P

occT (p) · uEC (p) + [T − occT (p)] · iEC (p). (2)

556 X.-Y. Zhu et al.

The iteration energy consumption (IEC) of S is the average energy consump-
tion per iteration, that is, IEC = EC

f .

Given a system model M = (G,P) and an unfolding factor f , suppose the
set of all f -schedules of M is S, the problems we address are:

1. how to find an f -schedule SoptP such that

IP(SoptP) = min {IP(S)|S ∈ S}, and

IEC (SoptP) = min {IEC (S)|S ∈ S ∧ IP(S) = IP(SoptP)}

2. how to find an f -schedule SoptE such that

IEC (SoptE) = min {IEC (S)|S ∈ S}, and

IP(SoptE) = min {IP(S)|S ∈ S ∧ IEC (S) = IEC (SoptE)}

4 Introduction to Timed Automata

In this section we recap the concepts of syntax and semantics of timed automata
(TA) [3] and its extension with cost [4]. Let X be a set of clocks, V be a set
of bounded integer variables. We use C(X,V) and U(X,V), respectively, to de-
note the set of linear constraints and the set of updates over clocks and integer
variables, where updates on clocks are restricted to resetting clock variables to
zero.

A TA is a tuple (L,X,V , E , Inv, l0), where L is a set of locations, E ⊆ L ×
C(X,V)×U(X,V)×L is a set of edges, Inv : L → C(X,V) assigns invariants to
locations, and l0 is the initial location. A network of n timed automata (NTA)
is a tuple of timed automata A1|| · · · ||An over X , V . A clock valuation γ for
a set X is a mapping from X to R+, where R+ is the set of non-negative real
numbers. A variable valuation u is a function from V to Z, where Z is the set of
integers. A pair of valuation (γ, u) satisfies a constraint φ over X and V , denoted
by (γ, u) |= φ, if and only if φ evaluates to true with the valuations γ and u.
Let γ0(x) = 0 for all x ∈ X . For δ ∈ R+, γ + δ denotes the clock valuation that
maps every clock x to the value γ(x) + δ. For an update η(Y,V ′) over a pair
of (γ, u), where Y ⊆ X and V ′ ⊆ V , (γ, u)[η(Y,V ′)] denotes the clock valuation
that maps all clocks in Y to zero and agrees with γ for all clocks in X \ Y ,
and the variable valuation that maps all integer variables in V ′ according to the
update expression in η and agrees with u in V \ V ′.

Definition 3 (Semantics of timed automata). The semantics of a timed
automaton A = (L,X,V , E , Inv, l0) is a timed transition system T = 〈S, s0,→〉
where S ⊆ L × R+ × Z is the set of states, s0 = (l0, γ0, u0) is the initial state
and → is the transition relation such that

– (l, γ, u)
δ−→ (l, γ + δ, u) if ∀δ′ : 0 ≤ δ′ ≤ δ ⇒ (γ + δ′, u) |= Inv(l) where

δ ∈ R+, and
– (l, γ, u) → (l′, γ′, u′) if there exists e = (l, g, η(Y,V ′), l′) ∈ E such that

(γ, u) |= g, (γ′, u′) = (γ, u)[η(Y,V ′)], and (γ′, u′) |= Inv(l′).

Static Optimal Scheduling for SDFGs with Model Checking 557

The former is called delay transition and the latter is called discrete transition.

The trace of a timed automaton is a finite or infinite sequence (l0, γ0, u0) →
(l1, γ1, u1) → . . ., where → is either a delay transition or a discrete transition.
For an NTA, the discrete transitions are executed interleavingly.

Priced timed automata (PTA) [4] is an extension of TA to allow the ac-
cumulation of costs during behaviour. The extension from timed automata is
Ac = (L,X,V , E , Inv, l0,P), where P : L∪E → N assigns cost rates and costs to
locations and edges, resp. The semantics of priced timed automata is similar to
the version without price, except that the cost in a delay transition is in direct
proportion to the time elapsed, and the cost in a discrete transition is the cost
of the edge. For a network of PTAs, which is defined similarly to an NTA, we
use vectors of locations and the cost rate of a vector of locations is the sum of
cost rates in the locations of the vector. For a finite trace of a PTA, the cost is
the sum of the costs for all discrete and delay transitions.

5 A Timed Automata Semantics of System Models

α2

3

1 α2

3

1 α2

3

1

sFiring(α) eFiring(α)

Fig. 2. The effect of sFiring and eFiring

The behavior of an SDFG consists
of a sequence of firings. We use up-
dates sFiring(α) and eFiring(α) to
encode the start and the end of
a firing of α, and use readyS (α)
to describe the enabling condition
of sFiring(α). Additionally, we in-
troduce sets of variables tn(E) =
{tn(e)|e ∈ E} and numF (V) =
{numF (v)|v ∈ V }, to record the
current number of tokens on edges
in E and the firing times of actors in V , respectively. Testing and updating the
value of numF (V) are not really a part of the behavior of SDFGs, which are
used to facilitate the construction of an f -schedule.

Guard readyS (α) tests if there are sufficient tokens on the incoming edges of
actor α to enable a firing. If the firing number of α reaches f ·q(α), no new firing
of α is allowed, because α has finished its firings in f iterations.

readyS (α) ≡def ∀e ∈ InE (α) : tn(e) ≥ cns(e) ∧ numF (α) < f · q(α).

When a firing of α starts, it reduces the number of tokens of its incoming edges
according to the consumption rates.

sFiring(α) ≡def ∀e ∈ InE (α) : tn ′(e) = tn(e)−cns(e)∧numF ′(α)=numF (α)+1,

where x′ refers to the value of x in the new state. For conciseness, we omit the
elements of states if their values remain unchanged.

558 X.-Y. Zhu et al.

If a firing of α runs on processor p, it will finish after t(α, p) units of time.
And update eFiring(α) increases tokens of α ’s outgoing edges according to their
production rates.

eFiring(α) ≡def ∀e ∈ OutE(α) : tn′(e) = tn(e) + prd(e)

The effects of sFiring and eFiring are demonstrated in Fig. 2.
At a first glance, it seems natural to model each actor as a TA with status

idle and firing, and each processors as a TA with status idle and running and
then to model the allocation as synchronization between these TAs to form an
NTA. Having a closer look, however, we observe that once an actor is firing, it
must be running on some processor. Hence, we can represent the behavior of the
system model only by the behavior of processors.

The behavior of actor α running on processor p can be modeled in a TA tap(α);
and the behavior of p can be modeled by tap(α) with non-deterministically se-
lecting actor α from V .

Definition 4 (TAof the behavior of processors).ATAof the behavior of pro-
cessor p is tap = ∃α ∈ V : tap(α), and tap(α) = (L,X,V , E , Inv, l0), where L =
{idle, running},X = {x}, V = tn(E) ∪ numF (V), l0 = idle, Inv = {running :
x ≤ t(a, p)}, and E = {ir, ri}, where ir = (idle, readyS, {sF iring(α), x := 0},
running), and ri = (running, x == t(α, p), eF iring(α), idle).

The locations of tap indicate the status of processor p. That is, tap.idle means
p is idle and therefore is available for a firing of actors to run, and tap.running
means p is occupied by some firing. The graphical representation of tap is shown
in Fig. 3. When the guard readyS (α) is satisfied, the transition from location idle
to running is enabled. Once the transition is triggered, updates on clock x := 0
and other integer variables in sFiring(α) are executed. The invariant x ≤ t(α, p)
of location running restricts the allowed maximal delay.

running

Inv: x ≤ t(α,p)

idle

g: readyS(α)
up: sFiring(α), x:=0

g: x==t(α,p)
up: eFiring(α)

ir

ri

Fig. 3. The timed automaton tap.

Actors of SDFG G can fire in parallel only
if they are ready and there are available pro-
cessors. Subsequently, system model M can
be modeled in an NTA ntaM, which has |P |
concurrent processes and a global clock, where
|P | is the size of P . The global clock is used
to measure the execution time of the system.

Definition 5 (NTA of the behavior of system models). The behavior of
system model M = (G,P) is an NTA ntaM = ||p∈P tap with a global clock
glbClk.

The above-mentioned semantics are the standard timed automata description,
which can be translated into the input of UPPAAL straightforwardly. Quantifi-
cation ∃α ∈ V can be implemented by the ‘Selections’ feature of UPPAAL.

The above defined tap and ntaM implicatively include f as a parameter. We
omit it in the notations for conciseness. The semantics we present is much more

Static Optimal Scheduling for SDFGs with Model Checking 559

Algorithm 1. Sch(M,σ)

Input: A trace σ of ntaM
Output: An f -schedule of M, S
1. for all e ∈ Eσ do
2. if ∃α ∈ V : e == p.sf(α) then
3. S(α, sp,α.numF (α)).st = sp,α.glbClk
4. S(α, sp,α.numF (α)).pa = p
5. end if
6. end for
7. return S

concise than those in related
works. For example, [7] trans-
forms a system model to an NTA
with more than |V | + 3|P | TAs,
and [18] more than |V | · |P |+ |E|
TAs, while our methods use |P |
TAs. This provides our methods
the flexibility to deal with various
constraints as shown in Section 7.

6 Static Optimal Scheduling and Mapping

6.1 Traces and Schedules

An f -schedule of M can be constructed from a trace of ntaM as follows.

||
s0: glbClk=0 a

 tn=[0,0,2,3] a
numF=[0,0,0]

tap1 tap2

p1.sf(A)

||
δ=1

p1.ef(A)

||
p1.sf(B)

||
p2.sf(B)

||

p1.ef(C)

||

||

s1: glbClk=0 a
 tn=[0,0,1,2] a
numF=[1,0,0]

s2: glbClk=1 a
 tn=[2,0,1,2] a
numF=[1,0,0]

s3: glbClk=1 a
 tn=[1,0,1,1] a
numF=[1,1,0]

s4: glbClk=1 a
 tn=[0,0,1,0] a
numF=[1,2,0]

s10: glbClk=8 a
 tn=[0,0,3,2] a
numF=[1,2,2]

Discrete transition

Delay transitioni

r

 p.l=idle

 p.l=running

Legend:

i r i r

i ri r

i r i r

i ri r

i r i r

i r i r

Fig. 4. A part of a trace of system model
M1 shown in Fig. 1, where circles in blue
show the current location.

Let p.sf(α) and p.ef(α) be discrete
transitions, representing the transi-
tion caused by update sFiring(α) of
edge ir of tap and the transition
caused by eFiring(α) of edge ri. The
use of numF (α) < f · q(α) as a
guard in readyS (α) will force ntaM
to be deadlocked after the firings of
f -iterations of G are finished. There-
fore a trace of ntaM includes finitely
many discrete transitions.

Hence we consider only the finite
part of a trace that includes all finite
discrete transitions. Denote the set of
transitions of trace σ as Eσ and the
state caused by p.sf(α) as sp,α.

Theorem 1. In a trace σ of ntaM,
for each actor α:

1. �sp,α such that sp,α.numF (α) >
f · q(α);

2. ∀i ∈ [1, f · q(α)], there is a unique
sp,α such that sp,α.numF (α) = i;

3. when p.sf(α) occurs, there are
sufficient tokens on each e ∈ InE(α) for one firing of α and processor p
is available.

Proof. 1) is guaranteed by readyS (α); 2) is guaranteed by sFiring(α); according
to the definition of tap, only when tap.idle and readyS (α) are satisfied, p may
select α to fire and therefore 3) is guaranteed.

560 X.-Y. Zhu et al.

Algorithm 1 presents the procedure of finding an f -schedule from a trace. Its
correctness is ensured by Theorem 1. The schedule in Fig. 1(c), for example, is
a 1-schedule of system model M1. It can be found in a trace of ntaM1 , part of
which is shown in Fig. 4.

6.2 Throughput-Optimal Solution

We denote the f -schedule derived by trace σ as Sσ. The cycle period of Sσ is
the time when the last firing terminates, that is:

CP (Sσ) = max {sp,α.glbClk+ t(α, p)|sp,α ∈ σ}.

Suppose the set of traces of ntaM is Σ, the optimal IP of f -schedules of M is

optIP(M) = min
{CP (Sσ)

f

∣∣∣σ ∈ Σ
}

Algorithm 2. optPSch(M)

Input: M
Output: An f -schedule SoptP of M
1. SoptIP =Sch(M, trace(ntaM,EF deadlock))
2. ec = EC (SoptIP)
3. SoptP = SoptIP

4. repeat
5. φ = EF deadlock ∧ con(ec− 1)
6. SIP = Sch(M, trace(ntaM′ , φ))
7. if IP == optIP then
8. ec = EC (SIP)
9. SoptP = SIP

10. end if
11. until IP > optIP
12. return SoptP

For given modelM and un-
folding factor f , ntaM will
be deadlocked after the fir-
ings of f -iterations of G ter-
minate. This property can be
formalized by a CTL (Com-
putation Tree Logic) formula
EF deadlock. CTL formula
EFφ is true when φ is even-
tually true at some states of
some traces of ntaM, denoted
by ntaM |= EFφ.

A binary search can be
used to find the minimal t
that makes EF (deadlock ∧
glbClk ≤ t) true; then the
minimal t is f · optIP . By the
returned trace, we find a throughput-optimal f -schedule. Even better, we can
ask UPPAAL to check EF deadlock and to return a fastest trace, which is a
trace with the shortest accumulated time delay. The latter way returns the same
results as the binary search but only checks the property once. In the following
discussion, we always apply UPPAAL to return a fastest trace, implemented by
function trace(ntaM, ψ). From the trace returned by trace(ntaM,EF deadlock),
we obtain a throughput-optimal f -schedule of M, denoted by SoptIP , i.e.,

SoptIP = Sch(M, trace(ntaM,EF deadlock)).

Static Optimal Scheduling for SDFGs with Model Checking 561

The energy consumption of the schedule, EC(SoptIP), can be computed ac-
cording to Eqn. (2).

To find an f -schedule with optIP and a best energy consumption, we need to
add a constraint on energy consumption. Therefore, we add an update occT (p) =
occT (p) + t(α, p) to edge ri in tap, and the subsequent model is ntaM′ . When
deadlock occurs, glbClk is the CP of the schedule. Then according to Eqn. (2),
the property that the energy consumption at time glbClk is no more than a
given ec is defined as

con(ec) ≡def glbClk ≤
ec−

∑
p∈P occT (p) · [uEC (p)− iEC (p)]∑

p∈P iEC (p)

With con(ec) as the additional constraint, we decrease ec gradually to check
whether we can reach a smaller energy consumption with optIP . The details on
computing an f -schedule SoptP with optIP and a best energy consumption are
explained in Algorithm 2.

6.3 Energy-Optimal Solution

Decreasing ec in Algorithm 2 until φ is not satisfied, we can obtain an f -schedule
with an optimal energy consumption and a best throughput. We can answer
our second problem formulated in Section 3 by this way. The experiments we
performed reveal that this method is inefficient, however. A more efficient way
is to integrate the use of PTA.

By adding cost iEC (p) and uEC (p) to locations idle and running of tap,
respectively, we obtain a priced timed automaton ptap for processor p. Conse-
quently, we use nptaM = ||p∈P ptap with a global clock glbClk to describe sys-
tem model M. With this formalization, by applying UPPAAL CORA to check
nptaM |= EF deadlock, we obtain an energy consumption-optimal f -schedule of
M with optEC , denoted by SoptEC . Taking con(optEC) as the additional con-
straint, we can apply UPPAAL to check ntaM |= EF (deadlock ∧ con(optEC)),
and obtain an f -schedule SoptE with an optimal energy consumption and a best
throughput.

7 Dealing with More Constraints

In this section, we show how various kinds of constraints can be integrated into
our methods. We first introduce the general framework of our methods, then
discuss the details of the three kinds of constraints, auto-concurrency constraints,
buffer size constraints and processor constraints.

The effects of constraints on the behavior of an SDFG are summarized in
Table 1. The first column lists the corresponding names of readyS , sFiring and
eFiring for constraint con. The second column includes guard and updates we

562 X.-Y. Zhu et al.

defined before. The 3-5 columns give the extra guard and updates for different
constraints, auto-concurrency (ac), buffer size (bs) and both of them, respec-
tively. Combining any of them with the second column forms the corresponding
readyS con, sFiringcon and eFiring con. For example, the enable condition of start-
ing firing for an auto-concurrency constraint is represented as:

readySac ≡def readyS ∧ hasF .

