
Jeffrey Shallit
Alexander Okhotin (Eds.)

 123

LN
CS

 9
11

8

17th International Workshop, DCFS 2015
Waterloo, ON, Canada, June 25–27, 2015
Proceedings

Descriptional Complexity
of Formal Systems

Lecture Notes in Computer Science 9118

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jeffrey Shallit • Alexander Okhotin (Eds.)

Descriptional Complexity
of Formal Systems
17th International Workshop, DCFS 2015
Waterloo, ON, Canada, June 25–27, 2015
Proceedings

123

Editors
Jeffrey Shallit
School of Computer Science
University of Waterloo
Waterloo, ON
Canada

Alexander Okhotin
University of Turku
Department of Mathematics
Turku
Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-19224-6 ISBN 978-3-319-19225-3 (eBook)
DOI 10.1007/978-3-319-19225-3

Library of Congress Control Number: 2015939170

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The 17th International Workshop on Descriptional Complexity of Formal Systems
(DCFS 2015) was held in Waterloo, Ontario, Canada, during June 25–27, 2015. It was
organized by the David R. Cheriton School of Computer Science at the University of
Waterloo.

The subject of the workshop was descriptional complexity. Roughly speaking, this
field is concerned with the size of objects in various mathematical models of com-
putation, such as finite automata, pushdown automata, and Turing machines.
Descriptional complexity serves as a theoretical representation of physical realizations,
such as the engineering complexity of computer software and hardware. It also models
similar complexity phenomena in other areas of computer science, including uncon-
ventional computing and bioinformatics.

The DCFS workshop series is a result of merging together two workshop series:
Descriptional Complexity of Automata, Grammars and Related Structures (DCAGRS)
and Formal Descriptions and Software Reliability (FDSR). These precursor workshops
were DCAGRS 1999 in Magdeburg, Germany, DCAGRS 2000 in London, Ontario,
Canada, and DCAGRS 2001 in Vienna, Austria, as well as FSDR 1998 in Paderborn,
Germany, FSDR 1999 in Boca Raton, Florida, USA, and FSDR 2000 in San Jose,
California, USA. These workshops were merged in DCFS 2002 in London, Ontario,
Canada, which is regarded as the 4th DCFS. Since then, DCFS workshops were held in
Budapest, Hungary (2003), in London, Ontario, Canada (2004), in Como, Italy (2005),
in Las Cruces, New Mexico, USA (2006), in Nový Smokovec, Slovakia (2007), in
Charlottetown, Canada (2008), in Magdeburg, Germany (2009), in Saskatoon, Canada
(2010), in Limburg, Germany (2011), in Braga, Portugal (2012), in London, Ontario,
Canada (2013), and in Turku, Finland (2014).

In 2015, the DCFS workshop was held for the first time in Waterloo, Ontario. There
were 29 submissions, with authors from Austria, Canada, Estonia, Germany, Italy,
Japan, Korea, Latvia, The Netherlands, Poland, Portugal, The Russian Federation,
Slovakia, Switzerland, UK, and USA.

Of the 29 submissions, 23 were accepted for presentation at the conference (79.3 %
acceptance rate). These papers were selected from the submissions by the Program
Committee on the basis of at least three reviews per submission.

This volume contains extended abstracts of the two invited talks and 23 contributed
talks presented at the workshop.

This workshop is a result of the combined efforts of many people, to whom we wish to
express our gratitude. In particular, we are indebted to our invited speakers—Rajeev Alur
and Thomas Colcombet—and to all the speakers and participants of the workshop.
We are grateful to all our ProgramCommittee members and to all reviewers for their work
in selecting the workshop program, which was carried out using the EasyChair confer-
ence management system. We also thank the staff of the University of Waterloo for
administrative assistance.

We gratefully acknowledge the financial support from our sponsor, the Fields
Institute for Research in Mathematical Sciences (www.fields.utoronto.ca). Their sup-
port was crucial to pay for the invited speakers and to support the travel of junior
researchers. This conference was an official event of the International Federation for
Information Processing and IFIP Working Group 1.2 (Descriptional Complexity).
Finally, we wish to thank the editorial team at Springer, specifically Alfred Hofmann
and Anna Kramer, for their efficient production of this volume.

April 2015 Jeffrey Shallit
Alexander Okhotin

VI Preface

http://www.fields.utoronto.ca

Organization

Program Committee

Rusins Freivalds University of Latvia, Latvia
Yo-Sub Han Yonsei University, South Korea
Markus Holzer Universität Giessen, Germany
Artur Jeż University of Wrocław, Poland
Galina Jirásková Slovak Academy of Sciences, Slovakia
Lila Kari Western University, London, Ontario, Canada
Manfred Kufleitner University of Stuttgart, Germany
Hing Leung New Mexico State University, USA
Ian McQuillan University of Saskatchewan, Canada
Nelma Moreira Universidade do Porto, Portugal
Alexander Okhotin University of Turku, Finland
Jean-Éric Pin LIAFA, CNRS and University Paris 7, France
Daniel Reidenbach Loughborough University, UK
Kai Salomaa Queen’s University, Canada
Jeffrey Shallit University of Waterloo, Canada

Additional Reviewers

Barash, Mikhail
Câmpeanu, Cezar
Čevorová, Kristína
Cho, Dajung
Day, Joel
Domaratzki, Mike
Enaganti, Srujan Kumar
Eom, Hae-Sung
Freydenberger, Dominik D.
Gruber, Hermann
Hertrampf, Ulrich
Hirvensalo, Mika
Jirásek, Jozef Štefan
Kapoutsis, Christos
Karamichalis, Rallis

Kopecki, Steffen
Kothari, Robin
Kulkarni, Manasi
Kutrib, Martin
Lohrey, Markus
Maia, Eva
Masopust, Tomas
Meckel, Katja
Ng, Timothy
Palioudakis, Alexandros
Schmid, Markus L.
Šebej, Juraj
Vorel, Vojtěch
Watrous, John
Zetzsche, Georg

Regular Functions

Rajeev Alur

University of Pennsylvania

Abstract. When should a function mapping strings to strings, or strings to
numerical costs, or more generally, strings/trees/infinite-strings to a set of output
values with a given set of operations, be considered regular? We have proposed
a new machine model of cost register automata, a class of write-only programs,
to define such a notion of regularity. We are developing theoretical foundations
for this new class with a focus on algebraic and logical characterization, and
algorithms for transformations and analysis questions. We have also designed a
declarative language, DReX, for string transformations based on these
foundations. In this talk, I will give an overview of theoretical results, emerging
applications, and open problems for regular functions.

References

1. Alur, R., Cerny, P.: Streaming transducers for algorithmic verification of single- pass list-
processing programs. In: Proceedings of the 38th ACM Symposium on Principles of
Programming Languages, pp. 599–610 (2011)

2.Alur, R., D’Antoni, L.: Streaming tree transducers. In: Czumaj, A., Mehlhorn, K., Pitts, A.,
Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 42–53. Springer, Heidelberg
(2012)

3. Alur, R., D’Antoni, L., Deshmukh, J.V., Raghothaman, M., Yuan, Y.: Regular functions and
cost register automata. In: 28th Annual ACM/IEEE Symposium on Logic in Computer
Science, pp. 13–22 (2013)

4. Alur, R., Freilich, A., Raghothaman, M.: Regular combinators for string transformations. In:
29th Annual ACM/IEEE Symposium on Logic in Computer Science, 9 p (2014)

5. Alur, R., D’Antoni, L., Raghothaman, M.: DReX: a declarative language for efficiently
evaluating regular string transformations. In: Proceedings of the 42nd ACM Symposium on
Principles of Programming Languages, pp. 125–137 (2015)

Unambiguity in Automata Theory

Thomas Colcombet

CNRS, Université Paris 7 - Paris Diderot
thomas.colcombet@liafa.univ-paris-diderot.fr

Abstract. Determinism of devices is a key aspect throughout all of computer
science, simply because of considerations of efficiency of the implementation.
One possible way (among others) to relax this notion is to consider unambiguous
machines: non-deterministic machines that have at most one accepting run on
each input.

In this paper, we will investigate the nature of unambiguity in automata
theory, presenting the cases of standard finite words up to infinite trees, as well
as data-words and tropical automata. Our goal is to show how this notion of
unambiguity is so far not well understood, and how embarrassing open
questions remain open.

Contents

Invited Talk

Unambiguity in Automata Theory . 3
Thomas Colcombet

Contributed Papers

Partial Derivative Automaton for Regular Expressions with Shuffle 21
Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

Upper Bound on Syntactic Complexity of Suffix-Free Languages 33
Janusz Brzozowski and Marek Szykuła

Nondeterministic Tree Width of Regular Languages 46
Cezar Câmpeanu and Kai Salomaa

Integer Complexity: Experimental and Analytical Results II 58
Juris Čerņenoks, Jānis Iraids, Mārtiņš Opmanis, Rihards Opmanis,
and Kārlis Podnieks

Square on Ideal, Closed and Free Languages . 70
Kristína Čevorová

A Tentative Approach for the Wadge-Wagner Hierarchy of Regular
Tree Languages of Index [0, 2]. 81

Jacques Duparc and Kevin Fournier

Compressibility of Finite Languages by Grammars . 93
Sebastian Eberhard and Stefan Hetzl

On the Complexity and Decidability of Some Problems Involving Shuffle 105
Joey Eremondi, Oscar H. Ibarra, and Ian McQuillan

On the Computational Complexity of Problems Related
to Distinguishability Sets . 117

Markus Holzer and Sebastian Jakobi

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 129
Jozef Štefan Jirásek and Juraj Šebej

Transducer Descriptions of DNA Code Properties and Undecidability
of Antimorphic Problems . 141

Lila Kari, Stavros Konstantinidis, and Steffen Kopecki

http://dx.doi.org/10.1007/978-3-319-19225-3_1
http://dx.doi.org/10.1007/978-3-319-19225-3_2
http://dx.doi.org/10.1007/978-3-319-19225-3_3
http://dx.doi.org/10.1007/978-3-319-19225-3_4
http://dx.doi.org/10.1007/978-3-319-19225-3_5
http://dx.doi.org/10.1007/978-3-319-19225-3_6
http://dx.doi.org/10.1007/978-3-319-19225-3_7
http://dx.doi.org/10.1007/978-3-319-19225-3_7
http://dx.doi.org/10.1007/978-3-319-19225-3_8
http://dx.doi.org/10.1007/978-3-319-19225-3_9
http://dx.doi.org/10.1007/978-3-319-19225-3_10
http://dx.doi.org/10.1007/978-3-319-19225-3_10
http://dx.doi.org/10.1007/978-3-319-19225-3_11
http://dx.doi.org/10.1007/978-3-319-19225-3_12
http://dx.doi.org/10.1007/978-3-319-19225-3_12

On Simulation Cost of Unary Limited Automata . 153
Martin Kutrib and Matthias Wendlandt

On Some Decision Problems for Stateless Deterministic Ordered
Restarting Automata . 165

Kent Kwee and Friedrich Otto

Quantum Queries on Permutations . 177
Taisia Mischenko-Slatenkova, Alina Vasilieva, Ilja Kucevalovs,
and Rūsiņš Freivalds

Complement on Free and Ideal Languages . 185
Peter Mlynárčik

Universal Disjunctive Concatenation and Star . 197
Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

Quasi-Distances and Weighted Finite Automata . 209
Timothy Ng, David Rappaport, and Kai Salomaa

The State Complexity of Permutations on Finite Languages
over Binary Alphabets . 220

Alexandros Palioudakis, Da-Jung Cho, Daniel Goč, Yo-Sub Han,
Sang-Ki Ko, and Kai Salomaa

Star-Complement-Star on Prefix-Free Languages. 231
Matúš Palmovský and Juraj Šebej

Groups Whose Word Problem is a Petri Net Language 243
Gabriela Aslı Rino Nesin and Richard M. Thomas

Regular Realizability Problems and Context-Free Languages 256
A. Rubtsov and M. Vyalyi

Generalization of the Double-Reversal Method of Finding a Canonical
Residual Finite State Automaton . 268

Hellis Tamm

Quantum State Complexity of Formal Languages . 280
Marcos Villagra and Tomoyuki Yamakami

Author Index . 293

XII Contents

http://dx.doi.org/10.1007/978-3-319-19225-3_13
http://dx.doi.org/10.1007/978-3-319-19225-3_14
http://dx.doi.org/10.1007/978-3-319-19225-3_14
http://dx.doi.org/10.1007/978-3-319-19225-3_15
http://dx.doi.org/10.1007/978-3-319-19225-3_16
http://dx.doi.org/10.1007/978-3-319-19225-3_17
http://dx.doi.org/10.1007/978-3-319-19225-3_18
http://dx.doi.org/10.1007/978-3-319-19225-3_19
http://dx.doi.org/10.1007/978-3-319-19225-3_19
http://dx.doi.org/10.1007/978-3-319-19225-3_20
http://dx.doi.org/10.1007/978-3-319-19225-3_21
http://dx.doi.org/10.1007/978-3-319-19225-3_22
http://dx.doi.org/10.1007/978-3-319-19225-3_23
http://dx.doi.org/10.1007/978-3-319-19225-3_23
http://dx.doi.org/10.1007/978-3-319-19225-3_24

Invited Talk

Unambiguity in Automata Theory

Thomas Colcombet(B)

CNRS, Université Paris 7 – Paris Diderot, Paris, France
thomas.colcombet@liafa.univ-paris-diderot.fr

Abstract. Determinism of devices is a key aspect throughout all of
computer science, simply because of considerations of efficiency of the
implementation. One possible way (among others) to relax this notion
is to consider unambiguous machines: non-deterministic machines that
have at most one accepting run on each input.

In this paper, we will investigate the nature of unambiguity in automata
theory, presenting the cases of standard finite words up to infinite trees,
as well as data-words and tropical automata. Our goal is to show how this
notion of unambiguity is so far not well understood, and how embarrassing
open questions remain open.

1 Introduction

In many areas of computer science, the relationship between deterministic and
non-deterministic devices is extensively studied. This is in particular the case
in complexity theory, and also in automata theory. The notion of unambiguous
devices, i.e., non-deterministic devices that have at most one accepting execution
for each accepted input, is a natural intermediate class that is potentially more
expressive (or succinct) than deterministic devices, while behaviorally easier to
handle than general non-deterministic machines.

One specificity of this class is that it is a semantic one: a priori, nobody knows
whether a given Turing machine is unambiguous or not. This is undecidable, and
even providing a witness of unambiguity is not possible.

Even for weaker complexity classes, such as logspace, the status of the unam-
biguous machines is not settled. Indeed, unambiguous logspace (UL) is located
somewhere between deterministic logspace (L) and non-deterministic logspace
NL. Since L and NL are not known to be separated, the separation of UL with
respect to either L or NL is also open. This class UL is also interesting, since
it is known to contain planar reachability, while the main complete problem
for NL is general reachability in a directed-graph. Interestingly, Allender and
Reinhardt have shown that in non-uniform complexity classes (i.e., in the pres-
ence of advice), logspace and non-deterministic logspace coincide [35].

In the world of automata, the picture is better understood. As a first key dif-
ference, unambiguity becomes easily decidable, and furthermore, it is possible to
compute and work with witnesses of unambiguity. Nevertheless, many questions
related to unambiguity are embarrassingly open and surprisingly complicated.
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 3–18, 2015.
DOI: 10.1007/978-3-319-19225-3 1

4 T. Colcombet

In fact, the subject of unambiguity related to automata is so wide that it
would require a much larger and ambitious presentation in itself. The reader
interested in pursuing these subjects further will find a lot of material in [15,36],
and in surveys such as [17] for standard word automata.

Many subjects involving unambiguity cannot even be mentioned in this
paper. This includes unambiguous non-finite state machines (such as pushdown
automata, see e.g., [17,31] or less standard forms of automata such as constrained
automaton in [6]) or unambiguous regular expressions. Even the theory of codes
is in essence a study of unambiguity. There are also some intermediate forms
of restricted ambiguity, such as m-ambiguity or polynomial ambiguity (when
the number of accepting runs are bounded by m, or by a polynomial in the
length of the input) [24], as well as restricted syntactic variants of unambiguous
automata ([25] among others). The unambiguous polynomial closure of a family
of languages has also been characterized [32]. Other algorithmic questions have
also be addressed, such as the inference of automata [12]. Unambiguity is also a
very important and a well studied subject in connection with transducers since
unambiguous transducers are very close to functional ones (transducers which,
instead of a relation, recognize a function) [2,39,43]. Unambiguity can also be
considered in the analysis of rational subsets of monoids in the absolute [3].
Unambiguity can also be studied for extended notions of words, and in partic-
ular infinite words. Over infinite words of length ω, a very important notion of
unambiguous automata is the one of prophetic automata [9] (a semantic version
of determinism from right to left). Also, on infinite words of unrestricted langth,
and even for more general classes of automata, compiling temporal logics yields
unambiguous automata [13]. None of these topics will be addressed in this paper.

This paper does not intend to make any exhaustive survey of the large body of
works related to unambiguity. It rather offers a tour, visiting several arbitrarily
chosen topics, involving significantly different situations. This tour starts with
standard non-deterministic word automata and their unambiguous subclasses.
Several complexity arguments are elegant and worth knowing in this context, such
as the use of communication complexity, and the counting principle for deciding
universality in polynomial time. We continue with tropical automata. This spe-
cific kind of weighted automata computes functions from words to integers. We
will see that some elementary problems are undecidable for such automata, and
that unambiguous automata are a subclass that appears naturally and has good
decidability properties. The description then proceeds with the infinite tree case,
in which the story is completely different. There, unambiguity is related to the
problem of existence of choice functions. We will finish with a study of register
automata, where unambiguity turns out to be a very important subclass. Recent
unpublished results obtained with Puppis and Skrcypczak sustain this idea.

In this paper, we will consider the case of finite-state automata (Sect. 2),
of tropical automata (Sect. 3), of automata over infinite trees (Sect. 4) and of
automata over data words (Sect. 5). In the first three situations, we will see that
difficult questions remain open. The last case will report on recent unpublished
work in which a constructive understanding of the notion of unambiguity yields
new results.

Unambiguity in Automata Theory 5

2 Unambiguous Word Automata

In this section, we consider unambiguous automata over finite words. Let us first
briefly recall some standard notation.

In this section, we adopt the standard terminology concerning (finite-state)
non-deterministic automata. A non-deterministic automaton A reading words
over the alphabet A has a finite set of states Q, a set of initial states I, a set
of final states F , and a transition relation Δ ⊆ Q × A × Δ. A run ρ over the
input word a1 · · · an of the automaton is a sequence of transitions of the form
(q0, a1, q1)(q1, a2, q2) · · · (qn−1, an, qn) ∈ Δ∗. It is accepting if furthermore q0 ∈ I
and qn ∈ F . If an accepting run exists over an input word u, then u is accepted.
The language recognized by the automaton is the set of accepted words. It is
denoted L(A). Languages recognized by an automaton are called regular. An
automaton is deterministic if for all states p and all letters a ∈ A there exists at
most one state r such that (p, a, r) is a transition. An automaton is unambiguous
if for all input words there exists at most one accepting run over it.

One of the first results we learn in an automata course is the inherent expo-
nential blowup of determinization.

Theorem 1 ([27–29,34]). Non-deterministic word automata of size n can be
transformed into deterministic and complete automata of size at most 2n for the
same language. This bound is tight.

The witness automaton for the lower bound is very natural: it checks that the
n-th letter from the end is a b (over the alphabet a, b):

0 1 2 3 . . . n−1 n

a, b

b a, b a, b a, b

However, though this example is non-deterministic, if we reverse the orien-
tation of its edges (yielding the mirror automaton), we obtain a deterministic
automaton. This implies that it has at most one accepting run over each input:
it is unambiguous. It happens also, as a consequence, that it is very easy to
complement it: One adds a new state ⊥ with self loops labelled a, b, and linked
to 1 by an a transition. Then, it is sufficient to complement the set of initial
states for complementing the accepted language.

This example shows that the class of unambiguous automata is potentially an
interesting compromise between succinctness (these can be exponentially smaller
than deterministic automata) and tractability of fundamental problems.

Theorem 2 ([22–24]). Unambiguous automata can be exponentially more suc-
cinct than deterministic automata. Non-deterministic automata can be exponen-
tially more succinct than unambiguous ones.

6 T. Colcombet

Remark 1. Deciding if a non-deterministic word automaton A is unambiguous
is doable in polynomial time. The principle is as follows: consider the product of
the automaton A with itself. Over a given input, an accepting run of this new
automaton can be seen as the pair of two accepting runs of A over this input. It
is easy to slightly modify this automaton in such a way that it accepts an input
if and only if the input is accepted by two distinct accepting runs of A (this can
be achieved, e.g., by adding one extra bit to each state storing whether the two
runs have differed so far). This new automaton has quadratic size in the original
one. It accepts an input if and only if the original automaton is ambiguous. Thus,
the non-deterministic automaton A is unambiguous if and only if the language
recognized by this new automaton is empty. This can be tested in polynomial
time (NL more precisely).

Using variations around these ideas, we can show that unambiguity is decid-
able for all the classes of automata considered in this paper (tropical automata,
infinite tree automata as well as register automata).

There is at least one strong evidence that unambiguous automata are inher-
ently simpler than general non-deterministic automata. This is the complexity
of the equivalence, containment, and universality problems. In general, given
two non-deterministic automata recognizing the languages K,L respectively, the
problem of equivalence “K = L?”, of containment “K ⊆ L?” and of universal-
ity “K = A∗?” are known to be PSPACE-complete. This is not the case for
unambiguous automata, as shown in the following theorem.

Theorem 3. ([40,41]). The problems of universality and equivalence of unam-
biguous automata as well as containment of a non-deterministic automaton in
an unambiguous automaton are solvable in polynomial time.

We shall see in this section a complete proof of this result, which is a good excuse
for introducing several important techniques.

Of course, knowing this complexity result, and since universality amounts to
checking the emptiness of the complement, one might think that another proof
of this result could be as follows: complement the unambiguous automaton with
a polynomial blowup of states, and then test for emptiness in polynomial time.
However, the question of whether unambiguous automata can be complemented
with a polynomial blowup in the number of states is an open problem.

Conjecture 1. It is possible to complement unambiguous automata of size n into
unambiguous automata of size polynomial in n.

In fact, even whether we can complement an unambiguous automaton into a
non-deterministic automaton of polynomial size is open. We lack techniques for
addressing this question. In particular, how can we prove a lower bound on the
size of an unambiguous automaton for a given language?

Communication Complexity and the Rank Technique [23,24,37]. There is a nice
technique for proving lower bounds on the size of an unambiguous automa-
ton for a language, based on communication complexity. Consider a language

Unambiguity in Automata Theory 7

L ⊆ A∗. Define the communication relation Com(L) ⊆ A∗ × A∗ to be the
set of ordered pairs (u, v) such that uv ∈ L. A subset of A∗ × A∗ is called
a rectangle if it is of the form M × N for M,N ⊆ A∗. A non-deterministic
decomposition of R ⊆ A∗ × A∗ is a finite union of rectangles, and its complexity
is the number of rectangles involved in the union. An unambiguous decompo-
sition is a non-deterministic decomposition into disjoint rectangles. The non-
deterministic complexity of R (resp., unambiguous complexity) is the minimal
complexity nd-comp(R) (resp., unamb-comp(R)) of a non-deterministic decom-
position (resp., unambiguous decomposition) of R.

It is easy to show that a language L accepted by a non-deterministic automa-
ton with n states is such that nd-comp(Com(L)) ≤ n. Indeed, define LI,q to be
the language recognized by the automaton when the set of final states is set
to {q}, and Lq,F to be the language recognized by the automaton when the
set of initial states is set to be {q}. Clearly, for all words u, v, uv ∈ L if and
only if there exists a state q such that u ∈ LI,q and v ∈ Lq,F . This means
that Com(L) = ∪q∈QLI,q × Lq,F . We have found a non-deterministic decompo-
sition for Com(L) of complexity n.

Pushing further, a language L accepted by an unambiguous automaton of
size n is such that unamb-comp(Com(L)) ≤ n. Indeed, consider the non-deter-
ministic decomposition Com(L) = ∪q∈QLI,q × Lq,F as in the non-deterministic
case, and assume it would be ambiguous. This would mean that there are two
distinct states p, q such that LI,p ∩ LI,q �= ∅ and Lp,F ∩ Lq,F �= ∅. Let u be a
word in the first intersection, and v be a word in the second. Then the word uv
is accepted by two distinct runs: one that reaches state p after reading u, and
the other that reaches state q at the same position. This contradicts the unam-
biguity assumption. Thus, ∪q∈QLI,q ×Lq,F is an unambiguous decomposition of
complexity n.

Linear algebra offers an elegant way to bound the unambiguous complexity
of a relation from below. Indeed, we can identify a relation R ⊆ E × F with its
characteristic matrix : rows are indexed by E and columns by F , and the entry
indexed by words x, y is 1 if (x, y) ∈ R and 0 otherwise.

Lemma 1. rank(R) ≤ unamb-comp(R).

Proof. A union of disjoint rectangles can be understood as the sum of the char-
acteristic matrices representing them. Since the rank of a matrix that “contains
only one rectangle” is 1 (or 0 if the rectangle is empty), and rank is subadditive,
the rank of a matrix is smaller than its unambiguous complexity.
�
From this we can derive an upper bound on non-universality witnesses.

Lemma 2 ([37]). Any shortest witness of non-universality for an unambiguous
automaton with n states has length at most n.

Proof. Let A be an unambiguous automaton, and let a1a2 · · · an �∈ L(A) be the
shortest witness of non-universality (if it exists). Consider the matrix N obtained
from Com(L(A)) by restricting the rows to v0 = ε, v1 = a1, v2 = a1a2, . . . , vn =
a1 · · · an and the columns to w0 = a1 · · · an, w1 = a2 · · · an, . . . , wn = ε.

8 T. Colcombet

Since viwi = u �∈ L(A) for all i = 0 . . . n, the diagonal of this matrix consists
only of 0’s. However, for all 0 ≤ i < j ≤ n, we have |viwj | < n. Hence the “upper
right” part of the matrix consists solely of ones. We claim that this matrix has
rank at least n. Indeed, that (1) − N (where (1) is the matrix using with 1’s
on all its entries) is lower triangular with a diagonal of 1. Thus (1) − N has
rank n + 1. Since (1) has rank 1, we obtain that the rank of N is at least n by
subadditivity.

It follows that an unambiguous automaton for L(A), and thus in particular
A has at least n states.
�
Of course, from Lemma 2, one immediately gets a CoNP procedure for deciding
whether an unambiguous automaton is universal. However, it is possible to do
better, and prove Theorem 3.

Proof. (of Theorem 3). For each letter of the alphabet a, consider the matrix
η(a) ∈ N

Q×Q that describes the transition relation of an unambiguous automa-
ton A: the entry p, q of η(a) is 1 if there is a transition labelled a in A from state p
to state q, and 0 otherwise. Let us extend η into a morphism from A∗ to N

Q×Q

using the standard matrix multiplication: η(ε) = IdQ, and η(ua) = η(u)η(a). It
is easy to prove by induction that the entry p, q of η(u) is the number of runs
from state p to state q over the word u. Let also I, F be the characteristic vectors
of the initial and final states of A respectively. Thus, tIη(u)F is the number of
accepting runs of A over the word u (�).

Now let us count the number of accepted words up to length n. Define

B(n) =
∑

u∈A∗, |u|≤n

tIη(u)F.

From (�), Bn is the number of accepting runs over words up to length n. Since
furthermore the automaton A is unambiguous, Bn is also the number of accepted
words up to length n.

Let us show that this quantity can be computed in time polynomial in n.
Indeed, define for all m = 0, . . . , n the matrices:

Em =
∑

u∈A∗, |u|=m

η(u), and Fm =
∑

u∈A∗, |u|≤m

η(u).

These are such that F0 = IdQ, E1 =
∑

a∈A η(a), and for all m ≥ 1, Fm =
Fm−1 + Em and Em+1 = EmE1. These equations can be used to compute Fn

in polynomial time (and the numbers in the matrices have a linear number of
digits). Thus Bn+1 = tIFn+1F is computable in polynomial time.

To conclude, an algorithm that decides universality is as follows: compute
Bn and check that it equals the number of words of length at most n (i.e.,
(|A|n+1 − 1)/(|A| − 1)). This procedure succeeds if an only if all words are
accepted up to length n, which in turns holds (by Lemma 2) if and only if A is
universal.
�

Unambiguity in Automata Theory 9

What we have seen in this proof is that it is reasonable to conjecture that
unambiguous automata are closed under complement with polynomial blowup.
Indeed, this is consistent with (1) the complexity of universality, and (2) the size
of witnesses of non-universality. In fact, we can also report on another related
conjecture:

Conjecture 2. Given two regular languages K,L of empty intersection, there is
an unambiguous automaton of polynomial size that recognizing U that separates
them, i.e., such that K ⊆ U and U ∩ L = ∅.

In particular, this would imply that all regular languages L can be turned into
an unambiguous automaton of size polynomial in the size of a non-deterministic
automaton for L and a non-deterministic automaton for L�.

We will indeed see later that the separation of classes of non-deterministic
automata is often related to unambiguous automata (cf. Theorems 5 and 13).

3 Unambiguous Tropical Automata

We pursue our investigation of unambiguity in the world of automata theory
with the more exotic context of tropical automata. Tropical automata belong to
the wider class of weighted automata as introduced by Schützenberger [38]. We
are interested here in min-plus and max-plus automata.

Min-plus and max-plus automata are non-deterministic automata that have
their transitions labelled with integers (reals would not make a difference) called
weights. Given an accepting run of such an automaton, its weight is the sum of
the weights of the transitions seen along the run. The semantic of a min-plus
automaton is to recognize the function:

[[A]]min : A∗ → Z ∪ {+∞}

u �→
{

+∞ if there are no accepting runs of A over u,

min {weight(ρ) | ρ accepting run of A over u} otherwise.

Dually, the semantic of a max-plus automaton is to recognize the function:

[[A]]max : A∗ → Z ∪ {−∞}

u �→
{

−∞ if there are no accepting runs of A over u,

max {weight(ρ) | ρ acceptingrun of A over u} otherwise.

These two notions are formally dual in the following sense: Define −A to be
the automaton A in which the weights of all transitions are the opposed weight,
then [[−A]]min = −[[A]]max. There are several other ways to define the functions
recognized by such automata, in particular using a matrix presentation. These
automata appear in many applications. By tropical automata we refer indistinctly
to either max-plus automata or min-plus automata.

10 T. Colcombet

A non-deterministic automaton A can be viewed as a min-plus automaton
with all its transitions labelled with weight 0. In this case, it recognizes the
function [[A]]min which maps a word to 0 if it belongs to L(A), and to +∞
otherwise. Symmetrically, a non-deterministic automaton can be viewed as max-
plus automaton that recognizes the function which maps a word to 0 if it belongs
to L(A), and to −∞ otherwise.

Example 1. The following tropical automaton uses its non-determinism for choos-
ing a segment of consecutive a’s surrounded by two b’s, and computing its length.

p q r

a, b : 0

b : 0

a : 1

b : 0

a, b : 0

If this automaton is a min-plus automaton, then it maps every word of the
form an0ban1b · · · bak to min(n1, . . . , nk−1) if k ≥ 2, and +∞ otherwise. If this
automaton is a max-plus automaton, then it maps every word of the form
an0ban1b · · · bak to max(n1, . . . , nk−1) if k ≥ 2, and −∞ otherwise.

In the world of tropical automata, things are not as nice as for classical finite-
state automata, in the sense that undecidability results occur immediately. The
central result in this direction is the one of Krob.

Theorem 4 (Krob [21], and [1,14] for simple proofs). Given a min-plus
automaton recognizing a function f , it is undecidable whether f ≤ 0. Given a
max-plus automaton recognizing a function f , it is undecidable whether f ≥ 0.

In particular, this means that f ≤ g is undecidable for f, g recognized by tropical
automata. In fact, this is not completely true: there is one case when this question
is decidable, when f is recognized by a max-plus automaton and g by a min-plus
automaton, while all other combinations are undecidable by the above theorem.

A tropical automaton is unambiguous if the underlying non-deterministic
automaton is unambiguous. For instance, in the above example, the automaton is
ambiguous. A more careful analysis would show that no unambiguous automata
could recognize these functions.

The class of unambiguous tropical automata is interesting since in the defin-
ition of [[·]]min and [[·]]max, the min and the max range over at most one accepting
run. Hence, as long as we identify +∞ and −∞, [[·]]min and [[·]]max coincide. For
this reason, we allow ourselves to simply mention unambiguous tropical automata
without further mentioning whether these are min-plus or max-plus.

Theorem 5 ([26]). Functions that are both recognized by min-plus automata
and max-plus automata are recognized by unambiguous tropical automata.

Very informally, if we interpret max-plus automata as a form of complement of
min-plus automata, then we can see unambiguous tropical automata as automata
that correspond to be both non-deterministic and of non-deterministic comple-
ment. We will see a similar phenomenon in the context of register automata in
Sect. 5.

Unambiguity in Automata Theory 11

A natural question arises: can we decide whether an automaton is equivalent
to an unambiguous one? Some first results were obtained in [20]. The best known
result is the following:

Theorem 6 ([19]). There is an algorithm which, given a polynomially ambigu-
ous1 tropical automaton decides whether there is an unambiguous tropical auto-
maton recognizing the same function.

Quite naturally, the most important question in this context is to lift the poly-
nomial ambiguity assumption.

Question 1. Can we decide, given a tropical automaton whether it is equivalent
to an unambiguous one?

4 Unambiguous Infinite Tree Automata

Another situation where the notion of unambiguity is worth noticing is the con-
text of infinite trees. To keep the presentation light, we expect the reader to know
the notion of non-deterministic automaton over infinite trees. An introduction
can, for instance, be found in [42].

Let us start by recalling some definitions. An infinite tree labelled by the
alphabet A is a map from {0, 1}∗ to A. The elements of {0, 1}∗ are nodes. The
node ε is the root of the infinite tree. Given a node u, u0 is its left child and u1 its
right child. The transitive closure of the child relation is the descendant relation.
A branch is a maximal set of nodes totally ordered under the descendant relation.
In this section, languages are sets of infinite trees. An infinite tree automaton
has a finite set of states Q, a set of initial states I ⊆ Q, and a set of transitions
Δ ⊆ Q × A × Q × Q. A run of an automaton over an infinite tree t is an infinite
tree ρ labelled by Q such that (ρ(u), t(u), ρ(u0), ρ(u1)) ∈ Δ for all nodes u. The
run is accepting if ρ(ε) ∈ I, and for all branches B the set of states assumed on
infinitely many nodes by ρ belongs to a given set M ⊆ 2Q, called the Muller
acceptance condition2. If there is an accepting run of the automaton over some
input infinite tree, then the infinite tree is accepted. The set of infinite trees
accepted is the language recognized by the automaton.

The central result concerning infinite tree automata is without any question
Rabin’s theorem stating that infinite tree automata have effectively the same
expressive power as monadic second-order logic over infinite trees, and that, as
a consequence, this monadic second-order logic is decidable over infinite trees.
This logical aspect is certainly far beyond the topic of this paper, but the main
lemma in the proof is very relevant:

Lemma 3 (Rabin main Lemma [33]). Infinite tree automata are effectively
closed under complement.

1 An automaton is polynomially ambiguous if the number of accepting runs over an
input is bounded by a polynomial in the length of the input.

2 Other choices are possible, but these distinctions do not make any difference here.

12 T. Colcombet

Once more, for this class of automata, the unambiguity notion is natural. An
unambiguous infinite tree automaton is an infinite tree automaton such that
for all input infinite trees, there is at most one accepting run. To start with,
there are languages which are recognized by infinite tree automata, but by no
unambiguous infinite tree automata, and there are languages that are recognized
by unambiguous infinite tree automata, and by no deterministic automata3.
However, the status of unambiguous automata is very different here than in
simpler contexts. In particular, it is not clear whether all regular languages can
be recognized by unambiguous automata.

A first answer has been given by Niwiński and Walukiewicz:

Theorem 7 ([30]). Consider the language “there is a node labelled by the letter
a”. If this language is recognized by an unambiguous infinite tree automaton,
then there exists a regular choice function.

Informally, a choice function is a language that implements the notion of “choice”,
i.e., given a non-empty set, it selects a unique element in it. One way to formalize
this is as follows: consider the alphabet a, b, ac (a stands for the set in which choice
has to be performed, and ac is the chosen node). A language C of a, b, ac-labelled
infinite trees is a choice function if:

– All infinite trees in C contain exactly one occurrence of the letter ac,
– For all a, b-labelled infinite tree t containing at least one occurrence of the

letter a, there exists one and only one a-labelled node x such that t[x ← ac]
is accepted, where t[x ← ac] is the infinite tree t in which the label of the
node x is changed into ac.

A regular choice function is a choice function which is recognized by an infinite
tree automaton. The existence of a regular choice function has been first studied
in [16], where the non-existence of such function is established. However, there is
a known unrecoverable hole in the proof. The result was established by Carayol
and Löding using much simpler automata-theoretic arguments.

Theorem 8 ([7]). There does not exist any regular choice function over infinite
trees.

These results were finally published together.

Theorem 9 ([8]). The language of infinite trees “there is a node labelled by the
letter a” is regular, but intrinsically ambiguous; i.e., there exists no unambiguous
automaton for this language.

As it is the case for tropical automata, deciding if a language can be recognized
unambiguously is an open problem.
3 In the context of trees, two forms of determinism for automata are possible: top-down
determinism, i.e., from root to leaves, and bottom-up determinism, i.e., from leaves
to root. The former (considered here) is known to be strictly weaker than general
automata, even over finite trees. The later does not make real sense over infinite
trees, since there may be no leaves.

Unambiguity in Automata Theory 13

Question 2. Given a infinite tree automaton, can we decide whether its recog-
nized language can be recognized by an unambiguous automaton?

However, if we come back to simpler classes of models, namely finite words, infi-
nite words of length ω or finite trees, it is very easy to have a regular choice
function, and also to transform any automaton into an equivalent one that is
unambiguous. Nevertheless, there is still an unclear situation. Call tamed (or
scattered, or thin) an infinite tree that has countably many branches (the def-
inition of an infinite tree needs to be slightly generalized for that, and has to
allow leaves). This class is very important, and such infinite trees are signifi-
cantly simpler than general ones (in particular automata are simpler). To some
extend, tamed infinite trees can be understood as the joint extension of infinite
words and finite trees.

Question 3. Can we separate unambiguous automata from general automata
over tamed trees? Does there exist an automaton, unambiguous over tamed
trees that recognizes the language “there is a node labelled by a”? Does there
exist a regular choice function over tamed trees?

Let us conclude with another, intriguing, relation linking unambiguity over infi-
nite trees and the existence of regular choice functions over tamed trees.

Theorem 10 ([4]). Under the assumption that there are no regular choice func-
tions over tamed trees, there is an algorithm which decides whether a regular
language of infinite trees is bi-unambiguous4.

5 Unambiguous Register Automata

In this last section, we concentrate our attention to data languages. Once more
the questions raised are of a slightly different nature. More positively, this is an
instance of a situation where new results can be obtained thanks to a careful
analysis of the nature of unambiguity. This section will mainly be a report on
recent unpublished results obtained in collaboration with Gabriele Puppis and
Micha�l Skrzypczak, in particular establishing conjectures raised in [10].

Originally, register automata were introduced by Kaminski and Francez [18]
and were the subject of much attention. There are various ways to introduce
this model, including the very interesting “atom approach” [5]. We adopt here
a more model-theoretic presentation.

Let us fix ourselves an infinite set of data values D. We are only allowed
to compare such values using equalities, and as a consequence, the exact set
D does not really matter. Depending on the context, data values can be the
identifiers in a database, simply numbers, the agent in a concurrent system,
and so on... Data words are words over D, i.e., elements of D∗. It is also often
convenient to consider slightly richer data words which are elements of (A×D)∗.
4 A language of infinite trees is bi-unambiguous if it is accepted by a unambiguous

infinite tree automaton as well as its complement.

14 T. Colcombet

This distinction has essentially no impact in what follows. Sets of data words
are named data languages.

A (non-deterministic) register automaton has states, initial states, final states
and transitions as a non-deterministic finite automaton, and furthermore:

– there is a finite set of registers r, s, . . . , with values ranging in D, and;
– transitions are equipped of guards that are boolean combinations of properties

of the form
• r = s′ for r, s registers, signifying that the value of the register r before

the transition should be the same as the value of the register s after the
transition,

• r = d for r a register, signifying that the value assumed by the register r
before the transition is equal to the data read during the transition,

• d = s′ is defined similarly.

This description should give a fairly good intuition of what is going on. A run
of a register automaton is a sequence of configurations consisting of a state and
a valuation of the registers, that respect the transitions and the guards. A run
is accepting if it starts in an initial state and ends in a final state. It should
be clear what an unambiguous register automaton is: an unambiguous register
automaton is a register automaton such that on every input there is at most one
accepting run.

Let us proceed with an example.

Example 2. Consider the following register automaton. We use two registers, r, s,
and all transitions are assumed to preserve the values of these counters. Thus
we only write on the transitions whether r and s should be equal or not-equal
to the read data value.

1 2 3 4 5
r = d

r �= d
r �= d
s = d

r �= d
s �= d

r �= d
s = d r = d

Note first that this register automaton is non-deterministic: at the very begin-
ning, we do not know the values of the registers (these have to be non-determinis-
tically guessed in some sense). But even without this problem, it is hard to know
when in state 2, whether the run should stay in state 2, or proceed with state 3.

In fact, at the same time that we describe the behavior of this automaton,
we will see that it is unambiguous. Let us recall that in this register automaton,
the values of the registers do not change along the run (we do not know these
values a priori). While processing an input, this automaton has to take the as
first transition the one from state 1 to state 2. Since this transition is guarded
by r = d, it enforces the value of register r to be the first data value occurring
in the input data word. Nox note that all transitions with both extremities
among states 2, 3, 4 have r �= d in their guard, and this enforces that the data
value read to be different from the value of r. Note furthermore that the only

Unambiguity in Automata Theory 15

transition that exits state 4 (and go to state 5) enforces r = d in its guard. Hence,
necessarily, the transition from 4 to 5 has to be taken the first time the value of r
is seen again in the data word. This means that this position is unambiguously
determined. This means also that the moment the transition from 3 to 4 is used
is also unambiguously determined (just one step before). Since furthermore the
transition from 3 to 4 has guard s = d, the value of register s also has to be
unambiguously determined. Overall, this means that, if there is an accepting run
over some data word, then the values of r and s are uniquely determined: the
value of r is the first data value in the input data word, and the value of s is the
data value that occurs just before the second occurrence of the first data value.
Once these values fixed, it is easy to see that this automaton is unambiguous,
and the language it accepts can be described as follows:

⋃

r, s ∈ D

r �= s

r(D \ {r})∗s(D \ {r, s})∗srD∗.

It should also be clear that such a language cannot be determinized. Indeed,
while reading an input word from left to right, it is not possible to know what
the value of s should be as long as the second occurrence of the first data value is
not met. Hence, a deterministic device should memorize all possible data values
seen up to that moment. A similar argument prevents to determinize it from
right to left.

When working with register automata, the undecidability is again close. The
essential results are as follows.

Theorem 11 ([18]). The languages recognized by register automata are effec-
tively closed under union and intersection, and emptiness is decidable. The uni-
versality problem for register automata is undecidable.

In [10], some conjectures were raised concerning the class of unambiguous register
automata. These conjectures are now all established5. Let us briefly present these
results.

Theorem 12 ([11]). Unambiguous register automata are effectively closed under
complement, and hence universality, containment and equivalence are decidable.

However, in fact, using the same techniques, we obtain a separation result.

Theorem 13 ([11]). Given two languages of data words K,L recognized by reg-
ister automata of empty intersection, there exists a language of data words U
recognized by an unambiguous register automaton that separates K and L, i.e.,
K ⊆ U and U ∩ L = ∅.

In particular, a language of data words is recognized by an unambiguous reg-
ister automaton if and only if both itself and its complement are recognized by
register automata.
5 Strictly speaking, Conjecture 6 is wrong, but has a corrected version.

16 T. Colcombet

6 Conclusion

In this paper, we have tried to present the notion of unambiguity following a
rather non-standard path, in particular considering models that are usually not
studied together. Along this presentation, we have seen several difficult open
questions concerning unambiguous devices. These questions are natural, and
show that unambiguity is still quite poorly understood. We have also seen sev-
eral results that show that unambiguity arises sometimes from characterization
reasons: (1) unambiguous tropical automata correspond to functions that are
recognized by both min-plus and max-plus automata, and (2) unambiguous reg-
ister automata correspond to languages that are both recognized as well as their
complement by non-deterministic register automata. We believe that this char-
acterization is more than a mere coincidence, and corresponds to the intrinsic
nature of unambiguity.

Acknowledgment. I am really grateful to Jean-Éric Pin, Gabriele Puppis and Micha�l
Skrypczak for their precious help and their discussions on the topic.

References

1. Almagor, S., Boker, U., Kupferman, O.: What’s decidable about weighted
automata? In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp.
482–491. Springer, Heidelberg (2011)

2. Berstel, J.: Transductions and Context-Free Languages. Leitfäden der Ange-
wandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechan-
ics], vol. 38. B.G. Teubner, Stuttgart (1979)

3. Berstel, J., Sakarovitch, J.: Recent results in the theory of rational sets. In: Gruska,
J., Rovan, B., Wiedermann, J. (eds.) Mathematical Foundations of Computer Sci-
ence (Bratislava 1986). LNCS, vol. 233, pp. 15–28. Springer, Berlin (1986)

4. Bilkowski, M., Skrzypczak, M.: Unambiguity and uniformization problems on infi-
nite trees. In: CSL, volume of LIPIcs, pp. 81–100 (2013)

5. Bojańczyk, M., Lasota, S.: Fraenkel-mostowski sets with non-homogeneous atoms.
In: Finkel, A., Leroux, J., Potapov, I. (eds.) RP 2012. LNCS, vol. 7550, pp. 1–5.
Springer, Heidelberg (2012)

6. Cadilhac, M., Finkel, A., McKenzie, P.: Unambiguous constrained automata. Int.
J. Found. Comput. Sci. 24(7), 1099–1116 (2013)

7. Carayol, A., Löding, C.: MSO on the infinite binary tree: choice and order. In:
Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 161–176.
Springer, Heidelberg (2007)

8. Carayol, A., Löding, C., Niwiński, D., Walukiewicz, I.: Choice functions and well-
orderings over the infinite binary tree. Cent. Eur. J. Math. 8(4), 662–682 (2010)

9. Carton, O., Michel, M.: Unambiguous Büchi automata. Theor. Comput. Sci.
297(1–3), 37–81 (2003)

10. Colcombet, T.: Forms of determinism for automata. In: Dürr, C., Wilke, T. (eds.)
STACS 2012: 29th International Symposium on Theoretical Aspects of Computer
Science, Volume 14 of LIPIcs, pp. 1–23. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2012)

Unambiguity in Automata Theory 17

11. Colcombet, T., Puppis, G., Skrypczak, M.: Unambiguous register automata.
Unpublished

12. Coste, F., Fredouille, D.C.: Unambiguous automata inference by means of state-
merging methods. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H.
(eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 60–71. Springer, Heidelberg (2003)

13. Cristau, J.: Automata and temporal logic over arbitrary linear time (2011). CoRR,
abs/1101.1731

14. Droste, M., Kuske, D.: Weighted automata. To appear in Handbook AutoMathA
(2013)

15. Goldstine, J., Kappes, M., Kintala, C.M.R., Leug, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. Univ. Comput. Sci.
8, 193–234 (2002)

16. Gurevich, Y., Shelah, S.: Rabin’s uniformization problem. J. Symb. Log. 48(4),
1105–1119 (1983)

17. Holzer, M., Kutrib, M.: Descriptional complexity of (un)ambiguous finite state
machines and pushdown automata. In: Kučera, A., Potapov, I. (eds.) RP 2010.
LNCS, vol. 6227, pp. 1–23. Springer, Heidelberg (2010)

18. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

19. Kirsten, D., Lombardy, S.: Deciding unambiguity and sequentiality of polynomi-
ally ambiguous min-plus automata. In: 26th International Symposium on Theoret-
ical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg,
Germany, Proceedings, pp. 589–600 (2009)

20. Klimann, I., Lombardy, S., Mairesse, J., Prieur, C.: Deciding unambiguity and
sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.
327(3), 349–373 (2004)

21. Krob, D.: The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Int. J. Algebra Comput. 4(3), 405–425 (1994)

22. Leiss, E.L.: Succint representation of regular languages by boolean automata.
Theor. Comput. Sci. 13, 323–330 (1981)

23. Leung, H.: Separating exponentially ambiguous finite automata from polynomially
ambiguous finite automata. SIAM J. Comput. 27(4), 1073–1082 (1998)

24. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16(5), 975–984 (2005)

25. Leung, H.: Structurally unambiguous finite automata. In: Ibarra, O.H., Yen, H.-C.
(eds.) CIAA 2006. LNCS, vol. 4094, pp. 198–207. Springer, Heidelberg (2006)

26. Lombardy, S., Mairesse, J.: Series which are both max-plus and min-plus are unam-
biguous. RAIRO - Theor. Inf. Appl. 40(1), 1–14 (2006)

27. Lupanov, O.B.: A comparison of two types of finite sources. Problemy Kybernetiki
9, 321–326 (1963)

28. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory, pp. 188–191.
IEEE (1971)

29. Moore, F.R.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. 20(10), 1211–1214 (1971)

30. Niwiński, D., Walukiewicz, I.: Ambiguity problem for automata on infinite trees
(1996). unpublished

31. Okhotin, A., Salomaa, K.: Descriptional complexity of unambiguous input-driven
pushdown automata. Theor. Comput. Sci. 566, 1–11 (2015)

http://www.abs/1101.1731

18 T. Colcombet

32. Pin, J.É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.
Syst. 30(4), 383–422 (1997)

33. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1–35 (1969)

34. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Dev. 3, 114–125 (1959)

35. Reinhardt, K., Allender, E.: Making nondeterminism unambiguous. SIAM J. Com-
put. 29(4), 1118–1131 (2000)

36. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press,
Cambridge (2009)

37. Schmidt, E.M.: Succinctness of descriptions of context-free, regular and finite lan-
guages. Ph.D. thesis, Cornell University (1977)

38. Schützenberger, M.-P.: On the definition of a family of automata. Inf. Control 4,
245–270 (1961)

39. Schützenberger, M.-P.: Sur les relations fonctionnelles. In: Brakhage, H. (ed.) GI-
Fachtagung 1975. LNCS, vol. 33, pp. 209–213. Springer, Heidelberg (1975)

40. Seidl, H.: Deciding equivalence of finite tree automata. SIAM J. Comput. 19(3),
424–437 (1990)

41. Stearns, R.E., Hunt III, H.B.: On the equivalence and containment problems for
unambiguous regular expressions, grammars, and automata. In: 22nd Annual Sym-
posium on Foundations of Computer Science, Nashville, Tennessee, USA, 28–30
October 1981, pp. 74–81 (1981)

42. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997).
Chap. 7

43. Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. ITA
30(5), 379–413 (1996)

Contributed Papers

Partial Derivative Automaton for Regular
Expressions with Shuffle

Sabine Broda(B), António Machiavelo, Nelma Moreira, and Rogério Reis

CMUP and DM, Faculdade de Ciências da Universidade do Porto,
Rua Do Campo Alegre, 4169-007 Porto, Portugal

{sbb,nam,rvr}@dcc.fc.up.pt, ajmachia@fc.up.pt

Abstract. We generalize the partial derivative automaton to regular
expressions with shuffle and study its size in the worst and in the average
case. The number of states of the partial derivative automata is in the
worst case at most 2m, where m is the number of letters in the expression,
while asymptotically and on average it is no more than (4

3
)m.

