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Preface

Controlled manipulation of individual quantum systems is one of the most striking
achievements of early twenty-first century experimental science. Today, individual
atoms and photons can be guided through complex coherent evolutions with
exquisite control, performing quantum information tasks previously seen only on
theoreticians’ notepads. One of the most critical capabilities, also one of the most
challenging, is the controlled interaction of material quantum systems—atoms—
with optical quantum systems—photons. This capability lies at the heart of both
quantum networking, the distribution of quantum information among separated
nodes, and quantum sensing, in which atoms acting as sensors are “read out” by a
photonic quantum system.

Achieving control in this area requires rethinking fundamental processes such as
absorption and emission of single photons. Breaking from the traditional view that
these processes are immutable and unpredictable, recent experiments explore how
such fundamental interactions can be shaped and controlled, an engineering of the
atom-photon interaction. Progress has been swift, both in established methods such
as cavity QED, and in wholly new methods such as heralded single-photon
absorption and on-demand photon generation by parametric down-conversion. The
techniques are finding application in a broad range of material systems, including
trapped ions, neutral atoms, molecules, impurities in crystals, and semiconductor
quantum dots.

This book aims to provide an accessible overview of the diverse but closely
interconnected activities at this new frontier of quantum optics. The topics
addressed include generation of indistinguishable photons, methods to make these
photons compatible with the narrow transitions of atomic systems, and their
interaction with solid state and atomic media. Free-space interaction between single
photons and single trapped ions plays a prominent role, as does modification of
emission properties and shaping of the photon wave function using cavity QED.
Leaders of the field, in most cases the originators of the techniques being described,

v



contributed the individual chapters, each of which presents the principles, state
of the art, and envisioned future of a method to engineer the atom-photon
interaction.

We thank all the authors for their generous contributions of time, effort, and
expertise, without which this volume would not have been possible.

Innsbruck Ana Predojević
Barcelona Morgan W. Mitchell
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Cavity QED



Chapter 1
Cavity Induced Interfacing of Atoms
and Light

Axel Kuhn

Abstract This chapter introduces cavity-based light-matter quantum interfaces,
with a single atom or ion in strong coupling to a high-finesse optical cavity. We
discuss the deterministic generation of indistinguishable single photons from these
systems; the atom-photon entanglement inextricably linked to this process; and the
information encoding using spatio-temporal modes within these photons. Further-
more, we show how to establish a time-reversal of the aforementioned emission
process to use a coupled atom-cavity system as a quantum memory. Along the line,
we also discuss the performance and characterisation of cavity photons in elemen-
tary linear-optics arrangements with single beam splitters for quantum-homodyne
measurements.

1.1 Introduction

The interfacing of discrete matter states and photons, the storage and retrieval of
single photons, and the entanglement and mapping of quantum states between dis-
tant entities are key elements of quantum networks for distributed quantum informa-
tion processing [1]. Ideally, such systems are composed of individual nodes acting as
quantum gates or memories, with optical interlinks that allow for the entanglement or
teleportation of their quantum states, or for optical quantum information processing
using linear optics acting on the light traveling between the nodes [2, 3].With individ-
ual photons carrying the information, substantial efforts have been made that focus
on their production and characterisation. Applications that rely on single photons and
on their indistinguishability include quantum cryptography, optical quantum com-
puting, light-matter entanglement, and atom-photon state mapping, which all have
successfully been demonstrated. For these purposes, sources of single photons that
are based on single isolated quantum systems like a single atom or ion are ideal,
given their capability of emitting streams of indistinguishable photons on demand.

A. Kuhn (B)
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4 A. Kuhn

This approach is inherently simple and robust because a single quantum system can
only emit one single photon in a de-excitation process. With all atoms or ions of the
same isotope being identical, different photon sources based on one-and-the-same
species are able of producing indistinguishable photons without further measures,
provided the same transitions are used and the electromagnetic environment is iden-
tical for all atoms. This makes them ideal candidates for the implementation of
large-scale quantum computing networks.

In the present chapter, we primarily discuss the quantum-state control of an atom
strongly coupled to an optical cavity, with particular focus on the deterministic gen-
eration of single photons in arbitrary spatio-temporal modes. Important fundamental
properties of on-demand single photon sources are analyzed, including single pho-
ton purity and indistinguishability. In this context, understanding and controlling the
fundamental processes that govern the interaction of atoms with optical cavities is
important for the development of improved single-photon emitters. These interac-
tions are examined in the context of cavity-quantum electrodynamic (cavity-QED)
effects. We show how to apply these to channel the photon emission into a sin-
gle mode of the radiation field, with the vacuum field inside the cavity stimulating
the process. Furthermore we elucidate how to determine and control the coherence
properties of these photons in the time domain and use that degree of control for infor-
mation encoding, and for information or photon-storage in single atoms by means
of a time-reversal of the photon emission processes.

1.2 Cavities for Interfacing Light and Matter

In this section, we closely follow, summarize and extend our recently published
review articles [4, 5] in order to introduce the concepts, characteristic properties,
and major implementations of state-of-the-art single-photon sources based on single
atoms or ions in cavities. These have all the potential to meet the requirements of
optical quantum computing and quantum networking schemes, namely deterministic
single-photon emission with unit efficiency, directed emission into a single spatial
mode of the radiation field, indistinguishable photons with immaculate temporal and
spatial coherence, and reversible quantum state mapping and entanglement between
atoms and photons.

Starting from the elementary principles of cavity quantum electrodynamics, we
discuss the coupling of a single quantum system to the quantised radiation field
within optical resonators. Then we show how to exploit these effects to generate
single photons on demand in the strong coupling regime and the bad cavity limit,
using either an adiabatic driving technique or a sudden excitation of the emitter. To
conclude, we discuss a couple of prominent experimental achievements and examine
the different approaches for obtaining single photons from cavities using either atoms
or ions as photon emitters.
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1.2.1 Atom-Photon Interaction in Resonators

Any single quantum system that shows discrete energy levels, like an individual atom
or ion, can be coupled to the quantised modes of the radiation field in a cavity. Here
we introduce the relevant features of cavity-QED and the Jaynes-Cummings model
[6, 7], and then extend these to three-level atoms with two dipole transitions driven
by two radiation fields. One of the fields is from a laser, the other is the cavity field
coupled to the atom. We furthermore explain how the behaviour of a coupled-atom
system depends on the most relevant cavity parameters, such as the cavity’s mode
volume and its finesse.

Field quantisation: We consider a Fabry-Perot cavity with mirror separation l and
reflectivity R. The cavity has a free spectral range ΔωFSR = 2π × c/(2l), and its
finesse is defined as F = π

√
R/(1 − R). In the vicinity of a resonance, the trans-

mission profile is Lorentzian with a linewidth (FWHM) of 2κ = ΔωFSR/F , which
is twice the decay rate, κ , of the cavity field. Curved mirrors are normally used to
restrict the cavity eigenmodes to geometrically stable Laguerre-Gaussian orHermite-
Gaussian modes. In most cases, just one of these modes is of interest, characterised
by its mode function ψcav(r) and its resonance frequency ωcav. The state vector can
therefore be expressed as a superposition of photon-number states, |n〉, and for n
photons in the mode the energy is �ωcav(n + 1

2 ). The equidistant energy spacing
imposes an analogous treatment of the cavity as a harmonic oscillator. Creation and
annihilation operators for a photon, â† and â, are then used to express theHamiltonian
of the cavity,

Hcav = �ωcav

(
â†â + 1

2

)
. (1.1)

We emphasize that this does not take account of any losses, whereas in a real cavity,
all photon number states decay until thermal equilibrium with the environment is
reached. In the optical domain, the latter corresponds to the vacuum state, |0〉, with
no photons remaining in the cavity.

Two-level atom:We now analyse how the cavity field interacts with a two-level atom
with ground state |g〉 and excited state |x〉 of energies �ωg and �ωx, respectively,
and transition dipole moment μxg. The Hamiltonian of the atom reads

HA = �ωg|g〉〈g| + �ωx|x〉〈x |. (1.2)

The coupling to the field mode of the cavity is expressed by the atom-cavity coupling
constant,

g(r) = g0 ψcav(r), with g0 =
√

(μ2
xgωcav)/(2�ε

0
V ), (1.3)
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where V is the mode volume of the cavity. As the atom is barely moving during the
interaction, we can safely disregard its external degrees of freedom. Furthermore we
assume maximum coupling, i.e. ψcav(ratom) = 1, so that one obtains g(r) = g0.
In a closed system, any change of the atomic state would go hand-in-hand with a
corresponding change of the photon number, n. Hence the interaction Hamiltonian
of the atom-cavity system reads

Hint = −�g0
[
|x〉〈g|â + â†|g〉〈x |

]
. (1.4)

For a given excitation number n, the cavity only couples |g, n〉 and |x, n − 1〉. If
the cavity mode is resonant with the atomic transition, i.e. if ωcav = ωx − ωg , the
population oscillates with the Rabi frequency Ωcav = 2g0

√
n between these states.

The eigenfrequencies of the total Hamiltonian, H = Hcav + HA + Hint, can be
found easily. In the rotating wave approximation, they read

ω±
n = ωcav

(
n + 1

2

)
+ 1

2

(
Δcav ±

√
4ng2

0 + Δ2
cav

)
, (1.5)

where Δcav = ωx − ωg − ωcav is the detuning between atom and cavity. Figure1.1
illustrates this level splitting. Within each n manifold, the two eigenstates are split

by Ωeff,n =
√
4ng2

0 + Δ2
cav, which is the effective Rabi frequency at which the

population oscillates between states |g, n〉 and |x, n − 1〉. This means that the cavity
field stimulates the emission of an excited atom into the cavity, thus de-exciting the
atom and increasing the photon number by one. Subsequently, the atom is re-excited
by absorbing a photon from the cavity field, and so forth. In particular, an excited
atom and a cavity containing no photon are sufficient to start the oscillation between

|x, 0〉 and |g, 1〉 at frequency
√
4g2

0 + Δ2
cav. This phenomenon is known as vacuum

ωcav

Δcav

|g,n〉

|x,n-1〉

|g,0〉
|g,0〉

|g,1〉

|x,0〉
|g,2〉

|x,1〉

ωcav

ωcav

Δcav

eff,n

(a) (b) (c)

Fig. 1.1 Atom-cavity coupling (from [4]): a a two-level atom with ground state |g〉 and excited
state |x〉 coupled to a cavity containing n photons. In the dressed-level scheme of the combined
atom-cavity system with the atom outside (b) or inside (c) the cavity, the state doublets are either
split by Δcav or by the effective Rabi frequency, Ωeff,n, respectively
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Fig. 1.2 Three-level atom in cavity coupling (from [4]): a a three-level atom driven by a classical
laser field of Rabi frequency Ω , coupled to a cavity containing n photons. b Dressed-level scheme
of the combined system without coupling, and c for an atom interacting with laser and cavity.

The triplet is split by Ωsplit =
√
4ng2

0 + Ω2 + Δ2. In the limit of a large detuning Δ, the Raman

transition |e, n − 1〉 ↔ |g, n〉 is driven at the effective Rabi frequency Ωeff = 1
2

(
Ωsplit − |Δ|) ≈

(4ng2
0 + Ω2)/|4Δ|

Rabi oscillation. On resonance, i.e. for Δcav = 0, the oscillation frequency is 2g0,
also known as vacuum Rabi frequency.

To summarise, the atom-cavity interaction splits the photon number states into
doublets of non-degenerate dressed states, which are named after Jaynes and
Cummings [6, 7]. Only the ground state |g, 0〉 is not coupled to other states and
is not subject to any energy shift or splitting.

Three-level atom: We now consider an atom with a Λ−type three-level scheme
providing transition frequencies ωxe = ωx − ωe and ωxg = ωx − ωg as depicted
in Fig. 1.2. The |e〉 ↔ |x〉 transition is driven by a classical light field of frequency
ωL with Rabi frequency Ω , while a cavity mode with frequency ωcav couples to the
|g〉 ↔ |x〉 transition. The respective detunings are defined as ΔL = ωxe − ωL and
Δcav = ωxg − ωcav. Provided the driving laser and the cavity only couple to their
respective transitions, the interaction Hamiltonian

Hint = �[ΔL|e〉〈e| + Δcav|g〉〈g| − Ω

2
(|x〉〈e| + |e〉〈x |)

− g0(|x〉〈g|a + a†|g〉〈x |)]
(1.6)

determines the behaviour of the system. Given an arbitrary excitation number n, this
Hamiltonian couples only the three states |e, n −1〉, |x, n −1〉, |g, n〉. For this triplet
and a Raman-resonant interaction withΔL = Δcav ≡ Δ, the eigenfrequencies of the
coupled system read

ω0
n = ωcav

(
n + 1

2

)
and (1.7)

ω±
n = ωcav

(
n + 1

2

)
+ 1

2

(
Δ ±

√
4ng2

0 + Ω2 + Δ2

)
.
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The previously-discussed Jaynes-Cummings doublets are now replaced by
dressed-state triplets,

|φ0
n〉 = cosΘ|e, n − 1〉 − sinΘ|g, n〉, (1.8)

|φ+
n 〉 = cosΦ sinΘ|e, n − 1〉 − sinΦ|x, n − 1〉 + cosΦ cosΘ|g, n〉,

|φ−
n 〉 = sinΦ sinΘ|e, n − 1〉 + cosΦ|x, n − 1〉 + sinΦ cosΘ|g, n〉,

where the mixing angles Θ and Φ are given by

tanΘ = Ω

2g0
√

n
, tanΦ =

√
4ng2

0 + Ω2

√
4ng2

0 + Ω2 + Δ2 − �

. (1.9)

The interaction with the light lifts the degeneracy of the eigenstates. However, |φ0
n〉

is neither subject to an energy shift, nor does the excited atomic state contribute to
it. Therefore it is a ‘dark state’ which cannot decay by spontaneous emission.

In the limit of vanishing Ω , the states |φ±
n 〉 correspond to the Jaynes-Cummings

doublet and the third eigenstate, |φ0
n〉, coincides with |e, n − 1〉. Also the eigenfre-

quency ω0
n is not affected by Ω or g0. Therefore transitions between the dark states

|φ0
n+1〉 and |φ0

n〉 are always in resonance with the cavity. This holds, in particular, for
the transition from |φ0

1〉 to |φ0
0〉 ≡ |g, 0〉 as the n = 0 state never splits.

Cavity-coupling regimes: So far, we have been considering the interaction Hamil-
tonian and the associated eigenvalues and dressed eigenstates that one obtains when-
ever a two- or three-level atom is coupled to a cavity. We have been neglecting the
atomic polarisation decay rate, γ , and also the field-decay rate of the cavity, κ (Note
that we have chosen a definition where the population decay rate of the atom reads
2γ , and the photon loss rate from the cavity is 2κ). It is evident that both relaxation
rates result in a damping of a possible vacuum-Rabi oscillation between states |x, 0〉
and |g, 1〉. Only in the regime of strong atom-cavity coupling, with g0 � {κ, γ },
the damping is weak enough so that vacuum-Rabi oscillations do occur. The other
extreme is the bad-cavity regime, with κ � g2

0/κ � γ , which results in strong damp-
ing and quasi-stationary quantum states of the coupled system if it is continuously
driven.

Two properties of the cavity can be used to distinguish between these regimes:
First the strength of the atom-cavity coupling, g0 ∝ 1/

√
V (dependant upon the

mode volume of the cavity), and second the finesse F = π
√

R/(1 − R) of the
resonator, which depends on the mirror reflectivity R. The finesse gives the mean
number of round trips in the cavity before a photon is lost by transmission through
one of the cavity mirrors, and it is also identical to the ratio of free spectral range
ΔωFSR to cavity linewidth 2κ . To reach strong coupling, a high value of g0 and
therefore a short cavity of small mode volume are normally required. Keeping κ

small enough at the same time then calls for a high finesse and a mirror reflectivity
R ≥ 99.999%.
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1.2.2 Single-Photon Emission

For the deterministic generation of single photons from coupled atom-cavity systems,
all schemes implemented to date rely on the Purcell effect [8]. The spatial mode
density in the cavity and the coupling to the relevant modes is substantially different
from free space [9], such that the spontaneous photon emission into a resonant cavity
gets either enhanced ( f > 1) or inhibited ( f < 1) by the Purcell factor

f = 3Qλ3

4π2V
,

depending on the cavity’s mode volume, V , and quality factor, Q. More importantly,
the probability of spontaneous emission placing a photon into the cavity is given by
β = f/( f + 1). If the mode volume of the cavity is sufficiently small, the emitter
and cavity couple so strongly that β ≈ 1, i.e. emissions into the cavity outweigh
spontaneous emissions into free space. A deterministic photon emission into a single
field mode is therefore possible with an efficiency close to unity. These effects have
first been observed by Carmichael et al. [10] and De Martini et al. [11]. Moreover,
with the coherence properties uniquely determined by the parameters of the cavity
and the driving process, one should be able to obtain indistinguishable photons from
different cavities. Furthermore the reversibility of the photon generation process,
and quantum networking between different cavities has been predicted [12–14],
and demonstrated [15–17]. We now introduce different ways of producing single
photons from such a system. These include cavity-enhanced spontaneous emission
and Raman transitions stimulated by the vacuum field while driven by classical laser
pulses. In particular, we discuss a scheme for adiabatic coupling between a single
atom and an optical cavity, which is based on a unitary evolution of the coupled
atom-cavity system [18, 19], and is therefore intrinsically reversible.

For a photon emission from the cavity to take place, it is evident that a finite value
of κ is mandatory, otherwise any light would remain trapped between the mirrors.
Moreover, as κ is the decay rate of the cavity field, the associated duration of an
emitted photon is typically κ−1 or more. We also emphasise that γ plays a crucial
role in most experimental settings, since it accounts for the spontaneous emission
into non-cavity modes, and therefore leads to a reduction of efficiency. The relation
of the atom-cavity coupling constant and the Rabi frequency of the driving field to the
two decay rates can be used for marking the difference between three basic classes
of single-photon emission schemes from cavity-QED systems.

Cavity-enhanced spontaneous emission: We assume that a sudden excitation
process (e.g. a short π pulse with Ω � {g0, κ, γ }, or some internal relaxation
cascade from energetically higher states) prepares the atom in its excited state |x, 0〉.
From there, a photon gets spontaneously emitted either into the cavity or into free
space. To analyse the process, we simply consider an excited two-level atom coupled
to an empty cavity. This particular situation is the textbook example of cavity-QED
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that has been thoroughly analysed in the past. In fact, it has been proposed by Purcell
[8] and demonstrated byHeinzen et al. [20] andMorin et al. [21] that the spontaneous
emission properties of an atom coupled to a cavity are significantly different from
those in free space. For an analysis of the atom’s behaviour, it suffices to look at the
evolution of the n = 1 Jaynes-Cummings doublet under the influence of the atomic
polarisation decay rate γ and the cavity-field decay rate κ . Non-cavity spontaneous
decay of the atom and photon emission through one of the cavity mirrors both lead
the system into state |g, 0〉, which does not belong to the n = 1 doublet. There-
fore we can deal with these decay processes phenomenologically by introducing
non-hermitian damping terms into the interaction Hamiltonian,

H ′
int = −�g0

(
|x〉〈g|â + â†|g〉〈x |

)
− i�γ |x〉〈x | − i�κ â†â. (1.10)

Figure1.3a shows the time evolution of the atom-cavity system when κ > g0. The
strong damping of the cavity inhibits any vacuum-Rabi oscillation, since the photon
is emitted from the cavity before it can be reabsorbed by the atom. Therefore the
transient population in state |g, 1〉 is negligible and the adiabatic approximation
ċg ≈ 0 can be applied, which gives

d

dt
cx = −γ cx − g2

0

κ
cx, (1.11)

with the solution

cx(t) = exp

(
−

[
γ + g2

0

κ

]
t

)
. (1.12)

It is straightforward to see that the ratio of the emission rate into the cavity, g2
0/κ ,

to the spontaneous emission probability into free space becomes g2
0/(κγ ) ≡ f , i.e.

the Purcell factor. It equals twice the one-atom cooperativity parameter, C , origi-
nally introduced in the context of optical bistability [22]. Hence the photon-emission
probability from the cavity reads PEmit = 2C/(2C + 1). Note that the atom radiates
mainly into the cavity if g2

0/κ � γ . Together with κ � g0, this condition constitutes
the bad-cavity regime.

The other extreme is strong coupling, with g0 � (κ, γ ). In this case vacuum Rabi
oscillations between |x, 0〉 and |g, 1〉 occur, with both states decaying at the respec-
tive rates γ and κ . Figure1.3b shows a situation where the atom-cavity coupling,
g0, saturates the |x, 0〉 ↔ |g, 1〉 transition. On average, the probabilities to find the
system in either one of these two states are equal, and therefore the average ratio of
the emission probability into the cavity to the spontaneous emission probability into
free space is given by κ/γ . The vacuum-Rabi oscillation gives rise to an amplitude
modulation of the photons emitted from the cavity here.
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Fig. 1.3 Evolution of the atomic states and photon emission rate Rph = 2κρgg in different coupling
cases (adapted from [5]): a and b are for an excited two-level atom coupled to the cavity, showing
populations ρxx (solid) and ρgg (dotted) of the product states |x, 0〉 and |g, 1〉. c and d are for a
three-level atom-cavity system prepared in |e, 0〉 and exposed to a pump pulse driving |e〉 − |x〉
while the cavity couples |x〉 and |g〉. The initial-state population ρee is dashed. a and c display the
bad-cavity regimewith (g0, γ, κ) = 2π×(15, 3, 20)MHz,while b and d depict the strong-coupling
case with (g0, γ, κ) = 2π × (15, 3, 2)MHz. The pump pulses read Ω(t) = g0 sin(π t/200 ns) in
(c), and Ω(t) = g0 × t/(1μs) in (d). No transient population is found in ρxx in the latter case. The
overall photon-emission probability reads always PEmit = ∫

Rphdt

Bad-cavity regime: To take the effect of a slow excitation process into account, we
consider aΛ-type three-level atom coupled to a cavity. In the bad-cavity regime, κ �
g2
0/κ � γ , the loss of excitation into unwanted modes of the radiation field is small

and wemay follow Law et al. [23, 24]. We assume that the atom’s |e〉−|x〉 transition
is excited by a pump laser pulse while the atom emits a photon into the cavity
by enhanced spontaneous emission. The cavity-field decay rate κ sets the fastest
time scale, while the spontaneous emission rate into the cavity, g2

0/κ , dominates
the incoherent decay of the polarisation from the excited atomic state. Provided any
decay leads to a loss from the three-level system, the evolution of the wave vector is
governed by the non-Hermitian Hamiltonian

H ′
int = Hint − i�κ â†â − i�γ |x〉〈x |, (1.13)

with Hint from (1.6). To simplify the analysis, we take only the vacuum state, |0〉,
and the one-photon state, |1〉, into account, thus that the state vector reads

|Ψ (t)〉 = ce(t)|e, 0〉 + cx(t)|x, 0〉 + cg(t)|g, 1〉, (1.14)

where ce, cx and cg are complex amplitudes. Their time evolution is given by the
Schrödinger equation, i� d

dt |Ψ 〉 = H ′
int|Ψ 〉, which yields
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i ċe = 1

2
Ω(t)cx

i ċx = 1

2
Ω(t)ce + g0cg − iγ cx (1.15)

i ċg = g0cx − iκcg,

with the initial condition ce(0) = 1, cx(0) = cg(0) = 0 and Ω(0) = 0. An adiabatic
solution of (1.15) is found if the decay is so fast that cx and cg are nearly time
independent. This allows one to make the approximations ċx = 0 and ċg = 0, with
the result

ce(t) ≈ exp

(
−α

4

∫ t

0
Ω2(t ′)dt ′

)

cx(t) ≈ − i

2
αΩ(t)ce(t) (1.16)

cg(t) ≈ − i

κ
g0cx(t),

where α = 2/(2γ + 2g2
0/κ). Photon emissions from the cavity occur if the system

is in |g, 1〉, at the photon-emission rate Rph(t) = 2κ|cg(t)|2. This yields a photon-
emission probability of

PEmit =
∫

Rph(t)dt (1.17)

= g2
0α

κ

[
1 − exp

(
−α

2

∫
Ω2(t)dt

)]
−→ g2

0α

κ
.

Note that the exponential in (1.17) vanishes if the area
∫

Ω(t)dt of the exciting pump
pulse is large enough. In this limit, the overall photon-emission probability does not
depend on the shape and amplitude of the pump pulse. With a suitable choice of g0,
α, and κ , high photon-emission probabilities can be reached [24]. Furthermore, as
the stationary state of the coupled system depends on Ω(t), the time envelope of the
photon can be controlled to a large extent.

Strong-coupling regime: To study the effect of the exciting laser pulse in the strong-
coupling regime, we again consider a Λ-type three-level atom coupled to a cavity.
We assume that the strong-coupling condition also applies to the Rabi frequency
of the driving field, i.e. {g0,Ω} � {κ, γ }. In this case, we can safely neglect the
effect of the two damping rates on the time scale of the excitation. We then seek a
method to effectively stimulate a Raman transition between the two ground states
that also places a photon into the cavity. For instance, the driving process can be
implemented in form of an adiabatic passage (STIRAP process [18, 19]) or a far-off
resonant Raman process to avoid any transient population of the excited state, thus
reducing losses due to spontaneous emission into free space. An efficiency for photon
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generation close to unity can be reached this way. Once a photon is placed into the
cavity, it gets emitted due to the finite cavity lifetime.

The most promising approach is to implement an adiabatic passage in the optical
domain between the two ground states [25, 26]. In fact, adiabatic passage methods
have been used for coherent population transfer in atoms or molecules for many
years. For instance, if a Raman transition is driven by two distinct pulses of variable
amplitudes, effects like electromagnetically induced transparency (EIT) [27, 28],
slow light [29, 30], and stimulated Raman scattering by adiabatic passage (STIRAP)
[19] are observed. These effects have been demonstrated with classical light fields
and have in common that the system’s state vector, |Ψ 〉, follows a dark eigenstate, e.g.
|φ0

n〉, of the time-dependent interaction Hamiltonian. In principle, the time evolution
of the system is completely controlled by the variation of this eigenstate. However,
a more detailed analysis [25, 31] reveals that the eigenstates must change slowly
enough to allow adiabatic following. Only if this condition is met, a three-level
atom-cavity system, once prepared in |φ0

n〉, stays there forever, thus allowing one to
control the relative population of |e, n − 1〉 and |g, n〉 by adjusting the pump Rabi
frequency Ω . This is obvious for a system initially prepared in |e, n − 1〉. As can
be seen from (1.8), that state coincides with |φ0

n〉 if the condition 2g0
√

n � Ω is
initially met. Once the system has been prepared in the dark state, the ratio between
the populations of the contributing states reads

|〈e, n − 1|Ψ 〉|2
|〈g, n|Ψ 〉|2 = 4ng2

0

Ω2 . (1.18)

As proposed in [18], we assume that an atom in state |e〉 is placed into an empty
cavity, which nonetheless drives the |g, 1〉 ↔ |x, 0〉 transition with the Vacuum
Rabi frequency 2g0. The initial state |e, 0〉 therefore coincides with |φ0

1〉 as long
as no pump laser is applied. The atom then gets exposed to a laser pulse coupling
the |e〉 ↔ |x〉 transition with a slowly rising amplitude that leads to Ω � 2g0. In
turn, the atom-cavity system evolves from |e, 0〉 to |g, 1〉, thus increasing the photon
number by one. This scheme can be seen as vacuum-stimulated Raman scattering
by adiabatic passage, also known as V-STIRAP. If we assume a cavity decay time,
κ−1 much longer than the interaction time, a photon is emitted from the cavity with a
probability close to unity and with properties uniquely defined by κ , after the system
has been excited to |g, 1〉.

In contrast to such an idealised scenario, Fig. 1.3d shows a more realistic situation
where a photon is generated and already emitted from the cavity during the excitation
process. This is due to the cavity decay time being comparable or shorter than the
duration of the exciting laser pulse. Even in this case, no secondary excitations or
photon emissions can take place. The system eventually reaches the decoupled state
|g, 0〉when the photon escapes. However, the photon-emission probability is slightly
reduced as the non-Hermitian contribution of κ to the interaction Hamiltonian is
affecting the dark eigenstate |φ0

1〉 of the Jaynes-Cummings triplet (1.8). It now has
a small admixture of |x, 0〉 and hence is weakly affected by spontaneous emission
losses [25].
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1.2.2.1 Single-Photon Emission from Atoms or Ions in Cavities

Many revolutionary photon generation schemes have recently been demonstrated,
such as a single-photon turnstile device based on the Coulomb blockade mechanism
in a quantum dot [32], the fluorescence of a single molecule [33, 34], or a single
colour centre (Nitrogen vacancy) in diamond [35, 36], or the photon emission of a
single quantum dot into free space [37–39]. All these schemes emit photons upon
an external trigger event. The photons are spontaneously emitted into various modes
of the radiation field, e.g. into all directions, and often show a broad energy dis-
tribution. Nonetheless these photons are excellent for quantum cryptography and
communication, and also a reversal of the free-space spontaneous emission has been
demonstrated, see chapters by Leuchs and Sondermann, Chuu and Du, and Piro and
Eschner. Cavity QED has the potential of performing this bi-directional state map-
ping between atoms and photons very effectively, and thus is expected to levy many
fundamental limitations to scalability in quantum computing or quantumnetworking.
We therefore focus here on cavity-enhanced emission techniques into well-defined
modes of the radiation field.

Neutral atoms: A straightforward implementation of a cavity-based single-photon
source consists of a single atom placed between two cavity mirrors, with a stream of
laser pulses travelling perpendicular to the cavity axis to trigger photon emissions.
The most simplistic approach to achieve this is by sending a dilute atomic beam
through the cavity, with an average number of atoms in the mode far below one.
However, for a thermal beam, the obvious drawback would be an interaction time
between atom and cavity far too short to achieve any control of the exact photon
emission time. Hence cold (and therefore slow) atoms are required to overcome this
limitation. The author followed this route [40, 41], using a magneto-optical trap to
cool a cloud of rubidium atoms below 100μK at a distance close to the cavity. Atoms
released from the trap eventually travel through the cavity, either falling from above
or being injected from below in an atomic fountain. Atoms enter the cavity randomly,
but interactwith itsmode for 20–200μs.Within this limited interaction time, between
20 and 200 single-photon emissions can be triggered. Figure1.4 illustrates this setup,
together with the excitation scheme between hyperfine states in 87Rb used to generate
single photons by the adiabatic passage technique discussed on page 10.

Bursts of single photons are emitted from the cavity whenever a single atom
passes its mode, and strong antibunching is found in the photon statistics, as shown
in Fig. 1.4a. A sub-Poissonian photon statistics is foundwhen conditioning the exper-
iment on the actual presence of an atom in the cavity [42]. In many cases, this is
automatically granted—a good example is the characterisation of the photons by
two-photon interference. For such experiments, pairs of photons are needed that
meet simultaneously at a beamsplitter. With just one source under investigation, this
is achieved with a long optical fibre delaying the first photon of a pair of successively
emitted ones. With the occurrence of such photon pairs being the precondition to
observe any correlation and the probability for successive photon emissions being
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Fig. 1.4 Single-photon source based on atoms travelling through an optical cavity. a Excitation
scheme realised in 87Rb for the pulsed single-photon generation. The atomic states labeled |e〉, |x〉
and |g〉 are involved in the Raman process, and the states |0〉 and |1〉 denote the photon number in
the cavity. b A cloud of laser-cooled atoms moves through an optical cavity either from above [40],
or from below using an atomic fountain [41]. Laser pulses travel perpendicular to the cavity axis to
control the emission process. The light is analysed using a Hanbury-Brown and Twiss (HBT) setup
with a pair of avalanche photodiodes. c Intensity correlation of the emitted light measured with
the HBT setup, with atoms injected using an atomic fountain [41]. The contribution of correlations
between real photons and detector dark counts is shown in yellow

vanishingly small without atoms, the presence of an atom is actually assured when-
ever data is recorded.

Only lately, refined versions of this type of photon emitter have been realised,
with a single atom held in the cavity using a dipole-force trap. McKeever et al. [43]
managed to hold a single Cs atom in the cavity with a dipole-trapping beam running
along the cavity axis, while Hijlkema et al. [44] are using a combination of dipole
trapping beams running perpendicular and along the cavity to catch and hold a single
Rb atom in the cavity mode. As illustrated in Fig. 1.5, the trapped atom is in both
cases exposed to a sequence of laser pulses alternating between triggering the photon
emission, cooling and repumping the atom to its initial state to repeat the sequence.
The atom is trapped, so that the photon statistics is not affected by fluctuations in the
atom number and therefore is sub-Poissonian, see Fig. 1.5c. Moreover, with trapping
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Fig. 1.5 Atom-cavity systems with a single atom at rest in the cavity mode. a The setup by
McKeever et al. [43] is using a dipole trap running along the cavity axis to hold a single caesium
atom in the cavity. The cavity is symmetric, so that half the photons are directed towards a pair
of detectors for analysing the photon statistics. b The author has been using a dipole trap running
perpendicular to the cavity axis, The trap is holding a single rubidium atom in the cavity [44]. The
cavity is asymmetric, and photons emitted through its output coupler are directed to a pair of photon
counters to record the second-order correlation function of the photon stream. In both cases, the
trapped atom is exposed to a sequence of laser pulses that trigger the photon emission, cool the
atom, and re-establish the initial condition by optical pumping. c Intensity correlation function of
the light emitted form a trapped-atom-cavity system, as found by the author [44]

times for single atoms up to a minute, a quasi-continuous bit-stream of photons is
obtained.

The major advantage of using neutral atoms as photon emitters in Fabry-Perot
type cavities is that a relatively short cavity (some 100μm) of high finesse (between
105 and 106) can be used. One thus obtains strong atom-cavity coupling, and the
photon generation can be driven either in the steady-state regime or dynamically by
V-STIRAP. This allows one to control the coherence properties and the shape of the
photons to a large extent, as discussed in Sect. 1.4.2. Photon generation efficiencies
as high as 65% have been reported with these systems. Furthermore, based on the
excellent coherence properties, first applications such as atom-photon entanglement
and atom-photon state mapping [45–48] have recently been demonstrated.

Apart from the above Fabry-Perot type cavities, many other micro-structured
cavities have been explored during the last years. These often provide amuch smaller
mode volume and hence boost the atom-cavity coupling strength by about an order of
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magnitude. However, this goes hand-in-hand with increased cavity losses and thus a
much larger cavity linewidth, which might be in conflict with the desired addressing
of individual atomic transitions. Among the most relevant new developments are
fibre-tip cavities, which use dielectric Bragg stacks at the tip of an optical fibre as
cavity mirrors [49, 50]. Due to the small diameter of the fibre, either two fibre tips
can be brought very close together, or a single fibre tip can be complemented by a
micro-structured mirror on a chip to form a high-finesse optical cavity. A slightly
different approach is the use of ring-cavities realised in solid state, guiding the light in
a whispering gallery mode. An atom can be easily coupled to the evanescent field of
the cavity mode, provided it can be brought close to the surface of the substrate. Nice
examples are microtoroidal cavities realised at the California Institute of Technology
[51, 52], and bottle-neck cavities in optical fibres [53]. These cavities have no well-
definedmirrors and therefore no output coupler, so one usually arranges for emission
into well-defined spatio-temporal modes via evanescent-field coupling to the core of
an optical fibre.

We would like to remind the reader at this point that a large variety of other
exciting cavity-QED experiments have been performed that were not aiming at a
single-photon emission in the optical regime. Most important amongst those are
the coupling of Rydberg atoms [54] or superconductive SQUIDs [55] to microwave
cavities, which is also a well-established way of placing single photons into a cavity
using either π pulses [56] or dark resonances [57]. Also the coupling of ultracold
quantum gases to optical cavities has been studied extensively [49, 58], and has
proven to be a useful method to acquire information on the atom statistics. Last but
not least, large efforts have been made to study cavity-mediated forces on either
single atoms or atomic ensembles [59–64], which lead to the development of cavity-
mediated cooling techniques.

Trapped ions: Although neutral-atom systems have their advantages for the gener-
ation of single photons, such experiments are sometimes subject to undesired vari-
ations in the atom-cavity coupling strength and multi-atom effects. Also trapping
times are still limited in the intra-cavity dipole-trapping of single atoms. A possible
solution is to use a strongly localised single ion in an optical cavity, as has first been
demonstrated by Keller et al. [65]. In their experiment, an ion is optimally coupled to
a well-defined field mode, resulting in the reproducible generation of single-photon
pulses with precisely defined timing. The stream of emitted photons is uninterrupted
over the storage time of the ion, which, in principle, could last for several days.

The major difficulty in combining an ion trap with a high-finesse optical cavity
comes from the dielectric cavity mirrors, which influence the trapping potential if
they get too close to the ion. This effect might be detrimental in case the mirrors get
electrically charged during loading of the ion trap, e.g. by the electron beam used
to ionise the atoms. Figure1.6a shows how this problem has been solved in [65]
by shuttling the trapped ion from a spatially separate loading region into the cavity.
Nonetheless, the cavity in these experiments is typically more than 10–20mm long
to avoid distortion of the trap. Thus the coupling to the cavity is weak, and although
optimised pump pulses were used, the single-photon efficiency in [65] did not exceed
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(a) (b)

Fig. 1.6 Arrangement of ion-trap electrodes and cavity in a the experiment by Keller et al. [65].
The ion is shuttled to the cavity region after loading. Upon excitation of the ion from the side of
the cavity, a single photon gets emitted into the cavity mode (Reprinted by permission from Nature
Publishing Group: Nature, Guthöhrlein et al. [66], Copyright 2001). The ion-cavity arrangement
and excitation scheme in 40Ca+ studied by Russo and Barros et al. [67, 68] in Innsbruck (b) is
using a near-concentric cavity which leads to an increased density of otherwise non-degenerate
transverse modes (Panel b adapted with permission from Springer: Applied Physics B, Russo et al.
[67], Copyright 2009)

(8.0 ± 1.3)%. This is in good accordance with theoretical calculations, which also
show that the efficiency can be substantially increased in future experiments by
reducing the cavity length. It is important to point out that the low efficiency does
not interfere with the singleness of the photons. Hence the g(2) correlation function
of the emitted photon stream corresponds to the one depicted in Fig. 1.5c, with
g(2)(0) → 0. With an improved ion-cavity setup, Barros et al. [68] were able to
reach a single-photon emission efficiency of (88 ± 17)% in a cavity of comparable
length, using a more favourable mode structure in the near-confocal cavity depicted
in Fig. 1.6b and far-off resonant Raman transitions between magnetic sublevels of
the ion.

1.3 Cavity-Enhanced Atom-Photon Entanglement

In their groundbreaking experiments, Monroe [69] and Weinfurter [70] successfully
demonstrated the entanglement of the polarisation of a single photon with the spin
of a single ion or atom, respectively. To do so, they drove a free-space excitation
and emission scheme in a single trapped ion or atom that lead to two possible final
spin states of the atom, | ↓〉 and | ↑〉 upon emission of either a σ+ or σ− polarised
photon, thus projecting the whole system into the entangled atom-photon state

(|σ+,↓〉 − |σ−,↑〉)/√2. (1.19)
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Projective measurements on pairs of photons emitted from two distant atoms or
ions were then used for entanglement swapping, thus resulting in the entanglement
and teleportation of quantum states [71]. Such photon-matter entanglement has a
potential advantage of addingmemory capabilities to quantum information protocols.
In addition, this provides a quantum matter-light interface, thereby using different
physicalmedia for different purposes in a quantum information application.However,
the spontaneous emission of photons into all directions is an inherent limitation of
this approach. Even the best collection optics captures at most 25% of the photons
[72], with actual experiments reaching overall photon-detection efficiencies of about
5×10−4 [70]. Combinedwith the spontaneous character of the emission, efficiencies
are very low and scaling is a serious issue.

We shall see in the following that the coupling of atoms or ions to optical cavities
is one effective solution to this problem, with quantum state mapping and entangle-
ment between atomic spin and photon polarisation recently achieved in cavity-based
single-photon emitters [45–48]. Very much like what was discussed in the preceding
sections, this is achieved using an intrinsically deterministic single-photon emission
from a single 87Rb atom in strong coupling to an optical cavity [45]. The triggered
emission of a first photon entangles the internal state of the atom and the polarization
state of the photon. To probe the degree of entanglement, the atomic state is then
mapped onto the state of a second single photon. As a result of the state mapping
a pair of entangled photons is produced, one emitted after the other into the same
spatial mode. The polarization state of the two photons is analyzed by tomography,
which also probes the prior entanglement between the atom and the first photon.

All the relevant steps of entanglement preparation and detection are shown
schematically in Fig. 1.7. The rubidium atom is prepared in the |F = 2, m F = 0〉
state of the 5S1/2 ground level. Then a π -polarized laser pulse (polarised linearly
along the cavity axis and resonant with the transition from F = 2 to F ′ = 1 in the
excited 5P3/2 level) together with the cavity (coupling levels F = 1 and F ′ = 1)

(a) (b)

Fig. 1.7 Entanglement and statemapping (from [45]): laser pulses drive vacuum-stimulatedRaman
transitions, first a creating an entanglement between the atom and the emitted photon, and then b
mapping the atomic state onto the polarization of a second photon. Entanglement is then shared
between two flying photons, with the atom disentangled
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drives a Raman transition to the |F = 1, m F = ±1〉 magnetic substates of the
ground level. No other cavity-enhanced transitions are possible because the cavity
only supports left- and right-handed circularly polarized σ+ and σ− polarisation
along its axis. Therefore the two different paths to | ↓〉 ≡ |F = 1, m F = −1〉
and | ↑〉 ≡ |F = 1, m F = +1〉 result in the generation of a σ+ and σ− photon,
respectively. Thus the atom becomes entangled with the photon and the resulting
overall quantum state is identical to the one obtained in the free-space experiments,
outlined above in (1.19). However, the substantial difference is that the photon gets
deterministically emitted into a single spatial mode, well defined by the geometry of
the surrounding cavity. Hence the success probability is close to unity, and a scalable
arrangement of atom-cavity arrays is therefore in reach.

To probe the atom-photon entanglement established this way, the atomic state is
mapped onto another photon in a second step. This photon can be easily analysed
outside the cavity. To do so, aπ -polarized laser pulse resonantwith the transition from
F = 1 to F ′ = 1 drives a second Raman transition in the cavity. This is transferring
any atom from state | ↓〉 to |0〉 ≡ |F = 1, m F = 0〉 upon emission of a σ+ photon,
whereas | ↑〉 atoms are equally transferred to |0〉, but upon a σ− emission. Hence
the atom eventually gets disentangled, and a polarization entanglement

(|σ+, σ−〉 − |σ−, σ+〉)/√2 (1.20)

is established between the two successively emitted photons. Because the photons
are created in the same spatial mode, a non-polarizing beam splitter (NPBS) is used
to direct the photons randomly to one of two measurement setups. This allows each
photon to be detected in either the H/V, circular right/left (R/L), or linear diagonal/
antidiagonal (D/A) basis. Thus a full quantum state tomography is performed by
measuring correlations between the photons in several different bases, selected by
using different settings of half- and quarter-wave plates [73, 74]. These measure-
ments lead to the reconstructed density matrix shown in Fig. 1.8. It has only positive

Fig. 1.8 Real part of the
density matrix reconstructed
from quantum state
tomography of successively
emitted photon pairs (from
[45]): all imaginary parts
(not shown) have a
magnitude smaller than 0.03.
Fidelity with the expected
Bell state is 86.0(4)%. About
2200 entanglement events
were collected for each of
nine measurement settings
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eigenvalues, and its fidelity with respect to the expected Bell state is F = 86.0(4)%,
with 0.5 < F ≤ 1 proving entanglement.

Basedon this successful atom-photon entanglement scheme, elementaryquantum-
network links implementing teleportation protocols between remote trapped atoms
and atom-photon quantum gate operations have recently been demonstrated
[46–48, 75]. These achievements represent a big step towards a feasible quantum-
computing system because they show how to overcome most scalability issues to
quantum networking in a large distributed light-matter based approach.

1.4 Photon Coherence, Amplitude and Phase Control

The vast majority of single-photon applications not only rely on the determinis-
tic emission of single photons, but also require them to be indistinguishable from
one another. In other words, their mutual coherence is a key element whenever two
or more photons are required simultaneously. The most prominent example to that
respect is linear optics quantum computing (LOQC) as initially proposed by Knill
et al. [2], with its feasibility demonstrated using spontaneously emitted photon pairs
from parametric down conversion [76]. Scaling LOQC to useful dimensions calls
for deterministically emitted indistinguishable photons. Furthermore, with photons
used as information carriers, it is common practice to use their polarization, spatio-
temporal mode structure or frequency for encoding classical or quantum state super-
positions. To do so, the capability of shaping photonic modes is essential. Several of
these aspects are going to be discussed here.

1.4.1 Indistinguishability of Photons

At first glance, one would expect any single-photon emitter that is based on a single
quantum system of well-defined level structure to deliver indistinguishable photons
of well-defined energy. However, this is often not the case for a large number of
reasons. For instance, multiple pathways leading to the desired single-photon emis-
sion or the degeneracy of spin states might lead to broadening of the spectral mode
or to photons in different polarisation states, entangled with the atomic spin [45].
Also spontaneous relaxation cascades within the emitter result in a timing jitter of
the last step of the cascade, which is linked to the desired photon emission. Never-
theless, atoms coupled to cavities have been shown to emit nearly indistinguishable
photons with well defined timing. Their coherence properties are normally governed
by the dynamics of the Raman process controlling the generation of photons, and-
surprisingly-not substantially limited by the properties and lifetime of the cavity
mode or the atoms [77].

Probing photons for indistinguishability is often accomplished with a two-photon
interference experiment of the Hong-Ou-Mandel (HOM) type. For two identical
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photons that arrive simultaneously at different inputs of a 50:50 beam splitter, they
bunch and then leave as a photon pair into either one or the other output port. Hence
no correlations are found between two detectors that monitor the two outputs. This
technique has been well established in connection with photons emitted from spon-
taneous parametric-down conversion (SPDC) sources, with the correlations between
the outputs measured as a function of the arrival-time delay between photons.

For the cavity-based emitters discussed here, the situation is substantially differ-
ent. The bandwidth of these photons is very narrow, and therefore their coherence
time (or length) might be extremely long, i.e. several μs (some 100m). The time res-
olution of the detectors is normally 3–4 orders of magnitude faster than this photon
length, so that the two-photon correlation signal is now determined as a function of
the detection-time delay, with the arrival-time delay of the long photons deliberately
set to zero [78, 79]. This can be seen as a quantum-homodyne measurement at the
single-photon level, with a single local-oscillator photon arriving at one port of a
beam splitter, and a single signal photon arriving at the other port. To develop an
understanding how the probability for photon coincidences between the two output
ports of the beam splitter depends on the detection-time difference and the mutual
phase coherence of the two photons, a step-by-step analysis of the associated quan-
tum jumps and quantum state evolution is most instructive.

Prior to the first photodetection, two photons arrive simultaneously in the input
modes A and B at the beam splitter and the overall state of the system reads |1A1B〉.
The first photo detection at time t1 in either output C or D could have been of either
photon, thus the remaining quantum state reduces to

|ψ(t1)〉 = (|1A0B〉 ± |0A1B〉)/√2, (1.21)

where “+”and “−” correspond to the photodetection in port C and D, respectively.
We now assume that the second photodetection takes place Δτ later, at time t2 =
t1 + Δτ , with the input modes A and B having acquired a phase difference Δφ (for
whatever reason) during that time interval. Hence prior to the second detection, the
reduced quantum state has evolved to

|ψ(t2)〉 = (|1A0B〉 ± eiΔφ |0A1B〉)/√2. (1.22)

By consequence, the probability for the second photon being detected in the same
port as the first photon is Psame = cos2(Δφ/2), while the probability for the second
photon being detected in the respective other beam-splitter port reads

Pother = sin2(Δφ/2). (1.23)

The probability PCD for coincidence counts between the two detectors in the beam
splitter’s output ports C and D is therefore proportional to sin2(Δφ/2). This implies
that any systematic variation of the phase difference Δφ between the two input
modes A and B with timeΔτ leads to a characteristic modulation of the coincidence
function
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g(2)
CD(Δτ) = 〈PC (t)PD(t + Δτ)〉t

〈PC 〉〈PD〉 ∝ sin2(Δφ(�τ)/2). (1.24)

A good example is the analysis of two photons of different frequency. We consider
one photon of well-defined frequency ω0 acting as local oscillator arriving at port A
at the beam splitter, and another one of frequencyω0+Δωwhich we regard as signal
photon arriving simultaneously at port B. Their mutual phase is undefined until the
first photodetection at t1, and thereafter evolves according to Δφ(�τ) = Δω × Δτ .
In this case, the probability for coincidence counts between the beam splitter outputs,

PCD(Δτ) ∝ sin2(Δω × Δτ/2), (1.25)

oscillates at the difference frequency between local oscillator and signal photon.
This phenomenon has been extensively discussed in [77, 78] and is also illustrated
in Fig. 1.9. Furthermore, the figure shows the effect of random dephasing on the
time-resolved correlation function. For photons of 1μs duration, a 470ns wide dip
has been found around Δτ = 0. Thereafter, the coincidence probability reached
the same mean value that is found with non-interfering photons of, e.g., different
polarisation. In this case, we conclude that the dip-width in the coincidence function
is identical to the mutual coherence time between the two photons. It is remarkable
that it exceeds the decay time of both cavity and atom by one order of magnitude
in that particular experiment. This proves that the photon’s coherence is to a large
extent controlled by the Raman process driving the photon generation, without being
limited by the decay channels within the system.

1.4.2 Arbitrary Shaping of Amplitude and Phase

From the discussion in Sect. 1.2.2 we have seen that the dynamic evolution of the
atomic quantum states determines the photon emission probability, and thereby also
the photon’s waveform. This raises the question as to what extent one can arbitrarily
shape the photons in time by controlling the envelope of the driving field. This
is important for applications such as quantum state mapping, where photon wave
packets symmetric in space and time should allow for a time-reversal of the emission
process [12]. Employing photons of soliton-shape for dispersion-free propagation
could also help boost quantum communication protocols.

Photon shaping can be addressed by solving the master equation of the atom-
photon system, which yields the time-dependent probability amplitudes, and by con-
sequence also the wave function of the photon emitted from the cavity [40, 65].
Only recently, we have shown [14, 41, 80] that this analysis can be reversed, giving
a unambiguous analytic expression for the time evolution of the drivingfield in depen-
dence of the desired shape of the photon. This model is valid in the strong-coupling
and bad-cavity regime, and it generally allows one to fully control the coherence
and population flow in any Raman process. Designing the driving pulse to obtain
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Fig. 1.9 Time-resolved two-photon interference of photons arriving simultaneously at a beam
splitter (a). With photons emitted successively from one atom-cavity system, this has been achieved
using an optical delay line (b). Panel c shows the correlation function from [77] for photons of 1.0μs
duration as a function of detection-time delay Δτ . A pronounced dip at the origin is found, with
the dip-width indicating the photon coherence time. The dotted line shows correlations found if
distinguishable photons of perpendicular polarisation are used, while the solid line depicts the
correlations found if the photon polarisation is parallel. Panel d shows data from a more recent
experiment [41] with photons of 0.3μs duration. The photons are nearly indistinguishable and
the integral two-photon coincidence probability drops to 20% of the reference value found with
non-interfering photons. Panel e shows data from [77, 78] with interfering photons of different
frequency. This gives rise to a pronounced oscillation of the coincidence signal as a function of Δτ

with the difference frequency Δω

photonic wave packets of any possible desired shape ψph(t) is straight
forward [14, 80]. Starting from the three-level atom discussed in
Sect. sec:atomspsphotoninteraction, we consider only the states |e, 0〉, |x, 0〉, and
|g, 1〉 of the n = 1 triplet and their corresponding probability amplitudes c(t) =[
ce(t), cx(t), cg(t)

]T , with the atom-cavity system initially prepared in |e, 0〉. The
Hamiltonian (1.6) and the decay of atomic spin and cavity field at rates γ and κ,
respectively, define the master equation of the system,

i�
d

dt
c(t) = −�

2

⎛
⎝ 0 Ω(t) 0

Ω(t) 2iγ 2g
0 2g 2iκ

⎞
⎠ c(t). (1.26)
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The cavity-field decay at rate κ unambiguously links the probability amplitude of
|g, 1〉 to the desired wave function ψph(t) of the photon. Furthermore, |g, 1〉 only
couples to |x, 0〉 with the well-defined atom-cavity coupling g, while the Rabi fre-
quency Ω of the driving laser is linking |x, 0〉 to |e, 0〉. Hence the time evolution of
the probability amplitudes and Ω(t) read

cg(t) = ψph(t)/
√
2κ, (1.27)

cx(t) = − i

g

[
ċg(t) + κcg(t)

]
(1.28)

Ω(t)ce(t) = 2
[
i ċx (t) + iγ cx (t) − gcg(t)

]
. (1.29)

We can use the continuity of the system, taking into account the decay of atom
polarisation and cavity field at rates γ and κ , respectively, to get to an independent
expression for

|ce(t)|2 = 1 − |cx (t)|2 − |cg(t)|2 −
t∫

0

dt
[
2γ |cx (t)|2 + 2κ|cg(t)|2

]
. (1.30)

With the Hamiltonian not comprising any detuning and assuming ψph to be real, one
can easily verify that the probability amplitude cx (t) is purely imaginary, while ce(t)
and cg(t) are both real. Hence with the desired photon shape as a starting point, we
have obtained analytic expressions for all probability amplitudes. These then yield
the Rabi frequency

Ω(t) = 2
[
i ċx (t) + iγ cx (t) − gcg(t)

]
√
1 − |cx (t)|2 − |cg(t)|2 −

t∫
0

dt
[
2γ |cx (t)|2 + 2κ|cg(t)|2

] , (1.31)

which is a real function defining the driving pulse required to obtain the desired
photon shape.

Figure1.10 compares some of the results obtained in producing photons of arbi-
trary shape. For instance, the driving laser pulse shown in Fig. 1.10g has been calcu-
lated according to (1.31) to produce the photon shape from Fig. 1.10h. From all data
and calculation, it is obvious that stronger driving is required to counterbalance the
depletion of the atom-cavity system towards the end of the pulse. Therefore a very
asymmetric driving pulse leads to the emission of photons symmetric in time, and
vice versa, as can be seen from comparing Fig. 1.10c, e.

Amongst the large variety of shapes that have been produced, their possible sub-
division into various peaks within separate time-bins is a distinctive feature, seen that
it allows for time-bin encoding of quantum information. For instance, we recently
have been imprinting different mutual phases on various time bins ofmulti-peak pho-
tons [81], and then successfully retrieved this phase information in a time-resolved
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Fig. 1.10 Photons made to measure: a–d show photon shapes realised in several experiments and
their driving laser pulses. The histogram of the photon-detection time has been recorded for several
hundred single-photon emissions. The data shown in a, b is taken from [40], with neutral atoms
falling through a high-finesse cavity acting as photon emitters. The linear increase in Rabi frequency
is the same in both cases, and the difference in photon shape is caused by variations in the coupling
strength to the cavity. The data shown in c, d is taken from [65], with a single ion trapped between
the cavity mirrors. It shows that the photon shape depends strongly on the driving laser pulse (Panels
c, d adapted with permission from Nature Publishing Group: Nature, Keller et al. [65], Copyright
2004). e, f show the Rabi frequency one needs to apply to achieve symmetric single or twin-peak
photon pulses with an efficiency close to unity. This is a result from an analytical solution of the
problem discussed in [80]. The latter scheme has been applied successfully for generating photons
of various arbitrary shapes [41], with examples shown in (g–i)

quantum-homodyne experiment based on two-photon interference. The latter is illus-
trated in Fig. 1.11. Subsequently emitted triple-peak photons from the atom-cavity
system are sent into optical-fibre made delay lines to arrive simultaneously at a beam
splitter. While the mechanism described above is used to sub-divide the photons
into three peaks of equal amplitude, i.e. three well-separate time bins or temporal
modes, we also impose phase changes from one time bin to the next. The latter is
accomplished by phase-shifting the driving laser with an acousto-optic modulator.
Therefore the signal photons emitted from the cavity are prepared in a W -state with
arbitrary relative phases between their constituent temporal modes,

|Ψphoton〉 = (eiφ1 |1, 0, 0〉 + eiφ2 |0, 1, 0〉 + eiφ3 |0, 0, 1〉)/√3. (1.32)

We may safely assume that φ1 = 0 as only relative phases are of any relevance.
The atom-cavity system is driven in a way that an alternating sequence of signal
photons and local-oscillator photons gets emitted, with the local-oscillator photons
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Fig. 1.11 Qutrits, from [81]: a pairs of triple-peak photons subsequently emitted are delayed
such they arrive simultaneously at a beam splitter. Time-resolved coincidences are then registered
between output ports C and D. The signal photon carries mutual phases φ1 and φ2 between peaks,
the local oscillator does not. b Time-resolved homodyne signal for photons of perpendicular (black)
and parallel (blue) polarization, with the signal photon having a phase shift in the central time bin
of φ1 = π (red). The solid traces result from summing all coincidences found within a 60ns wide
interval around each point of the trace. For some of these data points, the statistical error is shown.
c Corresponding virtual circuit if the same experiment was done in the spatial domain. The actual
physical system, consisting of one beam splitter and two detectors, would then correspond to a
six-detector setup. All time-resolved photodetections in the real system can be easily associated
with corresponding virtual detectors firing. d Relative coincidence probabilities between virtual
detectors (blue detections within the same time bin; green detections in successive time bins; red
detections two time-bins apart)

not being subject to any phase shifts between its constituents, but otherwise identical
to the signal photons. This ensures that a signal photon (including phase jumps)
and a local-oscillator photon (without phase jumps) always arrive simultaneously at
the beam splitter behind the delay lines whenever two successively emitted photons
enter the correct delay paths. Two detectors, labeled C and D, are monitoring the
output ports of this beam splitter. Their time resolution is good enough to discriminate
whether photons are detected during the first, second or third peak. The probability for
photon-photon correlations across different time bins and detectors therefore reflects
the phase changewithin the photons—i.e. the probability for correlations between the
two detectors monitoring the beam-splitter output depends strongly on the timing of
the photo detections. For instance, the coincidence probability P(Ci, Dj) for detector
C clicking in time bin i and detector D in time bin j is then

P(Ci, Dj) ∝ sin2 ((φi − φj)/2). (1.33)
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We have been exploring these phenomena [81] with the experiment illustrated in
Fig. 1.11, using two types different signal photons. One with no mutual phase shifts,
i.e. φ1 = φ2 = φ3 = 0, and the other with φ1 = 0, φ2 = π, φ3 = 0. In the first case,
signal and local oscillator photons are identical. By consequence, no correlations
between the two detectors arise (apart from a constant background level due to
detector noise). In the second case the adjacent time bins within the signal photon are
π out of phase. Therefore the probability for correlations between the two detectors
increases dramatically if the detectors fire in adjacent time bins, but it stays zero
for detections within the same time bin, and for detections occurring in the first and
third time bin. These new findings demonstrate nicely that atom-cavity systems give
us the capability of fully controlling the temporal evolution of amplitude and phase
within single deterministically generated photons. Their characterisation with time-
resolved Hong-Ou-Mandel interference used for quantum homodyning the photons
then reveals these phases again in the photon-photon correlations.

The availability of time bins as an additional degree of freedom to LOQC in an
essentially deterministic photon-generation scheme is a big step towards large-scale
quantum computing in photonic networks [82]. Arbitrary single-qubit operations
on time-bin encoded qubits seem straightforward to implement with phase-coherent
optical delay lines and active optical routing to either switch between temporal and
spatial modes, or to swap the two time bins. Controlling the atom-photon coupling
might also allow the mapping of atomic superposition states to time-binned photons
[14, 47]; and the long coherence time, combined with fast detectors, makes real-time
feedback possible during photon generation.

1.5 Cavity-Based Quantum Memories

Up to this point, we have been discussing cavity-based single-photon emission, atom-
photon state mapping, entanglement and basic linear optical phenomena using these
photons. All these processes rely on a unitary time evolution of the atom-cavity sys-
tem upon photon emission, in a process which intrinsically is fully reversible. Due to
this property, it should be possible to use atoms in strong cavity coupling as universal
nodes within a large quantum optical network. The latter is a very promising route
towards hybrid quantum computing, which has the potential to overcome many scal-
ability issues because it combines stationary atomic quantum bits with fast photonic
links and linear optical information processing in a so-called ‘quantum internet’ [83],
which is based on photon-mediated state mapping between two distant atoms placed
in spatially separated optical cavities [12]. Here, we basically summarize our model
from [14] and discuss how to expand our previous Raman scheme to capture a single
photon of arbitrary temporal shape with one atom coupled to an optical cavity, using
a control pulse of suitable temporal shape to ensure impedance matching throughout
the photon arrival, which is necessary for complete state mapping from photon to
atom. We also note that quantum networking between two cavities has recently been
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Fig. 1.12 Cavity coupling (from [14]): a photon arrives from the left and either gets reflected off
the cavity or couples to its internal modes. The three levels of the atom inside the cavity are labeled
|e〉, |x〉 and |g〉, with photon number states |0〉 and |1〉. The couplings of the control pulse and cavity
are given by Ω(t) and g respectively, and the atom is initially prepared in state |g〉

experimentally demonstrated with atomic ensembles [84, 85] and single atoms in
strong cavity coupling [17, 47].

In addition to the single-photon emission and the associated quantum state map-
ping in emission, the newly declared goal is now to find a control pulse that
achieves complete absorption of single incomingphotons of arbitrary temporal shape,
given by the running-wave probability amplitude φin(t), which arrives at one cavity
mirror.1 This relates most obviously to mapping Fock-state encoded qubits to atomic
states [12, 15], but also extends to other possible superposition states, e.g. photonic
time bin or polarisation encoded qubits [17, 45, 86].

Prior to investigating the effect of the atom-cavity and atom-laser coupling, we
briefly revisit the input-output coupling of an optical cavity in the time domain
(Fig. 1.12). Inside the cavity, we assume that the mode spacing is so large that only
one single mode of frequency ωcav contributes, with the dimension-less probability
amplitude ccav(t) determining the occupation of the one-photon Fock state |1〉. Fur-
thermore, we assume that coupling to the outside field is fully controlled by the field
reflection and transmission coefficients, r and τ , of the coupling mirror, while the
other has a reflectivity of 100%. We decompose the cavity mode into submodes |+〉
and |−〉, travelling towards and away from the coupling mirror, so that the spatio-
temporal representation of the cavity field reads

φ+(t)|+〉 + φ−(t)|−〉, (1.34)

whereΔφ = φ−(t)−φ+(t) is the change of the running-wave probability amplitude
at the coupling mirror. The latter is small for mirrors of high reflectivity, such that
ccav(t) � φ+(t)

√
tr � φ−(t)

√
tr , with tr = 2L/c the cavity’s round-trip time.

We also decompose the field outside the cavity into incoming and outgoing spatio-
temporal field modes, with running-wave probability amplitudes φin(t + z/c) and
φout (t − z/c) for finding the photon in the |in〉 and |out〉 states at time t and position

1φin(t) is the probability amplitude of the runningphoton,with
∫ +∞
−∞ |φin(t)|2dt = 1 and |φin(t)|2dt

the probability of the photon arriving at the mirror within [t, t + dt].
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z, respectively. The coupling mirror at z = 0 acts as a beam splitter with the operator
a†
−(ra+ + τain) + a†

out (τa+ − rain) coupling the four running-wave modes inside
and outside the cavity. In matrix form, this coupling equation reads

(
φ+ + Δφ

φout

)
=

(
φ−
φout

)
=

(
r τ

τ −r

) (
φ+
φin

)
(1.35)

To relate ccav(t) to the running-wave probability amplitudes, we take r ≈ 1 − κtr
and τ = √

2κtr , where κ is the field decay rate of the cavity. Furthermore, we make
use of

dccav

dt
� ccav(t + tr ) − ccav(t)

tr
= (φ− − φ+)

√
tr

tr
= Δφ√

tr
. (1.36)

With these relations, the first line of (1.35) can be written as ccav/tr + ċcav =
(1−κtr )ccav/tr +√

2κφin . Therefore (1.35) takes the form of a differential equation

(
ċcav

φout

)
=

( −κ
√
2κ√

2κ −r

) (
ccav

φin

)
. (1.37)

This describes the coupling of a resonant photon into and out of the cavity mode. The
reader might note that the result obtained from our simplified input-output model
is fully equivalent to the conclusions drawn from the more sophisticated standard
approach that involves a decomposition of the continuum into a large number of fre-
quency modes [87]. No such decomposition is applied here as we study the problem
uniquely in the time domain.

Next, we examine the coupling of a single atom to the cavity, as discussed in the
preceding sections. We again consider a three level Λ-type atom with two electron-
ically stable ground states |e〉 and |g〉, coupled by either the cavity field mode or the
control laser field to one-and-the-same electronically excited state |x〉. For the one-
photon multiplet of the generalised Jaynes-Cummings ladder, the cavity-mediated
coupling between |g, 1〉 and |x, 0〉 is given by the atom-cavity coupling strength
g, while the control laser couples |e, 0〉 with |x, 0〉 with Rabi frequency Ω(t). The
probability amplitudes of these particular three product states read ce(t), cg(t), and
cx (t), respectively, with their time evolution given by

⎛
⎜⎜⎝

ċe

ċx

ċg

φout

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 −iΩ(t)∗/2 0 0
−iΩ(t)/2 −γ −ig 0

0 −ig∗ −κ
√
2κ

0 0
√
2κ −r

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ce

cx

cg

φin

⎞
⎟⎟⎠ , (1.38)

which is formally equivalent to the Schrödinger equation (1.26) which we’ve been
considering for single-photon shaping, but now includes the input-output relation
from (1.37). This new master equation is modelling the atom coupled to the cavity
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as an open quantum system, driven by the incoming photon, with its probability
amplitude φin(t) to be taken at z = 0, and possibly coupling or directly reflecting
light into the outgoing field with amplitude φout (t). We also note that cg(t) ≡ ccav(t)
because the state |g, 1〉 is the only atom-field product state in which there is one
photon in the cavity. On resonance, g and φin(t) are both real, and by consequence
cg(t) and ce(t) are real while cx (t) is purely imaginary. Because we are considering
only one photon, the probability of occupying |g, 0〉 is given by the overall probability
of having a photon outside the cavity, either in state |in〉 or in |out〉. These states
couple only via the cavity mirror to |g, 1〉.

The realisation of a cavity-based single-atom quantum memory is based on
the complete absorption of the incoming photon, which is described by its time-
dependent probability amplitude φin(t). This calls for perfect impedance matching,
i.e. no reflection and φout (t) = 0 at all times. This condition yields

cg(t) = φin(t)/
√
2κ (1.39)

cx (t) = i
[
ċg(t) − κcg(t)

]
/g∗ = i

[
φ̇in(t) − κφin(t)

]
/g∗√

2κ (1.40)

Ω(t)ce(t) = 2
[
i ċx (t) + iγ cx (t) − gcg(t)

]
. (1.41)

With the photon initially completely in the incoming state |in〉, i.e. ∫ |φin(t)|2dt = 1,
and the atom-cavity system in state |g, 0〉, the continuity balance yields

|ce(t)|2 = |c0|2 − |cg(t)|2 − |cx (t)|2 +
∫ t

−∞
[|φin(t ′)|2 − 2γ |cx (t ′)|2]dt ′, (1.42)

including an offset term |c0|2 to account for a small non-zero initial occupation of
|e, 0〉. The relevance of this term becomes obvious in the following. From (1.40,
1.41, 1.42), we obtain the Rabi frequency of the driving pulse,

Ω(t) = 2
[
i ċx (t) + iγ cx (t) − gcg(t)

]
√

|c0|2 − |cg(t)|2 − |cx (t)|2 + ∫ t
−∞[|φin(t ′)|2 − 2γ |cx (t ′)|2]dt ′

, (1.43)

necessary for full impedance matching over all times. In turn this assures complete
absorption of the incoming photon by the atom-cavity system.We emphasize here the
close similarity of this novel expression with the analytic form of the driving pulse
needed for the emission of shaped photons, (1.31). This is not a coincidence. The
photon absorption discussed here is nothing else than a time-reversal of the photon
emission process. If we disregard any losses and also assume the final occupation
of |e, 0〉 after a photon emission equals the initial occupation of that state prior to a
photon absorption, then the required Rabi frequency Ω(t) for absorption is the exact
mirror image in time of the Rabi frequency used for photon generation.

Let us now consider physically realistic photons restricted to a finite sup-
port of well-defined start and end times, tstart and tstop, starting smoothly with
φin(tstart ) = d

dt φin(tstart ) = 0, but of non-zero second derivative. Therefore (1.41)
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Fig. 1.13 Impedance
matching (from [14]):
incoming sin2 photon
(dotted). Case a Empty
cavity, all reflected (dashed);
case b system prepared in
|g, 0〉, small reflection
(dash-dotted); case c small
initial population in |e, 0〉,
reflection suppressed (thin
solid). The control pulse
(thick solid) is derived to
match case (c)
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yields Ω(tstart )ce(tstart ) �= 0. This necessitates a small initial population in state
|e, 0〉 because otherwise perfect impedance matching with |c0|2 = 0 is only possible
with photons of infinite duration.

To illustrate the power of the procedure and the implications of the constraints to
the initial population, we apply the scheme to a typical photon shapes that one may
obtain from atom-cavity systems. We consider a cavity with parameters similar to
one of our own experimental implementations, with (g, κ, γ ) = 2π×(15, 3, 3)MHz
and a resonator length of L = 100μm. As an example, we assume that a symmetric
photon with φin(t) ∝ sin2(π t/τphoton) arrives at the cavity. For a photon duration
of τphoton = 3.14μs, Fig. 1.13 shows φin(t), Ω(t) and the probability amplitude
of the reflected photon, φout (t), as a function of time. The latter is obtained from
a numerical solution of (1.38) for the three cases of (a) an empty cavity, (b) an
atom coupled to the cavity initially prepared in |g, 0〉, with |c0| = 0, and (c) a
small fraction of the atomic population initially in state |e, 0〉, with |c0|2 = 0.5%.
In all three cases, the Rabi frequency Ω(t) of the control pulse is identical. It has
been calculated analytically assuming a small value of |c0|2 = 0.5% (this choice
is arbitrary and only limited by practical considerations, as will be discussed later).
From these simulations, it is obvious the photon gets fully reflected if no atom is
present (case a), albeit with a slight retardation due to the finite cavity build-up time.
Because the direct reflection of the coupling mirror is in phase with the incoming
photon and the light from the cavity coupled through that mirror is out-of phase by
π , the phase of the reflected photon flips around as soon as ccav(t) = φin(t)/

√
2κ .

This shows up in the logarithmic plot as a sharp kink in φout (t) around t = 0.13μs.
The situation changes dramatically if there is an atom coupled to the cavity mode.

For instance, with the initial population matching the starting conditions used to
derive Ω(t), i.e. case (c) with ρ0 = 0.5%, no photon is reflected. The amplitude
of |φout (t)|2 remains below 10−12, which corresponds to zero within the numerical
precision. However, for the more realistic case (b) of the atom-cavity system well
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Fig. 1.14 Storage efficiency (mapping the photon to |e, 0〉, solid line) and impedance mismatch
(back-reflecting the photon, dashed line) as a function of the cooperativity, C = g2/(2κγ ) (from
[14]). The dotted line shows the maximum possible efficiency. Both efficiency and impedance
mismatch have been numerically calculated for κ = γ = 2π3MHz using symmetric sin2 pulses
of 3.14μs duration, with control pulses modelled according to (1.41–1.43) to achieve optimum
impedance match

prepared in |g, 0〉, the same control pulse is not as efficient, and the photon is reflected
off the cavity with an overall probability of 0.5%. This matches the “defect” in the
initial state preparation, and can be explained by the finite cavity build-up time
leading to an impedance mismatch in the onset of the pulse.

We emphasise that this seemingly small deficiency in the photon absorption
might become significant with photons of much shorter duration. For instance, in
the extreme case of a photon duration τphoton < κ−1, building up the field in the
cavity to counterbalance the direct reflection by means of destructive interference is
achieved most rapidly without any atom. Any atom in the cavity will act as a sink,
removing intra-cavity photons. With an atom present, a possible alternative is to start
off with a very strong initial Rabi frequency of the control pulse. This will project
the atom-cavity system initially into a dark state, so that the atom does not deplete
the cavity mode. Nonetheless, the initial reflection losses would still be as high as
for an empty cavity.

To illustrate the interplay of impedancematching andmemory efficiency, Fig. 1.14
shows the reflection probability and the memory efficiency (excitation transfer to
|e, 0〉) as a function of the cooperativity, C = g2/(2κγ ). Obviously, the impedance
matching condition is always met, but the efficiency varies. For C > 1, it asymp-
totically reaches the predicted optimum [88] of 2C/(2C + 1), but it drops to zero
at C = 1/2 (i.e. for g = κ = γ ). In this particular case, the spontaneous emission
loss via the atom equals the transmission of the coupling mirror. Hence the coupled
atom-cavity system behaves like a balanced Fabry-Perot cavity, with one real mir-
ror being the input coupler, and the spontaneously emitting atom acting as output
coupler. Therefore the photon goes into the cavity, but is spontaneously emitted by
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the atom and gets not mapped to |e, 0〉. This limiting case furthermore implies that
impedance matching is not possible for C < 1/2, as the spontaneous emission via
the atom would then outweigh the transmission of the coupling mirror. The appli-
cation of our formalism therefore fails in this weak coupling regime (actually, the
evaluation of (1.42) would then yield values of |ce|2 < 0, which is not possible).

The photon reabsorption scheme discussed here, together with the earlier intro-
duced method for generating tailored photons [41, 80, 81], constitute the key to
analytically calculating the optimal driving pulses needed to produce and absorb
arbitrarily shaped single-photons (of finite support) with three level Λ-type atoms
in optical cavities. This is a sine qua non condition for the successful implemen-
tation of a quantum network. It is expected that this simple analytical method will
have significant relevance for those striving to achieve atom-photon state transfer
in cavity-QED experiments, where low losses and high fidelities are of paramount
importance.

1.6 Future Directions

We have discussed a large variety of ways for producing single photons from simple
quantum systems. The majority of these photon-production methods lead to on-
demand emission of narrowband and indistinguishable photons into a well defined
mode of the radiation field, with efficiencies that can be very close to unity. Therefore
these photons are ideal for all-optical quantum computation schemes, as proposed
by Knill et al. [2]. These sources are expected to play a significant role in the imple-
mentation of quantum networking [12] and quantum communication schemes [89].

The atom- and ion-based sources have already shown to be capable of entangling
and mapping quantum states between atoms and photons [45, 46]. Processes like
entanglement swapping and teleportation between distant atoms or ions, that have
first been studied without the aid of cavities [69, 70, 86, 90, 91] are beginning to
benefit enormously from the introduction of cavity-based techniques [17, 47, 48],
as their success probability scales with the square of the efficiency of the photon
generation process. The high efficiency of cavity-based photon sources also opens
up new avenues towards a highly scalable quantum network, which is essential for
providing cluster states in one-way quantum computing [92] and for the quantum
simulation of complex solid-state systems [93].
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Chapter 2
A Highly Efficient Single Photon-Single
Quantum Dot Interface

Loic Lanco and Pascale Senellart

Abstract Semiconductor quantum dots are a promising system to build a solid state
quantum network. A critical step in this area is to build an efficient interface between
a stationary quantum bit and a flying one. In this chapter, we show how cavity
quantum electrodynamics allows us to efficiently interface a single quantum dot
with a propagating electromagnetic field. Beyond the well known Purcell factor, we
discuss the various parameters that need to be optimized to build such an interface.
We then review our recent progresses in terms of fabrication of bright sources of
indistinguishable single photons, where a record brightness of 79% is obtained as
well as a high degree of indistinguishability of the emitted photons. Symmetrically,
optical nonlinearities at the very few photon level are demonstrated, by sending few
photon pulses at a quantumdot-cavity device operating in the strong coupling regime.
Perspectives and future challenges are briefly discussed.

2.1 Motivations

To a large extent, semiconductor quantum dots (QDs) can be considered as artifi-
cial atoms. Strong confinement of the carriers in the three direction of space results
in discrete energy levels and the coulomb interaction between carriers lead to a
direct correspondence between the number of carriers in the QD and the energy lev-
els [1]. These properties make semiconductor QDs promising to implement quan-
tum functionalities in a solid state system [2]. Like real atoms, QDs can emit
single photons [3] or entangled photon pairs [4, 5]. The large oscillator strength
of the transitions leads to a recombination time below one nanosecond allowing
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operation of the source in the GHz frequency range [6, 7]. Finally, despite the cou-
pling of the carriers to their vibrational and electrostatic environment, the emitted
photons have been shown to present high degrees of indistinguishability, up to 96%
[8–13].

The anharmonicity of the energy levels in a QD also naturally opens the route
toward single photon optical non-linearities [14–16, 77]. The optical absorption of
a photon resonant to a QD transition leads to the creation of an electron hole pair
which spectrally shifts the resonance for the absorption of a second photon. Such
non-linearities could be used to implement optical quantum logic gates, with a gate
operation speed determined by the QD radiative transition rate [17].

Finally, benefiting from the semiconductor technological possibilities, it is also
possible to deterministically inject a carrier in a QD, using doped structures and
electrical contacts [18]. The spin of such a carrier can be used as a stationary quantum
bit: while an electron spin presents coherence times in the few ns range [19, 20], a
hole spin can present a coherence time as long as 200ns [21–24]. Since the main
source of spin dephasing is the hyperfine interaction, spin echo techniques applied on
the nuclear spin bath have allowed greatly increasing the electron spin coherence time
[25]. Spin-orbit coupling in the excited charge state of the QD results in polarization
selection rules for the optical transitions making it possible to optically manipulate
and measure the spin. Applying a magnetic field in the Voigt configuration has also
allowed full manipulation of the spin using virtual Raman optical transition [26] and,
very recently, spin photon entanglement has been reported [27, 28].

All these properties have put theQDsystem in an interesting position to implement
integrated quantum functionalities. To go beyond the demonstrations of principle,
a major challenge is to make every functionality efficient. Indeed, QD based sin-
gle photon sources present the attractive features of a solid state light source with
true quantum statistics but suffer from low brightness, simply because total internal
reflexion limits to a few percents the photons exiting the semiconductor. Techniques
must be developed to collect every photon emitted by a QD. Symmetrically, optical
quantum gates relying on the QD anharmonicity will only be demonstrated if one
can ensure that every photon sent on a device will interact with the QD. Several
approaches are pursued to build an efficient photon-QD interface [6, 13, 29–32]. In
the last few years, the most successful ones have consisting in inserting the QD in
a photonic structure, either a photonic wire [29, 30] or a microcavity [13]. The first
approach relies on the single mode structure of a thin nanowire to guide the light
emitted by the QD. This approach presents the advantage of offering a broadband
high collection efficiency and could be applied to spectrally broad single photon
emitters, like NV centers in diamond and colloidal QDs. In the case of QDs, the
proximity the surface has made the QD emission more sensitive to spectral diffu-
sion phenomena [33] and dephasing of the carriers may be a limitation for obtaining
indistinguishable photons.

Using cavity quantum electrodynamics has been shown to be very efficient to
build such an interface, and also to reduce the effect of dephasing induced by the
solid state environment [34–36]. When coupling a single QD to a confined opti-
cal mode, the light matter interaction is increased leading to an acceleration of
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spontaneous emission (Purcell effect) [37] or to new light-mattermixed states (strong
coupling regime) [38–40]. Together with a full control on both the emission rate and
the radiation pattern of the QD emitted photons, this approach basically reduces the
QD excited state lifetime hence its sensitivity to phonon assisted mechanisms [34],
pure dephasing [8] and spin-flip processes [36]. First proposed in 1999 [41], the
cavity based interface has faced many technological challenges regarding its imple-
mentation, because the QD must be precisely spatially and spectrally matched to the
cavity mode, whereas QD mostly grow with random spatial and spectral properties.

This chapter reviews the recent progress made in this research line using a deter-
ministic technique to couple a QD to a micro pillar cavity [42]. In the first part,
we discuss the physics of such a cavity based interface. While the Purcell factor
and coupling to mode figures of merit are commonly discussed, we show that other
parameters are critical for making the interface efficient.We also briefly describe
the technology we have developed to have a full control of the devices. In a second
part, we review the progresses we have made in terms of fabrication of quantum
light sources: brightness, indistinguishability of the emitted photons, purity of the
single photon emission, electrically controlled sources. We also briefly present a first
application using a QD based bright source to implement an entangling quantum
logic gate. In a third part, we present a study of the giant optical non-linearity for a
QD-pillar device operating in the strong coupling regime. We further show that such
a device allows monitoring single quantum events at the microsecond time scale.
In the last part, we discuss future challenges and objectives: spin-photon interface,
scalability, limitations or possibilities provided by the solid state environment.

2.2 Efficient Quantum Dot-Photon Interfacing

2.2.1 Basics of Cavity-QED in a Quantum Dot-Micropillar
Device

Figure2.1a displays a sketch of a typical QD-pillar cavity system. Fabricating such
a device requires, first, to fabricate a planar sample through molecular beam epitaxy:
a layer of self-assembled InGaAs QDs is embedded into a GaAs cavity, sandwiched
between two-distributed Bragg mirrors (alternating GaAs/AlGaAs layers). These
Bragg mirrors induce the confinement of light in the vertical direction. Lateral con-
finement is then obtained by etching a cylindrical micropillar, with a typical diameter
of a few microns: a confined cavity mode is obtained with a cavity mode frequency
ωC . In parallel, confinement of carriers in an InGaAs quantum dot leads to discrete
energy levels, with a transition at frequency ωQ D between the QD ground state
(|ground〉) and its first excited state (|excited〉). A maximal light-matter interaction
is obtained when ωQ D ≈ ωC (spectral matching), and when the InGaAs quantum
dot is located at a maximum of the cavity mode intensity, i.e. at the center of the
micropillar for the fundamental mode (spatial matching).
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Fig. 2.1 a Typical structure of a quantum-dot/micropillar system. b Physical quantities describing
the device behavior

The important physical quantities governing the physics of such a cavity-QED
device are sketched in Fig. 2.1b:

• The QD-cavity coupling strength g: it describes the coherent interaction between
theQDoptical transition and the confined cavitymode.More precisely, it describes
the rate at which a photon in the confined mode can be coherently converted into
an electron-hole pair in the quantum dot, and vice-versa.

• The cavity damping rate κ: it describes the incoherent dissipation associated to
photons escaping the cavity. This damping rate is given by the sum of several
contributions, through κ = κtop + κbottom + κloss. In the latter expression κtop and
κbottom are the damping rates associated to photons escaping through the top and
bottom mirrors, while κloss is the damping rate associated to unwanted leakage
through the unperfect micropillar sidewalls.1

• TheQD decay rate γsp: it describes the rate of the unwanted spontaneous emission
of photons outside the cavity mode (as opposed to emission in the confined cavity
mode, which is the desired emission channel).

• The QD pure dephasing rate γ ∗: it describes the rate at which the QD loses its
coherence through pure dephasing processes. The totalQDdephasing rate, denoted
γ , is then the sum of a lifetime-limited contribution and of this pure dephasing
contribution γ ∗, through: γ = γsp

2 + γ ∗.

The objective for a QD-cavity device is to increase the strength of the coherent
coupling g, as compared to the incoherent processes described by κ and γ . In this
respect, two regimes are usually introduced in cavity-QED:

• The strong-coupling regime [43],where g is higher thanbothκ/4 andγ /4. In such a
case, if theQD is in its excited state at a given time, it will be able to coherently emit
a photon, absorb it, reemit it, reabsorb it, and so on, before dissipation occurs. In
quantum words, the system experiences a Rabi oscillation at frequency g between
two states: |excited〉 ⊗ |0 photon〉 and |ground〉 ⊗ |1 photon〉.

1We note that our cavity damping rate κ is an intensity damping rate, whereas other references define
κ as a field damping rate: there is a factor 2 difference between these two possible definitions.



2 A Highly Efficient Single Photon-Single Quantum Dot Interface 43

• The weak-coupling regime [37], where g is smaller than either κ/4 or γ /4. In such
a regime dissipative processes are faster than the coherent evolution, and therefore
no Rabi oscillations can be observed.

Both the weak and the strong-coupling regimes provide a wide range of possibil-
ities for quantum physics applications. For instance, large values can be obtained for

the QD emission rate in the confined mode, denoted Γ , which is given by � = 2g2

κ
in the weak-coupling regime [44]: this emission rate can be significantly higher than
the emission rate γsp outside the cavity mode, ensuring the emission of easily col-
lectable photons (see Sect. 2.3). A well-known figure of merit in cavity-QED is thus
the Purcell factor Fp = �

γsp
[37].2 Because γsp is fixed by the properties of the QD

material, optimizing the Purcell factor Fp requires increasing the coupling strength
g while at the same time decreasing the cavity damping rate κ . The optimization of κ
requires a significant number of GaAs/AlGaAs pairs in each Bragg mirror (typically
more than 16 pairs in each mirror, to reach quality factors above a few thousands)
and minimizing sidewall losses κloss , while the optimization of g requires etching
micropillars with small mode volumes and thus small diameters (typically less than a
few microns) [39]. On top of that, the spectral matching condition (ωQ D ≈ ωC ) and
the spatial matching condition (QD at the micropillar center) also have to be fulfilled.
The following section describes howboth these requirements can be deterministically
achieved with a specific in-situ lithography technique [42].

2.2.2 Deterministic QD-Cavity Coupling Through In Situ
Lithography

Since 2005,many groups haveworked on the deterministic coupling between a single
QD and a cavity mode, using either top-down [42, 45] or bottom-up approaches
[46, 47]. The first technological challenge, regarding this implementation, comes
from the fact that QDs grow with random spatial locations on a planar surface (as is,
for instance, the bottom mirror of a Bragg cavity). It is thus most probable, that, for
a given quantum dot inside a randomly-etched micropillar, the QD location will not
be at the maximum of the electromagnetic field. The second technological challenge
comes from the wide inhomogeneous spreading of the QD transition frequencies
ωQ D , on a spectral range corresponding to a few tens of nanometers. In comparison,
temperature adjustments allow tuningof the spectralmismatchωQ D−ωC in a spectral
range corresponding to approximately one nanometer only (for a typical temperature
variation range between 4 and 50K). For a randomly-etched micropillar, the overall
probability to find a spectrally matched QD at its center is thus of the order of 10−3.

2The Purcell Factor is usually defined as the ratio between the emission rate in the cavity mode,
�, and the emission rate for a quantum dot in bulk GaAs, γbulk , but in a micropillar device γsp is
usually equal to γbulk .
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(a) (b) (c)

Fig. 2.2 a Principle of in situ lithography. b SEM image of several deterministically-coupled
micropillars. c Experimental demonstration of the Purcell effect with a deterministically-coupled
pillar

Standard dry etching of micropillars, starting from a planar Bragg cavity sample,
requires a lithography step allowing to first define the positions and sizes of the
micropillars. In the in situ lithography technique developed in 2008 [42], this step
is performed inside a low-temperature cryostat. As sketched in Fig. 2.2a, the planar
sample is spin-coated with a positive photoresist and brought to low temperature; a
850nm laser line is then used to excite the QD emission without exposing the resist.
The emitted photoluminescence is analyzed with a spectrometer, allowing one to
select a QD emission line and measure its intensity. Mapping this QD emission
intensity as a function of the QD position, within the focused laser beam, allows
measuring the QD position with 50nm accuracy. A second laser, at 532nm, spatially
superimposed to the 850nm one, is then used to expose a disk centered on the
QD. Furthermore, the diameter of the exposed disk is adjusted in order to tune
the micropillar diameter; this, in turn, allows tuning the pillar fundamental mode
frequency ωC and matching it to the QD emission frequency ωQ D . The exposed disk
is later used as a mask to etch the micropillar around the selected QD. This step is
repeated as many times as desired for different QDs, so that one can fabricate many
optimally coupled QD-pillar cavities on a single wafer, as illustrated in Fig. 2.2b.

A typical demonstration of the Purcell effect obtained with such devices is dis-
played in Fig. 2.2c. When the QD emission frequency ωQ D is tuned off resonance
from the mode frequency ωC , emission in the confined mode remains negligible, and
the QD emission lifetime is mainly governed by γsp. On the contrary, when ωQ D

is tuned on resonance with ωC , emission in the confined mode becomes prominent:
the QD emission lifetime is given by � + γsp = (Fp + 1)γsp. From the lifetime
measurements displayed in Fig. 2.2c a Purcell factor Fp = 7.8 is deduced.
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2.2.3 Critical Parameters: Beyond the Purcell Factor

Controlling the QD emission rate is one thing; another is to take advantage of this
control in order to develop a really efficient QD-photon interface. Such an interfacing
must, ideally, go both ways: transfer of information from an incident photon to a QD,
and from a QD to an extracted photon. The perspectives offered by an efficient QD-
photon interface are very wide, as will also be discussed in the last section of this
chapter (Sect. 2.5). In the following we will mainly focus on two major aspects of
QD-photon interfacing: the development of ultrabright sources of indistinguishable
single photons [13] (Sect. 2.3) and the demonstration of an optical nonlinearity with
few-photon pulses [14] (Sect. 2.4). In the former application, the QD-pillar device is
used to emit single photons with specific properties. In the latter, it is used to receive
incident photons, and subsequently transmit or reflect them, depending on the QD
state. Here we discuss the critical parameters which characterize the quality of a
QD-pillar device for both applications.

As regards photon emission, quantum communication applications ideally require
deterministically-triggered emission of indistinguishable single photons. One thus
has to control at the same time:

• The fraction of photons emitted in the mode, denoted β. Indeed, only photons
emitted in the confined mode can be efficiently collected through the cavity top
mirror. � being the emission rate in the mode, and γsp the emission rate outside

this mode, the fraction β is given by β = �
� + γsp

, i.e. β = Fp
Fp + 1 with Fp the

Purcell factor defined above. A large Purcell factor is required to obtain � � γsp,
i.e. emission in the mode with a fraction β close to unity.

• The single-photon wavepacket indistinguishability, usually denoted T2
2T1

. This is a
figure of merit indicating if the single-photon wavepacket is close to the Fourier-
transform limit, where the photon coherence time T2 equals twice its lifetime T1. In
our case T −1

1 = � + γsp (sum of the emission rates into and outside the confined

mode), while T −1
2 = �+γsp

2 + γ ∗ also includes the pure dephasing described by
γ ∗. A large Purcell factor is usually required to obtain �

2 � γ ∗, i.e. negligible
dephasing and thus a wavepacket close to the Fourier-transform ideal limit.

These two separate conditions � � γsp and �
2 � γ ∗ can be fulfilled both at the

same time if �
2 � γ , where γ is the total QD dephasing time previously defined:

γ = γsp
2 + γ ∗. Because �

2 = g2

κ
, this allows introducing a fundamental quantity

which is the device cooperativity, denoted C :

C = g2

κγ
(2.1)

This cooperativity is a well-known figure of merit in cavity-QED, first introduced
with cold atoms [48]. It compares the strength of the coherent interaction (governed
by g) to that of the incoherent processes (governed by κ and γ ), and indicates how



46 L. Lanco and P. Senellart

strongly the presence of the QD transition modifies the optical properties of the
device.

We point out that different notations are sometimes adopted in the literature. As an
example, in atom cavity-QED the pure dephasing term γ ∗ can be considered equal
to zero, as is in chapter by A. Kuhn of this book. In such a case the spontaneous
emission rate γsp is equal to twice the total dephasing rate, and the Purcell Factor
(denoted f in chapter byA. Kuhn and Fp here) is equal to twice the cooperativity.We
also note that with our definition, the cavity damping rate κ is an intensity damping
rate, whereas it is a field damping rate in chapter by A. Kuhn: the cavity linewidth is
thus equal to κ in the present chapter, but to 2κ in chapter by A. Kuhn.

Another crucial quantity to be optimized is the top-mirror output-coupling effi-
ciency, denoted ηtop:

ηtop = κtop

κ
(2.2)

This top-mirror output coupling efficiency gives the fraction of photons from the
confined cavity mode that escape through the top mirror. This derives from the
fact that the cavity damping rate is the sum of contributions from several channels:
κ = κtop + κbottom + κloss, so that

κtop
κ

measures the probability for escaping
through the top-mirror channel. For single-photon emission applications, it is crucial
to approach ηtop ≈ 1 in order to collect efficiently photons from the cavity mode:
this requires an asymmetric design with a highly reflective bottom mirror (so that
κtop � κbottom), as well as low sidewall losses (so that κtop � κloss). As will be
discussed in Sect. 2.4, ηtop also plays a crucial role in resonant excitation experiments
where photons are received and then reflected or transmitted by the device.

Finally, regarding photon reception experiments, one must not forget the require-
ment that photons have to be injected efficiently into the fundamental cavity mode: to
do so, one has to optimize the spatial overlap between the free space optical beam and
the confined mode (exactly as one would do to efficiently inject light into an optical
fiber). The overlap integral between these two spatial shapes gives us another figure
of merit, the input-coupling efficiency of our experiment, denoted ηin. Contrary to C
and ηtop, which are related to the quality of the device technology, ηin is governed by
the experiment and can be optimized with a careful optical alignment. Because the
fundamental mode of the pillar cavity present a high overlap with a gaussian mode,
ηin values close to unity can be obtained [49, 50].

2.3 Ultrabright Single Photon Sources

2.3.1 Why Are Bright Single Photon Sources Desirable?

Although single QDs have been shown to emit single photons as early as 14years
ago [3], most optical quantum communication and quantum computation protocols
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are still mostly implemented using parametric down conversion (PDC) sources. The
main reason for this is that PDC sources present the main advantage of generating
highly indistinguishable photons at room temperature. Their main limitation is their
photon statistic, which is at best Poissonian (for non heralded sources) and which
strongly limits the operation rate of the source in order to minimize multi-photon
events. Over the years, multi-photon events have been dealt with error correction
protocols and the number of entangled photons has recently reached a record value
of eight [51]. Yet, the low brightness and themulti photon events of PDC sourcesmay
soon put a strong barrier to the scalability of photonics quantum networks, simply
because the measurement time exponentially increases with the number of photons.

