Square on Ideal, Closed and Free Languages

. , ~ =4
Kristina Cevorova(®)

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
cevorova@mat .savba. sk

Abstract. We study the deterministic state complexity of a language
accepted by an n-state DFA concatenated with itself for languages from
certain subregular classes. Tight upper bounds are obtained on optimal
alphabets for prefix-closed, xsided-ideal and xfix-free languages, except
for suffix-free, where a ternary alphabet is used.

1 Introduction

Janusz Brzozowski and his coauthors have recently published a series of articles
concerning quotient complexity of basic operations such as concatenation, Kleene
closure or boolean operations on ideal [1], free [2], and closed [3] languages. The
results were usually significantly smaller compared to the state complexity of
general languages, despite the fact that quotient and state complexity is numer-
ically always the same.

None of these articles considered the operation square. Since it is a special
case of concatenation — a product of language with itself — results for concatena-
tion provide an immediate upper bound on state complexity of operation square.
On the other hand, the state complexity of square on general languages has been
studied by Rampersad [4]. He showed, that in the binary case it is n2" — 27~ 1
whereas in unary 2n—1. Our aim was to study the state complexity of a square on
certain ideal, free or closed subclasses of regular languages and compare results
with these upper bounds.

The study of these subregular classes is not isolated. Determination of many
classes of NFAs was considered in [5], including free and closed languages. Syn-
tactic complexity was studied for ideal and closed languages [6]. A more special-
ized study of suffix-free languages is in [7], of prefix-free languages in [8] and of
prefix-closed languages in [9] and [10].

This paper is organized as follows. In next section we give the most important
definitions. In Sect.3 we study ideal languages, Sect.4 is dedicated to prefix-
closed languages and then, in Sect. 5, we discuss free languages. In the conclusion,
we compare our results with results for concatenation on the same classes and
for general regular languages.

2 Preliminaries

We assume, that the reader is familiar with basic notions from automata theory,
for reference see [11]. Here we recall only the most important definitions.

© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 70-80, 2015.
DOI: 10.1007/978-3-319-19225-3_6

Square on Ideal, Closed and Free Languages 71

Let [c, d] denote the set {c,c+1,...,d} if ¢ < d. A binary operation & called
symmetric difference is defined on sets as S®S' = SUS — (SN S’). Cardinality
of set S is denoted by |S|.

An incomplete DFA is an NFA A = (Q, X, §,{qo}, F)) with single initial state
and with the property that for every ¢ € @ and a € X the inequality |d(g,a)] <1
holds. Thus some transitions may be not defined, but this is the only trace of
nondeterminism. It could be made deterministic by adding one nonfinal dead
state, where all previously undefined transitions are incoming.

Let L be a regular language. The state complezity is denoted by sc(L), and
is defined as the number of states of its minimal DFA, whereas the incomplete
state complezity isc(L), is the number of states of its minimal incomplete DFA.

Let w, v, z,w be words. If w = wvzx, then we call u a prefiz, x a suffix and v
a factor of word w. If w = uiviugvs - - - ukvE, for some words u;,v;, then word
u = uju - - - uy 1s called subword of w.

We call L afiz-free for xfix € {prefix, suffix, factor, subword}, if whenever
u,v € L and u is xfix of v, then u = v. Similarly, L is zfiz-closed, if whenever u
is xfix of v and v € L, then also u € L. And lastly we call L an zsided ideal for
xsided € {left, right, 2-sided, all-sided}, when L = Y*L, L = LY* [= X*LX*,
L = LwX* respectively, where w is the shuffle operation. Square of L is language
L - L, denoted as L?.

Sometimes we will think of letters as of a function Q — @Q. In particular,
this allows us to define for each letter a inverse function a~! for all states with
exactly one incoming transition on a. This can be naturally generalized for words.

Proposition 1. Note that in the case w™'(q) ewists, there is a unique state,
from which state q could be reached on the word w.

The standard construction of DFA for square of DFA A = (Q, X, 9, s, F'). At first,
we define an NFA accepting L?(A) as shown in Fig. 1. If A has a dead state, we
remove it, to obtain an incomplete DFA. Then we take two exact copies of the
DFA A with all transitions and change labels of states so they are unique and a
state t becomes ¢;. Other changes are, that s will not be initial and we change the
finality of all states in the first copy to nonfinal. Lastly, we will add transitions.
Whenever f € F, then we add a transition gy 5.