1 Introduction

The class of regular languages is closed under shuffle (or interleaving opera-
tion), and extended regular expressions with shuffle can be much more succinct
than the equivalent ones with disjunction, concatenation, and star operators.
For the shuffle operation, Mayer and Stockmeyer [14] studied the computa-
tional complexity of membership and inequivalence problems. Inequivalence is
exponential-time-complete, and membership is NP-complete for some classes of
regular languages. In particular, they showed that for regular expressions (REs)
with shuffle, of size n, an equivalent nondeterministic finite automaton (NFA)
needs at most 2n states, and presented a family of REs with shuffle, of size O(n),
for which the corresponding NFAs have at least 2n states. Gelade [10], and Gruber
and Holzer [11,12] showed that there exists a double exponential trade-off in the
translation from REs with shuffle to stantard REs. Gelade also gave a tight dou-
ble exponential upper bound for the translation of REs with shuffle to DFAs.
Recently, conversions of shuffle expressions to finite automata were presented by
Estrade et al. [7] and Kumar and Verma [13]. In the latter paper the authors give
an algorithm for the construction of an ε-free NFA based on the classic Glushkov
construction, and the authors claim that the size of the resulting automaton is
at most 2m+1, where m is the number of letters that occur in the RE with shuffle.

In this paper we present a conversion of REs with shuffle to ε-free NFAs, by
generalizing the partial derivative construction for standard REs [1,15]. For stan-
dard REs, the partial derivative automaton (Apd) is a quotient of the Glushkov
automaton (Apos), and Broda et al. [2,3] showed that, asymptotically and on
average, the size of Apd is half the size of Apos. In the case of REs with shuffle

Authors partially funded by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government through the FCT under
projects UID/MAT/00144/2013 and FCOMP-01-0124-FEDER-020486.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 21–32, 2015.
DOI: 10.1007/978-3-319-19225-3 2

22 S. Broda et al.

we show that the number of states of the partial derivative automaton is, in the
worst-case, 2m (with m as before) and an upper bound for the average size is,
asymptotically, (43)m.

This paper is organized as follows. In the next section we review the shuffle
operation and regular expressions with shuffle. In Sect. 3 we consider equation
systems, for languages and expressions, associated with nondeterministic finite
automata and define a solution for a system of equations for a shuffle expression.
An alternative and equivalent construction, denoted by Apd, is given in Sect. 4
using the notion of partial derivative. An upper bound for the average number of
states of Apd using the framework of analytic combinatorics is given in Sect. 5. We
conclude in Sect. 6 with some considerations about how to improve the presented
upper bound and related future work.

2 Regular Expressions with Shuffle

Given an alphabet Σ, the shuffle of two words in Σ� is a finite set of words
defined inductively as follows, for x, y ∈ Σ� and a, b ∈ Σ

x ε = ε x = {x}
ax by = { az | z ∈ x by } ∪ { bz | z ∈ ax y }.

This definition is extended to sets of words, i.e., languages, in the natural way:

L1 L2 = { x y | x ∈ L1, y ∈ L2 }.

It is well known that if two languages L1, L2 ⊆ Σ� are regular then L1 L2 is
regular. One can extend regular expressions to include the operator. Given an
alphabet Σ, we let T denote the set containing ∅ plus all terms finitely generated
from Σ ∪{ε} and operators +, ·, , ∗, that is, the expressions τ generated by the
grammar

τ → ∅ | α (1)
α → ε | a | α + α | α · α | α α | α� (a ∈ Σ). (2)

As usual, the (regular) language L(τ) represented by an expression τ ∈ T
is inductively defined as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a} for a ∈ Σ,
L(α�) = L(α)�, L(α + β) = L(α) ∪ L(β), L(αβ) = L(α)L(β), and L(α β) =
L(α) L(β). We say that two expressions τ1, τ2 ∈ T are equivalent, and write
τ1 = τ2, if L(τ1) = L(τ2).

Example 1. Consider αn = a1 · · · an, where n ≥ 1, ai �= aj for 1 ≤ i �= j ≤ n.
Then,

L(αn) = { ai1 · · · ain
| i1, . . . , in is a permutation of 1, . . . , n}.

Partial Derivative Automaton for REs with Shuffle 23

We recall that standard regular expressions constitute a Kleene algebra and
the shuffle operator is commutative, associative, and distributes over +. It
also follows that for all a, b ∈ Σ and τ1, τ2 ∈ T ,

aτ1 bτ2 = a(τ1 bτ2) + b(aτ1 τ2).

Given a language L, we define ε(τ) = ε(L(τ)), where, ε(L) = ε if ε ∈ L
and ε(L) = ∅ otherwise. A recursive definition of ε : T −→ {∅, ε} is given
by the following: ε(a) = ε(∅) = ∅, ε(ε) = ε(α∗) = ε, ε(α + β) = ε(α) + ε(β),
ε(αβ) = ε(α)ε(β), and ε(α β) = ε(α)ε(β).

3 Automata and Systems of Equations

We first recall the definition of an NFA as a tuple A = 〈S,Σ, S0, δ, F 〉, where
S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial states,
δ : S × Σ −→ P(S) the transition function, and F ⊆ S a set of final states.
The extension of δ to sets of states and words is defined by δ(X, ε) = X and
δ(X, ax) = δ(∪s∈Xδ(s, a), x). A word x ∈ Σ∗ is accepted by A if and only
if δ(S0, x) ∩ F �= ∅. The language of A is the set of words accepted by A and
denoted by L(A). The right language of a state s, denoted by Ls, is the language
accepted by A if we take S0 = {s}. The class of languages accepted by all the
NFAs is precisely the set of regular languages.

It is well known that, for each n-state NFA A over Σ = {a1, . . . , ak}, where
S = [1, n], having right languages L1, . . . ,Ln, it is possible to associate a system
of linear language equations

Li = a1L1i ∪ · · · ∪ akLik ∪ ε(Li), i ∈ [1, n]

where each Lij is a (possibly empty) union of elements in {L1, . . . ,Ln}, and
L(A) =

⋃
i∈S0

Li.
In the same way, it is possible to associate with each regular expression

a system of equations on expressions. Here, we extend this notion to regular
expressions with shuffle.

Definition 2. Consider Σ = {a1, . . . , ak} and α0 ∈ T . A support of α0 is a
set {α1, . . . , αn} that satisfies a system of equations

αi = a1α1i + · · · + akαki + ε(αi), i ∈ [0, n] (3)

for someα1i, . . . , αki, each one a (possibly empty) sum of elements in {α1, . . . , αn}.
In this case {α0, α1, . . . , αn} is called a prebase of α0.

It is clear from what was just said above, that the existence of a support of α
implies the existence of an NFA that accepts the language determined by α.

Note that the system of Eq. (3) can be written in matrix formAα = C·Mα+Eα,
where Mα is the k × (n + 1) matrix with entries αij , and Aα, C and Eα denote
respectively the following three matrices,

Aα =
[
α0 · · · αn

]
, C =

[
a1 · · · ak

]
, and Eα =

[
ε(α0) · · · ε(αn)

]
,

24 S. Broda et al.

where, C ·Mα denotes the matrix obtained from C and Mα applying the standard
rules of matrix multiplication, but replacing the multiplication by concatenation.
This notation will be used below.

A support for an expression α ∈ T can be computed using the function
π : T −→ P(T) recursively given by the following.

Definition 3. Given τ ∈ T , the set π(τ) is inductively defined by,

π(∅) = π(ε) = ∅
π(a) = {ε} (a ∈ Σ)

π(α∗) = π(α)α∗

π(α + β) = π(α) ∪ π(β)
π(αβ) = π(α)β ∪ π(β)

π(α β) = π(α) π(β)
∪ π(α) {β} ∪ {α} π(β),

where, given S, T ⊆ T and β ∈ T \ {∅, ε}, Sβ = { αβ | α ∈ S } and S T =
{ α β | α ∈ S, β ∈ T }, Sε = {ε} S = S {ε} = S, and S∅ = ∅S = ∅.
The following lemma follows directly from the definitions and will be used in
the proof of Proposition 5.

Lemma 4. If α, β ∈ T , then ε(β) · L(α) ⊆ L(α β).

Proposition 5. If α ∈ T , then the set π(α) is a support of α.

Proof. We proceed by induction on the structure of α. Excluding the case where
α is α0 β0, the proof can be found in [6,15]. We now describe how to obtain
a system of equations corresponding to an expression α0 β0 from systems for
α0 and β0. Suppose that π(α0) = {α1, . . . , αn} is a support of α0 and π(β0) =
{β1, . . . , βm} is a support of β0. For α0 and β0 consider C, Aα0 , Mα0 , Eα0 and
Aβ0 , Mβ0 , Eβ0 as above. We wish to show that

π(α0 β0) = {α1 β1, . . . , α1 βm, . . . , αn β1, . . . , αn βm}
∪ {α1 β0, . . . , αn β0} ∪ {α0 β1, . . . , α0 βm}

is a support of α0 β0. Let Aα0 β0 be the (n+1)(m+1)-entry row-matrix whose
entires are

[
α0 β0 α1 β1 · · · αn βm α1 β0 · · · αn β0 α0 β1 · · · α0 βm

]
.

Then, Eα0 β0 is defined as usual, i.e. containing the values of ε(α) for all entries
α in Aα0 β0 .

Finally, let Mα0 β0 be the k × (n+1)(m+1) matrix whose entries γl,(i,j), for
l ∈ [1, k] and (i, j) ∈ [0, n] × [0,m], are defined by

γl,(i,j) = αli βj + αi βlj .

Note that, since by the induction hypothesis each αli is a sum of elements
in π(α) and each βlj is a sum of elements in π(β), after applying distributivity
of over + each element of Mα0 β0 is in fact a sum of elements in π(α0 β0).
We will show that Aα0 β0 = C · Mα0 β0 + Eα0 β0 . For this, consider αi βj

Partial Derivative Automaton for REs with Shuffle 25

for some (i, j) ∈ [0, n] × [0,m]. We have αi = a1α1i + · · · + akαki + ε(αi) and
βj = a1β1j + · · · + akβkj + ε(βj). Consequently, using properties of , namely
distributivity over +, as well as Lemma 4,

αi βj = (a1α1i + · · · + akαki + ε(αi)) (a1β1j + · · · + akβkj + ε(βj))
= a1 (α1i βj + αi β1j + ε(βj)α1i + ε(αi)β1j) + · · ·

+ ak (αki βj + αi βkj + ε(βj)αki + ε(αi)βkj) + ε(αi βj)
= a1 (α1i βj + αi β1j) + · · ·

+ ak (αki βj + αi βkj) + ε(αi βj)
= a1γ1,(i,j) + · · · + akγk,(i,j) + ε(αi βj).

�
It is clear from its definition that π(α) is finite. In the following proposition, an
upper bound for the size of π(α) is given. Example 7 is a witness that this upper
bound is tight.

Proposition 6. Given α ∈ T , one has |π(α)| ≤ 2|α|Σ − 1, where |α|Σ denotes
the number of alphabet symbols in α.

Proof. The proof proceeds by induction on the structure of α. It is clear that
the result holds for α = ∅, α = ε and for α = a ∈ Σ. Now, suppose the claim
is true for α and β. There are four induction cases to consider. We will make
use of the fact that, for m,n ≥ 0 one has 2m + 2n − 2 ≤ 2m+n − 1. For α�, one
has |π(α�)| = |π(α)α�| = |π(α)| ≤ 2|α|Σ − 1 = 2|α�|Σ − 1. For α + β, one has
|π(α+β)| = |π(α)∪π(β)| ≤ 2|α|Σ − 1+2|β|Σ − 1 ≤ 2|α|Σ+|β|Σ − 1 = 2|α+β|Σ − 1.
For αβ, one has |π(αβ)| = |π(α)β ∪ π(β)| ≤ 2|α|Σ − 1 + 2|β|Σ − 1 ≤ 2|αβ|Σ − 1.
Finally, for α β, one has |π(α β)| = |π(α) π(β)∪π(α) {β}∪{α} π(β)| ≤
(2|α|Σ − 1)(2|β|Σ − 1) + 2|α|Σ − 1 + 2|β|Σ − 1 = 2|α|Σ+|β|Σ − 1 = 2|α β|Σ − 1. �
Example 7. Considering αn = a1 · · · an, where n ≥ 1, ai �= aj for 1 ≤ i �=
j ≤ n again, one has

|π(αn)| = |{
i∈I

ai | I � {1, . . . , n} }| = 2n − 1,

where by convention
i∈∅

ai = ε.

The proof of Proposition 5 gives a way to construct a system of equations for
an expression τ ∈ T , corresponding to an NFA that accepts the language rep-
resented by τ . This is done by recursively computing π(τ) and the matrices Aτ

and Eτ , obtaining the whole NFA in the final step.
In the next section we will show how to build the same NFA in a more efficient

way using the notion of partial derivative.

26 S. Broda et al.

4 Partial Derivatives

Recall that the left quotient of a language L w.r.t. a symbol a ∈ Σ is

a−1L = { x | ax ∈ L }.

The left quotient of L w.r.t. a word x ∈ Σ� is then inductively defined by
ε−1L = L and (xa)−1L = a−1(x−1L). Note that for L1, L2 ⊆ Σ� and a, b ∈ Σ
the shuffle operation satisfies a−1(L1 L2) = (a−1L1) L2 ∪ L1 (a−1L2).

Definition 8. The set of partial derivatives of a term τ ∈ T w.r.t. a letter
a ∈ Σ, denoted by ∂a(τ), is inductively defined by

∂a(∅) = ∂a(ε) = ∅
∂a(b) =

{
{ε} if b = a

∅ otherwise

∂a(α∗) = ∂a(α)α∗

∂a(α + β) = ∂a(α) ∪ ∂a(β)
∂a(αβ) = ∂a(α)β ∪ ε(α)∂a(β)

∂a(α β) = ∂a(α) {β} ∪ {α} ∂a(β).

The set of partial derivatives of τ ∈ T w.r.t. a word x ∈ Σ∗ is inductively
defined by ∂ε(τ) = {τ} and ∂xa(τ) = ∂a(∂x(τ)), where, given a set S ⊆ T ,
∂a(S) =

⋃
τ∈S ∂a(τ).

We let ∂(τ) denote the set of all partial derivatives of an expression τ , i.e. ∂(τ) =⋃
x∈Σ∗ ∂x(τ), and by ∂+(τ) the set of partial derivatives excluding the trivial

derivative by ε, i.e. ∂+(τ) =
⋃

x∈Σ+ ∂x(τ). Given a set S ⊆ T , we define
L(S) =

⋃
τ∈S L(τ). The following result has a straightforward proof.

Proposition 9. Given x ∈ Σ� and τ ∈ T , one has L(∂x(τ)) = x−1L(τ).

The following properties of ∂+(τ) will be used in the proof of Proposition 11.

Lemma 10. For τ ∈ T , the following hold.

1. If ∂+(τ) �= ∅, then there is α0 ∈ ∂+(τ) with ε(α0) = ε.
2. If ∂+(τ) = ∅ and τ �= ∅, then L(τ) = {ε} and ε(τ) = ε.

Proof. 1. From the grammar rule (2) it follows that ∅ cannot appear as a subex-
pression of a larger term. Suppose that there is some γ ∈ ∂+(τ). We con-
clude, from Definition 8 and from the previous remark, that there is some
word x ∈ Σ+ such that x ∈ L(γ). This is equivalent to ε ∈ L(∂x(γ)), which
means that there is some α0 ∈ ∂x(γ) ⊆ ∂+(τ) such that ε(α0) = ε.

2. ∂+(τ) = ∅ implies that ∂x(τ) = ∅ for all x ∈ Σ+. Thus, L(∂x(τ)) = { y |
xy ∈ L(τ) } = ∅, and consequently there is no word z ∈ Σ+ in L(τ). On
the other hand, since ∅ does not appear in τ , it follows that L(τ) �= ∅. Thus,
L(τ) = {ε}. �

Proposition 11. ∂+ satisfies the following:

∂+(∅) = ∂+(ε) = ∅
∂+(a) = {ε} (a ∈ Σ)

∂+(α∗) = ∂+(α)α∗

∂+(α + β) = ∂+(α) ∪ ∂+(β)
∂+(αβ) = ∂+(α)β ∪ ∂+(β)

∂+(α β) = ∂+(α) ∂+(β)
∪ ∂+(α) {β} ∪ {α} ∂+(β).

Partial Derivative Automaton for REs with Shuffle 27

Proof. The proof proceeds by induction on the structure of α. It is clear that
∂+(∅) = ∅, ∂+(ε) = ∅ and, for a ∈ Σ, ∂+(a) = {ε}.

In the remaining cases, to prove that an inclusion ∂+(γ) ⊆ E holds for some
expression E, we show by induction on the length of x that for every x ∈ Σ+ one
has ∂x(γ) ⊆ E. We will therefore just indicate the corresponding computations
for ∂a(γ) and ∂xa(γ), for a ∈ Σ. We also make use of the fact that, for any
expression γ and letter a ∈ Σ, the set ∂+(γ) is closed for taking derivatives
w.r.t. a, i.e., ∂a(∂+(γ)) ⊆ ∂+(γ).

Now, suppose the claim is true for α and β. There are four induction cases
to consider.

– For α + β, we have ∂a(α + β) = ∂a(α) + ∂a(β) ⊆ ∂+(α) ∪ ∂+(β), as well as
∂xa(α+β) = ∂a(∂x(α+β)) ⊆ ∂a(∂+(α)∪ ∂+(β)) ⊆ ∂a(∂+(α))∪ ∂a(∂+(β)) ⊆
∂+(α) ∪ ∂+(β). Similarly, one proves that ∂x(α) ∈ ∂+(α + β) and ∂x(β) ∈
∂+(α + β), for all x ∈ Σ+.

– For α�, we have ∂a(α∗) = ∂a(α)α∗ ⊆ ∂+(α)α∗, as well as

∂xa(α∗) = ∂a(∂x(α∗)) ⊆ ∂a(∂+(α)α∗) ⊆ ∂a(∂+(α))α∗ ∪ ∂a(α∗)

⊆ ∂+(α)α∗ ∪ ∂a(α)α∗ ⊆ ∂+(α)α∗.

Furthermore, ∂a(α)α� = ∂a(α�) ⊆ ∂+(α�) and ∂xa(α)α� = ∂a(∂x(α))α� ⊆
∂a(∂x(α)α�) ⊆ ∂a(∂+(α�)) ⊆ ∂+(α�).

– For αβ, we have ∂a(αβ) = ∂a(α)β ∪ ε(α)∂a(β) ⊆ ∂+(α)β ∪ ∂+(β) and

∂xa(αβ) = ∂a(∂x(αβ)) ⊆ ∂a(∂+(α)β ∪ ∂+(β)) = ∂a(∂+(α)β) ∪ ∂a(∂+(β))

⊆ ∂a(∂+(α))β ∪ ∂a(β) ∪ ∂a(∂+(β)) ⊆ ∂+(α)β ∪ ∂+(β).

Also, ∂a(α)β ⊆ ∂a(αβ) ⊆ ∂+(αβ) and

∂xa(α)β = ∂a(∂x(α))β ⊆ ∂a(∂x(α)β) ⊆ ∂a(∂+(αβ)) ⊆ ∂+(αβ).

Finally, if ε(α) = ε, then ∂a(β) ⊆ ∂a(αβ) and ∂xa(β) = ∂a(∂x(β))
⊆ ∂a(∂x(αβ)) = ∂xa(αβ). We conclude that ∂x(β) ⊆ ∂x(αβ) for all x ∈
Σ+, and therefore ∂+(β) ⊆ ∂+(αβ). Otherwise, ε(α) = ∅, and it follows
from Lemma 10 that ∂+(α) �= ∅, and that there is some α0 ∈ ∂+(α) with
ε(α0) = ∅. As above, this implies that ∂x(β) ⊆ ∂x(α0β) for all x ∈ Σ+. On
the other hand, have already shown that ∂+(α)β ⊆ ∂+(αβ). In particular,
α0β ∈ ∂+(αβ). From these two facts, we conclude that ∂x(β) ⊆ ∂x(α0β) ⊆
∂x(∂+(αβ)) ⊆ ∂+(αβ), which finishes the proof for the case of concatenation.

– For α β, we have

∂a(α β) = ∂a(α) {β} ∪ {α} ∂a(β)

⊆ ∂+(α) ∂+(β) ∪ ∂+(α) {β} ∪ {α} ∂+(β)

28 S. Broda et al.

and

∂xa(α β) ⊆ ∂a(∂+(α) ∂+(β) ∪ ∂+(α) {β} ∪ {α} ∂+(β))

= ∂a(∂+(α) ∂+(β)) ∪ ∂a(∂+(α) {β}) ∪ ∂a({α} ∂+(β))

= ∂a(∂+(α)) ∂+(β) ∪ ∂+(α) ∂a(∂+(β)) ∪ ∂a(∂+(α)) {β}
∪ ∂+(α) ∂a(β) ∪ ∂a(α) ∂+(β) ∪ {α} ∂a(∂+(β))

⊆ ∂+(α) ∂+(β) ∪ ∂+(α) {β} ∪ {α} ∂+(β).

Now we prove that for all x ∈ Σ+, one has ∂x(α) {β} ⊆ ∂x(α β),
which implies ∂+(α) {β} ⊆ ∂+(α β). In fact, we have ∂a(α) {β} ⊆ ∂a

(α β) and

∂xa(α) {β} ⊆ ∂a(∂x(α)) {β}
⊆ ∂a(∂x(α) {β}) ⊆ ∂a(∂x(α β)) = ∂xa(α β).

Showing that {α} ∂x(β) ⊆ ∂x(α β) is analogous. Finally, for x, y ∈ Σ+

we have ∂x(α) ∂y(β) ⊆ ∂y(∂x(α) {β}) ⊆ ∂y(∂x(α β)) = ∂xy(α β) ⊆
∂+(α β). �

Corollary 12. Given α ∈ T , one has ∂+(α) = π(α).

We conclude that ∂(α) corresponds to the set {α}∪π(α), as is the case for stan-
dard regular expressions. It is well known that the set of partial derivatives of a
regular expression gives rise to an equivalent NFA, called the Antimirov automa-
ton or partial derivative automaton, that accepts the language determined by
that expression. This remains valid in our extension of the partial derivatives to
regular expressions with shuffle.

Definition 13. Given τ ∈ T , we define the partial derivative automaton asso-
ciated with τ by

Apd(τ) = 〈∂(τ), Σ, {τ}, δτ , Fτ 〉,
where Fτ = { γ ∈ ∂(τ) | ε(γ) = ε } and δτ (γ, a) = ∂a(γ).

It is easy to see that the following holds.

Proposition 14. For every state γ ∈ ∂(τ), the right language Lγ of γ in A(τ) is
equal to L(γ), the language represented by γ. In particular, the language accepted
by Apd(τ) is exactly L(τ).

Note that for the REs αn considered in Examples 1 and 7, Apd(αn) has 2n states
which is exactly the bound presented by Mayer and Stockmeyer [14].

5 Average State Complexity of the Partial
Derivative Automaton

In this section, we estimate the asymptotic average size of the number of states in
partial derivative automata. This is done by the use of the standard methods of

Partial Derivative Automaton for REs with Shuffle 29

analytic combinatorics as expounded by Flajolet and Sedgewick [9], which apply
to generating functions A(z) =

∑
n anzn associated with combinatorial classes.

Given some measure of the objects of a class A, the coefficient an represents the
sum of the values of this measure for all objects of size n. We will use the notation
[zn]A(z) for an. For an introduction of this approach applied to formal languages,
we refer to Broda et al. [4]. In order to apply this method, it is necessary to have
an unambiguous description of the objects of the combinatorial class, as is the
case for the specification of T -expressions without ∅ in (2). For the length or size
of a T -expression α we will consider the number of symbols in α, not counting
parentheses. Taking k = |Σ|, we compute from (2) the generating functions
Rk(z) and Lk(z), for the number of T -expressions without ∅ and the number of
alphabet symbols in T -expressions without ∅, respectively. Note that excluding
one object, ∅, of size 1 has no influence on the asymptotic study.

According to the specification in (2) the generating function Rk(z) for the
number of T -expressions without ∅ satisfies

Rk(z) = z + kz + 3zRk(z)2 + zRk(z),

thus,

Rk(z) =
(1 − z) − √

Δk(z)
6z

, where Δk(z) = 1 − 2z − (11 + 12k)z2.

The radius of convergence of Rk(z) is ρk = −1+2
√
3+3k

11+12k . Now, note that the
number of letters l(α) in an expression α satisfies: l(ε) = 0, in l(a) = 1, for
a ∈ Σ, l(α + β) = l(α) + l(β), etc. From this, we conclude that the generating
function Lk(z) satisfies

Lk(z) = kz + 3zLk(z)Rk(z) + zLk(z),

thus,

Lk(z) =
(−kz)

6zRk(z) + z − 1
=

kz√
Δk(z)

.

Now, let Pk(z) denote the generating function for the size of π(α) for T -
expressions without ∅. From Definition 3 it follows that, given an expression α,
an upper bound, p(α), for the number of elements1 in the set π(α) satisfies:

p(ε) = 0
p(a) = 1, for a ∈ Σ

p(α�) = p(α)

p(α + β) = p(α) + p(β)
p(αβ) = p(α) + p(β)

p(α β) = p(α)p(β) + p(α) + p(β).

From this, we conclude, using the symbolic method [9], that the generating
function Pk(z) satisfies

Pk(z) = kz + 6zPk(z)Rk(z) + zPk(z) + zPk(z)2,
1 This upper bound corresponds to the case where all unions in π(α) are disjoint.

30 S. Broda et al.

thus

Pk(z) = Qk(z) + Sk(z),

where

Qk(z) =

√
Δk(z)
2z

, Sk(z) = −
√

Δ′
k(z)

2z
,

and Δ′
k(z) = 1− 2z − (11+16k)z2. The radii of convergence of Qk(z) and Sk(z)

are respectively ρk (defined above) and ρ′
k = −1+2

√
3+4k

11+16k .

5.1 Asymptotic Analysis

A generating function f can be seen as a complex analytic function, and the
study of its behaviour around its dominant singularity ρ (in case there is only
one, as it happens with the functions considered here) gives us access to the
asymptotic form of its coefficients. In particular, if f(z) is analytic in some
appropriate neighbourhood of ρ, then one has the following [4,9,16]:

1. if f(z) = a − b
√

1 − z/ρ + o
(√

1 − z/ρ
)
, with a, b ∈ R, b �= 0, then

[zn]f(z) ∼ b

2
√

π
ρ−nn−3/2;

2. if f(z) = a√
1−z/ρ

+ o

(
1√

1−z/ρ

)
, with a ∈ R, and a �= 0, then

[zn]f(z) ∼ a√
π

ρ−nn−1/2.

Hence, by 1. one has for the number of T -expressions of size n,

[zn]Rk(z) =
(3 + 3k)

1
4

6
√

π
ρ

−n− 1
2

k (n + 1)− 3
2 (4)

and by 2. for the number of alphabet symbols in all expression of size n,

[zn]Lk(z) =
k

2
√

π(3 + 3k)
1
4
ρ

−n+ 1
2

k n− 1
2 . (5)

Consequently, the average number of letters in an expression of size n, which we
denote by avL, is asymptotically given by

avL =
[zn]Lk(z)
[zn]Rk(z)

=
3kρk√
3 + 3k

(n + 1)
3
2

n
1
2

.

Finally, by 1., one has for the size of expressions of size n,

[zn]Pk(z) = [zn]Qk(z) + [zn]Sk(z)

=
−(3 + 3k)

1
4 ρ

−n− 1
2

k + (3 + 4k)
1
4 (ρ′

k)−n− 1
2

2
√

π
(n + 1)− 3

2 ,

and the average size of π(α) for an expression α of size n, denoted by avP , is
asymptotically given by

Partial Derivative Automaton for REs with Shuffle 31

avP =
[zn]Pk(z)
[zn]Rk(z)

.

Taking into account Proposition 6, we want to compare the values of log2 avP
and avL. In fact, one has

lim
n,k→∞

log2 avP

avL
= log2

4
3

∼ 0.415.

This means that,

lim
n,k→∞

avP 1/avL =
4
3
.

Therefore, one has the following significant improvement, when compared
with the worst case, for the average case upper bound.

Proposition 15. For large values of k and n an upper bound for the average
number of states of Apd is (43 + o (1))|α|Σ .

6 Conclusion and Future Work

We implemented the construction of the Apd for REs with shuffle in the FAdo
system [8] and performed some experimental tests for small values of n and
k. Those experiments over statistically significant samples of uniform random
generated REs suggest that the upper bound obtained in the last section falls far
short of its true value. This is not surprising as in the construction of π(α)∪{α}
repeated elements can occur.

In previous work [2], we identified classes of standard REs that capture a
significant reduction on the size of π(α). In the case of REs with shuffle, those
classes enforce only a marginal reduction in the number of states, but a dras-
tic increase in the complexity of the associated generating function. Thus the
expected gains don’t seem to justify its quite difficult asymptotic study.

Sulzmann and Thiemann [17] extended the notion of Brzozowski derivative
for several variants of the shuffle operator. It will be interesting to carry out a
descriptional complexity study of those constructions and to see if it is interesting
to extend the notion of partial derivative to those shuffle variants.

An extension of the partial derivative construction for extended REs with
intersection and negation was recently presented by Caron et al. [5]. It will be
also interesting to study the average complexity of this construction.

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average state complexity of
partial derivative automata. Int. J. Found. Comput. Sci. 22(7), 1593–1606 (2011)

32 S. Broda et al.

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: On the average size of Glushkov
and partial derivative automata. Int. J. Found. Comput. Sci. 23(5), 969–984 (2012)

4. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: A Hitchhiker’s guide to descrip-
tional complexity through analytic combinatorics. Theor. Comput. Sci. 528, 85–
100 (2014)

5. Caron, P., Champarnaud, J.-M., Mignot, L.: Partial derivatives of an extended
regular expression. In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA
2011. LNCS, vol. 6638, pp. 179–191. Springer, Heidelberg (2011)

6. Champarnaud, J.M., Ziadi, D.: From Mirkin’s prebases to Antimirov’s word partial
derivatives. Fundam. Inform. 45(3), 195–205 (2001)

7. Estrade, B.D., Perkins, A.L., Harris, J.M.: Explicitly parallel regular expressions.
In: Ni, J., Dongarra, J. (eds.) 1st IMSCCS, pp. 402–409. IEEE Computer Society
(2006)

8. FAdo, P.: FAdo: tools for formal languages manipulation. http://fado.dcc.fc.up.
pt/. Accessed October 01 2014

9. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. CUP (2008)
10. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and

counting. Theor. Comput. Sci. 411(31–33), 2987–2998 (2010)
11. Gruber, H.: On the descriptional and algorithmic complexity of regular languages.

Ph.D. thesis, Justus Liebig University Giessen (2010)
12. Gruber, H., Holzer, M.: Finite automata, digraph connectivity, and regular

expression size. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
39–50. Springer, Heidelberg (2008)

13. Kumar, A., Verma, A.K.: A novel algorithm for the conversion of parallel regular
expressions to non-deterministic finite automata. Appl. Math. Inf. Sci. 8, 95–105
(2014)

14. Mayer, A.J., Stockmeyer, L.J.: Word problems-this time with interleaving. Inf.
Comput. 115(2), 293–311 (1994)

15. Mirkin, B.G.: An algorithm for constructing a base in a language of regular expres-
sions. Eng. Cybern. 5, 51–57 (1966)

16. Nicaud, C.: On the average size of Glushkov’s automata. In: Dediu, A.H., Ionescu,
A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 626–637. Springer,
Heidelberg (2009)

17. Sulzmann, M., Thiemann, P.: Derivatives for regular shuffle expressions. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 275–286. Springer, Heidelberg (2015)

http://fado.dcc.fc.up.pt/
http://fado.dcc.fc.up.pt/

Upper Bound on Syntactic Complexity
of Suffix-Free Languages

Janusz Brzozowski1 and Marek Szyku�la2(B)

1 David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 3G1, Canada

brzozo@uwaterloo.ca
2 Institute of Computer Science, University of Wroc�law,

Joliot-Curie 15, PL-50-383 Wroc�law, Poland
msz@cs.uni.wroc.pl

Abstract. We solve an open problem concerning syntactic complexity:
We prove that the cardinality of the syntactic semigroup of a suffix-
free language with n left quotients (that is, with state complexity n)
is at most (n − 1)n−2 + n − 2 for n � 7. Since this bound is known
to be reachable, this settles the problem. We also reduce the alphabet
of the witness languages reaching this bound to five letters instead of
n + 2, and show that it cannot be any smaller. Finally, we prove that
the transition semigroup of a minimal deterministic automaton accepting
such a witness language is unique for each n � 7.

Keywords: Regular language · Suffix-free · Syntactic complexity ·
Transition semigroup · Upper bound

1 Preliminaries

1.1 Introduction

The syntactic complexity [7] σ(L) of a regular language L is the size of its syn-
tactic semigroup [10]. This semigroup is isomorphic to the transition semigroup
of the quotient automaton D (a minimal deterministic finite automaton) accept-
ing the language. The number n of states of D is the state complexity of the
language [12], and it is the same as the quotient complexity [3] (number of left
quotients) of the language. The syntactic complexity of a class of regular lan-
guages is the maximal syntactic complexity of languages in that class expressed
as a function of the quotient complexity n.

If w = uxv for some u, v, x ∈ Σ∗, then u is a prefix of w, v is a suffix of
w and x is a factor of w. A suffix of w is also a factor of w. A language L
is prefix-free (respectively, suffix-free, factor-free) if w, u ∈ L and u is a prefix

This work was supported by the Natural Sciences and Engineering Research
Council of Canada grant No. OGP000087, and by Polish NCN grant DEC-
2013/09/N/ST6/01194.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 33–45, 2015.
DOI: 10.1007/978-3-319-19225-3 3

34 J. Brzozowski and M. Szyku�la

(respectively, suffix, factor) of w, implies that u = w. A language is bifix-free if it
is both prefix- and suffix-free. These languages play an important role in coding
theory, have applications in such areas as cryptography, data compression, and
information transmission, and have been studied extensively; see [2] for example.
In particular, suffix-free languages (with the exception of {ε}, where ε is the
empty word) are suffix codes. Moreover, suffix-free languages are special cases
of suffix-convex languages, where a language is suffix-convex if it satisfies the
condition that, if a word w and its suffix u are in the language, then so is every
suffix of w that has u as a suffix [1,11]. We are interested only in regular suffix-
free languages.

The syntactic complexity of prefix-free languages was proved to be nn−2

in [4]. The syntactic complexities of suffix-, bifix-, and factor-free languages were
also studied in [4], and the following lower bounds were established (n−1)n−2 +
n − 2, (n − 1)n−3 + (n − 2)n−3 + (n − 3)2n−3, and (n − 1)n−3 + (n − 3)2n−3 + 1,
respectively. It was conjectured that these bounds are also upper bounds; we
prove the conjecture for suffix-free languages in this paper.

A full version of the paper is available in [5].

1.2 Languages, Automata and Transformations

Let Σ be a finite, non-empty alphabet and let L ⊆ Σ∗ be a language. The
left quotient or simply quotient of a language L by a word w ∈ Σ∗ is denoted
by L.w and defined by L.w = {x | wx ∈ L}. A language is regular if and
only if it has a finite number of quotients. We denote the set of quotients by
K = {K0, . . . , Kn−1}, where K0 = L = L.ε by convention. Each quotient Kq

can be represented also as L.wq, where wq ∈ Σ∗ is such that L.wq = Kq.
A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),

where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states. We extend δ to a function δ : Q × Σ∗ → Q as usual.

The quotient DFA of a regular language L with n quotients is defined by
D = (K,Σ, δD,K0, FD), where δD(Kq, w) = Kp if and only if Kq.w = Kp, and
FD = {Kq | ε ∈ Kq}. To simplify the notation, without loss of generality we use
the set Q = {0, . . . , n − 1} of subscripts of quotients as the set of states of D;
then D is denoted by D = (Q,Σ, δ, 0, F), where δ(q, w) = p if δD(Kq, w) = Kp,
and F is the set of subscripts of quotients in FD. The quotient corresponding to
q ∈ Q (known also as the right language of q) is Kq = {w | δD(Kq, w) ∈ FD}.
The quotient K0 = L is the initial quotient. A quotient is final if it contains ε. A
state q is empty if its quotient Kq is empty. The quotient DFA of L is isomorphic
to each complete minimal DFA of L. The number of states in the quotient DFA of
L (the quotient complexity of L) is therefore equal to the state complexity of L.

In any DFA, each letter a ∈ Σ induces a transformation of the set Q of n
states. Let TQ be the set of all nn transformations of Q; then TQ is a monoid
under composition. The image of q ∈ Q under transformation t is denoted by
qt. If s, t are transformations of Q, their composition is denoted s◦ t and defined

Upper Bound on Syntactic Complexity of Suffix-Free Languages 35

by q(s ◦ t) = (qs)t; the ◦ is usually omitted. The in-degree of a state q in a
transformation t is the cardinality of the set {p | pt = q}.

The identity transformation 1 maps each element to itself. For k � 2, a
transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Q is a k-cycle
if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. A k-cycle is denoted by
(q0, q1, . . . , qk−1). If a transformation t of Q is a k-cycle of some P ⊆ Q, then t
has a k-cycle. A transformation has a cycle if it has a k-cycle for some k � 2. A 2-
cycle (q0, q1) is called a transposition. A transformation is unitary if it changes
only one state p to a state q �= p; it is denoted by (p → q). A transformation
mapping a subset P of Q to a single state and acting as the identity on Q \ P is
denoted by (P → q).

The binary relation ωt on Q×Q is defined as follows: For any p, q ∈ Q, pωt q
if and only if ptk = qt� for some k, � � 0. This is an equivalence relation, and
each equivalence class is called an orbit [8] of t. For any q ∈ Q, the orbit of t
containing q is denoted by ωt(q). An orbit contains either exactly once cycle and
no fixed points or exactly one fixed point and no cycles. The set of all orbits of
t is a partition of Q.

If w ∈ Σ∗ induces a transformation t, we denote this by w : t.
The transition semigroup of a DFA D = (Q,Σ, δ, 0, F) is the semigroup of

transformations of Q generated by the transformations induced by the letters
of Σ. Since the transition semigroup of a minimal DFA of a language L is iso-
morphic to the syntactic semigroup of L [10], syntactic complexity is equal to
the cardinality of the transition semigroup.

1.3 Suffix-Free Languages

For any transformation t, consider the sequence (0, 0t, 0t2, . . .); we call it the 0-
path of t. Since Q is finite, there exist i, j such that 0, 0t, . . . , 0ti, 0ti+1, . . . , 0tj−1

are distinct but 0tj = 0ti. The integer j − i is the period of t and if j − i = 1,
t is initially aperiodic. Let Q = {0, . . . , n − 1}, let Dn = (Q,Σ, δ, 0, F) be a
minimal DFA accepting a language L, and let Tn be its transition semigroup.
The following is known [4,9]:

Lemma 1. If L is a suffix-free language, then

1. There exists w ∈ Σ∗ such that L.w = ∅; hence Dn has an empty state, which
is state n − 1 by convention.

2. For w, x ∈ Σ+, if L.w �= ∅, then L.w �= L.xw.
3. If L.w �= ∅, then L.w = L implies w = ε.
4. For any t ∈ Tn, the 0-path of t in Dn is aperiodic and ends in n − 1.

An (unordered) pair {p, q} of distinct states in Q \ {0, n − 1} is colliding (or p
collides with q) in Tn if there is a transformation t ∈ Tn such that 0t = p and
rt = q for some r ∈ Q\{0, n−1}. A pair of states is focused by a transformation
u of Q if u maps both states of the pair to a single state r �∈ {0, n − 1}. We
then say that {p, q} is focused to state r. If L is a suffix-free language, then from
Lemma 1 (2) it follows that if {p, q} is colliding in Tn, there is no transformation

36 J. Brzozowski and M. Szyku�la

t′ ∈ Tn that focuses {p, q}. So colliding states can be mapped to a single state
by a transformation in Tn only if that state is the empty state n − 1.

Remark 1. If n = 1, the only suffix-free language is the empty language ∅ and
σ(∅) = 1. If n � 2 and Σ = {a}, the language L = an−2 is the only suffix-free
language of quotient complexity n, and its syntactic complexity is σ(L) = n− 1.

Assume now that |Σ| � 2. If n = 2, the language L = ε is the only suffix-free
language, and σ(L) = 1. If n = 3, the tight upper bound on syntactic complexity
of suffix-free languages is 3, and L = ab∗ over Σ = {a, b} meets this bound [4].

If n = 4 and n = 5, the tight upper bounds are 13, and 73 [4]. In [4] it was
shown that there is a suffix-free witness DFA with n states and an alphabet of
size n + 2 that meets the bound (n − 1)n−2 + n − 2 for n � 4. For n = 4 and
n = 5, these bounds are 11 and 67, and so are smaller than the bounds above.
For n � 6, (n − 1)n−2 + n − 2 is the largest known lower bound. �

2 Lower Bound for Suffix-Free Languages

The lower bound of (n−1)n−2 +n−2 on the complexity of suffix-free languages
was established in [4] using a witness DFA with an alphabet with n + 2 letters.
Our first contribution is to simplify the witness of [4] by using an alphabet with
only five letters, as stated in Definition 1. The transitions induced by inputs a,
b, c, and e are the same as in [4].

Definition 1 (Witness). For n � 4 define the DFA Wn = (Q,ΣW , δW , 0, {1}),
where Q = {0, . . . , n−1}, ΣW = {a, b, c, d, e}, and δW is defined by the transforma-
tions a : (0 → n−1)(1, . . . , n−2), b : (0 → n−1)(1, 2), c : (0 → n−1)(n−2 → 1),
d : ({0, 1} → n−1), and e : (Q\{0} → n−1)(0 → 1). For n = 4, a and b coincide,
and we can use ΣW = {b, c, d, e}. Let Sn be the transition semigroup of Wn.

The structure of Wn is illustrated in Fig. 1 for n = 5. We claim that no pair of
states from Q is colliding in Sn. If 0t = p �∈ {0, n − 1}, then t is not the identity
but must be induced by a word of the form ew for some w ∈ Σ∗. Such a word
maps every r �∈ {0, n−1} to n−1; so q = rt = n−1, and p and q do not collide.

0 1 2 3

4

e
a, b

c

b

c, d

a

a, c

b, d

Σ \ {e}
d, e

e e

Σ

Fig. 1. Witness DFA W5.

Upper Bound on Syntactic Complexity of Suffix-Free Languages 37

Proposition 1. For n � 4 the DFA of Definition 1 is minimal, suffix-free, and
its transition semigroup Sn has cardinality (n − 1)n−2 + n − 2. In particular, Sn

contains (a) all (n − 1)n−2 transformations that send 0 and n − 1 to n − 1 and
map Q \ {0, n − 1} to Q \ {0}, and (b) all n − 2 transformations that send 0 to
a state in Q \ {0, n − 1} and map all the other states to n − 1.

3 Upper Bound for Suffix-Free Languages

Our second result shows that the lower bound (n−1)n−2+n−2 on the syntactic
complexity of suffix-free languages is also an upper bound. Our approach is as fol-
lows: We consider a minimal DFA Dn = (Q,Σ, δ, 0, F), where Q = {0, . . . , n−1},
of an arbitrary suffix-free language with n quotients and let Tn be the transition
semigroup of Dn. We also deal with the witness DFA Wn = (Q,ΣW , δW , 0, {1})
of Definition 1 that has the same state set as Dn and whose transition semigroup
is Sn. We shall show that there is an injective mapping ϕ : Tn → Sn, and this
will prove that |Tn| � |Sn|.

The image of our mapping ϕ of a transition t in Tn depends on the properties
of t. We separate these properties into 12 mutually disjoint cases that cover all
the possibilities. The cases are structured as follows: We begin with an arbitrary
transformation t ∈ Tn. Case 1 consists of transformations t that are also in Sn,
and the remainder, R1, of the cases has t /∈ Sn. Having reached Case i, we define
Case (i + 1) as all the transformations that do not fit in Cases 1 to i and satisfy
a property Pi+1. The remainder Ri+1 consists of all the transformations that do
not fit in Cases 1 to i, and do not satisfy Pi+1. Because of this structure it is
evident that the cases are mutually disjoint. In view of Case 12, they exhaust
all the possibilities. The proof for each case is similar: we prove that s = ϕ(t)
differs from all the images s defined in previous cases and also from all the other
images defined in the present case.

A note about terminology may be helpful to the reader. The semigroups Tn

and Sn share the set Q. When we say that a pair of states from Q is colliding
we mean that it is colliding in Tn; there is no room for confusion because no
pair of states is colliding in Sn. Since we are dealing with suffix-free languages,
a transformation that focuses a colliding pair cannot belong to Tn.

In Cases 2–11 of the proof p always denotes 0t.

Theorem 1 (Tight Bound). For n � 6 the syntactic complexity of the class
of suffix-free languages with n quotients is (n − 1)n−2 + n − 2.

Proof. The case n = 6 has been proved in [4]; hence assume that n � 7. In [4]
and in Proposition 1 it was shown that (n − 1)n−2 + n − 2 is a lower bound for
n � 7; hence it remains to prove that it is also an upper bound, and we do this
here. We have the following cases:

Case 1: t ∈ Sn. Let ϕ(t) = t; obviously ϕ is injective.

