Knowledge-Based Model to Represent
Security Information and Reason
About Multi-stage Attacks

Faeiz M. Alserhani®®

Department of Computer Engineering and Networks, College of Computer
and Information Sciences, Sakaka Aljouf, Saudi Arabia
fmserhani@ju. edu. sa

Abstract. In an intrusion detection context, none of the main detection approa-
ches (signature-based and anomaly-based) are fully satisfactory. False positives
and false negatives are the major limitations of such systems. The generated alerts
are elementary and in huge numbers. Hence, alert correlation techniques are used to
provide a complementary analysis to link elementary alerts and provide a more
global intrusion view. It has been widely recognised that real cyber attacks consist
of phases that are temporally ordered and logically connected.

In this paper we present an improved knowledge-based causal alert correlation
model. The correlation process is essentially modularized based on an extension of
the properties and characteristics of the “requires/provides” model. The description
of the knowledge base modeling is introduced consisting of attacks classes, vul-
nerabilities, and alerts generated by security tools. The proposed system is evalu-
ated to detect simulated and real multi-stage attacks and it showes efficient
capability to correlate the attacker behavior.

Keywords: Intrusion detection systems * Alert correlation - Multi-stage attack

1 Introduction

Malicious attacks by intruders and hackers exploit flaws and weaknesses in the deployed
systems. This is done by several sophisticated techniques and cannot be prevented by
traditional measures. Hackers are shifting their focus from looking for fame and
advertised attacks to profit-oriented activities. The current trends in cyber attacks are
hidden, slow-and-low, and coordinated. NIDS are considered to be important security
tools to defend against such threats. The effectiveness of any NIDS depends on its ability
to recognize different variations of cyber attacks. The current implementation of
intrusion detection systems (commercial and open-source) is employing signature-based
detection in addition to a few simple techniques for statistical analysis. The main task of
signature-based systems is to inspect the network traffic and perform pattern matching to
detect attacks and generate alerts. A huge number of alerts are generated every day
stressing the administrator; this may oversight an actual threat. Quality of these alerts is
debatable particularly if the majority is false positives. For this reason, high-level and
real-time analysis techniques are needed. This can be achieved by discovering the
logical connections between the isolated alerts. It has been practically identified that

© Springer International Publishing Switzerland 2015
A. Persson and J. Stirna (Eds.): CAiSE 2015 Workshops, LNBIP 215, pp. 482-494, 2015.
DOI: 10.1007/978-3-319-19243-7_44

Knowledge-Based Model to Represent Security Information and Reason 483

most of attacker activities consist of multiple steps (attack scenario) and occur in a
certain time (attack window). Identification of such strategy can lead to the recognition
of attack intensions and also prediction of unknown attacks.

In this paper we have extended our previous work in [1, 2] to describe the details of
the proposed model design. The underlying principle of the model based on provides/
requires model is defined precisely giving some clarification examples. The discussion
has been supported by the evaluation using different metrics. The rest of this paper is
organized as follows: Sect. 2 explains the concepts of the proposed model. In Sect. 3,
we present a description of the knowledge-based modeling and its related components.
Section 4 gives the experimental results and then we conclude in Sect. 5.

2 Model Design

The requires/provides model is a general attack model that has been proposed by [3]
and is inspired from network management systems to deal with network faults. A cyber
attack is described according to two components: (1) capabilities, and (2) concepts. The
idea behind this model is that multi-stage intrusions consist of a sequence of steps
performed by an attacker, and that the later steps are prepared by the early ones. The
target system information collected from scanning or port mapping are advantages
acquired and used in order to choose which exploit can be successful. Attacks are
modelled in terms of abstract concepts and each concept requires certain capabilities
(conditions) to occur and provides others to be used by another concept. Capabilities
are defined as general descriptions of the conditions required or provided by each stage
of the intrusion i.e. the system state that must be satisfied in order to launch an attack.
For instance, a successful Trojan injection requires particular services to be running in
the target system and the presence of certain vulnerabilities.

