
On Some Decision Problems for Stateless
Deterministic Ordered Restarting Automata

Kent Kwee and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. The stateless deterministic ordered restarting automata
accept exactly the regular languages, and it is known that the trade-off
for turning a stateless deterministic ordered restarting automaton into
an equivalent DFA is at least double exponential. Here we show that the
trade-off for turning a stateless deterministic ordered restarting automa-
ton into an equivalent unambiguous NFA is exponential, which yields an

upper bound of 22O(n)
for the conversion into an equivalent DFA, thus

meeting the lower bound up to a constant. Based on the new transfor-
mation we then show that many decision problems, such as emptiness,
finiteness, inclusion, and equivalence, are PSPACE-complete for stateless
deterministic ordered restarting automata.

Keywords: Restarting automaton · Ordered rewriting · Descriptional
complexity · Decision problem

1 Introduction

The deterministic ordered restarting automaton (or det-ORWW-automaton) was
introduced in [9] in the setting of picture languages. While the nondeterministic
variant of this type of automaton even accepts some languages that are not
context-free, it has been shown in [9] that the deterministic variant accepts
exactly the regular languages.

In [10] an investigation of the descriptional complexity of the det-ORWW-
automaton was initiated. It was shown that each det-ORWW-automaton can be
simulated by an automaton of the same type that has only a single state, which
means that for these automata, states are actually not needed. Accordingly,
such an automaton is called a stateless det-ORWW-automaton (stl-det-ORWW-
automaton). For these automata, the size of their working alphabets can be taken
as a measure for their descriptional complexity, and it has been shown that
these automata are polynomially related in size to the weight-reducing Hennie
machines studied by Pr̊uša in [12]. Actually, for n ≥ 1, there exists a regular
language that is accepted by a stl-det-ORWW-automaton of size O(n) such that
each DFA for this language has size at least 22

n

. On the other hand, each stl-
det-ORWW-automaton of size n can be simulated by a DFA of size 22

O(n2·log n)
.

Thus, there is a huge gap between the upper and lower bounds.
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 165–176, 2015.
DOI: 10.1007/978-3-319-19225-3 14

166 K. Kwee and F. Otto

Here we present a new construction that, for a stl-det-ORWW-automaton
of size n, yields an equivalent unambiguous NFA of size 2O(n), which implies
that there is an equivalent DFA of size 22

O(n)
. Actually, we will show that

these bounds are sharp (up to the O-notation). We then exploit our construc-
tion to establish that many basic decision problems, like emptiness, universality,
finiteness, inclusion, and equivalence, are PSPACE-complete for stl-det-ORWW-
automata. In addition, we consider the problem of deciding, given a stl-det-
ORWW-automaton, whether the language accepted belongs to a certain subclass
of the regular languages. For the subclasses of strictly locally k-testable lan-
guages (k ≥ 1), nilpotent languages, combinatorial languages, and some others,
we obtain that the corresponding decision problems are PSPACE-complete, too.

This paper is structured as follows. In Sect. 2, we introduce the stl-det-
ORWW-automata, and we restate the main results on them from [10]. Then, in
Sect. 3, we present the announced construction of an NFA from a given stl-det-
ORWW-automaton, and in Sect. 4 we consider the decision problems mentioned
above. The paper closes with Sect. 5, which summarizes our results briefly and
states a number of open problems for future work.

2 Stateless Deterministic Ordered Restarting Automata

A stateless deterministic ordered restarting automaton (stl-det-ORWW-automa-
ton) is a one-tape machine that is described by a 6-tuple M = (Σ,Γ,�,�, δ, >),
where Σ is a finite input alphabet, Γ is a finite tape alphabet such that Σ ⊆ Γ ,
the symbols �,� �∈ Γ serve as markers for the left and right border of the work
space, respectively,

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) ��� {MVR} ∪ Γ ∪ {Accept}

is the (partial) transition function, and > is a partial ordering on Γ . The tran-
sition function describes three different types of transition steps:

(1) A move-right step has the form δ(a1a2a3) = MVR, where a1 ∈ Γ ∪ {�} and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right. Observe
that no move-right step is possible, if the window contains the symbol �.

(2) A rewrite/restart step has the form δ(a1a2a3) = b, where a1 ∈ Γ ∪ {�},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its window by the symbol b and to restart.

(3) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪{�}, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we allow an
accept step of the form δ(��) = Accept.

