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Abstract. Nowadays, business processes are increasingly supported by
IT services that produce massive amounts of event data during the exe-
cution of a process. This event data can be used to analyze the process
using process mining techniques to discover the real process, measure
conformance to a given process model, or to enhance existing models with
performance information. Mapping the produced events to activities of a
given process model is essential for conformance checking, annotation and
understanding of process mining results. In order to accomplish this map-
ping with low manual effort, we developed a semi-automatic approach
that maps events to activities using the solution of a corresponding con-
straint satisfaction problem. The approach extracts Declare constraints
from both the log and the model to build matching constraints to effi-
ciently reduce the number of possible mappings. The evaluation with
an industry process model collection and simulated event logs demon-
strates the effectiveness of the approach and its robustness towards non-
conforming execution logs.

Keywords: Process mining · Event mapping · Business process intelli-
gence · Constraint satisfaction

1 Introduction

Organizations often support the execution of business processes with IT systems
that log each step of participants or systems. Individual entries in such logs rep-
resent the execution of services, the submission of a form, or other related tasks
that in combination realize a business process. To improve business processes
and to align IT process execution with existing business goals, a precise under-
standing of processes execution is necessary. Using the event data logged by IT
systems, process mining techniques help organizations to have a more profound
awareness of their processes, in terms of discovering and enhancing process mod-
els, or checking the conformance of the execution to the specification [2]. Yet,
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these process mining techniques face an important challenge: the mapping of log
entries produced by IT systems to the corresponding process activities in the
process models has to be known. A discovered process model can only be fully
understood when the presented results use the terminology that is known to the
business analysts. However, such a mapping is often not existing because (i) the
logging mechanism of IT systems captures fine-granular steps on a technical level
and (ii) especially with legacy systems, the way in which events are recorded is
rarely customizable. In fact, it is often a tedious task to reconstruct a mapping
from cryptic names in a database to the activities in a process model.

In this paper, we offer means to help the analyst identify the mapping
between a process model and events in an event log, in a semi-automated fashion.
Defining such a mapping is generally hard to do manually, due to its combinato-
rial complexity. While there exist automatic techniques such as [5] or [6], these
approaches have limitations on their applicability. For example, [5] requires event
names that are processable using linguistic techniques, which are not always pro-
vided. The work presented in [6] overcomes this limitation, yet it is able to han-
dle only 1:1 relations between events and activities, and requires pre-processing
to handle 1:N relationships. The approach presented in this paper overcomes
these limitations by using declarative constraints, in order to turn the match-
ing problem into a constraint satisfaction problem. In this way, we not only lift
the limitations of [6], but also drastically narrow down the effort for an ana-
lyst. Our approach also informs research into Declare, as it has been mainly
used for the modeling of discovered processes from event logs [8,21]. Here, we
also devise techniques to derive Declare constraints from an existing imperative
process model, in order to reason about possible matches between events and
activities, through the comparison of Declare constraints inferred from the event
log and the process model.

The remainder of this paper is structured as follows. Section 2 starts by
further illustrating the problem with an example and stating the formal defini-
tion of the mapping problem and the required formal concepts. Having laid the
foundations, the matching technique is introduced in Section 3. In Section 4,
the proposed approach is evaluated using an industry process model collection
and simulated event logs. Related work is discussed in Section 5 and Section 6
concludes the work.

2 Preliminaries

This section gives a running example to illustrate the problem and introduces the
main concepts used for the mapping approach. We will formally introduce the
notion of a process model, an event log, and the used Declare rules.

2.1 Illustrating Example

Starting with an example, Table 1 shows an exemplary event log with 5 traces,
which have been produced by an IT system supporting the order process depicted
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in Fig. 1. Obviously, it is not straightforward to interpret the given event log,
because the event labels are cryptic database field names, which cannot be easily
matched to the names of the activities in the process model. It can be seen
that for some of the activities multiple events are being logged, while for others
only one type of events can be observed. Looking at the events of the “Change
order” activity, not necessarily all events belonging to an activity are generated
when the activity is executed. Once the mapping is established as shown in
Tab. 2, we can use the event log to check conformance between the model and
the log. For example, we are able to detect that there is a case in the log, in
which the customer has already been notified before the products were shipped.
It is critical for organizations to detect, and accordingly react to such non-
conforming behavior [2]. Moreover, using process discovery techniques, a new
process model that reflects the actual as-is process, including all deviations, can
be automatically created using the known terminology.

