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Abstract. Abstract State Machines (ASMs) represent a general model of  
computation which subsumes all other classic computational models. Since the 
notion of ASM state naturally captures the classic notion of program state, ASMs 
are suitable to be verified through a predicate abstraction approach. The aim of 
this paper is to discuss how predicates over ASM states can support the formal ve-
rification of ASM-based models. The proposal can overcome the main limitations 
that penalize traditional model checking techniques applied to ASMs. 

1 Introduction 

Abstract State Machines (ASMs) represent a general model of computation which 
subsumes all other classic computational models [27], [12]. Indeed, they suffice to 
capture the behavior of wide classes of sequential [20], parallel [8] and distributed 
algorithms [18]. The origin of this generality lies in the notion of ASM state. In classic 
formalisms, such as finite state machines and Turing machines, states are symbolically 
represented by (sequence of) symbols belonging to finite alphabets [21]. Conversely, 
ASM states are syntactically and semantically represented by algebraic structures  
defined over finite signatures. Therefore, ASM states can model any object of arbitrary 
complexity [20]. 

Thanks to their generality, ASMs have been successfully applied for modeling crit-
ical and complex systems in a wide range of application domains, and for analyzing 
their computationally interesting properties, both domain-independent (e.g. the termi-
nation of the execution, deadlock- and starvation-freedom, and so on) and domain-
specific (e.g. security issues, the movement of robotic arms, synchronization issues of 
real-time controllers, and so on) [9]. However, despite the advantages they provide, 
the computational power and the arbitrary complexity of the formalism cause an un-
avoidable drawback: several computationally interesting properties are undecidable, 
so the formal verification of ASM-based models cannot be fully automatized [29]. 

Traditional model checking approaches to the problem of verifying properties typi-
cally model systems with finite state machines (or variants) and express the properties 
to be verified using some temporal logic [5]. Analogously, when model checking 
techniques are applied to ASMs, the ASM-based model under study is transformed 
into the input required by the adopted model checker [14], [3], which is in general less 
expressive. Therefore, this approach suffers from two main limitations: the loss of 
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expressive power due to the translation of the ASM specifications, and the difficulty 
in using the declarative notations of temporal logics, considered less comfortable for 
practitioners with respect to operational specifications of the properties (e.g. [4]). 

Our long term research is aimed at providing a theoretical framework for treating 
properties analysis entirely within the ASM framework, i.e. without translating 
ASMs, and without using temporal logics. To this end, the present paper takes a step 
towards the application of a predicate abstraction approach for formally analyzing 
ASMs. Predicate abstraction is a popular and widely used technique for automatizing 
the verification of programs [19], [11]. It consists in the approximation of the program 
states into a finite number of predicates defined over these states. In this context, the 
goal of the present paper is to support the verification of ASM properties through 
predicates over the states. In this way, the goal of formally verifying ASM models 
entirely within the ASM framework can be achieved. 

The rest of this paper is organized as follows. Section 2 is about related work.  
Section 3 provides background knowledge about the ASM formalism. Section 4 deals 
with predicate abstraction for ASMs. Section 5 depicts some illustrative examples. 
Finally, Section 6 concludes the paper and sketches future developments. 

2 Related Work 

The ASM formalism allows both manual and automated formal verification of sys-
tems. In [9] numerous proofs are provided to illustrate how a modeler can verify 
properties of a given ASM. These proofs range from simple to complex and, since 
ASMs are executable machines which lend themselves to traditional inductive proofs, 
they are often formulated in a mathematical way. For example, in [15] a manual  
verification calculus based on the Hoare logic is proposed. Conversely, in [14] and [3] 
the authors use an automatic model checking approach for verifying ASMs. However, 
the translation of the ASM into the input required by the model checkers may cause a 
loss of expressive power. Moreover, in all these cases, properties are expressed in 
some temporal logic [5]. But, the effectiveness of this hybrid approach is not unanim-
ously recognized: several authors emphasize the need of an entirely operational speci-
fication of properties within the same formalism, e.g. [22], [4]. 