If δ(u) is undefined for some word u, then M necessarily halts, when it sees u in
its window, and we say that M rejects in this situation. Further, the letters in
Γ � Σ are called auxiliary symbols.

A configuration of a stl-det-ORWW-automaton M is a pair of words (α, β),
where |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or

Decision Problems for Deterministic Ordered Restarting Automata 167

α ∈ {�} ·Γ ∗ and β ∈ Γ ·Γ+ · {�}; here αβ is the current content of the tape, and
it is understood that the window contains the first three symbols of β. In addi-
tion, we admit the configuration (λ,��). A restarting configuration has the form
(λ,�w �); if w ∈ Σ∗, then (λ,�w �) is also called an initial configuration. Fur-
thermore, we use Accept to denote the accepting configurations, which are those
configurations that M reaches by an accept step. We let �M denote the single-
step computation relation that M induces on the set of configurations, and the
computation relation �∗

M of M is the reflexive and transitive closure of �M .
Any computation of a stl-det-ORWW-automaton M consists of certain phases.

A phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration – such a phase is
called a tail. By �c

M we denote the execution of a complete cycle, and �c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that M induces on its set of restarting configurations.

An input w ∈ Σ∗ is accepted by M if the computation of M which starts
with the initial configuration (λ,�w �) ends with an accept step. The language
consisting of all input words that are accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by
a symbol b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
(|Γ | − 1) · n cycles and a tail. Thus, M can be simulated by a deterministic
single-tape Turing machine in time O(n2). The following example illustrates the
way in which a stl-det-ORWW-automaton works.

Example 1. Let n ≥ 2 be a fixed integer, and let M = (Σ,Γ,�,�, δ, >) be
defined by taking Σ = {a, b} and Γ = Σ ∪ { ai, bi, xi | 1 ≤ i ≤ n − 1 }, by
choosing the ordering > such that a > ai > xj and b > bi > xj hold for all
1 ≤ i, j ≤ n − 1, and by defining the transition function δ in such a way that
M proceeds as follows: on input w = w1w2 · · · wm, w1, . . . , wm ∈ Σ, M numbers
the first n − 1 letters of w from left to right, by replacing wi = a (b) by ai (bi)
for i = 1, . . . , n − 1. If wn �= a, then the computation fails, but if wn = a, then
M continues by replacing the last n − 1 letters of w from right to left using
the letters x1 to xn−1. If the n-th last letter is b or some bi, then M accepts,
otherwise the computation fails again.

Then L(M) = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b }. As shown
in [6], every det-RR(1)-automaton for L(M) has at least O(2n) states. Here a
det-RR(1)-automaton is another type of deterministic restarting automaton that
characterizes the regular languages (see [7]).

While nondeterministic ORWW-automata are quite expressive, the deterministic
variants are fairly weak. Taking the size of the tape alphabet as the measure
for the descriptional complexity of a stl-det-ORWW-automaton, the following
results are shown in [10].

168 K. Kwee and F. Otto

Theorem 2

(a) For each DFA A = (Q,Σ, q0, F, ϕ), there is a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ | = |Q| + |Σ|.

(b) For each stl-det-ORWW-automaton M with an alphabet of size n, there exists

a DFA A of size 22
O(n2 log n)

such that L(A) = L(M) holds.
(c) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1, $}∗ such that Bn

is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n), but
each DFA for accepting Bn has at least 22

n

states.

Thus, there is a double exponential trade-off for converting a stl-det-ORWW-
automaton into a DFA. Observe, however, that the gap between the lower and
upper bounds is still huge.

3 Simulating a stl-det-ORWW-automaton by an NFA

Here we present our main result, which consists in the construction of an unam-
biguous NFA A of size 2O(n) from a stl-det-ORWW-automaton M of size n such
that A accepts the same language as M . In order to simplify this construction,
we require that M only accepts on reaching the right sentinel �. This is not a
restriction, as shown by the following lemma.

Lemma 3. From a stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >), one can
construct a stl-det-ORWW-automatonM ′ = (Σ,Δ,�,�, δ′, >) such thatL(M ′) =
L(M), |Δ| ≤ |Γ | + 1, and M ′ only accepts when its window contains the right
sentinel �.

To motivate our main construction we consider an example.