Case 2: t �∈ Sn, and t has a cycle. By Lemma 1 (4) we have the chain 0 t→
p

t→ pt
t→ · · · t→ ptk

t→ n − 1, where k � 0. Observe that pairs {pti, ptj} for

38 J. Brzozowski and M. Szyku�la

0 � i < j � k are colliding, since transformation ti+1 maps 0 to pti and ptj−i−1

to ptj . Also, p collides with any state from a cycle of t and any fixed point of t
other than n − 1.

Let r be minimal among the states that appear in cycles of t, that is, r =
min{q ∈ Q | q is in a cycle of t}. Let s be the transformation illustrated in Fig. 2
and defined by

0s = n − 1, ps = r, (pti)s = pti−1 for 1 � i � k,

qs =qt for the other states q ∈ Q.

t :

0 p . . . ptk n − 1

r

r

. . .

t t t t

t

t t

t

s :

0 p . . . ptk n − 1

r

r

. . .

s
s s

s s s

s

s

Fig. 2. Case 2 in the proof of Theorem 1.

By Proposition 1, ϕ(t) = s is in Sn, since it maps 0 to n − 1, fixes n − 1, and
does not map any states to 0. Note that the sets of cyclic states in both t and
s are the same. Let r′ be the state from the cycle of t such that r′t = r; then
transformation s has the following properties:

(a) Since p collides with any state in a cycle of t, {p, r′} is a colliding pair focused
by s to state r in the cycle. Moreover, if q′ is a state in a cycle of s, and
{q, q′} is colliding and focused by s to a state in a cycle, then that state
must be r (the minimal state in the cycles of s), q must be p, and q′ must
be r′. This follows from the definition of s. Since s differs from t only in the
mapping of states pti and 0, any colliding pair focused by s contains pti for
some i, 0 � i � k. Only p is mapped to r, which is in a cycle of t, and r′ is
the only state in that cycle that is mapped to r.

(b) For each i with 1 � i < k, there is precisely one state q colliding with pti−1

and mapped by s to pti, and that state is q = pti+1. Clearly q = pti+1

Upper Bound on Syntactic Complexity of Suffix-Free Languages 39

satisfies this condition. Suppose that q �= pti+1. Since pti+1 is the only state
mapped to pti by s and not by t, it follows that qt = qs = pti. So q and
pti−1 are focused to pti by t; since they collide, this is a contradiction.

(c) Every focused colliding pair consists of states from the orbit of p. This follows
from the fact that all the states except 0 that are mapped by s differently
than by t belong to the orbit of p.

(d) s has a cycle.

From (a), s �∈ Tn and so s is different from the transformations of Case 1.
Given a transformation s from this case we will construct a unique t that

results in s when the definition of s given above is applied. This will show that
our mapping ϕ has an inverse, and so is injective. From (a) there is the unique
colliding pair focused to a state in a cycle. Moreover, one of the states in the
pair, say p, is not in this cycle and another one, say r′, is in this cycle. It follows
that 0t = p. Since there is no state q �= 0 such that qt = p, the only state mapped
to p by s is pt. From (b) for i = 1, . . . , k − 1 state pti+1 is uniquely determined.
Finally, for i = k there is no state colliding with ptk−1 and mapped to ptk; so
ptk+1 = n − 1. Since the other transitions in s are defined exactly as in t, this
procedure defines the inverse function ϕ−1 for the transformations of this case.

Case 3: t �∈ Sn, t has no cycles, but pt �= n − 1. Let s be the transformation
defined by

0s = n − 1, ps = p, (pti)s = pti−1 for 1 � i � k,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:

(a) {p, pt} is the only colliding pair focused by s to a fixed point. Moreover the
fixed point is contained in the pair, and has in-degree 2. This follows from
the definition of s, since any colliding pair focused by s contains pti, for some
i with 0 � i � k, and only pt is mapped to p, which is a fixed point. Also,
no state except 0 is mapped to p by t since this would violate suffix-freeness;
so only p and pt are mapped by s to p, and p has in-degree 2.

(b) For each i with 1 � i < k, there is precisely one state q colliding with pti−1

and mapped to pti, and that state is q = pti+1. This follows exactly like
Property (b) from Case 2.

(c) Every colliding pair focused by s consists of states from the orbit of p. This
follows exactly like Property (c) from Case 2.

(d) s does not have a cycle, but has a fixed point f �= n − 1 with in-degree � 2,
which is p.

From (a), s �∈ Tn and so s is different from the transformations of Case 1. Here
s does not have a cycle in contrast with the transformations of Case 2.

As before, s uniquely defines the transformation t from which it is obtained:
From (a) there is the unique colliding pair {p, pt} focused to the fixed point p.
Thus 0t = p. Then, as in Case 2, for i = 1, . . . , k − 1 state pti+1 is uniquely

40 J. Brzozowski and M. Szyku�la

defined, and ptk = n − 1. Since the other transitions in s are defined exactly as
in t, this procedure yields the inverse function ϕ−1 for this case.

Case 4: t does not fit in any of the previous cases, but there is a fixed point
r ∈ Q \ {0, n − 1} with in-degree � 2. Let s be the transformation defined by

0s = n − 1, ps = r,

qs = qtfor the other states q ∈ Q.

Observe that s has the following properties:

(a) {p, r} is the only colliding pair focused by s to a fixed point, where the fixed
point is contained in the pair. Also, the fixed point has in-degree at least 3.
Since s differs from t only by the mapping of states 0 and p, it follows that
all focused colliding pairs contain p. Since p is mapped to r, the second state
in the pair must be the fixed point r. Since r has in-degree at least 2 in t,
and s additionally maps p to r, r has in-degree at least 3.

(b) s does not have a cycle, but has a fixed point other than n−1 with in-degree
� 3, which is r.

From (a) we have s �∈ Tn, and so s is different from the transformations of
Case 1. Here s does not have a cycle in contrast with the transformations of
Case 2. Also from (a) we know that the fixed point in the distinguished colliding
pair has in-degree � 3, whereas in Case 3 it has in-degree 2. From (a) we see
that the colliding pair {p, r} in which r is a fixed point and p is not is uniquely
defined. Hence 0t = p and pt = n − 1, and t is again uniquely defined from s.

Case 5: t does not fit in any of the previous cases, but there is a state r with
in-degree � 1 that is not a fixed point and satisfies rt �= n − 1.

Since there are no fixed points in s with in-degree � 2 other than n − 1, and
there are no cycles, it follows that r belongs to the orbit of n − 1. Hence we can
choose r such that rt �= n − 1 and rt2 = n − 1.

Let s be the transformation defined by

0s = n − 1, ps = rt,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:

(a) All focused colliding pairs contain p, and the second state from such a pair
has in-degree � 1.
This follows since s differs from t only in the mapping of 0 and p.

(b) The smallest i with psi = n − 1 is 2.
(c) s has neither a cycle nor a fixed point with in-degree � 2 other than n − 1.

Note that p and r collide. Since {p, r} is focused to rt, we have s �∈ Tn and so s
is different from the transformations of Case 1. Here s does not have a cycle in
contrast with the transformations of Case 2. Also s does not have a fixed point
other than n − 1, and so is different from the transformations of Cases 3 and 4.

Upper Bound on Syntactic Complexity of Suffix-Free Languages 41

From (a) all focused colliding pairs contain p. If there are two or more such
pairs, p is the only state in their intersection. If there is only one such pair, then
it must be {p, r}, and p is uniquely determined, since it has in-degree 0 and r
has in-degree � 1. Hence 0t = p and pt = n − 1, and again t is uniquely defined
from s.

Case 6: t does not fit in any of the previous cases, but there is a state r ∈
Q \ {0, n − 1} with in-degree � 2. Clearly r �= p, since the in-degree of p is 1.
Also rt = n − 1, as otherwise t would fit in Case 5. Let R = {r′ ∈ Q | r′t = r};
then |R| � 2. We consider the following two sub-cases. If p < r, let q1 be the
smallest state in R and let q2 be the second smallest state; so q1 < q2. If p > r,
let q1 be the second smallest state in R, and let q2 be the smallest state; so
q2 < q1. Let s be the transformation defined by

0s = n − 1, ps = q1, rs = q1, q1s = q2, q2s = n − 1,

qs = qt for the other states q ∈ Q.

Observe that s has the following properties:

(a) There is only one focused colliding pair, namely {p, r}, mapped to q1.
Clearly p and r collide. Note that no state can be mapped by t to q1 or q2,
since this would satisfy Case 5. Because q1 is the only state mapped by s to
q2, it does not belong to a focused colliding pair. Also 0 and q2 are mapped
to n − 1. Since the other states are mapped exactly as in t, it follows that s
does not focus any other colliding pairs.

(b) The smallest i with psi = n − 1 is 3.
(c) s has neither a cycle nor a fixed point �= n − 1 with in-degree � 2.

This follows since t does not have a cycle, and the states 0, p, r, q1, q2 that
are mapped differently by s are in the orbit of n − 1.

Since s focuses the colliding pair {p, r}, s is different from the transformations
of Case 1. Also s has neither a cycle nor a fixed point �= n− 1 and so is different
from the transformations of Cases 2, 3 and 4. In Case 5, transformation s2 maps
a colliding pair to n−1, and here s2 maps the unique colliding pair to q2 �= n−1.
Thus, s is different from the transformations of Case 5.

From (a) we have the unique colliding pair {p, r} focused to q1. Then q1 <
q1s = q2 means that p < r, and so p is distinguished from r. Similarly, q1 > q2
means that p > r. Thus 0t = p, pt = n − 1, q1t = r, q2t = r, and rt = n − 1, and
t is again uniquely defined from s.

Case 7: t does not fit in any of the previous cases, but there are two states
q1, q2 ∈ Q \ {0, n − 1} that are not fixed points and satisfy q1t �= n − 1 and
q2t �= n − 1. Since this is not Case 5 we may assume that q1t

2 = n − 1 and
q2t

2 = n− 1. Let r1 = q1t and r2 = q2t; clearly p �= r1 and p �= r2. The in-degree
of both q1 and q2 is 0; otherwise t would fit in Case 5. We consider the following
two sub-cases. If p < r1 then (i) let s be the transformation defined by

0s = n−1, ps = q1, r1s = q1, q1s = n − 1,

qs = qt for the other states q ∈ Q.

42 J. Brzozowski and M. Szyku�la

If p > r1 then (ii) let s be the transformation defined by

0s =n − 1, ps = q1, r1s = q1, q1s = q2,

qs = qt for the other states q ∈ Q.

Case 8: t does not fit in any of the previous cases, but it has two fixed points
r1 and r2 in Q \ {0, n − 1} with in-degree 1; assume that r1 < r2.

Let s be the transformation defined by

0s = n − 1, ps = r2, r1s = r2, r2s = r1,

qs = qt for the other states q ∈ Q.

Case 9: t does not fit in any of the previous cases, but there is a state q ∈
Q \ {0, n − 1} that is not a fixed point and satisfies qt �= n − 1, p < qt, and there
is a fixed point f �= n − 1.

Let r = qt; then rt = n − 1 because otherwise this would fit in Case 5. Here
q is the only state from Q \ {0} that is not a fixed point and is not mapped
to n − 1, as otherwise t would fit in Case 7. Similarly, f is the only fixed point
�= n − 1, as otherwise t would fit in either Case 4 or Case 8.

Let s be the transformation defined by

0s = n − 1, ps = r, rs = q, qs = p, fs = r,

qs = qt for the other states q ∈ Q.

Case 10: t does not fit in any of the previous cases, but there is a state q ∈
Q \ {0, n − 1} that is not a fixed point and satisfies qt �= n − 1, and a fixed point
f ∈ Q \ {0, n − 1}. Let r = qt; then rt = n − 1 since this is not Case 5. Now, in
contrast to Case 9, we have p > r. Let s be the transformation defined by

0s = n − 1, ps = q, rs = q, qs = n − 1,

qs = qt for the other states q ∈ Q.

Case 11: t does not fit in any of the previous cases, but there is a state
q ∈ Q \ {0, n − 1} that is not a fixed point and satisfies qt �= n − 1.

As shown in Case 9, q is the only state from Q \ {0} that is not mapped to
n−1, and also t has no fixed points other than n−1, as otherwise it would fit in
one of the previous cases. Hence, all states from Q \ {0, q} are mapped to n − 1.
Let r = qt. Here we use the assumption that n � 7. So in Q \ {0, p, q, r, n − 1}
we have at least 2 states, say r1 and r2, that are mapped to n − 1.

Sub-case (i): p < r. Let s be the transformation defined by

0s = n − 1, ps = q, rs = q, qs = n − 1,

qs = qt for the other states q ∈ Q.

Sub-case (ii): p > r. Let s be the transformation defined by

0s = n − 1, ps = q, rs = q, qs = n − 1, r1s = r2, r2s = r1,

qs = qt for the other states q ∈ Q.

Upper Bound on Syntactic Complexity of Suffix-Free Languages 43

Case 12: t does not fit in any of the previous cases.
Here t must contain exactly one fixed point f ∈ Q \ {n − 1}, and every state

from Q \ {0, f} is mapped to n − 1. If all states from Q \ {0} would be mapped
to n − 1, then by Proposition 1, t would be in Sn and so would fit in Case 1.

Because n � 7, in Q \ {0, p, f, n − 1} we have at least 2 states, say r1 and r2,
that are mapped to n − 1. Let s be the transformation defined by

0s = n − 1, ps = f, r1s = r2, r2s = r1,

qs = qt for the other states q ∈ Q.

�	

4 Uniqueness of Maximal Witness

Our third contribution is a proof that the transition semigroup of a DFA Dn =
(Q,Σ, δ, 0, F) of a suffix-free language with syntactic complexity (n−1)n−2+n−2
is unique.

Lemma 2. If n � 4 and Dn has no colliding pairs, then |Tn| � (n−1)n−2+n−2
and Tn is a subsemigroup of Sn.

Lemma 3. If n � 7 and Dn has at least one colliding pair, then |Tn| < (n −
1)n−2 + n − 2.

Proof. Let ϕ be the injective function from the proof of Theorem1 and assume
that there is a colliding pair {p, r}. Let r1, r2 and r3 be three distinct states
from Q \ {0, p, r, n− 1}; there are at least 3 such states since n � 7. Let s be the
following transformation:

0s = n − 1, ps = r, rs = r, r1s = r2, r2s = r3, r3s = r1,

qs = qt for the other states q ∈ Q.

We can show that s is not defined in any case in the proof of Theorem1.
Note that s focuses the colliding pair {p, r}, and so it cannot be present in Tn;
hence it is not defined in Case 1. We can follow the proof of injectivity of the
transformations in Case 12 of Theorem1, and show that s is different from all
the transformations of Cases 2–11. For a distinction from the transformations of
Case 12, observe that they each have a 2-cycle, and here s has a 3-cycle.

Thus s �∈ ϕ(Tn), but s ∈ Sn, and so ϕ(Tn) � Sn. Since ϕ is injective, it
follows that |Tn| < |Sn| = (n − 1)n−2 + n − 2. �	
Corollary 1. For n � 7, the maximal transition semigroups of DFAs of suffix-
free languages are unique.

Finally, we show that Σ cannot have fewer than five letters.

Theorem 2. If n � 7, Dn = (Q,Σ, δ, 0, F) is a minimal DFA of a suffix-free
language, and |Σ| < 5, then |Tn| < (n − 1)n−2 + n − 2.

44 J. Brzozowski and M. Szyku�la

Proof. DFA Dn has the initial state 0, and an empty state, say n − 1. Let M be
the set of the remaining n−2 “middle” states. From Lemma 1 no transformation
can map any state in Q to 0, and every transformation fixes n − 1.

Suppose the upper bound (n − 1)n−2 + n − 2 is reached by Tn. From
Proposition 1 and Corollary 1 all transformations of M must be possible, and it
is well known that three generators are necessary to achieve this. Let the letters
a, b, and c correspond to these three generators, ta, tb and tc. If 0ta �= n−1, then
ta must be a transformation of type (b) from Proposition 1, and so qta = n − 1
for any q ∈ M . So ta cannot be a generator of a transformation of M . Hence we
must have 0ta = n − 1, and also 0tb = 0tc = n − 1.

So far, the states in M are not reachable from 0; hence there must be a letter,
say e, such that 0te = p is in M . This must be a transformation of type (b) from
Proposition 1, and all the states of M must be mapped to n − 1 by te.

Finally, to reach the upper bound we must be able to map any proper subset
of M to n − 1. The letter e will not do, since it maps all states of M to n − 1.
Hence we require a fifth letter, say d. �	

5 Conclusions

We have shown that the upper bound on the syntactic complexity of suffix-free
languages is (n−1)n−2+n−2. Since it was known that this is also a lower bound,
our result settles the problem. Moreover, we have proved that an alphabet of at
least five letters is necessary to reach the upper bound, and that the maximal
transition semigroups are unique.

In our proof we exhibited an injective function from the transition semigroup
of a minimal DFA of an arbitrary suffix-free semigroup to the transition semi-
group of the witness DFA attaining the upper bound for suffix-free languages.
This approach is generally applicable for other subclasses of regular languages.
For example, in [6] we have used this method to establish the upper bound for
left and two-sided ideals.

References

1. Ang, T., Brzozowski, J.: Languages convex with respect to binary relations, and
their closure properties. Acta Cybernet. 19(2), 445–464 (2009)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, UK (2009)

3. Brzozowski, J.: Quotient complexity of regular languages. J. Autom. Lang. Comb.
15(1/2), 71–89 (2010)

4. Brzozowski, J., Li, B., Ye, Y.: Syntactic complexity of prefix-, suffix-, bifix-, and
factor-free regular langauges. Theoret. Comput. Sci. 449, 37–53 (2012)

5. Brzozowski, J., Szyku�la, M.: Upper bound for syntactic complexity of suffix-free
languages (2014). http://arxiv.org/abs/1412.2281

6. Brzozowski, J., Szyku�la, M.: Upper bounds on syntactic complexity of left and
two-sided ideals. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633,
pp. 13–24. Springer, Heidelberg (2014)

http://arxiv.org/abs/1412.2281

Upper Bound on Syntactic Complexity of Suffix-Free Languages 45

7. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011)

8. Ganyushkin, O., Mazorchuk, V.: Classical Finite Transformation Semigroups: An
Introduction. Springer, Heidelberg (2009)

9. Han, Y.S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. Theoret. Comput. Sci. 410(27–29), 2537–2548 (2009)

10. Pin, J.E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages. Word, Language, Grammar, vol. 1, pp. 679–746. Springer,
New York (1997)

11. Thierrin, G.: Convex languages. In: Nivat, M. (ed.) Automata, Languages and
Programming, pp. 481–492. North-Holland, Amsterdam (1973)

12. Yu, S.: State complexity of regular languages. J. Autom. Lang. Comb. 6, 221–234
(2001)

Nondeterministic Tree Width
of Regular Languages

Cezar Câmpeanu1(B) and Kai Salomaa2

1 Department of Computer Science and Information Technology, University of Prince
Edward Island, Charlottetown, PE C1A 4P3, Canada

ccampeanu@upei.ca
2 School of Computing, Queen’s University, Kingston, ON K7L 2N8, Canada

ksalomaa@cs.queensu.ca

Abstract. The tree width of a nondeterministic finite automaton (NFA)
counts the maximum number of computations the automaton may have
on a given input. Here we consider the tree width of a regular language,
which, roughly speaking, measures the amount of nondeterminism that a
state-minimal NFA for the language needs. We prove that an infinite tree
width is obtained from finite tree width, for most operations on regular
languages.

Keywords: Regular languages · Nondeterministic finite automata ·
Measures of nondeterminism

1 Introduction

Various ways to quantify the amount of nondeterminism of a finite automaton
have been considered in the literature. The degree of ambiguity of a nondeter-
ministic finite automaton (NFA) counts the number of accepting computations
on a given input [18,24], and the tree width of an NFA counts the number of
all computations (accepting or non-accepting) [22]. The tree width measure of
an NFA A is also known in the literature as ‘leaf size’ [14], or ‘computations(A)’
[2]. Additional nondeterminism measures can be based on the amount of nonde-
terminism on a single best (or worst) computation on a given input [10,23]. The
tree width measure of an NFA can also be related to the ambiguity of regular
expressions and languages [3].

Here we focus on the tree width measure. Instead of measuring the amount
of nondeterminism in individual NFAs, we want to associate a nondeterminis-
tic (tree) width measure with a regular language. The nondeterministic width
of a language L is defined as the least tree width of any state-minimal NFA
recognizing L.

If a DFA recognizing L is minimal also as an NFA, then the nondeterminis-
tic width of L is one. We give examples of languages that have infinite width.
Next, we consider the associated decision problems. Since minimization of even

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 46–57, 2015.
DOI: 10.1007/978-3-319-19225-3 4

Nondeterministic Tree Width of Regular Languages 47

constant tree width NFAs is known to be intractable [2,19], it can be expected
that the same holds for deciding the tree width of a regular language.

We show that deciding the nondeterministic width of a language recognized
by an NFA is PSPACE-complete, and the problem is in co-NP, if the input NFA
has constant tree width. For unary NFAs, we show the problem to be NP-hard.

Finally, we consider the nondeterministic tree width of operations on regu-
lar languages. The operational state complexity is a much studied topic in the
literature [9,27]. If ◦ is a regularity-preserving language operation, and L1 and
L2 are regular languages, we consider the question what can be said about the
nondeterministic tree width of L1 ◦ L2 as a function of the nondeterministic
tree width of L1 and L2, respectively. The results here are almost exclusively
negative. For most operations ◦, the nondeterministic width of L1 ◦ L2 is not
bounded by any function of the widths of the individual languages.

2 Tree Width of a Regular Language

The tree width (or leaf size) measure for nondeterministic finite automata (NFA)
was considered in [14,22]. Roughly speaking, the tree width counts the number
of branches in the computation tree of the NFA on a given input.

Let A = (Q,Σ, δ, q0, F) be an NFA, and w ∈ Σ∗. A partial computation of A
on w is either a computation that consumes the entire string w or a computation
that encounters an undefined transition after reading some prefix of w. The tree
width of A on w, twA(w), is the number of partial computations of A on w. Note
that the number of partial computations of A on w equals the number of leaves
of the computation tree of A on w, as defined in [22].

The tree width of the NFA A is defined as

tw(A) = sup{twA(w) | w ∈ Σ∗}.

We say that A has finite tree width, if tw(A) is finite.
A transition of an NFA A from state q to state p on input b is said to

be nondeterministic if |δ(q, b)| > 1; otherwise the transition is deterministic. An
undefined transition is deterministic. When we say that part of a particular com-
putation is deterministic, this means that it uses only deterministic transitions.
The following characterization of finite tree width NFAs is known.

Proposition 2.1 ([22]). An NFA A has finite tree width if and only if no cycle
of A contains a nondeterministic transition.

We will later use the following technical lemma. The lemma is based on the
simple idea that the computations of an NFA, on repeated copies of the same
string, must be “essentially unary”.

Lemma 2.1. Let A be a finite tree width NFA with n states, input alphabet Σ,
and let w ∈ Σ+.

Consider a (nondeterministic) computation C of A on wk, where k ≥ n.
Then, after reading the prefix wn, C must be entirely deterministic.

48 C. Câmpeanu and K. Salomaa

Corollary 2.1. Let A be a finite tree width NFA with n states, input alphabet
Σ, and let u,w ∈ Σ+. Consider a (nondeterministic) computation C of A on
uwk, where k ≥ n. Then, after reading the prefix uwn, the computation C must
be entirely deterministic.

We say that an NFA A has optimal tree width if L(A) is not recognized by
any NFA B, where size(B) ≤ size(A), tw(B) ≤ tw(A), and at least one of the
inequalities is strict.

The nondeterministic state complexity of a regular language L, nsc(L), is the
size of a minimal NFA recognizing L. Analogously, we define the tree width k
nondeterministic state complexity of L, as

nsctw≤k(L) = inf{size(A) | A is an NFA recognizing L, and tw(A) ≤ k}. (1)

In relation (1), nsctw≤k(L) is the smallest number of states needed by an
NFA of tree width at most k to recognize L. Extending the above notation, we
could write nsc(L) as nsctw≤∞(L).

Definition 2.1. Let L be a regular language. The tree width of the language L is
the minimum tree width of minimal NFAs for L, and it is given by the formula:

tw(L) = inf{tw(A) | L(A) = L,A is a minimal NFA}. (2)

Thus, if tw(L) = k, then nsctw≤k(L) = nsc(L) and, for all � < k, nsctw≤�(L) >
nsc(L). If tw(L) is infinite, all the state minimal NFAs for L have unbounded
tree width. Note that tw(L) = inf{k | nsctw≤k(L) = nsc(L)}.

The language L having tree width k means intuitively that a state minimal
NFA recognizing L needs to use limited nondeterminism of tree width k, but any
additional nondeterminism would not allow any further reduction of the number
of states. In particular, if L has tree width 1, this means that the minimal
incomplete DFA for L is also minimal as an NFA.

The following lemmas determine the tree width of some languages. These
results will be used in later sections.

Lemma 2.2. For w ∈ Σ∗, tw(Σ∗w) = 1.

Lemma 2.3. Let Σ = {a, b}, k ≥ 2, and define Lk = Σ∗ · b · Σk−1. Then the
tree width of Lk is infinite.

Proof. The language Lk is recognized by an NFA A that guesses the k-th
symbol from the end, verifies that it is a b, and it is followed by exactly k − 1
symbols. The NFA A has k+1 states (and infinite tree width), and it is presented
in Fig. 1.

To prove the lemma, it is sufficient to show that Lk cannot be recognized by
any finite tree width NFA of size less than k + 2.

It is easy to see that an arbitrary NFA B recognizing Lk must reach the
end of strings with a suffix, respectively ak, ak−1b, ak−2ba, . . . , and bak−1 in
distinct states, which means that B needs at least k + 1 states. However, since

Nondeterministic Tree Width of Regular Languages 49

0

a, b

b
1

a, b
2

a, b
3

a, b a, b
k

Fig. 1. The automaton A for the language Lk

B is nondeterministic (and the finite degree of nondeterminism can even be
larger than the number of states), there is the possibility that after reading, for
example, a suffix ak−2b2, the state may depend on the continuation of the input –
thus, it does not follow directly that B needs further states. In order to establish
that strictly more than k + 1 states are needed, we consider computations that
are forced to be deterministic by repeating the same substring sufficiently many
times.

For the sake of contradiction, assume that Lk is recognized by an NFA B,
with k + 1 states, and finite tree width.

We define the following k + 2 strings of length k:

v0 = ak, v1 = ak−1b, v2 = ak−2ba, . . . , vk = bak−1, vk+1 = ak−2bb.

Write w = v0 · v1 · · · · · vk+1, and choose strings z0, z1, . . . , zk by setting

z0 = wk+1v0 · bak−1, z1 = wk+1v0v1 · ak−1, z2 = wk+1v0v1v2a
k−2,

. . . , zk = wk+1v0v1 · · · vk · ε.

The prefix wk+1 is included, because we want to use Lemma 2.1 to argue that
any computation after reading a prefix wk+1v0v1 · · · vi must be deterministic.

The strings zi, 0 ≤ i ≤ k, are in Lk. Let Ci be an arbitrary but fixed accepting
computation of B on zi, 0 ≤ i ≤ k, and let qi be the state that the computation
Ci reaches after the prefix wk+1v0 · · · vi, 0 ≤ i ≤ k.

Claim 1. The states q0, q1, . . . , qk must be all distinct.

Proof of the claim. If q0 = qj , for 1 ≤ j ≤ k, this gives an accepting computation
for string wk+1v0a

k−j , which is not in the language Lk. For 1 ≤ i, j ≤ k, we
have

wk+1v0 · · · vi · ak−j ∈ Lk iff i = j, (3)

and this implies that also the states q1, . . . , qk must be all distinct. This concludes
the proof of the claim.

Since B has k + 1 states, the state set must be exactly {q0, q1, . . . , qk}. Now,
from the proof of Claim 1, it follows that any computation of B that processes
a prefix wk+1v0v1 · · · vi of the input, must be in exactly the state qi, 0 ≤ i ≤ k.
(Since these are all the states, as in the proof of the claim, we see that otherwise
B accepts illegal strings.)

Next, consider the following two strings of Lk:

zk+1 = wk+1v0v1 · · · vkvk+1 · ak−1 and z′
k+1 = wk+1v0v1 · · · vkvk+1 · ak−2,

50 C. Câmpeanu and K. Salomaa

and let D (respectively, D′) be an accepting computation of B on zk+1 (respec-
tively, on z′

k+1). Let p (respectively, p′) be the state that the computation D

(respectively, p′) reaches after reading the prefix wk+1v0v1 · · · vkvk+1.
Now v0v1 · · · vkvk+1 is equal to w. By Lemma 2.1, any computation of B on

an input in w∗ after the prefix wk+1 is deterministic (B has entered a cycle and
must continue the same cycle on the “next” w).

Furthermore, above we have observed that any state B can reach after reading
the prefix wk+1v0v1 · · · vk must be qk. Since p and p′ are then both obtained in
a deterministic computation from qk by reading vk+1, it must be the case p = p′

(and p ∈ {q0, q1, . . . , qk}).
If p = q0, then B accepts wk+1 ·v0 ·ak−1, which is not in Lk. Finally, assuming

that p = qr, 1 ≤ r ≤ k, we get that wk+1v0v1 · · · vr · as ∈ Lk both for s = k − 1
and s = k − 2, which contradicts (3). �

Corollary 2.2. Let Σ be a finite alphabet with #Σ = k, k ≥ 2, and define the
language La,k = Σ∗(Σ − {a})Σk−1. Then the tree width of La,k is infinite.

It is known that the minimal DFA for Lk has 2k states, and the size blow-
up of determinizing a finite tree width NFA is polynomial [22]. At first sight,
these observations could seem to imply that a finite tree width NFA for Lk

needs more than k + 1 states. However, this argument does not work, because
the polynomial giving the size blow-up of determinization depends on the tree
width of the given NFA, and for this reason, in the proof of Lemma 2.3, we used
an ad-hoc combinatorial argument.

We conjecture that any finite tree width NFA for the language Lk, in fact,
needs 2k states. Lower bound proofs for the sizes of (finite tree width) NFAs
typically need to use ad hoc arguments [22], and in order to keep the proof
simple, we proved only what is need to establish that Lk has infinite tree width.

2.1 Unary Languages

Recall that a unary DFA consists always of a tail (sequence of states), followed
by a cycle of states. The cycle may be empty.

A unary NFA in Chrobak normal form [6,7,15] similarly consists of a tail
followed by a nondeterministic transition to one or more cycles. Every unary
regular language can be recognized by a Chrobak normal form NFA; however,
it may not be a state-minimal NFA for that language. When considering finite
tree width NFAs, a state-minimal NFA can always be found in Chrobak normal
form. Note that the tree width of a Chrobak normal form NFA is simply the
number of cycles it has, and this result will be used in the proof of Theorem 3.2.

Proposition 2.2 ([21]). Let A be a unary n-state NFA with tree width k ∈ N.
Then the language L(A) can be recognized by a Chrobak normal form NFA, with
at most n states, and tree width k.

Nondeterministic Tree Width of Regular Languages 51

3 Deciding the Tree Width of a Regular Language

Immediately, by inspecting the transition graph of an NFA A, we can determine
whether the tree width of A is finite, and the tree width of a finite tree width NFA
can be computed in polynomial time [22,23]. By modifying the known PSPACE-
hardness result of the DFA intersection-emptiness problem [17], we see that find-
ing the tree width of the language recognized by an NFA is PSPACE-complete.
As has been done before, we convert the intersection-emptiness problem to the
union-universe problem [16].

Theorem 3.1. Given a finite tree width NFA A, and � ∈ N, the problem of
determining whether the tree width of L(A) equals � is PSPACE-complete (with
respect to log-space reductions). In particular the question of deciding whether
the tree width of L(A) equals one is PSPACE-complete.

Proof. (Sketch.) Given A and �, we can nondeterministically (NPSPACE =
PSPACE) choose A′ such that size(A′) ≤ size(A), and tw(A′) < �′, then in
PSPACE check that L(A) = L(A′).

For the hardness claim, it is sufficient to show that deciding tw(L(A)) = 1 is
PSPACE-hard. To this end, we can use, with minor modifications, the construc-
tion by Kozen [17] that establishes the PSPACE-hardness of the intersection
emptiness problem for DFAs.

Given a deterministic Turing machine M with polynomial space bound p(n),
and input x ∈ Σ∗, |x| = n, where the accepting computations of M on x
are assumed to have even length, the proof of Lemma 3.2.3 of [17] constructs
2p(n) − 3 DFAs Fi (of polynomial size) over an alphabet Ω such that, if M
accepts x, the intersection of the languages L(Fi) consists of the encoding of
the unique accepting computation of M on x; otherwise the intersection of the
languages L(Fi) is empty. Here, Ω is the alphabet used to encode computations
of M (i.e., sequences of configurations separated by a marker #).

Simply by interchanging the accepting and non-accepting states of the DFAs
Fi, and adding a new initial state q0, we then construct an NFA D recognizing
the union of the complements of the languages L(Fi). If F ′

i is the DFA accepting
the complement of L(Fi), the NFA D has, for each b ∈ Ω, a transition from
q0 into F ′

i that simulates the transition of F ′
i on input b from the initial state.

Thus, the tree width of D is 2p(n) − 3.
Now, L(D) = Ω∗ if M does not accept x, and if M accepts x,

L(D) = Ω∗ − {wacc−comp},

where wacc−comp is the encoding of the accepting computation of M on x. In the
case where the accepting computation exists, it is easy to see that the minimal
DFA for Ω∗ − {wacc−comp} must be larger than the NFA D. The DFA needs
to check for mismatches at all positions in each pair of consecutive configura-
tions in {wacc−comp}, which means that the number of states of D needs to
be roughly C#(w)2, where C#(w) is the number of configurations occurring in
the computation of M on x. The NFA D has separate components that check

52 C. Câmpeanu and K. Salomaa

for mismatches at each individual position (one component verifies a position
in odd-numbered computation steps, and another a position in even-numbered
computation steps) and the size of D is in O(p(n)2), where p(n) is the length
of the longest configuration in the computation [17]. Note that, without loss of
generality, we can modify M so that after the original computation accepts, the
modified machine enters a new phase that successively writes on the tape all
possible strings over Ω, with length at most p(n). This guarantees that C#(w)
is at least |Ω|p(n).

It follows that L(D) has tree width one if and only if M does not accept x.
�

Note that in the proof of Theorem 3.1, while the constructed NFA D has finite
tree width, the value of the tree width is not bounded, that is, the tree width is
part of the input instance. Naturally, one may ask the same question for NFAs
with fixed tree width k.

Lemma 3.1. Let k ∈ N be a constant. The problem of deciding for a given NFA
A with tree width k, and for a given m ≤ k whether tw(L(A)) ≥ m is in coNP.

Proof. In nondeterministic polynomial time, we can guess an NFA A′, such that
tw(A′) ≤ m, and size(A′) ≤ size(A), and one of the inequalities is strict.

From the existence of deterministic decompositions [22,23], it follows that
we can verify in polynomial time that the tree width of A′ is at most m, i.e.,
the algorithm can verify the correctness of the guess. Determinizing an NFA
with at most constant k tree width causes only a polynomial size blow-up [22]
(where the polynomial depends on k). Now, in deterministic polynomial time,
the algorithm can determinize A and A′, and test the equality of the resulting
DFAs [27]. �
It is known that finding the minimal NFA equivalent to a given DFA is PSPACE-
hard [16], and even the minimization of constant tree width NFAs is NP-hard [2,
19]. Consequently, it seems likely that determining the tree width of a language
specified by a fixed tree width NFA is intractable. However, the hardness of
minimization does not directly imply the hardness of computing the tree width
of the corresponding regular language, and proving the intractability of deciding
the tree width of a language given by a constant tree width NFA (or by a DFA)
remains open.

To conclude this section, we consider the decision problem of determining
the tree width of a language recognized by a unary NFA.

Theorem 3.2. Given a unary NFA A, it is NP-hard to decide whether or not
tw(L(A)) �= 1.

Proof. The result follows from the construction used in the proof of Theorem 1
of [12]; also see [26]. Given a 3SAT formula F , the proof constructs, in polynomial
time, a regular language LF ⊆ {a}∗ such that if F is unsatisfiable, then LF =
{a}∗, and if F is satisfiable, then a minimal NFA for LF is not a DFA, i.e., must
have tree width greater than one. �

Nondeterministic Tree Width of Regular Languages 53

4 Tree Width of Operations

In operational state complexity we want to determine, for a regularity-preserving
language operation ◦, the worst-case size of the minimal DFA/NFA for the lan-
guage L1◦L2 as a function of the sizes of given automata for L1 and L2 [27]. The
nondeterministic state complexity of unrestricted NFAs was studied by Holzer
and Kutrib [13] and independently by Ellul [8]; the study of operational state
complexity finite tree width NFAs has been initiated by Palioudakis et al. [20].

Here, instead of state complexity, we consider the effect of language opera-
tions on the tree width of a language. The general question is to estimate, for
a regularity preserving operation ◦, the value of tw(L1 ◦ L2) in terms of tw(L1)
and tw(L2).

4.1 Union

For union, we have a strong negative result: the value tw(R1 ∪ R2) cannot be
bounded by any function on tw(R1) and tw(R2).

Theorem 4.1. There exist regular languages Ri with tree width mi ∈ N, i =
1, 2, such that the tree width of R1 ∪ R2 is infinite.

Proof. Let Σ = {a, b}, k ≥ 2, and for w ∈ Σk−1, define

Lw = Σ∗ · b · w.

By Lemma 2.2, tw(Lw) = 1 for all w ∈ Σk−1. On the other hand, if we denote

Lk =
⋃

w∈Σk−1

Lw = Σ∗ · b · Σk−1,

we know, by Lemma 2.3, that tw(Lk) is infinite.
�

As a corollary of the proof, the negative result can be stated in a slightly stronger
form.

Corollary 4.1. There exists a regular language R1 with finite tree width, and a
regular language R2 with tree width one such that the tree width of R1 ∪ R2 is
infinite.

Note that the proof of Theorem 4.1 establishes the existence of the languages
R1 and R2, but does not explicitly tell how the languages R1 and R2 are chosen
as finite unions of the languages Lw, w ∈ Σ∗. With small values like k = 2, it
should be possible to find an explicit definition of R1 and R2, but the verification
would still require a fair amount of computation, because there is no efficient
algorithm to compute the tree width of a regular language. In the example given
by Fig. 2, we give concrete languages of tree width one such that their union has
infinite tree width.

54 C. Câmpeanu and K. Salomaa

Example 4.1. Choose w1 = aaa, w2 = aba. By Lemma 2.2, the languages Li =
L((a + b)∗bwi), i = 1, 2, have tree width 1. We note that

L1 ∪ L2 = L((a + b)∗ba(a + b)a).

In Fig. 2 is a minimal NFA for the language L1 ∪ L2. It seems clear that the
minimal NFA for L1 ∪ L2 is unique, although to formally verify this would
require some effort. This then implies that the tree width of L1 ∪ L2 is infinite.

0

a, b

b
1

a
2

a, b
4

a
5

Fig. 2. A minimal NFA for the union of L((a + b)∗baba) and L((a + b)∗baaa)

To conclude the subsection, we consider the union of unary languages. Since by
Proposition 2.2, we know that a minimal finite tree width unary NFA can always
be found in Chrobak normal form, it might be tempting to think that, for unary
languages L1 and L2, the tree width of L1 ∪ L2 is bounded by tw(L1) + tw(L2).

Indeed, if Ai is a minimal Chrobak normal form NFA for Li, having tree
width ki, i = 1, 2, then based on L1 and L2, we can easily construct a Chrobak
normal form NFA of tree width k1+k2, where possibly some of the cycles can be
further combined. However, the construction does not yield an upper bound for
the tree width of the union of L1 and L2, because it is possible that the minimal
(Chrobak normal form) NFA for L1 ∪ L2 needs to be differently constructed.
Below we give such an example:

Example 4.2. Let L1 = (a30)∗(a2 + a3 + a4 + a5) and

L2 = (a30)∗(ε + a6 + a8 + a9 + a10 + a12 + a14 + a15 + a16 + a18

+ a20 + a21 + a22 + a24 + a26 + a27 + a28).

The minimal NFA both for L1 and L2 consists of a single deterministic cycle of
length 30, hence tw(Li) = 1, i = 1, 2. On the other hand,

L1 ∪ L2 = L((a2)∗ + (a3)∗ + (a5)∗),

and it is clear that the tree width of L1 ∪ L2 is 3.

Generalizing the construction of Example 4.2, for any k ∈ N, we can construct
unary regular languages L1 and L2 having tree width one, such that tw(L1 ∪
L2) = k. Let p1, p2, . . . , pk be the first k primes. The language

Pk = L((ap1)∗ + (ap2)∗ + · · · + (apk)∗)

has tree width k. Now, it is easy to write the language Pk as a union of languages
L1 and L2, such that the minimal NFA for Li consists of a single cycle of length∏k

i=1 pi; hence tw(Li) = 1, i = 1, 2.

Nondeterministic Tree Width of Regular Languages 55

4.2 Concatenation and Reversal

The tree width of the concatenation L1 · L2 is not bounded by any function on
the tree widths of L1 and L2. In fact, already the concatenation of tree width
one languages may have infinite tree width.

Theorem 4.2. Let Σ = {a, b}. There exist languages L1, L2 ⊆ Σ∗, tw(Li) = 1,
i = 1, 2, such that tw(L1 · L2) is infinite.

Proof. Let k ≥ 2 and choose L1 = Σ∗ and L2 = bΣk−1. The minimal DFA
for L1 and L2 is minimal also as an NFA, hence tw(L1) = tw(L2) = 1. By
Lemma 2.3, the tree width of L1 · L2 is infinite. �
Again, using Lemma 2.3, we see that the reversal of a tree width one regular
language may have infinite tree width.

Theorem 4.3. There exists a regular language L with tw(L) = 1, such that the
tree width of LR is infinite.

Proof. Let Σ = {a, b} and k ≥ 2. Choose L = (a+ b)k−1b(a+ b)∗. The minimal
DFA for L is also a minimal NFA, hence the tree width of L is one. By Lemma 2.3,
tw(LR) is infinite. �

4.3 Complementation and Intersection

The complement of a tree width one language L may have infinite tree width
and, furthermore, we can choose L to be unary.

Lemma 4.1. Let Σ = {a}, and L = {ε, a, a2, a4}. Then tw(L) = 1, and tw(L)
is infinite.

Proof. The minimal NFA for a finite unary language always consists of a single
chain of states. On the other hand,

L = (a2)∗ · (a3)+

and L has an NFA with infinite tree width consisting of a cycle of length 2,
followed by a cycle of length 3, and a total of 5 states. On the other hand, any
finite tree width NFA for L needs 6 states [21]. This means that the tree width
of L is infinite. �
Finally we consider the intersection operation. We consider the language L1 =
L((a∗)) \ {ε, a, a2} and L2 = L((a∗)) \ {ε, a2, a4}. Now, L1 ∩ L2 = L((a∗)) \
{ε, a, a2, a4}, and according to Lemma 4.1, tw(L1 ∩ L2) is infinite. On the other
hand, both L1 and L2 have a minimal NFA that is a DFA (Fig. 3).

Therefore, we just proved that:

Theorem 4.4. There exist two regular languages L1, L2 with tw(Li) = 1, i =
1, 2, such that the tree width of L1 ∩ L2 is infinite.

56 C. Câmpeanu and K. Salomaa

a

a a

a
a

a a a a

a
0

1 2 4 5 6

0

1 2 4

Fig. 3. A minimal NFA for L1, left, and L2, right.

5 Conclusion

In this paper we have analyzed the tree width of regular languages, and proved
that computing it is computationally hard, even in the case of unary languages.
We proved that for common operations, like boolean and regular ones, the tree
width of the resulting languages is not bounded by any function which depends
on the tree width of the input languages.

There are still many related areas to be considered, and we list here few of
them:

1. Given the negative results in Sect. 4, can we find an “interesting” operation
◦ and a bounded function f , such that tw(L1 ◦ L2) ≤ f(tw(L1), tw(L2))?

2. There are other measures of nondeterminism considered in [22,23], such as
branching, trace, or the degree of ambiguity. Find the connections between
these nondeterminism measures for a given regular language R. Because we
have negative results concerning the tree width of language operations, is the
same valid for the other non-determinism measures?

3. Relate the ambiguity of regular expressions with the measures of nondeter-
minism on NFAs.

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43, 185–190 (1992)

2. Björklund, H., Martens, W.: The tractability frontier for NFA minimization. J.
Comput. Syst. Sci. 78, 198–210 (2012)

3. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 142–2, 182–206 (1998)

4. Câmpeanu, C.: Simplyfying nondeterministic finite cover automata. Electron. Proc.
Theoret. Comput. Sci. 151–AFL, 162–173 (2014)

5. Câmpeanu, C.: Non-deterministic finite cover automata. Sci. Ann. Comput. Sci.
29, 3–28 (2015)

6. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

7. Eilenberg, S., Schützenberger, M.P.: Rational sets in commutative monoids. J.
Algebra 13(2), 173–191 (1969)

8. Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s the-
sis, University of Waterloo (2004)

Nondeterministic Tree Width of Regular Languages 57

9. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review on state complexity of individual
operations. Faculdade de Ciencias, Universidade do Porto, Technical report DCC-
2011-8. www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf To appear
in Computer Science Review

10. Goldstine, J., Kintala, C.M.R., Wotschke, D.: On measuring nondeterminism in
regular languages. Inf. Comput. 86, 179–194 (1990)

11. Gruber, H., Holzer, M.: Finding lower bounds for nondeterministic state complexity
is hard. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 363–374.
Springer, Heidelberg (2006). http://dx.doi.org/10.1007/11779148 33

12. Gruber, H., Holzer, M.: Computational complexity of NFA minimization for finite
and unary languages. In: Proceedings of LATA, pp. 261–272 (2007)

13. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

14. Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H., Schnitger, G.: Communi-
cation complexity method for measuring nondeterminism in finite automata. Inf.
Comput. 172, 202–217 (2002)

15. Jiang, T., McDowell, E., Ravikumar, B.: The structure and complexity of minimal
NFAs over a unary alphabet. Int. J. Found. Comput. Sci. 2, 163–182 (1991)

16. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22,
1117–1141 (1993)

17. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, FOCS, pp. 254–266
(1977)

18. Leung, H.: Descriptional complexity of NFA of different ambiguity. Int. J. Found.
Comput. Sci. 16, 975–984 (2005)

19. Malcher, A.: Minimizing finite automata is computationally hard. Theoret. Com-
put. Sci. 327, 375–390 (2004)

20. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity and limited nondeter-
minism. In: Kutrib, M., Moreira, N., Reis, R. (eds.) DCFS 2012. LNCS, vol. 7386,
pp. 252–265. Springer, Heidelberg (2012)

21. Palioudakis, A., Salomaa, K., Akl, S.G.: Unary NFAs with limited nondeterminism.
In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014.
LNCS, vol. 8327, pp. 443–454. Springer, Heidelberg (2014)

22. Palioudakis, A., Salomaa, K., Akl, S.G.: State complexity of finite tree width NFAs.
J. Automata Lang. Comb. 17(2–4), 245–264 (2012)

23. Palioudakis, A.: State complexity of nondeterministic finite automata with limited
nondeterminism. Ph.D. thesis, Queen’s University (2014)

24. Ravikumar, B., Ibarra, O.H.: Relating the degree of ambiguity of finite automata
to the succinctness of their representation. SIAM J. Comput. 18, 1263–1282 (1989)

25. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-
bridge University Press, Cambridge (2009)

26. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proceedings of the 5th Symposium on Theory of Computing, pp. 1–9 (1973)

27. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. I, pp. 41–110. Springer, Heidelberg (1997)

www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf
http://dx.doi.org/10.1007/11779148_33

Integer Complexity: Experimental
and Analytical Results II

Juris Čerņenoks1, Jānis Iraids1, Mārtiņš Opmanis2,
Rihards Opmanis2, and Kārlis Podnieks1(B)

1 University of Latvia, Raiņa bulvāris 19, Riga LV-1586, Latvia
karlis.podnieks@lu.lv

2 Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, Riga LV-1459, Latvia

Abstract. We consider representing natural numbers by expressions
using only 1’s, addition, multiplication and parentheses. Let ‖n‖ denote
the minimum number of 1’s in the expressions representing n. The log-
arithmic complexity ‖n‖log is defined to be ‖n‖/log3 n. The values of
‖n‖log are located in the segment [3, 4.755], but almost nothing is known
with certainty about the structure of this “spectrum” (are the values dense
somewhere in the segment?, etc.). We establish a connection between this
problem and another difficult problem: the seemingly “almost random”
behaviour of digits in the base-3 representation of the numbers 2n.