Table 1. Constrained Behavior of actor α

Constrained NO Constraints (con)
Behavior of α Con. auto-conc. (ac) buffer size (bs) both

readyS con readyS hasF sufB hasF ∧ sufB
sFiringcon sFiring addF claB addF ∧ claB
eFiringcon eFiring delF relB delF ∧ relB

Replacing readyS , sFiring and eFiring in tap and ptap defined in Section 5
with readyS con, sFiringcon and eFiring con, respectively, we get NTA and NPTA
of a system model with constraint con. The ways to find f -schedules SoptP and
SoptE are the same as the system without these constraints.

7.1 Auto-concurrency constraints

When there are no limitation on auto-concurrency, at the same time, there can
be unlimited number of concurrent firings of the same actor. Suppose the number
of auto-concurrent actors is limited to conN . At each moment, only conN firings
allowed for each actor. We use a set conC(V) to control the number of concurrent
firings of each actor α ∈ V . The extra condition for readyS , updates for sFiring
and eFiring are formulated as hasF (α), addF (α) and delF (α), respectively.

hasF (α) ≡def conC(α) ≤ conN

addF (α) ≡def conC′(α) = conC(α) + 1

delF (α) ≡def conC′(α) = conC(α)− 1

Non-auto-concurrency, which can be used to model stateful actor [18], is a special
case, which can be specified by conN = 1. Our method can also be used in a
generalized case in which there is a constraint for each actor. For the generalized
case, a set conN(V) is used and above conN are replace by conN(α).

7.2 Buffer size constraints

In practice, the storage space of a system must be bounded. The storage used by
edges may be shared or separate. Firstly, we consider a relatively conservative

Static Optimal Scheduling for SDFGs with Model Checking 563

separate buffer storage abstraction. That is, when an actor starts firing, it claims
the space of the tokens it will produce, and it releases the space of the tokens it
consumes only when the firing ends. A set tnb(E) is added to capture the buffer
space used by each e ∈ E.

Suppose a schedule is constrained by a set B(E), which limits the buffer usage
of each edge, an enabled firing can not start when there is no sufficient space
on its outgoing edges. The extra condition for readyS is formulated as sufB(α).
When an actor starts a firing, it claims the required space on its outgoing edges.
The update is formulated as claB(α). Only when a firing ends, it releases the
space of its incoming edges. The update is formulated as relB(α).

sufB(α) ≡def ∀e ∈ OutE(α) : prd(e) ≤ B(e)− tnb(e)

claB (α) ≡def ∀e ∈ OutE(α) : tnb′(e) = tnb(e) + prd(e)

relB(α) ≡def ∀e ∈ InE (α) : tnb′(e) = tnb(e)− cns(e)

A separate storage with other abstraction is even easier to be integrated. For
example, suppose an actor releases the space of its incoming edges when it starts
a firing and claims and occupies the space of its outgoing edges only when it
ends a firing, we do not need the extra set tnb(E) and updates claB and relB .
In sufB(α), tnb(e) is simply replaced by tn(e).

A shared memory usage can be easily integrated in the framework by modify-
ing sufB(α) as

∑
e∈OutE(α) prd(e) ≤ sM −

∑
e∈E tnb(e), where sM is the bound

of the shared memory.

7.3 Constraints on processors

The situation that an actor is not allowed to be allocated on some processors
can be modeled by adding extra condition t(α, p) ≥ 0 to the enable condition of
starting firing. That is, readyS (α) ∧ t(α, p) ≥ 0. The constraint that actor α is
not allowed to run on processor p can be represented by t(α, p) = −1.

The constraint that a processor has a higher priority than another can be
modeled by the ‘Priorities’ feature of UPPAAL.

8 Case Studies

We have implemented the translation from system models with different con-
straints to input models of UPPAAL and UPPAAL CORA and the procedure
to extract f -schedules from the returned traces. The approach has been applied
to two practical applications with different parameters, running on a 2.90GHz
CPU with 24M Cache and 384GB RAM. If not marked specially, the units of
execution time and memory in performance evaluation are in second (s) and
megabyte (MB), respectively.

564 X.-Y. Zhu et al.

The execution platforms for all SDFGs includes two types of processors, PT1
with uEC = 90W and iEC = 10W and PT2 with uEC = 30W and iEC = 20W.
PT1 is faster than PT2. We consider 2 processors, including one PT1 processor
and one PT2 processor, and 4 processors, including two PT1 processors and
two PT2 processors. We use the first buffer storage abstraction described in
Section 7.2. The units of time and energy consumption used in system models
are in picosecond and nanojoule, respectively.

8.1 MPEG-4 Decoder

The first case is an MPEG-4 decoder [23] with different parameters. The MPEG-
4 decoder supports various kinds of frames. It is modeled as a Scenario-aware
dataflow (SADF) model in [23]. Each scenario in an SADF model is actually an
SDFG. We consider three scenarios, P30, P70 and P99. The system models of
the MPEG-4 decoder are shown in Fig. 5. The parameterized SDFG is shown in
Fig. 5 (a), the value of x corresponding to Px. The repetition vector and the sum
of its elements (nQ) of each Px and the execution times of actors on different
processors are shown in Fig. 5 (b). This case is used to evaluate our methods
when different parameters are considered: the sum of the repetition vector, the
unfolding factor, the number of processors, and the buffer size constraints. Auto-
concurrency are not allowed in all models.

To evaluate the impact of the buffer size constraints, we consider two cases:
a model with a low buffer size bound and a high bound. The low bound is com-
puted according to the method described in [2] to guarantee deadlock-freeness
of an SDFG. The high bound is a minimal buffer size requirement to guarantee
throughput-optimal of an SDFG when it is scheduled in an infinite number of
homogeneous processors [22]. The sum of buffer size bounds of all edges of Px
are shown in the last two columns of Fig. 5 (b).

FD

IDCTVLD

x

RCMC

x

x x

(a)

frame x
Repetition Vector

nQ
Buffer Bound

FD VLD IDCTMC RC Low High
P30 30 1 30 30 1 1 63 128 149
P70 70 1 70 70 1 1 143 288 309
P99 99 1 99 99 1 1 201 404 425

The Execution Times Of Actors On Different Processors
PT1 - 0 1 1 9 15 - - -
PT2 - 0 3 2 18 25 - - -

(b)

Fig. 5. System models of the MPEG-4 decoder. (a) Its SDFG; (b) the repetition vector
of each Px, the sums of the vectors, the considered bound of buffer size, and the
execution times of actors on different processors.

Static Optimal Scheduling for SDFGs with Model Checking 565

We show the experimental results for the MPEG-4 decoder in Table 2, in
which the parameters are shown in the first two rows and the first two columns.
The others are the results. The first column is the unfolding factor f . We con-
sider 1-schedule and 2-schedule of models. The second column is the number
of processors #P . The other 6 columns are the results for SDFG Px under a
low buffer size bound and a high buffer size bound. The results include three
parts. The first part shows the optimal iteration period (optIP) and the best
iteration energy consumption under optIP (bestIEC). The second part is the
optimal iteration energy consumption (optIEC) and the best IP under optIEC
(bestIP). The third part shows the execution times and memory consumptions
of the procedure finding optIP.

Table 2. Experimental results for MPEG-4 Decoder

info
Low Bound High Bound

P30 P70 P99 P30 P70 P99
f #P optIP/bestIEC

1
2 83/9.2 163/18.0 221/24.3 82/7.4 162/13.8 220/18.4
4 83/11.6 163/N 221/N 54/N 94/N 123/N

2
2 83/9.2 163/18.0 221/24.3 74/7.0 154/13.4 212/18.0
4 83/N 163/N 221/N 48/N 88/N 117/N

optIEC/bestIP

1
2 7.4/131 15.0/251 20.5/338 6.6/102 13.0/182 17.6/240
4 11.3/93 22.5/N 30.6/N 9.5/64 18.3/N 24.7/N

2
2 7.4/131 15.0/251 20.5/338 6.5/89.5 12.9/169.5 17.6/227.5
4 11.3/N 22.5/N 30.6/N 8.6/N 17.4/N 23.8/N

Execution Time (s)/Memory Consumed (MB) of optIP

1
2 0.0/4.7 0.0/4.8 0.0/4.9 0.0/4.8 0.0/5.0 0.0/5.2
4 0.1/5.6 0.1/6.8 0.2/7.7 0.2/7.1 0.5/10.6 0.6/13.7

2
2 0.0/4.9 0.0/5.2 0.1/5.5 0.1/5.6 0.1/6.3 0.2/7.0
4 0.3/11.9 0.8/18.8 0.9/26.8 2.8/34.3 3.9/54.0 4.3/70.8

* N: not finished after 3 hours or running out of memory.

When a low buffer size bound is used, the increase of unfolding factor and
number of processors have no improvement on the four values we have evaluated.
Therefore, small unfolding factor and a few of processors are good enough for an
optimal schedule of Px with a low buffer size constraint. A high bound provides
more room for the improvement of iteration period and energy consumption at
the cost of longer execution time and larger memory consumption.

When two processors are considered, our methods perform well on all cases.
When four processors, 2-schedule and IEC are considered, state explosion occurs
and hence our methods perform poorly. Another reason is that we only find 32bit
version of UPPAAL CORA, which uses no more than 4GB memory. Besides the
number of processors, the nQ seems affecting the performance of our methods
mostly. Note that nQ is also the number of actors of the equivalent HSDFG of
an SDFG, or the number of jobs in a task graph [1]. It is an important factor
affecting the performance of almost all algorithms on SDFGs.

566 X.-Y. Zhu et al.

+ +

+

×

×

×
ctrl

α1

α2

α3

α4

α5 α6

proType
Time (ps)
+ × ctrl

PT1 2 3 0
PT2 5 7 0

(a)

The optimal throughput (1/optIP) The best IEC under optIP

unfolding factor unfolding factor

(b)

The best throughput under optIECThe optimal IEC (optIEC)

unfolding factor unfolding factor

(c)

No bound, 2 Processors
No bound, 4 Processors

Non auto-con., 2 Processors
Non auto-con., 4 Processors

Bound, 2 Processors
Bound, 4 Processors

Legend:

Fig. 6. (a) System model of the computation example; (b) the optimal throughput and
the best energy consumption under the optimal throughput; (c) the optimal energy
consumption and the best throughput under the optimal energy consumption.

8.2 Computation Example

The second case study is mainly used to measure the impact of the unfolding
factor. We consider a computation example, which is described in a task graph
in [5]. Its system model is shown in Fig. 6(a). Actor ctrl connecting with original
source and sink actors is added to limit the total latency. We have computed
the results of unfolding factor from 1 to 10, and taken into account different
combinations of values of three parameters: with and without a buffer bound,
with and without auto-concurrency, 2 processors and 4 processors.

The experimental results are illustrated in Fig. 6 (b) and (c). The through-
put and energy consumption of schedules are improved by increasing unfolding
factor; the degree of improvement decreasing accordingly. The buffer size bound
and auto-concurrency constraints have larger impact on the cases with 4 pro-
cessors than that with 2 processors. Some lines stop at the point that unfolding

Static Optimal Scheduling for SDFGs with Model Checking 567

factor reaches 4 or 5, because the corresponding procedures for larger unfolding
factors run out of memory.

9 Conclusion

In this paper, we have presented exact methods for scheduling SDFGs on het-
erogenous multiprocessor platforms considering both throughput and energy
consumption. Various parameters, including unfolding factors, constraints on
auto-concurrency, buffer sizes and processors, can be integrated into the meth-
ods. Our experimental results show that our methods can deal with moderate
scale models within reasonable execution time, and can find how different pa-
rameters impact on the results of different optimization goals.

We have used model checking as backend technique to solve the scheduling
problems. While enjoying the benefits it provides, we encountered state explo-
sion inevitably. As a future work, we will explore further the features of the
considered models to reduce the state space. On the one hand, we will try to
provide more domain insight when encoding the considered problems to model
checking problems; on the other hand, we may tailor model checking techniques
to deal with specialized tasks, instead of using a model checker directly. We have
not considered the communications between processors based on the assumption
that its cost is much smaller than the execution times of actors. In practical de-
signs, the cost may be large in some situations. Then the communication needs
to be taken into account. This can be integrated into our approach straightfor-
wardly by modeling communications as actors that use special processors which
model the connections between processors. But this method enlarges the scale
of system models accordingly. A more efficient way to deal with communications
is also an interesting topic for our further study.

References

1. Abdeddäım, Y., Asarin, E., Maler, O., et al.: Scheduling with timed automata.
Theor. Comput. Sci. 354(2), 272–300 (2006)

2. Adé, M., Lauwereins, R., Peperstraete, J.: Data memory minimisation for syn-
chronous data flow graphs emulated on DSP-FPGA targets. In: Proc. of the 34th
Ann. Design Automation Conf (DAC), pp. 64–69 (1997)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

4. Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Priced timed automata: Algorithms
and applications. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P.
(eds.) FMCO 2004. LNCS, vol. 3657, pp. 162–182. Springer, Heidelberg (2005)

5. Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of
real-time systems using priced timed automata. Comm. of the ACM 54(9), 78–87
(2011)

568 X.-Y. Zhu et al.

6. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
checker. International Journal on Software Tools for Technology Transfer 2(4),
410–425 (2000)

7. Fakih, M., Grüttner, K., Fränzle, M., Rettberg, A.: Towards performance analysis
of SDFGs mapped to shared-bus architectures using model-checking. In: Proc. of
the Conference on Design, Automation and Test in Europe, pp. 1167–1172 (2013)

8. Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: Schedulability analysis of fixed-
priority systems using timed automata. Theor. Comput. Sci. 354(2), 301 (2006)

9. Geilen, M., Basten, T., Stuijk, S.: Minimising buffer requirements of synchronous
dataflow graphs with model checking. In: Proc. of the 42nd Annu. Design Automa-
tion Conf. (DAC) (2005)

10. Gu, Z., Yuan, M., Guan, N., Lv, M., He, X., Deng, Q., Yu, G.: Static scheduling
and software synthesis for dataflow graphs with symbolic model-checking. In: Proc.
of 28th International Real-Time Systems Symposium (RTSS), pp. 353–364 (2007)

11. Harbour, M.G., Klein, M.H., Lehoczky, J.P.: Timing analysis for fixed-priority
scheduling of hard real-time systems. IEEE Trans. on Soft. Eng. 20(1), 13–28 (1994)

12. Hartel, P.H., Ruys, T.C., Geilen, M.C.: Scheduling optimisations for SPIN to min-
imise buffer requirements in synchronous data flow. In: Proc of the International
Conference on Formal Methods in Computer-Aided Design, p. 21 (2008)

13. Hirzel, M., Soulé, R., Schneider, S., Gedik, B., Grimm, R.: A catalog of stream
processing optimizations. ACM Comput. Surv. 46(4), 46:1–46:34 (2014)

14. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5), 279–295 (1997)

15. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) 1(1), 134–152 (1997)

16. Lee, E., Messerschmitt, D.: Static scheduling of synchronous data flow programs
for digital signal processing. IEEE Trans. Comput. 36(1), 24–35 (1987)

17. Madsen, J., Hansen, M.R., Knudsen, K.S., Nielsen, J.E., Brekling, A.W.: System-
level verification of multi-core embedded systems using timed-automata. In: Proc.
of the 17th World Congress International Federation of Automatic Control, Seoul,
Korea, pp. 9302–9307 (2008)

18. Malik, A., Gregg, D.: Orchestrating stream graphs using model checking. ACM
Trans. Archit. Code Optim. 10(3), 19:1–19:25 (2013)

19. Parhi, K.K., Messerschmitt, D.G.: Static rate-optimal scheduling of iterative data-
flow programs via optimum unfolding. IEEE Trans. Comput. 40(2), 178–195 (1991)

20. Singh, A.K., Shafique, M., Kumar, A., Henkel, J.: Mapping on multi/many-core
systems: Survey of current and emerging trends. In: Proc. of the 50th Ann. Design
Automation Conf. (DAC), p. 1 (2013)

21. Sriram, S., Bhattacharyya, S.S.: Embedded multiprocessors: scheduling and syn-
chronization. CRC Press (2009)

22. Stuijk, S., Geilen, M., Basten, T.: Throughput-buffering trade-off exploration
for cyclo-static and synchronous dataflow graphs. IEEE Trans. Comput. 57(10),
1331–1345 (2008)

23. Theelen, B., Katoen, J.P., Wu, H.: Model checking of scenario-aware dataflow with
CADP. In: Proceedings of the Conference on Design, Automation and Test in
Europe, pp. 653–658 (2012)

Static Optimal Scheduling for SDFGs with Model Checking 569

24. Zhu, X.-Y., Geilen, M., Basten, T., Stuijk, S.: Static rate-optimal scheduling
of multirate DSP algorithms via retiming and unfolding. In: Proc. of the 18th
Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 109–118 (2012)

25. Zivojnovic, V., Ritz, S., Meyr, H.: Optimizing DSP programs using the multirate
retiming transformation. Proc. EUSIPCO Signal Process. VII, Theories Applicat.
(1994)

Industry Track

Eliminating Static Analysis False Positives Using Loop
Abstraction and Bounded Model Checking

Bharti Chimdyalwar(�), Priyanka Darke, Anooj Chavda,
Sagar Vaghani, and Avriti Chauhan

Tata Research Development and Design Center, Pune, India
bharti.c@tcs.com

Abstract. Sound static analyzers over-approximate the input program behaviour
and thus imprecisely report many correct properties as potential errors (false
warnings). Manual investigation of these warnings is cost intensive and error
prone. To get an insight into the causes and explore the effectiveness of cur-
rent solutions, we analyzed the code structure associated with warnings reported
by sound state of the art static analyzers: Polyspace and TCS Embedded Code
Analyzer, over six industrial embedded applications. We observed that most of
the warnings were due to variables modified inside loops with large or unknown
bounds.