Fig. 1. NFA for square

72 K. Cevorovéd

Now we determine this NFA by the standard subset construction to obtain
DFA accepting L?(A). Note that all reachable states contain at most one state
from the first copy, because this copy is deterministic and there is no transition
to it from the second copy.

3 Xsided Ideal Languages

A concatenation of left ideal languages has a quotient, i.e., also state complexity
m+mn —1 [1]. Witness languages are unary a" 'a* and a™ 'a*; thus the upper
bound on the state complexity of square of left ideal language is 2n — 1 and is
tight with the witness a® 'a*. Moreover, since 2-sided and all-sided ideals are
also left ideals, this upper bound also holds for them. Because in the unary case
the 2-sided or all-sided ideal is the same as left ideal, this bound is tight. Only

nonunary right ideals remain unresolved by this reasoning.

Proposition 2. A language L is right ideal if and only if the minimal DFA that
recognizes L has exactly one final state with all outcoming transitions leading back
to this final state.

Lemma 3. Let L be a right ideal language with sc(L) = n. Then sc(L?) <
n+2"2,

Proof. This is a direct consequence of Theorem 9 in [1], which states, that prod-
uct (concatenation) of two right ideal languages with quotient complexities m
and n has quotient complexity at most m + 2”2, We will also provide an ele-
mentary proof, since it provides the insight necessary for the following lemmata.
Let n — 1 be the only final state of a minimal DFA for a right-ideal language.
Consider the standard construction of an NFA for a square and then the subset
determination of it as described in the preliminaries. What kind of subsets are
reachable?

Since n — 1 loops to itself on all letters, states reachable from the state S
containing ¢,_1 again contain ¢,_1. The state n — 1 is a final state, thus, that
0 € S. Moreover, it is the only final state, thus if i < n — 1 and ¢; € S is
reachable, then S = {¢;}.

Finally, consider the case when n — 1 € S. It is a final state and all states
reachable from such state contain n — 1, therefore are final. Hence, all such states
are equivalent.

Summed up, that is n — 1 states in form {g;}, 2”2 for states in form
{qn-1,0} U S, where S C {1,2,...,n — 2} and 1 state for all accepting sub-
sets, in total n + 272 states. a

Lemma 4. For every n > 2, there exists a binary right ideal language L with
sc(L) =n and sc(L?) =n + 272,

Proof. Consider the DFA A = ({0,1,...,n — 1},{a,b},4,0,{n — 1}) shown in
Fig. 2, where § is defined as follows:

Square on Ideal, Closed and Free Languages 73

0, ifi = 0;
5(i.a) = i+1, ifi<n—1; 5(i.5) — i+1, ifl1<i<n-—3;
" In-1, ifi=n-—1. o, ifi =n—2;

n—1, ifi=n-—1.

Fig. 2. Witness for right-ideal bound optimality

We will show that all subsets considered in Lemma 3 are reachable and
distinguishable. We will start with reachability.

For i < n — 1 states {¢;} are reachable by word a*. We have to accept word
a?(™=1) | thus final state could be also reached. The reachability of states of the
form {¢n—1,0, j1, j2, ..., Jk}, where 1 < j; < ja < --- < ji, is proven by induction
on the size of maximal element of this set — the element j;. The state {g,—1,0}
is reached by the word a"~*.

The induction hypothesis is, that all states S with max S = j; — 1 are reach-
able. If jl = 17 then {qnflaoa 17j27 oo 7,716} = a({anlaova -]-7 cee 7jk - 1})7
otherwise {¢,-1,0,1,..-,7k} = a({qn-1,0,51 — 1,...,Jk — 1}).

Proof of distinguishability is necessary only for nonfinal states. We will start
by distinguishing states S and S’, where SN [1,n — 1] # @.