ASMs have been successfully used for modeling several systems, often concurrent 
and distributed, and for investigating their properties. For example, an ASM specifi-
cation to model concurrency in a Web browser and to prove some consistency proper-
ties has been proposed in [17]; ASMs have also been used to model and validate  
vision-based robot control applications in [25]; and they have been applied for study-
ing Grid systems in [6]. However, all these works are characterized by the lack of a 
theoretical framework for systematically treating the analyzed properties. 

Concerning the application of predicate abstraction to formal methods, other for-
malisms, such as Petri nets [10], already employs predicates on states whenever prop-
erties are to be analyzed. However, Petri nets typically provide only few levels of 
abstraction, so they are not able to support refinements till to implementation details. 
Conversely, the expressive power of ASMs provides a way to describe algorithmic 
issues in a simple abstract pseudo-code, which can be translated into a high level pro-
gramming language source code in a quite simple manner [9]. Furthermore, predicate 
abstraction has been already used within the ASM formalism in [16]; however, the 
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authors use what they call test predicates in a way which is different from ours.  
Indeed, they use predicates on states in order to generate test sequences. 

3 Background on ASMs 

Abstract State Machines are finite sets of so-called rules of the form if condition then 
updates (possibly with the else clause) which transform abstract states [9]. An ASM 
state is an algebraic structure, i.e. a domain of objects with functions and relations 
defined on them. Partial functions are turned into total functions by using the special 
value undef. Moreover, without loss of generality, relations are treated as particular 
functions that evaluate to true or false. On the other hand, the concept of rule reflects 
the notion of transition occurring in traditional transition systems: condition is a first-
order formula whose interpretation can be true or false, whereas updates is a finite set 
of assignments of the form f(t1, …, tn) := t, whose execution consists in changing in 
parallel the value of the specified functions to the indicated value. 

Pairs of function names, fixed by a signature, together with values for their argu-
ments are called locations: they abstract the notion of memory unit. Therefore, a state 
can be viewed as a function that maps locations to their values: the current configura-
tion of locations together with their values determines the current state of the ASM. 
As usual in computational models, an ASM step is a pair (s, s’) of states: in a given 
state, all conditions are checked, so that all updates in rules whose conditions evaluate 
to true are simultaneously executed, and the result is a transition of the machine from 
that state to another. Note that for the unambiguous determination of the next state, 
updates must be consistent, i.e. no pair of updates must refer to the same location. 

A generalization of basic ASMs is represented by Distributed ASMs (DASMs) [9], 
[18], capable to capture the formalization of multiple agents acting in a distributed 
environment. Essentially, a DASM is intended as an arbitrary but finite number of 
independent agents, each executing its own underlying ASM. In a DASM the key-
word self is used for supporting the relation between local and global states and for 
denoting the specific agent which is executing a rule. 

4 Predicates Over ASM States 

Classic computational models, such as finite state machines and Turing machines, 
represent the current state of the computation with (sequence of) symbols belonging to 
finite alphabets [21]. This poses a limitation: the representation of states is restricted to a 
specific data structure. Instead, as explained in Section 3, ASMs allow any algebraic 
structure to serve as representation of states. This results in a great amount of details 
specifying the states, so making the analysis of the properties of the whole system more 
difficult, mainly for what concerns the comprehension of the semantics of each state, 
with respect to the computational behavior of the modeled system. 

For better explaining this issue, the next section will elaborate two examples, both 
concerning distributed systems: the analysis of starvation-freedom [2] and deadlock-
freedom [28], and the analysis of the computation of an agent capable to play two or 
more roles at the same time. In the former case, the simple execution of one or more 
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updates does not necessarily involve the change of the locations values in such a way 
that the process makes real computational progress, so driving to starvation. In fact, 
an ASM could starve even if the computation continues to evolve through different 
states. In other words, it is difficult to recognize effective progress. As an extreme 
case, this computational behavior can lead to deadlock. On the other hand, the second 
case concerns, for example, the case of a process that acts both as a client with respect 
to a service, and, simultaneously, as a server with respect to another service. In this 
case, ASMs easily capture in a same state different computational activities to be run 
in parallel. However, it is difficult for the modeler to distinguish, inside the same 
state, what computational branches have been entered or not. 