While earlier techniques have suggested the use of program slicing, abstrac-
tion, Iterative Context Extension (ICE) with Bounded Model Checking (BMC) to
eliminate false warnings automatically, more recently an effective approach has
been proposed called loop abstraction for BMC (LABMC), aimed specially at
proving properties using BMC in the presence of loops with large and unknown
bounds. Therefore, we experimentally evaluated a combination of program slic-
ing, ICE and LABMC to enable practitioners to eliminate false warnings auto-
matically. This combination successfully identified more than 70% of the static
analysis warnings on the applications as false positives. We share the details of
our approach and experimentation in this paper.

1 Introduction

Static analysis is the most scalable formal verification technique, widely used in the
industry to detect standard run-time errors. However, all static analyzers implement ab-
stractions which lead to an imprecise analysis [8]. Thus they report many warnings,
most of which are not actual errors and are termed as false positives. These false posi-
tives have to be weeded out manually. But on real world applications manual analysis
is time consuming and error prone. Thus there is a need for precise and automatic false
positive elimination. Towards this, we first consolidated warnings generated by prac-
titioners over six embedded applications. The practitioners had used either of the two
sound static analyzers, Polyspace [6] or TCS Embedded Code Analyzer (TCS ECA) [1].
Then we analyzed the code structure corresponding to the warnings. We observed that
71% of the warnings were due to variables modified in complex loops (loop outputs).
Such loops had a large or unknown bound or several branching conditions, and in most

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 573–576, 2015.
DOI: 10.1007/978-3-319-19249-9_35

574 B. Chimdyalwar et al.

cases, the loop variable on which the warning depended was modified using linear recur-
rence along some branches of the loop body. Sound static analyzers over-approximate
such loops, hence report several false positives.

To improve precision, techniques have been presented in [7], [5] and [3]. They use
BMC to verify programs post static analysis and have been proved to be useful. Ad-
ditionally, the technique presented in [9] combines static analysis and model checking
to find bugs, but it may miss out actual errors. The authors of [7] and [3] present the
use of Iterative Context Extension (ICE), while the authors of [3] and [5] additionally
reduce the input program before applying BMC. However, these techniques have their
limitations. The technique presented in [5] converts the input program into a model,
optimizes it using static analysis and verifies the optimized model using BMC. Hence
its precision is limited to static analysis. The technique presented in [7] is partly au-
tomated and in the presence of large or unknown bounded loops, its scalability is lim-
ited because BMC can verify programs up to a bounded execution length. The authors
of [3] present a loop abstraction technique to overcome limitations of BMC. But re-
cently, an effective technique has been presented with a more precise loop abstraction
called LABMC [4]. It aims to scale up BMC for proving program properties in the
presence of large or unknown bounded loops by abstracting each loop using a com-
bination of output abstraction, abstract acceleration and induction. It replaces loops in
programs with abstract loops having a small known bound so that all the loop outputs
are over-approximated [4]. However LABMC did not abstract loops which modified
array contents or aliases. So we extended it to abstract those loops by providing non de-
terministic values throughout the program to all the array elements and aliases modified
in loops. Also, in [4], the authors show that LABMC could verify properties of a large
industrial automotive system which many other tools and techniques could not.

In this paper, we experimentally evaluate a combination of program slicing, ICE and
LABMC to automatically eliminate false positives generated by sound static analyz-
ers. Our experiments identified, on an average, 57% and 77% warnings reported by
Polyspace and TCS ECA respectively as false positives, thus helping practitioners by
reducing the chances of errors and effort involved in the analysis of critical systems.

The key contributions of this paper are: (a) an evaluation of the applicability of com-
bining program slicing, ICE and LABMC to eliminate false positives automatically
over multiple industrial applications (b) highlighting the key areas of improvement to
researchers.

2 Experimentation

Fig.1 presents the experimental setup. Assert Annotator first annotates each warning as
an assertion in the input program. Then Slicer slices annotated program with respect
to the assertion and feed it to LABMC for loop abstraction. This abstract program is
then passed to the ICE module which further abstracts this program by selecting the
function f containing the assertion, assigning non deterministic values to inputs of f ,
and specifying f as the analysis function to the C Bounded Model Checker (CBMC)
[2]. If the assertion is proved to be valid for f , then the analysis stops, proving the
property to be valid and eliminate the corresponding warning. But if CBMC generates

Eliminating Static Analysis False Positives 575

Fig. 1. Experimental Setup

a counter-example (c-ex), the ICE module extends the context to the functions calling f
and invokes CBMC with respect to all the callers of f . This process of ICE is repeated
till either the property is proved to be valid for all callers, or a valid c-ex is generated
at the Application Entry Function (AEF) showing the warning to be an actual error, or
the warning is retained if CBMC runs out of resources or generates an invalid c-ex with
respect to the original program at AEF.

We conducted experiments on six real-life embedded applications using a desktop
with a 3.0 GHz Intel processor, 2 GB of RAM and 32 bit Windows OS. The applica-
tions A1, A2, A4, A5 and A6 implement the car alarm, battery controller, navigation,
protocol stack, and breaking control applications of a vehicle respectively. A3 imple-
ments a smart-card functionality. These applications were developed (in the C language)
by six different development teams, and also verified by them for the array index out
of bounds (AIOB) property using either Polyspace or TCS ECA. They shared with us
the warnings report generated by the respective static analyzer. We analyzed the code
structure corresponding to the warnings of each application. Our observations are pre-
sented in Table 1. As seen, around 71% of the warnings had a dependency on variables
modified inside loops of large or unknown bound. These loops had several branching
conditions, and the variables which caused the warning were modified using linear re-
currences along different branches of the loops.

We verified the assertion corresponding to each warning, as explained in Fig. 1. For
A1 and A6, we set a CBMC time out of 30 minutes per context, and 17 minutes per

Table 1. Warnings Analysis

Metrics Values
Total warnings
(warns.)

134

% Warns. due
to loop outputs

71

% Warns. due
to function
return values

1

% Warns. due
to branching
conditions over
environment
variables
(outside loops)

28

Table 2. Experimental Results

Metrics
Application

A1 A2 A3 A4 A5 A6
Application size (KLOC) 0.98 60 4.6 230 8 33.8
Average (Avg.) slice size (KLOC) 0.98 16 1.3 1.5 1.9 6
Avg. known-bound loops in a slice 2 25 2 60 0 53
Avg. unknown-bound loops in a slice 1 25 2 76 2 11
Static Analyzer P P P T T T
Number of (NO.) warns. 2 44 3 32 30 23
NO. warns. reduced 2 23 3 30 21 15
NO. warns. CBMC went OOM 0 21 0 2 0 7
NO. warns. with invalid c-ex 0 0 0 0 9 1
% Warns. reduced 100 52 100 93 70 65
Largest validated slice size (KLOC) 0.98 36.5 1.9 29.7 2.1 6.3
P - Polyspace, T - TCS ECA, OOM - Out of memory

576 B. Chimdyalwar et al.

context for A2-A5. Table 2 shows the evaluation results per application. We eliminated
70% false warnings across applications and observed the following:

– We could successfully analyze slices up to a size of 36.5KLOC.
– For A2, A4 and A6, the AEF was reading a several statically allocated, large-sized

arrays from the environment. For these applications, the warnings for which CBMC
went out of memory, had dependencies on those arrays.

– For A2, one warning (of slice size 36.5KLOC) was eliminated at the AEF, but it
did not depend on arrays from the environment.

– For A5, CBMC generated invalid counter-examples at the AEF due to imprecision
of LABMC abstraction caused by array contents being read in loop conditions.

– For A6, CBMC generated an invalid counter-example at the AEF due to impreci-
sion in the points-to-analysis used by LABMC while abstracting loops.

– The average number of context extensions needed to eliminate warnings was 1.

3 Conclusion

For the given set of applications, we showed the practicality of combining static anal-
ysis, slicing, ICE and LABMC for precise industrial code analysis through our ex-
periments. This combination of techniques ensured a sound and automatic elimination
of false positives, reducing manual effort of practitioners to a large extent, and min-
imizing chances of error in critical software systems. Our experiments highlight to
the researchers that (a) During BMC, arrays are the main contributors of state space
explosion. (b) LABMC abstraction needs improvement when arrays are read in loop
conditions and pointers are modified in loops.

References

1. TCS Embedded Code Analyzer (TECA).http://www.tcs.com/offerings/engineering services/
Pages/TCS-Embedded-Code-Analyzer.aspx

2. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: Jensen, K.,
Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176. Springer, Heidelberg (2004)

3. Darke, P., Khanzode, M., Nair, A., Shrotri, U., Venkatesh, R.: Precise analysis of large industry
code. In: Asia Pacific Software Engineering Conference, pp. 306–309 (2012)

4. Darke, P., Chimdyalwar, B., Venkatesh, R., Shrotri, U., Metta, R.: Over-approximating loops
to prove properties using bounded model checking. In: DATE (2015)

5. Ganai, M., Gupta, A., Ivani, F., Kahlon, V., Li, W., Papakonstantinou, N., Sankaranarayanan,
S., Wang, C.: Towards precise and scalable verification of embedded software. In: DVCon
(2008)

6. MathWorks. Polyspace Embedded Software Verification,
http://www.mathworks.in/products/polyspace/

7. Post, H., Sinz, C., Kaiser, A., Gorges, T.: Reducing false positives by combining abstract
interpretation and bounded model checking. In: ASE (2008)

8. Rival, X.: Understanding the origin of alarms in ASTRÉE. In: Hankin, C., Siveroni, I. (eds.)
SAS 2005. LNCS, vol. 3672, pp. 303–319. Springer, Heidelberg (2005)

9. Valdiviezo, M., Cifuentes, C., Krishnan, P.: A method for scalable and precise bug finding
using program analysis and model checking. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 196–215. Springer, Heidelberg (2014)

http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx
http://www.tcs.com/offerings/engineering_services/Pages/TCS-Embedded-Code-Analyzer.aspx
http://www.mathworks.in/products/polyspace/

Autofunk: An Inference-Based Formal Model

Generation Framework for Production Systems

William Durand1(�) and Sébastien Salva2

1 Michelin, Clermont-Ferrand, France
william.durand@fr.michelin.com

2 Auvergne University, Clermont-Ferrand, France
sebastien.salva@udamail.fr

Abstract. In this paper, we present Autofunk, a fast and scalable frame-
work designed at Michelin to automatically build formal models (Sym-
bolic Transition Systems) based on production messages gathered from
production systems themselves. Our approach combines model-driven
engineering with rule-based expert systems and human knowledge.

Keywords: Model inference · Symbolic transition system · Expert
system · Production system · Regression testing

1 Introduction

Michelin is a worldwide tire manufacturer which designs all its factories, pro-
duction systems, and software by itself. Like many other industrial companies,
Michelin follows the Computer Integrated Manufacturing approach, using com-
puters and software to control the entire manufacturing process. Michelin Level
2 applications are often deployed for 20 years, and are very important for its
business. Maintaining these software is inevitable, but due to their importance,
this is risky. That is why Michelin puts a lot of efforts in documenting how these
applications behave. Unfortunately, keeping such knowledge up to date is diffi-
cult, and it often implies under-specified or not documented legacy systems that
no one wants to maintain because of lack of understanding.

In this paper, we focus on this problem for legacy systems in an industrial
context. Model inference is a recent research field that addresses this issue. Mod-
els are here built from execution traces (i.e. sequences of observed actions of an
application). Several approaches have been proposed for different types of sys-
tems, usually GUI applications [4,5,3]. However, our experience shows that these
approaches are not tailored to support running production systems that are com-
plex and distributed over several devices. From the literature, we deduced the
following key observations:

– Model inference approaches learn approximate models capturing the be-
haviours of a system and more. In our context, we want exact models that
could be used for regression test case generation,

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 577–580, 2015.
DOI: 10.1007/978-3-319-19249-9_36

578 W. Durand and S. Salva

– Some approaches perform active testing on the systems to learn models.
Applying active testing on running systems is not possible since these must
not be disrupted,

– Production systems exchange thousands and thousands of messages a day.
Most of the model inference approaches cannot take such a huge amount of
information to build models.

That is why we have developed Autofunk, our fast and scalable framework
to infer both exact and formal models from production messages, using expert
systems and inference rules to emulate human knowledge, and transition systems
to embrace formal tools.

2 Framework

Figure 1 depicts the architecture of our framework. It contains five modules (in
grey in the figure), the first four modules aim at building models and the last one
(whichwill not be described in the paper) is used to generate test cases.Autofunk is
developed in Java and relies onDrools 1, a powerful Java rule-based expert system
engine which supports knowledge bases with facts given as Java objects.

Fig. 1. Autofunk’s architecture

We consider Symbolic Transition Systems (STS) [2] as models for representing
production system behaviours. STSs are state machines incorporating actions,
labelled on transitions, that show what can be observed on a system. In addition,
actions are tied to an explicit notion of data.

1 http://www.drools.org/

http://www.drools.org/

Autofunk: An Inference-Based Formal Model Generation Framework 579

2.1 Production Messages and Traces

Autofunk takes production messages as input from a (running) system under
analysis Sua. A production message can be either a stimulus or a response,
owns a timestamp defined by a global clock, and contains variable data. These
messages are formatted no matter their initial source (e.g. a logging system in
our case), so that it is possible to use messages from different providers. We call
valued actions the resulting set of messages.

Some of these actions are not part of the functioning of the system (log-
ging information for instance), and thus must be removed. Filtering is achieved
by Drools expert system and a few inference rules given by a domain expert.
The remaining actions are sorted to produce an initial set of traces denoted
Traces(Sua).

2.2 Trace Segmentation and STSs

We define a complete trace as a trace containing all actions expressing the path
taken by a product in a production system, from one of its entry points to
one of its exit points. In the trace set Traces(Sua), we do not want to keep
incomplete traces. Autofunk performs a statistical analysis on Traces(Sua) and
computes two ratios for the first and last valued actions of every trace in order
to automatically find the entry and exit points of Sua.

Traces(Sua) is then split into subsets STi, one for each entry point of Sua.
Every trace set STi will give birth to one model, describing all possible be-
haviours starting from its corresponding entry point. Here we obtain the set
ST = {ST1, ..., STN} such that each STi ⊆ Traces(Sua).

Given a subset STi in ST , a first STS denoted S is built by relying on the LTS
semantics [2] transformation applied in a backward manner. This model has a
tree structure and its traces are equivalent to those of STi.

2.3 STS Reduction

The previous model S is often too large, and thus cannot be beneficial as is.
Using such a model for testing purpose would lead to too many test cases for
instance. That is why Autofunk performs a reduction step, aiming at diminishing
the first model into a second one, denoted R(S) that will be more usable.

Most of the existing approaches propose two solutions. Models can directly
be inferred with high levels of abstraction but it implies not exact models. The
second solution is to apply a minimisation technique [1] which guarantees trace
equivalence, but it is costly and highly time consuming on large models. As a
result, we chose a simpler approach which consists in combining branches that
have the same sequences of actions so that we still obtain a model having a tree
structure. Autofunk generates a signature for each branch b, i.e. a hash (SHA1
algorithm) of the concatenation of the signatures of the actions of b. This gives
good results in terms of STS reduction and requires low processing time, even
with millions of actions.

580 W. Durand and S. Salva

3 Evaluation

We conducted several experiments with real sets of production messages, recorded
in one of Michelin’s factories. The most significant one ran with a month of data.
Autofunk handled 10 million production messages in 5 minutes to build two
models including around 1,600 branches (parsing step put aside). The frame-
work revealed 120,000 complete traces, which represents 78% of the initial trace
set, and reduced the models by 97%. More results can be found in [6].