Example 4. Let M be a stl-det-ORWW-automaton on the input alphabet Σ =
{a1, a2, a3, a4, a5} and the working alphabet Γ = Σ ∪ {b1, b2, b3, b4, c1, c2, c3, c4}
with the ordering ai > bi > ci for all 1 ≤ i ≤ 4, and let the transition function
be given by the following table:

δ(�a1a2) = b1, δ(�b1a2) = MVR, δ(b1a2a3) = MVR, δ(a2a3a4) = b3,
δ(b1a2b3) = b2, δ(c2c3a4) = MVR, δ(�c1b2) = MVR, δ(c1b2b3) = MVR,
δ(b2b3a4) = c3, δ(c2c3c4) = MVR, δ(�c1c2) = MVR, δ(c1c2c3) = MVR,
δ(c1b2c3) = c2, δ(c3a4a5) = b4, δ(c2c3b4) = MVR, δ(c3b4a5) = c4,
δ(�b1b2) = c1, δ(c3c4a5) = MVR, δ(c4a5�) = Accept.

Given the word w = a1a2a3a4a5 as input, M executes the following accepting
computation, where the rewritten letters are underlined:

(λ,�a1a2a3a4a5�) �c
M (λ,�b1a2a3a4a5�) �c

M (λ,�b1a2b3a4a5�) �c
M

(λ,�b1b2b3a4a5�) �c
M (λ,�c1b2b3a4a5�) �c

M (λ,�c1b2c3a4a5�) �c
M

(λ,�c1c2c3a4a5�) �c
M (λ,�c1c2c3b4a5�) �c

M (λ,�c1c2c3c4a5�) �∗
M Accept.

To encode this computation in a compact way, we introduce a 3-tuple of vectors
T = (L,W,R) for each position on the tape of M , where

Decision Problems for Deterministic Ordered Restarting Automata 169

– W is a sequence of letters W = (x1, x2, . . . , xr) over Γ such that x1 > x2 >
· · · > xr using the ordering on Γ defined by M ,

– L is a sequence of indices L = (i1, . . . , ir−1) such that i1 ≤ · · · ≤ ir−1 ≤ |Γ |,
– R is a sequence of indices R = (j1, . . . , jr−1) such that j1 ≤ · · · ≤ jr−1 ≤ |Γ |.
The idea is that W encodes the sequence of letters that are produced by M in an
accepting computation for a particular field, and L and R encode the information
on the neighbouring letters to the left and to the right that are used to perform
the corresponding rewrite operations. For the computation above we obtain the
following sequence of triples, where Λ denotes an empty sequence:

L0 W0 R0

Λ � Λ
L1 W1 R1

1 a1 1
1 b1 2

c1

L2 W2 R2

2 a2 2
3 b2 3

c2

L3 W3 R3

1 a3 1
2 b3 1

c3

L4 W4 R4

3 a4 1
3 b4 1

c4

L5 W5 R5

Λ a5 Λ
L6 W6 R6

Λ � Λ

For example, the triple (2, b3, 1) ∈ (L3,W3, R3) means that b3 is rewritten into c3,
while the left neighbouring field contains the second letter of its sequence W2,
and the right neighbouring field contains the first letter of its sequence W4.

If a letter is not rewritten at all, like a5, then the corresponding sequences L
and R are empty. In fact, there is a consistency condition that must be met by
the sequences Ri−1 and Li for each index i, as the rewrites at positions i−1 and
i are executed in some order, and this order is encoded in these sequences. For
example, L3 = (1, 2), which means that a3 is rewritten into b3, while tape field 2
still contains the original letter a2, and b3 is rewritten into c3, while tape field 2
contains the next letter b2. Thus, before the second rewrite at position 3 can
occur, the letter a2 at position 2 has been rewritten into b2, which is expressed
by the fact that R2 = (2, 3) starts with the number 2. Finally, the second number
in R2 states that b2 is rewritten into c2 only after the second rewrite at position 3
has been performed. Hence, R2 = (2, 3) and L3 = (1, 2) lead to the sequence of
rewrite steps (1 : a3 → b3), (2 : a2 → b2), (3 : b3 → c3), (4 : b2 → c2).
�
To formalize the notion of compatibility of two finite non-decreasing sequences
of integers R = (r1, . . . , rk) and L = (�1, . . . , �s), where k, s ≥ 0, we define a
multiset order(R,L) as follows:

order(R,L) = { ri + i − 1 | i = 1, . . . , k } ∪ { �j + j − 1 | j = 1, . . . , s }.

