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Abstract. We provide a hierarchy of tree languages recognised by non-
deterministic parity tree automata with priorities in {0, 1, 2}, whose
length exceeds the first fixed point of the ε operation (that itself enu-
merates the fixed points of x �→ ωx). We conjecture that, up to Wadge
equivalence, it exhibits all regular tree languages of index [0, 2].

1 Introduction

This paper contributes to the close investigation of regular tree languages of
index [0, 2]. Our tool to measure and compare those languages is given by
descriptive set theory through the notion of topological complexity. It is well
known that deterministic parity tree automata recognize only languages in the
Π1

1 class (coanalytic sets), whereas nondeterministic automata recognize lan-
guages that are neither analytic, nor coanalytic. The expressive power of nonde-
terministic automata is nonetheless bounded by the second level of the projective
hierarchy, and, by Rabin’s complementation result [7], all nondeterministic lan-
guages are in fact in the Δ1

2 class. A more discriminating topological complexity
measure than the Baire and the projective hierarchy is therefore needed: the
Wadge hierarchy, which relies on the notion of reductions by continuous functions
(Wadge-reducibility). Complexity classes, called Wadge degrees, consist of sets
Wadge-reducible to each other, and constitute a hierarchy whose levels, called
ranks, can be enumerated with ordinals. We describe a series of operations on
automata that preserve the index and lift the Wadge degrees of the recognized
languages1. These operations help us generate a hierarchy of regular tree lan-
guages of higher and higher topological complexity, one level higher than the
first fixed point of the ordinal function2 x �→ εx which itself enumerates the
fixed points of the exponentiation x �→ ωx.
1 We emphasize that this is done without any determinacy principle. In particular, we

do not require Δ1
2-determinacy.

2 Not to be mistaken with an ε-move.
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2 Preliminaries

2.1 The Wadge Hierarchy and the Wadge Game

The Wadge theory is in essence the theory of pointclasses3 (see [1]). For Γ
a pointclass, we denote by Γ̌ its dual class containing all the subsets whose
complements are in Γ , and by Δ(Γ ) the ambiguous class Γ ∩ Γ̌ . If Γ = Γ̌ , we
say that Γ is self-dual.

Given any topological space X, the Wadge preorder ≤W on P(X) is defined
for A,B ⊆ X by A ≤W B if and only if there exists f : X −→ X continuous
such that f−1(B) = A. It is merely by definition a preorder which induces
an equivalence relation ≡W whose equivalence classes – denoted by [A]W – are
called the Wadge degrees. A set A ⊆ X is self-dual if [A]W = [A�]W , and non-self-
dual otherwise. We use the same terminology for the Wadge degrees. We have a
direct correspondence between (P(X),≤W ) restricted to Γ and the pointclasses
included in Γ with inclusion: the pointclasses are exactly the initial segments of
the Wadge preorder. In particular, the Wadge hierarchy tremendously refines
the Borel and the projective hierarchies.

The space TΣ equipped with the standard Cantor topology is a Polish space,
and is in fact homeomorphic to the Cantor space [2]. Let L,M ⊆ TΣ , the Wadge
game W (L,M) is a two-player infinite game that provides a very useful charac-
terization for the Wadge preorder. In this game, each player builds a tree, say tI
and tII. At every round, player I plays first, and both players add a finite number
of children to the terminal nodes of their tree. Player II is allowed to skip her
turn, but has to produce a tree in TΣ throughout a game. Player II wins the
game if and only if tI ∈ L ⇔ tII ∈ M .

Lemma 1 ([9]). Let L,M ⊆ TΣ. Then L ≤W M if and only if player II has a
winning strategy in the game W (L,M).

We write A <W B when II has a winning strategy in W (A,B) and I has a
winning strategy in W (B,A)4. Given a pointclass Γ of TΣ with suitable closure
properties, the assumption of the determinacy of Γ is sufficient to prove that Γ
is semi-linearly ordered by ≤W , denoted SLO(Γ ), i.e., that for all L,M ∈ Γ ,

L ≤W M or M ≤W L�,

and that ≤W is well founded when restricted to sets in Γ [1,8]. Under these
conditions, the Wadge degrees of sets in Γ with the induced order is thus a
hierarchy called the Wadge hierarchy. Therefore, there exists a unique ordinal,
called the height of the Γ -Wadge hierarchy, and a mapping dΓ

W from the Γ -Wadge
hierarchy onto its height, called the Wadge rank, such that, for every L,M non-
self-dual in Γ , dΓ

W (L) < dΓ
W (M) if and only if L <W M and dΓ

W (L) = dΓ
W (M)

3 A pointclass is a collections of subsets of a topological space that is closed under
continuous preimages.

4 This is in general stronger than the usual A <W B if and only if A ≤W B and B �≤W

A, but the two definitions coincide when the classes considered are determined.
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if and only if L ≡W M or L ≡W M�. The wellfoundedness of the Γ -Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

– dΓ
W (∅) = dΓ

W (∅�) = 1.
– dΓ

W (L) = sup
{
dΓ

W (M) + 1 : M is non-self-dual,M <W L
}

for L >W ∅.