4 Conclusion

We built a fast and scalable framework combining model inference, expert sys-
tems and statistical analyses to derive STSs models based on production traces,
i.e. generating formal models from running production systems.

We focused on reducing the models while keeping them exact thanks to trace
equivalence preservation, and also because we considered complete branches only.
We would like to investigate partial branch concatenation to reduce generated
models because we believe that models could be even more reduced. However,
this would probably affect performance as partial branch concatenation is time
consuming, and we don’t want to sacrify speed.

This framework is part of a regression testing system we are working on.
In the future, we plan to work on passive testing by applying our framework
for different versions of a system and draw conclusions based on the generated
models. This will be part of a newer testing module.

References

1. Abdulla, P.A., Kaati, L., Högberg, J.: Bisimulation minimization of tree automata.
In: Ibarra, O.H., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, pp. 173–185.
Springer, Heidelberg (2006)

2. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test Generation Based on Symbolic
Specifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395,
pp. 1–15. Springer, Heidelberg (2005)

3. Mariani, L., Pezze, M.: Dynamic detection of cots component incompatibility. IEEE
Software 24(5), 76–85 (2007)

4. Memon, A., Banerjee, I., Nagarajan, A.: Gui ripping: Reverse engineering of graph-
ical user interfaces for testing. In: Proceedings of the 10th Working Conference on
Reverse Engineering, WCRE 2003, p. 260. IEEE Computer Society, Washington,
DC (2003), http://dl.acm.org/citation.cfm?id=950792.951350

5. Mesbah, A., van Deursen, A., Lenselink, S.: Crawling Ajax-based web applications
through dynamic analysis of user interface state changes. ACM Transactions on the
Web (TWEB) 6(1), 3:1–3:30 (2012)

6. Salva, S., Durand, W.: Inferring formal models from production systems. Tech. rep.,
LIMOS, LIMOS Research Report RR-15-02 (2015),
http://sebastien.salva.free.fr/RR-15-02.pdf

http://dl.acm.org/citation.cfm?id=950792.951350
http://sebastien.salva.free.fr/RR-15-02.pdf

Software Development and Authentication

for Arms Control Information Barriers

Neil Evans(�)

AWE Aldermaston, Aldermaston, UK
neil.evans@awe.co.uk

Abstract. The UK-Norway initiative [1] is a joint project to investigate
the technologies available for monitoring future arms control agreements.
This paper describes one way in which formal methods can assist in the
verification of software that is used for such a purpose.

Keywords: Arms control challenges · SPARK · MALPAS · SMT

1 Introduction

In a future verification regime for nuclear warhead dismantlement, inspecting
parties are likely to request measurements on warheads and warhead compo-
nents to ensure that the items presented are consistent with the declarations
made by a host party. Such measurements are likely to be based on radiation
signatures, and would be used to confirm physical attributes of the fissile ma-
terial present within the system. Almost any measurement of this type, which
would be of use for inspection purposes, would be likely to contain sensitive or
proliferative information. It will therefore be essential for such measurements to
be performed behind an information barrier (IB) which, while protecting the sen-
sitive information, will reveal a pass/fail to an agreed attribute threshold. It will
be crucial that the IB design process builds in mechanisms whereby both parties
can have high confidence in the validity and veracity of any result obtained.

This paper presents an overview of the challenges and the use of formal meth-
ods to develop and verify (authenticate) the software aspects of an envisaged IB
system so that measurements on warheads or warhead components can be taken
with confidence, but without an excessive dependency on trust by either party.
Of course there are many other important aspects to the development and ver-
ification of such a system, such as the hardware and the deployment processes,
but these are outside the scope of this paper.

The development concept of an IB system is a difficult one because it involves
parties with a mutual distrust of each other. The principles that have been
derived from consideration of this difficult situation are summarised as design-
driven challenges and challenges in use.

Design-Driven Challenges. A good IB design gives confidence to both par-
ties. The following four points explore how the design concept can be used to
incorporate features that will assist with this.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 581–584, 2015.
DOI: 10.1007/978-3-319-19249-9_37

582 N. Evans

1) Joint (agreed) design. All aspects of the design and construction should be
agreed by both parties. This gives more trust in the system, but also allows
verification of the design by either party prior to any measurements.

2) Simplicity. A simple design reduces the complexity of hardware and software
verification tasks.

3) Modularity. This allows easy interchange of modules, such as electronic cir-
cuit boards, and enables a greater degree of random selection (see below) at
any stage. Modules that the host is confident cannot retain information can
be given to the inspectors after use. Being able to check the equipment after
measurements is a powerful confidence builder for the inspecting party.

4) Low cost. This will be essential if the equipment can only be used once or a
limited number of times. Modularity helps by allowing reuse of components.

Challenges in Use. An IB must provide confidence when in use, as well as in
design. Features of the modes of operation, many of which are obvious but are
frequently overlooked, should allow for reliable and repeatable operation.

5) Simple to deploy and operate. Confusion over results or procedure could
adversely affect the verification process.

6) Robust. The system needs to be reliable, work in a variety of environments,
and be able to withstand standard transportation.

7) Portable and self-powered. The system must be portable, fast to set up, and
preferably does not rely on host-supplied power or other utilities to function.

8) Use of random selection. This allows the inspectors to choose from multiple
copies of (modules of) the equipment provided by the host. For example, they
could choose which items to use for measurement and which to take away
for further analysis. This is particularly relevant for any items or modules
that inspectors are unable to check after measurements have been taken.

2 Software Aspects of an Information Barrier

Information barriers usually involves a considerable software aspect (see, for
example, [2]). What has been lacking previously, however, is any extensive use
of formal methods to specify and verify the intent of IB software which, due to
its simplicity and modularity, is amenable to such analysis.

Formal software development has focused largely on the pre-compilationphases.
This is a problem because, in a context where mistrust arises at all levels, it is dif-
ficult to argue the veracity of generated object code based on verified source code
(without subjecting the compiler to extensive scrutiny.) The approach taken as-
sesses the merits of software development at two different levels (each of which
was based on an agreed design): a high level version in SPARK [3] (which has ma-
ture tool support for formal verification of source code but requires a compilation
phase), and a low level version in 8-bit AVR assembler code (with no dedicated
formal methods support but eliminates the compilation phase).

Software Development and Authentication 583

SPARK Ada. Each module (or package) consists of two objects: a specifica-
tion and a body. A specification contains information about the functions and
procedures that are implemented in the body, i.e. names, parameters and types.
However, the specification allows declarations of more intent-like information
about the functions and procedures via preconditions, postconditions and, in
the case of functions, return annotations. Further intent-like information can be
included via assertions within the body of the code itself.

Design processes, such as Altran’s (previously Praxis’) Informed process, allow
users to go from high level intent to annotated SPARK code. A good example
of this is the Tokeneer system [4]. The SPARK tools are used to check that
the code is well-formed. Rudimentary checks are made to make sure the code
is syntactically correct but, more importantly from a verification perspective,
the SPARK Examiner will generate verification conditions that are required to
be proven to ensure that the package is well-typed and fulfils all assertions and
annotations. The SPARK Simplifier proves as many of the verification condi-
tions as it can automatically. After simplification, the SPARK Proof Checker is
available to assist the manual proof of the remaining verification conditions.

AVR Assembler Code. The simplicity demanded in Section 1 makes it feasible
to write the IB software directly in assembler code. The resulting code is of course
far less readable than the corresponding SPARK and lacks dedicated tool support
for verification. Of the general-purpose tools that have maturity, MALPAS [5]
was chosen as a way to analyse the assembler code. Coincidentally MALPAS
and SPARK have common ancestry but diverged when MALPAS was developed
at RSRE Malvern to target the analysis of existing (legacy/COTS) software,
whereas SPARK evolved as a means of software development from inception.

The MALPAS Static Code Analysis tool has been used to analyse safety-
critical assembly code for in-service systems (such as nuclear power stations). The
analysers determine various properties of the code ranging from basic topology
to detailed mathematical functionality. They operate on a modelling language
called Intermediate Language (IL) which resembles a simple high-level program-
ming language with additional mathematical constructs. Hence the first stage of
analysis is to translate the assembler code and the AVR instruction set into IL.

Like SPARK, MALPAS IL allows assertions to declare intent-like informa-
tion. The Compliance Analysis tool generates (and tries to discharge) so-called
threats from the embedded assertions. They are called threats because they are
(simplified) negations of the assertions that must be shown to be false. Initially,
high-level assertions were used to declare the intent of the low-level IB software.
Unfortunately the semantic gap separating these from the assembler code was
too wide for the compliance analyser so an alternative approach has been taken:
as a stepping stone from the high level assertions to the assembler code, the
SPARK source code itself is used to specify the ‘intent’ of the assembler code.

Since MALPAS IL resembles a high-level programming language it is easy
to represent SPARK source code in IL. The MALPAS tools can show compli-
ance between the SPARK code and the assembler code by embedding assertions
that, for example, relate bit-vector registers in the assembler code with

584 N. Evans

(representations of) SPARK variables. In this manner relationships between the
assembler code and the SPARK code can be proven and, by transitivity, a rela-
tionship between the assembler code and the high-level intent can be established.
Unfortunately the MALPAS tools also struggled with the complexity of this task,
so additional measures were sought.

Satisfiability Modulo Theories (SMT). SMT [6] tools have matured to the
extent that they are now being used to support formal method development and
analysis. After translating (by hand) the threats generated by MALPAS into
the SMT-LIB language, CVC4 [7] is being used to prove their unsatisfiability.
This has been extremely successful and is testament to the evolution of these
tools over recent years. In addition to threat generation, MALPAS still makes
an important contribution to the analysis of the code because it compensates
for some of the things that are missing from SMT. Examples of this are the
handling of non-linear expressions and looping constructs.

3 Conclusion

This paper has given a brief overview of the use of formal methods to verify the
correctness of the software for an arms control application. This is a very impor-
tant part of the development and deployment of equipment in an arms control
regime because of the potential risks (and rewards) of using malicious code to
subvert a disarmament process. Of course all of the tools used, in their current
configurations, demand an element of trust but it is hoped that in the future
these will have the ability to generate proofs that can be verified independently.

References

1. The United Kingdom Norway Initiative: Research into the verification of nuclear
warhead dismantlement. Working paper to the Non-Proliferation Treaty Review
Conference, NPT/CONF2010/WP.41 (May 2010)

2. MacArthur, D.W., Wolford Jr., J.K.: Information barriers and authentication. In:
INMM 42nd Annual Meeting, Indian Wells, CA, USA, July 15-19 (2001)

3. Barnes, J.: High integrity software - The SPARK approach to safety and security.
Pearson Education (2003)

4. Barnes, J., Chapman, R., Johnson, R., Widmaier, J., Cooper, D., Everett, W.:
Engineering the Tokeneer enclave protection software. In: 1st IEEE International
Symposium on Secure Software Engineering (March 2006)

5. Webb, J.T.: MALPAS, an automatic static analysis tool for software validation
and verification. In: 1st International Conference on Reliability and Robustness of
Engineering Software. Elsevier (1987)

6. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT Modulo Theo-
ries: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM 53(6) (2006)

7. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)

Analyzing the Restart Behavior
of Industrial Control Applications

Stefan Hauck-Stattelmann1(�), Sebastian Biallas2, Bastian Schlich1,
Stefan Kowalewski2, and Raoul Jetley3

1 ABB Corporate Research Germany, Research Area Software, Ladenburg, Germany
stefan.hauck-stattelmann@de.abb.com

2 Embedded Software Laboratory, RWTH Aachen University, Aachen, Germany
3 ABB Corporate Research India, Research Area Software, Bangalore, India

Abstract. Critical infrastructure such as chemical plants, manufactur-
ing facilities or tidal barrages are usually operated using specialized
control devices. These devices are programmed using domain-specific
programming languages for which static code analysis techniques are
not widely used yet. This paper compares a sophisticated academic tool
to a lightweight compliance check approach regarding the detection of
programming errors that only occur after program restart. As this is a
common problem in industrial control code, the paper proposes a way to
improve the accuracy of analyses for this class of errors.

Keywords: Static Analysis · Abstract Interpretation · Programmable
Logic Controllers

1 Introduction

Programmable Logic Controllers (PLCs) are widely used for industrial automa-
tion tasks, e. g., for controlling equipment or supervising production processes.
Most PLC programs are written in programming languages defined in the IEC
61131-3 standard [1]. As these languages are rarely used in other domains, the
number of available tools for static code analysis is quite limited in comparison
to other languages. The authors previously investigated the use of static code
analysis for PLC programs using abstract interpretation [2] and more lightweight
techniques [3]. This work discusses the detection of problems that are only trig-
gered after a PLC restart and proposes a way to improve this detection.

PLC programs have several interesting properties distinguishing them from
standard applications. PLC programs are always executed cyclically, i. e., they
are executed over and over again as long as the PLC is running. From an anal-
ysis perspective, this means that there is an implicit loop around the entry and
exit point of a program. Interaction with the environment, e. g., sensors and
actuators interfacing with machinery, is cleanly separated from program execu-
tion through the runtime system. Additionally, many PLCs have battery-backed
memory regions, which means that certain program variables can retain their

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 585–588, 2015.
DOI: 10.1007/978-3-319-19249-9_38

586 S. Hauck-Stattelmann et al.

values even after the PLC is restarted. This is a very important capability of a
PLC and required, e. g., to document the operating hours of machinery.

While retain variables are often necessary to implement the required func-
tionality, they are also the source of problems in the code that are hard to detect.
The reason for this is that the interaction between variables with and without
the retain attribute is sometimes difficult to understand and even harder to test.
A simplified example of this kind of problem is shown in Fig. 1. The variable
fs is erroneously marked with the retain attribute and thus is only set to the
initial value when the program is started the first time. All other variables are set
to the value specified in their declaration whenever the PLC is restarted. This
leads to a division by zero in the last assignment of the program after a restart,
yielding unexpected results.

2 Comparison of Available Analysis Tools
To the best of our knowledge, Bornot et al. [4]

1 PROGRAM Program1
2 VAR RETAIN
3 fs : BOOL := TRUE;
4 END_VAR
5 VAR
6 a : INT := 0;
7 b : INT := 0;
8 END_VAR
9 IF fs THEN

10 b := 2;
11 END_IF;
12 fs := FALSE;
13 a := 1234 / b;
14 END_PROGRAM

Fig. 1. Example Program

were the first to describe static analysis of PLC
programs based on abstract interpretation. More
recently, Prahofer et al. [5] discuss the appli-
cability of static code analysis for IEC 61131-
3 languages and also assess the available com-
mercial tools in this area. Existing commercial
tools focus on syntactic checks, e. g., enforcing
naming conventions for variables or looking for
error-prone code patterns such as dividing by a
variable that has not been compared to zero.

The authors were involved in the development
of different research tools for the static analysis
of PLC programs. The Arcade.PLC tool1 de-
veloped by RWTH Aachen University focuses on
formal methods. A prototype tool developed by
ABB corporate research [3] is a hybrid analysis
combining abstract interpretation and syntactic checks. The example from Fig. 1
will be used to discuss the different approaches regarding retain variables.

Arcade.PLC can detect the division by zero problem shown in the exam-
ple by first performing a value-set analysis and then using this information to
perform further checks, e. g., detecting divisions where zero is part of the poten-
tial value range of the divisor. Since the value-set analysis is based on abstract
interpretation, it can calculate a sound over-approximation of the value ranges
without considering the semantics of the retain attribute. The analysis will sim-
ply deduce that fs can have the value true or false while b can have the value
0 or 2 at program entry. Thus, the division by zero cannot be ruled out and a
warning is issued.

The ABB tool supports data flow analyses, but also can check purely syntactic
compliance rules. One such rule, which is already used by ABB business units
1 http://arcade.embedded.rwth-aachen.de, example can be tested there

http://arcade.embedded.rwth-aachen.de

Analyzing the Restart Behavior of Industrial Control Applications 587

Entry

Exit

BodyNew Cycle

Entry 1

Exit 1

Body 1

New Cycle

Entry n + 1

Exit n + 1

Body n +1New Cycle

Entry r

Exit r

Body r

New Cycle

Entry r + 1

Exit r + 1

Body r +1New Cycle

Restart

Retain Entry
+

Unrolling

Fig. 2. Proposed Inlining and Unrolling of the Control Flow Graph for a PLC Program

for manual code reviews, is that every variable declaration has to specify the
retain attribute (or a similar one). Applying this rule on the example program
yields warnings for the variables a and b. Automating this check can help in
detecting problematic statements in control code, in particular when combined
with checks for programming errors like a potential division by zero. While the
latter is also supported by the tool, the correlation between a potential error
and the missing retain attribute still has to be done manually.