A QD based single photon source, even highly indistinguishable, is not of much
interest if one cannot collect more than few percents of the emitted photons, 5–10%
being the typical operation rate of non-heralded PDC sources. On the contrary, a very
bright QD source of highly indistinguishable photons could have strong potential in
this context. Recent progresses in the community indicate that such a source is within
reach. We now present the recent progresses we made in term of QD based single
photon sources for quantum information processing by inserting QDs in micro pillar
cavities.

2.3.2 Demonstration of Single Photon Sources with Record
Brightness

Wedefine the brightness of the source as the number of collected photonper excitation
pulse in the first collection lens. For a high excitation power, one can assume that
at least an electron hole pair is created in the QD. The QD high quantum efficiency
means that this electron hole pair will radiatively recombine with a probability close
to one [52, 53]. This first step describes the photon creation efficiency. To obtain
a bright source, high creation efficiency must be combined with high collection
efficiency. As explained in Sect. 2.2, in the weak coupling regime, the collection
efficiency is given by the coupling to the mode β = FP

FP + 1 multiplied by the out
coupling efficiency ηtop. To collect all the emission from one side of the pillar, we
use an highly asymmetric cavity, where the transmission of the top mirror strongly
exceeds the one of the bottom one κtop � κbottom. In this case, ηtop is only limited
by the side losses and is given by ηtop = κtop

κ
= Q

Q0
where Q and Q0 are the quality

factor of the pillar and planar cavities. The dashed line in Fig. 2.3a show this ratio for
a typical etching process, starting from a planar cavity with Q0 = 3000. During the
pillar etching process, some roughness can develop on the pillar sidewalls, resulting
in a decreasing Q when decreasing the pillar diameter. The corresponding β (dotted
line) increases as the mode volume decreases. As a result, the collection efficiency
ηtopβ presents an optimumaround 80%obtained for a pillar diameter around 2–3µm
here.
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Fig. 2.3 Ultrabright single photon source. a Dashed line ηtop = Q
Q0

as a function of the pillar

diameter. Dotted line coupling to the mode β = FP
FP + 1 . Solid line extraction efficiency ηtopβ. b

Example of a QD spectrum under non-resonant excitation where several charged exciton emission
lines are observed. c Count rate on the detector (right axis) and brightness (left axis) as a function
of the excitation power. Solid line correspond to raw data (B), dashed line is corrected from multi
photon emission (Bcorr = B

√
1 − g(2)(0)). d g(2)(0) as a function of the incident power. The

multiphoton emission is very small at low powers, and slightly increases when higher powers are
used

To reach such a high value,we need to consider the actual typical spectrumof aQD
under non-resonant excitation (see Fig. 2.3b). The QD emission spectrum consists
in discrete emission lines, each corresponding to a well defined charge state of the
QD. Although the samples are not intentionally doped, several emission lines can
be observed, the neutral exciton (X), the positively charged exciton (X+) and the
negatively charged exciton (X−). The observation of these three lines shows that
depending on the excitation cycles, the QD will be in either one of these states. To
reach a creation efficiency close to one, ideally, the QD should be in only one of these
states with a high probability. Gated structures can be used to control this charge state
[18]. In this first demonstration, no electrical control of the source is used. We use
the possibility to select the QDs presenting only a single emission line during the
in-situ lithography process.

Several dozens of sources are therefore fabricated selecting QDs with a bright
single emission line and spectrally matched to pillar cavity mode with diameter
around 2–3µm.The source brightness ismeasured using a simple experimental setup
consisting of a collection objective, mirrors and cubes and a spectrometer coupled to
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an avalanche photo diode (APD). Each optical component transmission or detection
efficiency has been carefully measured using an attenuated pulsed laser at the QD
emission wavelength. Figure2.3c presents the number of counts measured on the
APD as a function of a pulsed excitation power at 82 MHz. At high power, when the
probability to create at least an electron hole pair is close to one, a 0.65 MHz count
rate is measured on the detector. Taking into account the overall setup efficiency
of 0.97%, this corresponds to a brightness around B = 83 ± 8%. The purity of
the single photon source is also measured through photon correlation measurements
(Fig. 2.3d). A very low g(2)(0) below 0.05 is observed up saturation. The corrected
brightness Bcorr = B

√
1 − g(2)(0) amounts to 78± 8%, a record value for a single

photon source. Brightness ranging between 60 and 79% have been obtained in this
first generation sample, with ηtop ≈ 1 and B ≈ β, with Purcell factors ranging in
the 2–3.5 range. In a new generation of sample, similar values have been obtained
using an adiabatic design for the cavity as proposed in [54]. Such a design reduces
the effect of sidewall losses, allowing to maintain higher quality factors for smaller
pillar diameters. Brightness in the 75 ± 7% range are obtained with β ≈ 1 and
B ≈ ηtop, with Purcell factors around 10. In between these two regimes, i.e. with
slightly smaller FP , brightnesses in the 90% range should be reached.

2.3.3 Purity of the Single Photon Emission

While the QD emission usually presents a quantum statistic with g(2)(0) < 0.5, the
observed values for the second order autocorrelation function g(2)(0) can signifi-
cantly vary from one device to another and from one measurement to another on the
same device. In the literature, two phenomena are mainly proposed to explain the
residual g(2)(0): multiple capture processes [55] and cavity feeding effects [56–58].
We now discuss these various phenomena and show that only recapture processes
affect the single photon purity for deterministically coupled devices and how one
can systematically obtain a nice single photon purity with the appropriate excitation
conditions.

When increasing the excitation power, some emission background is sometimes
observed together with the discrete emission lines of the QD [59]. Because of the
strong phonon and coulomb interaction with their solid state environment, few per-
cent of QD emission is emitted on a broad spectral range.When the QD is in a cavity,
this broad emission is enhanced by the cavity resonance, leading to the so called cav-
ity feeding effect, namely the observation of an emission at the cavity resonance,
even when no QD optical transition is resonant to the cavity. When several QDs are
inserted in the device, the emission at the cavity mode energy can arise from several
spectrally non-resonant QDs. Such emission at the cavity energy can significantly
decrease the single photon purity.

However, we show that when a single QD is coupled to the cavity line, cavity
feeding effects do not explain a bad single photon purity. The emission spectrum of
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Fig. 2.4 Origin of the cavity emission line. a Spectrum of a deterministically coupled QD-pillar
device for a non-zero detuning between the QD exciton line and the cavity resonance. Two emission
lines are observed: the D exciton line and a emission line close to the cavity resonance. b Photon
correlation measurements. Red auto-correlation of the exciton line. Black cross correlation between
the exciton and cavity line

a deterministically coupled QD device when the QD resonance is not matched to the
cavity line is presented in Fig. 2.4a. Two emission lines are observed, one correspond-
ing to the QD resonance, the other close to the cavity resonance. Figure2.4b. presents
the measured auto correlation function of the exciton line where g(2)

X,X (0) ≈ 0.4. The
same value is observed for the cross correlation between the exciton and the cavity
line g(2)

C,X (0) = g(2)
X,X (0). If the cavity mode arised from several QD emission lines

then g(2)
C,X (0) > g(2)

X,X (0). This observation shows that the cavity like emission arises
from the very same QD line and can be accounted for by the phonon sidebands. It
cannot explain the bad single photon purity illustrated here.

To explain the bad single photon purity presented here, Fig. 2.5 recalls the main
mechanisms involved in the single photon generation for a QD system pumped non-
resonantly. A pulsed non-resonant excitation creates a population of carriers nQW

in the wetting layer or GaAs barriers. These carriers recombine radiatively or non-
radiatively with a rate rQW or are captured in the QD with a rate rcap. Assuming that
there is only a single confined exciton state in the QD, the QD exciton and biexciton
states radiatively recombine with rates rX and rX X . The guarantee for a good single
photon source is that when the QD exciton recombines, there are no carriers left in
the barriers that can be captured in the QD, namely that rX, rX X � rQW , rcap. As a
result, several mechanisms can degrade the single photon purity.

On one hand, a very high quality barrier where carriers can spatially diffuse on
long time and spatial scales would decrease rQW , rcap. Increasing temperature can
also increase the lifetime of the carriers in the barrier. On the other hand, shorten-
ing the exciton radiative lifetime should also reduce the single photon purity under
non-resonant pumping. This is what is evidenced in Fig. 2.5. g(2)

X,X (0) is plotted as
a function of temperature (bottom scale) corresponding to a detuning with the cav-
ity mode (top scale). These measurements are taken for an excitation power close
to saturation. High value for g(2)

X,X (0) are observed for the whole temperature range.
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Fig. 2.5 Influence of multiple capture processes on the single photon emission. a Schematics of
the processes involved in the QD single photon emission under on resonant excitation (see text). b
Exciton auto-correlation function under non-resonant excitation as a function of the temperature for
a QD in a pillar cavity (circles and squares) and planar cavity (diamonds). Symbols are experimental
data, lines theoretical predictions detailed in [60]. Triangles Exciton auto-correlation function under
quasi-resonant excitation. For the QD in the pillar device, the detuning from the cavity mode is
indicated on the top scale

As a reference, the g(2)
X,X (0) for a QD in the planar structure (not experiencing Purcell

effect) is shown; a continuous degradation of the single photon purity is observed
increasing temperature, because of a decreased of rQW , rcap. For the QD in the cav-
ity, the single photon purity is further degraded when the QD is brought in resonance
with the cavity mode, increasing rX .

Because the single photon purity is degraded by multiple capture mechanisms, a
good single photon purity can be obtained by a direct creation of the carriers inside
the QD: the relaxation of carriers between confined energy levels is very efficient and
hardly temperature dependent. This is what is demonstrated with the open symbols
in Fig. 2.5b: a very good single photon purity, with g(2)

X,X (0) < 0.08 is observed on
the whole temperature and detuning range.

2.3.4 High Indistinguishability Through a Control of the QD
Environment

Chapter by Schneider, Gold, Lu, Höfling, Pan and Kamp recalls the requirements
for obtaining indistinguishable photons, namely the photons should be identical in
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polarization, energy, spatial and temporalmode. Finally, themost demanding require-
ment concerns the emission of single photons with a Fourier transform limited spec-
trum. This last requirement immediately brings the question of environment induced
dephasing for an emitter in a solid state system. Several mechanisms can limit the
photon indistinguishability. Coupling with acoustic phonons leads to the appearance
of phonon sideband emission [61–63], while coupling with optical phonons induces
pure dephasing of the zero phonon line. Moreover, charges in the QD surrounding
(either fluctuating charges in traps or optically created charges in the barrier) create
a fluctuating electric field, leading to a Stark induced fluctuation of the emission
energy. Depending on the relative time scale between the charge fluctuations and
the exciton radiative recombination, this charge noise will result in a homogeneous
broadening (pure dephasing) or an inhomogeneous one (spectral diffusion) [64].
Finally, obtaining indistinguishable photons also depends on the dynamics of car-
rier relaxation and emission in the system. Very high pumping, which creates many
electron hole pairs in the QD, delay the emission of the exciton [65] and lead to a
strong jitter in the QD emission dynamics.

Despite these possible limitations, QDs have been shown to emit indistinguishable
photons as early as 2002 [8], with mean wave packet overlap as large as 80%. Since
then, manyworks have reported on the emission of indistinguishable photons [9–12].
In most works, the indistinguishability is below 80% and the origin of this limitation
is not clear. Very recently, pure resonant excitation has allowed the observation of
indistinguishability of 96% [12], bringing the QD source close to the quality of PDC
sources. Yet, this was obtained for a low source brightness.

We have studied the indistinguishability of a QD-pillar single photon source as
a function of the source brightness. When creating the carriers in the surrounding
barriers (Fig. 2.6, green symbols), a high photon indistinguishability, characterized
by a mean wavepacket overlap M = 0.82, is observed at a source brightness of
30%. When increasing the source brightness, M continuously decreases: additional
carriers optically created in the QD surrounding create a fluctuating electrostatic
environment. To circumvent this effect, carriers are directly created in the excited state
of the QD (red symbols). Surprisingly, the source indistinguishability is even lower,
independently of the source brightness. Considering these two sets of measurements,
we deduce that under low power non-resonant excitation, non-resonantly created
carriers fill deep traps around the QD and stabilize its electrostatic environment. To
combine high brightness with high indistinguishability, we have therefore used a two
color excitation scheme (blue symbols): a strong pumping directly creating excitons
into an excited QD state together with a weak non-resonant pumping to fill traps.
Doing so, we demonstrate a mean wavepacket overlap as high as 92% (82%) for
a source brightness of 53% (65%). These values are close to the best values ever
reported on QD system, combined here with a high brightness.

Finally, we analyze the dynamics of the indistinguishability by performing a tem-
poral post selection of the emitted photons. Figure2.7 presents the indistinguisha-
bility of the source as a function of the time bin for the analysis. This temporal post
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Fig. 2.7 Brightness and post temporal selection. Measured photon mean wave packet overlap as
function of the time bin size of detection for three excitation powers in the wetting layer. The lines
indicate the experimental error bars. The brightness corresponding to the time bin size is shown on
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selection reduces the brightness of the source as indicated on the right axis. The
measurements presented here correspond to an excitation in the wetting layer. For
all excitation powers, a higher indistinguishability is observed at shorter time delay:
the earlier the photon is emitted after the excitation pulse, the less the exciton has
experienced dephasing.
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2.3.5 Electrically Controlled Sources

Inserting the QD in a doped structure and applying an electric field is a very effi-
cient tool in the context of building a solid state quantum network. It first allows
deterministically injecting an electron or hole in the QD [18] in order to build a
spin based quantum memory. It has also been used to control the coupling between
the two linearly polarized exciton states and produce entangled photon pairs [66]
(see chapter by Trotta and Rastelli). Applying an electric field can allow tuning the
QD emission energy through the Stark effect, an interesting property to implement
quantum interferences between two sources [67]. Finally, a doped structure and an
applied bias around the QD layer helps stabilizing the QD charge environment and
reduce charge induced dephasing.

Combining an electrical control with a good extraction efficiency is technolog-
ically challenging. Pioneer works have developed a technology consisting in pla-
narizing a micropillar sample and defining an anular contact on top of a micropillar
[68]. Another approach has consisted in using oxide aperture cavities [6]. In such
structures, the carrier injection is very close to the quantum dot layer, a favorable
approach to obtain fast operation of the electrical control. On the other hand, a precise
control over the oxidation process is needed to control the cavity energy.

We have proposed another approach to obtain an electrical control of a QD in
a cavity [69]. The cavity consists in a micropillar, connected with one dimensional
wires to a larger frame, where the electrical contact is defined (Fig. 2.8a). To study the
optical properties of the connected pillar cavity, a preliminary study was conducted
on a high quality factor sample embedding a large density of QDs. For the same
pillar diameter, the connected pillar cavity fundamental mode presents a slightly
lower energy, evidencing a lower optical confinement as the field partially penetrates
in the connected wires (Fig. 2.8b). Comparing the quality factor for connected versus
isolated pillars for the same confinement (same mode energy), we find that while
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Fig. 2.8 Connected pillar cavity. a Schematic of the connected pillar structure used to implement
electrical contacts on a cavity. b Energy of the connected micropillar (open) and isolated (solid)
pillar fundamental mode as a function of pillar diameter. c Quality factor of the fundamental mode
as a function of the mode energy for isolated (solid) and connected (open) pillars
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connected pillar cavities present slightly lower quality factors, the latter can still reach
Q = 30,000. Such high quality factors show that connected pillar cavities could be
used to reach the strong coupling regime. Concerning light extraction efficiency,
the slightly reduced quality factor compared to isolated pillars may indicate some
additional side losses, due to light guided in thewires.However, since the out coupling
efficiency depends on ηtop = κtop

κtop + κbottom + κloss
, it can still be brought close to one by

adjusting the parameters so that κtop � κloss, κbottom.
To deterministically insert a single QD in such a cavity, we have extended the

in-situ lithography technique in order to write any pattern in the resist, centered on
a selected QD. This requires having a control on the absolute sample position with
respect to the laser beam. Using a customized attocube confocal microscope, such a
control was possible with a 10nm accuracy, using high accuracy capacitive sensors.
The pillars, centered on a single QD, were connected to a 25µm × 25 µm frame,
the latter being connected to a 100µmwide mesa. After resist development, metallic
deposition and etching of the pillar structure, a second standard optical lithography
step was used to define contacts on the large mesa structure. Figure2.9a presents an
optical microscope image of a final device, where two connected pillars are visible
on the right side. Figure2.9b presents emission spectrum obtained under optical
excitation when no bias is applied. The cavity line is slightly detuned from both the

(a)
(c)

(b)

(d)

(e)

Fig. 2.9 Electrically tunable bright single photon source. a Microscope image of a device. The
electrical contact and bonding are realized on a 100µm wide mesa. The pillars are connected to a
25µm wide frame overlapping the large mesa. b Emission scan of the device (the sample is moved
with respect to excitation and confocal detection line). The emission is selected in a 5nm wide
spectral range around the cavity resonance. c Emission spectrum without applied bias. The cavity
(C), exciton (X) and charged exciton (X) lines are seen. d Emission intensity as a function of applied
bias. e Brightness as a function of excitation power for the X line (squares) and CX line (circles).
Lines are guides to the eyes
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neutral X and charged CX exciton QD lines. The present structure embeds a p-i-n
junction with a QD layer surrounded by barriers so as to allow the Stark tuning of
the QD optical transition. By increasing the voltage, the QD transition can be tuned
over a 1.4meV spectral range, throughout the cavity resonance (Fig. 2.9). Finally,
an emission map of the device where the emission in a 5nm spectral range around
the cavity mode is selected is presented in Fig. 2.9d. The intense emission of the QD
centered in the connected pillar is clearly evidenced, showing the Purcell enhanced
extraction efficiency.

As for single pillars, a calibrated experimental setup is used to measure the single
photon source brightness (Fig. 2.9e). In this experiment, the charge state of the QD
was not well controlled, so that the QD under study is in the neutral and charged
exciton state with 0.69 and 0.31 relative probabilities. When bringing either neutral
or charged exciton lines in resonance with the cavity mode, the measured brightness
reaches respectively 37±7 and 17±6%. This corresponds to an extraction efficiency
of 54%, limited here by the low Purcell factor of the source (FP = 0.8 ± 0.08,
ηtop ≈ 1, β = 0.44).

In this first technological realization, we demonstrated the electrical tunability for
a bright single photon source. With a different doping structure, the same technology
can be used to control the charge state of the QD and build a deterministic spin-
photon interface. Resonant spectroscopy is currently investigated in such structures.
While the charge state of the QD in cavities has been shown to be sometime unstable
under resonant spectroscopy [16], preliminary tests indicate a significantly improved
situation in gated structures.

2.3.6 Implementation of an Entangling CNOT Gate

To demonstrate the potential of QD based bright single photon sources for quantum
information processing we have implemented an entangling controlled-NOT (C-
NOT) gate [70]. Indeed, a universal quantum computer can be built with solely
C-NOT gates and arbitrary local rotations, the latter being trivial in optics. A C-NOT
gate flips the state of a target qubit depending on the state of a control qubit. Here
the two qubits are single photons successively generated by a single QD-pillar based
source with a brightness of 78±7%. The information is encoded on the polarization
of the photons.

Figure2.10a illustrates a possible implementation of an optical C-NOT gate. We
first consider only the path concerning the target qubit, in a linear superposition of H
and V polarization |target〉in = α|H〉 + β|V 〉. This polarization encoding is trans-
formed into a path encoding using a polarizing beam splitter and a half-wave-plate.
The two paths are then sent to the two inputs of aMach-Zender interferometer (MZI).
At the output of the interferometer, another half wave plate and polarizing beam split-
ter return from path to polarization encoding. If the phase difference between the two
arms of the MZI is π , the target qubit is flipped into the |target〉out = α|V 〉 + β|H〉.
To implement a C-NOT gate, the MZI is set to a zero phase difference between the
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(a)
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Fig. 2.10 Implementation of a C-NOT gate. a Schematic of a possible implementation for a C-NOT
gate. b Experimental setup used to entangle two photons generated by a QD based single photon
source using a C-NOT gate. c Zoom on the C-NOT gate implemented using calcite crystals and
wave plates. See text for details

two arms, and the π phase shift of one arm is induced by the controlled qubit. To do
so, one arm of the MZI embeds a 1/3 beam splitter. The control qubit (upper part of
Fig. 2.10a) is path encoded, one path being sent on the 1/3 beam splitter of the MZI.
When the control and target qubit are indistinguishable, their quantum interference
results in an effective π phase shift between the two MZI arms. It can be shown
that such a conceptually simple scheme acts as a quantum C-NOT gate on single
photons. However, such an experimental scheme is hard to implement because it
requires stabilization of the optical paths. Here we use a simpler way to implement
such a gate proposed in 2003 [71] and illustrated in Fig. 2.10b. It relies on two calcite
crystals implementing the path encoding and the interferometer and an internal half
wave late implementing the 1/3 beam splitters.

Two photons generated by the source with a delay of 2.3ns are coupled to a single
mode fiber. The coupling efficiency into the fiber is 82% as measured by comparing
the count rate with and without the fiber coupling. The two photons are then non-
deterministically split on a 50/50 fiber beam splitter and temporally overlapped using
a 2.3ns delay line on one arm of the fiber splitter. The two photons are then sent to
the free space C-NOT gate setup, where waveplates before and after the gate allows
controlling and analyzing the qubit polarization.

The measured truth table of the gate in the linear H and V polarization basis
is presented in Fig. 2.11a together with the calculated truth table for a mean wave
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packet overlap M characterizing the indistinguishability of the two photons. In the
ideal case, M = 1, the target qubit is flipped from H to V (and vice versa) when the
control qubit is set to V . The observed truth table deviates from the ideal one because
the indistinguishability of the photon is not ideal. The measurements are consistent
with an experimental photon overlap of M = 0.5. Note that this value is not the
photon mean wave packet overlap as presented in Fig. 2.6 where the photon indis-
tinguishability was deduced after correcting from the setup imperfection. Here, the
raw photon wavepacket overlap is deduced from these measurements. The deduced
value is consistent with ones reported earlier for a source operated at a brightness
of 75%. The probability of obtaining the correct output averaged over four possible
inputs is measured to 68.4% for a maximal source brightness. Because the photon
exhibits a better indistinguishability at short time delay (Fig. 2.7), the probability of
obtaining the correct output increases to 73% for a source brightness of 17%.

To prove the entangling capability of the gate, the control qubit is set to |D〉 =
(|V 〉+|H〉)/√2, and the target qubit to |H〉. The output of an ideal gate is then the
maximally entangled state �+ = (|V, V 〉 + |H, H〉)/√2. The fidelity of the two
photon state generated experimentally is deduced by measuring the polarization of
the correlation in three polarization bases [72, 73]:

Eα,β = Aα,α + Aβ,β − Aα,β − Aβ,α

Aα,α + Aβ,β + Aα,β + Aβ,α

where Aβ,α is the zero delay peak area in the correlationmeasurements for the output
control photon detected in β polarization and the output target photon in α polariza-
tion. The fidelity to the Bell state is given by F�+ = (

1+EH,V +ED,A−ER,L
)
/4

where D,A refer to the diagonal and the anti-diagonal polarisation, and R and L to
right and left circular polarizations.

For entanglement measurements, the source brightness has been set to Imax =
65% so as to benefit from a better degree of indistinguishability of the photons.
The fidelity to the Bell state F�+ is presented in Fig. 2.11b as a function of time
bin, with the corresponding source brightness indicated on the right scale. For the
maximum brightness, the fidelity to the Bell state is above the 0.5 limit for quantum
correlations. When reducing the time bin, the fidelity increases up to 0.710± 0.036.
The theoretical fidelity to the Bell state F�+ = 1+ M

2(2− M)
is plotted on Fig. 2.11c as a

function of the mean wavepacket overlap, M . For maximum brightness, a fidelity of

0.5 correspond to M = 0.5 (circle). For a time bin of 400 ps, the measured fidelity
gets as high as 0.71, corresponding tomeanwavepacket overlap larger thanM = 0.76
(triangle).

While we have reported the first implementation of an entangling C-NOT gate
using a QD based single photon source, our study shows that a significant improve-
ment of the indistinguishability is still needed to make QD based sources suitable
for optical quantum computing. We discuss in Sect. 2.5 ways to reach such a goal.
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(a)

(b) (c)

Fig. 2.11 Entangling capability of the gate. a theoretical (top) and experimental (bottom) truth
table of the gate. M is the mean wave packet overlap of the photons. b Fidelity to the Bell state as
a function of the bin size (left axis) and corresponding brightness (right axis). c Fidelity to the Bell
state as a function of the mean wave packet overlap. Line theoretical curve, symbols measured point
for a brightness of 50% (circle) and 17% (triangle)

2.4 Nonlinear Optics with Few-Photon Pulses

In this section, we now address a symmetric situation, where a QD in a cavity is
studied to implement a single photon router.

2.4.1 Motivations: Photon Blockade and Photon Routing

A two-level system is, by nature, a strongly nonlinear system: it may interact with
a first photon but, once the two-level transition is saturated, it will not interact with
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Fig. 2.12 Theoretical reflectivity spectra for a strongly-coupled cavity-QED device, in the two
limiting cases of a quantum dot in the ground state and of a saturated quantum dot transition

a second one. In the absence of a cavity structure, taking advantage of this with a
quantum dot is very inefficient: most of the photons incident on the quantum dot will
not interact with it. It is much more useful to use a QD in a cavity-QED device, as
in such a case the optical properties of the system can dramatically depend on the
QD state. As an example, Fig. 2.12 describes the theoretical reflectivity spectrum of
a strongly-coupled device having both high cooperativity C � 1 (see definition in
2.1) and a top-mirror output-coupling adjusted to ηtop = 50% (for example with a
symmetrical designwhere κtop = κbottom = κ

2 , and κloss = 0).When the quantumdot
is in its ground state, the reflectivity spectrum presents two dips associated to the two
eigenstates of the system, separated by the Rabi splitting 2g. When the QD transition
is saturated, on the contrary, the reflectivity spectrum presents a single Lorentzian dip
associated to the cavity mode resonance. A continuous transition between these two
behaviors can be obtained when, increasing the incident power, the average number
of photons in the cavity approaches unity. This nonlinear effect has been named
“giant optical nonlinearity” due to this extremely low photon number nonlinearity
threshold [44].

How can such an effect be exploited for practical applications? The main idea
is that the transmission/reflection probability for a second photon will be modified
if a first one has already been incident on the device. One can use this nonlinearity
to engineer quantum light from a classical laser beam: this is the photon-blockade
effect ensuring, for instance, that no more than one photon at the same time will be
transmitted by the cavity [74]. Another important device for quantum applications
would be a single-photon router: a device so nonlinear that, if two photons are
simultaneously incident on it, the first one will get transmitted and the second one
reflected [75]. This would constitute a major breakthrough for quantum information
and communication. Indeed, contrary to the coalescence of indistinguishable photons
on a beamsplitter cube (see previous section), it would allow the engineering of a
deterministic interaction between two photons, mediated by the cavity-QED device.

Towards this final objective of single-photon routing, several realizations have
already been obtained in various types of microcavity systems. Recently, reso-
nant spectroscopy on coupled QD-cavity devices, in the form of photonic crystals
[15, 16, 76–78] or microdisks [79, 80], has demonstrated giant optical nonlinearity
and fast optical switching. These works all concluded that optical nonlinearity is
obtained when close to unity photon numbers are reached inside the cavity. How-
ever, hundreds of incident photonswere required to obtain a single intracavity photon.
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For future quantum applications, distinguishing between the intracavity photon num-
ber and the number of incident photons per pulse is crucial. An optical nonlinearity
behavior at the level of one to two incident photons per pulse is needed: as described
below, the current record is an optical nonlinear threshold at 8 photons per pulse
recently achieved using a QD-micropillar device [14].

2.4.2 Observation of Nonlinearities at the Few-Photon Scale

The results described here have been obtained with a QD-pillar device which is in
the strong-coupling regime thanks to a very high quality factor Q = 29,000, for
a 2.1µm diameter. This could be obtained using the in-situ lithography technique
on a sample where the bottom and top Bragg mirrors are constituted by 36 and
32 pairs, respectively, so that they have equal reflectivities and thus equal damping
rates κtop = κbottom. A simplified sketch of a resonant excitation setup, allowing
the measurement of a device reflectivity spectrum with high spectral resolution, is
displayed in Fig. 2.13. The sample is placed inside a helium vapor cryostat, altogether
with a focusing lens, the sample position being controlledwith nanopositioners inside
the cryostat. A CW or pulsed laser is injected into and reflected from the micropillar
with a finely tunable photon energy �ω. Non-polarizing beamsplitters are used to
split the incident and reflected beams: the incident power is measured with a first
avalanche photodiode, a second one being used to measure the reflected power. The
input-coupling efficiency ηin is optimized thanks to a careful optical alignment.

Figure2.14a presents the reflectivity spectrum measured, at low incident power,
at the resonance temperature T = 35.9K: The system is in a pronounced strong-
coupling regime, the two reflectivity dips being associated with the exciton-photon
eigenstates of the system, having equal excitonic and photonic parts. Figure2.14b
presents a reflectivity spectrum measured at a different T = 34.8K where the asym-
metrical shape arises from the unequal excitonic and photonic parts for the exciton-
photon eigenstates. A final characterization of the device behavior at low power,
Fig. 2.14c shows an experimental map of the reflectivity measured as a function of
both temperature and photon energy �ω, where the darker areas correspond to lower

Cryostat 4K-50K

Reference
APD

Tunable
Laser (CW)

Measurement 
APD

in
Input-coupling 

efficiency

Fig. 2.13 Simplified sketch of a resonant excitation setup for reflection spectroscopymeasurements
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Fig. 2.14 a and b Reflectivity spectra at low incident power, for different temperatures T = 35.9K
and T = 34.8K. c Reflectivity map as a function of device temperature and laser photon energy

reflectivities. The low-reflectivity regions directly evidence the temperature depen-
dence of the two coupled exciton-photon eigenstates, and their anticrossing when
the device temperature is tuned [49].

Figure2.15a–c illustrate the nonlinear behavior of this device underCWexcitation
with a varying pump power [14]. A transition is observed from the low-power regime
(two reflectivity dips) to the high-power regime (single reflectivity dip). Fitting these
experimental data allows determining the figures of merit of our cavity-QED device:
a good cooperativity (C = 2.5) and a near-unity input-coupling (ηin = 95%),
but a relatively low top-mirror output-coupling (ηtop = 8% instead of 50% for an
ideal device). The high cooperativity is related to the very good contrast, at low
power, between the two reflectivity dips. The quite low top-mirror output coupling
ηtop = 8% is the reason why the minimal reflectivity is not zero, contrary to the
ideal situation described in Fig. 2.12.

Finally, Fig. 2.15d reports a reflectivity measurement under pulsed excitation,
with an optimized optical pulse whose spectral width matches that of the cavity
mode resonance. The device reflectivity is plotted as a function of N , the number of
incident photons in each pulse. As can be seen, a nonlinearity threshold at 8 incident
photons per pulse is obtained [14]. This constitutes a record value which became
achievable thanks to the near-unity input coupling efficiency in our micropillar: the
previous record was a threshold at 80 photons per pulse with a photonic crystal cavity
[15]. Figure2.15d also shows that the experimental data fit with the predictions of
cavity-QED, using the same parameters as used with the CW experiment (C = 2.5,
ηin = 95%, ηtop = 8%).
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Fig. 2.15 a–c Reflectivity spectra for various incident powers, illustrating the nonlinear transition
under CW excitation. d Pulsed excitation: reflectivity measurement displaying a record nonlinearity
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2.4.3 Device Optimization: Towards a Single-Photon Router?

Looking at the device figures of merit, it is clear that the improvement margin lies in
the top-mirror out-coupling, which should be brought closer to the 50% ideal value.
This requires decreasing the loss damping rate and/or increasing the mirror damping
rates, so that κloss � κtop = κbottom. Reducing the sidewall losses by increasing the
pillar diameter, or increasing the mirror damping rate by decreasing the number of
layers in the Bragg mirrors, is a first way to do so. This, however, would require
a careful optimization as it could also degrade the device cooperativity. Another
possibility is to use adiabatic cavities, following Lermer et al. [54], which allows
decreasing κloss without increasing the pillar diameter; it provides a way to increase
both the top-mirror output couplingηtop and the cooperativityC (through the decrease
of the total damping rate κ = κtop + κbottom + κloss).

To illustrate the impact that such an improvement would have on the nonlinear
device, Fig. 2.16a displays the theoretical device reflectivity as a function of N for
increasing output couplings ηtop. We find that a factor six increase in ηtop decreases
the expected threshold by a factor 30 [14]. As sketched in Fig. 2.16b, this is explained
by the fact that the reflected beam results from the interference between two fields:
a directly-reflected field and a field that has been injected into the cavity (input
coupling ηin), has interacted with the quantum dot (cooperativity C), and has been
re-extracted out through the top mirror (output coupling ηtop). Increasing ηtop is thus
crucial to significantly increase the strength of this interference.

Furthermore, one finds that a nonlinearity threshold lower than 1 can be obtained
with an optimized top-mirror output coupling, so that for N = 1 incident photon per
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pulse the systemwill be precisely in the region of highest nonlinearity. This paves the
way toward the realizationof single-photon routers andquantum logic gates operating
with single-photon incident pulses. However, we must point out that the calculations
presented here are performed with attenuated coherent pulses, rather than with true
one-photon or two-photon pulses. Actually the road towards deterministic single-
photon routers (which transmit a first photon with 100% probability and reflect a
second one with 100% probability) is still long: it will not only require technological
improvements but also experimental schemes a bit more complex than the two-level
system nonlinearity [81].

2.4.4 Resonant Excitation: Application to Fast Optical
Nanosensing

A quantum-dot strongly-coupled to a cavity mode is an extremely sensitive device
whose optical properties can be controlled in several other ways. For instance, it can
be sensitive even to very small electrostatic fluctuations, like those induced by the
motion of carriers in the vicinity of the quantum dot. Indeed, a slight modification
of the QD electrostatic environment can induce a small variation of the QD optical
transition frequency ωQD. This variation, in turn, can strongly change the device
reflectivity and be readily detected with an appropriate resonant excitation setup.
Using a strongly-coupled device very similar to the one used for the optical non-
linearity measurements, it has recently been possible to monitor in real-time single
quantum events, corresponding to a carrier being captured and then released by a
material defect. The experiment could be performed at the microsecond time scale
[82]: this measurement rate is five orders of magnitude faster than for previous optics
experiments of single-charge sensing, because of the close to shot-noise-limited
detection setup and of the enhanced light-matter interaction. Figure2.17a displays a
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typical real-time reflectivity signal illustrating themonitoring of single-charge jumps
between two states (loaded/empty material trap). The vertical arrow, for example,
indicates an event where a single charge has been captured by the material trap and
then released 6 µs later. The clear distinction between the loaded and empty states
is also illustrated in the reflectivity histogram of Fig. 2.17b: the overlap between the
two distributions is small enough to allow identifying the system state, at any time,
with a less than 0.2% error probability. This powerful resonant excitation technique
can also be applied to the real-time monitoring of other rapid quantum events such
as the spin flips of a single electron or hole resident in a charged quantum dot: such
an experiment would constitute the building block a spin-photon interface.

2.5 Future Challenges

The recent advances in QD based technologies make them very good candidates
for fabricating the next generation of single photon sources used in optical quantum
computing. While the source brightness has reached very high values, the indis-
tinguishability of bright single photon sources needs further improvements. In this
matter, controlling the electrostatic environment of the QD appears as a critical step.
While such a control is more difficult to obtain in photonic structures like micropil-
lars and nanowires where the QD is close to etched surfaces, preliminary results on
connected pillar devices indicate that such a control is within reach.

A very bright source of highly indistinguishable photons would have immediate
applications in optical quantum computing, where a large number of photons succes-
sively emitted by the same source would be temporally overlapped using appropriate
delay lines. Some comment should however been made here: in most experiments,
the indistinguishabilities of the successively emitted photons is tested with a limited
time delay between the two photons (typically several nanoseconds). Indistinguisha-
bilities on long time scales has not been tested yet. We note however that a recent
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Fig. 2.18 a and b Illustration of spin-dependent polarization rotation, induced by a single quantum
dot spin. c Mapping from a spin state to a photon polarization state

study of the charge noise on gated QDs shows Fourier transform limited linewidth
on a time scale as long as 20µs [83].

In the long term, demonstrating the possibility to use several sources is crucial
for the scalability of a QD based quantum network. Quantum interferences between
remote QD sources have first been demonstrated in 2010 [67, 84]. Impressive pro-
gresses have been reported recently using pure resonant excitation [85]. Similar
experiments are currently conductedusingdeterministically coupledQD-pillar bright
sources. To that end, QD with similar optical transitions energies are inserted in pil-
lars presenting the same diameter. Preliminary results show that the Purcell effect
relaxes the requirement on the spectral matching between the two sources. It can
also enable quantum interferences with a single photon source presenting a very low
degree of indistinguishability for successively emitted photons.

In Sect. 2.4, we saw that single photon switches based on a single QD coupled to
a cavity are within reach, with a reasonable improvement of the current technology.
While such optical non linearities are highly desirable, they present a limitation
for applications: the photons must overlap temporally within the cavity lifetime. A
promising approach to engineer an interaction between delayed photons is to insert
a spin in a cavity: this requires a charged quantum dot, containing a resident carrier
whose spin state can be used as an optically-accessible quantum memory. The basic
concept at the heart of a spin-photon interface is illustrated in Fig. 2.18a, b: if an
input beam with a given polarization is injected into a QD-micropillar device, the
reflected output beam will be rotated clockwise or counter-clockwise, depending on
the spin state [86, 87]. In quantum words (see Fig. 2.18c), the reflected photons will
be in the polarization state |Ψ↑〉 if the QD spin is in state | ↑〉, and in the polarization
state |Ψ↓〉 if the spin is in state | ↓〉. This is the well known Faraday/Kerr rotation
effect, a phenomenon widely used to optically characterize magnetic materials, but
applied here to quantum physics with a single spin.

As with the previous experiments based on resonant excitation, the device figures
of merit which will govern the efficiency of the polarization rotation are the cooper-
ativity C and the top-mirror output-coupling ηtop. Analytical calculations show that,
for realistic values of C and ηtop, the two possible output polarization states can be
made orthogonal: <Ψ↑|Ψ↓〉 = 0. Such a configuration provides the possibility to
reach amaximal entanglement between the state of the spin qubit and the polarization
state of the output photon. Let us suppose that, before the interaction with a photon,
the spin is first prepared in a coherent superposition 1√

2
(| ↑〉 + | ↓〉). Then, after
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interaction with an incident photon, the bipartite spin-photon system will end up in
a maximally-entangled state of the form 1√

2

(|Ψ↑〉 ⊗ | ↑〉 + |Ψ↓〉 ⊗ | ↓〉).
In contrast to the recent spin-photon entanglement demonstrations [27, 28], the

interaction of a photon with such devices would allow the entanglement between a
spin and a photon generated by an external source. Such a situation has been the-
oretically predicted to open new paradigms in quantum optics like delayed photon
entanglement [88], deterministic logic gates [89] or fault-tolerant quantum comput-
ing [90]. Recent measurements show that deterministically inserting a single spin in
a pillar cavity indeed allows obtaining a rotation of the polarization by few degrees
depending on the spin state.

Beyond the potential for quantum information processing, QD deterministically
coupled to pillar cavities also opens the possibility to explore cavity quantum elec-
trodynamics in a regime rarely explored by the atomic community, namely the broad
emitter limit. Indeed, in the founding work by Purcell as well as for all experimental
realizations with real atoms, the emitter presents a monochromatic spectrum with
respect to the cavity linewidth. With solid state emitters, broadening induced by the
environment gives rise to new phenomena. We recently demonstrated that phonon
assisted emission lead to cavity pulling phenomena for a single QD coupled to a
cavity with moderate quality factor [91]. Recent developments show that phonon
assisted Purcell effect can be used to obtain bright single photon sources, where
strong coupling to the environment provides a built-in spectral tuning of the QD
emission to the cavity resonance.
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57. J. Suffczyński et al., Origin of the optical emission within the cavity mode of coupled
quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009). http://dx.doi.org/10.1103/
PhysRevLett.103.027401

58. M. Winger et al., Explanation of photon correlations in the far-off-resonance optical emission
from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009). http://dx.doi.org/10.
1103/PhysRevLett.103.207403

59. S. Strauf et al., Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96,
127404 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.127404

60. V. Giesz et al., Influence of the purcell effect on the purity of bright single photon sources.
Appl. Phys. Lett. 103, 33113 (2013). http://dx.doi.org/dx.doi.org/10.1063/1.4813902

61. L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism
in single quantum dot emission. Phys. Rev. B 63, 155307 (2001). http://dx.doi.org/10.1103/
PhysRevB.63.155307

62. I. Favero et al., Acoustic phonon sidebands in the emission line of single inas/gaas quantum
dots. Phys. Rev. B 68, 233301 (2003). http://dx.doi.org/10.1103/PhysRevB.68.233301

63. E. Peter et al., Phonon sidebands in exciton and biexciton emission from single gaas quantum
dots. Phys. Rev. B 69, 041307 (2004). http://dx.doi.org/10.1103/PhysRevB.69.041307

64. A. Berthelot et al., Unconventional motional narrowing in the optical spectrum of a semicon-
ductor quantum dot. Nat. Phys. 2, 759–764 (2006). http://dx.doi.org/10.1038/nphys433

65. J. Hours, P. Senellart, E. Peter, A. Cavanna, J. Bloch, Exciton radiative lifetime controlled by
the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306 (2005). http://
dx.doi.org/10.1103/PhysRevB.71.161306

66. A.J. Bennett et al., Electric-field-induced coherent coupling of the exciton states in a single
quantum dot. Nat. Phys. 6, 947–950 (2010). http://dx.doi.org/10.1038/nphys1780

67. R.B. Patel, A.J. Bennett, J. Anthony, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-
photon interference of the emission from electrically tunable remote quantum dots. Nat. Pho-
tonics 4, 632–635 (2010). http://dx.doi.org/10.1038/nphoton.2010.161

68. T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34.
Appl. Phys. Lett. 96, 011107 (2010). http://dx.doi.org/10.1063/1.3284514

69. A.K. Nowak et al., Deterministic and electrically tunable bright single-photon source. Nat.
Commun. 5, 3240 (2014). http://dx.doi.org/10.1038/ncomms4240

70. O. Gazzano et al., Entangling quantum-logic gate operated with an ultrabright semiconduc-
tor single-photon source. Phys. Rev. Lett. 110, 250501 (2013). http://dx.doi.org/10.1103/
PhysRevLett.110.250501

71. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-
optical quantum controlled-not gate. Nature 426, 264–267 (2010). http://dx.doi.org/10.1038/
nature02054

http://dx.doi.org/10.1038/nphoton.2011.354
http://dx.doi.org/10.1103/PhysRevLett.106.103601
http://dx.doi.org/10.1103/PhysRevLett.106.103601
http://dx.doi.org/10.1103/PhysRevLett.107.247402
http://dx.doi.org/10.1103/PhysRevLett.108.057402
http://dx.doi.org/10.1103/PhysRevLett.108.057402
http://dx.doi.org/dx.doi.org/10.1063/1.2744475
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1103/PhysRevB.77.161303
http://dx.doi.org/10.1103/PhysRevLett.103.027401
http://dx.doi.org/10.1103/PhysRevLett.103.027401
http://dx.doi.org/10.1103/PhysRevLett.103.207403
http://dx.doi.org/10.1103/PhysRevLett.103.207403
http://dx.doi.org/10.1103/PhysRevLett.96.127404
http://dx.doi.org/dx.doi.org/10.1063/1.4813902
http://dx.doi.org/10.1103/PhysRevB.63.155307
http://dx.doi.org/10.1103/PhysRevB.63.155307
http://dx.doi.org/10.1103/PhysRevB.68.233301
http://dx.doi.org/10.1103/PhysRevB.69.041307
http://dx.doi.org/10.1038/nphys433
http://dx.doi.org/10.1103/PhysRevB.71.161306
http://dx.doi.org/10.1103/PhysRevB.71.161306
http://dx.doi.org/10.1038/nphys1780
http://dx.doi.org/10.1038/nphoton.2010.161
http://dx.doi.org/10.1063/1.3284514
http://dx.doi.org/10.1038/ncomms4240
http://dx.doi.org/10.1103/PhysRevLett.110.250501
http://dx.doi.org/10.1103/PhysRevLett.110.250501
http://dx.doi.org/10.1038/nature02054
http://dx.doi.org/10.1038/nature02054


2 A Highly Efficient Single Photon-Single Quantum Dot Interface 71

72. A.G. White et al., Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007). http://
dx.doi.org/10.1364/JOSAB.24.000172

73. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64,
052312 (2001). http://dx.doi.org/10.1103/PhysRevA.64.052312

74. K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436,
87–90 (2005). http://dx.doi.org/doi:10.1038/nature03804

75. D.E. Chang, A.S. Sorensen, E.A. Demler, M.D.A. Lukin, Single-photon transistor using
nanoscale surface plasmons.Nat. Phys.3, 807–812 (2007). http://dx.doi.org/10.1038/nphys708

76. D. Englund et al., Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–
861 (2007). http://dx.doi.org/10.1038/nature06234

77. D. Englund et al., Ultrafast photon-photon interaction in a strongly coupled quantum dot-
cavity system. Phys. Rev. Lett. 108, 093604 (2012). http://dx.doi.org/10.1103/PhysRevLett.
108.093604

78. T. Volz et al., Ultrafast all-optical switching by single photons. Nat. Photonics 6, 607–611
(2012)

79. K. Srinivasan,O. Painter,Mode coupling and cavity-quantum-dot interactions in afiber-coupled
microdisk cavity. Phys. Rev. A 75, 023814 (2007). http://dx.doi.org/10.1103/PhysRevA.75.
023814

80. K. Srinivasan, C.P. Michael, R. Perahia, O. Painter, Investigations of a coherently driven semi-
conductor optical cavity qed system. Phys. Rev. A 78, 033839 (2008). http://dx.doi.org/10.
1103/PhysRevA.78.033839

81. S. Rosenblum, S. Parkins, B.Dayan, Photon routing in cavity qed: beyond the fundamental limit
of photon blockade. Phys. Rev. A 84, 033854 (2011). http://dx.doi.org/10.1103/PhysRevA.84.
033854

82. C. Arnold et al., Cavity-enhanced real-time monitoring of single-charge jumps at the microsec-
ond time scale. Phys. Rev. X 4, 021004 (2014). http://dx.doi.org/10.1103/PhysRevX.4.021004

83. A.V. Kuhlmann et al., Charge noise and spin noise in a semiconductor quantum device. Nat.
Phys. 9, 570–575 (2013). http://dx.doi.org/10.1038/nphys2688

84. E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum
dots. Phys. Rev. Lett. 104, 137401 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.137401

85. W. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit.
Nat. Commun. 4 (2013). doi:10.1038/ncomms3744; http://dx.doi.org/10.1038/ncomms3744

86. J. Berezovsky et al., Nondestructive opticalmeasurements of a single electron spin in a quantum
dot. Science 314, 1916–1920 (2006). http://dx.doi.org/10.1126/science.1133862

87. M.Atature, J. Dreiser, A. Badolato, A. Imamoglu, Observation of faraday rotation from a single
confined spin. Nat. Phys. 3, 101–106 (2007). http://dx.doi.org/10.1038/nphys521

88. C.Y. Hu, W.J. Munro, J.G. Rarity, Deterministic photon entangler using a charged quantum dot
inside a microcavity. Phys. Rev. B 78, 125318 (2008). http://dx.doi.org/10.1103/PhysRevB.
78.125318

89. C. Bonato et al., CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys.
Rev. Lett 104, 160503 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.160503

90. M.N. Leuenberger, Fault-tolerant quantum computing with coded spins using the conditional
faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006). http://dx.doi.org/10.1103/
PhysRevB.73.075312

91. D. Valente et al., Frequency cavity pulling induced by a single semiconductor quantum dot.
Phys. Rev. B 89, 041302 (2014). http://dx.doi.org/10.1103/PhysRevB.89.041302

http://dx.doi.org/10.1364/JOSAB.24.000172
http://dx.doi.org/10.1364/JOSAB.24.000172
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/doi:10.1038/nature03804
http://dx.doi.org/10.1038/nphys708
http://dx.doi.org/10.1038/nature06234
http://dx.doi.org/10.1103/PhysRevLett.108.093604
http://dx.doi.org/10.1103/PhysRevLett.108.093604
http://dx.doi.org/10.1103/PhysRevA.75.023814
http://dx.doi.org/10.1103/PhysRevA.75.023814
http://dx.doi.org/10.1103/PhysRevA.78.033839
http://dx.doi.org/10.1103/PhysRevA.78.033839
http://dx.doi.org/10.1103/PhysRevA.84.033854
http://dx.doi.org/10.1103/PhysRevA.84.033854
http://dx.doi.org/10.1103/PhysRevX.4.021004
http://dx.doi.org/10.1038/nphys2688
http://dx.doi.org/10.1103/PhysRevLett.104.137401
http://dx.doi.org/10.1038/ncomms3744
http://dx.doi.org/10.1038/ncomms3744
http://dx.doi.org/10.1126/science.1133862
http://dx.doi.org/10.1038/nphys521
http://dx.doi.org/10.1103/PhysRevB.78.125318
http://dx.doi.org/10.1103/PhysRevB.78.125318
http://dx.doi.org/10.1103/PhysRevLett.104.160503
http://dx.doi.org/10.1103/PhysRevB.73.075312
http://dx.doi.org/10.1103/PhysRevB.73.075312
http://dx.doi.org/10.1103/PhysRevB.89.041302


Part II
Light Meets a Single Atom



Chapter 3
Photon-Atom Coupling with Parabolic
Mirrors

Markus Sondermann and Gerd Leuchs

Abstract Efficient coupling of light to single atomic systems has gained consider-
able attention over the past decades. This development is driven by the continuous
growth of quantum technologies. The efficient coupling of light and matter is an
enabling technology for quantum information processing and quantum communica-
tion. And indeed, in recent years much progress has been made in this direction. But
applications aside, the interaction of photons and atoms is a fundamental physics
problem. There are various possibilities for making this interaction more efficient,
among them the apparently ‘natural’ attempt of mode-matching the light field to the
free-space emission pattern of the atomic system of interest. Here we will describe
the necessary steps of implementing this mode-matching with the ultimate aim of
reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as
the central optical element of a free-space coupling scheme, covering the preparation
of suitable modes of the field incident onto these mirrors as well as the location of an
atomat themirror’s focus. Furthermore,we establish a robustmethod for determining
the efficiency of the photon-atom coupling.

3.1 Coupling to an Atom: The Role of Dipole Radiation

3.1.1 General Considerations

When discussing the interaction of photons and atoms it is a good idea to make
some simplifying approximations. First, we neglect the complexity of nature and
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assume that the atom has only two energy levels. Then, we take advantage of
the fact that the extent of the atom in real space is much smaller than the wave-
length of the light emitted by the atom and make the so-called dipole approximation
[1, 2]. The dipole approximation allows us to treat the atom as an electric dipole
while neglecting magnetic dipoles and higher-order multipoles. Within this approx-
imation the interaction energy of the atom and the light field is given by the scalar
product of the electric field vector at the position of the atom and the electric dipole
moment of the atomic transition:

HI = −µ · E. (3.1)

This suggests to put as much as possible of the incident electric field into the vector
component parallel to the atomic dipole in order to maximize the interaction energy.
Despite of some applications such as laser coolingwhere one can just putmore power
into the incident beam to adjust the interaction strength, more sophisticated methods
are mandatory when for example coupling a single photon to an atom, where the
amount of available energy is naturally limited.1

There are various strategies for enhancing the interaction of photons and atoms.2

One is to enhance the field strength by placing the atom in the near field of a suitable
antenna, which can enhance the local field strength far above the value given by the
diffraction limited focusing of the incident field in the absence of the antenna [3–5].
The approach followed most frequently in the past decades is to place the atom in
an anti-node of the electric field of a high quality resonator (see [6–9] for reviews
and also the chapters by Lanco and Senellart and A. Kuhn). It is the small cavity
mode volume and the fact that the light field interacts with the atom over many cavity
round-trips [10] that enhances the interaction. Recently, impressive progress in the
field of so-called cavity quantum-electrodynamics was achieved (see e.g. [11–14]).

This chapter (and also the ones bySlodička,Hétet,Hennrich andBlatt andPiro and
Eschner) is devoted to the coupling of atoms and the light field in free space. Contrary
to the approaches mentioned above, efficient free-space photon-atom coupling is not
based on modifying the boundary conditions of the electro-magnetic field but rather
on suitably shaping the field itself. Remember the dipole approximation mentioned
above. It is the very name of this approximation that suggests how to couple light
efficiently to the atom: shape the incident field as to resemble the kind of dipole
radiation emitted by the atom! This mode-matching argument is basically the same
as when thinking of coupling light efficiently into a single-mode optical fibre and
follows directly from time-reversal symmetry arguments (see [15–19] and references
therein).

1There is no state of the light field, more intense than a single photon, which will transform into a
single photon state when projecting onto a certain mode function. Such a projection is equivalent
to attenuation.
2If not explicitlymentioned otherwise, the term atom is used to designate any kind of single quantum
target.
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3.1.2 Defining a Coupling Efficiency

Thinking about coupling in amoremathematicalway, the same conclusion as above is
obtained as follows:As an alternative to describing the electric field as a superposition
of an infinite number of plane waves one can select electric and magnetic multipole
functions as the basis of choice [20–22]. Following [21], it is only the electric-
dipole component that produces a finite electric field at the origin of a spherical
wave. Therefore, the maximum electric field strength in free space is produced by
an electric-dipole wave. This field strength is found to be [21]

Emax =
√
2P

λ
√

ε0c0
·
√
8π

3
. (3.2)

This is the maximum field strength parallel to the atomic dipole moment that can
be obtained for a given input power P and wavelength λ. Here, ε0 and c0 are the
vacuum permittivity and speed of light, respectively.

In practice, the dipole mode is not pure but contains components from orthogonal
electric dipoles and/or magnetic dipoles or higher order multipoles. This can be due
to a finite solid angle from which the incident light is focused, deviations of the
incident radiation pattern from the ideal dipole pattern, or a combination of these.
One can account for such deviations from a pure dipole-mode by multiplying (3.2)
with a single overlap parameter [22, 23], but from an experimentalist’s perspective it
is favourable to distinguish between different sources of field reduction. This can be
done by introducing two parameters that describe the experimental geometry [24].
The first one is the solid angle covered by the focusing optics obtained when weight-
ing with the angular intensity pattern of the atomic dipole:

Ωμ =
∫

Dμ(ϑ, ϕ) sin ϑdϑdϕ, (3.3)

with the integration performed over the (potentially incomplete) solid angle set by the
focusing geometry. The symbol μ = π, σ± parametrizes a specific dipole radiation
pattern Dμ given by Dπ (ϑ) = sin2 ϑ for a linear dipole or Dσ±(ϑ) = (1+ cos2 ϑ)/2
for a circular dipole [25], respectively. The second parameter is the overlap of the
incident field distribution Einc(ϑ, ϕ) with the field distribution of the dipole’s radia-
tion pattern Eμ(ϑ, ϕ), again obtained by integrating over the focusing solid angle:

η =
∫

E

inc · Eμ sin ϑ dϑdϕ√∫ |Einc|2 sin ϑ dϑdϕ · ∫ |Eμ|2 sin ϑ dϑdϕ

. (3.4)

With these quantities (3.2) can be rewritten as [24]

Efocus =
√
2P

λ
√

ε0c0
· √

Ωμ · η. (3.5)
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For sending the ideal dipole pattern (η = 1) and focusing from full solid angle
(Ωμ = 8π/3) (3.2) is recovered.

The overlap parameter η is very useful in practice. In this respect, we should high-
light two points: Since the fields Einc and Eμ are complex quantities, it is generally
possible to let η also account for distortions of the phase front of the incident light
or aberrations induced by the focusing optics (see also [26]). Furthermore, the field
distribution of the incident field after transformation into a spherical wave by the
focusing optics is usually not accessible for measurement. However, η can also be
calculated in the plane of the entrance pupil of the focusing optics [24]. One just has
to calculate how the dipole radiation pattern is transformed into a plane propagating
mode by the focusing device.

Generating the time-reversed version of the latter mode is exactly whatmaximizes
the interaction Hamiltonian for a given input power and focusing geometry.3 Cor-
responding calculations for a parabolic mirror can be found e.g. in [10, 24, 27] and
for other optical elements in [24]. The calculation of overlaps of optimized modes
generated in an experiment is treated in [28] and in the next section.

We end this section by finding a suitable definition for the coupling efficiency
in free space. As outlined in [28], such a definition can be motivated in analogy to
the necessary condition for strong coupling in cavity quantum-electrodynamics. The
important quantity in this condition is the square of the single-photonRabi-frequency
of the cavity field. This frequency is proportional to the atomic dipolemoment and the
field obtained from confining the energy of a single photon in the volume of the cavity
mode. In close analogy, apart from proportionality factors our free-space coupling
efficiency should be given by |HI |2, which scales with the intensity of the electric
field component polarized parallel to the atomic dipole moment. The importance of
the mode-matching argument treated above is highlighted by normalizing |HI |2 to
the ideal case described by (3.2). This suggests to define the coupling efficiency G
as [17, 28]

G = |Efocus|2
E2
max

= Ωμ

8π/3
· η2. (3.6)

When reviewing recent experiments in free space, we will highlight the role of the
coupling efficiency in more detail.

3.2 Dipole-Mode Generation with a Parabolic Mirror

3.2.1 Finding the Optimum Field Mode

From the discussion in the previous section it has become obvious that one should
focus from (almost) the entire solid angle. One suitable setup immediately coming to

3We consciously neglect effects related to a nonzero detuning between the incident field and the
atomic resonance.
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Fig. 3.1 Weighted solid angle Ωμ covered by a parabolic mirror. The solid (dashed) line denotes
the case of a linear (circular) dipole transition with the quantization axis parallel to the optical axis
of the mirror. The symbol marks the geometry used in our experiments. The dotted lines display
Ωμ for one and two NA = 0.95 lenses and a linear dipole transition with the quantization axis
perpendicular to the optical axis (best case, worse for other orientations)

mind is the setup of the so-called 4π -microscopy [29] which consists of two high NA
lenses with coinciding focal points. Although some of the experiments performed
in recent years in principle provide the possibility for focusing with two lenses
[30–32] and thus doubling the solid angle coverage, such an experiment has not been
reported. This might be due to technical issues related to the necessity of achieving
constructive interference between the waves focused by the two objectives. But this
might also be due to the large band of solid angles located symmetrically around
the optical axis which are not covered by the highest numerical aperture (NA) of a
commercial objective in vacuum, i.e. NA=0.95. In the best case, the missing 0.05
to achieve NA=1 corresponds to losses of 24% for the weighted solid angle for a
4π -microscopy setup.Moreover, inmost experiments, especially the ones on trapped
ions, the used NA is considerably smaller.

Another possibility for focusing from essentially full solid angle is using a par-
abolic mirror that has a depth much larger than the focal length [10, 27, 33, 34].
As is obvious from Fig. 3.1, when the ratio of the depth h of the parabola and the
focal length f surpasses the limit h/ f ≈ 2.12 a parabolic mirror setup outperforms
4π -microscopy setups. It is also evident from the figure that the configuration of a
π -transition with the quantization axis parallel to the mirror’s optical axis yields the
largest values of Ωμ for finite sized parabolic mirrors covering more than half of
the solid angle.4 Therefore, we have chosen to use this configuration in our experi-
ments [26, 28, 35, 36].

Next, we derive the field distribution to be sent onto the parabolic mirror for
optimized coupling to an atom in the above configuration. Following [24, 27], one
has to trace the emission pattern of the atomic dipole-radiation towards the parabolic
surface, relating emission angles ϑ to distances r from the optical axis by ϑ =
2 arctan(r/(2 f )). Furthermore, one has to account for the proper transformation of

4The half solid angle case corresponds to h/ f = 1.
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(a) (b)

Fig. 3.2 a Basic layout of a setup optimizing light-matter coupling in free space. A single atom is
located in the focus of a parabolic mirror with depth much larger than its focal length. A beam with
the intensity distribution given by the square of (3.7) (solid line) andwith radial polarization (arrows)
is focused by the parabolic mirror. For comparison, the intensity distribution of the doughnut mode
with largest overlap η is also displayed (dashed line). b Overlap of a radially polarized doughnut
mode with the ideal dipole distribution as a function of the doughnut mode’s beam radius for the
geometry used in our experiment (h/ f = 5.67 and Ωμ = 0.94 · 8π/3)

power emitted per solid angle into power per surface area. This finally yields the
amplitude distribution of a linear dipole collimated by the parabolic mirror:

Eπ (r) = E0 · r

(r2/(4 f )2 + 1)2
. (3.7)

Likewise, one finds the corresponding polarization pattern. For our configuration,
the field in the exit pupil of the parabolic mirror is radially polarized. These findings
are illustrated in Fig. 3.2.

The generation of the mode defined by (3.7) might be rather intricate [27]. Fortu-
nately, there exists a mode that can have large overlaps with the ideal mode [15, 24,
27] and which is routinely generated in experiments: a radially polarized mode with
the amplitude distribution of a Laguerre-Gaussian beam of zeroth radial and first
azimuthal order. In the following, we will call this mode shortly ‘doughnut mode’
for simplicity, although the latter term is used in literature for a plethora of modes
with ring shaped amplitude pattern. The amplitude distribution of a doughnut mode
can be written as

E(r) = E0 · r · e− r2

w2 (3.8)

with the beam radius w. For any given parabolic mirror, the overlap parameter η is
maximized by tuningw [24].5 For our geometry (h/ f = 5.67 andΩμ = 0.94 ·8π/3)
the overlap is maximized by w = 2.26 f to be η = 98.2% (see Fig. 3.2b). The
intensity profile of this optimum doughnut mode is displayed as a dashed line in
Fig. 3.2a. Using the above values of Ωμ and η, we could in principle achieve overall
coupling efficiencies of G ≈ 0.9 with our setup.

5This is of course also true for other focusing optics or dipole configurations and correspondingly
other suitable ‘standard’ field modes as e.g. a fundamental Gaussian mode, see [24] for some
examples.
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However, one has to keep in mind that expanding the incident beam towards a
size which maximizes η might result in clipping considerable parts of the beam
and hence in losses, which can be considered as a ‘no-go’ when focusing single
photons onto an atom. This is a considerable effect in setups with small to medium
sized numerical apertures, e.g. the NA = 0.4 objectives used in [31, 37]. Hence it
is required to maximize the product of the power transmitted through the aperture
and η2 for a given entrance pupil. However, for the parabolic mirrors used in our
experiments the relative power loss for the doughnut mode with maximum η is on
the order of 10−3. We therefore can safely neglect such effects.

On the other side, when using doughnutmodes for focusingwith parabolicmirrors
it is not toomeaningful to use parabolic mirrors with even larger solid angle coverage
than in our setup: The gain of solid angle Ωμ is compensated by a reduction of
the maximum value attainable for η, which results in a saturation of the coupling
efficiency at G ≈ 0.92 [24]. Of course, the latter value depends on the choice
of the focusing geometry, the dipole configuration, and the optical mode used to
approximate the ideal dipole radiation.

3.2.2 Generation and Characterization of Field Modes
Tailored for Efficient Free-Space Coupling

We now turn towards the experimental generation and characterization of the opti-
mum doughnut mode for focusing onto an atom. There are various methods for
generating radially polarized doughnut modes [38–45]. We have chosen to generate
the doughnut mode bymeans of a segmented half-wave plate [46, 47]. This is mainly
motivated by the fact that this technique is rather robust and especially suitable for
wavelengths in the ultraviolet spectral range, which we are targeting [10, 28, 35,
36]. For details about the actually used polarization converter and the optical setup
we refer to [28].

One example of a generated mode is given in Fig. 3.3. The local intensity as well
as the local polarization ellipse of the electric-field vector are obtained performing
a spatially resolved measurement of the Stokes parameters (the ellipticity angle is
omitted in the figure, cf. [28] for details). Taking the square root of the local intensity
and processing the polarization angles one can reconstruct the local electric-field
vector. With the obtained field vectors one can compute the overlap η with the ideal
field distribution given by (3.7). We routinely achieve values of η = 0.98 [28] which
is practically the maximum value attainable in our setup.

So far we did not discuss the properties of the phase front of the incident field.
Under ideal conditions, a spherical wave emerging from the focus of the parabolic
mirror leaves the mirror’s aperture with a flat phase front. Likewise the phase front of
the incident field that impinges onto themirror and is focused onto the atom should be
flat. Unfortunately, current mirror manufacturing capabilities are not precise enough
to guarantee the diffraction limited focusing of an incident beam that is free of
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Fig. 3.3 Example of a radially polarized doughnut mode generated at a wavelength of 370nm
and optimized to drive the S1/2,m j = ±1/2 →P1/2,m j = ±1/2 transition of a singly ionized
ytterbium ion. The intensity distribution (left) and the orientation angle of the local polarization
ellipse of the field vector (right) are reconstructed from a spatially resolved measurement of the
Stokes parameters. The circle indicates the entrance pupil of the parabolic mirror

aberrations. The mirrors we use in our experiments typically deviate from the par-
abolic shape by ±150nm [35], which is on the order of a wavelength of the involved
atomic transitions. We determine such deviations by an interferometric setup that
is adapted to our purpose [35]. Other methods involving e.g. profilometers are not
applicable due to the tight geometry of the used mirrors—the focal length is 2.1mm
and the aperture radius is 10mm.

In principle the deviations of the parabolic mirror can be compensated for by
using phase plates which imprint the conjugate of the mirror’s deviations onto the
incident beam. Proof-of-principle experiments at a wavelength of 633nm yielded
aberration compensations enabling a Strehl ratio6 of 99% for a focused doughnut
mode at 633nm [28].

3.3 Overview of Experiments on Photon-Atom
Coupling in Free Space

In this section we discuss various kinds of experiments on photon-atom coupling
in free space performed in recent years. They all have in common that the key to a
successful observation of the phenomena under investigation lies in mode-matching
the incident field to the dipolar radiation pattern of the addressed atomic transition.
We will highlight for each type of experiment how it could benefit from full solid
angle focusing or the use of parabolic mirrors, respectively.

6 The Strehl ratio defines the maximum intensity in the focal region for a focusing system exhibiting
aberrations as a fraction of the intensity obtained without aberrations [48]. Whereas in the latter
reference a plane wave is considered, we apply this figure of merit for the case of a doughnut mode.
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3.3.1 Shifting the Phase of a Coherent Beam

For the experiments described here—and also for the ones on attenuating a faint
beam—the typical experimental setup is as follows [49–51]: A continuous laser
beam is focused onto the atom. Depending on the detuning Δ of the incident light
with respect to the atomic resonance a certain amount of light is scattered by the
atom with a detuning dependent phase shift.7 The light passing the atom and the
scattered light are both collected by some optical element, e.g. a second lens of
the same numerical aperture as the focusing optics. Upon diverging from the atom,
the incident light suffers a phase shift of 90◦ due to the Gouy effect [53–55]. For
simplicity, the latter contribution is artificially attributed to the phase of the scattered
light in most literature. The phase that is then usually measured is the phase of the
superposition of the scattered light and the incident light.

This scenario is illustrated in Fig. 3.4a in a phase-space picture. The phase angle
of the scattered field is solely determined by the detuning Δ, whereas the amplitude
of the scattered field is determined by Δ and especially G. The latter statement is
obvious from the fact that the power of the scattered light in terms of power of
the incident light is given by 4G/(1 + 4Δ2/Γ 2) [17, 56] with Γ being the rate
of spontaneous emission from the excited atomic state. This so-called scattering
ratio [53, 54] can be as large as four for a perfect dipole-wave incident from full
solid angle and on resonance with the atomic transition.8 From the fact that the
scattering ratio scales with the coupling efficiency G one can draw the following
conclusion: No matter how large the detuning is, the influence of the scattered light
on the final superposition with the incident light grows with increasing G and is
maximized for G = 1, cf. Fig. 3.4 and the discussion following (3.9). In other words,
the phase obtained for the superposition field ‘is drawn’ towards the phase of the
scattered field with increasing G.

In the discussion so far we have not included effects related to a finite amount of
population in the atom’s excited state. The excited-state population can be quantified
by S/(2 + 2S) using the saturation parameter S, which is proportional to G and
depends on detuning, see also (3.13). This parameter influences the phase shift in

7 The phase shift of the light scattered by an atom, i.e. the response of a driven harmonic oscillator,
has been measured recently [52].
8Values for the scattering ratio exceeding unity might seem unphysical at first sight because one
might suspect a violation of energy conservation. Here we argue that this is not the case. Energy is
always associated with the total field not with individual interfering components. One might write
a propagating field as the sum of two fields E1 and E2, one 180◦ out of phase with respect to the
other. The total energy has of course a well defined value. But the individual fields E1,2 are not
well defined. You can choose a field with a larger E1 as long as the amplitude of field E2 is also
increased such that the sum is as before.

In the specific problem of elastic scattering of a beam resonant with the atomic transition it can
even be required that the scattered power has to be larger than the incident one. Due to the 180◦
phase shift between the scattered and the transmitted incident light there would otherwise be a net
loss of energy under efficient-coupling conditions, since in elastic scattering no energy is transferred
onto the atom.
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(a) (b)

Fig. 3.4 Illustration of phase shift experiments in phase-space diagrams. a Depending on the
detuning Δ and the coupling efficiency G the field scattered by the atom (open circle) has a certain
amplitude and phase. The superposition of the incident field (filled circle) and the coherently scat-
tered field (open circle) yields the resulting field (dashed circle). b Illustration of the influence of
G for the special case Δ = 0. The phase of the resulting field can either be equal to 0 or π . The
dashed line marks the amplitude of the incident coherent state

twoways: For increasing saturation parameter the scattering ratio decreases. Further-
more, the scattered light contains an increasing fraction of frequency components
that are not coherent with the incident light and hence cannot contribute to the super-
position with the incident field. A corresponding experiment can be found in [50].
We summarize the above discussion, assuming negligible saturation, in writing the
resulting phase shift, i.e. the phase of the superposition of scattered and incident light
in comparison to the case of no atom being present, as [17, 56]

φ = arg

(
1 + 4

Δ2

Γ 2 − 2G − i · 4G
Δ

Γ

)
(3.9)

It is apparent from the above equation that the maximum achievable phase shift
is φ = π for Δ = 0 (resonant excitation) and G > 1/2. This phase arises from a
π/2 phase for the coherently scattered resonant light and the Gouy phase. However,
for G < 1/2 (less than half solid angle and/or too low field overlap) the amount of
scattered light is too small to counteract the incident field. For G > 1/2 (focusing
from more than half solid angle with sufficiently mode-matched incident light), the
amount of scattered light is large enough to flip the phase of the superposition with
the incident field. A corresponding illustration is given in Fig. 3.4b.

Although it seems that it is enough to have ‘G just slightly larger than 1/2’,
there are good reasons for increasing G towards unity. The closer G is to 1/2 the
smaller is the detuning interval in which φ increases from π/2 towards π , making
an experimental observation of a π phase shift increasingly difficult (cf. [56]).

The maximum phase shift observed so far in an experiment in free space was
about 3◦ [50] using a setup with G < 1/2.

3.3.2 Extinction of a Weak Coherent Beam

An experiment closely related to imprinting a phase shift onto a coherent beam is
attenuating such a beam with a single atom [30, 37, 54, 57–60]. In such experiments
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the incident beam is typically focused and recollimated with two lenses of equal
numerical aperture. In the absence of the atom all light is transmitted through the
two-lens setup. If an atom resides in the focus of the incident beam, the interference
between incident and scattered light results in a decrease of the number of trans-
mitted photons. The exact strength of this extinction depends again on the scattering
ratio [53, 54]: For focusing from half solid angle with a properlymodematchedwave
resulting in G = 1/2, the scattering ratio reaches two, with the consequence that
the incident light and the light scattered into the solid angle cone of the second lens
interfere destructively. In other words, a single atom can perfectly reflect a resonant
coherent beam [53, 54, 61]. The partial reflection of an incident beam was measured
in [59]. In [62] the back scattering from a single ion was exploited for utilizing a
single ion as a mirror of an optical resonator (see also the chapter by Slodička, Hétet,
Hennrich and Blatt). The smallest transmission observed so far for a single quantum
emitter in free space was about 78% [58].

The transmitted power fraction T of a resonant incident beam inducing negligible
saturation of the atom can be derived straightforwardly, again assuming the same
numerical aperture for focusing and light collection: The scattering ratio is given by
4G, i.e. the light scattered into the solid angle outside the collection optics is given
by 4G · [1 − Ωμ/(8π/3)]. This yields

T = 1 − 4G ·
(
1 − Ωμ

8π/3

)
. (3.10)

Obviously, for Ωμ = 8π/3 one gets full transmission. This solution is however
trivial, since for a full-solid-angle optics no photons are lost due to scattering.

More interesting is the case of T = 0, which can be realized with a full-solid-
angle parabolic mirror. If the incident light is transversely limited to exactly half of
the solid angle (the portion of the parabola defined by r ≤ 2 f ) one hasΩμ = 4π/3. If
furthermoreη = 1one obtainsG = 1/2 andhence T = 0 according to (3.10). In such
a setup, the part of the mirror with r > 2 f acts as a second ‘objective’ collimating
the transmitted light. A possible layout of such an experiment is sketched in Fig. 3.5.

3.3.3 Absorption of Single Photons

In the experiments discussed so far the light focused onto the atomwas of sufficiently
low intensity to avoid a non-negligible excitation of the atom, i.e., the number of
photons per excited-state lifetime was much smaller than one. In contrast to this, in
the experiments reported in [31, 32] the explicit aim was to excite the atom with
single photons. In [31] the absorption of a heralded and spectrally filtered single
photon by a single ion is reported (see chapter by Piro and Eschner). The reported
absorption efficiency is on the order of 0.03%. In [32] weak coherent states have
been focused onto a single atom and an absorption efficiency of about 4% is reported
for pulses containing two photons on average.
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Fig. 3.5 Layout of an extinction experiment using a parabolicmirror. The incident light (solid lines)
is limited to half solid angle by an aperture with diameter 4 f . Light passing the atom (dashed lines)
and the scattered light (dotted lines) are picked off by a beam splitter. Light scattered ‘backwards’
is blocked by an aperture stop of diameter 4 f

As outlined in [28] the probability for the absorption of a photon by a two-level
atom is given by

Pa = G · η2t . (3.11)

The parameter ηt describes the temporal overlap of the field envelope of the incident
single photonwith the field envelope thatmaximizes absorption. The latter is given by
an increasing exponential pulse, as described in detail in the next section. According
to (3.11) the upper bound for the absorption of single photons by atoms in our
parabolic mirror setup is given by G = 0.94 when sending the ideal radiation pattern
and G = 0.9 when sending an optimized radially-polarized doughnut mode.

We finish this section highlighting a link between the elastic scattering of a mono-
chromatic wave discussed before and the absorption of photons, see [63]. For this
purpose we treat the interaction of the atom with all spectral components of the
focused pulse as an elastic scattering problem. We compute the phase and ampli-
tude of the superposition of the incident field and the coherently scattered field for
each spectral component of the incident pulse. This yields the spectrum and hence
the temporal evolution of the scattered pulse. Performing such a calculation for an
exponentially increasing pulse with a time constant matching the excited state’s
lifetime yields an outgoing pulse envelope containing exponentially increasing and
decreasing components.9 The fraction of the exponentially decreasing components
is given by G, quantifying the amount of absorbed and spontaneously re-emitted
photons [63]. For G = 1 full absorption is obtained, as one would expect from time-
reversal symmetry arguments discussed below. But this finding should be taken with
care, since time-reversal symmetry arguments demand the use of a single-photon
Fock state. Nevertheless, the above treatment should be valid for weak coherent state
pulses as used in [32] or the ones created in [28].

9The decreasing components should of course be observable for any incident pulse with non-zero
temporal overlap ηt .
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Fig. 3.6 Illustration of the
time-reversal arguments for
coupling to a single atom or
into an empty optical
resonator as treated in
Sect. 3.4.3

3.4 Absorbing a Single Photon: Temporal Mode Shaping

3.4.1 Choosing the Right Mode

As mentioned above, the temporal envelope of the focused electric field is of impor-
tance when exciting a single atom with a single photon. This can be motivated
heuristically as follows (see also [10, 15, 16]): The atom and the continuum of all
free-space field modes form a closed system. For such a system, the Schrödinger
equation is invariant under time reversal. Assuming the atom in its excited state and
the electro-magnetic field in the vacuum state as the initial condition, a photon will
be emitted spontaneously over the course of time. As is well known, a spontaneously
emitted photon has an exponentially decaying field envelope with a decay constant
equal to the excited-state lifetime. Applying the time reversal operation—we just
assume we could do so in practice—would result in an exponentially increasing
photon travelling towards the atom, promoting the atom to the excited state as out-
lined in Fig. 3.6.

Applying the time-reversal operation in practice,which implies phase-conjugating
a single photon, is carefully speaking subject to technical difficulties—and also the
evolution in the atom’s motional degrees of freedom has to be handled [16]. More-
over, the phase-conjugation process induces excess quantum noise [64, 65]. It is
therefore the idea to shape a photon to resemble a perfect copy of a time-reversed
spontaneously emitted photon.10 This implies the spatial mode-matching arguments
raised in Sect. 3.1 but also requires ‘temporal mode-matching’, as expressed by the
temporal overlap-parameter ηt in (3.11).

In practice, the assumption ofworkingwith two-level atoms is usually not justified
and there is more than one possible decay channel from the excited state. Hence,
spontaneous emission would result in a superposition of the decays via all these
channels, entangling the emitted photon and the remaining atom.The reverse process,
absorption of a photon, would ideally start from such an entangled state. This is
extremely challenging if not self forbidding. We therefore seek an atomic species
providing as small as possible branching ratios in the excited state’s decay aswell as a
π -transition. Any even numbered isotope of doubly ionized ytterbium (YbIII) is such
a species. It is also a good choice from a practical point of view, since singly-ionized
ytterbium (YbII) is a well-established ion used in many quantum-optics experiments

10It can be shown in a fully quantum-mechanical calculation that an exponentially rising pulse with
proper time-constant indeed leads to full excitation of the atom [66].
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and for atomic clocks. YbII also offers a strong π -transition (see Fig. 3.10), serving
as our test-system for all techniques enabling efficient free-space coupling.11

3.4.2 Generation of Exponentially Increasing Pulses

The fact that most ions have to be addressed by ultraviolet light makes the generation
of single-photon Fock states with proper temporal envelope a cumbersome task (see
[28] for citations on shaped photons with more ‘accessible’ wavelengths). Never-
theless, the use of whispering-gallery-mode resonators [68] made of appropriately
chosen materials might facilitate shaped single photons at UV wavelengths.

For the time being and as a preliminary test, we resort to using suitably shaped
weak coherent states [28]. We generate these states by modulating a continuous
laser beam with an acousto-optic modulator (AOM).12 The AOM is driven with a
voltage signal generating exponentially rising pulses in the first diffraction order. The
voltage signal is proportional to arcsin[exp(t/(2τ))] · sin(ωRFt),13 where τ = 1/Γ
is the excited-state lifetime and ωRF the frequency with which the AOM is driven.
The obtained pulses are attenuated towards mean photon numbers about 0.1 and
characterized by statistics on the times of photon detection events obtained from a
photo-multiplier tube, cf. [28] for details.

From the obtained histograms (see Fig. 3.7) we reconstruct the field amplitude’s
envelope Einc(t) by taking the square root of the number of events per time bin. We

then compute the overlap of Einc(t) with the ideal envelope Eideal(t) = e
Γ
2 t · θ(−t)

obtained from time-reversal symmetry arguments:

ηt =
∫ ∞
−∞ Einc(t) · Eideal(t)dt√∫ ∞

−∞ |Einc(t)|2dt/Γ
. (3.12)

For the data shown in Fig. 3.7 we obtain ηt = 0.96 for the YbII transition and
ηt = 0.99 for the YbIII transition. The slightly lower overlap in the case of the YbII
transition is due to the fact that the drop-off at the end of the pulse, which amounts to
5ns enforced by the finite decay time of the acoustic grating inside the AOM, is on
the order of the lifetime of 8ns. Hence, the drop of intensity at the end of the pulse

11YbIII has been created by electron-impact ionization from a cloud of trapped YbII ions [67]. We
recently accomplished the controlled photo-ionization from YbII to YbIII.
12A similar technique employing electro-optic modulation is reported in [69]. In contrast to this,
other authors directly modulate the waveform of a single photon upon receiving a trigger signal
from a heralding photon, see [70], and the chapter by Chuu and Du. Last but not least, in a recent
experiment single-photon Fock states with increasing exponential envelope have been achieved by
manipulating a heralding photon with an asymmetric cavity prior to detection [71]. Both photons
originated from a cascaded decay in a cold atomic ensemble.
13This expression arises from the fact that the power scattered into the first diffraction order of the
AOM is proportional to the sine of the acoustic power establishing the diffraction grating.
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Fig. 3.7 Weak coherent-state pulses generated to drive an atomic transition with 8ns excited-state
lifetime (YbII 2P1/2 → 2S1/2 (a)) and 230ns excited-state lifetime (YbIII 3P1 → 1S0 (b)). The
average photon number per pulse is about 0.1. Histogram data of photon detection times are denoted
by circles. Each histogram contains more than 4×105 events. The shaded area depicts the optimum
pulse shape

is not as step-like as required. Nevertheless, both pulse shapes envision absorption
probabilities close to G, neglecting the non-ideal level structure of YbII [28].

3.4.3 An Analogous Experiment: Coupling to a Resonator

An experiment conceptually analogous to absorbing a single photon—but with sig-
nificantly reduced technical complexity—is the coupling of pulses into an empty
optical resonator [72]. Imagine a finite amount of energy being stored inside the res-
onator at a certain point in time. This electro-magnetic field will leave the resonator
via exponential decay, where the time constant of the decay is given by the decay
time of the intra-cavity field. If the resonator consists of only two mirrors with one of
them having unit reflectivity, the field leaves the cavity through the mirror with sub-
unit reflectivity. Now time-reversal arguments tell us that the energy of a properly
shaped, exponentially increasing pulse sent towards the cavity is stored completely
inside the cavity. In other words, no light is reflected from the cavity as long as the
incident pulse continues to grow [72].

Recently, we have implemented a corresponding experiment [73], shaping the
pulses in the sameway as described above in the generation of theweak coherent-state
pulses. The non-confocal resonator, which was used in our experiment, consisted of
a mirror with a reflectivity of R1 = 97.96% and R2 = 99.94% and had an intensity
decay time of 39ns. In the experiment, incident light was spatially mode matched to
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Fig. 3.8 Response of an empty optical resonator to a pulse with increasing exponential envelope
and a time constant matching the cavity’s decay-time. Black line reflected signal for resonant
excitation. Shaded area reflected signal for large detuning from the cavity resonance, being in good
approximation identical with the incident pulse

the resonator mode, sent onto the resonator via the mirror with reflectivity R1 and
tuned into resonance. The temporal envelope of the reflected pulse was monitored
with a photo diode. The outcome of such an experiment is presented in Fig. 3.8.

The finite amount of light leakage through the secondmirror, preventingmeasure-
ments of the cavity transmission with sufficient bandwidth, as well as non-perfect
spatial mode-matching necessitate a somewhat more involved analysis [73]. Despite
the imperfections, we achieved 88% energy storage efficiency for the generated
pulses and even 94% efficiency for the spatially mode-matched fraction.14 Devia-
tions from unity are due to a non-unit temporal field overlap ηt = 0.986 and leakage
through the second mirror. In analogy to the single-atom experiment this leakage
corresponds to a solid-angle coverage of 97%. The achieved large efficiencies hint
at the power of time-reversal-symmetry based arguments when optimizing the cou-
pling of light and matter. As a further example, true single-photon Fock states with
increasing exponential temporal envelope have been efficiently coupled to a cavity
recently, c.f. [76].

3.5 Trapping Ions in Parabolic Mirrors

3.5.1 Parabolic Mirror Ion Trap

So far we did not discuss a most important issue of photon-atom coupling with
parabolic mirrors: How do we place the atom at the focus of the parabolic mirror? As
alreadymentioned above,we have chosen toworkwith atomic ions. This demands for
an ion trap potential that can be located precisely enough to place the ions within the
tight focal spot of the incident beam. Simultaneously, the ion trap geometry should

14Similar efficiencies where obtained recently in experiments for microwave pulses [74, 75].
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(a)

(b) (c)

Fig. 3.9 a Schematics of the parabolic-mirror ion-trap, consisting of two concentric tubular elec-
trodes for the radio-frequency (RF) signal and ground (GND) potential. The aluminium parabolic
mirror is also grounded. Rod electrodes (DC) enable micro-motion compensation. b A single YbII
ion’s fluorescence imaged in the aperture plane of the parabolic mirror. White colour indicates
large intensity. c Second-order intensity correlation function (anti-bunching) obtained from approx.
8 · 105 fluorescence counts in 60s

maintain the large solid-angle optical access to the ion. These tasks are solved by
adapting a ‘stylus trap’ [77] and combining it with a parabolic mirror. The aluminium
parabolic mirror replaces the planar ground electrode of the stylus trap [36, 77].
Two tubular electrodes providing ground potential and the radio-frequency signal,
respectively, are mounted concentrically and attached to a piezo-driven translation
stage. The latter allows for adjusting the minimum of the trapping potential with nm-
accuracy relative to the mirror’s focus. The layout is sketched in Fig. 3.9. The level
scheme relevant for laser cooling YbII and for the coupling experiments outlined in
Sect. 3.6 is depicted in Fig. 3.10.

The radiation from a single YbII ion’s fluorescence as collimated by the parabolic
mirror is displayed in Fig. 3.9b. The cooling transition has been saturated in this
experiment. The figure shows an image of the intensity distribution at the output
plane of the paraboloid. The spatial distribution of themeasured fluorescence photons
corresponds to the one of an isotropic point source, as which a saturated YbII ion can
be considered [36]. The thin, concentric, ring-shaped features originate from surface
distortions of the parabolic mirror, see discussion below and in Sect. 3.6. The central
dark spot is attributed to the opening for the trap electrodes.
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Fig. 3.10 Energy levels of
YbII most relevant for our
experiments. The inset
details the levels addressed
in our photon-atom coupling
experiments

3.5.2 Fluorescence Collection

The large solid angle covered by a deep parabolic mirror is not only beneficial
for focusing onto an atom, but also—as suggested by the time-reversal symmetry
arguments raised before—for the efficient collection of photons emerging from the
atom. The latter is of importance in any application in which the internal state of an
atom has to be determined.

For our mirror geometry we demonstrated the collection of 54% of the emitted
fluorescence photons [36]. This number is basically limited by two constraints: As
mentioned above, a saturated YbII ion emits on average as an isotropic point source.
For the latter the solid angle covered by our mirror amounts to 81% instead of the
94% when considering the emission of a linear dipole aligned with the mirror’s
optical axis. The second constraint stems from the surface quality of the used mirror.
The nominal reflectivity of aluminium, when averaging over all angles of incidence
corresponding to the surface of our mirror, should amount to roughly 87%. Instead,
the measured reflectivity amounts to 67%. Such a low value is mainly attributed to a
too large surface roughness of the parabolic mirror, which might be caused by a non-
optimummanufacturing process. Using a mirror with better surface properties along
with collecting from a linear-dipole emitter should boost the collection efficiency to
82%.

Nevertheless, according to current literature the number of two million photons
per second actually counted in our setup outperforms other setups using neutral atoms
or ions.

3.6 Experimental Determination of the Coupling Efficiency

With the different aspects treated so far we now have basically all tools at hand for
conducting experiments on efficient light-matter coupling. What we did not discuss,
however, is a reliable way of determining the coupling efficiency G experimentally.
In principle, one could conduct the experiment one would like to do (e.g. phase
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shift or extinction measurements) and compare the achieved results with theory in
order to find a reasonable value for G that consistently reproduces the experiment.
But there are some obstacles. As both the phase shift and the extinction induced
by a single atom are caused by the interference of incident and scattered light, any
incoherent scattering due to saturation of the atom reduces the corresponding figure
of merit [50, 56, 58]. Also the amount of light scattered back into the solid-angle
cone of the focusing optics, as measured in [59], is influenced by the saturation of
the atom’s excited state. This is due to the fact that the scattering ratio is decreasing
for increasing saturation parameter [22, 56].

One could solve such problems by determining the atomic saturation in an addi-
tional experiment. But there is a simpler solution inmeasuring only a saturation curve
and relating the power needed to achieve a certain saturation parameter S to the one
necessary under ideal conditions, i.e. at G = 1 [26]. The saturation parameter S
induced by light with detuning Δ and incident power P is given by [56]

S = G · 8P

�ω0Γ
· 1

1 + 4Δ2/Γ 2 , (3.13)

where ω0 is the resonance frequency of the atomic transition. For example, the
minimum power (G = 1) to achieve a unit saturation parameter on resonance is
�ω0Γ/8, see also [61].

In the experiment one measures the amount of fluorescence counts as a function
of the incident power and fits the result to a function proportional to

Γ

2
· S(P)

1 + S(P)
, (3.14)

which is the rate of photons scattered by a two-level atom in the steady state. The
only difficulty arises from distinguishing the scattered photons from the incident
ones. This could be done by monitoring e.g. the Stokes-shifted fluorescence when
coupling to a molecule [58]. Working with YbII ions one could monitor the photons
emitted on the auxiliary transition 3[3/2]1/2 → 2S1/2 at 297nm which is part of the
typical scheme applied for laser-cooling YbII [78].

Here we pursue another method and split incident and scattered light spatially.
The spatial separation is accomplished by restricting the incident light to half of the
solid angle as depicted in the extinction setup in Fig. 3.5. In other words, we cool the
YbII ion with a radially polarized doughnut mode focused by the parabolic mirror
while restricting the incident light to radii r ≤ 2 f .15 Furthermore, one has to use
the same kind of aperture in the detection path as in the excitation path in order to
detect only backward scattered light [26]. The result of such an experiment is given
in Fig. 3.11.

15The cooling laser beam at 370 nm that enters through an auxiliary opening of the parabolic mirror
(cf. Fig. 3.9) is blocked during the saturation measurements.
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Fig. 3.11 Saturation curve (symbols) obtained cooling an YbII ion with a doughnut mode incident
from r ≤ 2 f at a detuning Δ = Γ/2. The dashed line denotes the result of fitting (3.14) to the
experimental data. The dotted lines indicate the power and fluorescence rate at S = 1

A least-squares fit yields a power of 690pW for achieving S = 1. Using the
parameters Γ −1 = 8.1ns, Δ = Γ/2 and ω0 = 2πc0/370nm (3.13) thus delivers
G = 0.024. However, we have to take into account that (3.13) is valid for a two-level
atom,which is not the appropriate description ofYbII. The focused radially polarized
mode only drives the π -transition which has a relative oscillator strength of 1/3 in
comparison to 2/3 for the σ±-transitions for the levels S1/2 and P1/2. Hence we have
to apply a correction factor of three in order to obtain G = 0.072.16

This coupling efficiency is among the largest achieved in a free-space setup so
far, but it is seven times below the expected value: Focusing from half solid angle,
the maximum achievable coupling efficiency amounts to G = 0.5. The non-perfect
overlap of η = 0.98 measured for the incident doughnut modes is so close to the
ideal value that it can only explain a tiny portion of the discrepancy. Most probably
the discrepancy arises from the fact that the aberrations of the non-perfect parabolic
surface have not been compensated during themeasurement. From an interferometric
characterization [35] of the parabolic mirror performed before mounting it in the
vacuum chamber and simulations of the focal intensity based on the corresponding
results we predict a Strehl ratio of 87% for focusing from r ≤ 2 f . The obtainable
coupling efficiency including the aberrations and η thus amounts to 41%.

This value is still much larger than the measured one. We speculate that the sur-
face of the parabolic mirror might be subjected to unknown distortions which are not
recognizable in the interferometric measurements performed at visible wavelengths.
But also distortions of the incident wavefront by the viewport of the vacuum cham-
ber might play a role. In any case, the measurement of the coupling efficiency as
performed here provides a sensitive tool hinting at any open issues.

16This reasoning assumes that the quantization axis is parallel to the optical axis of the parabola.
But one can show that for any orientation of the quantization axis the same correction factor has to
be applied when treating a S1/2 → P1/2 transition.
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3.7 Outlook

The experimental demonstrations of coupling light to a single atom in free space have
been made with different systems. The best experimental performance in relation to
the phase shift of the full transmitted beam, the extinction of the irradiating beam and
the absorption of a single photon are are still far from the theoretical best possible
values and thus far away from themaximumpossible efficiency. The parabolicmirror
set-up emphasized here offers the opportunity of improving upon all these numbers.
Nevertheless, demonstrating close to 100%absorption efficiency remains a particular
challenge, since the requirements on mode-matching in the spatial and temporal
domain have to be fulfilled with highest quality. This is especially difficult at the
short wavelength of the linear-dipole transition of the almost ideal two-level system
YbIII, which we successfully trapped recently. We hope to report on light-matter-
interaction experiments with a single YbIII ion in the near future.
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51. G.Hétet, L. Slodička,N.Röck,R.Blatt, Free-space read-out and control of single-iondispersion

using quantum interference. Phys. Rev. A 88, 041804 (2013)
52. A. Jechow et al., Controllable optical phase shift over one radian from a single isolated atom.

Phys. Rev. Lett. 110, 113605 (2013)
53. G.Zumofen,N.M.Mojarad,V. Sandoghdar,M.Agio, Perfect reflection of light by an oscillating

dipole. Phys. Rev. Lett. 101, 180404 (2008)
54. M.K. Tey et al., Interfacing light and single atoms with a lens. New J. Phys. 11, 043011 (2009)
55. T. Tyc, Gouy phase for full-aperture spherical and cylindrical waves. Opt. Lett. 37, 924–926

(2012)
56. M. Sondermann, G. Leuchs, The phase shift induced by a single atom in free space. J. Europ.

Opt. Soc. Rap. Public. 8, 13502 (2013)
57. A.N. Vamivakas et al., Strong extinction of a far-field laser beam by a single quantum dot.