Note that given two pointclasses Γ and Γ ′, for every L ∈ Γ∩Γ ′, we have dΓ
W (L) =

dΓ ′
W (L). Under sufficient determinacy assumptions, we can therefore safely speak

of the Wadge rank of a tree language, denoted by dW , as its Wadge rank with
respect to any topological class including it. However the main result of this
article does not provide any Wadge rank for the canonical languages that are
constructed, because we do not make use of any determinacy principle.

2.2 The Conciliatory Hierarchy

A conciliatory binary tree over a finite set Σ is a partial function t : {0, 1}∗ → Σ
with a prefix-closed domain. Such trees can have both infinite and finite branches.
A tree is called full if dom(t) = {0, 1}∗. Let T ≤ω

Σ and TΣ denote, respectively,
the set of all conciliatory binary trees and the set of full binary trees over Σ.
Given x ∈ dom(t), we denote by tx the subtree of t rooted at x. Let {0, 1}n

denote the set of words over {0, 1} of length n, and let t be a conciliatory tree
over Σ. We denote by t[n] the finite initial binary tree of height n + 1 given by
the restriction of t to

⋃
0≤i≤n{0, 1}i.

For conciliatory languages L,M we define the conciliatory version of the
Wadge game: C(L,M) [4,5]. The rules are similar, except for the fact that both
players are now allowed to skip and to produce trees with finite branches – or
even finite trees. For conciliatory languages L,M we use the notation L ≤c M
if and only if II has a winning strategy in the game C(L,M). If L ≤c M and
M ≤c L, we will write L ≡c M . The conciliatory hierarchy is thus the partial
order induced by ≤c on the equivalence classes given by ≡c. We write A <c B
when II has a winning strategy in C(A,B) and I has a winning strategy in
C(B,A).

From a conciliatory language L over Σ, one defines the corresponding lan-
guage Lb of full trees over Σ ∪ {b} by

Lb =
{
t ∈ TΣ∪{b} : t[ /b] ∈ L

}
,

where b is an extra symbol that stands for “blank”, and t[ /b], the undressing
of t, is informally the conciliatory tree over Σ obtained once all the occurrences
of b have been removed in a top-down manner. More precisely, if there is a node
v such that t(v) = b, we ignore this node and replace it with v0. If, for each
integer n, t(v0n) = b, then v /∈ dom(t[ /b]). This process is illustrated by Fig. 1.

If Γ is a pointclass of full trees, we say that a conciliatory language L is in
Γ if and only if Lb is in Γ .

Lemma 2. Let L and M be conciliatory languages. Then

L ≤c M if and only if Lb ≤W M b.
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Fig. 1. The undressing process.

The mapping L �→ Lb gives thus a natural embedding of the preorder ≤c

restricted to conciliatory sets in Γ into the Γ -Wadge hierarchy. Hence, for Γ with
suitable closure and determinacy properties, the conciliatory degrees of sets in Γ
with the induced order constitute a hierarchy called the conciliatory hierarchy.
We define, by induction, the corresponding conciliatory rank of a language:

– dΓ
c (∅) = dΓ

c (∅�) = 1.
– dΓ

c (L) = sup{dΓ
c (M) + 1 : M <c L} for L >c ∅.

Similarly to the Wadge case, given two pointclasses Γ and Γ ′, for every con-
ciliatory L ∈ Γ ∩ Γ ′, we have dΓ

c (L) = dΓ ′
c (L). Under sufficient determinacy

assumptions, we can therefore speak safely of the conciliatory rank of a concil-
iatory tree language, denoted by dc, as its conciliatory rank with respect to any
topological class including it. Observe that the conciliatory hierarchy does not
contain self-dual languages: a strategy for I in C(L,L�) is to skip in the first
round, and then copy moves of II.