In order to overcome these problems, the need of an abstraction framework capable 
to capture the semantics of the ASM states arises. More precisely, there is the need to 
partition the set of locations into subsets and extract from them the locations specifi-
cally interesting for the verification purposes. To this end, we apply a predicate  
abstraction approach. Predicate abstraction is a popular and widely used technique 
proposed to analyze programs [19], [11]. It aims at generating an abstract model from 
the concrete system to be verified, so checking the former instead of the latter. Briefly 
speaking, the system states are mapped to model states according to their evaluation 
with respect to a finite set of predicates defined over the system states. The model has 
the same control flow of the original program but it concerns only the predicates over 
the states. The model can then be used in the place of the original program when per-
forming model checking, theorem proving, or other kinds of verification techniques. 

Literature agrees that a program state coincides with the configuration of program 
variables and their current values, e.g. [24]. Analogously, an ASM state coincides 
with the configuration of ASM locations and values. So, since there exists a natural 
parallelism between classic program states and ASM states, predicate abstraction can 
be applied to ASMs as much as to programs of traditional programming languages. In 
this context we can apply predicate abstraction to ASMs through the following: 

Definition. A predicate ϕ over an ASM state s is a first-order formula defined over the 
locations in s, such that s  ϕ. 

Predicates over the states serve to represent the semantics of each state, i.e. the 
properties locally satisfied, and can be regarded as a non-injective labeling function 
that maps predicates to each state. An ASM model can then be equipped with a set of 
predicates Φ = {ϕ1, …, ϕn}, such that, in the current state, each ϕi can be satisfied or 
not. In this way, the ASM control flow can be represented by the truth value of the 
predicates over the states, i.e. by composing the local properties of the various states. 
So, global properties to be verified can be analyzed by focusing on this composition. 

Note that our use of predicate abstraction is quite different with respect to the tradi-
tional way: instead of extracting abstract models from the ASMs to be verified, our 
aim is to use predicates over the states in order to support the verification of ASM 
models. In particular, applying predicate abstraction to ASMs induces the partition of 
locations we need for expressing the semantics of the states. 
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5 Two Examples 

In order to show the application of predicate abstraction over ASM states two exam-
ples are discussed: the Dining Philosophers problem, and the Ad-hoc On-demand 
Distance Vector (AODV) routing protocol for Mobile Ad-hoc NETworks (MANETs). 
The first example deals with starvation-freedom and deadlock-freedom analysis: here 
the same value for a predicate holds for several states. The second example discusses 
the case of several predicates holding over the same state in the context of an agent 
playing several different roles within the same system. 

5.1 Dining Philosophers 

The Dining Philosophers problem, due to Dijkstra [13], is a well-known metaphor for 
discussing concurrent processes. Five philosophers are sitting around a table with a 
bowl of spaghetti in the middle. For them, life consists only of two moments: thinking 
and eating, rigorously using two forks. Since each philosopher has a right fork and a 
left fork, (s)he thinks till both forks become available, eats for a certain amount of 
time, then stops eating (putting back both forks on the table), and starts thinking 
again. The problem is that in between two neighboring philosophers there is only one 
fork: each one shares a fork with a neighbor. The ASM-based model of Dining Philo-
sophers is in [9]: it is a DASM with a set of philosophers = {p1, …, p5}, i.e. the agents 
of the system, and a set of forks = {f1, …, f5}, i.e. their shared resources. The compu-
tation evolves through the states characterized by the following predicates: 

• thinking: ¬(owner(rightFork(self)) = self  owner(leftFork(self)) = self). The 
philosopher is thinking, so (s)he is waiting for both forks to become available; 

• eating: owner(rightFork(self)) = self  owner(leftFork(self)) = self. The philo-
sopher is eating, so (s)he has obtained both forks, 

where: 

• rightFork: philosophers → forks indicates a philosopher’s right fork; 
• leftFork: philosophers → forks indicates a philosopher’s left fork; 
• owner: forks → philosophers denotes the current user of a fork.  