Nano Lett. 7, 2892–2896 (2007)
58. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar, Efficient coupling of photons

to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66
(2008)

59. S.A. Aljunid et al., Interaction of light with a single atom in the strong focusing regime. J.
Mod. Opt. 58, 299–305 (2011)

60. Y.L.A. Rezus et al., Single-photon spectroscopy of a single molecule. Phys. Rev. Lett. 108,
093601 (2012)

61. P. Kochan, H.J. Carmichael, Photon-statistics dependence of single-atom absorption. Phys.
Rev. A 50, 1700–1709 (1994)
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Chapter 4
Free Space Interference Experiments
with Single Photons and Single Ions

Lukáš Slodička, Gabriel Hétet, Markus Hennrich and Rainer Blatt

Abstract Trapped ion crystals have proved to be one of the most viable physical
implementations of quantum registers and a promising candidate for a scalable real-
ization of quantum networks. The latter will require the development of an efficient
interface between trapped ions and photons. We describe two research directions that
are currently investigated to realize such photonic quantum interfaces in free space
using high numerical aperture optics. The first approach investigates how strong
focusing of light onto a single ion can increase the interaction strength to achieve
efficient interaction between a photon and the ion. The second approach uses a
probabilistic measurement on scattered photons to generate entanglement between
two ions that could be used to distribute information in a quantum network. For
both approaches a higher numerical aperture would increase the efficiency of the
interface.
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4.1 Coupling to a Single Ion in Free Space

Atom-photon interfaces are a key element for constructing a quantum network [1–3].
Here, the interface maps quantum information from stationary to flying qubits and
vice versa. Usually photons are employed as flying qubits due to their robustness in
preserving quantum information during propagation, while atoms are used for storing
and computing the quantum information in stationary nodes. The efficient mapping
of quantum information from atoms to photons and back demands controlled photon
emission and absorption with a very high probability. This condition can be achieved
in a strong coupling regime where the information is exchanged between atoms and
photons several times before it decoheres. The standard way to achieve strong atom-
photon coupling is by using either small high finesse cavities, which increase the
interaction between a single atom and a photon [4–6] as described in chapter by A.
Kuhn, or large atomic ensembles for continuous variable quantum interfaces [7–9]
treated in chapter by Chuu and Du.

In free space, i.e. without an enhancing cavity, the coupling of a single atom
and light is generally considered to be weak. Nevertheless, it can be significantly
increased if the light covers a large solid angle, for instance by using large aperture
lenses [10] or mirrors [11]. In such a setup it is possible to observe effects where a
single atom can notably modify the light field. For instance, several experiments have
recently demonstrated that a single quantum particle, like a single rubidium atom
[12], a molecule [13–15], or a quantum dot [16] can cause extinction of more than
10 %, and a phase shift of 1◦ [17] for the transmitted light. Also, a single molecule
has been shown to act as a nonlinear switch [18]. These experiments are first steps
towards realizing photonic quantum gates and quantum memories with single atoms
in free space.

In this chapter we will discuss several experiments in which single ions are placed
at the focus of high numerical aperture optics for efficient atom-light interaction. In
Sect. 4.1 of this chapter we will review several experiments on direct free space cou-
pling of a single trapped ion with light. Here, the high numerical aperture optics allow
the observation of effects which are usually only observed with large atomic ensem-
bles or single atoms in high finesse cavities, including electromagnetically induced
transparency [19], coherent back scattering [20], and Faraday rotation induced on a
propagating laser field [21]. Very similar ideas and experiments discussing the effi-
cient absorption of single photons by single ions are described also in the chapters
by Leuchs and Sondermann and by Piro and Eschner.

Later in Sect. 4.2 we will treat probabilistic methods to exchange quantum infor-
mation over a distance. Here, a projective measurement on the fluorescence photons
scattered by two atoms projects them into an entangled state, which then for instance
could be used to link distant registers in a quantum network using protocols like
quantum teleportation or entanglement swapping.
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4.1.1 Electromagnetically Induced Transparency
from a Single Atom in Free Space

The controlled storage and retrieval of photonic quantum information from an atomic
medium is often based on a phenomenon called electromagnetically induced trans-
parency (EIT) [22] or its excitation in the form of stimulated Raman adiabatic passage
(STIRAP) [23]. This technique has been widely used to control the storage of weak
light pulses or single photons in atomic ensembles [8, 9, 24] and high-finesse cavities
[25, 26]. For EIT, atoms in a lambda-type three-level system are driven by a weak
probe laser and a strong control laser in Raman configuration. Due to a destructive
quantum interference effect the control laser suppresses the absorption of the reso-
nant probe light. Consequently, by changing the control laser intensity it is possible
to switch the medium between transmitting and absorbing the probe light. Seen from
a different point of view, the control laser intensity changes the group velocity of the
probe laser. Thus, adiabatic ramping of the control laser intensity can slow down and
even stop a single probe photon. In this way the photon is stored in the long-lived
atomic ground states of the medium and can be retrieved by a time-reversal of the
storage process [1, 22]. An extension of this scheme can store a photonic quantum
state, for instance encoded in the polarization of light, in superpositions of atomic
ground states [27], thus realizing a memory for the photonic quantum information.

Effective switching between transmission and absorption can only be achieved in
optically thick media. Therefore, until recently the application of EIT was restricted
to ensembles of many atoms [22]. In contrast, (discrete variable) quantum informa-
tion processing is based on single well-defined qubits (for example single atoms or
ions) where each qubit can be individually manipulated to perform quantum gates.
A quantum network which combines these two technologies requires strong sin-
gle atom-single photon interaction within the interface nodes to distribute quantum
information over the nodes of the quantum network.

Trapped ions are at the moment one of the most advanced systems for quantum
information processing [28]. Also, since ions of the same species are identical, they
are very well suited as indistinguishable light sources [29, 30] at the distant locations
of a quantum network. Furthermore, the precise control over the electronic and
motional states of the ions in Paul traps makes them ideal to investigate the coupling
of radiation to single absorbers. In the following, we will present first steps towards
a free-space single ion quantum interface by demonstrating an extinction of a weak
probe laser of 1.3 %, electromagnetically induced transparency from a single trapped
ion, and the corresponding phase shift response.

4.1.1.1 Extinction and Phase Shift Measurements

The experiments that we will describe in this chapter show the relation between the
input and the transmitted light field in the presence of an atom [21]. The follow-
ing simple theoretical model can describe the basic properties of the extinction and



102 L. Slodička et al.

Fig. 4.1 Schematic view of a single atom irradiated by continuous laser light. The atom is illumi-
nated from a fraction of the solid angle ε and radiates into full solid angle. The fluorescent light in
general contains both elastic and inelastic components, nevertheless, for weak excitation the elastic
component dominates. In the forward direction the elastically scattered part of the fluorescent light
interferes with the transmitted laser beam (ε). In the backward direction (1−ε) the fluorescent light
is observed

reflection of a weak probe field from a single atom. This approach uses a perturba-
tive input-output formalism to relate the input field, Êin, and the output field, Êout,
through their interaction with the atom [31] as schematically depicted in Fig. 4.1.
In Markov approximation, the output field in forward direction can be described as
a superposition of the transmitted input field and the emitted field of the radiating
atomic dipole as

Êout(t) = Êin(t) + i
√

2γinσ̂ (t), (4.1)

where σ̂ (t) is the atomic coherence and γin is an effective coupling coefficient of the
input field to the atom. The coupling coefficient can also be expressed by the total
decay rate of the excited state γ and the fraction ε of the full solid angle covered by
the incoming field as γin = εγ . The atom reacts on the excitation by the input field,
thus the atomic coherence σ̂ (t) can be calculated by solving Bloch equations of the
two-level atom in the weak excitation limit and in steady state, which gives

σ̂ = i
√

2γin

γ + iΔ
Êin, (4.2)

where Δ is the frequency detuning of the probe light from the excited state. Finally,
the transmission of the intensity of the probe field T = |Eout/Ein|2 in steady state
reads

T (Δ) = |1 − 2εL (Δ)|2, (4.3)

where the amplitude of the atomic coherence is proportional toL (Δ) = γ /(γ +iΔ)

for a two level atom. Furthermore, the phase shift φ of the transmitted light field is
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φ(Δ) = arg
[
1 − 2εL (Δ)

]
. (4.4)

Please note that this simple theory predicts perfect extinction of the transmitted probe
field, and thus full reflection for a weak resonant input field covering half of the full
solid angle (ε = 0.5). This results from the interference between the transmitted
input beam and the radiated dipole field, which yields a considerable decrease in
the forward mode amplitude [13, 32]. In the experiment described below, we use a
lens with numerical aperture NA = 0.4 (i.e. ε = 4 %), so we expect a probe beam
extinction of 16 % from (4.3) from this basic theoretical model. More refined models
[12, 13, 33] include effects like the polarization of the input beam and the exact
mode overlap between the transmitted beam and the dipole emission pattern which
becomes especially important when the input beam is focused to the atom from a large
solid angle with a high numerical aperture lens beyond the paraxial approximation.
From the model of [12], we expect an extinction of around 13 % for our experimental
parameters. A higher extinction is possible for larger solid angles. Nevertheless, if
one wants to use a single atom in free space as a quantum interface, for an efficient
sender one will need to collect the emitted photon from full solid angle. Also, an
efficient quantum receiver will demand reversal of the emission process, thus the
single photon input mode will have to match the full dipole radiation pattern and the
reversed temporal mode of the atomic emission as detailed in [11] and chapter by
Leuchs and Sondermann.

In the following we will describe how we measure the single ion transmission, the
phase shift, and the EIT effect in our experiment. The experimental setup consists of
a high numerical aperture objective [34] to focus the probe field onto a single trapped
ion and a second objective to collect the transmitted light onto a detector, shown in
Fig. 4.2a. The barium ion is trapped and cooled in a standard spherical Paul trap. As
already mentioned before, good extinction of the probe field can only be achieved
if the incoming probe beam and dipole emission pattern are carefully overlapped.
This mode-matching is done using an expanding telescope and a custom-designed
objective with a numerical aperture of NA = 0.4 (ε = 4 %). A magnetic field of 5
Gauss applied along the probe beam propagation direction defines the quantization
axis. The probe field is linearly polarized perpendicular to the quantization axis,
collected after the ion using a second high numerical aperture lens, and then analyzed
using a polarimetric set-up and photo-multiplier tubes (PMT). In practice, we detect
the transmitted polarization alternately at +45 or −45◦ with respect to the input
polarization.

The level scheme of 138Ba+ is shown in Fig. 4.2b. The probe field is tuned to the
6S1/2 → 6P1/2 transition and with our choice of quantization axis, its polarization
can be decomposed onto left and right circularly polarized modes that drive σ− and
σ+ transitions in the ion, respectively. The two polarization modes do not have the
same detuning from their respective transitions and thus may experience different
indices of refraction. We set the intensity of the probe field well below saturation
so that most of the light is elastically scattered. The probe field supplies only weak
cooling to the ion. Therefore the ion is cooled additionally by a red detuned 493 nm
laser field perpendicular to the probe direction and a laser at 650 nm, co-propagating
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(a)

(b)

Fig. 4.2 a Scheme of the experimental set-up used to measure EIT and the corresponding phase
shift on a single atom [21]. The probe field is defined in horizontal polarization by passing through
a polarizing beam-splitter (PBS). The laser beam is then expanded by a telescope and focused by a
high numerical aperture lens in vacuum (NA = 0.4) onto the ion. Depending on the intensity of the
control laser, the single ion changes the transmission of the probe light and rotates its polarization,
which after re-collimation is detected by polarimetry. b Level scheme of 138Ba+ and probe and
control laser fields used in the experiment. The input probe field at 493 nm is decomposed in the two
circular polarizations which excite two branches of the spin-half system with different detunings.
The laser field at 650 nm is used as the control field in the EIT measurements and for repumping
population from the 5D3/2 level

with the cooling beam, for pumping out population from the 5D3/2 level. For the
characterization of the Faraday rotation we use a lock-in method where the 650 nm
repumping laser is switched on and off at a rate of 5 kHz to precisely measure the
polarization rotation signal. When the repumping laser is off the population of the
atom is pumped into the 5D3/2 state. Since the probe beam drives the transition
between 6S1/2 and 6P1/2, it does not feel the presence of an ion that resides in
5D3/2. Thus, the modulation of the repumping laser also modulates the effect of the
atom on the probe field. The photo-multiplier signal is demodulated and low-pass
filtered with a time constant of 1 s.

The intensity of the light at the PMT measured at +45◦ with respect to the input
polarization can be written as
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I45 = 1

2
|E+

oute
iπ/4 + E−

oute
−iπ/4|2, (4.5)

where

E+
out = (1 − 2εL +) 1√

2
Ein and (4.6)

E−
out = (1 − 2εL −) 1√

2
Ein (4.7)

are the corresponding output fields of σ+ and σ− polarization, respectively. The real
and imaginary parts of

L ± = ρ±γ

γ + iΔ± (4.8)

correspond to absorption and phase-lag of the two scattered circularly polarized
field modes with regards to the input field, respectively. Here, Δ± = Δ±ΔB are the
detunings of the σ+ and σ− polarized fields from their respective transitions. The
two ground state populations ρ+ (ρ−) of the σ+ (σ−) transition correspond to the
states 6S1/2, m J = −1/2 (m J = +1/2), respectively. Δ is the probe laser detuning
with respect to the 6S1/2 → 6P1/2 transition without Zeeman shift, and ΔB is the
frequency offset of the two resonances due to the Zeeman splitting. The ±π/4 phase
shifts in (4.5) are due to the rotation of the polarization direction between input and
detected polarization induced by the λ/2 waveplate that allows us to characterize the
Faraday rotation.

To measure the Faraday rotation angle θ = 1
2 arctan(s2/s1), here defined as

half the rotation angle from horizontal polarization towards 45◦ polarization on
the Poincaré sphere, we need to record the Stokes parameter s1 = I0 − I90, and
s2 = 2I45 − s0, with s0 = I0 + I90. Please note that for our small extinction val-
ues the Stokes parameter s1 can be approximated by s1 ≈ s0 ≈ I0, which can be
measured directly by removing the polarizing beam-splitter. After re-inserting the
beam-splitter and adjusting the waveplate accordingly, we can access the Stokes
parameter s2 ≈ 2I45 − I0. The Faraday rotation angle θ ≈ 1

2 arctan((2I45 − I0)/I0)

is directly related to the phase shift induced by the atom. It can be shown, using the
approximation arg(1 − 2εz) ≈ −2εIm(z) in the limit of small ε, that

θ = 1

2
arg

[
1 − 2ε(L + − L −)

]
, (4.9)

which is half of the phase lag experienced by the output with respect to the input field.
A measurement of I45 and I0 thus provides a measurement of the Faraday rotation
of the light across the atom together with the phase difference acquired by the two
circularly polarized modes.

We characterize the Faraday rotation of the probe field by measuring the phase
shift θ and the transmission I0, which are plotted in Fig. 4.3a as a function of
the probe frequency detuning Δ. As can be seen from the measurement of I0, an
optical pumping mechanism by the cooling and repumping lasers causes a strong
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(a) (b)

Fig. 4.3 a Transmission I0 (ii) and phase shift θ (i) of a probe field transmitted through a single
trapped barium ion as a function of probe beam detuning [21]. The transmission spectrum is fitted
by a Lorentzian profile with a width of 11 MHz. The peak probe beam extinction is 1.35 %. b
Transmission (i) and phase shift (ii) of a probe field transmitted through a single trapped barium
ion as a function of probe beam detuning close to a dark resonance

unbalancing between the two ground states populations. In principle, one would
expect to observe two identical absorption lines at +5 and −14 MHz (shifted with
respect to the symmetric case due to dipole shifts) for the σ+ and σ− transitions of the
probe light from 6S1/2 to 6P1/2, respectively. Here, the optical pumping induced by
the cooling and repumping lasers traps population in the |6S1/2, m J = +1/2〉 level
so that only the σ− transition can be detected by the probe field. This manifests itself
in the 1.5 % extinction that is seen −14 MHz red-detuned from the central line for
the σ− and in the almost completely suppressed extinction for the other σ+ mode at
5 MHz. With this state preparation, trace (i) displays a clear dispersive profile across
the resonance of the σ− transition and the σ+ polarized mode is almost not phase
shifted. Even with our small magnetic field, the pumping technique thus allows us
to isolate a single two-level atom and to reach a maximum of 0.3◦ phase-shift. Solid
lines show the result of a fit of the data using the above four-levels calculations, with
ε = 0.8 %, ΔB = 9 MHz, ρ− = 0.9 and ρ+ = 0.1. With these parameters, good
agreement is found with the experimental results.

4.1.1.2 Electromagnetically Induced Transparency and Associated
Phase Shift with a Single Atom

In the above measurements, the cooling and repumping beams were tuned to a dark
resonance with the intention to pump the population of the ion into one of the S1/2
levels and therefore minimize the population in the D3/2 state which is not inter-
acting with the probe laser. Nevertheless, the transverse cooling beam can also be
turned off and the ion be cooled by the linearly polarized probe field itself. In such
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a configuration the probe undergoes electromagnetically induced transparency
(EIT) [19] where the population in the excited state of the Λ scheme (see Fig. 4.2b) is
canceled due to a quantum interference between the two excitation pathways leading
to the P1/2 excited state.

Under weak probe excitation, the probe transmission as a function of the two-
photon detuning δ = Δg −Δr can be found by solving the Bloch equations [35] and
using the above input-output relations. We neglect here the angular dependence of the
extinction (due to polarization). That is, we suppose that the probe has a polarization
profile that matches the dipole field. This is a good approximation for the relatively
small numerical aperture we use in this experiment. We can thus replace the function
L by

LΛ(δ) = γ (γ0 − iδ)

(γ0 − iδ)(γ + iΔg) + Ω2
r
, (4.10)

in (4.3), where Ωr is the Rabi frequency of the red laser field, γ0 the ground state
dephasing rate, γ the natural linewidth of the two transitions (assumed to be the same
for simplicity). An important condition for EIT to take place is γ γ0 � Ω2

r , i.e. the
pumping rate to the dark state must be much faster than any ground state decoherence
process. Independent frequency fluctuations of the two laser fields, magnetic field
fluctuations, and atomic motion induced Doppler shifts, must be therefore reduced.
When this is the case, extinction of the resonant probe can be completely inhibited,
within a small range of control laser detuning Ω2

r /γ , creating an EIT window. This
is what we observed in this experiment.

In the experiment we found that the motion induced decoherence yields broad-
ening of tens of kHz, which reduced the EIT when the control and the probe were
orthogonal to each other. However, the effect of Doppler shifts due to the ion motion
could be eliminated when we used co-propagating control and probe fields. Since
for optimum EIT conditions we could not use the cooling fields which would have
reduced the transparency achieved through EIT, so the ion needed to be cooled by the
probe itself. Consequently, the probe beam was more intense and red detuned, which
resulted in reduced extinction efficiencies of about 0.6 %. Additionally, we have to
note here that due to the multi-level structure of barium, a single three level system
can only be perfectly isolated from the others through optical pre-pumping. There-
fore, Stark-shifts induced by the other levels and double-Λ type couplings contribute
to a slight reduction of the EIT contrast.

The results of the measurement of the probe transmission versus the two-photon
detuning δ are shown in Fig. 4.3b trace (i). In this EIT regime, a rapid change of
the transmission is found as a function of the two-photon detuning and an almost
complete cancellation of the transmission is measured at δ = 0.

Associated with such a steep change of the probe transmission, we also expect a
fast roll-off of the phase. Figure 4.3b—trace (ii) shows the measurement of the phase
θ of the probe field, using the same polarimetric technique as in the measurement
described in the previous section. Here again, close to the dark resonance, the Faraday
rotation angle yields the phase-shift induced by the atom. The clear dispersive shape
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of θ across the two-photon resonance is here a sign of the EIT induced phase-shift
from the ion where a maximum phase lag of 0.3◦ is observed. The solid lines show
a fit to the experimental results using 8-level Bloch equations, consisting of the two
S1/2, the two P1/2 and the four D3/2 states. Here we replace the two-level atom
Lorentzian functions L ± in (4.4) by the newly found susceptibilities. The theory
describes well the data with the repumping and probe field intensities as the only
two free parameters. The asymmetry of the dispersion and transmission profiles that
we measured is due to a slight overlap with neighboring dark-resonances and our
detuned driving of the Λ scheme. The distinctive feature of this interference effect is
that the flipping of the phase shift sign occurs only over a couple of MHz. Increasing
the slope steepness further can in fact be done by performing the experiment with
smaller probe and repumping powers which can be implemented by appropriate
switching of the laser cooling beams involved in the experiment. Achieving a very
steep phase shift dependence across the atomic spectrum would open the way for
reading out the motional and internal energy of the atom.

Tightly focusing a weak, detuned, linear polarized probe field onto a single barium
ion thus enables observation of both the direct extinction of a weak probe field
and electromagnetically induced transparency from a single barium ion. Besides
demonstrating further the potential of these effects for fundamental quantum optics
and quantum information science, these experimental results will trigger interest
for quantum feedback to the motional state of single atoms, as proposed in [36]
using EIT, for dispersive read out of atomic qubits and for ultra-sensitive single atom
magnetometery.

In the following we will now discuss another effect observed with a similar exper-
imental apparatus where we show that a single atom can act as a mirror of an optical
cavity.

4.1.2 Single Ion as a Mirror of an Optical Cavity

Atom-photon interactions are essential in our understanding of quantum mechan-
ics. Besides the two processes of absorption and emission of photons, coupling of
radiation to atoms raises a number of questions that are worth investigating for a
deeper theoretical and thus interpretational insight. The modification of the vacuum
by boundaries is amongst the most fundamental problems in quantum mechanics and
is widely investigated experimentally. We here present the very first steps towards
merging the field of cavity QED with free-space coupling, using an ion trap apparatus.

Here we report an experiment where we set up an atom-mirror system [20]. As
shown Fig. 4.2a, we place a mirror in the path of the probe beam in front of the ion.
The idea of this geometry is to form an atom-mirror cavity system consisting of the
normal mirror and the ion acting as the second mirror. We observe the modification
of the probe transmission and reflection of this atom-mirror cavity. Here, the atomic
coupling to the probe is modified by the single mirror in a regime where the probe
intensity is already significantly altered by the atom without the mirror. In principle,
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in the limit of an even higher numerical-aperture lens, the mirror-induced change in
the vacuum-mode density around the single atom could modulate the atom’s coupling
to the probe, the total spontaneous decay and the Lamb shift, so that the atom would
behave as the mirror of a high-finesse cavity.

As before, for extinction of a laser field by the ion in free space, we use a very weak
probe beam resonant with the S1/2(m J = +1/2) − P1/2(m J = −1/2) transition.
In the case of coherent reflection of a laser field by a single atom, the backscattered
field must interfere with the driving laser. To verify this, we construct the system
shown in Fig. 4.2a by inserting a dielectric mirror 30 cm away from the atom into the
probe path, with a reflectivity |r |2 = 1 − |t |2 = 25 %. We align it so that the ion is
re-imaged onto itself and shine the resonant probe through it. Using the Fabry-Pérot
cavity transmissivity, and modeling the atom as a mirror with amplitude reflectivity
2ε [31], one can naively assume that the intensity transmissivity of the probe reads

T =
∣∣∣ t (1 − 2ε)

1 − 2rεeiφL

∣∣∣2
, (4.11)

where φL = 2kL R, R is the atom-mirror distance and kL the input probe wavevector.
The finesse F = π2εr/(1− (2εr)2) of such a cavity-like set-up can in fact be made
very large by using a high numerical aperture lens such that ε → 50 % together with
a highly reflective dielectric mirror. By tuning the distance between the dielectric
mirror and the ion, one would therefore expect a dependence of the transmitted
signal on the cavity length, provided that the temporal coherence of the incoming
field is preserved upon single-atom reflection.

The operation of our ion-mirror system is shown in Fig. 4.4b, where we simul-
taneously recorded the reflected and transmitted intensity. As the mirror position is
scanned, we indeed observed clear sinusoidal oscillations of the intensity on a wave-
length scale. These results reveal that the elastic back-scattered field is interfering
with the transmitted probe, and that the position of the ion is very well defined, mean-
ing that it is well within the Lamb-Dicke regime. Reflected and transmitted intensity

(a) (b)

Fig. 4.4 a Experimental setup with an optical cavity formed by the mirror and the single ion. PMT
1 and 2 measure the transmitted and the reflected probe laser intensity, respectively. b Reflection
and transmission signal of the ion-mirror cavity as a function of the mirror position [20]
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have opposite phase, as is predicted for a Fabry-Pérot cavity response. The slight
shift in the two sinusoidal fitting functions is within the measurement error bars.

We now investigate whether the naive Fabry-Pérot interpretation that we used to
describe our results is valid. One could indeed wonder how the modification of the
quantum vacuum around the atom affects our results. It is clear that the dielectric
mirror imposes new boundary conditions that change the vacuum mode density close
to the atom, but it is less obvious how much this change contributes to the probe
intensity modulation that we observe in this experiment. One can in fact show [20]
that solving the multimode Heisenberg equations in a time-dependent perturbation
theory gives

T = |t |2
∣∣∣1 − 2gεg∗

γ̃ + iΔ̃

∣∣∣2
, (4.12)

assuming the input probe to be resonant with the atomic transition. Here, gε denotes
the atomic coupling strength in the probe mode, g is the mean coupling to all the
modes, γ̃ and Δ̃ are the decay and level shifts modified by the presence of the
mirror, respectively. Their value can be calculated using the appropriate spatial mode
function for this system [37] and we can then show that

gεg∗

γ̃ + iΔ̃
= ε(1 − reiφL )

1 − 2rεeiφL
. (4.13)

After combining this relation with (4.12) we obtain the same transmissivity as was
obtained by modeling the atom as a mirror with reflectivity 2ε (4.11). Interestingly,
the QED calculations yield the same mathematical results as the direct Fabry-Pérot
calculation.

In this QED approach, it was not necessary to invoke multiple reflections off the
atom for the Fabry-Pérot like transmission to appear. The transmission of the probe
through the single atom+mirror system is mathematically equivalent to a cavity,
therefore the origin of the peaked transmission profile can be interpreted either as a
cavity effect or as a line-narrowing effect due to the QED-induced changes of the
spontaneous emission rate and level shift. In the second interpretation, the observed
oscillations can be interpreted as a change of the coupling between the atom and the
probe mode, due to the modification of the mode density at the position of the ion
induced by the mirror. For very high numerical optics the change of the extinction
contrast would be analogous to an almost complete cancellation and enhancement
by a factor of two of the atomic coupling constant in the probe mode. Deviations
from the sinusoidal shape due to line narrowing would already be visible for a lens
covering a solid angle of more than 10 %.
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4.2 Probabilistic Entanglement Between Distant Ions

Long-lived entanglement between distant physical systems is an essential primitive
for quantum communication networks [2, 3], and distributed quantum computa-
tion [38–40]. There are several protocols generating entanglement between distant
matter qubits [41], like single atoms. The majority of them exploit traveling light
fields as mediators of the entanglement generation process. A way to generate distant
entanglement is based on the spontaneous generation of entanglement between an
atom and a single photon during the emission process followed by the absorption of
the photonic state in a second atom [1]. This method can generate entanglement deter-
ministically, if the photon collection and absorption processes are highly efficient.
Nevertheless, photon losses in experimental realizations might render it necessary
to first detect a successful photon absorption in order to herald the successful entan-
glement generation. Another approach generates the entanglement probabilistically
by detecting single photons that were scattered by two atoms. The projective mea-
surement on the photons heralds an entangled state of the two atoms [2, 3, 42, 43].

The realization of heralded entanglement between distant atomic ensembles [44,
45] was amongst the first major experimental achievements in this field. Proba-
bilistic generation of heralded entanglement between single atoms [43] was demon-
strated using single trapped ions [46] with an entanglement generation rate given
by the probability of coincident detection of two photons coming from the ions [47,
48]. More recently, single neutral atoms trapped at distant locations were entangled
using the deterministic entanglement protocol described above [27]. Nevertheless,
the efficiency of this realization was still limited due to losses to approximately 2 %.
A heralding mechanism will therefore be essential for efficient entanglement and
scalability of quantum networks using realistic channels [41]. The distant entangle-
ment could also be used for one-way quantum computation schemes [49, 50]. Such
schemes for distributed quantum information processing would require only projec-
tive measurements and single qubit operations to perform quantum calculation [41].
For future quantum information applications it therefore will be important to realize
heralded distant entanglement with the possibility of single qubit operations and
with high entanglement generation rate at the same time.

4.2.1 Single-Photon and Two-Photon Protocols

The main limitation for generation of heralded distant entanglement between single
atoms with high rate is imposed by relatively small overall detection efficiencies
η of fluorescence photons emitted by atoms trapped in free space [47]. For state-
of-the-art experimental setups employing high numerical aperture optics close to
single trapped neutral atoms or ions, η is on the order of 10−3 [32, 51–54]. There
is a large effort in the experimental quantum optics community towards increasing
this number both by employing very high numerical aperture optics in the form
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Fig. 4.5 Both one- and two-photon entanglement protocols use the same steps for generating
heralded entanglement of distant atoms. After electronic excitation the atoms decay back to a
ground state, while spontaneously emitting a photon. The scattered photons interfere to make it
indistinguishable which of the two atoms has scattered the photon. Finally, the photons are detected
and project the atoms into entangled state. For the two-photon protocol, two photons must be emitted
from two distant atoms and the detection corresponds to the projection onto one of the Bell states
in the photon basis. For the single photon scheme, only one photon has to be emitted and detected.
Depicted energy levels correspond to the typical schemes employed for the two protocols with
|g〉, |i〉 and |e〉 corresponding to the initial ground state, auxiliary excited state and final state after
Raman process, respectively

of spherical [55] or parabolic [56, 57] mirrors and by developing single-photon
detectors with high quantum efficiency. However, even with these improvements it
will be hard to increase the overall detection efficiency by more than one order of
magnitude in the near future.

We compare the efficiency of the two known heralded entanglement generation
protocols based on the single-photon [42] and two-photon [43] detection. Both pro-
tocols are based on the atomic excitation, indistinguishability and interference of the
emitted photons and on state-projective detection, as illustrated in Fig. 4.5.

We define two dimensionless measures crucial for the performance of any practical
quantum information network [47]. Fidelity between the generated state described
by the density matrix ρ and the desired maximally entangled two qubit state |ψ〉,

F = 〈ψ |ρ|ψ〉 (4.14)

and success probability Ps, corresponding to probability with which this state can be
generated for given overall detection efficiency η.

Following the simplified model in the work of Zippilli et al. [47], the fidelity and
success rate of the single-photon protocol are given by

F1 ∼ (1 − pe)/(1 − ηpe) and Ps,1 ∼ 2ηpe(1 − ηpe). (4.15)
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Fig. 4.6 Success probability ratio of entanglement generation for the single-photon and two-photon
protocols. For current ion-trapping experimental setups [51, 55, 58–60] the overall collection and
detection efficiency is limited to few percents. For such realistic detection efficiencies, the single-
photon entanglement generation scheme has potential to be several orders of magnitude faster than
the two-photon scheme. The three highest detection efficiencies values are from experiments where
fluorescence was detected directly, without coupling to optical fiber

Here pe is the probability of the successful excitation and emission of a single photon
by a single ion. For a given value of pe, the fidelity increases with overall detection
efficiency because the likelihood of detecting events where two photons are scattered
increases. For a two-photon protocol, the effect of detection efficiency on generated
state fidelity is negligible, because both atoms need to be excited and only coincidence
detection events trigger entanglement, and thus the fidelity of the generated state with
the maximally entangled state is assumed to be F2 = 1. However, the rate and success
probability of entanglement generation depend here quadratically on η,

Ps,2 ∼ η2, (4.16)

since the two photons need to be detected at the same time.
Figure 4.6 shows the ratio of success probabilities R = Ps,1/Ps,2 of the two

protocols for fixed values of the generated states fidelities as a function of detection
efficiency. For a given desired fidelity the two-photon scheme is faster only for high
overall detection efficiencies. There is a large advantage in using the single-photon
scheme for experimental setups with detection efficiencies below 10−2. For most
of currently realized single-atom experiments, the theoretical gain in entanglement
generation rate using the single-photon scheme thus corresponds to several orders of
magnitude. In addition, even for unrealistically high detection efficiencies of more
than 90 %, the single-photon scheme can give higher success rates of generated
entangled states with high fidelities. This is due to the high detection probability
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of double excitations in this limit, which correspond to the fundamental source of
infidelity in the single-photon protocol.

4.2.2 Generation of Entanglement by a Single
Photon Detection

The entanglement of distant single atoms through the detection of a single photon
was proposed in the seminal work of Cabrillo et al. [42]. In this scheme, two atoms
(A,B) are both initially prepared in the same long-lived electronic state |gg〉, see
Fig. 4.5. Each atom is then excited with a small probability pe to another long-lived
state |e〉 through a spontaneous Raman process (|g〉 → |i〉 → |e〉) by weak excitation
of the |g〉 → |i〉 transition and spontaneous emission of the single photon on the
|i〉 → |e〉 transition. Here |i〉 denotes an auxiliary atomic state with short lifetime.
This Raman process entangles each of the atom’s internal states |s〉 with the emitted
photon number |n〉, so the state of each atom and its corresponding light mode can
be written as

|s, n〉 = √
1 − pe|g, 0〉eiφL + √

pe|e, 1〉eiφD . (4.17)

The phases φL and φD correspond to the phase of the exciting laser at the position
of the atoms and the phase acquired by the spontaneously emitted photons on their
way to the detectors, respectively. The total state of the system consisting of both
atoms and the light modes can be written as

|sA, sB, nA, nB〉 = (1 − pe)e
i(φL,A+φL,B)|gg, 00〉

+ √
pe(1 − pe)(e

i(φL,A+φD,B)|eg, 10〉 + ei(φL,B+φD,A)|ge, 01〉)
+ peei(φD,A+φD,B)|ee, 11〉. (4.18)

Indistinguishability of the photons from the two atoms is achieved by overlapping
their corresponding modes, for example using a beam splitter. Single photon detection
then projects the two-atom state onto the entangled state

|Ψ φ〉 = 1√
2
(|eg〉 + eiφ |ge〉), (4.19)

with a probability of 1 − p2
e , where p2

e is the probability of simultaneous excitation
of both atoms. The phase of the generated entangled state φ corresponds to the sum
of the phase differences acquired by the exciting beam at the position of the two
atoms and the phase difference acquired by the photons from the respective atoms
upon traveling to the detector,

φ = (φL,B − φL,A) + (φD,A − φD,B). (4.20)
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The only limiting factor for the fidelity of the generated state with respect to
the maximally entangled state emerging from the presented simplified model is the
probability of simultaneous excitation of the two atoms p2

e . However, this can be made
arbitrarily small at the expense of entanglement generation success probability Ps,
as demonstrated in Fig. 4.6. The phase of the generated state depends on the relative
length of the excitation and detection paths, which therefore need to be stabilized
with sub-wavelength precision. Random changes of these path-lengths caused by
atomic motion or air density fluctuations change the phase of the entangled state
in (4.21) in an incoherent way, which can considerably reduce the fidelity of the
generated state. In the experiment we stabilize the phase φ with interferometric
methods to φ = 0. The heralded detection of a single photon should then generate
the maximally entangled target state

|Ψ +〉 = 1√
2
(|eg〉 + |ge〉). (4.21)

4.2.3 Experimental Realization

For the experimental realization of the single-photon entanglement generation
scheme two barium ions are trapped in a linear Paul trap setup. As shown in Fig. 4.7,
laser light at 493 nm is used to Doppler-cool the ions and to detect their electronic
states by means of electron shelving, and a laser field at 650 nm pumps the atoms back
to the 6P1/2 level from the metastable 5D3/2 state. By carefully adjusting the cooling
and trapping parameters, the ions are always well within the Lamb-Dicke limit so
that the photon recoil during the Raman scattering process is mostly carried by the
trap. This ensures that only minimal information is retained in the motion of the

Fig. 4.7 Scheme of the experimental setup for entanglement generation by a single photon detection
and relevant electronic level scheme of 138Ba+ [59]. Fluorescence of the two ions is overlapped
using a distant mirror which sets the effective distance between them to d = 1 m. A half wave plate
(HWP), a polarizing beam splitter (PBS) and a single-mode optical fiber select the polarization and
the spatial mode before an avalanche photodiode (APD1). A non-polarizing beam-splitter and an
additional avalanche photodiode (APD2) can be inserted to form a Hanbury-Brown-Twiss setup
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ion about which atom has scattered the photon during the entanglement generation
process. The fluorescence photons are efficiently collected by two high numerical
aperture lenses (NA ≈ 0.4) placed 14 mm away from the atoms. A magnetic field of
0.41 mT is applied at an angle of 40◦ with respect to the two-ion axis and defines the
quantization axis. After passing through a polarizing beam splitter that blocks the
π -polarized light and lets σ -polarized light pass, the spatial overlap of the photons
is guaranteed by collecting the atomic fluorescence of the first ion in a single mode
optical fiber, whilst the fluorescence of the second ion is sent to a distant mirror that
retro-reflects it in the same optical fiber. The fluorescence of the two ions (includ-
ing the Raman scattered light) is then detected by an avalanche photodiode with a
quantum efficiency of 60 %.

In order to produce a pure entangled state of two qubits, the phase φ of the
generated state, defined in (4.20), must be controlled with high precision. This is
achieved by a measurement of the phase of the interference produced by the elastic
scattering of the 493 nm Doppler-cooling beam from the two ions. Scattered photons
will follow the same optical paths as the photons scattered by the Raman beam
just in opposite directions. Observation of their interference can be then used for
stabilization of the relative phase of the exciting Raman beam at the position of the
two ions.

Every experimental sequence of this measurement starts by Doppler-cooling of
the two ions. Then the ion-mirror distance d/2 is stabilized by locking the position of
the measured interference fringe to a chosen position. The electronic states of the ions
are then prepared to the Zeeman substate |6S1/2,(m=−1/2)〉 = |g〉 by optical pumping
with a circularly polarized 493 nm laser pulse propagating along the magnetic field.
Next, a weak horizontally polarized laser pulse excites both ions on the S1/2 ↔ P1/2
transition with a probability pe = 0.07. From the excited state the ion can decay
to the other Zeeman sublevel |6S1/2,(m=+1/2)〉 = |e〉, see Fig. 4.8. The electronic
state of each ion is at this point entangled with the number of photons |0〉 or |1〉
in the σ− polarized photonic mode. Provided that high indistinguishability of the
two photonic channels is assured and that simultaneous excitation of both atoms is
negligible, detection of a single σ− photon on the APD projects the two-ion state
onto the maximally entangled state given by (4.21).

Following the detection of a Raman scattered σ− photon, the two-atom state is
coherently manipulated to allow for measurements in a different basis used for the
estimation of the generated state. As shown in Fig. 4.8, this is done by first applying
radio-frequency (RF) pulses that are resonant with the |g〉 ↔ |e〉 transition of both
atoms at transition frequency of 11.5 MHz. Finally, discrimination between the two
Zeeman sub-levels of the 6S1/2 state is done by shelving the population of the |g〉 state
to the metastable 5D5/2 level using a narrowband 1.76µm laser. The fluorescence
rate on the 6S1/2 ↔ 6P1/2 transition [59] allows distinguishing between having no
excitation at all ρgg , a single delocalized excitation ρge or ρeg , and two excitations
ρee in the two-atoms system. These events can be separated with 98 % probability,
which enables efficient reconstruction of the relevant parts of the two-atom density
matrix. The 614 nm laser field then resets the ions to the 6S1/2 state and the same
experiment is repeated 100 times.
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Fig. 4.8 Experimental sequence [59]. Spontaneous Raman scattering from |g〉 to |e〉 triggers emis-
sion of a single photon from the two atoms. Upon successful detection of a σ− photon, state analysis
comprising coherent radio-frequency (RF) pulses at 11.5 MHz, and electron shelving to the 5D5/2
level are performed

4.2.3.1 Estimation of the Generated State

The success rate and fidelity of the generated entangled state of distant ions can be
estimated by measuring the overlap of the generated state with the desired entan-
gled state every time the heralding photon is detected. It is sufficient to measure
only certain parts of the density matrix which contribute to this overlap [59]. The
fidelity F = 〈Ψ +|ρ|Ψ +〉 of the general two-qubit state ρ with the desired maximally
entangled state |Ψ +〉 reads

F = 1

2
[ρge + ρeg + 2Re(ρeg,ge)]. (4.22)

The fidelity thus depends only on the sum of diagonal populations ρge and ρeg and
on the real part of the off-diagonal term ρeg,ge that expresses the mutual coherence
between them. All these terms can be accessed using the collective rotations

R̂(θ, φ) = exp

[
−i

θ

2

(
cos φ Ŝx + sin φ Ŝy

)]
, (4.23)

followed by the measurement of parity operator

P̂ = p̂gg + p̂ee − p̂eg − p̂ge, (4.24)

where p̂ij are the projection operators on states |ij〉, i, j ∈ {g, e} in different bases [61]

and Ŝx,y = σ̂
(1)
x,y ⊗ I (2) + I (1) ⊗ σ̂

(2)
x,y is the total angular momentum operator in x-

or y-direction for both ions. The rotation angle θ and rotation axis φ on the Bloch
sphere are determined by the duration and the phase of the RF pulses, respectively.
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For the state |Ψ +〉, it can be readily shown that

Tr
[

P̂ R̂(π/2, φ)|Ψ +〉〈Ψ +|R̂†(π/2, φ)
]

= 1 (4.25)

for all φ. A parity measurement on the |Ψ +〉 entangled state is therefore invariant with
respect to the change of the rotation pulse R̂(π/2, φ) phase φ. In order to measure
the parity oscillations for this state, it first has to be rotated by a global R̂(π/2, π/2)

pulse, corresponding to a σ̂y rotation on both qubits with the pulse area of π/2.

4.2.3.2 Entanglement Generation Results

The electronic state of two ions is analyzed after each heralding photon detection.
Figure 4.9a shows that in (89 ± 3) % of the heralded events only one of the atoms
was excited to the |e〉 state. This is in good agreement with the excitation probability
pe = 0.07 ± 0.03 of each ion and the measured dark-count rate of the employed
avalanche photodiode of 10 counts/s.

Figure 4.9b, trace (ii), shows the results of the parity operator P̂ measurements that
are, as explained above, preceded by two global RF rotations R̂(π/2, π/2)R̂(π/2, φ)
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Fig. 4.9 Characterization of the entangled state [59]. a Two-atom state populations after the detec-
tion of a σ− photon showing that the total probability of measuring the state with a single excitation
is (89 ± 3) %. Spurious populations of the |gg〉 state are caused by double excitations of each ion
(0.07) and dark count rate of the employed avalanche diode (0.02). State |ee〉 is populated due to
the simultaneous excitation of the two ions. b Parity measurements as a function of the RF-phase.
Trace (ii) corresponds to the measurement of the atomic populations after two global rotations
R̂(π/2, π/2)R̂(π/2, φ). In the measurement of trace (i) only a single global RF-pulse R̂(π/2, φ)

is applied
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for estimation of the quantum coherence of the generated state. The first applied
pulse R̂(π/2, π/2) performs the unitary rotation R̂(π/2, π/2)|Ψ +〉 → |�−〉, where
|�−〉 = 1√

2
(|gg〉 − |ee〉). The second RF-pulse with same duration but with a phase

φ then performs the rotation R̂(π/2, φ)|�−〉. The measured parity signal clearly
oscillates as a function of phase φ with contrast of (58.0 ± 2.5) % and period of
π , a proof that we indeed succeed in preparing an entangled two-ion state close to
|Ψ +〉 [61]. The mean value of the parity operator at zero phase 〈P̂〉φ→0 corresponds to
the difference between the inner parts and outer-most coherence terms of the density
matrix. The measured value corresponds to 2Re(ρge,eg − ρgg,ee) = 0.38 ± 0.03. To
precisely quantify the fidelity of the generated state with |Ψ +〉, the real part of the
coherence term ρge,eg needs to be estimated. This is done by measuring the parity
without the first RF rotation. Trace (i) of Fig. 4.9b shows the expectation value of
the parity as a function of the phase φ of the single RF-pulse. The invariance of the
measurement result with respect to the phase φ proves that ρgg,ee = 0 ± 0.03, so
that indeed only the coherence corresponding to the state |Ψ +〉 is measured. The
estimated fidelity of the generated state with the maximally entangled state |Ψ +〉 is
F = (63.5 ± 2) %. The threshold for an entanglement is thus surpassed by more
than six standard deviations. The coherence between the |ge〉 and |eg〉 states of
(38 ± 3) % is limited by three main processes [59]. First, imperfect populations of
|ge〉 and |eg〉 states set a limit of 89 % [62]. Around 4 % of the coherence loss can
be attributed to the finite coherence time of the individual atomic qubits (120µs)
due to collective magnetic field fluctuations. Although the generated |Ψ +〉 state is
intrinsically insensitive against collective dephasing [63, 64], a loss of coherence is
indeed expected after a rotation of |Ψ +〉 out of the decoherence-free subspace. The
highest contribution to the coherence loss can be attributed to atomic motion, which
can provide information about which atom emitted the photon. Around 55 % of the
coherence is lost due to the atomic recoil kicks during the Raman scattering.

The overall fidelity of the maximally entangled state |Ψ +〉 with the experimentally
generated one is limited mainly by the imperfect populations of the desired |ge〉 and
|eg〉 states and coherence loss due to the atomic recoil kicks during the Raman
scattering. The effect of motion-induced decoherence can be reduced by cooling
the radial modes to the motional ground state [65] or by choosing a forward Raman
scattering scenario [42]. Error bars in the presented measurements results correspond
to one standard deviation and are estimated statistically from several experimental
runs each giving approximately 120 measurement outcomes. Up to 60 % of the
measurement error is caused by the quantum projection noise. Additional uncertainty
comes from slow magnetic field drift with a magnitude of several tens of nT making
the RF-driving off-resonant by tens of kHz.

An important advantage of the single-photon heralding mechanism is the possibil-
ity of achieving a high entanglement generation rate. In the presented experiment, the
entanglement generation rate has reached (14.0 ± 1.5) events/minute with an experi-
mental duty cycle of 2.3 kHz [59]. The probability of successful entanglement gener-
ation per each experimental trial estimated from the single photon detection efficiency
and the measured probability of Raman scattering is Psucc = 2peη = 1.1×10−4 that
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corresponds to 15.4 successful entanglement generation events/minute. The factor
two here corresponds to the probability of detecting a single photon from one of two
ions. The efficiency of detecting a single Raman-scattered photon was estimated to
be η = 8 × 10−4. It was derived from the detection probability of a single Raman
scattered photon given by the collection efficiency of high-NA lenses (∼0.04), the
single-mode fiber coupling efficiency (∼0.1) and by the avalanche-photodiode detec-
tion efficiency (∼0.6). Additional factors of 0.5 and 0.66 come from the polarization
filtering of unwanted π -polarized photons and from the probability for the ion to
decay back to the |g〉 state after the Raman pulse excitation, respectively. The single
ion excitation probability was pe = (0.07 ± 0.03)%. For comparison, the two-
photon heralding entanglement scheme proposed by Simon et al. [43] would for the
employed experimental setup give approximately Psucc ≈ 2η2 = 1.3 × 10−6, so
about two orders of magnitude smaller success probability of entanglement gener-
ation. For simplicity, pe = 1 was assumed here for the two-photon scheme and an
additional factor of 2 accounted from the two possible contributions to coincidence
detection events.

4.2.4 Summary

In this chapter we have reviewed two methods for free-space coupling between single
ions and photons: the coupling of a weak probe laser to a single ion in free space
(Sect. 4.1), and the probabilistic generation of entanglement between two ions by
detecting a single scattered photon (Sect. 4.2). Both method rely on high-numerical
aperture optics in order to achieve a sufficiently high efficiency.

In the experiments presented in Sect. 4.1 we have investigated the free-space inter-
action of a single ion to a weak near-resonant probe field. The coupling mediated
by a single objective covering 4 % of the full solid angle resulted in an extinc-
tion of the probe field of 1.5 %, a phase shift of up to 0.3◦, and the observation of
electromagnetically-induced transparency from single atom. Current experimental
efforts to increase the numerical aperture should significantly improve the interac-
tion strength (see chapter by Leuchs and Sondermann), which will likely lead to a
number of direct applications of these effects in the field of quantum information,
quantum feedback or single atom magnetometry. Utilization of a single ion as an
optical mirror in a Fabry-Pérot-like cavity set-up enabled the observation of almost
full suppression and enhancement by a factor of two of the atomic coupling constant
in the laser probe mode. Besides the appealing quantum memory applications of
such a set-up [66], the single ion mirror has the potential to become useful for the
realization of an optical switch similar to the single atom transistors using EIT. Fur-
thermore, the presented experiment enables to study the quantum electrodynamics
in an exciting regime where both the free-space coupling of the probe beam and the
modification of the vacuum mode density at the position of an ion play an important
role [37].
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In Sect. 4.2 of this chapter we have summarized an experimental realization of
a proposal by Cabrillo et al. [42] where the detection of a single scattered photon
generates entanglement between two ions. This presents an important step towards
the realization of the quantum information networks with ions and photons. The
maximally entangled state |Ψ +〉 was produced with a fidelity of 63.5 % and with
entanglement generation rates of 14 events/minute, which is more than two orders
of magnitude higher than the rate obtainable with protocols relying on a two-photon
coincidence events with the presented experimental parameters. These results can
be further improved by cooling all of the involved motional modes close to their
ground state [65] or by choosing a different excitation direction to minimize residual
which-way information.

There are some obvious questions regarding the technical difficulties related to
phase stability requirements and photon recoil problems of the single-photon entan-
glement generation scheme. For generation of the entanglement between distant
atoms, the paths of the excitation and detection channels need to be interferomet-
rically stable. This issue has been addressed by the community developing fiber
links for comparing remote optical clocks. Recently, coherent laser light transfer
over more than 900 km has been shown with a precision exceeding the requirements
of the single-photon protocol [67]. The problem of a which-way information avail-
able due to the atomic recoil upon scattering of single photon can be eliminated
by changing the geometry of the system. These improvements, together with the
experimental results presented, have potential to enable efficient creation and dis-
tribution of entanglement between distant sites with well-defined and controllable
atomic qubits.
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Chapter 5
Single Photon Absorption by a Single Atom:
From Heralded Absorption to Polarization
State Mapping

Nicolas Piro and Jürgen Eschner

Abstract Together with photon emission, the absorption of a single photon by a
single atom is a fundamental process in matter-light interaction that manifests its
quantum mechanical nature. As an experimentally controlled process, it is a key tool
for the realization of quantum technologies. In particular, in an atom/photon based
quantum network scenario, in which localized atomic particles are used as quantum
information processing nodes while photons are used as carriers of quantum infor-
mation between distant nodes, controlling both emission and absorption of single
photons by single atoms is required for quantum coherent state mapping between
the two entities. Most experimental efforts to date have focused on establishing the
control of single photon emission by single trapped atoms, and the implementation
of quantum networking protocols using this interaction. In this chapter, we describe
experimental efforts to control the process of single photon absorption by single
trapped ions. We describe a series of experiments in which polarization entangled
photon pairs, generated by a spontaneous parametric down-conversion source, are
coupled to a single ion. First the source is operated to generate heralded single pho-
tons, and coincidences between the absorption event of one photon of the pair and
the detection of the heralding partner photon are observed. We then show how po-
larization control in the process is established, leading to the manifestation of the
photonic polarization entanglement in the absorption process. Finally, we introduce
protocols in which this interaction scheme is harnessed to perform tasks in a quan-
tum network, such as entanglement distribution among distant nodes of the network,
and we demonstrate a specific protocol for heralded, high-fidelity photon-to-atom
quantum state transfer.
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5.1 Introduction

At its most fundamental level, matter-light interaction involves the absorption and
emission of single photons by single atomic particles. While being well understood
theoretically, these processes have only recently started to be explored experimen-
tally under controlled conditions. The motivation for realizing photon-atom interac-
tion experiments at the single particle level is two-fold: first, from the fundamental
perspective, such studies allow performing tests of the quantum theory describing
the interaction; second, controlling the interaction opens new routes to developing
technologies that use quantum mechanical phenomena as a resource, in particular
for purposes of quantum information processing.

Experiments with single trapped atomic ions have proven to provide optimal con-
ditions for quantum information processing, fulfilling the requirements of providing
long-coherence qubits [1], high-fidelity state manipulation and detection schemes
[2], as well as controlled coherent interaction of several quantum bits allowing deter-
ministic generation of entanglement [3], quantum logic gates [4] and quantum error
correction [5]. Meanwhile, single photons are optimal carriers of quantum informa-
tion, allowing the transfer of quantum states and the distribution of entanglement
over long distances [6]. The quantum-coherent link between single atomic particles
and single photons then emerges as a key requirement to develop quantum networks,
in which quantum information is processed and stored in atom-based quantum nodes,
while photons are used to communicate quantum states between the nodes [7, 8].

Several experiments have concentrated on establishing quantum-coherent links
between single trapped atoms and emitted photons, taking advantage of the intrin-
sic quantum correlations in the emission process [9, 10]. Recent experiments even
showed how to entangle distant trapped atomic particles by allowing the emitted
photons to interfere and subsequently performing a correlation measurement on the
photons [11, 12]. However, a fully bidirectional link requires also control over the
absorption process in a quantum coherent fashion. Here we concentrate on recent
progress with single ions and single photons. A cavity-based approach with neutral
atoms is also being pursued [13]. A bidirectional link has also been established be-
tween atomic ensembles [14], but these do not possess the quantum computation
capabilities provided by ion chains.

The control of single photon absorption not only allows one to transfer quantum
states encoded in a photonic degree of freedom onto an internal degree of freedom of
the atom. It also enables taking advantage of the widely developed quantum photonic
technologies, such as quantum light sources, in the realm of atom-based quantum
networks. In particular, one can think of implementing protocols to entangle distant
atoms by generating the entanglement via optical means, e.g. using the process
of spontaneous parameteric down-conversion (SPDC), and subsequently mapping
the states of the two photons onto two distant atoms by an entanglement swapping
process. Such absorption-based schemes could benefit from the high generation rates
for entangled photon pairs available in state-of-the-art sources and thereby provide
an attractive alternative to emission-based schemes.
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In this context,we review in this chapter a series of experiments inwhich entangled
photon pairs, generated with an SPDC source, interact with a single trapped 40Ca+
ion. The spectral properties of the photons are tailored to optimally interact with the
single atom, thereby enabling several photon-atom entanglement schemes.

We first present in Sect. 5.2 schemes that allow one to observe single atom-photon
interaction processes, to map quantum states from photons to 40Ca+ ions and to
perform entanglement swapping between photon pairs and distant trapped ions. In
Sect. 5.3 we describe the experimental apparatus we developed to implement and
study these interaction schemes, consisting of a pair of 40Ca+ ion trap setups and an
SPDC photon pair source designed to produce narrowband polarization-entangled
photon pairs tunable to two optical transitions in 40Ca+. We present the results of
various interaction experiments in Sect. 5.4. Finally, in Sect. 5.5 we discuss future
possibilities of these experiments and the conclusions of this research. In an appendix
we provide some details regarding the data analysis techniques used to detect the
photon-atom interaction.

5.2 Single Photon-Single Atom Interaction
and Entanglement Schemes

The detailed level scheme, including the Zeeman structure, of 40Ca+ is depicted
in Fig. 5.1. For quantum information processing applications, two types of qubits
can be chosen: an optical qubit formed by one magnetic sublevel of S1/2 and one
sublevel of D5/2, or a Zeeman (or RF-)qubit formed by the two sublevels of S1/2.
The entanglement transfer schemes considered in this work use the latter.

5.2.1 Single Photon Absorption Schemes

We consider here four possible schemes addressing either the D3/2 ↔ P3/2 transition
at 850nm wavelength or the D5/2 ↔ P3/2 transition at 854nm, see Fig. 5.2.

Schemes (a) and (b) are based on the detection of quantum jumps: the ion under-
goes continuous excitation by a 397nm laser driving the S1/2 ↔ P1/2 transition (and
at the same time Doppler-cooling the ion) and an 866nm laser driving the D3/2 ↔
P1/2 transition and repumping the ion out of the metastable D3/2 level. In this closed
cycle, the ion emits a continuous stream of 397nm fluorescence photons, typically at
a few 105 s−1 rate, that are recorded with a single-photon counter or a CCD camera.
In scheme (a), the single photon source is tuned to the 850nm line, and the absorp-
tion of a photon, followed by spontaneous decay into the metastable D5/2 state, puts
the ion out of the 397/866nm transition cycle, hence halting the emission of 397nm
fluorescence. This sudden drop in fluorescence is termed a bright-to-dark quantum
jump. In this case it signals the absorption of a single 850nm photon by the atom.
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P1/2 and P3/2 decay preferentially to the ground state manifold S1/2, emitting a 397 and 393nm
photon, respectively. The lower excited state P1/2 also decays to D3/2, with about 6.4% branching
ratio. The upper excited state P3/2 also decays to D5/2 or D3/2, with branching ratios of about
5.9 and 0.66%, respectively. Magnetic sublevels of S1/2 and D5/2 are used to form optical qubits,
which are coherently manipulated by laser excitation of the 729nm electric quadrupole transition.
The sublevels of S1/2 form a Zeeman qubit manipulated by radio frequency (RF) radiation
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Fig. 5.2 Schemes to detect the absorption of a single photon by a single 40Ca+ ion. Absorption
happens either on the 854nm (b, d) or the 850nm transition (a, c); it is signaled by either a quantum
jump (a, b) or a single emitted photon (c, d). See main text for more details
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In scheme (b), the photon source is tuned to the transition at 854nm. An additional
weak laser at 850nm is introduced to induce transitions of the ion into the D5/2
state, in which fluorescence emission is suppressed. Now, the absorption of a single
854nm photon followed by a spontaneous decay to S1/2 or D3/2 reinitiates the stream
of fluorescence emission. Hence the absorption of a single photon is signaled by the
onset of fluorescence, or a dark-to-bright quantum jump.

In schemes (c) and (d), the ion is previously prepared in one of the metastable
states D3/2 or D5/2 by optical pumping techniques or by coherent excitation, as
described in Sect. 5.4. During the exposure to the single photon source, no other
lasers drive the ion. The absorption of an 850 or 854nm photon, in each case, is now
signaled by the emission of a single 393nm photon, when this is detected by a single
photon counter. As we will see, schemes (c) and (d) have the advantage that they do
not destroy the final state of the ion and thus enable quantum states to be transferred
from the photon to the ion.

While schemes for detecting 850 and 854nm photon absorption events are both
feasible, the 854nm schemes are significantly more efficient due to a combination
of two factors: firstly, the oscillator strength of the D5/2 ↔ P3/2 transition is about
6 times larger than that of the D3/2 ↔ P3/2 transition; secondly, upon excitation to
P3/2, the probability of decaying to D5/2 (required by scheme (a)) is only 5.9% [15],
while decay to S1/2 (required in (b)) happens with nearly 94% probability. Overall,
scheme (b) is about 100 times more efficient the scheme (a). The first factor also
makes scheme (d) about one order of magnitude more efficient than scheme (c).

5.2.2 Photon-Atom State Transfer and Entanglement
Swapping Schemes

Entanglement swapping schemes between photons and atoms rely on the possibility
of mapping the polarization state of the photon onto the internal state of the ion.
In particular, an arbitrary photon state

∣∣Ψp
〉 = α |↑〉 + β |↓〉 must be transferred to

the state |Ψi 〉 = α |+〉 + β |−〉, where |↑〉, |↓〉 are two arbitrary polarization basis
vectors, and |+〉, |−〉 represent an atomic qubit pair of states.

One possible proposed state transfer scheme is illustrated in Fig. 5.3 [16, 17]. Here
the atomic qubit is chosen to be |±〉 = ∣∣S1/2, m = ±1/2

〉
. The ion is manipulated

with a laser pulse sequence consisting of three main phases. It is first laser cooled
by means of the 397 and 866nm lasers as usual. Then it is prepared in a symmetric
superposition of the states

∣∣D5/2, m = ±3/2
〉
by means of four pulses: first, a σ−

polarized 397nm beam pumps the ion to the
∣∣S1/2, m = −1/2

〉
state; then, a resonant

RF π/2-pulse creates a symmetric superposition of the two sublevels of S1/2; finally,
two 729nm π-pulses coupling the respective S1/2 ↔ D5/2 transitions convert this
state into the desired

∣∣D5/2, m = ±3/2
〉
superposition.

At this point, the ion is exposed to a single photon at 854nm, for example from
an SPDC source, and a single photon detector monitoring the 393nm photons is
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Fig. 5.3 Scheme to transfer the polarization state of an 854nm photon onto the atom [16, 17]

gated on. The SPDC photon is prepared in an arbitrary polarization state
∣∣Ψp

〉 =
α |H〉 + β |V 〉; upon its absorption, the ion undergoes a Raman transition to the
ground state emitting a 393nm photon which, if detected, heralds the absorption
event. The process is coherent, i.e., the absorbed polarization is converted into a
corresponding superposition of the RF-qubit in S1/2, as long as it remains impossible
to determine which P3/2 Zeeman substate the ion decays from. This condition holds
if the 393nm photon is detected with a time resolution whose inverse is much larger
than the frequency splitting between the two involved, equally polarized P3/2 → S1/2
transitions [18]. Such high time resolution is also needed to keep track of the phase
of the final superposition state in S1/2, see [17, 19].

5.3 Experimental Setup

The core of the experimental setup is a twin ion trap apparatus capable of trapping
single or strings of 40Ca+ ions. For details on their construction and operation, see
[20–22]. These setups are complemented with a source of polarization entangled
photon pairs tunable to two transitions in 40Ca+, described in [23, 24]. Here we
focus on the operation of one ion trap setup in conjunction with the single photon
source, see Fig. 5.4.

The SPDC photon pair source is based on a laser at 854nm whose frequency-
doubled light pumps a 20-mm long PPKTP crystal designed for degenerate type-II
spontaneous parametric down-conversion. As the key purpose of the source is to
produce photon pairs with spectral properties matching those of atomic transitions
in the 40Ca+ species, the wavelength of the 854nm laser is actively locked to the
transition, and the photon bandwidth is matched to the atomic absorption linewidth
of 22MHz by means of a cavity filtering system. Photon pairs are generated within a
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Fig. 5.4 Experimental setup combining an ion trap with an SPDC photon source, the latter being
operated as a heralded single-photon source. Two high-numerical aperture laser objectives (HALOs)
facilitate the ion-photon coupling. See text for more details

relatively large bandwidth of about 200 GHz. However, due to the narrow linewidth
of the pump laser and energy conservation in the SPDC process, the pairs are emitted
at symmetric frequencies with respect to the pump, ωs = ωp − ωi . Hence, filtering
one photon of the pair with filtering cavities locked on resonance to the 854 pump
laser, and a design transmission bandwidth of 22 MHz, followed by the detection
of the transmitted photon heralds the presence of a partner photon resonant with the
atomic transition [23, 24]. The partner photon is coupled into a single mode fiber
and directed to the ion trap setup. The photon pair exhibits high-purity polarization
entanglement which may be utilised when the polarizing beam splitter separating the
pair (PBS in Fig. 5.4) is replaced by a non-polarizing beam splitter [23, 24].

The ion trap setup consists of a linear Paul trap placed between two high-numerical
aperature lenses (HALO-a/b in Fig. 5.4) designed to be diffraction-limited and near-
achromatic at wavelengths around 397 and 860nm, with 0.4 numerical aperture.
The HALO lenses serve two purposes: to efficiently collect light scattered by the
ion, and to tightly focus the single photon beam onto the ion to enhance its absorp-
tion probability. Light from the source is first expanded by a magnifying telescope
to fill the back-aperture of the objective, and aligned to focus at the ion position.
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Fluorescence light from the ion is collected by both objectives and detected by two
independent photo-multiplier tubes (PMT), or by a CCD camera (on one side) to
image the ion. Photon detection pulses from both PMTs are combined into a single
channel. Their detection times, together with the detection times of the source herald
photon, are recorded in a computer by means a time-tagged single-photon counting
system (PicoHarp).

5.4 Experimental Progress

In this section we present the experimental progress towards establishing a quantum
coherent link between single photons and a single atom. Specifically, we first describe
a preliminary experiment in which scheme (b) of Fig. 5.2 is implemented in order to
detect the absorption of weak 854nm light by a single 40Ca+ ion. We then present an
experiment where we detect time correlations between the absorption event and the
heralding partner photon, establishing the true single-photon nature of the absorption
process. In a further experiment, we show how control of the Zeeman substate of the
atoms renders the absorption dependent on the polarization of the photon, henceman-
ifesting the polarization entanglement of the photon pair in the absorption process.
Finally, we discuss the experimental implementation of a heralded-absorption pro-
tocol through which the polarization state of a single absorbed photon is transferred,
with high fidelity, onto the qubit state of the ion.

5.4.1 Single Photon Absorption by a Single Ion

As described in Sect. 5.2, the absorption of a single photon by a single atom may be
signaled by a change in its fluorescence state, a quantum jump [25–27]. This uses
the concept of quantum amplification proposed by Dehmelt as early as 1975 [28].
In the case of the scheme in Fig. 5.2b, the atom starts emitting fluorescence photons
upon the absorption of a single 854nm photon, providing a very efficient signal that
witnesses the absorption event.

A simple experiment proves this method. An ion is trapped and illuminated with
a 397 and 866nm lasers, while its fluorescence emission is monitored with a photo-
multiplier (Fig. 5.4). In addition, a weak 850nm laser resonant with the D3/2 to
P3/2 transition optically pumps the ion (on a 1-s time scale) to the metastable D5/2
state, halting the emission of fluorescence. Eventually, the ion will spontaneously
decay back to the ground state and restart the fluorescence emission cycle. This is
detected in the form of quantum jumps in the fluorescence count trace, see Fig. 5.5a.
The corresponding count histogram (Fig. 5.5b) enables defining the optimal count
threshold for discrimination of the on and off states, as described in the Appendix.
The distribution of dark period durations in the fluorescence count trace, displayed



5 Single Photon Absorption by a Single Atom … 133

Fig. 5.5 a Detected fluorescence rate (in time bins of 1 ms) displaying quantum jumps upon
excitation with the cooling (397nm) and repumping (866nm) lasers, and a weak optical pumping
laser (850nm). b Histogram of fluorescence counts displaying the distributions for the on and off
states

in Fig. 5.6a, exhibits an exponential dependence with a decay constant given by the
spontaneous decay rate of the D5/2 state, measured to be τ0 = 1.11(3) s.

When the ion is illuminated by a weak 854nm light source, in our case the SPDC
entangled photon source, the ion has two channels to reenter the fluorescing state
(see Fig. 5.2b): either spontaneous decay, or excitation to the P3/2 state and decay to
the ground state S1/2. One should therefore expect a decrease in the lifetime of the
metastable D5/2 state and, hence, a drop in the average duration of the dark periods
in the fluorescence trace. We indeed observe a reduction of the average decay time
to τon = 0.675(3) s (Fig. 5.6b), and the corresponding absorption rate is derived as
Rspdc = τ−1

on − τ−1
off = 0.53(3) s−1.

In a subsequent experiment, we prove that the absorptionmay be attributed to indi-
vidual SPDC photons. In order to determine the time instant of the absorption event,
we extract the first detected fluorescence photon in each dark-bright quantum jump
using the technique described in the Appendix. We then calculate the second order
correlation function g(2)(τ ) (i.e., the delay time distribution) between this detection
and the detection of the heralding SPDC photon (Fig. 5.6c). A sharp coincidence
peak at time delay τ = 0 emerging above the random background proves the strong
correlation between the two events and, hence, the heralded absorption of single
SPDC photons by the ion. We observe 83(9) coincidences in 50min of acquisition,
against a Poisson-distributed background of 13.6(3.7) counts, i.e. at >22σ outside
the random fluctuations.

These experiments prove the possibility of observing and identifying single photon
absorption events by a single ion. But to render such interaction useful for quantum
networking technologies, a further level of control is necessary: to match the quan-
tum states from the absorbed photon to the atom, the initial Zeeman substate of the
atom must be controlled; in addition, the absorption event must be detected without
destroying the final state of the ion, which requires detecting the single photon emit-
ted upon the single-photon excitation, as in Fig. 5.2c, d. In the following we show
experiments that achieve these two requirements.
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Fig. 5.6 Single photon-single atom interaction data. a, b Histograms of dark period durations with
the SPDC source off (a) and on (b), showing reduction of the D5/2 state population upon exposure
to the quantum light source. c Second-order correlation function (time delay distribution) between
the absorption event (the first photon after a dark-bright quantum jump) and the detection of a
herald photon transmitted through the narrowband filter of the SPDC source

5.4.2 Polarization Control in the Absorption Event

To render the absorption process dependent on the polarization of the incoming
photon, the atom must be prepared in a given Zeeman substate, or a coherent super-
position of two of them, as discussed in Sect. 5.2.2. Experimentally, this is achieved
either by optical pumping techniques or by coherent Rabi pulses driving transitions
between the relevent levels.

To show this, we perform an experiment [29] similar to the one reported in the last
section, using the pulse sequence described in Fig. 5.7. The ion is first laser cooled by
driving it with resonant 866, 850, 854nm lasers and a red-detuned 397nm laser. It is
then prepared in a mixture of the two outermost Zeeman substates of D5/2, by optical
pumping with a circularly polarized 854nm laser, propagating along the quantization
axis defined by the applied magnetic field (see Fig. 5.4). The ion becomes sensitive
to either σ− polarized photons, if pumped to the upper two states, or σ+ if pumped
to the lower ones. Finally, in the last step, only the 397 and 866nm lasers are left on
and detectors are activated to monitor the ion fluorescence. Strong time correlations
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Fig. 5.7 Pulsed sequence used to control the polarization of the absorption process. The ion is
laser cooled during 5 ms and then optically pumped to the outer Zeeman substates by means of a
circularly polarized 854nm laser. In the last phase, the pumping laser is turned off and the PMT
detectors are activated to monitor fluorescence. Upon a photon absorption event, the ion emits a
constant stream of 397nm fluorescence photons

are again observed between the first detected fluorescence photon and the SPDC
heralding photon (Fig. 5.8b).

Most importantly, the absorption process now displays a strong dependence on the
photon polarization. This is observed by recording the height of the coincidence peak
for different SPDC photon polarizations, varied from R-circular (σ−) to L-circular
(σ+) (Fig. 5.8c). Full suppression of the correlation rate is found when the photon
polarization is orthogonal to the one programmed by the optical pumping.

Additionally, a change of the frequency dependence of the absorption with the
photon polarization is observed in a single-photon coincidence spectroscopy exper-
iment: the ion is pumped to either the higher or the lower Zeeman substates, and the
photon polarization is adjusted to σ− and σ+, respectively. The coincidence rate is
then recorded for different detunings of the SPDC photons from the atomic transition
center frequency (Fig. 5.8d). The two single-photon absorption spectra are found to
be symmetrically displaced from the center frequency of the transition (determined
by fluorescence spectroscopy with a horizontally polarized 854nm laser), due to the
differential Zeeman shift between the involved D5/2 and P3/2 levels. The spectral
line widths of∼45MHz fit well with the expectation, resulting from convoluting the
atomic transition width with the engineered photon spectral width, each ∼22 MHz.

Note that the single-photon spectroscopy is based on absorption-herald coinci-
dences. The photons sent to the ion have the full SPDC bandwidth of ∼200 GHz,
and detuning is only applied to the center frequency of the cavities that filter out
the heralds. Due to the strict frequency correlation of the photon pair, however, this
selects the events when a photon falls within the resonance bandwidth of the ion.
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Fig. 5.8 Heralded single-photon absorption with polarization control. a Example of a fluores-
cence onset event (blue trace) coinciding with the detection of a heralding photon from the down-
conversion source (red trace). b Extracting such events and calculating the correlation function
yields a strong coincidence peak at zero time delay, revealing the single-particle character of the
interaction. c The polarization dependence of the absorption rate is manifested by measuring the
coincidence peak for different settings of the input photon polarization (L/R = left-/right-circular,
H/V = horizontal/vertical). d Frequency dependence of the absorption-herald coincidence rate
recorded for pumping to the lower (red points) and upper (blue points) Zeeman substates.A reference
absorption spectrum of the D5/2 ↔ P3/2 transition (green trace) is measured using fluorescence
spectroscopy with a linearly polarized 854nm laser that propagates along the quantization axis.
Solid lines are Lorentzian fits to the data

These experiments demonstrate heralded single-photon absorptionwith control on
the polarization in the interaction.Nevertheless, the polarization entanglement shared
by the SPDC photon pairs is destroyed by splitting them with a polarizing beam
splitter. To further develop the potential of our methods for quantum information
processing, an experiment was performed where the atom interacts with a photon
that is polarization-entangled with its heralding partner, in order to verify that the
polarization entanglement is indeed manifested in the absorption process [30]. To
this end, the photon pairs are now split by means of a non-polarizing beam splitter,
such that a coincidence detection between the two arms corresponds to a pair in a
maximally entangled polarization state [23, 24].

Entanglement is manifested bymeasuring the polarization correlation, in this case
of absorption and herald, in various bases. As for detection of the herald, there is
a polarizer in front of the filter cavities, such that a basis rotation is simply per-
formed by an additional quarter- or half-wave plate. Setting the polarization basis
of the absorption is more involved; it is attained by adjusting the orientation of the
applied magnetic field and the polarization of the 854nm laser, with respect to the
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Fig. 5.9 Dependence of absorption-herald coincidences on polarization of the heralding photon for
three different polarization bases, R-L (top), H-V (middle), and D-A (bottom). Data points (crosses)
are extracted at τ = 0 from the absorption-herald correlation function g(2)(τ ) on a 10 µs time grid;
the corresponding background (circles), produced by accidental coincidences, is the average over
the whole g(2)(τ ) function. Error bars correspond to one standard deviation assuming Poissonian
counting statistics. The curves are sinusoidal fits with a fixed period and offset angle. In the right-
hand column, we show the Poincaré sphere with the setting of the ion (blue) and of the heralding
photon detector (red, with black arrows indicating variation by rotating the HWP). From [30]

incoming SPDC photon wavevector, during the optical pumping which prepares the
ion’s state before the absorption. Thereby, the ion ismade sensitive to only one photon
polarization of the respective linear or circular basis. Correlations are then recorded
as a function of the half-wave plate (HWP) angle in the heralding photon arm. As
displayed in Fig. 5.9, they are observed with high visibilities in the three relevant
detection basis, left-/right-circular {|R〉 , |L〉}, horizontal/vertical linear {|H〉 , |V 〉},
and diagonal/anti-diagonal linear {|A〉 , |D〉} [30].

This experiment clearly manifests the polarization entanglement in the single-
photon absorption, but the absorbed polarization state is still not preserved in the
internal state of the ion, because the latter is destroyed by the continuous 397nm laser
excitation of the fluorescent transition, i.e. by the quantum jump detection technique.
The experiment that achieved a full state transfer is described in the following.
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5.4.3 Photon-to-Ion State Transfer by Heralded Absorption

The protocol which heralds the absorption event while preserving the state of the
ion has been described in Sect. 5.2.2. It was proposed in [16, 31] and is related to an
earlier scheme for neutral atoms in cavities [32]. The protocol enhances the previous
method in two important aspects (see Fig. 5.3). Firstly, absorption happens out of a
pure initial state, either a single Zeeman sublevel or a coherent superposition, but not
a mixture as before. Secondly, absorption is heralded by the single photon emitted
in the Raman transition from the initial D5/2 state to the S1/2 ground state manifold.

This has been realized in a recent experiment [17], employing a narrowband laser
at 729nm to coherently excite the S1/2 to D5/2 transition, plus a radio-frequency
field that drives the transition between the two S1/2 Zeeman sub-levels. The single
absorption event is heralded by detection of the single photon emitted on the P3/2
to S1/2 transition at 393nm, without fluorescence excitation. As a result, transfer of
the polarization state of photons from a weak laser onto the Zeeman qubit in the
S1/2 level is demonstrated with over 95% fidelity, an unprecedented result. Most
importantly, the heralding scheme renders the fidelity independent of the success
probability.

5.5 Conclusions and Outlook

In conclusion, we have reviewed experiments in which a single trapped ion interacts
in a controlled manner with single photons. Resonant, heralded single photons are
generated for that purposewith an SPDC-based photon pair source. Single interaction
events are detected efficiently thanks to the strong amplification provided by the onset
of fluorescence upon the absorption of a photon. Absorption events are observed to
be strongly time correlated with the time-resolved detection of the partner photon
generated simultaneously by the source. The interaction is further controlled by using
a laser pulse sequence that optically pumps the ion such that it only absorbs photons
of a given polarization. The observed correlation shows almost full suppression at the
wrong polarization. Extending this technique to polarization-entangled photon pairs
and observation in three polarization bases, the photonic entanglement is manifested
in the heralded absorption processes.

The method is then extended into a protocol for mapping the quantum state of
a single photon onto the ground-state Zeeman qubit of the ion. For this, the sin-
gle photon emitted by the ion after the absorption of the incoming photon, i.e. in a
Raman scattering process, is used as a heralding signal of the absorption event. The
protocol has been demonstrated using laser photons; implementing it with SPDC
photons is work in progress. If the incoming photon is provided by an entangled
photon pair source, detection of the herald renders the ion entangled with the partner
photon. Subsequently, this second photon can be set up to interact with a second
distant trapped atom, or even a quantum particle of different nature, resulting in a
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generic scheme to entangle different massive quantum systems via controlled ab-
sorption. Such perspectives become even more attractive in view of recent progress
in quantum frequency conversion [33], by means of which single photons may be
converted between different wavelength regimes, including telecom bands. Hence,
the experiments discussed here are key steps towards making heralded absorption
suitable for quantum information processing applications.

Other recent approaches to implement controlled single-photon interaction with
a trapped ion involve the direct photonic coupling between two distant ions [34]
and the cavity-enhanced interaction of an ion with photons from a quantum dot [35].
Protocols that rely on the interference of photons emitted by distant atoms to entangle
them have already been succesfully implemented with ions [11], neutral atoms [36]
and color centers in diamond [37]. The entanglement rates of these schemes are
limited by the photon collection efficiency into a single optical mode. We believe
that the schemeswepropose offer a competitive alternative, in that the highgeneration
rates of state-of-the-art narrow-band photon pair sources [38–40] may alleviate the
collection efficiency problem.
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Appendix: Data Analysis

The raw data sets produced by the two types of schemes in Fig. 5.2 consist of lists of
photon detection times from two channels, the source herald and either the ion laser-
induced fluorescence (schemes (a) and (b)), or the single emitted photons (schemes
(c) and (d)). With the latter, the single-photon interaction is manifested directly by
calculating the second-order correlation function between the twodetection events. In
schemes (a) and (b) where the absorption is signalled by a change in the fluorescent
state of the ion (a jump), a previous data processing step has to be undertaken to
extract the time of the first (or last) detected fluorescence photon, which is then
assigned to be the moment of the quantum jump. Below we provide some detail on
how this preprocessing is performed.

The analysis is performed in three steps: (1) determination of the optimal on-off
fluorescence threshold; (2) preselection of detection times around each fluorescence
jump; (3) detection of the first (last) photon associated to the fluorescence jump.

Step 1 establishes a criterion to decide whether in a given time interval the ion is
in the on or off fluorescent state. First, the time axis is divided into bins of size tb, and
the fluorescence trace, i.e. the number nf(i) of detections in bin i , is computed. From
the trace, a histogram of fluorescent counts is extracted. This histogram statistically
corresponds to the sum of two independent Poisson distributions Pon/off(n̄on/off , n),
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withmean values n̄on/off given by the average detection rate for the on and off states in
the specified time bin size. The optimal threshold used to discriminate the two states
is then given by nth = minn {Pon(n̄off , n) + Poff(n̄on, n)}, with n̄off > n > n̄on.

Step 2 is performed by running a moving average over the fluorescence trace,
n̄f(i) of window size N , given by the desired number of detection events to be
extracted, storing the last N detection times in a buffer. Every time the condition
n̄f(i) < nth < n̄f(i ± 1) is met (using + (−) sign for detecting the change to the on
(off ) fluorescing state) the last N stored detection times are extracted.

Step 3 is performed directly on the detection times ti extracted in Step 2. They are
scanned for the condition ti > τth > ti±1, where the sign is chosen to detect the first
(+) or last (-) fluorescence photon. The optimal delay threshold τth to discriminate
the on and off state is chosen bymaximizing the probability of successfully detecting
an atom transition, namely, the probability of not detecting a photon in the off state
after a time τth and detecting one in the on state before a time τth. Assuming a rate
of fluorescence photon detection ron and a dark count rate of roff in the off state,
this probability is given by pdet = exp (−roffτth)

[
1 − exp(−ronτth)

]
, which takes a

maximum value at τth = r−1
on log (1 + ron/roff).
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Chapter 6
Narrowband Biphotons: Generation,
Manipulation, and Applications

Chih-Sung Chuu and Shengwang Du

Abstract In this chapter, we review recent advances in generating narrowband
biphotons with long coherence time using spontaneous parametric interaction in
monolithic cavity with cluster effect as well as in cold atoms with electromagneti-
cally induced transparency. Engineering and manipulating the temporal waveforms
of these long biphotons provide efficient means for controlling light-matter quan-
tum interaction at the single-photon level. We also review recent experiments using
temporally long biphotons and single photons.

6.1 Introduction

Entangled photon pairs, termed biphotons, have been benchmark tools in the field of
quantum optics for testing fundamental quantum mechanics as well as for devel-
oping applications in quantum information technology, including realization of
the Einstein-Podolsky-Rosen paradox [1, 2], test of violation of Bell’s inequality
[3–5], quantum cryptography and key distribution [6], quantum teleportation [7, 8],
quantum computation [9], etc. Traditional methods of producing biphotons include
spontaneous parametric down conversion (SPDC) [10–12] and spontaneous four-
wavemixing (SFWM) [13–15] in nonlinear solid-state materials. Photons from these
nonlinear processes in free space forward-wave configuration usually have broad
bandwidth (>THz) and short coherence time (<ps) such that their temporal quan-
tum waveform can not be directly resolved by existing commercial single-photon
counters (which have a typical resolution of about ns).
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These broadband biphotons are not suitable for recently proposed protocols of
long-distance quantum communication and quantum network based on photon-atom
interaction [16, 17], because an efficient photon-atom quantum interface requires
single flying photons having a bandwidth sufficiently narrower than the atomic res-
onance (typically in MHz). To reduce their bandwidth, optical cavity may be used
for active filtering [18–21]. However, multiple cavity modes are resonated simulta-
neously due to the broad gain linewidth of the forward-wave parametric interaction
and the biphotons are generated in multiple longitudinal modes. Additional passive
filters locked to the desired mode of the resonant cavity is thus necessary to obtain
single mode output with reduced generation rate and increased complexity.

Phase-matching condition plays an important role in determining the photon
bandwidth in these nonlinear process. The loose constraint of phase matching in
the forward-wave configuration make it difficult to generate ultranarrow-bandwidth
biphotons. To overcome this problem, one may use the cluster effect in a monolithic
cavity with double-pass pumping. An alternative solution is to take the backward-
wave configuration where the produced paired photons propagate in opposing direc-
tions. In this chapter, we review recent advances in generating narrowband biphotons
with long coherence time using forward-wave and backward-wave parametric inter-
action. In particular, we describe themonolithic resonant down-conversionwith clus-
ter effect [22, 23] and the resonant SFWM in cold atoms with electromagnetically
induced transparency (EIT) [24–26].

6.2 Monolithic Resonant Parametric Down-Conversion
with Cluster Effect

A resonant parametric down-converter can generate single-mode biphotons without
external filtering when its gain linewidth is narrower than the spacing of adjacent
resonant modes. For a doubly resonator where the signal and idler fields are simul-
taneously resonant, the mode spacing is determined by the cluster spacing ΔΩc

between the simultaneous resonant signal the idler modes. The cluster spacing can
be calculated by solving the following equations [27],

± 1 = M(ω)ΔΩ2
c + N(ω)ΔΩc,

M(ω) = [L/(2πc)]{2[n′
s(ω) + n

′
i(ωi)] + ωsn

′′
s (ω) + ωin

′′
i (ωi)},

N(ω) = [L/(πc)][ns − ni + ωsn
′
s(ωs) − ωin

′
i(ωi)], (6.1)

where ns and ni are the refractive indices at the signal and idler frequencies, and n
′
s,i

and n
′′
s,i are the first and second frequency derivatives, respectively.

If we assume that the idler mode spacing Δi is slightly less than the signal mode
spacing Δs and the group velocity dispersion is negligible, the cluster spacing can
also be obtained by multiplying the idler mode spacing by the number of idler modes
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between two doubly resonant modes,

ΔΩc ∼= Δs Δi

Δs − Δi
. (6.2)

For small Δs − Δi, the cluster spacing will be much larger than the signal or idler
mode spacing.Moreover, sinceΔΩc decreases with the length of cavity, amonolithic
doubly resonator has the largest possible cluster spacing and can be used to reduce
the number of resonant modes within the gain curve.

For parametric down-conversion of the forward wave type, a monolithic dou-
bly resonator by itself is not enough for generating biphotons in a single longi-
tudinal mode. This is because the gain linewidth of the parametric interaction is
larger than the cluster spacing, which allows biphotons to be generated in multiple
longitudinal modes. As an example, we consider a 3cm long monolithic PPKTP
crystal pumped by a continuous-wave 532nm laser. At type-II phase matching, the
gain linewidth Δfsp = 0.885c/(|n(g)

s − n(g)

i |L) = 93.2GHz and the cluster spac-

ing ΔΩc = c/(2|n(g)
s − n(g)

i |L) = 52.6 GHz where n(g)
s,i are the group indices

at the signal and idler frequencies and L is the crystal or cavity length. Because
Δfsp > Δ�c, multimode biphotons are generated and external filters are required
to eliminate biphotons in unwanted modes to obtain single-mode biphotons. This
results in reduced biphoton generation rate in additional to increased complexity of
the biphoton source.

6.2.1 Single-Mode Output

To obtain single-mode biphotons without additional filtering, it is necessary to
increase the mode spacing and reduce the gain linewidth. This can be achieved by
using double-pass pumping, for example, by depositing a high reflection coating at
the pump frequency on the output face of the crystal. The double-pass pumping effec-
tively doubles the length of the parametric interaction or reduces the gain linewidth
by half. The broaden gain linewidth Δfdp = 0.443c/(|n(g)

s − n(g)

i |L) is thus smaller

than the cluster spacing ΔΩc = c/(2|n(g)
s − n(g)

i |L). Consider the previous example
with a double-pass pump. The gain linewidth Δfdp = 46.6GHz is now narrower
than the cluster spacing ΔΩc = 52.6GHz, so biphotons can be generated in a single
longitudinal mode without the need of additional filtering.

The principle of single-mode operation is illustrated in Fig. 6.1a, where the solid
curve is the gain profile and the vertical lines represent the frequencies of the simul-
taneously resonant signal and idler modes. With one resonant mode aligned to the
center of the gain curve, the adjacent modes are outside the gain region. For com-
parison, the gain curve of a monolithic resonator with single-pass pumping is also
shown as a dotted curve where more than one resonant signal and idler pairs are
present within the gain curve.
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(a) (b)

Fig. 6.1 Single-mode operation is shown as compared to multi-mode operation. The solid and
dotted curves are the gain profiles (spectral power density) of a doubly resonant forward-wave
parametric down-converters with double-pass and single-pass pumping, respectively. The vertical
lines represent the frequencies of the simultaneously resonant signal and idler pairs with one mode
taken at the center frequency f0 of the gain curve. Quasi-phasematching is chosen for a degenerate
and b non-degenerate frequencies

As another example, we consider the generation of single-mode non-degenerate
biphotons. We assume a 3-cm long monolithic PPKTP crystal pumped by a double-
pass 525.5nm laser. Such source may be useful for applications such as quantum
repeater [28]. For example, the signal photons at 795nm can be stored in nearby
atomic memories while idler photons at 1550nm can be sent through a fiber to
interfere on a distant beam splitter for creating entanglement between two remote
locations. As shown in Fig. 6.1b, the gain linewidth Δfdp = 98.1GHz is narrower
than the cluster spacing ΔΩc = 110.7GHz and the biphotons are generated in a
single longitudinal mode.

6.2.2 Experimental Realization

Chuu et al. [23] have demonstrated a miniature ultrabright source of narrowband
biphotons using a monolithic resonant parametric down-converter without external
filtering. A schematic of the experimental setup is shown in Fig. 6.2. The biphoton
source uses a nonlinear crystal of which the end faces are spherically polished and
deposited with a high reflection coating at the signal and idler wavelengths to form a
monolithic cavity. The high reflection coating on one end face is also highly reflective
at the pump wavelength for double-pass pumping. The combination of monolithic
cavity, double-pass pumping, and type-II phase matching allows the generation of
single-mode biphotons near degeneracy. When the pump is increased above thresh-
old to produce parametric oscillation, the output is single-mode, as observed by a
scanning Fabry Perot interferometer. This suggests that only a single cluster mode
is present.
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Fig. 6.2 A monolithic doubly resonant parametric down-converter for generating single-mode
biphotons [23]. The pump is double-passed by the end face of the monolithic crystal, which has
a high reflection coating at the signal, idler, and pump wavelengths. The lens is used to collimate
the signal and idler fields. The PBS (polarizing beam splitter) separates the signal and idler fields
before they are detected by the single-photon detection modules (not shown)

Fig. 6.3 Glauber correlation
function of the biphotons
[23]. The coincidence counts
are measured as a function of
the time delay between the
signal and idler photons at a
pump power of 700µW. The
function has two exponential
decays with decay constants
of 13.29 ± 0.14 and
11.33 ± 0.12ns for time
delay greater than or less
than zero. The biphoton
correlation time is
17.07 ± 0.13ns

A typical coincidence measurement of the biphoton wavepacket is shown in
Fig. 6.3. Themeasured curve shows two asymmetric exponential decays possibly due
to the different reflectivity for orthogonal polarizations. Thebiphoton correlation time
is found to beTc ∼= 17ns and the biphotonbandwidth isΔω ∼= 2π ·8MHz.Correcting
for the collection efficiency, the generation rate is R = 1.10×105 biphotons/(s mW)
which gives a spectral brightness of R/Δω = 1.34 × 104 biphotons/(s MHz mW).

6.3 Backward-Wave Biphoton Generation

Parametric down-conversion of the backward-wave type provides an alternative
way to realize an ultrabright biphoton source without external filtering. As com-
pared to conventional forward-wave schemes, such as spontaneous parametric down
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Fig. 6.4 Schematics of
backward-wave biphoton
generation from a
nonlinearly driven medium
in free space z

0 L

conversion (SPDC) in nonlinear crystals, the backward geometry allows a much
tighter constraint of phase matching that leads to substantially narrow linewidth.

6.3.1 General Formulism: Free Space

The backward-wave biphoton generation in free space is schematically illustrated
in Fig. 6.4, where the generated field â1 propagates along the +z direction and â2
along the −z direction. For SPDC with χ(2) nonlinearity, this geometry can be
achieved by quasiphasematching [29] to submicron periodicity and driven by a single
pump laser beam [30–32]. For SFWMdriven byχ(3) nonlinearity, the phasematching
condition can be satisfied by aligning two coherent driving laser beams [26, 33].
As compared to conventional forward-wave schemes, the backward-wave geometry
allows a much tighter constraint of phase matching that leads to substantially narrow
linewidth.

We describe the spontaneously generated paired photons as quantized field oper-
ators

â1(z, t) = b̂1(z, t)ei(k10z−ω10t) × e−iΔk0Z/2,

â2(z, t) = b̂2(z, t)e−i(k20z+ω20t) × e−iΔk0Z/2, (6.3)

where ωi0 are the central angular frequencies and ki0 = ωi0/c are the wave numbers
in vacuum, andΔk0 is the phasematching in vacuum. b̂i(z, t) are their slowly varying
envelopes and follow the Fourier transform

b̂i(z, t) = 1√
2π

∫
b̂i(z, ω)e−iωtdω. (6.4)

The frequency domain field operators are governed by the following Heisenberg-
Langevin coupled equations [34]:

[
∂

∂z
+ α1(ω) − i

Δk0
2

]
b̂1(z, ω) = κ1(ω)b̂†2(z,−ω) + F̂1(z, ω),

[
∂

∂z
+ g2(ω) + i

Δk0
2

]
b̂†2(z,−ω) = κ2(ω)b̂1(z, ω) + F̂†

2 (z,−ω), (6.5)
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where α1(ω) = −i ω10
2c χ1(ω10 + ω) and g2(ω) = −i ω20

2c χ∗
2 (ω20 − ω) describe the

linear propagation effects with the linear susceptibilities χi, κi(ω) are the nonlin-
ear parametric coupling coefficients, and F̂i(z, ω) are the Langevin noise operators.
Neglecting the Langenvin noise operators that contribute to uncorrelated noise pho-
tons, the above equations reduce to

[
∂

∂z
+ α1(ω) − i

Δk0
2

]
b̂1(z, ω) = κ1(ω)b̂†2(z,−ω),

[
∂

∂z
+ g2(ω) + i

Δk0
2

]
b̂†2(z,−ω) = κ2(ω)b̂1(z, ω), (6.6)

which are subject to the boundary conditions [b̂1(0, ω), b̂†1(0, ω
′)] = [b̂2(L, ω),

b̂†2(L, ω′)] = δ(ω − ω′) and 〈b̂†1(0, ω′)b̂1(0, ω)〉 = 〈b̂†2(L, ω′)b̂2(L, ω)〉 = 0. The
general solution to (6.6) is given as

b̂1(L, ω) = A(ω)b̂1(0, ω) + B(ω)b̂†2(L,−ω),

b̂†2(0,−ω) = C(ω)b̂1(0, ω) + D(ω)b̂†2(L,−ω), (6.7)

where

A(ω) = Qe−(α1+g2)L/2

q sinh(QL/2) + Q cosh(QL/2)
,

B(ω) = 2κ1
q + Q coth(QL/2)

,

C(ω) = −2κ2
q + Q coth(QL/2)

,

D(ω) = Qe(α1+g2)L/2

q sinh(QL/2) + Q cosh(QL/2)
. (6.8)

Here q(ω) = α1(ω) − g2(ω) − iΔk0 and Q(ω) = √
q2(ω) + 4κ1(ω)κ2(ω). The

single photon rates can be calculated from

R1 = 〈b̂†1(L, t)b̂1(L, t)〉 = 1

2π

∫
|B(ω)|2dω,

R2 = 〈b̂†2(0, t)b̂2(0, t)〉 = 1

2π

∫
|C(ω)|2dω. (6.9)

The two-photon Glauber correlation function can be determined by

G(2)
12 (τ ) = 〈b̂†1(L, t + τ)b̂†2(0, t)b̂2(0, t)b̂1(L, t + τ)〉 = |ψ(τ)|2 + R1R2, (6.10)
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where the two-photon wave function is

ψ(τ) = 〈b̂2(0, t)b̂1(L, t + τ)〉 = 1

2π

∫
B(ω)D∗(ω)e−iωτ dω. (6.11)

Alternatively, the two-photon wave function can also be obtained from

ψ(τ) = 〈b̂1(L, t + τ)b̂2(0, t)〉 = 1

2π

∫
A(ω)C∗(ω)e−iωτ dω. (6.12)

When the system is conservative and the commutation relation of the field operators
is preserved, (6.11) and (6.12) are equivalent. When the Langevin noise fluctua-
tions exist, (6.11) and (6.12) become approximated solutions [35]. The photon pair
generation rate can be calculated from

R =
∫

|ψ(τ)|2dτ. (6.13)

The normalized two-photon cross-correlation function is

g(2)
12 (τ ) = G(2)

12 (τ )

R1R2
= 1 + |ψ(τ)|2

R1R2
. (6.14)

It is instructive to see what parameters play important role in determining the two-
photon wave function under some reasonable approximations. To ensure the sponta-
neous photon generation remains below the threshold and multi-photon-pair events
are suppressed,wework in the lowparametric gain regime, i.e., |κ1(ω)κ2(ω)| � |q2|.
We further take κ1 	 κ2 	 κ and assume the linear loss and gain of the medium to
the generated fields can be neglected for the generated fields (i.e., χi = χ∗

i ). Under
these conditions, the ABCD parameters in (6.8) can be written approximately

A 	 eiΔk1LeiΔk0L/2,

B 	 κLsinc(ΔkL/2)eiΔkL/2,

C 	 −κLsinc(ΔkL/2)eiΔkL/2,

D 	 e−iΔk2LeiΔk0L/2, (6.15)

where Δki = χiωi0/(2c) and Δk = Δk1 − Δk2 + Δk0. The biphoton wave function
in (6.11) then becomes

ψ(τ) = L

2π

∫
κ(ω)Φ(ω)e−iωτ dω, (6.16)
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where Φ(ω) is the longitudinal detuning function

Φ(ω) = sinc

[
Δk(ω)L

2

]
ei[Δk1(ω)+Δk2(ω)]L/2. (6.17)

Equations (6.16) and (6.17) are the same as those obtained following a perturbation
treatment in the interaction picture [26]. The biphoton joint spectrum is determined by
two factors: the nonlinear parametric coupling coefficient κ(ω) and the longitudinal
detuning function Φ(ω) from the linear phase-matching and propagation effects.