Now the pair of sequences (R,L) is called consistent, if order(R,L) = {1, 2, . . . ,
k + s}, that is, it is the integer interval [1, k + s]. In the example above, we obtain
order(R2, L3) = order((2, 3), (1, 2)) = {2, 4, 1, 3} = {1, 2, 3, 4}, thus we assign a
number between 1 and 4 = |R2| + |L3| to each of the rewrites at positions i − 1
and i, in this way specifying the order in which these rewrites must be executed.

Based on the above ideas, we will now establish the following general result.

Theorem 5. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton. Then
an unambiguous NFA A = (Q,Σ,ΔA, q0, F) can be constructed from M such that
L(A) = L(M) and |Q| ∈ 2O(|Γ |).

170 K. Kwee and F. Otto

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton. At the
extra cost of at most one additional tape symbol, we can assume by Lemma 3
that M executes an accept step only when its window contains the right sen-
tinel �. Let n = |Γ |. As a first step we construct an NFA B for the characteristic
language LC(M) = {w ∈ Γ ∗ | (λ,�w�) �∗

M Accept } of M , which consists of
all words over Γ that M accepts.

The NFA B = (Q,Γ,ΔB , q0, F) is constructed as follows:

– The set Q contains the initial state q0, a designated final state qF , and all
pairs of triples of the form ((L1,W1, R1), (L2,W2, R2)), where, for i = 1, 2,

• Wi is a sequence of letters Wi = (wi,1, . . . , wi,ki
) from Γ of length 1 ≤ ki ≤ n

such that wi,1 > wi,2 > · · · > wi,ki
, or Wi = (�) and ki = 1,

• Li is a sequence of positive integers Li = (li,1, . . . , li,ki−1) of length ki − 1
such that li,1 ≤ li,2 ≤ · · · ≤ li,ki−1 ≤ n,

• Ri is a sequence of positive integers Ri = (ri,1, . . . , ri,ki−1) of length ki − 1
such that ri,1 ≤ ri,2 ≤ · · · ≤ ri,ki−1 ≤ n,

• the sequences R1 and L2 are consistent, that is, order(R1, L2) = {1, 2, . . . ,
k1 + k2 − 2}.

The transition relation ΔB is given through the following rules, where x ∈ Γ
and ((Li−1,Wi−1, Ri−1), (Li,Wi, Ri)), i = 2, 3, are states from Q:

– ΔB(q0, λ) � qF , if δM (��) = Accept.

– ΔB(q0, x) � ((Λ, (�), Λ), (L1,W1, R1)), if x = w1,1.

– ΔB (((L1,W1, R1), (L2,W2, R2)), x) � ((L2,W2, R2), (L3,W3, R3)), if
1. x = w3,1,

2. ∀1 ≤ j ≤ k2 − 1 : δM

(
w1,l2,jw2,jw3,r2,j

)
= w2,j+1,

3. ∀1 ≤ j ≤ k3 − 1 : δM

(
w1,l2,l3,j

w2,l3,jw3,j

)
= MVR, where l2,k2 = k1 is

taken, and

4. δM (w1,k1w2,k2w3,k3) = MVR.

– ΔB (((L1,W1, R1), (L2,W2, R2)), λ) � qF , if
1. R2 is a sequence of 1’s of length k2 − 1,

2. δM (w1,k1w2,k2�) = Accept, and

3. ∀1 ≤ j ≤ k2 − 1 : δM

(
w1,l2,jw2,j �

)
= w2,j+1.

We will prove that L(B) = LC(M) holds.

Claim 1. LC(M) ⊆ L(B).

Proof. Let w ∈ Γ ∗ be a word that belongs to the language LC(M). Thus, the
computation of M that starts with the restarting configuration (λ,�w�) is
accepting. If w = λ, then δM (��) = Accept, which implies that qF ∈ ΔB(q0, λ).
It follows that w ∈ L(B) holds in this case.

Decision Problems for Deterministic Ordered Restarting Automata 171

Now assume that w = w1w2 · · · wn for some n ≥ 1 and letters w1, . . . , wn ∈ Γ .
As w ∈ LC(M), we can now use the accepting computation of M for w to con-
struct a representation as in the example above. This representation translates
into a sequence of states of B, and it can be shown that this sequence of states
yields an accepting computation of B for the input w.
�

Claim 2. L(B) ⊆ LC(M).

Proof. We have to check that we can deduct a valid computation of M from
an accepting computation of B. So let w ∈ Γ ∗ be any word in L(B), and let
n = |w|. If w = λ, then qF ∈ δB(q0, λ), which implies that δM (��) = Accept
holds, which in turn means that w ∈ LC(M).