Fig. 1. Order process model in BPMN

Table 1. Event log (L) of order process (M)

Label sequence

t1 〈 O CHK S, O PR S, O PR E, I SM E,
P SP E, O ARC S, O ARC E 〉

t2 〈 O CHK S, O RC SB, O RC E, O CHK S,
O PR S, O PR E, P SP E, P NOT E,
I SM E O ARC S, O ARC E 〉

t3 〈 O CHK S, O PR S, O PR E, P SP E,
P NOT E, I SM E, O ARC S, O ARC E 〉

t4 〈 O CHK S, O RC SA, O RC E, O CHK S,
O PR S, O PR E, P NOT E, I SM E,
P SP E, O ARC S, O ARC E 〉

t5 〈 O CHK S, O PR S, O PR E, P SP E,
P NOT E, I SM E, O ARC S, O ARC E 〉

Table 2. Mapping Map

Activity Event label

Check order O CHK S

Change order O RC SA,
O RC SB, O RC E

Process order O PR S, O PR E

Send invoice I SM E

Ship products P SP E

Send notification P NOT E

Archive order O ARC S,
O ARC E

2.2 Process Model and Event Log

Let S be a finite set of states, and A be a set of activities. A process model
M = (S, sI , sF , A, T ) is a transition system that defines the allowed sequences of
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activity executions. Here, T ∈ (S × A × S) is a transition relation modeling the
allowed activities in a given state that result in a succeeding state. For example
(s1, a, s2) ∈ T implies that we can perform activity a in state s1 and reach state
s2. A model has an initial state sI ∈ S and a final state sF ∈ S. The func-
tion τ : M → P (A∗) captures all execution sequences starting with the initial
state sI and ending in the final state sF that are allowed in T . Note that the
number of execution sequences is infinite if the model contains loops. An execu-
tion sequence is also referred to as a process instance. For example, the model
M = ({s1, s2, s3} , s1, s3, {a, b, c} , {(s1, a, s2), (s2, b, s2), (s2, c, s3)}) has the exe-
cution sequences τ(M) = {〈a, c〉, 〈a, b, c〉, 〈a, b, b, c〉, . . .}.

An IT system that supports process executions typically records events for
each process instance in an event log [2]. Note that the relation of event instances
to process instances might not be trivial in every practical setting. Yet, there
exist approaches relating event instances to process instances that use event
correlation (see, e.g., [22]). In this work, we therefore assume that this relation
is already given. We abstract events as symbols of an alphabet E, which is often
referred to as the set of event classes. Each process instance is represented as a
sequence of events and also referred to as trace t ∈ E∗. For example, 〈o, p, o, q〉 is
a trace with four consecutive events and three different event classes, o, p, q ∈ E.
An event log L is a multiset of traces.

Confronted with a process model M and an event log L, the challenge is to
derive the mapping relation between the activities a ∈ A and the event classes
e ∈ E. In this paper, we assume a 1:N relation as events are typically on a more
fine-granuar level than activities. Thus, we are looking for the surjective function
Map : E → A that maps event classes to their corresponding activities.

2.3 Declare

Having a process model and an event log, the approach presented in this paper
will use Declare to describe their behavior. Declare [3] is natively a declarative
process modeling language. It models workflows by means of temporal rules.1

Such rules are meant to impose specific conditions on the occurrence of tasks
in process instances. The rationale is, that every behavior in the process enact-
ment is allowed, as long as it does not violate the specified rules. Due to this,
declarative models are said to be “open”, in contrast with the “closed” fashion
of classical procedural models [21]. The Declare standard provides a predefined
library of templates, listing default restrictions that can be imposed on the pro-
cess control-flow. For instance, Participation(a) is a Declare rule expressed on
activity a. It states that a must occur in every trace. NotCoExistence(a, b) con-
strains a and b, and imposes that a and b never occur together in the same
trace. Participation(a) expresses a condition on the execution of a single activ-
ity. It is thus said to be an existence rule, as opposed to relation rules, such