Let m = max(S @ S’) — this is well-defined and m > 0, since S # S’. Without
loss of generality let m € S. Denote B = §(S,b"~2"™) and B’ = §(5’,b""27™).
Note that the state n — 1 is not reachable from the state 0 by any word shorter
than n — 2 and m < n — 2 and the transition function on states other than
n — 1 is injective. Therefore a state reached by b”2~™ contains n — 2 iff we
started in a state containing m and thus n — 2 € B, while n — 2 € B’. On the
other hand, neither B nor B’ does contain n — 1, since n — 1 has no incoming
transition by b. And since the final state n — 1 is reachable by a only from n — 1
and n — 2, the state 6(B,a) is final, while §(B’, a) is not. Therefore the word
b"~2~™q distinguishes these two states.

Now we will distinguish states {¢;} and {g;} for 0 <i < k <n—1 (we treat
{gn-1,0} as {g,_1}). The word a?*~27* is accepted from {gx}, but not from
{qi}, since it is too short. O

Combination of two previous lemmata yields the following result.

Theorem 5. Let n be integer with n > 2 and L be a right ideal language with
sc(L) = n. Then sc(L?) < n +2"2, and this bound is tight for an alphabet of
size at least two.

74 K. Cevorovéd

4 Prefix-Closed Languages

Since minimal DFA for prefix-closed has all states final [9], except for one dead
state, it is much more convenient to use incomplete DFA. We will do so, and in
the end, we will derive results for standard state complexity.

Lemma 6. Let L be a prefiz-closed language with isc(L) = n. Then isc(L?) <
(n+5)2n=2 — 2.

Proof. Let A be the minimal DFA for the language L and let S be a reachable
subset state of the standard square DFA construction. Let us label states of A
with integers from [0,n — 1] so that 0 is the initial state of A. We will show that
if g; € S, then alsoi € S and s € S.

The initial subset state is {go,0}. Let w be a word such that {go,0} —= S.
Then if ¢; € S, it means that s — i in A and therefore {g;,i} C S. Since
g; is final, 0 € S. Moreover, state {0,1,...,n — 1} is unreachable, because it
could be reached only from some state S’ with some ¢; € S on a letter a with
an undefinied transition from ¢, but that results in a state with at most n — 1
states.

Summing up, there are (n — 1)2"~2 states containing ¢; other than g plus
271 for those with go plus 2" — 2 for subsets of [0,n — 1], not counting the
unreachable full state and the empty dead state uncounted in incomplete DFAs.

O

Lemma 7. Let n > 2. There exists a binary language L with isc(L) = n and
isc(L?) = (n+5)2""2 — 2.

Proof. If n = 2, consider the DFA ({0,1},{a,b},0,0,{0,1}) with transitions
defined as §(0,a) =1, 6(0,b) = @ and §(1,a) = §(1,b) = 0.

For n > 2 consider the DFA A = ([0,n — 1], {a,b},0,0,[0,n — 1]) shown in
Fig. 3 where

@, ifi=0;
ifi =1;
(i, a) = 0 e &L®={

i+1, if2<i<n-—2
2, ifi=n—1.

i+1, if1<i<n-—2
0, ifi=n—1.

Fig. 3. The witness for prefix-closed bound optimality

Square on Ideal, Closed and Free Languages 75

Note that in the standard square DFA construction for this witness DFA (see
preliminaries), if n — 1 is a member of set S, then |b(S)| = |S|. Moreover,

S|, ifl ¢ S;
la(S)| = ol :
S| —1, iflesS.

To prove reachability, we will use a variation on an inductive proof. Largest
sets will be used as the base of the induction and in an inductive step, we will
show, how to reach smaller sets. As the base of the induction we will show that
all sets in form {g;,0,1,...,m —2,n — 1} are reachable from the start state as
follows:

n—1 i1
(90,0} "= {gn_1,0,1,...,n—2,n— 1} “5 {;,0,1,...,n — 2,n — 1}.

The induction hypothesis is that all states S with |S N [1,n — 1]| > k + 1 with
property ¢; € S implies that ¢ € S are reachable. We will show that all such
states S” with |S" N [1,n — 1]| = k are also reachable. The proof is divided into
four cases in all of them we suppose that 0 < j, < jr41 (r is used as an arbitrary
index 1 < 7 in this proof).

1. 8 ={¢,0,41,...,7k} and j; > 1 and @ € S. Since j,. # 1, necessarily also
i # 1 (see the proof of Lemma 6). In that case is a~1(S) well defined and
we have a™1(S) = {¢u-1(:),0,1,a *(j1),...,a (r)} — {@,0,51,.--,}
Both g,-1(;y € S and a~!(i) € S. Moreover since a is bijection on [2,n — 1],
set a=1(S) has k + 1 elements from [0,n — 1].