6.3.2 General Formalism: Resonant SPDC

Doubly resonant optical cavity plays an important role in obtaining single-mode
output for ultrabright biphoton generation. Here we develop the theory of resonant
biphoton generation in the Heisenberg picture.

We denote the signal and idler fields internal to the cavity by the standing-wave
cavity operators

as(t, z) = bs(t) exp(−iΩqt) sin(kqz)

ai(t, z) = bi(t) exp(−iΩr t) sin(krz) (6.18)

where bs(t) and bi(t) are the slowly varying envelopes,Ωq andΩr are the cold cavity
frequencies, kq = qπ/L and kr = rπ/L. We assume that only one pair of signal and
idler fields is resonant with the qth and rth cavity modes simultaneously (we will
justify this in the following section). Since only the components nonorthogonal to the
qth and rth cavitymode interactwith the signal and idler fields respectively, the gener-
ated dipole moment operators for the signal and idler fields, which are proportional
to bi(t) exp(−iΩqt) exp(ikqz) exp(iΔkz) and bs(t) exp(−iΩr t) exp(ikrz) exp(iΔkz)
where the phase mismatch Δk = kp − kr − kq, are projected against sin(kqz) and
sin(krz).

Using the input-output coupling formalism [36, 37], the equations for the evolu-
tion of bs(t) and bi(t) and their relation to the incident fields are

∂bs(t)

∂t
+ Γs

2
bs(t) = −iκ b†i (t) + √

γs bins (t)

∂b†i (t)

∂t
+ Γi

2
b†i (t) = iκ bs(t) + √

γi bin†i (t), (6.19)

where bins (t) and bini (t) are the fields incident on the resonant cavity and κ is the
coupling constant. With {Δs,Δi} and {rs, ri} denoting the spacing of the cavity
modes and the mirror reflectivity, respectively, the output coupling rates of the signal
and idler fields are γs = Δs(1 − rs) and γi = Δi(1 − ri). With ξs and ξi defined as
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the single-pass power loss for the signal and idler fields in the crystal, the total cavity
decay rates are Γs = 2ξsΔs + γs and Γi = 2ξiΔi + γi.

The slowly varying output fields bouts (t) and bout†i (t) are related to the internal and
incident fields by

bouts (t) = √
γs bs(t) − bins (t)

bout†i (t) = √
γi b†i (t) − bin†i (t). (6.20)

They can be solved by transforming the coupled equations to the frequency domain
with the Fourier pair

b(t) =
∫ ∞

−∞
b(ω′) exp(−iω′t)dω′

b(ω) = 1

2π

∫ ∞

−∞
b(t′) exp(iωt′)dt′ (6.21)

and converting to rapidly varying quantities

a(ωs,i) = b(ωs,i − Ωq,r)

a†(ωs,i) = b†(ωs,i + Ωq,r) (6.22)

The output fields aouts (ω) and aout†i (−ωi) can then be expressed in terms of incident

fields ains (ω) and ain†i (−ωi),

aouts (ω) = A(ω) ains (ω) + B(ω) ain†i (−ωi)

aout†i (−ωi) = C(ω) ains (ω) + D(ω) ain†i (−ωi), (6.23)

with commutators [ainj (ω1), ain†k (ω2)] = [aoutj (ω1), aout†k (ω2)] = 1
2π δjkδ(ω1 − ω2).

For small gain the coefficients are given by

A(ω) = γs − Γs/2 + i(ω − Ωq)

Γs/2 − i(ω − Ωq)

B(ω) = −iκ
√

γsγi

[Γs/2 − i(ω − Ωq)][Γi/2 + i(ωi − Ωr)]
C(ω) = iκ

√
γsγi

[Γs/2 − i(ω − Ωq)][Γi/2 + i(ωi − Ωr)]
D(ω) = γi − Γi/2 − i(ωi − Ωr)

Γi/2 + i(ωi − Ωr)
(6.24)
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With (6.23) and (6.24),we obtain the spectral power density at the signal frequency

S(ω) = 1

2π
|B(ω)|2 = 8γsγiκ

2

π [4(ω − Ωq)2 + Γ 2
s ][4(ωi − Ωr)2 + Γ 2

i ] , (6.25)

with the biphoton linewidth Δω = [(
√

Γ 4
s + 6Γ 2

s Γ 2
i + Γ 4

i − Γ 2
s − Γ 2

i )/2]1/2, and
the total paired count rate at exact phase matching,

R = 1

2π

∫ ∞

−∞
|B(ω′)|2dω′ = 4γsγiκ

2

ΓsΓi(Γs + Γi)
. (6.26)

Compared to a non-resonant forward-wave SPDC of the same crystal length and
pumping power (6.13), the generation rate of a lossless resonant backward-wave
SPDC is thus increased by a factor of

ηr ≈ 8F

πr1/2
|vs − vi|
(vs + vi)

, (6.27)

where F is the cavity finesse, r is the mirror reflectivity, and vs,i are the group
velocities of the signal and idler photons. The spectral brightness is increased by a
factor of ηb = ηrΔωG/Δω with ΔωG being the gain linewidth of the parametric
interaction.

If the generation rate of biphotons is small as compared to the inverse of the
temporal length of the biphoton, the accidental two-photon events may be neglected
and the time domain Glauber correlation function (namely the biphoton wavepacket)
is given by [38]

G(2)(τ ) =
∣∣∣∣ 1

2π

∫ ∞

−∞
A(ω′)C∗(ω′)eiω′τdω′

∣∣∣∣
2

+
∣∣∣∣ 1

2π

∫ ∞

−∞
|B(ω′)|2dω′

∣∣∣∣
2

≈ 4ΓsΓiκ
2

(Γs + Γi)2
×

{
eΓsτ , τ < 0
e−Γiτ , τ > 0.

(6.28)

where τ = ti − ts is the time delay between the arrival of the signal and idler photons.
The biphoton correlation time is then Tc = (ln 2)(1/Γs + 1/Γi). The asymmetry of
biphoton wavepacket in τ is due to the order of detection of the signal and idler
photons.

6.3.3 Single-Mode Output

The narrow gain linewidth of the backward-wave parametric interaction is advan-
tageous for generating single-mode biphotons in a monolithic doubly resonant
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Fig. 6.5 Gain profile of backward-wave parametric interaction (solid) as compared to that of a
forward-wave interaction (dash). The vertical line at 0 denotes a mode pair of the resonant cavity
that is taken at the degenerate frequency. The next mode pair, separated by the cluster spacing is
outside the gain linewidth of the backward-wave parametric interaction [22]

down-converter. Consider a 3cm long PPKTP crystal placed inside a cavity of the
same length. The cluster spacing ΔΩCl ∼= 2π · 1.75cm−1 and the gain linewidth
of the parametric interaction ΔωG ∼= 2π · 0.08cm−1. Since ΔΩCl is much broader
than ΔωG, there will only be one doubly resonant mode within the gain linewidth
when the cavity is properly tuned. This is shown in Fig. 6.5 where the gain curves of
the forward-wave type (red) is also shown for comparison.

The properties of the single-mode biphotons can be calculated as for the case
of forward-wave interaction. We assume a cavity finesse of 1000. The time-domain
biphoton wavepacket is plotted in Fig. 6.6a, which is slightly asymmetric due to the
different ring-down times at the signal and idler frequencies. The biphoton correlation
time is 68ns. The spectral power density of the biphotons is plotted in Fig. 6.6b and
has a Lorentzian shape. The biphoton linewidth is 2π · 2.1 MHz. For exact phase
matching, the spectral brightness of the generated biphotons is 8.16 ·104 s−1MHz−1

per mW of pump power and, as compared to a non-resonant forward-wave source of
the same material, pumping power, and length, is about 80,000 times higher.

6.3.4 Experimental Challenge

The backward-wave parametric interaction was proposed in the 1960s for imple-
menting a mirrorless oscillator in the infrared regime [39]. The experimental demon-
stration, however, was not realized until 40years later [32] because of the required
quasi-phase matching with sub-micron periodicity [30, 31].
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(a) (b)

Fig. 6.6 aTime domain biphotonwavepacket of the backward-wave spontaneous down-conversion
within a resonant cavity. b Spectral power density at the signal frequency [22]

To construct a backward-wave source as described above, a 532nm laser may
be used as the pump source to generate biphotons at the degenerate frequency of
1.064µm. For type-II phase matching, a KTP crystal periodically poled with a peri-
odicity of Λ = 872nm is required to accomplish the third-order (m = 3) quasi
phase matching so that kp = KG + ks − ki, where the lattice k-vector KG = 2πm/Λ.
Realization of such source thus needs a KTP crystal that is periodically poled with a
sub-micron periodicity. Although challenging, it can be donewith current structuring
technique [32].

6.4 Spontaneous Four-Wave Mixing with
Electromagnetically Induced Transparency

Here we describe narrowband biphoton generation via SFWM with EIT [40, 41] in
cold atoms. The modeled four-level double-Λ atomic system and backward-wave
configuration are shown in Fig. 6.7. |1〉 and |2〉 are two long-lived ground states
(such as the two hyperfine ground states of alkali atoms) and between them there is
no electric dipole transition. |3〉 and |4〉 are two excited states (in some scheme they
can be the same state). A pump laser (ωp) excites atoms at the transition |1〉 → |4〉
with a detuning Δp. A coupling laser (ωc) dresses the states |2〉 and |3〉 resonantly.
In the presence of continuous-wave counter-propagating pump and coupling lasers,
phase-matched backward paired Stokes (ωs) and anti-Stokes (ωas) photons are spon-
taneously produced following the transitions |4〉 → |2〉 and |3〉 → |1〉, respectively.
We assume the pump laser is far detuned from the transition |1〉 → |4〉 and its exci-
tation is weak such that the majority of atomic population remains in the ground
state |1〉. Under this ground-state approximation, we further assume that both the
pump and coupling laser beams are undepleted in the atomic medium. As shown
in Fig. 6.7a, the coupling laser and the weak generated anti-Stokes field form a



158 C.-S. Chuu and S. Du

(a) (b)

Fig. 6.7 Biphoton generation via SFWM in a four-level double-Λ atomic system. a The atomic
energy level diagram. b The backward-wave biphoton generation geometry

standard three-level Λ EIT scheme. As a result, the coupling laser not only par-
ticipates in the SFWM nonlinear process but also renders the medium transparent
for the resonantly generated anti-Stokes photons. This EIT resonance dramatically
enhances the SFWM nonlinear photon conversion efficiency. Moreover, in this sys-
tem, the anti-Stokes photons propagate with a slow group velocity due to the EIT
effect [42] while the Stokes photons travel nearly with the speed of light in vacuum.
Below we show that this group velocity mismatching is the key to manipulating the
phase-matching spectrum and thus the biphoton bandwidth. In the backward-wave
configuration paired Stokes and anti-Stokes photons can propagate collinearly with
the pump and coupling beams, and can also propagate in a right-angle geometry,
depending on how well the relationship kp +kc = 0 is satisfied, where kp,c are wave
vectors of the pump and coupling fields.

The cold atoms (without Doppler broadening effect) are confined within a long,
thin cylindrical volume of a length L and atomic density is N . The experiments
reviewed in this chapter are mostly done with cold atoms in a two-dimensional (2D)
magneto-optical trap (MOT) [43]. To adapt the theory in Sect. 6.3.1, we replace the
field index 1 with as and 2 with s. The nonlinear parametric coupling coefficients
(κas and κs) for the SFWM process are connected to the third-order nonlinear sus-
ceptibilities (χ(3)

as and χ
(3)
s ):

κas(ω) = i
ωas0

2c
χ(3)

as (ωas0 + ω)EpEc,

κs(ω) = i
ωs0

2c
χ(3)∗

s (ωas0 − ω)E∗
p E∗

c . (6.29)

Here Ep and Ec are the electric field amplitude of the pump and coupling laser
beams, respectively. Under the ground-state approximation, the third-order nonlinear
susceptibility for the generated anti-Stokes and Stokes fields are
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χ(3)
as (ωas0 + ω) = Nμ13μ32μ24μ41/(ε0�

3)

(Δp + iγ14)[|Ωc|2 − 4(ω + iγ13)(ω + iγ12)]
= −Nμ13μ32μ24μ41/(ε0�

3)

4(Δp + iγ14)(ω − Ωe/2 + iγe)(ω + Ωe/2 + iγe)
,

(6.30)

and

χ(3)
s (ωas0 − ω) = Nμ13μ32μ24μ41/(ε0�

3)

(Δp + iγ14)[|Ωc|2 − 4(ω − iγ13)(ω − iγ12)]
= −Nμ13μ32μ24μ41/(ε0�

3)

4(Δp + iγ14)(ω − Ωe/2 − iγe)(ω + Ωe/2 − iγe)
.

(6.31)

μij are the electric dipole matrix elements, Ωc = μ23Ec/� is the coupling Rabin
frequency, and γij are dephasing rates, respectively. Δp = ωp − ω41 is the pump
detuning from the atomic transition |1〉 → |4〉. ω = ωas − ωas0 is the detuning of
the anti-Stokes photons from the transition |1〉 → |3〉, and we take ωas0 = ω31 as
the anti-Stokes central frequency. From (6.30) and (6.31), we have χ

(3)
as (ωas0 +ω) =

χ
(3)
s (ωas0 + ω). As the pump laser is far detuned (Δp  γ14), we further obtain

χ
(3)
as (ωas0 + ω) 	 χ

(3)∗
s (ωas0 − ω). Ωe = √|Ωc|2 − (γ13 − γ12)2 is the effective

coupling Rabi frequency. γe = (γ12 + γ13)/2 is the effective dephasing rate. The
third-order nonlinear susceptibility has two resonances separated by Ωe and each is
associated with a linewidth of 2γe. These two resonances here indicate two SFWM
paths. In one path the frequency of the anti-Stokes photons is ωas0 + Ωe/2 and the
frequency of the correlated Stokes photons is ω42 +Δp −Ωe/2. In the other path the
anti-Stokes photons have frequency at ωas0 − Ωe/2 while the paired Stokes photons
at ω42 + Δp + Ωe/2. Consequently, the interference between these two types of
biphotons will appear in the two-photon temporal correlation, as shall be discussed
in Sect. 6.4.1. The results obtained here agree with the dressed-state picture [44–46].

The linear susceptibilities at the anti-Stokes and Stokes frequencies are, respec-
tively,

χas(ωas0 + ω) = 4N |μ13|2(ω + iγ12)/(ε0�)

|Ωc|2 − 4(ω + iγ13)(ω + iγ12)
, (6.32)

χs(ωs0 − ω) = N |μ24|2(ω − iγ13)/(ε0�)

|Ωc|2 − 4(ω − iγ13)(ω − iγ12)

|Ωp|2
Δ2

p + γ 2
14

,

(6.33)

where Ωp = μ14Ep/� is the pump Rabi frequency. The complex wave numbers of
Stokes and anti-Stokes photons are obtained from the relations ks = (ωs/c)

√
1 + χs

and kas = (ωas/c)
√
1 + χas, where the imaginary parts indicate the Raman gain
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and EIT loss, respectively. In an ideal EIT system with zero ground-state dephasing,
i.e., with γ12 = 0, the linear susceptibility is χas(ωas0) = 0, implying zero linear
absorption of the anti-Stokes photons. This allows the nonlinear optics occurring
on atomic resonance without absorption and hence enhances the efficiency of the
nonlinear interaction.

Taking |Ωp| � Δp, (6.32) and (6.33) give kas 	 kas0 + ω/Vg + iα and χs 	 0
so that the wave-number mismatching is approximately Δk 	 ω/Vg + iα. Here
kas0 is the central wave number of the anti-Stokes field, Vg is its group velocity, and
α, the imaginary part of the anti-Stokes wave number, characterizes the EIT finite
loss caused by the non-zero ground-state dephasing rate γ12. Now (6.17) can be
approximated as

Φ(ω) 	 sinc
( ωL

2Vg
+ i

αL

2

)
exp

(
i
ωL

2Vg
− αL

2

)
. (6.34)

In (6.34), α = 2Nσ13γ12γ13/(|Ωc|2 +4γ12γ13) where σ13 = 2π |μ13|2/(ε0�λ13γ13)

is the on-resonance absorption cross section of the transition |1〉 → |3〉. The lon-
gitudinal detuning function of (6.34) has a full-width-at-half-maximum (FWHM)
phase-matched bandwidth determined by the sin function, Δωg = 2π × 0.88/τg,
where τg = L/Vg is the anti-Stokes group delay time. The group delay time can
be estimated from τg = L/Vg 	 (2γ13/|Ωc|2)OD with the optical depth defined as
OD = Nσ13L.

Therefore, there are two important characteristic frequencies that determine the
shape of the biphoton waveform. The first is the coupling effective Rabi frequency
Ωe , which determines the two-resonance spectrum of the nonlinear susceptibility.
The second is phase-matching bandwidth Δωg. In the time domain, they correspond
to the Rabi time τr = 2π/Ωe and the group delay time τg. The competition between
τr and τg will determine which effect plays a dominant role in governing the feature
of the two-photon correlation. Therefore, in the following we will discuss the two-
photon joint-detection measurement in two regimes, damped Rabi oscillation and
group delay.

6.4.1 Damped Rabi Oscillation Regime

Wefirst look at the regimewhere the nonlinear spectrumplays a dominant role and the
optical properties of the two-photon amplitude (6.16) are mainly determined by the
nonlinear coupling coefficient. This regime requires that the effective coupling Rabi
frequency Ωe be smaller than the phase-matching bandwidth Δωg, i.e., Ωe < Δωg,
or equivalently, τr > τg, so that we can treat the longitudinal detuning function as
Φ(ω) 	 1. The biphoton spectral generation rate is proportional to |κL|2 ∝ |χ(3)L|2.
Hence both biphoton spectrum intensity and emission rate are proportional to OD2.
The two-photon temporal correlation function exhibits a damped Rabi oscillation
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resulting from the interference between the two resonances of the nonlinear coupling
coefficient.

We consider the case of Ωc > |γ13 − γ12| first, which implies a real effective
coupling Rabi frequency Ωe. Following (6.16), the two-photon wave amplitude now
is determined by the Fourier transform of the nonlinear coupling coefficient (6.29)
to give

ψ(τ) = BLe−γeτ e−i�asτ sin
(Ωeτ

2

)
�(τ),

= i

2
BLe−γeτ e−i�asτ [e−iΩeτ − eiΩeτ ]θ(τ ). (6.35)

Here B = −i
Nμ13μ32μ24μ41

√
�as�s

4cε0�3Ωe(Δp+iγ14)
and �(τ) is the Heaviside step function, i.e.,

�(τ) = 1 for τ ≥ 0, and �(τ) = 0 for τ < 0. The physics of (6.35) is understood
as follows. Because the two-photon state is entangled, it cannot be factorized into a
function of tas times a function of ts. |ψ |2, depends only on the relative time delay
τ , which implies that the pair is randomly generated at any time. The first term in
the bracket on the RHS of (6.35) represents the two-photon amplitude of paired
anti-Stokes at ωas0 + Ωe/2 and Stokes at ωs0 − Ωe/2; while the second term is the
two-photon amplitude of paired anti-Stokes atωas0−Ωe/2 and Stokes atωs0+Ωe/2.
Equivalently, this frequency entangled state can be written as |ωas0 +Ωe/2〉as|ωs0 −
Ωe/2〉s − |ωas0 − Ωe/2〉as|ωs0 + Ωe/2〉s. To further see the interference, let us look
at the two-photon Glauber correlation function,

G(2)(τ ) = 1

2
|BL|2e−2γeτ

[
1 − cos(Ωeτ)

]
�(τ), (6.36)

which displays a damped Rabi oscillation with an oscillation period of 2π/Ωe and a
damping rate of 2γe. The heaviside function �(τ) shows that the anti-Stokes photon
is always generated after its paired Stokes photon by following the FWMpath shown
in Fig. 6.7a. The two-photon correlation function also shows the well-known anti-
bunching effect [G(2)(0) ≤ G(2)(τ )]. Similarly to the polarization entangled Bell
states, the visibility of theRabi oscillation, resulting from the two-photon interference
in time domain, can be taken as an evidence for the time-frequency entanglement.

Figure6.8a shows the first experimental demonstration of this type of biphoton
source by Balić et al. [33]. Figure6.8a corresponds to the case of τe > τr and the
oscillations are clearly resolved. Figure6.8b is the case of τe < τr where only the
first oscillation is observable and other disappear because of the fast dephasing rate
γe.

Rabi oscillations have also been observed in three-level and two-level atomic
systems [47–49].
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Fig. 6.8 a Two-photon correlation function in the damped Rabi oscillation regime. The missing of
other oscillation periods in (b) is due to the short dephasing time of about 33ns. The experimental
parameters used here are γ13 = γ14 = 2π × 3MHz, γ12 = 0.6γ13, OD =11, Δp = −7.5γ13, and
Ωp = 0.8γ13. Data are taken from [33]

6.4.2 Group Delay Regime

Suggested by Balic et al. [33] and demonstrated by Du et al. [24], the group delay
regime is defined as τg > τr and the EIT slow-light effect can be used to control
the biphoton temporal coherence time. The group delay condition is equivalent to
Ωe > Δωg ≈ 2π/τg, i.e., the biphoton bandwidth is determined by phase matching.
For this reason, in this subsection we treat the third-order nonlinear susceptibility as
a constant over the phase-matching spectrum. As a consequence, the double reso-
nances of biphoton generation are suppressed. The two-photon correlation tends to
be rectangular shaped, more like that of the conventional SPDC photons. We obtain
the biphoton wave function approximately as ψ(τ) 	 κ0LΦ̃(τ ), where κ0 is the
on-resonance nonlinear coupling constant and Φ̃(τ ) = 1/(2π)

∫
Φ(ω)e−iωτ dω is

Fourier transform of the longitudinal detuning function. When the EIT bandwidth
[Δωtr 	 |Ωc|2/(2γ13

√
OD)] is wider than the phase-matching bandwidth, the anti-

Stokes loss is negligible and the two-photon wave function approaches a rectangular
shape. However, when the EIT loss is significant, the biphoton waveform follows an
exponential decay.

When Δωtr > Δωg, we ignore the EIT linear loss and rewrite (6.34) as

Φ(ω) 	 sinc
( ωL

2Vg

)
exp

(
i
ωL

2Vg

)
. (6.37)

We then obtain the biphoton wave function

ψ(τ) 	 κ0LΦ̃(τ ) = κ0VgΠ(τ ; 0, L/Vg)e
−i�asτ . (6.38)

The rectangular function is defined asΠ(τ ; τ1, τ2) = θ(τ −τ1)−θ(τ −τ2). Equation
(6.38) shows that the anti-Stokes photon is always delayed with respect to its paired
Stokes photon because of the slow light effect. The two-photon correlation time is
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Fig. 6.9 Two-photon
correlation function in the
group delay regime. a Ideal
rectangular-shape
correlation with a relative
group delay L/Vg and pair
emission rate R. b
Experimental data (red) and
theoretical curve (solid blue
line) obtained from the
Heisenberg-Langevin theory.
Data are taken from [24]
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determined by the group delay τg = L/Vg. Using (6.13) we get the photon pair
generation rate

R = |κ0|2VgL. (6.39)

Thus in the group delay regime the total rate of paired counts scales linearly as
OD even though the spectral generation rate, κ0LΦ(ω), scales as OD2. This is
because the bandwidth reduces linearly with optical depth [33]. As illustrated in
Fig. 6.9a, the rectangular-shape waveform can be understood in the following pic-
ture. When the photon pair is produced from the front surface (z = L), the anti-
Stokes photon has no delay and both photons arrive at detectors simultaneously.
When emitted from the back surface (z = 0), the anti-Stokes photon is delayed
relative to the Stokes photon by τg. Since the photon pair generation probability
density is evenly distributed in the medium, a rectangular shape shows up in the
biphoton temporal waveform. Figure6.9a shows an ideal rectangular-shape correla-
tion with a group delay of τg = L/Vg. For conventional SPDC photons, the sub-ps
rectangular-shaped biphoton waveform has only been indirectly confirmed in [50].
For the SFWM in cold atoms discussed here, we find that to observe the rectangular
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shape, the condition Δωtr > Δωg sets a lower bound for the optical depth. Using
Δωtr 	 |Ωc|2/(2γ13

√
OD) and Δωg 	 2π/τg 	 π |Ωc|2/(γ13OD), we obtain

OD > 4π2. Or equivalently, it requires the EIT delay-bandwidth product greater
than two [51].

In Fig. 6.9b the experimental demonstration of a near-rectangular-shape correla-
tion is obtained at the optical depth around 53 [24]. The experimental parameters
used here are γ13 = γ14 = 2π × 3 MHz, γ12 = 0.02γ13, OD = 53, Δp = 48.67γ13,
Ωp = 1.16γ13, and Ωc = 4.20γ13, respectively. The EIT transparency width is esti-
mated around 3.63MHz and the phase-matching spectral width about 2.93MHz. It
is found that the exponential-decay behavior at the tail is due to the finite EIT loss,
which alters the correlation function away from the ideal rectangular shape.

The sharp peak shown in the leading edge of the two-photon coincidence counts
in Fig. 6.9b is the first observed Sommerfeld-Brillouin precursor at the biphoton level
[52]. In the stationary-phase approximation, starting from (6.16) one can show that
the sharp peak results from the beating of biphotons which are generated outside
of the EIT opacity window. The detailed analysis of the precursor generation at the
two-photon level has been presented in [52].

Following (6.38), one expects the length L/Vg of the rectangular function
increases if one reduces the anti-Stokes group velocity Vg by reducing the cou-
pling laser power. However, (6.38) is valid only when the EIT is preserved. When
the EIT loss becomes significant, the biphoton has an exponential decay waveform
[26]. Therefore at a certain OD, there is a limitation to prolonging the coherence
time while maintaining the rectangular-like shape. Most recently, by pushing the OD
to 130, the two-photon coherence time was extended to nearly 2µs, as shown in
Fig. 6.10, which corresponds to a FWHM bandwidth of 0.43MHz [25].

Fig. 6.10 Biphotons with
coherence time up to about
2µs. Operating parameters
are: OD = 130,
Ωc = 2π × 7.77MHz and
Ωp = 2π × 1.14MHz. Data
are taken from [25]
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6.5 Manipulation of Narrowband Single Photons

The long coherence timeof these narrow-bandbiphotons allowsus to not only directly
resolve their temporal waveform with existing commercial single photon detectors
(with a typical resolution of 1 ns) but also manipulate their quantum waveform with
external phase-amplitude modulators [53, 54]. In addition, compared with SPDC
using a single pump laser, there are more freedoms to manipulate the biphoton
generation in SFWM with two driving lasers. We will show in this section how to
engineer the biphoton quantum states by controlling the temporal [55, 56] and spatial
patterns [25, 35] as well as the polarizations [48, 57] of the classical driving fields.

(1) Electro-Optical Modulation of Heralded Single Photons
It is well know that time-frequency entangled photon pairs can be used to effi-

ciently produce heralded single photons with well defined relative time origin. Here
we describe how single photons may be modulated so as to produce single-photon
waveforms whose amplitude and phase are functions of time. As shown in Fig. 6.11,
The detection of a Stokes photon at D1 triggers the function generator that drives
the electro-optic modulator (EOM) to shape the waveform of the anti-Stokes pho-
ton. In this way the heralded anti-Stokes photon temporal wave function (phase and
amplitude) may be shaped in the same manner as one modulates a classical light
pulse.

When a Stokes photon is detected at Ds (zs = 0), the heralded single anti-Stokes
photon wave packet shaped by the EOAM can be described as

Ψ (z, τ ) = 〈0|m(τ )âas(z, τ )âs(0, 0)|Ψs,as〉
= m(τ − z/c)ψ(τ − z/c)ei(kas0z−ωas0τ). (6.40)

where |Ψs,as〉 is the two-photon time-frequency entangled state [26], and m(τ ) is the
modulation. It is clear that the heralded single-photonwaveform is directlymodulated
by the EOM. Therefore, within the coherence time, the single-photon waveform can

Fig. 6.11 Schematic of heralded single photon generation and conditional modulation with an
EOM
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Fig. 6.12 Waveforms of
heralded anti-Stokes
photons. a Modulated and
unmodulated waveforms. b
Waveforms with Gaussian
and rising exponential
shapes. Data are taken from
[53]

(a)

(b)

be arbitrarily shaped. As shown in Fig. 6.12, The heralded single photons can be
modulated into two rectangular pulses, Gaussian or time reversed exponential [53].

The importance of the electro-optic method is its speed and ability to modulate
phase as well as amplitude. The technique provides the technology for studying the
response of atoms to shaped single photon waveforms on a time-scale comparable
to the natural linewidth.

(2) Quantum Fourier Cosine Transform: Modulation and Measurement of
Biphoton Waveform

As described previously, the Stokes-anti-Stokes two-photon temporal waveform
is directly measured as coincidence counts between two single photon detectors.
However, if the speed of the detectors is slow as compared to the two-photon corre-
lation time, the biphoton temporal waveform can not resolved by the resolution of the
detectors. That is the reason why the wide-band SPDC biphoton waveform can not
be directly measured by the existing commercial single photon detectors. Here we
describe an approach to the problem of measurement of biphoton waveforms using
slow detectors. Figure6.13 shows the essential idea. The Stokes and anti-Stokes pho-
tons are incident on synchronously driven sinusoidal amplitude modulators (MOD1
and MOD2). The coincidence count rate between single-photon counting modules
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Fig. 6.13 Modulation and measurement of time-energy entangled photons synchronously driven
sinusoidal modulators and slow detectors

(SPCMs) is measured as a function of the sinusoidal modulation frequency. The
SPCMs are slow as compared to the pulse width of the biphoton waveform. With τ

equal to the relative arrival time of the Stokes and anti-Stokes photons, the inverse
Fourier transform of the (frequency domain) measurement of coincidence counts
versus frequency yields the Glauber correlation function G(2)(τ ) and therefore the
square of the absolute value of the biphoton wave function [54].

The modulated correlation function can be written as

G(2)
M (t, t + τ) = |m1(t)|2|m2(t + τ)|2G(2)

0 (τ ), (6.41)

where m1 and m2 are the two amplitude modulation functions. G(2)
0 (τ ) is the unmod-

ulated Glauber correlation function. We average G(2)
M (t, t + τ) over a period T of the

modulating frequency to form the time averaged correlation function

G(2)
M (τ ) = 1

T

∫ T

0
G(2)

M (t, tτ )dt. (6.42)

Combining (6.41) and (6.42), we obtain

G(2)
M (τ ) = M(τ )G(2)

0 (τ ),

M(τ ) = 1

T

∫ T

0
|m1(t)|2|m2(t + τ)|2dt (6.43)

where M(τ ) is the intensity correlation function of the modulators. Here we assume
both channels are modulated by the same sinusoidal amplitude modulation m1(t) =
m2(t) = cos(ωt +ϕ). Then we have M(τ ) = 1/4+1/8 cos(2ωτ), and the integrated
coincidence count becomes

∫ ∞

0
G(2)

M (τ )dτ = 1

8

∫ ∞

0
[2 + cos(2ωτ)]G(0)(τ )dτ. (6.44)
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We neglect the dc term and normalize to obtain the Fourier cosine transform pair

F(2ω) =
√

2

π

∫ ∞

0
G(0)(τ ) cos(2ωτ)dτ,

G(0)(τ ) =
√

2

π

∫ ∞

0
F(2ω) cos(2ωτ)dω. (6.45)

Therefore the two-photon correlation function can be obtained by an inverse Fourier
cosine transform from integrated coincidence counts (by slow detectors).

The proof of principle of the above Fourier technique in measuring biphoton
waveform was demonstrated with narrow-band biphotons and the slow detectors
are simulated with integration [54]. The result agrees well with the directly mea-
sured waveforms. For practical applications, this technique can be extended to short
biphotons.

(3) Shaping Biphoton Temporal Waveforms with Temporally Modulated
Classical Fields

By passing long single photons through electro-optical modulators (EOM), it is
possible tomodulate one of the paired photons or their correlation function. However,
these external modulators always introduce losses and attenuations. As shown in
Fig. 6.7, due to the two-photon resonance condition in the SFWM process in the
double-Λ atomic system, the central frequency of the Stokes photon follows the
pump laser,while the central frequencyof the anti-Stokes photon follows the coupling
laser (in the group delay regime). As a result, if we add a modulation to the pump
(coupling) laser, themodulationwill affect the generatedStokes (anti-Stokes) photon.
As compared to the SPDC source with a single pump laser, the SFWM scheme
with two driving lasers allows more freedoms to manipulate the biphoton state by
controlling the two classical driving lasers.

When the pump and coupling lasers are periodically modulated, As shown
in Fig. 6.14b, the driving laser fields are decomposed in frequency domain into

Fig. 6.14 Schematic of biphoton generation with modulated driving-laser fields. a Experimental
configuration. b Atomic energy level diagram for multichannel biphoton generation
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discrete frequency components. As a result, biphoton generation follows many pos-
sible SFWM paths. The interference between these multichannel FWMs provides a
controllable way to manipulate and engineer the biphoton wave packets. Under the
condition that the atomic optical depth in the transition |1〉 → |3〉 is high, the EIT
slow light effect is significant, and there is no spectral overlap between these SFWM
channels, following the theory by Du et al. [55], the biphoton wave amplitude can
be obtained analytically

Ψ (ts, tas) = cε0

2
√

IpIc

Ep(ts)Ec(tas)ψ0(tas − ts) × e−iωs0ts e−iωas0tas , (6.46)

where Ep(ts) and Ec(tas) are the complex envelopes of the pump and coupling
laser fields. Ip and Ic are the pump and coupling laser average intensities. ψ0(tas −
ts)e−iωs0ts e−iωas0tas is the original two-photon wave packet without modulation on
the driving fields. As shown in (6.46), the two-photon time-frequency entanglement
information is preserved while the pump and coupling field profiles are mapped into
the biphoton waveform. The Stokes and anti-Stokes temporal correlation function is

G(2)(ts, tas) ≡ |Ψ (ts, tas)|2 = Ip(ts)Ic(tas)

IpIc
G(2)
0 (tas − ts),

(6.47)

where Ip(ts) and Ic(tas) are the pump and coupling laser intensity temporal profiles.

G(2)
0 (τ ) = |ψ0(τ )|2 is the correlation function without modulation. Therefore the

time-averaged correlation becomes

R(τ ) = C(τ )R0(τ ), (6.48)

where C(τ ) ≡ limΔT→∞ 1
ΔTIpIc

∫ ΔT
0 Ip(t)Ic(t + τ)dt is the time-averaged pump-

coupling correlation function. Equations (6.46)–(6.48) show that it is possible to
manipulate the biphoton temporal wave packet and its correlation functions in a
controllable way. The proof of principle has been experimentally demonstrated in
[56].

(4) Shaping Biphoton Temporal Waveforms with Spatially Modulated Classical
Fields

Following Rubin’s group delay picture [12], in the ideal group delay regime, the
rectangular waveform reflects the uniform spatial distribution of the photon pair gen-
eration probability. This is indeed ensured in our previous theoretical model where
the atomic density, pump and coupling laser fields are assumed to be uniform. It is
noticed that the biphoton generation probability is proportional to the pump field
intensity. Therefore, if the pump field is spatially modulated along the longitudinal
direction of the biphoton generation, this spatial modulation will affect the bipho-
ton temporal waveform. This effect was first reported in a recent experiment for
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achieving the two-photon coherence time up to about 2µs [25]. In this experiment,
the transverse Gaussian amplitude profile of the pump laser beam is projected to the
biphoton longitudinal direction and revealed in the two-photon correlation function.
This effect becomes only apparent at a high OD of more than 100—at OD < 60,
the theory in Sect. 6.3.1 still holds and the pump field can be treated as a plane wave
even though in reality it is in a gaussian mode.

In [25], the pump-coupling laser beams are aligned with am angle of 2.8o to
the biphoton longitudinal z-axis and the pump beam transverse Gaussian profile is
projected to the z-axis. Taking into account the pump field profile effect, we modify
(6.11) to have

ψ(τ) = 1

2π

∫
dωκ(ω)F(Δk)ei(kas+ks)L/2e−iωτ , (6.49)

where the longitudinal detuning function is replaced by F(Δk)ei(kas+ks)L/2. F(Δk)

is the Fourier transform of the pump field profile f (z) = 1/(2π)
∫

dkF(k)eikz along
the z-axis. In the group delay regime, the spatial phase propagation in (6.49) can
approximated as

(kas + ks)L/2 	 φ0 + ωτg/2, (6.50)

where φ0 is a constant phase factor. The two-photon spectrum is mainly determined
by the phase-matching longitudinal function F[Δk(ω)], and κ(ω) 	 κ0 varies slowly
in frequency. The we can reduce (6.49) to

ψ(τ) 	 κ0Vgf (L/2 − Vgτ)eiφ0 . (6.51)

It is clear that the pump field spatial variation is mapped into the two-photon quantum
temporal waveform with its origin delayed by L/(2Vg) = τg/2. The two-photon
temporal correlation time is determined by the group delay τg of the slow anti-Stokes
photon.

Figure6.15 shows the experimental results at OD = 130 [25]. There are two
main features of the two-photon correlation function. The fast oscillating spike at the
leading edge is the biphoton optical precursor which travels at the speed of light in
vacuum [52]. The later, slowly varying long waveform is generated from the narrow
EIT window. The Gaussian shape reveals the pump laser intensity profile as we
expected from (6.51).

The detailed discussion of the effects of the nonuniformity of the driving fields on
the biphoton waveform and biphoton engineering with spatially modulated driving
lasers can be found in [35].

(5) Polarization Entanglement
The SFWM scheme provides a natural entanglement mechanism in the time-

frequency domain, but it is extremely difficult to produce polarization entanglement
because of the polarization selectivity of EIT in a non-polarized atomicmedium [58].
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Fig. 6.15 Biphoton temporal waveform reveals the Spatial Gaussian profile of the pump laser
beam. Operating parameters are: OD = 130, Ωc = 2π × 11.34MHz and Ωp = 2π × 1.14MHz.
Data are taken from [25]

The “writing-reading” technique with optical pumping provides a solution to polar-
ization entanglement but results in reducing time-frequency entanglement [59].

Figure6.16 shows a schematics for polarization entanglement generation in a
right angle geometry [48]. A single pump laser is retro-reflected and serve both
pump and coupling laser beams in the SFWM process. The perfect phase matching
condition allows spontaneously generated paired photons to be emitted at right angle.
To produce entanglement in polarization, we make use of the degenerate Zeeman
sub states of each hyperfine energy level. By choosing the 2D MOT longitudinal
symmetry axis as the quantization axis (z-axis), Zeeman states with ΔMF = 0 are
coupled by the linearly-polarized pump beams. Conservation of angular moment
along the z-axis allows two possible circular polarization configurations as shown
in Fig. 6.16a: |σ+

s σ−
as〉 and |σ−

s σ+
as〉. From the symmetry of our system, the quantum

state of the paired Stokes and anti-Stokes photons at the two detectors are described
by

|Ψs,as(ts, tas)〉 = ψ(τ)e−iωs0ts e−iωas0tas × 1√
2
(|σ+

s σ−
as〉 + |σ−

s σ+
as〉). (6.52)

However, in this right angle configuration, because of some forbidden transition
between the Zeeman sub states which can not be coupled by the coupling laser, the
anti-Stokes photons do not see a complete EIT. As a result, the system can only work
at a low OD in the Rabi oscillation regime [48].

Figure6.17 shows amore robust scheme for generating polarization entanglement
for narrowband biphotons in the group delay regime [57]. The pump laser beam is
equally split into two beams after the first polarization beam splitter (PBS1). These
two beams, with opposite circular polarizations (σ+ and σ−) after two quarter-wave
plates, then intersect at the MOT with an angle of ±2.5◦ to the longitudinal axis.
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Fig. 6.16 Polarization entanglement generation in a right-angle SFWM configuration. a 85Rb
energy level diagram with two possible polarization configurations for the spontaneously emitted
photon pairs. b Experimental setup with a right-angle geometry. Two sets of quarter-wave plates,
half-wave plates, and PBSs are inserted for measuring polarization correlation and quantum state
tomography. The figure is taken from [48]
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Fig. 6.17 Experimental setup for producing subnatural-linewidth polarization-entangled photon
pairs. The polarization entanglement is created by the quantum interference of the two spatially
symmetric SFWMprocesses driven by two counter-propagating pump-coupling beams (L1 and L2).
The inserted energy level diagrams are two possible SFWM channels for L1 and L2, respectively.
The figure is taken from [57]

Similarly, the two coupling laser beams after PBS2 with opposite circular polariza-
tions overlap with the two pump beams from opposite directions. In presence of these
two pairs of counter-propagating pump-coupling beams, phase-matched Stokes and
anti-Stokes paired photons are produced along the longitudinal axis. In each SFWM
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path, the polarizations of the Stokes and anti-Stokes photons match those of the
corresponding pump and coupling fields.

To obtain the polarization entanglement, we must stabilize the phase difference
between the two SFWM spatial paths. This is achieved by injecting a reference laser
beam from the second input of PBS2. The two reference beams split after PBS2
are then recombined after PBS1 and detected by a photo detector (PD, a half wave
plate and a PBS are used to obtain the interference), as shown in Fig. 6.17. This is
a standard Mach-Zehnder interferometer to the reference laser. Locking the phase
difference of the two arms of the Mach-Zehnder interferometer with a feedback
electronics stabilizes the phase of the two SFWM paths. To avoid its interaction
with the cold atoms, the reference beams are slightly displaced relative to the pump-
coupling beams but pass through the same optical components.

By properly choosing the driving laser polarizations and the phase between the
two SFWM paths, all four polarization-entangled Bell states can be realized for
subnatural-linewidth biphotons [57].

6.6 Applications

In the past, experimental manipulation of a single photon interacting with atoms
have beenmostly focused in the frequency domain. Nowwith the narrowband bipho-
tongeneration techniquedescribed in this chapter, it is possible to control the quantum
interaction between a single photon and atoms in time domain. In this section, we
review the applications of heralded single photons whose waveforms are shaped by
an EOM. A general schematics is illustrated in Fig. 6.18. We work with two-MOT
setup. Narrowband Stokes and anti-Stokes biphotons are spontaneously produced
from cold atoms in the first MOT (MOT1). After detection of a Stokes photon, its
heralded anti-Stokes photon, after shaping by an EOM, is directed to the cold atoms

Fig. 6.18 Schematics of experimental setup for studying photon-atom quantum interaction.
Narrow-band paired Stokes and anti-Stokes photons are produced from a cold atomic ensemble
in MOT1. The anti-Stokes photons pass through an EOM driven by a function generator triggered
by the detection of Stokes photons at Ds. We then send the heralded anti-Stokes photons with
amplitude modulation to the second cold 85Rb atomic ensemble at MOT2. The figure is taken
from [77]
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in the second MOT (MOT2). The atoms in MOT2 can be either a three-level EIT
system with a coupling laser or a two-level system without the coupling laser. In the
following we show three examples on how the photon-atom interaction in MOT2
can be precisely controlled by manipulating the temporal waveform of the heralded
single photons.

(1) Optical Precursor of a Single Photon
Now it has been well accepted that both phase velocity and group velocity of light

in a dispersivemediumcan exceed c, the speedof light in vacuum [60, 61]. Then,what
is the information velocity of light? Could it be faster than c and violate Einstein’s
causality in the special relativity? Answering this question motivated early study
of optical precursors by Sommerfeld and Brillouin in 1914 [62–64]. They showed
theoretically that the front of a step-modulated optical pulse (as a carrier of 1 bit
information) propagating in a dispersivemedium always travels at c. This front, in the
form of a transient wave now known as the Sommerfeld-Brillouin precursor, is then
followed by the main pulse traveling at its group velocity. Study of optical precursors
is of great interests not only for fundamental reasons since it is related to Einstein’s
causality, but also for applications because of its connection to the maximum speed
of optical information transmission [65–72]. Now it is clear that the precursor is the
fastest part in the propagation of an optical pulse even in a superluminal medium
[68, 69, 71]. Classical precursors are entirely based on macroscopic electromagnetic
wave propagation.

A single photon is described by quantum mechanics. What is the speed of a
single photon in a dispersive medium? In quantum mechanics, an observable phys-
ical quantity, such as the speed, usually takes many possible (discrete or continu-
ous) eigenvalues. Some may argue that a single photon event may possibly violate
Einstein’s causalitywhile the expectation value of its speednever exceeds c.Although
The propagation effect of single photons through slow and fast light media has been
studied previously [73–76], all of these experiments focused on the group veloc-
ity picture. It remains a question whether there is a speed limit for a single photon
in the quantum nonclassical world. The detection of single-photon precursor may
shine light to this question as well as the understanding of quantum information
transmission.

Optical precursor of a single photon was first observed making use of narrowband
heralded single photon with a step-shaped waveform [77], with the experimental
setup shown in Fig. 6.18. The modulated heralded anti-Stokes photon waveform
is shown in Fig. 6.19a. After the anti-Stokes photon has passed through the EIT
medium in MOT2 (OD=20), the precursor is clearly seen at the rising edge and
separated from the delayed main waveform, shown in Fig. 6.19b. To test single-
photon causal propagation in a superluminal medium, we turn off the coupling laser
in MOT2 to work in a two-level system, which has a negative group delay, as shown
in Fig. 6.19d. we observe a peak advance of at least 40ns and with about 10%
transmission compared to the propagation through vacuum. However, as shown in
Fig. 6.19c, there is no observable advancement relative to the rising edge in the single
photon waveform. That is, using the quantum mechanics interpretation, there is no
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Fig. 6.19 Single-photon
optical precursors from a
step amplitude modulation. a
The heralded anti-Stokes
photon waveform with a step
modulation. b and c are
two-photon coincidences
after the anti-Stokes photons
passing through the EIT
system (Ωc2 = 3.5γ13,
OD = 20) and two-level
system (Ωc2 = 0, OD = 2.5)
in MOT2 respectively. Inset
(d) shows a gaussian pulse
propagation in the two-level
system with a peak
advancement of about 40ns
(the lower curve) compared
to the reference pulse (the
upper curve). Data are taken
from [77]
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observable probability for single photon traveling faster than c. This result indicates
that the optical precursor is always the fastest part even in superluminal propagation
and Einstein’s causality holds.

The observation of optical precursor of heralded single photons [77] confirms the
speed limit of a single photon in a dispersive medium, which is indeed the speed
of light in vacuum. The information velocity of a single photon does not follow its
group velocity. It also suggests that the causality holds for a single photon.

(2) Optimal Storage and Retrieval of Single-Photon Waveform
The second application example of narrowband heralded single photons with

arbitrary waveform shaping is for optical quantum memory. The efficiency of a
photon-atom quantum interface strongly depends on the temporal shape of single
photons [78]. Although storage of of weak coherent pulses have been demonstrated
with high efficiencies up to 87% [79, 80], obtaining such high efficiency with single
photons remains a technical challenge due to the difficulty in having narrowband
single photons with optimal temporal waveform at the operation frequency [81–83].

Making use of heralded narrowband single photons with an optimal waveform
shaped by EOM,Du et al reported an experimental demonstration of efficient storage
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Fig. 6.20 Optimal storage
and retrieval of single
photons with a storage
efficiency of (49 ± 3)%. a
The optimal input (red
curve) and output (retrieval,
green curve) heralded
single-photon waveforms. b
The time-reversed retrieved
photon waveform matches
the input photon waveform
after normalization. Data are
taken from [84]
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and retrieval of narrow-band single-photon waveforms using EIT in a cold atomic
ensemble [84]. With the ability to control both single-photon wave packets and the
memory bandwidth, the storage efficiency is obtained up to (49 ± 3)%. The experi-
mental result is shown in Fig. 6.20. To our knowledge, it represents the highest storage
efficiency for a single-photon waveform to date. Because an efficiency above 50%
is necessary to operate a memory for error correction protocols in one-way quantum
computation [85], this result brings the atomic quantum light-matter interface closer
to practical quantum information applications.

(3) Coherent Control of Single-Photon Absorption and Reemission in a
Two-Level Atomic Ensemble

When an optical pulse propagates through a dispersive medium, the absorption
and emission can coherently modify its spectral-temporal components and lead to
many fundamental and important optical phenomena, such as attenuation, amplifica-
tion, distortion, slow and fast light effects [40, 42, 86–88]. For a single photon in the
absorptive medium, the remission can only occur after the absorption, as required by
the causality. Although this quantum time order has been observed as the antibunch-
ing effect in resonance fluorescence [49, 89], the processes in these experiments are
chaotic. After a single photon enters a two-level atomic medium and gets absorbed,
the spontaneously remitted photon usually goes to 4π solid angle randomly.

It turns out a directed “spontaneous” emission excited by a single photon is possi-
ble if the timing of absorption is traceable [90]. Moreover, this direct “spontaneous”
emission can bemanipulated in time domain by controlling the single-photon tempo-
ral waveform [91]. For example, making use of the destructive interference between
the emission (or scattering) and the incident photon wave packet, the probability of
remitting the photon during the absorption can be completely suppressed when the
incident photon has an exponential growth waveform with a time constant equal to
the excite-state lifetime. The remission process only starts after the incident photon
waveform is switched off and thus can be controlled on demand.
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Fig. 6.21 Coherent control
of single-photon absorption
and reemission in a two-level
laser-cooled atomic
ensemble. Heralded
anti-Stokes photon
waveforms after passing
through the two-level atomic
ensemble at a OD = 0
(vacuum), b OD = 3, and c
OD = 8. d and e show the
measured conditional
autocorrelation g(2)

c for
confirmation of the
single-photon quantum
nature. Data are taken
from [91]
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We illustrate the process in Fig. 6.18, where we turn off the coupling laser in
MOT2 and have the atoms there in a two-level system. With the EOM modulation,
we produce single anti-Stokes photons with an exponential growth waveform with
a time constant equal to 1/(2γ13) = 26.5 ns for the incident anti-Stokes photons,
as shown in Fig. 6.21a. Here 2γ = 2π × 6 MHz is the population decay rate in
the excite state. At τ = t2 − t1 = 0, the waveform is switched off with a fall time
of 3ns. After passing through the atoms, the photons are coupled into a SMF to be
detected by a SPCM. Figure6.21b shows the result at OD = 3. At this modest OD,
during the exponential growth period (τ < 0), the photon waveform is only partially
absorbed. After the incident photon is switched off at τ = 0, this partially absorbed
waveform is released (re-emitted) following a exponential decay curve which is
determined by the lifetime [1/(2γ )] of the excited state. As we increase the OD, the
incident photon gets absorbed more heavily. At OD = 8, as shown in Fig. 6.21c,
the photon is completely absorbed and the probability in finding the remitted photon
at τ < 0 is nearly zero due to the destructive interference. As expected, at τ > 0,
the interference between the incident waveform and the emission disappears and
we observe the remitted photon. Consequently, the absorption and reemission of the
single photon is completely separated in time domain.

This technique can be used to efficiently excite a single quantum absorber in a
cavity by a single photon [92, 93]. The result may find potential applications in the
quantum networks which require efficient conversion between flying single-photon
states and local atomic states [17].
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Fig. 6.22 Schematics of single-photon differential phase shift quantum key generation and distri-
bution

(4) Single-Photon Differential-Phase-Shift Quantum Key Distribution
Due to the long coherence time of the heralded single photon, its wave packet can

be encoded into many time bins with phase-amplitude modulation. It thus become
an ideal information carrier for the differential phase shift quantum key distribu-
tion (DPS-QKD) [94, 95]. Traditionally, discrete polarization quantum states have
been widely used due to their simplicity [96]. However, the fiber length of such a
polarization-based QKD system is limited by the birefringence effect that causes
the polarization fluctuation on the receiver. This limit can be overcome by the DPS-
QKD scheme that is polarization independent. The DPS-QKD also shows tolerance
to photon-number-splitting (PNS) attacks [95, 97].

A simplified schematics of the first single-photon DPS-QKD system is illustrated
in Fig. 6.22 [98]. Alice divides the single photon into N (≥3) time slots (with a
period of T ). The keys are encoded by the random relative phase shift between
consecutive pulses in 0 or π . Bob detects the incoming photon using an unbalanced
M-Z interferometer setup with a path time delay difference equal to T . Taking N = 3
as an example, the detection at Bob’s site yields four possible time-slot outputs,
(a)–(d), as shown in Fig. 6.22. As Bob detect a photon, he records the time and
which detector clicks. If the detector clicks at the (b) or (c) time slot, Bob tells Alice
only the time slot information through a classical channel; otherwise, Bob discards
the photon. Using the time-slot information and her phase encoding records, Alice
knows which detector clicked at Bob’s site. Defining the clicks at D1 and D2 as “0”
and “1” respectively, Alice and Bob can obtain a confidential bit string as a sharing
key. The photon sent from Alice to Bob can be written as one of the following four
states: (|110203〉 ± |011203〉 ± |010213〉)/

√
3, where 1i=1,2,3 represents one photon

at time slot i. As nonorthogonal with each other, the four states cannot be perfectly
identified by a single measurement, as shown by the noncloning theorem [99], which
guarantees the security of the scheme.

In the original DPS-QKD proposal [94], a single photon is split into N paths
with different lengths and then recombined with passive beam splitters. This brings
unavoidable loss, which results in a low key creation efficiency [∝ (N − 1)/N2]
whenN is large.Meanwhile, the phase stabilization between different paths becomes
a serious problem N increases. In the experimental demonstration of single-photon
DPS-QKD, each heralded narrowband single photon is modulated into many time
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slots (N up to 15) using a pair of phase and amplitude EOMs [98]. Without using
beam splitters, the entire key creation efficiency scales as (N −1)/N and approaches
100% at the limit of large N [98, 100]. The details of the experiment are described
in [98].

6.7 Summary

In summary, we have reviewed recent development in narrowband biphoton genera-
tion. For the SFWM in cold atomicmedium, EIT effect is used not only for resonantly
enhancing the χ(3) nonlinearity by eliminating the resonance absorption but also for
tuning the phase-matching bandwidth with its slow-light effect. For the monolithic
resonant backward-wave and forward-wave SPDC with cluster effect and double-
pass pumping, it is possible to realize a miniature ultrabright biphoton source. These
narrowband biphotons with long coherence time from tens nanoseconds to several
microseconds can be used to produce heralded single photons with arbitrarily shaped
temporal waveforms by phase-amplitude modulations. We also reviewed their appli-
cations in manipulating temporal quantum interactions between single photons and
atoms, as well as in the quantum key distribution. Most recently, it was demonstrated
that a single photon with time-reversed exponential growth waveform can be loaded
into a single-sided Fabry Pérot cavity with near-unity efficiency [101, 102]. With
the time-resolved quantum-state tomography [103, 104], their further applications
in quantum network and quantum information processing are to be explored.

Acknowledgments C.-S.C. acknowledges support from the TaiwanMinistry of Science and Tech-
nology (NSC101-2112-M-007-001-MY3, MOST103-2112-M-007-015-MY3) and National Tsing
HuaUniversity (101N7014E1, 103N2014E1). S. Du acknowledges the support from theHongKong
Research Grants Council (Project Nos. 601411, 601113, and HKU8/CRF/11G).

References

1. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)
2. J.C. Howell, R.S. Bennink, S.J. Bentley, R.W. Boyd, Phys. Rev. Lett. 92, 210403 (2004)
3. J.S. Bell, Phys. (N.Y.) 1, 195 (1965)
4. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)
5. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 47, 460 (1981)
6. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)
7. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett.

70, 1895 (1993)
8. J. Yin, J.-G. Ren, H. Lu, Y. Cao, H.-L. Yong, Y.-P. Wu, C. Liu, S.-K. Liao, F. Zhou, Y. Jiang,

X.-D. Cai, P. Xu, G.-S. Pan, J.-J. Jia, Y.-M. Huang, H. Yin, J.-Y. Wang, Y.-A. Chen, C.-Z.
Peng, J.-W. Pan, Nature 488, 185 (2012)

9. M. Neilson, I. Chuang, Quantum Computation and Quantum Information (Press, Cambridge,
2000)

10. S.E. Harris, M.K. Oshman, R.L. Byer, Phys. Rev. Lett. 18, 732–734 (1967)



180 C.-S. Chuu and S. Du

11. D. Burnham, D. Weinberg, Phys. Rev. Lett. 25, 84 (1970)
12. M.H. Rubin, D.N. Klyshko, Y.H. Shih, A.V. Sergienko, Theory of two-photon entanglement

in type-II optical parametric down-conversion. Phys. Rev. A 50, 5122 (1994)
13. X. Li, P.L. Voss, J.E. Sharping, P. Kumar, Phys. Rev. Lett. 94, 053601 (2005)
14. J. Fan, A. Migdall, L.J. Wang, Opt. Lett. 30, 3368 (2005)
15. O. Cohen, J.S. Lundeen, B.J. Smith, G. Puentes, P.J. Mosley, I.A. Walmsley, Phys. Rev. Lett.

102, 123603 (2009)
16. L.-M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, Nature 414, 413 (2001)
17. H.J. Kimble, Nature 453, 1023 (2008)
18. Z.Y. Ou, Y.J. Lu, Phys. Rev. Lett. 83, 2556 (1999)
19. C.E. Kuklewicz, F.N.C. Wong, J.H. Shapiro, Phys. Rev. Lett. 97, 223601 (2006)
20. X.H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, J.-W. Pan, Phys. Rev. Lett. 101,

190501 (2008)
21. M. Scholz, L. Koch, O. Benson, Phys. Rev. Lett. 102, 063603 (2009)
22. C.-S. Chuu, S.E. Harris, Phys. Rev. A 83, 061803(R) (2011)
23. C.-S. Chuu, G.Y. Yin, S.E. Harris, Appl. Phys. Lett. 101, 051108 (2012)
24. S. Du, P. Kolchin, C. Belthangady, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 100, 183603 (2008)
25. L. Zhao, X. Guo, C. Liu, Y. Sun, M.M.T. Loy, S. Du, Optica 1, 84 (2014)
26. S. Du, J. Wen, M.H. Rubin, J. Opt. Soc. Am. B 25, C98 (2008)
27. R.C. Eckardt, C.D. Nabors, W.J. Kozlovsky, R.L. Byer, J. Opt. Soc. Am. B 8, 646 (1991)
28. H.-J. Briegel, W. Dur, J.I. Cirac, P. Zoller, Phys. Rev. Lett. 81, 5932 (1998)
29. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992)
30. C. Canalias, V. Pasiskevicius, V. Clemens, F. Laurell, Appl. Phys. Lett. 82, 4233 (2003)
31. C. Canalias, V. Pasiskevicius, M. Fokine, F. Laurell, Appl. Phys. Lett. 86, 181105 (2005)
32. C. Canalias, V. Pasiskevicius, Nat. Photonics 1, 459 (2007)
33. V. Balic, D.A. Braje, P. Kolchin, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 94, 183601 (2005)
34. P. Kolchin, Phys. Rev. A 75, 033814 (2007)
35. L. Zhao, Y. Su, S. Du, arXiv:1409.3341 [quant-ph] (2014)
36. M.J. Collett, C.W. Gardiner, Phys. Rev. A 30, 1386 (1984)
37. S. Sensarn, I. Ali-Khan, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 102, 053602 (2009)
38. S.E. Harris, Phys. Rev. Lett. 98, 063602 (2007)
39. S.E. Harris, Appl. Phys. Lett. 9, 114 (1966)
40. S.E. Harris, Phys. Today 50, 36 (1997)
41. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)
42. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Nature (London) 397, 594 (1999)
43. S. Zhang, J.F. Chen, C. Liu, S. Zhou, M.M.T. Loy, G.K.L. Wong, S. Du, Rev. Sci. Instrum.

83, 073102 (2012)
44. J.-M. Wen, S. Du, M.H. Rubin, Phys. Rev. A 75, 033814 (2007)
45. J.-M. Wen, S. Du, M.H. Rubin, Phys. Rev. A 76, 013825 (2007)
46. J.-M. Wen, S. Du, Y. Zhang, M. Xiao, M.H. Rubin, Phys. Rev. A 77, 033816 (2008)
47. P. Kolchin, S. Du, C. Belthangady, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 97, 113602 (2006)
48. H. Yan, S. Zhang, J.F. Chen, M.M.T. Loy, G.K.L. Wong, S. Du, Phys. Rev. Lett. 106, 033601

(2011)
49. S. Du, J. Wen, M.H. Rubin, G.Y. Yin, Phys. Rev. Lett. 98, 053601 (2007)
50. A.V. Sergienko, Y.H. Shih, M.H. Rubin, J. Opt. Soc. Am. B 12, 859 (1994)
51. S.E. Harris, L.V. Hau, Phys. Rev. Lett. 82, 4611 (1999)
52. S. Du, C. Belthangady, P. Kolchin, G.Y. Yin, S.E. Harris, Opt. Lett. 33, 2149–2151 (2008)
53. P. Kolchin, C. Belthangady, S. Du, G.Y. Yin, S.E. Harris, Phys. Rev. Lett. 101, 103601 (2008)
54. C. Belthangady, S. Du, C.-S. Chuu, G.Y. Yin, S.E. Harris, Phys. Rev. A 80, 031803(R) (2009)
55. S. Du, J. Wen, C. Belthangady, Phys. Rev. A 79, 043811 (2009)
56. J.F. Chen, S. Zhang, H. Yan, M.M.T. Loy, G.K.L. Wong, S. Du, Phys. Rev. Lett. 104, 183604

(2010)
57. K. Liao, H. Yan, J. He, S. Du, Z.-M. Zhang, S.-L. Zhu, Phys. Rev. Lett. 112, 243602 (2014)
58. Y.C. Chen, C.W. Lin, I.A. Yu, Phys. Rev. A 61, 053805 (2000)

http://arxiv.org/abs/1409.3341


6 Narrowband Biphotons: Generation, Manipulation, and Applications 181

59. D. Matsukevich, A. Kuzmich, Science 306, 663 (2004)
60. S. Chu, S. Wong, Phys. Rev. Lett. 48, 738 (1982)
61. L.J. Wang, A. Kuzmich, A. Dogariu, Nature 406, 277 (2000)
62. A. Sommerfeld, Ann. Phys. 44, 177 (1914)
63. L. Brillouin, Ann. Phys. 44, 203 (1914)
64. L. Brillouin, Wave Propagation and Group Velocity (Academic Press, New York, 1960)
65. K.E. Oughstun, G.C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics

(Springer, Berlin, 1994)
66. J. Aaviksoo, J. Kuhl, K. Ploog, Phys. Rev. A 44, R5353 (1991)
67. S.-H. Choi, U.L. Österberg, Phys. Rev. Lett. 92, 193903 (2004)
68. H. Jeong, A.M.C. Dawes, D.J. Gauthier, Phys. Rev. Lett. 96, 143901 (2006)
69. D. Wei, J.F. Chen, M.M.T. Loy, G.K.L. Wong, S. Du, Phys. Rev. Lett. 103, 093602 (2009)
70. J.F. Chen, H. Jeong, L. Feng, M.M.T. Loy, G.K.L. Wong, S. Du, Phys. Rev. Lett. 104, 223602

(2010)
71. J.F. Chen, M.M.T. Loy, G.K.L. Wong, S. Du, J. Opt. 12, 104010 (2010)
72. S. Du, Physics 42, 315 (2013)
73. M.D. Eisaman, A. André, F. Massou, M. Fleischhauer, A.S. Zibrov, M.D. Lukin, Nature 438,

837 (2005)
74. A.M. Steinberg, P.G. Kwiat, R.Y. Chiao, Phys. Rev. Lett. 71, 708 (1993)
75. A.M. Steinberg, R.Y. Chiao, Phys. Rev. A 51, 3525 (1995)
76. N. Akopian, L. Wang, A. Rastelli, O.G. Schmidt, V. Zwiller, Nat. Photonics 5, 230 (2011)
77. S. Zhang, J.F. Chen, C. Liu, M.M.T. Loy, G.K.L. Wong, S. Du, Phys. Rev. Lett. 106, 243602

(2011)
78. A.V. Gorshkov, A. André, M. Fleischhauer, A.S. Sørensen, M.D. Lukin, Phys. Rev. Lett. 98,

123601 (2007)
79. A.L. Alexander, J.J. Longdell, M.J. Sellars, N.B. Manson, Phys. Rev. Lett. 96, 043602 (2006)
80. M. Hosseini, B.M. Sparkes, G. Campbell, P.K. Lam, B.C. Buchler, Nature Commun. 2, 174

(2011)
81. C. Clausen, I. Usmani, F. Bussières, N. Sangouard, M. Afzelius, H. de Riedmatten, N. Gisin,

Nature 469, 508 (2011)
82. E. Saglamyurek, N. Sinclair, J. Jin, J.A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken,

W. Sohler, W. Tittel, Nature 469, 512 (2011)
83. E. Saglamyurek, N. Sinclair, J. Jin, J.A. Slater, D. Oblak, F. Bussières, M. George, R. Ricken,

W. Sohler, W. Tittel, Phys. Rev. Lett. 108, 083602 (2012)
84. S. Zhou, S. Zhang, C. Liu, J.F. Chen, J. Wen, M.M.T. Loy, G.K.L. Wong, S. Du, Opt. Express

20, 24124 (2012)
85. M. Varnava, D.E. Browne, T. Rudolph, Phys. Rev. Lett. 97, 120501 (2006)
86. M. Tanaka, M. Fujiwara, H. Ikegami, Phys. Rev. A 34, 4851 (1986)
87. F.Y. Wu, S. Ezekiel, M. Ducloy, B.R. Mollow, Phys. Rev. Lett. 38, 1077 (1977)
88. Md. AminulIslam Talukder, Y. Amagishi, M. Tomita, Phys. Rev. Lett. 86, 3546 (2001)
89. H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977)
90. M.O. Scully, E.S. Fry, C.H. RaymondOoi, K.Wodkiewicz, Phys. Rev. Lett. 96, 010501 (2006)
91. S. Zhang, C. Liu, S. Zhou, C.-S. Chuu, M.M.T. Loy, S. Du, Phys. Rev. Lett. 109, 263601

(2012)
92. R. Johne, A. Fiore, Phys. Rev. A 84, 053850 (2011)
93. D. Pinotsi, A. Imamoglu, Phys. Rev. Lett. 100, 093603 (2008)
94. K. Inoue, E. Waks, Y. Yamamoto, Phys. Rev. Lett. 89, 037902 (2002)
95. K. Wen, K. Tamaki, Y. Yamamoto, Phys. Rev. Lett. 103, 170503 (2009)
96. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin toss-

ing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal
Processing, Bangalore, p. 175. India (IEEE, New York, 1984)

97. E. Waks, H. Takesue, Y. Yamamoto, Phys. Rev. A 73, 012344 (2006)
98. C. Liu, S. Zhang, L. Zhao, P. Chen, C.-H.F. Fung, H.F. Chau,M.M.T. Loy, S. Du, Opt. Express

21, 9505 (2013)



182 C.-S. Chuu and S. Du

99. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145–195 (2002)
100. H. Yan, S. Zhu, S. Du, Chin. Phys. Lett. 28, 070307 (2011)
101. C. Liu, Y. Sun, L. Zhao, S. Zhang, M.M.T. Loy, S. Du, Phys. Rev. Lett. 113, 133601 (2014)
102. B. Srivathsan, G.K. Gulati, A. Cere, B. Chng, C. Kurtsiefer, Phys. Rev. Lett. 113, 163601

(2014)
103. P. Chen, C. Shu, X. Guo, M.M.T. Loy, S. Du, arXiv:1409.5747 [quant-ph] (2014)
104. F.A. Beduini, J.A. Zielinska, V.G. Lucivero, Y.A. de Icaza Astiz, M.W. Mitchell, Phys. Rev.

Lett. 113, 183602 (2014)

http://arxiv.org/abs/1409.5747


Chapter 7
Generation, Characterization and Use
of Atom-Resonant Indistinguishable
Photon Pairs

Morgan W. Mitchell

Abstract We describe the generation of atom-resonant indistinguishable photon
pairs using nonlinear optical techniques, their spectral purification using atomic
filters, characterization usingmulti-photon interference, and application to quantum-
enhanced sensing with atoms. Using either type-I or type-II cavity-enhanced spon-
taneous parametric down-conversion, we generate pairs of photons in the resonant
modes of optical cavities with linewidths comparable to the natural linewidths of
strong atomic transitions. The cavities and pump lasers are tuned so that emission
occurs in a mode or a pair of orthogonally-polarized modes that are resonant to the
D1 line, at 794.7nm. The emission from these frequency-degenerate modes is sepa-
rated from other cavity emission using ultra-narrow atomic frequency filters, either
a Faraday anomalous dispersion optical filter (FADOF) with a 445 MHz linewidth
and 57 dB of out-of-band rejection or an induced dichroism filter with an 80 MHz
linewidth and≥35dBout-of-band rejection.Using the type-I source,we demonstrate
interference of photon pair amplitudes against a coherent state and a new method
for full characterization of the temporal wave-function of narrow-band photon pairs.
With the type-II source we demonstrate high-visibility super-resolving interference,
a high-fidelity atom-tunedNooN state, and quantumenhanced sensing of atoms using
indistinguishable photon pairs.

7.1 Introduction

Interference of indistinguishable photons is one of the most striking non-classical
phenomena. When two indistinguishable photons meet at a beamsplitter, each enter-
ing from a different port, an interference of two-photon amplitudes leads them to
“coalesce” and to exit in the same direction, even though there is no force causing
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them to interact [1, 2]. This and similar multi-photon interference effects have been
harnessed for quantum teleportation [3], entanglement swapping [4], linear optics
quantum information processing [5], quantum-enhanced sensing [6], and quantum
simulation [7], among other applications. A similar effect concerns the interference
of indistinguishable photon pairs sharing a single mode against other sources of pho-
ton pairs. This is the mechanism by which squeezed vacuum, which consists of pairs
of indistinguishable photons, alters the noise distribution in an interferometer [8], a
phenomenon central to quantum-enhanced sensing [9, 10] and continuous-variable
quantum information processing [11].

Most of the above-mentioned applications were developed with broadband pho-
tons that, due to a strong spectral mismatch, could at best interact inefficiently with
atoms or other material systems. Generation of indistinguishable, atom-resonant
photons is an attractive goal if we wish to interact states exhibiting non-classical
interference with atomic quantum information processors (see chapters by Leuchs
and Sondermann, Piro and Eschner, and Slodička, Hétet, Hennrich and Blatt), atomic
quantum memories (see chapter by Chuu and Du), or atomic sensors [12–16]. Using
cavity-QEDmethods, atom-resonant indistinguishable photons can be producedwith
exquisite control over their wave-functions (see the chapter by A. Kuhn), but at a
high cost in system complexity.

In this chapter we describe generation of pairs of indistinguishable photons using
cavity-enhanced spontaneous parametric down-conversion (CESPDC) [17–19] and
extremely narrow-band optical filters [20, 21] to select the atom-resonant component
of the emission. We describe also applications: using pairs of indistinguishable high-
coherence photons, we demonstrate a full measurement of the two-photon temporal
wave function, including both amplitude and phase [22], generate an atom-tuned
Noon state [19], and use this state to probe an atomic magnetometer, demonstrating
the use of indistinguishable photon pairs for sensing of an atomic system beyond the
standard quantum limit [23].

7.1.1 CESPDC Sources

Spontaneous parametric down-conversion (SPDC) is a proven method to generate
non-classical states of light, including single-mode and two-mode squeezed states,
entangled photon pairs, and states with multiple pairs of photons. Although photon
production by SPDC is probabilistic, heralded single photons, heralded entangled
states, and heralded versions of more exotic states including so-called “Schrödinger
kitten” states, can be generated from SPDC output using single-photon detectors to
indicate when the source has produced the desired state. Quantum states can also be
generated “on demand” if active elements are also incorporated (see the chapter by
Yoshikawa, Makino and Furusawa).

A strength of SPDC is the simplicity of the parametric interaction, which can
produce very pure correlations in frequency, polarization, and photon number. In
contrast, parametric interactions do not naturally produce narrowband output, and
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some engineering is required to generate SPDC output that is bandwidth-compatible
with atomic resonance lines or other material spectroscopic features. Due to the
strong frequency correlations, narrow-band filtering of one SPDC output can be
used to select desired frequency content in the other output, as in the chapter by Piro
and Eschner. Placing the SPDC process inside a resonant cavity, “cavity-enhanced
SPDC,” (CESPDC) [24] gives a resonant enhancement to photon pairs coinciding
with the cavity modes while suppressing those frequencies that do not fit. Cavity-
enhancement techniques often benefit from techniques such as group-velocity mis-
matching and even backward-wave phase-matching that further restrict the SPDC
output (see the chapters by Chuu and Du, de Riedmatten and Afzelius and Zhao,
Bao, Zhao and Pan).

In this chapter we will describe two very similar CESPDC sources, the first using
type-I phase matching, and thus capable of producing fully-degenerate photon pairs,
i.e. produced in the same cavitymode and thus with the same frequency, polarization,
and spatial mode. The second CESPDC source uses type-II phase matching, and is
tuned so that one H -polarized mode, and one V -polarized mode are both resonant
at half the frequency of the pump. In this way, we generate photon pairs that are
indistinguishable in all respects except for polarization. We will sometimes refer to
these devices as sub-threshold optical parametric oscillators (OPOs), the term usually
used in frequency conversion and continuous-variable quantum optics for these same
devices.

7.1.2 Atomic Frequency Filters

Atomic filters use atomic media, usually atomic vapors, to generate intrinsically
narrow-band spectral features, and typically achieve transmission bandwidths from
a few MHz to a few GHz. The “traditional” uses of atomic filters are in astronomy
[25], laser ranging and surveying, and daylight optical communications, where they
are used to detect signals at specific frequencies while giving excellent blocking,
better than 1:105, over a very wide rejection band. As wewill describe, these features
combine well with the output of our CESPDC source, which has a linewidth of only
a fewMHz, free-spectral range (FSR) of a few hundredMHz and emission extending
over hundreds of GHz. Proper matching of an atomic filter to a CESPDC source can
then select a single output line while efficiently rejecting the rest of the SPDC output.

While atomicmedia naturally present strong and narrow absorption features, what
we require is a filterwith narrowband transmission. This requires somekind of optical
trickery, to convert the absorption resonances into transmission features. Equally
importantly, the filter must have a strong rejection of the unwanted frequencies.
While traditional optics, in the form of cascaded optical cavities, can in principle
perform this task perfectly, i.e. with arbitrarily high rejection and unit transmission,
this approach requires careful mode-matching and active tuning of the filters, and is
ultimately limited by the quality of the cavity optics [26–28]. Atomic filters are an
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interesting option for their stability, multi-mode capability, high transmission, and
very high out-of-band rejection, limited by the quality of the polarizers. To date,
atomic filters continue to outperform cavity filters in these figures of merit.

7.2 Atom-Resonant Indistinguishable Photon Pairs
in a Single Mode

In this section we describe a series of experiments to generate indistinguishable pho-
ton pairs in a single polarization mode, using type-I parametric downconversion.
Section7.2.1 describes the source, Sect. 7.2.2 describes the atomic filter, Sect. 7.2.3
describes measurements of the spectral purity achieved, Sect. 7.2.4 demonstrates
interference of two-photon amplitudes between a narrow-band SPDC source and a
CW laser, and Sect. 7.2.5 applies this interference to biphoton wave-function mea-
surement. Additional details can be found in [20–22, 29].

7.2.1 Type-I CESPDC Source

We use a doubly-resonant degenerate OPO [17] containing a type-I PPKTP crystal,
phase-matched for second-harmonic generation from794.7 to 397.4nm.A schematic
is shown in Fig. 7.1. A continuous wave external cavity diode laser at 794.7nm is

Fig. 7.1 Experimental setup of the type-I OPO, the FADOF filter and detection system. Symbols
PBS polarizing beam splitter, AOM acousto-optic modulator, EOM electro-optic modulator, APD
avalanche photodiode, BD calcite beam displacer, WP Wollaston prism, TOF time-of-flight ana-
lyzer, SAS saturated absorption spectroscopy, VCO voltage controlled oscillator, PM polarization
maintaining fiber, HWP half-wave plate, QWP quarter-wave plate, PD photodiode
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stabilized at a frequencyω0, 2.7 GHz to the red of the RbD1 line centre. As described
in [21], an electro-opticmodulator (EOM) adds sidebands to a saturated spectroscopy
absorption signal in order to get an error signal at the desired frequency. We double
the laser frequency by cavity-enhanced second harmonic generation using a LBO
crystal to generate a 397.4nmpump beam for theOPO. The cavity length is stabilized
to maintain a TEM00, V -polarized cavity mode at frequency ω0, thus resonating the
SPDC production of indistinguishable photon pairs at this frequency.

With this configuration, photon pairs are generated at all the resonance frequencies
of the OPO cavity that fall inside the 150 GHz-wide phase matching envelope of the
PPKTP crystal. The OPO output is thus composed of hundreds of frequency modes,
each of 8.4 MHz bandwidth, separated by the 501 MHz FSR. We note that in this
type-I scenario, group velocity mismatching techniques are not applicable, because
the pairs of generated photons differ only in longitudinal mode. Filtering can in
principle separate the desired, degenerate-mode photon pairs from the background
pairs, but the requirements are quite stringent: The filter must be able to distinguish
between one cavity mode and the next, separated by the FSR. Moreover, to achieve
a high spectral purity in the output, the filter needs a very high out-of-band rejection.
Finally, high transmission efficiency is always desirable so as to not lose the photon
pairs. As we shall see, these requirements are well-matched to a specific kind of
atomic frequency filter.

7.2.2 A FADOF at the Rb D1 Line

Wenow describe a FaradayAnomalous-Dispersion Optical Filter (FADOF) at the D1
line of Rb at 795nm. This line, efficiently detected with Si detectors, accessible with
a variety of laser technologies, and showing large hyperfine splittings, is a favorite
for coherent and quantum optics with warm atomic vapors. Applications include
electromagnetically-induced transparency [30], stopped light [31], optical magne-
tometry [12, 32], laser oscillators [33], polarization squeezing [34, 35], quantum
memory [36], and high-coherence heralded single photons [37, 38].

A FADOF consists of an atomic vapor cell between two crossed polarizers, while
a homogeneous magnetic field along the propagation direction induces circular bire-
fringence in the vapor. The crossed polarizers block transmission away from the
absorption line, while the absorption itself blocks resonant light. Between these,
Faraday rotation just outside the Doppler profile can give high transmission for a
narrow range of frequencies. FADOF is simple and robust, but performance depends
critically on optical properties of the atomic vapor. Fortunately, first-principles mod-
eling of the atomic vapor agrees very well with experiment, as shown in Fig. 7.2.
Public-domain codes are available for calculating FADOF spectra for Rb [21], Na
[39, 40] and several other alkali species [41].

Similar FADOFs have been developed for several other alkali atom resonances—
CsD2 [42] and 6S1/2 → 7P3/2 [43, 44] lines, RbD2 line [45, 46], Rb 5S1/2 → 6P3/2
[47], K (three lines) [48], Na D lines [49], and for Ca [50]. Several of these show
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Fig. 7.2 Features of the Rb D1 FADOF spectrum for a cell of 10cm internal length containing
natural abundance rubidium with no buffer gas. The calculated absorption spectrum at 300K is
shown in black, with distinct peaks due to the 85Rb and 87Rb transitions. The calculated spectrum
at 365K is shown in green, and shows very strong absorption in three regions. When this medium is
placed between crossed polarizers in the presence of amagnetic field of B = 4.5mT, strong Faraday
rotation at the line-edges leads to sharp transmission peaks an points A–E. Calculated transmission
spectra are shown in blue, experimental spectra are shown in red. The feature D, which occurs
between two lines, is particularly advantageous, as it is both stronger (higher transmission), and
narrower than other lines, because its tail is absorbed by the 87Rb F = 1 → F ′ transitions

transmission above 90%, and/or linewidths below 1 GHz. Filter figures of merit are
shown in Table7.1. An important figure of merit used in the FADOF literature is the
Equivalent Noise Bandwidth ENBW = [maxν T (ν)]−1

∫
T (ν)dν, where T (ν) is

the filter transmission versus frequency ν [46]. For narrowband signals in broadband
noise, a filter achieves the signal-to-noise ratio of an ideal filter with bandwidth
ENBW.

When quantified by the ENBW, the Rb D1 line gives superior performance to
other species and lines, due towhat appears to be a fortunate accident of the hyperfine
splittings. For either pure 85Rb or pure 87Rb, the FADOF transmission at these field
strengths shows four peaks, with the strongest ones at the extremes of the spectrum
and with long tails. The strong 87Rb peaks are visible as peak A and E of Fig. 7.2.
The strong 85Rb peaks include the peak D and one at −2.5GHz, but in the natural-
abundance vapor this latter peak is completely obscured by the 87Rb absorption. The
long tail of peak D is blocked by absorption from the 87Rb F = 1 → F ′ = 1
transition, improving the ENBW.

7.2.2.1 A Dual-Channel FADOF

The filter used here is a small modification of that described in Sect. 7.2.2 and in
[21]. We take advantage of the multi-mode, imaging property of the FADOF to filter
simultaneously two orthogonal polarizations: instead of the crossed polarizers, we
use a beam displacer before the cell, so that the two orthogonal polarizations travel
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Table 7.1 Comparison of reported FADOF transmission for different atoms and wavelengths λ

Atom λ(nm) References Tmax BT(GHz) BN(GHz)

K 405 [48] 0.93 1.2 6
87Rb 420 [47] 0.98 2.5 5.9

Ca 423 [50] 0.55 1.5 –

Cs 455 [43] 0.96 0.9 3.3

Cs 455 [44] 0.86 1.5 –

Na 589 [49] 0.85 1.9 5.1

Na 590 [49] 0.37 10.5 8.3

K 766 [48] 0.96 0.9 5

K 770 [48] – – –

Rb 780 [46] 0.93 1.3 4.7

Cs 852 [42] 0.90 0.6 –

B(mT) T(K)

Rb 795 [21] 18.0 353 0.92 0.48 2.1

Rb 795 [21] 5.9 378 0.91 1.10 2.7

Rb 795 [21] 4.5 365 0.71 0.45 1.2

Rb 795 [21] 2.0 345 0.04 0.32 0.8

Tmax Peak transmission. BT Full-width at half-maximum bandwidth of main transmission peak.
BN Equivalent-noise bandwidth (ENBW). – Value not reported. Reference [48] shows a K 770nm
FADOF curve very similar to K 766nm

along independent parallel paths in the cell. After the cell we use a Wollaston prism
to separate the near-resonant filtered light from the unrotated one. The optical axes
of the two polarizing elements are oriented with precision mounts, and an extinction
ratio of 1.8 × 10−6 is reached.

Additionally, the setup has been supplementedwith a half-waveplate placedbefore
the Wollaston prism (HWP 2 in Fig. 7.1), which enables us to, in effect, turn on and
off the filter. In the “FADOF on” condition, the waveplate axis is set parallel to
the Wollaston axis (and thus the waveplate has no effect on the filter behaviour), the
magnetic field is 4.5mT and the temperature is 365K. In the “FADOF off” condition,
no magnetic field is applied, the temperature of the cell is also 365K and HWP 2 is
set to rotate the polarization by 90 degrees, in effect swapping the outputs, so that
almost all the light is transmitted through the setup without being filtered.

We optimized the filter using a common criterion for experiments with photon
pairs: we maximize the ratio of coincidences due to photon pairs belonging to the
degenerate mode to coincidences due to other photon pairs. Because of energy con-
servation, the two photons in any SPDC pair will have frequencies symmetrically
placed with respect to the degenerate mode; to prevent the pair from reaching the
detectors, it suffices to block at least one of the photons. In terms of filter performance,
this means that it is possible to have near-perfect filtering even with transmission in
some spectral windows away from the degenerate mode, provided the transmission
is asymmetrical (Fig. 7.3). Using this criterion we find the optimal conditions for the
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Fig. 7.3 Spectral matching of FADOF to CESPDC source. Upper plot reference transmission
spectrum of room temperature natural abundance Rb (blue), filter spectrum (black) and a mirror
filter spectrum with respect to the degenerate cavity mode (black dashed). Red shaded regions
indicate transmission of correlated photon pairs. Lower plot cavity output spectrum (blue) and
FADOF-filtered cavity spectrum (red). The degenerate cavity mode coincides with the FADOF
peak. Both figures have the same frequency scale

filter performance at the field and temperature values given above. The optimumfilter
performance requires the degenerate mode to coincide with the FADOF transmission
peak at a fixed frequency (2.7 GHz to the red from the center of the Rb D1 line).

7.2.3 Spectral Purification of Degenerate Photon Pairs
from Type-I CESPDC

Wenowshowhowsuch an atomicfilter can separate indistinguishable, atom-resonant
photon pairs from a much stronger broadband background of non-degenerate photon
pairs, the natural output of a sub-threshold OPO or CESPDC source.

Using the FADOF described in Sect. 7.1.2 we observe 70% transmission of the
degeneratemode through thefilter, simultaneouswith out-of-band rejection by57dB,
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sufficient to reduce the combined non-degenerate emission to a small fraction of the
desired, degeneratemode emission. For comparison, a recently-describedmonolithic
filter cavity achieved 60% transmission and 45 dB out-of-band rejection [28]. We
test the filter by coincidence detection of photon pairs from the OPO output, which
provides a stringent test of the suitability for use at the single-photon level.Weobserve
for the first time fully-degenerate, near atom-resonant photon pairs, as evidenced by
correlation functions and atomic absorption measurements. The 96% spectral purity
we observe surpasses the previous record of 94% [38], and is in agreement with
theoretical predictions.

7.2.3.1 Detection

The distribution of arrival times of photons in a Hanbury-Brown-Twiss configuration
is useful to check that the filter effectively suppresses the non-degenerate modes of
the type-I OPO described in the previous section. We collect the OPO output in a
polarization maintaining fiber and send it through the filter setup. The filtered light
is then coupled into balanced fiber beam splitters that send the photons to avalanche
photo-detectors (APDs), connected to a time-of-flight analyzer (TOF) that allows us
to measure the second order correlation function G(2)(T ) (see Fig. 7.1).

Since we are using single photon detectors, we need to reduce as much as possible
the background due to stray light sources in the setup. Themain source of background
light is the counter-propagating beam that we inject in the OPO in order to lock the
cavity length to be resonant at ω0. We solve this problem using a chopped lock:
the experiment switches at 85Hz between periods of data acquisition and periods of
stabilization. During periods of data acquisition, the AOM is off, and thus no locking
beam is present. During periods of stabilization, the AOM is on, and an electronic
gate circuit is used to block electronic signals from the APDs, preventing recording
of detections due to the locking beam photons. In addition, the polarization of the
locking beam is orthogonal to that of the OPO output.

7.2.3.2 Effect of Filtering on Arrival Time Distribution

The relative arrival-time distribution for photon pairs produced by the CESPDC
source is a Dirac comb, with a separation given by the cavity round-trip time,
times a double exponential with a time constant given by the cavity ring-down time
[29, 51]. Here the cavity round-trip time is slightly less than 2 ns, whereas the resolu-
tion of our time-to-digital converter is 1 ns. Evidence for the comb structure is visible
in the measured distribution, shown in Fig. 7.4. This agrees well with the theoretical
expectation, described in theAppendix, as does the 26 ns full-width at half-maximum
(FWHM) of the double-exponential envelope. When the filter is “on,” we expect to
see an unmodulated double exponential of the same width. While the filter blocks
the unwanted modes, it has little reshaping effect on the degenerate mode, which is
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Fig. 7.4 Histograms of
arrival time differences for
FADOF off compared to
theoretical model (both
include the background due
to accidental coincidences
and the artefacts resulting
from 1 ns resolution of the
counting electronics)

Fig. 7.5 Histograms of the
differences of arrival times of
the photon pairs for FADOF
on (green) and FADOF on
with hot cell on the path
(black bars at bottom of
graph). No background has
been subtracted

much narrower than, and centred on, the peak of the filter pass-band. In agreement
with these expectations we observe a double-exponential distribution with no visible
modulation with the same FWHM width. This is shown in Fig. 7.5.

7.2.3.3 Spectral Purity

According to the theoretical filter spectrum from [21], we estimate that 98% of the
atom-resonant photon pairs come from degenerate mode (see Fig. 7.3). In order to
test how much light outside the Rubidium D1 line can pass through our FADOF, we
split the light equally between the two different polarization paths of the filter setup
by means of a half-wave plate put before the beam displacer (HWP 1 in Fig. 7.1).
A natural-abundance Rb vapor cell, with 10 Torr of N2 buffer gas and heated until
it is opaque for resonant light, is inserted in one of the paths after the filter. The
collisionally-broadened absorption from this cell blocks the entire FADOF transmis-
sion window, allowing us to compare the arrival time histograms with and without
the resonant component.

The number of photons detected after passing through the hot Rb cell is compara-
ble to the detector dark counts, meaning that most of the filtered light is at the chosen
frequency ω0. We define the spectral purity PS of the FADOF as PS ≡ 1− cHC/cF ,
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where cHC (cF ) is the number of photon pairs which were recorded within a coin-
cidence windows of 50 ns in the path with (without) the hot cell. Considering raw
coincidences (no background subtraction), we obtain PS = 0.98, meaning that the
filtered signal is remarkably pure, as only the 2% of the recorded pairs are out of the
filter spectrum. This 2% agrees with measurements of the polarization extinction
ratio with the FADOF off, i.e., it is due to technical limitations of the polarization
optics and could in principle be improved. From the filter spectrum, we know that, of
the photon pairs within the Rb resonance line, 98% come from the degenerate cavity
mode, we conclude that 96% of the pairs exiting the filter come from the degenerate
mode.

7.2.4 Interference of Biphoton Amplitudes
from Distinct Sources

An SPDC process naturally generates a state of the form

|ψ〉 ∝ |0〉 +
∑
ks ,ki

f (ks, ki )a
†
ks

a†
ki

|0〉 + . . . , (7.1)

where ks and ki index the modes of the signal and idler fields, respectively, and
f is a complex-valued function analogous to the wave function encountered in
non-relativistic quantum mechanics. Following this analogy, one might expect that
observations can only indicate f up to an unobservable global phase. A bit of reflec-
tion shows, however, that even the global phase of f is observable, so long as the
two-photon part of the wave-function exists in superposition with other parts, most
importantly the zero-photon contribution |0〉.

Consider the simplest scenario, in which signal and idler are the same mode, and
differ at most by their times of arrival t , t ′. This is in fact the case when we consider
the filtered output of the CESPDC source described above. The SPDC state becomes

|ψ〉 ∝ |0〉 +
∫

dt dt ′ ψ(t, t ′)a†(t)a†(t ′)|0〉 + . . . , (7.2)

where ψ now plays the role of f . The phase of ψ can be made visible by interfering
the state against another state containing both a zero-photon and a two-photon com-
ponent. A natural candidate is the continuous-wave coherent state with amplitude α:

|α〉 ∝ |0〉 + α

∫
dt a†(t)|0〉 + α2

2

∫
dt dt ′ a†(t)a†(t ′)|0〉 + . . . (7.3)

We can imagine combining at a polarizing beamsplitter the states |ψ〉, with vertical
polarization, and |α〉, with horizontal polarization, to obtain a state
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|Ψ 〉 ≡ |ψ〉V ⊗ |α〉H (7.4)

=
[
1 + α

∫
dt a†

H (t) +
∫

dt dt ′ ψ(t, t ′)a†
V (t)a†

V (t ′)

+ α2

2

∫
dt dt ′ a†

H (t)a†
H (t ′) + . . .

]
|0〉V ⊗ |0〉H (7.5)

with a two-photon component

∫
dt dt ′

[
ψ(t, t ′)a†

V (t)a†
V (t ′) + α2

2
a†

H (t)a†
H (t ′)

]
|0〉V ⊗ |0〉H . (7.6)

Interference of these two terms can be obtained by coincidence detection in a basis
that is neither V nor H . For example, the rate of detection of a photon pair, at times
t and t ′, both in the state |φ〉 ≡ (exp[−iφ]|H〉 + |V 〉)/√2, is found by projection
onto |φ〉⊗2 to give

Rφ(t, t ′) ∝
∣∣∣∣ψ(t, t ′) + α2

2
exp[2iφ]

∣∣∣∣
2

, (7.7)

which clearly depends on the phase of ψ . It should be noted that observing this
interference requires both narrow-band photon pairs, so that the detection times can
be resolved, and a stable phase relation between α and ψ . To maintain this phase
relationship, we use the OPO also as a phase-sensitive amplifier, a well-established
technique from continuous-variable quantum optics.