1 In literature, they are called “constraints”. Nevertheless, we prefer not to make use
of such term, in order to avoid the conflict with “constraints” in the context of
constraint satisfaction problems (CSPs).
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Table 3. Declare templates

as NotCoExistence(a, b), which indeed constrains pairs of activities. In the fol-
lowing, existence templates will be denoted as CE , and CE(x) is the rule that
applies template CE to activity x ∈ A. Relation rules will instead be denoted as
CR. CR(x, y) applies template CR to x, y ∈ A. Precedence(a, b) is the relation rule
establishing that, if b occurs in the trace, then it must be preceded by at least one
occurrence of a. In addition to relation rules, it imposes a condition on the order-
ing in which constrained activities can occur. Therefore, Precedence(a, b) falls
under the category of ordering relation rules. Templates of such category will be
denoted as C→

R . C→
R (x, y) indicates an ordering relation rule applied to x, y ∈ A.

In particular, C→
R (x, y) always specifies the order in which the occurrences of x

and y are considered: x first, y afterwards (henceforth, order direction).
Table 3 lists the set of Declare rules that are mentioned in the remainder

of the paper, along with the category (i.e., either CE , CR or C→
R ) to which they
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belong. For every rule, two examples of complying traces and two examples of
violating traces are provided. The complete list of rules can be found in [3].

Declare rules, when discovered from event logs, are usually associated to a
reliability metric, namely support [9,21]. Support is a normalized value, rang-
ing from 0 to 1, which measures to what extent traces are compliant with a
rule. A support of 0 stands for a rule which is always violated. Conversely, a
value of 1 is assigned to the support of rules which always hold true. Accord-
ing to the measurement introduced by the work of [9], the analysis of a trace
t1 = 〈b, a, c, b, a, b, b, c〉 would, e.g., lead to a support of 1 to Participation(a), 0 to
NotCoExistence(a, b), and 0.75 to Precedence(a, b), as 3 b’s out of 4 are preceded
by an occurrence of a. Considering an event log, which consists of t1 and t2 =
〈c, c, a, c, b〉, the support of Participation(a) and NotCoExistence(a, b) would
remain equal to 1 and 0, respectively, whereas the support of Precedence(a, b)
would be 0.8 (4 b’s out of 5 are preceded by an occurrence of a). [9] provides
further details on the computation of support values for each rule. This metric
is usually utilized to prune out those rules which are associated to a value below
a user-defined threshold.

3 Mapping Event Log and Process Model

This section introduces the approach for the mapping of events to given activities
in a process model. The approach consists of three phases. The first one builds
and solves a constraint satisfaction problem, to reduce the number of possible
mappings between activities and events. The result of this phase is a set of
potential event-activity mappings. During the second phase, the analyst is guided
to select the correct mapping from the derived potential mappings. Finally, the
last phase is used to automatically transform one or many event logs to reflect
the activities in the process model. In the following sections, we will elaborate
on each of the three phases.

3.1 Reduction of the Potential Set of Event–Activity Mappings

The first phase of our approach deals with the definition of a constraint satisfac-
tion problem (CSP), which is used to restrain the possible mappings of events
and activities. A CSP is a triple CSP = (X ,D,C) where X = 〈x1, x2, . . . , xn〉 is
an n-tuple of variables with the corresponding domains specified in the n-tuple
D = 〈D1,D2, . . . , Dn〉 such that xi ∈ Di [13]. C = 〈c1, c2, . . . , ct〉 is a t-tuple of
constraints. We use predicate logic to express the constraints used in this paper.
The set of solutions to a CSP is denoted as S = {S1,S2, . . . ,Sm}, where each
solution Sk = 〈s1, s2, . . . , sn〉 is an n-tuple with k ∈ 1..m, si ∈ Di and such that
every constraint in C is satisfied.

To build the CSP, first, the activities and event labels need to be mapped to
the set of variables and their domains. Therefore, a bijective function var : E → X
is defined, which assigns each event label to a variable with the natural numbers
1..|A| as domain. Furthermore, a bijective function val : A → 1..|A| is defined,
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which assigns each activity a natural number in the range from 1 to the num-
ber of activities. Table 4 and Table 5 show the mapping var and the mapping val
respectively for the example given in Section 2.