We also consider representing natural numbers by expressions that
include subtraction.

Keywords: Integer complexity · Logarithmic complexity · Spectrum ·
Powers of two · Ternary representations

1 Introduction

The field explored in this paper is represented in “The On-Line Encyclopedia
of Integer Sequences” (OEIS) as the sequences A005245 [15] and A091333 [19].
The topic seems to be gaining popularity — see [2–4,6,7,9,16,18]. The paper
continues our previous work [13].

First, in Sect. 2 we consider representing natural numbers by arithmetical
expressions using 1’s, addition, multiplication and parentheses. Let us call this
“representing numbers in the basis {1,+, ·}”.

Definition 1. Let ‖n‖ denote the minimum number of 1’s in the expressions
representing n in basis {1,+, ·}. We call it the integer complexity of n. The
logarithmic complexity ‖n‖log is defined to be ‖n‖

log3 n .

Integer complexity of n corresponds to the sequence A005245 [15] in the OEIS.
For quick reference, here are the optimal expressions for some numbers:

‖1‖ = 1
‖3‖ = 3; 3 = 1 + 1 + 1
‖6‖ = 5; 6 = (1 + 1 + 1) · (1 + 1)
‖10‖ = 7; 10 = 1 + (1 + 1 + 1) · (1 + 1 + 1) = (1 + 1 + 1 + 1 + 1) · (1 + 1)

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 58–69, 2015.
DOI: 10.1007/978-3-319-19225-3 5

Integer Complexity: Experimental and Analytical Results II 59

In the following expressions we have used 2, 3, and 5 as a shorthand for 1+1,
1+1+1 and 1+1+1+1+1, respectively, and exponentiation – as a shorthand
for repeated multiplication.

‖107‖ = 16; 107 = 1 + 2 · (1 + 22 · (1 + 3 · 22))
‖321‖ = 18; 321 = 1 + 5 · 26

‖1439‖ = 26; 1439 = 1 + 2 · (1 + 2 · (1 + 1 + 3 · (24 + 1) · (3 · 2 + 1)))

It is well known that all the values of ‖n‖log are located in the segment
[3, 4.755], but almost nothing is known with certainty about the structure of
this “spectrum” (are the values dense somewhere in the segment?, etc.). We
establish a connection between this problem and another difficult problem: the
seemingly “almost random” behaviour of digits in the base-3 representation of
the numbers 2n.

Secondly, in Sect. 3 we consider representing natural numbers by arithmeti-
cal expressions that include also subtraction. Let us call this “representing
numbers in basis {1,+, ·,−}”.

Definition 2. Let ‖n‖− denote the minimum number of 1’s in the expressions
representing n in basis {1,+, ·,−}. The logarithmic complexity ‖n‖− log is defined

as
‖n‖−
log3 n .

‖n‖− corresponds to the sequence A091333 [19] in the OEIS.
We prove that almost all values of the logarithmic complexity ‖n‖− log are

located in the segment [3, 3.679]. Having computed ‖n‖− up to n = 2 · 1011, we
present some of our observations.

2 Integer Complexity in Basis {1,+, ·}
2.1 Connections to the Sum-of-digits Problem

Throughout this subsection, we assume that p, q are multiplicatively independent
positive integers, i.e., pa �= qb for all integers a, b > 0.

Definition 3. Let Dq(n, i) denote the i-th digit in the canonical base-q repre-
sentation of the number n, and Sq(n) – the sum of digits in this representation.

Let us consider base-q representations of powers pn. Imagine, for a moment
(somewhat incorrectly), that, for fixed p, q, n, the digits Dq(pn, i) behave like
statistically independent random variables taking the values 0, 1, ..., q − 1 with
equal probabilities 1

q . Then, the (pseudo) mean value and (pseudo) variance of
Dq(pn, i) would be

E =
q − 1

2
;V =

q−1∑

i=0

1
q

(
i − q − 1

2

)2

=
q2 − 1

12
.

60 J. Čerņenoks et al.

The total number of digits in the base-q representation of pn is kn ≈ n logq p.

Hence, the (pseudo) mean value of the sum Sq(pn) =
kn∑
i=1

Dq(pn, i) would be

En ≈ n q−1
2 logq p and, because of the assumed (pseudo) independence of digits,

its (pseudo) variance would be Vn ≈ n q2−1
12 logq p. As the final consequence, the

corresponding centered and normed variable Sq(p
n)−En√
Vn

would behave like a stan-

dard normally distributed random variable with probability density 1√
2π

e− x2
2 .

One can try verifying this conclusion experimentally. For example, let us
compute S3(2n) for n up to 100000, and let us draw the histogram of the corre-
sponding centered and normed variable

s3(2n) =
S3(2n) − n log3 2√

n 2
3 log3 2

(see Fig. 1). As we see, this variable behaves, indeed, almost exactly as a standard
normally distributed random variable (the dashed curve).

−4 −3 −2 −1 0 1 2 3 4

0

0.2

0.4

Fig. 1. Histogram of centered and normed variable s3(2
n)

Observing such a phenomenon “out there”, one could conjecture that Sq(pn),
as a function of n, behaves almost like n q−1

2 logq p, i.e., almost linearly in n.
Let us try to estimate the amplitude of the possible deviations by “applying”
the Law of the Iterated Logarithm (the idea proposed in [5,8]). Let us introduce
centered and normed (pseudo) random variables:

dq(pn, i) =
Dq(pn, i) − q−1

2√
q2−1
12

.

By summing up these variables for i from 1 to kn, we obtain a sequence of
(pseudo) random variables:

κq(p, n) =
Sq(pn) − q−1

2 kn√
q2−1
12

,

Integer Complexity: Experimental and Analytical Results II 61

that “must obey” the Law of the Iterated Logarithm. Namely, if the sequence
Sq(pn) behaves, indeed, like a “typical” sum of equally distributed random vari-
ables, then lim infn→∞ and lim supn→∞ of the fraction

κq(p, n)√
2kn log log kn

,

(log stands for the natural logarithm) “must be” −1 and +1 correspondingly.
Therefore, it seems, we could conjecture that, if we denote

σq(p, n) =
Sq(pn) − (q−1

2 logq p)n
√

(q2−1
6 logq p)n log log n

,

then
lim sup

n→∞
σq(p, n) = 1; lim inf

n→∞ σq(p, n) = −1.

In particular, this would mean that

Sq(pn) =
(

q − 1
2

logq p

)
n + O(

√
n log log n).

By setting p = 2; q = 3 (note that log3 2 ≈ 0.6309):

S3(2n) = n · log3 2 + O(
√

n log log n);

σ3(2, n) =
S3(2n) − n log3 2√
(43 log3 2)n log log n

≈ S3(2n) − 0.6309n√
0.8412n log log n

,

lim sup
n→∞

σ3(2, n) = 1; lim inf
n→∞ σ3(2, n) = −1.

However, the behaviour of the expression σ3(2, n) up to n = 107 does not show
convergence to the segment [−1,+1] (see Fig. 2, obtained by Juris Čerņenoks).
Although it is oscillating almost as required by the Law of the Iterated Loga-
rithm, very many of its values lie outside the segment.

Could we hope to prove the above estimate of Sq(pn)? To our knowledge,
the best result on this problem is due to C. L. Stewart [17]. It follows from his
Theorem 2 (put α = 0), that

Sq(pn) >
log n

log log n + C0
− 1,

where the constant C0 > 0 can be effectively computed from q, p. Since then, no
better than log n

log log n lower bounds of Sq(pn) have been proved.
However, it appears that from a well-known open conjecture about integer

complexity in basis {1,+, ·} (Hypothesis 1, attributed to J. L. Selfridge in [10]),
one can derive a strong linear lower bound of S3(2n).

62 J. Čerņenoks et al.

Fig. 2. Oscillating behaviour of the expression σ3(2, n)

Proposition 1. For any primes p, q, and all n, we have Sq(pn) ≥ ‖pn‖ −
nq logq p.

Proof. Assume amam−1 · · · a0 is a canonical base-q representation of the number
pn. One can derive from it a representation of pn in basis {1,+, ·}, having length
≤ mq + Sq(pn). Hence, ‖pn‖ ≤ mq + Sq(pn). Since qm ≤ pn < qm+1, we have
m ≤ n logq p < m + 1, and ‖pn‖ ≤ nq logq p + Sq(pn). �	
Theorem 1. If, for a prime p �= 3, ε > 0, and n > 0, ‖pn‖log ≥ 3 + ε, then
S3(pn) ≥ nε log3 p.

Proof. Since

3 + ε ≤ ‖pn‖log =
‖pn‖

log3 pn
,

according to Proposition 1, we have

S3(pn) ≥ (3 + ε)n log3 p − 3n log3 p = nε log3 p.

�	
Let us recall the well-known

Hypothesis 1. For all n ≥ 1, we have ‖2n‖ = 2n. Moreover, the product of
1 + 1’s is shorter than any other representation of 2n.

We consider proving or disproving Hypothesis 1 as a big challenge of number
theory.

Hypothesis 1 has been verified as true up to n = 39 [13]. However, see [7,
Sect. 4.3] for an argument against the general truth of it.

If ‖2n‖ = 2n, then ‖2n‖log = 2
log3 2 , and thus, by taking ε = 2

log3 2 − 3 in
Theorem 1, we obtain

Integer Complexity: Experimental and Analytical Results II 63

Corollary 1. If Hypothesis 1 is true, then S3(2n) > 0.107 · n for all n > 0.

Thus, proving Hypothesis 1 would yield a strong linear lower bound for S3(2n).
Does this mean that proving Hypothesis 1 is an extremely complicated task?

Similar considerations appear in [4] (see the discussion following Conje-
cture 1.3).

2.2 Compression of Powers

For a prime p, can the shortest expressions of powers pn be obtained simply by
multiplying the best expressions of p?

The answer “yes” can be proved easily for all powers of p = 3. For example,
the shortest expression of 33 = 27 is (1 + 1 + 1) · (1 + 1 + 1) · (1 + 1 + 1), and
‖3n‖ = n · ‖3‖ = 3n for all n. The same seems to be true for the powers of
p = 2; see Hypothesis 1 above. For example, the shortest expression of 25 = 32
is (1+1) · (1+1) · (1+1) · (1+1) · (1+1). Thus, it seems that ‖2n‖ = n · ‖2‖ = 2n
for all n.

However, for p = 5 this is true only for n = 1, 2, 3, 4, 5, but the shortest
expression of 56 is not 5 · 5 · 5 · 5 · 5 · 5, but

56 = 15625 = 1 + 23 · 32 · 217 = 1 + 23 · 32(1 + 23 · 33).

Thus, we have here a kind of “compression”:
∥∥56

∥∥ = 29 < 6 ‖5‖ = 30.
Could we expect now that the shortest expression of 5n can be obtained by

multiplying the expressions of 51 and 56? This is true at least up to n = 17,
as one can verify by using the online calculator [12] by Jānis Iraids. But, as
observed by Juris Čerņenoks,

∥∥536
∥∥ is not

∥∥56
∥∥ · 6 = 29 · 6 = 174 as one might

expect. Namely:

536 = 24 · 33 · 247 · 244125001 · 558633785731 + 1,

where
247 = 3 · (34 + 1) + 1;

244125001 = 23 · 32 · (23 · 33 + 1) · (23 · 32 · (23 · 33 + 1) + 1) + 1;

558633785731 = 2 · 3 · (23 · 35 + 1) · (2 · 34 · (26 · 35 · (2 · 32 + 1) + 1) + 1) + 1.

In total, this expression of 536 contains 173 ones.
Until now, no more “compression points” are known for powers of 5.
Let us define the corresponding general notion:

Definition 4. Let us say that n is a compression point for powers of the
prime p, if and only if for any numbers ki such that 0 < ki < n and

∑
ki = n:

‖pn‖ <
∑ ∥∥pki

∥∥ ,

i.e., if the shortest expression of pn is better than any product of expressions of
smaller powers of p.

64 J. Čerņenoks et al.

Question 1. Which primes possess an infinite number of compression points,
which ones a finite number, and which ones do not possess them at all?

Powers of 3 (and, it seems, powers of 2 as well) do not possess compression points
at all. Unfortunately this fact is a trivial consequence of Proposition 4 and thus
does not generalize to powers of other primes. Powers of 5 possess at least two
compression points. For more about compression of powers of particular primes,
see our previous paper [13] (where compression is termed “collapse”).

Proposition 2. If a prime p �= 3 possesses finite number of compression points,
then there is an ε > 0 such that ‖pn‖log ≥ 3 + ε for all n > 0.

Proof. If p �= 3, then for any particular n, by Proposition 4 we have ‖pn‖log > 3.
If n is not a compression point, then

‖pn‖ =
∑ ∥∥pki

∥∥

for some numbers ki such that 0 < ki < n and
∑

ki = n. Now, if some of the ki

are not compression points as well, then we can express
∥∥pki

∥∥ as
∑∥∥plj

∥∥, where
0 < lj < ki and

∑
lj = ki.

In this way, if m is the last compression point of p, then, for any n > m, we
can obtain numbers ki such that 0 < ki ≤ m,

∑
ki = n, and

‖pn‖ =
∑ ∥∥pki

∥∥ .

Hence,

‖pn‖log =
‖pn‖

log3 pn
=

∑∥∥pki
∥∥

(log3 p)
∑

ki
.

Since, for any ai, bi > 0, ∑
ai∑
bi

≥ min
ai

bi
,

we obtain that

‖pn‖log ≥ min

∥∥pki
∥∥

ki log3 p
= min

∥∥pki
∥∥
log

= 3 + ε,

for some ε > 0. �	
As we established in Sect. 2.1, for any particular prime p �= 3, proving ‖pn‖log ≥
3 + ε for some ε > 0, and all sufficiently large n > 0, would yield a strong linear
lower bound for S3(pn). Therefore, for reasons explained in Sect. 2.1, proving the
above inequality (even for a particular p �= 3) seems to be an extremely com-
plicated task. And hence, proving (even for a particular p �= 3) that p possesses
finite number of compression points seems to be an extremely complicated task
as well.

Proposition 3. For any number k, lim
n→∞ ‖kn‖log exists, and does not exceed any

particular ‖kn‖log.

Integer Complexity: Experimental and Analytical Results II 65

Proof. Function A(n) = ‖kn‖ is subadditive:

A(n + m) =
∥∥kn+m

∥∥ ≤ ‖kn‖ + ‖km‖ = A(n) + A(m).

The proposition follows from a general property of subadditive functions, see [1,
Lemma 10.2.7]. �	
For more about the spectrum of logarithmic complexity ‖n‖log, see in our pre-
vious paper [13].

The following weakest possible question about the spectrum of logarith-
mic complexities appears as Q6 in [7]:

Question 2. Is there an ε > 0 such that ‖n‖log ≥ 3 + ε for infinitely many n?

Theoretically, Question 2 should be easier to solve than Hypothesis 1 and other
hypotheses from [13], but it remains still unsolved nevertheless.

On the other hand,

Question 3. If, for all primes p, the limit lim
n→∞ ‖pn‖log = 3 holds, could this

imply that lim
N→∞

‖N‖log = 3 for all N —, a negative solution to Question 2?

3 Integer Complexity in the Basis {1,+, ·,−}
In this section, we consider representing natural numbers by arithmetical expres-
sions using 1’s, addition, multiplication, subtraction, and parentheses. According
to Definition 2, ‖n‖− denotes the number of 1’s in the shortest expressions rep-
resenting n in the basis {1,+, ·,−}.

Of course, for all n, we have ‖n‖− ≤ ‖n‖. The number 23 is the first one
that possesses a better representation in the basis {1,+, ·,−} than in the basis
{1,+, ·}:

23 = 23 · 3 − 1 = 22 · 5 + 2; ‖23‖− = 10; ‖23‖ = 11.

Definition 5. (a) Let E(n) denote the largest m such that ‖m‖ = n.
(b) Let E−(n) denote the largest m such that ‖m‖− = n.
(c) Let E−k(n) denote the k-th largest m such that ‖m‖− ≤ n (if it exists).

Thus, E−(n) = E−1(n).
(d) Let e−(n) denote the smallest m such that ‖m‖− = n.

According to Guy [10], it was J. L. Selfridge who first noticed that

Proposition 4. For all k ≥ 0:

E(3k + 2) = 2 · 3k;

E(3k + 3) = 3 · 3k;

E(3k + 4) = 4 · 3k.

66 J. Čerņenoks et al.

One can verify easily that E−(n) = E(n) for all n > 0, i.e., that the formulas
discovered by J. L. Selfridge for E(n) remain valid for E−(n) as well:

Proposition 5. For all n ≥ 0, we have E(n) = E−(n).

One can verify also that E−2(n) = E2(n) for n ≥ 5; hence, the formula obtained
by D. A. Rawsthorne [14] remains true for the basis {1,+, ·,−}: for all n ≥ 8,
we have E−2(n) = 8

9E−(n).
These formulas allow for building of dynamic programming algorithms for

computing of ‖n‖−. Indeed, after filtering out all n with ‖n‖− < k, one can filter
out all n with ‖n‖− = k knowing that n ≤ E−(k), and trying out representations
of n as A · B,A + B,A − B for A,B with ‖A‖− , ‖B‖− < k. See [19] for a
more sophisticated efficient computer program designed by Jānis Iraids. Juris
Čerņenoks used another efficient program to compute ‖n‖− up to n = 2 · 1011.

The values of e−(n) up to n = 81 are published in the OEIS [11]. 10 of the
81 values are composite numbers similarly to values of e(n).

Does Fig. 3 provide some evidence that both kinds of logarithmic complexity
of n do not tend to 3?

0 10 20 30 40 50 60 70 80 90

3

3.2

3.4

3.6

3.8

4

n

‖e(n)‖log

‖e−(n)‖log

Fig. 3. Logarithmic complexities of the numbers e(n) and e−(n)

At least for all 2n up to 2 · 1011 Hypothesis 1 also remains true for the basis
{1,+, ·,−}.

While observing the shortest expressions representing small numbers in basis
{1,+, ·,−}, one might conclude that whenever subtraction is the last operation
of a shortest expression, then it is subtraction of 1, for example, 23 = 23 · 3 − 1.

As established by Juris Čerņenoks, the first number for which this observation
fails is larger than 55 billion:

‖n‖− = 75;n = 55659409816 = (24 · 33 − 1)(317 − 1) − 2 · 3.

Up to 2 ·1011, there are only 3 numbers for which subtraction of 6 is necessary
as the last operation of shortest expressions – the above one and the following two:

‖n‖− = 77;n = 111534056696 = (25 · 34 − 1)(316 + 1) − 2 · 3,

‖n‖− = 78;n = 167494790108 = (24 · 34 + 1)(317 − 1) − 2 · 3.

Integer Complexity: Experimental and Analytical Results II 67

The need for subtraction by 8, 9, 12, or larger was not observed for numbers
up to 2 · 1011.

Theorem 2. For all n > 1,

3 log3 n ≤ ‖n‖− ≤ 6 log6 n + 5.890 < 3.679 log3 n + 5.890,

If n is a power of 3, then ‖n‖− = 3 log3 n, else ‖n‖− > 3 log3 n.

Proof. The lower bound follows from Proposition 5. Let us prove the upper
bound.

If n = 6k, then we can start building the expression for n as (1+1)(1+1+1)k.
Hence, by spending 5 ones, we reduce the problem to building the expression for
the number k ≤ n

6 .
Similarly, if n = 6k + 1, then, by spending 6 ones, we reduce the problem to

building the expression for the number k ≤ n−1
6 .

If n = 6k + 2 = 2(3k + 1), then, by spending 6 ones, we reduce the problem
to building the expression for the number k ≤ n−2

6 .
If n = 6k + 3 = 3(2k + 1), then, by spending 6 ones, we reduce the problem

to building the expression for the number k ≤ n−3
6 .

If n = 6k+4 = 2(3k+2) = 2(3(k+1)−1), then, by spending 6 ones, we reduce
the problem to building the expression for the number k + 1 ≤ n+2

6 = n
6 + 1

3 .
Finally, if n = 6k +5 = 6(k +1)− 1, then, by spending 6 ones, we reduce the

problem to building the expression for the number k + 1 ≤ n+1
6 = n

6 + 1
6 .

Thus, by spending no more than 6 ones, we can reduce building the expression
for any number n to building the expression for some number k ≤ n

6 + 1
3 . By

applying this kind of operations 2 times to the number n, we will arrive at a
number k ≤ n

62 + 1
6·3 + 1

3 . By applying them m times, we will arrive at a number

k <
n

6m
+

1
3

· 1
1 − 1

6

=
n

6m
+

2
5
.

Hence, if n
6m + 2

5 ≤ 5, or, 6m ≥ 5n
23 , or m ≥ log6

5n
23 , then, after m operations,

spending ≤ 6m ones, we will arrive at the number ≤ 5. Thus,

‖n‖− ≤ 6
(

log6
5n

23
+ 1

)
+ 5 = 6 log6 n + 5.890 < 3.679 log3 n + 5.890.

�	
According to Theorem 2, for all n > 1:

3 ≤ ‖n‖− log ≤ 3.679 +
5.890
log3 n

.

It seems, the largest values of ‖n‖− log are taken by single numbers, see
Table 1.

68 J. Čerņenoks et al.

Table 1. Largest values of ‖n‖− log

n ‖n‖− ≈ ‖n‖− log ‖n‖ Other properties

11 8 3.665 8 e−(8), prime

67 14 3.658 14 e−(14), prime

787 22 3.625 22 e−(22), prime

173 17 3.624 17 e−(17), prime

131 16 3.606 16 e−(16), prime

2767 26 3.604 26 e−(26), prime

2777 26 3.602 26 e−2(26), prime

823 22 3.600 22 e−2(22), prime

1123 23 3.598 23 e−(23), prime

2077 25 3.596 25 e−(25), 31 · 67

2083 25 3.594 25 e−2(25), prime

617 21 3.591 21 e−(21), prime

619 21 3.589 21 e−2(21), prime

29 11 3.589 11 e−(11), prime

4 Conclusion

Let us conclude with the summary of the most challenging open problems:

(1) The Question of Questions – prove or disprove Hypothesis 1: for all n ≥ 1,
‖2n‖ = 2n, moreover, the product of 1 + 1’s is shorter than any other repre-
sentation of 2n, even in the basis with subtraction.

(2) Basis {1,+, ·}. Solve the weakest possible Question 2 (Q6 in [7]) about the
spectrum of logarithmic complexity: is there an ε > 0 such that for infinitely
many numbers n: ‖n‖log ≥ 3 + ε? An equivalent formulation: is there an
ε > 0 such that for infinitely many numbers n: log3 e(n) ≤ (13 − ε)n. Proving
Hypothesis 1 would solve Question 2 positively.

(3) Basis {1,+, ·,−}. Improve Theorem 2: for all n > 1,

‖n‖− < 3.679 log3 n + 5.890.

References

1. Allouche, J.P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press, Cambridge (2003)

2. Altman, H.: Integer complexity and well-ordering. ArXiv e-prints, October 2013.
http://arxiv.org/abs/1310.2894

3. Altman, H.: Integer complexity, addition chains, and well-ordering. Ph.D. the-
sis, University of Michigan (2014). http://www-personal.umich.edu/∼haltman/
thesis-FIXED.pdf

http://arxiv.org/abs/1310.2894
http://www-personal.umich.edu/~haltman/thesis-FIXED.pdf
http://www-personal.umich.edu/~haltman/thesis-FIXED.pdf

Integer Complexity: Experimental and Analytical Results II 69

4. Altman, H., Zelinsky, J.: Numbers with integer complexity close to the lower bound.
INTEGERS 12(6), 1093–1125 (2012)

5. Aragón Artacho, F.J., Bailey, D.H., Borwein, J.M., Borwein, P.B.: Walking on real
numbers. Math. Intell. 35(1), 42–60 (2013). doi:10.1007/s00283-012-9340-x

6. Arias de Reyna, J., van de Lune, J.: Algorithms for determining integer complexity.
ArXiv e-prints, April 2014. http://arxiv.org/abs/1404.2183

7. Arias de Reyna, J., van de Lune, J.: How many 1’s are needed? revisited. ArXiv
e-prints, April 2014. http://arxiv.org/abs/1404.1850

8. Belshaw, A., Borwein, P.: Champernowne’s number, strong normality, and the X
chromosome. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Théra, M.,
Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathemat-
ics, Springer Proceedings in Mathematics & Statistics, vol. 50, pp. 29–44. Springer,
New York (2013). doi:10.1007/978-1-4614-7621-4 3

9. Gnang, E.K., Radziwill, M., Sanna, C.: Counting arithmetic formulas. ArXiv
e-prints (2014). http://arxiv.org/abs/1406.1704

10. Guy, R.K.: Some suspiciously simple sequences. Am. Math. Mon. 93(3), 186–190
(1986)

11. Iraids, J.: The On-Line Encyclopedia of Integer Sequences, Smallest number requir-
ing n 1’s to build using +, · and −. http://oeis.org/A255641

12. Iraids, J.: Online calculator of integer complexity. http://expmath.lumii.lv/wiki/
index.php/Special:Complexity. Accessed on 28 February 2015

13. Iraids, J., Balodis, K., Čerņenoks, J., Opmanis, M., Opmanis, R., Podnieks, K.:
Integer complexity: Experimental and analytical results. Scientific Papers Uni-
versity of Latvia, Computer Science and Information Technologies 787, 153–179
(2012), arXiv preprint: http://arxiv.org/abs/1203.6462

14. Rawsthorne, D.A.: How many 1’s are needed? Fibonacci Q. 27(1), 14–17 (1989).
http://www.fq.math.ca/Scanned/27-1/rawsthorne.pdf

15. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences, Complexity of n:
number of 1’s required to build n using + and ·. http://oeis.org/A005245

16. Steinerberger, S.: A short note on integer complexity. Contributions to Discrete
Mathematics 9(1) (2014). http://cdm.ucalgary.ca/cdm/index.php/cdm/article/
view/361

17. Stewart, C.: On the representation of an integer in two different bases. Journal
für die reine und angewandte Mathematik 319, 63–72 (1980). http://eudml.org/
doc/152278

18. Vatter, V.: Maximal independent sets and separating covers. Am. Math.
Mon. 118(5), 418–423 (2011). http://www.jstor.org/stable/pdfplus/10.4169/
amer.math.monthly.118.05.418.pdf

19. Voß, J.: The On-Line Encyclopedia of Integer Sequences, Number of 1’s required
to build n using +, −, · and parentheses. http://oeis.org/A091333

http://dx.doi.org/10.1007/s00283-012-9340-x
http://arxiv.org/abs/1404.2183
http://arxiv.org/abs/1404.1850
http://dx.doi.org/10.1007/978-1-4614-7621-4_3
http://arxiv.org/abs/1406.1704
http://oeis.org/A255641
http://expmath.lumii.lv/wiki/index.php/Special:Complexity
http://expmath.lumii.lv/wiki/index.php/Special:Complexity
http://arxiv.org/abs/1203.6462
http://www.fq.math.ca/Scanned/27-1/rawsthorne.pdf
http://oeis.org/A005245
http://cdm.ucalgary.ca/cdm/index.php/cdm/article/view/361
http://cdm.ucalgary.ca/cdm/index.php/cdm/article/view/361
http://eudml.org/doc/152278
http://eudml.org/doc/152278
http://www.jstor.org/stable/pdfplus/10.4169/amer.math.monthly.118.05.418.pdf
http://www.jstor.org/stable/pdfplus/10.4169/amer.math.monthly.118.05.418.pdf
http://oeis.org/A091333

Square on Ideal, Closed and Free Languages

Krist́ına Čevorová(B)

Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
cevorova@mat.savba.sk

Abstract. We study the deterministic state complexity of a language
accepted by an n-state DFA concatenated with itself for languages from
certain subregular classes. Tight upper bounds are obtained on optimal
alphabets for prefix-closed, xsided-ideal and xfix-free languages, except
for suffix-free, where a ternary alphabet is used.

1 Introduction

Janusz Brzozowski and his coauthors have recently published a series of articles
concerning quotient complexity of basic operations such as concatenation, Kleene
closure or boolean operations on ideal [1], free [2], and closed [3] languages. The
results were usually significantly smaller compared to the state complexity of
general languages, despite the fact that quotient and state complexity is numer-
ically always the same.

None of these articles considered the operation square. Since it is a special
case of concatenation – a product of language with itself – results for concatena-
tion provide an immediate upper bound on state complexity of operation square.
On the other hand, the state complexity of square on general languages has been
studied by Rampersad [4]. He showed, that in the binary case it is n2n − 2n−1,
whereas in unary 2n−1. Our aim was to study the state complexity of a square on
certain ideal, free or closed subclasses of regular languages and compare results
with these upper bounds.

The study of these subregular classes is not isolated. Determination of many
classes of NFAs was considered in [5], including free and closed languages. Syn-
tactic complexity was studied for ideal and closed languages [6]. A more special-
ized study of suffix-free languages is in [7], of prefix-free languages in [8] and of
prefix-closed languages in [9] and [10].

This paper is organized as follows. In next section we give the most important
definitions. In Sect. 3 we study ideal languages, Sect. 4 is dedicated to prefix-
closed languages and then, in Sect. 5, we discuss free languages. In the conclusion,
we compare our results with results for concatenation on the same classes and
for general regular languages.

2 Preliminaries

We assume, that the reader is familiar with basic notions from automata theory,
for reference see [11]. Here we recall only the most important definitions.
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 70–80, 2015.
DOI: 10.1007/978-3-319-19225-3 6

Square on Ideal, Closed and Free Languages 71

Let [c, d] denote the set {c, c+1, . . . , d} if c ≤ d. A binary operation ⊕ called
symmetric difference is defined on sets as S ⊕S′ = S ∪S − (S ∩S′). Cardinality
of set S is denoted by |S|.

An incomplete DFA is an NFA A = (Q,Σ, δ, {q0}, F) with single initial state
and with the property that for every q ∈ Q and a ∈ Σ the inequality |δ(q, a)| ≤ 1
holds. Thus some transitions may be not defined, but this is the only trace of
nondeterminism. It could be made deterministic by adding one nonfinal dead
state, where all previously undefined transitions are incoming.

Let L be a regular language. The state complexity is denoted by sc(L), and
is defined as the number of states of its minimal DFA, whereas the incomplete
state complexity isc(L), is the number of states of its minimal incomplete DFA.

Let u, v, x, w be words. If w = uvx, then we call u a prefix, x a suffix and v
a factor of word w. If w = u1v1u2v2 · · · ukvk, for some words ui, vi, then word
u = u1u1 · · · uk is called subword of w.

We call L xfix-free for xfix ∈ {prefix, suffix, factor, subword}, if whenever
u, v ∈ L and u is xfix of v, then u = v. Similarly, L is xfix-closed, if whenever u
is xfix of v and v ∈ L, then also u ∈ L. And lastly we call L an xsided ideal for
xsided ∈ {left, right, 2-sided, all-sided}, when L = Σ∗L, L = LΣ∗, L = Σ∗LΣ∗,
L = L Σ∗ respectively, where is the shuffle operation. Square of L is language
L · L, denoted as L2.

Sometimes we will think of letters as of a function Q −→ Q. In particular,
this allows us to define for each letter a inverse function a−1 for all states with
exactly one incoming transition on a. This can be naturally generalized for words.

Proposition 1. Note that in the case w−1(q) exists, there is a unique state,
from which state q could be reached on the word w.

The standard construction of DFA for square of DFA A = (Q,Σ, δ, s, F). At first,
we define an NFA accepting L2(A) as shown in Fig. 1. If A has a dead state, we
remove it, to obtain an incomplete DFA. Then we take two exact copies of the
DFA A with all transitions and change labels of states so they are unique and a
state t becomes qt. Other changes are, that s will not be initial and we change the
finality of all states in the first copy to nonfinal. Lastly, we will add transitions.
Whenever f ∈ F , then we add a transition qf

ε−→ s.

Fig. 1. NFA for square

72 K. Čevorová

Now we determine this NFA by the standard subset construction to obtain
DFA accepting L2(A). Note that all reachable states contain at most one state
from the first copy, because this copy is deterministic and there is no transition
to it from the second copy.

3 Xsided Ideal Languages

A concatenation of left ideal languages has a quotient, i.e., also state complexity
m + n − 1 [1]. Witness languages are unary an−1a∗ and am−1a∗; thus the upper
bound on the state complexity of square of left ideal language is 2n − 1 and is
tight with the witness an−1a∗. Moreover, since 2-sided and all-sided ideals are
also left ideals, this upper bound also holds for them. Because in the unary case
the 2-sided or all-sided ideal is the same as left ideal, this bound is tight. Only
nonunary right ideals remain unresolved by this reasoning.

Proposition 2. A language L is right ideal if and only if the minimal DFA that
recognizes L has exactly one final state with all outcoming transitions leading back
to this final state.

Lemma 3. Let L be a right ideal language with sc(L) = n. Then sc(L2) ≤
n + 2n−2.

Proof. This is a direct consequence of Theorem 9 in [1], which states, that prod-
uct (concatenation) of two right ideal languages with quotient complexities m
and n has quotient complexity at most m + 2n−2. We will also provide an ele-
mentary proof, since it provides the insight necessary for the following lemmata.
Let n − 1 be the only final state of a minimal DFA for a right-ideal language.
Consider the standard construction of an NFA for a square and then the subset
determination of it as described in the preliminaries. What kind of subsets are
reachable?

Since n − 1 loops to itself on all letters, states reachable from the state S
containing qn−1 again contain qn−1. The state n − 1 is a final state, thus, that
0 ∈ S. Moreover, it is the only final state, thus if i < n − 1 and qi ∈ S is
reachable, then S = {qi}.

Finally, consider the case when n − 1 ∈ S. It is a final state and all states
reachable from such state contain n−1, therefore are final. Hence, all such states
are equivalent.

Summed up, that is n − 1 states in form {qi}, 2n−2 for states in form
{qn−1, 0} ∪ S, where S ⊆ {1, 2, . . . , n − 2} and 1 state for all accepting sub-
sets, in total n + 2n−2 states. 	

Lemma 4. For every n ≥ 2, there exists a binary right ideal language L with
sc(L) = n and sc(L2) = n + 2n−2.

Proof. Consider the DFA A = ({0, 1, . . . , n − 1}, {a, b}, δ, 0, {n − 1}) shown in
Fig. 2, where δ is defined as follows:

Square on Ideal, Closed and Free Languages 73

δ(i, a) =

{
i + 1, if i < n − 1;
n − 1, if i = n − 1.

δ(i, b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if i = 0;
i + 1, if 1 ≤ i ≤ n − 3;
0, if i = n − 2;
n − 1, if i = n − 1.

Fig. 2. Witness for right-ideal bound optimality

We will show that all subsets considered in Lemma 3 are reachable and
distinguishable. We will start with reachability.

For i < n − 1 states {qi} are reachable by word ai. We have to accept word
a2(n−1), thus final state could be also reached. The reachability of states of the
form {qn−1, 0, j1, j2, . . . , jk}, where 1 ≤ j1 < j2 < · · · < jk is proven by induction
on the size of maximal element of this set – the element jk. The state {qn−1, 0}
is reached by the word an−1.

The induction hypothesis is, that all states S with max S = jk − 1 are reach-
able. If j1 = 1, then {qn−1, 0, 1, j2, . . . , jk} = a({qn−1, 0, j2 − 1, . . . , jk − 1});
otherwise {qn−1, 0, j1, . . . , jk} = a({qn−1, 0, j1 − 1, . . . , jk − 1}).

Proof of distinguishability is necessary only for nonfinal states. We will start
by distinguishing states S and S′, where S ∩ [1, n − 1] �= ∅.

Let m = max(S⊕S′) – this is well-defined and m ≥ 0, since S �= S′. Without
loss of generality let m ∈ S. Denote B = δ(S, bn−2−m) and B′ = δ(S′, bn−2−m).
Note that the state n − 1 is not reachable from the state 0 by any word shorter
than n − 2 and m ≤ n − 2 and the transition function on states other than
n − 1 is injective. Therefore a state reached by bn−2−m contains n − 2 iff we
started in a state containing m and thus n − 2 ∈ B, while n − 2 ∈ B′. On the
other hand, neither B nor B′ does contain n − 1, since n − 1 has no incoming
transition by b. And since the final state n − 1 is reachable by a only from n − 1
and n − 2, the state δ(B, a) is final, while δ(B′, a) is not. Therefore the word
bn−2−ma distinguishes these two states.

Now we will distinguish states {qi} and {qk} for 0 ≤ i < k ≤ n − 1 (we treat
{qn−1, 0} as {qn−1}). The word a2k−2−k is accepted from {qk}, but not from
{qi}, since it is too short. 	

Combination of two previous lemmata yields the following result.

Theorem 5. Let n be integer with n ≥ 2 and L be a right ideal language with
sc(L) = n. Then sc(L2) ≤ n + 2n−2, and this bound is tight for an alphabet of
size at least two.

74 K. Čevorová

4 Prefix-Closed Languages

Since minimal DFA for prefix-closed has all states final [9], except for one dead
state, it is much more convenient to use incomplete DFA. We will do so, and in
the end, we will derive results for standard state complexity.

Lemma 6. Let L be a prefix-closed language with isc(L) = n. Then isc(L2) ≤
(n + 5)2n−2 − 2.

Proof. Let A be the minimal DFA for the language L and let S be a reachable
subset state of the standard square DFA construction. Let us label states of A
with integers from [0, n − 1] so that 0 is the initial state of A. We will show that
if qi ∈ S, then also i ∈ S and s ∈ S.

The initial subset state is {q0, 0}. Let w be a word such that {q0, 0} w−→ S.
Then if qi ∈ S, it means that s

w−→ i in A and therefore {qi, i} ⊆ S. Since
qi is final, 0 ∈ S. Moreover, state {0, 1, . . . , n − 1} is unreachable, because it
could be reached only from some state S′ with some qi ∈ S on a letter a with
an undefinied transition from i, but that results in a state with at most n − 1
states.

Summing up, there are (n − 1)2n−2 states containing qi other than q0 plus
2n−1 for those with q0 plus 2n − 2 for subsets of [0, n − 1], not counting the
unreachable full state and the empty dead state uncounted in incomplete DFAs.

	

Lemma 7. Let n ≥ 2. There exists a binary language L with isc(L) = n and
isc(L2) = (n + 5)2n−2 − 2.

Proof. If n = 2, consider the DFA ({0, 1}, {a, b}, δ, 0, {0, 1}) with transitions
defined as δ(0, a) = 1, δ(0, b) = ∅ and δ(1, a) = δ(1, b) = 0.

For n > 2 consider the DFA A = ([0, n − 1], {a, b}, δ, 0, [0, n − 1]) shown in
Fig. 3 where

δ(i, a) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅, if i = 0;
0, if i = 1;
i + 1, if 2 ≤ i ≤ n − 2;
2, if i = n − 1.

δ(i, b) =

{
i + 1, if 1 ≤ i ≤ n − 2;
0, if i = n − 1.

Fig. 3. The witness for prefix-closed bound optimality

Square on Ideal, Closed and Free Languages 75

Note that in the standard square DFA construction for this witness DFA (see
preliminaries), if n − 1 is a member of set S, then |b(S)| = |S|. Moreover,

|a(S)| =

{
|S|, if 1 /∈ S;
|S| − 1, if 1 ∈ S.

To prove reachability, we will use a variation on an inductive proof. Largest
sets will be used as the base of the induction and in an inductive step, we will
show, how to reach smaller sets. As the base of the induction we will show that
all sets in form {qi, 0, 1, . . . , n − 2, n − 1} are reachable from the start state as
follows:

{q0, 0} bn−1

−→ {qn−1, 0, 1, . . . , n − 2, n − 1} bi+1

−→ {qi, 0, 1, . . . , n − 2, n − 1}.

The induction hypothesis is that all states S with |S ∩ [1, n − 1]| ≥ k + 1 with
property qi ∈ S implies that i ∈ S are reachable. We will show that all such
states S′ with |S′ ∩ [1, n − 1]| = k are also reachable. The proof is divided into
four cases in all of them we suppose that 0 < jr < jr+1 (r is used as an arbitrary
index 1 ≤ r in this proof).

1. S = {qi, 0, j1, . . . , jk} and j1 > 1 and i ∈ S. Since jr �= 1, necessarily also
i �= 1 (see the proof of Lemma 6). In that case is a−1(S) well defined and
we have a−1(S) = {qa−1(i), 0, 1, a−1(j1), . . . , a−1(jk)} a−→ {qi, 0, j1, . . . , jk}.
Both qa−1(i) ∈ S and a−1(i) ∈ S. Moreover since a is bijection on [2, n − 1],
set a−1(S) has k + 1 elements from [0, n − 1].

2. S = {qi, 0, 1, j2, . . . , jk}. Let m = min{b| b > 0 and b �= jr}. Then, since b is a
bijection, the set B = {qb−(m−1)(i), b

−(m−1)(0), b−(m−1)(j1), . . . , b−(m−1)(jk)}
is well-defined. Then we have B

bm−1

−→ {qi, 0, 1, j2, . . . , jk}.
The choice of the exponent m − 1 was deliberate so that 1 /∈ B. Moreover,

since 0 is a member of each state bl(B) in this computing path, the state
b−1(0) = n − 1 is also a member of bl(B). Therefore, as noted at the begin-
ning of this proof, this implies that |B| = |b(B)| = · · · = |bm−1(B)| = |S|.
This shows how S can be reached from a state of the same size containing 1,
which has already been shown to be reachable in case 1.

3. S = {0, j1, . . . , jk}. Then {q0, 0, a−1(j1), . . . , a−1(jk)} a−→ {j1, . . . , jk}. Since
letter a is an injection on states other than 0, the state on the left was shown
to be reachable in 2.

4. S = {j1, . . . , jk}. Then {0, j2 − j1, . . . , jk − j1} bj1−→ {j1, . . . , jk}. Since b is a
bijection, the state on the left was shown to be reachable in 3.

The proof of distinguishability of states S and S′ is divided into four cases. The
empty state is the only nonfinal state; therefore in each of these cases, our aim
is to find a word that leads to the empty state from one of these states, whereas
from the other does not.

1. Both S and S′ are subsets of [0, n − 1]. Without loss of generality there
exists s ∈ S such that s /∈ S′. The transition on b in states that are subsets

76 K. Čevorová

of [0, n − 1] never changes the size of a resulting state, while a transition on
a changes it iff 1 is its member. We will call a state the successor of a given
state on a word w, if it is reached on this word without using ε transition.
State i ∈ S′ will have no successors on words with prefix bn−ia. In this
manner, we gradually construct word removing successors of all states in S′

so it will have no successor and we reach the empty state. On the same word,
we removed all states in S that are in S ∩ S′. But we did not remove s, so
the resulting state is not empty.

2. S is a subset of [0, n − 1]. Let qi ∈ S′. If i /∈ S, then we just erase the
state S as in case 1. The successor of qi was not erased, so the result is an
non-empty state. If i ∈ S, we erase everything except i. In the successor of
S′, there are still at least the states 0 and successor of i and qi. We will not
remove successors of states other than i while removing i. There always is
some other state, unless we have states {q0, 0} and {0}. But the word bna
distinguishes these two.

3. qi ∈ S, qj ∈ S′ and i < j. Then q0 ∈ bn−j(S′) while qi+n−j ∈ bn−j(S).
The state q0 has no successor on a, therefore bn−ja(S′) ⊆ [0, n − 1], while
bn−ja(S) � [0, n − 1]. We distinguished these types of states in the case 2.

4. qi ∈ S and qi ∈ S′ for some i. At first, suppose that S ⊕ S′ �= {1}; we will
resolve the opposite later. A transition on an−1−iba leads from both states
to two different states in [0, n − 1]. Since any difference other than 1 between
S and S′ is preserved by transitions on a, following a transition on b adds 1,
but this leaves the difference (which is in the cycle [2, n − 1]) untouched and
so does the last transition on a. So we reduced this to case 1.

Lastly, if S ⊕ S′ �= {1}, that is S = S′ ∪ {1}, then b(S) ⊕ b(S′) = {2} and
this case was treated in previous paragraph. 	

Now we will combine previous results for incomplete state complexity to get a
tight upper bound on the standard deterministic state complexity.

Theorem 8. Let n ≥ 3 and L be prefix-closed language with sc(L) = n. Then
sc(L2) ≤ (n+4)2n−3−1, and this bound is tight for an alphabet of size at least two.

Proof. Since all prefix-closed languages L with sc(L) = n ≥ 2 have a dead state,
isc(L) = n − 1. Prefix-closed languages are closed under the operation square.
Therefore sc(L2) = isc(L2) + 1 = (n− 1+ 5)2n−1−2 − 2 + 1 = (n + 4)2n−3 − 1. 	

5 Xfix-Free Languages

The state complexity of a concatenation of prefix-free languages is m + n − 2
[12]. In fact, this is not only a tight upper bound, but also a lower bound.
Beside that witness languages are unary {an−1} and {am−1}, so {an−1} is also a
unary witness for a prefix-free square. Moreover, bifix-, factor- and subword-free
languages are also prefix-free and in the unary case all of these properties are
the same, so the state complexity is the same for all of these classes. It remains
to investigate suffix-free languages.

Square on Ideal, Closed and Free Languages 77

Lemma 9. If L is a suffix-free regular language with sc(L) = n, then sc(L2) ≤
n2n−3 + 1.

Proof. By [13], every DFA accepting L is nonreturning with a dead state. Let
A = ([0, n − 3] ∪ {s, d}, Σ, δ, s, F) be the minimal DFA for L, where d denotes
the dead state.

Let S be a reachable set in the standard square construction on A. Suffix-
freeness imposes certain restrictions on S. Since A is nonreturning, s ∈ S iff
S ∩ F �= ∅ and, for the same reason, if qs ∈ S, then S = {qs}. Note that states
S and S ∪ {d} are equivalent. Finally, we will show that if for index i with i �= d
holds that if qi ∈ S, then i /∈ S.

Fig. 4. Sketch of proof

Suppose that there exists reachable subset S and index i, such that both i
and qi are members of S. Consider a computation that shows reachability of S.
Since i is in S, there was a step when the first copy of an DFA A was in state qf

corresponding to final state of A and from this step, the computation led from
s to i and from qf to qi. Let u and v denote words corresponding to these two
parts of the computation, respectively. Note that u �= ε, because s is not final. If
i �= d, then i is a useful state and some final state f ′ is reachable from it on word
w. So there are these two paths qs

uvw−→ qf ′ and s
vw−→ f ′. But this means that A

accepts both uvw and vw, and that is impossible, because A accepts suffix-free
language and u �= ε.

This sums up to (n−2)2n−3 equivalence classes of subset states when qd /∈ S
and qs /∈ S, plus 2n−2 classes of states such that qd ∈ S and plus one initial state
{qs}, in total n2n−3 + 1 states. 	

Lemma 10. There exists a suffix-free language L with sc(L) = n and sc(L2) =
n2n−3 + 1.

Proof. Consider the DFA in Fig. 5, note that we did not draw transitions leading
to the dead state d. This automaton satisfies requirements of Lemma 1 in [7], so
it accepts a suffix-free language.

At first, we will show that all equivalence classes considered in the Lemma 9
are reachable. As presence of the dead state in a subset is unimportant and
the presence of s determined, we will usually omit them, unless they are impor-
tant. The initial state {qs} is reachable. For the reachability of S, we will use a
variation of a mathematical induction on a size of S.

78 K. Čevorová

Fig. 5. Witness for suffix-free bound optimality

As the base of the induction we will show that the largest sets, that is sets
such that |S ∩ [0, n − 3]| = n − 3 are reachable.

{qs} c−→ {qn−3, s} an−3−→ {qn−3, 0, 1, . . . , n − 4} bi−1−→ {qi, 0, 1, . . . , i − 1, i + 1, . . . , n − 3}
{qs} c−→ {qn−3, s} an−3−→ {qn−3, 0, 1, . . . , n − 4} c−→

c−→ {0, 1, . . . , n − 4} bi−1−→ {0, 1, . . . , i − 1, i + 1, . . . , n − 3}.