The experimental setup is shown in Fig. 7.6. A continuous-wave diode laser at
794.7nm generates both the coherent reference beam and, after being amplified
and doubled in frequency, a 397.4nm pump beam for the OPO, described in [17],
which generates a vertically-polarized (V) squeezed vacuum state via SPDC in a
periodically poled KTP crystal. The cavity length is actively stabilized with a Pound-
Drever-Hall lock, to keep one longitudinal V mode resonant at the laser frequency.
The locking beam is H polarized, counter-propagating, and shifted in frequency by
an acousto-optic modulator (AOM), to match the frequency of an H-polarized mode.
The AOM RF power is chopped and the detectors are electronically gated: coinci-
dence data are acquired only when the locking light is off. With these measures, the
contribution of locking light to the accidental coincidences background isminimised.

The V-polarized squeezed vacuum is combined with the H-polarized coher-
ent reference at a polarizing beamsplitter to generate a beam with co-propagating
squeezed and reference components. A polarization transformation, chosen so that
|φ〉 ≡ (exp[−iφ]|H〉 + |V 〉)/√2 arrives to one detector, is implemented with a
quarter- and a half-waveplate, before coupling into a polarization-maintaining fiber.

At the fiber output, the two polarization components are filtered with the two-
polarization FADOF described in Sect. 7.2.3, in order to isolate the squeezed vacuum
and block with high efficiency the hundreds of non-degenerate frequency modes
generated by the OPO. The maximum transmission frequency of this filter is located
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Fig. 7.6 Experimental setup. AOM (EOM) acousto- (electro-) optic Modulator. PBS polarizing
beam splitter. QWP (HWP) quarter- (half-)wave plate. PZT piezoelectric actuator. SMF single mode
fiber. PMF polarization maintaining fiber. FBS fiber beam splitter

at 2.7 GHz to the red of the center of the rubidium D1 line, and the laser frequency is
stabilized at this particular frequency by using an integrated electro-optic modulator
to add sidebands to the laser prior to the saturated absorption spectroscopy.

The relative phaseφrel between the coherent and the squeezedbeam is stabilized by
a quantumnoise lock:OneStokes component is detectedwith a balanced polarimeter,
and the noise power in a 3Hz bandwidth above 500 kHz is computed analogically
using a multiplier circuit. This signal is fed back by a servo loop to a piezo-electric
actuator on a mirror in the pump path, to stabilize the pump phase by a side-of-fringe
lock. A galvanometer mirror is used to switch between the single-photon counting
and stabilization setups at a frequency of ∼100Hz. The reference beam power is
increased during the stabilization part of the cycle, to reach the shot-noise-limited
regime optimal for detection of the squeezing and operation of the noise lock. Two
cascaded AOMs, whose RF power is chopped synchronously with the galvanometer
mirror, modulate the coherent reference beam power, so that it has high power when
the light is entering the stabilization setup and low power when the photon counting
part is active. The system can maintain a fixed φrel over several hours.
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Fig. 7.7 Time-resolved interference of the two-photon amplitude from CESPDC against the two-
photon amplitude from a coherent state. Left Arrival-time distribution, photon pair rate as a function
of time difference τ , for photons pairs either both diagonally-polarized or both circularly-polarized.
A τ -independent coherent state contribution interferes with a CESPDC contribution that has a
double-exponential form centred on τ = 0, with a FWHM width of 26ns. As seen in the two
histograms, the interference can be either constructive or destructive.RightHeight of the interference
peak versus the phase φ appearing in the two-photon state (exp[−iφ]|H〉 + |V 〉)/√2. As expected
for a two-photon interference, and strikingly different from single-photon interference, the period
of oscillation is π

Results are shown in Fig. 7.7, and clearly show both constructive and destructive
interference of the two-photon wave-function against the coherent state.

7.2.5 Full Reconstruction of the Biphoton Wave-function

The form of (7.7) suggests a method to measure the two-photon wave-function,
including not only its amplitude, but also its phase. If the term α2

2 exp[2iφ] is under
our control, it should be possible by setting this term and measuring the resulting
coincidence rates, to infer the complex value of ψ(t, t ′). This idea was made precise
in [22], and the above setup was used to reconstruct the biphoton wave-function
shown in Fig. 7.8.

The results are consistent with a double-exponential amplitude with 26 ns full-
width at half-maximum (FWHM), as expected for a squeezed vacuum state from an
OPO with the 8.1 MHz FWHM bandwidth independently-measured on our system.
The phase of ψ

(λ)
V V , consistent with a non-zero constant value, is reconstructed with

a statistical uncertainty that decreases with increasing |ψ(λ)
V V |, reaching σφ ≈ ±6

degree near τ = 0. A constant phase is expected for an ideal OPO, while a phase
defect could signal cavity or crystal imperfections [52, 53]. Thephase offset is tunable
via the side-of-fringe lock that sets the relative phase of the squeezed vacuum and
reference, and is another indication of interference at the two-photon level.
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Fig. 7.8 Squared amplitude (above) and phase (below) of the reconstructed two-photon wave func-
tion for the squeezed vacuum state. The solid line shows the predicted, double exponential ampli-
tude describing an ideal squeezed vacuum state from our OPO with an independently-measured
8.1 MHz bandwidth, with the amplitude and the offset fitted to the data. Error bars show ±1σ
statistical uncertainty assuming Poisson statistics

7.3 Generation of Spectrally-Pure, Atom-Resonant
NooN States

In this section we describe a series of experiments to generate atom-tuned pho-
ton pairs from Type-II SPDC. Section7.3.1 presents a motivation in terms of
NooN states and their interest for quantum-enhanced sensing, Sect. 7.3.2 describes
the SPDC source and characterization of the generated states, Sect. 7.3.3 describes
the atomic filter, Sect. 7.3.4 describes measurements of the spectral purity achieved,
and Sect. 7.3.5 describes the application of atom-tuned NooN states to quantum-
enhanced sensing of magnetic fields using an atomic ensemble as a sensor.

7.3.1 NooN States

We now describe the generation of atom-tuned photon pairs of orthogonal polariza-
tion, with one photon H -polarized and one V -polarized, but indistinguishable in all
other degrees of freedom. Such a state can be written

|ψ〉 = a†
H a†

V |0〉 = 1

2

(
a†

La†
L − a†

Ra†
R

)
|0〉 (7.8)
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where the circular polarization modes are defined by aL = (aH + iaV )/
√
2, aR =

(aH − iaV )/
√
2. When written in terms of the photon numbers nL , and nR in the

L , R modes respectively, and using the notation |nL , nR〉L ,R , this state is

|ψ〉 = 1√
2

(|N , 0〉L ,R + |0, N 〉L ,R
)

(7.9)

with N = 2, an example of a “NooN” state, named for the letters that appear in the
kets |·〉.

Consider a linear polarization interferometer that operates by Faraday rotation.
This imposes a differential phase φ between the L and R parts of the state, trans-
forming the NooN state as

1√
2

(|N , 0〉L ,R + |0, N 〉L ,R
) → 1√

2

(
|N , 0〉L ,R + ei Nφ |0, N 〉L ,R

)
. (7.10)

Note that the phase acts N times on the second part of the state, because it contains
N photons. This implies that any signal derived from this state must vary with Nφ,
producing an N -fold acceleration of any interferometric signal. If we consider that
φ is an unknown phase, this accelerated interference implies an N -fold increase in
the Fisher information [54], allowing estimation of φ with uncertainty δφ = 1/N ,
improving upon the standard quantum limit of δφ = 1/

√
N , the best obtainable with

non-entangled states.
A major motivation of this work is to test the suitability of entangled states for

quantum enhanced sensing with atoms. In atomic media, interferometric phase shifts
are necessarily accompanied by absorption, implying deposition of energy in the
probed medium. Absorption also degrades any quantum advantage, as described by
recent theory [55, 56]. To further complicate matters, in real media the phase shift
and absorption may depend on the same unknown quantity. In a trade-off of rotation
strength versus transparency, we employ a NooN state in a 7MHz spectral window
detuned four Doppler widths from the nearest 85Rb resonance. We generate this, as
above, with a CESPDC source and an ultra-narrow atom-based filter.

7.3.2 Type-II CESPDC Source

As laser source we use a continuous-wave (CW) diode laser, stabilized to the D1
transition of atomic rubidium at 795nm and then frequency doubled to generate
a 397.5nm pump that is passed through a mode-cleaning single-mode fiber and
then focused into the center of a 20mm-long periodically-poled KTiOPO4 (PPKTP)
crystal in a cavity, forming the OPO (Fig. 7.9). A pump beam waist of 30µm is
achieved with a telescope. This beamwaist was chosen to be larger than the optimum
for degenerate down-conversion according to Boyd and Kleinman [57] in order to
reduce possible effects of thermal lensing [58] and gray-tracking [59]. The crystal is



7 Generation, Characterization and Use of Atom-Resonant Indistinguishable … 199

SHG

Atomic
reference

PPKTP

PD1

M1 M2

M3 M4

KTP

PBS1

QWP

QWP Delay

Chopper

PBS2

50:50
FBS1

Pump

Locking

HWP

PD2

Coincidence
electronics

QWP 1

SPCM

50:50
FBS2

QWP 2

Fig. 7.9 Type-II CESPDC. Source PPKTP, phase-matched nonlinear crystal; KTP compensating
crystal; M1–M4 cavity mirrors; PBS polarizing beam splitter; HWP half wave plate; QWP quarter
wave plate; SMF single-mode fiber; PD photodiode

poled for type-II degenerate down-conversion, and produces orthogonally-polarized
signal and idler photons. Due to crystal birefringence, these photons experience
temporal walk-off that would, if un-compensated, render the photons temporally
distinguishable. A second, unpoled, KTP crystal of the same length and crystal cut,
and rotated about the beam direction by 90◦, is added to the long arm of the cavity
in order to introduce a second walk-off equal in magnitude but opposite in sign [51].

The ring cavity is formed by two flat mirrors (M1, M2) and two concave mirrors
(M3,M4)with a radius of curvature of 100 mm.The effective cavity length of 610mm
corresponds to a FSR of 490 MHz. This geometry provides a beam waist of 42µm
for the resonant down-converted beam at the center of the crystal, which matches the
30µm pump beam waist. Cavity length is controlled by a piezoelectric transducer
on mirror M1. The output coupler M2 has a reflectivity of 93% at 795 nm. All other
cavity mirrors are highly reflecting (R > 99.9%) at 795nm and highly transmitting
at 397.5 nm (R < 3%) resulting in a single-pass through the nonlinear crystal for
the blue pump beam. The crystal end faces are AR coated for 397.5 and 795 nm.
The measured cavity finesse of 70 results in a cavity linewidth of 7 MHz.

While the walk-off per round trip is compensated by the KTP crystal, there is
an uncompensated walk-off of in average half a crystal-length, because of the dif-
ferent positions inside the PPKTP, at which a photon pair could be generated. This
leads to a remaining temporal distinguishability at the output of the cavity that is
completely removed by delaying the horizontally polarized photon of each pair
with a Michelson-geometry compensator: a polarizing beam splitter, retro-reflecting
mirrors, and quarter wave-plates set to 45◦ introduce an adjustable delay while
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preserving spatial mode overlap. After recombination the pairs are sent through a
half wave plate (HWP2) that together with PBS2 determines the measurement basis.
Both output ports of PBS2 are coupled into single-mode fibers(SMF) connected to
single photon counting modules (Perkin Elmer SPCM-AQ4C). The pulse events are
registered and processed by coincidence electronics (FAST ComTec P7888) with a
resolution of 1 ns.

The OPO cavity is actively stabilized by injecting an auxiliary beam, derived from
the same diode laser, into the cavity via the output coupler (M2). This light is detected
in transmission by a photodiode (PD1). Frequency modulation at 20 MHz, applied
via the laser diode current, is used to lock to the peak of the cavity transmission.
To eliminate the background noise caused by this auxiliary beam and to protect
the SPCMs, the locking and measuring intervals are alternated using a mechanical
chopper at a frequency of about 80Hz with a duty cycle of 24%.

A general polarization analyzer, consisting of a quarter wave plate (QWP1) fol-
lowed by a half wave plate (HWP) and a polarizing beam splitter (PBS2) is used to
determine the measurement basis as shown in Fig. 7.9. To generate a NOON state
in the H /V basis another quarter wave plate (QWP2) can be added. The two output
ports of PBS2 are coupled to single-mode fibers and split with 50:50 fiber beam
splitters. The four outputs are connected to a set of single photon counting modules
(Perkin Elmer SPCM-AQ4C). Time-stamping was performed by coincidence elec-
tronics with a resolution of 2 ns. By considering a time window of 150 ns, which
is longer than the coherence time of each individual photon, we can evaluate the
coincidences between any two of the four channels.

7.3.2.1 Characterization of the NooN State

Rotating the HWP before the detection setup allows us to demonstrate the greater
resolution available with the NooN state, as shown in Fig. 7.10 (left). First, send-
ing just a single polarization and detecting the rate of single-photon arrivals, we
observe the expected oscillations with a period, in HWP angle, of 90◦. Then, send-
ing NooN states and detecting in coincidence, we observe a two-fold reduction in the
oscillation period simultaneous with high visibility, due to the two-photon coherence
of the NooN state. The sinusoidal fit function of the coincidences shows a visibility
of 90%.

The achieved high visibility of the state is the requirement for a high-fidelity
NOON state. We introduce another quarter wave plate (QWP2) before the analyzing
part of the setup to create a two-photon NOON state in the H /V basis, which can be
written 1/

√
2(|H1, H2〉 + e2iφ |V1, V2〉). Since the output state of the cavity |H V 〉 is

already a NOON state in the circular basis |H V 〉 = i/
√
2(|L1, L2〉− |R1, R2〉), this

state can be transferred into a NOON state in the H /V basis by sending it through
an additional quarter wave plate at 45 degrees.

We also use quantum state tomography, as in [60], to measure the polarization
density matrix of the NooN state [19]. In Fig. 7.10 (right) real and imaginary parts
of the reconstructed density matrix of a NooN state are displayed. The coherence
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Fig. 7.10 Multi-photon interference and state characterization. Left panels Resolution of one-
and two-photons states under rotations. a Single-photon rotation measurement showing ordinary
oscillations with a period of 90◦ in the HWP angle. In this measurement only the H polarized part
of the pair-photon state was sent to the analyzer. Vertical axis shows normalized singles rate at
the transmitted port of PBS2. b High-visibility super-resolving phase measurement. Normalized
coincidence detection between reflected and transmitted port of PBS2 for a NooN state input. The
shorter period of the coincidence counts oscillations indicates super-resolution.Right panelsResults
of quantum state tomography to characterize the NooN state. c Real and d imaginary part of the
polarization density matrix of the pair-photon state transformed to a two-photon NOON state in the
H , V basis, showing a nearly equal superposition of |H H〉 and |V V 〉

of the state is partly imaginary leading to a phase of 2φ = 0.20 between HH and
VV components (Fig. 7.10(b)), which is however of no importance in the follow-
ing. The fidelity of this state with the corresponding ideal two-photon NooN state
1/

√
2(|H1, H2〉 + e2iφ |V1, V2〉) is 99%, making the state suitable for applications

such as phase estimation [6].
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Fig. 7.11 Principle of the circular dichroism filter. a Non-resonant photons are blocked, either by
the first or by the second PBS. b Resonant photons are linearly polarized after the first PBS, may
become circularly polarized by interaction with the circularly dichroic atomic medium, and then
have a chance of passing the second PBS. In this way, atom-resonant light can pass the filter. In
the ideal case of a perfect circular absorber, the transmission would still only be 25%. c optical
pumping, shown here on theD1 line,moves atomic population toward the states F = 2, m F = 2 and
F = 2, m F = 1.d from these states, the atoms cannot absorbmoreσ+ light on the F = 2 → F ′ = 1
transition, creating a strong circular dichroism at this frequency

7.3.3 Induced Dichroism Atomic Filter

Aswith the Type-I OPO described earlier, only a small portion of the SPDC output of
the Type-II OPO is atom-resonant, and a narrow-band filter is necessary to select this
atom-resonant portion. We use an induced dichroism atomic filter (see Fig. 7.11),
similar in several ways to the FADOF of Sect. 7.1.2, to separate the frequency-
degenerate output of the CESPDC from the rest of the output. The filter, described
in references [37, 38], has an 80 MHz FWHM passband centered on ωNooN and
> 35 dB out-of-band rejection, so that only atom-tuned photons are detected. A
representative spectrum is shown in Fig. 7.13.

As shown in Fig. 7.12 (right), a YVO4 crystal separates horizontally and ver-
tically polarized photons by 1mm. The polarization modes travel parallel to each
other through a hot rubidium cell of isotopically pure 87Rb, optically pumped by a
single-frequency laser resonant to the F=2→F’=3 transition of the D2 line of 87Rb
(not shown). Due to Doppler shifts, the optical pumping only effects a portion of the
thermal velocity distribution, and creates a circular dichroism with a sub-Doppler
linewidth of about 80 MHz. A second YVO4 crystal introduces a second relative
displacement, which can re-combine or further separate the photons, depending
on polarization. Separated photons are collected, while re-combined photons are
blocked. A half wave plate is used to switch between the “active” configuration,
in which only photons that change polarization in the cell are collected, and the
“inactive” configuration, in which photons that do not change are collected. In the
“active” configuration, the system acts as an “interaction-free measurement” detec-
tor for polarized atoms: a photon is collected only if it experiences a polarization
change, i.e., if it is resonant with the optically pumped atoms, which absorb one
circular component of the photon polarization state. The filter transmission is shown
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Fig. 7.12 Two arrangements for induced dichroism filtering. Left Pumping on the D1 transition
with geometric separation of the pump and probe beams, as in [37]. By combining the pump and
probe beams using pierced mirrors, the pump beam propagates in a ring-shaped beam, coaxial with
the probe beam, to achieve optical pumping of the atoms before they reach the probe beam, but
without geometrical overlapping that beam. Right Pumping on the D2 transition at 780nm with
overlapped beams, as in [38]. The wavelength difference between the pump and probe allows pump
light to be filtered using commercial interference filters (IF), and the use of YVO4 walkoff crystals
as polarizers allows both polarizations to be filtered and collected. In both arrangements, the pump
and probe are counter-propagating, giving rise to sub-Doppler resonances

in Fig. 7.13. Neighboring modes of the degenerate mode at the rubidium transition
are already 490MHz detuned and therefore outside of the filter linewidth of 80MHz.
The out-of-band extinction ratio is ≥35dB. The filter transmission is optimized by
adjusting the overlap between pump and single-photon mode, the rubidium vapor
temperature and the magnitude of a small orienting applied magnetic field. The tem-
perature is set to 65 ◦C, which corresponds to an atomic density of 5 × 1011 cm−3.
The measured filter transmission of 10.0% for horizontal polarization and 9.5% for
vertical polarization is limited by pump power and in principle can reach 25% [37].

To avoid contamination of the single-photon mode by scattered pump light, the
pump enters the vapor cell at a small angle and counter-propagating to the single-
photon mode. Interference filters centered on 795nm further reject the 780nm pump
light with an extinction ratio of>105. Themeasured contribution frompump photons
is below the detectors’ dark count rate. Each output is coupled into single-mode fiber.

7.3.4 Spectral Purity Measurement

The CESPDC source, shown in Fig. 7.9, was filtered using the geometry of Fig. 7.12
(right), to produce in-principle spectrally pure photon pairs. The geometry of the
filter and detection setup are shown in Fig. 7.14 (left). To test the spectral purity, one
photon was detected as a herald, and the other subjected to further spectral filtering
using a cell of Rb vapor. The cell could be maintained at room temperature, causing
little absorption, or at a high temperature, inwhich case it efficiently blocked resonant
photons. Figure7.14 (right) shows the results: with the cold blocking cell, a double-
exponental arrival-time distribution is observed, as expected. When the blocking cell
is heated, the coincidences drop to the dark-count level. We estimate the fraction of
atom-resonant photons among the heralded single photons is at least 94% [38].
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Fig. 7.13 Transmission of the circular dichroism filter, obtained with the configuration of Fig. 7.12
(left). Blank areas around 1500MHz indicate regions where the transmission was unmeasurably
low, due to the strong extinction of the 85Rb transition

Fig. 7.14 Induced dichroism filter spectral purity measurement. Left Schematic of the setup. Right
Arrival-time correlations with the second vapor cell cold (green) and hot (black). When the second
vapor cell is hot, it blocks the output to the dark count level of the detectors, implying at least 94%
atom-resonant photons

7.3.5 Quantum-Enhanced Sensing of Atoms Using
Atom-Tuned NooN States

We now apply the atom-tuned NooN states for sensing of Faraday rotation in a
hot atomic ensemble. Because the Faraday rotation is a resonant phenomenon, it
is essential to have near-resonant photons for this purpose. We use a 85Rb atomic
spin ensemble, similar to ensembles used for optical quantum memories [61] and
quantum-enhanced atom interferometry [15, 16, 62]. Non-destructive dispersive
measurements on these systems, used for storage and readout of quantum informa-
tion or to produce spin squeezing, are fundamentally limited by scattering-induced
depolarization [14, 61, 63, 64]. This provides an experimentally-grounded moti-
vation for the idea that the number of probe photons is a limiting resource when
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Fig. 7.15 Schematic of the setup for probing of an atomic magnetometer with atom-resonant
NooN states. Photon pairs are generated by CESPDC as in Fig. 7.9, passed through a heated cell
containing isotopically-enriched 85Rb and immersed in a longitudinal magnetic field, filtered as in
Fig. 7.12 (right), and detected with a pair of Hanbury-Brown and Twiss setups. The three possible
coincidence outcomes: HH, HV, and VV can then be monitored as a function of the applied B field

measuring this system; the number of probe photons cannot be increased without
increasing the damage to the spin ensemble.

The setup is shown schematically in Fig. 7.15. Narrowband NooN states atωNooN,
the optical frequency of the 52S1/2F=2 → 52P1/2F′=1 transition of the D1 line of
87Rb, are generated by CESPDC, as described above, and sent through the ensemble.
The ensemble of 85Rb atoms is contained in an anti-reflection coated vapor cell with
internal length L = 75 mm, in a temperature-controlled oven at 70◦ C, together with
a 0.5% residual 87Rb component. An applied axial magnetic field B of up to 60
mT produces resonantly-enhanced Faraday rotation of the optical polarization. After
leaving the vapor cell, the photons are separated in polarization, frequency filtered,
and detected with single-photon counters. Two counters on each polarization output
record all possible outcomes, i.e., coincidences of HH, HV, and VV polarizations.

7.3.5.1 Physics of Near-Resonant Faraday Rotation

The cell, with an internal path of 75mm and containing purified 85Rb with a small
(0.5%) admixture of 87Rb, no buffer gas, and no wall coatings that might preserve
polarization, is modeled as a thermal equilibrium, Doppler-broadened vapor subject
to Zeeman shifts in the intermediate regime. The atomic structure is calculated by
diagonalization of the atomic Hamiltonians H (iso)

At = H (iso)
0 + H (iso)

HFS + H (iso)
Z , where

H (iso)
0 is the energy structure of the isotope isoRb including fine-structure contribu-

tion, H (iso)
HFS = gHFSJ · I is the hyperfine contribution, and H (iso)

Z = b · (gJ J + gI I) is
the Zeeman contribution. All atomic parameters are taken from references [65, 66].
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(a) (b)

Fig. 7.16 Energy level diagrams relevant to Faraday rotation on the D1 line of Rb. a Energy levels
of 87Rb relevant to generation and filtering (not to scale). The frequency of the NooN state ωNooN
is tuned to the 52S1/2F = 2 → 52P1/2F′ = 1 transition of the D1 line of 87Rb. The optical pumping
laser of the filter, with frequency ωfp, addresses the 52S1/2F = 2 → 52P3/2F′ = 3 transition of
the D2 line of 87Rb. The 15nm separation from the detection wavelength allows a high extinction
using interference filters centered on ωNooN. b D1 energy levels of the probed ensemble versus field
strength B, showing 85Rb levels in blue and 87Rb levels in red. At zero field ωNooN is 1.5 GHz
detuned from the nearest 85Rb transition. With increasing B, the nearest 85Rb transition moves
closer to resonance, increasing the Faraday rotation. The Doppler-broadened absorption begins to
overlap ωNooN near B = 50 mT

The matrices H (iso)
At are numerically diagonalized to find field-dependent energy

eigenstates, illustrated in Fig. 7.16, from which the complex linear optical polariz-
ability is calculated, including radiative damping. The complex refractive index n±
for σ± polarizations is computed including Doppler broadening and a temperature-
dependent atom density given by the vapor pressure times the isotope fraction, and
the transfer function for the cell is calculated from the integral of the index along
the beam path, including the measured drop in field strength of 15% from the center
to the faces of the cell. Transmission spectroscopy, shown in Fig. 7.17, agrees well
with theory.
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Fig. 7.17 Spectroscopic characterization of the rubidium atomic ensemble.Circles showmeasured
values, curves show predictions of first-principles model (see text). a Saturated-absorption spectra
acquired with a natural-abundance cell at room temperature, as a frequency reference. Horizontal
axis shows detuning from the center of the D1 spectral line. b–d Transmission spectra for the
cell containing 85Rb plus 0.5% 87Rb at temperatures of 22◦C, 53◦C and 83◦C, respectively. For
each temperature, spectra with measured field strengths (in mT) of 0, 12, 24, 37, 49, and 58 are
shown, in order of increasing line broadening. Grey vertical line shows ωNooN, the probe detuning.
This operating point gives strong Faraday rotation with low absorption over the range 0–49mT.
Absorption from the small residual 87Rb component can be seen in d. For clarity, parts a–c have
been offset vertically by 1, 0.75, and 0.5, respectively

Figures7.16 and 7.17 illustrate the optical physics of this magneto-optic rotation:
The probe photons are red detuned from the 85Rb transitions, and experience the
same positive contribution to the refractive index at zero field. When the B-field is
applied, however, the nearby 85Rb F = 3 → F ′ transitions split, with the now
circularly-polarized transitions moving closer or farther from the probe frequency in
function of their polarization. This provides a growing refractive index contribution
for one circular polarization, and a decreasing contribution for the other, i.e. a circular
birefringence giving rise to polarization rotation. Due to the proximity to resonance,
the rotation angle increases non-linearly with B until at around B = 50 mT the
85Rb F = 3 → F ′ lines begin to overlap with the probe frequency and significant
absorption begins.

7.3.5.2 Faraday Rotation Signals with Atom-Tuned NooN States

As seen in Fig. 7.18, all coincidence outcomes oscillate as a function of B, with two-
fold super-resolution relative to the single-photon oscillation, visible in the singles
counts due to a small imbalance between H and V in the input state. The interference
visibilities are all≥ 90%,well above the 33%classical limit forHHandVVvisibility
[67]. Also shown are predicted coincidence rates [23], which show good agreement.
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Fig. 7.18 High-visibility super-resolving Faraday rotation probing using optical NooN states. Top
curve for phase reference, singles detection rate (V polarization) versus field strength B shows one
oscillation in the range B = 0 to 50mT. Other curves coincidence detections HH, HV, and VV
show two oscillations in the same range (super-resolution) and high visibility. Symbols show mea-
sured data (no background subtracted), with ±1σ statistical uncertainties. Curves show predicted
coincidence rates using a first-principles atomic susceptibility calculation illustrated in Fig. 7.16
with a NooN state ρ found by quantum state tomography

An analysis of the Fisher information from these coincidence rates confirm the
utility of entangled states for probing atomic ensembles. The NooN state achieves
a factor 1.30±0.05 more Fisher information per photon than the standard quantum
limit (SQL). i.e. it gives more information per photon than can be extracted using
any state consisting of non-entangled photons. It achieves this advantage at a field of
B = 37 mT, near the point at which absorption begins to become important. Perhaps
more important to eventual application, the NooN state gives also an advantage in
Fisher information per scattered photon, the figure of merit for low-damage probing.
As described in [23] the NooN state gives an advantage of 1.40± 0.06 over the SQL.

Among other things, this exercise uncovered a previously unknown feature of
quantum-enhanced sensing in imperfect interferometers, in this case those with
losses. Here, as one can expect for most interferometric measurements on mater-
ial systems, the loss depends on the measured quantity (here B). This dependence
makes a positive contribution to the Fisher information, offsetting the well-known
[68] reduction of Fisher information due to loss of photons.

7.4 Conclusions

We have described two experimental projects to generate high- spectral purity indis-
tinguishable photon pairs using cavity-enhanced SPDC and extremely narrowband
optical filters based on resonant optical effects in atomic ensembles. Combining
these techniques, we have demonstrated bright sources of entangled photons pairs,



7 Generation, Characterization and Use of Atom-Resonant Indistinguishable … 209

with both high two-photon coherence, for example 99% fidelity with a two-photon
NooN state, and high spectral purity, ≥ 94% atom-resonant heralded single photons
for a type-II source and ≥ 98% atom resonant photon pairs for a type-I source. The
potential for interaction with atoms is clearly shown by the generation and use of
atom-tuned NooN states to beat the standard quantum limit in non-destructive prob-
ing of an atomic magnetometer. As this work goes forward, it will be interesting to
see how indistinguishable photon pairs can interact with other atomic systems, for
example atomic quantum memories and atomic quantum information processors.
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Appendix: Second-Order Correlation Functions of Filtered
Output

In this section we consider the second order correlation function of the field operators
aout in a form:

G(2)(T ) ∝ 〈a†
out(t)a

†
out(t + T )aout(t + T )aout(t)〉 (7.11)

for multimode (unfiltered) and single-mode (filtered) output of the OPO.
As shown by Lu et al. [69], G(2)(T ) describing the output of a single-mode,

far-below-threshold OPO has the form of double exponential decay

G(2)
single(T ) ∝ e−|T |(γ1+γ2), (7.12)

where the reflectivity of the output coupler is r1 = exp[−γ1τ ], the effective reflectiv-
ity resulting from intracavity losses is r2 = exp[−γ2τ ] and τ is the cavity round-trip
time.An ideal narrowbandfilterwould remove all the nondegenerate cavity-enhanced
spontaneous down-conversion CESPDCmodes, reducing the G(2)(T ) to G(2)

single(T ).
This filtering effect was demonstrated in [38] for a type-II OPO and an induced
dichroism atomic filter.
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In [69] it is also predicted that when the filter is off, so that the output consists of
N cavity modes, G(2)(T ) takes the form

G(2)
multi(T ) ∝ G(2)

single(T )
sin2[(2N + 1)πT/τ ]
(2N + 1) sin2[πT/τ ] (7.13)

≈ G(2)
single(T )

∞∑
n=−∞

δ(T − nτ), (7.14)

i.e., with the same double exponential decay but modulated by a comb with a period
equal to the cavity round-trip time τ . In our case the bandwidth of the output contains
more than 200 cavity modes, and the fraction in (7.13) is well approximated by a
comb of Dirac delta functions.

The comb period of τ = 1.99 ns is comparable to the tbin = 1 ns resolution
of our counting electronics, a digital time-of-flight counter (Fast ComTec P7888).
This counter assigns arrival times to the signal and idler arrivals relative to an internal
clock.We take the “window function” for the i th bin, i.e., the probability of an arrival
at time T being assigned to that bin, to be

f (i)(T ) =
{
1, if T ∈ [i tbin, (i + 1)tbin] ,

0, otherwise .
(7.15)

Without loss of generality we assign the signal photon’s bin as i = 0, and we
include an unknown relative delay T0 between signal and idler due to path length,
electronics, cabling, and so forth. For a given signal arrival time ts , the rate of idler
arrivals in the i th bin is

∫
dti f (i)(ti )G

(2)
multi(ti − ts − T0) (ti is the idler arrival time).

This expression must be averaged over the possible ts within bin i = 0. We also
include the “accidental” coincidence rate G(2)

acc = tbinR1R2, where R1, R2 are the
singles detection rates at detectors 1, 2, respectively. The rate at which coincidence
events are registered with i bins of separation is then

G(2)
multi,det(i) = 1

tbin

∫
dts f (0)(ts)

∫
dti f (i)(ti )G

(2)
multi(ti − ts − T0) + G(2)

acc (7.16)

=
∞∑

n=−∞
G(2)

single(nτ)
1

tbin

∫ tbin

0
dts f (i)(ts + T0 + nτ) + G(2)

acc. (7.17)

We take T0 is a free parameter in fitting to the data. Note that if wewrite T0 = ktbin+δ

then the simultaneous events fall into kth bin and δ ∈ [−tbin/2, tbin/2] determines
where the histogram has the maximum visibility due to the beating between the 1
ns sampling frequency of the detection system and the 1.99 ns comb period. APD
time resolution is estimated to be 350 ps FWHM (manufacturer’s specification), i.e.
significantly less than the TOF uncertainty, and is not included here.
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Chapter 8
On-Demand Release of a Heralded Quantum
State from Concatenated Optical Cavities

Jun-ichi Yoshikawa, Kenzo Makino and Akira Furusawa

Abstract We describe a concatenated-cavities system that is capable of creation,
storage, and on-demand release of a heralded optical quantum state. Here, two optical
cavities are concatenated, where one is a memory cavity to store a quantum state
inside, and the other, placed at the output of the memory cavity, is a shutter cavity to
control the release from the memory cavity. When quantum entanglement is created
by means of parametric down conversion and shared between two frequency modes
inside the memory cavity, it is possible to eject one mode promptly while keeping the
other mode inside the cavity. A projective measurement on the ejected mode results
in probabilistic and heralded reduction of the stored mode into a quantum state
through the quantum correlation. Once a quantum state is successfully created and
stored in this way inside the memory cavity, it can be released on demand by quickly
shifting the resonance of the shutter cavity. This scheme was first experimentally
demonstrated for a heralded single-photon state, which we also describe here.

8.1 Introduction

Photons are almost the only resource for quantum communication when the commu-
nication distance is not very short. In particular, photons in the telecom wavelength
range are especially suited for transfer through optical fibers. On the other hand, there
is a great demand for storing photonic information locally. An important example
that joins these two communication tasks is the quantum repeater for long-distance
quantum communication [1, 2], in which local stations keep their photonic informa-
tion until all of them are linked by entanglement. Therefore, it is a common view that

J. Yoshikawa (B) · K. Makino · A. Furusawa
Department of Applied Physics, School of Engineering, The University of Tokyo,
7-3-1 Hongo,Bunkyo-ku, Tokyo 113-8656, Japan
e-mail: yoshikawa@ap.t.u-tokyo.ac.jp

K. Makino
e-mail: makino@alice.t.u-tokyo.ac.jp

A. Furusawa
e-mail: akiraf@ap.t.u-tokyo.ac.jp

© Springer International Publishing Switzerland 2015
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the transfer of photonic quantum information to static matter systems is an indispens-
able technique for future quantum information protocols. However, a problem is that
most kinds of quantum memories restrict the optical wavelength. It is determined
by the absorption lines of the matter systems, and is typically far from the telecom
wavelength. Of course, this problem can be solved by wavelength conversion based
on nonlinear optics, and indeed a certain effort has been made in this direction [3, 4].
Here we describe an alternative possibility, namely, quantum memories with optical
cavities. Photons are moving back and forth between mirrors constructing a cavity,
and this situation can be considered as the photons being virtually stopped. In this
case, the wavelength of light can be arbitrarily chosen from the continuous domain
of near-infrared and optical wavelength regions, where high-reflectivity mirrors are
available.

There has been a series of works on all-optical quantum memories, especially
using nanocavities intending future incorporation into integrated optical quantum
circuits [5, 6]. However, what we describe here is somewhat in a different stream.We
address switchable concatenated cavities in free space where photon-pair generation
and quantum memory storage are elegantly unified. Our approach is based on an
experimental success in storage and on-demand release of pure single photons [7],
which became in fact a first demonstration to control the release timing of a quantum
statewith a negativeWigner function. The negativity of aWigner function is awitness
of strong nonclassicality, only obtainable when a non-Gaussian quantum state is
sufficiently pure. In the case of a single-photon state, the single-photon fraction
〈1|ρ̂|1〉 higher than 1/2 is a sufficient condition for a negative Wigner function,
where ρ̂ is a single-mode density operator and |1〉 is a single-photon state vector.

Control of highly pure photons by quantum memories is important, not only
in quantum communication, but especially in quantum computation with optical
quantum states. In particular, it is known that pure photons processed by a net-
work of beamsplitters followed by photon-number-resolving detectors are, when
supported by quantum memories, sufficient for efficient quantum computation [8].
But for such linear-optical quantum computation to be fault-tolerant, the product of
the photon-source efficiency (i.e., single-photon fraction in emitted single modes)
and the detection efficiency must be higher than 2/3 in a known scheme [9]. Besides,
in a simulation of continuous-variable systems, it is pointed out that a system with-
out negativity in itsWigner function representation is simulable [10]. Although there
seems to be no such clear boundary for purities in quantum communication at the
moment but rather storage lifetime seems to be more important, the high-purity may
also open a new realm in quantum communication [11].

High-purity single photons as traveling wavepackets have been experimentally
created using a probabilistic, heralding scheme [12] that exploits nonlinear opti-
cal effects of parametric down conversion and reduction of wavepackets by photon
detection. In parametric down conversion, the pairs of signal and idler photons are
randomly created, and the detection of an idler photon heralds a signal photon. The
resulting heralded single photons are often highly pure, because their generation
does not rely on strong coupling with matter systems, in which case collection of
a strongly-confined photon into a single traveling wavepacket is typically poor in



8 On-Demand Release of a Heralded Quantum State from Concatenated … 219

efficiency. In addition, another advantage of the heralding scheme is that the wave-
length of the photon can be chosen from a wide range, by utilizing for instance
a periodically-poled crystal for the quasi-phase-matching of the parametric down
conversion. Moreover, the capabilities of a heralding scheme extend beyond her-
alded single photons. The heralding scheme can also create arbitrary superposition
of plural photonic states, and indeed, heralded creation of superposition of up to
three photons has been reported [13]. The disadvantage of the probabilistic nature
can be circumvented if we could manage highly-efficient quantum memories. And
furthermore, if the quantum memories are all-optical, composed of optical cavities,
they do not spoil the free choice of the optical wavelength, a big advantage of the
heralding scheme. The experiment described in this chapter [7] is a significant step
toward this midterm goal.

As explained later, high purity of heralded single photons in the experimental
demonstration [7] is partly owing to a one-step mechanism, in which the memory
cavity is directly excited, accompanied by a photon emission serving as a herald. In
contrast, in the case of a two-stepmechanism, inwhich a photon pair is first generated
and then a photon is stored in a quantummemory, the coupling efficiency of the flying
photon into the quantum memory becomes a concern, but this cumbersomeness is
avoided in the one-step mechanism. This one-step mechanism is in analogy with
the atomic-ensemble quantum memory scheme with Raman transitions, where a
collective spin state of the quantum memory is excited, accompanied by an emission
of a Stokes photon serving as a herald. This atomic-ensemble counterpart has been
a target of intensive studies since it was proposed by Dual et al. as a promising
building block of a quantum repeater [1], and finally, just after the report of the
concatenated-cavities scheme, high-purity single photons from an atomic-ensemble
quantum memory was also reported [14]. Curiously, the characteristics of these two
demonstrations were comparable. The single-photon fractions of the released single-
photon states were significantly better than 50%, which is sufficient for a negative
Wigner function [12], while the memory lifetimes were of the order of 1 µs. These
heralding schemes with quantum memories are potentially extended to a variety of
optical quantum states [13], and additionally Gaussian processing after the memory
release further broadens the available quantum states. Indeed, squeezing operation
on a single-photon state was experimentally demonstrated [15], giving an output
state well approximated by a superposition of two coherent states [16], a state often
referred to as a Schrödinger’s kitten state. When this squeezer is combined with the
controlled single photons described here, it means that a Schrödinger’s kitten state
is in principle also available on demand.

In Sect. 8.2, the working principle of the concatenated-cavities quantummemory,
in which a photon-pair generator is integrated, is described. In Sect. 8.3, the first
experimental demonstration applied to the control of heralded single photons is
described. In Sect. 8.4, this chapter is summarized. In Appendix 1, the mathematical
model of the concatenated cavities is described. In Appendix 2, the longitudinal
mode in homodyne detection is briefly explained.
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8.2 Working Principle

In this section, we describe the working principle of the one-step mechanism of the
memory excitation accompanied by a herald, as well as the mechanism of the on-
demand memory release. First we explain the case of heralded single-photon states,
and then we extend the scheme to general optical quantum states.

Figure8.1 helps to understand the working principle of the concatenated-cavities
memory system, in which a photon-pair generator is integrated. Two cavities are
concatenated, where the one, referred to as a memory cavity, is a cavity to store
photons inside, while the other, referred to as a shutter cavity, is a cavity to select
which photon to eject from the memory cavity to the external world. The memory
cavity contains a nonlinear-optical crystal, and the photon pairs are directly generated
inside the memory cavity by spontaneous parametric down conversion. Since the
photons in the memory cavity have to pass through the shutter cavity to be ejected,
their lifetimes inside the memory cavity are dependent on their optical frequencies,
and controllable through the resonance points of the shutter cavity. This mechanism
enables earlier release of the idler photon as a herald, as well as on-demand release
of the heralded signal photon, as explained below.

The system takes two phases. One is the phase of heralding and storing, whose
schematic diagram is depicted in Fig. 8.1a and the corresponding frequency-domain
diagram is depicted in Fig. 8.1b, while the other is the phase of releasing, whose
schematic diagram is depicted in Fig. 8.1c and the corresponding frequency-domain
diagram is depicted in Fig. 8.1d. Note that the frequency-domain diagrams are only
conceptual ones for basic understanding, and, to be precise, the bandwidths of the
stand-alone memory cavity should be very narrow. Cavities have many frequency
modes as their longitudinal modes, which are equally spaced by their own free spec-
trum ranges. The signal and idler photons are probabilistically but simultaneously
created in different frequency modes of the memory cavity. Here, along with the
ordinary heralding scheme, the pumping level for the parametric down conversion
must be sufficiently low in order to suppress unwanted multiphoton components.
Initially, the resonance point of the shutter cavity is matched to the frequency of the
idler field, but not to that of the signal field. In this phase, a created idler photon is
immediately ejected through the shutter cavity, while the partner signal photon is
confined inside the memory cavity. The idler field is monitored by a photon detector,
and the detection of an idler photon heralds a signal photon, which is existing as
an excitation of the cavity mode. In this way the heralded single photon is stored in
the cavity mode until the experimental conditions are changed. The pumping might
be stopped at this point to prevent further photon creation. At the timing when the
signal photon is desired by an external user, it can be released by fast switching to
the releasing phase. In the releasing phase, the resonance point of the shutter cavity
is shifted to be matched to the frequency of the signal field. Then, the intracavity
signal field in a single-photon state is rapidly released. This releasing process and
the resulting shape of the traveling wavepacket is described in Appendix 1.
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A key point for understanding this method is the fact that, when one of the fre-
quencymodes is selected as the signal, a photon is actually stretched uniformly inside
the memory cavity. Therefore, this memory does not have a periodic behavior with
respect to the round-trip time of photons inside the memory cavity, and in principle
the release timing can be arbitrarily chosen from continuous time, unlike a simple
storage-loop switching scheme [17].

So far we discussed the scheme for a heralded single-photon state, which is the
simplest case. It can be extended to more general heralded quantum states by appro-
priately modifying the heralding detection setup [13]. Intuitively, the ideal two-mode
quantum state of the signal and the idler in the ordinary parametric down conversion
may be written as |0, 0〉+q|1, 1〉+q2|2, 2〉+ . . . with 0 ≤ q < 1, and the quantum
correlation in this entangled state can be used for heralded creation of a variety of
quantum states. Concretely speaking, when n idler photons are detected, the signal
state becomes the n-photon state |n〉. Furthermore, when the idler field interferes
with a coherent field before the photon detection, the information of the origins of
detected photons is erased, which leads to heralded creation of a photon-number
superposition state in the signal mode. This scheme is so far demonstrated with trav-
eling wavepackets for up to three photons c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉 [13]. In the
case of traveling wavepackets, the n idler photons must be detected simultaneously.
In contrast, in the case of the one-step mechanism of memory excitation described
here, due to the asymmetry between the signal and the idler, the detection events of
the idler photons do not have to be simultaneous.The signal field inside the memory
cavity can be excited step by step by each of the idler detection events. This explains
a significant boost expected when the heralding source is combined with a memory
system.All such probabilistic quantumstates created inside the concatenated-cavities
memory system can be released on demand.

Several variants of the above scheme are possible. Actually, the idler is not nec-
essarily looped in the shutter cavity, but instead extracted with a single path. This
is possible when the signal and idler photons are very far in wavelength, or dis-
tinguishable by polarization. Of course, we can separate the concatenated cavities
and the photon-pair source. The concatenated cavities without the nonlinear optical
crystal can also be used as a quantummemory to catch the flying photons, keep them
for a while, and release them when required. However, interestingly, the unification
of these two elements increases quantum memory capabilities. This method is not
limited to the heralding scheme for preparing nonclassical quantum states, but it
may also enable processing of, e.g., by squeezing or photon addition [18], the stored
intracavity state.

8.3 Experimental Demonstration for a Heralded
Single-Photon State

The scheme of the concatenated-cavities quantum memory with integration of a
photon-pair generator is first demonstrated for timing control of heralded single
photons [7]. Below we explain this experiment.
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8.3.1 Experimental Methods

Figure8.2 shows the simplified experimental setup [7].
The two concatenated cavities are, unlike the diagram in Fig. 8.1, not Fabry-Pérot

cavities but ring cavities. The round-trip length of the memory cavity, 1.4 m, is
about twice as long as that of the shutter cavity, 0.7 m. The bow-tie-shaped memory
cavity contains a periodically-poled crystal for parametric downconversion. Its quasi-
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phase-matching of type-0 produces photon pairs in the same polarization. The signal
and idler modes for the heralding scheme are taken as adjacent frequency modes
of the memory cavity, which are separated by 2.2 × 102 MHz. The shutter cavity
contains an electro-opticmodulator (EOM) for fast switching of the resonance. There
are two outcoupling mirrors in the concatenated cavities. One is between the cavities
(97% reflectivity and 3% transmissivity), and the other is at the exit of the shutter
cavity (82% reflectivity and 18% transmissivity). The former one corresponds to the
strength of oscillation between the two cavities, while the latter corresponds to the
strength of damping from the coupled system. The magnitude relationship between
these two factors determines whether the system is over-damped or under-damped.
The concrete mathematical expressions describing the concatenated-cavities system
are shown in Appendix 1. Comparing the transmissivities of 3 and 18%, it might
seem as if the damping is strong, but, in fact, the system is still in the under-damped
region, as we will see in the experimental results.

There are three filter cavities placed after the concatenated-cavities system. At the
output of the concatenated cavities, both the signal and idler fields are in the same
beam path, but they must be directed to different apparatus. Therefore, the first filter
cavity has the role to spatially separate the signal and idler. The additional two filter
cavities further removes photons of irrelevant frequencies in the idler path. Then, the
idler beam is directed to a photon detector, which is amodule containing an avalanche
photodiode. The filtration of the idler is necessary because the photon detector is
sensitive to photons in a broad frequency range, and because fake heralding signals by
irrelevant photons degrades the purity of the heralded single-photon state. In addition
to the signal and idler frequency modes for the heralding scheme, the parametric
down conversion inside thememory cavity also creates photons in different frequency
mode pairs inwhich the energy conservation condition and the quasi-phase-matching
condition are satisfied. The bandwidth of the quasi-phase-matching is estimated to
be in the order of several hundreds gigahertz, and the filter cavities extract the target
idler frequency mode from this broadband.

When the photon detector absorbs a photon, an electric pulse signal is generated,
which is sent to a field-programmable gate array (FPGA) as a heralding signal. At
the FPGA, a variable delay from 0 to 300 ns is added. Then, a logic signal is sent to
a high-voltage switching driver, which applies around a thousand volts to the EOM
in the shutter cavity with a rise time of several nanoseconds. The intrinsic delay in
the response of the high-voltage switch is about 150 ns, which can be improved. The
applied voltage is tuned so that the resonance point of the shutter cavity is correctly
matched to the signal frequency, which corresponds to suppressing the imaginary
component of the time-domain longitudinalmode functionψ(t) of the released signal
photons as much as possible, in the analysis explained in Appendix 2. The pumping
beam is not cut after heralding signals in this demonstration, because the probability
of creating an additional photon during the storage is very small.

The released signal wavepackets, reflected by the first filter cavity, are directed to
a homodyne detector for characterization. It is based on interference with an optical
local oscillator,which is a strong coherent beam.The quadrature distribution obtained
by homodyne detection is explained below. As will be noted, a key point here is that
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a single mode of the light field can be characterized with homodyne detection, in
contrast to characterization based on photon detection. Finally, the electric signal
from the homodyne detector is digitized by an oscilloscope and stored for analysis.

8.3.1.1 Homodyne Detection and Quadrature Distribution

Here we intend to describe the quadrature distribution obtained by homodyne detec-
tion, but before that, we review the mathematical expression of a quantized light
field.

As widely known, a single mode of a light field with a well-defined optical fre-
quency Ω is described by a harmonic oscillator with the same frequency. Taking the
normalized frequency Ω = 1 and the Dirac constant � = 1, the Hamiltonian of a
harmonic oscillator is Ĥ = x̂2 + p̂2. Here, x̂ and p̂ are the position and momentum
operators of the harmonic oscillator, but in the case of a light field, the cosine and
sine components of the field amplitude, called quadrature amplitudes, correspond to
x̂ and p̂. The quadrature amplitudes have continuous real-value spectrum, and do
not mutually commute, [x̂, p̂] = i , where i is the imaginary unit.

The quantization is well described by two non-Hermitian operators â = (x̂ +
i p̂)/

√
2 and â† = (x̂ − i p̂)/

√
2, which are annihilation and creation operators of

photons in the particle picture, respectively, but also complex and complex-conjugate
amplitude operators in the wave picture, respectively. They satisfy the bosonic com-
mutation relation [â, â†] = 1, and the Hamiltonian is diagonalized by the number
operator n̂ = â†â as Ĥ = n̂ + 1/2. Starting from the vacuum state |0〉 defined by
n̂|0〉 = 0, an arbitrary n-photon state |n〉, defined by n̂|n〉 = n|n〉, n ∈ N, is uniquely
constructed with creation operators as |n〉 = (1/

√
n!)(â†)n|0〉.

Both the discrete eigenstates {|n〉}n∈N of the photon number operator n̂ and the
continuous eigenstates {|x〉}x∈R or {|p〉}p∈R of the quadrature operator x̂ or p̂ can
be a basis of this Hilbert space, where 〈n|n′〉 = δn,n′ is the Kronecker delta, and
〈x |x ′〉 = δ(x − x ′) or 〈p|p′〉 = δ(p − p′) is the Dirac delta function. An arbitrary
pure state |φ〉 can be expressed in these bases as

|φ〉 =
∞∑

n=0

cn|n〉 =
∫ ∞

−∞
dx φ(x)|x〉 =

∫ ∞

−∞
dp φ′(p)|p〉. (8.1)

The continuous wavefunctions φn(x) of the number states are well known as

φn(x) = 〈x |n〉 = Hn(x) exp(−x2/2)/
√
2nn!√π , where Hn(x) is the nth Hermite

polynomial.
Photon detection reveals the particle-like aspect of a light field click by click,

basically observing the photon number n̂, while homodyne detection can be said to
reveal the wave-like aspect, observing a quadrature x̂ cos θ + p̂ sin θ with an arbitrary
optical phase θ ∈ [0, 2π) in general. Homodyne detection is based on interference
with a strong local-oscillator light beam, and the phase θ in themeasurement is deter-
mined by the optical phase of the local oscillator. In the case of θ = 0, corresponding
tomeasuring x̂ , homodyne detection on |φ〉 randomly outputs a real value x ∈ Rwith
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Fig. 8.3 Quadrature distributions for various measurement phases (top), and the corresponding
Wigner functions (bottom), for ideal states. For the top panels, the horizontal axis is the phase θ

of a homodyne measurement, the vertical axis is the value of the quadrature amplitude x̂ cos θ +
p̂ sin θ , which is obtained probabilistically by an ideal homodyne measurement, and the brightness
shows the probability density. For the bottom panels, beside theWigner function W (x, p), marginal
distributions P(x) and P ′(p) are attached, which are rescaled by a factor of 1/2. a and d A coherent
state. b and e A vacuum state. c and f A single-photon state

probability density |φ(x)|2. Since a quantum state collapses after a measurement, the
distribution |φ(x)|2 is never obtained from a single object of the quantum state. The
distribution |φ(x)|2 is obtained from the repeated preparation of an identical state
|φ〉 followed by an identical measurement. The information of |φ(x)|2 is still insuffi-
cient to characterize the quantum state |φ〉, because the information of the argument
u(x) of the complex wavefunction φ(x) = |φ(x)|eiu(x) is equally important. How-
ever, if we obtain such distributions for all phases θ ∈ [0, 2π), they are sufficiently
informative to fully identify the quantum state. The above characterization scheme
of quantum states is called quantum homodyne tomography [19].

Figure8.3a–c show a few examples of the quadrature distributions when the mea-
surement phase θ is scanned from 0 to 2π . The horizontal axis is the measurement
phase θ , while vertical axis is the value of x̂ cos θ + p̂ sin θ , and the probability
density is visualized by the brightness.

Figure8.3a is a coherent state |α〉 = exp(−|α|2/2)∑∞
n=0(α

n/
√

n!)|n〉 with the
mean amplitude α = 1. A coherent state is a quantum state of an ordinary laser
light beam. It shows a wave-like oscillation with respect to the phase θ . This kind of
a phase-dependent oscillation in general originates from coherent superposition of
different photon-number states.
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Figure8.3b, c are a vacuum state and a single-photon state. Such energy eigen-
states, and also their incoherent mixtures, are phase-insensitive in general. The vac-
uum state in Fig. 8.3b is the minimum-energy state, and what we see here are random
fluctuations with a Gaussian distribution |φ0(x)|2, owing to the uncertainty principle
between a position and a momentum. On the other hand, the single-photon state in
Fig. 8.3c has a non-Gaussian distribution |φ1(x)|2, which has two peaks and a dip at
the center.

When a single-photon state is impure and contaminated by a vacuum as ρ̂ =
η|1〉〈1| + (1 − η)|0〉〈0|, the quadrature distribution becomes simply their average
η|φ1(x)|2 + (1 − η)|φ0(x)|2, and therefore the dip at the center in the quadrature
distribution becomes shallower than the pure single-photon case. In other words,
we can estimate the purity of the single-photon state from the depth of the dip at
the center. More generally, when a phase-insensitive quadrature distribution P(x) is
decomposed as P(x) = ∑∞

n=0 ηn|φn(x)|2, the state is ρ̂ = ∑∞
n=0 ηn|n〉〈n|.

A feature of the homodyne detection, in contrast to photon detection which is
sensitive to all the entering optical photons, is that only the light field interfering
with the local-oscillator light beam is detected. That is, the local oscillator not only
amplifies the quadrature signal at a quantum level but also plays a role of a filter.
Therefore, the information can be extracted from a single mode of the light field, and
the coherence of the confirmed photons is guaranteed by the detection scheme itself,
which are important so as to claim pure single photons.

AWigner functionW (x, p) is a phase-space representation of a quantumstate, and
is intimately connected to the quadrature distributions.Whenquadrature distributions
of x̂ and p̂ are P(x) and P ′(p) respectively, they are related to theWigner function as

P(x) =
∫ ∞

−∞
dp W (x, p), P ′(p) =

∫ ∞

−∞
dx W (x, p), (8.2)

and the similar relation applies to a general quadrature x̂ cos θ + p̂ sin θ . A distinction
of aWigner function W (x, p) from an ordinary simultaneous probability distribution
is that a Wigner function may take negative values.

By way of illustration, Wigner functions corresponding to the quadrature distri-
butions in Fig. 8.3a–c are shown in Fig. 8.3d–f. A coherent state |α〉, including a
vacuum state as its special case with α = 0, has a Gaussian function as the Wigner
function, which is always positive, as shown in Fig. 8.3d, e. On the other hand, a pure
single-photon state |1〉 has a non-Gaussian Wigner function rotationally symmetric
around the origin, with a large negative dip at the origin, as shown in Fig. 8.3f. In
fact, it is theoretically known that any quantum state with a non-Gaussian Wigner
function has negative values somewhere in the Wigner function when the state is
sufficiently pure [20]. In the case of a single-photon state, when the single-photon
fraction 〈1|ρ̂|1〉 is above 1/2, the correspondingWigner function has a negative value
at the origin W (0, 0), which can be considered as a sign of strong nonclassicality.

In the experiment, the homodyne detection is also utilized for the estimation of
the longitudinal mode of the released single-photon wavepackets. This is described
in Appendix 2.
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horizontal axis is the relative time, where 0 ns corresponds to the timing of the heralding signal.
b Quadrature distribution. The measurement is repeated for 4.3× 104 times. c Sectional side view
of the Wigner function. The negative value at the origin is −0.054, −0.030, −0.024, and 0.001
from left to right, respectively. d Photon number distribution. The single-photon fraction 〈1|ρ̂|1〉 is
58.2, 54.6, 53.1, and 49.7% from left to right, respectively, where the error bar is about ±0.5%

8.3.2 Experimental Results

Figure8.4 shows the experimental results for various release timings. The variable
storage time is 0, 100, 200, and 300 ns from left to right.

Figure8.4a shows the longitudinal mode functionψ(t) of the released wavepack-
ets in the time domain, whose explanation is supplemented in Appendix 2. The hor-
izontal axis is the relative time where 0 ns corresponds to the timing of the heralding
signal. For the leftmost panel of the immediate release, we can see the amplitude
suddenly grows from about 150 ns and then rapidly shrinks within about 50 ns,
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which means the signal state is released at this timing. As mentioned in Sect. 8.3.1,
the intrinsic storage time of 150 ns is due to the delayed response of the resonance-
shifting EOM driver, which can be shortened. There is already a nonzero amplitude
before the release from about −50 ns, which shows leakage of the photon due to
imperfect decoupling at the shutter. Then in the right three panels, we can see the
position of the peak is correctly shifted in accordance with the variable storage time
added. The important thing is that the shape of the wavepackets does not depend
on the release timing, except for the leakage before the release. As mentioned in
Sect. 8.3.1, the cavity parameters are somewhat in the domain of under-damping,
and this appears as the overshoot of the mode function down to negative values.

Figure8.4b shows the quadrature distributions, obtained by integrating the homo-
dyne signal by using the mode function ψ(t) in Fig. 8.4a as a weight function, as
explained in Appendix 2. In all of the four panels, we see a clear dip at the cen-
ter, which is the characteristics of a single-photon quadrature distribution. The phase
independenceof the quadrature distribution is confirmed from the fact that the quadra-
ture distribution does not differ between the two cases of the local oscillator phase
scanned and unscanned.

Figure8.4c, d show the sectional side view of theWigner function and the photon-
number distribution, respectively, calculated from the quadrature distribution in
Fig. 8.4b. Due to optical losses in the cavity memory system during storage, the
single-photon fraction gradually decreases, and the dip at the origin of the Wigner
function gets gradually smaller. However, high purity to show negative values of
the Wigner function is kept for the variable storage time in the order of 100 ns.
The above results successfully demonstrate the timing-control of high-purity single
photons with a negative Wigner function.

The results are collected in Fig. 8.5 for easy comparison. Figure8.5a is the collec-
tion of the four mode functionsψ(t) in Fig. 8.4a, where the equal intervals are clearly
seen. Figure8.5b shows the square of the mode functions |ψ(t)|2. In fact, a mode
function ψ(t) is an envelope of the field amplitude, so the energy distribution, or the
photon density, is proportional to its square. With these squared functions, we can
see that contribution of the leakage before release is small. Figure8.5c summarizes
the decay of the single-photon fraction 〈1|ρ̂|1〉 with exponential fitting, from which
the photon lifetime in the memory is estimated to be in the order of 1 µs when the
system is in the storage phase.

8.4 Summary

Wedescribed a scheme to utilize concatenated cavities as a quantummemory system,
where each memory excitation is probabilistically succeeded, heralded by detection
of a photon. We also described a first experiment of this quantum memory, where
the release timing of a heralded single photon was controlled, which is actually
the first demonstration of releasing quantum states with a negative Wigner function
on demand. The single-photon fraction of above 50%, a sufficient condition for a
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Fig. 8.5 Experimental
dependency on the storage
time [7]. a Longitudinal
mode function ψ(t),
corresponding to probability
amplitude, for various
storage times. b Squared
mode function |ψ(t)|2,
corresponding to probability
density, for various storage
times. The variable storage
time is 0, 100, 200, and
300 ns, and the intrinsic
storage time is about 150 ns.
c Decay of the single-photon
fraction 〈1|ρ̂|1〉 with respect
to the storage time, including
the intrinsic 150 ns. Circles
are experimental values. The
result of fitting with an
exponential curve
η(t) = η(0) exp(−t/τ) is
η(0) = 62.6% and τ = 1.98
µs
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negativeWigner function,was kept for the variable storage time of the order of 100 ns,
which is sufficiently significant compared to the temporal width of the released
single-photon wavepackets of about 50 ns. This scheme may be considered as an
all-optical analogy of the Raman-transition type of the atomic-ensemble quantum
memory scheme [1]. An advantage of the concatenated-cavities quantum memory
is less restriction in the optical wavelength, compared to the quantum memories
based on matter systems. The scheme can be potentially extended to multi-photon,
phase-sensitive quantum states.
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Appendix 1: Mathematical Model of Concatenated Cavities

Here we describe the mathematical model of the concatenated-cavities system, from
which the longitudinal mode of the released wavepackets is predicted.

The optical frequency of the signal mode is denoted by Ω , and we consider the
casewhere the resonance point of the shutter cavity ismatched to the signal frequency
Ω at time t = 0. The system Hamiltonians for individual cavities are

Ĥ1(t) = �Ω â†
1(t)â1(t), Ĥ2(t) = �Ω â†

2(t)â2(t), (8.3)

where â1(t) and â2(t) are annihilation operators for the fields inside the memory and
shutter cavities, respectively, obeying the equal-time commutation relation

[âk(t), â†
� (t)] = δk�. (8.4)

The two cavities are linearly coupled, which is expressed by an interaction Hamil-
tonian,

Ĥint(t) = �[εâ†
1(t)â2(t) + ε∗â†

2(t)â1(t)], (8.5)

where ε ∈ C is a parameter of the coupling, which can be taken as a real number
without loss of generality by redefinition of the optical phase of â1 or â2, and |ε| cor-
responds to the coupling strength. The total system Hamiltonian of the concatenated
cavities is the sum of them,

Ĥsys(t) = Ĥ1(t) + Ĥ2(t) + Ĥint(t). (8.6)

In addition to the above intrasystem evolution, the shutter cavity is coupled to an
external field. Because the external field has a broad bandwidth, the commutation
relation is well approximated by a Dirac delta function,

[b̂in(t), b̂†in(t
′)] = δ(t − t ′), (8.7a)

[b̂out(t), b̂†out(t
′)] = δ(t − t ′). (8.7b)

where b̂in(t) is an annihilation operator of the external incoming field, which enters
into the shutter cavity at time t , and b̂out(t) is that of the external outgoing field, which
leaves from the shutter cavity at time t . In the following, we will sometimes omit
the argument (t) for simplicity. Overall time evolution obeys the quantum Langevin
equation [21] as

d

dt
â1 = − i

�
[â1, Ĥsys], (8.8a)

d

dt
â2 = − i

�
[â2, Ĥsys] − γ

2
â2 − √

γ b̂in, (8.8b)
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where γ ≥ 0 is the damping rate. The time-reversed Langevin equation can be
expressed in the same way as

d

dt
â1 = − i

�
[â1, Ĥsys], (8.9a)

d

dt
â2 = − i

�
[â2, Ĥsys] + γ

2
â2 − √

γ b̂out. (8.9b)

The above two sets of equations are connected by the boundary condition at the exit
of the shutter cavity,

b̂out(t) − b̂in(t) = √
γ â2(t). (8.10)

Note that the coefficients of the Langevin equations, i.e. γ /2 for â2 and
√

γ for b̂in,
are derived from the requirement to preserve the commutation relation during an
infinitesimal time evolution δt � 1/γ , which is checked as below.

[â2(t + δt), â†
2(t + δt)] − [â2(t), â†

2(t)]
= −

[
â2(t),

iδt

�
[â†

2(t), Ĥsys(t)] + γ δt

2
â†
2(t)

]

−
[ iδt

�
[â2(t), Ĥsys(t)] + γ δt

2
â2(t), â†

2(t)
]

+
[√

γ

∫ δt

0
dτ b̂in(t + τ),

√
γ

∫ δt

0
dτ b̂†in(t + τ)

]
+ O(δt2)

= O(δt2). (8.11)

Here, for the terms containing Ĥsys(t), the Jacobi identity [[X̂ , Ŷ ], Ẑ ]+[[Ẑ , X̂ ], Ŷ ]+
[[Ŷ , Ẑ ], X̂ ] = 0 simplifies the calculation.

By substituting (8.6) into the Langevin equation (8.8), we obtain

d

dt
â1 = − iΩ â1 − iεâ2, (8.12a)

d

dt
â2 = − iΩ â2 − iε∗â1 − γ

2
â2 − √

γ b̂in. (8.12b)

We take a rotating frame by the following replacement,

â1 →â1e−iΩt , â2 →â2e−iΩt , (8.13a)

b̂in →b̂ine−iΩt , b̂out →b̂oute
−iΩt , (8.13b)



8 On-Demand Release of a Heralded Quantum State from Concatenated … 233

which simplifies the equations, canceling the terms proportional to Ω ,

d

dt
â1 = − iεâ2, (8.14a)

d

dt
â2 = − iε∗â1 − γ

2
â2 − √

γ b̂in. (8.14b)

Note that this rotation frame at the optical frequency Ω is experimentally naturally
taken when the light field is subject to homodyne detection with a local oscillator at
the optical frequency Ω .

Using (8.14a) to eliminate â2 from (8.14b), we find that the system obeys the
second-order differential equation,

d2

dt2
â1 + γ

2

d

dt
â1 + |ε|2â1 − iε

√
γ b̂in = 0. (8.15)

Solution of the Released Wavepackets

We consider the situation in which the memory cavity is initially isolated and holds
a single photon for t < 0, and then the interaction suddenly starts at t = 0 and
eventually the photon is ejected to an external field. In this case, we are interested in
how the term of â1(0) is transferred to b̂out(t) for t ≥ 0.

Since we are considering only linear coupling, we can suppose the following form
of solution, for t ≥ 0.

â1(t) = h1→1(t)â1(0) + h2→1(t)â2(0)

+
∫ t

0
dτ hin→1(t − τ)b̂in(τ ), (8.16a)

â2(t) = h1→2(t)â1(0) + h2→2(t)â2(0)

+
∫ t

0
dτ hin→2(t − τ)b̂in(τ ), (8.16b)

b̂out(t) = h1→out(t)â1(0) + h2→out(t)â2(0)

+
∫ t

0
dτ hin→out(t − τ)b̂in(τ ), (8.16c)

where hμ→v(t) is the transfer coefficient from μ to ν, which is considered as a
complex-valued analytic function with respect to time. By this supposition, the dif-
ferential equations of the operators are converted to the differential equations of
complex-valued functions. The objective is to solve h1→out(t), which predicts the
longitudinal mode of the released wavepackets, except for the leakage before the
release.
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Substituting (8.16) into (8.14) and taking the coefficients of â1(0), we find the
relation that determines h1→2(t) uniquely from h1→1(t) as

d

dt
h1→1(t) = − iεh1→2(t). (8.17)

On the other hand, substituting (8.16) into (8.10), we find that h1→out(t) is propor-
tional to h1→2(t),

√
γ h1→2(t) = h1→out(t). (8.18)

Combining (8.17) and (8.18), we obtain,

h1→out(t) = i
√

γ

ε

d

dt
h1→1(t). (8.19)

Therefore, if the systemparameter h1→1(t) can be found, then the objective h1→out(t)
is uniquely determined. The differential equation for h1→1(t) is obtained from
(8.15) as

( d2

dt2
+ γ

2

d

dt
+ |ε|2

)
h1→1(t) = 0. (8.20)

The initial conditions for h1→1(t) are as follows.

h1→1(0) = 1, (8.21a)

d

dt
h1→1(t)

∣∣∣
t=0

= − iεh1→2(0) = 0. (8.21b)

The system decay in (8.20) is characterized by the damping ratio ξ ,

ξ = γ

4|ε| . (8.22)

The decay is classified into three types.

• When 0 < ξ < 1, the system is under-damped, where damped oscillation occurs.
• When ξ = 1, the system is critically damped, where the system parameter rapidly
decays to zero.

• When ξ > 1, the system is over-damped, where the system parameter gradually
decays without oscillation.

Under-Damping

When 4|ε| > γ , the system parameter h1→1(t) is damped with oscillation. The
solution of the differential equation is
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h1→1(t) = C1 exp
(
−γ t

4

)
cos

( t

4

√
16|ε|2 − γ 2

)

+ C2 exp
(
−γ t

4

)
sin

( t

4

√
16|ε|2 − γ 2

)
, (8.23)

whereC1 andC2 are free parameters which are fixed by the initial condition in (8.21)
as follows.

C1 =1, C2 = γ√
16|ε|2 − γ 2

. (8.24)

Finally, using (8.19), the coefficient at the output becomes,

h1→out(t) = i
√

γ

ε

d

dt
h1→1(t)

= − 4iε∗√γ√
16|ε|2 − γ 2

exp
(
−γ t

4

)
sin

( t

4

√
16|ε|2 − γ 2

)
. (8.25)

The correctness of the normalization is checked as
∫ ∞

0
dt |h1→out(t)|2 = 1. (8.26)

Critical Damping

When 4|ε| = γ , the system parameter h1→1(t) is critically damped. The solution of
the differential equation is

h1→1(t) = (C1 + C2t) exp
(
−γ

4
t
)
. (8.27)

From the initial condition in (8.21),

C1 = 1, C2 = γ

4
. (8.28)

Finally, using (8.19), the coefficient at the output becomes,

h1→out(t) = i
√

γ

ε

d

dt
h1→1(t)

= − iε∗√γ t exp
(
−γ

4
t
)
. (8.29)

The correctness of the normalization is checked by integration as in (8.26).



236 J. Yoshikawa et al.

Over Damping

When 4|ε| < γ , the system parameter h1→1(t) is over-damped. The solution of the
differential equation is

h1→1(t) = C1 exp

[
−γ t

4

(
1 −

√
γ 2 − 16|ε|2

γ

)]

+ C2 exp

[
−γ t

4

(
1 +

√
γ 2 − 16|ε|2

γ

)]
. (8.30)

From the initial condition in (8.21),

C1 =1

2

(
1 + γ√

γ 2 − 16|ε|2
)

, C1 =1

2

(
1 − γ√

γ 2 − 16|ε|2
)

. (8.31)

Finally, using (8.19), the coefficient at the output becomes,

h1→out(t) = i
√

γ

ε

d

dt
h1→1(t)

= − 2iε∗√γ√
γ 2 − 16|ε|2

{
exp

[
−γ t

4

(
1 −

√
γ 2 − 16|ε|2

γ

)]

− exp

[
−γ t

4

(
1 +

√
γ 2 − 16|ε|2

γ

)]}
. (8.32)

The correctness of the normalization is checked by integration as in (8.26).

Correspondence of the Parameters

An important question is how the parameters ε and γ in the Langevin equations
correspond to the parameters of the optical setup such as the cavity lengths and the
transmissivities of the couplingmirrors. They can be determined from the consistency
with the time evolution of classical light fields.

Here the round-trip length of the memory cavity is denoted by �1, that of the
shutter cavity by �2, the energy transmissivity and reflectivity of the coupling mirror
between the two cavities by Tc and Rc, respectively, those between the shutter cavity
and the external field by To and Ro, respectively, and the light speed by c. Then, the
round-trip times of light in the memory cavity and the shutter cavity are τ1 = �1/c
and τ2 = �2/c, respectively.

We first consider the damping rate γ . We consider how the field inside the shutter
cavity reduces by the leakage by γ , when it is disconnected from the memory cavity
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by setting ε = 0. During a passage of time δt much smaller than the system time
scale δt � (1/γ ), the intracavity classical field amplitude decreases by a factor of
1 − (γ /2)δt , from the Langevin equation. On the other hand, during this time, the
field circulates (c/�2)δt times inside the cavity, which reduces the field amplitude
by a factor of (

√
Ro)

(c/�2)δt . By equating these two factors,

(
1 − γ

2
δt

)
≈ (

√
Ro)

(c/�2)δt = (1 − To)
(c/2�2)δt ≈

(
1 − cTo

2�2
δt

)
, (8.33)

the following relation is derived,

γ ≈ cTo

�2
= To

τ2
. (8.34)

On the other hand, for the coupling strength ε, the derivation is a bit tricky due to
the interference of the intracavity fields. We also consider the consistency with the
time evolution of classical fields during a small amount of time δt � (1/|ε|). For
simplicity, we consider the situation where initially the classical field amplitude is
nonzero only in the memory cavity but zero in the shutter cavity. Then, we evaluate
the classical field leaked to the shutter cavity by a time passage, where the field
amplitude linearly increases with respect to time ∝ δt , rather than attenuation in the
memory cavity, where the change of the field amplitude is not linear but quadratic
∝ δt2. However, in this case, we must keep in mind the different amplitudes of a
photon (or equivalently, different magnitudes of the vacuum fluctuation) between the
two cavities. A photon is uniformly stretched in the cavity, so the amplitude become
larger when the cavity is smaller. This difference is compensated by multiplying
the factor

√
�2/�1. Classically,

√
Tc times the field amplitude in the memory cavity

enters the shutter cavity per time �2/c, and this compensated by the photon amplitude
ratio

√
�2/�1 leads to the following relation

|ε| ≈ √
Tc × c

�2
×

√
�2

�1
= c

√
Tc√

�1�2
=

√
Tc√

τ1τ2
. (8.35)

As a natural result, the parameters of the two cavities �1 and �2 appear in a symmetric
form in |ε|. As noted before, the argument of the complex parameter ε is arbitrarily
chosen by appropriately redefining the phase of the intracavity fields â1 and â2.

Worth noting is that γ is proportional to To but ε is proportional to
√

Tc. Therefore,
the transmissivities of the two coupling mirrors must be designed very asymmetri-
cally.

The theoretical predictions from the above calculations are in good agreement
with the experimental results in Sect. 8.3.2, except for the leakage before the release.
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Appendix 2: Wavepacket Estimation by Continuous
Homodyne Detection

Although we have taken a single mode from the first in Sect. 8.3.1.1, real situation
in homodyne detection is somewhat different, as follows. Homodyne detection with
a continuous-wave local oscillator continuously outputs the measurement values of
instant quadratures x̂(t) cos θ + p̂(t) sin θ = [b̂(t)e−iθ + b̂†(t)eiθ ]/√2. We note
that here we are equating the position in the longitudinal direction with the time
t , through the constant speed of light. And also we note that here a rotating frame
is taken in accordance with the optical frequency Ω of the local oscillator. That is
to say, the situation corresponds to continuous measurements on the field b̂out(t) in
Appendix 1, after the shift to the rotating frame in (8.13). A single-photon state is
associatedwith a specific longitudinalmode functionψ(t). Annihilation and creation
operators on the longitudinal mode ψ(t) are defined as âψ = ∫

dt ψ(t)b̂(t) and
â†
ψ = ∫

dt ψ∗(t)b̂†(t), where the normalization condition is
∫

dt |ψ(t)|2 = 1 for

the bosonic commutation relations of [b̂(t), b̂†(t ′)] = δ(t − t ′) and [âψ, â†
ψ ] = 1.

Note that this normalization condition coincides with (8.26). By using this creation
operator â†

ψ , a pure single-photon state is defined as â†
ψ |∅〉 = ∫

dt ψ∗(t)b̂†(t)|∅〉,
where |∅〉 denotes a multimode vacuum state b̂(t)|∅〉 = 0, t ∈ R.

Then, the quadrature distribution of a single-photon state shown in Fig. 8.3 is
obtained from measurements of x̂ψ = (âψ + â†

ψ)/
√
2. A measurement outcome xψ

of the single-mode quadrature x̂ψ can be actually calculated from a set of measure-
ment outcomes {x(t)} of the instant quadratures {x̂(t)}, only when the mode function
ψ(t) is a real function, based on the relation

x̂ψ =
∫

dt
1√
2
[ψ(t)b̂(t) + ψ∗(t)b̂†(t)]

=
∫

dt {Re[ψ(t)]x̂(t) − Im[ψ(t)] p̂(t)}, (8.36)

where Re[α] and Im[α] denote the real part and the imaginary part of a complex
number α, respectively. The mode function ψ(t) of a single-photon state is indeed
a real function in the ideal case. In the calculation of h1→out(t) in (8.25), (8.29),
(8.32) in Appendix 1, the arguments are constantly arg(−iε∗) for all of the three
cases, and this constant argument can be canceled by the redefinition of the optical
phase. However, the mode function ψ(t) can be experimentally a complex function
with a varying argument, when the resonance point of the shutter cavity is improper
or drifting. In this case, if the optical phase of the local oscillator of the homodyne
detection is dynamically varied in accordance with the mode function, then the value
of the desired quadrature x̂ψ can be calculated, but such adaptation is experimentally
very demanding.

With the procedure explained below, the real mode function ψ(t) of a single-
photon state is estimated. The estimation is supported by the situation where the
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irrelevant modes are not excited but in a vacuum state. An ideal single-photon state
has a quadrature variance three times larger than that of a vacuum state.

〈1|x̂2|1〉 = 〈0|â (â + â†)2

2
â†|0〉 = 3

2
, (8.37)

〈0|x̂2|0〉 = 〈0| (â + â†)2

2
|0〉 = 1

2
. (8.38)

Therefore, a function f (t) that maximizes the quadrature variance 〈x̂2f 〉 is the
best estimation of the photon mode function ψ(t). Experimentally, the estimation
is obtained by spectral decomposition of the autocorrelation function V (t, t ′) =
〈x(t)x(t ′)〉 as the eigenfunction with the largest eigenvalue. In the case where the
mode function ψ(t) of a single-photon state is a complex function, the estimation
gives two real functions. We obtain, up to the normalization, Re[ψ(t)eiλ] with some
λ ∈ [0, 2π) as a primarymode function that maximize the single-photon component,
and Im[ψ(t)eiλ] as a secondary mode function, from the spectral decomposition.
Note that the primary mode function Re[ψ(t)eiλ] and the secondary mode function
Im[ψ(t)eiλ] are orthogonal with respect to the L2-norm, owing to the principle of
spectral decomposition.
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Chapter 9
Quantum Light Storage in Solid State
Atomic Ensembles

Hugues de Riedmatten and Mikael Afzelius

Abstract In this chapter, we will describe the storage and retrieval of quantum
light (heralded single photons and entangled photons) in atomic ensembles in a
solid state environment. We will consider ensembles of rare-earth ions embedded
in dielectric crystals. We will describe the methods used to create quantum light
spectrally compatiblewith the narrowatomic transitions, aswell as possible protocols
based on dipole rephasing that can be used to reversibly map the quantum light
onto collective atomic excitations. We will review the experimental state of the art
and describe in more detail quantum light storage experiments in neodymium and
praseodymium doped crystals.

9.1 Introduction

Harnessing strong and coherent interactions between quantum light and matter is an
important ability in quantum science. These interactions can be used to build light-
matter interfaces enabling reversible quantum state transfer between photons and
atoms. One important application of these interfaces is the realization of photonic
quantum memories [1–4] which allow storage of quantum information carried by
photons. Quantum memories are important devices in quantum information science
because they can be used as synchronization devices whenmany different probabilis-
tic quantum processes are linked together. They are therefore required for scalable
protocols using photons, with potential applications in optical quantum comput-
ing, generation of multiphoton states from probabilistic pair sources [5], quantum
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information networks [6] and long-distance quantum communication using quantum
repeaters [7–9].

The realization of quantum memories for light requires efficient and reversible
mapping of photons onto long lived atomic coherences. This in turn requires strong
interactions between light and matter. However, in free space the interaction between
a single photon and a single atom is usually weak. One way to overcome the problem
is to place the atom in a high finesse cavity which strongly enhances the interaction
[10] (see chapter by A. Kuhn). Another way is to use a collection of atoms, where the
atom light coupling is enhanced by a factor of

√
N with N being the number of atoms

involved. Single photons are stored in atomic ensembles as collective atomic exci-
tation, sometimes called superatoms. These superatoms have the important property
that they can be efficiently converted to single photons in a well defined spatio-
temporal mode thanks to a collective interference between all the involved emitters
[8]. This so-called collective enhancement is at the heart of most quantum memory
protocols in atomic ensembles. The quantum control of collective atomic coherences
is therefore a key task in the field of quantum memories.

For applications involving transfer of quantum information over large distances,
remote quantum memories must be entangled [8, 11]. This requires that the remote
quantum memories must exchange quantum information using e.g. single photons,
or that photons emitted by the quantum memories interfere at a central location
between the two quantum memories. If optical fibers are used, this means that quan-
tummemoriesmust be connected to the optical fiber network, in particular to photons
at telecom wavelengths in order to minimize optical losses in the fiber transmission.

Quantum memories for light were first demonstrated in atomic gases, both room-
temperature gases and ensembles of laser-cooled atoms. Several review papers can
also be found on that subject [1, 9]. Some solid-state systems offer interesting per-
spectives as quantum memories for light, such as rare-earth doped crystals [12–16],
nitrogen-vacancy centers in diamond [17, 18], phonons in diamond [19, 20] and
quantum dots [3, 21, 22] (see also chapter by McMahon and De Greve). Realizing
quantummemories in solid-state systemswould, in general, have several advantages,
such as the absence of atomic motion and the prospects for integrated devices, which
may facilitate large-scale deployment of these techniques in future quantum net-
works. But, controlling light-matter interactions in solid-state materials also poses
important challenges, such as preserving the quantum coherence in a solid-state
environment.

Here we will discuss rare-earth-ion doped crystals for quantum memories. These
crystals provide a large number of atoms naturally trapped in a solid-statematrix,with
spectrally narrow optical and spin transitions. Due to their particular electron level
structure, they also provide exceptional coherence properties, both for the optical
and spin transitions, when cooled to cryogenic temperatures.

This chapter will describe experiments and techniques developed to store non-
classical light in rare-earth-ion doped crystals. In Sect. 9.2, we describe in more
details the relevant properties of rare-earth-ion doped crystals and the reasons why
these are interesting materials for quantum light storage. In Sect. 9.3, we describe
quantum memory protocols that have been proposed to store quantum information
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in doped crystals. In Sect. 9.4, we review the experimental state-of-the-art of storing
non-classical states of light in crystals. In the following two sections we describe
the development of two specific sources of non-classical light (Sect. 9.5) and their
application to non-classical light storage (Sect. 9.6) in Pr3+ and Nd3+ ions doped
crystals. Finally, in Sect. 9.7, we comment on the prospects for extending quantum
light storage to longer storage times in these systems.

9.2 Rare-Earth-Ion Doped Crystals

The energy structure of ions in solid-state materials is usually strongly affected by
the lattice of the host crystal, resulting in broad optical transitions with very short
optical coherence time. Striking exceptions to this are rare-earth ion impurities in
crystals, whose 4f-4f transitions were found to be extremely narrow when the first
high-resolution resonance spectra were obtained in the 1970s [23]. The sharp lines
are due to the shielding of the 4f electron shell from outermost 5s and 5p electrons,
which reduces the coupling of the 4f electrons to the lattice. This explains the atomic-
like properties of the lanthanides in a crystal. There exist several excellent books
[24, 25] and reviews of optical properties of rare-earth-ion doped crystals
[23, 26, 27] and their application in quantum information science [28, 29]. Here
we will summarize some properties that are particularly relevant for quantum mem-
ory applications.

The effective shieldingof the 4f electron shell results in extremelynarrowhomoge-
neous and inhomogeneous line widths of the radiative 4f-4f transitions in rare-earth
doped crystals. At cryogenic temperatures, the inhomogeneous broadening is the
dominating broadening process, analogous to the Doppler broadening of room tem-
perature alkali gases. But in contrast to the dynamical Doppler broadening, where
atoms jump between velocity classes due to velocity changing collisions, the inho-
mogeneous broadening of rare-earth ion doped crystals is to a large degree static.
This is a result of the physical origin of the inhomogeneous broadening [30], which
can be due to local crystal strain or interactions between dopants [31]. In some cases
one can observe a time-dependent broadening of a spectral channel over time, which
is known as spectral diffusion [32]. However, this effect is usually weak and is mod-
elled by a time-dependent homogeneous line width [32]. The static inhomogeneous
broadening and the large number of spectral channels that can be manipulated with
narrowband lasers have important consequences for quantum storage experiments.
These features are used in the quantum memory schemes specifically developed for
these materials, resulting in capabilities difficult to obtain in gas phase experiments.

The optical inhomogeneous linewidth varies strongly between crystal hosts. In
some cases the degree of broadening can be related to the ionic radius mismatch
between the rare-earth dopant ion and the lattice ion that it replaces. Usual inhomo-
geneous broadenings range from a few hundreds of MHz to tens of GHz, although
extreme values of around 10MHz [33] and 250GHz have been observed [34].
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The optical homogeneous linewidth can be extremely narrow (ranging from
<1kHz to 1MHz) if the sample is cooled to temperatures below 5–10 K [24, 25].
Above this approximative temperature range, the homogeneous linewidth usually
increases rapidly, displaying a T 7 or T 9 dependence, due to coupling to phonons
(spin-lattice relaxation). Below this temperature range, due to the shielding by the
5s and 5p electrons, the homogeneous linewidth is often limited by magnetic inter-
actions with other rare-earth ion dopants or magnetic constituents of the lattice. This
has led to the general understanding that crystal materials with low nuclear spin
concentration [35, 36] and low rare-earth ion dopant concentration [32] provides a
way of obtaining long coherence times, both for optical and hyperfine transitions.
To increase the coherence times of hyperfine levels, it was also realized that one
can exploit the non-linear magnetic Zeeman effect of the hyperfine levels in order
to find sweet spots where there is a zero first-order Zeeman effect (ZEFOZ) of the
hyperfine transition [37]. This effectively decouples the hyperfine transition from the
fluctuating magnetic environment, which can increase the hyperfine coherence time
with orders of magnitude, akin to clock transitions used in alkali atoms. In addition,
one can apply dynamical decoupling schemes to further increase the spin coher-
ence time [38–41]. A recent experiment demonstrated a coherence time of 6h
in Eu3+:Y2SiO5 [42] by combining a ZEFOZ transition with dynamical decoupling.

The parity-forbidden 4f-4f transitions are only weakly allowed in crystals, and
arise due to admixtures of excited configurations of different parity to the 4f config-
uration. As a consequence radiative lifetimes are long, usually in the range of 100µs
to 10ms. The oscillator strengths of transitions relevant to quantum information
applications are in the range of 10−8–10−6 [43]. The weak absorption probabil-
ity of individual ions, as compared to the alkali D1 and D2 lines, is compensated
by the high density of ions typical for a crystal. The doping concentrations are
in the range of 10–1000pm, resulting in typical number densities in the range of
1017–1019 ions/cm3. The absorption coefficients for typical doping levels range from
α = 1 to 50cm−1, which often make the transitions close to opaque for a 1cm long
crystal.

We finally comment on the electronic ground-state substructure, which is relevant
for quantum information processing in general. The RE3+ ions (RE=Pr, Eu, Nd, Tm,
etc.) can be divided into Kramers and non-Kramers ions, which have odd or even
number of electrons, respectively. This is relevant since the two groups react differ-
ently to the interaction with the surrounding lattice ions (crystal-field interaction).
In a low-symmetry RE3+ doping site, the crystal field interaction completely lifts
the electronic ground-state degeneracy for non-Kramers ions. For Kramers ions the
crystal-field interaction results gives rise to a series of degenerate doublets, which is
due to Kramers time-reversal symmetry. As a consequence the Kramers ions have a
strong magnetic dipole moment (order of the Bohr magneton), while non-Kramers
ions usually have weak nuclear magnetic moments due to the quenching of the
electronic magnetic moment. In some cases, however, the nuclear moment can be
strongly enhanced in non-Kramers ions through interactions induced by the crystal-
field Hamiltonian. In addition we also need to consider different types of hyperfine
interactions.As an example, inEu3+ andPr3+ doped crystals,which are non-Kramers
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ions, these ions have three hyperfine states, due to quadrupole-type interactions [24,
25]. The hyperfine level separations in these ions are of the order of 10–100MHz.
In Kramers ions, such as Er3+ and Nd3+, a spectrally resolved Zeeman ground-state
doublet can be formed by applying a rather weak field (<1T) [44]. For isotopes
with non-zero nuclear spin, the interaction with unquenched electron spin results in
a strong hyperfine interaction, of the order of 1 GHz for Kramers ions [45]. These
different considerations are important for different aspects of quantummemory appli-
cations, since they affect the frequencies used for state preparation of the ions and
possible limitations of the memory bandwidth due to interfering optical-hyperfine
transitions.

9.3 Quantum Memory Protocols

In this section we will shortly discuss quantum memory protocols that can be used
in rare-earth-ion doped crystals. We will particularly discuss the atomic frequency
comb protocol, which so far is the only protocol that has been used in these systems
for storage of quantum states of light. For the reader who wants an overview of
different quantummemory schemes we refer to the many excellent reviews that have
been published [1–4, 28].

An important class of quantummemory schemes have been inspired by the photon
echo process [28], which is the optical analogue of the spin echo. In the conventional
photon echo process the optical pulse to be stored is absorbed by an inhomoge-
neous ensemble of atoms, typically rare-earth impurity ions in a crystal. The induced
atomic coherence then undergo inhomogeneous dephasing, but the dephasing can be
reversed by applying an optical π -pulse a time τ after the input pulse. After a time 2τ
the atomic coherences are back in phase, which results in a strong collective emission
known as a photon echo. Photon echo processes have been investigated for storing
and processing coherent states of light since the 1980s [28]. It was therefore natural
to consider if the same processes and materials could be used to store the quantum
state of a single photon. It was realized, however, that the optical π -pulse used in
conventional photon echoes would cause too much spontaneous emission noise, due
to the high degree of atomic excitation induced by it [46]. In 2001Moiseev and Kröll
[47] made an initial proposal for a noise free photon-echo quantummemory scheme.
The scheme was proposed for Doppler-broadened lines, but sparked the interest for
finding a similar scheme adapted to inhomogeneously broadened solid-state ensem-
bles. Around 2005–2006 Nilsson and Kröll [48], Kraus et al. [49] and Alexander
et al. [50] proposed a quantum memory scheme where the inhomogeneous dephas-
ing was controlled not by a strong π -pulse, but by an external electric field gradient.
The basic idea is to create a narrow spectral feature using optical pumping tech-
niques, which is then broadened using an external field. The scheme was coined con-
trolled reversible inhomogeneous broadening (CRIB), while a later modified version
of the scheme was named gradient echo memory (GEM) [51]. Several experimen-
tal realizations of the CRIB/GEM storage scheme in rare-earth-ion doped crystals
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followed [50, 52], including storage of weak coherent states at the single photon level
[13, 53]. It is worth noting that the GEM experiment reported by Hedges et al. [13]
demonstrated one of the highest efficiencies reached in any quantum memory, 69%,
and the highest reached in a solid-state memory. In rare-earth-ion doped crystals the
CRIB/GEM experiments were implemented using external electric fields, based on
the linear Stark shift. In some systems, however, the linear Stark shift is zero due to
symmetry considerations [54].

In 2008 the atomic frequency comb (AFC) quantum memory scheme was pro-
posed [12, 55]. The motivation for the scheme was the storage of trains of pulses,
so-called temporal multimode storage, which turned out to be difficult using the
CRIB scheme due to the scaling of the number of modes as a function of the optical
depth of the storagematerial. In CRIBmemories the number of modes scales linearly
with the optical depth d of the transition [11], while for AFC it is independent of
optical depth, although depending on other critical parameters, as will be discussed
later. For electro-magnetically induced transparency (EIT) and Raman techniques,
two common light-storage techniques, the number of modes scales as

√
d [56].

TheAFC scheme is based on a spectral tailoring of the inhomogeneous absorption
spectrum of an optical transition |g〉−|e〉, where one ideally wants tomake a periodic
series of narrow, highly absorbing peaks (see Fig. 9.1). This forms the atomic fre-
quency comb, which can be characterized by its spacingΔ and finesse F , in analogy
with an optical cavity. A single-photon state, with a bandwidth γp larger than Δ,
can be completely absorbed by the comb. Indeed, if the input pulse is short enough
(meaning γp > Δ), the effect of the short interaction in time is a spectral averaging
of the sharp AFC structure into a smooth distribution, due to Fourier arguments,
allowing for uniform absorption over the photons bandwidth. The effective optical
depth of the comb is roughly d̃ = d/F [55], depending on the shape of the peaks,
where d is the peak absorption depth. The absorption probability is 1 − exp(−d̃),
showing that complete absorption can be achieved for high enough d for any finesse
F . For a more complete description, we refer the reader to [55].

Conditioned on the absorption of a single photon, the atomic state can be described
by a collectiveDicke state

∑
k ck |g···ek ···g〉 [57], where the amplitudes ck depend on

the detuning and spatial position of the particular atom k. These modes are initially
in phase, but the collective state will rapidly dephase into a non-collective state∑

k exp(−i2πδk t)ck |g · · · ek · · · g〉, since each term acquires an individual phase
depending on the detuning δk of each excited atom. If we consider an AFC having
very sharp peaks, then the detunings δk are approximately a discrete set such that
δk = mkΔ, where mk are integers. It follows that the collective state is re-established
after a time 1/Δ, which leads to a coherent photon-echo [58–60] type re-emission in
the forward spatial mode defined by the absorbed photon.We note that the AFC echo
can also be interpreted as a slow-light effect induced by the comb structure [61].