Table 4. Mapping var

Event e ∈ E O
C
H
K

S

O
R
C

S
A

O
R
C

S
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R
C

E
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P
R
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P
R

E
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S
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E

P
S
P

E

P
N
O

T
E

O
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R
C

S

O
A
R
C

E

Variable var(e) ∈ X x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Table 5. Mapping val

Activity a ∈ A C
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r
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r

Value val(a) ∈ 1..|A| 1 2 3 4 5 6 7

With the variables and domains defined, the solutions to the CSP reflect
all possible mappings between events and activities, i.e., for n activities and m
events there are potentially nm solutions. For the example given in section 2.1
these are 711 = 1, 977, 326, 743 possible mappings. Yet, this also includes solu-
tions where not all activities are assigned to an event or solutions where all events
are mapped to one single activity. As these solutions are not desired, we first
restrict the set of solutions to those that assign each activity to at least one event.
Note that we assume that the execution of each activity in the process model
is being logged by the supporting IT system. Thus, those activities that are not
recorded, are not considered in the processing. We assume that each event in
the given log relates to exactly one activity in the process model, whereas one
activity can relate to multiple events. Thus, we are using the NVALUE constraint,
available in many constraint problem solvers (cf. [13]). This constraint ensures
that each value in the domain of the variables is assigned at least once. Still,
the complexity of the matching problem remains very high. In the following, we
present an approach to tackle this complexity issue by combining the information
available in the log with knowledge on the process model structure.

To be able to reduce the number of possible mappings, we look at Declare
rules describing the behavior of event logs and process models as defined in
Section 2.3. The techniques described in [9] are utilized to derive the described
rules from event logs. In order to infer Declare rules from process models, we build
upon the following assumption: if an event log is given, such that at least one
trace is recorded for each legal path in the process model, then the Declare rules
which are discovered out of such log, reflect the behavior of the original process
model.2 Hence, we can generate an event log from the process model using
the simulation techniques described in [23], and thereafter apply the discovery
algorithm of [9] to derive the Declare rules. We denote the set of all Declare rules
inferred from the event log as BL, and the set of Declare rules discovered from
the process model as BM . Next, we prune all discovered rules having a support
lower than a given minimal threshold β. From our experience, a minimal support
of β = 0.9 has turned out to be the most effective choice. Experimental findings
2 Without loss of generality, loops can be unraveled and treated as an optional path

that is traversable multiple times.
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reported in the use cases of [8] confirm this assumption. Yet, the value of β can
be redefined by the user if needed. From the ordering rules (C→

R ), only the rule
with the highest support for each pair of events / activities is kept. In case there
is no ordering rule with a support above β for a given pair of events / activities,
we add the pair to the set of interleaving events / activities, denoted as I.

Having the Declare rules from both the model and the event log as well as
the set of interleaving pairs of events / activities, we can define a number of
constraints to reduce the number of possible solutions of the CSP. These will
be introduced in the following equations. For each equation, e1, e2 ∈ E denote
two different event classes, i.e., e1 �= e2. In the same manner, a1, a2 ∈ A denote
two different activities, i.e., a1 �= a2. The constraint introduced in Equation (1)
ensures that events for which an Init rule exists, are only mapped to activities
for which an Init rule exists. Equation (2) and 3 work in the same manner for
End and Participation rules.

Init(e1) ∧ (Map (e1) = a1) =⇒ Init(a1) (1)
End(e1) ∧ (Map (e1) = a1) =⇒ End(a1) (2)

Participation(e1) ∧ (Map (e1) = a1) =⇒ Participation(a1) (3)

The CSP constraints derived from CoExistence and NotCoExistence rules
found in the event log, are similar to those derived from the existence rules, but
look at pairs of events and activities. If two event classes that are co-existing
(not co-existing) are matched to two different activities, these activities should
also be co-existing (not co-existing).