If w = w1 ∈ Γ , then there exist sequences W1 = (w1,1, . . . , w1,k1) over Γ and
L1 = (l1,1, . . . , l1,k1−1) and R1 = (r1,1, . . . , r1,k1−1) over N such that

– w1,1 = w1,
– ((Λ, (�), Λ), (L1,W1, R1)) ∈ ΔB(q0, w1), and
– qF ∈ ΔB(((Λ, (�), Λ), (L1,W1, R1)), λ).

From the definition of ΔB it follows that either k1 = 1, and then Accept ∈
δM (�w1�), or k1 > 1, and then l1,j = 1 = r1,j for all j = 1, . . . , k1 − 1, w1,j+1 ∈
δM (�w1,j�) for all j = 1, . . . , k1 − 1, and Accept ∈ δM (�w1,k1�). Hence, we
see that the computation of M that begins with the restarting configuration
(λ,�w�) accepts, that is, w = w1 ∈ LC(M).

Now assume that w = w1 · · · wn for some n ≥ 2 and letters w1, . . . , wn ∈ Γ .
As B accepts on input w, there exist sequences Wi = (wi,1, . . . , wi,ki

) over Γ
and sequences of integers Li = (li,1, . . . , li,ki−1) and Ri = (ri,1, . . . , ri,ki−1),
i = 1, . . . , n, such that all of the following conditions are met:

1. ((Λ, (�), Λ), (L1,W1, R1)) ∈ ΔB(q0, w1),
2. ((Li−1,Wi−1, Ri−1), (Li,Wi, Ri)) ∈

ΔB((Li−2,Wi−2, Ri−2), (Li−1,Wi−1, Ri−1)), wi) for all i = 2, . . . , n,
3. qF ∈ ΔB((Ln−1,Wn−1, Rn−1), (Ln,Wn, Rn)), λ).

From the definition of ΔB we see that, for all i = 1, . . . , n, ki ≥ 1 and wi,1 = wi.
Now let N = N(R1, . . . , Rn) =

∑n
i=1 |Ri| =

∑n
i=1(ki − 1). By induction on N

we will prove the following technical statement.

Claim 2.1. The computation of M that begins with the restarting configuration
(λ,�w�) consists of N cycles and an accepting tail, that is, it has the form

(λ,�w�) �c
M (λ,�z(1)�) �c

M · · · �c
M (λ,�z(N)�) �∗

M (�u, v�) �M Accept,

where z(N) = uv and |v| = 2.

Proof. If N = 0, then ki = 1 for all i = 1, . . . , n, and hence, Wi = (wi) and
Li = Ri = Λ for all i = 1, . . . , n. From the definition of ΔB it follows that
δM (wi−2wi−1wi) = MVR for all i = 2, . . . , n, where w0 = � is taken, and
δM (wn−1wn�) = Accept. Thus, the computation of M that begins with the
restarting configuration (λ,�w�) is simply an accepting tail computation.

172 K. Kwee and F. Otto

Now assume that N ≥ 1. Then ki > 1 for some indices i ∈ {1, . . . , n}, and
accordingly, the corresponding sequences Li and Ri are non-empty. Because
of the consistency of the pairs (Ri−1, Li), i = 1, . . . , n, there exists an index
j ∈ {1, . . . , n} such that lj,1 = 1 = rj,1. Let s ∈ {1, . . . , n} be the mini-
mal index such that ls,1 = 1 = rs,1 holds. It follows that ks > 1 and that
Ws = (ws,1, ws,2, . . . , ws,ks

), where ws = ws,1 > ws,2. Let ŵ denote the word
ŵ = w1 · · · ws−1ws,2ws+1 · · · wn ∈ Γn. For this word the following result can be
shown.

Claim 2.1.1. (λ,�w�) �c
M (λ,�ŵ�).

We continue with the proof of Claim 2.1 by establishing the following claim,
which will allow us to perform the intended inductive step.

Claim 2.1.2. The word ŵ is accepted by the NFA B.