Formally, capabilities are a higher level of intrusion abstraction that specifies the
system state after each attack attempt. The attacker uses the capabilities acquired
through some of its early actions to generate certain new capabilities. The system state
is incorporated in attack scenarios if instances of concepts have matched “required”
and “provided” conditions.

The capability model proposed by [4] is also based on a requires/provides model
for logical alert correlation, though the authors used different properties of capabilities.
An attack model was presented to build blocks of capabilities in a multi-layer fashion
and with more expressive definition. References [5, 6] have employed a requires/
provides model using the concept of predicates, which are similar to capabilities.

Both models mentioned above are reasoning models that aim to discover the causal
relationships between elementary alerts. Attacker states are abstracted to describe the
gained privileges and what level of access is obtained. Moreover, the system states are
modelled into a higher level of abstraction to specify the impact of the attack. Rela-
tionships between these states are defined to generate rules that determine the depen-
dency between alerts.

The requires/provides model has been selected because it fits our purpose to cor-
relate alerts in the same intrusion. It has some advantages over other models:

484 F.M. Alserhani

i. Ability to uncover the causal relationships between alerts and it is not restricted to

known attack scenarios.

ii. Ability to characterize complex scenarios or to generalize to unknown attacks.

iii. Attack is represented as a set of capabilities that provides support for the abstract
attack concepts.

iv. Flexibility and extensibility as the abstract attack concepts are defined locally.

v. It does not require a priori knowledge of a particular scenario.

vi. Numerous attacks can be described implicitly and an unknown attack can be
defined by generalisation.

Our approach is a variation of the requires/provides model, but differs in the following
aspects:

e Different definitions for capabilities and concepts are employed to overcome the
limitations expressed in other approaches. The work in [3] used a very detailed
specification language called JIGSAW to describe attack scenarios. A complete
satisfaction of “required’ and “provided” conditions is necessary to correlate two
alerts, which will fail in case of broken scenarios. However, the authors in [5] have
adopted a partial satisfaction technique which is also implemented into our
framework. The main concern with their approach is the high rate of false positives,
and the possibility of a huge graph being created. We have managed to overcome
this limitation by using certain techniques: hierarchical multi-layer capabilities,
accumulated aggregation, alert verification and alert maintenance.

e A near real-time processing approach for correlation, aggregation and event gen-
eration. The security officer can monitor the attack progress which is displayed as an
intrusion graph. An event is triggered once at the minimum of two alerts being
correlated, and any additional related alert based on its attributes will join the same
event.

e Online and offline graph reduction algorithms during the correlation process in
addition to alert aggregation in order to provide a smaller manageable graph.

e We have modelled IDS signatures as abstracted attack concepts instead of defining
new concepts locally. In requires/provides models, IDS signatures are considered
complementary external concepts.

e Separation of the concepts and their capabilities from other dynamic information.
Two different types of capabilities have been used: internal and external. The first
type denotes abstract attack modeling consisting of IDS signatures and associated
capabilities. The second type refers to dynamic details, including system configu-
ration, services and vulnerabilities. This provides more flexibility to the model
whilst at the same time allowing utilization of other knowledge resources.

e (Capabilities’ modeling has been made using a hierarchical methodology based on
attack classes and inheritance between these classes.

Our approach is based on the assumption that the attack scenario consists of a sequence
of related actions and that early stages can incorporate later ones. The link between
these stages is determined using five factors:

Knowledge-Based Model to Represent Security Information and Reason 485

i. Temporal relationships (e.g. alert timestamps).
ii. Spatial relationships (e.g. source IP addresses, destination IP addresses and port
numbers).
iii. Pre- and post-conditions of each attack.
iv. Vulnerability assessment of the target system.
v. Target system configuration.

Capabilities are formalized in terms of pre- and post-conditions by grouping conditions
that share similar characteristics into a broad definition. Knowledge about elementary
alerts is mapped to instantiate the attacker and the system states according to their
temporal characteristics:

— Pre-conditions: are logical capabilities that characterize the system state to be
satisfied in order to launch an attack. These capabilities are derived from the attack
description. A hierarchical approach is adopted based on an attack classification to
provide coarse-grained definitions of different alerts related to the same behaviour.