Neither of these tools cannot provide a developer with the information that
certain problems are only triggered when a program has been running for some
time and the PLC is restarted. Unexpected behavior due to incorrectly specified
retain attributes, however, is a common problem in PLC programs. Detecting
these errors manually is very difficult, in particular if the behavior of a program
relates to certain characteristics of the equipment it is controlling.

3 Improving Accuracy Through Context Information

Detecting problems during restart can be automated by making the restart ex-
plicit during analysis. To achieve this, the analysis has to be made context-
sensitive with respect to PLC restart behavior by adding disjoint analysis con-
texts for the execution cycles after a restart. This technique allows detecting ini-
tialization problems and problems that only manifest themselves after a restart.
It is similar to the VIVU (Virtual Inlining and Virtual Unrolling) approach pro-
posed in [6] which aims at improving the results for cache modeling.

Improved analysis accuracy can be achieved by building a supergraph from
the regular control flow graph (CFG) of the program, as illustrated in Fig. 2.
This is achieved through the following steps:

– Unroll the implicit loop around the program once (left hand side of the
supergraph).

– Duplicate the unrolled CFG to consider the restart context (right hand side
of the supergraph).

588 S. Hauck-Stattelmann et al.

– Add edges to the graph so data flow information can be propagated to the
entry of the subgraph for restart, but variables without the retain attribute
are set to their initial value (Restart edges).

Performing data flow analysis on the supergraph makes the analysis of PLC
programs more accurate in several ways. First of all, if certain problems such as
a potential division by zero are only detected in one of the duplicated subgraphs,
this information can be made available to the developer to ease debugging. Most
importantly, the analysis results, e. g., value sets of variables, for the correspond-
ing parts of the supergraph with and without a restart can be compared. Thus,
divergent behavior between program execution with and without a restart can be
detected automatically, which was not possible before. The proposed technique
is applicable to all forms of data flow analysis.

4 Conclusion

This paper discussed the capabilities of formal static code analysis based on
abstract interpretation and lightweight analysis using code compliance checks
regarding errors in PLC programs rooted in PLC restart behavior. Both ap-
proaches can detect code smells hinting at these problems, but directly present-
ing this information to the developer has not been possible so far. To overcome
this issue, this paper proposed handling the PLC restart in a separate analy-
sis context by virtual inlining of the restart entry and virtual unrolling of the
cyclic code execution. Considering the restart behavior of PLC in the analysis
enables the automatic detection of divergent program behavior after a restart.
This improvement has already been integrated into Arcade.PLC with little de-
velopment effort and without significantly impacting the runtime of the analysis.

References

1. International Electrotechnical Commission, IEC 61131-3 Programmable Con-
trollers Part 3: Programming languages (2003)

2. Stattelmann, S., Biallas, S., Schlich, B., Kowalewski, S.: Applying Static Code
Analysis on Industrial Controller Code. In: Emerging Technology and Factory Au-
tomation (2014)

3. Nair. S., Jetley, R., Nair, A., Hauck-Stattelmann, S.: A Static Code Analysis Tool
for Control System Software. In: 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (2015)

4. Bornot, S., Huuck, R., Lakhnech, Y., Lukoschus, B.: Utilizing Static Analysis for
Programmable Logic Controllers. In: 4th International Conference on Automation
of Mixed Processes (2000)

5. Prahofer, H., Angerer, F., Ramler, R., Lacheiner, H., Grillenberger, F.: Opportuni-
ties and Challenges of Static Code Analysis of IEC 61131-3 programs. In: Emerging
Technology and Factory Automation (2012)

6. Martin, F., Alt, M., Wilhelm, R., Ferdinand, C.: Analysis of Loops. In: Koskimies,
K. (ed.) CC 1998. LNCS, vol. 1383, pp. 80–94. Springer, Heidelberg (1998)

Case Study: Static Security Analysis

of the Android Goldfish Kernel

Tao Liu1(�) and Ralf Huuck2

1 University of New South Wales, Sydney, Australia
tao.liu4@unsw.edu.au

2 NICTA and Red Lizard Software, Sydney, Australia
ralf.huuck@nicta.com

Abstract. In this work we present an industry-driven case study of
applying static program analysis to the Android kernel. In particular, we
investigate the ability of open source tools as represented by Cppcheck
and of commercial tools as represented by Goanna to detect security
vulnerabilities. In our case study, we explore static security checking
along the dimensions of setup effort, run time, quality of results and
usability for large code bases. We present the results we obtained from
analyzing the Android Goldfish kernel module of around 740 kLoC of
C/C++ code. Moreover, we highlight some lessons learned that might
serve as a guidance for future applications.

1 Introduction

The Android operating system as developed by Google has reached universal
prominence as the most popular OS for mobile devices. More recently Android
is advancing into adjacent domains including automotive, medical devices and
home automation systems.

Given Android’s ubiquitous presence the operating system’s overall security
is deemed to be paramount. However, while the design of Android has been
relatively stable over time, firmware and drivers are constantly changing leading
to different software versions on almost a monthly schedule. Given the size of the
Android OS with millions of lines of code spread over 10, 000 files, managing the
security implications manually is a arduous task. As such, many organizations
either trust new updates and hope to detect any anomalies during integration
or system testing, or they rely on complimentary automated tools such a static
program analysis [1] to achieve a minimum level of assurance.

This work is a case study of using static program analysis tools for security
checking of the Android kernel. It was developed in conjunction with the static
analysis tools company Red Lizard Software and driven by their customers in
the telecommunication and entertainment devices market. The goal of the case

NICTA is funded by the Australian Government through the Department of Commu-
nications and the Australian Research Council through the ICT Centre of Excellence
Program.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 589–592, 2015.
DOI: 10.1007/978-3-319-19249-9_39

590 T. Liu and R. Huuck

study was to evaluate the overall lifecycle effort and benefits of using static
analysis tools for security checking. This includes: setup and integration effort,
run time and analysis bottlenecks, ease of evaluating the results and quality of
the results. Moreover, the case study involved Red Lizard Software’s own tool
Goanna [2] as well as the popular open source tool Cppcheck1 .

In the following we give an introduction to the tools and environments used,
explain the results we obtained and give a summary of our observations that
might be helpful for others in similar circumstances.

2 Experimental Setup and Evaluation

Tools. We choose two static analysis tools for our case study representing two
different classes of software checking tools: Cppcheck, a free GPL licensed tool
for checking generic problems in C/C++ code including memory leaks, out of
bounds arrays, and null pointer dereferences. Cppcheck aims at having zero
false positives. The second tool, Goanna, is a commercial static analysis tool
developed around software verification techniques such as model checking, SMT
solving and abstract interpretation. Its aims at deep analysis that is scalable to
large code bases.

The purpose of this evaluation is not to decide on a better tool, but to ex-
plore differences and strengths of each tool. Moreover, the tools where chosen
based on their availability to the authors and the good reputation of Cppcheck.
While Goanna is representing the commercial tool space, we would not expect
fundamental differences from similar commercial tools. Further comparisons can
be found in the NIST SAMATE program [3] and earlier evaluations [4].

Android Kernel. As a test bed the Android Goldfish 3.4 kernel was chosen.
This is a generic kernel for software emulation of various hardware platforms of
interest to Red Lizard Sofwtare’s customers. The Goldfish kernel contains the
essence of the recent Android releases KitKat and Lollipop and has around 740k
lines of code.

Configuration. The analysis was run using Goanna 3.4.1 and Cppcheck 1.68. We
focused on the security relevant checks for each tool including buffer overflows,
null pointer issues or tainted data. This resulted in 27 specific categories for
Cppcheck and 46 for Goanna. All experiments were run on a quadcore Dell
PowerEdge 1950 2.66GHz with 16 GB of RAM running Ubuntu 12.10.

2.1 Evaluation Results

Installation and Configuration. Both Cppcheck and Goanna have been straight
forward to install. Cppcheck comes as a drop-in binary and Goanna has an
installer file. Configuring Cppcheck required running all check with subsequent
filtering results as there is no method to select individual checks. For Goanna
the defaults of the security package were selected.

1 http://cppcheck.sourceforge.net/

http://cppcheck.sourceforge.net/

Case Study: Static Security Analysis of the Android Goldfish Kernel 591

Running the Analysis. Goanna parses the source code and does handle includes,
preprocessing and macro expansion. It gets the necessary information after mon-
itoring the native build process for relevant compiler and linker calls. In contrast,
Cppcheck does not fully parse the code, but scans the actual text of the source
files. As a result it be run on any file or from a directory. We used the Goanna
facility to determine the relevant set of files in the build and passed those files to
Cppcheck. The overall run time for Cppcheck on the Android Goldfish 3.4 ker-
nel was just under 10 minutes, while the same run took 75 minutes for Goanna.
Compilation itself is slightly over 8 minutes.

Quantitative Results. Goanna reported 279 potential issues from 14 categories
out of the total 46 security checks2. Cppcheck reported 37 potential issues in
3 categories (Null Pointer warnings and errors, and Memory Leaks) for the
same code base. Additionally we made use of Cppchecks ability to run over any
file even if not in the build to include all driver files for all platforms in a second
experiment. For the latter Cppcheck reported 755 issues in 10 categories.

We manually evaluated how many of the reported issues are false positives,
i.e., where the tool spuriously warns, to determine the actual true positive (TP)
rate. We used a random sample size of 20 for each category of each tool. Only
4 categories in of each tool had more than 20 warnings. Only 1 category more
than 100 warning and was as such under-sampled. We did not have any means
to determine the false negative rate, i.e., the number of issues that are in the
code and are missed.

Firstly, for the 37 issues Cppcheck detected in the actual build the Null

Pointer errors had a 67% TP rate, while the weaker Null Pointer warnings
had a 21% TP rate. The Memory Leak issues were all false positives. Only about
one third of all reported issues were true positives. However, for the second
experiment scanning all remaining kernel files Cppcheck had a much better TP
rate of 76% when averaging out over the reported 10 categories. Only only 2
categories had less than 50% TP rates and 6 categories at TP rates of 90% or
higher.

Secondly, for Goanna’s 279 reported issues in 14 categories the lowest TP rate
was of any category was 67% (two of three bugs were correct) and 11 categories
had a TP rate of 90% or higher. Averaged out over the 14 categories Goanna’s
TP rate was 94%. We were advised by Red Lizard Software, however, that this
TP rate was better than what usually should be expected from such a tool.

Thirdly, we examined the overlap between Goanna’s 279 reported issues and
Cppcheck’s 37. Only a combined 23 issues were in files, where both tools reported
a warning. For those files Cppcheck reported 11 warnings with 9 false positives
and Goanna 12 warnings with 3 false positives. No two of the same false positives
were reported by both tools, but all true positives of Cppcheck in the overlap were
also correctly reported by Goanna. Outside the files where both tools reported
and issue there were 8 TPs by Cppcheck not reported by Goanna, the remaining
Goanna TPs were not reported by Cppcheck.

2 all raw data available at http://www.cse.unsw.edu.au/∼rhuuck/fm15

http://www.cse.unsw.edu.au/~rhuuck/fm15

592 T. Liu and R. Huuck

Qualitative Results. Generally, the cause of bugs differed a lot between the two
tools. Cppcheck’s bugs tend to be patterns such as a constant 0 that is used later
as a divisor or an explicit Null pointer being referenced close by. The Goanna
bugs tended to be much deeper involving computation of data or passing of
values between functions. At the same time it took the evaluator much longer
to determine the truth of a Cppcheck warning as the tool outputs a line number
with a rather simple message. Goanna additionally provided a compact trace
through the program with explanatory text, making an assessment easier. One
of the easier to rectify drawbacks of Cppcheck was the absence of a reference
manual, leading to some steep learning curve and a degree of guesswork for
causes of claimed errors.

3 Lessons

There are a few key observation from our case study: Both tools where simple to
setup, had reasonable sets of security checks and had no problems scaling to the
Android kernel as such. Also, both tools had medium to very low rates of false
positives rates making them applicable in practice. We suspect that the Android
code’s maturity makes it easier to understand for tools as well.

Major differences are: The Cppcheck issues were much shallower than the
Goanna issues, although still relevant. A cause is Cppcheck’s absence of full
parsing and reliance on pattern matching instead. This has the advantage though
of easy applicability and the ability to scan all files even outside the build. In
contrast, Goanna analyzes what is being build, which has its pros and cons.

As a summary, we believe that Cppcheck is a useful first line of defense with
very low run time overhead. Its key role is quick scanning of code under devel-
opment. Goanna or similar commercial tools appear much more comprehensive
in its analysis suitable for higher levels of assurance, while also requiring slightly
more run time.

While we were able to asses the check results for both tools, we do not know
the implications of the bugs we found. Currently, we are in the process of feeding
our findings back to both the Android developers as well as Red Lizard Software
and its customers.

References

1. Nielson, F., Nielson, H.R., Hankin, C.L.: Principles of Program Analysis. Springer
(1999)

2. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking
software at compile time. In: Proceedings of the First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, TASE 2007, pp. 45–56. IEEE
Computer Society, Washington, DC (2007)

3. Okun, V., Delaitre, A., Black, P.E.: Report on the Third Static Analysis Tool
Exposition, SATE 2010, Technical report, NIST, Special Report 500-283 (2010)

4. Emanuelsson, P., Nilsson, U.: A comparative study of industrial static analysis
tools. Electron. Notes Theor. Comput. Sci. 217, 5–21 (2008)

Practices for Formal Models as Documents:

Evolution of VDM Application
to “Mobile FeliCa” IC Chip Firmware

Taro Kurita1, Fuyuki Ishikawa2(�), and Keijiro Araki3

1 Sony Corporation, Tokyo, Japan
taro.kurita@jp.sony.com

2 National Institute of Informatics, Tokyo, Japan
f-ishikawa@nii.ac.jp

3 Kyushu University, Fukuoka, Japan
araki@csce.kyushu-u.ac.jp

Abstract. This paper reports on the application of VDM to the devel-
opment of the third generation of firmware for the Mobile FeliCa IC chip.
The practices of VDM were improved by incorporating the experience
gained in the previous development. The primary focus was maintain-
ability and understandability, as the VDM specification was used as the
sole reference document for various development activities. The result-
ing improvements eliminated deficiencies caused by misunderstandings,
while keeping costs similar to before.

Keywords: Formal Specification · VDM · Industrial Application

1 Introduction

“FeliCa” is a contactless IC card technology developed by the Sony Corporation
and is widely used in Japan. In particular, Mobile FeliCa IC chips are embedded
in over 250 million mobile phones. Their applications, including electronic money,
train tickets, identifications, door keys, and so on, form an essential foundation
for business and daily activities in Japan. These chips interact with other com-
ponents, including server-side applications and reader/writer equipment. Their
core functions consist of a secure file system and communication protocols, as
well as firewall functions to enable multiple services on the chip.

Given the significance of the system, it was decided that VDM, a formal
specification method [2], be applied to the development of the second generation
of its firmware [3, 4]. The objective was to resolve problems in the early phases,
such as vagueness in the specification. A process was established that uses the
VDM specification as the key artifact, through interactions among three teams
performing specification, design implementation, and testing tasks. The benefits
were primarily in terms of when and what deficiencies were detected.

The engineers involved in this first application of VDM did not have any
knowledge or experience in the practices of formal specification. Not only was the

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 593–596, 2015.
DOI: 10.1007/978-3-319-19249-9_40

594 T. Kurita et al.

language new to them (with a syntax based on sets and predicates), there were
issues about how to determine the right abstraction level, how to use declarative
or functional styles of description effectively, how to position natural language
as well as formal language, how to define specification conventions, and so on.

This paper reports on the evolution of the VDM application in the following
third generation of Mobile FeliCa IC chip firmware. The key point is the improve-
ment demonstrated by the engineers as to maintainability and understandability
in the use of the VDM model as the main reference document.

2 Development of the Second-Generation

This section first provides an overview of the development of the second gener-
ation of Mobile FeliCa IC chip firmware. VDM was used for the specification of
the external interface functions to interact with the server and the reader/writer
equipment. The VDM++ language was used with VDMTools [1] for Object-
Oriented modeling and validation by specification animation, i.e., testing.