The inductive hypothesis now is that all sets S with |S∩ [0, n−3]| = k+1 are
reachable. First, let it be the case that the set S = {j1, j2, . . . , jk} and let m =
min{p| p ∈ [0, n−1] and p /∈ S}. Then S = {j1, . . . , jk−(n−3−m),m+1,m+2,...,n−3}.
Then the following computation shows reachability:

{jm+1 − (m + 1), . . . , jk − (m + 1), n − 3 − m, . . . , n − 4, n − 3} c−→
c−→ {jm+1 − (m + 1), . . . , jk − (m + 1), n − 3 − m, . . . , n − 4} bm+1

−→
bm+1

−→ {0, 1, . . . ,m − 1, jm+1, . . . , jk}.

The proof for states of the form {qi, j1, . . . , jk} is similar, with redefinition
of m = min{p | p ∈ [0, n − 1] and p /∈ S and p �= i}. Just note that whenever we
reach state qn−3 there is indeed 0 in the following state. The empty i.e., dead
state, is reached from {n − 1} on c and lastly,

{qn−3, s, 0, 1, . . . , n − 4} c−→ {0, 1, . . . , n − 3}.

Now we will prove distinguishability. Notice that the NFA for the square has
the following properties:

1. the string ε is accepted only from state n − 1;
2. the string bn−1−i is accepted only from state i;
3. the string abn−1 is accepted only from 0;
4. the string cabn−1 is accepted only from qn−3;
5. the string an−1−icabn−1 is accepted only from qi.

Hence for each state q of this NFA, there is a string wq which is accepted from
q, but rejected from any other state. Now let S and S′ be two distinct subsets
in the subset automaton of this NFA. Then S and S′ differ in a state q and the
string wq distinguishes them. 	

Square on Ideal, Closed and Free Languages 79

Table 1. Comparison of results for square and concatenation.

Square |∑| Concatenation |∑|
Ideal unary 2n− 1 m + n− 1

right n + 2n−2 2 m + 2n−2 2

left, 2-sided, all-sided 2n− 1 1 m + n− 1 1

Closed unary ? m + n− 2

suffix ? (m− 1)n + 1 3

prefix (n + 4)2n−3 − 1 2 (m + 1)2n−1

factor, subword ? m + n− 1 2

Free unary 2n− 2 m + n− 2

prefix, bifix, factor, subword 2n− 2 1 m + n− 2 1

suffix n2n−3 + 1 3 (m− 1)2n−1 + 1 3

Regular unary 2n− 1 mn if (m,n) = 1

general n2n − 2n−1 2 m2n − 2n−1 2

Theorem 11. Let L be a suffix-free language with sc(L) = n. Then sc(L2) ≤
n2n−3 + 1, and this bound is tight for an alphabet of size at least three.

Proof. This is a corollary of Lemmata 9 and 10. 	

6 Conclusions

Table 1 is a summary of our results and comparison with catenation and regular
languages [14].

The state complexity of square for all closed languages, except for prefix-
closed, remains open.

References

1. Brzozowski, J.A., Jirásková, G., Li, B.: Quotient complexity of ideal languages.
Theor. Comput. Sci. 470, 36–52 (2013)

2. Brzozowski, J.A., Jirásková, G., Li, B., Smith, J.: Quotient complexity of bifix-,
factor-, and subword-free regular languages. In: Dömösi, P., Iván, S. (eds.) AFL,
pp. 123–137 (2011)

3. Brzozowski, J.A., Jirásková, G., Zou, C.: Quotient complexity of closed languages.
Theor. Comp. Sys. 54(2), 277–292 (2014)

4. Rampersad, N.: The state complexity of L2 and Lk. Inf. Process. Lett. 98(6),
231–234 (2006)

5. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accept-
ing subregular languages. Theor. Comput. Sci. 410(35), 3209–3222 (2009). DCFS
proceedings

6. Brzozowski, J., Ye, Y.: Syntactic complexity of ideal and closed languages. In:
Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795, pp. 117–128. Springer,
Heidelberg (2011)

80 K. Čevorová

7. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

8. Jirásková, G., Krausová, M.: Complexity in prefix-free regular languages. In:
McQuillan, I., Pighizzini, G. (eds.) DCFS. EPTCS, vol. 31, pp. 197–204 (2010)

9. Kao, J.Y., Rampersad, N., Shallit, J.: On NFAs where all states are final, initial,
or both. Theor. Comput. Sci. 410(4749), 5010–5021 (2009)

10. Čevorová, K., Jirásková, G., Mlynárčik, P., Palmovský, M., Šebej, J.: Operations
on automata with all states final. In: Ésik, Z., Fülöp, Z. (eds.) Proceedings 14th
International Conference on Automata and Formal Languages, AFL 2014, Szeged,
Hungary, May 27–29, 2014. EPTCS, vol. 151, pp. 201–215 (2014)

11. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

12. Han, Y.S., Salomaa, K., Wood, D.: State complexity of prefix-free regular lan-
guages. In: Descriptional Complexity of Formal Systems, pp. 165–176 (2006)

13. Han, Y.-S., Salomaa, K.: State complexity of basic operations on suffix-free regular
languages. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 501–
512. Springer, Heidelberg (2007)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

A Tentative Approach for the Wadge-Wagner
Hierarchy of Regular Tree Languages

of Index [0, 2]

Jacques Duparc1 and Kevin Fournier1,2(B)

1 Department of Information Systems Faculty of Business and Economics,
University of Lausanne, 1015 Lausanne, Switzerland

jacques.duparc@unil.ch
2 Équipe de Logique Mathématique, Université Paris Diderot,

UFR de Mathématiques Case 7012, 75205 Paris Cedex 13, France
kevin.fournier@imj-prg.fr

Abstract. We provide a hierarchy of tree languages recognised by non-
deterministic parity tree automata with priorities in {0, 1, 2}, whose
length exceeds the first fixed point of the ε operation (that itself enu-
merates the fixed points of x �→ ωx). We conjecture that, up to Wadge
equivalence, it exhibits all regular tree languages of index [0, 2].

1 Introduction

This paper contributes to the close investigation of regular tree languages of
index [0, 2]. Our tool to measure and compare those languages is given by
descriptive set theory through the notion of topological complexity. It is well
known that deterministic parity tree automata recognize only languages in the
Π1

1 class (coanalytic sets), whereas nondeterministic automata recognize lan-
guages that are neither analytic, nor coanalytic. The expressive power of nonde-
terministic automata is nonetheless bounded by the second level of the projective
hierarchy, and, by Rabin’s complementation result [7], all nondeterministic lan-
guages are in fact in the Δ1

2 class. A more discriminating topological complexity
measure than the Baire and the projective hierarchy is therefore needed: the
Wadge hierarchy, which relies on the notion of reductions by continuous functions
(Wadge-reducibility). Complexity classes, called Wadge degrees, consist of sets
Wadge-reducible to each other, and constitute a hierarchy whose levels, called
ranks, can be enumerated with ordinals. We describe a series of operations on
automata that preserve the index and lift the Wadge degrees of the recognized
languages1. These operations help us generate a hierarchy of regular tree lan-
guages of higher and higher topological complexity, one level higher than the
first fixed point of the ordinal function2 x �→ εx which itself enumerates the
fixed points of the exponentiation x �→ ωx.
1 We emphasize that this is done without any determinacy principle. In particular, we

do not require Δ1
2-determinacy.

2 Not to be mistaken with an ε-move.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 81–92, 2015.
DOI: 10.1007/978-3-319-19225-3 7

82 J. Duparc and K. Fournier

2 Preliminaries

2.1 The Wadge Hierarchy and the Wadge Game

The Wadge theory is in essence the theory of pointclasses3 (see [1]). For Γ
a pointclass, we denote by Γ̌ its dual class containing all the subsets whose
complements are in Γ , and by Δ(Γ) the ambiguous class Γ ∩ Γ̌ . If Γ = Γ̌ , we
say that Γ is self-dual.

Given any topological space X, the Wadge preorder ≤W on P(X) is defined
for A,B ⊆ X by A ≤W B if and only if there exists f : X −→ X continuous
such that f−1(B) = A. It is merely by definition a preorder which induces
an equivalence relation ≡W whose equivalence classes – denoted by [A]W – are
called the Wadge degrees. A set A ⊆ X is self-dual if [A]W = [A�]W , and non-self-
dual otherwise. We use the same terminology for the Wadge degrees. We have a
direct correspondence between (P(X),≤W) restricted to Γ and the pointclasses
included in Γ with inclusion: the pointclasses are exactly the initial segments of
the Wadge preorder. In particular, the Wadge hierarchy tremendously refines
the Borel and the projective hierarchies.

The space TΣ equipped with the standard Cantor topology is a Polish space,
and is in fact homeomorphic to the Cantor space [2]. Let L,M ⊆ TΣ , the Wadge
game W (L,M) is a two-player infinite game that provides a very useful charac-
terization for the Wadge preorder. In this game, each player builds a tree, say tI
and tII. At every round, player I plays first, and both players add a finite number
of children to the terminal nodes of their tree. Player II is allowed to skip her
turn, but has to produce a tree in TΣ throughout a game. Player II wins the
game if and only if tI ∈ L ⇔ tII ∈ M .

Lemma 1 ([9]). Let L,M ⊆ TΣ. Then L ≤W M if and only if player II has a
winning strategy in the game W (L,M).

We write A <W B when II has a winning strategy in W (A,B) and I has a
winning strategy in W (B,A)4. Given a pointclass Γ of TΣ with suitable closure
properties, the assumption of the determinacy of Γ is sufficient to prove that Γ
is semi-linearly ordered by ≤W , denoted SLO(Γ), i.e., that for all L,M ∈ Γ ,

L ≤W M or M ≤W L�,

and that ≤W is well founded when restricted to sets in Γ [1,8]. Under these
conditions, the Wadge degrees of sets in Γ with the induced order is thus a
hierarchy called the Wadge hierarchy. Therefore, there exists a unique ordinal,
called the height of the Γ -Wadge hierarchy, and a mapping dΓ

W from the Γ -Wadge
hierarchy onto its height, called the Wadge rank, such that, for every L,M non-
self-dual in Γ , dΓ

W (L) < dΓ
W (M) if and only if L <W M and dΓ

W (L) = dΓ
W (M)

3 A pointclass is a collections of subsets of a topological space that is closed under
continuous preimages.

4 This is in general stronger than the usual A <W B if and only if A ≤W B and B �≤W

A, but the two definitions coincide when the classes considered are determined.

A Tentative Approach for the Wadge-Wagner Hierarchy 83

if and only if L ≡W M or L ≡W M�. The wellfoundedness of the Γ -Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

– dΓ
W (∅) = dΓ

W (∅�) = 1.
– dΓ

W (L) = sup
{
dΓ

W (M) + 1 : M is non-self-dual,M <W L
}

for L >W ∅.

Note that given two pointclasses Γ and Γ ′, for every L ∈ Γ∩Γ ′, we have dΓ
W (L) =

dΓ ′
W (L). Under sufficient determinacy assumptions, we can therefore safely speak

of the Wadge rank of a tree language, denoted by dW , as its Wadge rank with
respect to any topological class including it. However the main result of this
article does not provide any Wadge rank for the canonical languages that are
constructed, because we do not make use of any determinacy principle.

2.2 The Conciliatory Hierarchy

A conciliatory binary tree over a finite set Σ is a partial function t : {0, 1}∗ → Σ
with a prefix-closed domain. Such trees can have both infinite and finite branches.
A tree is called full if dom(t) = {0, 1}∗. Let T ≤ω

Σ and TΣ denote, respectively,
the set of all conciliatory binary trees and the set of full binary trees over Σ.
Given x ∈ dom(t), we denote by tx the subtree of t rooted at x. Let {0, 1}n

denote the set of words over {0, 1} of length n, and let t be a conciliatory tree
over Σ. We denote by t[n] the finite initial binary tree of height n + 1 given by
the restriction of t to

⋃
0≤i≤n{0, 1}i.

For conciliatory languages L,M we define the conciliatory version of the
Wadge game: C(L,M) [4,5]. The rules are similar, except for the fact that both
players are now allowed to skip and to produce trees with finite branches – or
even finite trees. For conciliatory languages L,M we use the notation L ≤c M
if and only if II has a winning strategy in the game C(L,M). If L ≤c M and
M ≤c L, we will write L ≡c M . The conciliatory hierarchy is thus the partial
order induced by ≤c on the equivalence classes given by ≡c. We write A <c B
when II has a winning strategy in C(A,B) and I has a winning strategy in
C(B,A).

From a conciliatory language L over Σ, one defines the corresponding lan-
guage Lb of full trees over Σ ∪ {b} by

Lb =
{
t ∈ TΣ∪{b} : t[/b] ∈ L

}
,

where b is an extra symbol that stands for “blank”, and t[/b], the undressing
of t, is informally the conciliatory tree over Σ obtained once all the occurrences
of b have been removed in a top-down manner. More precisely, if there is a node
v such that t(v) = b, we ignore this node and replace it with v0. If, for each
integer n, t(v0n) = b, then v /∈ dom(t[/b]). This process is illustrated by Fig. 1.

If Γ is a pointclass of full trees, we say that a conciliatory language L is in
Γ if and only if Lb is in Γ .

Lemma 2. Let L and M be conciliatory languages. Then

L ≤c M if and only if Lb ≤W M b.

84 J. Duparc and K. Fournier

c c c ba a a a

c

bb c b

a

ac a b

b

c c c b c a a a

b

a

c

a

c a c ac a c a

b

ac c b

b

aa c a

c

a c c a c a c c

a

b

b

a

b

(a) A tree t with blanks

c b b ba a a a

c

bb c b

a

ac b b

b

c c c b c a a a

b

a

c

a

c a c ac a c a

b

ac c b

b

aa c a

c

a c c a c a c c

a

b

b

a

b

(b) The blanks are deleted in a top-down manner.

c

aa a c

c

a

(c) The resulting tree t[/b].

Fig. 1. The undressing process.

The mapping L �→ Lb gives thus a natural embedding of the preorder ≤c

restricted to conciliatory sets in Γ into the Γ -Wadge hierarchy. Hence, for Γ with
suitable closure and determinacy properties, the conciliatory degrees of sets in Γ
with the induced order constitute a hierarchy called the conciliatory hierarchy.
We define, by induction, the corresponding conciliatory rank of a language:

– dΓ
c (∅) = dΓ

c (∅�) = 1.
– dΓ

c (L) = sup{dΓ
c (M) + 1 : M <c L} for L >c ∅.

Similarly to the Wadge case, given two pointclasses Γ and Γ ′, for every con-
ciliatory L ∈ Γ ∩ Γ ′, we have dΓ

c (L) = dΓ ′
c (L). Under sufficient determinacy

assumptions, we can therefore speak safely of the conciliatory rank of a concil-
iatory tree language, denoted by dc, as its conciliatory rank with respect to any
topological class including it. Observe that the conciliatory hierarchy does not
contain self-dual languages: a strategy for I in C(L,L�) is to skip in the first
round, and then copy moves of II.

2.3 Automata and Conciliatory Trees

A nondeterministic parity tree automaton A = 〈Σ,Q, I, δ, r〉 consists of a finite
input alphabet Σ, a finite set Q of states, a set of initial states I ⊆ Q, a transition
relation δ ⊆ Q×Σ×Q×Q and a priority function r : Q → ω. A run of automaton
A on a binary conciliatory input tree t ∈ T ≤ω

Σ is a conciliatory tree ρt ∈ T ≤ω
Q

with dom(ρt) = {ε} ∪ {va : v ∈ dom(t) ∧ a ∈ {0, 1}} such that the root of
this tree is labeled with a state q ∈ I, and for each v ∈ dom(t), transition
(ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. The run ρt is accepting if parity condition is

A Tentative Approach for the Wadge-Wagner Hierarchy 85

satisfied on each infinite branch of ρt, i.e., if the highest rank of a state occurring
infinitely often on the branch is even, and if the rank of each leaf node in ρt is
even. We say that a parity tree automaton A accepts a conciliatory tree t if it has
an accepting run on t. The language recognized by A, denoted L(A) is the set
of trees accepted by A. We let Lω(A) denote the set of full trees recognized by
A, i.e., Lω(A) = L(A)∩TΣ . Notice that as the set of states is finite, the priority
function is bounded. Moreover, shifting all ranks by an even number does not
change the language recognized by a parity tree automaton. It is thus sufficient to
consider parity tree automata whose priorities are restricted to intervals [ι, κ], for
ι ∈ {0, 1}. We say that an automaton is of index [ι, κ] if its priorities are restricted
to intervals [ι, κ]. A language is of index [ι, κ] if there is an automaton of index
[ι, κ] that recognises it. This gives rise to the Mostowski-Rabin hierarchy [3]. Let
W[0,2] be the game tree language of index [0, 2]. One can prove that L ≤W W[0,2]

holds for any regular tree language L of index [0, 2], but fails for L = W �
[0,2].

Corollary 1. The mapping L �→ Lb embeds the conciliatory hierarchy for Δ1
2-

sets restricted to languages of index [0, 2] into the Δ1
2-Wadge hierarchy restricted

to languages of index [0, 2].

We use the following conventions in the diagrams. Nodes represent states of the
automaton. Node labels correspond to state ranks. A red edge shows the state
that is assigned to the left successor node of a transition, and a green edge goes
to the right successor node. In order to lighten the notation, transitions that are
not depicted on a diagram lead to some all-accepting state. Given automata A
and B, we write A ≤c B for L(A) ≤c L(B), and same with <c,≤W , <W .

3 Operations on Languages and Their Automatic
Counterparts

We present operations on conciliatory tree languages, which we then use to
construct more and more complex languages. W.l.o.g. we assume the alphabet
to be Σ = {a, c}.

3.1 The Sum

For L,M ⊆ T ≤ω
Σ , we define L⊕M (the sum of L and M) as the language formed

of all those trees t ∈ T ≤ω
Σ such that one of the following conditions holds:

– t(10n) = a for each integer n and t0 ∈ M ;
– the node 10n is the first on the path 10∗ labeled with c and either t(10n0) = a

and t10n00 ∈ L, or t(10n0) = c and t10n00 ∈ L�.

This operation behaves well regarding the conciliatory hierarchy.

Facts 1 ([4,5]). Given L, M , and M ′ any conciliatory tree languages over Σ,

86 J. Duparc and K. Fournier

1. (L ⊕ M)� ≡c L ⊕ M�.
2. The operation ⊕ preserves the conciliatory ordering: if M ′ ≤c M , then

L ⊕ M ′ ≤c L ⊕ M.

3. Assuming enough determinacy:

dc(L ⊕ M) = dc(L) + dc(M).

Let A and B be two automata that recognize, respectively, the conciliatory
languages M and L. Then the automaton B+A depicted in Fig. 2 recognizes
the sum of L and M . In this picture, C is any automaton of index [0, 2] that
recognizes a language equivalent to L�, and the parity i and j are defined as
follows:

– i = 0 if and only if the empty tree is accepted by A;
– j = 1 if and only if L(A) is equivalent to L(A) → �, where �denotes any

automaton that rejects all trees.5

Notice that if A and B are parity tree automata of index [0, 2] such that L(B)�

can be recognized by an automaton of index [0, 2], then B+A is a parity tree
automata of index [0, 2].

i

A
0 1

B
1 j

∗ ∗ c

∗a

∗

a

c a

c C ≡W B�

Fig. 2. The automaton B+A that recognizes L(B) ⊕ L(A). The values of i and j
depend on properties of A.

Lemma 3. Let L, L′, M and M ′ be conciliatory languages such that L <c L′

and M ≤c M ′. Then the following hold.

1. M ⊕ L <c M ′ ⊕ L′;
2. M <c M ⊕ L.

3.2 Multiplication by a Countable Ordinal

In order to define the multiplication of a language by a countable ordinal, we
first introduce the operation supn<ω. Let (Ln)n∈ω ⊆ T ≤ω

Σ be a countable family
of conciliatory languages. Define supn<ω Ln as the conciliatory tree language
containing all of those trees t ∈ T ≤ω

Σ such that one of the following conditions
holds:
5 A player in charge of L(A) → �in a conciliatory game is like a player in charge of

L(A), but with the extra possibility at any moment of the play to reach a definitively
rejecting position.

A Tentative Approach for the Wadge-Wagner Hierarchy 87

– t(1n) = a for all integer n;
– the node 1n is the first on the path 1∗ labeled with c and t1n0 ∈ Ln.

The multiplication by a countable ordinal is now defined as an iterated sum. Let
L ⊆ T ≤ω

Σ , L � 1 = L, L � (α + 1) = (L � α) ⊕ L, and L � λ = supα<λ L � α, for
λ limit.

Let A be an automaton that recognizes the conciliatory languages L. Then
the automaton A•ω depicted in Fig. 3(a) recognizes a language equivalent to
L�ω. In this picture, C is any automaton that recognizes a language equivalent
to L�. The automaton A•ω that recognizes the complement of L(A•ω), and thus
a language equivalent to the complement of L � ω, is depicted in Fig. 3b. Notice
that if A is of index [0, 2], and if there exists an automaton that recognizes L(A)�

of index [0, 2], then both A•ω and A•ω are parity tree automata of index [0, 2].
Hence, for every ordinal 0 < α < ωω and for every automaton A, there exists an
automaton A•α that recognizes L(A) � α. Moreover, if A is of index [0, 2], and
if there exists an automaton that recognizes L(A)� of index [0, 2], then A•α is
a parity tree automaton of index [0, 2].

A
1

0

0
A�

a

c a

a
c

a

a
1 0 1

a

a

0
∗

(a) The automaton A•ω.

A
1

1

1
A�

a

c a

a
c

a

a
1 1 1

a

a

0
∗

(b) The automaton A•ω.

Fig. 3. Automata that recognize respectively a language equivalent to L � ω and a
language equivalent to its complement.

As a corollary of Lemma 3 and Facts 1, the multiplication by a countable
ordinal behaves well regarding the conciliatory hierarchy.

Corollary 2. Let L and M be conciliatory languages such that L <c M . Then
for every countable ordinals 0 < α < β < ωω:

1. L � α <c L � β;
2. L � α <c M � α.

3.3 The Pseudo-Exponentiation

Let P ⊆ T ≤ω
Σ be a conciliatory tree language. For t ∈ T ≤ω

Σ , let:

iP (t)(a1, a2, . . . , an) =

{
t(a1, 0, a2, 0, . . . , 0, an, 0), if ta1,0,a2,0,...,0,an,1 ∈ P ;
b, otherwise.

This process is illustrated in Fig. 4. The nodes in blue are called the main run.
The blue arrows denote the dependency of a node of the main run on a subtree
of auxiliary moves. If the auxiliary subtree of a main run node is not in P , then
we say that the node is killed.

88 J. Duparc and K. Fournier

c a c ca a a a

c

cc c c

a

ac a a

a

c c c a c a a a

c

a

c

a

c a c ac a c a

c

ac c c

a

aa c a

c

a c c a c a c c

a

c

a

a

a

Fig. 4. Main run and auxiliary moves.

Let L ⊆ T ≤ω
Σ , we define the action of P on L, in symbols (P,L), by

{
t ∈ T ≤ω

Σ : iP (t)[/b] ∈ L
}

.

Let PΠ0
1

be the complete closed set of all full trees over Σ with all nodes on
the leftmost branch 0∗ labelled by a. For L ⊆ T ≤ω

Σ , we denote by (Π0
1, L) the

action of PΠ0
1

on L. This operation (Π0
1, ·) behaves well regarding the conciliatory

hierarchy.

Facts 2 ([4,5]). Let L and M be conciliatory tree languages over Σ. Then the
following hold.

1. (Π0
1, L)� ≡c (Π0

1, L
�).

2. If L ≤c M , then (Π0
1, L) ≤c (Π0

1,M).
3. If L <c M , then (Π0

1, L) <c (Π0
1,M).

4. Assuming enough determinacy, dc((Π0
1, L)) = ω

dc(L)+ε
1 , for 6 ε ∈ {−1, 0, 1}.

Without assuming any determinacy hypothesis, we can nonetheless prove the
following Proposition that links (Π0

1, ·) to ⊕.

Proposition 1. Let L, L′ and M be conciliatory languages such that L <c

(Π0
1,M) and L′ <c (Π0

1,M). Then

1. L ⊕ L′ <c (Π0
1,M);

2. L � α <c (Π0
1,M), for any α < ωω.

Given any automaton A recognizing L ⊆ T ≤ω
Σ , the conciliatory language (Π0

1, L)
is recognized by the automaton (ωω)A defined from A by replacing each state of
A by a “gadget”, as depicted in Fig. 5. By replacing a state by the gadget we mean
that all transitions ending in this state should now end in the initial state of the
gadget, and that all the transitions leaving this state should now start from the
final state of the gadget. This sort of gadget first appeared in [5]. Notice that if
L ⊆ T ≤ω

Σ is of index [0, 2], then (Π0
1, L) is also of index [0, 2]. Observe also that

the game language W[0,2] is a fixed point for pseudo-exponentiation, i.e.,

(Π0
1,W[0,2])b ≡W W[0,2].

6 ε =

⎧
⎪⎨

⎪⎩

−1 if dc(L) < ω;

0 if dc(L) = β + n and cof(β) = ω1;

1 if dc(L) = β + n and cof(β) = ω.

.

A Tentative Approach for the Wadge-Wagner Hierarchy 89

i

0

0∗∗
c

a

∗

a

c

i

∗ ∗

1

∗

i

1

i

Fig. 5. The gadget to replace a state in A.

4 Difference of Co-analytic Sets

The operations defined in Sect. 3 are Borel in the sense that when we apply them
to Borel languages, the resulting language is still Borel. In order to describe the
most of the Wadge hierarchy of languages recognized by parity tree automata of
index [0, 2] we need to climb higher.

4.1 The Operation (D2(Π1
1), ·)

We define a conciliatory language of index [0, 2] that is D2(Π1
1)-complete (Fig. 6a)

and such that its complement (Fig. 6b) is also of index [0, 2], via the automata
that recognize each of them. We denote by AD2(Π1

1)
and AĎ2(Π1

1)
the conciliatory

languages recognized respectively by AD2(Π1
1)

and AĎ2(Π1
1)

.

0

c

a

1 c

cc

a

aa

1

c

a

2 c

cc

a

aa

0
∗ ∗

(a) AD2(Π1
1)

0

c

a

1 c

cc

a

aa

1

c

a

2 c

cc

a

aa

1

∗
∗

∗∗∗
∗

(b) AĎ2(Π1
1)

Fig. 6. Automata that recognize respectively a D2(Π
1
1)-complete and a Ď2(Π

1
1)-

complete language.

For M ⊆ T ≤ω
Σ , we denote by (D2(Π1

1),M) the action of L(AD2(Π1
1)

) on
M . Observe that this operation is highly non-Borel, since if we apply it to a
Σ0

1-complete conciliatory language, the resulting language will be complete for
the pointclass of all the countable unions of D2(Π1

1) languages. The operation
(D2(Π1

1), ·) behaves well with respect to ≤c.

90 J. Duparc and K. Fournier

Theorem 1. Let M,M ′ ⊆ T ≤ω
Σ . If M ≤c M ′, then

1. (D2(Π1
1),M)� ≡c (D2(Π1

1),M
�);

2. (D2(Π1
1),M) ≤c (D2(Π1

1),M
′).

A winning strategy for I in C(M,M ′) can also be “remote controlled” to a
winning strategy for I in C((D2(Π1

1),M), (D2(Π1
1),M

′)), so that the following
holds.

Corollary 3. Let M and M ′ be conciliatory languages such that M <c M ′.
Then

(D2(Π1
1),M) <c (D2(Π1

1),M
′)

The operation (D2(Π1
1), ·) is much stronger than (Π0

1, ·), and is in fact a fixed
point of it.

Proposition 2. Let M ⊆ T ≤ω
Σ . Then

(
Π0

1, (D2(Π1
1),M)

) ≡c (D2(Π1
1),M).

Let A be an automaton that recognizes M ⊆ T ≤ω
Σ . Then the conciliatory tree

language (D2(Π1
1),M) is recognized by the automaton εA defined from A by

replacing each state of A by a “gadget”, as depicted in Fig. 7. As in the pseudo-
exponentiation case, by replacing a state by the gadget we mean that all transi-
tions ending in this state should now end in the initial state of the gadget, and
that all the transitions starting from this state should now start from the final
state of the gadget. Notice that if M ⊆ T ≤ω

Σ is of index [0, 2], then (D2(Π1
1),M)

is also of index [0, 2], and that W[0,2] is a fixed point of this operation. In par-
ticular the game language W[0,2] is above all the differences of coanalytic sets,
which is a strengthening of a result obtained by Finkel and Simonnet [6].

i

i

∗
i

i

∗
∗

∗

0

c

a

1

c
c

c
a

a

a

1

c

a

2

c
c

c
a

a

a

1

∗

∗

∗∗
∗

∗

0

∗

∗

∗

Fig. 7. The gadget to replace a state in A.

A Tentative Approach for the Wadge-Wagner Hierarchy 91

5 A Fragment of the Wadge Hierarchy

Let ϕ2(0) denote the first fixed point7 of the ordinal epsilon function, namely
the one that enumerates the fixed points of the exponentiation of base ω:

ε0 = sup
n<ω

ω . .
.
ω0

︸ ︷︷ ︸
n

; εα+1 = sup
n<ω

ω . .
.
ω(εα+1)

︸ ︷︷ ︸
n

; ελ = sup
α<λ

εα, for λ limit.

Finally: ϕ2(0) = supn<ω

n︷ ︸︸ ︷
ε. . .ε0

.

We recall that every ordinal α > 0 admits a unique Cantor normal form of
base ωω (CNF) which is an expression of the form α = (ωω)αk ·νk+· · ·+(ωω)α0 ·ν0
where k < ω, 0 < νi < ωω for any i ≤ k, and α0 < · · · < αk < α.

For every ordinal 0 < α < ϕ2(0), we inductively define a pair of automata
(Aα, Āα) whose languages are incomparable through the conciliatory ordering.
If the CNF of α is α = (ωω)αk · νk + · · · + (ωω)α0 · ν0 we set

Aα = A(ωω)αk •νk+ · · ·+A(ωω)α0 •ν0, Āα = A(ωω)αk •νk+ · · ·+Ā(ωω)α0 •ν0,

where A(ωω)αi and Ā(ωω)αi are respectively

– �and �if αi = 0;
– (ωω)Aαi and (ωω)Āαi if αi < (ωω)αi ;
– εA2+β

and εĀ2+β
if αi = (ωω)αi holds8 and αi = εβ for some β < αi.

Lemma 4. For 0 < α < β < ϕ2(0), we have

1. Aα �≤c Āα and Āα �≤c Aα.
2. Aα <c Aβ; Āα <c Aβ; Aα <c Āβ and Āα <c Āβ.

Applying the embedding L �→ Lb, we have thus generated a family
(Aα

b
)
α<ϕ2(0)

of parity tree automata of index [0, 2] that respects the strict Wadge ordering:
α < β if and only if Aα

b <W Aβ
b. Hence the main result follows.

Theorem 2. There exists a family
(Aα

b
)
α<ϕ2(0)

of parity tree automata of
index [0, 2] such that

1. they recognize languages of full trees over the alphabet {a, b, c};
2. α < β holds if and only if Aα

b <W Aβ
b holds as well.

Let Aϕ2(0)
b be an automaton of index [0, 2] over the alphabet {a, b, c} that

recognizes a language equivalent to W[0,2]. We formulate the following conjecture.

Conjecture. Let L be a regular non-self-dual full language of index [0, 2]. Then
either L ≡W W[0,2], or there exists α < ϕ2(0) such that L ≡W L(Aα

b) or
L� ≡W L(Aα

b).
7 Another way to characterise ϕ2(0) is to remember that an ordinal is the set of its

predecessors and notice that a nonzero ordinal is of the form respectively ωα iff it is
closed under addition and εα iff it is closed under x �−→ ωx. Then ϕ2(0) is the first
non null ordinal closed under x �−→ εx as well as x �−→ ωx and x, y �−→ x + y.

8 Notice that we have αi = (ωω)αi ⇐⇒ αi = ωαi .

92 J. Duparc and K. Fournier

6 Conclusion

In this paper, we have produced a very long chain of parity tree automata of
index [0, 2] but of different Wadge degrees. Its length is ϕ2(0)+1, where ϕ2(0) is
the first fixed point of the ordinal function that itself enumerates all fixed points
of the ordinal exponentiation x �→ ωx. We conjecture that every regular non-
self-dual language of index [0, 2] is, up to Wadge equivalence, recognized by an
automaton in

(Aα
b
)
α<ϕ2(0)+1

. Since degrees of self-dual languages of index [0, 2]
are always immediately above and below two non-self-dual degrees of languages
of index [0, 2], this conjecture would imply that the height of the Wadge hierarchy
of regular languages of index [0, 2] is exactly ϕ2(0) + 1.

The whole construction is effective, meaning that the mapping α �→ Aα
b (for

0 < α < ϕ2(0) + 1) is recursive. It also means that, for any 0 < α < β < ϕ2(0) + 1,
the relation Aα

b <W Aβ
b which stipulates that there exist two strategies – one

that is winning for player II in the game W (Aα
b,Aβ

b) and another one that
is winning for I in the game W (Aβ

b,Aα
b) – can be established by recursively

providing such strategies. However, we did not consider any decidability issue.
It thus remains open whether one can decide, given any automaton B and any
ordinal 0 < α < ϕ2(0) + 1, whether B <W Aα

b holds or not.

References

1. Andretta, A., Louveau, A.: Wadge degrees and pointclasses. In: Kechris, A.S.,
Löwe, B., Steel, J.R. (eds.) Wadge Degrees and Projective Ordinals: The Cabal
Seminar, vol. II, pp. 3–23. Cambridge University Press, Cambridge (2012)

2. Arnold, A., Duparc, J., Murlak, F., Niwiński, D.: On the topological complexity of
tree languages. Logic Automata: Hist. Perspect. 2, 9–29 (2007)

3. Arnold, A., Niwiński, D.: Rudiments of μ-Calculus. Studies in Logic and the Foun-
dations of Mathematics. Elseiver, Amsterdam (2001)

4. Duparc, J.: Wadge hierarchy and Veblen hierarchy, part I: Borel sets of finite rank.
J. Symbolic Logic 66(1), 56–86 (2001)

5. Duparc, J., Murlak, F.: On the topological complexity of weakly recognizable tree
languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp.
261–273. Springer, Heidelberg (2007)

6. Finkel, O., Simonnet, P.: On recognizable tree languages beyond the Borel hierarchy.
Fundam. Informaticae 95(2–3), 287–303 (2009)

7. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. AMS 141, 1–23 (1969)

8. Van Wesep, R.: Wadge degrees and descriptive set theory. In: Kechris, A.S.,
Moschovakis, Y.N. (eds.) Cabal Seminar 76–77, pp. 151–170. Springer, Heidelberg
(1978)

9. Wadge, W.W.: Reducibility and determinateness on the Baire space. Ph.D. thesis,
University of California, Berkeley (1984)

Compressibility of Finite Languages
by Grammars

Sebastian Eberhard and Stefan Hetzl(B)

Institute of Discrete Mathematics and Geometry, Vienna University of Technology,
Wiedner Hauptstraße 8-10, 1040 Wien, Austria

sebastian.eberhard84@gmail.com, stefan.hetzl@tuwien.ac.at

Abstract. We consider the problem of simultaneously compressing a
finite set of words by a single grammar. The central result of this paper is
the construction of an incompressible sequence of finite word languages.
This result is then shown to transfer to tree languages and (via a previ-
ously established connection between proof theory and formal language
theory) also to formal proofs in first-order predicate logic.

1 Introduction

In grammar-based compression, context-free grammars that generate exactly
one word are used for representing the input text. The smallest grammar prob-
lem asks for the smallest context-free grammar that generates a given word.
Its decision version is known to be NP-complete [28]. However, there is a num-
ber of fast algorithms which are practically useful [16,17,19] or achieve good
approximation ratios [5,14,15,23,24]. Grammar-based compression also has the
considerable practical advantage that many operations can be performed directly
on the compressed representation; see [18].

In this paper we consider the problem of simultaneously compressing a finite
set of words by a single grammar. Our motivation for investigating this problem
is rooted in proof theory and automated deduction: as shown in [7] there is
an intimate relationship between a certain class of formal proofs (those with
Π1-cuts) in first-order predicate logic and a certain class of grammars (totally
rigid acyclic tree grammars). In particular, the number of production rules in
the grammar is a lower bound on the length of the proof. This relationship has
been exploited in a method for proof compression whose central combinatorial
step is a grammar-based compression of a finite tree language [8–10].

The proof-theoretic application of our work entails a shift of emphasis w.r.t.
traditional grammar-based compression in the following respects: first, we do
not have any freedom of choice regarding the type of grammar. Totally rigid
acyclic tree grammars have to be used because they can be translated to proofs
afterwards. Secondly, we are looking for a minimal grammar G s.t. L(G) ⊇ L
where L is the finite input language. This is the case because L describes a
disjunction which is required to be a tautology (a so-called Herbrand-disjunction,

Research supported by the Vienna Science Fund (WWTF) project VRG12-04.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 93–104, 2015.
DOI: 10.1007/978-3-319-19225-3 8

94 S. Eberhard and S. Hetzl

see [2,6]) and if L′ ⊇ L then L′ also describes a tautology. This condition is
similar to (but different from) the one imposed on cover automata [3,4]: there an
automaton A is sought s.t. L(A) ⊇ L, but in addition it is required that L(A)\L
consists only of words longer than any word in L. And thirdly, the complexity
measure we aim at minimising is not the number of symbols in the grammar,
but the number of production rules of the grammar. This is due to the fact that
the number of production rules corresponds to the number of certain logical
inferences in a formal proof.

Along the lines of descriptional complexity measures such as automatic com-
plexity [26] and automaticity [25] one can consider the size of the smallest gram-
mar that covers a language L in the above sense as the complexity of L. Then
the result of [7] shows that this complexity measure is a lower bound on the
length of a proof with Π1-cuts of the Herbrand-disjunction described by L.

The central result of this paper is the construction of an incompressible
sequence of finite (word) languages. This result extends to tree languages in a
straightforward way, and is then used to obtain an incompressibility result for
proofs with Π1-cuts in first-order predicate logic. The length of proofs with cuts
is notoriously difficult to control (for propositional logic this is considered the
central open problem in proof complexity [22]). Theorem 5 below is, to the best
of our knowledge, the first such incompressiblity result in proof theory.

2 Grammar-Based Compression of Finite Languages

Definition 1. A context-free grammar (CFG) is a 4-tuple G = (N,Σ,P, S)
where N is a finite set of nonterminals, Σ is a finite alphabet, S ∈ N is the
starting symbol and P is a finite set of productions of the form A → w where
A ∈ N and w ∈ (Σ ∪ N)∗.

As usual, the one-step derivation relation =⇒G of G is defined by u =⇒G v
iff there is a production A → w in G s.t. v is obtained from u by replacing an
occurrence of A by w. The derivation relation =⇒∗

G is the reflexive and transitive
closure of =⇒G and the language of G is L(G) = {w ∈ Σ∗ | S =⇒∗

G w}. We omit
the subscript G if the grammar is clear from the context.

Definition 2. A right-linear grammar is a context-free grammar (N,Σ,P, S)
s.t. all productions in P are of the form A → vB or A → v for A,B ∈ N and
v ∈ Σ∗.

It is well-known, see e.g., [11], that the languages of right-linear grammars are
exactly the regular languages.

Definition 3. Let G = (N,Σ,P, S) be a context-free grammar. The ordering
<1

G of N is defined as follows: A <1
G B iff there is a production A → w in P

s.t. B occurs in w. The ordering <G is defined as the transitive closure of <1
G.

We say that G is cyclic (respectively acyclic) iff <G is.

Compressibility of Finite Languages by Grammars 95

We abbreviate “right-linear acyclic grammar” as “RLAG”. Let A ∈ N ; then a
production whose left hand side is A is called A-production. We write PA for
the set of A-productions in P . For N ′ ⊆ N we define PN ′ =

⋃
A∈N ′ PA. For a

language L and a CFG G we say that G covers L if L(G) ⊇ L. The size of a CFG
G = (N,Σ,P, S) is defined as |G| = |P |. The length of a right-linear production
rule A → wB or A → w for w ∈ Σ∗ is defined as |w|.
Definition 4. A finite language L is called compressible if there is a RLAG G
which covers L and satisfies |G| < |L|. It is called incompressible otherwise.

A variant of this problem, the equality formulation, consists in asking for a gram-
mar G with L(G) = L and |G| < |L|. As explained in the introduction, the cover
formulation is motivated by our proof-theoretic application, see Sect. 5. However,
our main result on incompressibility also applies to the equality formulation; see
Corollary 1.

The choice of RLAGs for the compression of finite languages is quite nat-
ural in view of the fact that right-linear grammars generate exactly the regular
languages and the observation that a right-linear grammar where every nonter-
minal is accessible and which does not contain trivial productions generates a
finite language iff it is acyclic.

Definition 5. A sequence (Ln)n≥1 of finite languages is called incompressible
if there is an M ∈ N s.t. for all n ≥ M the language Ln is incompressible.
A sequence (Ln)n≥1 of finite languages is called compressible if for every M ∈ N

there is an n ≥ M s.t. Ln is compressible.

Note that it is trivial to construct an incompressible sequence of languages of
small size, e.g., Ln = {a} for a letter a. It is also trivial to construct a sequence of
incompressible languages in an unbounded signature, e.g., Ln = {a1, . . . , an} for
letters a1, a2, Consequently, in this paper we will construct an incompressible
sequence of languages of unbounded size over a constant alphabet.

3 Incompressible Languages

3.1 Reduced Grammars

In this section we will make some preparatory observations on the structure of
RLAGs which compress finite languages, leading to the notion of strong com-
pressibility.

Definition 6. Let G = (N,Σ,P, S) be a RLAG. Then a rule A → w is called
trivial if A = S and w ∈ Σ∗. We define Gt = (N,Σ,Pt, S) where Pt is the set
of trivial rules of G.

We say that a word u is a subword of a word w if there are words v1, v2 s.t.
w = v1uv2. We say that a word u is a prefix of a word w if there is a word v
s.t. w = uv.

96 S. Eberhard and S. Hetzl

Definition 7. Let L be a finite language and G be a RLAG that covers L. Then
G is called reduced w.r.t. L if for every non-trivial production rule A → wB or
A → w of G there are distinct u, v ∈ L \ L(Gt) s.t. w is a subword of both u
and v.

If the language is clear from the context we will say “reduced” instead of “reduced
w.r.t. L”. Intuitively, in a grammar which is reduced w.r.t. L all production rules
are either trivial or useful for the compression of L. The following lemma shows
that for questions of compressibility, it is sufficient to consider reduced RLAGs.

Lemma 1. Let L be a finite language and G be a RLAG which covers L. Then
there is a reduced RLAG G∗ which covers L and satisfies |G∗| ≤ |G|.
Proof Sketch. Replace each non-trivial production rule that is only used for
deriving a single word w by the trivial production S → w.

Definition 8. A language L is called strongly compressible if there is a reduced
RLAG G without trivial rules s.t. G covers L and |G| < |L|. A sequence (Ln)n≥1

of finite languages is called strongly compressible if for every M ∈ N there is an
n ≥ M s.t. Ln is strongly compressible.

Lemma 2. Let L be a compressible language, then there is a language L′ ⊆ L
which is strongly compressible.

Proof Sketch. After obtaining a reduced RLAG G′ which compresses L from
Lemma 1 let L′ be all words in L derivable from the non-trivial part of G′.

3.2 Segmented Languages

From this section on we will often use the alphabet Σ = {0,1, s}. The letters
0 and 1 will be used for the binary representation of natural numbers, while
the letter s will serve as a separator. The incompressible sequence of languages
used for the main result of this paper will be a sequence of segmented languages,
a notion which we define now and study in this section.

Definition 9. Let Σ = {0,1, s}. A word w ∈ Σ∗ s.t. w = (sv)k for some
k ≥ 1 and some v ∈ {0,1}+ is called segmented word. The word v is called the
building block of w. Occurrences of v in w are called segments. A segmented
word (sv)k where |v| = l is called a (k, l)-segmented word. A language consisting
of (k, l)-segmented words is called a (k, l)-segmented language.

The following lemma states the key property of segmented languages: long rules
are not useful for compression.

Lemma 3. Let L be a finite (k, l)-segmented language and G be a reduced RLAG
that covers L. Then every non-trivial rule of G has length at most l.

Proof Sketch. If a rule has length l + 1, it contains a whole building block and
hence fixes a word of L.

Compressibility of Finite Languages by Grammars 97

Lemma 4. Let L be a finite (k, l)-segmented language that is strongly compress-
ible. Then k < |L| − 1.

Proof. Note that we have |w| = k(l+1) for all w ∈ L. Let G be a reduced RLAG
which compresses L. Then by Lemma 3 every rule in G has length at most l.
Hence for deriving a single w ∈ L the grammar G needs at least |w|

l > |w|
l+1 = k

rules. Since L is compressible, it is non-empty and hence k < |G| < |L|.
Lemma 5. Let (Ln)n≥1 be a compressible sequence of finite languages s.t. Ln

is (kn, ln)-segmented and (kn)n≥1 is unbounded. Then there is a sequence of
finite languages (L′

n)n≥1 s.t. 1) L′
n ⊆ Ln for all n ≥ 1, 2) (L′

n)n≥1 is strongly
compressible, and 3) (|L′

n|)n≥1 is unbounded.

Proof. The pointwise application of Lemma 2 to an infinite subsequence of
(Ln)n≥1 that consists of compressible languages only yields a sequence (L′

n)n≥1

satisfying 1 and 2. By Lemma 4 we have ki < |L′
i| for infinitely many i ∈ N which

together with the assumption that (kn)n≥1 is unbounded entails 3.

The following Lemma 6 applies the uselessness of long rules for compression to
provide an upper bound on the number of segments which a strongly compressing
RLAG covers. This upper bound is a key ingredient of the proof of our main
result.

Definition 10. Let G = (N,Σ,P, S) be a RLAG. Let w ∈ L(G) be a (k, l)-
segmented word with building block v and let i ∈ {1, . . . , k}. Then w = w0svw1

for w0 = (sv)i−1 and w1 = (sv)k−i. Let δ be a derivation of w w.r.t. G; then it
is of the form

S =⇒∗ w′
0A1 =⇒ w0sv′A2 =⇒ · · · w0sv′′An =⇒ w0svw′

1An+1 =⇒∗ w

for some A1, . . . , An, An+1 ∈ N with v′, v′′ being prefixes of v, w′
0 a prefix of w0

and w′
1 a prefix of w1. We define nonterms(w, i, δ) = {Aj | 1 ≤ j ≤ n}.

Lemma 6. Let L be a finite (k, l)-segmented language that is strongly com-
pressed by a RLAG G = (N,Σ,P, S). For each w ∈ L fix a derivation δw of
w w.r.t. G. Let N0 ⊆ N , let P0 = PN0 and let S0 = {(w, i) ∈ L × {1, . . . , k} |
nonterms(w, i, δw) ⊆ N0}. Then we have |S0| ≤ 2|P0| · |P0|.
Proof. For w ∈ L define Sw,0 = {i ∈ {1, . . . , k} | nonterms(w, i, δw) ⊆ N0}. By
Lemma 3 every rule of G has length at most l. Due to acyclicity, each A ∈ N0

can be used at most once in a derivation. Therefore by using all A ∈ N0 in a
derivation one can generate at most |N0| · l terminal symbols, and hence at most
|N0| segments. We thus obtain |Sw,0| ≤ |N0|.

Furthermore, define L0 = {w ∈ L | ∃i s.t. (w, i) ∈ S0}. Let P ∗ ⊆ P0 s.t.
P ∗ contains exactly one production for each nonterminal of N0 and note that
there are at most 2|P0| such P ∗. If P ∗ permits deriving a word that contains
a subword v ∈ {0,1}l, then the choice of P ∗ uniquely determines a word w ∈
L. If P ∗ does not allow deriving such a word, then P ∗ may be used in the
derivations δw of several w ∈ L; however, it does not contribute to any of its Sw,0.
Therefore we have |L0| ≤ 2|P0|. Putting these two results together, we obtain
|S0| =

∑
w∈L0

|Sw,0| ≤ |L0| · |N0| ≤ 2|P0| · |P0|.

98 S. Eberhard and S. Hetzl

3.3 Ordered Grammars

In a RLAG G the ordering <G is acyclic but, in general, not linear. For technical
purposes it will be useful to fix a linearisation of <G and a corresponding linear
order of the productions of G. To that aim we introduce the notion of ordered
grammar.