— Post-conditions: are logical capabilities that characterize the system state after the
attack succeeds. In other words, specifications of the effects of intrusions on the
system, such as the knowledge gained and the access level of the attacker. More-
over, attack classification incorporates the definitions of these capabilities in a
hierarchical manner.

To formulize the capability sets as pre- and post-conditions of higher quality, certain
requirements must be satisfied:

1- Capabilities must be expressive in order to achieve a true logical relationship.

2- Avoidance of ambiguity in defining capabilities.

3- Use of multi-layers of abstraction to achieve scalability.

4- Reduction of the number of elements in the capability sets without affecting attack
coverage.

5- Inference rules should be separated from the capability set.

6- The set should also be constant and independent of variable information such as
vulnerability and system-configuration knowledge.

Hence, capabilities are formulized based on two criteria:
(a) Level of abstraction

i. Generic capabilities which illustrate a broad aspect of a certain attack, such as
access, local access and remote access.
ii. Capabilities which illustrate a lower level of attack abstraction, but not a specific
one, such as server buffer overflow or client upload file.
iii. Specific capabilities for each single alert in IDSs, such as TFTP Get.

(b) Properties of the system and the attacker state

i. Access level of the attacker (remote, local, user or administrator).
ii. Impact of the intrusion upon the victim machine, such as DOS and implementation
of the system commands.
iii. Knowledge gained by the attacker, such as disclosure of host or of service.

486 F.M. Alserhani

The elements in the two criteria above are mutually inclusive; for instance, disclosure
of host is considered as a generic capability and at the same time is a system state
description. In addition, attack classification, which will be presented in the next
section, is also involved in defining capabilities.

Examples: generic capabilities are mainly a description of the intrusion’s general
objective, such as:

— Disclosure of host

— Disclosure of running service
— Disclosure of port number

— Access

— Read or write files

However, a buffer overflow attack is a general attack that can target the server, the Web
server and the client, and the required and provided conditions are not the same for
each category. The capability client access attempt is a specific capability for client
attacks, because some attacks are client specific, such as ActiveX attacks. Snort [7]
documentation contains a description for each signature, including the attack class type,
the affected system, and the impact of the attack. This information is valuable in
defining attack capabilities if other sources of intrusion analysis are considered.

3 Knowledge-Base Modeling

Two knowledge bases are used, one for attack concepts and the other for vulnerability
details. In the attack knowledge base, IDS signatures (e.g. Snort) are modelled to the
attack abstractions and their defined capabilities. The knowledge library specifies the
relationship between low-level alerts and the attack abstraction. Thus, a knowledge
base can be considered a broad template and each element can be instantiated to
instances of specific conditions. A generalization mechanism has been used to specify a
higher level of specification of attack concepts and capabilities.
The proposed model for the attack knowledge base consists of three sets:

(1) Capability C: This specifies a higher level of abstraction of the “required” and
“provided”’ conditions of the intrusion model. Intrusion attempts are expressed in
terms of a set of “required” or “provided’ conditions, and vulnerability con-
straints of a given alert where:

— Required conditions R are a set of pre-conditions specified in the form of
capabilities with variable arguments.

— Provided conditions P is a set of post-conditions specified in the form of
capabilities with variable arguments.

— Vulnerability V is a description of the state of the target host or network with
variable arguments.

Knowledge-Based Model to Represent Security Information and Reason 487

(2) Attack concept AC specifies the constructor of a given attack and its related
capabilities. “required” and “provided” conditions for each attack are coded in a
language of capabilities.

(3) Arguments [r,7,,...r;] — r are a set of associated attributes such as source IP
addresses, destination IP addresses and port numbers.

Definition 1. Attack concept AC is an abstraction of elementary alerts generated by the
IDS, defined by a set of arguments, required conditions and provided conditions.

Definition 2. An attack instance q; is defined as a set of instances of attack concept AC
by substituting the associated values in arguments tuple considering the time con-
straints (start-time and end-time).

Definition 3. Given an attack concept AC, the R(AC), P(AC) and V(AC) sets are the
sets of all capabilities C. Given an attack instance a, the R(a), P(a) and V(a) sets are the
capabilities by mapping the values to the corresponding arguments in AC considering
the time constraints.