NotCoExistence(e1, e2) ∧ (Map (e1) = a1) ∧ (Map (e2) = a2)
=⇒ NotCoExistence(a1, a2)

(4)

CoExistence(e1, e2) ∧ (Map (e1) = a1) ∧ (Map (e2) = a2)
=⇒ CoExistence(a1, a2)

(5)

In contrast to this, it cannot be assumed that events in an ordering rela-
tion necessarily map to activities in the same ordering relation. This is due to
the fact that, for a pair of parallel activities, the log may contain a dominant
ordering of the corresponding events. For instance in the order process exam-
ple of Section 2.1, events I SM and P NOT E are in ChainSuccession because
P NOT E always occurs directly before I SM. Yet, their corresponding activities
“Send invoice” and “Send notification” are in interleaving order in the process
model. Such a situation is still coherent, with respect to the model. Therefore,
we specify in Equation (6) that if two events, for which an ordering rule exists,
are mapped to two different activities, then these two activities either have to
be in an ordering relation enforcing the same order direction, or this pair of
activities has to be in the set of interleaving activities.

C→
R (e1, e2) ∧ Map (e1) = a1 ∧ Map (e2) = a2 =⇒ C→

R (a1, a2) ∨ (a1, a2) ∈ I (6)

Regarding the pairs of events for which no ordering rule exceeds β, Equa-
tion (7) ensures that if a pair of interleaving events is mapped to a pair of
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activities, these activities also have to be interleaving.

(e1, e2) ∈ I ∧ (Map (e1) = a1) ∧ (Map (e2) = a2) =⇒ (a1, a2) ∈ I (7)

Having the constraint definitions in equations 1-7, we add a constraint
ci, i ∈ 1..|BL| for each Declare rule derived from the event log to the CSP. For
example, constraint Init(O CHK S) is derived from the event log. In the set of
inferred Declare constraints from the process model there is only one Init rule,
namely Init(Check order). Using the mappings defined in Table 4 and Table 5
we can derive the corresponding constraint for the CSP: c1 ≡ x1 = 1. Having
defined all constraints, the CSP can be solved to retrieve all possible mappings.
If the CSP returns multiple solutions, the analyst has to choose the correct one.
The next section shows how the analyst is supported in this selection.

3.2 Selection of the Correct Event–Activity Mapping

The previous section introduced the approach for automatic matching of event
labels and activities. This section discusses why there are often multiple solutions
to the defined constraint satisfaction problem and introduces means to guide the
user through the set of potential mappings returned by the CSP solver.

(a) Sequence

(b) Concurrency (c) Choice

Fig. 2. Process model fragments leading to multiple solutions

Consider the trace t1 = 〈k, l,m, n〉 and the simple sequence of activities a and
b shown in Fig. 2a. When matching t1 and the sequence model, the corresponding
CSP returns three solutions. In all three solutions k is matched to a, and n is
matched to b. For l and m it cannot be said whether they belong to a or b
without further knowledge. It may be that both belong to A, or both belong to
b, or l belongs to a and m belongs to b. The only mapping that can be excluded,
is that l belongs to b and m belongs to a at the same time. If we want to match
t1 to the model shown in Fig. 2b, actually every combination of mappings is
possible, besides those where all events are mapped to only one of the activities.
For the matching with the process model depicted in Fig. 2c, we add the trace
t2 = 〈p, q, r, s〉. In this case the CSP returns two solutions: Either k, l,m, n belong
to activity a and the rest to b, or the other way around.

Such ambiguous mappings, i.e., cases in which the CSP has multiple solu-
tions, cannot be automatically resolved and require a domain expert to decide
the mapping for the concerned events and activities. Nonetheless, this decision
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can be supported by the mapping approach. To aid the analyst with the disam-
biguation of multiple potential mappings, we introduce a questioning approach,
which is inspired by the work of La Rosa et al. [24], in which the user is guided
through the configuration of a process model using a questionnaire procedure.
The analyst is presented one event label at a time, along with the possible activ-
ities to which this event label can be mapped. Once the analyst decides which
of the candidate activities belongs to the event label, this mapping is converted
into a new constraint that is added to the CSP. Consecutively, the CSP is solved
again. In case there are still multiple solutions, the analyst is asked to make
another decision for a different event label. This procedure is repeated until the
CSP yields a single solution. The goal is to pose as few questions to the analyst
as possible. To achieve this goal, we look into all solutions and choose the event
label that is assigned to the highest number of different activities.

3.3 Transformation of the Event Log

Having defined the procedure to build a CSP and iteratively resolved any ambi-
guities, the next step is to use the selected solution of the CSP as mapping Map
to transform the event log. Mapping Map is used to iterate over all traces in
the event log and replace each event ei with the activity returned by Map(ei).
This resulting event log, where each event carries the label of its corresponding
activity, is processed using the activity clustering approach described in [4] in
order to correctly reflect activity instances. The transformed event log can then
be used as input for any process mining technique.