The specification was constructed by the specification team and passed to
the design-implementation team for the firmware as well as the testing team.
Thus, the VDM model was used not only for validation of the specification, but
also directly for a number of activities, including communications among the
teams. Nevertheless, a natural-language (Japanese) specification was also used
as a “familiar” description especially for the external partners.

Testing was the primary means of quality assurance. In addition to the unit
testing of the VDM specification, intensive black-box tests (over 7,000) were car-
ried out. These tests were shared for the VDM specification and for the different
implementations. Over 100 million random tests on the implementations were
also conducted using scripts constructed from the VDM specification.

As a result of the VDM application, deficiencies were discovered in the early
stages, e.g., when constructing and testing the formal specification. Though,
there were deficiencies that were caused by issues relevant to the specification
and detected in the implementation. Deficiencies caused by the description (miss-
ing, erroneous or unclear statements) were amounted to only 2% of the total
number of deficiencies detected in the implementation. On the other hand, defi-
ciencies caused by the comprehension (oversights or insufficient understanding)
were amounted to 16.3%. The primary causes of the latter type of deficiencies
were about maintainability and understandability and found to be as follows.

1. The VDM model was a mixture of “specification” descriptions and “mock-
up” descriptions to make the model executable for validation. The engineers
needed to understand and follow the former precisely, but not the latter.
The mixture was confusing and led to misunderstandings.

2. The comments allowed to “imagine” the meanings, but possibly imprecisely.
It was also easy to forget to update the comments when the VDM specifica-
tion was updated. ASCII names were used for identifiers, and they followed
popular naming conventions for programming languages. However, ASCII

Practices for Formal Models as Documents: Evolution of VDM Application 595

names are not natural for the non-ASCII Japanese language, and this re-
sulted in many comments that give translation or link to corresponding
names in the Japanese version.

3. The same issue existed at the document level. Referring to the Japanese
version of the specification led to misunderstandings. In addition, the main-
tenance of both the VDM and Japanese versions was costly and error-prone.

3 Evolution in Development of the Third Generation

The development of the third generation started in 2007 and involved many
features, such as enhancement of the encryption mechanisms and adaptation of
the global standard of Near Field Communication (NFC). The implementation
code was three times the LOC of the second-generation.

Given the three issues described in Section 2, the usage of the VDM specifi-
cation was changed in the third generation of development.

Regarding issue 1, the specification convention was defined to separate the
specification part and mock-up part in the VDM model. VDM languages allow
for a mixture of declarative description using pre- and post-conditions, and im-
perative behavior description. The specification part was completely described in
a declarative way. As the behavior was not the specification, or decisions for the
implementations, it was separated into subclasses for the executable mock-up.

For example, it is typical to use set variables to denote data held by the
target system. Then the behavior of operations is defined by set operators such
as union and difference. Such mock-up part of the model was put in subclasses,
while the specification part only gives pre- and post-conditions by using not the
set variables but auxiliary functions that represent addition, deletion, and so on.

Regarding issue 2, the Japanese language was used for the identifiers in the
VDM model. This eliminated the necessity of duplicate translation comments.
The ratio of comments in the VDM specification was 7%, and this compares with
27% in the second generation. This does not mean exclusion of natural language:
Japanese documents could be also used, but warnings were given about possible
imprecision and that they should not be used as references.

Regarding issue 3, the VDM specification was the sole specification document
that worked as the reference for various development activities. External part-
ners, e.g., the development team of the server-side applications, also read the
VDM specification.

Note that the practices for issues 1 and 2 included new specification con-
ventions different from coding conventions. For example, the naming rules in
Japanese were completely new, as non-ASCII Japanese names are not usually
used in programming languages. The auxiliary functions support a new kind of
specification pattern, which allows for specifications without defining data types
or structures. This is quite different from the abstract classes in programming
languages because we still need to mention data additions, deletions, etc., in
order to define the pre- and post-conditions.

Table 1 shows comparison of the second and third generations. Increase of the
specification lines was moderate by declarative description, even with the large

596 T. Kurita et al.

Table 1. Comparison of the Second and Third Generations

Generation C Implementation VDM Specification
[LOC] [LOC]

Second 40,876 39,315

Third 126,944 55,400

Generation Deficiencies by Deficiencies by Productivity Debug density
description comprehension [LOC/Man-month] [errors/kLOC]

Second 2% 16.3% 1,000 11

Third 0% 10.9% 1,000 11

increase of the implementation lines1. Deficiencies caused by the description
and the comprehension were both decreased, while the productivity and debug
density were kept to a similar level.

4 Summary

This paper reported on the latest application of VDM to the development of
third-generation firmware for Mobile FeliCa IC chip. Practices for maintain-
ability and understandability were investigated by the practitioners, and this
resulted in improvements to the specification. We believe this unique industrial
experience, a evolution from the first application of formal methods, has pro-
vided us with a lot of insights. The fourth generation of development is now
benefitting from this valuable experience in reported practices.

Acknowledgments. We would like to thank Professor Peter Gorm Larsen of Aarhus
University, Shin Sahara of Hosei University and Hiroshi Sako of Designers’ Den Cor-
poration for their great assistance in the application of VDM.

References

1. VDM information web site. http://vdmtools.jp/en/
2. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs

for Object-oriented Systems. Springer (2005)
3. Kurita, T., Chiba, M., Nakatsugawa, Y.: Application of a formal specification lan-

guage in the development of the “Mobile FeliCa” IC chip firmware for embedding
in mobile phone. In: The 15th International Symposium on Formal Methods (FM
2008). pp. 425–429 (2008)

4. Kurita, T., Nakatsugawa, Y.: The application of VDM to the industrial develop-
ment of firmware for a smart card IC chip. International Journal of Software and
Informatics 3(2-3), pp. 343–355 (2009)

1 LOC excludes comments and blank lines

http://vdmtools.jp/en/

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 597–600, 2015.
DOI: 10.1007/978-3-319-19249-9_41

Formal Virtual Modelling and Data Verification
for Supervision Systems

Thierry Lecomte()

ClearSy, 320 avenue Archimède,
13857 Aix en Provence, France

thierry.lecomte@clearsy.com

Abstract. This paper reports on the use of formal techniques to ensure as far as
possible a safe decommissioning of a plant several decades after it was
designed and built. Combination of supervised learning, formal modelling,
model animation and model checking enabled the recovery of an almost lost
specification and the design of a virtual supervision system that could be
checked against recorded plant data.

Keywords: B Method · Safety critical system · Event-B · Model animation ·
Model checking

1 Introduction

Industry plants that were built in the 60s or 70s (nuclear plants for example) usually
have their design documentation far from current standards, some could be
handwritten or referring to punch-card-based programs. In any case, initial designers
cannot be asked as they are now retired or dead. As such, any modification to existing
installation (decommissioning) is a real engineering challenge and requires cautious
investigation and experiments before the deployment on the real plant, especially
when it fulfills a safety critical mission.

Recovering the original specification of the plant, as a virtual model that could be
checked against recorded data during the lifetime of the plant, would constitute a
good starting point prior to any functional modification of such a plant.
Formal methods [1] enable to obtain precise specification document, as all
ambiguities are removed due to the semantics of the formal language used for the
modelling [4]. Such a model is then likely to be animated [2] (i.e. virtually executed)
through a number of scenarios elaborated from real life. The construction of scenarios
is tough work as the recorded data are interleaved and not tagged: some pattern
recognition is required to sort out the data.

The objectives are to recover the system specification, to design a supervision system
that can bootstrap the existing one and to ensure forthcoming functional evolution.

2 The Supervision System

The supervision system (Fig 1) described in this article does not control directly the
plant. Instead it is in charge of surveying actions issued by other systems, displaying

598 T. Lecomte

information (messages) when an action has been completed successfully or not. Its
mission is to assist human operators to make sure that the different actions carried out
complete successfully or to provide a negative feedback. For example, when a pump
is switched on or when a valve is open, it may result in the increase of a level in a
tank, measured by a sensor after some time. When the threshold level is reached, the
system may display a successful message. In case the level is not reached after a
certain period, an error message may be displayed. This survey is performed through
a number of programs, each program being in charge of one particular sequence of
actions.

Fig. 1. Architecture of the industrial plant: the supervision system provides feedback for the
human operators

These programs (Fig 2) are directly triggered by control & command systems that
require their execution to be followed-up. Basically these programs set up predicate
listeners and watchdogs, start other programs and then go to sleep. Their execution is
resumed when, following the update of a variable, a predicate state changes to TRUE,
or when a timer elapses. Execution, sleep and resume actions are managed through an
execution queue: the program on top of the queue is the only program executed, the
others are waiting to be executed or are sleeping. A program entering a sleep period is
moved at the end of the queue. A program resuming its execution is put on top of the
execution queue. Executed program is also able to generate messages (on various
displays, on printers, etc.).

In practice, this supervision system is made up of several execution queues: one
with few programs able to be executed and hence able to take into account events
(inputs) more quickly, others with potentially more programs in the queue (then with
slower response time). There are some constraints like the impossibility for a program
to be executed at the same time on different execution queues. Such system has to
deal with a lot of asynchronous events ranging from milliseconds to half-an-hour
periods, with an avalanche effect leading to more than 10,000 events to process, when
the plant meets a functional transition that affects most sensors.

3 Formal Techniques in Action

Several formal techniques are used in combination in order to address all engineering
problems that has appeared during the ongoing project, namely: recovering the

 Formal Virtual Modelling and Data Verification for Supervision Systems 599

Fig. 2. Architecture of the interpreter in charge of executing sequences of instructions (i.e.
programs). The real interpreter is made of several execution queues with different priorities. A
sequence can only be executed in a single execution queue.

specification of the supervision system and checking it against real data to ensure a
high level of confidence.

3.1 Recovering the System Level Specification

The specification was entirely modelled with Event-B and animated with the ProB
model-checker. The plan was first to mimic the behavior briefly described in various
technical documents available: events were added first, then some scenarios were
designed by-hand and replayed. Preconditions for events were completed to ensure
that only regular scenarios to occur. Invariants (other than typing) were then added to
add some guarantees to the model. Finally the model was proved against these
invariant properties. This modelling was iterated several times, by including larger
parts of the specification. If the core specification was quite easy to complete, the
introduction of exploitation modes was trickier; for example the fact that the
supervision system cannot be shut down at any time. So the upload of new programs
has to be done on-the-fly and some new properties emerged (never upload a new
version of a program that is being executed) and the model had to be slightly
refactored to integrate these new features.

3.2 Checking Against Decades of Recorded Data

The formal model obtained previously has been checked against our understanding of
the natural language specification documents. It constitutes a good starting point but
we had no idea how close our model was from the real system. The documents may
not correspond to the system being executed – remember that documents are hand-
written and some of these might have not been updated. Hopefully decades of
recorded data are available even if they are stored on very old medium. Recorded data
include timed inputs (sensors), commands (actuators) and messages identifiers
emitted by the supervision system. The objective of this phase was to extract real

600 T. Lecomte

scenarios in order to check if they can be replayed with our formal model of the
supervision system. The major issue was to identify programs being executed, as a
huge number of programs (up to 10,000) can be executed “simultaneously” in a short
period of time. Allocation of data to scenarios was completed with simulated-
annealing techniques: several weighting methods were used to distinguish interleaved
data and 100% was managed for the latest recorded years. Unfortunately we did not
managed to apply this technique to the full set of recorded data as it appeared that
programs were modified several times. As only the latest version of these is currently
available, the simulated-annealing process cannot be applied if the patterns to search
for are not completely known.

4 Experience Gained and Conclusion

We have been able to reverse-engineer the specification of the supervision system
with a help of formal modelling and animation in Event-B, by using Atelier B and
ProB tools, which enabled us to make a number of “wise guesses” and to slightly
improve the correctness of the model. This specification has then been checked with
success against some scenarios extracted from real recorded data. Indeed the behavior
exhibited by our virtual animation seems to comply with the existing supervision
plant. The next step would be to connect the software model to a virtual model of the
plant, and to obtain a co-simulation that would allow to check timing behavior
especially when a large number of events has to be taken into account. Forthcoming
investigations will be linked to the H2020 Into-CPS project. Another issue is the
coupling of the interpreter with its virtual model to check at runtime discrepancies
between the real plant and its model. Formal data validation [3][5] will also be used
for checking parameters and programs correctness.

This way of reverse-engineering old systems seems promising, as formal
techniques and tools are now mature enough to be applied to real industry-strength
systems.

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press
(2005)

2. Hallerstede, S., Leuschel, M., Plagge, D.: Validation of Formal Models by Refinement
Animation, Science of Computer Programming (March 2013)

3. Lecomte, T., Burdy, L., Leuschel, M.: Formally Checking Large Data Sets in the
Railways. In: Proceedings of DS-Event-B 2012: Workshop on the Experience of and
Advances in Developing Dependable Systems in Event-B, in Conjunction with ICFEM
2012, Kyoto, Japan, November 13 (2012)

4. Lecomte, T.: Safe and Reliable Metro Platform Screen Doors Control/Command Systems.
In: Cuellar, J., Sere, K. (eds.) FM 2008. LNCS, vol. 5014, pp. 430–434. Springer,
Heidelberg (2008)

5. Leuschel, M., Falampin, J., Fritz, F., Plagge, D.: Automated Property Verification for
Large Scale B Models with ProB. Formal Aspects of Computing, 683–709 (November
2011)

© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 601–604, 2015.
DOI: 10.1007/978-3-319-19249-9_42

Using Simulink Design Verifier for Automatic
Generation of Requirements-Based Tests

Bruno Miranda, Henrique Masini, and Rodrigo Reis()

EMBRAER S.A, Belo Horizonte, Brazil
{bruno.miranda,henrique.masini,rodrigo.pimenta}@embraer.com.br

Abstract. In general, creating requirements-based tests that comply with stan-
dards is a time-consuming activity, especially in safety critical systems, where
standards can be very strict. In this paper we present a methodology for generat-
ing requirements-based tests using Simulink Design Verifier, by representing
requirements as models. With this methodology we estimate a considerable re-
duction of effort for creating requirements based tests that satisfy the DO-178C
standard.

Keywords: Model-based testing · Software verification · Requirements-based
testing · RBT

1 Introduction

Embedded systems are becoming increasingly common in the aerospace industry,
including in safety critical systems, such as avionics and flight controls. Therefore, a
robust verification and validation process is necessary in order to minimize the risks.

The document DO-178C Software Considerations in Airborne Systems and
Equipment Certification [1] has been accepted by the FAA and many other aviation
authorities as a mean of compliance with certification requirements of airborne com-
puter software. This document enumerates a set of objectives for software life cycle
processes. The number of objectives that the software developers need to satisfy va-
ries according to the level of criticality assigned to the software during the evaluation
of the effects of a failure condition in the system.

Some of the activities to comply with the verification objectives that are listed in
tables A-6 and A-7 of the DO-178C consists in creating and executing requirements-
based tests (RBT), as specified in section 6.4 [1]. Such requirements can be
represented with the use of models, which has the advantage of being easier to simu-
late and manipulate with scripts.

In addition, a test standard can be created in order to increase the rigorousness that
the tests will achieve. A test standard can define how to test commonly used blocks,
the type of coverage, and provide definitions. For example, a test standard can define
that every instance of a Saturation block must be tested as follows:

1. The input shall be greater than the upper limit;
2. The input shall be less than the lower limit;
3. The input shall be between the lower and upper limit.

602 B. Miranda et al.

Considering that the requirement is represented by a Simulink model, it should be
simple to create a RBT for an instance of a Saturation block. However, in practice, the
Saturation block will almost never represent the full functionality and it will be con-
nected to other blocks with different degrees of complexity. Figure 1 illustrates such
situation. In this example, calculation inside “Actuator” subsystem can be very com-
plex.

Therefore, in order to comply with the test standard, the verification engineer must
manually calculate the inputs to the Saturation block that will satisfy the three criteria
specified in the test standard. Nonetheless, this method proves to be very time-
consuming and not scalable. For example, if a given block is changed and the Satura-
tion block depends on its outputs, not only the test for the block that has changed will
need to be redone, but also the test for the Saturation block should change since its
input signals will be affected, as well as every other block that depends on the first
one.

In this paper, we describe a methodology of automatic RBT generation based on
the Simulink Design Verifier.

Fig. 1. Tested block example

2 Methodology

The Simulink Design Verifier [2] is a toolbox created by Mathworks and it uses for-
mal methods in order to detect design error in Simulink models. The main functionali-
ties of this toolbox are finding divisions by zero, dead code, and other common design
errors, prove properties, and test generation.