2. 8={¢,0,1,42,...,jk} Let m = min{b| b > 0 and b # j.}. Then, since bis a
bijection, the set B = {g,-m-1(;), b= (=1 (0), b= (5y), ..., b= MU ()}

is well-defined. Then we have B LA {¢:,0,1,ja, ..., Jk}-

The choice of the exponent m — 1 was deliberate so that 1 ¢ B. Moreover,
since 0 is a member of each state b!(B) in this computing path, the state
b=1(0) = n — 1 is also a member of b'(B). Therefore, as noted at the begin-
ning of this proof, this implies that |B| = [b(B)| = --- = |~ Y(B)| = |S].
This shows how S can be reached from a state of the same size containing 1,
which has already been shown to be reachable in case 1.

3. 8S={0,j1,-..,Jjx}. Then {qo,0,a= (j1),...,a " (jr)} == {j1,.--,Jx}. Since
letter a is an injection on states other than 0, the state on the left was shown
to be reachable in 2. ,»

4.8 = {j1,.-,jr}. Then {0, 4o — j1,- -, dk — 1} — {j1,- -, jx}. Since b is a
bijection, the state on the left was shown to be reachable in 3.

The proof of distinguishability of states S and S’ is divided into four cases. The
empty state is the only nonfinal state; therefore in each of these cases, our aim
is to find a word that leads to the empty state from one of these states, whereas
from the other does not.

1. Both S and S’ are subsets of [0,n — 1]. Without loss of generality there
exists s € S such that s ¢ S’. The transition on b in states that are subsets

76 K. Cevorovéd

of [0,n — 1] never changes the size of a resulting state, while a transition on
a changes it iff 1 is its member. We will call a state the successor of a given
state on a word w, if it is reached on this word without using ¢ transition.
State ¢ € S’ will have no successors on words with prefix 4" %a. In this
manner, we gradually construct word removing successors of all states in S’
so it will have no successor and we reach the empty state. On the same word,
we removed all states in S that are in S N S’. But we did not remove s, so
the resulting state is not empty.

2. S is a subset of [0,n — 1]. Let ¢; € S'. If i ¢ S, then we just erase the
state S as in case 1. The successor of ¢; was not erased, so the result is an
non-empty state. If i € S, we erase everything except i. In the successor of
S’, there are still at least the states 0 and successor of ¢ and ¢;. We will not
remove successors of states other than ¢ while removing i. There always is
some other state, unless we have states {qo,0} and {0}. But the word b"a
distinguishes these two.

3.¢. € S,q € 8 and i < j. Then qo € b"7(S’) while gi1n—; € b"7I(S).
The state go has no successor on a, therefore b"~7a(S’) C [0,n — 1], while
b"Ia(S) € [0,n — 1]. We distinguished these types of states in the case 2.

4. g; € S and ¢; € S’ for some i. At first, suppose that S @ S’ # {1}; we will
resolve the opposite later. A transition on a”~'~?ba leads from both states
to two different states in [0, — 1]. Since any difference other than 1 between
S and S’ is preserved by transitions on a, following a transition on b adds 1,
but this leaves the difference (which is in the cycle [2,n — 1]) untouched and
so does the last transition on a. So we reduced this to case 1.

Lastly, if S @ S # {1}, that is S = S" U {1}, then b(S) ® b(S") = {2} and
this case was treated in previous paragraph. a

Now we will combine previous results for incomplete state complexity to get a
tight upper bound on the standard deterministic state complexity.

Theorem 8. Letn > 3 and L be prefiz-closed language with sc(L) = n. Then
sc(L?) < (n+4)2"3—1, and this bound is tight for an alphabet of size at least two.