Definition 11. A right-linear ordered grammar (RLOG) is a tuple G = (N,Σ,
P,A1) where N is a list A1, . . . , An of nonterminals, P is a list p1, . . . , pm of
productions s.t.

1. G′ = ({A1, . . . , An}, Σ, {p1, . . . , pm}, A1) is a RLAG,
2. if Ai <G′ Aj then i < j, and
3. p1, . . . , pm = q1,1, . . . , q1,k1 , . . . , qn,1, . . . , qn,kn

where {qi,1, . . . , qi,ki
} = PAi

for all i ∈ {1, . . . , n}.
We say that an RLOG compresses a language L, is reduced w.r.t. L, etc., if the
underlying RLAG fulfils the respective property.

Definition 12. Let G = ((A1, . . . , An), Σ, P, S) be a RLOG. Let w ∈ L(G) be
a (k, l)-segmented word, let i ∈ {1, . . . k} and let δ be a derivation of w w.r.t. G.
Let m1 = min{j ∈ {1, . . . , n} | Aj ∈ nonterms(w, i, δ)} and m2 = max{j ∈
{1, . . . , n} | Aj ∈ nonterms(w, i, δ)} and define cost(w, i, δ) =

∑m2
j=m1

|PAj
|.

Note that the cost of the i-th segment of a word w also takes those nonterminals
into account which are not used in the derivation δ of w. The following lemma
shows that in a strongly compressed segmented language, many segments are
cheap.

Lemma 7. Let L be a finite (k, l)-segmented language and let G be a RLOG
that strongly compresses L. Let w ∈ L and δ be a derivation of w w.r.t. G. Then
for at least half of the i ∈ {1, . . . , k}, we have cost(w, i, δ) < 4|L|

k .

Proof. As G compresses L, it covers L, so by Lemma 3 every rule of G has
length at most l. Hence each rule of G can contribute to the costs of at most
two segments of w, so we have 2|G| ≥ ∑k

i=1 cost(w, i, δ). Now suppose that �k
2 �

segments of w have cost at least 4|L|
k each, then

∑k
i=1 cost(w, i, δ) ≥ �k

2 � · 4|L|
k ≥

2|L|, which is a contradiction to |G| < |L|.
Definition 13. Let G = (N,Σ, (p1, . . . , pm), A1) be a RLOG and let s < m. For
A ∈ N define pmin(A) = min{j | pj ∈ PA}, and pmax(A) = max{j | pj ∈ PA}.
Furthermore, for j ∈ {1, . . . , �m

s � − 1} define Nj = {A ∈ N | (j − 1)s ≤
pmin(A) and pmax(A) < (j + 1)s}. We say that (Nj)

�m
s �−1

j=1 is the s-covering
of G.

Note that Nj and Nj+1 can overlap, but Nj and Nj+2 can not. Furthermore,
note that |PNj

| ≤ 2s for all j ∈ {1, . . . , �m
s � − 1}. The following lemma applies

Lemma 7 to obtain a lower bound on the number of segments covered by the
productions of a single Nj .

Compressibility of Finite Languages by Grammars 99

Lemma 8. Let L be a finite (k, l)-segmented language, let G be a RLOG which
strongly compresses L and let |G| > s ≥ 4|L|

k . Let N1, . . . , N� |G|
s �−1

be the
s-covering of G. Let w ∈ L and δ be a G-derivation of w. Then for at least half
of the i ∈ {1, . . . , k} there is a j ∈ {1, . . . , � |G|

s �− 1} s.t. nonterms(w, i, δ) ⊆ Nj.

Proof. By Lemma 7 at least half of the i ∈ {1, . . . , k} have cost(w, i, δ) < 4|L|
k .

Let i be s.t. cost(w, i, δ) < 4|L|
k , then cost(w, i, δ) < s. Let A0 ∈ N be the

nonterminal used for entering the i-th segment of w in δ and let j0 = max{j ∈
{1, . . . , � |G|

s � − 1} | A0 ∈ Nj}. If j0 = � |G|
s � − 1, then nonterms(w, i, δ) ⊆ Nj0

because (Nj)
� |G|

s �−1
j=1 covers all nonterminals and Nj0 is the last element of this

list. If j0 < � |G|
s � − 1, then pmin(A0) < j0s, for if pmin(A0) ≥ j0s, then A0 ∈

Nj0+1. Therefore pmin(A0) + cost(w, i, δ) < pmin(A0) + s < (j0 + 1)s; hence
nonterms(w, i, δ) ⊆ Nj0 .

3.4 The Main Result

For n ≥ 1 and k ∈ {0, . . . , 2n − 1} we write bnk ∈ {0,1}n for the n-bit binary
representation of k.

Definition 14 (Incompressible sequence). For all n ≥ 1 define l(n) =
�log(n)�, k(n) = � 9n

l(n)+1�, and Ln = {(sbl(n)i)k(n) | 0 ≤ i ≤ n − 1}.
Note that l(n) is the number of bits required to represent all elements of {0, . . . ,
n − 1} in binary. Note furthermore that for every n ≥ 1, we have |Ln| = n and
all words in Ln have the same length k(n)(l(n) + 1). The number of segments
k(n) has been chosen s.t. k(n)(l(n) + 1) is 9n padded up to the next multiple of
l(n) + 1; hence the length of the words in Ln grows linearly in n.

Example 1. For n = 5 we have l(5) = 3, k(5) = 12 and L5 = {(s000)12, (s001)12,
(s010)12, (s011)12, (s100)12}.

Theorem 1. (Ln)n≥1 is incompressible.

The proof strategy for this theorem is as follows: both Lemmas 6 and 8 assume
a strongly compressed segmented language. But while Lemma 6 states an upper
bound on the number of segments covered by a certain part of a strongly com-
pressing grammar, Lemma 8 provides a lower bound on the number of segments
covered by the productions of a single Nj . The following proof will show these
two bounds to be inconsistent, thus deriving the incompressibility of (Ln)n≥1.

Proof. Suppose that (Ln)n≥1 is compressible. Then by Lemma 5 there is a
sequence (L′

n)n≥1 which is strongly compressibly by a sequence (Gn)n≥1 of
RLAGs which we consider as RLOGs (G′

n)n≥1 by fixing an arbitrary linear
order satisfying Definition 11. Let us fix for every n ≥ 1 and every w ∈ L′

n a
derivation δw of w w.r.t. G′

n. This is well-defined, since the L′
n are disjoint, and

hence δw does not depend on n.

100 S. Eberhard and S. Hetzl

First note that for all n ≥ 1 we have k(n) = � 9n
�log(n)�+1� ≥ 9n

log(n)+2 , and
since n ≥ |L′

n| we have

k(n) ≥ 9|L′
n|

log(|L′
n|) + 2

. (1)

Therefore 4|L′
n|

k(n) ≤ 4
9 (log(|L′

n|)+2) =: sn. Let N1, . . . N� |G′
n|

sn
�−1

be the sn-covering

of G′
n and define Un := |{(w, i) ∈ L′

n×{1, . . . , k(n)} | ∃j s.t. nonterms(w, i, δw) ⊆
Nj}|. By Lemma 8 we have Un ≥ |L′

n|·k(n)
2 , which, together with Theorem (1),

entails

Un ≥ 9|L′
n|2

2(log(|L′
n|) + 2)

. (2)

On the other hand, applying Lemma6 to all Nj for j = 1, . . . , � |G′
n|

sn
�− 1 and

summing up yields Un ≤ ∑� |G′
n|

sn
�−1

j=1 2|PNj
| · |PNj

| ≤ (� |G′
n|

sn
� − 1) · 22sn · 2sn. We

have 22sn · 2sn ≤ C|L′
n| 8

9 (log(|L′
n|)+2) for some C ∈ N and � |G′

n|
sn

�− 1 ≤ |L′
n|

sn
=

9|L′
n|

4(log(|L′
n|)+2) and therefore

Un ≤ D|L′
n| 17

9 for some D ∈ N. (3)

Putting Theorem (2) and (3) together we obtain

|L′
n|2 ≤ E|L′

n| 17
9 (log(|L′

n|) + 2) for some E ∈ N. (4)

But by Lemma 5 the function n → |L′
n| is unbounded. Hence there is an M ∈ N

s.t. for all n ≥ M the inequality Theorem (4) is not satisfied. This is a contra-
diction.

3.5 Remarks

Every sequence of languages which is incompressible in the cover formulation is
also incompressible in the (more restricted) equality formulation. Therefore we
immediately obtain the following corollary from Theorem1.

Corollary 1. There is no sequence (Gn)n≥1 of RLAGs and M ∈ N s.t. L(Gn) =
Ln and |Gn| < |Ln| for all n ≥ M .

On the other hand, the sequence (Ln)n≥1 can be compressed by stronger for-
malisms:

Theorem 2. There is a sequence (Gn)n≥1 of acyclic CFGs which compresses
(Ln)n≥1.

Proof. Let Gn = ({S,A1, . . . , Al(n)}, {0,1, s}, Pn, S) where

Pn = {S → (sA1)k(n), A1 → 0A2 | 1A2, . . . , Al(n) → 0 | 1}.

Then L(Gn) ⊇ Ln for all n ≥ 1 and |Gn| = 2�log(n)� + 1 < n = |Ln| for all
n ≥ M for a certain M .

Compressibility of Finite Languages by Grammars 101

The length of the words in Ln grows linearly. Under the condition that |Ln| = n
this is the best possible:

Theorem 3. Let (L′
n)n≥1 be a sequence of finite languages over a finite alphabet

Σ = {a1, . . . ak} s.t. |L′
n| = n and s.t. there is a sublinear function that bounds

the maximal length ln of a word in L′
n. Then (L′

n)n≥1 is compressible.

Proof. Let Gn = ({A1, . . . , Aln}, Σ, Pn, A1) where

Pn = {A1 → a1A2 | · · · | akA2 | A2, . . . , Aln → a1 | · · · | ak | ε}.

Then L(Gn) = Σ≤ln ⊇ L′
n and |Gn| = (k + 1) · ln which, from a certain M ∈ N

on, is less than |L′
n| = n.

4 Application to Tree Languages

In this section we will transfer the main theorem to tree languages. The gram-
mars we will be considering for the compression of finite tree languages are totally
rigid acyclic tree grammars. Rigid tree languages were introduced in [12,13] with
applications in verification in mind. A presentation of this class of languages via
rigid grammars was given in [7].

For a ranked alphabet (i.e., a term signature) Σ we write T (Σ) for the set
of all terms built from function and constant symbols of Σ.

Definition 15. A regular tree grammar is a tuple G = (N,Σ,P, S) where N is
a set of nonterminals of arity 0, Σ is a term signature, S ∈ N is the starting
symbol and P is a finite set of productions of the form A → t where A ∈ N and
t ∈ T (Σ ∪ N).

The ordering <G of nonterminals is defined analogously to the case of word
grammars. Hence we can speak about acyclic regular tree grammars. As usual
for tree grammars, a derivation is a finite list of terms t1, . . . , tn s.t. ti+1 is
obtained from ti by applying a production rule to a single position. A derivation
w.r.t. a grammar G = (N,Σ,P, S) is said to satisfy the rigidity condition if for
every nonterminal A ∈ N it uses at most one A-production.

Definition 16. A totally rigid acyclic tree grammar (TRATG) is an acyclic
regular tree grammar G = (N,Σ,P, S) whose language L(G) is the set of all
t ∈ T (Σ) that have a derivation from S satisfying the rigidity condition.

(In)compressibility of tree languages and sequences thereof is defined analogously
to the case of word languages replacing RLAGs with TRATGs.

Definition 17. For an alphabet Σ define ΣT = {fa/1 | a ∈ Σ} ∪ {e}. For
w ∈ Σ∗ define the term wT recursively by εT = e, and (av)T = fa(vT). For
L ⊆ Σ∗ define LT = {wT | w ∈ L}.
Theorem 4. The sequence of tree languages (LT

n)n≥1 is incompressible.

Proof Sketch. Starting from the assumption that (LT
n)n≥1 is compressible, trans-

form the compressing TRATGs into RLAGs compressing (Ln)n≥1 hence arriving
at a contradiction to Theorem 1.

102 S. Eberhard and S. Hetzl

5 Application to Proof Theory

A sequent is an expression of the form Γ � Δ where Γ and Δ are finite sets of
formulas in first-order predicate logic. The intended interpretation of a sequent
Γ � Δ is the formula (

∧
ϕ∈Γ ϕ) → (

∨
ψ∈Δ ψ). The logical complexity ‖Γ � Δ‖

of a sequent is the number of logical connectives it contains.
A proof is a tree whose nodes are sequents which is built according to certain

logical inference rules. The leaves are of the form A � A. An important inference
rule is the so-called cut rule:

Γ � Δ,A A,Π � Λ
Γ,Π � Δ,Λ

cut

For a complete list of inference rules of the sequent calculus, the interested
reader is referred to [1]. The length of a proof π, written as |π|, is the number
of inferences in π. The cut rule formalises the use of a lemma in mathematical
practice and is of particular importance here because it allows compressing proofs
in first-order logic non-elementarily [20,21,27]. A cut is said to be a Π1-cut if
its cut formula A is of the form ∀x B for B quantifier-free.

The following result is a proof-theoretic corollary of the incompressiblity
theorem proved in Sect. 3 and extended to tree languages in Sect. 4. It should be
stressed that the proof-theoretic techniques for deriving it from Theorem4 are
simple standard techniques, the details of which are omitted from this paper for
space reasons.

Theorem 5. There is a sequences of sequents (Sn)n≥1 such that ‖Sn‖ is con-
stant, there is a cut-free proof of Sn with O(22n) inferences and there is M ∈ N

s.t. for all n ≥ M : every proof with Π1-cuts of Sn has at least 2n inferences.

Proof Sketch. For i ≥ 1 define the sequent Ri :=

∀y∀v P (0, y, e, v), ∀x∀y∀u∀v (P (x, f0(y), u, v) → P (x, y, f0(u), v)),

∀x∀y∀u∀v (P (x, f1(y), u, v) → P (x, y, f1(u), v)),

∀x∀y∀u∀v (P (x, fs(y), u, v) → P (x, y, u, v)), ∀x∀y∀v (P (x, y, v, v) → P (s(x), y, e, v)),

∀v (P (k(n), e, e, v) → Q(1, v)), ∀x∀v ((Q(x, f0(v)) ∧ Q(x, f1(v))) → Q(s(x), v))

� Q(l(n), e)

where n for n ∈ N denotes the term sn(0). Define (Sn)n≥1 by Sn = R2n . Then
‖Sn‖ is constant and Sn has a straightforward cut-free proof with O(22n) infer-
ences. Furthermore, every cut-free proof of Sn must instantiate the quantifier ∀y
in ∀y∀v P (0, y, e, v) with all terms in LT

2n . The lower bound on the proofs with
cuts then follows immediately from Theorem 4 and a suitable (but straightfor-
ward) generalisation of Theorem 22 in [7].

6 Conclusion

We have investigated the problem of simultaneously compressing a finite set of
words by a right-linear acyclic grammar. We have constructed an incompressible

Compressibility of Finite Languages by Grammars 103

sequence of languages and applied it to obtain an incompressibility-result in
proof theory.

This problem of simultaneous compression has received only little attention
in the literature so far and consequently there is a number of interesting open
questions, for example: what is the complexity of the smallest grammar problem
in this setting? How difficult is the approximation of the smallest grammar? Can
approximation algorithms and techniques be carried over from the case of one
word to this setting? How does the situation change when we do not minimise
the number of production rules but the symbol complexity of the grammar?

Fast approximation algorithms for computing a minimal RLAG (or TRATG)
that covers a given finite input language would also be of high practical value in
the cut-introduction method [9,10] and its implementation [8].

Acknowledgments. The authors would like to thank Manfred Schmidt-Schauß for
several helpful conversations about the topic of this paper, Werner Kuich for a number
of remarks that improved the presentation of the results, and the anonymous reviewers
for numerous important comments and suggestions.

References

1. Buss, S.: An Introduction to proof theory. In: Buss, S. (ed.) The Handbook of
Proof Theory, pp. 2–78. Elsevier, Amsterdam (1998)

2. Buss, S.R.: On Herbrand’s theorem. In: Leivant, D. (ed.) LCC’94. LNCS, vol. 960,
pp. 195–209. Springer, Heidelberg (1995)

3. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
In: Champarnaud, J.-M., Maurel, D., Ziadi, D. (eds.) WIA 1998. LNCS, vol. 1660,
pp. 43–56. Springer, Heidelberg (1999)

4. Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoret. Comput. Sci. 267(1–2), 3–16 (2001)

5. Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7),
2554–2576 (2005)

6. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris (1930)

7. Hetzl, S.: Applying tree languages in proof theory. In: Dediu, A.-H., Mart́ın-Vide,
C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 301–312. Springer, Heidelberg (2012)

8. Hetzl, S., Leitsch, A., Reis, G., Tapolczai, J., Weller, D.: Introducing quantified
cuts in logic with equality. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS, vol. 8562, pp. 240–254. Springer, Heidelberg (2014)

9. Hetzl, S., Leitsch, A., Reis, G., Weller, D.: Algorithmic introduction of quantified
cuts. Theoret. Comput. Sci. 549, 1–16 (2014)

10. Hetzl, S., Leitsch, A., Weller, D.: Towards algorithmic cut-introduction. In:
Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 228–242.
Springer, Heidelberg (2012)

11. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Cambridge (1979)

104 S. Eberhard and S. Hetzl

12. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 446–457.
Springer, Heidelberg (2009)

13. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Inf.
Comput. 209, 486–512 (2011)

14. Jeż, A.: Approximation of grammar-based compression via recompression. In:
Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer,
Heidelberg (2013)

15. Jeż, A.: A really simple approximation of smallest grammar. In: Kulikov, A.S.,
Kuznetsov, S.O., Pevzner, P. (eds.) CPM 2014. LNCS, vol. 8486, pp. 182–191.
Springer, Heidelberg (2014)

16. Kieffer, J.C., Yang, E.H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

17. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference (DCC 1999). pp. 296–305. IEEE Computer Society (1999)

18. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

19. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

20. Orevkov, V.: Lower bounds for increasing complexity of derivations after cut elim-
ination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematich-
eskogo Instituta 88, 137–161 (1979)

21. Pudlák, P.: The Lengths of proofs. In: Buss, S. (ed.) Handbook of Proof Theory,
pp. 547–637. Elsevier, Amsterdam (1998)

22. Pudlák, P.: Twelve problems in proof complexity. In: Hirsch, E.A., Razborov, A.A.,
Semenov, A., Slissenko, A. (eds.) Computer Science – Theory and Applications.
LNCS, vol. 5010, pp. 13–27. Springer, Heidelberg (2008)

23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

24. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(2–4), 416–430 (2005)

25. Shallit, J., Breitbart, Y.: Automaticity I: properties of a measure of descriptional
complexity. J. Comput. Syst. Sci. 53, 10–25 (1996)

26. Shallit, J., Wang, M.W.: Automatic complexity of strings. J. Automata, Lang.
Comb. 6(4), 537–554 (2001)

27. Statman, R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75,
104–107 (1979)

28. Storer, J.A., Szymanski, T.G.: The macro model for data compression (extended
abstract). In: Proceedings of the Tenth Annual ACM Symposium on Theory of
Computing (STOC ’78). pp. 30–39. ACM, New York (1978)

On the Complexity and Decidability of Some
Problems Involving Shuffle

Joey Eremondi1, Oscar H. Ibarra2, and Ian McQuillan3(B)

1 Department of Information and Computing Sciences, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

j.s.eremondi@students.uu.nl
2 Department of Computer Science, University of California,

Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

3 Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada

mcquillan@cs.usask.ca

Abstract. The complexity and decidability of various decision prob-
lems involving the shuffle operation (denoted by) are studied. The
following three problems are all shown to be NP-complete: given a non-
deterministic finite automaton (NFA) M , and two words u and v, is
L(M) �⊆ u v, is u v �⊆ L(M), and is L(M) �= u v? It is also shown
that there is a polynomial-time algorithm to determine, for NFAs M1,M2

and a deterministic pushdown automaton M3, whether L(M1) L(M2) ⊆
L(M3). The same is true when M1,M2,M3 are one-way nondeterminis-
tic l-reversal-bounded k-counter machines, with M3 being determinis-
tic. Other decidability and complexity results are presented for testing
whether given languages L1, L2 and L from various languages families
satisfy L1 L2 ⊆ L.

1 Introduction

The shuffle operator models the natural interleaving between strings. It was
introduced by Ginsburg and Spanier [14], where it was shown that context-free
languages are closed under shuffle with regular languages, but not context-free
languages. It has since been applied in a number of areas such as concurrency [25],
coding theory [9], and biocomputing [9,21], and has also received considerable
study in the area of formal languages. However, there remains a number of
open questions, such as the long-standing problem as to whether it is decidable,
given a regular language R to tell if R has a non-trivial decomposition; that is,
R = L1 L2, for some L1, L2 that are not {λ} [7].

This paper addresses several complexity-theoretic and decidability questions
involving shuffle. In the past, similar questions have been studied by Ogden,

The research of O. H. Ibarra was supported, in part, by NSF Grant CCF-1117708.
The research of I. McQuillan was supported, in part, by the Natural Sciences and
Engineering Research Council of Canada.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 105–116, 2015.
DOI: 10.1007/978-3-319-19225-3 9

106 J. Eremondi et al.

Riddle, and Round [25], who showed that there exists deterministic context-free
languages L1, L2 where L1 L2 is NP-complete. More recently, L. Kari studied
problems involving solutions to language equations of the form R = L1 L2,
where some of R,L1, L2 are given, and the goal is to determine a procedure, or
determine that none exists, to solve for the variable(s) [20]. Also, there has been
similar decidability problems investigated involving shuffle on trajectories [22],
where the patterns of interleaving are restricting according to another language
T ⊆ {0, 1}∗ (a zero indicates that a letter from the first operand will be chosen
next, and a one indicates a letter from the second operand is chosen). L. Kari
and Sośık show that it is decidable, given L1, L2, R as regular languages with a
regular trajectory set T , whether R = L1 T L2 (the shuffle of L1 and L2 with
trajectory set T). Furthermore, if L1 is allowed to be context-free, then the prob-
lem becomes undecidable as long as, for every n ∈ N, there is some word of T
with more than n 0’s (with a symmetric result if there is a context-free language
on the right). This implies that it is undecidable whether L1 L2 = R, where R
and one of L1, L2 are regular, and the other is context-free. In [5], it is demon-
strated that given two linear context-free languages, it is not semi-decidable
whether their shuffle is linear context-free, and given two deterministic context-
free languages, it is not semi-decidable whether their shuffle is deterministic
context-free. Complexity questions involving so-called shuffle languages, which
are augmented from regular expressions by shuffle and iterated shuffle, have also
been studied [19]. It has also been determined that it is NP-hard to determine
if a given string is the shuffle of two identical strings [6].

Recently, there have been several papers involving the shuffle of two words.
It was shown that the shuffle of two words with at least two letters has a unique
decomposition into the shuffle of words [2]. Also, a polynomial-time algorithm
has been developed that, given a deterministic finite automaton (DFA) M and
two words u, v, can test if u v ⊆ L(M) [3]. In the same work, an algorithm was
presented that takes a DFA M as input and outputs a “candidate solution” u, v;
this means, if L(M) has a decomposition into the shuffle of two words, u and v
must be those two unique words. But the algorithm cannot guarantee that L(M)
has a decomposition. This algorithm runs in O(|u|+ |v|) time, which is often far
less than the size of the input DFA, as DFAs accepting the shuffle of two words
can be exponentially larger than the words [8]. It has also been shown [4] that
the following problem is NP-complete: given a DFA M and two words u, v, is it
true that L(M) �⊆ u v?

In this paper, problems are investigated involving three given languages
R,L1, L2, and the goal is to determine decidability and complexity of testing
if R �⊆ L1 L2, L1 L2 �⊆ R, and L1 L2 = R, depending on the language
families that L1, L2 and R are from. In Sect. 3, it is demonstrated that the fol-
lowing three problems are NP-complete: to determine, given an NFA M and
two words u, v whether u v �⊆ L(M) is true, L(M) �⊆ u v is true, and
u v �= L(M) is true. Then, the DFA algorithm from [3] that can output a
“candidate solution” is extended to an algorithm on NFAs that operates in poly-
nomial time, and outputs two words u, v such that if the NFA is decomposable

On the Complexity and Decidability of Some Problems Involving Shuffle 107

into the shuffle of words, then u v is the unique solution. And in Sect. 4, decid-
ability and complexity of these shuffle problems are investigated involving more
general language families. In particular, it is shown that it is decidable in poly-
nomial time, given NFAs M1,M2 and a deterministic pushdown automaton M3,
whether L(M1) L(M2) ⊆ L(M3). The same is true given M1,M2 that are one-
way nondeterministic l-reversal-bounded k-counter machines, and M3, a one-way
deterministic l-reversal-bounded k-counter machine. However, if M3 is a nonde-
terministic 1-counter machine that makes only one reversal on the counter, and
M1 and M2 are fixed DFAs accepting a∗ and b∗ respectively, then the question
is undecidable. Also, if we have fixed languages L1 = (a + b)∗ and L2 = {λ},
and M3 is an NFA, then testing whether L1 L2 �⊆ L(M3) is PSPACE-complete.
Also, testing whether a∗ {λ} �⊆ L is NP-complete for L accepted by an NFA.
For finite languages L1, L2, and L3 accepted by an NPDA, it is NP-complete to
determine if L1 L2 �⊆ L3. Results on unary languages are also provided.

2 Preliminaries

We assume an introductory background in formal language theory and automata
[16], as well as computational complexity [12].

We will use the notation below to represent classes of automata: NPDA
for nondeterministic pushdown automata; DPDA for deterministic pushdown
automata; NCA for NPDAs that uses only one stack symbol in addition to the
bottom of stack symbol, which is never altered; DCA for deterministic NCAs; NFA
for nondeterministic finite automata; DFA for deterministic finite automata; and
DTM for deterministic Turing machines. We will also use these same notations
to represent the language families accepted by the respective automata classes.
As is well-known, NFAs, NPDAs, halting DTMs, and DTMs, accept exactly the
regular languages, context-free languages, recursive languages, and recursively
enumerable languages, respectively. We refer the reader to [16] for the formal
definitions of these devices.

A counter is an integer variable that can be incremented by 1, decremented
by 1, left unchanged, and tested for zero. It starts at zero and cannot store
negative values. Thus, a counter is a pushdown stack on a unary alphabet, in
addition to the bottom of the stack symbol which is never altered.

An automaton (NFA, NPDA, etc.) can be augmented with a finite number of
counters, where the “move” of the machine also now depends on the status (zero
or non-zero) of each counter, and the move can update the counters. It is well
known that a DFA augmented with two counters is equivalent to a DTM [24].

In this paper, we will restrict the augmented counter(s) to be reversal-
bounded in the sense that each counter can only reverse (i.e., change mode
from non-decreasing to non-increasing and vice-versa) at most r times for some
given r. In particular, when r = 1, the counter reverses only once, i.e., once
it decrements, it can no longer increment. Note that a counter that makes r
reversals can be simulated by � r+1

2 � 1-reversal counters. Closure and decidable
properties of various machines augmented with reversal-bounded counters have

108 J. Eremondi et al.

been studied in the literature (see, e.g., [10,11,17,18]). We will use the notation
NCM, NPCM, respectively, to denote NFAs, NPDAs, augmented with reversal-
bounded counters. Also, NCM(k, r), NPCM(k, r), respectively will denote the
machines with k r-reversal counters. In particular, NCM(k, 1), NPCM(k, 1), etc.
are machines with k 1-reversal counters. We use ‘D’ in place of ‘N’ for the deter-
ministic versions, e.g., DCM, DCM(k, r), DPCM(k, r), DPCM(k, 1), etc.

Let Σ be a finite alphabet. Then Σ∗ (Σ+) is the set of all (non-empty)
words over Σ. A language over Σ is any L ⊆ Σ∗. Given a language L ⊆ Σ∗,
the complement of L, L = Σ∗ − L. The length of a word w ∈ Σ∗ is |w|, and for
a ∈ Σ, |w|a is the number of a’s in w.

Let u, v ∈ Σ∗. The shuffle of u and v, denoted u v is the set

{u1v1u2v2 · · · unvn | ui, vi ∈ Σ∗, 1 ≤ i ≤ n, u = u1 · · · un, v = v1 · · · vn}.

This can be extended to languages L1, L2 ⊆ Σ∗ by L1 L2 =
⋃

u∈L1,v∈L2
u v.

Given u, v ∈ Σ∗, there is an obvious NFA with (|u| + 1)(|v| + 1) states accepting
u v, where each state stores a position within both u and v. This has been
called the naive NFA for u v [8]. It was also mentioned in [8] that if u and v
are over disjoint alphabets, then the naive NFA is a DFA.

An NFA M = (Q,Σ, q0, F, δ) is accessible if, for each q ∈ Q, there exists
u ∈ Σ∗ such that q ∈ δ(q0, u). Also, M is co-accessible if, for each q ∈ Q, there
exists u ∈ Σ∗ such that δ(q, u) ∩ F �= ∅. Lastly, M is trim if it is both accessible
and co-accessible, and M is acyclic if q /∈ δ(q, u) for every q ∈ Q,u ∈ Σ+.

3 Comparing Shuffle on Words to NFAs

The results to follow in this section depend on a result from [4], which is restated
here.

Proposition 1. It is NP-complete to determine, given a DFA M and words u, v
over an alphabet of at least two letters, if L(M) �⊆ u v.

First, it is noted here that this NP-completeness extends to NFAs.

Corollary 1. It is NP-complete to determine, given an NFA M and words u, v
over an alphabet of at least two letters, if L(M) �⊆ u v.

Proof. NP-hardness follows from Proposition 1.
To show it is in NP, let M be an NFA with state set Q. Create a nondeter-

ministic Turing machine that guesses a word w of length at most |uv|+ |Q|, and
verify that w ∈ L(M) and that w /∈ u v in polynomial time [4]. And indeed,
L(M) �⊆ u v if and only if L(M) ∩ {w | |w| ≤ |uv| + |Q|, w ∈ Σ∗} �⊆ u v,
since any word longer than |uv| + |Q| that is in L(M) implies there is another
one in L(M) with length between |uv| + 1 and |uv| + |Q|, which is therefore not
in u v (all words in u v are of length |uv|).
�

On the Complexity and Decidability of Some Problems Involving Shuffle 109

Next, the reverse inclusion of Corollary 1 will be examined. In contrast to
the polynomial-time testability of u v ⊆ L(M) when M is a DFA ([3], with an
alternate shorter proof appearing in Proposition 6 of this paper), testing u v �⊆
L(M) is NP-complete for NFAs.

Proposition 2. It is NP-complete to determine, given an NFA M and u, v over
an alphabet of at least two letters, whether u v �⊆ L(M).

Proof. First, it is in NP, since all words in u v are of length |uv|, and so a
nondeterministic Turing machine can be built that nondeterministically guesses
one and tests if it is not in L(M) in polynomial time.

For NP-hardness, let F be an instance of the 3SAT problem (a known NP-
complete problem [12]) with a set of Boolean variables X = {x1, . . . , xp}, and a
set of clauses {c1, . . . , cq}, where each clause has three literals.

If d is a truth assignment, then d is a function from X to {+,−} (true or
false). For a variable x, then x+ and x− are literals. In particular, the literal x+

is true under d if and only if the variable x is true under d. And, the literal x− is
true under d if and only if the variable x is false [12]. Let y = �log2 p�+1, which
is enough to hold the binary representation of any of 1, . . . , p. For an integer i,
1 ≤ i ≤ p, let b(i) be the string 1 followed by the y-bit binary representation
of i, followed by 1 again.

For 1 ≤ i ≤ p, 1 ≤ j ≤ q, let f(i, j) be defined as follows, where each element
is a set of strings over {0, 1}:

f(i, j) =

⎧
⎪⎨

⎪⎩

{01b(i)}, if x+
i ∈ cj ;

{10b(i)}, if x−
i ∈ cj ;

{10b(i), 01b(i)}, otherwise.

For 1 ≤ j ≤ q, let Fj = f(1, j)f(2, j) · · · f(p, j).
We will next give the construction. Let u = 1b(1)1b(2) · · · 1b(p), and let

v = 0p.
Let T = {e1b(1)e2b(2) · · · epb(p) | ei ∈ {10, 01}, 1 ≤ i ≤ p}. Clearly T ⊆ u v,

and also T is a regular language, and a DFA MT can be built accepting this
language in polynomial time, as with a DFA MT accepting L(MT).

Then, make an NFA M ′ accepting
⋃

1≤j≤q Fj . It is clear that this NFA is of
polynomial size. Then, make another NFA M ′′ accepting L(M ′) ∪ L(MT). The
following claim shows that deciding u v �⊆ L(M ′′) is equivalent to deciding if
there is a solution to the 3SAT instance.

Claim. The following three conditions are equivalent:

1. u v ∩ L(M ′′) �= ∅,
2. T ∩ L(M ′′) �= ∅,
3. F has a solution.

Proof. “1 ⇒ 2”. Let w ∈ u v ∩ L(M ′′). Then w /∈ L(M ′′), and since L(MT) ⊆
L(M ′′), necessarily w ∈ L(T).

110 J. Eremondi et al.

“2 ⇒ 1”. Let w ∈ T ∩ L(M ′′). But, T ⊆ u v; and so w ∈ u v ∩ L(M ′′).
“2 ⇒ 3”. Assume w ∈ T ∩ L(M ′′). Thus, w = e1b(1)e2b(2) · · · epb(p), ei ∈

{10, 01}, but w /∈ ⋃
1≤j≤q Fj . Let d be the truth assignment obtained from w

where

d(xi) =

{
+, if ei = 10;
−, if ei = 01;

for all i, 1 ≤ i ≤ p. Thus, for every j, 1 ≤ j ≤ q, w /∈ Fj , but for all variables xi

not in cj , eib(i) must be an infix of words in Fj since 10b(i) and 01b(i) are both
in f(i, j) when xi is not in cj . So one of the words encoding the (three) variables
in cj , must have 10b(i) as an infix of words in Fj where d(xi) = +, or 01b(i) as
an infix of words in Fj where d(xi) = −, since otherwise Fj would have as infix,
for each xi that is a variable of cj , 01b(i) if x+

i ∈ cj , and 10b(i) if x−
i ∈ cj , and

so w would be in Fj , a contradiction. Thus, d makes clause cj true, as is the case
with every clause. Hence, d is a satisfying truth assignment, and F is satisfiable.

“3 ⇒ 2”. Assume F is satisfiable, hence d is a satisfying truth assignment.
Create

w = e1b(1)e2b(2) · · · epb(p),

where

ei =

{
10, if d(xi) = +;
01, if d(xi) = −.

Then w ∈ T . Also, for each j, d applied to some variable, say xi, must be in cj ,
but then by the construction of Fj , eib(i) must not be an infix of any word in Fj .
Hence, w /∈ ⋃

1≤j≤q Fj , w /∈ L(M ′), and w /∈ L(M ′′). Hence, w ∈ T ∩ L(M ′′).
�
Next, we examine the complexity of testing inequality between languages accepted
by NFAs and words of a very simple form.

Proposition 3. It is NP-complete to test, given ap, bq ∈ Σ∗, p, q ∈ N0, and M
an NFA over Σ = {a, b}, whether L(M) �= ap bq.

Proof. First, it is immediate that the problem is in NP, by Corollary 1 and
Proposition 2.

To show NP-hardness, the problem in Proposition 1 is used.
Given M , a DFA, and words u, v, we can construct the naive shuffle NFA

N for u v. The naive NFA is of polynomial size in the length of u and v.
Let (p, q) = (|uv|a , |uv|b). Then construct the naive NFA A accepting ap bq,
which is a polynomially sized DFA since ap, bq are over disjoint alphabets. Thus,
another DFA can be built accepting L(A). We can then construct an NFA M ′ in
polynomial time which accepts (ap bq ∩ L(M)) ∪ L(N) ∪ (L(M) ∩ (ap bq))
as M is already a DFA. Also, u v ⊆ ap bq since the latter contains all words
with p a’s and q b’s.

We will show L(M) ⊆ u v if and only if L(M ′) = ap bq.
Assume L(M) ⊆ L(N)(= u v). Then L(M)∩(ap bq) = ∅ since u v ⊆ ap

bq. All other words in L(M ′) are in ap bq. Thus, L(M ′) ⊆ ap bq. Let w ∈ ap bq.

On the Complexity and Decidability of Some Problems Involving Shuffle 111

If w /∈ L(M), then w ∈ L(M ′). If w ∈ L(M), then w ∈ L(N) ⊆ L(M ′), by the
assumption.

Assume L(M ′) = ap bq. Let w ∈ L(M). Then L(M) ∩ (ap bq) = ∅ by the
assumption. So, L(M) ⊆ ap bq. Assume w ∈ L(M) but w /∈ L(N). However,
w ∈ L(M ′) by the assumption, a contradiction, as w /∈ ap bq ∩ L(M), and
w /∈ L(M) ∩ ap bq, implying w ∈ L(N).

Hence, the problem is NP-complete.
�
To obtain the result of the following corollary, it only needs to be shown that
the problem is in NP, which again follows from Corollary 1 and Proposition 2.

Corollary 2. It is NP-complete to determine, given an NFA M and words u, v
over an alphabet of size at least two, if L(M) �= u v.

It is known that there is a polynomial-time algorithm that, given a DFA, will
output two words u and v such that, if L(M) is decomposable into the shuffle
of two words, then this implies L(M) = u v [3]. Moreover, this algorithm runs
in time O(|u| + |v|), which is sublinear. This main result from [3] is as follows:

Proposition 4. Let M be an acyclic, trim, non-unary DFA over Σ. Then we
can determine words u, v ∈ Σ+ such that, L(M) has a shuffle decomposition
into two words implies L(M) = u v is the unique decomposition. This can be
calculated in O(|u| + |v|) time.

However, the downside to this algorithm is that it can output two strings u and
v, when L(M) is not decomposable. Thus, the algorithm does not check whether
L(M) is decomposable, but if it is, it can find the decomposition in time usually
far less than the number of states of the DFA. The decomposition also must be
unique over words (this is always true when there are at least two combined
letters) [2].

It is now shown that this result scales to NFAs, while remaining polynomial
time complexity. The algorithm in [3] scans at most O(|u| + |v|) transitions
and states of the DFA from initial state towards final state. From an NFA, it
becomes possible to apply the standard subset construction [16] on the NFA
only by creating states and transitions for the transitions and states examined
by this algorithm (thus, the NFA is never fully determinized, and only a subset
of the transitions and states of the DFA are created and traversed). Because the
algorithm essentially follows one “main” path from initial state to final state in
the DFA, the amount of work required for NFAs is still polynomial.

Proposition 5. There is a polynomial-time algorithm that, given an acyclic,
non-unary NFA M = (QN , Σ, qN0, FN , δN), can find strings u, v ∈ Σ+, such
that, L(M) has a decomposition into two words implies L(M) = u v is the
unique decomposition. Moreover, this algorithm runs in time O((|u|+|v|) |QN |2).
Proof sketch. Uniqueness again follows from [2].

The algorithm outputs words u, v ∈ Σ+ such that either L(M) = u v or
M is not shuffle decomposable. It is based off the one described in [3], which is
quite detailed, and thus not reproduced here, although we will refer to it.

112 J. Eremondi et al.

In order to use the algorithm in Proposition 4, first all states that are not
accessible or not co-accessible are removed. For this, a breadth-first graph search
algorithm can be used to detect which states can be reached from q0 in O(|QN |2)
time. It also verifies that all final states reached are the same distance from
the initial state, and if not, M is not decomposable. Then, collapse these final
states down to one state qf and remove all outgoing transitions, which does
not change the language accepted since M is acyclic. Then, check which states
can be reached from qf following transitions in reverse using the graph search,
and remove all states that cannot be reached. This results in an NFA M1 =
(Q1, Σ, q1, {qf}, δ1) that is trim and accepts L(M).

Let MD = (QD, Σ, qD0, FD, δD) be the DFA obtained from M1 via the subset
construction (we do not compute this, but will refer to it). Necessarily MD is trim
and acyclic, since M1 is as well. Then qD0 = {q1}, FD = {P | P ∈ QD, qf ∈ P}.

We modify the algorithm of Proposition 4 as follows: In place of DFA states,
we use subsets of Q1 from QD [16]. However, states and transitions are only
computed as needed in the algorithm. Any time δ(P, a) is referenced in the
algorithm, we first compute the deterministic transition as follows: δD(P, a) =⋃

p∈P δ1(p, a), and then use this transition. Since there are at most |Q1| states
in a subset of Q1, any transition of δD defined on a given state and a given letter
can transition to at most |Q1| states. Then, we can compute δD(P, a) in O(|Q1|2)
time (for each state p ∈ P , add δ1(p, a) into a sorted list without duplicates). As
it is making the list, it can test if this state is final by testing if qf ∈ δD(P, a).
Therefore, this algorithm inspects O(|u| + |v|) states and transitions of MD,
which takes O(|Q1|2(|u| + |v|)) time to compute using the subset construction.

�

4 Shuffle on Languages

A known result involving shuffle on words is that there is a polynomial-time test
to determine, given words u, v ∈ Σ+ and a DFA M , whether u v ⊆ L(M) [3].
An alternate simpler proof of this result is demonstrated next, and then this
proof technique will be used to extend to more general decision problems.

Proposition 6. There is a polynomial-time algorithm to determine, given u, v ∈
Σ+, and a DFA M , whether or not u v ⊆ L(M).

Proof. Clearly, u v is a subset of L(M) if and only if L(A) ∩ L(M) = ∅, where
A is the naive NFA accepting u v. A DFA accepting L(M) can be built in
polynomial time, and the intersection is accepted by an NFA using the standard
construction [16] whose emptiness can be checked in polynomial time [16].
�
This result will be generalized in two ways. First, instead of individual words
u and v, languages from NCM(k, r), for some fixed k, r will be used. Moreover,
instead of a DFA for the right side of the inclusion, a DCM(k, r) machine will
be used.

On the Complexity and Decidability of Some Problems Involving Shuffle 113

Proposition 7. Let k, r be any fixed integers. It is decidable, given M1,M2 ∈
NCM(k, r) and M3 ∈ DCM(k, r), whether L(M1) L(M2) ⊆ L(M3). Moreover,
the decision procedure is polynomial in n1 + n2 + n3, where ni is the size of Mi.

Proof. First, construct from M1 and M2, an NCM M4 that accepts L(M1)
L(M2). Clearly M4 is an NCM(2k, r), and the size of M4 is polynomial in n1+n2.

Then, construct from M3 a DCM(k, r) machine M5 accepting the complement
of L(M3), which can be done in polynomial time [17].

Lastly, construct from M4 and M5 an NCM(3k, r) machine M6 accepting
L(M4) ∩ L(M5) by simulating the machines in parallel.

It is immediate that L(M1) L(M2) ⊆ L(M3) if and only if L(M6) = ∅.
Further, it has been shown that for any fixed t, s, it is decidable in polynomial
time, given M in NCM(t, s), whether L(M) = ∅ [15].
�
Actually, the above proposition can be made stronger. For any fixed k, r, the
decidability of non-emptiness of L(M) for an NCM(k, r) is in NLOG, the class
of languages accepted by nondeterministic Turing machines in logarithmic space
[15]. It is known that NLOG is contained in the class of languages accepted by
deterministic Turing machines in polynomial time (whether or not the contain-
ment is proper is open). By careful analysis of the constructions in the proof of
the above proposition, M6, could be constructed by a logarithmic space deter-
ministic Turing machine. Hence:

Corollary 3. Let k, r be any fixed integers. The problem of deciding, given
M1,M2 ∈ NCM(k, r) and M3 ∈ DCM(k, r), whether L(M1) L(M2) ⊆ L(M3),
is in NLOG.

Proposition 7 also holds if M1 and M2 are NFAs and M3 is a deterministic push-
down automaton.

Proposition 8. It is decidable, given NFAs M1,M2 and M3 ∈ DPDA, whether
L(M1) L(M2) ⊆ L(M3). Moreover, the decision procedure is polynomial in
n1 + n2 + n3, where ni is the size of Mi.

Proof. The proof and algorithm proceeds much like the proof of Proposition 7.
Given two NFAs M1,M2, another NFA M4 that accepts L(M1) L(M2) can be
constructed in polynomial time. Then, for a given DPDA M3, a DPDA M5 can be
constructed accepting its complement in polynomial time (and is of polynomial
size) [13]. Also, given an NFA M4 and a DPDA, a PDA M6 can be built in
polynomial time accepting L(M4) ∩ L(M5). As above, L(M1) L(M2) ⊆ L(M3)
if and only if L(M) = ∅, and emptiness is decidable in polynomial time for
NPDAs [16].
�
In contrast to Proposition 7, the following is shown:

Proposition 9. It is undecidable, given one-state DFAs M1 accepting a∗ and
M2 accepting b∗, and an NCM(1, 1) machine M3 over {a, b}, whether L(M1)
L(M2) ⊆ L(M3).

114 J. Eremondi et al.

Proof. Let Σ = {a, b}. Then L1 L2 = Σ∗. Let M3 ⊆ Σ∗ be an NCM(1, 1)
machine. Then L1 L2 ⊆ L3 if and only if L3 = Σ∗. The result follows, since
the universality problem for NCM(1, 1) is undecidable. The idea is the following:
Given a single-tape deterministic Turing machine Z, we construct M3 which,
when given any input w, accepts if and only if w does not represent a halting
sequence of configurations of Z on an initially blank tape (by guessing a configu-
ration IDi, and extracting the symbol at a nondeterministically chosen position
j within this configuration, storing j in the counter, and then checking that the
symbol in position j in the next configuration IDi+1 determined by decrement-
ing the counter is not compatible with the next move of the DTM from IDi;
see [1]). Hence, L(M3) accepts the universe if and only if Z does not halt. By
appropriate coding, the universe can be reduced to {a, b}∗.
�
Note that the proof of Proposition 9 shows: Let G be a language family such
that universality is undecidable. Then it is undecidable, given one-state DFAs
M1 accepting a∗ and M2 accepting b∗, and L in G, whether L(M1) L(M2) ⊆ L.

Proposition 10. Let L1 = (a + b)∗ and L2 = {λ}. It is PSPACE-complete,
given an NFA M with input alphabet {a, b}, whether L1 L2 �⊆ L(M).

Proof. Clearly, (a+ b)∗ {λ} �⊆ L if and only if L �= (a+ b)∗. The result follows,
since it is known that this question is PSPACE-complete (see, e.g., [12]).
�
Remark. In Proposition 9, if M1 and M2 are DFAs accepting finite languages,
and L is a language in any family with a decidable membership problem, then
it is decidable whether L(M1) L(M2) ⊆ L. This is clearly true by enumerating
all strings in L(M1) L(M2) and testing membership in L.

Next, shuffle over unary alphabets is considered.

Proposition 11. It is decidable, given languages L1, L2, L3 over alphabet {a}
accepted by NPCMs, whether:

1. L1 L2 ⊆ L3

2. L3 ⊆ �L1 L2

Proof. It is known that the Parikh map of the language accepted by any NPCM
is an effectively computable semilinear set (in this case over N) [17] and, hence,
the languages L1, L2, L3 can be accepted by DFAs over a unary alphabet.
�
Proposition 12. It is NP-complete to decide, for an NFA M over alphabet {a},
whether a∗ {λ} �⊆ L(M).

Proof. Clearly, a∗ {λ} �⊆ L if and only if L �= a∗. The result follows, since it is
known that this question is NP-complete (see, e.g., [12]).
�
For the case when the unary languages L1 and L2 are finite:

Proposition 13. It is polynomial-time decidable, given two finite unary lan-
guages L1 and L2 (where the lengths of the strings in L1 and L2 are represented
in binary) and a unary language L3 accepted by an NFA M , all over the same
letter, whether L1 L2 ⊆ L3.

On the Complexity and Decidability of Some Problems Involving Shuffle 115

Proof. Let r be the sum of the cardinalities of L1 and L2, s be the length of
the binary representation of the longest string in L1 ∪L2, and t be the length of
binary representation of M .

We represent the NFA M by an n × n Boolean matrix AM , where n is the
number of states of M , and AM (i, j) = 1 if there is a transition from state i to
state j; 0 otherwise.

Let x be the binary representation of a unary string ad, where d = d1 + d2,
ad1 ∈ L1, and ad2 ∈ L2. To determine if ad is in L3, we compute Ad

M and check
that for some accepting state p, the (1, p) entry is 1. Since the computation of
Ad

M can be accomplished in O(log d) Boolean matrix multiplications (using the
“right-to-left binary method for exponentiation” technique used to compute xm

where m is a positive integer in O(log m) multiplications, described in Sect. 4.6.3
of [23]), and since matrix multiplication can be calculated in polynomial time, it
follows that we can decide whether L1 L2 ⊆ L3 in time polynomial in r +s+ t.