In this paper, we will only discuss the test generation functionality. In order to
create tests, the Design Verifier offers a test objective block, which is graphically
represented by the letter ‘O’. The Design Verifier will try to create a test that makes
the expression connected to this block equal to true in one of the execution cycles.
Each test objective block corresponds to a test criterion in the test standard.

The toolbox also offers a test condition block, which is graphically represented by
the letter ‘C’. The Design Verifier will try to create a test that makes the expression
connected to this block equal to true in every execution cycle. Figure 2 illustrates how
to generate two tests for the Saturation block. The test objective block connected to
R1 will result in a test in which the input ‘I’ is greater the upper limit ‘UL’; the test
objective block connected to R2 will result in a test in which the input ‘I’ is less than
the lower limit ‘LL’. These two tests will always obey the condition in which ‘UL’ is
greater than ‘LL’.

Using Simulink Design Verifier for Automatic Generation of Requirements-Based Tests 603

Fig. 2. Using Simulink Design Verifier for test generation

The test standard is also useful in automating the generation of tests using the Si-
mulink Design Verifier. The fact that each block has its established way of testing,
allows the creation of a verification subsystem with the implementation of each test
criteria for each block.

A script automatically navigates through the model, and each time it finds a specif-
ic block, its corresponding verification subsystem is attached to the tested block. The
script also captures the block and criteria identification and writes them in the test
case, resulting in an easily traceable RBT. By tracing the criteria and blocks to the
tests, the test review, which is one of the objectives of the DO-178C, is less laborious.
Figure 3 shows the results of automatically connecting a verification subsystem to the
tested block.

The Simulink Design Verifier, however, has limitations that make it impossible to
achieve some criteria. One of the main limitation occurs when using non-linear arith-
metic, such as multiplication and division with unbounded inputs. We addressed this
problem by using Condition blocks, avoiding non-linear calculations. Another prob-
lem is creating long tests. For example, a Filter block should be tested by applying a
step signal in its input. If the filter has a low response frequency it will take a very
long time to generate a test that will correctly test the block. We tackled this issue by
processing the resulting test and increasing its duration. During the execution, the
scripts simplify the model in order to reduce its complexity so that the processing
time is decreased. The simplification starts from a given signal to be tested for each
requirement and navigates through the model until all the external outputs are
reached. The blocks that do not belong to the simplification path are then temporarily
removed from the model.

In summary, our test generation application automates the following methodology,
for each output or internal signal:

• Simplify the model, removing all calculation that do not affect that signal;
• Deal with non-linear algebra, imposing constraints or approximations;
• Identify instances of blocks previously defined in test standard and connect

modeled test objectives (as showed in Figure 3);
• Extend input cycles for objectives involving temporal logic;
• Consolidate generated tests information in a report, including tests descrip-

tion and traceability.

604 B. Miranda et al.

Fig. 3. Automatic connection of the verification subsystem to the tested block

3 Results

The methodology was implemented in a prototype and it was used to generate tests
for 90 Simulink models that varied from very simple to very complex ones, with
thousands of blocks. Therefore, we could extend Simulink Design Verifier functional-
ity and generate custom types of tests automatically. We also addressed three limita-
tions of the Simulink Design Verifier: creating tests for large models, non-linear
calculations and long tests. On average, more than half of the tests were successfully
generated taking less than a week to generate them. The prototype worked completely
automatically, therefore reducing the required effort for this task.

4 Conclusions

We presented a methodology for generating RBT using Simulink Design Verifier,
complying with applicable standards, which proved to be satisfactory. However, the
methodology does not exclude the need to review the tests in order to verify if it com-
plies with the standards and DO-178C.
 In general, during software development the requirements change frequently, and a
change in one requirement can impact on tests of other requirements. Therefore, the
use of this methodology would also reduce the rework needed. However, it is not in
the scope of this paper to measure how frequent the requirements change during a
project and the impact of such changes in the tests creation using the methodology
proposed.

References

1. RTCA/DO-178C.Software Considerations in Airborne Systems and Equipment Certification
(2012)

2. MATHWORKS. Simulink Design VerifierTM User Guide (2010)

Formalizing the Concept Phase of Product

Development

Mathijs Schuts1(�) and Jozef Hooman2,3

1 Philips Healthcare, Best, The Netherlands
mathijs.schuts@philips.com

2 Embedded Systems Innovation by TNO, Eindhoven, The Netherlands
3 Radboud University, Nijmegen, The Netherlands

Abstract. We discuss the use of formal techniques to improve the con-
cept phase of product realisation. As an industrial application, a new
concept of interventional X-ray systems has been formalized, using model
checking techniques and the simulation of formal models.

1 Introduction

Traditionally, during the concept phase an informal document is being created
with a high level description of the concept. This document consists of a de-
composition of the product to be developed, the different hardware and software
components it consists of, the responsibilities per component, and the interaction
between the components. From the concept description, different development
groups concurrently start developing the component they are responsible for.

A frequently occurring problem in industry is that the integration and vali-
dation phase takes a large amount of time and is rather uncontrollable because
many problems are detected in this phase. An important reason for these prob-
lems is the informal nature of the concept phase. This leads to ambiguities,
inconsistencies, and omissions. Typically, a large part of system behaviour is im-
plicitly defined during the implementation phase. If multiple development groups
work in parallel in realizing the concept, the integration phase can take a lot of
time because the independently developed components do not work together
seamlessly. Moreover, during the integration phase sometimes issues are found
in which hardware is involved. Then it is usually too late to change the hardware
and a workaround in software has to be found and implemented.

To prevent these types of problems, we investigate the use of formal modelling
techniques in the concepts phase, because all consecutive phases can benefit
from an improved concept description. We report about our experiences with
model checking and simulation of formal models in a real development project
concerning the start-up and shut-down of interventional X-ray systems of Philips.

2 Industrial Application

The interventional X-ray systems of Philips are intended for minimally invasive
treatment of mainly cardiac and vascular diseases. For a new product release,

This research was supported by the Dutch national program COMMIT.

c© Springer International Publishing Switzerland 2015
N. Bjørner and F. de Boer (Eds.): FM 2015, LNCS 9109, pp. 605–608, 2015.
DOI: 10.1007/978-3-319-19249-9_43

606 M. Schuts and J. Hooman

Fig. 1. System overview

we had to create a new concept for starting up and shutting down the system.
This new start-up/shut-down (SU/SD) behaviour includes power failure scenar-
ios where graceful degradation mechanisms should ensure that crucial function-
ality remains operational.

An interventional X-ray system contains a number of IT devices such as com-
puters and touch screen modules. All IT devices can communicate with each
other via an internal Ethernet control network. There is a central SU/SD con-
troller which coordinates SU/SD scenarios. A user of the system can initiate a
SU/SD scenario by pressing a button on the User Interface (UI). Another sce-
nario can be initiated by the Uninterruptable Power Supply (UPS), for instance,
when mains power source fails or when mains power recovers.

The system is partitioned into two segments: A and B1. This partitioning is
mainly used in the case of a power failure. When all segments are powered and
the mains power is lost, the UPS takes over. Once this happens, the A segment
is shut down in a controlled way, leaving the B segment powered by the battery
of the UPS. If the battery energy level of the UPS becomes critical, also the B
segment is shut down in a controlled way.

The new SU/SD concept uses the Intelligent Platform Management Interface
(IPMI), a standard interface to manage and monitor IT devices in a network.
The IT devices in our system are either IPMI enabled or IPMI disabled. Com-
bined with the two types of segments, this leads to four types of IT devices, as
depicted in Figure 1. This figure also shows that there are several communication
mechanisms; the internal Ethernet network, power lines for turning the power
on and off, and control lines to connect the controller to the UI and the UPS.

3 Formal Techniques Applied

3.1 Model Checking Using mCRL2

We made an abstract model of the SU/SD concept using the mCRL2 model
checker2. Making the model was very useful to clarify the main concepts and

1 For reasons of confidentiality, some aspects have been renamed
2 www.mcrl2.org

www.mcrl2.org

Formalizing the Concept Phase of Product Development 607

remove ambiguities. To allow model checking, this model does not include IPMI
and the segments. Also timing aspects and error scenarios are ignored. Neverthe-
less, model checking such a model (78,088,550 states and 122,354,296 transitions)
easily takes hours. The full concept is far more complex because of the many
IT devices that all exhibit different behaviour and might fail to start-up or shut
down. Moreover, these components are loosely coupled using asynchronous com-
munication mechanisms, leading to a large number of message queues. Hence,
we did not see a possibility to check the full model.

3.2 Simulation of POOSL Models

As an alternative to increase the confidence in the concept, we used simula-
tion using formal models expressed in the Parallel Object Oriented Specification
Language (POOSL) [3]. POOSL is a modelling language for systems that in-
clude both software and digital hardware. It is an object-oriented language with
concurrent parallel processes. Processes communicate by synchronous message
passing along ports, similar to CS and CCS. Progress of time can be represented
and also stochastic distribution functions are supported.

The formal semantics of POOSL has been defined in [4] by means of a proba-
bilistic structural operational semantics for the process layer and a probabilistic
denotational semantics for the data layer. This semantics has been implemented
in a high-speed simulation engine called Rotalumis. Recently, a modern Eclipse
IDE has been developed on top of an improved Rotalumis simulation engine.
The Eclipse IDE is free available3 and supports advanced textual editing with
early validation and extensive model debugging possibilities.

Application of POOSL

The aim was to model the Control & Devices part of Figure 1 in POOSL. Besides
the SU/SD Controller and the Power Distribution, the model should contain all
four types of IT devices, i.e., all combinations of segments (A and B) and IPMI
support. Moreover, to capture as much as possible of the timing and ordering
behaviour, we decided to include two instances of each type.

To be able to discuss the main concepts with stakeholders, we connect the
POOSL model by means of a socket to a simulation environment of the Control
& Devices part. The simulator allows sending commands from the User Interface
and power components to the model and displaying information received from
the model. Additionally, one can observe the status of IT devices and even
influence the behaviour of these devices, e.g., to validate scenarios in which one
or more IT devices do not start-up or shut down properly.

The simulator has been used to align the behaviour with stakeholders and to
get confidence in the correctness of the behaviour. To increase the confidence
without the need of many manual mouse clicks, we created a separate test en-
vironment in POOSL. It contains stubs which randomly decide if a device fails

3 poosl.esi.nl

poosl.esi.nl

608 M. Schuts and J. Hooman

to start-up or shut-down. Moreover, observers are added to check conformance
to component interfaces. The test environment leads to a deadlock when the
SU/SD controller or the IT devices do not behave as intended. Already dur-
ing the first simulation run we experienced such a deadlock. The cause of the
problem was easily found using the debug possibilities of the new POOSL IDE.

4 Concluding Remarks

Our experiences with the use of model-checking and formal simulation are sim-
ilar to the observations of [1] on the application of formal methods early in
the development process. They propose a rapid prototyping approach, where
prototypes are tested against high level objectives. The difficulty to use formal
methods early in the development process, when there are many uncertainties
and information changes rapidly, is also observed in [2]. They investigated the
use of formal simulations based on rewriting logic.

In our case, we successfully used a formal system description in POOSL in
combination with a graphical user interface to align stakeholders and get confi-
dence in the behaviour of the system. To increase the confidence in the concept,
we created an automated test environment for the system with stubs that exhibit
random behaviour and random timing.

While modelling, we found several issues that were not foreseen in the draft
concept. We had to address issues that would otherwise have been postponed to
the implementation phase and which might easily lead to integration problems.
We observed that the definition of a formal executable model of the SU/SD
system required a number of design choices.

In addition, the model triggered many discussions about the combined be-
haviour of the hardware and software involved in start-up and shut-down. This
resulted in a clear description of responsibilities in the final concept. Also the
exceptional system behaviour when errors occur has been elaborated much more
compared to the traditional approach. Note that the modelling approach re-
quired a relatively small investment. The main POOSL model and the simulator
were made in 40 hours by the first author, starting with very limited POOSL
experience; the tester and the stubs required another 10 hours.

References

1. Easterbrook, S.M., Lutz, R.R., Covington, R., Kelly, J., Ampo, Y., Hamilton, D.:
Experiences using lightweight formal methods for requirements modeling. IEEE
Trans. Software Eng. 24(1), 4–14 (1998)

2. Goodloe, A., Gunter, C.A., Stehr, M.-O.: Formal prototyping in early stages of
protocol design. In: WITS 2005, pp. 67–80. ACM (2005)

3. Theelen, B.D., Florescu, O., Geilen, M., Huang, J., van der Putten, P.H.A., Voeten,
J.: Software/Hardware Engineering with the Parallel Object-Oriented Specification
Language. In: Proc. of MEMOCODE 2007, pp. 139–148. IEEE (2007)

4. van Bokhoven, L.J.: Constructive tool design for formal languages; from semantics
to executing models. Phd thesis, Eindhoven Univ. of Tech., The Netherlands (2004)

Author Index

Ábrahám, Erika 435
Ahrendt, Wolfgang 108
Albert, Elvira 3
AlTurki, Musab A. 40
Alzuhaibi, Omar 40
Amato, Gianluca 57
Andronick, June 273
Araki, Keijiro 593
Arenas, Puri 3

Bagheri, Hamid 73
Becker, Bernd 435
Biallas, Sebastian 585
Brat, Guillaume 308
Bringer, Julien 90
Bushnell, David 308

Carle, Georg 195
Chabanne, Hervé 90
Chauhan, Avriti 573
Chavda, Anooj 573
Chimdyalwar, Bharti 573
Chimento, Jesús Mauricio 108
Chin, Wei-Ngan 496
Conchon, Sylvain 126
Correas, Jesús 3
Costea, Andreea 496

Damm, Werner 18
Dang, Thao 213
Darke, Priyanka 573
Davies, Misty 308
Debois, Søren 143
Dehnert, Christian 435
Derrick, John 161, 178
Diekmann, Cornelius 195
Di Maio, Simone Di Nardo 57
Diskin, Zinovy 453
Dong, Jin Song 342
Dongol, Brijesh 161
Dreossi, Tommaso 213
Du, Xiaoning 231
Durand, William 577

Eisentraut, Christian 248
Elkader, Karam Abd 23
Evans, Neil 581

Feng, Yuan 265
Ferguson, Andrew D. 395
Fernandez, Matthew 273
Furia, Carlo A. 414

Genaim, Samir 3
Giannakopoulou, Dimitra 308
Godskesen, Jens Chr. 248
Gómez-Zamalloa, Miguel 3
Gopalakrishnan, Ganesh 532
Grumberg, Orna 23
Gu, Yu-Lei 551

Hahn, Ernst Moritz 265
Hauck-Stattelmann, Stefan 585
Hermanns, Holger 248
Hildebrandt, Thomas 143
Hobor, Aquinas 496
Hooman, Jozef 605
Howar, Falk 308
Hupel, Lars 195
Huuck, Ralf 589

Ishikawa, Fuyuki 593

Jackson, Daniel 73
Jackson, Paul B. 514
Jacobsen, Charles 532
Jansen, Nils 435
Jetley, Raoul 585
Joshi, Saurabh 291

Kahsai, Temesghen 308
Kang, Eunsuk 73
Katoen, Joost-Pieter 435
Klein, Gerwin 273
Kowalewski, Stefan 585
Krishnamurthi, Shriram 395
Kroening, Daniel 291, 325

610 Author Index

Kurita, Taro 593
Kuz, Ihor 273

Lecomte, Thierry 597
Le Métayer, Daniel 90
Lescuyer, Roch 90
Leuschel, Michael 487
Lewis, Matt 325
Li, Li 342
Liu, Jiang 360
Liu, Tao 589
Liu, Yang 231, 342

Maibaum, Tom 453
Malek, Sam 73
Martin-Martin, Enrique 3
Masini, Henrique 601
Mebsout, Alain 126
Meo, Maria Chiara 57
Miranda, Bruno 601

Nakajima, Shin 378
Nelson, Tim 395

Pace, Gordon J. 108
Păsăreanu, Corina S. 23
Piazza, Carla 213
Polikarpova, Nadia 414
Puebla, Germán 3

Quatmann, Tim 435

Rakamarić, Zvonimir 532
Reis, Rodrigo 601
Román-Dı́ez, Guillermo 3

Safilian, Aliakbar 453
Salva, Sébastien 577
Schellhorn, Gerhard 161
Schlich, Bastian 585

Schmitt, Peter H. 470
Schneider, David 487
Schneider, Gerardo 108
Schuts, Mathijs 605
Scozzari, Francesca 57
Sharma, Asankhaya 496
Shoham, Sharon 23
Slaats, Tijs 143
Smith, Graeme 178
Sogokon, Andrew 514
Solovyev, Alexey 532
Song, Lei 248
Sun, Jun 342