2.3 Automata and Conciliatory Trees

A nondeterministic parity tree automaton A = 〈Σ,Q, I, δ, r〉 consists of a finite
input alphabet Σ, a finite set Q of states, a set of initial states I ⊆ Q, a transition
relation δ ⊆ Q×Σ×Q×Q and a priority function r : Q → ω. A run of automaton
A on a binary conciliatory input tree t ∈ T ≤ω

Σ is a conciliatory tree ρt ∈ T ≤ω
Q

with dom(ρt) = {ε} ∪ {va : v ∈ dom(t) ∧ a ∈ {0, 1}} such that the root of
this tree is labeled with a state q ∈ I, and for each v ∈ dom(t), transition
(ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. The run ρt is accepting if parity condition is
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satisfied on each infinite branch of ρt, i.e., if the highest rank of a state occurring
infinitely often on the branch is even, and if the rank of each leaf node in ρt is
even. We say that a parity tree automaton A accepts a conciliatory tree t if it has
an accepting run on t. The language recognized by A, denoted L(A) is the set
of trees accepted by A. We let Lω(A) denote the set of full trees recognized by
A, i.e., Lω(A) = L(A)∩TΣ . Notice that as the set of states is finite, the priority
function is bounded. Moreover, shifting all ranks by an even number does not
change the language recognized by a parity tree automaton. It is thus sufficient to
consider parity tree automata whose priorities are restricted to intervals [ι, κ], for
ι ∈ {0, 1}. We say that an automaton is of index [ι, κ] if its priorities are restricted
to intervals [ι, κ]. A language is of index [ι, κ] if there is an automaton of index
[ι, κ] that recognises it. This gives rise to the Mostowski-Rabin hierarchy [3]. Let
W[0,2] be the game tree language of index [0, 2]. One can prove that L ≤W W[0,2]

holds for any regular tree language L of index [0, 2], but fails for L = W �
[0,2].

Corollary 1. The mapping L �→ Lb embeds the conciliatory hierarchy for Δ1
2-

sets restricted to languages of index [0, 2] into the Δ1
2-Wadge hierarchy restricted

to languages of index [0, 2].

We use the following conventions in the diagrams. Nodes represent states of the
automaton. Node labels correspond to state ranks. A red edge shows the state
that is assigned to the left successor node of a transition, and a green edge goes
to the right successor node. In order to lighten the notation, transitions that are
not depicted on a diagram lead to some all-accepting state. Given automata A
and B, we write A ≤c B for L(A) ≤c L(B), and same with <c,≤W , <W .

3 Operations on Languages and Their Automatic
Counterparts

We present operations on conciliatory tree languages, which we then use to
construct more and more complex languages. W.l.o.g. we assume the alphabet
to be Σ = {a, c}.

3.1 The Sum

For L,M ⊆ T ≤ω
Σ , we define L⊕M (the sum of L and M) as the language formed

of all those trees t ∈ T ≤ω
Σ such that one of the following conditions holds:

– t(10n) = a for each integer n and t0 ∈ M ;
– the node 10n is the first on the path 10∗ labeled with c and either t(10n0) = a

and t10n00 ∈ L, or t(10n0) = c and t10n00 ∈ L�.

This operation behaves well regarding the conciliatory hierarchy.

Facts 1 ([4,5]). Given L, M , and M ′ any conciliatory tree languages over Σ,
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1. (L ⊕ M)� ≡c L ⊕ M�.
2. The operation ⊕ preserves the conciliatory ordering: if M ′ ≤c M , then

L ⊕ M ′ ≤c L ⊕ M.

3. Assuming enough determinacy:

dc(L ⊕ M) = dc(L) + dc(M).

Let A and B be two automata that recognize, respectively, the conciliatory
languages M and L. Then the automaton B+A depicted in Fig. 2 recognizes
the sum of L and M . In this picture, C is any automaton of index [0, 2] that
recognizes a language equivalent to L�, and the parity i and j are defined as
follows:

– i = 0 if and only if the empty tree is accepted by A;
– j = 1 if and only if L(A) is equivalent to L(A) → �, where �denotes any

automaton that rejects all trees.5

Notice that if A and B are parity tree automata of index [0, 2] such that L(B)�

can be recognized by an automaton of index [0, 2], then B+A is a parity tree
automata of index [0, 2].

i

A
0 1

B
1 j

∗ ∗ c

∗a

∗

a

c a

c C ≡W B�

Fig. 2. The automaton B+A that recognizes L(B) ⊕ L(A). The values of i and j
depend on properties of A.