3.1 Attack Classification

Several attempts have been made to propose a different attack taxonomy or ontology;
however, they are diverse and there is no common methodology for the categorization
of security intrusions. The majority of the proposed classifications are entirely based on
the analysis of published vulnerabilities. For instance, NIDS vendors such as Snort [7]
use attack classes that describe the attacker’s methods in exploiting these vulnerabil-
ities. We have obtained our classification based on:

e Vulnerability analysis
e Generalized description of the target system (server, client, Web, etc.)

Elementary alerts generated by NIDS sensors are mapped to generalized descriptions of
intrusion in a hierarchical representation. The classification is built in the form of a
graph with nodes and edges. The nodes specify the attack class and the edges denote
the inheritance relationship between attack classes. The classes are mutually exclusive
and each alert belongs to only a single class horizontally, but to different classes
vertically based on the inheritance relationship. This structural abstraction mechanism
is to minimise redundancy and maximize diversity. Hence, even though some alerts are
new and unknown, they can be predicted from the results of situation analyses. If an
attack is in progress consisting of certain elementary alerts, these atomic alerts are
mapped to a general attack description. For any suspicious or unknown actions not
detected by the IDS, the probability of their being related to the detected attack is very
high. The level of the abstraction progresses from general to specific in a top-down
design of the classification hierarchy. For instance, the buffer overflow class can be
classified under server, client or Web classes, as this type of attack can target different
types of systems. However, some other classes are only categorized as specific system
classes, such as DDoS client activity, which is a client-specific attack. Hence, each
alert generated by the IDS will be categorized top-down in a hierarchical manner.

488 F.M. Alserhani

Figure 1 shows three examples of how sub-classes inherit attack features from upper
classes and how alerts are classified based on these relationships. In Fig. 1(a), the lower
class denotes the exact Snort signature TFTP Get, id:1444, while this signature is
classified as TFTP buffer overflow. Similarly, in Fig. 1(b), any IDS signature of type of
ACTIVEX attack can be classified under this class which is in turn classified as a client
buffer overflow. Figure 1(c) shows that a stored procedure attack is described as a Web
PHP injection attack. It should be noted that these are only abstract classes and do not
denote instances of actual attacks.

Server attack

Buffer overflow attack

TFTP buffer overflow

|

TFTP Get

-a-

Client attack

Buffer overflow attack

ACTIVEX attack

_b-

Web attack
SQL injection

PHP injection

|

Stored Procedure

-C-

Fig. 1. Examples of attack class inheritance.

3.2 Knowledge-Base Representation

A capability set consists of all the derived elements of capabilities encoded to integer
numbers. All alerts are represented in the form of three sections:

1- IDS signature ID to describe the attack by its elementary alert.
2- Pre-conditions set which consists of n capabilities where n >=0.
3- Post-conditions set which consists of n capabilities where n >=0.

The knowledge library of the alerts and their corresponding capabilities are defined into
the form shown below:

sid:xxxx;pre:k;(n);pre:k(n);......... pre:kn); pos:l;(n);pos:lr(n);.....pos:I;

where xxxx is the signature ID number, pre denotes pre-conditions, pos denotes post-
conditions, k is the capability unique number, and 7 is a variable argument to specify
the attack attributes as follow:

1: source IP address

2: source port

3: destination IP address
4: destination port

3.3 Alert Modeling

IDS alerts are the basic units that represent the occurrence of intrusion as a time series.
Essential attack knowledge is derived from signature fields triggered by the IDS in case

Knowledge-Based Model to Represent Security Information and Reason 489

of any security violation. It should be noted that the alert generated by the IDS is not
necessarily connected to a security attack, as sometimes a legitimate activity can cause
some alarms. Moreover, the information in the signature does not contain any sign of
whether the attack succeeded or not. However, the abstraction of these alerts to capabilities
in respect to temporal and spatial details can give a true view of the security perspective.