Proof. For all i = 1, . . . , n, we define sequences Ŵi over Γ and sequences of
integers L̂i and R̂i as follows:

Ŵi =
{

(wi,2, . . . , wi,ki
), if i = s,

Wi, otherwise;

L̂i =

⎧
⎨

⎩

(li,2, . . . , li,ki−1), if i = s,
(li,1 − 1, . . . , li,ki−1 − 1), if i = s + 1,
Li, otherwise;

R̂i =

⎧
⎨

⎩

(ri,2, . . . , ri,ki−1), if i = s,
(ri,1 − 1, . . . , ri,ki−1 − 1), if i = s − 1,
Ri, otherwise,

and we take k̂i to denote the length of the sequence Ŵi, i = 1, . . . , n. Then
k̂s = ks − 1, and k̂i = ki for all i �= s. In order to unify the notation we
write ŵ = w1 · · · ws−1ws,2ws+1 · · · wn as ŵ = ŵ1 · · · ŵn. Also we write Ŵi

as Ŵi = (ŵi,1, . . . , ŵi,k̂i
), and L̂i and R̂i as L̂i = (l̂i,1, . . . , l̂i,k̂i−1) and R̂i =

(r̂i,1, . . . , r̂i,k̂i−1), i = 1, . . . , n. It can now be shown that the above sequences
satisfy all of the following conditions::

1. ((Λ, (�), Λ), (L̂1, Ŵ1, R̂1)) ∈ ΔB(q0, ŵ1),
2. ((L̂i−1, Ŵi−1, R̂i−1), (L̂i, Ŵi, R̂i)) ∈

ΔB((L̂i−2, Ŵi−2, R̂i−2), (L̂i−1, Ŵi−1, R̂i−1)), ŵi) for all i = 2, . . . , n,

3. qF ∈ ΔB((L̂n−1, Ŵn−1, R̂n−1), (L̂n, Ŵn, R̂n)), λ).

It follows that the word ŵ is accepted by B using the sequence of states defined
above. As

N(R̂1, . . . , R̂n) =
n∑

i=1

(k̂i − 1) =
n∑

i=1

(ki − 1) − 1 = N(R1, . . . , Rn) − 1 = N − 1,

Decision Problems for Deterministic Ordered Restarting Automata 173

we can apply our induction hypothesis, which implies that the computation of M
that begins with the restarting configuration (λ,�ŵ�) consists of N − 1 cycles
and an accepting tail. Together with Claim 2.1.1 this says that the computation
of M that begins with the restarting configuration (λ,�w�) consists of N cycles
and an accepting tail, which completes the proof of Claim 2.1.
�
From the claims above we obtain that L(B) = LC(M) holds. As M is determinis-
tic, there is only a single accepting computation of B for each word w ∈ LC(M).
It follows that B is unambiguous.
�
Claim 3. |Q| ∈ 2O(|Γ |).

Proof. The set Q of states of B contains the two designated states q0 and qF

and certain states that consist of pairs of triples of the form (L,W,R), where W
is a sequence of letters W = (a1, . . . , am) from Γ such that a1 > · · · > am, and
L and R are sequences of integers L = (l1, . . . , lm−1) and R = (r1, . . . , rm−1)
such that 1 ≤ l1 ≤ · · · ≤ lm−1 and 1 ≤ r1 ≤ · · · ≤ rm−1. From upper bounds for
the number of these sequences we will obtain an upper bound for the size of Q.

From the condition on the sequence W we see that m ≤ n = |Γ |, and also
lm−1 ≤ n and rm−1 ≤ n. The sequence W defines the subset {w1, . . . , wm} of Γ ,
and different sequences W and W ′ yield different subsets. Hence, the number
2n − 1 of non-empty subsets of Γ is an upper bound for the number of different
subsequences W .

The sequence L can be interpreted as a multiset over the set of integers
{1, . . . , n}, because it can contain repetitions. This multiset is of size at most n−1
(counting elements with their multiplicities). There are

(
n+r−1

r

)
such multisets of

size r (see, e.g., [14]), and hence, the number of possible sequences L is bounded
from above by the expression

n−1∑

r=0

(
n + r − 1

r

)
≤

n−1∑

r=0

(
2n

r

)
≤

2n∑

r=0

(
2n

r

)
= 22n,

and the same is true for the number of possible sequences R. Hence, there are
at most 22n · 2n · 22n = 25n different triples of the form (L,W,R), and so the
number of states of B is bounded from above by the number 210n.
�
It follows that B is of size 2O(n). From B we now obtain an NFA A for the
language L(M) = LC(M) ∩ Σ∗ by simply deleting all transitions from ΔB that
read a letter x ∈ (Γ � Σ). Then it is immediate that A is an unambiguous NFA
of size 2O(n) that accepts the language L(A) = L(B) ∩ Σ∗ = L(M).
�

For all n ≥ 3, the language Un = {a2n} can be shown to be accepted by a
stl-det-ORWW-automaton with an alphabet of 3n − 1 letters, while each NFA
for Un needs at least 2n +1 states. Hence, the bound given in Theorem 5 is sharp
up to the O-notation. In addition, we have the following consequence, which is
a clear improvement over the upper bound given in Theorem 2 (b).