Lemma 3. Let L, L′, M and M ′ be conciliatory languages such that L <c L′

and M ≤c M ′. Then the following hold.

1. M ⊕ L <c M ′ ⊕ L′;
2. M <c M ⊕ L.

3.2 Multiplication by a Countable Ordinal

In order to define the multiplication of a language by a countable ordinal, we
first introduce the operation supn<ω. Let (Ln)n∈ω ⊆ T ≤ω

Σ be a countable family
of conciliatory languages. Define supn<ω Ln as the conciliatory tree language
containing all of those trees t ∈ T ≤ω

Σ such that one of the following conditions
holds:
5 A player in charge of L(A) → �in a conciliatory game is like a player in charge of

L(A), but with the extra possibility at any moment of the play to reach a definitively
rejecting position.
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– t(1n) = a for all integer n;
– the node 1n is the first on the path 1∗ labeled with c and t1n0 ∈ Ln.

The multiplication by a countable ordinal is now defined as an iterated sum. Let
L ⊆ T ≤ω

Σ , L � 1 = L, L � (α + 1) = (L � α) ⊕ L, and L � λ = supα<λ L � α, for
λ limit.

Let A be an automaton that recognizes the conciliatory languages L. Then
the automaton A•ω depicted in Fig. 3(a) recognizes a language equivalent to
L�ω. In this picture, C is any automaton that recognizes a language equivalent
to L�. The automaton A•ω that recognizes the complement of L(A•ω), and thus
a language equivalent to the complement of L � ω, is depicted in Fig. 3b. Notice
that if A is of index [0, 2], and if there exists an automaton that recognizes L(A)�

of index [0, 2], then both A•ω and A•ω are parity tree automata of index [0, 2].
Hence, for every ordinal 0 < α < ωω and for every automaton A, there exists an
automaton A•α that recognizes L(A) � α. Moreover, if A is of index [0, 2], and
if there exists an automaton that recognizes L(A)� of index [0, 2], then A•α is
a parity tree automaton of index [0, 2].

A
1

0

0
A�

a

c a

a
c

a

a
1 0 1

a

a

0
∗

(a) The automaton A•ω.

A
1

1

1
A�

a

c a

a
c

a

a
1 1 1

a

a

0
∗

(b) The automaton A•ω.

Fig. 3. Automata that recognize respectively a language equivalent to L � ω and a
language equivalent to its complement.

As a corollary of Lemma 3 and Facts 1, the multiplication by a countable
ordinal behaves well regarding the conciliatory hierarchy.

Corollary 2. Let L and M be conciliatory languages such that L <c M . Then
for every countable ordinals 0 < α < β < ωω:

1. L � α <c L � β;
2. L � α <c M � α.

3.3 The Pseudo-Exponentiation

Let P ⊆ T ≤ω
Σ be a conciliatory tree language. For t ∈ T ≤ω

Σ , let:

iP (t)(a1, a2, . . . , an) =

{
t(a1, 0, a2, 0, . . . , 0, an, 0), if ta1,0,a2,0,...,0,an,1 ∈ P ;
b, otherwise.

This process is illustrated in Fig. 4. The nodes in blue are called the main run.
The blue arrows denote the dependency of a node of the main run on a subtree
of auxiliary moves. If the auxiliary subtree of a main run node is not in P , then
we say that the node is killed.
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Fig. 4. Main run and auxiliary moves.

Let L ⊆ T ≤ω
Σ , we define the action of P on L, in symbols (P,L), by

{
t ∈ T ≤ω

Σ : iP (t)[ /b] ∈ L
}

.

Let PΠ0
1

be the complete closed set of all full trees over Σ with all nodes on
the leftmost branch 0∗ labelled by a. For L ⊆ T ≤ω

Σ , we denote by (Π0
1, L) the

action of PΠ0
1

on L. This operation (Π0
1, ·) behaves well regarding the conciliatory

hierarchy.

Facts 2 ([4,5]). Let L and M be conciliatory tree languages over Σ. Then the
following hold.

1. (Π0
1, L)� ≡c (Π0

1, L
�).

2. If L ≤c M , then (Π0
1, L) ≤c (Π0

1,M).
3. If L <c M , then (Π0

1, L) <c (Π0
1,M).

4. Assuming enough determinacy, dc((Π0
1, L)) = ω

dc(L)+ε
1 , for 6 ε ∈ {−1, 0, 1}.

Without assuming any determinacy hypothesis, we can nonetheless prove the
following Proposition that links (Π0

1, ·) to ⊕.