Each received alert is mapped to its pre- and post-conditions. It is assumed that the
alert is generated because some conditions have to be satisfied and that it will cause
some impact on the target system. The relationship between different alerts is identified
by matching these conditions. For example, the following alerts (Snort-generated
signatures) are obtained from DARPA LLDDOS.1.0 [8] to clarify the correlation
concept considering the following Snort signature:

RPC sadmind UDP PING

This signature is generated as result of attempts to test if the sadmind demon is running. A
sadmind RPC service is used to perform administrative activities remotely. The impact of
the signature includes disclosure of the running service and system access attempt:

RPC portmap sadmind request UDP

This signature is generated due to the use of a portmap GETPORT request to discover
the port number of the RPC service, and consequently which port is used by the
sadmind service.

RPC sadmind UDP NETMGT_PROC_SERVICE CLIENT_DOMAIN overflow attempt

This signature is generated as a result of an attempt to exploit a buffer overflow to
obtain a root access.

RPC sadmind query with root credentials attempt UDP

This signature is generated due to the use of root credentials and is an indication of
potential arbitrary command executions with root privilege.

RSERVICES rsh root

This signature is generated due to an attempt to login as a root user using rsh, and this
is an indication of full control of the attacker.

From Table 1, it can be seen that the signatures have some pre- and post-conditions
and if a match between these conditions is detected the two alerts are linked as a part of
the attack scenario. If two signatures share at least one common capability for instance,
disclosure of running service, hence they are correlated as a primary stage following by
incorporating other factors from the rest of the model components.

3.4 Vulnerability Modeling

Several efforts have been made to correlate IDS signatures with vulnerability infor-
mation. The aim is to reduce the false positives, which can be a major drawback of such
systems. Moreover, these verification mechanisms are incorporated in the IDS to
provide a higher quality of alerts, and hence more confidence. The origin of the
problem of false positives is that IDSs have no information about the systems they

490

F.M. Alserhani

Table 1. Examples of pre- and post-conditions.

| Signature Pre-conditions Post-conditions
1 | RPC sadmind UDP PING Disclosure of host Disclosure of
running service
System access
2 | RPC portmap sadmind request UDP Disclosure of host Disclosure of port
number
Disclosure of running
service
System access
Remote Access
3 |RPC sadmind UDP Disclosure of host System access
NETMGT_PROC_SERVICE Disclosure of port Remote access
CLIENT_DOMAIN overflow number Admin access
attempt Disclosure of running
service
4 | RPC sadmind query with root Disclosure of host Remote access
credentials Disclosure of port Admin access
attempt UDP number
Disclosure of running
service

System access
Remote access

protect. Therefore they are not certain about the success of the attack, simply because
the vulnerabilities of the target system are not available. Two trends have emerged in
overcoming the false positives issue in IDS performance:

1-

Tuning the IDS based on knowledge of the internal policy of the protected envi-
ronment to operate with a lower number of signatures [9]. Knowledge of network
configuration, running services and installed applications is used to disable all the
unrelated signatures of the IDS. The advantage of this technique is that the IDS
performance is improved significantly. However, some of the information on the
activities of the attacker, which may be useful in tracking its behaviour, will be
discarded. It should also be noted that real cyber attackers (persistent attackers) try
to break into systems using different methods, and these attempts may be not in
connection with a particular vulnerability. Moreover, some dangerous attacks in
cyber crime do not require any system vulnerability, such as DDoS. In addition,
this approach requires intensive and updated vulnerability assessment.

The other trend is not suppressing the IDS detection coverage, but instead aggre-
gating, correlating and verifying the generated alerts in a systematic way [6, 10].
Summarized data of occurring events are displayed to the security manager
according to their priorities and criticalness. If further details are required to support a
specific situation, they can be retrieved by request. A repository of collected infor-
mation is maintained to support the decision of the IDS management system. Vul-
nerability scanners are the main candidates to supply this type of data in a periodical
manner.

Knowledge-Based Model to Represent Security Information and Reason 491

In accordance with the nature of the developed correlation systems, which require full
description of any activity in the protected environment, the second mechanism is
adopted. The attacks are generalized to obtain a global view of the security situation.
This generalization may increase the false positive rate; hence, a suppression technique
is needed to reduce the false positive rate without losing any details. This suppression
mechanism does not imply any reduction in the IDS coverage, but the consideration of
only success attacks.
Snort signatures are supported by two useful fields:

e Vulnerability reference, referring to the major vulnerability standards such as CVE
[11], bugtraq [12], and Nessus [13].
e Service to denote a list of the affected services, such as telnet, ftp and MSSQL.