Corollary 6. For each stl-det-ORWW-automaton M with alphabet of size n,
there exists a DFA C of size 22

O(n)
such that L(C) = L(M) holds.

174 K. Kwee and F. Otto

4 Decision Problems for stl-det-ORWW-automata

The emptiness problem for an NFA A = (Q,Σ, δ, q0, F) of size |Q| = m is decid-
able nondeterministically in space O(log m) (see, e.g., [5]), and so, by Savitch’s
Theorem [13] it follows that NFA-Emptiness ∈ DSPACE((log |Q|)2). Based on this
observation we can use Theorem 5 to derive the following result.

Theorem 7. The emptiness problem for stl-det-ORWW-automata is PSPACE-
complete.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton such that
|Γ | = n. By Theorem 5, there exists an NFA A of size 2O(n) such that L(A) =
L(M). Now we can check emptiness of L(A) deterministically using space
(log(2O(n)))2 = O(n2). Thus, we see that stl-det-ORWW-Emptiness ∈ PSPACE.

Now let A1, . . . , At be t ≥ 2 DFAs over a common input alphabet Σ of size k
such that Ai has ni states, 1 ≤ i ≤ t. From these DFAs we can construct a stl-det-
ORWW-automaton M with a tape aphabet of size k · (1 + n1 + · · · + nt−1) + nt

such that L(M) =
⋂t

i1
L(Ai) [10]. Hence, M has at most O((k · ∑t

i=1 ni)3)
transitions, and so it can be computed from A1, . . . , At in polynomial time. Now
L(M) �= ∅ iff L(A1) ∩ · · · ∩ L(At) �= ∅, which shows that the above construction
yields a polynomial-time reduction from the DFA-Intersection-Emptiness Problem
to stl-det-ORWW-Emptiness. As the former is PSPACE-complete (see, e.g., [4]),
we see that the latter is also PSPACE-hard. Together with the membership in
PSPACE shown above, PSPACE-completeness follows.
�
From this theorem we also get the following completeness results.

Corollary 8. For stl-det-ORWW-automata, universality, finiteness, inclusion,
and equivalence are PSPACE-complete.

Proof. Universality: Let M be a stl-det-ORWW-automaton with input alpha-
bet Σ. In polynomial time we can construct a stl-det-ORWW-automaton M c

for the language L(M c) = (L(M))c = Σ∗
� L(M) from M such that M c uses

the same tape alphabet as M [10]. The automaton M is universal, that is,
L(M) = Σ∗, iff L(M c) = ∅. PSPACE-completeness of the universality problem
now follows from PSPACE-completeness for the emptiness problem.

Inclusion and Equivalence: Let M1 and M2 be stl-det-ORWW-automata with
alphabets of sizes n1 and n2, respectively. In polynomial time we can construct
a stl-det-ORWW-automaton M with an alphabet of size O(n1 · n2) from M1

and M2 such that L(M) = L(M1) ∩ L(M2)c [10]. Now L(M1) ⊆ L(M2) iff
L(M1) ∩ L(M2)c = ∅ iff L(M) = ∅. It follows that the inclusion problem is in
PSPACE, which in turn implies immediately that the equivalence problem is in
PSPACE.

On the other hand, let M ′ be a stl-det-ORWW-automaton that accepts
the empty set. Then L(M) = L(M ′) iff L(M) ⊆ L(M ′) iff L(M) = ∅. Thus,
PSPACE-completeness of the inclusion and the equivalence problems follows
from PSPACE-completeness for the emptiness problem.

Decision Problems for Deterministic Ordered Restarting Automata 175

Finiteness: Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. We
take a new symbol �, that is, � �∈ Γ , and define a stl-det-ORWW-automaton
M ′ = (Σ′, Γ ′,�,�, δ′, >) as follows:

– Σ′ = Σ ∪ {�} and Γ ′ = Γ ∪ {�},
– the transition function δ′ is obtained from δ by simply interpreting an occur-

rence of the symbol � as an occurrence of the right delimiter �.