The scheme described here can only be used as a delay-line, with a fixed storage
time 1/Δ. In the following we will refer to this scheme as an AFC echo scheme.
A recent quantum repeater protocol is entirely based, however, on this scheme, but
which requires heavy frequency and time multiplexing to be efficient [62]. It should
also be emphasized that the AFC echo scheme provides a dynamical delay-line,
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Fig. 9.1 The AFC quantummemory scheme. a The input pulse is absorbed on a strongly absorbing
transition whose inhomogeneous spectrum is shaped into a comb with periodicity Δ. After the
absorption of the input, a control pulse converts the initial optical coherence into a spin coherence,
see panel (b) for the timing. Another control pulse applied a time TS after the first one re-establishes
the optical coherence, which evolves towards an echo emission after a total storage time 1/Δ+ TS .
This scheme is the complete AFC spin-wave memory. If the control pulses are not applied, then the
input will give rise to an output echo after a total storage time 1/Δ, called the AFC echo scheme.
We refer to the text for more details on the processes and the required energy structure

which can be re-programmed with a rate related to the comb creation time. The
temporal multimode capacity of the AFC scheme does not depend on optical depth,
as mentioned above. The number of modes that one can store depends simply on
the number of peaks in the comb, which in turn depends on the ratio of the comb
periodicity Δ to the total comb bandwidth Γ .

To be able to read out a AFCmemory on demand, the original proposal was based
on a conversion of the optical excitation into a spin excitation [55]. This can be done
by applying an optical control pulse that transfers the single optical excitation to
a spin state, for instance a π -pulse, after the absorption of the single photon, but
before the appearance of the AFC echo. This requires an additional ground state
level |s〉, such that the states |g〉, |e〉 and |s〉 form a so-called Λ-system. To read out
the memory a second control pulse is applied after a spin-wave storage time TS , after
which the collective Dicke state continues to evolve towards the AFC echo emission,
after a total storage time TS +1/Δ. In addition to providing on-demand read out of the
memory, it can also provide a longer total storage time, since the spin coherence time
can be orders of magnitude longer than the optical coherence time. In the following
we will refer to this scheme as a AFC spin-wave memory. The spin-wave storage
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requires a coherent spin-transition |g〉-|s〉 for storing the spin coherence, but also an
additional state |aux〉with long population lifetime. The auxiliary ground state |aux〉
is used for storing population that has been pumped away optically during the AFC
creation process. The state |aux〉 is also needed in the AFC echo scheme described
above. The need for three ground-state levels and a coherent spin transition |g〉-|s〉
limits the number of known materials that can be used for spin-wave storage.

The efficiency of the complete AFC spin-wave memory depends on several fac-
tors. Themost important one is the efficiency of the AFC echo, which in turn depends
on the optical depth of the material, the comb parameters and the direction of recall.
But one also needs to consider the efficiency of the optical control pulses and spin
dephasing during the spin-wave storage time TS . In most cases these factors act
independently on the total efficiency, leading to the simple efficiency formula

η = ηAFCη2CηS (9.1)

where ηAFC is the AFC echo efficiency, ηC the efficiency of one optical control pulse
and ηS accounts for loss of efficiency due to spin decoherence. We here assume that
the control pulses introduce no decoherence, we only take into account a limited
transfer efficiency of population.

The AFC echo efficiency depends on the direction of recall. In forward direction
the re-absorption effect in a optically dense medium limits the efficiency to 54%
[63, 64]. In backward recall an interference effect makes it possible to reach 100%
in principle [55, 64]. Backward recall can be achieved by using counter-propagating
control pulses, but then only in spin-wave storage. TheAFC echo efficiency formulas
for both cases are given below

η
f w
AFC = d̃2 exp(−d̃)ηdeph, (9.2)

ηbw
AFC = (1 − exp(−d̃))2ηdeph, (9.3)

where ηdeph is a dephasing factor that accounts for the finite width and shape of the
AFC teeth. It should be emphasized that these formulas also apply to the CRIB/GEM
scheme. As shown in [55, 64], ηdeph is simply the Fourier transform of a single
tooth function in the comb, evaluated at the time of the AFC echo 1/Δ. The effective
absorption depth d̃ also depends on the exact shape of theAFC teeth. In [55]Gaussian
peaks where considered, while in [65] formulas were given for Lorentzian shaped
teeth. Later Bonarota et al. [66] showed that square peaks give the highest efficiency
for a given peak optical depth d. For square-shaped peaks d̃ = d/F exactly and
ηdeph = sinc2(π/F).

The optical depth is in practice the most crucial parameter, which led to the
proposal to put the memory in an optical cavity to enhance the effective interaction
length [67, 68]. It was shown that the cavity could be operated in an optimal regime,
where the input mirror reflectivity R of an asymmetric cavity is tuned to the effective
optical depth of the memory d̃ such that R = exp(−2d̃), assuming d̃ < 1, which
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is called an impedance-matched cavity. At the impedance-match point complete
absorption can in principle be achieved, if all other losses are much smaller than
d̃, and the efficiency is then bounded only by the intrinsic dephasing ηdeph . As
a consequence the cavity approach can lead to close to 100% efficiency, without
resorting to the phase-matching operation required for backward recall. Note also
that the impedance-matched cavity scheme can be applied to any memory scheme
based on control of the inhomogeneous dephasing, e.g. AFC, CRIB or GEM. Recent
experimental demonstrations of the cavity scheme reached AFC echo efficiencies
with bright pulses of 56% [69] in Pr3+:Y2SiO5 and 53% [70] in Eu3+:Y2SiO5, the
highest reported AFC efficiencies to date.

9.4 State of the Art

Although the focus of this chapter is the interaction of quantum light with rare-
earth doped solids, we first review a series of experiments that have been performed
with weak coherent states at the single photon level. This type of experiment allows
the testing of several aspects relevant for quantum light storage, in particular the
coherence preservation, the noise added in the storage and retrieval processes as well
as the waveform preservation. In addition, although the light at the input is classical,
it has been shown that it is possible to infer the quantum character of the storage
under certain conditions [10, 13, 62, 71].

The first demonstration of storage and retrieval of light at the single photon level in
a solid state device, which was also the first demonstration of the AFC echo scheme,
was done in 2008 at the University of Geneva [12]. Weak coherent light pulses were
stored for up to 1µs using the atomic frequency comb scheme in a Nd3+:YVO4
crystal. Single photon level time-bin qubits were also stored and the coherence was
shown to be preserved to a high degree during the storage and retrieval process.
Finally, a proof of principle experiment of temporal multimodality of the protocol
was done, with the storage and retrieval of 4 temporal modes. The storage and
retrieval efficiency was <1% in that initial demonstration. However, several other
single photon level experiments in other materials have since then demonstrated the
AFC echo scheme at the single photon level with much higher efficiencies, reaching
9% efficiency in Tm3+:YAG [65] and 25 % in Pr3+:Y2SiO5 [72, 73].

Another aspect that has been improved in recent experiments is the multimode
capacity. The reversible mapping of up to 64 weak pulse temporal modes has been
demonstrated in a Nd3+:Y2SiO5 crystal [74]. The coherence was verified by simul-
taneously storing and analyzing multiple time-bin qubits. It has also been shown
that, combined with phase modulators, AFC can be used as a programmable proces-
sor for spectral and temporal manipulation of single qubits [75]. Hong-Ou-Mandel
interference between two AFC echoes recalled from Tm doped waveguides has been
demonstrated [76]. Finally, the AFC storage was also extended to polarization qubits
[71, 77, 78], and more recently to spectrally multiplexed time-bin qubits with
selective readout in frequency [62]. Note that for all AFC echo experiments
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mentioned above, the storage was done in the excited state only, leading to short and
pre-determined storage time. The CRIB/GEM protocol allows on demand read-out
even with storage in the excited state, as has been demonstrated at the single pho-
ton level in an Er3+ doped crystal [53] and in a Pr3+ doped crystal [13]. The latter
experiment reported the highest efficiency for any solid state memory so far (69%).
It also showed that the memory operated in the quantum regime, meaning that the
storage and retrieval fidelity was measured to be higher than the one achievable with
a classical memory.

The first demonstration of quantum light storage in solid state device was reported
simultaneously in 2011 by two groups, one from the University of Geneva [14]
and one from the University of Calgary [15]. Both experiments demonstrated the
storage of entangled photons in a rare-earth doped crystal, using the AFC echo
scheme. Both experiments used compatible photon pair sources with one photon
matching the storage device and the other photon at telecommunication wavelength.
The two teams used different storage media with different properties and bandwidth.
The Calgary experiment used a broadband AFC in a Tm3+ doped Lithium Niobate
(LiNbO3) waveguide absorbing light at 793nm. One photon of the pair was stored
for 7ns in the waveguide, with a storage and retrieval efficiency of 2% (excluding
coupling losses in the waveguide). It was also shown that time-bin entanglement was
preserved during the storage and retrieval, and a violation of a Bell inequality was
demonstrated between the telecom photon and the stored and retrieved photon. The
Geneva experiment used a Nd3+ doped crystal absorbing at 883nm, with a storage
bandwidth of 120MHz and featured a maximal storage time of 200ns and a maximal
efficiency of 20%. The preservation of energy-time entanglement was demonstrated.
These experiments will be described in more detail in Sect. 9.6.1.

These experiments demonstrated for the first time entanglement between a tele-
com photon and a collective optical atomic excitation in a solid state device. It should
be noted however that in both cases the photons were stored as optical atomic exci-
tations, leading to short and only pre-determined storage times.

Following these initial experiments, further developments by the same groups
included the storage and retrieval of polarization [77] and time-bin qubits [79] car-
ried by heralded single photons. The Geneva group also reported an experiment
demonstrating entanglement between two crystals [80] (it will be described in more
detail in Sect. 9.6.1), followed by an experiment demonstrating quantum telepor-
tation of the state of a telecom wavelength photon onto a collective atomic optical
excitation [81]. Furthermore, the quantumstorage of a 3-dimensional orbital-angular-
momentumentangled photon has been reported in aNd3+:YVO4 crystal by a group in
Hefei [82].

In 2014 an experiment demonstrating quantum storage of heralded single photons
using the AFC echo scheme in a Pr3+ doped crystal absorbing at 606nm was carried
out at ICFO. This material has demonstrated promising properties in the storage of
classical light, including long storage times up to 1min [41, 83] and high storage and
retrieval efficiencies as mentioned above [13]. Contrary to materials used in previous
demonstrations, it also possesses 3 ground state levels, such that spin-wave storage
is in principle possible. However this comes with the drawback that the spacing
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between the hyperfine states is small, therefore limiting the storage bandwidth to a
fewMHz. This poses strong challenges for the realization of a suitable quantum light
source. The realization of such a source [84] and the storage experiment [16] will be
described in more detail in Sects. 9.5.3 and 9.6.2, respectively.

While the previous experiments have been performed in rare-earth doped crystals,
a recent experiment demonstrated that it is also possible to store non classical light
states in an amorphous environment. An Er3+-doped standard telecom glass fiber
was used as storage device, and photons at telecom wavelengths were stored using
the atomic frequency comb scheme, with an efficiency around 1% and a storage time
of 5ns [85]. The experiment also showed that entanglement was preserved during
the storage in the fiber.

Finally, we shortly mention experiments aiming at using crystals as a source of
photon pairs with embedded memory. In these protocols, the crystal is illuminated
with classical pulses, creating non classical correlations between an emitted photon
and a stored collective atomic excitation. The protocols include the rephasing of
amplified spontaneous emission (RASE) [86] and a combination of the DLCZ and
AFC scheme [87]. First demonstrations of the RASE scheme have been realized,
with strong but still classical correlations obtained in Pr3+:Y2SiO5 [88] in the photon
counting regime, and evidence of non-classical correlations obtainedwith homodyne
detection in Tm3+:YAG [89].

9.5 Quantum Light Sources Compatible with Solid State
Quantum Memories

In order to achieve strong interactions between a single photon and a crystal, and to
achieve high efficiency storage, it is crucial that the quantum light has spectral prop-
erties that match those of the quantum memory. The bandwidth of AFC memories
is given by the width of the AFC that can be created in the crystal. For obtaining
the high-finesse combs necessary to achieve high efficiency storage, the width of the
comb is limited by the spacing between the adjacent states in the ground or excited
state manifolds. Note that AFC broader than the spacing between ground and excited
states can be created, however with a low finesse leading to limited storage efficien-
cies, see e.g. [15, 90, 91]. In the case where the spacing becomes bigger than the
inhomogeneous broadening of the optical transition, the limit is then given by the lat-
ter. This situation could be encountered with Kramers ions (e.g. Nd3+, Er3+), where
moderate magnetic fields could split the states by several GHz. In principle, high effi-
ciency storage using the AFC echo scheme could therefore reach GHz bandwidth.
In practice however, creating high quality combs for long storage times over such
a large bandwidth is experimentally challenging. For achieving spin-wave storage,
non-Kramers ions such as Pr and Eu are good candidates. In these materials, the
spacing between hyperfine states are much smaller, leading to much smaller band-
widths, which can be as low as a few tens of MHz for Eu3+:Y2SiO5 and 4.6MHz for
the excited state of Pr3+:Y2SiO5. The creation of single photons with such a narrow
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linewidth is experimentally challenging. Designing and implementing narrowband
quantum light sources [92–96] that can be interfaced with atoms [97–102] has been
the subject of several investigations in recent years. (see also chapters by Chuu and
Du, M. Mitchell, and Zhao, Bao, Zhao and Pan).

The quantum light sources compatible with solid-state quantum memories that
have been realized up to now make use of spontaneous parametric down conversion
(SPDC),where a pumpphoton is probabilistically split into a photon pair, with energy
and momentum conservation. A great advantage of this solution is that it is very
flexible in terms of wavelengths of the created photons, which allows the coupling to
quantummemories operating at anywavelengths.Moreover, it can create twophotons
with different frequencies, which can be used for example to create non classical
correlations between a quantum memory operating in the visible range and a photon
at telecommunication wavelengths. However, the spectrum of the photons emitted by
spontaneous down conversion typically goes from 100GHz to THz, several orders
of magnitude larger than the bandwidth of quantum memories. Therefore extensive
filtering must be applied in order to generate quantum memory compatible quantum
light using spontaneous down conversion.

Filtering can be applied after the source, using passive filters. However this
requires extremely bright sources [14], e.g. waveguide sources. The waveguide
increases the production rate of photon pairs significantly [103], allowing for an
efficient source while pumping it with a low peak-power cw laser. This is partic-
ularly important for a strongly filtered source, in order to have a sufficiently high
probability of creating a photon pairwithin the filtered spectral regions. It is important
to note that when passive filtering is used, the number of photon pairs per coherence
time (or the spectral brightness expressed in pairs per second per mWof pump power
and per MHz of bandwidth) does not change with the filter bandwidth [104]. While
the rate of created pairs per second decreases with the filter width, the coherence
time of the photon increases, leading to a constant spectral brightness.

Another way of implementing a narrow-band quantum light source from sponta-
neous down conversion is to insert the non linear crystal in an optical cavity [92] (see
also chapters by Zhao, Bao, Zhao and Pan, and M. Mitchell). This not only has the
advantage of providing filtering, but also enhances the probability of generating a
photon within a cavity mode, with respect to the no cavity case. In the ideal case, the
enhancement is given by Q = F3/(π F0) [92], where F is the finesse of the cavity
and F0 is the finesse calculated only from the mirrors reflectivity. In order to reach
this enhancement, both signal and idler fields need to be resonant with the cavity.

Beyond the use of SPDC, several other systems could be used as quantum light
sources. It could be possible to use the doped crystals themselves as sources of pho-
ton pairs with the required spectral properties, as shown with quantum memories
based on atomic gases (see. e.g. [9] for a review). However, this turns out to be
much more difficult to implement in rare-earth doped solids, due to the very small
oscillator strength of the optical transition [105]. Several schemes have been pro-
posed, including the rephasing of amplified spontaneous emission (RASE) [86] and
a combination of the DLCZ and AFC scheme [87]. Solid state single photon emitters
may also be used as compatible single photon sources, e.g. quantum dots or single
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molecules. Quantum dots have typically GHz spectral bandwidths (see chapters by
Lanco and Senellart, Schneider, Gold, Lu, Höfling, Pan and Kamp, and McMahon
andDeGreve), whichmay be compatible with the AFC echo schemewith broadband
combs. The challenge is to tune the quantum dot in resonance with the rare-earth
ensemble, without broadening the line. Single molecules in solid state matrices have
shown much narrower spectral bandwidth, down to tens of MHz [106], which could
be used with spin-wave quantummemories. Again, the challenge is to tune them near
resonance. A potential solution for the frequency mismatch is to implement quan-
tum frequency conversion [107] which has been used recently to interface telecom
photons to quantum memories [73, 108].

9.5.1 Characterizing Photon Pair Sources

In this section, we discuss various ways to characterize photons pairs emitted by
SPDC and to quantify the correlations between signal and idler fields. The state
created by single mode SPDC is given by (for p � 1):

|Ψ 〉s,i = √
1 − p

∞∑
n=0

p
n
2 |n〉s |n〉i (9.4)

where p is the probability to create a photon pair and is proportional to the pump
power, and |n〉s(|n〉i ) is a n photon Fock state in the signal (idler) mode. This state
is known as two-mode squeezed state. It displays very strong quantum correlations
between the two modes, i.e. the signal and idler fields.

For a photon pair source, the quality of the correlations between signal and idler
fields is usually quantified measuring the second order cross-correlation function
G(2)

s,i (τ ) between the two fields, by performing a coincidence measurement. The

normalized form of G(2)
s,i (τ ), denoted as g(2)

s,i (τ ) can be expressed as:

g(2)
s,i (τ ) ≡ 〈E†

s (t)E†
i (t + τ)Ei (t + τ)Es(t)〉

〈E†
i (t + τ)Ei (t + τ)〉〈E†

s (t)Es(t)〉
, (9.5)

where E†
s,i (Es,i ) is the electric field creation (annihilation) operator for the signal

and idler fields. For the ideal two mode squeezed state of 9.4, the cross-correlation
function is given by:

g(2)
s,i = 1 + 1

p
(9.6)

We see that the correlation decreases when increasing p. This is the consequence
of the creation of multiple pairs. We also see that g(2)

s,i can become arbitrarily high
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for low excitation probability. However, this comes at the expense of the count rate,
since the mean number of photons in the signal mode is given by

n̄s = p

1 − p
(9.7)

This illustrates a fundamental limitation of SPDC: there is a trade off between the
degree of quantum correlation and the count rate that can be obtained. In practice,
g(2)

s,i is determined over a detection window Δτ as:

g(2)
s,i (Δτ) = ps,i

ps pi
(9.8)

where ps,i is the probability to detect a coincidence between signal and idler photons
and ps (pi ) is the probability to detect a signal (idler) photon in a time interval Δτ .

The second order cross-correlation function can also be used to gain information
on the spectral content of the photon pairs. For example, in the case of doubly-
resonant cavity-enhanced downconversion, following the theory used in [100, 102],
G(2)

s,i (τ ) takes the form:

G(2)
s,i (τ ) ∝

∣∣∣∣
∞∑

ms ,mi =0

√
γs γi ωs ωi
Γs+Γi

×
{

e−2πΓs (τ−(τ0/2))sinc(iπτ0Γs) τ ≥ τ0
2

e+2πΓi (τ−(τ0/2))sinc(iπτ0Γi ) τ < τ0
2

∣∣∣∣
2

,

(9.9)

where γs,i are the cavity damping rates for signal and idler, ωs,i are the central
frequencies, Γs,i = γs,i/2 + ims,i FSRs,i with mode indices ms,i and free spectral
ranges FSRs,i, and τ0 is the transit time difference between the signal and idler
photons through the SPDC crystal. Equation9.9 shows that the second order cross-
correlation function for a multimode cavity output displays an oscillatory behavior
with peaks separated by the inverse of the cavity free spectral range. The width of the
peaks is directly related to the number of spectral modes in the signal and idler fields.
For two modes, the oscillation will be sinusoidal, and the width will then decrease
with the number of modes. In practice, the minimum width that can be detected is
given by the detectors’ time resolution.

For the case without cavity, but with single mode Lorentzian filters with width γs

and γi inserted in the signal and idler modes, respectively [109], the cross-correlation
function takes the following form we have:

g(2)
s,i (τ ) = 1 + 4

p

γsγi

(γs + γi )2
f (τ ) (9.10)

where
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f (τ ) =
{

e−γsτ τ ≥ 0

eγi τ τ < 0
(9.11)

This expression is very similar to that of a cavity-enhanced source (equation 9.9)
for the special case of a single cavity mode.

Information about the spectral content of the created photons can also be obtained
by measuring the unconditional second order autocorrelation function g(2)

s,s and g(2)
i,i ,

for the signal and idler fields, respectively. For an ideal two mode squeezed state, the
unconditional field exhibit thermal statistics with g(2)

s,s (0) = g(2)
i,i (0) = 2. However, if

several spectral modes are present, it has been shown [110] that the autocorrelations
decrease as g(2)

s,s (0) = g(2)
i,i (0) = 1 + 1/K where K is the number of modes. By

measuring the unconditional second order autocorrelation function, one can therefore
bound the number of spectral and temporal modes present in the fields. This is valid
as long as the measurement is not limited by noise.

The non-classical nature of the correlation between signal and idler fields can be
experimentally assessedwith aCauchy-Schwarz inequality. For a pair of independent
classical fields the following inequality must be fulfilled:

R = (g(2)
s,i )2

g(2)
s,s g(2)

i,i

≤ 1 (9.12)

If the signal and idler fields exhibit thermal or sub-thermal statistics (g(2)
s,s (0) =

g(2)
i,i (0) ≤ 2), the measurement of g(2)

s,i > 2 is therefore a signature of non-classical
correlations. However, in order to prove non-classicality without assumptions on
the created state, the unconditional autocorrelation functions should be measured as
well.

9.5.2 A Quantum Light Source Compatible
with Nd Doped Crystals

Here we discuss a filtered SPDC source producing photons at 883nm (signal) and
1338nm (idler), which was developed to interface with a Nd3+:Y2SiO5 quantum
memory operating at 883nm, having a memory bandwidth of 120MHz. This par-
ticular source has been described in [14, 80], while a similar source, slightly more
broadband, of polarization-entangled photons for quantum storage was described in
a more recent work [109].

The SPDC source was based on a periodically-poled potassium titanyl phos-
phate (PPKTP) crystal with an optical waveguide. The PPKTP crystal was pumped
by a continuous-wave (cw) 532nm laser, which is convenient since powerful and
frequency stable single-mode Nd:YAG lasers exist at this wavelength. Since one
photon should be resonant with the 883nm transition in Nd3+:Y2SiO5, the choice
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of the pump laser imposed the wavelength of the idler photon to 1338nm, in the
telecommunication O-band. In principle one could use another pump wavelength to
produce an idler photon in the more conventional telecommunication C-band around
1550nm.

Without external frequency filtering the source produced photons with a band-
width of about 800GHz, such that strong filtering of the photon pairs was necessary
to match the memory bandwidth of 120MHz. To this end a combination of dif-
fraction gratings, optical cavities and a fibre-based filter was used. The gratings
provided full-width at half-maximum (FWHM) bandwidths of 90 and 60GHz for
the signal and idler photons, respectively. For the signal photon two etalons placed
in series resulted in a single longitudinal mode with a bandwidth of 350MHz. It
should also be emphasized that the 6GHz wide inhomogeneous absorption profile of
the Nd3+:Y2SiO5 crystal provided additional filtering, since the 120MHz comb was
createdwithin this absorption profile. For the idler photon a home-made narrow-band
cavity filtered down the photons to a FWHM linewidth of 43MHz. A single longi-
tudinal mode of this cavity was selected by a fiber Bragg grating (FBG). The total
transmission coefficients from the PPKTP waveguide to the single-mode fibers were
22 and 14% for signal and idler photons [80], respectively, including fiber coupling.
The more recent version of this source [109] reach higher efficiencies, partly because
high-efficiency volume Bragg gratings (VBGs) replaced the diffraction gratings.

Strong non-classical correlations between the signal and idler photons can only
be obtained if the central frequencies of the filters on each mode satisfy the energy
conservation of the SPDC processes. This is a non-trivial task when dealing with
highly non-degenerate SPDC sources, particularly when one mode must be resonant
with an external quantum memory. A solution to this problem was introduced in
the work discussed here. A reference laser that is resonant with the signal filtering
system and the quantum memory is injected into the SPDC source. This will create
light at the idler wavelength through difference frequency generation (DFG), which
obey the necessary energy conservation. This can be used to adjust central frequency
of the idler filtering system, alternatively one can also change the wavelength of the
pump laser.

The filtered SPDC source can be characterized by the pair creation rate within the
filtered modes (spectral brightness) and the second-order auto and cross correlation
functions of the signal and idler modes. The intrinsic spectral brightness of the
PPKTP waveguide was 6.3 · 103 pairs/(mW · MHz · s) [80], which does not include
the transmission through the filtering elements. This means that the probability p
to create a pair (in the limit p � 1) is then p ≈ 2.7 · 10−3/mW per 10ns within
a 43MHz wide spectral window. The duration of the detection window should be
set with respect to the photon pair coherence time, which in our case is dominated
by the 43MHz filter on the idler side (7ns coherence time). The spectral brightness
of the source including the filtering elements and fiber coupling was ≈ 200 pairs/
(mW · MHz · s). If we again assume a 43MHz filtered bandwidth we arrive at a final
pair creation rate of 8600 pairs/s per mW pump power.
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Fig. 9.2 Second-order
cross-correlation g(2)

s,i (Δτ)

function of the filtered SPDC
source developed for Nd
doped crystals, as a function
of the power of the laser
pumping the SPDC source.
The detection integration
window was Δτ = 10ns

The second-order auto-correlation functions of both the idler and signal modes
were characterized [80], resulting in g(2)

i,i (0) = 1.9 and g(2)
s,s (0) = 1.8. These values

give effective mode numbers K = 1.1 and K = 1.25 for the idler and signal modes,
which indicate single frequency modes on both the signal and idler side.

In Fig. 9.2 we show the second-order cross-correlation function g(2)
s,i of the source

as a function of pump power which exhibits the expected 1 + 1/p behaviour [14].
Based on the intrinsic spectral brightness we expect a cross-correlation g(2)

s,i ≈ 75
for P = 5mW, which is very close to the measured value of about 80. The cross-
correlation function is larger than the classical upper bound of 2, where one assumes
g(2)

i,i (0) = g(2)
s,s (0) = 2, for all pump powers, clearly demonstrating the strong non-

classical correlations of the source.

9.5.3 A Quantum Light Source Compatible
with Pr Doped Crystals

In the context of generating quantum light compatible with Pr3+:Y2SO5, one of the
photonsmust be at 606nm,with a bandwidth smaller than 4MHz. In addition, in order
to use this source to generate entanglement between remote crystals, it is desirable to
have the second photon of the pair at a telecom wavelength. An experiment showing
these properties was reported in [84].

In order to meet these requirements, the following source was used. A pump
laser at 426nm was used to generate widely non degenerate photon pairs at 606
and 1436nm in a periodically poled lithium niobate crystal. The crystal was placed
in a bow tie optical cavity with a free spectral range of 400 MHz and a finesse of
around 200 for the signal and idler modes. A special coating was used to achieve
high reflectivity (99.99%) for three mirrors, and a specified reflectivity of 98.5%
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Fig. 9.3 Measured
second-order
cross-correlation G(2)

s,i (τ )

function (non normalized) of
the cavity enhanced SPDC
source developed for Pr
doped crystals [84]. The
FWHM correlation time is
104ns. The zoom displays a
higher temporal resolution,
allowing to observe the
oscillations in the G(2)

s,i (τ ),
characteristic of multi
spectral mode output. From
this data, a number of four
mode per cluster is inferred

for the output coupler. The SPDC output is modified by the cavity modes. In the
case of degenerate photons with the same polarization, the spectrum would be a
convolution between the phase matching bandwidth and the cavity modes. However,
in the non degenerate case, the signal and idler modes experience different dispersion
characteristics in the crystal, which leads to slightly different free spectral ranges.
Since both modes have to be resonant with the cavity to enable enhancement, only
a subset of modes will be enhanced. These modes are grouped in so called clusters
[93, 111]. The width and spacing of the clusters is determined by the dispersion
properties of the crystals and the cavity geometry.

In the experiment of [84], the number of modes per cluster was inferred to be
around 4, by looking at the oscillations in the g(2)

s,i (τ ) function and comparing to
equation 9.9 (see Fig. 9.3). This number was also verified by direct measurement
of the signal and idler fields with a narrow band filter cavity, scanned over the
spectrum. The number of clusters was then inferred by measuring the first order
correlation function of the idler field. Within the phase-matching bandwidth of the
free space down conversion photons of around Γpm= 80GHz, the spectrum of the
photons leaving the cavity was finally inferred to be composed of one main cluster
containing around four longitudinalmodes, and two smaller side clusters separated by
45GHz from the main one and suppressed by around 80%. For degenerate photons,
the number of longitudinal modes would be given by Γpm/FSR = 200 modes. The
clustering effect therefore leads to a suppression of the number of modes of around
50. Within a longitudinal mode, the photons pair created featured a correlation time
of 104ns (see Fig. 9.3), the longest demonstrated so far with SPDC sources. From
the decay of the G(2)

s,i (τ ) (fitted with exp(−2πΔντ )), spectral-linewidth of Δν of
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1.7 and 2.9MHz were inferred for the idler field at 1436nm and the signal field at
606nm, respectively. The asymmetry can be attributed to the different intra-cavity
losses for the two wavelengths. A intrinsic spectral brightness of 8 · 103 pairs/(mW
· MHz · s) was inferred, leading to p ≈ 6.4 · 10−3/mW per 400ns within a 2MHz
wide spectral window. However due to large optical losses, the spectral brightness
before the detectors (inside single mode fibers) was 11 pairs/(mW · MHz · s). In a
more recent version of the source, this number was increased to 190 pairs/(mW ·
MHz · s).

This source still requires additional filtering for selecting a single frequencymode.
However, the filtering requirement are considerably relaxed due to the low number
of modes present in the spectrum. Side clusters can easily be removed by placing
etalons with high transmission efficiency in the signal or idler modes. In order to
select a single mode, a narrow band filter cavity with FSR = 16.8GHz and linewidth
of 80MHz has been placed in the signal arm. In this configuration, the measured
G(2)

s,i (τ ) was measured and no oscillation was observed, confirming that only one
mode per cluster was present. The suppression of the side cluster could also be
inferred first order autocorrelation.

9.6 Quantum Light Storage Experiments

9.6.1 Quantum Entanglement Storage in Nd:YSO Crystals

In 2008 the first AFC echo storage experiment in a Nd3+:YVO4 crystal at the single
photon level was demonstrated [12], which was the starting point for considering
storing true quantum states of light. To this end the filtered SPDC source described
in Sect. 9.5.2 was developed. The first Nd:YVO4 memory had a bandwidth of a few
MHz, making the filtering of the SPDC source difficult. A more wideband Quan-
tum memory was therefore developed in a Nd3+-doped crystal Y2SiO5, using the
4I9/2−4F3/2 transition at 883nm [14, 74]. This optical transition has an inhomoge-
neous broadening of about 6GHz. The ground state was split into a Kramers spin
doublet by applying a magnetic field of around 300mT, producing a Zeeman split
of about 11GHz. The comb structure was created on one of the Zeeman transitions
by performing spectral hole burning, i.e. ions were optically pumped into the other
Zeeman spin state. In practice this was done by scanning the laser frequency of
a narrow-band external-cavity diode laser (EDCL) with a acousto-optic modulator
(AOM), while periodically switching off and on the light. The total bandwidth was
120MHz, limited by the scan range of the AOM. The maximum efficiency at low
storage times 1/Δ=25ns was 20%, close to the optimal value for the optical depth
of the crystal. In Fig. 9.4 we show an example of storage of 883nm signal photons
produced by the filtered SPDC source in the crystal [14]. The cross correlation func-
tion between the signal and idler modes after storing the signal mode clearly shows
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Fig. 9.4 Detection event histogram as a function of time. The peak at around zero timewas recorded
bymaking a large transparency hole in theNd3+:Y2SiO5 absorption, therefore it represents the input
mode. When creating an AFC with periodicity Δ = 20MHz, the expected AFC echo appears as
a peak at around 50ns. The excellent signal-to-noise ratio indicates a strong quantum correlation
between the idler photon (1338nm) and the signal photon (883nm), after the latter has been stored
in the memory. The inset quantifies this by showing the second-order cross-correlation g(2)

s,i (Δτ)

function as a function of storage time 1Δ. The g(2)
s,i (Δτ) function is significantly larger than the

classical limit of 2, for all storage times. The detection integration window was Δτ = 10ns

quantum correlations, for all storage times. This can be interpreted as storing a single
photon at 883nm, heralded by the detection of an idler photon.

The second-order cross-correlation function g(2)
s,i (Δτ) after storage of the signal

photon is lower than that of the source, cf. Fig. 9.2. In [80] it was shown that it was
due to the delay introduced by the memory. Indeed, the signal photons released from
the memory are superimposed with uncorrelated signal photons created later during
the AFC echo emission, which are transmitted through the memory with a certain
probability. This noise source depends on the ratio of the memory transmission to
the memory efficiency [80]. A solution to this problem is to turn off the SPDC pump
laser before the AFC echo, which was done in the quantum storage experiment in
Pr3+:Y2SiO5 described below [16].

The photons produced by a SPDC source pumped by a CW pump laser are entan-
gled in energy-time [112], provided that the coherence time of the pump is sig-
nificantly longer than the coherence time of the signal-idler pair. This condition is
naturally met when using a single-mode frequency CW pump laser, as in this case.
This energy-time entanglement can be revealed by making projective measurements
on different time basis states, on both the signal and idler modes. Practically, one can
place Mach-Zehnder (MZ) interferometers in each mode, each MZ having the same
path differenceΔT , which is known as a Franson-type set-up [112]. The two-photon
interference fringes obtained when varying the phases in each interferometer reveal
the energy-time entanglement. The coincidence rate varies like V cos(Δφs + Δφs),
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Fig. 9.5 Number of detected
signal-idler coincidences as a
function of the signal
analyser setting Δφs , for two
settings Δφi of the idler
analyser shown as square
and circle symbols. The solid
(V = 78 ± 4%) and dashed
(V = 84 ± 4%) lines are fits
to the circles and squares,
respectively

where φs and φi are the phase settings on the signal and idler interferometers and
V is the visibility. More formally the quantum entanglement can be detected by a
violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality [113], where the
CHSHparameter S is larger than 2 for any entangled state. The violation of theCHSH
inequality can also be inferred from a fringe visibility larger than 1/

√
2 ≈ 70.7%.

In the experiment we describe here [14], a particular twist was introduced. While
the idler photon was analyzed using a standard interferometer, the signal photon was
analyzed inside the Nd3+:Y2SiO5 memory. We exploited the fact that more compli-
cated absorption features than periodic combs can be created. Indeed, by creating an
absorption structure that was the sum of two combs with different periodicities Δ1
and Δ2, we could create an effective unbalanced interferometer within the crystal.
By setting 1/Δ1 − 1/Δ2 = ΔT we could analyze the entanglement in memory.

In Fig. 9.5 we show examples of interference fringes as a function of Δφs for
two values of Δφi . Both visibilities are well above the limit ≈ 70.7%, strongly
indicating the presence of entanglement. By explicitly measuring a CHSH parameter
of S = 2.64±0.23 the entanglement between the idler photon and the photon stored
in the crystal was clearly demonstrated.

In parallel to the work described above, Saglamyurek et al. also demonstrated
storage of a photon entangledwith a another photon stored in and released froma rare-
earth doped crystal [15]. In their experiment the entangled photons were produced by
a bulk periodically poled lithium niobate (PPLN) crystal, which was pumped using a
pico-second laser with high peak power. Time-bin entangled photons were produced
by splitting the 16ps pump pulse into two coherent pulses separated by 1.4ns. The
idler photon was at the telecom wavelength 1532nm, while the signal photon was
at 795nm. The quantum memory was based on a atomic frequency comb created
on the 3H6–3H4 transition at 795nm in a Thulium-doped lithium niobate crystal
(Tm3+:LiNbO3). A particular feature of this experiment was the optical waveguide
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on the surface of the Tm3+:LiNbO3 chip. The waveguide technology is widespread
in integrated optics and opens up interesting perspectives of combining the storage
device with other optical elements. The AFC memory in this experiment was also
very broadband, the AFC spanned a range of 5GHz. This allowed storage of the short
16ps long photons produced by the filtered SPDC source. This also implies that the
degree of filtering was less stringent than in the experiment described previously. A
drawback of this material is, however, the short storage time and the low efficiency.
The entanglement experiment discussed here demonstrated a storage time of 7ns,
with an AFC echo efficiency of 2%. The preservation of entanglement was proved
by testing the CHSH inequality, resulting in a CHSH parameter of S = 2.25±0.06.

In the next experiment that we will describe the goal was to entangle two
Nd3+:Y2SiO5 crystals [80]. This could be done by storing each photon out of an
entangled pair, but this requires that both photons are resonant with a memory.
With only one photon in resonance with the Nd doped crystal at 883nm, the choice
was made instead to store a path-entangled state of a single photon [114]. More
specifically, this state can be created by sending a single photon state |1〉 through a
balanced beam-splitter, which creates the state 1/

√
2(|1〉A|0〉B + |0〉A|1〉B) of the

spatial output modes A and B of the beam-splitter. This state is sometimes referred
to as single-photon entanglement [114]. Now, entanglement between two memories
can be realized by placing one memory in each path. This approach was first used
by Choi et al. [115] to entangle two spatial modes in the same cloud of laser-cooled
caesium atoms, where each mode was stored in the cloud using EIT. In the experi-
ment described here, this approach was used to entangle the modes of two physically
distinct crystals and the modes were stored using the AFC scheme [80]. The single
photon state was produced by detecting the idler photon from the filtered SPDC
source, which creates a state very close to a single photon in the signal mode (a
heralded single-photon source).

To characterize the single-photon entanglement one can read out the memories
and then performmeasurements on the photonic state, which provides a lower bound
of the entanglement present while storing the two modes. To detect the entanglement
we used the tomographic approach developed by Chou et al. [116], in which the
entanglement is quantified through a single parameter, the concurrence C . The con-
currence is positive C > 0 for an entangled state, more specifically a separable state
gives C = 0 and a maximally entangled state C = 1. To compute the concurrence
one needs tomeasure the probability of finding exactly one signal photon in any of the
twomodes, p01 and p10, and the probability of finding one signal photon in each path,
p11. This requires two- and three-fold coincidencemeasurements, respectively, since
one also needs to detect the heralding idler photon. In addition one needs to measure
the one-photon visibility V associated with the two paths A and B. The concurrence
can then be calculated with the formula: C = V (p10 + p01) − √

2p00 p11 [116].
By performing all the necessary measurements for a relatively high pump power of
16mW, a concurrence of C = 6.3± 3.8 · 10−5 was reached, indicating the presence
of entanglement [80]. The low concurrence was essentially due to losses, since the
detection probabilities include all propagation losses, memory efficiency and detec-
tion probabilities. Alternatively one can use an approach where the p11 probability is
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inferred from the cross-correlation function g(2)
s,i , which is a muchmore time efficient

experiment as it uses only two-fold detections. Using this approach the presence of
entanglement at the pump power of 16mW could be confirmed, and the concurrence
was measured for a range of lower pump powers where the direct method turned out
to be too time consuming due to the rarity of three-fold coincidences. The concur-
rence reached about C = 1.1 ± 0.1 · 10−4 for the lowest pump power of 1 mW,
showing the presence of entanglement of the stored modes in the two Nd3+:Y2SiO5
crystals.

9.6.2 Quantum Storage of Heralded Single Photon
in a Pr3+:Y2SiO5 Crystal

As mentioned previously, Pr doped solids have demonstrated exceptional properties
for light storage experiments, including long storage times [40, 41, 83] and high
efficiencies [13, 69]. Despite these very promising properties, there is currently only
one demonstration of storage of quantum light in this system. In this section, we
describe in more detail this demonstration, initially reported in [16].

The ultra-narrowband photon pair source described in Sect. 9.5.3 can be used to
generate heralded single photons compatible with the Praseodymium doped crystal.
For sufficiently high correlations between the two fields, the detection of an idler
telecom photon will indeed project the signal mode in a single photon Fock state.

These heralded single photons have been stored in the Pr3+:Y2SiO5 as collective
optical atomic excitations using the AFC echo scheme. The storage device is a 3mm
thick Y2SiO5 sample doped with a Pr3+ concentration of 0.05 %. The relevant opti-
cal transition connects the 3H4 ground state to the 1D2 excited state at a wavelength
of 605.977nm and features a measured absorption coefficient of 23cm−1, and an
inhomogeneous linewidth of 5GHz. At zero magnetic field, the ground state and
excited states manifolds are split in 3 metastable states, denoted ±1/2k , ±3/2k and
±5/2k (see inset of Fig. 9.6), where k = g, e denotes the ground or the excited state.
The spacing between the hyperfine states is of the order of a few MHz. This gives
an upper limit for the bandwidth as already mentioned. But, since the separation
between ground states is much smaller than the inhomogeneous broadening, it also
creates a complication for isolating a single class of atoms. A laser sent in the crystal
can indeed be resonant with up to 9 distinct classes of atoms, within the inhomoge-
neous broadening. To select a single class of atoms, the optical pumping scheme first
demonstrated by Nilsson et al. was used [117]. After selecting one class of atoms,
an atomic frequency comb is created on the ±1/2g → ±3/2e transition (see Fig. 9.6
for an example of AFC).

One important issue to couple photons to the solid state atomic ensemble is that
the frequency of the photons must be stable within a few hundred kHz. This can be
insured by implementing a feedback lock system using the laser used to prepare the
atomic frequency comb. One the one hand, the length of the cavity is locked on the
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Fig. 9.6 Example of an atomic frequency comb in Pr3+:Y2SiO5 . The optical depth (d) is plotted
as a function of the relative frequency. The input and output photons are resonant with the±1/2g →
±3/2e transition. Inset Relevant energy level scheme of the Pr3+:Y2SiO5 crystal, with 3 hyperfine
ground states and 3 excited states

laser with a Pound-Drever-Hall scheme. This insures that at least one spectral mode
emitted by the cavity enhanced source is resonant with the crystal absorption. On
the other hand, the required double resonance for signal and idler modes is insured
by adjusting the frequency of the pump laser using a classical signal at the idler
wavelength created by difference frequency generation between the pump laser at
426nm and the laser at 606nm.

In the experiment, a single longitudinal mode was selected for the idler mode
thanks to a Fabry Perot filter cavity. For the heralded single photon, the crystal itself
was used as a filter to prevent the modes non resonant with the AFC to reach the
detector. The probability to have a single photon in the signalmode before the cryostat
conditioned on a detection in the idler mode (called the heralding efficiency ηH ) was
around a few percents in this experiment, limited by dark counts in the idler detector,
noise in the idler mode, cavity escape efficiency and optical losses in the signal mode
from the cavity to the crystal.

The heralded single photon at 606nm was first characterized by measuring the
second order correlation g(2)

s,i (Δτ) function by sending it through the crystal where
a 12MHz wide transparency window was created (see Fig. 9.7a). In Fig. 9.7b, the
values of g(2)

s,i (Δτ) for the incoming photons are plotted as a function of the pump

power. The value of g(2)
s,i (Δτ) increases when the pump power decreases, as expected

for a two-mode squeezed state. The non classicality of the input photon was also
demonstrated by violating a Cauchy-Schwarz inequality. The detected coincidence
count rate was around 0.8Hz per mW of pump power. By correcting for known
optical losses and detection efficiencies, a creation rate outside the cavity of 2.8kHz
/mW was inferred.
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Fig. 9.7 Results of heralded single photon storage in a Pr3+:Y2SiO5 crystal [16]. a G(2)
s,i (t)

histogram without (blue) and with (red) AFC. The preprogrammed storage time is 2µs and the
power of the 426.2 nm pump is 2mW. b The g(2)

s,i values as a function of the pump power for the
AFC echo (plain squares) are compared to those for the input photons (plain circles). The dotted
line corresponds to the classical limit g(2)

s,i = 2 for two-mode squeezed states. c Storage and retrieval

efficiency (blue circle) and g(2)
s,i (green squares) as a function of the storage time. For b and c the

data are evaluated for a detection window Δτ = 400ns and the error bars are evaluated from the
raw number of counts assuming Poissonian statistics

After having confirmed the non classicality of the input light, the heralded single
photon was stored in and retrieved from the crystal the AFC echo scheme. In order
to avoid the spurious noise effect described in Sect. 9.6.1, the photon pair source
pump light was switched off after detection of an idler photon. The efficiency of the
storage and retrieval process was measured to be up to 10% for short storage times.
The second order cross correlation is measured for the stored and retrieved photon
as can be seen in Fig. 9.7a. The values of g(2)

s,i are also plotted as a function of the

pump power in Fig. 9.7b. Surprisingly, the values of g(2)
s,i after retrieval are higher

than the one for the input photons, for a big range of pump powers. This effect has
been attributed to the fact that the memory act as a filter for broadband noise emitted
by the photon pair source. Since the pump light is switched off after the detection
of an idler photon, the atomic frequency comb delays the signal photon in a noise
free region, which therefore increases the signal to noise ratio and the g(2)

s,i (Δτ) [16].
This effect highlights that under certain conditions, quantum memories can act as
purifiers by storing only the signal and not the noise. It has been observed also in
other experiments [73, 118].
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The storage time in the crystal can be chosen by tuning the comb periodicity Δ.
In theory, the minimal Δ achievable is given by 2γh F , where γh is the homogeneous
linewidth of the optical transition and F the finesse of the comb. However, in prac-
tice, several effects will limit the achievable Δ, including power broadening, finite
laser linewidth, spin inhomogeneous broadening, crystal vibrations in closed loop
cryostats, etc. In the present experiment, non classical correlations between heralding
photon and stored and retrieved heralded photons have been observed until a storage
time of 4.5µs (see Fig. 9.7c). This is more than 20 times longer than previous realiza-
tions [14, 15] and would allow entanglement between crystals separated by km long
distance. The storage and retrieval efficiency dropped by a factor around 10 between
1.5 and 4.5µs (see Fig. 9.7c). This is mainly due to the fact that the finesse could
not be kept constant when decreasing Δ, because of the minimum achievable width
of an absorption peak, due to the limitations mentioned above. Longer storage times
in the excited state of up to 10µs have recently been obtained with weak coherent
states in Pr3+:Y2SiO5 [73]. Note also that excited state storage times of up to 30 µs
have been obtained using bright pulses storage in a Eu3+:Y2SiO5 crystal [70].

9.7 Prospects for Spin-Wave Storage with Quantum Light

In order to increase the storage time and to achieve an AFC spin wave memory
with on demand read-out, it has been proposed to transfer collective optical atomic
excitations to collective spin excitations (or spin waves), using control fields (see
Sect. 9.3). Proof of principle experiments have been realized in the classical regime
for storage of strong pulses [70, 119, 120] andwe discuss in this section the prospects
to extend this experiments to quantum light. As mentioned in Sect. 9.3, spin wave
storage requires materials with at least 3 long lived ground state levels. The best
known materials with the required properties are Pr3+ and Eu3+ doped crystals.

Themain experimental challenge for reaching the quantum regimewith spin-wave
storage is to suppress the noise generated by the control pulses, which are very close
in frequency from the single photon output (e.g. from 10 to 17MHz in Pr3+:Y2SiO5
and from 35 to 120MHz in Eu3+:Y2SiO5 ). In that respect, one advantage of the AFC
scheme is that the control pulses are temporally separated from the single photon
output, which allows the use of temporal filtering. However, the control pulses also
create transient phenomena inside the crystal due to e.g. the interactionwith unwanted
residual population in the storage state because of imperfect optical pumping. This
can give rise to free induction decay and fluorescence, which lead to noise emission
simultaneous with the single photon emission. The suppression of this noise requires
narrow spectral filtering, which can be realized using e.g. a narrow-band optical
cavity [123] or a crystal filter [121, 122]. An interesting figure of merit in the context
of single-photon-level spin-wave storage, taking into account the noise generated and
the storage and retrieval efficiency, is the mean number of input photons to achieve
a signal-to-noise ratio (SNR) of 1 in the output mode, denoted as μ1. In 2013, an
experiment in Eu3+:Y2SiO5 achieved μ1 = 2.5, using a Fabry-Perot narrowband
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filter cavity [123]. Very recently, a lower value of μ1=0.1 has been demonstrated in
Eu3+:Y2SiO5 [124]. A low value ofμ1 = 0.07 has also been shown in Pr3+:Y2SiO5
[125], using a reconfigurable transparencywindow in an another Pr3+:Y2SiO5 crystal
as spectral filter. High fidelity storage of time-bin qubits encoded in weak-coherent
states at the single photon level was also demonstrated [125], allowing the spin-wave
memory to operate in the quantum regime. In order to achieve high fidelity storage of
quantum light, it is important to obtain μ1 � 1. This is because in practice, because
of various optical losses, it is very difficult to obtain a single photon in front of the
memory, with efficiency approaching unity. To achieve quantum storage with high
SNR using the photon pair sources presented in Sect. 9.5, the condition μ1 � ηH

must be fulfilled, where ηH is the heralding efficiency of the source, including all
optical losses from the source to the memory. Such an experiment has so far not been
demonstrated.

Beyond the challenge of storing a single photon as a single spin-wave excita-
tion, another important challenge is to increase the spin-wave storage time in this
single-excitation regime. The spin-wave memory in a rare-earth-ion doped crystal
is limited by the inhomogeneous spin linewidth [119]. This limitation can be lifted
by utilizing spin-echo techniques to rephase the inhomogeneous spin dephasing, in
which case the storage time is limited by the spin coherence time. But one can push
the storage time still further by implementing dynamical decoupling sequences to
reach storage times beyond 1s, a technique that has been successfully implemented
in EIT storage experiments of strong optical pulses in rare-earth-ion doped crystals
[41, 83]. However, the use of spin echo techniques for extending the storage time of
ensemble-based quantum memories introduces a new potential source of noise. The
challenge lies in avoiding to populate the |s〉 state with too many atoms, which would
lead to spontaneous emission noise in the output when reading out the single spin
excitation. At first this might appear to be almost impossible for a single excitation in
|s〉 [126], but it was shown later that the strong collective emission into a particular
spatial mode of the stored single excitation provides a very effective spatial filtering
of the spontaneous emission noise [127]. The spin-echo technique must be very effi-
cient, however, to avoid this noise, and it remains to be seen if the storage fidelity
of a single photon can be high enough when applying spin echo techniques. In a
very recent experiment [124] it was shown that spin echo techniques could indeed
be used when manipulating an average spin excitation of around 1, in an ensemble
composed of 1010 Eu3+ ions, without adding significant noise to the optical read
out of the memory. This was made possible by using a robust and error compensat-
ing spin echo sequence which limited the population introduced to the |s〉 state to
well below 1%. In this way a μ1 parameter of around 0.3 could be maintained for
up to 1ms of spin-wave storage time, showing that the noise level should in principle
allow quantum state storage on a milliseconds time scale. One future goal of this
research is to implement dynamical decoupling sequences in order to further extend
the spin-wave storage time.
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9.8 Outlook

Progress to harness the interaction between quantum light and atomic ensembles in
a solid state environment has been fast in recent years. However, the full capabilities
of these materials have not yet been exploited in the quantum regime and several
challenges remain. For example, an experiment demonstrating simultaneously high
efficiency and long storage time of quantum light has not been demonstrated yet.
The quantum networking capabilities also need to be improved. Current research
directions include work towards the realization of long lived heralded entanglement
between remote solid state multimode quantum memories [11]. Such an experi-
ment would pave the way to functional elementary segments of quantum repeaters
withmultiplexed entanglement generation. These applicationswould strongly benefit
from the realization of a solid state photon pair source with embedded memory [87].
Another research direction actively pursued is to increase the spectral multiplexing
capabilities, together with selective frequency read-out [62, 128]. Another promis-
ing research direction is the integration of these quantum memories with micro and
nanostructures, which would open many interesting opportunities in terms of minia-
turization, scalability and integration other optical elements such as quantum light
sources and single photon detectors. The coupling of rare-earth ions with nanopho-
tonic structures like photonic crystal waveguides or cavities would also provide
increased light-matter interaction and potentially lead to cavity QED experiments
with a low number of rare-earth ions [129]. This may also facilitate the detection and
manipulation of single rare-earth ions that could be used as quantum bits [130, 131].
Finally, rare-earth ion doped crystals can be used as spin ensemble that can be cou-
pled to superconductive cavities [132, 133], with the long term goal of connecting
superconducting qubits and optical photons.
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120. M. Gündoğan, M. Mazzera, P.M. Ledingham, M. Cristiani, H. de Riedmatten, Coherent stor-
age of temporally multimode light using a spin-wave atomic frequency comb memory. New
J. Phys. 15, 045012 (2013)

121. H. Zhang et al., Slow light for deep tissue imaging with ultrasound modulation. Appl. Phys.
Lett. 100, 131102 (2012)

122. S.E.Beavan, E.A.Goldschmidt,M.J. Sellars,Demonstration of a dynamic bandpass frequency
filter in a rare-earth ion-doped crystal. J. Opt. Soc. Am. B 30, 1173–1177 (2013)

123. N. Timoney, I. Usmani, P. Jobez, M. Afzelius, N. Gisin, Single-photon-level optical storage
in a solid-state spin-wave memory. Phys. Rev. A 88, 022324 (2013)

124. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, M. Afzelius, Coherent
spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114,
230502 (2015)
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Part V
New Sources of Entangled Photon Pairs



Chapter 10
Engineering of Quantum Dot Photon
Sources via Electro-elastic Fields

Rinaldo Trotta and Armando Rastelli

Abstract The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the implemen-
tation of quantum communication science. This is indeed one of the main driving
forces behind ongoing research on the study of semiconductor quantum dots. Often
referred to as artificial atoms, quantum dots can generate single and entangled pho-
tons on demand and, unlike their natural counterpart, can be easily integrated into
well-established optoelectronic devices. However, the inherent random nature of the
quantum dot growth processes results in a lack of control of their emission proper-
ties. This represents a major roadblock towards the exploitation of these quantum
emitters in the foreseen applications. This chapter describes a novel class of quantum
dot devices that uses the combined action of strain and electric fields to reshape the
emission properties of single quantum dots. The resulting electro-elastic fields allow
for control of emission and binding energies, charge states, and energy level splittings
and are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are dis-
cussed.

10.1 Engineering of Quantum Dot Photon Sources
via Electro-elastic Fields

Initially referred to as quantum boxes [1], semiconductor quantum dots (QDs) are
nanostructures made of several thousands of atoms that can self-assemble during
hetero-epitaxial growth [2]. QDs are capable to confine the motion of charge carriers
in three dimensions and feature discrete energy levels. The latter property, which
is a direct consequence of the laws of quantum mechanics, has earned QDs the
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well-known nickname of artificial atoms. Looking at these nanostructures with the
eyes of a passionate material scientist, there is no doubt that QDs represent one of
the most spectacular examples of our ability to manipulate matter at the atomic scale,
result of more than 50years of extensive research in semiconductor and solid state
physics. In the last 15years, however, the interest for QDs has pushed its boundaries
into the realm of quantum optics. Seminal works demonstrated that QDs can act as
triggered sources of single photons [3] and entangled photon pairs [4–6] and can be
easily integrated into conventional optoelectronic devices [7] and optical microcav-
ities [8–10]. The appealing idea of exploiting semiconductor-based sources of non-
classical light for quantum technologies has thereby triggered efforts of researchers
working at the interface between quantum optics and condensed-matter physics.
Nowadays, the quality of the single and entangled photons produced by these nanos-
tructures is reaching levels comparable to trapped atoms [11, 12] or parametric
down-converters [13], and advanced quantum optics experiments, such as quantum
teleportation [14, 15], have been recently performed.

In spite of these accomplishments, the establishment of QD photon sources as
viable building blocks for quantum communication requires a number of extraordi-
nary challenges to be overcome. The need of Fourier-limited [11, 12], bright [10, 16,
17], and site-controlled [18, 19] photon sources remains certainly a problem, and
some of the groundbreaking results that have been recently achieved are discussed
within this book. There is another issue, however, which becomes crucial as soon as
the number of quantum emitters required for the envisioned application increases:
different from real atoms, each QD possesses its size, shape, composition [20] and,
as consequence, a unique emission spectrum. This hurdle is a direct consequence of
the stochastic growth processes and has a dramatic effect, e.g. on the capability of
transferring quantum information between distant QD-based qubits [21]. To better
explain this point, let us consider Hong-Ou-Mandel two-photon interference [22]
between photons emitted by two remote QDs [23, 24], a key operation of existing
protocols of large-distance quantum communication [25]. This quantum-mechanical
phenomenon consisting in the coalescence of two single photons into a two-photon
collective state can be observed when single photons impinge onto a beamsplitter.
There, the photonwavepackets should be indistinguishable in all the possible degrees
of freedom.While polarization and space overlap can be easily achieved, ifwe restrict
our discussion to Fourier-limited QD photons (see chapter byA. Kuhn) the overlap in
energy is what eventually reduces the visibility of two-photon interference. Consid-
ering that the inhomogeneous broadening of QD emission is typically tens of meV,
the probability of finding two QDs for which photons have the same energy within
typical radiative-limited emission linewidth (∼µeV) is < 10−4. The situation wors-
ens when one requires entangled photons to impinge onto a beamsplitter, i.e., when
one aims at quantum teleportation or entanglement swapping between distant nodes
[26]. In fact, the capability of QDs to generate photon pairs that have high enough
level of entanglement to violate Bell’s inequality [27] is hindered by the presence of
structural asymmetries, which manifest themselves, via the anisotropic electron-hole
exchange interaction [28], in the appearance of an energetic difference between the
two bright excitonic states, the well-known fine structure splitting (FSS). When the
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FSS is larger than the radiative-limited emission linewidth of the excitonic transition
(∼1µeV), the entanglement is strongly reduced [29]. Recent theoretical calculations
[30] show that only a very low portion of as-grown QDs are free of asymmetries (1
over 1000 for standard Stranski-Krastanow QDs) and the numbers increase slightly
if very sophisticated growth protocols are employed [18]. Therefore, the probability
of finding two as-grown QDs suitable to swap entanglement is considerably small
(10−9 or less), and it is practically zero in the case of experiments involving sev-
eral sources. Therefore, the future of QDs for applications critically depends on our
capability to precisely control their optical properties within tolerances which are
too small to be met even by the most refined fabrication methods. These hurdles have
naturally led to the idea of post-growth tuning of the QD emission via the applica-
tion of external perturbations, such as electric fields [31–34], elastic stress [35–37],
magnetic [28, 29], and optical [38] fields. Among the others, piezoelectric-induced
strains [37] and vertical electric fields [31] are among the most promising, since they
do not require bulky set-ups and they are compatible with compact on-chip technol-
ogy. The fascinating idea behind the use of these “tuning knobs” is to exploit the
same semiconductor matrix that allows for the existence of QDs as the resource for
solving problems related to their semiconducting nature itself. Progress in semicon-
ductor technology has opened up the possibility to embed QDs in the intrinsic region
of field-effect devices (such of n(p)-i-Schottky or n-i-p diodes) and to precisely con-
trol the electric field along the crystal growth direction (vertical electric field) by the
simple application of a voltage [31]. Similarly, the integration of semiconductor thin-
films containing QDs onto piezoelectric substrates, such as lead-zirconate-titanate
(PZT) [35] or lead magnesium niobate-lead titanate (PMN-PT) [37], allows strain
fields to be transferred to QDs via electrical means. Using the quantum-confined
Stark-effect and variable deformation of the host semiconducting matrix, vertical
electric fields and in-plane stress fields offer a precise and reversible way to engineer
the QD electronic structure and have been instrumental in bringing into resonance
the levels of QD molecules [34, 39], to tune QD levels into resonance with cavity
modes [37, 40, 41], and to control binding energies of excitonic complexes [42–44].
Thanks to the broad-band tunability of the QD emission energy [31, 45] they have
also enabled the first two experiments showing two-photon interference between
remote QDs [23, 24]. Despite these impressive results and the tremendous efforts
required to achieve them, having at hand single “tuning knobs” is very often not suffi-
cient tomeet some of the very stringent requirements set by advanced quantum optics
experiments. A prominent example is represented by the difficulties encountered in
erasing the FSS [46]. Theoretical and experimental results have demonstrated that
the application of either stress or electric fields to single QDs generally results in
a lower bound of the FSS (usually larger than 1 µeV) caused by the coherent cou-
pling of the two bright exciton states [31, 47]. Only a few “hero” QDs can be tuned
for entangled photon generation [31], thereby hindering the implementation of QD
photon sources in advanced quantum communication protocols [21].
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In this chapter, we describe a novel class of hybrid piezoelectric-semiconductor
devices that allow large stress and electric fields to be simultaneously applied to
single semiconductor QDs. Despite the idea to combine independent fields emerges
naturally from the need of a tighter control over the properties of the quantum emit-
ters, it has been largely overlooked due to the common opinion that the use of several
“knobs” simply extends the tunability of the QD emission properties. In strong con-
trast, we show that the effect of strain and electric field are complementary and that
the resulting electro-elastic field allows addressing tasks not solvable with existing
approaches.

The chapter is divided as follows: In the first section we discuss the technological
steps required to build up the hybrid semiconductor-piezoelectric devices capable
of delivering electro-elastic fields to single QDs. We demonstrate immediately the
technological relevance of this approach introducing a wavelength-tunable, high-
speed andall-electrically-controlled sourceof single photons. In the following section
we focus on the idea of using strain and electric field to achieve independent control
of different QD parameters. In particular, we show independent control of (i) charge
state and emission energy, (ii) exciton and biexciton energies, and (iii) amplitude
and phase of mixing of bright exciton states. The latter achievement means that
the electro-elastic fields can be used to tune any QD for the generation of highly
polarization-entangled photon-pairs.

10.2 Hybrid Semiconductor-Piezoelectric Quantum Dot
Devices: The First High-Speed, Wavelength-Tunable,
and All-Electrically-Controlled Source of Single
Photons

The hybrid devices discussed here are obtained by merging the semiconductor and
piezoelectric technologies. Diode-like (p-i-n or n-i-Schottky) nonanomembranes
containing In(Ga)As QDs are integrated onto [Pb(Mg1/3Nb2/3)O3]0.72[PbTiO3]0.28
(PMN-PT) piezoelectric actuators featuring giant piezoelectric response. For details
about device fabrication we refer the reader to the specific paper [45].

Figure10.1 shows a sketch of the final device, which features two electrical tuning
knobs: a voltage applied to the nanomembranes (Vd ) allows the electric field (Fd )
across the QDs (up to ∼200 kV/cm) to be controlled, as in standard field-effect
devices. Simultaneously, the application of a voltage (Vp) to the PMN-PT results in
an out-of-plane electric field Fp that leads to tensile or compressive in-plane strains
(up to ±0.2% at cryogenic temperatures) in the QD layer. Unlike PZT, PMN-PT is
capable of larger in-plane strains, which is crucial for broadband tunability. It is also
worth noting that the Au layer between the PMN-PT and the nanomembrane plays
a threefold role here: It acts as a stiff strain-transfer layer, as an electrical contact
for both the nanomembrane and the PMN-PT, and it represents the bottom mirror of
a metal-semiconductor-dielectric-planar cavity [48] featuring extraction efficiencies
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Fig. 10.1 Strain-tunable quantum dot devices. a Sketch of the dual-knob device: a p-i-n nanomem-
brane containing self-assembled QDs is integrated on top of a piezoelectric actuator, allowing the
in situ application of biaxial strain by tuning the voltage Vp . Electrons and holes are electrically
injected by setting Vd . The top distributed bragg reflector (DBR) completes a metal-semiconductor-
dielectric planar cavity. b SEM image of a cross section of the device prepared by focused ion beam
(FIB) cutting. The solid curve depicts the square modulus of the electric field inside the cavity. The
QD layer is located one λ below the DBR (see dashed line), in turn composed by three pairs of
SiO2/TiO2

as high as 15%. Finally, depending on the particular design of the diode (n-i-Schottky
or n-i-p diode), magnitude and sign of Vd , the electric field can be used to control the
QD energy levels via the quantum-confined Stark-effect, to control the charge state of
the QD or to inject carriers electrically. The latter operation mode is described in the
following, where we report on the realization of the first high-speed, energy-tunable,
and all electrically-controlled sources of single photons.

In standard quantum-light-emitting diodes (Q-LEDs), InGaAsQDs are embedded
in the intrinsic region of GaAs p-i-n devices [7]. When the applied bias exceeds the
turn-on voltage, charge carriers are electrically injected into the QDs and photons of
different frequencies are emitted in the recombination processes. In this operation
mode, the electric field across the QDs is taken up to inject carriers and cannot be
used in a trivial manner to modify sizably the QD electronic properties. Contrarily,
the dual-knob device sketched in Fig. 10.1 [45] addresses successfully this hurdle.
Figure10.2a shows several electro-luminescence spectra of a single QD as a function
of the electric field across the piezoelectric actuator, i.e., as a function of in-plane
biaxial strain. Spectra obtained for both tensile (Fp down to −20 kV/cm) and com-
pressive (Fp up to 40 kV/cm) strains are displayed to show that theQD emission lines
(X , XX and negative charge exciton, X−) can be shifted in a∼20 meV-broad spectral
range without loss of intensity or line broadening and, most importantly, during elec-
trical injection. The reported tuning range is comparable with the inhomogeneous
broadening of QD emission, meaning that any two QDs in the ensemble can be tuned
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Fig. 10.2 Awavelength-tunable, high-speed, bright, and all electrically controlled source of single
photons. a Low temperature (T = 5 K) electroluminescence spectra of a single QD embedded in
the dual-knob device of Fig. 10.1 as a function of the electric field across the piezoelectric actuator
and for a fixed current density Id . Black thick (gray thin) lines correspond to tensile (compressive)
strain. The spectrum obtained at Fp = 0 is also reported (black line). b Reflectivity spectrum (gray
line) for one of the devices. The points connected by a line represent the saturation intensity of the
X transition for different values of strain. c Autocorrelation measurements for an X embedded in
the device under tensile strain. The QD is driven with 300 ps long pulses at 200 MHz. d Same as
(c) for compressive strain. e Same as (c) for the unstrained case and at 800 MHz

into energetic resonance, an important prerequisite for transferring quantum infor-
mation between independent quantum emitters via HOM-type interference [22]. It is
also interesting to note that during active deformation of the nanomembrane-LEDs,
the frequency of the Fabry-Perot mode of the metal-semiconductor-dielectric planar
cavity remains almost unaffected (shift up to 1 meV). This “pinning” of the Fabry-
Perot mode is interesting because one can design the cavity for a certain frequency
and use strain to bring remote QDs into resonance in the spectral position where light
extraction efficiency is maximized. In spite of the low quality factor of the cavity
(Q ≈ 102), Fig. 10.2c shows a clear enhancement of light extraction efficiency when
the X line is tuned trough the center of the cavity mode. Such a low quality factor
can also be seen as an advantage for broad-band operation that allows for enhancing
the different lines of the same QD (like X and XX), which is fundamental for the
efficient generation of entangled photon pairs.
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In order to prove that these novel devices deliver non-classical light, we performed
autocorrelation measurements. The coincidence counts recorded on the X transition
of a single QD at Fp = −10 kV/cm, i.e., under applied tensile stress, are shown
in Fig. 10.2c [49]. The periodic autocorrelation peaks1 together with the absence of
the peak at zero time-delay provide evidence of photon antibunching and of single-
photon emission. The time separation between the neighboring peaks is 5 ns, which
corresponds to the repetition rate of 200 MHz used for this experiment. While the
normalized value of the second order correlation function at zero time delay g(2)(0)
proves unambiguously that the source is a single quantum emitter (g(2)(0) < 0.5),
it also shows a multi-photon emission probability of 0.14(2). Along with the back-
ground and the dark counts of the single photon detectors, this finite probability
could originate from carrier recapture phenomena on a time scale comparable with
the exciton lifetime, as observed in similar systems [50]. Irrespective of the origin
of the non-zero value of the g(2)(0), measurements performed at different Fp (see
Fig. 10.2d) show no significant change of the value of g(2)(0). This finding finally
proves that the emission of single photons is not degraded by the application of
such large stress fields to the LED and that our device can be used as an energy-
tunable and bright source of single photons. In addition to the tunability in energy
and the high extraction efficiency, our QD-LED allows for high-rate photon gener-
ation, another important requirement for high-data rate single photon applications
[21]. Figure10.2e shows autocorrelation measurements of an exciton driven with a
train of electrical pulses separated in time by 1.3 ns (corresponding to a repetition
rate of 0.8 GHz). We observe a strong suppression of the peak at zero time-delay
with g(2)(0) = 0.10(2), similarly to what was found at lower repetition rates (see
Fig. 10.2c, d). It is noticeable that the neighbouring peaks start to merge with each
other, and that the use of higher repetition rates would result in higher values of the
g(2)(0). In fact, the width of the peaks in the autocorrelation measurement is mainly
determined by the total jitter on the time interval between the start and stop events
registered by the correlation electronics. Considering the rise and the decay time of
the exciton transition, a total time jitter of 1.37 ns was estimated, which in turn leads
to 2.74 ns-broad peaks in the autocorrelation plot. Being 1.3 ns (2.6 ns) the temporal
distance between two (three) consecutive electrical pulses, the neighbouring peaks
start to merge while the value of g(2)(0) remains almost unaffected. In order to fur-
ther increase the speed of our single-photon source, different excitation schemeswith
appropriate DC bias should be used, so as to reduce the total time jitter via quantum
tunnelling of charges out of the QD, an effect induced by band bending. On the other

1The electro-luminescence is excited by injecting short electrical pulses (pulse width less than
300 ps, amplitude of −0.7 V and repetition rates up to 0.8 GHz) superimposed to a direct current
(DC) bias of Vd = −1.7 V, just below the turn-on voltage of the diode.
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hand, the device concept can be adapted for the integration of high-Q cavities, where
the Purcell effect can be instrumental for increasing not only the speed of the single
photon source via reduced radiative recombination times but also its brightness [51].

10.3 Independent Control of Different Quantum
Dot Parameters via Electro-elastic Fields

In the previous section we have shown that the electric field can be used to inject
carriers electrically into QDs while strain is used to modify the energy of the emitted
photons. Exciting possibilities, however, arise when electric field and strain are used
in synergy to achieve independent control of different QD parameters, as described
in the following experiments.

10.3.1 Independent Control of Charge State
and Emission Energy

We now demonstrate [52] how it is possible to obtain independent control of charge
state and emission energy in a single QD. In light of recent experiments demonstrat-
ing spin-photon entanglement [15, 53] (see chapter by McMahon and De Greve)
using X− transitions in single QDs (excitonic complexes consisting of two electrons
and one hole), this possibility is particularly relevant, since it could pave the way
towards QD-based quantum networks where remote spins are entangled via HOM
interference of the photons emitted by remote QDs during the radiative recombina-
tion of the X−.

For this experiment, we integrate n-i-Schottky diodes (instead of p-i-n LEDs)
onto PMN-PT (see sketch of Fig. 10.3a). As shown by Warburton et al. [54], this
type of diodes allows single electrons to be injected into the QD with single-
electron accuracy.2 In our device this is demonstrated in Fig. 10.3b, where micro-
photoluminescence (µ-PL) spectra of a single QD are reported as a function of Vd . At
positive Vd (large electric fields) the µ-PL spectrum is composed by two sharp tran-
sitions related to the X and the positively charged excition (X+). When the electric
field across the structure is reduced, such that the lowest state of the QD is aligned
with the Fermi level of the n-doped contact, a new peak at lower energy appears and
it gains intensity with Vd at the expenses of the X and X+ transitions. This finding
can be easily explained taking into account the tunneling of a single electron from
the top n-layer into the QD, and the new low-energy transition can be ascribed to
the negatively charged exciton (X−). Subsequent charging events (trapping of addi-
tional electrons into the QD) can be clearly seen as Vd is further decreased, and

2This takes place when the voltage across the diode shifts the confined levels of QDs below the
Fermi energy of the n-doped layer.
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Fig. 10.3 Independent control of charge state and emission energy in single QDs. a Sketch of an
n-i-Schottky diode containing QDs and integrated onto a PMN-PT actuator, similar as in Fig. 10.1. b
Micro-photoluminescence map (in false colour scale) of a single QD embedded in the device and as
a function of Vd . Several recombination lines ascribable to exciton and charged exciton transitions
can be clearly observed. c Micro-photoluminescence spectra of a single QD versus Vd and Vp . The
latter values were chosen so as to demonstrate independent control of charge state and emission
energy in a single QD

two additional lines, most likely related to the X2− [54], appear in the µ-PL spec-
trum (two electrons are injected into the QD). At even lower electric fields the QD
is flooded with electrons and the PL spectrum evolves in a broad band. The µ-PL
map reported in Fig. 10.3b contains a plethora of additional information because the
energetic-splittings between the different excitonic complexes are a direct result of
the combined effect of Coulomb interaction and quantum confinement. In addition,
the field-induced shift of the QD emission lines provides information about the QD
permanent dipole moment and polarizability [55]. However, here we are mainly
interested in discussing the possibility of obtaining simultaneous control of charge
state and emission energy. Figure10.3c shows how this is done: Vd is first tuned so
as to charge the QDwith one electron (X−), see the two bottom spectra of Fig. 10.3c.
Fp is then used to tune the X− emission energy while Vd is kept fixed, as shown
by the red arrows of Fig. 10.3c. Having the QD in a different strain configuration
(different emission energy), we can now discharge it again by independent tuning
of Vd at fixed Fp (see the two topmost spectra). Obviously, the experiment can be
repeated charging QDs with an additional electron by simply adjusting Vd at the
value required to observe X2−.
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10.3.2 Independent Control of Exciton and Biexciton Energy

So far, we have used the electric field across the diode for tasks that cannot be
addressed with static strains, i.e., to inject carriers electrically and to control the
charge state of a QD. We now explore a third and more interesting possibility: we
use both fields to reshape the interaction energies among carriers confined in single
a QD without affecting the energy of the QD fundamental excitation, i.e., the neutral
exciton, X . In particular, we demonstrate for the first time independent and broad-
range control of X and XX energy in a single QD. On the one hand, the demonstrated
possibility to achieve color coincidence between X and XX photons could allow
for testing the degree of entanglement of photon pairs produced using the recently
proposed and not yet experimentally demonstrated time reordering-scheme [56].
On the other hand, the broad range control over X and XX energies paves the way
towards the development of energy-tunable sources of entangledphotons via the time-
bin scheme [57], and it would allow entanglement swapping experiments between
distant QD-based qubits to be performed.

In the following experiments, we employ p-i-n diodes containing Al0.4Ga0.6As
barriers surrounding a 10 nm-thick GaAs quantum well that, in turn, hosts the QDs.
The presence of the AlGaAs barriers reduces carrier ionization at very high electric
fields [55] and allows the QD emission lines to be shifted in a very broad spectral
range when the diode is driven in reverse bias. When combined with the broad-
band tunability provided by strain, this device offers unprecedented control over
the QD emission properties, as described in the following [42]. Figure10.4a shows
the “additive mode” operation of the device, where strain and electric fields are
used in sequence (first Fd and then Fp) to shift the QD emission lines in the same
direction. From the µ-PL map of Fig. 10.4a two important features of the device
can be readily noticed: (i) The application of stress and electric fields results in a
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Fig. 10.4 Electro-elastic control of excitons in QDs: “additive mode” operation. a Micro-
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function of the energy of the exciton transition for strain (red points) and electric fields (orange
points). The black lines are linear fits to the experimental data
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broad-range control of the QD emission lines, which can be as high as 40meV, one of
the largest shift ever reported so far; (ii) The energy separation between the exciton
(X ) and biexciton (XX) emission lines—which we refer to as the relative biexciton
binding energy, defined as EB(XX) = EX − EXX, where EX,XX indicate the emission
energies—is changing at different rates under strain and electric field. The different
rates (almost a factor 2) can be better appreciated when EB(XX) is plotted against
EX , as shown in Fig. 10.4b. While (i) is an expected result, (ii) is an interesting
finding since it suggests that the two fields have a different effect on the interaction
energies among carriers confined in the sameQD.On the one hand, it has been shown
[44] that in-plane compressive biaxial strain (increasing exciton energy) increases
the confinement potential of electrons and, consequently, their Coulomb repulsion
while it leaves holes almost unaffected. On the other hand, an increasing vertical
electric field (decreasing exciton energy) pulls electrons and holes apart and, since
holes are more localized, the Coulomb repulsion increases much faster for them than
for electrons. For a detailed analysis of the field-induced changes of the Couloumb
integrals, we refer the reader to the specific paper [42]. Here, we would like to show
that the different physical effects produced by the two fields can be used to reshape
the electronic properties of single QDs so as to achieve independent control of the X
and XX emission energy. To do so, we operate our dual knob device in “subtractive
mode”, i.e., strain and electric fields are used to shift the energy of the QD emission
lines in opposite directions.

Figure10.5a first shows the tuning and locking of the X energy to the user-defined
target energy (Etarg). This is achieved using a closed-loop feedback on the piezo-
actuator that is capable to stabilize the X frequency with 1 µeV accuracy [45],
see Fig. 10.5d. After locking the X to a recombination energy Etarg , we increase
linearly the magnitude of Fd , while the exciton transition is kept fixed via Fp [the
time-evolution of both Fp and Fd is shown in Fig. 10.5c]. In absence of the feedback,
all the QD emission lines would redshift due to the quantum-confined Stark effect.
However, as the X shift is actively compensated by increasingly compressive strain
and the two fields have a different effect on the XX binding energy (see Fig. 10.4),
we are able to change the spectral position of the XX transition only. Remarkably,
in the QD of Fig. 10.5b the XX changes gradually from a binding to an antibinding
configuration at fixed and predefined X energy (Etarg). Thus, we are able for the
first time [42] to achieve independent control of the XX and X absolute energies.
This confirms that the electro-elastic fields allow for reshaping of the interaction
energies between carriers confined in a single QD without affecting the energy of
the fundamental excitation in a QD, the neutral exciton. We believe that this result
shows the real potential of our device, which is capable to address tasks inaccessible
with single external fields used alone.
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Fig. 10.5 Electro-elastic control of excitons inQDs: “subtractivemode” operation (a). Color-coded
µ-PL map of a single QD whose X is first tuned to the target energy of Etarg = 1.3774 eV and then
locked at this value via Fp . During the experiment, Fd ≈ −137 kV/cm. b Color-coded µ-PL map
of the same QD when the magnitude of Fd is ramped up, while the exciton transition is locked at
Etarg via Fp , as explained in the main text. c Values of Fd (blue) and Fp (red) as a function of time
as recorded during the experiment described in (a) and (b). d Sketch of the closed-loop system used
to drive the emission energy of a QD to Etarg and for energy stabilization via active feedback. The
actual emission energy of the line to be stabilized is first obtained by fitting the µ-PL spectrum and
then compared to the Etarg to provide feedback to the piezoelectric actuator. For details see [45]

10.4 Controlling and Erasing the Fine Structure Splitting
for the Generation of Highly Entangled Photon Pairs

As mentioned in the introduction of this chapter, one of the unique features of our
dual-knob device—most probably the most important—is its capability to erase the
coherent coupling between the two bright excitonic states, that is, the exciton fine
structure splitting (FSS). This is a fundamental requirement for the generation of
polarization entangled photon pairs during the radiative decay of the biexciton (XX)
to the exciton (X ) to the crystal ground state, which has stimulated the efforts of
researchers worldwide, who have struggled for more than 10years after the first
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proposal [4] to find a reproducible way to suppress the FSS. In this sectionwe address
this issue in detail. In the first part [58] we discuss the theory underlying the FSS
and we illustrate the reasons why our device is capable to correct for the structural
asymmetries at the origin of the FSS. In the second part [13] we demonstrate that at
zero FSS QDs can generate photon pairs featuring a very high degree of polarization
entanglement, high enough to violate Bell’s inequality without the need of temporal
and spectral filtering techniques.

10.4.1 Controlling and Erasing the Exciton Fine Structure
Splitting via Electro-elastic Fields

The appearance of an energetic splitting between the two bright excitonic states is a
manifestation of the spin-spin coupling of the electron and hole forming the exciton,
i.e., the electron-hole exchange interaction [28]. Already at this point a simple ques-
tionmay arise: how can there be an exchange coupling between electrons and holes if
this fundamental interaction involves indistinguishable particles? The answer is that
in semiconductors physics what we call electron and hole are both perturbations of
a many-electron system. In this sense an electron-hole exchange interaction exists,
and the first clear report in semiconductors dates back to 1979, when W. Ekardt
and co-workers reported on an accurate theoretical and experimental study of bulk
GaAs and InP [59]. The determined splittings were found to be considerably small
(≈10µeV) and quite difficult to observe due to the broadening of the involved optical
transitions. A few years later, R. Bauer et al. reported on the appearance of doublets
in the PL spectra of heavy-hole excitons confined in GaAs/AlGaAs quantum wells
[60], which they ascribed to the exchange coupling. Despite this study triggered a
lively debate about the origin of these splittings [61, 62], two characteristic features
of the exchange interaction became immediately clear: (i) The exchange interaction
depends closely on the spatial extent of the exciton wavefunction, and is therefore
expected to be enhanced in low dimensional systems; (ii) The symmetry of the exci-
tons is what eventually determines the appearance of energetic splittings in the PL
spectra and can be actually exploited to extract information about the microscopic
structure of the system under study [61, 63]. Considering (i), it is not surprising
that the exchange interaction has a central role in QD physics, and its interplay with
quantum confinement is vital for the understanding of the QD optical properties.
The first experimental work showing exchange-induced splittings of ground state
excitons in QDs appeared in 1996 [64], which also signs the date when the term
fine structure splitting (FSS) appeared for the first time for QDs. Since then, many
steps toward a complete understanding of the theory underlying the FSS were taken
[28, 46, 65]. Its existence suddenly became a “problem” in the early 2000, when
Santori et al. [66] showed that suppression of the FSS is fundamental for the efficient
generation of polarization entangled photon pairs using the XX-X -0 radiative decay.
As mentioned in the point (ii) above, the latter possibility is strongly connected to
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the symmetry of excitons confined in QD: Theoretical calculations show that the
coherent coupling of the two bright excitonic states, and hence the FSS, appears
every time the QD structural symmetry is lower than D2d . Since this is the case even
in ideal lens-shaped Stranski-Kranstanow QDs based on conventional zincblende
semiconductors (C2v structural symmetry) alternative growth protocols capable to
produce highly symmetric QDs have been developed [18, 67]. Despite impressive
progress in this field, however, this approach fails to deliver a substantial number of
QDs with FSS <1 µeV. This fact can be qualitatively understood considering that
there are inevitable fluctuations in the exact number of atoms composing QDs, their
arrangement in the host matrix and intermixing with the substrate and the cap mater-
ial [20], thus rendering the possibility to grow semiconductor QDs showing specific
properties of symmetry a mere theoretical construct. These difficulties have further
stimulated the search for alternative routes relying on post-growth tuning of QD
properties via the application of stress [35, 36], electric [31], and magnetic [6] fields.
It turns out, however, that even with the aid of such “tuning knobs” it is extremely
difficult to drive QD excitons towards a universal level crossing, mainly due to the
coherent coupling of the two bright states [31, 47]. Suppression of the FSS can be
instead achieved using two independent or at least not-equivalent external fields, as
strain and electric field provided by our dual-knob device. Before showing how to
achieve that experimentally, we discuss the relevant theory. Inspired by the work
of Gong et al. [68], we consider the combined effect of a vertical electric field (F)
applied along the [001] crystal direction of GaAs and anisotropic biaxial stresses [69,
70] of magnitude p = p1 − p2, where p1 and p2 are the magnitudes of two per-
pendicular stresses applied along arbitrary directions in the (001) plane. (Note that
any in-plane stress configuration can be decomposed in such a way, with p1,2 the
principal stresses). The effective two-level Hamiltonian for the bright excitons takes
the form [58]:

Hex =
(

η + αp + βF k + γ p
k + γ p −(η + αp + βF)

)
(10.1)

Two sets of parameters enter in Hex : (i) the parameters k and η, which are specific
of every QD and account for the lowering of the structural symmetry down to C1,
i.e., the most generic case of QDs without structural symmetry; (ii) the parameters
of the two perturbations α, γ and β. In particular, α and γ account (via the elastic
compliance constants renormalized by the valence band deformation potentials) for
the direction of the applied stress while the parameter β (proportional to half of the
difference of the exciton dipole moments) is related to the electric field across the
diode. Before proceeding further in the analysis it is important to point out that all
these parameters combine together in two observables: the magnitude of the FSS
and the polarization direction of the exciton emission θ [68]. The latter parameter
represents the orientation of the exciton eigenstates with respect to the directions of
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the underlying crystal. Finally, diagonalization of the Hamiltonian in (10.1) gives
the following values of s and θ :

s =
[
(η + αp + βF)2 + (k + γ p)2

]1/2 ; tan(θ±) = k + γ p

η + αp + βF ± s
; (10.2)

It can be easily shown that the expression for the FSS has always a minimum at
zero when the magnitude of F and p take the values

pcrit = − k

γ
and Fcrit = αk

γβ
− η

β
(10.3)

In other words, there are always values of strain and electric field such that s = 0,
regardless of the QD structural symmetry, i.e., regardless of the exact values of η

and k. At this point, it is important to discuss why exactly two external fields are
needed to cancel the FSS and a lower bound for the FSS is instead systematically
observed in experiments performed with single tuning knobs [31, 55]. Assuming
that only one field acts on QDs, e.g. strain, one can minimize the expression of the
FSS reported in (10.2) to find the value of p leading to s = 0, that is, k

η
= − 2γ

α
. This

equation obviously connects the parameters of the QDs (η and k) to the parameter
characterizing the external perturbation (γ and α). Since η and k are unknown and
fluctuate from dot to dot, this equation also implies that the s = 0 condition can be
achieved only if one has active control over the direction andmagnitude of the applied
stress field (γ and α). If this direction is instead fixed—as in all the experiments
performed so far—a lower bound of the FSS is generally observed and only the QDs
that happen to be “just right” for the chosen perturbation can be tuned to low FSS
values. In strong contrast, (10.3) shows that the capability of two independent fields
to erase the FSS does not depend on the details of the QD under study. It is obvious
that in real experiments large enough tuning ranges are needed to access the values of
pcrit and Fcrit given above. This requirement appears to be satisfied by our device,
which allows us to tune systematically all the QDs we measure to s = 0.

Figure10.6a shows the behaviour of the FSS for a QD as a function of Fd and for
different values of Fp. In the tensile regime (Fp < 0), a lower bound (Δ) for the FSS
is observed. Under compressive strain (Fp > 0) Δ first decreases to ∼0.5 µeV (see
Fig. 10.6c), a value comparable with the experimental spectral resolution, and then
increases again. Remarkably, the behaviour of the FSS against Fd and Fp is the same
in all the measured QDs (see Fig. 10.6b) but for the specific values of Fd and Fp at
which the FSS reaches s = 0. We have used (10.2) to fit the experimental data (see
solid lines in Fig. 10.6a) and we have found an excellent agreement. This confirms
not only the existence of a universal method to tune the bright exciton states towards
level crossing, but it also points out that the simple theory discussed above—which
neglects higher order terms in p and F—is able to grasp the main features of the
experiments. Additional information can be inferred looking at the behaviour of the
polarization direction of the exciton emission (θ ) in relationwith the FSS. Figure10.7
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shows the dependence (in polar coordinates) of ΔE as a function of the angle the
linear polarization analyser forms with the [110] crystal axis, where ΔE is half of
the difference between XX and X energies minus its minimum value (see [58] for
details). In other words, the length and orientation of the petals give the value of s
and θ , respectively. It is clear that when the eigenstates are oriented along the [110]
(close to the [100]) or the perpendicular direction, the application of Fd (Fp) leads
to s = 0. Since the electric field acts as an effective deformations along the [110]
direction and the principal stress axis in this device is close to the [100] direction [58],
this implies that the excitonic degeneracy can be restored if one external perturbation
(e.g. Fd ) is used to align the polarization axis of the exciton emission along the axes
of the second perturbation (e.g. Fp), which is then able to compensate completely for
the difference of the confining potentials of the two bright exciton eigenstates, i.e.,
is able to tune the FSS to zero. This finally shows that the possibility to suppress the
FSS is intrinsically connected to the capability of our dual-knob device to achieve
independent control of the magnitude of the FSS and the polarization direction of
the exciton emission, θ .
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10.4.2 Generation of Highly Entangled Photon Pairs via
Electro-elastic Tuning of Single Semiconductor QDs

In the previous section we have demonstrated a universal method to systemat-
ically correct for the structural asymmetries that cause the FSS. This opens up
the possibility to use arbitrary QDs for the generation of highly entangled pho-
ton pairs. When the intermediate X states are degenerate (s = 0), photon pairs
produced during the XX-X -0 radiative decay are predicted to be in the maxi-
mally entangled Bell state ψ = 1√

2
(HXX HX + VXXVX ). Figure10.8 shows XX-X

cross-correlation measurements for circular (Fig. 10.8a, d), linear (Fig. 10.8b, e) and
diagonal (Fig. 10.8c, f) polarization basis for a QD whose FSS has been tuned to
s = (0.2 ± 0.3) µeV. We observe strong correlation when recording coincidence
events for the following projections: HXX HX (or VXXVX ), DXX DX (or AXX AX )
and RXXL X (or LXX RX ). On the other hand, the correlation peaks disappear for
HXXVX (or VXX HX ), DXX AX (or AXX DX ) and RXX RX (or LXXL X ). This is exactly
the predicted behaviour of photon pairs emitted in the maximally entangled Bell
state ψ . By integrating over all the events in the correlation peak at zero time delay
it is possible to calculate the correlation visibilities CAB , defined as the difference
between co-polarized and cross-polarized correlations divided by their sum. We find
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Fig. 10.8 Characterization of the entanglement. a–f Projective measurements in the polarization
basis. The peak at zero delay shows coincidence counts between exciton and biexciton photons for
a QD whose FSS has been tuned via the electro-elastic field to zero. The left, central, and right
panels correspond respectively to the circular, linear, and diagonal basis. g Fidelity versus time
delay as obtained from the analysis of the data shown in panels (a)–(f). The dashed line indicates
the classical limit. h Fidelity values (at zero time delay) for three different QDs from the same
device

CH V = 0.72(5), |CRL | = 0.82(2), CD A = 0.72(5). From the correlation visi-
bilities, we can in turn calculate the fidelity to ψ via the following formula [29]
f = (1 + CH V + CD A + |CRL |) /4 and obtain f = 0.82(4) (see Fig. 10.8g). We
have repeated the same measurements in three different QDs tuned to s = 0 and we
have found very similar values for the fidelity (see Fig. 10.8h). Since these values
are always much larger than the classical limit of f = 0.5, the experimental data
clearly indicate that our strain-tunable device is capable of delivering polarization-
entangled photon pairs. However, the fidelity to the Bell state is only an indica-
tor of entanglement and cannot be used to obtain a quantitative estimate. For this
reason, we have performed state tomography [71] and reconstructed the density
matrix, ρ̂ , of the two-photon entangled state. The real and imaginary parts of ρ̂

for a selected QD are displayed in Fig. 10.9a, b. The matrix clearly satisfies the
Peres inseparability criterion [72] for entanglement, being −0.35(<0) the minimum
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Fig. 10.9 Quantification of the entanglement degree and analysis with temporal post-selection.
a Real and b imaginary part of the two-photon state density matrix as obtained in measurements
on a single QD via quantum state tomography. c Concurrence values for three different QDs. d
Temporal post-selection of the parameters characterizing entanglement (concurrence, fidelity, and
largest eigenvalue) as a function of the fraction of the recorded coincidence counts (normalized to
the total counts calculated for w = 10 ns).

eigenvalue of its partial transpose. The ρ̂ contains also imaginary components (see
Fig. 10.9b), which point out to the presence of a phase delay between |HXX HX 〉
and |VXXVX 〉. Therefore, the state is not exactly the maximally entangled Bell state
ψ but rather ψ∗ ≈ 1√

2

(|HXX HX 〉 + e−i(0.23π) |VXXVX 〉), which corresponds to

the largest eigenvalue λ = 0.86 of ρ̂. In order to quantify the level of entangle-
ment we have extracted from ρ̂ the following metrics [71]: tangle (T ), concurrence
(C) and entanglement of formation (EF ). For the best QD studied here we obtain
T = 0.56(3), C = 0.75(2), EF = 0.66(5), but very similar values were found for
other QDs (see Fig. 10.9c).

It is important to point out that raw data were used in the analysis, without any
background subtraction. The measured values are very high compared to previous
results using QD-based photon sources [5, 6, 10, 18, 67, 73] and, most impor-
tantly, for an electrically-controlled optoelectronic device [7, 31, 74]. In spite of
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this achievement, the level of entanglement is not yet ideal and mainly limited by
depolarization of the exciton state. This, in turn, can be ascribed to two main mecha-
nisms: (i) fluctuating QD environment [75] and (ii) recapture processes [10]. Point (i)
is related to local variations of magnetic and electric fields experienced by the QDs
and produced, respectively, by the nuclei of the QDmaterial and by random charges.
These fluctuating fields induce a variation of the FSS over time scales much faster
than the time required to perform a state tomography, which can therefore reveal
s ≈ 0 only on average. Point (ii) is instead associated with processes in which the
intermediate X level is re-excited to the XX level before it decays to the ground state.
This mechanism can be optically driven or due to charged carriers trapped in the QD
surrounding and produce background photons lowering the correlation visibilities.
Temporal post-selection of the emitted photons [7, 10, 76] can be used to alleviate
the deleterious effects just discussed, thought at expenses of the brightness of the
entangled photon source. We have investigated this strategy in our QDs gradually
reducing the temporal window w we choose to integrate the correlation counts later
used in the analysis. More specifically, we symmetrically discard photon-pairs arriv-
ing at longer positive and negative time delays. This is reasonable because recapture
processes produce uncorrelated photons at negative time delays,while in the presence
of a fluctuating FSS photons arriving at longer time delays are expected to exhibit
lower fidelity to the Bell state. Figure10.9d shows the evolution of the concurrence
(C), fidelity ( f ) and largest eigenvalue (λ) as a function of the fraction of coincidence
counts (normalized to the total counts) recorded during the analysis. The different
points correspond to different w, ranging from 10 to 1 ns, being the latter value
close to the temporal resolution of the experimental set-up (∼500 ps). A monotonic
increase of all the parameters quantifying entanglement can be clearly observed:
we first note a slight increase of the parameters for 4 ns < w < 10 ns when less
than 10% coincidence counts are discarded. This behaviour can be easily explained
considering the temporal width of the coincidence peak (∼4 ns), and points out the
small, albeit deleterious, effect of background photons. A more pronounced effect is
instead observed for w< 4 ns: When ∼60% of the counts are discarded (w = 1 ns)
a concurrence as high as 0.82 is measured. We believe that the concurrence of our
source can be further improved using resonant excitation techniques [12, 77] and
faster photon detectors.