4 Evaluation and Discussion

4.1 Evaluation

For the purpose of evaluation, the approach presented in this paper was imple-
mented as a plug-in in the process mining framework ProM3. The Petri net
notation has been chosen as modeling language for the implementation of the
approach, because it has well-defined semantics and can be verified for correct-
ness [1]. Furthermore, most of the common modeling languages, as e.g. BPMN
and EPC, can be transformed into Petri nets [20]. As solver for the constraint
satisfaction problem, the java library CHOCO4 has been used.

To evaluate our approach with real life business processes, we used the BIT
process library, Release 2009, which has been analyzed by Fahland et al. in [12]
and is openly available to academic research. The process model collection con-
tains models of financial services, telecommunications, and other domains. First,
the models were transformed into Petri nets and only 1-bounded models that are
free of life locks and deadlocks, and do not contain disconnected activities, have

3 See http://processmining.org
4 See http://www.emn.fr/z-info/choco-solver/

http://processmining.org
http://www.emn.fr/z-info/choco-solver/
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been kept. This restriction is due to the fact that models with such characteris-
tics cannot be simulated. Moreover, some of the larger process models needed to
be filtered out, as the resulting CSP could not be solved by the CSP solver due
to memory shortage. This is mainly a limitation of the used CSP solver. Yet, for
most of these processes, there is little behavioral distinction between activities
or pairs of activities, e.g. all activities are interleaving to each other. Thus, it
is not possible to match these processes without further knowledge. After the
filtering step, 595 models remained with which we tested our approach. For these
process models, event logs were generated by simulating the process activities’
enactment through event generators. Such event generators followed the patterns
(event models) illustrated in Fig. 3. Figure 3a shows a simple model with one
start and one end transition, demonstrating a typical pattern found in many
systems. For each activity that is assigned to this event model, a start and an
end transition are generated for each execution of that activity. The second event
model, depicted in Fig. 3b, generates for each execution either an event “Start1”
or an event “Start2” and always an end event. Thus, there are two alternative
starts for such an activity, e.g. it could be started by an incoming mail or by a
telephone call. The event model presented in Fig. 3c also has two different start
transitions, but in contrast to the model in Fig. 3b, both start events always
occur with no restriction on their order. For the simulation of the process mod-
els, each activity is randomly assigned to one of these three event models, or it is
left as is, generating only a single event. All generated event logs contain 1.000
traces and are limited to 1.000 events per trace as a stop condition for process
models containing loops.

(a) Sequence of start and
end event (b) Two alternative

start, one end event

(c) Two concurrent start,
one end event

Fig. 3. Different event models used to generate events

In reality, event logs rarely completely comply to the defined process models
due to noise and misbehavior. Thus, we generated for each process model five sets
of simulated logs, in which we randomly inserted noise by shuffling, duplicating
and removing events for a different percentage of traces. Figure 4 shows the
results of this experiment. For 22 % of the processes, the mapping between
events and activities can be established without asking any question, regardless
the amount of noise injected. Looking at logs with no noise or where only 25 %
of the traces contain noise, another 17 % of the processes require only one or two
questions. With more noise in the event logs, this number continuously shrinks
and more questions are needed for these processes. Yet, Fig. 4 shows that even
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Fig. 4. Number of necessary questions with respect to noise

Fig. 5. Number of necessary questions with respect to number of event classes

when all traces contain noise, 97 % of the processes require less than 11 questions
to build the correct mapping. Furthermore, it can be seen that with increasing
noise a few processes cannot be processed by the CSP solver due to resource
problems. This is mainly an implementation issue of the used CSP solver.

Figure 5 depicts the number of necessary questions with respect to the num-
ber of different events in a log without any noise. While one can see that there is
a slight trend towards more questions with increasing numbers of event classes,
it can also be seen that this trend also reverses for larger numbers of event
classes. For example, it can be seen that there are processes with 20 different
events, requiring only 5 questions. Thus, the number of required questions is
rather independent of the number of activities. In fact, it depends on the struc-
ture of the process model and how well activities and pairs of activities can be
distinguished from each other by their behavior.