Initially, each philosopher pi thinks, and has fork fi on the right and fork fi – 1 on the 
left, except for p1 that has fork f5 on the left. The ASM program for pi is shown below: 

 
PhilosopherProgram(pi) =  
 if owner(rightFork(self)) = undef  ower(leftFork(self)) = undef then { 

   owner(rightFork(self)) := self 
   owner(leftFork(self)) := self 
  } 
  if owner(rightFork(self)) = self  owner(leftFork(self)) = self then { 
   owner(rightFork(self)) := undef 
   owner(leftFork(self)) := undef 

 } 
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Ideally, pi, denoted by self, would like to execute alternatively the two rules above 
to get and later to release the desired forks. Indeed, even if ASM rules are executed in 
parallel by definition, the second rule (i.e. the second if-then statement in the program 
above) can be performed if and only if the first rule has been previously executed.  

During the waiting for both forks, the computation of pi can go through four states: 

1. (owner(rightFork(self))=philosopher on the right)  (owner(leftFork(self))=undef); 
2. (owner(rightFork(self))=undef)  (owner(leftFork(self)) = philosopher on the left); 
3. (owner(rightFork(self)) = philosopher on the right)  (owner(leftFork(self)) =  

philosopher on the left); 
4. (owner(rightFork(self)) = undef)  (owner(leftFork(self)) = undef). 

In all four states, the thinking predicate holds. The state changes whenever an 
update is executed by the neighboring philosophers over the shared locations; howev-
er, the ASM could not make a real computational step towards the state characterized 
by the eating predicate. In fact, only state (4) allows the first rule to be executed, so 
the desired state can be reached. In this particular case, even if the ASM state 
changes, the computation could not make a real progress, i.e. the process risks to 
starve. 

For verification purposes, predicate abstraction is very suitable for capturing star-
vation. In particular, starvation could arise if there are rules: (i) whose condition con-
cerns functions which represent the dependency of the agent from external resources; 
and (ii) whose execution/non-execution could have effects that does not change the 
value of the predicate over the states which represents the “waiting for something” 
issue. In our case, the first rule of the PhilosopherProgram shows these issues. 

Finally, it is worth noting that, if resource holding holds, the scenario above is af-
fected by the risk of deadlock: each philosopher picks up his/her right fork and waits 
for the left fork to become available. Thanks to predicate abstraction, this issue can be 
captured by the following predicate: owner(rightFork(p)) = p,  p  Philosophers. 
Therefore, the model is deadlock-free if, during the DASM computation, it is not 
possible that its global state fulfill the predicate above, i.e. at any moment there must 
be at least one ASM whose state fulfills ¬(owner(rightFork(self)) = self). 

5.2 A MANET Routing Protocol 

Mobile Ad-hoc NETworks (MANETs) [1] are wireless networks designed for com-
munications among nomadic hosts, in absence of fixed physical infrastructure.  
Each node plays a twofold role: end-point of a communication session and router 
supporting other communications. Both activities evolve concurrently. A MANET 
that adopts the AODV routing protocol [26] can be modeled by a DASM including a 
homogeneous set of hosts = {h1, …, hn}. Each ASM can be in one of different states, 
which are characterized by the following predicates over the states: 

• idle: the host is inactive. Its formula is given by: wishToInitiate(self, dest) = false  
receivedRREQ(self, dest) = false  isEmpty(replies(self)) = true,  dest  hosts; 

• router: the host has received a control packet directed to it. It is characterized by 
receivedRREQ(self, dest) = true; 
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• initiator: the host has to start a new communication session. It is characterized 
by wishToInitiate(self, dest) = true; 

• forwarding: the host is forwarding a control packet to another recipient. It is 
characterized by isEmpty(replies(self)) = false. 

where: 

• wishToInitiate: hosts × hosts → boolean indicates whether a new communication 
session to a destination is required; 

• receivedRREQ: hosts × hosts → boolean indicates whether an RREQ packet has 
been received; 

• isEmpty: queues → boolean states if a queue of messages is empty or not. 

In fact, in order to model broadcasting and unicasting, each host is associated with 
two queues of messages: requests and replies, including: RREQ (Route REQuest) 
packets for requesting a route to a desired destination, and RREP (Route REPly) 
packets for replying this request, respectively. This allows us to model send-
ing/receiving of packets by means of enqueuing/dequeuing abstract messages into the 
corresponding queue. In addition, each ASM includes the following functions: 

• routingTable: hosts → PowerSet(records), which represents the information about 
the hosts recorded into the host’s routing table;  

• hostsInRT: PowerSet(records) → PowerSet(hosts), which returns the set of the 
hosts stored in a given routing table, for checking information about hosts. 