The level of entanglement already achieved is particularly significant because it
allows us to overcome the Bell limit without post-selection of the emitted photons.
A first indication of such a possibility is indicated by the level of concurrence. As
a rule of thumb, a concurrence of C ≈ 0.7 (or equivalently a tangle of T ≈ 0.5)
is necessary to violate Bell’s inequality [76]. The values we measured in all our
QDs are above this threshold (see Fig. 10.9c). Considering the unique capability of
our device to drive the FSS through zero, it is extremely interesting to investigate for
which values of the FSSwe are actually able to violateBell’s inequality. Following [7,
76] we use the following equations for three different planes of the Poincaré sphere:
SRC = √

2 (CH V − CRL) , SR D = √
2 (CH V − CD A) , SC D = √

2 (CD A − CRL).
Avalue larger than 2of one of these parameters ensures violation theBell’s inequality.
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Figure10.10 shows the evolution of these parameters as well as of the fidelity as a
function of s. The fidelity (see Fig. 10.10a) first increases, it reaches the non-classical
value of 0.82(4) and then it decreases again. As shown by Hudson and co-workers
[29], this behaviour can be approximated by a Lorentzian function, whose full-width
at half maximum (∼3 µeV) nicely matches the lifetime of the exciton transition
(τ ≈ 1 ns, being roughly constant for the range of electric fields explored dur-
ing the experiment). This proves that significant entanglement can be measured
once the FSS is reduced below the radiative linewidth of the X transition. Vio-
lation of the Bell’s inequality in all three planes (see Fig. 10.10b), however, can
be achieved only for a very small range of FSS, s < 1 µeV, where we measure
SR D = 2.04(0.05), SC D = 2.24(0.07), SRC = 2.33(0.04). The latter parameter
shows violation of Bell’s inequality by more than 8 standard deviations and proves
unambiguously that our electrically-driven source can produce non-local states of
light. The values of the three Bell parameters further increase well above the limit
of 2 using temporal post-selection of the emitted photons, with maximum values of
SR D = 2.22(0.05), SC D = 2.50(0.07), SRC = 2.43(0.04) see [13].

To conclude, we further stress the relevance of our results in the perspective of
using QDs entanglement resources for applications: It is commonly believed that
entanglement is quite tolerant to the presence of a small FSS. Figure10.3b readily
confirms this general idea by showing that the classical limit can be beaten already for
FSS ≈3 µeV. However, overcoming the classical limit is not sufficient for applica-
tions relying on non-local correlations between the emitted photons, such as quantum
cryptography and entanglement swapping [21, 26]. One possible criterion to define
the “useful” entanglement degree is the violation of Bell’s inequality, initially pro-
posed to demonstrate the entanglement non-locality and then used as a base for
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quantum cryptography [27]. Figure10.10b clearly shows that this can be achieved
only for FSS <1 µeV, thus ultimately proving the importance of having at hand
broad-band “tuning knobs” capable to suppress the FSS [58].

10.5 Conclusions and Outlook

In this chapter, we have introduced a novel class of semiconductor-piezoelectric
devices that allows—via the simultaneous application of strain and electric field—
for unprecedented control over the electronic and optical properties of self-assembled
semiconductor quantum dots. The motivation behind the development of these
devices is to use the same semiconductor matrix which allows for the existence of
QDs as resource for solving some of the problems arising from their semiconducting
nature itself, and in particular those that are hampering their exploitation as sources
of non-classical light. In doing so, we have demonstrated the first all-electrically con-
trolled (LED), wavelength-tunable (up to 20 meV), frequency stabilized (down to
1 µeV), high-speed (up to 0.8 GHz) source of single photons. Most importantly, we
have shown that the electro-elastic fields generated by our device are able to correct
for the structural asymmetries that usually prevent QDs from emitting high-quality
polarization entangled photon pairs. We believe that this dual-knob device opens up
new frontiers for using QDs in quantum communication science and technology. In
particular, it could be exploited in applications based on entanglement non-locality,
such as quantum cryptography, as it allows using any arbitrary QD to generate trig-
gered entangled photon-pairs featuring high entanglement degree—high enough to
violate Bell’s inequality without the need of inefficient temporal and spectral filtering
techniques. Furthermore, our key idea of combining different external perturbations
to achieve independent control of different QD parameters can be further extended
in protocols focusing on the distribution of entanglement over the distant nodes of a
quantum network, as in quantum relays and repeaters. In these applications, energy-
tunable sources of entangled photons are needed to match the color of the entangled
photons emitted by remote QDs. This is a crucial prerequisite for teleporting entan-
glement via Hong-Ou-Mandel type two-photon interference. At present, this is out
of reach even by the dual-knob device we have discussed in this chapter. In fact, the
constraint of exciton level degeneracy requires specific values of strain and electric
fields and, as a consequence, specific energies of the X or XX transitions. A different
device concept is therefore needed to realize an energy-tunable source of entangled
photons. However, having recognized that each QD parameter to control “requires”
an independent external field, it is not difficult to envisage that external fields featur-
ing three (or more) independent degrees of freedom will be the key to successfully
address this task. We leave this point to future studies [78].
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Chapter 11
Resonant Excitation and Photon
Entanglement from Semiconductor
Quantum Dots

Ana Predojević

Abstract In this chapter we review the use of semiconductor quantum dots as
sources of quantum light. Principally, we focus on resonant two-photon excitation,
which is a method that allows for on-demand generation of photon pairs. We explore
the advantages of resonant excitation and present a number of results that were made
in this excitation regime. In particular, we cover the following topics: photon statis-
tics, coherent manipulation of the ground-excited state superposition, and generation
of time-bin entangled photon pairs.

11.1 Introduction

The field of photonic quantum information needs novel, highly efficient, and deter-
ministic sources of single photons and entangled photon pairs. The principal appli-
cations of these sources include quantum networks [1–4] and linear optical quantum
computing [5]. In particular, quantum light is needed to transfer information in proce-
dures like teleportation [6] and entanglement swapping [7]; the photons are employed
as flying qubits that interconnect the nodes of a quantum network, or to run a quantum
processor using the methods of linear optical quantum computing.

The vast majority of today’s quantum information experiments use single pho-
tons and entangled photon pairs that are generated in a process of parametric down-
conversion. While this method still stands as the most versatile and successful, semi-
conductor quantum dot devices are developed because of their potential to deliver a
source that is brighter and more reliable but also can be easily integrated within a
semiconductor optical circuit. While the initial interest in quantum dots in general
was more oriented towards semiconductor and material physics and even chemistry,
today’s semiconductor quantum dot devices are also very often designed for the
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purposes of quantum information processing. Namely, similar to atoms quantum
dots possess discrete energy structure and therefore a valuable asset of an intrinsic
sub-Poissonian distribution of the emitted photons. Due to their atom-like energy
structure quantum dots can emit single photons [8] but their range of application
does not end there. They can also deliver pairs of photons, emitted in a temporary
ordered cascade. In addition to their potential to be used as sources of photons, quan-
tum dots can also take the role of a quantum memory. In particular, the quantum dot
potential can also trap single carriers (electrons and holes) and the spin on such a
carrier can encode a quantum bit (see the chapter by McMahon and De Greve).

In Sect. 11.2 of this chapter we will give the basic specifications that a photon
source should fulfil in order to be used in a specific application. Also we will introduce
an excitation method that can resonantly create pairs of photons from a quantum dot.
We will address this problem from both an experimental and a theoretical point of
view. In addition, we will review the use of quantum dots to generate polarization
entangled photon pairs. In Sect. 11.3 we will present measurements that exploit the
use of resonant excitation. In particular, we will address the coherent control, the
effects resonant excitation has on the photon statistics of the emitted light, and finally
the generation of time-bin entangled photon pairs emitted by a single semiconductor
quantum dot.

11.2 On-Demand Generation of Photon Pairs Using
Single Semiconductor Quantum Dots

There are a number of applications that need or benefit from single photons and
entangled photon pairs. These include linear optical quantum computing, long dis-
tance quantum communication, and up to some level quantum cryptography. Though
certain tasks can be performed in a probabilistic manner or even override the use
of single photons, the optimum performance and minimal overhead are very often
achieved using a deterministic photon source.

Probably the most straightforward example is linear optical quantum computing
[9]. Photonic quantum computing using linear elements, as proposed in the seminal
paper by Knill et al. [5], is a method to realise a quantum processor. The proposal in
its original form assumes an ideal single photon source. Posteriorly, a scheme was
shown [10] that allows linear optical quantum computation if the overall efficiency
(source × detector) is higher then 2/3. Nevertheless, to achieve gates outside the
post-selection basis1 one needs much higher photon generation probability combined
with a very low probability for emission of more than one photon [11]. Concerning
the use of photon sources within quantum networks it is harder to define an effi-
ciency threshold because it would depend on the specific application.2 Furthermore,

1The inefficiency of sources and detectors are commonly bridged using post-selection.
2For example for a complex task like distributed quantum computing the threshold will be different
than for the simplest form of communication between two network nodes.
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quantum networks depends on many additional parameters like the efficiencies of
state mapping or generation of atom-photon entanglement. Regardless the specific
application, a deterministic photon source would surely increase the information
transfer rate. On the other hand, multi-photon contribution, which we will show in
continuation is greatly reduced in quantum dots under resonant excitation, has a neg-
ative effect on long-distance entanglement distribution [12] as well as quantum key
distribution [13].

11.2.1 Quantum Dots and Polarization Entanglement

Before entering the topic of resonant excitation, we will briefly review the use of
quantum dots to generate polarization entangled photon pairs. This system has been
proposed to be capable of delivering entangled photon pairs [14] through the use
of a biexciton-exciton (XX-X) photon cascade. In particular, once the quantum dot
potential has trapped two electron-hole pairs (biexciton) the system decays to the
ground state via an emission of the temporally ordered photon cascade. This decay
can happen via two different paths that give photons with orthogonal polarizations.
If these decay paths are indistinguishable the emitted pair of photons are entangled in
polarization. Unfortunately this scheme is not straightforward to accomplish due to
a geometrical anisotropy of quantum dots that is growth typical and almost unavoid-
able and that makes the intermediate exciton state split. This splitting (also known as
the fine structure splitting—FSS, Fig. 11.1a) causes the two decay paths to be distin-
guishable. In other words, once the first photon of the cascade is emitted the system
is projected in a superposition of the two exciton levels. This superposition evolves
in time and therefore averages the phase of the emitted state [15], which causes the
measured level of entanglement to be reduced with increasing exciton splitting.

There have been many attempts to overcome the problem of the fine structure
splitting. The initial results were focused on selecting the dots with the lowest splitting
[16] or employing optical cavities to filter out a narrow indistinguishable spectral
region [17]. In [18] it was demonstrated that the optical Stark effect can be used
to generate energy degenerate photons. Here, the Stark shift was used to tune the
energy of the horizontally polarized exciton and make it degenerate with the vertically
polarized one. Another specific approach was shown in [19] where a quantum dot
was placed in a system of two strongly coupled micro-pillar cavities. Though the
quantum dot itself was weakly coupled to the individual micro-pillars the overall
effect was an enhanced emission of both exciton and biexiton photon. This resulted
in the immediate emission of the exciton photon after the emission of the biexciton
one. Under such experimental conditions the cascade pair is emitted faster than the
phase of the generated state, due to the fine structure splitting, could have evolved.

Both fine structure splitting as well as the energies of the exciton and the biexciton
can be tuned using an electric field [20], a magnetic field [21], or the material strain.
In that respect one should point out the method shown in [22] where both electric
field and the material strain were employed simultaneously. This approach allows
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photon resonant excitation. The laser energy is half way between exciton and biexciton and not
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for modification and removal of the fine structure for any randomly chosen quantum
dot.

The origin of the exciton level splitting is growth induced, therefore, a number
of experiments were demonstrated where the splitting was reduced via a modifica-
tion of the growth method. In [23] was explored an alternative method of dot self
assembly, namely, the droplet epitaxy on (111)A substrates. Another approach is the
growth of so-called pyramidal quantum dots [24] that apart from high geometrical
symmetry can provide control of the position where the dot is grown. The use of
quantum dots embedded in nanowires [25] is another growth related method that
shares some similarities with the pyramidal quantum dots, in particular, intrinsic
symmetry and the control of the position of the emitter. Here, it was proposed [26]
that the geometrical symmetry of the nanowires will condition the symmetry of the
quantum dots embedded within.

At this point it is also important to mention that all above-given results were
achieved in above-band excitation. The use of two-photon resonant excitation, in
detail explained in continuation, has been shown to improve the degree of entangle-
ment [27].

There are different parameters that characterize two-qubit entanglement [28];
some rather being indicators (like fidelity > 0.5 to the maximally entangled state)
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Table 11.1 Characterization of the achieved polarization entanglement given for the experiments
where both concurrence and fidelity were reported

Young (2006) [16] Juska (2013) [24] Trotta (2014) [22] Huber (2014) [25]

Concurrence 0.44(3) 0.16(2) 0.75(2) 0.57(6)

Fidelity 0.70(2) 0.58(3) 0.82(4) 0.76(2)

and others being measures of entanglement (concurrence > 0 [29]). While there
are alternative methods to estimate the fidelity, to obtain a value for concurrence
one needs to perform state tomography [29]. The results of the experiments that
performed state tomography are summarized in Table 11.1. The indicator of the
nonlocality of the entanglement measurement—the violation of the Bell inequality—
were reported in [22, 23].

11.2.2 Resonant Excitation

A photon generation device employed in quantum information processing tasks must
achieve a high success probability to produce a single photon. In atom-like systems
such a behaviour is achievable by means of coherent population inversion. Likewise,
the discrete energy structure of quantum dots makes this system suitable for driving
such a process.

On the other hand, despite the favourable energetic structure it is hard to achieve
resonant excitation in semiconductor embedded quantum dots. The first, and most
important reason is the excess laser scattering that is hard to distinguish from the sin-
gle photon signal emitted by the quantum dot. Therefore, the traditional way to excite
quantum dots is above-band excitation. Here, one uses a laser with an energy higher
than any transition in the quantum dot. This laser creates a multitude of carriers in
the vicinity of the quantum dot that can be probabilistically trapped in the quantum
dot potential. This process is very nicely illustrated in the Fig. 11.4 of the chapter by
Schneider, Gold, Lu, Höfling, Pan and Kamp. While it is possible to both saturate
the quantum dot transitions and to achieve very high single photon count rates, the
probabilistic nature of this process reduces the suitability of such a source for quan-
tum information protocols. Another negative feature of the above-band excitation
is related to how exactly the quantum dot levels are populated. Namely, biexciton
photons will be created once the exciton level has been saturated and, therefore, the
saturation of the biexciton level itself demands a very large number of carriers in
the quantum dot vicinity. Such an experimental configuration is very unfavourable
because it promotes the dephasing of the quantum dot levels due to the electric field
fluctuations and causes poor photon statistics properties due to processes like carrier
re-capture [30].

Two-photon resonant excitation of the biexciton [31] is an experimental
implementation that simultaneously solves both problems: laser scattering and
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probabilistic generation of photon pairs. Here, one exploits the biexciton binding
energy in order to drive the quantum dot system using a virtual resonance that is
placed halfway in energy between the exciton and biexciton (see Fig. 11.1a) and
therefore is not resonant to any of them. The photo-luminescence obtained in above-
band excitation of the quantum dot is shown in Fig. 11.1b. For comparison, the emis-
sion spectrum under resonant excitation is shown in Fig. 11.1c. This spectrum shows
an additional line coming from the scattered excitation laser light. The physical basis
of the phenomenon exploited here, the biexciton binding energy, is the Coulomb
interaction present when two electron-hole pairs are trapped inside the quantum dot
potential. As the first pair of carriers recombine and the biexciton photon is emitted
the energy levels in the quantum dots will change and the second photon to be emitted
(exciton photon) will not have the same energy as the biexciton photon. Therefore,
one always observes the exciton and biexciton emission as two energetically well
separated lines.

It is important to say that the two-photon approach to excite quantum dots is not
new, nevertheless, it is quite challenging to apply this method on III-V quantum
dots. The previous works [32] addressed II-VI quantum dots that have much larger
biexciton binding energy (the difference between the exciton and the biexciton line
can be of even more than 10 nm) but have very unfavourable optical properties;
they emit photons in the blue and green spectral range that are, due to losses in
the optical fibres, not very suitable for quantum communication. The values for the
energy difference between biexciton and exciton lines in III-V quantum dots are in
the region of 1–2 nm. Therefore, these systems demand a more thoughtful approach
to reduce the laser scattering. The early works on III-V quantum dots [33] showed the
signatures of resonant excitation, like for example Rabi oscillations, but only in photo-
current measurements and not in the optical signal. The first optical measurements
[31] showed Rabi oscillations as well as Ramsey interference measurements, while
in [27] it was also shown that resonant excitation can improve the degree of photon
entanglement.

Depending on the sample structure and the amount of power needed to excite
the quantum dot, the resonant excitation of the biexciton might not be sufficient to
fully suppress the laser scattering. Here, we will name two methods to additionally
reduce the amount of laser scattering3: sample/excitation geometry and design of
pulse-bandwidth. The choice of the sample structure and the corresponding geometry
of excitation can greatly reduce excess laser scattering. The method of orthogonal
propagation paths was first shown in resonant excitation of a single exciton [35]. The
schematic of the excitation used in [35] is shown in chapter by Schneider, Gold, Lu,
Höfling, Pan and Kamp, Fig. 11.4d. Here, the excitation laser is directed onto the
cleaved edge of the sample via an optical fibre that is brought to a distance of a few
microns from the sample. This method was also used in [27, 31] with a difference that
the laser light was focused onto the cleaved edge of the sample using an objective.

3In addition, one of the simplest approaches to minimize the laser scattering is the method of crossed
polarisers [34]. It employes an excitation laser that is horizontally polarized (Fig. 11.1a), while the
emission is collected only from the vertically polarized (X XV − XV ) cascade.
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Micro-cavity quantum dot samples, where the cavity extends all the way to the
edges of the sample, are highly suitable structures for the implementation of this
type of excitation geometry. Namely, the excitation laser is here focused onto the
sample from the side, see Fig. 11.2a, so that the sample distributed Bragg reflector
(DBR) structure acts as a waveguide for the laser light. The quantum dot emission
is collected from the top using a high numerical aperture objective. For example,
the specific sample used in [31] contained self-assembled InAs quantum dots of low
density (approximately 10 per µm2) that were embedded in a 4λ thick, distributed
Bragg reflector microcavity consisting of 15.5 lower and 10 upper λ/4 thick DBR
layer pairs of AlAs and GaAs. The cavity mode was resonant at λ = 920 nm. The
results presented in [27] were obtained using a sample with a λ thick cavity that had
far fewer upper-reflector DBR pairs.

As mentioned above, the wavelength separation between the exciton and the biex-
citon line in III-V quantum dots is about 1–2 nm. This value can vary significantly
even within the same quantum dot sample. Therefore the flexibility in choice of the
excitation laser bandwidth is crucial for this application. There exist quite costly
solutions for this problem, like for example lasers with variable pulse length. Never-
theless, in both [27, 31] it was shown that a combination of a short pulse laser (around
2 ps) and a pulse stretcher can fulfil both the variable bandwidth requirement as well
as the need to fine tune the wavelength of the pulses. With respect to the design of
the pulse stretcher special care should be given to the pulse chirp [27].

11.2.3 Theoretical Description of the Two-Photon
Excitation Process

In order to gain better understanding of the problem we introduce here a theoretical
model of a three-level system subjected to the resonant two-photon excitation. The
approach we present is well known from atomic physics and describes resonant
two-photon driving of a discrete-energy system in the presence of level dephasing.

The levels involved are the ground (|g〉), exciton state (|x〉), and biexciton state
(|xx〉). The level scheme is shown in Fig. 11.2b. The energy differences between
ground state and exciton state, and between exciton state and biexciton state are not
equal due to the biexciton binding energy. This electronic configuration allows for
a two-photon excitation process where the pump laser is not resonant to any of the
single photon transitions, while the two-photon process is resonant. To describe this
system we can use the Hamiltonian of the following form:

H = ��1 (t)

2
(σg,x +σ

†
g,x )+ ��2 (t)

2
(σx,xx +σ

†
x,xx )+�σx,x (Δx −Δxx )−2�σxx,xxΔxx .

(11.1)

Here, �l(t), l = 1,2 is the Rabi frequency of the pump laser driving both single
photon transitions. The transition operators and projectors are given as σi, j = |i〉〈 j |.
The energy difference between the virtual level of the two-photon transition and the
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exciton energy is Δx . This energy difference can also be seen as the laser detuning in
a process of a single photon resonant excitation that drives the exciton state. To drive
the two-photon transition off-resonantly we define the detuning Δxx , the difference
between the two-photon virtual resonance and the energy of the laser driving the
system.

The Hamiltonian in matrix form is given as:

H = �

⎛
⎜⎝

0 �1(t)
2 0

�1(t)
2 −Δxx + Δx

�2(t)
2

0 �2(t)
2 −2Δxx

⎞
⎟⎠ . (11.2)

To calculate the state populations and corresponding emission probabilities we need
to solve the master equation, here written in Lindblad form [36, 37]

ρ̇ = − i

�
[H, ρ] +

4∑
i=1

Li (ρ). (11.3)

Following [36, 37], we use the following Lindblad operator

L1(ρ) = γxx

2
(2σx,xxρσ †

x,xx − σ †
x,xxσx,xxρ − ρσ †

x,xxσx,xx ) (11.4)

to describe the spontaneous decay from the biexciton to the intermediate exciton
state and the operator

L2(ρ) = γx

2
(2σg,xρσ †

g,x − σ †
g,xσg,xρ − ρσ †

g,xσg,x ) (11.5)
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to describe the spontaneous decay from the exciton to the ground state. Unfortunately
in quantum dots there are decoherence mechanisms that can put an end to Rabi
oscillations before the spontaneous decay does so. The drift of the quantum dot energy
levels is a well-known problem that impedes quantum dots from emitting Fourier
transform limited photon wave-packets [38]. Therefore it is essential to introduce
Lindblad terms that describe the dephasing of the quantum dot levels due to its
interaction with the environment. Again following [36, 37], we can introduce the
following Lindblad operators to model the dephasing of the biexciton level

L3(ρ) = γdxx

2
(2(σxx,xx − σx,x )ρ(σxx,xx − σx,x )† − ρ(σxx,xx − σx,x )†(σxx,xx − σx,x )

− (σxx,xx − σx,x )†(σxx,xx − σx,x )ρ), (11.6)

and respectively to describe the dephasing of the exciton level

L4(ρ) = γdx

2
(2(σx,x − σg,g)ρ(σx,x − σg,g)

† − ρ(σx,x − σg,g)
†(σx,x − σg,g)

− (σx,x − σg,g)
†(σx,x − σg,g)ρ). (11.7)

Here, γxx and γx are the spontaneous decay rates and γdxx and γdx are the dephas-
ing rates of the biexciton and exciton, respectively. The excitation pulse is consid-
ered to have a Gaussian envelope function. Parameters like spontaneous decay and
dephasing rates can be determined from experimental lifetime and coherence time
measurements, respectively. Using these experimentally measured parameters we
can numerically solve the master equation and thereby obtain the theoretical predic-
tion for the populations of the different levels involved (Pi = 〈σi i 〉). The population
multiplied with decay rate integrated over time gives the emission probability. The
emission probability as a function of the square of the Rabi frequency in resonant
excitation shows an oscillating behaviour commonly known as the Rabi oscillations.

The system studied in [31] showed measured lifetimes of τxx = 1/γxx = 405 ps
for the biexciton and τx = 1/γx = 771 ps for the exciton. The coherence lengths of
the emitted photons were measured to be τdxx = 1/γdxx = 211 ps for the biexciton
photon and τdx = 1/γdx = 119 ps for the exciton photon while the excitation
pulse was measured to be 4 ps long. The theoretical prediction calculated for these
parameters is given in Fig. 11.3a as the dot-dashed curve, which indicates a very
high emission probability at the adequate excitation strength. Such a result is not
surprising because the excitation pulse length is much shorter than the dephasing
mechanisms that were elaborated above. The source of lower than unity emission
probability in this model can be attributed to the proximity of the two-photon virtual
level to the exciton level (Δx = 2π 335 GHz). Therefore, one can expect that in
the absence of additional sources of dephasing such a photon source would create
photon pairs on demand.
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detuning, respectively. Dashed lines are simulations employing the theoretical model described in
[31]. This model includes additional dephasing processes that are not contained in the four Lindblad
operator model described in this text. The model presented here results in the curve that is given as
the dot-dashed line. The filled symbols stand for data obtained in power dependence measurement
of biexciton and exciton photons under incoherent two-photon excitation that was performed using
a laser detuned towards lower energy (red-detuned) for few nanometers from the two-photon virtual
resonance. b Photo-luminescence signal obtained in this incoherent excitation regime

Nonetheless, the experimental results shown in both [27, 31] show stronger
dephasing of the Rabi oscillations. In [27] this result was attributed to a chirp of
the excitation pulse although authors did not exclude the existence of additional
sources of dephasing. The findings given in [31] suggest the existence of an under-
lying incoherent process that dephases the excitation process. In particular, in [31]
it was shown that the photo-luminescence signal can be observed even when the
quantum dot was addressed using a laser of an energy lower than the biexciton tran-
sition, Fig. 11.3b. The power dependence measured under these conditions showed
that the exciton photo-luminescence signal increases quadratically with power, while
the biexciton signal grows with fourth power. The data obtained in these measure-
ments are shown as full coloured symbols in Fig. 11.3a. While a two-photon process
in the surrounding material (GaAs is highly nonlinear) that creates carriers in the
vicinity of the quantum dot is possible, such a process would not cause the damping
of the Rabi oscillation but rather a background in the photo-luminescence signal. On
the other hand a process such as two-photon excitation from the ground state to the
continuum would dephase the excitation process.
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11.3 Measurements Under Resonant Excitation

Here, we will briefly review several results that were obtained using resonantly
excited quantum dots. In particular we will address the topics of the coherent manip-
ulation of the ground-excited state superposition, photon statistics of a resonantly
excited quantum dot, and the generation of time-bin entangled photon pairs.

11.3.1 Coherent Control

The coherence of the excitation process allows for the phase of the ground-biexciton
state superposition to be coherently manipulated. The traditional way to characterize
such a process is to perform a Ramsey interference measurement. To do so, one needs
to excite the investigated system using a sequence of two consecutive π/2 pulses,
Fig. 11.4a. The first of these pulses brings the state in an equal superposition of the
ground and the biexciton state. Upon this pulse, one lets the system to evolve freely
for a time defined by the variable delay between the pulses, Fig. 11.4a. During this
free evolution the excitation pseudo-spin is expected to precess along the equator
of the Bloch sphere. The second pulse will map the population either back to the
ground state or flip it further to the biexciton state, depending on the evolution of the
pseudo-spin and the relative phase between the two pulses. A very thorough review
of the coherent manipulation of excitons and spins in quantum dot systems is given
in [39].

When such an experiment is performed in two-photon excitation it results in
Ramsey interference fringes in both the exciton and the biexciton emission [32]. It
is important to note here that in the case of the biexiton emission these fringes are a
direct result of the laser driving the transition. The interference observed in exciton
channel closely follows the behaviour of the biexciton but comes as a consequence
of the cascade decay of the system.4 An example of a decay of the Ramsey visibility
fringes is shown in Fig. 11.4c. Due to their lifetime quantum dots are usually excited
using laser pulses that are not longer than few picoseconds. Therefore the simplest
way to obtain the sequence of Ramsey pulses is by feeding pulsed laser light into a
variable-length Michelson interferometer.

Decoherence caused by low frequency noise can be eliminated by applying a
refocusing pulse. Such a measurement is commonly called spin echo and requires a
sequence of three consecutive pulses of different intensities (π/2, π, π/2), illus-
trated in Fig. 11.4b. Concerning the spin echo measurements, they are straight-
forward to implement in systems that have long lifetimes and coherence lengths.
For example, for a trapped ions system where the coherences are of the order
of a milisecond one can use light derived from a cw laser and create the pulse

4Note that the Ramsey interference measurement characterizes the coherence of the ground-
biexciton state superposition and that by varying the delay between the two Ramsey pulses one
can measure the coherence decay of this pseudo spin.
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sequence using an acousto-optical modulator. Unfortunately, and as mentioned
before, the pulse lengths needed to drive a spin-echo sequence on a pseudo-spin
of a ground-biexciton state superposition of a quantum dot are on the order of few
picoseconds. In [31] it was shown that the echo sequence with such pulses can
be made by using a Michelson interferometer in double-pass configuration. Such
an implementation is capable of delivering the three consecutive pulses necessary
for the spin-echo sequence with the middle pulse being a result of the interference
between the light passing once through the interferometer with the light passing
twice. In Fig. 11.4c are shown two sets of data, one taken in a Ramsey and the
other in spin-echo experiment. We observe an increase in the visibility decay from
τRamsey = 185(10) ps to τecho = 242(10) ps. The measured values indicate the presence
of high frequency noise, which could not be refocused by the spin echo technique.
On the other hand, the technique itself is limited by the strong incoherent process
that happens during the excitation and that is, as mentioned before, also responsible
for the dephasing of the Rabi oscillations.

11.3.2 Photon Statistics Under Resonant Excitation

The statistics of the photons emitted by semiconductor quantum dots shows an intrin-
sically sub-Poissonian distribution [8]. Individual emitters are commonly character-
ized by a measurement of the autocorrelation [40] parameter (very often also called
the g(2)(0) measurement). The choice of this particular method is historically rooted.
The use of autocorrelation measurements on quantum dots can be traced back to the
first experiments that were capable to address a single quantum dot and where the
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main experimental task was to isolate a single emitter from an ensemble of quantum
dots. In such an experiment the observation of an autocorrelation parameter lower
than 0.5 was a clear confirmation that the observed system was a single emitter. While
the autocorrelation is quite easy to implement experimentally from a certain perspec-
tive it is a limited resource. Namely, it is an efficiency insensitive measurement that
alone cannot deliver the absolute values for the photon generation probabilities p1 or
p2+ (probability for a single photon and multiple photons, respectively). On the other
hand, and in the limit of the low source efficiency, the autocorrelation parameter can
be approximated as 2p2+/(p1 + 2p2+)2, [41].

Today the problem of addressing a single isolated quantum dot can be considered
no longer challenging and the attention is redirected to the increase of the collection
efficiency and reduction of the multi-photon component. The latter, in the case of
quantum dots, can be reduced to the problem of multiple excitations. As mentioned
before, the traditional way to excite quantum dots is above-band excitation. Apart
from a lack of coherence in driving the quantum dot system this excitation method
also gives probabilistic statistics for the photon generation and can induce effects
that increase the multi-photon component in the statistics of the emitted light like
carrier re-capture [30]. The latter is well illustrated in Fig. 11.5. The autocorrelation
measurement given in Fig. 11.5a was made on resonantly excited quantum dot, and
the autocorrelation parameter extracted from the data reads 0.0315(2). On the other
hand, the same quantum dot excited in above-band excitation will show much higher
multi-photon component, shown in Fig. 11.5b. Here the autocorrelation parameter
reads 0.282(1).

An autocorrelation measurement is not sufficient to recognize the efficiency of the
emitter nor the relation between the efficiency and the multi-photon component of
the emission. Nevertheless, there are a number of measurements that one can perform
and obtain these numbers including [41, 43–45]. Concerning the efficiency alone,
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Fig. 11.5 a The exciton signal shows excellent suppression of multi-photon events, which can be
quantitatively expressed by intensity autocorrelation parameter of 0.0315(2). The plotted data is
presented without background subtraction. The decaying peak height observable on both sides of
the graph results from the blinking of the quantum dot [42]. b The same quantum dot will show far
larger probability of multiple excitations when excited above-band
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the resonant excitation will always give better numbers, as illustrated in Fig. 11.6.
The saturation of the biexciton level in above-band excitation demands large concen-
tration of carriers in the quantum dot surrounding. This implies a large probability
that after the biexction photon has been emitted the system never reached the ground
state but rather immediately captured another electron-hole pair.

11.3.3 Time-Bin Entanglement

The idea to generate time-bin entanglement of photons emitted by a single quantum
emitter can be traced back to a seminal paper by Franson [46]. He suggested that the
interference between the probability amplitudes for a photon pair to be emitted by
an excited atom at diverse times is a nonlocal effect that violates the Bell inequality.
The system described by Franson consists of an atom in an excited state that decays
to the ground state via emission of a photon cascade (pair of photons), Fig. 11.7a.
The necessary condition given in this proposal is that the atom has a very long-living
initial state. Additionally, the intermediate excited state needs to be very short-lived
so that the second photon of the cascade is emitted immediately after the first photon.
The interference is observed in coincidence events and its detections employs two
unbalanced interferometers, one for the each photon of the cascade, Fig. 11.7b. The
imbalance of the interferometers is supposed to be longer than the coherence length
of the emitted photons otherwise the oscillations in the detected signal come from
the beat of the field function.

The first implementations of Franson’s scheme were elaborated using sponta-
neous parametric down-conversion [47, 48]. These experiments used a narrowband
continuous wave laser to produce a pair of photons highly correlated in frequency and
sent them down a pair of unbalanced interferometers. Here, the role of the long-lived
excited state is played by a highly coherent monochromatic laser. These experiments
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Fig. 11.7 a Three-level atomic system with a long lifetime τ2 for the initial state and a much
shorter lifetime τ1 for the intermediate state. The decay rates are denoted γ2 and γ1, respectively.
b The state-analysis interferometers with the short (S) and long (L) path. In the absence of the
interferometers (or interferometer beamsplitters) the coincidence measurement between the D1
and D2 detectors would show a very narrow peak of width τ1. Nevertheless, the uncertainty for the
photons to be emitted was initially much longer (τ2) and therefore the associated wave packet must
have had large time and position uncertainty. The detection of one of the photons has as an effect
a nonlocal change in the wavefunction describing the other photon. By varying the relative phase
between the interferometers (φ2 −φ1) one can observe the visibility contrast and therefore measure
the entanglement

were very challenging and suffered from several technological shortcomings such as
poor detector resolution. Nevertheless, once these difficulties were overcome, such
a type of an experiment showed violation of the Bell inequality [49].

The experiments using narrowband continuous wave lasers were producing pho-
tons that were time-energy entangled. In 1999, Brendel et al. [50] introduced a
scheme that employs femtosecond-laser pumped parametric down-conversion. Such
a scheme is commonly denoted as time-bin entanglement. Here, instead of continu-
ous wave long-coherence laser, one uses a pulsed laser of short coherence. The light
derived from such a laser is sent into an unbalanced interferometer. Each laser pulse
gives two pulses at the exit of the interferometer, so-called early and late pulse. These
are directed onto the system one wants to excite and if the excitation probability is
kept low the system will on average be excited by only the early or only the late
pulse. The state analysis is performed in a similar manner as proposed by Franson.5

Therefore, time-bin entanglement encodes quantum states in superposition of
the system’s excitation within two distinct time-bins: early and late. The impor-
tance of this type of encoding lies in optical-fibre based quantum communication
[52, 53], due to the degradation that polarization entanglement can suffer in an opti-
cal fibre outside laboratory conditions [54]. The issue behind the degradation of
the polarization entanglement in optical fibres is polarization mode dispersion. It
is a problem well known in telecommunication technologies that limits the rate of
the information transfer. The physical origin of this effect is that even single mode
fibres have two well-defined and differentiated polarization modes that in absence

5At this point, it becomes obvious that the coherence properties of the pump laser have a very
important role in the generation of the entanglement. An intermediate regime of a continuous wave
short coherence pump laser was investigated in [51]. They showed that the short coherence of the
pump laser limits the visibility contrast to 50 % .
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Fig. 11.8 a Schematic of time-bin entanglement. The quantum dot (QD) is excited by two con-
secutive pulses derived from an unbalanced Michelson interferometer shown on the left. The inter-
ferometric phase between these pulses is φP . The state analysis is performed using another two
unbalanced interferometers, one for exciton and other for biexciton photons. These two interfer-
ometers have their respective phases, φX and φX X . The photons are detected upon leaving the
analysis interferometers using detectors DX and DX X . The phases of the individual interferometers
are controlled using phase plates, pP , pX and pX X . b A photons pair created by an early pulse
but later in analysis travelled the long paths of the analysis interferometers is in its arrival time
indistinguishable to a photon pair created in a late pulse that in analysis travelled the short paths

of a controlled environment will couple randomly. In addition to being insensitive
to polarization mode dispersion and therefore preferred for a fiber optics long dis-
tance communication protocols this type of entanglement can also be employed in
quantum computing. Recently, a method was demonstrated to perform linear optical
quantum computing using photons entangled in time bin [55].

In its simplest scheme, time-bin entanglement is generated in a very similar man-
ner for both parametric down-conversion [50] and atom-like systems [56] and it
demands post-selection in order to be measured. Such a scheme6 is depicted in
Fig. 11.8a. The system is addressed by two excitation pulses, denoted the early and
the late pulse. These are derived from an unbalanced interferometer, so-called pump
interferometer. The interferometric phase, φP , between the pulses determines the
phase of the entangled state. The analysis of the generated state is performed using
two identically-constructed unbalanced interferometers, one for exciton and one for
biexciton photons. The entangled state reads

|Φ〉 = 1√
2
(|early〉X X |early〉X + eiφP |late〉X X |late〉X ), (11.8)

where φP is the phase of the pump interferometer and |early〉 (|late〉) denote pho-
tons generated in an early (late) time-bin. The method to write the phase, φP , onto
the system differs between parametric down-conversion and atom-like systems. In
particular, quantum dots demand resonant excitation in order to bring the system
from the ground to the excited state coherently, while in the process of parametric

6A quantum dot system can also give time-energy entangled photon pairs, nevertheless it needs
independent control over the lifetimes of the involved energy levels [57].
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down-conversion the phase matching process itself ensures that the pump laser and
the down-converted fields maintain constant phase relation.

There are two types of factors limiting the degree of time-bin entanglement obtain-
able from an atom-like system: those associated with excitation and those associated
with the intrinsic system coherence. The first type includes the so-called double exci-
tations. In particular, if the entanglement measurement was performed with excitation
probability p1, it will happen in p1

2 cases that the system is excited by both the early
and the late pulse. These events are observable in time basis7 being less than unity,
and are as well present as incoherent background in both energy bases.8 The effect
of double excitations can be eliminated through use of deterministic schemes for
generation of time-bin entanglement [58–60].

The time basis measurements are not affected by the decoherence-induced reduc-
tion of the visibility contrast; in contrary the energy bases measurements are. An
intuitive picture of how the decoherence affects the time-bin entanglement is the
following: the pump interferometer phase, φP , is transferred onto the quantum dot
by means of resonant excitation. Any incoherence in the process of resonant exci-
tation as well as in relation between the ground and the biexciton state will have as
a consequence an averaging of the transferred phase, and thus of the phase of the
entangled state. This will reduce the visibility contrast as well as decrease the values
of entanglement measures and indicators like concurrence and fidelity.

The entanglement analysis involves the two interferometers depicted in Fig. 11.8a
(one per qubit) and is a method that includes post selection. The post-selection pro-
cedure is schematically plotted in Fig. 11.8b. Namely, the emission time of photons
contains the information on which pulse has created the photon pair and the analysis
interferometers can partially erase this information. In particular, a photons pair that
was created by an early pulse and in analysis travelled the long paths of the interfer-
ometers is in its arrival time indistinguishable to a photon pair that was created in a
late pulse and in analysis travelled the short paths. If the detectors and the analysis
electronics are fast enough to isolate these indistinguishable events the entanglement
can be measured.

A very complete method to characterize the entanglement is state tomography
[29, 61]. Figure 11.9 shows an example of a reconstructed density matrix. The fidelity
of this particular matrix with the maximally entangled state was found to be F =
0.78(3) while the tangle and concurrence are T = 0.31(9) and C = 0.56(7).

In addition, the measurement shown in Fig. 11.9 also gave the visibilities in three
orthogonal bases of 92(2) %, 52(3) %, and 57(3) % for E/L , E + L/E − L , and
E + i L/E − i L , respectively. It is worth mentioning that among the measurements
that can indicate entanglement the visibility is the simplest and probably the oldest.
This particular measurement was forming the central part of the original Franson’s
proposal [46] and also was the method used in the first measurements of the time-
energy entanglement [47, 48]. It is observed in coincidental events. Figure 11.10
shows the diagram of arrival times of the two photons in a time-bin measurement and

7early/late(E/L).
8 E + L/E − L and E + i L/E − i L .
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Fig. 11.9 An example of a a real and b imaginary part of the reconstructed density matrix. Mea-
surements used to obtain this density matrix were performed using 4 ps long excitation pulses while
the excitation probability was kept at 6 %
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Fig. 11.10 Time-bin entanglement is observed in the coincidence events. The plot depicts the
arrival times of the individual photons and how these are forming the coincidence counts. The
green circles stand for arrival times of the photons produced by an early pulse while the violet
circles stand for arrival times of the photons produced by a late pulse. Interference of the probability
amplitudes is observed at the point of overlap. The diagonal projection shows a coincidence pattern.
The existence/absence of the central peak, plotted in black, shows the coincidence correlation/anti-
correlation

the corresponding coincidence peaks. The central peak comes from the interference of
the probability amplitudes. If the system is driven with too high excitation probability
it leads to increase in number of events where both the early and the late pulse
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have generated an excitation. It is clear from this plot that such events will form a
background under the central coincidence peak that reduces the maximum achievable
visibility.

11.4 Future Directions

Quantum dots are systems that show great potential. They are compact and inte-
grable in solid state devices. When driven resonantly their atom-like nature allows for
high photon generation probability complemented with low probability for multiple
excitations. With respect to on-demand generation of photon pairs, the two-photon
resonant excitation is a very promising method.

On the other hand, our knowledge on the origin and the nature of decoherence
processes in quantum dots is still scarce. The ability to excite the quantum dot
resonantly, to coherently manipulate the ground-excited state superposition, and/or
to generate time-bin entanglement open up a possibility to use these measurement
to further study and characterize the origins of decoherence.

One topic that was not addressed within this chapter is the extraction efficiency.
Namely, the extraction efficiency in samples with planar micro-cavities is higher
than in the dots without any additional structure but is still limited to about 5 % in
best cases. Using etched micro-pillar cavities dramatically increases the collection
efficiency. The two-photon resonant excitation can readily be applied to these devices
too. We expect the benefits to be multi-fold, ranging from the increased collection
efficiency to Purcell enhancement of the emission and therefore a emission of a
shorter and less decohered wave-packet. Such an approach would allow for having a
photon source capable of fulfilling the high requirements set by quantum information
science protocols and schemes.
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Chapter 12
Generation and Application
of Frequency-Uncorrelated
Photon Pairs

Tian-Ming Zhao, Xiao-Hui Bao, Bo Zhao and Jian-Wei Pan

Abstract Frequency-uncorrelated photon sources are rather important for quantum
information science. They are not only suitable for storage in quantum memories,
but also very useful for scalable linear optical quantum computing. In this chapter,
we review preparations and applications of frequency-uncorrelated photon pairs. We
first introduce the elimination of spectral correlation for the spontaneous parametric
down-conversion (SPDC) sources by using the technique of group velocity mis-
matching. Next we make emphasis on discussing how to eliminate the frequency
correlation for narrowband photons created from cavity-enhanced SPDC by pulse
engineering. Finally we discuss applications of using the frequency uncorrelation
technology to interfere independent photon sources.

12.1 Introduction

Quantum repeaters [1] and quantum networks [2] are developed to realize long dis-
tance quantum communication [3] and large scale quantum computation [4]. They
are both based on interference between independent sources [5]. In addition, quan-
tum interference plays an important role in quantum teleportation [6] and study of
quantum nonlocality.

Generally, in linear optical quantum computation (LOQC) [7] we use beam split-
ters to implement quantum interference. When two identical photons are superim-
posed on a beam splitter, the probabilities that both photons are transmitted or both
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are reflected interfere with each other and result in two-photon coalescence. Such a
two-photon interference effect was first observed by Hong, Ou, and Mandel [8]. From
a more fundamental point of view, this interference is due to the bosonic nature of
photons [9]. Two photons must have a global wave function that is symmetric under
particle exchange. If the photons are identical in all other degrees of freedom, e.g.
in frequency and polarization, then their spatial wave-functions must be symmet-
ric, which leads to photon coalescence upon meeting at a beam splitter. In contrast,
photons that are antisymmetric in their other degrees of freedom must be spatially
anti-symmetric. This spatial anti-symmetry requires that the photons leave by differ-
ent output ports of the beam splitter. This effect provides a physical basis for both
detecting the anti-symmetric Bell state and entanglement of independent photons.
This interference effect is efficient only if the two participating photons are in iden-
tical pure states. The impurity of the photons will inevitably result in low visibility.
So it is essential to guarantee the purity and indistinguishability of the incoming
photons.

Single-photon pure state can be expressed as

|1〉 =
∫

dωψ(ω)â+(ω)|0〉, (12.1)

where â+(ω) is the creation operator for photons at angular frequency ω, and ψ(ω)

determines the modal structure of the photon. The corresponding density operator is
given by

ρ̂1 = |1〉〈1| (12.2)

Currently single-photon states are created by atoms, quantum dots and other solid
state systems. Besides, spontaneous parametric down-conversion (SPDC) [6, 10] is
also widely used for conditional preparation of single photons. In SPDC, when a
pump photon passes through a nonlinear crystal, with a small probability, it converts
into a pair of photons called “signal photon” and “idler photon”. We denote the
frequencies of the pump, signal, and idler photons as ωp, ωs and ωi , respectively.
Because of energy conservation, signal and idler are correlated in frequency and
satisfy the condition ωp = ωs + ωi . This frequency correlation will hinder the
preparation of single photon pure states: because ωi carries information about ωs ,
the broadband detection of an idler photon heralds the presence of a signal photon,
with a mixture of different frequencies. When heralded photons from different SPDC
sources are interfered, the frequency correlation undermines the indistinguishability
between photons involved in interference and reduces the interference visibility. The
spectral correlation between photons can make them practically useless for scalable
LOQC.

A trivial approach to erase the distinguishability due to the frequency correla-
tion is to use tight spectral filtering to post-select indistinguishable events. How-
ever, this reduces the source count rate and make it useless. Fortunately, there are
many effective ways to eliminate the frequency correlation between down conversion
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photons without loss of photon count rate. Grice et al. [11] proposed that the fre-
quency correlation could be eliminated through proper choice of crystal length and
pump bandwidth to satisfy the group velocity mismatching condition between pump,
signal and idler. Thereafter many efforts have been made on realizing and modifying
group velocity mismatching method [12–14]. Besides, special crystal sequence has
been proposed to overcome the limit of wavelength in the previous methods [15].
This crystal sequence is composed of a sequence of nonlinear crystals interspersed
with birefringent spacers. By choosing proper thickness of crystals, in principle, the
group velocity mismatching can be met at arbitrary wavelength. Another way to break
through the wavelength limitation is to generate photon pairs by pulse-pumped cavity
enhanced SPDC [16, 17]. Frequency correlation is removed when the pulse length
is shorter than the coherence time of down-converted photons. Besides, tunable con-
trol of the frequency correlations of entangled photons by employing tilted pulses
has been put forward [18, 19]. Recently, flexible control of frequency correlation of
biphotons from cold atoms has been demonstrated by manipulating the dispersive
property of the cold atomic ensemble, hence, controlling the group velocities [20].

In this chapter, firstly, we introduce how to eliminate the spectral correlation
of SPDC photons through group velocity mismatching. Next we make emphasis on
discussing how to eliminate the frequency correlation of narrowband photons created
from pulse-pumped cavity-enhanced SPDC. Finally, we introduce the applications
of frequency uncorrelated photon pairs.

12.2 Single Photon Wavepacket Generation by SPDC

The two-photon state generated by SPDC is described as

|�〉 = |0〉 +
∫

dωsdωi f (ωs, ωi )â
†
s (ωs)â

†
i (ωi )|0〉, (12.3)

where â†
s (ωs) and â†

i (ωi ) are the creation operators for photons at frequencies ωs and
ωi , respectively. These operators act on the vacuum state to generate a pair of photons.
The function f (ωs, ωi ) represents the joint spectral amplitude of two-photon state,
which results from the pump field and phase matching functions,

f (ωs, ωi ) = Nα(ωs + ωi )φ(ωs, ωi )Fs(ωs)Fi (ωi ). (12.4)

Here, α(ωs + ωi ) represents the spectral distribution of pump beam, which can
be described by Guassian function:

α(ωs + ωi ) ∝ exp[−
(

ωs + ωi − 2ω0

2σ

)2

] (12.5)
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where ωs + ωi = ωp, ω0 is the central frequency for degenerate parametric down
conversion, and σ is the spectral linewidth of pump beam and Fs(ωs) (Fi (ωi )) rep-
resents the spectral filtering distribution function of signal (idler). Finally, the phase
matching function φ(ωs, ωi ) is given by

φ(ωs, ωi ) = sincκ exp[iκ] (12.6)

κ ≡ 1

2
LΔk(ωs, ωi ), (12.7)

where Δk = ks(ωs) + ki (ωi ) − kp(ωp) is the wave-vector mismatch. The density
operator of such two-photon state can be described as ρ̂ = |�〉〈�|.

In conditional preparation of single photon via SPDC, each detected idler photon
heralds the production of a signal photon. The signal photon state can be described
as the reduced density operator

ρ̂s = T ri (ρ̂ Pi ) (12.8)

where Pi is the measurement operator acting on idler photon,

Pi =
∫

dω|σ(ω)|2â+
i (ω)|0〉〈0|âi (ω) (12.9)

Here, σ(ω) is the spectral filter transfer function.
According to (12.8) and (12.9), the density operator of signal photon triggered by

idler photon is

ρs =
∫

dωi dωs dω′
s |σ(ωi )|2 f (ωs , ωi )â

†
s (ωs)|0〉〈0|âs(ω

′
s) f ∗(ω′

s , ωi ) (12.10)

This describes a pure state only if it can be written in the form of (12.2).
From (12.10), signal photon is in a pure state under two conditions. One condition

is |σ(ω)| → δ(ω − �), but in this way the truly pure states are approached only in
the limit of vanishing counts. Another condition is f (ωs, ωi ) = f (ωs) f (ωi ). This
is also the condition for eliminating frequency correlation [11–13].

12.3 Group Velocity Mismatching

Group velocity mismatching technology is used for generation of frequency uncor-
related photon pairs. When the group velocity of the signal photon, the idler photon,
and the pump photon satisfy a certain condition, the frequency correlation between
signal and idler is eliminated. This technology was proposed by Grice et al. [11], and
developed both in theory and experiment in the following works. Detailed discussion
of the theory of group velocity mismatching was presented by U’ren et al. [12]. Their
calculation process is as follows.
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First of all, the two-photon state generated by SPDC process can be described by
(12.3–12.6).

In order to get the phase mismatch function, they firstly analyse the phase term
in φ(ωs, ωi ) in details. Expressing Taylor expansion up to second order at central
frequency ω0 on (12.6), they get the result as

LΔk̃(ωs, ωi ) = LΔk0 + τsΔωs + τiΔωi + βsΔω2
s

+βiΔω2
i + βpΔωsΔωi + O(ν3) (12.11)

where

Δk0 = ks(ωs) + ki (ωi ) − kp(ωp) (12.12)

Equation (12.12) is equal to zero when the phase mismatch is satisfied. And they
ignore the higher terms O(ν3) in Taylor expansion. Besides,

τμ = L[k′
μ(ωμ) − k′

p(ωp)] = L(u−1
μ − u−1

p )

βμ = L

2
[k′′

μ(ωμ) − k′′
p(ωp)]

βp = −Lk′′
p(ωp) (12.13)

where μ = s, i .
τμ is the temporal walk-off between down converted photon and pump photon.

uμ (u p) is the group velocity. βμ (βp) is the group velocity dispersion. k′
x (ω) and

k′′
x (ω) indicate first and second frequency derivatives of kx at frequency ω.

Next, in order to analyse the relationship between terms containing ωs and ωi in
f (ωs, ωi ), it is more convenient to change every term of f (ωs, ωi ) into exponential
function. So they introduce a new approximation,

Sinc(x) ≈ e−γ x2
with γ = 0.193 (12.14)

where γ = 0.193 is chosen not to change the full-width half-maximum(FWHW)
value of the function.

Thus the joint spectral amplitude is given as

f (ωs , ωi ) = M exp

[
− (ωs + ωi − ωp)2

2σ

]

× exp
[
iβt (Δωs + Δωi )

2
]

exp
[
−γ

4
(τsΔωs + τi Δωi )

2
]

× exp

[
i

1

2
(τsΔωs + τi Δωi + βsΔω2

s + βi Δω2
i + βpΔωsΔωi )

]
, (12.15)
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where M is the normalization constant. βt is the group velocity dispersion (GVD)
term that the pump experiences prior to the crystal. By expanding the exponential
terms, we can express the joint spectral amplitude as

f (ωs , ωi ) ∝ exp

[
−

(
1

2σ 2 + γ

4
τ 2

s

)
Δω2

s

]
exp

[
i
τs

2
Δωs + i

(
βt + βs

2
Δω2

s

)]

× exp

[
−

(
1

2σ 2 + γ

4
τ 2

i

)
Δω2

i

]
exp

[
i
τi

2
Δωi + i

(
βt + βi

2
Δω2

i

)]

× exp

[
−2

(
1

2σ 2 + γ

4
τsτi

)
ΔωsΔωi + i

(
2βt + βp

2

)
ΔωsΔωi

]
. (12.16)

From (12.16), conditions that guarantee a factorizable state are

2

σ 2 + γ τsτi = 0 (12.17)

and

2βt + βp

2
= 0 (12.18)

Equation (12.17) and (12.18) are the two conditions for frequency uncorrelation.
Since condition (12.18) is in the phase term of (12.16), it has no effect on the joint
spectral intensity of the two-photon state. But it still has effect on the joint spectral
amplitude. βt is a chirp (quadratic phase) that fulfils (12.18). The quadratic phase
that the pump should carry is therefore given by βt = −βp/4.

According to (12.13), (12.17) can be written as

2

σ 2 + γL2(k′
s − k′

p)(k
′
i − k′

p) = 0 (12.19)

σ is the bandwidth of the pump, L is the length of the crystal, k′
p is the first frequency

derivative of kp at the frequency of 2ω0, k′
μ (μ = s, i) is the first derivative of kμ at

the frequency of ω0, and γ is a constant. For specific experimental situations, pairs
of values for the pump bandwidth σ and crystal length L may exist such that the
condition (12.17) is fulfilled. Note that, for the condition in (12.17) to be fulfilled,
one of the following must be true: k′

s < k′
p < k′

i or k′
i < k′

p < k′
s . That is to say, the

group velocity of the pump must lie between that of the signal and idler.
This condition can be met for several common χ(2) crystals. In the paper [11]

Grice et al. give a table about the group velocity mismatch range for BBO, ADP,
KDP, KD∗P and LBO. For example, when the wavelengths of signal and idler are in
the range 1.169µm < λ < 1.949µm photon pairs generated by BBO are frequency
uncorrelated. The range for PPKTP given by U’Ren in [12] is 1.207µm < λ <

2.364µm.
Wavelength ranges described above are more than 1µm which cannot be detected

by single-photon detectors effectively. In addition, in order to meet the condition
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(12.17), the linewidth of the pump beam must correspond to the length of the crystal,
which makes that the experimental conditions are very limited. In the following, we
will discuss an approach to solve the two problems.

Here, we rewrite (12.17) as

2

στs
+ γ στi = 0. (12.20)

If τs >> σ−1 is in the limit of L → ∞, the condition reduces to the following
simpler constraint: τi = 0. From this result, we can conclude that spectral decor-
relation can also be achieved by employing a long crystal while making one of the
temporal walkoff terms vanish [12]. For example, type-II PDC in a 2-cm-long KDP
cut at a phase-matching angle of 68◦ can degenerately generate frequency decorated
two-photon at 830 nm.

In the above paragraphs, we introduce the group velocity mismatching approach
which is one of the effective methods for frequency uncorrelation, but it is restricted
by the parameters of natural crystals. Therefore, such method can be used on limited
range of wavelengths. Fortunately, artificial crystals or crystal sequences can break
the limitation [12].

As shown in Fig. 12.1, the crystal sequence is composed with two kinds of crystal
slice sequences. The sequence of nonlinear crystal is interspersed with birefringent
spacers which are used for compensation for the group velocity mismatching.

We assume that the crystal sequence consists of N identical nonlinear crystals and
N–1 linear optical spacers. Each crystal has length L, while each spacer has length
h. The phase mismatch in each crystal is given by

Δk = kp − ks − ki (12.21)

where kμ (with μ = p, s, i) denotes the wavenumber for each of the three fields
taking into account dispersion in the crystals. The phase mismatch introduced by
each of the spacers is equivalently given as

Δκ = κp − κs − κi (12.22)

Fig. 12.1 Schematic of the
proposed sequence with
intermediate birefringent
spacers. Each crystal has a
length L, while each spacer
has a length h

L L L L L

h h h h
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where κμ (with μ = p, s, i) represents the wavenumber for each of the three fields
taking into account dispersion in the birefringent spacer.

According to U’Ren’s calculation, the overall phase matching function can be
described as

φN (Δk,Δκ) =
N−1∑
m=0

eim(LΔk+hΔκ)Sinc

[
L

2
Δk

]

= e
i(N−1)�

2
sin

( N�
2

)
sin

(
�
2

) sinc

[
LΔk

2

]
(12.23)

where
Φ = LΔk + hΔκ (12.24)

This way the condition of frequency correlation is related to the crystal and spacer
materials and their thickness L and h. Theoretically, the group velocity mismatching
condition can be satisfied at any wavelength. However, this scheme increases the
complexity of crystals’ preparation.

12.4 Narrowband Entanglement Sources

The most widely used method for the preparation of entangled states is spontaneous
parametric down conversion (SPDC) in nonlinear crystals. However, the linewidth
of photons thus produced is very wide, and does not match the linewidths of atoms,
quantum dots and NV centers. Therefore, we need to generate narrow linewidth
entangled sources. Directly filtering out the narrow linewidth portion will result in a
very low count rate. An effective way to generate narrowband photons is to use cavity-
enhanced parametric down conversion. The linewidth generated by this method is
determined by the linewidth of the optical cavity [16, 17, 21–23]. Simultaneously
by putting the nonlinear crystal inside a cavity, the generation probability for the
down-converted photons whose frequency matches the cavity mode will be enhanced
greatly. In this way, we can get narrowband and bright photon pairs.

As in Sect. 12.2, we have a joint spectral amplitude given by (12.3), but now the
filter functions Fs(ωs) and Fi (ωi ) are determined by the cavity. In general, these
describe a comb structure; here we assume that additional filters are used to remove
the output of all but one spectral mode, with center frequency ω0, for each of signal
and idler. We can then express Fs(ωs) and Fi (ωi ) as

F(ωs) = 1

(ωs − ω0) + i γ
2

F(ωi ) = 1

(ωi − ω0) + i γ
2

(12.25)
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f (ωs, ωi ) contains four functions. In α(ωs + ωi ) and φ(ωs, ωi ), ωs and ωi are
coupled while in F(ωs) and F(ωi ), ωs and ωi are independent. We neglect the spectral
function of the phase matching, whose width is very broad compared to the MHz
cavity linewidth. The spectrum response function is centered at ω0 and decreases
rapidly away from ω0. Therefore, when the bandwidth of φ(ωs, ωi ) is much larger
than the linewidth γ , or in other words, the duration of the pump light is much
smaller than the coherence time of the photons, the frequency of the two photons
will be mainly determined by the spectrum response function. In this case, the two
photon wave function is factorable, and thus the frequency correlation is eliminated,
and the purity of the spatiotemporal mode of the photons is unity. In practice, it is more
convenient to express the pump light using the pulse length. When σ > γ ∼ 5 MHz,
the pulse length of the pump light should be shorter than 75 ns.

Because of energy conservation frequencies of signal photon and idler photon
satisfy the relation ωs +ωi = ωp. Therefore, if the pump is continuous wave, ωp is a
definite value. This means that ωs and ωi are tightly correlated. But if we change the
continuous pump into pulse beam, when the frequency of the pulse is wider than the
linewidth of signal (idler) photons, the corresponding relationship between signal
and idler is no longer determined by a definite value. Thus the two-photon are not
correlated.

To quantitatively analyze the correlation and the purity of the spatiotemporal mode
of the frequency-uncorrelated photons, we perform a three-photon experiment and
observe nonclassical interference between an entanglement source and an indepen-
dent weak coherent light at a single photon level. This kind of three-photon exper-
iment has been used to demonstrate nonclassical interference between independent
sources [24].

As illustrated in Fig. 12.2, the experiment is performed by employing a pulse-
pumped narrow-band cavity-enhanced SPDC source and a weak coherent light at
a single photon level. The weak coherent light is generated from an independent
laser. Pulse lengths of the independent laser and the UV pump beam are the same.

Fig. 12.2 Experimental
diagram of three-photon
interference. Photon 1 and
photon 2 are created by
cavity-enhanced SPDC.
Photon 2 and weak coherent
light interfere on PBS.
Photon 1 is detected by D1.
Photons output from PBS are
detected by D3 and D4 1 4

2 3

POL

D1

D3

D4

SPDC

Weak Coherent Light

PBS

Mirror HWP

QWP Coupler

s
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After passing through a cavity with a linewidth of about 5 MHz, the weak coherent
light is prepared to have a matching bandwidth with the entangled photon pairs.
Photon 1 of the entangled pair is detected, while photon 2 and the weak coherent light
are superimposed on a PBS to implement a HOM type interference. We emphasize
that no additional frequency filter is applied to the SPDC photons. This is different
from previous experiments with conventional SPDC, where additional frequency
filters are usually applied to both the weak coherent light and the entangled photons
to ensure indistinguishability between them. The initial state can be expressed as

|ψ〉12 ⊗ |φ〉s = (|H〉1|H〉2 + |V 〉1|V 〉2) ⊗ (|H〉s + |V 〉s) (12.26)

Using polarisers at 45◦(|+〉)/-45◦(|−〉) in front of detectors we measure three-
photon coincidence between D1, D3, and D4 in the states |−〉|+〉|+〉 and |+〉|+〉|+〉,
where |±〉 ∝ |H〉 ± |V 〉 . We denote the number of three-fold coincidence events in
these two states as N−++ and N+++, respectively. Note that the detection window of
photon 1 is larger than photon 1’s whole wave packet, and thus the detection of photon
1 is not time resolved and does not contribute temporal filtering. Assuming that the
detection is integrated over the whole wave packet, the three-photon interference
visibility can be calculated as [25]

V = (N+++ − N−++)/(N+++ + N−++)

=
∫ ∫ ∫

dω1dω2dω3ψ12(ω1, ω2)ψ
∗
12(ω1, ω3)φs(ω3)φ

∗
s (ω2) (12.27)

If the frequency correlation is fully eliminated, ψ12(ω1, ω2) = ψ(ω1)ψ(ω2) is
factorable. In this case, we will obtain V = 1, if the spectrum of photon 2 matches
that of the coherent state, i.e., φ2(ω) = φs(ω). Therefore, the three photon visibility
contains the information how much frequency correlation the entangled photons
have, and thus can be used to estimate the correlation.

The visibility can also be expressed in terms of purity

V = T r(ρ2ρs) = [P(ρ2) + P(ρs) − O(ρ2, ρs)]/2 (12.28)

where ρ2 = T r1(|ψ〉12〈ψ |) is the reduced density matrix of photon 2, ρs = |φ〉s〈φ| is
the density matrix of the coherent state, P(ρi ) = T r(ρ2

i ) < 1(i = 2, s) is the purity
of photon 2 and the single photon, and O(ρ2, ρs) = ||ρ2−ρs ||2 > 0 is the operational
instance between the two photons [26]. In ideal case that the frequency correlation is
fully eliminated, ψ12(ω1, ω2) is factorable and photon 2 is in a pure state with purity
of 1. From the three-photon visibility, we can obtain a lower bound of the purity of the
spatiotemporal mode of photon 2, by P(ρ2) = 2V + O(ρ2, ρs) − P(ρs) > 2V − 1.
Therefore a high visibility close to 1 implies a high purity of photon 2. Besides, since
|φs〉 is in a pure state, V is also the fidelity of photon 2 on the single photon state.
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In the experiment illustrated in Fig. 12.2, the three photon visibility is mainly
suppressed by the background noise due to the second order events in both the weak
coherent light and the entangled photons. Therefore, a three-photon coincidence
mainly contains two noise terms (1) coincidences contributed by a two-photon event
from the weak coherent pulse and a single-photon event in entangled photon mode;
(2) coincidences contributed by a double-pair emission from the entangled source.
Other background noises, like the dark counts and polarization errors are so small that
can be neglected. We measure these two noise counts and subtract the background
noises from the raw data to obtain a net visibility. Noise 1, 2 are measured by
registering the background three-photon coincidences by blocking photon 2 and
the weak coherent light respectively. By subtracting the noise counts, we obtain
the net visibility, and thus can estimate the remaining frequency correlation of our
narrowband entanglement source and the purity of heralded photon 2. Note that the
method of subtracting background noises by blocking one beam has been used to
extract the net visibility in previous experiments.

We first performed the experiment with a short pump of 40 ns. The envelopes
of the photon 2 and the weak coherent light are shown in Fig. 12.3a. In this case,
theoretical analysis suggests that the frequency correlation is eliminated and thus we
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Fig. 12.3 Three-photon interference visibility. a The envelopes of photon 2 (black) and the weak
coherent light (red) with a short pump of 40 ns. b The envelopes of photon 2 (black) and the weak
coherent light (red) with a pump of 200 ns. c Net Visibility (red) and raw visibility (black) of
three-photon interference on +/- basis with pump of 40 ns. d Net Visibility (red) and raw visibility
(black) of three-photon interference on +/− basis with pump of 200 ns
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expect a high net visibility. The probabilities of detecting an entangled photon and a
single photon from the weak coherent light are about 0.0009 and 0.04 respectively.
The coincidence window between D1 and D3, D1 and D4, are both 200 ns, which
is larger than the wave packet of the pulses. The raw visibility as a function of the
coincidence window between D3 and D4 is shown in Fig. 12.3c.

For coincidence window larger than 300 ns, the raw visibilities approach a steady
value V 40 ns

raw ≈ 0.57. The raw visibility, being larger than 0.33, is a clear evidence of
nonclassical interference between the entangled source and the weak coherent light
[27]. By measuring and subtracting the background noises as discussed above, we
obtain the net visibility (c), which gives a steady value of V 40 ns

net ≈ 0.88. We can
thus obtain a minimum bound of the purity of the spatiotemporal mode of photon
2, i.e., P(ρ2) > 2V 40 ns

net − 1 = 0.76. Besides, the net visibility does not change
significantly with the coincidence window between D3 and D4, which means that
the indistinguishability between photon 2 and the single photon does not change in
a time resolved experiment.

For comparison, we perform a similar experiment using a 200 ns pump pulse. The
envelopes of the generated pulses are shown in Fig. 12.3b. In this case, theoretical
analysis suggests that the frequency correlation is only partially eliminated and thus
we expect the net visibility will be smaller than the 40 ns case. The laser power is
carefully tuned so that the probability of detecting an entangled photon and a single
photon from weak coherent is also about 0.0009 and 0.04 respectively which is the
same as the experiment condition for 300 ns pump pulse. The raw visibility is shown
in Fig. 12.3d. We achieve a steady raw visibility of V 200 ns

raw ≈ 0.45, which is below
the classical limit. We also subtract the background noises and obtain a steady net
visibility of V 200 ns

net ≈ 0.63 in Fig. 12.3d. The steady net visibility of 200 ns case
is markedly smaller than the 40 ns case. We attribute this to the fact that photon 2
is in a mixed state due to the frequency correlation between the entangled photons.
Note that the net visibility of 200 ns case decreases significantly with increasing
coincidence window between D3 and D4. This implies that frequency correlation is
not eliminated. Photon 2 and the single photon s can be distinguished through a time
resolved measurement.

12.5 Applications

In this section, we briefly discuss the applications of frequency uncorrelated photon
pairs. Firstly, the frequency uncorrelated light source can be used to produce a pure
single-photon state. Secondly, frequency uncorrelation technology is widely used for
the interference between independent sources.

In the past few years, many different methods have been put forward to eliminate
frequency correlations for the generation of single-photon state. Firstly, Mosley et
al. generated heralded single photon pure states from a parametric down-conversion
source and eliminate their frequency correlation through controlling the modal
structure of the photon pair emission [13]. The measured visibility of 95 % sets a
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minimum bound on the mean photon purity. Secondly Evans et al. have presented a
bright source of spectrally uncorrelated entangled photons with nearly single-mode
emission. The minimum spectral and spatial correlation has been implemented by
appropriate pump focusing and careful selection of pump bandwidth, wavelength and
phase matching. In this way, they obtain a entanglement visibility of 95 % without
any spectral or spatial filtering. Thirdly, in [11], researchers produced single photon
by using a microcavity to engineer the density of states of the optical field at the
PDC frequencies. The high-finesse cavity mode occupies a spectral interval much
narrower than the bandwidth of the pulsed pump laser field, suppressing the spectral
correlation, or entanglement, between signal and idler photons. Greater than 99 %
pure-state packet production is predicted to be achievable.

On the other hand, recently, several experiments on interference between indepen-
dent sources have highlighted the advantage of frequency uncorrelation of entangled
photon pairs [16, 17].

The result of interference between a photon from SPDC and an independent weak
coherent photon has been introduced in the previous paragraphs. In this experiment,
the result removes background noise. Next we demonstrate a four-photon experiment
in which retains all experimental data. This experiment fully shows the advantage of
frequency uncorrelation for interference between independent sources.

In four-photon experiment, firstly, two pairs of narrowband polarization-entangled
photons (1, 2) and (3, 4) are each prepared using the cavity-enhanced SPDC. Photon
2 and photon 3 interfere at a PBS. We measure the visibility (Fig. 12.4).

N++++ − N+++−
N++++ + N+++−

(12.29)

Fig. 12.4 Experimental
diagram of four-photon
interference. Photon 1 and
photon 2 are created by
cavity-enhanced SPDCI.
Photon 3 and photon 4 are
created by cavity-enhanced
SPDCII. Photon 2 and
photon 3 interfere on PBS.
Photon 1 and Photon 4 are
detected by D1 and D4.
Photons output from PBS are
detected by D2 and D3
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If the duration of pump pulse is about 300 ns, photon 1, 2 and photon 3, 4 are
frequency correlated. When the coincidence window is bigger than coherence time
of photons 2, 3 theoretically, we can distinguish them by measurement the detection
time of their partner photons 1, 4. As a result, the visibility becomes lower as the
coincidence window increases. Vice versa, for frequency uncorrelation photons, like
photons from SPDC pumped by 50 ns-long pulses, the visibility is a constant as the
coincidence window changes. The measurement results are shown in Fig. 12.5.

In these experiments, the visibilities of three-photon and four-photon interference
were measured. As shown in Figs. 12.3 and 12.5, the visibility keeps a constant as the
coincidence window is changed for photons without frequency correlation, while,
for those photons with frequency correaltion, the visibility steady declines as the
coincidence window is increased. This means that we have to sacrifice photon count
rate for high visibility when the frequency correlation between photons from SPDC
are not eliminated. However, the photon count rate is vitally important for few photon
interference in quantum networks.

In short, frequency uncorrelated technology has important applications in gener-
ation of single-photon pure state and can be used in any interference experiment in
principle. So it is expected that frequency uncorrelation technology can be applied
to many fileds of quantum optics and quantum information.

Fig. 12.5 Four-photon
interference visibility.
Visibility in HV basis
(black), Visibility in DA
basis (red), classical line
(dashed line). a 50 ns pump
pulse. b 300 ns pump pulse
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12.6 Conclusions

Frequency uncorrelation technology has been widely used in the generation of single
photon pure state wavepacket and in interference between independent sources. In
this chapter, we have discussed several methods for eliminating frequency correla-
tions.

One is used the technology of group velocity matching. But this is only effective
on specific wavelength. Group velocity mismatching in long crystal can broaden the
effective wavelength range. Besides, the group velocity mismatching condition can
be fulfilled in any wavelength by using a sequence of crystal and spacers. Then, we
introduce how to eliminate the frequency correlation for narrowband photons created
from cavity-enhanced SPDC by pulse engineering. At last we discuss the experimen-
tal measurement of frequency uncorrelation, including three-photon interference and
four-photon interference.

These techniques may provide useful tools for practical implementation of novel
quantum-enhanced technologies, such as linear optical quantum computation. More-
over, they are becoming increasingly important for quantum networks and quantum
repeaters.
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Chapter 13
Single Semiconductor Quantum
Dots in Microcavities: Bright
Sources of Indistinguishable Photons

C. Schneider, P. Gold, C.-Y. Lu, S. Höfling, J.-W. Pan and M. Kamp

Abstract In this chapterwewill discuss the technology and experimental techniques
to realize quantum dot (QD) single photon sources combining high outcoupling
efficiencies and highest degrees of photon indistinguishability. The system, which is
based on low density InAs QDs embedded in a quasi planar single sided microcavity
with natural photonic traps is an ideal testbed to study quantum light emission from
single QDs. We will discuss the influence of the excitation conditions on the purity
of the single photon emission, and in particular on the degree of indistinguishability
of the emitted photons. While high purity triggered emission of single photons is
observed under all tested excitation conditions, single photon interference effects
can almost vanish in experiments relying on non-resonant pumping into the quantum
dot wetting layer. However, we can observe nearly perfect indistinguishability of
single photons in resonance fluorescence excitation conditions, which underlines
the superiority of this excitation scheme to create photon wave packets close to the
Fourier limit. As a first step towards the realization of solid state quantum networks
based on quantum dot single photon sources we test the overlap of photons emitted
from remote QDs yielding non-postselected interference visibilities on the order of
(≈40%) for quasi resonant excitation.

13.1 Introduction

The demonstration of single photon emission from a semiconductor quantum dot
(QD) [1] triggered 15years of prospering research devoted towards the application
of semiconductor quantum light emitters. In particular the most commonly studied
InGaAs/GaAs based QDs can emit highly non-classical light, both under optical and
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electrical excitation [1–4]. However, for many applications beyond simple quantum
cryptography schemes, it is vitally important that the emitted single photons are
comprising highest degrees of indistinguishability, which means that they have to
be identical in all spectral characteristics: Their color, polarization, and furthermore
the extension of the wave packet (i.e. their coherence) should be Fourier limited
[5, 6]. Such photons are at the heart of applications in quantum communication [7],
quantum networks [8] and linear optical quantum computing [9]. Most quantum
teleportation schemes strongly rely on photon indistinguishability, and in particu-
lar the route towards quantum repeater networks for future long distance quantum
communications highly relies on this property [10–12]. First important experiments
based on quantum interference and teleportation of photons emitted from single QDs
have recently been carried out [13, 14]. In contrast to isolated quantum emitters such
as atoms in dilute vapors, QDs are embedded in a solid state environment which
imposes limitations on

• the brightness of the source since the photons have to be extracted out of a high
refractive index material

• the interference properties of photons emitted from these sources, as coherence
and color of the emission can be affected by coupling to the environment of the
emitter.

While the source efficiency can be boosted to very high values by embedding quan-
tum emitters in photonic micro- and nanostructures [3, 15–17], increasing the degree
of indistinguishability at least partly requires to decouple the emitter from its environ-
ment. In particular frequency shifts induced by charges in theQD’s vicinity, or effects
of phonon induced emitter dephasing strongly and detrimentally affect the interfer-
ence properties of single QDs. This chapter is structured as follows: In Sect. 13.2 we
will briefly address the fundamental mechanisms of two photon interference and its
experimental implementation. In Sect. 13.3 we will describe the experimental real-
ization of a bright single photon source as the basis of the following studies. Finally,
in Sects. 13.4 and 13.5 we will describe two photon interference experiments carried
out on single QDs. We will assess in detail the influence of the excitation scheme
on the interference properties of the quantum light emitted from the QD. While
carrier refilling effects are identified to strongly detrimentally influence the photon
interference in non-resonant excitation schemes, resonance fluorescence conditions
can lead to almost perfect interference visibilities of photons. We can furthermore
demonstrate significant interference of single photons emitted from separate sources
and compare our experimental findings with an analytical model.

13.2 A Pedestrian’s Guide to Two Photon Interference

13.2.1 Quantum Dot Single Photon Source

In a very simplified picture, single QDs can be considered as two level systems
embedded in a solid state environment: Electrons and holes can be captured and
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localized in QDs if the band configuration provides an potential well in the con-
duction and valence band, and the small size of the QDs leads to strong Coulomb
and exchange interactions. As a result, the energetic ground state of a single dot
can only be occupied by a single electron-hole pair. This excitonic carrier complex
can decay spontaneously and its energy is transferred to a single photon. Since the
maximum occupation number of the excited state cannot exceed unity, not more
than one photon of the corresponding energy can be emitted at a time interval on the
order of the exciton lifetime. The distribution function of the photon stream is hence
sub-poissonian (or antibunched), which is usually characterized by the second order
correlation function which we write here in terms of the emitted photon intensities

and the delay time τ between two detection events: g(2)(τ ) = <I (t)I (t+τ)>

<I (t)>2 . For an

ideal single photon source, the value of this function approaches 0 at τ = 0. The
antibunched nature of the emission from a single QD makes these quantum emit-
ters highly interesting for quantum cryptography schemes relying on encoding the
information of a quantum key into the polarization of a single light particle (such
as the famous BB84 protocol [18]). First successful experimental demonstrations of
quantum key distribution with QD single photon sources, both under optical [19] and
electrical excitation [20] have been realized. However, for more advanced schemes
such as the remote entanglement of stationary quantum bits (Qubits), the interfer-
ence properties of these photons play a dominant role, which we will detail in the
following subchapter.

13.2.2 Photon Interference with Quantum Light

The interference properties of single photons and their indistinguishability are very
closely related properties. Indistinguishable photons share all relevant properties,
such as color, polarization, and extension of the wave-packet in space and time.
Directly probing the indistinguishability of single photons is usually carried out in
the interference experiment pioneered by Hong et al. [21]. For further details see
also the chapters by A. Kuhn and Zhao, Bao, Zhao and Pan). It is manifested as
a quantum interference effect when two photons arrive from different sides on a
beam splitter: If these photons are indistinguishable and if they overlap in space and
time (spatio-temporal overlap) on the beam splitter, quantum interference will force
them always to exit through a common output port, which creates a path entangled
(N = 2) NOON-state. This is schematically sketched in Fig. 13.1a, d). The fact that
the photons leave the beam splitter in bunches with a suppression of the scenarios
sketched in Fig. 13.1b, c as a result of destructive quantum interference reflects their
bosonic nature, and cannot be explained by classical electrodynamics.

The Hong-Ou-Mandel effect can be experimentally probed by utilizing a config-
uration of single photon detectors similarly to a Hanbury Brown and Twiss setup
which is routinely used to probe the quantum nature of the emitted light [4]. The
setup is schematically sketched in Fig. 13.1e. The photons can be emitted from a
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Fig. 13.1 a–d Possible configurations of two photons entering a beam splitter from different sides.
Quantum interference determines the output paths of the photons. If the two input photons were
indistinguishable, both photons can only leave the beam splitter in pairs through a common arm
(a and d), rather than separate arms (b and c). e Experimental implementation of the two photon
interference experiment: The photons are emitted either from the same source (QD1), or from two
separate sources (QD1 and QD2) mounted in different cryostats. In the latter case, the photons are
brought together on a polarizing beam splitter (PBS). After spectral filtering, the light is fed into an
asymmetric Mach-Zehnder interferometer via a polarizing fiber beam splitter (PFBS), and the two
photon interference effect occurs on the last 50/50 beam splitter. Single photon counters (SPCs) are
connected to each exit port of the beam splitter to record quantum correlations

single source, or from separate, distant sources mounted in separate cryostats. In the
latter case, the photon beams are brought together on a polarizing beam splitter and
fed into an unbalanced Mach-Zehnder fiber interferometer after spectral filtering.
One arm of the interferometer has a tunable length to adjust the arrival time of the
photons on the second beam splitter, where the two photon interference is probed.
Single photon detectors are connected to each output port of the beam splitter. The
second order photon correlation function is recorded by measuring the time delays
between the measurement events of the individual detectors. In case that the photons
always take a common exit on the beam splitter, no coincidence detections between
both APDs occur, and the second order correlation function approaches 0 at τ = 0.
Here, we have to remember that the single photons emitted from our QD source are
photon wave packets, which interfere on the beam splitter. Ideally, these wave pack-
ets are Fourier-transform limited, with a Lorentzian spectral broadening Δω being
solely determined by the emitter decay time τr , and the temporal extension of the
wave packet is given by τc = 2 × τr . If additional dephasing channels with a char-
acteristic time τdeph , such as coupling to phonons start to play a role, the coherence
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Fig. 13.2 Calculated
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the second order correlation function should reach a value of 0 at τ = 0, which
converts into a two photon indistinguishability of 100%. To understand the shape
of the second order correlation function around τ = 0 in the presence of dephasing,
one has to calculate the overlap integral of two photons incident on the beam splitter.
The correlation function of the τ = 0-peak for two photons with identical frequency
and a time delay δτ between them is given by [22]

g(2)(τ, δτ ) = 1

4
e− |τ−δτ |

τr + 1

4
e− |τ+δτ |

τr − 1

2
e
−

(
2
τc

− 1
τr

)
|τ |− |τ−δτ |

2τr
− |τ+δτ |

2τr . (13.1)

In (13.1) a homogeneous broadening is assumed by an exponential decay of the
coherent amplitude due to dephasing and the existence of (gaussian) spectral jitter
is ignored.

The correlation function g(2)(τ ) of the τ = 0-peak for the interference of photons
with the same energy and polarization from a pulsed source is shown in Fig. 13.2
for different ratios of v = τc/2τr . We calculated g(2)(τ ) for a time delay of δτ = 0
and a constant radiative decay time of τr = 1ns. The variation of v is achieved by
varying the coherence time τc between 2 and 0ns. In the case of Fourier-transform
limited photons the visibility is 100% and the τ = 0-peak disappears completely.
For a homogeneous broadening of the emission, represented by a coherence time
τc < 2τr , the wavepackets do not overlapp perfectly which results in a non-zero
contribution to the correlation function around τ = 0. In the limit of very short
coherence times τc → 0, the photons leave the beam splitter independently and
randomly resulting from the reduced coalescence probability. The outcome of this
is a peak in the correlation histogram with a g(2)(0) value of 0.5, which equals the
g(2)(0)-value for a two photon source 1 − 1/n with n = 2.

13.3 A Bright Quasi-planar Single Photon Source

The single photon source which is at the heart of this study is based on a low den-
sity layer of single In(Ga)As QDs integrated in an asymmetric AlAs/GaAs optical
microcavity. The lower distributed Bragg reflector (DBR) consists of 18 AlAs/GaAs
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mirrorpairs, providing a reflectivity near unity in the spectral range of the QD emis-
sion, which directs the light towards the top surface of the structure. A single layer
of ultra low density InAs QDs is vertically centered in a GaAs λ-thick cavity layer,
which is covered by 5 AlAs/GaAs distributed Bragg reflector (DBR) segments. The
microcavity has a low quality factor (Q-factor) of ≈200. A combination of very low
growth rates (<0.01nm/s), and the partial capping and annealing growth technique
[24] allows us to realize sufficiently low QD densities to spectroscopically isolate
single QDs in the wavelength range between 900 and 940nm. It is interesting to note
that under such growth conditions, which allow for very long migration lengths of
the supplied material, the QDs tend to nucleate at crystal steps, defects or nanoholes
[4, 25]. This peculiar nucleation behavior can be directly exploited in QD position-
ing schemes [25, 26], where nanodefects are intentionally generated on a surface via
lithography and etching. In our case, the natural formation of oval crystal defects,
which was most likely induced by Gallium droplets during the growth of the bottom
DBR similar to observations in [27], serves as such nucleation sites for the QDs in the
cavity layer. These defects propagate through the top DBR and are well detectable as
nanohills on the surface (Fig. 13.3c) via atomic force microscopy, with a height on
the order of 10nm. Figure13.3b depicts a CCD image of the sample surface under
illumination with white light at a temperature of 4K. We used a long pass filter
(750nm) to monitor the emission from the QDs in the infrared range. The image is
characterized by bright spots which we attribute to the emission of clusters of QDs,
whereas no detectably signals occur between these sites.

Comparing the position of bright photoluminescence spots recorded via spatially
resolved sample imaging with the nanohill position reveals a coalescence between
the position of these hills and the location of QDs in the cavity. Furthermore, the oval
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Fig. 13.3 a Sample structure and quantum dots: A single layer of In(Ga)As QDs is integrated in a
single sided low-Q cavity realized by AlAs/GaAs distributed Bragg reflectors sandwiching a GaAs
cavity layer. b The very low QD density facilitates the identification of QD emission spots straight
forwardly by white light imaging. c Nanohills on the sample surface are formed during the growth
process acting as natural lenses and significantly improve light outcoupling of the structure. The
figure is reproduced from Maier et al. [23]
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shape of the hills provides a gentle optical lateral confinement [27] which serves to
guide the emitted light out of the semiconductor structure and enhance the photon
outcoupling efficiency of the device. For a perfectly two dimensional microcavity
structure of our geometry, this efficiency can hardly exceed theoretical values of
≈30% when the light is collected in the normal direction with a 0.7 NA microscope
objective [28]. In contrast, due to the waveguiding effect provided by the nanode-
fect, this efficiency can be theoretically increased to≈50%, as described in [23]. It is
worth noting, that more carefully designed shapes of buried Gaussian nanohills are
predicted to facilitate strong mode confinement to the sub-micrometer range without
strongly reducing cavityQ-factor via lateral scattering losses [29], whichmakes them
very appealing for cavity quantum electrodynamic experiments. In our structure, we
could experimentally determine single photon outcoupling efficiencies up to 42%
in a calibrated photoluminescence setup, being in good agreement with the numer-
ical estimations based on realistic sample parameters, and exceeds the theoretical
maximum of a perfectly planar two dimensional microcavity (≈30%) [23]. Most
other strategies to achieve bright single photon emission from QDs embedded in a
semiconductor matrix are based on the integration in nano- and microphotonic struc-
tures, such as pillar microcavities, photonic crystal membranes, nano-waveguides
and antennas [30]. In all those approaches, the lithographic definition of the pho-
tonic structure creates open surfaces in the close vicinity to the quantum emitter,
which can lead to significant dephasing and spectral wondering of the QD emission
line. This is partly reflected in emitter line broadening [16, 17], limitations of the
QD single photon interference properties [15] and fast spin dephasing [31].

13.4 Emission of Single and Indistinguishable Photons
from Single Quantum Dots

13.4.1 Single Photon Emission from Single QDs

In our experiment, we tested three different optical excitation method for single-
photon generation fromQDs, as sketched in Fig. 13.4. Themost conventionalmethod
is non-resonant excitation by pump laser with an energy above the band gap (in the
barrier or the wetting layer surrounding the QDs, sketched in Fig. 13.4a). These
carriers can then be captured by the QD and relax to the ground state via phonon
scattering, from where they can decay radiatively. In order to facilitate local gen-
eration of excitons in the QD and to reduce possibly detrimental effects from the
surrounding, carriers can as well be generated quasi-resonantly in the excited states
of the QD (Fig. 13.4b). These states are typically located 20–50meV on the high-
energy side of the exciton ground state in the QD, facilitating spectral filtering of
the excitation laser from the collected signal in most cased. The relaxation from
the p-shell to the ground state of the QD typically occurs on the ten picoseconds
scale [6, 34], which leads to a strong reduction of time jitter in the emission.
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(a) (b) (c)

(d) (e) (f)

Fig. 13.4 Excitation configurations of a single QD: a Non-resonant wetting layer excitation creates
carriers in the surrounding of the QD, which relax into the ground state by scattering. b Quasi-
resonant excitation leads to a direct excitation of the QD without generating a carrier reservoir. c
Resonance fluorescence selectively excites the QD ground state. For suppression of back scattered
laser light in resonance fluorescence, the pathways for excitation and photon collection can be
separated in the experimental implementation by an orthogonal arrangement for planar waveguides
(d) and micropillars (e). f Sketch for the cross-polarization configuration facilitating resonance
fluorescence measurements under normal incidence. d and e are reproduced fromMuller et al. [32]
and Ates et al. [33]

The third pump-configuration is strictly resonant excitation (resonance fluorescence),
a method widely used in standard atomic physics experiments (Fig. 13.4c). Here, the
excitation laser tuned on resonance with the QD transition coherently excites the
QD. This excitation condition is by far the hardest to implement, since it requires
a careful distinction between QD signal and laser stray light. Spectral filtering of
the pump-laser is no longer feasible in strictly resonant excitation conditions, hence
other methods have to be applied to isolate the QD emission signal: spatial filtering
is one option, when the pump-laser is exciting the QD in the perpendicular direction
to the collection beam-path (Fig. 13.4d). This technique was first employed in Bragg
waveguides and led to the first successful demonstration of resonance fluorescence
from a single QD [32, 35]. Strictly resonant excitation perpendicular to the photon
collection direction has also been carried out on single micropillar cavities with suffi-
ciently strong suppression of scattered laser light facilitating two photon interference
studies [33]. Another technique is polarization filtering: Here, the excitation laser is
linearly polarized, and in case the reflected laser beam preserves this polarization,
the QD emission can be detected in the perpendicular polarization basis [36]. In our
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confocale microscope setup, the polarization extinction of the pump laser can reach
values in excess of 107 which allows us to carry out correlation measurements in the
resonance fluorescence configuration [37].

Figure13.5a depicts a photoluminescence spectrum recorded under non-resonant
excitation condition. The spectrum is characterized by a pronounced emission fea-
ture which is attributed to the neutral exciton emission from a single QD via its
spectral properties (such as polarization and power dependency). In the close spec-
tral vicinity we detect a number of other lines, possibly stemming from different
charge configuration of the same QD or from neighboring QDs. In the following,
we will focus on the characteristics from the brightest transition: The corresponding
second order autocorrelation function recorded from this line is shown in Fig. 13.5b,
recorded under pulsed excitation with a repetition frequency of 82MHz. During each
excitation pulse, carriers are excited non-resonantly in the wetting layer of the QDs,
which is reflected in the distance between the peaks in the correlation histogram.
As expected from a single quantum emitter, at τ = 0 the coalescence probability is
strongly suppressed and a dip occurs in the histogram.The corresponding g(2)(τ = 0)
value of 0.05 is a clear signature of single photon emission.

However, as a result of the non-resonant excitation, a large number of carriers is
generated in the surrounding of the QD during one excitation pulse. If the lifetime
of this reservoir exceeds the average recombination time of the QD trion, carriers
can re-excite the QD after the first recombination event, which leads to a strong
broadening of the peaks in the correlation histogram.

This effect is largely suppressed when the QD is quasi-resonantly excited into an
excited state: In Fig. 13.5c we plot the photoluminescence spectrum of a QDwhich is
excited with a laser detuning of 29meV on the high energy side of the recombination
line. Stray-light from the excitation laser is spectrally suppressed by a combination
of bandpass filters. Due to the quasi-resonant nature of the excitation, the spectrum is
almost background free and a single bright emission line dominates the spectrumover
awide range.More importantly, the effects of strong time jitter and carrier recapturing
are suppressed in the corresponding correlation histogram (Fig. 13.5d) and the width
of the coincident peaks in the histogram are now determined by the lifetime of the
excitonic transition with a characteristic time of 700ps, which is in good agreement
with the time resolved PL trace (inset of Fig. 13.5c). This effective reduction of
the measured lifetime (compared to inset of Fig. 13.5a) is again consequence of the
absence of carrier recapturing under quasi-resonant excitation. The purity of the
source is even improved, as characterized by a value of g2(τ = 0) = 0.023 which
was directly extracted from the raw data without any background correction.

A truly coherent, time-jitter free excitation method made use of an ultrafast (3ps)
pulsed laser with its central frequency resonant with the QD transition. In Fig. 13.5e
we plot a spectrum of the QD-emission signal under such resonance flourescence
(RF) conditions. The narrow emission line stemming from the driven QD resonance
sits on top of a broad, yet dim background from the pump laser (plotted in log-
scale). The much broader laser background can be further filtered using a narrow-
band etalon, resulting in a signal to background ratio exceeding 300:1 [37]. The
QD emission intensity is plotted as a function of the square root of the pump power
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Fig. 13.5 a Photoluminescence (Inset Time resolved PL) signal of a QD under non-resonant
excitation; c quasi-resonant excitation; e resonance fluorescence. The inset in e depicts the power
dependency of the emission under pulsed resonance fluorescence, which is characterized by the
occurrence of distinct Rabi-oscillations. Corresponding second order correlation histograms: b
non-resonant pumping, d p-shell excitation; f resonance fluorescence
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of the excitation laser in the inset of Fig. 13.5e: The observed Rabi-oscillations are
characteristic for a resonantly driven two-level system and reflect the coherent nature
of the excitation process. Single RF photons are deterministically generated at the
peak maximum, which corresponds to a π -pulse in the picture of driven Rabi-
oscillations. The according second order correlation measurement under these con-
ditions is shown in Fig. 13.5f. The second order autocorrelation function can reach
values as low as g2(τ = 0) = 0.003, pointing out the character of our single QD as
a almost perfect single photon source [38].

13.4.2 Two Photon Interference with Single Photons

The combination of high brightness and high purity of the single photon emission
allows us to carry out photon interference measurements with the experimental con-
figuration briefly described in Sect. 13.2 and in Chap.2 by Lanco and Senellart.

First, we study the two-photon interference (TPI) of consecutive photons emitted
from a single QD, to scrutinize the dependency of the interference visibility on the
excitation condition. Therefore, we adjust the path length difference of the two arms
in our Mach-Zehnder interferometer to the laser repetition period of 12.2ns (see
Fig. 13.1d), so that two consecutively excited photons can coincide at the same time
on the beam-splitter. Additionally, there is the possibility to change the time delay
between the two arms of the interferometer via a variable optical fiber delay.