Tiu, Alwen 231
Travkin, Oleg 161
Tschannen, Julian 414
Turrini, Andrea 265

Ulbrich, Mattias 470

Vaghani, Sagar 573

Wang, Shengyi 496
Wehrheim, Heike 161
Weissenbacher, Georg 325
Wimmer, Ralf 435
Witt, Tobias 487

Yan, Rongjie 551

Zäıdi, Fatiha 126
Zhan, Naijun 360
Zhang, Guangquan 551
Zhang, Jiang 551
Zhang, Lijun 248, 265
Zhang, Wenhui 551
Zhao, Hengjun 360
Zhu, Xue-Yang 551
Zou, Liang 360

	In Memoriam
	Preface
	Organization
	Contents
	Invited Presentations
	Resource Analysis: From Sequential to Concurrent and Distributed Programs
	1 Introduction
	2 Resource Analysis of Sequential Code
	2.1 Cost Models
	2.2 Upper Bounds
	2.3 Extensions of Sequential Resource Analysis

	3 Resource Analysis of Distributed Concurrent Systems
	3.1 The Language
	3.2 Cost Models
	3.3 Distribution: Cost Centers
	3.4 Concurrency: MHP-based Analysis

	4 New Notions of Cost in Distributed Systems
	4.1 Advanced Cost Models
	4.2 Peak Cost
	4.3 Parallel Cost

	5 Conclusions and Future Research

	AVACS: Automatic Verification and Analysis of Complex Systems Highlights and Lessons Learned

	Main Track
	Automated Circular Assume-Guarantee Reasoning
	1 Introduction
	2 Preliminaries
	3 Circular Assume-Guarantee Reasoning
	4 Automatic Reasoning with CIRC-AG
	5 ApplyAG Algorithm
	6 GENASSMP Algorithm
	7 Correctness, Termination and Minimality
	8 Evaluation and Concluding Remarks

	Towards Formal Verification of Orchestration Computations Using the K Framework
	1 Introduction
	2 Background
	2.1 The K Framework
	2.2 The Orc Calculus

	3 K -Semantics of Orc
	3.1 Syntax Module
	3.2 Semantics Module

	4 Formal Analysis of Orc Orchestrations
	4.1 Simulation
	4.2 Verification

	5 Conclusion and Future Developments

	Narrowing Operators on Template Abstract Domains
	1 Introduction
	2 Narrowing on Intervals of Integers
	2.1 Template Abstract Domains

	3 Narrowing on Reals
	4 Conclusion and Related Work

	Detection of Design Flaws in the Android Permission Protocol Through Bounded Verification
	1 Introduction
	2 Background and Motivation
	3 Android Permission Model
	3.1 Permissions
	3.2 System Behavior

	4 Analysis
	4.1 Custom Permission Vulnerability
	4.2 Other Vulnerabilities Found

	5 Experiments
	5.1 Demonstration of the Attack
	5.2 Prevalence of the Vulnerability

	6 Related Work
	7 Conclusion

	Privacy by Design in Practice: Reasoning about Privacy Properties of Biometric System Architectures
	1 Introduction
	2 General Approach
	3 Biometric Systems Architectures
	4 Protecting the Reference Templates with Encryption
	4.1 Use of an Encrypted Database
	4.2 Encrypted Database with a Hardware Security Module

	5 Enhancing Protection with Homomorphic Encryption
	6 The Match-On-Card Technology
	7 Related Works
	8 Conclusion

	A Specification Language for Static and Runtime Verification of Data and Control Properties
	1 Introduction
	2 The StaRVOOrS Framework
	3 ppDATE: A Specification Language for Data- and Control-oriented Properties
	3.1 Events
	3.2 DATE
	3.3 ppDATE
	3.4 Translation from ppDATE to DATE

	4 Case Study: Mondex
	4.1 ppDATE Property
	4.2 Combined Static and Runtime Verification

	5 Experimentation
	6 Related Work
	7 Conclusions

	Certificates for Parameterized Model Checking
	1 Introduction
	2 Array Based Transition Systems
	3 Proof Evidence in Backward Reachability
	4 A Certification Framework for Cubicle
	5 Simpler and Richer Certificates
	5.1 Invariants Inference
	5.2 Intermediate Lemmas

	6 Related Work
	7 Conclusion

	Safety, Liveness and Run-Time Refinement for Modular Process-Aware Information Systems with Dynamic Sub Processes
	1 Introduction
	2 Dynamic Condition Response (DCR) Processes
	3 DCR* Processes: Local Events and Reproduction
	3.1 Encoding of Minsky Machines

	4 Run-time Adaptations by Composition and Refinement
	5 Conclusion, Related and Future Work

	Verifying Opacity of a Transactional Mutex Lock
	1 Introduction
	2 Software Transactional Memory and Opacity
	2.1 Example: Transactional Mutex Lock
	2.2 Opacity

	3 A Proof Method for Opacity
	3.1 Defining an Atomic Specification of an STM
	3.2 Linearizability and Opacity

	4 Proving Opacity of TML
	4.1 Modelling TML in KIV
	4.2 Step 1: Proving Linearizability with Respect to the Intermediate Specification
	4.3 Step 2: Proving Opacity of Alternating Histories Using Runs

	5 Conclusions

	A Framework for Correctness Criteria on Weak Memory Models
	1 Introduction
	2 A Framework for Consistency Conditions
	2.1 Case Study: seqlock
	2.2 Formal Definitions of Correctness Criteria
	2.3 Sequential Consistency and Quiescent Consistency

	3 The TSO Memory Model
	4 Framework for Weak Memory Models
	4.1 Extending the Definition of Implementation Histories
	4.2 Transforming Implementation Histories
	4.3 Modifying the Partial Order
	4.4 Modifying the History Transformation

	5 Properties of Correctness Criteria
	6 Conclusion

	Semantics-Preserving Simplificationof Real-World Firewall Rule Sets
	1 Introduction
	2 Firewall Models in the Literature and Related Work
	3 Formal Verification with Isabelle
	4 Semantics of iptables
	5 Custom Chain Unfolding
	6 Unknown Primitives
	6.1 Ternary Matching
	6.2 Closures
	6.3 Removing Unknown Matches
	6.4 The RELATED,ESTABLISHED Rule

	7 Normalization
	8 Evaluation
	9 Conclusion

	Parameter Synthesis Through Temporal Logic Specifications
	1 Introduction
	2 Preliminaries and Problem Statement
	2.1 Parametric Dynamical Systems
	2.2 Logic
	2.3 Parameter Synthesis Problem

	3 Parameter Synthesis Algorithm
	4 The Case of Polynomial Systems
	4.1 Parameter Set Representation
	4.2 Parameter Synthesis

	5 Experimental Results
	6 Related Work and Conclusion

	Trace-Length Independent Runtime Monitoring of Quantitative Policies in LTL
	1 Introduction
	2 The Policy Specification Language PTLTLcnt
	3 Trace-length Independent Monitoring for PTLTLcnt
	4 Extension to Multivariate Relations
	5 Case Studies in Android
	6 Implementation and Evaluation
	7 Related Work
	8 Conclusion

	Probabilistic Bisimulation for Realistic Schedulers
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Automata
	2.2 Trace Distribution Equivalence
	2.3 Partial Information and Distributed Schedulers

	3 Weak Bisimilarities for Probabilistic Automata
	3.1 Weak Distribution Bisimulation
	3.2 Late Weak Bisimulation

	4 Properties of Late Distribution Bisimilarity
	5 Conclusion and Future Work

	QPMC: A Model Checker for Quantum Programs and Protocols
	1 Introduction and Motivation
	2 The QMC Model and the Logic QCTL
	3 The Tool QPMC
	4 Conclusion and Future Work

	Automated Verification of RPC Stub Code
	1 Introduction
	2 Background
	2.1 seL4
	2.2 CAmkES
	2.3 Verification Framework

	3 Generating Correct RPC Stubs
	4 Methodology Demonstrated on Example System
	4.1 Component Architecture
	4.2 User and Generated Code
	4.3 Generated Proofs
	4.4 User Instantiation

	5 Discussion
	5.1 Trusting Generated Proofs
	5.2 Assumptions, Limitations and Future Work

	6 Related Work
	7 Conclusions

	Property-Driven Fence Insertion Using Reorder Bounded Model Checking
	1 Introduction
	2 Motivation and Overview
	3 Preliminaries
	4 Property-driven Fence Insertion
	4.1 Overview
	4.2 Fence Insertion Using Trace Enumeration
	4.3 Accelerated Fence Insertion

	5 Reorder-Bounded Exploration
	6 Related Work
	7 Implementation and Experimental Results
	7.1 Experimental Setup
	7.2 Benchmarks
	7.3 Results

	8 Concluding Remarks

	Verifying the Safety of a Flight-Critical System
	1 Introduction
	2 The Transport Class Model
	3 Requirements: Elicitation and Formalization
	3.1 Formalization

	4 Verification of the TCM
	4.1 Handling Simulink Models
	4.2 Safety Verification Results

	5 Lessons Learned
	6 Related Work
	7 Conclusion

	Proving Safety with Trace Automata and Bounded Model Checking
	1 Introduction
	2 Motivation
	3 Notation and Basic Concepts
	4 Diameter Reduction via Acceleration
	5 Checking Safety with Trace Automata
	6 Experimental Evaluation
	7 Related Work
	8 Conclusion

	Verifying Parameterized Timed Security Protocols
	1 Introduction
	2 Running Example
	3 Parameterized Timed Security Protocol Specification
	4 Verification Algorithm
	5 Evaluations
	6 Related Works
	7 Conclusions

	Abstraction of Elementary Hybrid Systems by Variable Transformation
	1 Introduction
	2 Preliminary
	2.1 Elementary Continuous and Hybrid Systems
	2.2 Semantics of Hybrid Systems
	2.3 Abstraction of Hybrid Systems

	3 Polynomial Abstraction of EHSs
	3.1 Polynomialization of Elementary ODEs
	3.2 Abstracting EDSs by PDSs
	3.3 Abstracting EHSs by PHSs

	4 Application in Safety Verification of EHSs
	4.1 Generating Invariants for EHSs
	4.2 More Experiments

	5 Conclusions

	Using Real-Time Maude to Model Check Energy Consumption Behavior
	1 Introduction
	2 Energy Consumption Behavior
	2.1 Power Consumption Automaton
	2.2 PCA : Formal Definitions

	3 Energy Consumption Properties
	3.1 Duration-Bounded Cost Constraints
	3.2 fWLTL : Formal Definitions

	4 Model-Based Analysis of Energy Consumption
	4.1 Model Checking Problem
	4.2 Restrictions

	5 Analysis with Real-Time Maude
	5.1 A Brief Overview of Real-Time Maude
	5.2 Translation to Real-Time Maude
	5.3 An Example

	6 Related Work
	7 Conclusion and Future Work

	Static Differential Program Analysis for Software-Defined Networks
	1 Introduction
	2 Differential Analysis at Work
	3 Theory
	4 Flowlog to Alloy
	5 Soundness and Completeness
	6 Scenario Minimization
	7 Evaluation
	8 Related Work
	9 Conclusion

	A Fully Verified Container Library
	1 Introduction
	2 Illustrative Examples
	2.1 Linked List
	2.2 Hash Table

	3 Verification Approach
	3.1 Specification Types
	3.2 Ghost State
	3.3 Model-Based Specifications
	3.4 Inheritance
	3.5 Effective Boogie Encoding

	4 The Verified Library
	4.1 Setup
	4.2 Verification Results
	4.3 Challenges

	5 Related Work
	6 Lessons Learned and Conclusions

	Counterexamples for Expected Rewards
	1 Introduction
	2 Preliminaries
	3 Critical Subsystems for Expected Rewards
	4 Generation of Critical Subsystems
	4.1 Minimal Critical Subsystem Generation
	4.2 Path Search Approach
	4.3 Best-first Search Approach

	5 Experimental Results
	6 Conclusion and Future Work

	The Semantics of Cardinality-Based Feature Models via Formal Languages
	1 Introduction
	2 Background
	3 CFDs: Formal Definitions
	4 CFDs to Regular Expressions
	5 CCs and CFMs
	6 Analysis Operations
	7 Related Work
	8 Conclusions and Open Problems

	Axiomatization of Typed First-Order Logic
	1 Introduction
	2 The Basic Typed Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Calculus

	3 A Basic Theory in Typed Logic
	4 Towards a Java Theory
	5 Concluding Remarks

	Model-Based Problem Solving for University Timetable Validation and Improvement
	1 Introduction
	2 Background
	3 Modelling Curricula and Timetables in B
	4 Related Work
	5 Future Work and Conclusion

	Certified Reasoning with Infinity
	1 Introduction
	2 Motivation
	2.1 Orientation
	2.2 Infinities enable Concise Specifications
	2.3 Infinities Increase Compositionality
	2.4 Infinities Support Termination and Non-Termination Reasoning
	2.5 Infinities Support Analysis via Quantifier Elimination

	3 Syntax and Parameterized Semantics
	4 Reasoning with Infinity
	4.1 Normalization and Simplification

	5 Implementation
	6 Experiments
	7 Related Work and Conclusion

	Direct Formal Verification of Liveness Properties in Continuous and Hybrid Dynamical Systems
	1 Introduction
	1.1 Contributions

	2 Preliminaries
	2.1 Continuous Invariants

	3 Direct Method for Eventuality Verification
	3.1 Staging Sets
	3.2 Progress Functions

	4 Proof Rule for Eventuality in ODEs
	5 Non-differentiable Progress Functions
	5.1 Derivatives of Formulas and Differential Variants
	5.2 Non-differentiable Progress Functions

	6 Related Work
	7 Conclusion

	Rigorous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions
	1 Introduction
	2 Background
	3 Symbolic Taylor Expansions
	3.1 Solving Optimization Problems
	3.2 Improved Rounding Model
	3.3 Formal Verification of FPTaylor Results in HOL Light

	4 Implementation and Evaluation
	4.1 Implementation
	4.2 Experimental Results

	5 Related Work
	6 Conclusions and Future Work

	Static Optimal Scheduling for Synchronous Data Flow Graphs with Model Checking
	1 Introduction
	2 Related Work
	3 Model Description and Problem Formulation
	4 Introduction to Timed Automata
	5 A Timed Automata Semantics of System Models
	6 Static Optimal Scheduling and Mapping
	6.1 Traces and Schedules
	6.2 Throughput-Optimal Solution
	6.3 Energy-Optimal Solution

	7 Dealing with More Constraints
	7.1 Auto-concurrency constraints
	7.2 Buffer size constraints
	7.3 Constraints on processors

	8 Case Studies
	8.1 MPEG-4 Decoder
	8.2 Computation Example

	9 Conclusion

	Industry Track
	Eliminating Static Analysis False Positives Using Loop Abstraction and Bounded Model Checking
	1 Introduction
	2 Experimentation
	3 Conclusion

	Autofunk: An Inference-Based Formal Model Generation Framework for Production Systems
	1 Introduction
	2 Framework
	2.1 Production Messages and Traces
	2.2 Trace Segmentation and STSs
	2.3 STS Reduction

	3 Evaluation
	4 Conclusion

	Software Development and Authentication for Arms Control Information Barriers
	1 Introduction
	2 Software Aspects of an Information Barrier
	3 Conclusion

	Analyzing the Restart Behavior of Industrial Control Applications
	1 Introduction
	2 Comparison of Available Analysis Tools
	3 Improving Accuracy Through Context Information
	4 Conclusion

	Case Study: Static Security Analysis of the Android Goldfish Kernel
	1 Introduction
	2 Experimental Setup and Evaluation
	2.1 Evaluation Results

	3 Lessons

	Practices for Formal Models as Documents: Evolution of VDM Application to ``Mobile FeliCa" IC Chip Firmware
	1 Introduction
	2 Development of the Second-Generation
	3 Evolution in Development of the Third Generation
	4 Summary

	Formal Virtual Modelling and Data Verification for Supervision Systems
	1 Introduction
	2 The Supervision System
	3 Formal Techniques in Action
	3.1 Recovering the System Level Specification
	3.2 Checking Against Decades of Recorded Data

	4 Experience Gained and Conclusion
	References

	Using Simulink Design Verifier for AutomaticGeneration of Requirements-Based Tests
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusions
	References

	Formalizing the Concept Phase of Product Development
	1 Introduction
	2 Industrial Application
	3 Formal Techniques Applied
	3.1 Model Checking Using mCRL2
	3.2 Simulation of POOSL Models

	4 Concluding Remarks
	Author Index