Proof. Since all prefix-closed languages L with sc(L) = n > 2 have a dead state,
isc(L) = n — 1. Prefix-closed languages are closed under the operation square.
Therefore sc(L?) =isc(L?)+1=(n—1+45)2" 172 -24+1=(n+4)2"3-1.0

5 Xfix-Free Languages

The state complexity of a concatenation of prefix-free languages is m +n — 2
[12]. In fact, this is not only a tight upper bound, but also a lower bound.
Beside that witness languages are unary {a® '} and {a™~ '}, so {a" "1} is also a
unary witness for a prefix-free square. Moreover, bifix-, factor- and subword-free
languages are also prefix-free and in the unary case all of these properties are
the same, so the state complexity is the same for all of these classes. It remains
to investigate suffix-free languages.

Square on Ideal, Closed and Free Languages 77

Lemma 9. If L is a suffiz-free regular language with sc(L) = n, then sc(L?) <
n2" 3 + 1.

Proof. By [13], every DFA accepting L is nonreturning with a dead state. Let
A= ([0,n — 3] U {s,d}, X, 0,s, F) be the minimal DFA for L, where d denotes
the dead state.

Let S be a reachable set in the standard square construction on A. Suffix-
freeness imposes certain restrictions on S. Since A is nonreturning, s € S iff
SN F # @ and, for the same reason, if ¢s € S, then S = {¢s}. Note that states
S and SU{d} are equivalent. Finally, we will show that if for index ¢ with 7 # d
holds that if ¢; € S, then i ¢ S.

Fig. 4. Sketch of proof

Suppose that there exists reachable subset S and index ¢, such that both ¢
and ¢; are members of S. Consider a computation that shows reachability of S.
Since 7 is in S, there was a step when the first copy of an DFA A was in state gy
corresponding to final state of A and from this step, the computation led from
s to ¢ and from ¢¢ to ¢;. Let u and v denote words corresponding to these two
parts of the computation, respectively. Note that u # €, because s is not final. If
i # d, then i is a useful state and some final state f’ is reachable from it on word
w. So there are these two paths ¢ — gy and s 2%, #'. But this means that A
accepts both uvw and vw, and that is impossible, because A accepts suffix-free
language and u # €.

This sums up to (n—2)2"~3 equivalence classes of subset states when g ¢ S
and ¢s ¢ S, plus 2"~ 2 classes of states such that ¢; € S and plus one initial state
{gs}, in total n2"~3 + 1 states. O

Lemma 10. There exists a suffiz-free language L with sc(L) = n and sc(L?) =
n2"3 4+ 1.

Proof. Consider the DFA in Fig. 5, note that we did not draw transitions leading
to the dead state d. This automaton satisfies requirements of Lemma1 in [7], so
it accepts a suffix-free language.

At first, we will show that all equivalence classes considered in the Lemma 9
are reachable. As presence of the dead state in a subset is unimportant and
the presence of s determined, we will usually omit them, unless they are impor-
tant. The initial state {gs} is reachable. For the reachability of S, we will use a
variation of a mathematical induction on a size of S.

78 K. Cevorovéd

Fig. 5. Witness for suffix-free bound optimality

As the base of the induction we will show that the largest sets, that is sets
such that |[S N [0,n — 3]| = n — 3 are reachable.

n

-3 i—1

{qS} L){q”7«*37s}a_) {q’ﬂ*37071""7n_4}b_) {q7«7071771_177'+177n_3}
n—3

{qs} = {q’ﬂ*37s} — {q’ﬂ*37031a"'7n_4} -

7—1
5 40,1,...,n—4} 55 {0,1,...,i—1,i+1,...,n—3}.

The inductive hypothesis now is that all sets S with |SN[0,n—3]| = k+1 are
reachable. First, let it be the case that the set S = {j1,J2,...,jx} and let m =

mln{p| pE [07 ’I’L—l} and p ¢ S} Then S = {jla s 7jkf(n737m),m+1,m+2,.‘.7n73}~
Then the following computation shows reachability:

{mer —(m+1),... .k —(m+1),n—-3—-m,...,n—4,n—3}

) m41
L){jm,—i-l7(Tn<i>1)7"'ajk7(7/”’4>]-)afn’f377”3"'37174}b‘>

pmtl ; .
— {0,1,...,m =1, g1y ey Jr)
The proof for states of the form {g;,j1,...,jx} is similar, with redefinition
of m =min{p| p € [0,n —1] and p ¢ S and p # i}. Just note that whenever we
reach state g,_3 there is indeed 0 in the following state. The empty i.e., dead
state, is reached from {n — 1} on ¢ and lastly,

{gn_3,50,1,...,n—4} 5 {0,1,...,n — 3}.