A vulnerability knowledge base is maintained to store the vulnerability situation of
each element of the protected network based on the collecting agent (e.g. Nessus). The
scanner will also gather the network configuration details such as IP addresses of live
hosts and running services, so manual configuration is not considered. In this respect,
vulnerability information is considered as external capabilities.

The scope of vulnerability testing is only limited to investigating the presence of the
vulnerability and the affected service. An extension can be carried out to consider the
target host response; however, there are performance issues (e.g. communication
overheads). Nessus is used to extract the following information, which can be used to
support the vulnerability component:

— TP addresses of all hosts connected to the target network.
— Operating systems and their versions.

— Open ports and running services.

— Related vulnerability references (e.g. CVE).

When an alert is received from the IDS, its message contains the vulnerability reference
and the affected system. Therefore, a logical formula is obtained by searching the
vulnerability knowledge to find any matches, as follow:

— If the reference is found and the associated service is running, then the vulnerability
is true with high priority.

— If the reference is found and the associated service is not running, then the vul-
nerability is true with low priority.

— If the reference is not found, then the vulnerability is unknown.

The complete algorithm of alert verification using vulnerability knowledge is shown in
Fig. 2.

4 Experimental Results

DARPA 2000 datasets, including LLDDOS 1.0 and LLDDOS 2.0 [14], are often used
to evaluate IDSs and alert correlation systems. They consist of two multi-stage attack
scenarios to launch Distributed Denial of Service attacks (DDoS). The evaluation goal
is to test the effectiveness of our approach to recognize attack scenarios, to correctly

492 F.M. Alserhani

[Algorithm :Alert verification
Input: elementary alerts generated by IDS A(/P,SV,VR)
Host vulnerability information generated by scanner VM/P,OSSV,VR)
Output: Vulnerable host VH(/P,V,P)
Methods:
// IP: IP address, SV: service, VR: vulnerability, OS operating system
for /i—0to lengthl VN
do
if A./P= VMi.IP g&t VN(/IP,OSSV,VR)
in case of
A.VR=VN.VR and A.SV=VN.SV then VH.V—true, VH.P—high
A.VR=VN.VR and A.SV=VN.SV then VH.V—true,VH.P—low

A.VR+VN.VRthen VH.V—false, VH.P—unknown

Fig. 2. Alert verification algorithm.

m Alert Verification -
disabled
B Alert verification -

enabled
DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0
Data sets

100

D
o O

N
o

percentage (%)
IS
o o

Fig. 3. Recall rate (%) of the DARPA dataset

correlate the alerts, and to minimize the false positives. This experiment is carried out
mainly for functional testing to see how the system reconstructs attack stages.
A reduction test is also studied in this respect; however, the background traffic in this
dataset is limited. We have used these datasets for their available ground truth to assess
our correlation approach and to compare our results with those of other researchers.
These datasets do not contain the actual alerts from the IDS sensors, and hence we have
generated them using a Snort sensor. The detected events evolve over time instead of
by batch analysis.

Accuracy metrics are calculated to determine recall, precision, and reduction rate.
Figures 3 to 5 illustrate the key results obtained from different scenarios. Our proposed
system has achieved high levels of accuracy among the datasets in LLDDOS1.0, and
acceptable levels in LLDDOS2.0. The only low accuracy rate recorded is from the
analysis of the DMZ2.0 dataset, and of which we are aware because the actual attack
was performed inside the network. The vulnerability model to verify the importance of
alerts is also showing a considerable improvement. This is apparent from the number of

Knowledge-Based Model to Represent Security Information and Reason 493
100

80
60 m Alert Verification -
40 disabled
20
0 : : : H Alert verification -

DMZ1.0 INSIDEL.O DMZ2.0 INSIDE2.0 enabled
Data sets

percentage(%)