Proposition 1. Let L, L′ and M be conciliatory languages such that L <c

(Π0
1,M) and L′ <c (Π0

1,M). Then

1. L ⊕ L′ <c (Π0
1,M);

2. L � α <c (Π0
1,M), for any α < ωω.

Given any automaton A recognizing L ⊆ T ≤ω
Σ , the conciliatory language (Π0

1, L)
is recognized by the automaton (ωω)A defined from A by replacing each state of
A by a “gadget”, as depicted in Fig. 5. By replacing a state by the gadget we mean
that all transitions ending in this state should now end in the initial state of the
gadget, and that all the transitions leaving this state should now start from the
final state of the gadget. This sort of gadget first appeared in [5]. Notice that if
L ⊆ T ≤ω

Σ is of index [0, 2], then (Π0
1, L) is also of index [0, 2]. Observe also that

the game language W[0,2] is a fixed point for pseudo-exponentiation, i.e.,

(Π0
1,W[0,2])b ≡W W[0,2].

6 ε =

⎧
⎪⎨

⎪⎩

−1 if dc(L) < ω;

0 if dc(L) = β + n and cof(β) = ω1;

1 if dc(L) = β + n and cof(β) = ω.

.
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Fig. 5. The gadget to replace a state in A.

4 Difference of Co-analytic Sets

The operations defined in Sect. 3 are Borel in the sense that when we apply them
to Borel languages, the resulting language is still Borel. In order to describe the
most of the Wadge hierarchy of languages recognized by parity tree automata of
index [0, 2] we need to climb higher.

4.1 The Operation (D2(Π1
1), ·)

We define a conciliatory language of index [0, 2] that is D2(Π1
1)-complete (Fig. 6a)

and such that its complement (Fig. 6b) is also of index [0, 2], via the automata
that recognize each of them. We denote by AD2(Π1

1)
and AĎ2(Π1

1)
the conciliatory

languages recognized respectively by AD2(Π1
1)

and AĎ2(Π1
1)

.
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(b) AĎ2(Π1
1)

Fig. 6. Automata that recognize respectively a D2(Π
1
1)-complete and a Ď2(Π

1
1)-

complete language.

For M ⊆ T ≤ω
Σ , we denote by (D2(Π1

1),M) the action of L(AD2(Π1
1)

) on
M . Observe that this operation is highly non-Borel, since if we apply it to a
Σ0

1-complete conciliatory language, the resulting language will be complete for
the pointclass of all the countable unions of D2(Π1

1) languages. The operation
(D2(Π1

1), ·) behaves well with respect to ≤c.
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Theorem 1. Let M,M ′ ⊆ T ≤ω
Σ . If M ≤c M ′, then

1. (D2(Π1
1),M)� ≡c (D2(Π1

1),M
�);

2. (D2(Π1
1),M) ≤c (D2(Π1

1),M
′).

A winning strategy for I in C(M,M ′) can also be “remote controlled” to a
winning strategy for I in C((D2(Π1

1),M), (D2(Π1
1),M

′)), so that the following
holds.

Corollary 3. Let M and M ′ be conciliatory languages such that M <c M ′.
Then

(D2(Π1
1),M) <c (D2(Π1

1),M
′)

The operation (D2(Π1
1), ·) is much stronger than (Π0

1, ·), and is in fact a fixed
point of it.

Proposition 2. Let M ⊆ T ≤ω
Σ . Then

(
Π0

1, (D2(Π1
1),M)

)
≡c (D2(Π1

1),M).

Let A be an automaton that recognizes M ⊆ T ≤ω
Σ . Then the conciliatory tree

language (D2(Π1
1),M) is recognized by the automaton εA defined from A by

replacing each state of A by a “gadget”, as depicted in Fig. 7. As in the pseudo-
exponentiation case, by replacing a state by the gadget we mean that all transi-
tions ending in this state should now end in the initial state of the gadget, and
that all the transitions starting from this state should now start from the final
state of the gadget. Notice that if M ⊆ T ≤ω

Σ is of index [0, 2], then (D2(Π1
1),M)

is also of index [0, 2], and that W[0,2] is a fixed point of this operation. In par-
ticular the game language W[0,2] is above all the differences of coanalytic sets,
which is a strengthening of a result obtained by Finkel and Simonnet [6].
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Fig. 7. The gadget to replace a state in A.
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5 A Fragment of the Wadge Hierarchy

Let ϕ2(0) denote the first fixed point7 of the ordinal epsilon function, namely
the one that enumerates the fixed points of the exponentiation of base ω:

ε0 = sup
n<ω

ω . .
.
ω0

︸ ︷︷ ︸
n

; εα+1 = sup
n<ω

ω . .
.
ω(εα+1)

︸ ︷︷ ︸
n

; ελ = sup
α<λ

εα, for λ limit.