Now we will prove distinguishability. Notice that the NFA for the square has
the following properties:

the string ¢ is accepted only from state n — 1;
the string "~ 1~% is accepted only from state 4
the string ab™ ! is accepted only from 0;

the string cab™ ! is accepted only from g,,_3;
the string a” ' ~fcab™ ! is accepted only from g;.

G o=

Hence for each state g of this NFA, there is a string w, which is accepted from
q, but rejected from any other state. Now let S and S’ be two distinct subsets
in the subset automaton of this NFA. Then S and S’ differ in a state ¢ and the
string w, distinguishes them. O

Square on Ideal, Closed and Free Languages 79

Table 1. Comparison of results for square and concatenation.

Square |37 Concatenation | |>]

Ideal unary 2n —1 m4+n—1

right n 4+ 2n—2 2 |m+2n—2 2

left, 2-sided, all-sided 2n —1 1 m4+n—1
Closed |unary ? m4+n—2

suffix ? (m—-1)n+1 3

prefix (n+4)273-1/2 |[(m+1)2n!

factor, subword ? m4+n—1 2
Free unary 2n — 2 m4+n—2

prefix, bifix, factor, subword |2n — 2 1 m4+n—2 1

suffix n2" =3 +1 3 |(m—-1)2""1+1|3
Regular | unary 2n — 1 mn if (m,n)=1

general n2n —2n-1 2 |m2n —2n-1 2

Theorem 11. Let L be a suffiz-free language with sc(L) = n. Then sc(L?) <
n2" 3 + 1, and this bound is tight for an alphabet of size at least three.

Proof. This is a corollary of Lemmata 9 and 10. O

6 Conclusions

Table 1 is a summary of our results and comparison with catenation and regular
languages [14].

The state complexity of square for all closed languages, except for prefix-
closed, remains open.

References

1. Brzozowski, J.A., Jirdskova, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36-52 (2013)

2. Brzozowski, J.A., Jirdskovd, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. In: Démési, P., Ivén, S. (eds.) AFL,
pp. 123-137 (2011)

3. Brzozowski, J.A., Jirdskova, G., Zou, C.: Quotient complexity of closed languages.
Theor. Comp. Sys. 54(2), 277-292 (2014)

4. Rampersad, N.: The state complexity of L? and LF. Inf. Process. Lett. 98(6),
231-234 (2006)

5. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accept-
ing subregular languages. Theor. Comput. Sci. 410(35), 3209-3222 (2009). DCFS
proceedings

6. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117-128. Springer,
Heidelberg (2011)

80

10.

11.

12.

13.

14.

K. Cevorova

. Cmorik, R., Jirdskova, G.: Basic operations on binary suffix-free languages. In:
Kotések, Z., Bouda, J., Cernd, I., Sckanina, L., Vojnar, T., Antos, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94-102. Springer, Heidelberg (2012)

. Jiraskova, G., Krausovd, M.: Complexity in prefix-free regular languages. In:
McQuillan, 1., Pighizzini, G. (eds.) DCFS. EPTCS, vol. 31, pp. 197-204 (2010)

. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,

or both. Theor. Comput. Sci. 410(4749), 5010-5021 (2009)

Cevorové, K., Jirdskové, G., Mlynérécik, P., Palmovsky, M., Sebej, J.: Operations

on automata with all states final. In: Esik7 Z., Fiiloép, Z. (eds.) Proceedings 14th

International Conference on Automata and Formal Languages, AFL 2014, Szeged,

Hungary, May 27-29, 2014. EPTCS, vol. 151, pp. 201-215 (2014)

Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,

Boston (1997)

Han, Y.S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-

guages. In: Descriptional Complexity of Formal Systems, pp. 165-176 (2006)

Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular

languages. In: Kucera, L., Kucera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 501—

512. Springer, Heidelberg (2007)

Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theor. Comput. Sci. 125(2), 315-328 (1994)

	Square on Ideal, Closed and Free Languages
	1 Introduction
	2 Preliminaries
	3 Xsided Ideal Languages
	4 Prefix-Closed Languages
	5 Xfix-Free Languages
	6 Conclusions
	References