Fig. 4. Precision rate (%) of the DARPA dataset

100
80
60 H Alert Verification -
40 disabled
20 . .
0 ‘ ‘ T B Alert verification -

enabled
DMZ1.0 INSIDE1.0 DMZ2.0 INSIDE2.0
Data sets

percentage (%)

Fig. 5. Alert reduction rate (%) of DARPA dataset

detected events in each dataset. For instance, in DMZ1.0, the number of events has
been reduced from 25 events to only 3 related events. The rates are higher if alert
verification is used and satisfactory for other tests. In addition, the volume of alert
information has been significantly reduced, achieving more than a 90 % reduction rate
in most test cases.

5 Conclusion

We have presented the core concept of our knowledge-based reasoning model for alert
correlation to address the problem of detection of coordinated attacks. A combined
analysis of IDS’s alerts and description of attack classes are used to derive the pre- and
post- conditions of each received alert. A scheme to represent our knowledge base has
been described using a hierarchal and a multilayer classification. Vulnerability mod-
eling is used to support alert verification in order to reduce the generated attack graph.

The evaluation process is based on different metrics to identify the functionality, the
reduction and the accuracy rates. An experimental platform has been developed to
perform different tests. The obtained results have showed that the proposed system is
capable to detect all attack instances with lesser false positive rates. We have confi-
dence that our system has achieved an improvement in relation to identification of
attack plans and reduction in graph complexity. False positives have been reduced
comparing with other approaches using vulnerability knowledge base. In the next
research stage, we will incorporate a statistical model to detect hidden relationships
between different attack scenarios.

494

F.M. Alserhani

References

10.
11.
12.

13.
14.

. Alserhani, F., Akhlaq, M., et al.: MARS: multi-stage attack recognition system. In:

Proceedings of the International Conference on Advanced Information Networking and
Applications (AINA), pp. 753-759, Perth (2010)

. Alserhnai, F., Akhlaq, M., et al.: Event-based correlation systems to detect SQLI activities.

In: Proceedings Of the International Conference on Advanced Information Networking and
Applications (AINA), Bioplis, Singapore (2011)

. Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks. In: Proceedings

of the 2000 workshop on New security paradigms ACM (2000)

. Zhou, J., Heckman, M., Reynolds, B., Carlson, A., Bishop, M.: Modeling network intrusion

detection alerts for correlation. ACM Trans. Inf. Syst. Secur. (TISSEC) 10(1), 1-31 (2007)

. Ning, P, Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for analyzing intrusion alerts.

ACM Trans. Inf. Syst. Secur. (TISSEC) 7(2), 274-318 (2004)

. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection framework. In:

Proceedings of the 2002 IEEE Symposium on Security and Privacy, 2002. pp. 202-215
(2002)

. Snort; http://www.snort.org/
. Haines, J.W., Lippmann, R.P., Fried, D.J., Tran, E., Boswell, S., Zissman, M.A.: DARPA

intrusion detection system evaluation: Design and procedures, Technical report, Lincoln
Laboratory, Massachusetts Institute of Technology (2000)

. Valeur, F., Mutz, D., Vigna, G.: A learning-based approach to the detection of SQL attacks.

In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548, pp. 123-140. Springer,
Heidelberg (2005)

Qin, X.: A probabilistic-based framework for infosec alert correlation,” Ph.D., Georgia
Institute of Technology (2005)

Common Vulnerabilities and Exposures (CVE). http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-0188

Security Focus - BugTraq. http://www.securityfocus.com

Nessus: Security Scanner. http://www.nessus.org

MIT Lincoln Laboratory; http://www.1l.mit.edu/

http://www.snort.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-0188
http://www.securityfocus.com
http://www.nessus.org
http://www.ll.mit.edu/

	Knowledge-Based Model to Represent Security Information and Reason About Multi-stage Attacks
	Abstract
	1 Introduction
	2 Model Design
	3 Knowledge-Base Modeling
	3.1 Attack Classification
	3.2 Knowledge-Base Representation
	3.3 Alert Modeling
	3.4 Vulnerability Modeling

	4 Experimental Results
	5 Conclusion
	References