The ASM pseudo-code of the i-th host is shown below.  
 

HostProgram(hi) =  
  if ¬isEmpty(requests(self)) then { 
   RREQ = top(requests(self)) 
   nextHop = sender of top(requests(self)) 
   updateRoutingTable(self, RREQ) 
   receivedRREQ(self, dest) := true 
   Router(RREQ, nextHop) 
  } 
  if wishToInitiate(self, dest) = true then 
   Initiator(dest) 
  if ¬isEmpty(replies(self)) { 
   RREP = top(replies(self)) 
   if RREP.init  self then { 
    nextHop = select c.nextHop  hostsInRT(routingTable(self))  

    with RREP.init = c.dest 
    updateRoutingTable(self, RREP) 
    UnicastRREP(RREP, nextHop) 
    dequeue RREP from replies(self) 
   } 
  } 
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It is worth noting that the activation of a host unfolds different computational 
branches: two of them lead to the execution of the Router or Initiator submachine, 
respectively; in the third case, the forwarding of RREPs is executed. In particular, the 
Router submachine models the behavior of the node when it supports communications 
between other end-points; instead, the Initiator submachine models the behavior of 
the node when it acts as the initiator of a new communication session. Note that if 
initiator does not know a route to reach destination, then it starts a route discovery 
process aimed at discovering this route. For clarity, an ASM submachine is a parame-
terized rule [9]: it allows the declaration of local functions, so that each call of a sub-
machine works with its own instantiation of its local functions.  

For verification purposes, predicate abstraction can help in expressing the node’s 
behavior. In our case, the simultaneous fulfillment of different predicates over the 
same ASM state is very suitable for capturing the intrinsic concurrency of the nodes’ 
computation. Indeed, when the MANET starts operating, each host is idle. But, during 
the normal execution of the MANET, a host can, for example, fulfill the router 
predicate with respect to a destination, but at the same time it can fulfill other predi-
cates, e.g. initiator, for what concerns other destinations. The values of the argu-
ments help in distinguishing the various cases.  

Moreover, predicate abstraction can help in investigating some specific properties 
for MANETs: the correctness of the activities of sending/receiving packets, the star-
vation-freedom of initiator when it starts a route discovery process, and so forth. For 
example, concerning the starvation issue, the presence of a timeout in the Initiator 
submachine allows initiator to escape the waiting for RREPs if a route to destination 
cannot be found. So, for that specific destination, after the timeout expiration, the 
ASM state does not fulfill the initiator predicate but the idle predicate.  

For the purposes of the present work, it is not necessary to further detail the upda-
teRoutingTable and UnicastRREP rules, as well the Router and Initiator submachines. 
The interested reader can find the full specification of the model and the proof of its 
correctness in [7]. 

6 Conclusion 

This paper proposes predicate abstraction over ASM states. The proposed approach 
can support the verification of ASM-based models by overcoming the main limitations 
that penalize classic model checking techniques applied to ASMs. In fact, applying 
predicate abstraction to ASMs enables the analysis of the global properties of the sys-
tem to be verified through a representation of its local properties through predicates 
over the states. In this way, the analysis is executed entirely within the ASM frame-
work, without the need of less expressive models and without the burden of temporal 
logics. Possible applications are represented by various kinds of critical and complex 
systems that can benefit from a formal approach: Internet-based services, security pro-
tocols, Cloud, Grid and mobile systems, and so on. 

It is worth specifying that researchers usually distinguish between two classes of 
properties [23]. Safety properties specify that “something bad never happens”, e.g. 
deadlock-freedom. Instead, liveness properties stipulate that “something good even-
tually happens”, e.g. starvation-freedom. From this point of view, safety properties 
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require that certain predicates over the states, which represent a “bad thing”, must 
never be satisfied, or, alternatively, their negation must always hold during the com-
putation. Conversely, liveness properties require that certain predicates over the 
states, which represent a “good thing”, must eventually be satisfied during the compu-
tation. Future directions of this research should investigate specific features of predi-
cate abstraction with respect to the specific kinds of properties to be analyzed. 
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