We first study the TPI of consecutive emitted photons under wetting layer excita-
tion. As we have discussed above, the very long diffusion lengths of our sample lead
to a recapturing of charge carriers after a first recombination. This recapturing results
in a background in the autocorrelation histogram at |τ | > 0. The corresponding cor-
relation histogram for the TPI of consecutive emitted photons at an interferometer
path length difference of Δt ≈ 0 is shown in Fig. 13.6a. Fitting the data with a
model based on [22] yields a visibility of only 12%. This small value is a result
of the very large time uncertainty induced by the long emission time induced from
the carrier recapturing, which makes a simultaneous collision of two photons on the
beam splitter very unlikely.

As a direct comparison, in Fig. 13.6b the second order correlation function for TPI
is shown for zero path length difference for a QD under p-shell excitation. Here, the
peak at τ = 0 is strongly suppressed below a value of 0.5. The probability for two
photons that coincide at the beamsplitter and exit in opposite directions g(2)

indist (τ = 0)
is given by the area under the peak at τ = 0 divided by the averaged area of four
peaks for |τ | > ±12.2ns. From the raw data we extract values of g(2)

indist = 0.16 <

0.5, verifying the indistinguishability of the photons generated under quasi resonant
pumping. In order to accurately extract the visibility of the two photon interference,

http://dx.doi.org/10.1007/978-3-319-19231-4_2
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Fig. 13.6 a Two photon interference histogram for a QD. The emitter is non-resonantly excited
into the wetting layer. b TPI under p-shell excitation. c The Hong-Ou-Mandel dip evolves when
the TPI visibility is plotted against the delay time Δt

we investigate g(2)
indist (τ = 0) in dependence of interferometer path length offset

Δt . In this manner, we observe the characteristic Hong-Ou-Mandel dip for Δt = 0.
Via fitting the data with a two sided exponential g(2)

indist (Δt) = 0.5[1− ve(−|Δt |/τm )]
we can extract a non-postselected value of TPI visibility v of 69%. This value is
comparable to the values of QDs embedded in micropillar cavities [6, 15], where the
Purcell effect is employed to reduce the radiative decay time τr and hence improve
τc
2τr

. The visibility under quasi resonant excitation is strongly increased compared to
the non-resonant excitation scheme resulting from the direct excitation conditions
which lead to a reduced uncertainty in the emission time, a lack of carrier re-capturing
processes and reduced charge carriers in the wetting layer. For an ideal spontaneous-
emission source, with instantaneous initial excitation and no decoherence, τm which
characterizes the arrival time of photons on the beam splitter would be equal to the
spontaneous emission lifetime of the quantum emitter. From the fit we get values of
τm = 630ps which indeed is close to the spontaneous emission lifetime of this QD
(see inset Fig. 13.5c).

Ideally, in order to obtain maximum degrees of indistinguishability, Fourier-
transform limited sources are required. Aswe have assessed in Sect. 13.2, the relation
between coherence time τc and lifetime of the QD emission τr , that describes the
visibility of TPI is νmax = τc

2τr
= 1. In order to directly assess the coherence time of

the QD emission under p-shell excitation, we use a Michelson interferometer, and
measure the photon interference signal as a function of the variable time delay (see
[5] for details on the method). The fringe contrast in dependence of interferometer
path length difference is shown in Fig. 13.7a. The fine structure splitting of the neutral
exciton line leads to oscillations in the interference fringe contrast. From a fit (red
solid line) to the experimental data with the Fourier transform of two Lorentzians
we can extract the coherence times of the fine structure split lines τc1 = 330 ps and
τc2 = 180 ps. Compared with the extracted decay time τr = 670 ps we can extract a
maximum visibility for TPI in this case of 25%.
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Fig. 13.7 a Coherence time and b decay time of the QD characterized in Fig. 13.6

This seeming discrepancy to the extracted value of 69% has been observed before
[6] and can be explained by a primary inhomogeneous broadening of the emission
lines, for example by charge fluctuations in the vicinity of the QD. These fluctua-
tions can take place on a timescale much longer than the laser repetition frequency,
and are hence not affecting the TPI measurement, since only the interference from
consecutive photons is measured. On the other hand, in the time averagedMichelson
experiment, the interference of photons emitted at much larger time delays con-
tribute, which explains the reduced coherence times. As we will show in the follow-
ing chapter, however, this argument is no longer true if photons from independent
sources are interfered, which asks for the capability to generate photons close to the
Fourier limit.

To generate such photons and increase the visibility of the TPI, we study a QD
under pulsed resonance fluorescence conditions. In this experiment, each excitation
pulse of the pumplaser is split into two pulses with a delay of 2ns, generating two sin-
gle photons each 12.5ns (see Fig. 13.8a). The according correlation histogram from
the TPI experiment is depicted in Fig. 13.8b, c. If we combine photons with opposite
polarizations on the last beam splitter, we observe the correlation histogram of two
perfectly distinguishable photons depicted in Fig. 13.8b, featuring a central peak at
τ = 0 with the same magnitude as the neighboring peaks stemming from photons
with a time difference of 2ns. If photons with the same polarization are combined on
the beam splitter (Fig. 13.8c) the strong suppression of the central peak indicates the
high degree of indistinguishability of the photons generated under these conditions.
By evaluating the areas under the coincidence peaks, we can directly extract a raw
TPI visibility as high as 91%, clearly exceeding the value for quasi-resonant excita-
tion. A more recent experiment used adiabatic rapid passage to deterministically and
more robustly generate single photons and demonstrated a new record of two-photon
interference raw visibility of about 98% [38]. The strong increase of the TPI for res-
onance fluorescence clearly underlines the superiority of this excitation scheme, and
points towards the possibility to deterministically generate single photons close to
the Fourier-limit.



356 C. Schneider et al.

Fig. 13.8 Photon interference spectroscopy in the resonance fluorescence configuration: a Sketch
of the optical setup: Each pulse of the excitation laser is split into two pulseswith a time delay of 2ns,
resulting in a two-fold excitation of the same QD. The fluorescence is fed into a Hong-Ou-Mandel
setup, and the RF-photons are recombined on the second beamsplitter. b Interference histogram
with photons of perpendicular polarizations and c photons of the same polarization. The absence
of the peak at τ = 0 demonstrates highly indistinguishable photons

13.5 Two Photon Interference from Remote,
Single Quantum Dots

Thevery highTPI visibilitieswhichwehave discussed in the previous section puts the
observation of pronounced TPI effects from photons emitted from separate sources
clearly within reach. Such interference effects have previously been observed under
non-resonant exictation conditions [39, 40], or under CW resonant fluorescence
excitation resulting in time post selecting [41]. For realistic applications, the non-
postselected value of the TPI is however of greater importance, which can only be
probed under pulsed excitation conditions. In order to carry out this experiment, we
have installed two QD samples in separate cryostats and identified individual QDs
with similar emission frequencies and coherence properties as the QD characterized
inFig. 13.6c.BothQDswere excitedquasi-resonantlywith the samepulsed excitation
laser, and the emission was combined on a polarizing beam splitter before it was fed
into the Mach-Zehnder interferometer (see Fig. 13.1a). In order to probe the two
photon interference from separate QDs, the emitters have to be tuned to spectral
resonance. A number of tuning mechanisms are possible, including electric fields
[40], strain [39] or magnetic fields [42]. In our experiments, we utilize the sample
temperature to spectrally tune the QD energies to resonance. Since the temperature in
the cryostats cannot be varied in a wide range without detrimentally affecting the QD
emission properties, a pair of QDs was selected with an energy difference as small as
3µeV. The emission energies could then be equalized by changing the temperature



13 Single Semiconductor Quantum Dots in Microcavities … 357

6.0 6.5 7.0 7.5

0.25

0.30

0.35

0.40

Temperature (K)

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0
(a) (b) (c)

-48 -36 -24 -12 0 12 24
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 c
oi

nc
id

en
ce

s

Time (ns)

T = 6.63K

g
(2)

indist
(0)

= 0.31

Fig. 13.9 Two photon interference of QDs emitted from separate sources. The QD samples are
mounted in separate cryostats with an overall spatial separation of 0.5m. a Interference histogram
under spectral resonance. The QDs are tuned into resonance via adjusting the sample temperature.
b Dependency of the two photon interference visibility on the spectral detuning of the QDs. c
Theoretical maximum of the indistinguishability as a function of the QD coherence time (in relation
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of one sample by only 1.8K, which should only minorly affect coherence properties
of the emission.

The second order correlation function for TPI from separate sources is shown in
Fig. 13.9a for QD1 at 5.00K and QD2 at 6.75K. We determine the opposite output
probability g(2)

indist (τ = 0) from the raw data by the area of the peak at τ = 0
divided by the averaged area of 6 peaks for |τ | > 0. From the data we extract
g(2)

indist (τ = 0) = (0.31 ± 0.01), which verifies that the photons from the two QDs
have a nonzero coalescence probability. The according TPI visibility amount to v =
(39 ± 2)%, which is the highest value of non-postselected two photon interference
from separate QDs observed so far under quasi- or nonresonant excitation conditions.
By varying the sample temperature in one cryostat, we can tune the QDs out of
resonance, which is directly reflected in a reduced two photon interference visibility,
as depiced in Fig. 13.9b.

We will now compare these experimentally observed values with a theory which
only takes into account pure dephasing as a decoherence mechanism. As we have
described in Sect. 13.2, in the presence of pure dephasing limiting the coherence time
1
τc

= 1
2τr

− 1
τdeph

the maximum visibility of the TPI is obtained for v = τc
2τr

. Taking
into account the experimentally extracted radiative decay time of 670ps (Fig. 13.7b)
and coherence time of 330ps (Fig. 13.7a), we can infer a maximum interference
visibility of 25%, which is clearly exceeded in our experiment. For two photons
emitted from the sameQD, we argued that frequency jitter on a time scale beyond the
repetition time of the pulsed excitation laser led to a reduction of the coherence time
whichwas however onlyweakly affecting the interference visibility fromconsecutive
photons. For photons emitted from independent sources, clearly this argumentation
is not valid. In order to take account for the effects of inhomogeneous broadening
in the evaluation of the TPI, various frequency components have to be taken into
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account. We follow the analysis by Legero et al. (see chapters by A. Kuhn, and Zhao,
Bao, Zhao and Pan of this book and [43]) to derive an expression for the visibility
of TPI in the presence of inhomogeneous broadening represented by a Gaussian
frequency distribution. We assume that the two photons which interfere at the beam
splitter originate from independent ensembles of Fourier transform limited photons.
The Fourier limited single-photon wave packets for QD1 and QD2 are one sided
exponential functions:

ξ1(t) =
⎧⎨
⎩

4
√

1
πτr

e
− t− δτ

2
2τr

−i
(
ω− Δ

2

)
t

if t − δτ
2 > 0

0 otherwise
(13.2)

and

ξ2(t) =
⎧⎨
⎩

4
√

1
πτr

e
− t+ δτ

2
2τr

−i
(
ω+ Δ

2

)
t

if t + δτ
2 > 0

0 otherwise
, (13.3)

where δτ is the time delay andΔ the frequency difference between them.An inhomo-
geneous broadening of the emission lines can be considered by a Gaussian frequency
distribution f (ω) with σ 2 being the variance:

fi=1,2(ωi ) = 1√
π 2σi

e
− (ω0i −ωi )

2

2σ2i . (13.4)

With ω1 = ω and ω2 = ω + Δ we get the frequency distribution as a function of the
frequency difference Δ

f (Δ) =
∫

dω f1(ω) f2(ω, Δ) = 1√
π 2σg

e
− (Δ−Δ0)

2

4σ2g , (13.5)

with σg =
√

σ 2
1 + σ 2

2 and Δ0 = ω02 − ω01. The correlation function is then given
by

G(2)
inhom(t0, t0 + τ) =

∫
dΔ f (Δ) tr

(
ρ̂(ξ1, ξ2) Â(t0, t0 + τ)

)
, (13.6)

where tr
(
ρ̂(ξ1, ξ2) Â(t0, t0 + τ)

)
is the correlation function for two Fourier trans-

form limited photons with the same polarization:

G2
TL(t0, t0 + τ) = |ξ1(t0)ξ2(t0 + τ) − ξ2(t0)ξ1(t0 + τ)|2

4
(13.7)
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Finally, the probability for detecting a photon at time t0 + τ in one output of the
beam splitter while a photon is detected at time t0 in the other one for inhomogeneous
broadened ensembles of photons is given by

Pinhom =
∫ ∞

−∞
dt0 G(2)

inhom(t0, t0 + τ)

= 1

8τr

(
e− |δτ−τ |

τr + e− |δτ+τ |
τr − 2 cos(Δ0 τ) e− |δτ |+|τ |

τr e−σ 2
g τ 2

)
(13.8)

From this expression, we yield an expression for the two photon interference
visibility for δτ = 0 and Δ0 = 0, only depending on the radiative decay time τr

and the geometric average of the broadening of the two photon ensembles σg =√
σ 2
1 + σ 2

2 :

vinhom = 1 − 1

τrσg

(
2τrσg − e

1
4τ2r σ2g

√
πerfc

(
1

2τrσg

))
(13.9)

In Fig. 13.9c we plot the maximum TPI of such inhomogeneously broadened
wave packets as a function of the coherence time (in multiples of the lifetime
τr ), to visualize the strong influence of the broadening’s origin on the maximum
interference visibilty. From this analysis, we can estimate a maximum visibility of
νinhom = (36.4 ± 1.5)% which is in good agreement with the experiment. This
underlines the importance of effects as spectral wandering, time jitter and other
inhomogeneous broadening channels in particular for photon interference experi-
ments from independent sources. It is worth noting, that major improvements have
recently been accomplished by utilizing resonance fluorescence conditions in such
an experiment. Due to the suppression of inhomogeneous broadening effects under
strict resonant excitation, two photon interference visibilities beyond 80% [14, 44]
were obtained.

13.5.1 Conclusion

Single semiconductor quantum dots have been established as compact single photon
sources on a solid state platform. Towards the implementation of these quantum emit-
ters as sources of highly indistinguishable photons, which is key to realize quantum
teleportation schemes and highly desired quantum repeaters, the degree of indis-
tinguishability of the photon emission is a key parameter. As we have reviewed
in this chapter, besides utilizing the effects of cavity quantum electrodynamics to
modify the radiative decay time of the photon emission, the appropriate excitation
scheme plays a crucial role to realize high degrees of indistinguishabilities. In par-
ticular resonance fluorescence conditions can be considered as a reliable technique
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to generate single photons near unity indistinguishability. We highly anticipate that a
combination of such sophisticated pumping schemes and the exploitation of light
matter coupling effects can lead to even further simultaneous improvements of the
photon coupling efficiencies and degrees of indistinguishability, which makes single
QDs an truly appealing alternative to cold atoms and ions towards the realization of
quantum repeaters.
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Chapter 14
Towards Quantum Repeaters with
Solid-State Qubits: Spin-Photon
Entanglement Generation Using
Self-assembled Quantum Dots

Peter L. McMahon and Kristiaan De Greve

Abstract In this chapter we review the use of spins in optically-active InAs quantum
dots as the key physical building block for constructing a quantum repeater, with a
particular focus on recent results demonstrating entanglement between a quantum
memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded
photonic qubit). This is a first step towards demonstrating entanglement between
distant quantum memories (realized with quantum dots), which in turn is a mile-
stone in the roadmap for building a functional quantum repeater. We also place this
experimental work in context by providing an overview of quantum repeaters, their
potential uses, and the challenges in implementing them.

14.1 Introduction

Self-assembled InAs quantum dots1 can trap a single electron; when the quantum
dot is in an external magnetic field, a trapped electron’s spin states can be used to
encode a quantum bit (qubit). Over the past decade, a series of studies [4] have
shown that such a qubit can be optically initialized [6, 7], controlled [8, 9] and
measured [8, 10, 11].Measurements of the coherence timeof such a qubit have shown
that the time required to perform an arbitrary single qubit operation (∼50ps [8])
on the qubit is roughly five orders of magnitude shorter than the spin echo T2 time

1This chapter focuses exclusively on optically-active self-assembled quantum dots, which can
trap single charges (electrons or holes), as well as neutral and charged excitons. References
[1–4] provide detailed reviews of how these quantum dots are formed, how they provide a
photonic interface, and how they can store spin qubits. This chapter does not review any of the
work in the electrostatically-defined quantum dot [5] community.
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(∼3 µs [12, 13]). In light of this, electron spins in quantum dots2 are considered
appealing candidates as quantum memories, and will be even more so if dynamical
decoupling techniques [19, 20] can be used to further extend the coherence time.
Long-distance quantumcryptographywill likely require the development of quantum
repeaters, aswill other applications of remote entangled states. Charged quantumdots
are one of several candidate technologies for building quantum repeaters, and are
interesting as such because they provide both a good stationary qubit (to be used as
a memory), and a fast optical interface. One of the very first steps towards building
a quantum repeater using quantum dots is to show that one can generate a photonic
qubit that is entangled with a spin (memory) qubit.

In this chapter, we review how quantum dots might be used to ultimately build
a quantum repeater, and describe recent experiments that have demonstrated the
generation of entanglement between a single photon and a quantum dot. In particular,
we will review experiments that have generated and verified entanglement between
the polarization or frequency state of a photon emitted by a single quantum dot,
and the spin state of the electron in that quantum dot [21–23]. We also review how
tomography can be performed on a spin-photon qubit pair, and describe the result
in [24], which showed that quantum dots can produce spin-photon entanglement
with fidelity in excess of 90%. We provide a summary of spin-photon entanglement
generation results in many different physical systems. We also address briefly some
questions surrounding what work needs to happen to proceed from the present state
of affairs to a functioning quantum-dot-based quantum repeater.

14.2 Quantum Repeaters

Beforewe discuss howoptically-active quantumdotsmay be suitable building blocks
for constructing a quantum repeater, we would like to provide a general overview of
quantum repeaters. We attempt to provide answers to the following questions:

• What are quantum repeaters, andwhy is there substantial interest in building them?
• What are the technological requirements for building useful quantum repeaters?

2Incidentally, holes can also be trapped in quantum dots, and the spin of the hole can also be used
as a qubit. Analogous demonstrations to those performed with electron spins have been done with
hole spins, including: initialization [14–16], complete control [16, 17], optical readout [16, 17],
T ∗
2 measurement [16–18], and T2 (spin echo) measurement [16]. Hole spin qubits in InAs QDs

have an advantage over electron spin qubits in InAs QDs: they have a much-reduced hyperfine
interaction with the nuclear spin ensemble in the QD, and this results in hole spin qubits exhibiting
non-hysteretic behaviour, whereas electron spin qubits suffer from a pronounced hysteresis [16].
In other words, control of electron spin qubits in this material system depends on the history of
previous operations performed on it, whereas control of hole spin qubits does not require knowledge
of the history; this is a significant difference when long sequences of operations are to be used.
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14.2.1 Motivation for Quantum Repeaters

The main high-level motivation for research in quantum communication is the
development of practical long-distance quantum cryptography. As we will explain,
quantum repeaters are central to quantum communication research. Quantum cryp-
tography can be implemented in two different ways (non-entanglement-based and
entanglement-based), only one of which involves quantum networks and quantum
repeaters. However, we begin with a lower-level motivation (a physics-based, rather
than application-based motivation) for quantum repeaters, and provide a summary
of several important protocols and proposals that are relevant to their design.

14.2.1.1 Physical Motivation for Quantum Repeaters

A simple description of the purpose of quantum repeaters is that they enable the
generation and/or distribution of entangled qubit pairs over long distances; without
quantum repeaters, itmaybe impossible to generate entangled qubit pairs at high rates
over distances much greater than several hundreds of kilometers. Throughout this
chapter, we will use the term quantum memories to refer to stationary qubits3 at the
network endpoints and in the quantum repeater stations. A key part of entanglement
distribution protocols is how photons (generically referred to as flying qubits, and
more precisely as photonic qubits) can be used tomediate the entanglement of distant
quantum memories.

One of the fundamental intuitions behind the need for quantum repeaters in quan-
tum communication is the same as the motivation for classical repeaters in classical
communication: photon loss in optical fibres (or in free-space) reduces the power of
the signal being transmitted [25], and without regeneration of the signal, low-error-
rate, high-bandwidth communication becomes impossible. Since it is impossible to
clone a single quantum mechanical state [26, 27], quantum repeaters need to use
a different method than classical repeaters to transmit quantum information from
one node to the next. This is one of the essential goals of entanglement swapping in
quantum repeaters. Entanglement swapping in a repeater network allows an entan-
gled qubit pair to be generated at the endpoints of the network, by linking together
qubits that are initially just entangled with those at neighboring nodes. With this
resource in place, teleportation [28] can be used to transmit an arbitrary qubit from
one end of the network to the other.4

Repeaters in classical communication serve another important purpose besides
just amplifying the transmitted signal: they perform error correction by recre-
ating high-quality representations of bits from low-quality representations, since

3Typically implemented using matter, as opposed to light. We focus on the use of spin qubits stored
in quantum dots as quantum memories.
4We note this use of teleportation for the sake of completing the analogy with a classical repeater
network, which is used to transmit classical bits from one end of the network to the other. Quantum
key distribution, i.e., quantum cryptography, typically does not make use of teleportation.
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distortions caused by transmission through the optical fibre ultimately lead to bit-
discrimination errors if left unchecked [29]. This purpose of classical repeaters sug-
gests an equivalent function for quantum repeaters in quantum networks: quantum
repeaters should correct decoherence in the entangled qubits before the decoherence
becomes so severe that it is uncorrectable. The analogy between the error correc-
tion task of classical repeaters and quantum repeaters is, however, imperfect, for
the following reason. Classical repeaters, for which the primary source of errors
that need correcting are those caused by distortions to the signals (electrical or pho-
tonic) propagating between repeater sites, can be assumed to have perfect memories
and completely error-free local operations on those memories. However, in a quan-
tum network, quantum repeaters not only need to ameliorate the channel-induced
decoherence to the flying qubits,5 but also the loss in fidelity of the final stationary
entangled qubits (quantum memories), which occurs for a myriad of reasons that
are unrelated to the channel-induced decoherence of the photonic qubits. One of the
dominant reasons is simply the natural decoherence of the physical stationary qubits,
characterized by their T2 time. Furthermore, the local quantum operations in each
repeater are imperfect, and will cause reductions in fidelity when they are applied.
This chapter has a focus on the interface between the stationary qubits and the flying
qubits, and as we will see, the fundamental task of generating spin-photon entan-
gled states occurs with remarkably low fidelity in most physical systems. Quantum
repeaters need to compensate for all these mechanisms that result in reduced fidelity
of the entangled qubit pairs.

One interesting approach to this problem is to use entanglement purification
[30, 31]: this is a technique by which two lower-fidelity entangled qubit pairs can
be combined (using only local operations) to produce one higher-fidelity entangled
qubit pair. The initial proposals [32, 33] for quantum repeaters analyzed this approach
to combating errors. However, this is not the only possibility: a large body of work
on error correction for quantum computers has been developed, and much of this
work is potentially relevant to quantum repeaters.6 Several contemporary quantum
repeater proposals, such as [35], explicitly call for quantum error correcting codes
[36, 37] to be used as the mechanism for combating errors in quantum networks,
instead of entanglement purification. Hybrid approaches, in which both quantum
error correction and entanglement purification are used, have also been proposed
[38].

5An example of channel-induced decoherence is that caused by uncontrolled birefringence in an
optical fibre, when transmitting a polarization-encoded photonic qubit (|ψ〉 = α |H〉 + β |V〉): this
leads to random qubit rotations (leading to a loss of state fidelity), and polarization mode dispersion
(which in turn results in the overlapping of different qubits’ temporalwavepackets, and consequently
a reduction in entanglement).
6Bennett et al. [34] showed that entanglement purification is deeply connected to quantum error
correction; in particular, they showed that entanglement purification with a classical communication
channel is equivalent to quantum error correction, so it is not surprising that quantum repeater
protocols can in principle make use of either entanglement purification or quantum error correction
protocols to distribute high-fidelity states in the presence of noise.
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Table 14.1 A summary of the analogues between classical communication repeaters and quantum
repeaters

Problem Classical repeater solution Quantum repeater solution

Channel-induced loss Signal amplification
(via regeneration)

Entanglement swapping

Channel-induced distortion Signal regeneration Entanglement
purification/quantum error
correction

The connections between the functionality of classical communication repeaters
and quantum repeaters are summarized in Table14.1.

14.2.1.2 Quantum Key Distribution and Quantum Cryptography

Over the past two decades, nearly all experimental work on implementing quantum
cryptography has focused on schemes derived from one of two sources: the original
BB84 protocol [39] (which does not involve entanglement) and the Ekert91 protocol
[40, 41] (which does rely on entanglement). The fundamental ideas behind quantum
cryptography have been well-explained in many previous review articles and books;
we do not repeat them here, but recommend instead [42] and [43] as starting points
for readers unfamiliar with the BB84 and Ekert917 protocols.

Bennett et al. showed [41] that the Ekert91 protocol is in some sense equivalent
to the BB84 protocol. One might naïvely conclude that BB84 is a superior choice
for practical implementation, since it calls for only a single source of unentangled
flying qubits, whereas Ekert91 requires the generation of high-fidelity entangled
qubit pairs. However, there is a crucial difference between BB84-based schemes and
Ekert91-based schemes that wewould like to emphasize here: BB84-based QKD can
be achieved over long distances using classical relays that need physical security,
whereas Ekert91-based QKD can be achieved over long distances using quantum
repeaters that need not be secure. Given that repeaters in a fibre-based network will
likely need to be placed somewhere between every 10 km and every 300 km, the
advantage of not needing trusted, armed guards at every repeater station in order to
ensure the integrity of the system is highly non-trivial.

Satellite-based schemes [44] largely avoid the need for repeaters, but have their
own disadvantages (for example, the ease with which an attacker could perform a
denial-of-service attack by simply blocking the free-space path, or by destroying the
satellite). Nevertheless, practical satellite-based Ekert91 may well be implemented
before fibre-and-quantum-repeater-based Ekert91, due to the extreme difficulty in
implementing a practically-relevant quantum repeater. To the extent that satellite-
based QKD schemes do use repeaters (for example, for dealing with the lack of a

7We generally refer to the version of the Ekert91 protocol described by Bennett et al. [41].
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Fig. 14.1 Quantum Key Distribution using a Classical Relay. If a key kAR is shared between Alice
and a relay, and another key kRB is shared between the relay and Bob, then a secure message can be
sent from Alice to Bob, assuming that the relay site is secured. Classical relays are much simpler to
build than quantum repeaters, since they only need classical memories. All relays must however be
secured, otherwise the privacy of the communications between Alice and Bob cannot be guaranteed

Fig. 14.2 Entanglement Distribution using a QuantumRepeater. Quantum key distribution without
the need for secured relays is made possible by the use of a quantum repeater network, which can
distribute entanglement between the endpoints (Alice and Bob), and an entanglement-based QKD
protocol (Ekert91, or derivatives thereof). If an eavesdropper disturbs even one of the quantum
repeater stations or links, and attempts to gain information about the key being distributed, this
disturbance will be detectable (unlike with the classical relay scheme)

direct free-space path from one side of the earth to the other), our descriptions of
classical relays and quantum repeaters, and the potential role of QDs in building
these quantum communication technologies, remain relevant (Figs. 14.1 and 14.2).
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14.2.1.3 Long-Distance Quantum Key Distribution with Classical Relays

Scarani et al. [45] provide a comprehensive review of the derivatives of the original
BB84 protocol that have been developed over the past 20 years as a result of the
challenges inmaking single-photon sources and in transmitting polarization-encoded
qubits over substantial distances without decoherence. In Sect.VIII.A.5 of [45], they
provide a very brief summary of the use of classical relays to extend the distances
over which quantum key distribution can work.

The idea of a classical relay for QKD is very simple. Suppose we have distant
stations for Alice (A), Bob (B), and a relay (R). We begin by having A and R
share a secret key kAR (using, for example, BB84), and having R and B share a
(different) secret key kRB. There are now twomain options—Option 1, as described in
[45, 46]: if Alice wants to send a secure message to Bob, she can encrypt the message
using the key kAR, the relay can decrypt the message (using the key kAR), then
re-encrypt the message using key kRB, and send the encrypted message to Bob,
who can decrypt the message. In this option, the QKD relay stores both keys and
is involved in transmitting the actual message. Option 2, as described in [46–48]
and implemented in the Vienna QKD network [48]: alternatively the relay can use
the key kRB to encrypt a message consisting of the key kAR (which is the key Alice
holds), and send this message to Bob, who can decrypt it using the key kRB. Bob thus
ends up with the key kAR, and so a secret key (kAR) has been distributed between
Alice and Bob, via the relay. Alice and Bob can then communicate using this key
over whatever classical channel they like. In this option, the QKD relay is only ever
used to transfer keys.

As we have noted, the classical relay strategy given here does not depend on the
method used to share the private keys between stations A and R, and between stations
R and B.

14.2.1.4 Long-Distance Quantum Key Distribution
Using Ekert91 and Quantum Repeaters

A quantum repeater is a device that allows for the distribution of entangled qubits
over distances that are beyond the limits imposed by loss and decoherence when
considering sending qubits directly from one node (Alice) to another node (Bob).
The fundamental advantage that quantum repeaters have over classical relays for
extending the range over which QKD is possible is, as we have mentioned, that the
quantum repeater nodes need not be physically secure.

The Ekert91 protocol [40–42] for QKD between two nodes (Alice and Bob) calls
for the generation of an entangled qubit pair where one of the qubits is sent to
Alice, and the other is sent to Bob. If we place a repeater (R) between these nodes,
the distance between Alice and Bob can be extended. First we need Alice and the
Repeater to share an entangled qubit pair, and for Bob and the Repeater to share
another entangled qubit pair. Now, at the Repeater node, we perform a measurement
of the two qubits in the Bell state basis; the outcome heralds the creation of an
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entangled Bell qubit pair between the qubits held by Alice and Bob. This procedure
is called entanglement swapping, since the qubits thatwere atAlice and at Bob,which
were originally not entangled, become entangled as a result of the local measurement
operations that are performed at the Repeater. This is one of the two fundamental
operations of a quantum repeater, and was described in 1993 by Bennett et al. [28]
and by Żukowski et al. [49].

A rudimentary repeater using only entanglement swapping may make long-
distance entanglement distribution over fibre practical, assuming that the Bell pair
generation at Alice and Bob (and at the repeaters, when more than one repeater is
used) is perfect, that the quantum memories are perfect, and that the local oper-
ations at the repeaters are perfect. Entanglement purification [30, 31, 50] allows
some of these assumptions to be relaxed. As we have mentioned already, entangle-
ment purification refers to a class of procedures that each use a set of lower-fidelity
entangled qubit pairs to produce a smaller number of higher-fidelity entangled qubit
pairs, provided that the fidelity of the initial qubit pairs is above a certain threshold.
Entanglement purification provides a clever solution to deal with the imperfections
of a real system, since the effect of all imperfections is just the degradation of the
fidelity of the entangled qubit pairs. Some of the early quantum repeater proposals
[32, 33] analyzed how one may perform long-distance entanglement distribution
using quantum repeaters (incorporating both entanglement swapping and entangle-
ment purification) that have faulty local operations, and found that error rates of
∼1% for local one- two-qubit gates and measurement may be tolerated (i.e., the
system may still be able to distribute high-fidelity entangled pairs, even when the
local operations in the repeaters are imperfect).

Unfortunately achieving the assumed fidelities and operation error probabilities in
experimental systems is very challenging. Furthermore, it is unreasonable to assume
that physical stationary qubits will be arbitrarily long-lived, and in the case of spins
in quantum dots, it is unlikely that T2 times beyond several milliseconds will be
achievable [13, 51], even with substantial materials and device engineering effort.
Fortunately it is in principle possible tomake an arbitrarily long-lived logical quantum
memory by using quantum error correction [37], provided enough physical qubits
are available, and sufficiently high-fidelity local operations can be performed on
them. Building quantum repeaters using a fault-tolerant error correcting scheme also
allows for the construction of logical local operations with fidelities that are much
higher than the fidelities of the native operations on physical qubits.

More recent theoretical work on quantum repeaters has also considered how to
perform the task of entanglement purification (which is effectively that of correcting
errors in the distributed Bell pairs) using other methods based on fault-tolerant quan-
tum error correction, such as Calderbank-Shor-Steane codes [38], the surface code
[35], and topologically-protected cluster states [52]. These approachesmay also have
advantages over entanglement-purification-based quantum repeaters [32, 33] in the
reduced classical communication required for operation, which is predicted to have
dramatic effects on performance [35, 38].

The high-level architectural studies of quantum repeaters are currently far-
removed from practical experimental realities, and we will not go into further detail
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about them in this chapter. However, one important overall point for us to emphasize
is that these state-of-the-art proposals for quantum repeaters essentially call for the
implementation of quantum repeaters as small8 fault-tolerant quantum computers
that are also equipped with photonic interfaces. The task of constructing practical
quantum repeaters thus appears to be at least as difficult, if not more difficult than,
building a practical fault-tolerant gate-model quantum computer.

14.2.2 Design of Quantum Repeaters

14.2.2.1 Heralded Entanglement Generation

Aswe have explained in the previous section (Sect. 14.2.1.4), quantum repeaters need
to incorporate quantummemory.One approach is to directly store photonic qubits, for
example using a cavity. The alternative, which we focus on, is to introduce quantum
memories based on matter, and an interface between these quantum memories and
photons (both for incoming and outgoing photons).

In 2001, Duan et al. [53] introduced a protocol (known as the “DLCZ” scheme) for
entangling two remote atomic-ensemble-based quantum memories, using photons,
and in such a way that successful entanglement is heralded. The DLCZ protocol is a
member of a class of heralded protocols that can be used to entangle distant quantum
memories provided that it is possible to generate an entangled state between each
quantum memory and a photonic qubit.

Another protocol from this class is the Simon-Irvine protocol [54]. The treatment
of it that we give here follows closely the formulation given by Moehring et al.
[55]. Assume that we have two remote quantum memories, Alice (A) and Bob (B),
and each memory can be described as a single qubit: Alice has memory basis states{|↑〉A , |↓〉A

}
, and Bob has memory basis states

{|↑〉B , |↓〉B
}
. Let’s suppose that

each memory can be entangled with a polarization-encoded photonic qubit, i.e.,
each quantum memory has associated with it a single photon whose polarization
state we use to represent a qubit. We will label the basis states of the photonic qubit
for Alice as {|H〉A , |V〉A}, and for Bob as {|H〉B , |V〉B}.

Suppose that both Alice and Bob can, through some as-yet-undescribed method,
produce the following spin-photon entangled states:

|ψ〉A = 1√
2

(|↑〉A ⊗ |H〉A − |↓〉A ⊗ |V〉A) (14.1)

|ψ〉B = 1√
2

(|↑〉B ⊗ |H〉B − |↓〉B ⊗ |V〉B) (14.2)

8Fowler et al. [35] predict that their scheme will be able to distribute entangled pairs from one
side of the earth to the other at a MHz rate if the endpoints are connected by ∼104 repeaters,
each containing ∼103 physical qubits, provided that initial entangled pair fidelities are �0.96, and
quantum gates that can operate on nanosecond timescales are available.
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In this case, Alice has a quantum memory and a photon that is entangled with it,
and similarly Bob has a quantummemory, and a photon that is entangled with it. The
key idea of the protocol is that we can perform a simple operation that will perform
entanglement swapping on the photons from Alice and Bob, such that when the
entanglement swapping operation has been completed, the two quantum memories
of Alice and Bob will be entangled, even though they never directly interacted with
each other.

Figure14.3 illustrates theMoehring et al. variant of the Simon-Irvine scheme. The
photon from Alice and the photon from Bob are mixed on a non-polarizing 50/50
beamsplitter, and each output port of the beamsplitter ismonitored by a single-photon
detector (which produces a click if a photon is present in the mode, and otherwise
does not). The state of the system before the beamsplitter is:

|ψ〉system = |ψ〉A ⊗ |ψ〉B (14.3)

= 1

2

[
(|↑〉A |H〉A − |↓〉A |V〉A) ⊗ (|↑〉B |H〉B − |↓〉B |V〉B)

]
(14.4)

= 1

2

[∣∣Φ+〉
memories

∣∣Φ+〉
photons + ∣∣Φ−〉

memories

∣∣Φ−〉
photons −

∣∣Ψ +〉
memories

∣∣Ψ +〉
photons − ∣∣Ψ −〉

memories

∣∣Ψ −〉
photons

]
(14.5)

As given by Moehring et al. [55], this rewriting of the system state in terms
of states of the memories and of the photons allows us to easily interpret the
outcomes of such a setup. Here

∣∣Φ±〉
memories = 1√

2
(|↑〉A |↑〉B ± |↓〉A |↓〉B), and∣∣Ψ ±〉

memories = 1√
2

(|↑〉A |↓〉B ± |↓〉A |↑〉B). Identical photons impinging on a

beamsplitter give rise to the Hong-Ou-Mandel effect [56]: they will bunch into the
same output port. For photons that are indistinguishable in all but their polarization,

Fig. 14.3 Protocol for Entangling Remote Quantum Memories. A quantum memory (represented
here by a single spin) located with Alice can be entangled with a quantum memory located with
Bob if both quantum memories can emit photons that are entangled with their respective spins. The
photons from Alice and Bob are interfered on a beam splitter, which has detectors on both output
ports. If both detectors detect a photon, then entanglement between Alice’s and Bob’s memories
has been generated. In particular, the following maximally-entangled state of Alice’s and Bob’s
memories is heralded:

∣∣Ψ −〉
memories = 1√

2
(|↑〉A |↓〉B − |↓〉A |↑〉B)
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the net effect gives rise to a situation where only a fully antisymmetric two-photon
state9 impingingon thebeamsplitter in this experimental setup (Fig. 14.3) can result in
both detectors clicking at the same time. Any symmetric two-photon input state leads
to photon bunching, where both photons exit out of a single port, resulting in (atmost)
only one of the detectors clicking in the relevant timewindow.Of the four two-photon
states

∣∣Φ±〉
photons ,

∣∣Ψ ±〉
photons, only

∣∣Ψ −〉
photons = 1√

2
(|H〉A |V〉B − |V〉A |H〉B) is

antisymmetric. Therefore if both single-photon detectors after the beamsplitter click,
we have measured the photonic part of the system state to be

∣∣Ψ −〉
photons, and there-

fore the memories are projected to be in the state
∣∣Ψ −〉

memories. Therefore a double-
click event heralds the generation of entanglement between the quantum memories
at Alice and Bob’s nodes.10

Heralding and Experimental Errors
The use of the double-click event to herald success is very important. However, so
long as detector dark counts are sufficiently low, there can be a high probability that
if both detectors click that this was because the photonic state really was

∣∣Ψ −〉
photons,

so the memories are in the entangled state
∣∣Ψ −〉

memories.
Besides imperfections in the detectors (leading to dark counts), there is another

way in which this protocol can falsely indicate that
∣∣Ψ −〉

memories has been generated,
when in fact it has not. If the quantum memories produce, with non-zero probability,
more than one photon within the time window being considered for detector clicks,
then the experimentalist may measure two clicks, but have the memories not actu-
ally be in the state

∣∣Ψ −〉
memories, i.e., the heralded state will not be the target state.

This is undesirable. Therefore the second-order correlation function, g(2)(τ ), and in
particular, the value g(2)(τ = 0), is an important parameter for determining the suit-
ability of a quantum-memory–photon interface for use in a quantum repeater. Ideally
g(2)(0) = 0, and the larger it is, the greater will be the percentage of heralding events
that incorrectly indicate that the target entangled state has been generated.

Impact of Photon Loss on the Effectiveness of Heralded Entanglement
Distribution
Protocols that rely on a double-click event to herald the generation of entanglement
are sensitive to loss. For an attempt at the heralded generation of entanglement
between quantummemories to succeed, a photon fromAlice must arrive at a detector
(and be detected by it), and a photon fromBobmust arrive and be detected. Therefore
the probabilities pA, pB of photons fromAlice and Bob being detected determine the
probability psuccess of successful heralded entanglement generation between Alice
and Bob as psuccess = pA pB. We have mentioned several ways in which photon loss

9More precisely, the quantum state describing the polarization degree of freedom of each photon
should be antisymmetric.
10If the single-photon detectors are replaced with number-resolving detectors, then all four memory
Bell states can be heralded. If four single-photon detectors (and two polarizers) are available, then
both

∣∣Ψ +〉
memories and

∣∣Ψ −〉
memories can be heralded.
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may occur, but here let’s assume that we have the nearly ideal scenario that the only
loss is due to absorption in an optical fibre. We now briefly analyze how this photon
loss affects the system performance as a function of distance between Alice and Bob.

One of the lowest-loss optical fibres currently available has an attenuation of
α ≈ 0.17 dB/km [57], when transmitting photons with wavelength ∼1550 nm.11

Let’s suppose that Alice and Bob’s memories can emit photons entangled with them
at a rate of R0 = 1MHz (in general, the rate R0 cannot be faster than the inverse of the
lifetime of the optically excited state in the quantum memory. With perfect photon
collection and perfect detectors, the entangled memory generation rate would be
R = 1MHz, in the absence of photon loss. Now let’s consider the impact of photon
loss in the fibre. Let’s suppose that Alice and Bob are a distance 2L apart, that the
beamsplitter and detectors are located at the midpoint of Alice and Bob, and thus
that both memories emit photons into fibres of length L . The photon loss in the fibre

results in a reduction of photon transmission probabilities: pA = pB = 10
−Lα
10 . Thus

the entanglement generation rate R is R = R0 pA pB = R0 psuccess = R0

(
10

−Lα
10

)2
.

For L = 10 km, the loss in each fibre is 1.7 dB, so pA = pB ≈ 0.68, thus psuccess ≈
0.46, so the entanglement rate R drops to R ≈ 460 kHz. If L = 100 km, then
psuccess ≈ 4.0 × 10−4, so R ≈ 400Hz. If L = 200 km, then R ≈ 0.1585Hz.
And if L = 300 km, then R ≈ 6.3 × 10−5 Hz; note that this implies the successful
generation of an entangled pair only once every 1

R ≈ 4.4 hr.12 It is clear from this
simple calculation why quantum repeaters are necessary to generate entanglement
over fibre for distances of 
 100 km. When one considers the other losses in the
system, estimates for the distances over which entanglement distribution can be
performed through fibre without quantum repeaters are even smaller.

The Importance of Heralding for Entanglement Distribution in a Quantum
Network
Heralding is important, for at least two reasons: (1) non-heralded entanglement pro-
tocols result in a mixed state ρ = q |Ψ 〉 〈Ψ | + ∑

i ri |φ〉i 〈φ|i , where |Ψ 〉 is the
desired (target) entangled state (for example, one of the Bell states), |φ〉i are other
states, and ri are the probabilities13 of the system ending in one of these states.

11What we outline in this section is a best-case scenario for the loss, since we assume that the
photons are in the lowest loss band (covering approximately the range 1525–1575 nm [57]). Note
that the vast majority of current quantum technology experiments occur with systems that emit
photons atwavelengths that experience dramatically higher attenuation. For example, the attenuation
coefficient for 850 nm photons is typically α ∼ 3.5 dB/km. See Table14.2 for a few examples. This
strongly motivates work to either engineer quantum systems that natively emit ∼1550 nm photons,
or to build nonlinear optical systems [21, 58, 59] that can convert light at high-loss wavelengths to
wavelengths that have low loss in fibres.
12We would like a high rate of entangled-pair generation in general (for example, to facilitate a
high generation rate of distributed keys in QKD applications), so naturally we seek to maximize the
success probability psuccess. However, there is also a crucial limit to how low the heralded success
rate can be before the entanglement distribution stops working at all: the rate of coincident arrivals
of photons at the detectors needs to be higher than the dark count rate of the detectors (in the
appropriate time windows).
13The ri should satisfy the relation

∑
i ri = (1 − q).
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The state ρ will not violate Bell’s inequality, and will generally fail to serve as a use-
ful quantum information resource, if the success probability q is not sufficiently high
(as opposed to a heralded scheme, where q can be arbitrarily low, and you can still
measure Bell inequality violations provided that you rerun the experiment of gener-
ating and measuring the state sufficiently many times that you do actually obtain a
set of successfully heralded states). In unheralded schemes, reductions in q directly
reduce the fidelity of the output state.14 (2) As we explained in Sect. 14.2.1.4, quan-
tum repeaters only confer an advantage if they have quantum memories, since the
memory allows for one link to stop trying to generate entanglement after it succeeds.
However, if there is no heralding mechanism, there is no way to know when to tell
a particular link to stop trying to generate entanglement because it has succeeded!

We can consider the impact on the performance of a quantum network where
entanglement generation between nodes is performed with heralding or without
heralding in the following way. Suppose we have a network with N nodes (Alice,
Bob, and N − 2 repeater nodes), and that the entanglement generation between
adjacent nodes succeeds, on each attempt, with probability psuccess, and assume that
attempts can be made at a rate R0. With a heralded entanglement generation proto-
col, the overall rate of entanglement generation between Alice and Bob will scale
roughly as15 R0 psuccess/log(N ), wherewe note that there is only a veryweak (inverse
logarithmic) dependence on the number of nodes. However, if the entanglement gen-
eration protocol is unheralded, then the rate is dramatically reduced: it will scale as
R0 pN

success. Note that for even very small numbers of repeaters (e.g., 10), the rate will
become unusably small for realistic single-hop success probabilities (psuccess � 1).

14.2.2.2 Constraints on Entanglement Distribution
and on Quantum Repeater Design from Finite
Quantum Memory Coherence Time

In this section, we briefly outline how the coherence times of the quantum memories
used impact both simple entanglement distribution experiments, and the design of
quantum repeaters for more advanced experiments that incorporate entanglement
swapping and purification and/or quantum error correction.

14If all the other states |φ〉i are not very “different” from the target state |Ψ 〉, i.e., 〈Ψ |φ〉i ∼1, then
the reduction in fidelity from measuring the mixed state ρ, as opposed to the heralded ensemble
of target states, will not be severe. However, in many situations, there will be some states |φ〉i
that are nearly orthogonal to |
〉, and have high probabilities ri of being generated, and this will
dramatically decrease the measured fidelity.
15To illustrate our point, we assume here a simple entanglement-swapping-based approach to dis-
tributing entanglement, in which the adjacent nodes each attempt to become entangled with their
immediate neighbours (stopping once they have succeeded), and where the protocol is reset once
every pair of adjacent nodes shares an entangled qubit pair. This yields an unbroken chain of entan-
glement that can be converted, via entanglement swapping, to an entangled qubit pair being shared
between Alice and Bob. Once an entangled qubit pair is shared between Alice and Bob, we assume
it is used, and protocol begins all over again.
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Constraints on Simple Entanglement Distribution from Finite Quantum
Memory Coherence Time
The current state-of-the-art in experimental demonstrations of entanglement distri-
bution between quantum memories is the generation of entangled states between
two quantum memories that are spatially separated by several meters, either through
free-space photon propagation, or through optical fibre. This has been achieved with
quantum memories implemented in a variety of physical systems, including single
171Yb+ ions [55], single 87Rb atoms [60, 61], ensembles of Cs atoms [62], and with
NV centers in diamond [63]. Entanglement between spins in distant quantum dots
has not yet been demonstrated.

Before quantum repeaters using error correction (such as in [35, 38, 52]) become
practical, prototype repeaters using no error correction are likely to be tested. In
these demonstrations, the coherence time of the quantum memory qubits is a crucial
parameter. In the case of qubits formed from spins in quantum dots, T2 
 T1, so the
T2 time provides the limit on how long the spin can store a qubit.16

Suppose that for the purposes of demonstrating quantum repeater functionality
with just two end nodes (Alice andBob) and a single repeater (endowed onlywith two
quantum memories, and entanglement swapping capability), one uses the following
simple protocol. The protocol repeatedly attempts to form entanglement between
Alice and the Repeater, and between the Repeater and Bob, and pauses entanglement
generation over one of those hops when entanglement is successfully generated over
it. In this protocol, the T2 times of the memories at Alice, Bob, and the Repeater
should be larger than the time required for the photons to propagate to the midpoint
heralding apparatus, in addition to the time required to classically communicate
that entanglement generation between Alice and the Repeater (for example) was
successful (this will be at least the time required for light to travel half the distance
betweenAlice and theRepeater).17 Thusweobtain the limit T2 > ( L

2c + L
2c ) = L

c . The
T2 times should also be longer than the time required to perform the entanglement
swapping operation on the quantum memories in the repeater, i.e., T2 should be
longer than the one-qubit-gate, two-qubit-gate, and measurement times. For any
long distance L , the limit from the photon propagation time (T2 > L

c ) will be the
more stringent one, but for prototype demonstrations (e.g., L = 10m), the limit
from the local operation times may be more relevant. However, the use of memory is
not particularly helpful in improving the rate of generation of entanglement between
Alice and Bob if the memories cannot store the qubits for substantially longer than
it takes to attempt generating entanglement over a single hop (e.g., between the

16Since the longitudinal relaxation time T1 adheres to the relation 2T1 > T2 (under the assumption
that the noise is isotropic with respect to the different qubit axes; this is a good assumption in most
systems for physically-relevant noise sources), the T1 time is generally not the limiting timescale.
T2, the coherence time (or transverse relaxation time), is generally what defines the useful lifetime
of a qubit.
17Jones et al. [64] introduced a scheme whereby the heralding is performed at the repeater sites
(as opposed to at locations midway between the repeaters), and failed attempts can be reattempted
without waiting for a delayed classical signal. Even in this protocol though, when a node measures
a heralding success, it still has to wait for a classical signal from the adjacent node.
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Repeater and Bob). To demonstrate a substantial benefit from the use of the repeater
in distributing entanglement betweenAlice andBob, it is necessary forT2 to be at least
on the order of the average time it takes for heralded generation of entanglement over
a single hop to succeed.18 Note that meeting this criteria with current technology
is not trivial: even for very short distances (on the order of meters), the T2 time
will likely need to be seconds.19 If one wants to add additional repeaters in such a
demonstration experiment, then the T2 time needs to be increased accordingly.

Constraints on Quantum Repeater Design from Finite Quantum Memory
Coherence Time
There are many possible designs for a fault-tolerant quantum repeater, and we don’t
aim to provide comprehensive coverage of them in this chapter. However, given the
rather dire predictions in the previous section for what quantum memory coherence
times are necessary in order to gain an advantage from using quantum repeaters,
we would like to now provide a very brief summary of how the required physical
qubit T2 time may be dramatically reduced to values that are more conceivable for
quantum dot spin qubits.

For a long-distance quantum network with many hops, without the use of error
correction, the physical qubit T2 time may need to be many hundreds, or possibly
even thousands, of seconds, in order for the network to sustain a reasonable rate of
high-fidelity entanglement generation. Almost no physical qubit implementations
offer such T2 times, and certainly not quantum dot spin qubits, which seem unlikely
to surpass 10–100 ms [13, 51].

As we have mentioned before, the general plan in the quantum repeater commu-
nity for alleviating this problem is to not use physical qubits directly as quantum
memories, but rather to implement some form of quantum error correction scheme,
in which many physical qubits encode a single logical qubit. Then, so long as local
gate operations are sufficiently fast and of sufficiently high fidelity, a logical qubit
can be constructed to have an arbitrarily long coherence time (where the ratio of
physical qubits required to implement a single logical qubit increases as the desired
coherence time increases). For example, the surface code may be able to suitably
protect qubits that have T2 ∼ 100µs, provided that nearest-neighbour single-qubit
gates, two-qubit gates, and measurement, are available on nanosecond timescales,
andwith an encodingwhere∼1000 physical qubits are used to encode a single logical
qubit (quantum memory) [35, 65].

The prospect of, for each repeater, essentially implementing a fault-tolerant uni-
versal quantum computer with thousands of physical qubits, is daunting. There is
much work underway to try to find repeater designs that may be more realistically

18If the time taken to make a single attempt at generating entanglement over a single hop, set by
the distance between the nodes, is Trep, and the probability of success is psuccess, then we want
T2 � Trep/psuccess.
19The repetition time Trep will be determined by how quickly the heralding signal can be processed
by a classical feedback circuit. Let’s assume Trep ∼ 1µs. Over short distances, psuccess will be
dominated by losses other than those from absorption in the fibre; e.g., coupling losses. A reasonable
value to assume for quantum dots is psuccess ∼ 10−6. Thus T2 > Trep/psuccess ∼1s.
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implemented in the near- to medium-term, but currently all proposals require either
error rates, or scalability, or both, that are far out of reach of current technology. For
a review of many of the leading contemporary proposals, we recommend [66].

14.3 Quantum Dots as Building Blocks
for Quantum Repeaters

We have until now described in a fairly abstract way the necessary features and
functions of a quantum repeater. There are many physical systems that are currently
being considered as candidates for implementing quantum repeaters.

Charged quantum dots are an interesting candidate physical system for build-
ing a high-bandwidth quantum network; one aspect of their appeal is that quantum
dot development can leverage progress in commercial semiconductor technology.
Schneider et al. [67], Maier et al. [68], and others have succeeded in growing regular
2D arrays of single InAs quantum dots. Jones et al. [65] discussed the prospects
for designing a large-scale quantum computer that can integrate >108 quantum dots
(each one implementing a single physical qubit) on a single ∼4 cm2 chip; one can
imagine a very similar design being relevant for a quantum repeater node, except that
an additional outcoupling of each photonic interface quantum dot to fibre would need
to be implemented. Unfortunately the goal of realizing a 108-physical-qubit quantum
computer using quantum dots is still sufficiently divorced from experimental reality
that it’s not even possible to predict with any certainty when or if it will be possible to
realize such a machine. However, if a many-physical-qubit machine can be realized,
it is possible that a high-bandwidth repeater system could be implemented despite
the large overhead imposed by the use of an error correction code such as the surface
code.

Besides the requirement for many physical qubits if one implements a quantum
repeater using a large-overhead error correcting code, there is another advantage to
having repeater nodes with many quantum memories and photonic interfaces per
node: it should be possible to attempt to generate entanglement between memories
in adjacent nodes via many channels simultaneously, and this will allow for propor-
tionately higher rates of entanglement generation than if only a few parallel channels
(or just a single channel) are used.

Arguably the major fundamental disadvantage of using quantum dots to imple-
ment a quantum repeater is the need for the semiconductor sample to be cooled
to liquid helium temperatures. At temperatures significantly above 10K, the opti-
cal properties of quantum dots degrade dramatically. Many quantum dot spin
qubit experiments also currently use superconducting magnets (which are kept at
T � 4.2K), although it is conceivable that lower magnetic fields (achievable using
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non-superconducting magnets) may be sufficient.20 The use of cryogenic equipment
at every repeater station is in principle feasible. However, given the cost of such
equipment, there is a strong motivation to find physical systems that offer the advan-
tages of quantum dots, but with the possibility of room-temperature (T ∼ 300K)
operation.

One common standard for coarsely evaluating a candidate physical realization
of qubits for implementing a quantum repeater is the set of “Five (Plus Two)”
DiVincenzo criteria [71]. The first five DiVincenzo criteria were initially intended
for helping to evaluate the suitability of physical qubits for implementing quantum
computers. However, as we have covered, most designs for fault-tolerant quantum
repeaters call for the creation of machines that are very similar to general-purpose
quantum computers, so the DiVincenzo criteria are also relevant when evaluating
technology for repeaters.

We have grouped our discussion into two subsections: one relating to the quan-
tum memory requirements for a repeater, and one relating to the photonic interface
between the quantum memory (stationary) qubits and the photonic (flying) qubits.

14.3.1 Quantum Dots as Quantum Memories

To evaluate the potential for quantum dot spin qubits to be used as quantummemories
in a quantum repeater, one can evaluate them against the first fiveDiVincenzo criteria.
The DiVincenzo criteria are, however, only a rough guide, and to accurately assess
whether a technology may be used to produce a working repeater or not, one needs
to consider a detailed repeater design, including the specifics of the error correction
scheme to be used. Work towards this goal has been done by Jones et al. [65] for a
quantum computer based on optically controlled quantum dot qubits, but a detailed
design for a quantum-dot-based quantum repeater is not yet available. However,
from [65], we have a basic idea of the performance required from quantum dot
qubits in order to produce a functioning fault-tolerant machine, and at this stage
more experimental progress is needed (to provide precise numbers about achievable
operation fidelities and times) before amore specific designwill be needed to provide
a roadmap for further experiments.

Before we start to consider the details of how a fault-tolerant quantum repeater
may be constructed using quantum dots, let us first review how quantum dots may
meet the DiVincenzo criteria for quantum memories.

20The main reason that large magnetic fields (up to B ∼ 6T) are currently used is to ensure high-
fidelity initialization and readout, when these two operations are performed using optical pumping
[4]. However, if high-fidelity, single-shot, quantum nondemolition readout is realized (which is
currently thought to be required for any gate-model large-scale quantum computing system [65]),
then it is quite plausible that only small magnetic fields (B � 1T) may be required, since there
exist proposals for single-shot readout of spins in quantum dots that do not require large magnetic
fields [69, 70].
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14.3.1.1 DiVincenzo Criterion 1: “A Scalable Physical System with
Well-Characterized Qubits”

This criterion imposes two main requirements: that the system being proposed to
implement a qubit can be well-described as a quantum two-level system (and there-
fore that the system has a negligible probability of being found in states besides |0〉
and |1〉), and that this system is scalable.

A single quantum dot can trap a single conduction band electron, or a single
valence-band (heavy) hole. This can be done deterministically, by embedding a layer
of quantum dots in a diode structure—this is likely the configuration that will be used
in a large-scale system. However, many current experiments use stochastic charging
of the quantum dots, by placing a layer of n-type or p-type dopant near the quantum
dot layer.

Regardless of the engineeringmethod used to charge the quantumdots in a sample,
the key idea is that a single quantum dot can stably trap a single charge (electron or
hole), and the spin state of this charge (which we denote as |↑〉 and |↓〉 in the case
of an electron21) will serve as the qubit, i.e., |ψ〉 = α |↑〉 + β |↓〉. We can define the
traditional quantum information “computational basis” in terms of these eigenstates
(|0〉 � |↑〉, and |1〉 � |↓〉), which gives us a single qubit with the notation used in
the quantum information literature: |ψ〉 = α |0〉 + β |1〉.

In the case of the electron, which is a spin- 12 particle, there are only two spin
eigenstates, so an isolated spin seems to easily meet the requirement that the system
we choose should have a low probability of being found in a state besides |↑〉 or |↓〉.
A magnetic field is typically used to split the spin eigenstates in energy.

14.3.1.2 DiVincenzo Criterion 2: “The Ability to Initialize
the State of the Qubits to a Simple Fiducial State”

In quantum computation, the ability to initialize qubits is crucial for implementing
any algorithm, since (in the gate model) algorithms begin by assuming that qubits
are in some particular initial state (for example, each qubit being in the state |0〉).
Repeaters have a similar requirement, although depending on the specifics of the
physical protocol used to interface the quantum memory with photonic qubits, the
initial state might not necessarily be one of the computational basis states (|0〉 and
|1〉), nor a superposition of them, but some third state.

For the proposals we discuss in this chapter concerning quantum memories made
from spins in optically-active quantum dots, it is sufficient to be able to initialize
each qubit in the quantum memory to one of the computational basis states, e.g., |0〉.

The primary method that is used to perform spin initialization of optically-active
quantum dots is optical pumping. This is a technique borrowed from atomic physics
[72], andwas demonstrated for spins in quantum dots in the so-called Voigt geometry
by Xu et al. in 2007 [7]. The Voigt geometry is the name given to the experimental

21We use |⇑〉 and |⇓〉 to refer to the pseudospin eigenstates of a hole.
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(a) (b)

Fig. 14.4 aVoigtGeometry. TheVoigt geometry denotes an experimental setup inwhich amagnetic
field is applied perpendicular to the growth axis of the sample. The optical axis (the axis along
which excitation light that impinges on the sample propagates, and the axis along which emitted or
reflected light that is collected by a lens propagates) is parallel to the growth axis. Self-assembled
InAs quantum dots in a GaAs host crystal are significantly shorter in the growth axis than in either of
the in-plane axes. A QD typically has a height (dimension in the growth axis) in the range 1.5–4 nm,
and a diameter (base length) in the range 20–40 nm. bLevel Diagram andOptical Selection Rules of
a Quantum Dot in a Magnetic Field in the Voigt Geometry. When a charged quantum dot is placed
in a magnetic field, the electron spin states are split in energy; this Zeeman splitting is denoted in
this figure as �δe. The two lowest-energy optical excited states are shown, and also have a Zeeman
splitting (due to the interaction of the hole with the magnetic field). Both trion states can decay to
either electron spin ground state, with approximately equal probability (oscillator strength). Note
that the transitions |↑〉 ↔ |↑↓⇑〉 and |↓〉 ↔ |↑↓⇓〉 have vertical-polarization selection rules, and
the transitions |↑〉 ↔ |↑↓⇓〉 and |↓〉 ↔ |↑↓⇑〉 have horizontal-polarization selection rules, but
with a 90◦ phase shift

configuration when the magnetic field is aligned perpendicular to the optical axis
and crystal growth axis, as shown in Fig. 14.4a. This is the geometry in which spin-
photon entanglement has been achieved, so it is the geometry we focus on in this
review.

In the Voigt geometry, the first optically excited states of a charged quantum dot
are the trion states. Suppose that a quantum dot contains a single electron. If this
quantum dot absorbs a photon, it will then contain an electron-hole pair, and the
conduction-band electron that was already in the QD, i.e., a trion (as we explained
in Sect. 14.3.1.1).

The relevant energy level diagram and optical selection rules for the system in the
Voigt geometry are shown in Fig. 14.4b. A feature of this diagram that is relevant to
optical pumping, as well as spin rotation and spin-photon entanglement, is that the
optically-excited states form two � systems with the ground spin states. The fact
that the two trion states have allowed optical transitions to both spin ground states is
crucial.
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Optical pumping allows the spin to be initialized into one of the two spin ground
states on a few nanosecond timescale by applying a narrowband CW laser resonantly
on any one of the four optical transitions.

We will discuss briefly in Sect. 14.3.1.5 how optical pumping can also be used to
perform spin measurement. There are alternatives to spin pumping for initialization,
and the one most likely to be used in a large-scale, fault-tolerant system is some form
of single-shot, quantum non-demolition (QND) measurement: if one can perform an
ideal von Neumann projective measurement on a qubit, then after the measurement
the qubit will be in the state |0〉 or |1〉, and based on the measurement result one can
perform a NOT gate to flip the spin if needed, and in that way initialize the spin to
|0〉 (or |1〉, if desired).

14.3.1.3 DiVincenzo Criterion 3: “Long Relevant Decoherence Times,
Much Longer than the Gate Operation Time”

Spin-based qubits have been considered in many physical systems, since spin is an
especially attractive degree of freedom to use for storing quantum information. Not
only do spin- 12 particles by definition have only two spin levels (which helps in
avoiding the problem of keeping whatever subsystem is being used as a qubit from
accidentally exiting into third, fourth, etc., levels), but spin tends to not couple as
strongly to uncontrolled degrees of freedom.For example, one could imaginedefining
a qubit’s two states as being two different spatial wavefunctions of an electron. This
has the significant disadvantage that not only does one then need to find a way to
avoid exiting from the two-state manifold, but also that the wavefunction degree of
freedom is significantly affected by Coulomb interactions with nearby charges (i.e.,
charge noise) [73]. The relative insensitivity of the spin degree of freedom to many
sources of noise leads to spin qubits having relatively long coherence times, not only
in quantum dots, but in other physical systems too.

In the case of electron spin qubits in self-assembled, optically-active InAsquantum
dots formed in GaAs, the T2 coherence time is typically in the range 1–3 µs; this
has been measured for a single quantum dot using a spin echo [74] sequence. Hole
spin qubits have also been created and their coherence time directly measured using
a spin echo sequence; De Greve et al. measured T2 ≈ 1.1µs [16] for one such qubit.
As the third DiVincenzo criterion says, these T2 values need to be compared to the
gate operation times in order to evaluate their suitability.22

22Comparing the T2 time to the gate operation times is overly simplistic. In prototype demonstrations
of quantum repeaters where the quantum memories are not protected by quantum error correcting
codes, then, as we have explained previously, the T2 times need to also be compared to the relevant
photon propagation times, with some consideration of entanglement generation heralding success
probability. In the case where fault-tolerant quantum-error-corrected memories are to be built, the
code and implementation details may call for T2 timesmuch longer than the gate times, but certainly
the gate times provide a lower-bound on the requisite T2 times.
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The existence of optical transitions in the quantum dots is useful for several
reasons. The main focus of this book, and of this chapter, is on the interface between
photonic qubits and stationary (memory) qubits, and the optical transitions naturally
facilitate direct conversion between these two forms of qubits in the quantum dot
system.Another advantage has to dowith scaling: ifwe can perform all the operations
on our stationary qubits using radiation at optical frequencies, there may be no
need for complicated wiring on-chip in order to deliver initialization, control and
measurement pulses to specific quantum dots. As [65] discusses in some detail, a
full quantum processor could potentially be made from a sample that contains no
wiring between any of the quantum dots in a large 2D array, where all addressing is
performed by beam-steering using micromirrors. The use of optical radiation allows
neighbouring qubits to be individually addressed despite being very densely packed;
a spacing of 1µm should be sufficient to allow diffraction-limited spots to focus on
individual quantum dots with negligible undesired impact on neighbouring qubits.
The benefit of optical transitions most relevant to the third DiVincenzo criterion
is, however, that gates implemented using optical pulses can be significantly faster
than gates implemented using microwave frequency pulses that manipulate the spin
ground states directly [75].

14.3.1.4 DiVincenzo Criterion 4: “A ‘universal’ Set of Quantum Gates”

Universal control over a single quantumdot spin qubit has alreadybeendemonstrated,
both for an electron spin qubit [8], and for a hole spin qubit [16]. In both cases, a single
rotation about the optical axis can be implemented on a timescale of approximately
2–4ps, and a single rotation about the magnetic field (orthogonal) axis is realized by
Larmor precession on a timescale of up to 50 ps (depending on the magnitude of the
external magnetic field used, and on the spin g-factor). A single qubit can be set to an
arbitrary position on the Bloch sphere inwell under 100 ps. The single qubit gate time
is thus four orders of magnitude shorter than the T2 coherence time.23 In other words,
∼104 single qubit operations could be performed on a qubit before it decoheres,
provided that a suitable spin echo scheme is used, and under the assumption that the
fidelities of the single qubit operations are sufficiently high.24,25

23While the single qubit gate time clearly passes the DiVincenzo criterion that it should be much
shorter than the T2 time, it is necessary to develop and evaluate a full quantum computer design to
be able to properly assess whether the timescales are truly compatible. We focus more on near-term
experiments in this chapter, but for a discussion of the requirements in a fault-tolerant quantum
computer based on quantum dots, see [65].
24Currently the fidelities of the single qubit gates limit the number of operations that can be applied
to � 100; in practice, several orders of magnitude improvement in the gate infidelities would be
needed to allow a sequence of 104 operations to be usefully applied to a qubit.
25Thus far we have avoided mentioning the dephasing time T ∗

2 . However, it is not irrelevant, even
when spin echo pulses are used: the single-qubit gate fidelities are closely related to this parameter
(T ∗

2 ). The dephasing time reflects the (time-averaged) uncertainty about the Larmor precession
frequency, and this uncertainty results in errors in single-qubit gates. For example, for rotations
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For all experiments that have been performed so far, and all those likely to be
performed in the near future, the time required to perform single qubit operations
does not considerably affect the fidelity of the output state, so long as a spin echo
refocussing pulse is used. The dephasing time T ∗

2 , which is the relevant decoherence
timescale when a spin echo pulse is not used, is approximately 1 ns for electron
spins [13]. The T ∗

2 time is thus only roughly an order of magnitude larger than the
single-qubit gate time.

Although the T2 time is sufficiently long that the finiteness of the time taken to
perform single qubit gates is generally not a dominant cause of error (infidelity), the
T2 time is nevertheless an important experimental parameter in current experiments
exploring spin-photon and spin-spin entanglement with quantum dots. As we have
mentioned earlier in this chapter, in even the simplest entanglement distribution
experiments, the coherence time of thememory needs to be long compared to the time
taken for photons to propagate. For example, if one intends to entangle two remote
spins in quantum dots using the Simon-Irvine scheme, the two cryostats should be
connected by a fibre length that is substantially less than Lmax = T2

c
2·ncore , which

for T2 ≈ 3 µs, yields Lmax ≈ 555 m. This is a perfectly reasonable value for the
purposes of laboratory proof-of-principle demonstrations, but clearly an extension
to the intrinsic coherence time, or the development of an error-protected quantum
memory, will be necessary to perform long-distance experiments.

Single qubit gates alone are not universal for computation, so the secondpart of this
DiVincenzo criterion calls for the demonstration of a scalable two-qubit (entangling)
gate, for example, a CNOT gate. There are several proposals for how to implement
such a gate for quantum dot spin qubits [76–80], but there have been no experimental
demonstrations thus far. Kim et al. [81] showed that one can perform a two-qubit
gate that is mediated by an always-on exchange interaction between two adjacent
quantum dots in a quantum dot molecule structure, but unfortunately this approach
is not scalable beyond a few qubits. One of the major outstanding experimental
challenges for optically-active quantum dot spin qubits is the demonstration of a
scalable, fast, high-fidelity two-qubit gate.

(Footnote 25 continued)
(nominally) about the optical axis (induced by picosecond optical pulses), the dephasing processes
result in a random, off-axis component on top of the optical-axis rotation, i.e., a random deviation
from the ideal behaviour of the gate. This error mechanism can be mitigated if carefully-designed
spin-echo-related schemes are used; these methods call for the concatenation of pulses in order
to make so-called decoherence-protected gates, but have yet to be realized for quantum dot spin
qubits. For the conventional single-qubit gate operations described above, the ratio between the gate
operation time and the dephasing time (T ∗

2 ≈ 1 ns [13]) results in single-qubit gate fidelities that
are theoretically limited (by this effect) to ∼ 99.6% (optical-axis gate) and ∼ 95% (Larmor gate);
these limits are slightly higher than what has been measured experimentally [16].
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14.3.1.5 DiVincenzo Criterion 5: “A Qubit-Specific
Measurement Capability”

As a method for qubit initialization, optical pumping performs well. However, this
method is also used to perform qubit readout in most26 optical quantum dot spin
qubit experiments [4]. The basic principle of this type of readout is that during
optical pumping, the quantum dot will emit a single photon on the branch of the �

system that is not being pumped (e.g., |↑↓⇓〉 → |↑〉) if and only if the spin was
in one particular state (|↓〉), but the quantum dot will emit no photons along that
branch if the spin was in the other state (|↑〉). There are two major disadvantages
to this optical pumping procedure regarding its use for readout. The most important
disadvantage, from the perspective of current experiments, is that per experimental
run,27 at most a single photon will be emitted indicating the spin is in a particular
state. Since the overall collection and detection efficiency is small (typically less
than 0.1%), it is necessary to re-run a particular experiment many times in order to
obtain a reasonable signal-to-noise ratio. In the sense that it is necessary to repeat the
experiment multiple times to obtain an average measurement outcome, this type of
readout does not implement a “single-shot” measurement, and, for example, cannot
be used to detect quantum jumps (or other phenomena associatedwith single quantum
trajectories).

The second disadvantage of the spin readout based on optical pumping fluo-
rescence is that regardless of the measurement outcome, the qubit ends up in one
particular state (for example, |↑〉). In this sense themethod does not perform a “quan-
tum non-demolition” (QND) measurement, which we use here to mean just that the
measurement does not act as a textbook von Neumann projective measurement.

14.3.2 Quantum Dots as Photon Sources

The suitability of quantum dot spins as quantum memories can be evaluated against
the first five DiVincenzo criteria. To evaluate their use as building blocks for a
quantum repeater, we need to consider the final two DiVincenzo criteria. We will
first consider DiVincenzo Criterion 7: “The ability to faithfully transmit flying qubits
between specified locations”. One can imagine using electrons, or some other matter
particles, as flying qubits, but this seems exceptionally difficult for even moderate
macroscopic distances (i.e., on the order of meters). Therefore nearly all proposals
for flying qubits consider optical-frequency photons, either in free-space or in optical
fibre: these photons can encode quantum information in degrees of freedom that are

26For example, the recent demonstrations of spin-photon entanglement from three different groups
all used this method [21–24].
27A single run may be a sequence of events such as: (1) Initialize the spin, (2) Perform one or more
rotation gates on the spin, (3) Measure the spin.
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very robust against decoherence, and they can be transmitted over relatively long
distances with relatively low loss.

The use of quantum dots as photon sources doesn’t directly address either
DiVincenzo Criteria 6 or 7, but is related to both, and is an important area of research
in the quantum dot community, both for its relevance to quantum repeaters, and other
aspects of quantum-optics-based quantum information technology.

As is reviewed in chapter by Schneider, Gold, Lu, Höfling, Pan and Kamp in
this book, quantum dots have been shown to be outstanding single-photon sources,
i.e., they can produce single photons on demand (with either electrical or optical
triggering). Considerable effort has been expended over the past 15 years in making
quantum-dot-based single-photon sources that have very low g(2)(0)values, andgood
indistinguishability. Both of these are important parameters for quantum repeaters.
It is easy to see why a non-zero g(2)(0) value negatively affects the entanglement
generation protocol we have described: if either of two quantum dots that are to
be entangled have non-zero g(2)(0), then it is possible that the detectors measure
a double-click event (which should herald entanglement between the two quantum
dots) even though no photon arrived at the detectors from one of the quantum dots.
Therefore some of the heralded events will not actually correspond to cases where the
quantum dots are in the target entangled state, and this will result in an overall reduc-
tion in the fidelity of the entangled state. Imperfect indistinguishability of photons
also results in a reduction in state fidelity, and in reduced efficiency of entanglement
generation.

The inhomogeneity of quantum dots (different quantum dots tend to have different
optical emission wavelengths, and different linewidths) is a major drawback; pho-
ton indistinguishability is a prerequisite for interference, and the protocols we have
discussed (e.g., Simon-Irvine) rely centrally on Hong-Ou-Mandel-style interference.
There have been demonstrations of interference between photons emitted from dif-
ferent, remote quantum dots [82–84], but certainly for large-scale use, the lack of
homogeneity is an outstanding problem. One main approach to solving this problem
is to tackle it directly through improvements in sample growth and fabrication; how-
ever, it may also be possible to use frequency conversion [21, 58, 59] to help achieve
interference of photons emitted from quantum dots at disparate wavelengths [85].

14.3.3 Entanglement Between a Spin in a Quantum
Dot and an Emitted Photon

In the previous subsection we have summarized how research on quantum dots as
single photon and entangled photon pair sourcesmay bear on the use of quantum dots
in quantum repeater networks. A physical system that can act as a good single-photon
source has some promising attributes that may also allow it to perform as a good
spin-photon interface, but we have not yet described the other necessary conditions.
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The final DiVincenzo criterion for us to consider is Number 6: “The ability to
interconvert stationary and flying qubits”. As we have described earlier, one popu-
lar technique to generate entanglement between stationary qubits mediated by flying
qubits is to use the Simon-Irvine protocol, or a variant thereof. This protocol requires
the generation of pairs of stationary and flying qubits that are entangled. The sixth
DiVincenzo criterion suggests a requirement more along the lines of converting a sta-
tionary qubit into a flying qubit, and then converting that flying qubit into a stationary
qubit at a different location, but the literal interpretation of this as necessarily being
a direct physical process is overly restrictive: so long as you can distribute entangle-
ment over long distances using flying qubits, you can transfer quantum information
using quantum teleportation.

The Simon-Irvine protocol is an elegant way to distribute entanglement, and is
very well-suited to quantum dots, since charged quantum dots provide a direct mech-
anism for generating entanglement between a stationary qubit and a flying qubit [86].
Consider the energy level diagram describing the relevant spin ground states, the first
optically-excited states (trions), and the relevant optical selection rules for a charged
quantum dot, in a Voigt-geometry magnetic field. Figure14.5 shows the four-level
diagram, and the optical selection rules for the allowed transitions from the trion
state |↑↓⇓〉. We denote as �ω the energy of the |↑↓⇓〉 ↔ |↓〉 optical transition. If
the system begins in the trion state |↑↓⇓〉, then once this state decays (which takes
on average approximately 1 ns if the quantum dot emission is not enhanced by an
optical cavity), the following spin-photon entangled state is produced:

|ψ〉 = 1√
2

(|↑〉 |iH, �(ω + δe)〉 + |↓〉 |V, �ω〉) . (14.6)

This state is hyperentangled, in the sense that the spin qubit is entangled with two
different properties of the emitted photon: both its polarization and its energy. Entan-
glement between the spin and the photon polarization, and between the spin and the
photon energy, have both been experimentally verified.

14.3.3.1 Demonstrations of Spin-Photon Entanglement
with Quantum Dots

We have provided some intuition for how a single charged quantum dot in a Voigt-
geometry magnetic field can be used to generate a two-qubit entangled state, con-
sisting of spin (stationary qubit) and a photon (flying qubit), in the state |ψ〉 =
1√
2

(|↑〉 |iH, �(ω + δe)〉 + |↓〉 |V, �ω〉).
Thus far three groups have provided evidence of spin-photon entanglement gen-

eration using charged quantum dots. The first two experiments, published jointly
in 2012, showed evidence for entanglement between spin and photon polarization,
and between spin and photon energy respectively [21, 22]. A report from Schaib-
ley et al. [23] also showed evidence of entanglement between a quantum dot spin,
and photon polarization. All three of these reports produced bounds on the state
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Fig. 14.5 Spin-PhotonEntanglementGeneration fromaChargedQuantumDot in aVoigt-geometry
External Magnetic Field. When the trion state |↑↓⇓〉 decays via spontaneous emission, it does
so with with an equal amplitude of decaying to the state |↑〉 or the state |↓〉. However, the
polarization selection rules for the |↑↓⇓〉 → |↑〉 and the |↑↓⇓〉 → |↓〉 decays are differ-
ent. Furthermore, the |↑〉 and |↓〉 states are not energy-degenerate: they are split by a Zeeman
energy �δe. Therefore the decay of the trion state results in the generation of an entangled state,
where there is hyperentanglement between the electron ground spin states and two properties of
the emitted single photon: its energy, and its polarization. The state produced can be written as
|ψ〉 = 1√

2
(|↑〉 |iH, �(ω + δe)〉 + |↓〉 |V, �ω〉), where �ω is the energy of the |↑↓⇓〉 ↔ |↓〉 optical

transition

fidelity by calculating the conditional probabilities for measurements in two orthog-
onal bases. In a follow-up [24] to their first paper [21], De Greve et al. showed
results from a full tomographic reconstruction of the density matrix, yielding strong
experimental proof that the entangled state produced by a charged quantum dot is
|ψ〉 = 1√

2
(|↑〉 |iH, �(ω + δe)〉 + |↓〉 |V, �ω〉). All the experiments we have men-

tioned so far in this section [21–24] work in quite similar ways. We will focus in
particular on the experiments by De Greve et al. [21, 24], but the basic concept of
how the entanglement generation and verification is performed sharesmany common
aspects with the other works.

The high-level procedure that is carried out is as follows:

1. The quantum dot is prepared in the state |↓〉 by a combination of optical pumping
and, depending on the particular experiment, a π rotation operation (that flips the
spin from |↑〉 to |↓〉).

2. A pulse that drives the |↓〉 ↔ |↑↓⇓〉 transition is applied, with the goal of setting
the quantum dot to be in the state |↑↓⇓〉.

3. The state |↑↓⇓〉 spontaneously decays and emits a photon, which results in the
creation of the spin-photon entangled state |ψ〉 = 1√

2
(|↑〉 |iH, �(ω + δe)〉 +

|↓〉 |V, �ω〉).
4. Now that the entangled state has been produced, we seek to measure it. First we

measure the state of the photon. In the case of polarization, this is done by using
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a polarizer and a single-photon detector: if a photon is detected, the photon must
have been of the polarization that the polarizer transmits.

5. Next we measure the state of the spin. This is done by performing an optional
spin rotation (depending on which basis we want to measure the spin in), and
then optical pumping again. A different single-photon detector is used to record
if a photon is emitted. The detection or non-detection of a photon by this detector
provides the spin measurement result.

This describes just a single run of an experiment; for a single choice of measure-
ment bases for the spin and the photon, this is repeated many times. The correlation
between photon detections at the two different detectors during the same run of
the experiment allows us to determine the conditional probability between a photon
polarization measurement outcome and a spin measurement outcome. This whole
procedure is then repeated for several different measurement bases, so that at least
eight conditional probabilities for different orthogonal measurement outcomes can
be determined.

Figure14.6 shows the conditional probabilities obtained by De Greve et al. [21].
These conditional probabilities are given as the probability of a spin measurement
outcome, given a photon polarization measurement outcome. For example, from the
first panel,we can read that Pr

[
spin =↑|photon = H

] ≈ 1, Pr
[
spin =↓|photon = H

]
≈ 0, Pr

[
spin =↑|photon = V

] ≈ 0, and Pr
[
spin =↓|photon = V

] ≈ 0.85. These
conditional probabilities are sometimes referred to as “classical correlations”, because
a classical two-particle state that has no entanglement could conceivably be con-
structed that would also yield such strong correlations. However, when these prob-
abilities are considered in combination with the results shown in the right panel of
Fig. 14.6, they are unambiguously reflective of a two-qubit state that is entangled.
The conditional probabilities in the orthogonal basis also show strong correlations;
for example, Pr

[
spin =←∣∣photon = σ+] ≈ 1. These measured conditional proba-

bilities are strikingly similar to those we would expect if there were no measurement
errors, and the statewe producedwas |ψ〉 = 1√

2
(|↑〉 |iH, �(ω + δe)〉 + |↓〉 |V, �ω〉).

(a) (b)

Fig. 14.6 Derived and reprinted with permission from De Greve et al. [21]. The left panel a shows
the conditional probabilities whenmeasurements were performed in the {|↑〉 , |↓〉} basis for the spin,
and in the {|H〉 , |V〉} basis for the photon. The right panel b shows the conditional probabilities
when measurements were performed in the {|→〉 , |←〉} basis for the spin, and in the {∣∣σ+〉

,
∣∣σ−〉}

basis for the photon
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This is easy to see if we rewrite the state |ψ〉 using the {|→〉 , |←〉} basis for the
spin, and the

{∣∣σ+〉
,
∣∣σ−〉}

basis for the photon:

|ψ〉 = 1√
2

(|↑〉 |iH〉 + |↓〉 |V〉) (14.7)

= 1√
2

(i |↑〉 |H〉 + |↓〉 |V〉) (14.8)

= i√
2

(|→〉 ∣∣σ−〉 + |←〉 ∣∣σ+〉)
(14.9)

Here we have neglected the energy information, since in De Greve et al. [21, 24]
(and in the work by Schaibley et al. [23]), the energy information is not measured.28

A similar rewriting procedure is used for frequency/energy photonic qubits instead
of polarization qubits in Gao et al. [22].

Equation14.9 indicates that we should expect the conditional probabilities in the
orthogonal bases to be Pr

[
spin =→∣∣photon = σ−] = 1, Pr

[
spin =←∣∣photon = σ−] = 0,

Pr
[
spin =→∣∣photon = σ+] = 0, and Pr

[
spin =←∣∣photon = σ+] = 1.

An important subtlety in these experiments [21, 23, 24] arises from the fact that
as soon as the photonic qubit is measured in the

{∣∣σ+〉
,
∣∣σ−〉}

basis, the spin state
collapses to either |→〉 or |←〉 (depending on the photon polarization measure-
ment outcome), and due to the presence of an external magnetic field, the spin will
undergo Larmor precession. For example, if the spin state is collapsed to |→〉, after
half a Larmor period, it will have evolved to become |←〉. This Larmor precession
is a convenient feature, since when it is combined with optical rotation pulses, it
allows for the measurement of the spin in bases other than {|↑〉 , |↓〉}. However,
it also has a detrimental effect: these experiments are performed on time ensem-
bles, where the same quantum dot is observed many times, and in each run of the
experiment, the spontaneous decay of the |↑↓⇓〉 state can occur at a different time
(roughly within the lifetime of that trion state, which was approximately 600 ps in
[21, 24]). The timing resolution of the detection used to measure the photonic qubit
is thus crucial; if the timing resolution is not much faster than the Larmor period, the
experimeter will bin together runs of the experiment where the trion decays occurred
at substantially different times,29 and the spinmeasurements in the {|→〉 , |←〉} basis
will consequently yield greatly reduced correlations. This is explained in detail in the
supplementary information of [21]. The solution used in the experiments reported
in [21, 24] was to develop an ultrafast (sub-10-ps) optical gate, using frequency
downconversion, which resulted in an effective timing resolution of photon

28In [21, 24], due to the sub-10-ps timing resolution achieved using pulsed downconversion, energy
information that can distinguish between the two photons is unobtainable even in principle. Explicit
“erasure” of the energy information is crucial; simply not measuring would lead to tracing over all
possible outcomes, resulting in a reduction of the observed state fidelity.
29The “time” here means the time delay between a synchronization pulse that occurs at the start
of every run of the experiment, and of the photon emission by the quantum dot, as opposed to the
absolute time.
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Fig. 14.7 Entangled Spin-Photon State Density Matrices. Reprinted with permission from
De Greve et al. [24]. a The real and b imaginary parts of the ideal density matrix ρideal. c The real
and d imaginary parts of the density matrix reconstructed using the direct procedure, ρreconstruct.
The shaded regions depict the ideal density matrix

detection of approximately 8 ps. This compared to a Larmor period of approximately
57 ps. This technique provided the added benefit that the frequency conversion that
was performed had a target wavelength of approximately 1560 nm, which is in the
low-loss band used for telecommunications in optical fibres.

The ideal density matrix is ρideal = |ψ〉 〈ψ |, where |ψ〉 is given in (14.8). A
two-qubit (4×4) density matrix has 16 complex entries, but since it is constrained to
be Hermitian, it can be specified by just 16 real numbers.30 As is described in detail
in the supplementary information of [24], De Greve et al. performed measurements
to obtain 16 conditional probabilities in a combination of three different orthogonal
bases for the spin and the photon polarization. The reconstructed density matrix
can be computed using the formula ρreconstruct = 1

4

∑
i, j ri, jσi ⊗ σ j , where the

ri, j are related to the measurement results (ri, j � Tr
[
ρσi ⊗ σ j

]
) [42]. The ideal and

reconstructed densitymatrices are depicted in Fig. 14.7, in the {|H〉 , |V〉}⊗{|↑〉 , |↓〉}
basis.

30Since a density matrix should also have a trace of one, a two-qubit density matrix should only
need 15 real numbers to be specified, although typically in quantum state tomography 16 numbers
are used, since the reconstruction procedure is more convenient in this case.
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This direct reconstruction of the density matrix is simple, but has a flaw: due to
imperfections in the measurements (for example, detector dark counts), the recon-
structed density matrix may be non-physical: it may not have a trace of one, and
moreover, it may not be positive semi-definite. The trace can be forced to be one by
normalizing the reconstructed density matrix, but there is no simple method to force
the matrix to be positive semi-definite after it has already been reconstructed using
the direct method.

One can see an example of the kind of measurement error that results in a non-
physical result in Fig. 14.6: note that the conditional probability Pr

[
spin =↑|photon = H

]
is measured as being slightly greater than 1. This isn’t physically possible, since the
probability of measuring the spin to be in state |↑〉 is at most 1.

One solution to this problem that is commonly used in quantum state tomography
is to perform a reconstruction of the density matrix that is constrained to produce
the positive-semi-definite, trace-one density matrix that is most consistent the mea-
surement results. This can be done using a maximum likelihood estimation (MLE)
procedure, as described by James et al. [87], and in the supplementary information of
De Greve et al. [24]. The MLE procedure produces a density matrix that we denote
as ρMLE.

Since the procedure used to obtain ρMLE is an iterative numerical optimization,
it is not possible to use standard propagation of error methodology to determine the
uncertainty in, for example, the fidelity F of the state (F � 〈ψideal|ρMLE|ψideal〉).
However, by resampling [24, 88] the original photon counting data, it is possible to
generate a distribution of reconstructed density matrices, and hence a distribution of
metrics on those matrices. Figure14.8 shows both the density matrix reconstructed
using the MLE procedure on the original data.

The mean fidelity of the spin-photon entangled state produced by De Greve et al.
in [24] was F = 92.1%, with a single-standard-deviation uncertainty of ±3.2%.
If two spatially-separated quantum dots are used to produce spin-photon entangled

Fig. 14.8 Maximum-Likelihood-Estimation-basedDensityMatrixReconstruction andUncertainty
Analysis. Reprinted with permission from De Greve et al. [24]. a The real and b imaginary parts
of the density matrix reconstructed using the MLE procedure, ρMLE. The shaded regions depict the
ideal density matrix
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qubits each with fidelity greater than 1/
√
2 ≈ 0.71, and we assume perfect pho-

ton interference, then a spin-spin entangled state can certainly be produced (via a
suitable heralded entanglement generation protocol) that will have a fidelity greater
than 0.5. Therefore a spin-photon state fidelity of 0.92 is certainly sufficient for a
demonstration of spin-spin entanglement with quantum dots.

Table14.2 compares this spin-photon state fidelity to that of fidelities obtained
in other spin-photon entanglement experiments. This table also highlights the fea-
ture that quantum dots have optically excited states with relatively short lifetimes
(∼600 pswhen the quantum dot is embedded in low-Q planar microcavity); this
affects the rate at which spin-photon entangled states can be generated.

14.4 Conclusion

We have explained how quantum dots might be used as the building blocks for a
quantum repeater, but there is still much work to be done before a useful quantum
repeater may be built from quantum dots, or indeed before such a repeater can even
be designed in detail.

In the short term, one of the major outstanding experimental goals is the demon-
stration of spin-spin entanglement using quantum dots, i.e., the entanglement of
spins in two different quantum dots that are spatially separated by a macro-
scopic distance. Spin-spin entanglement has been achieved using atomic ensembles
[62, 95], trapped ion qubits [55], single atom qubits [60, 61], and NV center qubits
[63], so the spin-spin generation protocols are well-tested, but a demonstration of
spin-spin entanglement with quantum dots is nevertheless seen as an important mile-
stone for the quantum dot spin qubit community.

The spin readout mechanism that was used in all the recent quantum dot spin-
photon entanglement experiments we have highlighted [21–24] yields only a single
photon (atmost) per experimental run, and so can only be used as amulti-shot readout
by averaging over many experimental runs (since photon collection and detection
efficiency is not unity).Demonstration of a single-shot readoutmechanism that can be
integrated with the other important operations for a quantum repeater memory qubit
is an important goal. This would make a spin-spin demonstration easier (since then
only two-photon coincidences would need to be observed, rather than four-photon
coincidences), and is also a key requirement for implementation of the surface code
[65].

The lack of a scalable two-qubit gate is arguably the biggest challenge that the
community needs to overcome. Two-qubit operations on memory qubits are ubiq-
uitous in all the large-scale quantum repeater proposals we have discussed, and at
the very least will be needed to perform error correction. There have as-yet been
no demonstrations in any physical system of quantum error correction that allow a
memory qubit to stay coherent for an arbitrarily long time, or even for a time much
longer than the native T2 time. However, with quantum dot spin qubits, this is espe-
cially important even for early demonstrations, since InAs quantum dot spin qubits
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have rather short T2 times, which limit the communication distance. Demonstrating
a QEC-enabled extension of a logical qubit coherence time in quantum dots is a
major goal, but one that can only be tackled after a scalable two-qubit gate has been
developed.

The high-level designs for large-scale quantum devices using quantum dots call
for the use of arrays of site-controlled quantum dots, but here too there is much work
to be done: developing methods to produce such arrays with a high yield of quantum
dots that have good, homogeneous optical properties is a major challenge. In the
near term, spin results that have been achieved using randomly-located quantum dots
should be replicated using site-controlled quantum dots, to aid in the development
of site-controlled QD arrays that are suitable for spin qubits.

The challenges in constructing a high-fidelity, high-bandwidth (measured in
“entangled qubit pairs per second”) quantum network are daunting. For approaches
using neutral atoms or ions to succeed, researchers need to overcome significant
barriers to scaling. Meanwhile solid-state approaches have struggled to achieve the
required operation fidelities for fault-tolerant operation, in some cases suffer from
insufficiently-long coherence times, and in many cases don’t yet have a scalable
two-qubit gate operation, among other imperfections. Gisin and Thew, in 2007 [96],
wrote:

The development of a fully operational quantum repeater and a realistic quantum-network
architecture are grand challenges for quantum communication. Despite some claims, nothing
like this has been demonstrated so far and one should not expect any real-world demonstration
for another five to ten years.

Seven years later, much the same can still be said. Several months after Gisin
and Thew’s review was published, results showing entanglement between distant
quantum memories using the DLCZ protocol for atomic ensembles [95] and the
Simon-Irvine protocol for single trapped ions [55] were reported. As we have already
mentioned, many other experiments generating entanglement between a quantum
memory and a photon, or between quantum memories, have subsequently been per-
formed [21–24, 60, 61, 63, 92, 93]. However, even the demonstration of just a single
round of entanglement purification between distant quantum memories has not yet
been completed, in any physical system. Similarly, there have been no demonstrations
of entanglement swapping to connect two distant quantummemories via an interme-
diate quantummemory. Entanglement generation between two quantummemories is
now well-established in both atomic and in some solid-state systems, but the goal of
implementing both entanglement swapping and entanglement purification between
remote quantum memories to demonstrate a proof-of-concept quantum repeater is
still a distant hope rather than a soon-to-be-completed milestone.

Building a quantum repeater is evidently a grand challenge, and one that seems
unlikely to be met for many years to come. Besides the challenges for how to make
a quantum repeater, there is also a challenge to find uses for a quantum repeater. The
canonical application at present is long-distance quantum key distribution. How-
ever, private key distribution can currently be performed with very high bandwidth
using classical means, and the cost-benefit analysis for quantum repeaters for this
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application is not necessarily favourable.31 Tests of the Bell inequality over ever-
longer distances are an interesting fundamental application of the distributed entan-
glement that quantum repeaters would provide. Teleportation [28] is also an inter-
esting fundamental application of distributed entanglement, and may also play a role
in the construction of distributed quantum computers [99]. Gottesman et al. [100]
have proposed an optical interferometer design that could overcome current optical
telescope resolution limits if a quantum repeater is realized, and Kómár et al. [101]
have proposed a global atomic clock network design that fundamentally uses remote
entangled states. Both these proposals are recent, so there is some hope that more
uses of distributed entanglement may yet be uncovered.
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