�
However, when the alphabet of the finite languages L1, L2 is at least binary:

Proposition 14. It is NP-complete to determine, given finite language L1 and
L2, and an NPDA M accepting L3, whether L1 L2 �⊆ L3.

Proof. NP-hardness follows from Proposition 2. To show that it is in NP, guess
a word u ∈ L1, and v ∈ L2, guess a word w of length |u| + |v|, and verify that it
is in u v [4]. Then, verify that w /∈ L3, which can be done in polynomial time
since the membership problem for NPDAs can be solved in polynomial time.

Finally, the following proposition follows from the proof of Theorem 6 in [5].

Proposition 15. It is undecidable, given two languages accepted by 1-reversal-
bounded DPDAs (resp., DCAs), whether their shuffle is accepted by a 1-reversal-
bounded DPDA (resp., DCA).

References

1. Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput.
Syst. Sci. 8(3), 315–332 (1974)

2. Berstel, J., Boasson, L.: Shuffle factorization is unique. Theoret. Comput. Sci. 273,
47–67 (2002)

3. Biegler, F., Daley, M., McQuillan, I.: Algorithmic decomposition of shuffle on
words. Theoret. Comput. Sci. 454, 38–50 (2012)

4. Biegler, F., McQuillan, I.: On comparing deterministic finite automata and the
shuffle of words. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587,
pp. 98–109. Springer, Heidelberg (2014)

5. Bordihn, H., Holzer, M., Kutrib, M.: Some non-semi-decidability problems for lin-
ear and deterministic context-free languages. In: Domaratzki, M., Okhotin, A.,
Salomaa, K., Yu, S. (eds.) CIAA 2004. LNCS, vol. 3317, pp. 68–79. Springer, Hei-
delberg (2005)

6. Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4),
766–776 (2014)

116 J. Eremondi et al.

7. Câmpeanu, C., Salomaa, K., Vágvölgyi, S.: Shuffle quotient and decompositions.
In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp.
186–196. Springer, Heidelberg (2002)

8. Daley, M., Biegler, F., McQuillan, I.: On the shuffle automaton size for words. J.
Autom. Lang. Comb. 15, 53–70 (2010)

9. Domaratzki, M.: More words on trajectories. Bull. EATCS 86, 107–145 (2005)
10. Eremondi, J., Ibarra, O.H., McQuillan, I.: Deletion operations on deterministic

families of automata. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 388–399. Springer, Heidelberg (2015)

11. Eremondi, J., Ibarra, O.H., McQuillan, I.: Insertion operations on deterministic
reversal-bounded counter machines. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide,
C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 200–211. Springer,
Heidelberg (2015)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Series of Books in the Mathematical Sciences. W. H. Freeman
and Company, New York (1979)

13. Geller, M.M., Hunt III, H.B., Szymanski, T.G., Ullman, J.D.: Economy of descrip-
tion by parsers, dpda’s, and pda’s. Theoret. Comput. Sci. 4, 143–153 (1977)

14. Ginsburg, S., Spanier, E.H.: Mappings of languages by two-tape devices. J. ACM
12(3), 423–434 (1965)

15. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn
multicounter machines. J. Comput. Syst. Sci. 22(2), 220–229 (1981)

16. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Reading (1979)

17. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision prob-
lems. J. ACM 25(1), 116–133 (1978)

18. Ibarra, O.H.: Automata with reversal-bounded counters: a survey. In: Jürgensen,
H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 5–22.
Springer, Heidelberg (2014)

19. Jȩdrzejowicz, J., Szepietowski, A.: Shuffle languages are in P. Theoret. Comput.
Sci. 250, 31–53 (2001)

20. Kari, L.: On language equations with invertible operations. Theoret. Comput. Sci.
132(1–2), 129–150 (1994)

21. Kari, L., Konstandtinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Theoret. Comput. Sci. 334, 131–159 (2005)

22. Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories. Theoret. Comput.
Sci. 332(1–3), 47–61 (2005)

23. Knuth, D.E.: Seminumerical Algorithms, The Art of Computer Programming, 3rd
edn. Addison-Wesley, Reading (1998)

24. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics
in theory of Turing machines. Ann. Math. 74(3), 437–455 (1961)

25. Ogden, W.F., Riddle, W.E., Round, W.C.: Complexity of expressions allowing
concurrency. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages, POPL 1978, pp. 185–194. ACM NY, USA
(1978)

On the Computational Complexity of Problems
Related to Distinguishability Sets

Markus Holzer(B) and Sebastian Jakobi

Institut für Informatik, Universität Giessen,
Arndtstr. 2, Giessen 35392, Germany

{holzer,sebastian.jakobi}@informatik.uni-giessen.de

Abstract. We study the computational complexity of problems related
to distinguishability sets for regular languages. Roughly speaking, the
distinguishability set D(L) for a (not necessarily regular) language L
consists of all words w that are a common suffix of a word xw in L
and of a word yw that does not belong to L. In particular, we inves-
tigate the complexity of the representation problem, i.e., deciding for
given automata A and B, whether B accepts the distinguishability set
of L(A). It is shown that this problem and some of its variants are highly
intractable, namely PSPACE-complete. In fact, determining the size of
an automaton for D(L(A)) is already PSPACE-complete. On the other
hand, questions related to the hierarchy induced by iterated application
of the D-operator turn out to be much easier. For instance, the question
whether for a given automaton A, the accepted language is equal to its
own distinguishability set, i.e., whether L(A) = D(L(A)) holds, is shown
to be NL-complete. As a byproduct of our investigations, we found a com-
pelling characterization of synchronizing automata, namely that a (min-
imal) automaton A is synchronizing if and only if D(L(A)) = D2(L(A)).

1 Introduction

There is a vast literature documenting the importance of the notion of finite
automata and problems thereof as an enormously valuable concept in theoretical
computer science and applications. Although the history of finite automata dates
back around 60 years, even nowadays this is a vivid area of research. For instance,
recently, the language D(L(A)) that distinguishes between all non-equivalent
states or quotients of a given deterministic finite automaton A was considered
in more detail in [1]. There a systematic study of general properties of D(L(A))
is conducted from a descriptional and a formal language theoretical point of
view. Observe that the idea of distinguishability is not new and has a long and
fruitful history, see, e.g., Moore’s seminal paper on gedankenexperiments [8]—
a brief summary on some developments is given in [1], too. The motivation
to study this language and its properties stems from electronic circuit testing.
There a property is tested by applying several inputs to the circuit, and checking
the produced output. Since circuits and finite automata are closely related by
simulating each other, it is natural to ask for the minimality of these models. For
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 117–128, 2015.
DOI: 10.1007/978-3-319-19225-3 10

118 M. Holzer and S. Jakobi

finite automata the minimization problem dates back to the early beginnings of
automata theory. This results in testing whether two states are equivalent or
not. Thus, it can be described by considering only words from D(L(A)), i.e.,
words that distinguish between non-equivalent states of a given automaton A.

What is missing in the investigation in [1] is the computational complexity
of problems related to the language D(L(A)), for a deterministic finite automa-
ton A. For instance, from the motivation given in [1] the complexity of the
following problem that is related to minimization is relevant: how hard is it to
decide for a given word w and an automaton A, whether w belongs to D(L(A))?
Analogous questions on the representation of the D(L(A)) language by automata
or on the iterated application of the D-operation, when viewed as an operator
D : 2Σ∗ → 2Σ∗

with L �→ D(L), can be asked. It turns out that the computational
complexity of these problems varies from L- to PSPACE-completeness, which is an
enormous span in complexity. Moreover, the results on the PSPACE-completeness
are very interesting, since only deterministic finite automata are involved, and
normally, standard problems that deal with deterministic devices turn out to
be of lower complexity, see, e.g., [3]. In fact, the problems related to repre-
sentability of distinguishability sets turn out to be highly intractable, namely
PSPACE-complete. Even determining the size of an automaton for D(L(A)) is
already PSPACE-complete. On the other hand, questions related to the hierar-
chy induced by iterated application of the distinguishability operator turn out
to be much easier, namely NL-complete. This significant decrease in complexity
goes hand in hand with a very interesting structure of this hierarchy, namely, it
collapses to its third level, i.e., D2(L) = D3(L), for every language L [1]. As a
spin-off of our investigations, we found a compelling characterization of synchro-
nizing automata, namely that a (minimal) automaton A is synchronizing if and
only if D(L(A)) = D2(L(A)). During the last decade, synchronizing automata
and Černý’s Conjecture were a very active research area, see, e.g., [10] for a
survey on these topics. Our investigation on the computational complexity of
the distinguishability operator D can be seen as a first step towards a better
understanding of other distinguishability operators as, e.g., described in [1].

The paper is organized as follows: the next section provides basic definitions
concerning finite automata and the distinguishability operator D. Moreover, also
some important properties of the D-operation are listed. After that, we first dis-
cuss the complexity of deciding whether a word belongs to the distinguishability
set of a given language. We will see that the complexity of this problem depends
on a subtle detail in the problem definition. Then we investigate the complexity
of problems related to the representability of distinguishability sets. We close our
studies with a summary of the obtained results and give hints for further research.
Due to space constraints some proofs are omitted.

2 Preliminaries

We recall some definitions on finite automata as contained in [2]. A deterministic
finite automaton (DFA) is a quintuple A = (Q,Σ, δ, q0, F), where Q is the finite

On the Computational Complexity of D-Set Problems 119

set of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q × Σ → Q is the transition function. The
language accepted by the DFA A is defined as

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F },

where the transition function is recursively extended to δ : Q × Σ∗ → Q.
Let L ⊆ Σ∗ be a language. Then the Myhill-Nerode equivalence relation ≡L

on L is defined by x ≡L y if and only if for every word w ∈ Σ∗ we have
xw ∈ L ⇐⇒ yw ∈ L. If A = (Q,Σ, δ, q0, F) is a DFA accepting the language L,
and Rp = Rq, for some states p, q ∈ Q, then we write p ≡A q. Here Rq =
{w ∈ Σ∗ | δ(q, w) ∈ F } refers to the right-language of the state q. A DFA is
minimal if it has no pair of equivalent states and no unreachable states. The
left-quotient, or quotient for short, of a language L by a word w is the language
w−1 · L = {x | wx ∈ L }. A quotient corresponds to an equivalence class of ≡L.
If a language L is regular, then the number of distinct quotients is finite. It is
exactly the number of states of the minimal DFA accepting L. This number is
called the state complexity of L, and is denoted by sc(L). In a minimal DFA, for
every state q ∈ Q, the language Rq is exactly a quotient. If some quotient of a
regular language L is ∅, then the minimal DFA of L has a dead state.

Let L ⊆ Σ∗ be a language. For two words x, y ∈ Σ∗ with x
≡L y, there exists
at least one word w, such that xw ∈ L ⇐⇒ yw
∈ L. Let A = (Q,Σ, δ, q0, F)
be a DFA with L = L(A). For two states p, q ∈ Q with p
≡A q, there exists
at least one word w such that δ(p,w) ∈ F ⇐⇒ δ(q, w)
∈ F . We say that the
word w distinguishes between the words x and y, in the former case, and the
states p and q in the latter case. Next we define the set of words that distinguishes
between two words x and y w.r.t. the language L. Let x, y ∈ Σ∗, then set

DL(x, y) = {w ∈ Σ∗ | xw ∈ L ⇐⇒ yw
∈ L }.

Naturally, we define the distinguishability language of L by

D(L) = {w ∈ Σ∗ | ∃x, y ∈ Σ∗ : xw ∈ L ⇐⇒ yw
∈ L }.

It is easy to see that this definition is equivalent to D(L) =
⋃

x,y∈Σ∗ DL(x, y). In
the same way, for a DFA A = (Q,Σ, δ, q0, F), we define DA(p, q) for p, q ∈ Q by

DA(p, q) = {w ∈ Σ∗ | δ(p,w) ∈ F ⇐⇒ δ(q, w)
∈ F },

and
D(A) = {w ∈ Σ∗ | ∃p, q ∈ Q : δ(p,w) ∈ F ⇐⇒ δ(q, w)
∈ F }.

A DFA is reduced if all states are reachable from the initial state (accessible),
and all states can reach a final state (useful), except at most one that is a sink
state or dead state, i.e., a non-accepting state where all output transitions are
self loops. Observe that the following property holds [1].

Lemma 1. Let L be a language accepted by a reduced deterministic finite auto-
maton A. Then D(L) = D(A).

120 M. Holzer and S. Jakobi

In order to explain these definitions in more detail we give a small example,
which we literally take from [1].

Example 2. Consider the language L = ((0+1)(0+1))∗(λ+1). Easy calculations
show that D(L) = λ + (0 + 1)∗0 and D2(L) = λ, where D2(L) is an abbreviation
for D(D(L)). Note that, since D2(L) = λ, all other iterations of the D-operator
to D2(L) give λ as a result, too. The DFAs for L, D(L), and D2(L) are depicted
in Fig. 1 from left to right, respectively.

0

1

2

0 0, 1

1

0, 1
0 1

0

1

1

0
0 1

0, 1

0, 1

Fig. 1. The DFAs for L = ((0 + 1)(0 + 1))∗(λ + 1), D(L), and D2(L) from left to right.
Here D2(L) is an abbreviation for D(D(L)).

Finally, we list some important properties of D-sets, which can be found
in [1]. First of all, the set D(L) is suffix closed, for any language L. An alternative
characterization of the distinguishability set of L ⊆ Σ∗ is

D(L) = suff(L) ∩ suff(L),

where suff(L) is the language of all suffixes of L and L refers to the complement
of L, i.e., L = Σ∗ \ L. By this characterization it is easy to see that if L is a
finite language, then we have D(L) = suff(L). The iteration of the D-operator
is defined by D0(L) = L and Dn+1(L) = D(Dn(L)), for n ≥ 0, and induces a
hierarchy

Dn+1(L) ⊆ Dn(L),

for n ≥ 1. Observe, that D(L) ⊆ L does not hold in general. Nevertheless,
if L is suffix closed, then D(L) ⊆ L. Concerning the strictness of the hierarchy,
surprisingly, it is finite and collapses to its second level, i.e., D3(L) = D2(L),
for any language L. Moreover, D(L) = L if and only if L is suffix closed with ∅
as one of its quotients. Finally, D2(L) = D(L) if and only if D(L) has ∅ as a
quotient.

We classify problems on distinguishability sets w.r.t. their computational
complexity. Consider the inclusion chain L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE.
Here L (NL, respectively) refers to the set of problems accepted by determin-
istic (nondeterministic, respectively) logspace bounded Turing machines, P (NP,
respectively) is the set of problems accepted by deterministic (nondeterminis-
tic, respectively) polynomial time bounded Turing machines, and PSPACE is the

On the Computational Complexity of D-Set Problems 121

set of problems accepted by deterministic or nondeterministic polynomial space
bounded Turing machines. Further, for a complexity class C, the set coC is the
set of complements of languages from C. Hardness and completeness is always
meant w.r.t. deterministic logspace-bounded many-one reducibility, unless oth-
erwise stated.

Many of the hardness results in our paper are obtained by reductions from
the following problem:

– DFA-Union-Universality. Given DFAs A1, A2, . . . , An with common input
alphabet Σ, decide whether

⋃n
i=1 L(Ai) = Σ∗.

This problem is well known to be PSPACE-complete, even if Σ is a binary alpha-
bet [5,7]. Another classical decision problem which will be used later is the
following:

– Graph-Reachability. Given a directed graph G = (V,E) and two of its
vertices s and t, decide whether there is a path from s to t.

Most variants of this problem are NL-complete, but if the instances are restricted
to graphs of out-degree one, which means that every vertex has exactly one
outgoing edge, then the problem becomes L-complete [11].

3 Computational Complexity Results
on Distinguishability Sets

In this section we study the computational complexity of several natural prob-
lems related to distinguishability sets. Perhaps the first problem that comes to
one’s mind is the following membership problem: given an automaton and a
word, does the word belong to the corresponding distinguishability set? Here we
have to be careful with the exact problem definition, because for a given DFA A
the two distinguishability sets D(L(A)) and D(A) may differ, if A is not reduced.
Interestingly, this subtle difference influences the computational complexity of
the problem. Therefore we define the following two problems:

– DFA-D-Membership. Given a DFA A with input alphabet Σ and a word
w ∈ Σ∗, decide whether w ∈ D(A).

– Language-D-Membership. Given a DFA A with input alphabet Σ and a
word w ∈ Σ∗, decide whether w ∈ D(L), for L = L(A).

The first problem can be shown to be L-complete, where for L-hardness an NC1

reduction from the reachability problem for out-degree one graphs is applied.

Theorem 3. DFA-D-Membership is L-complete under NC1 many-one reduc-
tions.1 ��
1 An NC1 many-one reduction from a problem A to B is a Dlogtime-uniform family

C = (Cn) of Boolean circuits of polynomial size and logarithmic depth with AND-,
OR-, and NOT-gates of bounded fan-in, such that x ∈ A if and only if C|x|(x) ∈ B.

122 M. Holzer and S. Jakobi

The Language-D-Membership turns out to be NL-complete. For hardness a
reduction from the reachability problem for graphs of out-degree two is used.

Theorem 4. Language-D-Membership is NL-complete. ��
The rest of this section is in three parts. First, we consider problems on the
description size of distinguishability sets. Then we take a closer look at the
problem of deciding whether for two given automata one describes the distin-
guishability set of the other. Third, and finally, problems related to the finite
hierarchy induced by the iteration of the D-operator are investigated.

3.1 Results on the Size of Distinguishability Sets

We study the complexity of the following problem and variants thereof:

– D-Set-Size. Given a DFA A and an integer k, decide whether sc(D(L)) ≤ k,
where L = L(A)?

In [1] the following result was shown: let A be a n-state DFA accepting the
language L. Then 2n −n states are sufficient and necessary in the worst case for
a DFA to accept the language D(L).

Our first result shows that D-Set-Size problem has already a very high
complexity, and is intractable. Using the equality D(L) = suff(L) ∩ suff(L) leads
to a construction of an exponentially sized DFA on which an NL-algorithm for
testing sc(D(L)) ≤ k can be applied. This gives the following result.

Lemma 5. D-Set-Size is contained in PSPACE. ��
Now we provide the lower bound of the D-Set-Size problem.

Lemma 6. D-Set-Size is PSPACE-hard w.r.t. deterministic polytime many-one
reductions.

Proof. We give a polynomial time reduction from the DFAs union universality
problem. As a problem instance let Ai = (Qi, Σ, δi, si, Fi), for 1 ≤ i ≤ n,
be DFAs over common input alphabet Σ. We may assume that

⋃n
i=1 L(Ai)

contains λ and Σ—this can be easily checked by the reduction, and if the union
does not contain λ and Σ, we have a “no” instance. Therefore we can safely
add DFAs An+1 and An+2 for the languages {λ} and Σ to the instance without
changing its membership to the union universality problem. In the next step
of the reduction we minimize all DFAs (therefore using the polynomial time
and not logspace reduction) and we add a new input symbol # /∈ Σ on which
every DFA goes back to its initial state. Let us denote the resulting DFAs by
A′

i = (Q′
i, Σ#, δ′

i, s
′
i, F

′
i), for 1 ≤ i ≤ n + 2, where Σ# = Σ ∪ {#}. Notice that

the DFAs A′
i are still minimal and that moreover

⋃n
i=1 L(Ai) = Σ∗ if and only

if
⋃n+2

i=1 L(A′
i) = Σ∗

#.
Now we construct the DFA A = (Q,Γ, δ, q0, F) for the instance of the D-Set-

Size problem as follows: the state set is Q =
⋃n+2

i=1 Q′
i ∪ {q0, qf , qs}, final states

On the Computational Complexity of D-Set Problems 123

q0 qf

A′
1

s′
1

#

#
$1 1

A′
2

s′
2

#

#

$2 2

...

A′
n+2

s′
n+2

#

#

$n+2
n+2

Fig. 2. The DFA A constructed from the instance of the union universality problem.
The DFAs A′

1, A
′
2, . . . , A

′
n+2 are only sketched in the boxes; all these DFAs contain

only reachable states. The sink state qs and transitions leading to it are omitted. The
transitions leading from the boxes to state qf indicate that from every state in the box
for DFA A′

i there is a |ci-transition to state qf . The set of final states of A consists of
the final states of the input DFAs A′

i, together with qf .

are F =
⋃n+2

i=1 F ′
i ∪{qf}, the input alphabet is Γ = Σ# ∪{ $i, |ci | 1 ≤ i ≤ n+2 }.

The transition function δ is defined as follows—see Fig. 2: for 1 ≤ i ≤ n + 2,
pi ∈ Q′

i and a ∈ Σ# we have

δ(q0, $i) = s′
i, δ(pi, a) = δ′

i(pi, a), δ(pi, |ci) = qf .

All undefined transitions lead to the sink state qs. From the fact that the DFAs Ai

are minimal, one can see that also A is a minimal DFA. The integer k for the
instance of the D-Set-Size problem is k = |Q| + 1.

Let L = L(A). We show that
⋃n+2

i=1 L(A′
i) = Σ∗

if and only if sc(D(L)) ≤ k.
First assume

⋃n+2
i=1 L(A′

i) = Σ∗
#. We show that in this case

D(L) = L ∪ Σ∗
∪

n+2⋃

i=1

Σ∗
#|ci

holds. This is seen as follows. We have L ⊆ D(L) because A has a sink state.
Since

⋃n+2
i=1 $iΣ

∗
#|ci ⊆ L and D(L) is suffix closed, we obtain

⋃n+2
i=1 Σ∗

#|ci ⊆ D(L).
Similarly, since

⋃n+2
i=1 $iL(A′

i) ⊆ L, we have
⋃n+2

i=1 L(A′
i) = Σ∗

⊆ D(L). For the
converse inclusion, notice that w ∈ D(L) implies that there is some state q ∈ Q
such that δ(q, w) ∈ F . Clearly, this state q cannot be the sink state qs. If q = q0

124 M. Holzer and S. Jakobi

then w ∈ L, and if q = qf then w = λ ∈ Σ∗
#. It remains to consider states q ∈ Q′

i,
with 1 ≤ i ≤ n + 2: if δ(q, w) ∈ Fi then w ∈ Σ∗

#, and if δ(q, w) = qf then
w ∈ Σ∗

#|ci. Thus we have D(L) = L ∪ Σ∗
∪ ⋃n+2

i=1 Σ∗
#|ci. One can see that this

language can be accepted by a DFA with |Q| + 1 states: simply make state q0
accepting, add a new accepting state q1 and transitions δ(q0, a) = δ(q1, a) = q1,
for all a ∈ Σ# and δ(q1, |ci) = qf with 1 ≤ i ≤ n + 2.

Now assume
⋃n+2

i=1 L(A′
i)
= Σ∗

#. As before we can conclude that

L ∪
n+2⋃

i=1

Σ∗
#|ci ⊆ D(L) ⊆ L ∪ Σ∗

∪
n+2⋃

i=1

Σ∗
#|ci.

Let B = (QB , Γ, δB , q0,B , FB) be some DFA with L(B) = D(L). Notice that for
1 ≤ i ≤ n + 2, the state δB(q0,B , $i) of B must be equivalent to state δ(q0, $i)
of A—otherwise D(L) and L would differ on words starting with $i. From the fact
that A is a minimal DFA, one can see that DFA B must contain automaton A
as a substructure—however, the initial state q0,B of B is an accepting state.
Further, we show that B needs at least two additional states p1 and p2, so that
sc(D(L)) > |Q| + 1.

State p1 is witnessed as follows. Because
⋃n+2

i=1 L(A′
i)
= Σ∗

#, it must be⋃n
i=1 L(Ai)
= Σ∗. So there is a word w ∈ Σ∗ with w /∈ ⋃n

i=1 L(Ai). Notice that
also w /∈ ⋃n+2

i=1 L(A′
i). We argue that the word #w cannot belong to D(L): if

#w ∈ D(L) then there is a state q ∈ Q such that δ(q, #w) ∈ F . Clearly q
= qs

and q
= qf . Further, state q cannot be q0, because the only transitions from q0
that do not enter the sink state are on symbols $i. So it can only be q ∈ Q′

i,
for some i with 1 ≤ i ≤ n + 2. But then δ(q,#w) ∈ F implies δ′

i(s
′
i, w) ∈ F ′

i ,
a contradiction to w /∈ ⋃n

i=1 L(Ai). Thus, #w /∈ D(L). Let p1 = δB(q0,B ,#w).
Since #w is not accepted by B, we have p1 cannot be an accepting state. In
particular p1
= q0,B and p1
= qf . But also p1
= qs because #w|ci must be
accepted for 1 ≤ i ≤ n + 2. Finally, state p1 cannot belong to any set Q′

i, for
1 ≤ i ≤ n+2, because otherwise p1 would be reachable from the initial state q0,B

of by B by some word $iu. But since δB(p1, |cj) is an accepting state for every j
with 1 ≤ j ≤ n+2, a word $iu|cj /∈ D(L), with i
= j, would be accepted by B—a
contradiction. Therefore p1 must be a new state.

For the existence of another state p2 recall the DFAs An+1 and An+2 we
added to the union universality instance. These automata ensure that Σ ⊆ D(L).
So let p2 = δB(q0,B , a) for some a ∈ Σ. Since p2 must be an accepting state,
we have p2
= p1 and p2
= qs. Moreover p2
= q0,B since otherwise a$1|c1 /∈ D(L)
would be accepted by B. Since a|ci ∈ D(L), for 1 ≤ i ≤ n + 2, we have p2
= qf .
Finally, we have p2 /∈ Q′

i, for 1 ≤ i ≤ n + 2, because otherwise a word of the
form $iu|cj /∈ D(L) would be accepted by B. Hence sc(D(L)) ≥ |Q| + 2, which
concludes the proof. ��
As an immediate consequence of the previous two lemmata we obtain the next
theorem.

Theorem 7. D-Set-Size is PSPACE-complete w.r.t. deterministic polytime
reductions. ��

On the Computational Complexity of D-Set Problems 125

3.2 Results on the Representation of Distinguishability Sets

In this subsection we consider decision problems on the representation of distin-
guishability sets. The L-Versus-D problem is defined as follows:

– L-Versus-D. Given two DFAs A and B, decide whether L′ = D(L), for
L = L(A) and L′ = L(B)?

By a similar proof as in the previous subsection, the L-Versus-D problem can
be classified to be PSPACE-complete

Theorem 8. L-Versus-D is PSPACE-complete. ��
In the L-Versus-D problem we have to decide whether L′ = D(L). Let us now
take a closer look at the complexity of deciding the two inclusions L′ ⊆ D(L)
and L′ ⊇ D(L). It turns out that the former inclusion is the hard part, while the
latter is easy. For the upper bound in the next lemma, we construct an NFA for
the language D(L)∩L′ and test this for emptiness, which can be done in NL [6].

Lemma 9. Given two deterministic finite automata A and B with L = L(A)
and L′ = L(B), it is NL-complete to decide whether L′ ⊇ D(L). ��
With Theorem 8 and Lemma 9 we can now prove the following result.

Corollary 10. Given two deterministic finite automata A and B with L = L(A)
and L′ = L(B), it is PSPACE-complete to decide whether L′ ⊆ D(L). ��

3.3 Results on the Finite Hierarchy of Distinguishability Sets

Recall that the iteration of the D-operator induces a finite hierarchy of the form
D(L) ⊇ D2(L) = Dn(L), for n ≥ 3, regardless on the language L on which we
started the D-iteration. In case the language L is suffix closed, we also have
L ⊇ D(L), which is not the case in general. In the forthcoming we consider
problems that are related to the levels of this hierarchy. The first problem is

– L-Equals-D. Given a deterministic finite automaton A, decide whether L =
D(L), where L = L(A)?

Analogously one defines the problems: D-Equals-DSquare and L-Equals-
DSquare. In contrast to the problems investigated in the previous subsections, it
turns out that here the computational complexity of the problems is much easier.

We start with the D-Equals-DSquare problem. First, we give a character-
ization of the languages L that satisfy D(L) = D2(L). To this end we introduce
a new notion. A language L ⊆ Σ∗ is language-synchronizing if there exists a
word w ∈ Σ∗ such that xwz ∈ L if and only if ywz ∈ L, for every x, y, z ∈ Σ∗.
Any word w with this property is called a language-reset word for the language L.
Now we come to our characterization result.

Theorem 11. A language L ⊆ Σ∗ is language-synchronizing if and only if the
equality D(L) = D2(L) holds.

126 M. Holzer and S. Jakobi

Proof. Recall that in [1] it was shown that D(L) = D2(L) holds if and only
if D(L) has ∅ as a quotient. Thus, it suffices to prove that the latter condition
is equivalent to the fact that L is language-synchronizing. Assume that L is
language-synchronizing and that w is any language-reset word. Then xwz ∈ L
if and only if ywz ∈ L, for every words x, y, and z. Therefore, the words wz
do not distinguish between any words x and y. Thus wz
∈ D(L), for every
word z ∈ Σ∗. This in turn implies w−1 · D(L) = ∅. Hence we have shown that
if L is language-synchronizing, then D(L) has ∅ as a quotient. Conversely, we
argue as follows. Let D(L) have ∅ as a quotient, i.e., there is a word w ∈ Σ∗ such
that w−1 · D(L) = ∅. This means that all continuations of w by any word z do
not belong to the set D(L). In other words, the condition xwz ∈ L if and only
if ywz ∈ L, for every x, y, z ∈ Σ∗, holds, which is the definition of language-
synchronizability. Therefore, we have shown that D(L) having ∅ as a quotient
implies that L is language-synchronizing. ��

In fact, language-synchronization is a generalization of synchronizability on
DFAs—see, e.g., [10] for a survey on synchronizing finite automata. A DFA
A = (Q,Σ, δ, q0, F) is synchronizing if there exists a word w ∈ Σ∗ whose action
resets A, i.e., it leaves the automaton in one particular state no matter which
state in Q one starts—in other words δ(p,w) = δ(q, w) for every p, q ∈ Q. Any
word w with this property is called a reset word for the automaton A. The
following alternative characterization of synchronizability is given in [10].

Lemma 12. A deterministic finite automaton A = (Q,Σ, δ, q0, F) is synchro-
nizing if and only if for every states p, q ∈ Q there exists a word w ∈ Σ∗ such
that δ(p,w) = δ(q, w).

The next theorem shows that language-synchronization and synchronization on
DFAs coincide.

Theorem 13. A regular language L is language-synchronizing if and only if it
is accepted by a synchronizing deterministic finite automaton. ��
A close inspection of the proof of Theorem 13 reveals that synchronizability of
DFAs is stable under DFA minimization: if a DFA A is synchronizing, the first
part of the proof shows that L(A) is language-synchronizing, and then the second
part shows that its minimal DFA is synchronizing. In particular, this means that
a regular language L is language-synchronizing if and only if its minimal DFA is
synchronizing. Together with Theorem 11 we immediately obtain the following
characterization.

Corollary 14. Let L be a regular language. Then D(L) = D2(L) if and only if
the minimal deterministic finite automaton for L is synchronizing. ��
We end our small detour on synchronizability with the following computational
complexity result. Again, a reduction from the graph reachability problem can
be used to prove NL-hardness.

On the Computational Complexity of D-Set Problems 127

Lemma 15. The problem of deciding whether a given deterministic finite automa-
ton is synchronizing is NL-complete. This even holds if the problem instances are
restricted to minimal deterministic finite automata. ��
After this preliminary result on the characterization of (regular) languages that
satisfy D(L) = D2(L) we are now ready to determine the computational com-
plexity of the D-Equals-DSquare problem.

Theorem 16. D-Equals-DSquare is NL-complete. ��
Next we also classify the complexity of the L-Equals-D problem.

Theorem 17. L-Equals-D is NL-complete.

Proof. For the containment in NL, we use that a language L satisfies L = D(L)
if and only if L is suffix closed and has ∅ as a quotient [1]. Both properties can be
verified in NL since this complexity class is closed under complementation [4,9].
The details are left to the reader.
For proving NL-hardness let G = (V,E) with vertices s and t be an instance of
the graph reachability problem, where every vertex v ∈ V \ {t} has out-degree
two, and the only outgoing edge of t is a self-loop. We construct a DFA A
over alphabet Σ = {a, b}, with state set Q = V ∪ {q0, f}, from which q0 is
the initial state and state t is the only accepting state. The transitions of A in
states v ∈ V resemble the edges of G (the self-loop on t induces loops on both
inputs a and b), and the transitions of the additional states are δ(q0, a) = s
and δ(q0, b) = δ(f, a) = δ(f, b) = f . Clearly, if there is no path from s to t
in G, then both languages L = L(A) and D(L) are empty, hence L = D(L).
Conversely, if G contains a path from s to t, then we have D(L) = Σ∗ (because
of states s and t). However, since the initial state of A is not accepting we have
L
= D(L). ��
It remains to consider the L-Equals-DSquare problem, i.e., the problem of
deciding for a given DFA A with L = L(A), whether L = D2(L). In fact, we
already solved this problem by Theorem 17 because L = D2(L) holds if and only
if L = D(L), which can be seen as follows: if L = D(L), applying D to both sides
yields D(L) = D2(L), hence L = D2(L). Conversely, assume L = D2(L), then
applying D yields D(L) = D3(L). Since we know from [1] that D3(L) = D2(L) is
always true, we obtain L = D(L). Therefore we obtain the following result.

Corollary 18. L-Equals-DSquare is NL-complete. ��

4 Conclusions

We have investigated the computational complexity of problems related to the
distinguishability set, for short D-set, of regular languages. The obtained results
nicely fit into known ones for finite automata problems. Nevertheless, it is
remarkable that some of the problems under consideration turned out to be

128 M. Holzer and S. Jakobi

of very high complexity, namely PSPACE-complete, although only deterministic
devices were involved.

In the original paper [1], where the properties of the D-language were inves-
tigated in detail, also other types of distinguishability sets were mentioned. By
definition, the D-sets are related to the suffix operation. Conversely, prefix and
infix operation on languages induced certain forms of distinguishability operators,
too. Due to their close nature to the original D-operator we feel that the computa-
tional complexity of problems related to these forms of operators are probably the
same as for the D-operator. On the other hand, there may be operators of interest,
the complexity of which may highly differ from ours. One example of this kind is
the D-operator of [1], which is defined as

DL(x, y) = min{w ∈ Σ∗ | w ∈ DL(x, y) }
and D(L) = {DL(x, y) | x
≡L y }, where the minimum refers to the smallest
element with respect to the lexicographical order. Due to the additional proper-
ties of the D-operation and the fact that the D-sets are always finite for regular
languages, we think that this operator is a natural host for further investigations
on the computational complexity of related D-set problems.

References

1. Câmpeanu, C., Moreira, N., Reis, R.: The distinguishability operation on regu-
lar languages. In: Bensch, S., Freund, R., Otto, F. (eds.) Proceedings of the 6th
International Workshop on Non-Classical Models of Automata and Applications,
number 304 in books@ocg.at, Kassel, Germany, pp. 85–100 (2014). Österreichische
Computer Gesellschaft

2. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

3. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata–a survey. Inform. Comput. 209(3), 456–470 (2011)

4. Immerman, N.: Nondeterministic space is closed under complementation. SIAM J.
Comput. 17(5), 935–938 (1988)

5. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput.
22(6), 1117–1141 (1993)

6. Jones, N.: Space-bounded reducibility among combinatorial problems. J. Comput.
System Sci. 11, 68–85 (1975)

7. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, pp. 254–266 (1977)

8. Moore, E.F.: Gedanken experiments on sequential machines. In: Shannon, C.E.,
McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies, pp. 129–
153. Princeton University Press (1956)

9. Szelepcsényi, R.: The method of forced enumeration for nondeterministic
automata. Acta Inform. 26(3), 279–284 (1988)

10. Volkov, M.V.: Synchronizing automata and the černý conjecture. In: Mart́ın-Vide,
C., Otto, F., Fernau, H. (eds.) LATA 2008. LNCS, vol. 5196, pp. 11–27. Springer,
Heidelberg (2008)

11. Wagner, K., Wechsung, G.: Computational Complexity. Mathematics and its appli-
cations (East Europeans series). VEB Deutscher Verlag der Wissenschaften, Berlin
(1986)

Prefix-Free Subsets of Regular Languages
and Descriptional Complexity

Jozef Štefan Jirásek and Juraj Šebej(B)

Institute of Computer Science, Faculty of Science, P. J. Šafárik University,
Jesenná 5, 040 01 Košice, Slovakia

{jirasekjozef,juraj.sebej}@gmail.com

Abstract. We study maximal prefix-free subsets of regular languages
and their descriptional complexity. We start with finite subsets and give
the constructions of deterministic finite automata for largest and smallest
finite maximal prefix-free subsets. Then we consider infinite maximal
prefix-free subsets, and we show that such subsets can be effectively
found if they exist. Finally, we prove that if a regular language has a
non-regular maximal prefix-free subset, then it has uncountably many
maximal prefix-free subsets.

1 Introduction

A language is prefix-free if it does not contain two distinct strings, one of which
is a prefix of the other. In prefix codes, such as variable-length Huffman codes or
country calling codes, there is no codeword that is a proper prefix of any other
codeword. With such a code, a receiver can identify each codeword without any
special marker between words. Motivated by prefix codes, the class of prefix-free
regular languages has been recently investigated [1–6].

In this paper, we are interested in finding prefix-free subsets, or more pre-
cisely, in maximal prefix-free subsets of formal languages. We start with the
following problem: assume that we exclude from a given language L the set of
strings that are proper prefixes of some other strings in L. What can be said
about the resulting language L1? We prove that if L is accepted by an n-state
deterministic finite automaton (DFA), then the language L1 is accepted by a
DFA of at most n states. Moreover, if L is finite, then L1 is a largest finite
maximal prefix-free subset of L. On the other hand, in many cases, the set L1

is empty, so it is not maximal if L is non-empty.
Then we exclude from a regular language L the set of strings, the proper

prefixes of which are in L. We denote the resulting prefix-free set by L2. We
prove that if L2 is infinite, then L does not have any finite maximal prefix-free
subset, and if L2 is finite, then L2 is a smallest finite maximal prefix-free subset
of L. In the second case, we show that we can effectively find a largest finite
maximal subset of L if such a subset exists.

J. Šebej—The author was supported by the Slovak Grant Agency for Science under
contract VEGA 1/0142/15.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 129–140, 2015.
DOI: 10.1007/978-3-319-19225-3 11

130 J.Š. Jirásek and J. Šebej

In the last part of the paper, we study infinite maximal prefix-free subsets
of regular languages. We prove that if the sizes of finite prefix-free subsets of
L grow without limit, then L has an infinite prefix-free subset. For an infinite
regular language, either all the maximal prefix-free subsets are finite, or we can
effectively find an infinite maximal prefix-free subset. We always discuss the
descriptional complexity of resulting subsets. Finally, we prove that if a regular
language has a non-regular maximal prefix-free subset, then it has uncountably
many maximal prefix-free subsets.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ the set of all strings over Σ. The empty string
is denoted by ε. A language is any subset of Σ∗. We denote the size of a set A
by |A|, and its power set by 2A. For details, we refer the reader to [8,9].

A deterministic finite state automaton (DFA) is a 5-tuple A = (Q,Σ, ·, s, F),
where Q is a finite non-empty set of states; Σ is a finite alphabet; · : Q×Σ → Q
is the transition function which can be naturally extended to the domain Q×Σ∗,
s ∈ Q is the initial state; and F ⊆ Q is the set of final states. A non-final state
q is a dead state if q · a = q for each a in Σ. The language accepted by the DFA
A is defined as the set L(A) = {w ∈ Σ∗ | s · w ∈ F}. We let A = (n, �, F)
denote a unary DFA A = ({0, 1, . . . , n − 1}, {a}, ·, 0, F), where i · a = i + 1 for
i = 0, 1, . . . , n − 2, and (n − 1) · a = � [7].

The state complexity of a regular language L, denoted by sc(L), is the number
of states in the minimal DFA accepting the language L.

Let A = (Q,Σ, ·, s, F) be a DFA. A state q ∈ Q accepts a string w if q ·w ∈ F ;
in such a case we say that q is useful. A DFA A = (Q,Σ, ·, s, F) is a trim DFA
if every state of A is reachable from the initial state s, and every state, except
for the dead state, is useful. A state q is an ε-state if it accepts only the empty
string.

Let u, v, w be strings over Σ and L be a language over Σ. If w = uv, then
u is a prefix of w. If, moreover v �= ε, then u is a proper prefix of w. We write
u ≤p v if u is a prefix of v, and u �p v if u is a proper prefix. A language is
prefix-free if it does not contain two strings, one of which is a proper prefix of
the other. Next, [w] = {u ∈ Σ∗ | u ≤p w}∪{u ∈ Σ∗ | w ≤p u}; that is, [w] is the
set of all the strings that are comparable to w. Finally, let Lw = {x | wx ∈ L},
that is, Lw is the left quotient of L by w. The set [w] is regular for every string
w, and if L is regular, then Lw is regular as well.

A set P is a maximal prefix-free subset of a language L, if (i) P ⊆ L, (ii) P
is prefix-free, and (iii) for every string w in L \ P , the language P ∪ {w} is not
prefix-free. A set P is a largest finite maximal prefix-free subset of a language
L, if (i) P is a finite maximal prefix-free subset of L, and (ii) for every finite
maximal prefix-free subset P ′ of L, we have |P ′| ≤ |P |. A smallest finite maximal
prefix-free subset is defined symmetrically. Now for a given regular language L,
we present a construction of a DFA AF ′ which accepts a prefix-free subset of
L. Then we state a sufficient condition so that the resulting subset is maximal.

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 131

Let A = (Q,Σ, ·, s, F) be a DFA and F ′ ⊆ F . Construct the DFA

AF ′ = (Q,Σ, ·′, s, F ′), (1)

where q ·′a is undefined (or it goes to an added dead state if we consider complete
DFAs) if q ∈ F ′, and q ·′ a = q · a if q /∈ F ′.

Lemma 1. The set L(AF ′) is a prefix-free subset of L(A). �	
Lemma 2. If each state in F \ F ′ is useful in AF ′ , then L(AF ′) is a maximal
prefix-free subset of L(A). �	

3 L′ and L1 = L \ L′

With the aim of finding prefix-free subsets of a language L, we start by defining
the set L′ as a set containing such strings of L which are proper prefixes of some
other strings in L. Then we define a prefix-free subset L1 of L by L1 = L \ L′.
For a regular language L, we study the properties of L′ and L1 in this section.

Definition 3. For a language L, define languages L′ and L1 as follows:

L′ = {w ∈ L | there is a non-empty stringx such thatwx ∈ L}, (2)
L1 = L \ L′. (3)

It follows directly from the definition that L1 is prefix-free. We show that if L is
regular, then L′ is regular as well. Moreover, a DFA for L′ can be obtained from
a DFA for L by a modification of the set of final states of A.

Construction 4 (The construction of a DFA A′ for the language L′).
Let A = (Q,Σ, ·, s, F) be a minimal DFA for L. Construct the DFA

A′ = (Q,Σ, ·, s, F ′),

where F ′ = {q ∈ F | there is a non-empty stringw such that q · w ∈ F}. �	
Thus, the DFA A′ is the same as the DFA A, except for the set of final states.
All the final states in A that accept only the empty string are non-final in the
DFA A′. All the remaining final states in A are final in A′.

Proposition 5. Let L be a language accepted by a minimal n-state DFA A.
Then the language L′ given by (2) is accepted by the DFA A′ described in Con-
struction 4, and we have sc(L′) ≤ n. Moreover, for every k with 1 ≤ k ≤ n,
there is a unary regular language L with sc(L) = n such that sc(L′) = k. �	
The following construction describes a DFA for L1 of at most n states.

Construction 6 (The construction of a DFA A1 for the language L1).
Let A = (Q,Σ, ·, s, F) be a minimal DFA. Construct the DFA

A1 = (Q,Σ, ·, s, F1),

where F1 = {q ∈ F | there is no non-empty stringw such that q · w ∈ F}. �	

132 J.Š. Jirásek and J. Šebej

Thus, all the final states of A that accept only the empty string are final in the
DFA A1, and all the remaining final states of A are non-final in A1.

Proposition 7. Let L be a language accepted by a minimal n-state DFA A.
Then the language L1 given by (2–3) is accepted by the DFA A1 described in Con-
struction 6, and we have sc(L1) ≤ n. If L is a unary language, then sc(L1) = 1
or sc(L1) = n. Moreover, for every k with 1 ≤ k ≤ n, there is a binary language
L with sc(L) = n such that sc(L1) = k. �	
Theorem 8. If a language L is finite, then the set L1 defined by (2–3) is a
largest finite maximal prefix-free subset of L. �	

4 L′′ and L2 = L \ L′′

In this section, we define the language L′′ as the language containing such strings
in L whose proper prefix is in L. Then we define the language L2 by L2 = L\L′′,
and study the properties of L′′ and L2.

Definition 9. For a language L, define languages L′′ and L2 as follows:

L′′ = {w ∈ L | w = uv for some stringu inL and some v �= ε}, (4)
L2 = L \ L′′. (5)

Construction 10 (The construction of a DFA A′′ for the language L′′).
Let A = (Q,Σ, ·, s, F) be a minimal automaton for L. Construct the DFA

A′′ = (
⋃

q∈Q

{q, q′}, Σ,
, s, {q′ | q ∈ F}),

where we add a copy q′ of each state q, and
 is defined as follows:

q
 a =

{
p, if q /∈ F, and q · a = p;
p′, if q ∈ F, and q · a = p;

q′
 a = p′, if q · a = p.

Thus we make a copy of the DFA A, and redirect every transition going from a
final state of A to the corresponding state in the copied automaton.

Proposition 11. Let L be a language accepted by a minimal n-state DFA A.
Then the language L′′ given by (4) is accepted by the DFA A′′ described in
Construction 10, and sc(L′′) ≤ 2n. Moreover, for every k with 0 ≤ k ≤ n, there
is a unary language L with sc(L) = n and sc(L′′) = n + k. �	
Construction 12 (The construction of a DFA A2 for the language L2).
Let A = (Q,Σ, ·, s, F) be a DFA. Construct the DFA A2 = (Q ∪ {d}, Σ,
, s, F),
where
 is defined as follows:

q
 a =

{
q · a, if q /∈ F ;
d, if q ∈ F.

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 133

Thus, the DFA A2 is the same as the DFA A, except for the transitions in final
states.

Proposition 13. Let L be a language accepted by a minimal n-state DFA. Then
the language L2 given by (4–5) is accepted by the DFA A′′ described in Construc-
tion 12 and we have sc(L′′) ≤ n + 1. Moreover, for every k with 2 ≤ k ≤ n + 1,
there is a unary language L such that sc(L) = n and sc(L2) = k. �	
Proposition 14. Let L be a regular language. Then the set L2 given by (4–5) is
a maximal prefix-free subset of L. If L2 is infinite, then L does not have any finite
maximal prefix-free subset. If L2 is finite, then it is a smallest finite maximal
prefix-free subset of L. �	

5 Largest Finite Maximal Prefix-Free Subsets

In this section, we consider a regular language L accepted by a trim DFA A,
and such that the set L2 defined by (4–5) is finite. Recall that L2 is accepted by
the DFA A2, obtained from the DFA A for L by turning every final state of A
to an ε-state, that is, we redirected all the out-transitions from every final state
to the dead state d. By Proposition 14, the set L2 is a smallest finite maximal
prefix-free subset of L. The aim of this section is to find a largest finite maximal
prefix-free subset of L if such a set exists.

For a final state q of a DFA A = (Q,Σ, ·, s, F), we define the set of so-called
first-accepted strings as follows:

P (q) = {u | u �= ε, q · u ∈ F, and q · u′ /∈ F if ε �= u′ �p u},

that is, the set P (q) contains a non-empty string u if it is accepted from q and
if every non-empty proper prefix of u is rejected from q. Let us partition the set
of final states of A into four groups:

F0 = {q ∈ F | |P (q)| = 0},
F∞ = {q ∈ F | |P (q)| = ∞},
F1 = {q ∈ F | |P (q)| = 1},
F2 = {q ∈ F | 2 ≤ |P (q)| < ∞},

that is, in F0, F∞, F1, and F2, we have the final states of A with zero, infinitely
many, one, and two but finitely many first-accepted strings. Notice that for a
final state qf , we can effectively determine to which group it belongs: We first
add a copy q′

f of the state qf to the DFA A. We make the state q′
f a new initial

and rejecting state. For each symbol a in Σ, we add the transition on a from q′
f

to qf ·a. Then we change every final state to an ε-state. Finally, we test whether
the language accepted by the resulting DFA is empty, finite, or infinite.