4.2 Discussion

In the light of our experimental results, the approach turns out to be promising,
especially with regards to resilience to noise. It requires in most of the cases only
little manual intervention. Still, there are some processes that could not be han-
dled, mainly due to massive parallelism and resulting memory shortage. Future
work should investigate how these processes can be handled or, at least, auto-
matically discovered. Moreover, it might be beneficial to combine this approach
with the linguistic matching presented in [5], for cases in which the event labels
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carry more useful information than cryptic database field names. Finally, it is our
plan to investigate, how the approach can be extended to support N:M relations,
namely cases in which a single event class can be related to multiple activities
– e.g. events representing shared functionalities. In the N:M case, the already
very large search space for the matching problem grows drastically and other
techniques might be necessary to handle this. Yet, event logs containing shared
functionalities could be handled with the approach presented in this paper using
preprocessing that essentially removes such events. If applicable, the approach
presented in [5] could be used for the detection of shared functionalities.

5 Related Work

Related research can be subdivided into approaches working on event logs and
approaches working on process models. Looking at approaches focusing on event
logs, there are several approaches aiming at the abstraction of events to activities.
Günther et al. introduce in [14] an approach that clusters events to activities
using a distance function based on time or sequence position. Due to performance
issues with this approach, a new means of abstraction on the level of event
classes is introduced by Günther et al. in [16]. These event classes are clustered
globally based on co-occurrence of related terms, yielding better performance
but lower accuracy. A similar approach introducing semantic relatedness, N:M
relations, and context dependence is defined by Li et al. in [19]. Another approach
that uses pattern recognition and machine learning techniques for abstraction is
introduced by Cook et al. in [7]. Together with the fuzzy miner, Günther and van
der Aalst present an approach to abstract a mined process model by removing
and clustering less frequent behavior [15]. While all these approaches aim at a
mapping of events to activities, they are designed to automatically construct
activities and not to match events to activities that have already been defined a-
priori. In [5] and [6], we introduced approaches that aim at the mapping of events
to pre-defined activities. Nevertheless, the approach in [5] still required more
manual work as the precision of matchings is not sufficiently high. In contrast,
the approach presented in this paper requires only very little manual effort to
match events to pre-defined activities. The approach presented in [6] only works
with 1:1 relations between events and activities and requires pre-processing for
1:N relations. Furthermore, it is only able to capture behavior from traces that
can be replayed on the model. This is resolved by the work of this paper.

Another branch of related approaches working on event logs are those dealing
with event correlation to group events belonging to the same process instance,
as e.g. the work by Perez et al. in [22]. Yet, these approaches work on a more
coarse-grained level as they focus on the relation to process instances rather
than to activities. In fact, we assume that the correlation of events to process
instances is either already given, or can be established by an approach like [22].

Our work is also related to automatic matching for process models. While
matching has been partially addressed in various works on process similarity [10],
there are only a few papers that cover this topic as their major focus. The work
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on the ICoP framework defines a generic approach for process model match-
ing [25]. This framework is extended with semantic concepts and probabilistic
optimization in [17,18]. Further, general concepts from ontology matching are
adopted in [11]. The implications of different abstraction levels for finding corre-
spondences is covered in [26]. However, all these works focus on finding matches
between two process models, not between events and activities.

Our approach adopts MINERful [9] for the computation of constraints’ sup-
port. MINERful is a declarative process miner, based on a two-phase technique.
During the first step, it creates a so-called knowledge base, containing statistics
about the occurrences of events in the log. The second step computes the sup-
port for constraints by querying such knowledge base. It is proven to be among
the fastest Declare miners [9].

6 Conclusion

In this paper we introduce a novel technique for the mapping of events to activi-
ties, which can be used as a preprocessing step to enable business process intelli-
gence techniques (e.g., process mining). The approach uses Declare rules derived
from existing business process models and from event logs generated by IT sys-
tems, to establish a connection between conceptual process models and opera-
tional execution data. The key contribution of this approach is the establishment
of a relation between events and a given set of activities in a process model using
behavioral knowledge captured by Declare rules. Thereby, also 1:N relations can
be handled. As shown in the evaluation in Section 4, the newly introduced match-
ing technique performs well and requires little manual intervention. It also reveals
to be robust towards noise.
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