Finally: ϕ2(0) = supn<ω

n
︷ ︸︸ ︷
ε. . .ε0

.

We recall that every ordinal α > 0 admits a unique Cantor normal form of
base ωω (CNF) which is an expression of the form α = (ωω)αk ·νk+· · ·+(ωω)α0 ·ν0
where k < ω, 0 < νi < ωω for any i ≤ k, and α0 < · · · < αk < α.

For every ordinal 0 < α < ϕ2(0), we inductively define a pair of automata
(Aα, Āα) whose languages are incomparable through the conciliatory ordering.
If the CNF of α is α = (ωω)αk · νk + · · · + (ωω)α0 · ν0 we set

Aα = A(ωω)αk •νk+ · · ·+A(ωω)α0 •ν0, Āα = A(ωω)αk •νk+ · · ·+Ā(ωω)α0 •ν0,

where A(ωω)αi and Ā(ωω)αi are respectively

– �and �if αi = 0;
– (ωω)Aαi and (ωω)Āαi if αi < (ωω)αi ;
– εA2+β

and εĀ2+β
if αi = (ωω)αi holds8 and αi = εβ for some β < αi.

Lemma 4. For 0 < α < β < ϕ2(0), we have

1. Aα �≤c Āα and Āα �≤c Aα.
2. Aα <c Aβ; Āα <c Aβ; Aα <c Āβ and Āα <c Āβ.

Applying the embedding L �→ Lb, we have thus generated a family
(
Aα

b
)
α<ϕ2(0)

of parity tree automata of index [0, 2] that respects the strict Wadge ordering:
α < β if and only if Aα

b <W Aβ
b. Hence the main result follows.

Theorem 2. There exists a family
(
Aα

b
)
α<ϕ2(0)

of parity tree automata of
index [0, 2] such that

1. they recognize languages of full trees over the alphabet {a, b, c};
2. α < β holds if and only if Aα

b <W Aβ
b holds as well.

Let Aϕ2(0)
b be an automaton of index [0, 2] over the alphabet {a, b, c} that

recognizes a language equivalent to W[0,2]. We formulate the following conjecture.

Conjecture. Let L be a regular non-self-dual full language of index [0, 2]. Then
either L ≡W W[0,2], or there exists α < ϕ2(0) such that L ≡W L(Aα

b) or
L� ≡W L(Aα

b).
7 Another way to characterise ϕ2(0) is to remember that an ordinal is the set of its

predecessors and notice that a nonzero ordinal is of the form respectively ωα iff it is
closed under addition and εα iff it is closed under x �−→ ωx. Then ϕ2(0) is the first
non null ordinal closed under x �−→ εx as well as x �−→ ωx and x, y �−→ x + y.

8 Notice that we have αi = (ωω)αi ⇐⇒ αi = ωαi .
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6 Conclusion

In this paper, we have produced a very long chain of parity tree automata of
index [0, 2] but of different Wadge degrees. Its length is ϕ2(0)+1, where ϕ2(0) is
the first fixed point of the ordinal function that itself enumerates all fixed points
of the ordinal exponentiation x �→ ωx. We conjecture that every regular non-
self-dual language of index [0, 2] is, up to Wadge equivalence, recognized by an
automaton in

(
Aα

b
)
α<ϕ2(0)+1

. Since degrees of self-dual languages of index [0, 2]
are always immediately above and below two non-self-dual degrees of languages
of index [0, 2], this conjecture would imply that the height of the Wadge hierarchy
of regular languages of index [0, 2] is exactly ϕ2(0) + 1.

The whole construction is effective, meaning that the mapping α �→ Aα
b (for

0 < α < ϕ2(0) + 1) is recursive. It also means that, for any 0 < α < β < ϕ2(0) + 1,
the relation Aα

b <W Aβ
b which stipulates that there exist two strategies – one

that is winning for player II in the game W (Aα
b,Aβ

b) and another one that
is winning for I in the game W (Aβ

b,Aα
b) – can be established by recursively

providing such strategies. However, we did not consider any decidability issue.
It thus remains open whether one can decide, given any automaton B and any
ordinal 0 < α < ϕ2(0) + 1, whether B <W Aα

b holds or not.
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