Then L(M ′) = L(M) ∪ (L(M) · � · Σ′∗), which means that L(M ′) is finite iff
L(M) = ∅. PSPACE-hardness of finiteness now follows from PSPACE-hardness
of the emptiness problem.

On the other hand, from a stl-det-ORWW-automaton M with an alphabet
of size n we can construct an NFA A of size 2O(n) such that L(M) = L(A). Just
like emptiness, also infiniteness is decidable for A nondeterministically in space
log(2O(n)) ∈ O(n), and hence, it is decidable deterministically in space O(n2).
Thus, finiteness for stl-det-ORWW-automata is indeed PSPACE-complete.
�
In the literature many subfamilies of the regular languages have been studied
(see, e.g., [1,3,11]). Here we only consider some of them, beginning with the
strictly locally testable languages of [8,15], but the corresponding problem can
be stated for any subclass of REG.

A language L ⊆ Σ∗ is strictly k-testable for some k ≥ 1 if L ∩ Σk · Σ∗ =
(A · Σ∗ ∩ Σ∗ · B) � Σ+ · (Σk

� C) · Σ+ for some finite sets A,B,C ⊆ Σk. For
example, the language (a + b)∗ is strictly 1-testable, and the language a(baa)+

is strictly 3-testable, but the language (aa)∗ is not strictly locally testable.
For each k ≥ 1, if a language L is given through a DFA, then it is decidable in

polynomial time whether or not L is strictly locally k-testable. Also it is decidable
in polynomial time whether L is strictly locally testable [2]. We are interested in
the corresponding variant of these problems in which the language considered is
given through a stl-det-ORWW-automaton. Here we have the following result.

Theorem 9. The following problem is PSPACE-complete for each k ≥ 1:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) strictly locally k-testable?

The construction in the proof shows that the problem of deciding strictly locally
testability is at least PSPACE-hard for stl-det-ORWW-automata, but it remains
open whether this problem is in PSPACE.

Using the same kind of reasoning it can be shown that, for a stl-det-ORWW-
automaton, also the problems of deciding whether the accepted language is nilpo-
tent, combinatorial, circular, suffix-closed, prefix-closed, suffix-free, or prefix-free
(see, e.g., [1,3] for the definitions of these notions) are PSPACE-complete.

5 Concluding Remarks

We have shown that stl-det-ORWW-automata, although being deterministic
devices, can provide exponentially more succinct representations for regular lan-
guages than NFAs. In addition, we have shown that many decision problems

176 K. Kwee and F. Otto

of interest are PSPACE-complete for stl-det-ORWW-automata. However, some
open problems remain, for example:

– Can the given upper bounds be further improved by providing small constants
in the exponents?

– Is the problem of deciding whether the language L(M) that is accepted by
a given stl-det-ORWW-automaton M is strictly locally testable decidable in
polynomial space?

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comp. Sci. 410, 3209–3222 (2009)

2. Caron, P.: Families of locally testable languages. Theor. Comp. Sci. 242, 361–376
(2000)

3. Dassow, J.: Subregular restrictions for some language generating devices. In: Fre-
und, R., Holzer, M., Truthe, B., Ultes-Nitsche, U. (eds.) Proceedings of the Fourth
Workshop on Non-Classical Models for Automata and Applications (NCMA 2012).
books@ocg.at, Band, vol. 290, pp. 11–26. Oesterreichische Computer Gesellschaft,
Wien (2012)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

5. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inform. Comp. 209, 456–470 (2011)

6. Hundeshagen, N., Otto, F.: Characterizing the regular languages by nonforgetting
restarting automata. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795,
pp. 288–299. Springer, Heidelberg (2011)

7. Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restart-
ing automata. Inform. Comp. 206, 1152–1160 (2008)

8. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.
Theor. 8, 60–76 (1974)

9. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

10. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

11. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, vol. 1, pp. 679–746. Springer, Berlin (1997)

12. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

13. Savitch, J.E.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comp. Syst. Sci. 4, 177–192 (1970)

14. Stanley, R.P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University
Press, Cambridge (2012)

15. Zalcstein, Y.: Locally testable languages. J. Comp. Syst. Sci. 6, 151–167 (1972)

	On Some Decision Problems for Stateless Deterministic Ordered Restarting Automata
	1 Introduction
	2 Stateless Deterministic Ordered Restarting Automata
	3 Simulating a stl-det-ORWW-automaton by an NFA
	4 Decision Problems for stl-det-ORWW-automata
	5 Concluding Remarks
	References