Now consider the states in F1. If q ∈ F1, then there is exactly one first-
accepted string w1 for q. The string w1 can move the state q either to a state in
F0, or to a state in F∞, or to a state in F2, or again to a state in F1, and this case
can occur several times, and eventually we either get a state in F0 ∪F∞ ∪F2, or
we get a cycle of states in F1. Hence, let us partition the set F1 as follows (here

134 J.Š. Jirásek and J. Šebej

a transition p
w−→ q denotes that w is a first-accepted string of the state p and

p · w = q):

F1,0 = {q ∈ F1 | there is a sequence of transitions
q = q0

w1−−→ q1
w2−−→ · · · wk−−→ qk with qi ∈ F1 if 0 ≤ i < k and qk ∈ F0},

F1,∞ = {q ∈ F1 | there is a sequence of transitions
q = q0

w1−−→ q1
w2−−→ · · · wk−−→ qk with qi ∈ F1 if 0 ≤ i < k and qk ∈ F∞},

F1,2 = {q ∈ F1 | there is a sequence of transitions
q = q0

w1−−→ q1
w2−−→ · · · wk−−→ qk with qi ∈ F1 if 0 ≤ i < k and qk ∈ F2},

F1,1 = {q ∈ F1 | there is a sequence of transitions
q = q0

w1−−→ q1
w2−−→ · · · wk−−→ qk = qj , 0 ≤ j ≤ k, qi ∈ F1 if 0 ≤ i ≤ k}.

Next, let P ∗(q) = P (q) if q /∈ F1, and let P ∗(q) = P (qk) if q ∈ F1 and q goes (in
a unique way) to the state qk not in F1. Then we have the following observation.

Proposition 15. Let q ∈ F and u be a string such that s · u = q. Then the set
{uv | v ∈ P (q)} is a maximal prefix-free subset of L in the subtree Tu of the tree
(Σ∗,≤p).

Now consider the final states in F2 ∪ F1,2. Let us construct a graph

G = (F2 ∪ F1,2, E),

in which (p, q) is in E iff there is a first-accepted string w in P (p) such that
p · w = q.

Construction 16 (Construction of the DFA B). Let A = (Q,Σ, ·, s, F) be
a trim DFA. Construct the DFA B from A as follows:

If a state q in F2 ∪ F1,2 goes to a cycle in G, then we will assign a special
mark to the state q which we will use later in the proof. If a state q in F2 ∪ F1,2

does not go to any cycle in G, we make the state q non-final. Finally, we turn all
the remaining final states of A to ε-states, that is, we remove all the transitions
going from all the remaining final states of A.

Lemma 17. If a marked state is reachable in the DFA B, then there is no largest
maximal finite prefix-free subset of L.

Proof. Recall that a state in F2 ∪ F1,2 is marked if it goes to a cycle in the
graph G. If a marked state is reachable in the DFA B, then there exists an infinite
sequence of strings u0, u1, u2, . . ., and an infinite sequence of states q1, q2, . . . in
F2 ∪ F1,2 such that

s
u0−→ q1

u1−→ q2
u3−→ q3

u4−→ · · · ,

where p
w−→ q denotes that w ∈ P (p) and p · w = q; notice that u0 indeed

can be taken first-accepted as we can consider the first marked state on the
corresponding path from s. Moreover, the states from F2 occur infinitely many
times in the sequence q1, q2, . . . since every state from F1,2 eventually, and in a
unique way, goes to a state from F2. Now we define an infinite sequence of sets by

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 135

N1 = (L(AF) \ {u0}) ∪ {u0v | v ∈ P (q1)}, and
Nj+1 = (Nj \ {u0u1 · · · uj}) ∪ {u0u1 · · · ujv | v ∈ P (qj+1)}, j = 1, 2,

Throughout this section we assume that L(AF) is a maximal finite prefix-free
subset of L. It follows that the set N1, obtained from L(AF) by replacing the
string u0 with the set {u0v | v ∈ P (q1)}, is a maximal finite prefix-free subset of
L since the set P (q1) of first-accepted strings of q1 is finite and maximal prefix-
free in the tree Tu0 . If q1 ∈ F2, then |N1| > |L(AF)|, and if q1 ∈ F1,2, then
|N1| = |L(AF)|.

Now assuming that Nj is a maximal finite prefix-free subset of L, by a similar
reasoning we get that Nj+1 is a maximal finite prefix-free with |Nj+1| > |Nj |
if qj+1 ∈ F2, and with |Nj+1| = |Nj | if qj+1 ∈ F1,2. Since the states from F2

occur in the sequence infinitely many times, the sizes of maximal finite prefix-
free subsets grow without limit, so there is no largest finite maximal prefix-free
subset of L. Our proof is complete. �	
Lemma 18. If no marked state is reachable in the DFA B, then L(B) is a finite
maximal prefix-free subset of L.

Proof. By Lemma 1, the set L(B) is prefix-free, and by Lemma 2, it is maximal.
Notice that every final state of B is an ε-state. Therefore all the final states can
be merged into a unique final state f . Moreover, we can omit all the unreachable
or useless states of B. We can prove that L(B) is finite. �	
Lemma 19. If no marked state is reachable in the DFA B, then there exists a
largest maximal finite prefix-free subset of L.

Proof. Assume, to get a contradiction, that there is no largest finite maximal
prefix-free subset of L, that is, the sizes of finite maximal prefix-free subsets grow
without limit. Let � be the number of prefixes of the strings in L(B), that is,

� = |{u | u ≤p w for a string w in L(B)}|.
Let M be a finite maximal prefix-free subset of L with |M | > � + |L(B)|. Let
K = {v ∈ M | v is a prefix of some string in L(B)}. Since L(B) is maximal, for
every string v in M \ K, there is a string w in L(B) such that w �p v. Since
|M \ K| > |L(B)|, there is a string w in L(B) and there are at least two, but
finitely many non-empty strings v1, . . . , vk such that wv1, . . . , wvk are in M \K.

The initial state s goes to a final state p of B by w. Next, in A, the final
state p goes to some final states f1, . . . , fk by u1, . . . , uk, respectively. It follows
that p cannot be a state in F0 ∪ F1,0 ∪ F1,1 since |P ∗(p)| ≥ 2. Next, since M is
finite, the state p cannot be a state in F∞ ∪ F1,∞ because otherwise M would
not be maximal.

It follows that p is a state in F2 ∪ F1,2. Since no marked state is reachable
in B, the state p must be non-final in B. This is a contradiction with w ∈ L(B),
and the lemma follows. �	
Lemma 20. If no marked state is reachable in the DFA B, then L(B) is a
largest finite maximal prefix-free subset of L.

136 J.Š. Jirásek and J. Šebej

Proof. Recall that every final state of B is an ε-state. Therefore all the final
states can be merged into a unique final state f . Moreover, we can omit all the
unreachable or useless states of B. By the previous lemma, there is a largest
maximal prefix-free subset M of L. Let us show that there is no string w in
L(B) such that a string in M is a proper prefix of w.

Assume, to get a contradiction, that such a string w exists in L(B). Let u
be a string in M such that w = uv and v �= ε. Then in A, the initial state s
goes to a final state p by u, while in B, the initial state s goes to the state p by
u and then to the state f by v. It follows that the state p is non-final in B, so
p ∈ F2 ∪ F1,2. However, then we can replace u in M with P ∗(p) and get a larger
finite maximal prefix-free subset. This is a contradiction since M is a largest
finite maximal prefix-free subset.

Hence each string in L(B) is either in M or it is a proper prefix of a string
in M . Let K = L(B)∩M and K ′ = L(B)\K. Let us show that |K ′| = |M \K|.
Assume for a contradiction that |K ′| < |M \K|. Since L(B) is maximal, it covers
M \ K. Since |K ′| < |M \ K|, at least two strings in M \ K must be covered by
the same string in K ′. However, in such a case, we get the same contradiction as
in the proof of Lemma 19. Hence |L(B)| = |M |, which concludes our proof. �	
Let us summarize the results of this section in the following theorem.

Theorem 21. Let L be a language accepted by a trim DFA A. Let the set L2

given by (4–5) be finite. Let B be the DFA described in Construction 16. If a state
with a mark is reachable in B, then the sizes of finite maximal prefix-free subsets
of L grow without limit. Otherwise L(B) is a largest finite maximal prefix-free
subset of L. �	

6 Infinite Prefix-Free Subsets

Now we turn our attention to infinite prefix-free subsets. Let us start with the
following result.

Theorem 22. Let a language L have arbitrarily large finite prefix-free subsets.
Then L also has an infinite prefix-free subset.

Proof. Consider the tree (Σ∗,≤p) where u ≤p v iff u is a prefix of v. Then a
prefix-free subset of L is an antichain in (Σ∗,≤P).

Let [w] = {u ∈ Σ∗ | u ≤p w} ∪ {u ∈ Σ∗ | w ≤p u} denote the set of all the
strings that are comparable to w.

First, we define an infinite chain C = {un | n ≥ 0} inductively as follows:
Let u0 = ε. Assume we have defined un such that [un] has arbitrarily large finite
antichains in L. Consider a finite set {una | a ∈ Σ} of immediate successors
of un. There must exist a symbol σ in the finite set Σ such that [unσ] has
arbitrarily large finite antichains in L. Set un+1 = unσ. Then we get an infinite
chain C = {un | n ≥ 0} such that for every n, the set [un] has arbitrarily large
finite antichains in L.

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 137

Now we are going to define inductively an infinite antichain {vn | n ≥ 0}. Let
k0 = 0. For a given n, let An be an antichain in [ukn

] such that |An| ≥ 2. Since
the intersection of a chain and an antichain has at most one element, there is a
string vn in An such that vn /∈ C. It follows that there is an integer kn+1 with
kn+1 > kn such that vn /∈ [ukn+1]. For kn+1, we define wn+1 as described above.
If n < m, then vn ∈ [ukn

] \ [ukm
]. Since ukm

≤p vm, we have [vm] ⊆ [ukm
]. Since

vn /∈ [ukm
], we have vn /∈ [vm]. So the strings vm and vn are incomparable. Thus

{vn | n ≥ 0} is an infinite antichain in L, and the theorem follows. �	
The next result shows that for a language with state complexity n, we can
effectively find an infinite maximal prefix-free subset of state complexity 2n if
such a subset exists.

Lemma 23. Let L be an infinite regular language. Then either all the maximal
prefix-free subsets of L are finite, or there exists a regular infinite maximal prefix-
free subset of L, and such a subset can be effectively found (in time O(n + m),
where n is the number of states and m is the number of transitions in a DFA
for L), and it is of state complexity at most 2n.

Proof. Let L be accepted by a trim DFA A = (Q,Σ, ·, s, F). The DFA A can
be viewed as a labeled directed graph D(A) = (V,E) with multiple arcs, where
V = Q, and there is an arc from p to q labeled by a iff p · a = q. Since L is
infinite, the digraph D(A) must contain a cycle which can be reached from s;
here, by a cycle we understand a sequence p0, a1, p1, a2, . . . , a�, p� = p0, where
(pi−1, ai, pi) for i = 0, . . . , � is a labeled arc in G.

(1) Assume that there is a cycle C in D(A), and that there is a vertex p
on C and an arc (p, q) labeled by a such that (p, a, q) is not on C. Since A is
a trim automaton, the state p is reachable from s, and an accepting state f of
A is reached from the state q by a (short enough) string w = a1a2 · · · ak, where
ai ∈ Σ. It follows that there is a sequence q0, q1, . . . , qk of (pairwise distinct)
states in A such that q0 = q, qk ∈ F , and

p
a−→ q = q0

a1−→ q1
a2−→ q2

a3−→ · · · ak−→ qk.

We make a copy q′
j of each state qj in this sequence, and add the transitions

p
a−→ q′

0
a1−→ q′

1
a2−→ q′

2
a3−→ · · · ak−→ q′

k. Next, we remove the transition (p, a, q), and
for each σ with σ �= ai+1, we add the transition (q′

i, σ, qi ·σ) for i = 0, 1, . . . , k−1.
We make the state q′

k final. Denote by A′ the resulting DFA. Then A′ is equivalent
to the DFA A.

Now we make non-final states all the final states of A′ on the cycle C, as well
as all the final states on the path from s to p. We turn all the remaining final
states in A′ into ε-states. Since every state in the cycle C and in the path from
s to p reaches the state qk in the resulting DFA, by Lemma 2, the resulting DFA
accepts a maximal prefix-free subset of L. Since p is on the cycle C, and q′

k is
outside C, the resulting set is an infinite maximal prefix-free subset of L.

(2) If no cycle in G has a vertex p as in case (1), then G is either a cycle, or
it consists of an acyclic part and several disjoint cycles. Since A is a trim DFA,

138 J.Š. Jirásek and J. Šebej

each cycle must contain a final state. However, it follows that every maximal
prefix-free subset of L must be finite since we can have at most one string per
cycle in G, and only finitely many strings can be accepted outside the cycles.

We can find a cycle in case (1), or find out that no such cycle exists in time
O(n + m), where n is the number of states and m is the number of transitions
in A. Since in (1), we make at most one copy for each state in A, the resulting
DFA for an infinite maximal prefix-free subset of L has at most 2n states. �	
The next observation shows that sometimes 2n states are necessary to accept a
regular infinite maximal prefix-free subset.

Proposition 24. Let n ≥ 2. There exists a language L with sc(L) = n such that
there is a regular infinite maximal prefix-free subset P of L with sc(P) = 2n, and
for any other infinite maximal prefix-free subset R of L, we have sc(R) ≥ 2n. �	
Proposition 25. Let n ≥ 4. There exist a regular language L with sc(L) = n,
such that the state complexities of regular infinite maximal prefix-free subsets
of L grow without limit.

Proof. Let L = {a}≥(n−3) ∪ b+a be a regular language accepted by a minimal
n-state DFA. Then for every k with k ≥ n − 3, the set Pk = b+a ∪ {ak} is a
regular infinite maximal prefix-free subset of L with sc(Pk) = k. �	
Now we are going to prove that if a regular language L has a non-regular maximal
prefix-free subset, then L has uncountably many maximal prefix-free subsets.

Theorem 26. If a regular language has a non-regular maximal prefix-free sub-
set, then it has uncountably many maximal prefix-free subsets.

Proof. Let L be a regular language and P be a non-regular maximal prefix-free
subset of L. Since P ⊆ L, for each string w in P , we have ε ∈ Lw. Let

P+ = {w ∈ P | Lw �= {ε}}, (6)

P− = {w ∈ P | Lw = {ε}}, (7)

that is a string of P is in P+ if it is a proper prefix of some string in L; otherwise,
it is in P−. We have P = P+ ∪P−. Our first aim is to prove that P+ is infinite.

Assume, to get a contradiction, that P+ is finite. Let

R = L \
⋃

w∈P+

[w],

that is, the language R consists of all the strings in L that are incomparable to
any string in P+. Since P is prefix-free, we have P− ⊆ R. Since P+ is finite and
[w] is regular for every w, the language R is regular. Next, let R− = {w ∈ R |
Rw = {ε}}. Then R− is regular since to get a DFA for R− from a DFA A for R,
we turn all the final states of A that are not ε-states into non-final states. Let
us show that P− = R−. First let w ∈ P−. Then w ∈ R and Lw = {ε}. Since
R ⊆ L, we have Rw ⊆ Lw = {ε}. Hence Rw = {ε}, so w ∈ R−.

Prefix-Free Subsets of Regular Languages and Descriptional Complexity 139

Now let w ∈ R−. Therefore w /∈ P+. Then w ∈ R, so w is incomparable
to any string in P+. Let u ∈ P−. Let us show that u and w are incomparable.
Since Lu = {ε}, the string u cannot be a proper prefix of w. Since P− ⊆ R
and Rw = {ε}, the string w cannot be a proper prefix of u. Thus w and u are
incomparable. Since P is maximal, the string w must be in P−.

Hence P− = R−, which means that P− is regular. However, then P is also
regular since P = P+ ∪ P−, and we assumed that P+ is finite. This is a contra-
diction. Thus P+ must be infinite.

Now our aim is to show that for each subset of the infinite set P+, we can
find a unique maximal prefix-free subset of L. To this aim, for each w in P+, fix
a non-empty string uw such that wuw ∈ L; such a string must exist by (6).

Let S ⊆ P+. Define a set S′ by S′ = S ∪ {wuw | w ∈ P+ \ S}. Then S′

is a prefix-free subset of L. Let S′′ be a maximal prefix-free subset of L such
that S′ ⊆ S′′. Let us show that if S and T are two distinct subsets of P+, then
S′′ �= T ′′. Without loss of generality, we may assume that there is a string w
with w ∈ S and w /∈ T . Then w ∈ S′′ and wuw ∈ T ′′. Since T ′′ is prefix-free, we
have w /∈ T ′′. Thus S′′ �= T ′′.

Since P+ is infinite, the language L has uncountably many maximal prefix-
free subsets. Our proof is complete. �	
Example 27. Let L = a∗b∗. Then P = {anbn | n ≥ 1} is a maximal non-regular
prefix-free subset of L. By the lemma above, the language L has uncountably
many maximal prefix-free subsets.

Notice that using the notation in the previous proof, we have P+ = P . For
each w in P+, let uw = b. For a subset S of P+, let S′ = S ∪{wb | w ∈ P+ \S}.
Then S′ is a maximal prefix-free subset of L, and if S �= T , then S′ �= T ′. �	

7 Conclusions

We investigated the prefix-free subsets of regular languages and their descrip-
tional complexities. We showed that for a regular language L of state complexity
n, we can find a maximal prefix-free subset of L of state complexity n, and a
regular infinite maximal prefix-free subset, if it exists, of state complexity 2n.
Notice, that if a regular language has an infinite maximal prefix-free subset, then
it also has a regular infinite maximal prefix-free subset.

We also showed that if a regular language L has a finite maximal prefix-free
subset, then we can effectively find a largest finite maximal subset if such a
subset exists. Next, we proved that if the sizes of finite prefix-free subsets of a
language grow without limit, then the language has an infinite prefix-free subset.

Finally, we proved that if a regular language has a non-regular maximal
prefix-free subset, then it has uncountably many maximal prefix-free subsets.

Acknowledgment. We would like to thank Peter Eliáš for his help with the proof of
Theorem 22.

140 J.Š. Jirásek and J. Šebej

References

1. Eom, H.-S., Han, Y.-S., Salomaa, K.: State complexity of k-union and k-
intersection for prefix-free regular languages. In: Jurgensen, H., Reis, R.
(eds.) DCFS 2013. LNCS, vol. 8031, pp. 78–89. Springer, Heidelberg (2013).
http://dx.doi.org/10.1007/978-3-642-39310-5 9

2. Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for prefix-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science. In: Memoriam Alexandru Mateescu
(1952–2005), pp. 137–151. The Publishing House of the Romanian Academy (2014)

3. Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic oper-
ations for prefix-free regular languages. Fundam. Inform. 90(1–2), 93–106 (2009).
http://dx.doi.org/10.3233/FI-2009-0008

4. Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related
Topics – Dedicated to Ferenc Gécseg on the occasion of his 70th birthday, pp. 99–
115. Institute of Informatics, University of Szeged, Hungary (2009)

5. Jirásek, J., Jirásková, G., Krausová, M., Mlynárčik, P., Šebej, J.: Prefix-free lan-
guages: right quotient and reversal. In: Jürgensen, H., Karhumäki, J., Okhotin,
A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 210–221. Springer, Heidelberg (2014).
http://dx.doi.org/10.1007/978-3-319-09704-6 19

6. Krausová, M.: Prefix-free regular languages: closure properties, difference, and left
quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/978-3-642-25929-6 11

7. Nicaud, C.: Average state complexity of operations on unary automata. In:
Kuty�lowski, M., Wierzbicki, T.M., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 231–240. Springer, Heidelberg (1999). http://dx.doi.org/10.1007/
3-540-48340-3 21

8. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

9. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,
Grammar, Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg
(1997)

http://dx.doi.org/10.1007/978-3-642-39310-5_9
http://dx.doi.org/10.3233/FI-2009-0008
http://dx.doi.org/10.1007/978-3-319-09704-6_19
http://dx.doi.org/10.1007/978-3-642-25929-6_11
http://dx.doi.org/10.1007/3-540-48340-3_21
http://dx.doi.org/10.1007/3-540-48340-3_21

Transducer Descriptions of DNA Code
Properties and Undecidability

of Antimorphic Problems

Lila Kari1, Stavros Konstantinidis2, and Steffen Kopecki1,2(B)

1 The University of Western Ontario, London, ON, Canada
{lila,steffen}@csd.uwo.ca

2 Saint Mary’s University, Halifax, NS, Canada
s.konstantinidis@smu.ca

Abstract. This work concerns formal descriptions of DNA code prop-
erties and related (un)decidability questions. This line of research allows
us to give a property as input to an algorithm, in addition to any regu-
lar language, which can then answer questions about the language and
the property. Here we define DNA code properties via transducers and
show that this method is strictly more expressive than that of regular
trajectories, without sacrificing the efficiency of deciding the satisfaction
question. We also show that the maximality question can be undecidable.
Our undecidability results hold not only for the fixed DNA involution
but also for any fixed antimorphic permutation. Moreover, we also show
the undecidability of the antimorphic version of the Post correspondence
problem, for any fixed antimorphic permutation.

Keywords: Codes · DNA properties · Trajectories · Transducers · Unde-
cidability

1 Introduction

The study of formal methods for describing independent language properties
(widely known as code properties) provides tools that allow one to give a prop-
erty as input to an algorithm and answer questions about this property. Exam-
ples of such properties include classic ones [4,17,27,28] like the properties of
being a prefix code, a bifix codes, or an error-detecting language, as well as
DNA code properties [2,10,11,13–15,18,20–22,25] like the property of being a
θ-nonoverlapping or a θ-compliant language. A formal description method should
be expressive enough to allow one to describe many desirable properties. Exam-
ples of formal methods for describing classic code properties are the implicational
conditions method of [16], the trajectories method of [5], and the transducer
methods of [8]. The latter two have been implemented to some extent in the
Python package FAdo [9]. A formal method for describing DNA code properties
is the method of trajectory DNA code properties [6,22].

Typical questions about properties are the following:
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 141–152, 2015.
DOI: 10.1007/978-3-319-19225-3 12

142 L. Kari et al.

Satisfaction Problem: given the description of a property and the description of
a regular language, decide whether the language satisfies the property.

Maximality Problem: given the description of a property and the description of
a regular language that satisfies the property, decide whether the language
is maximal with respect to the given property.

Construction Problem: given the description of a property and a positive integer
n, find a language of n words (if possible) satisfying the given property.

In the above problems regular languages are described via (non-deterministic)
finite automata (NFA). Depending on the context, properties are described via
trajectory regular expressions or transducer expressions. The satisfaction prob-
lem is the most basic one and can be answered usually in efficient polynomial
time. The maximality problem as stated above can be decidable, in which case
it is normally PSPACE-hard. For existing transducer and trajectory properties,
both problems can be answered using the online (formal) language server LaSer
[24], which relies on FAdo. For the construction problem a simple statistical
algorithm is included in FAdo, but we think that this problem is far from being
well-understood.

The general objective of this research is to develop methods for formally
describing DNA code properties that would allow one to express various combi-
nations of such properties and be able to get answers to questions about these
properties in an actual implementation. The contributions of this work are as
follows:

1. The definition of a new simple formal method for describing many DNA code
properties, called θ-transducer properties, some of which cannot be described
by the existing transducer and trajectory methods for classic code properties;
see Sect. 3.

2. The demonstration that the new method of transducer DNA code properties
is properly more expressive than the method of trajectories; see Sect. 4.

3. The demonstration that the maximality problem can be decidable for some
transducer DNA code properties but undecidable for some others; see Sect. 5.

4. The demonstration that some classic undecidable problems (like PCP) remain
undecidable when rephrased in terms of any fixed (anti-)morphic permutation
θ of the alphabet, with the case θ = id corresponding to these classic problems,
where id is the (morphic) identity ; see Sect. 6.

Even though, our main motivation is the description of DNA-related properties,
we follow the more general approach, which considers properties described by
transducers involving a fixed (anti-)morphic permutation θ; again, the classical
transducer properties are obtained by letting θ = id.

This is a condensed conference version which does not contain full proofs of
our results. The full version of this paper, containing all proofs, can be accessed
on arXiv [19]. It also contains additional examples of DNA properties which can
be described by θ-transducer properties: these properties naturally extend the
hierarchy of DNA properties that is used in [13,18,20].

Transducer Descriptions of DNA Code Properties and Undecidability 143

2 Basic Notions and Background Information

In this section we provide our notation for formal languages, (anti-)morphic
permutations, transducers, and language properties. We assume the reader to
be familiar with the fundamental concepts of language theory; see e. g., [12,26].
Then, in Sect. 2.2 we recall the method of transducers for describing classic code
properties, and in Sect. 2.3 we recall the method of trajectories for describing
DNA-related properties.

2.1 Formal Languages and (Anti-)morphic Permutations

For an alphabet A and a language L over A we have the notation: A+ = A∗\{ε},
where ε is the empty word; and Lc = A∗ \ L. For an integer k ≥ 2 we define
the generic alphabet Ak = {0, 1, . . . , k − 1} of size k. Throughout this paper
we only consider alphabets with at least two letters because our investigations
would become trivial over unary alphabets.

Let w ∈ A∗ be a word. Unless confusion arises, by w we also denote the sin-
gleton language {w}, e. g., L∪w means L∪{w}. If w = xyz for some x, y, z ∈ A∗,
then x, y, and z are called a prefix, an infix (or a factor), and a suffix of w, respec-
tively. For a language L ⊆ A∗, the set Pref(L) = {x ∈ A∗ | ∃y ∈ A∗ : xy ∈ L}
denotes the language containing all prefixes of words in L. If w = a1a2 · · · an

for letters a1, a2, . . . , an ∈ A, then |w| = n is the length of w; for b ∈ A,
|w|b = |{i | ai = b, 1 ≤ i ≤ n}| is the tally of b occurring in w; the i-th letter of
w is w[i] = ai for 1 ≤ i ≤ n; the infix of w from the i-th letter to the j-th
letter is w[i;j] = aiai+1 · · · aj for 1 ≤ i ≤ j ≤ n; and the reverse of w is
wR = anan−1 · · · a1.

Consider a generic alphabet Ak with k ≥ 2. The identity function on Ak

is denoted by idk; when the alphabet is clear from the context, the index k
is omitted. For a permutation (or bijection) θ : Ak → Ak, and for i ∈ Z, the
permutation θi is the i-fold composition of θ; i. e., θ0 = idk, θi = θ ◦ θi−1, and
θ−i = (θi)−1 = (θ−1)i for i > 0. An involution θ is a permutation such that
θ = θ−1.

A permutation θ over Ak can naturally be extended to operate on words in A∗
k

as (a) morphic permutation θ(uv) = θ(u)θ(v), or (b) antimorphic permutation
θ(uv) = θ(v)θ(u), for u, v ∈ A∗

k. As before, the inverse θ−1 of the (anti-)morphic
permutation θ over A∗

k is the (anti-)morphic extension of the permutation θ−1

over A∗
k. The identity idk always denotes the morphic extension of idk while

the antimorphic extension of idk, called the mirror image or reverse, is usually
denoted by the exponent R.

Example 1. The DNA involution, denoted by δ, is an antimorphic involution on
Δ = {A, C, G, T} such that δ(A) = T and δ(C) = G, which implies δ(T) = A and
δ(G) = C.

144 L. Kari et al.

2.2 Describing Classic Code Properties by Transducers

A (language) property P is any set of languages. A language L satisfies P, or has
P, if L ∈ P. Here by a property P we mean an (n-)independence in the sense
of [17]: there exists n ∈ N ∪ {ℵ0} such that a language L satisfies P if and only
if all nonempty subsets L′ ⊆ L of cardinality less than n satisfy P. A language
L satisfying P is maximal (with respect to P) if for every word w ∈ Lc we have
L ∪ w does not satisfy P—note that, for any independence P, every language
in P is a subset of a maximal language in P [17]. As we shall see further below
the focus of this work is on 3-independence properties that can also be viewed
as independent with respect to a binary relation in the sense of [28].

A transducer t is a non-deterministic finite state automaton with output; see
e. g., [3,30]. Here we only consider transducers whose input and output alphabets
are equal: a transducer is a quintuple t = (Q,A,E, I, F), where A is the input
and output alphabet, Q is a finite set of states, E is a set of directed edges
between states from Q which are labelled by word pairs (u, v) ∈ A∗ × A∗, I
is a set of initial states, and F a set of final states. If t realizes (x, y) then we
write y ∈ t(x). We say that the set t(x) contains all possible outputs of t on
input x. The transducer t−1 is the inverse of t; that is, x ∈ t−1(y) if and only
if y ∈ t(x) for all words x, y. Let θ be an (anti-)morphic permutation and t be
a transducer which are both defined over the same alphabet A. The transducer
t is called θ-input-preserving if for all w ∈ A+ we have θ(w) ∈ t(w); t is called
θ-input-altering if for all w ∈ A+ we have θ(w) /∈ t(w). We use the simpler
terms input-preserving and input-altering t, respectively, when θ = id. Note
that θ(w) ∈ t(w) is equivalent to w ∈ θ−1(t(w)) as well as t−1(θ(w)) � w.

Definition 1 ([8]). An input-altering transducer t describes the property that
consists of all languages L such that

t(L) ∩ L = ∅. (1)

An input-preserving transducer t describes the property that consists of all lan-
guages L such that

w /∈ t(L \ w), for all w ∈ L. (2)

A property is called an input-altering (resp., input-preserving) transducer prop-
erty, if it is described by an input-altering (resp., input-preserving) transducer.

Note that every input-altering transducer property is also an input-preserving
transducer property. Input-altering transducers can be used to describe proper-
ties like prefix codes, bifix codes, and hypercodes. Input-preserving transducers
are intended for error-detecting properties, where in fact the transducer plays
the role of the communication channel.

Many input-altering transducer properties can be described in a simpler man-
ner by trajectory regular expressions [5,8], that is, regular expressions over {0, 1}.
For example, the expression 0∗1∗ describes prefix codes and the expression 1∗0∗1∗

describes infix codes. On the other hand, there are natural transducer properties
that cannot be described by trajectory expressions [8].

Transducer Descriptions of DNA Code Properties and Undecidability 145

2.3 Describing DNA-Related Properties by Trajectories

In [2,10,11,13–15,18,20–22,25] the authors consider numerous properties of lan-
guages inspired by reliability issues in DNA computing. We state three of these
properties below. Let θ be an antimorphic permutation over A∗

k. Recall that, in
the DNA setting, θ = δ is an involution, and therefore, we have θ2 = id.

(A) A language L is θ-nonoverlapping if L ∩ θ(L) = ∅.
(B) L is θ-compliant if ∀w ∈ θ(L), x, y ∈ A∗

k : xwy ∈ L =⇒ xy = ε.
(C) L is strictly θ-compliant if it is θ-nonoverlapping and θ-compliant.

Many of the existing DNA-related properties can be modelled using the concept
of a bond-free property, first defined in [22] and later rephrased in [6] in terms
of trajectories. We follow the formulation in [6]. Let ē1 and ē2 be two regular
trajectory expressions. First, we define the following language operators.

Φē1,ē2(L) = (((L �ē1 A+) ∩ A+) ē2 A∗) ∪ (((L �ē1 A∗) ∩ A+) ē2 A+), (3)

Φs
ē1,ē2

(L) = ((L �ē1 A∗) ∩ A+) ē2 A∗. (4)

The language operations ā and �ā are shuffle (or scattered insertion) and
scattered deletion, respectively, over the set of trajectories ā; see [6,23] for details.

Definition 2 ([6]). Let θ be an involution (or more generally a permutation)
and ē1, ē2 be two regular trajectory expressions. The bond-free property described
by (ē1, ē2) is

Bθ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φē1,ē2(L) = ∅}. (5)

The strictly bond-free property described by (ē1, ē2) is

Bs
θ(ē1, ē2) = {L ⊆ A∗ | θ(L) ∩ Φs

ē1,ē2
(L) = ∅}. (6)

A regular θ-trajectory property is a bond-free property described by (ē1, ē2), or
a strictly bond-free property described by (ē1, ē2), for some pair (ē1, ē2).

3 New Transducer-Based DNA-Related Properties

A question that arises from the discussion in Sects. 2.2 and 2.3 is whether existing
transducer-based properties include DNA-related properties. It turns out that
this is not the case; see Proposition 1. In this section, we define new transducer-
based properties that are appropriate for DNA-related applications, we demon-
strate Proposition 1, and discuss how existing DNA-related properties can be
described with transducers.

Definition 3. A transducer t and an (anti-)morphic permutation θ, defined
over the same alphabet, describe 3-independent properties in two ways:

146 L. Kari et al.

1. strict θ-transducer property (S-property): L satisfies the property Sθ,t if

θ(L) ∩ t(L) = ∅ (7)

2. weak θ-transducer property (W-property): L satisfies the property Wθ,t if

∀w ∈ L : θ(w) /∈ t(L \ w) (8)

Any of the properties Sθ,t or Wθ,t is called a θ -transducer property.

The difference between S -properties and W-properties is that Sθ,t includes no
language containing a word w such that θ(w) ∈ t(w), while this case is allowed
for some L ∈ Wθ,t. For fixed t, θ, and L, Condition (7) implies that for all w ∈ L
we have θ(w)∩t(L\w) = ∅ which is equivalent to Condition (8). In other words,
if L satisfies Sθ,t, then L satisfies Wθ,t as well. If θ = id and t is input-altering,
or input-preserving, then the above defined properties specialize to the existing
ones stated in Definition 1.

0t :
1

2
3

(a, ε)

(a, a)

(a, a)

(a, ε)

(a, ε)

(a, a)

(a, a)

(a, ε)

0ts : 1 2

(a, ε)

(a, a)

(a, a)

(ε, ε)

(a, ε)

Fig. 1. Together with θ, the left transducer describes the strictly θ-compliant property
and the right one describes the θ-compliant property. See Example 2 for explanations.

Example 2. In Fig. 1, an arrow with label (a, a) represents a set of edges with
labels (a, a) for all a ∈ A; and similarly for an arrow with label (a, ε). For any
word xwy, the left transducer ts can delete x, then keep w (which has to be
non-empty), and then delete y. Thus, ts(L)∩ θ(L) = ∅ if and only if L is strictly
θ-compliant. Now let xwy with xy �= ε and w �= ε. If y is nonempty, the right
transducer t can delete x, then keep w, and then delete y using the upper path
(containing state 1); and if x is nonempty, t can delete x, then keep w, and
then delete y using the lower path (containing state 2). Thus, t(L) ∩ θ(L) = ∅ if
and only if L is θ-compliant. Using FAdo [9] format the left transducer can be
specified by the following string, assuming alphabet {a, b}.
@Transducer 2 * 0\n0 a @epsilon 0\n0 b @epsilon 0\n0 a a 1\n
0 b b 1\n1 a a 1\n1 b b 1\n1 @epsilon @epsilon 2\n2 a @epsilon 2\n
2 b @epsilon 2\n

The next result demonstrates that existing transducer properties are not suitable
for describing even simple DNA-related properties.

Proposition 1. The δ-nonoverlapping property is not describable by any input-
preserving transducer.

Transducer Descriptions of DNA Code Properties and Undecidability 147

4 Expressiveness of Transducer-Based Properties

In this section we examine the descriptive power of the newly defined transducer
DNA-related properties, that is, the θ-transducer properties. In Theorem1 we
show that these properties properly include the regular θ-trajectory properties.
On the other hand, in Proposition 2 we show that there is an independent DNA-
related property that is not a θ-transducer property.

Proposition 2. The θ-free property (defined below) [13] is not a θ-transducer
property.

(D) A language L ⊆ A∗ is θ-free if and only if L2 ∩ A+θ(L)A+ = ∅.
The following DNA language property is considered in Theorem1

H = {L ⊆ Δ∗ | H(u, δ(v)) ≥ 2, for all u, v ∈ L},

where H(·, ·) is the Hamming distance function with the assumption that its
value is ∞ when applied on different length words. Note that H is described by
δ and the transducer shown in Fig. 2.

0 1
(a, b)

(a, a) (a, a)

Fig. 2. The transducer t describing, together with δ, the S-property H: the displayed
transducer t realizes (u, v) if and only if H(u, v) < 2; therefore, δ(L) ∩ t(L) = ∅ if and
only if H(u, δ(v)) ≥ 2 for all u, v ∈ L.

Example 3. The DNA language L1 = {AGG, CCA} does not satisfy H because
H(CCA, δ(AGG)) = 1. The DNA language L2 = {AAA, CCT} satisfies H because
δ(AAA) = TTT and all words u ∈ L2 contain at most one T.

Theorem 1

1. Let θ be an antimorphic involution. Every regular θ-trajectory property is a
θ-transducer property (in particular an S-property).

2. Property H is a δ-transducer property, but not a (regular) δ-trajectory one.

5 The Satisfaction and Maximality Problems

For θ = id and for input-altering and -preserving transducers the satisfaction and
maximality problems are decidable [8]. In particular, for a regular language L
given via an automaton a, Condition (1) can be decided in time O(|t||a|2), where

148 L. Kari et al.

the function | · | returns the size of the machine in question (= number of states
plus number of edges plus the length of all labels on the edges). Condition (2)
can be decided in time O(|t||a|2), as noted in Remark 1 below. The maximality
problem is decidable, but PSPACE-hard, for both input-altering and -preserving
transducer properties.

Remark 1. Let s = t ↓ a ↑ a be the transducer obtained by two product con-
structions: first on the input of t with a; then, on the output of the resulting
transducer with a. In [8] the authors suggest to decide whether or not L satisfies
the input-preserving transducer property Wid,t by testing if the transducer s
is functional. However, deciding L ∈ Wid,t can be done by the cheaper test of
whether or not s implements a (partial) identity function. Using the identity test
from [1], we obtain that Condition (2) can be decided in time O(|t||a|2) when
the alphabet is considered constant. Also note that the identity test does not
require that t is input-preserving if θ = id. When θ is antimorphic, however, the
identity test does not work anymore and we have to resort to the more expensive
functionality test for θ-input-preserving transducers.

In this work we are interested in the case when θ �= id is antimorphic; further-
more, the θ-input-altering or -preserving restrictions on the transducer are not
necessarily present in the definition of W-properties or S-properties. Table 1
summarizes under which conditions the satisfaction and maximality problems
are decidable for regular languages.

Table 1. (Un-)decidability of the satisfaction and the maximality problems for a fixed
antimorphic permutation θ, a given transducer t, and a regular language L given via
an automaton a.

Problem Property Sθ,t Property Wθ,t

No restriction t is θ-i.-altering No restriction t is θ-i.-preserving

Satisfaction Decidable in O(|t||a|2) as in [8] Decidable (Theorem2) Decidable in O(|t|2|a|4) as in [8]

Maximality Undecidable

(Corollary 2)

Decidable (Theorem 3), PSPACE-hard (Corollary 1)

Remark 2. We note that deciding the satisfaction question for any θ-trajectory
property involves testing the emptiness conditions in (5) or (6), which requires
time O(|a|2|a1||a2|), where a1,a2 are automata corresponding to ē1, ē2. Such a
property can be expressed as θ-transducer S-property (recall Theorem 1) using
a transducer of size O(|a1||a2|) and, therefore, the satisfaction question can still
be solved within the same asymptotic time complexity.

5.1 The Satisfaction Problem for Non-restricted W-properties

We establish the decidability of non-restricted transducer W-properties for reg-
ular languages. We are not concerned with the complexity of this algorithm;
optimizing the algorithm and analysing its complexity is part of future research.

Transducer Descriptions of DNA Code Properties and Undecidability 149

Let t be a transducer, θ be an antimorphic permutation, and L be a regular
language over the alphabet A. Let aL and aθ(L) be the NFAs accepting the lan-
guages L and θ(L), respectively. Let s=t ↓ aL ↑ aθ(L) be the product transducer
such that y ∈ s(x) if and only if y ∈ t(x), x ∈ L, and y ∈ θ(L).

Let Ts =
{
(x1, x2, x3) ∈ (A∗)3

∣∣ |x1x2x3| ≤ |s|} be a set of word triples. Note
that the length restrictions for the words ensures that Ts is a finite set. For each
triple t = (x1, x2, x3) ∈ Ts we define a relation

Rt =
{
(x1(x2)kx3, θ(x1(x2)kx3))

∣∣ k ∈ N
} ⊆ A∗ × A∗.

Lemma 1. The regular language L satisfies Wθ,t if and only if the relation
realized by s is included in

⋃
t∈Ts

Rt.

The inclusion in Lemma 1 is decidable by performing the following two tests:
(1) verify that s ⊆ ⋃

(x1,x2,x3)∈Ts
(x1x

∗
2x3) × θ(x1x

∗
2x3); and (2) verify that |x| =

|y| for all pairs (x, y) that label an accepting path in s. Note that the inclusion
test can be performed because the right-hand-side relation is recognizable [3].
The second test follows the same ideas as the algorithm outlined in [1] which
decides whether or not a transducer implements a partial identity function.

Theorem 2. Let L be a regular language given as automaton, t be a given
transducer, and θ be a given antimorphic involution (all defined over A). It is
decidable whether L satisfies Wθ,t or not.

5.2 The Maximality Problem

Here we show how to decide maximality of a regular language L with respect to
a θ-transducer property; see Theorem 3. This result only holds when we consider
W-properties or when we consider S -properties for θ-input-altering transduc-
ers. As in the case of existing transducer properties, it turns out that the maxi-
mality problem is PSPACE-hard; see Corollary 1. When we consider general S
-properties, the maximality problem becomes undecidable; see Corollary 2.

Theorem 3. For an antimorphic permutation θ, a transducer t, and a regular
language L, all defined over A∗

k, such that either L ∈ Wθ,t, or L ∈ Sθ,t and t is
θ-input altering, we have that L is maximal with property Wθ,t (resp., Sθ,t) if
and only if

L ∪ θ−1(t(L)) ∪ t−1(θ(L)) = A∗
k. (9)

We note that it is PSPACE-hard to decide whether or not Eq. (9) holds
when L is given as an NFA because it is PSPACE-hard to decide universality of
a regular language given as an NFA (L ⊆ A∗

k is universal if L = A∗
k) [29].

Corollary 1. For an antimorphic permutation θ, a transducer t, and a regular
language L given as NFA, all defined over A∗

k, such that either L ∈ Wθ,t, or
L ∈ Sθ,t and t is θ-input altering, we have that it is PSPACE-hard to decide
whether or not L is maximal with property Wθ,t (resp., Sθ,t).

150 L. Kari et al.

In the rest of this section we show that it is undecidable whether or not a
transducer is θ-input-preserving. This question relates directly to the maximality
problem of the empty language ∅ with respect to the property Sθ,t, as stated
in Corollary 2. The following Theorem can be proven using a reduction from
the famous, undecidable Post correspondence problem (PCP) to the problem of
deciding whether a given transducer is θ-input-preserving or not.

Theorem 4. For every fixed antimorphic permutation θ over A∗
k with k ≥ 2 it

is undecidable whether or not a given transducer is θ-input-preserving.

This leads to the undecidability of the maximality problem of a regular language
L with respect to a θ-transducer-property Sθ,t.

Corollary 2. For every fixed antimorphic permutation θ over A∗
k with k ≥ 2,

it is undecidable whether or not the empty language ∅ is maximal with respect to
the property Sθ,t, for a given transducer t.

Note that a singleton language {w} satisfies Sθ,t if and only if θ(w) /∈ t(w).
Thus, the corollary follows because ∅ is maximal with property Sθ,t if and only
if t is θ-input-preserving.

6 Undecidability of the θ-PCP and the θ-Input-Altering
Transducer Problem

In analogy with the undecidable PCP, we introduce the θ version of the PCP
and prove that it is undecidable as well; see Theorem5. Further, we utilize the
θ version of the PCP in order to show that it is undecidable whether or not a
transducer is θ-input-altering; see Corollary 3.

Definition 4. For a fixed antimorphic permutation θ over A∗
k, we introduce the

θ-Post correspondence problem (θ-PCP): given words α0, α1, . . . , α�−1 ∈ A+
k and

β0, β1, . . . , β�−1 ∈ A+
k , decide whether or not there exists a non-empty sequence

of integers i1, . . . , in ∈ A� = {0, 1, . . . , 	 − 1} such that

αi1αi2 · · · αin
= θ(βi1βi2 · · · βin

).

Theorem 5. For every fixed antimorphic permutation θ over A∗
k with k ≥ 2 the

θ-PCP is undecidable.

We can utilize the θ-PCP in order to prove that it is undecidable whether or not
a transducer is θ-input-altering, even for one-state transducers.

Corollary 3. For every fixed antimorphic permutation θ over A∗
k with k ≥ 2 it

is undecidable whether or not a given (one-state) transducer is θ-input-altering.

Corollary 3 follows because the θ-PCP instance α0, . . . , α�−1, β0, . . . , β�−1 has a

solution if and only if the the one-state transducer t with edges q
(αi,θ

2(βi))−−−−−−−→ q
for i = 0, . . . , 	 − 1 is not θ-input-altering.

Transducer Descriptions of DNA Code Properties and Undecidability 151

7 Conclusions

We have defined a transducer-based method for describing DNA code properties
which is strictly more expressive than the trajectory method. In doing so, the
satisfaction question remains efficiently decidable. The maximality question for
some types of properties is decidable, but it is undecidable for others. While some
versions of the maximality question for trajectory properties are decidable, the
case of any given pair of regular trajectories and any given regular language is
not addressed in [6], so we consider this to be an interesting problem to solve.

The maximality questions are phrased in terms of any fixed antimorphic
permutation. This direction of generalizing decision questions is also applied to
the classic Post correspondence problem, where we demonstrate that it remains
undecidable. A consequence of this is that the question of whether a given trans-
ducer is θ-input-altering is also undecidable. It is interesting to note that if,
instead of fixing θ, we fix the transducer t to be the identity, or the transducer
defining the S-property H (see Fig. 2 in Sect. 4), then the question of whether or
not θ(L) ∩ t(L) = ∅ is decidable (given any regular language L and antimorphic
permutation θ).

The topic of studying description methods for code properties requires further
attention. One important aim is the actual implementation of the algorithms,
as it is already done for several classic code properties [9,24]. An immediate
plan is to incorporate in those implementations what we know about DNA code
properties. Another aim is to increase the expressive power of our description
methods. The formal method of [16] is quite expressive, using a certain type of
first order formulae to describe properties. It could perhaps be further worked
out in a way that some of these formulae can be mapped to transducers. We
also note that if the defining method is too expressive then even the satisfaction
problem could become undecidable; see for example the method of multiple sets
of trajectories in [7].

References

1. Allauzen, C., Mohri, M.: Efficient algorithms for testing the twins property. J.
Autom. Lang. Comb. 8(2), 117–144 (2003)

2. Baum, E.: DNA sequences useful for computation. In: 2nd DIMACS Workshop on
DNA-based Computers, pp. 122–127. Princeton University (1996)

3. Berstel, J.: Transductions and Context-Free Languages. B.G. Teubner, Stuttgart
(1979)

4. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University
Press, New York (2009)

5. Domaratzki, M.: Trajectory-based codes. Acta Informatica 40, 491–527 (2004)
6. Domaratzki, M.: Bond-free DNA language classes. Nat. Comput. 6, 371–402 (2007)
7. Domaratzki, M., Salomaa, K.: Codes defined by multiple sets of trajectories. Theor.

Comput. Sci. 366, 182–193 (2006)
8. Dudzinski, K., Konstantinidis, S.: Formal descriptions of code properties: decid-

ability, complexity, implementation. IJFCS 23(1), 67–85 (2012)

152 L. Kari et al.

9. FAdo: Tools for formal languages manipulation. http://fado.dcc.fc.up.pt/. Acces-
sed February 2015

10. Fan, C.M., Wang, J.T., Huang, C.C.: Some properties of involution binary rela-
tions. Acta Informatica (2014). doi:10.1007/s00236-014-0208-8

11. Genova, D., Mahalingam, K.: Generating DNA code words using forbidding and
enforcing systems. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B. (eds.) TPNC
2012. LNCS, vol. 7505, pp. 147–160. Springer, Heidelberg (2012)

12. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Cambridge (1979)

13. Hussini, S., Kari, L., Konstantinidis, S.: Coding properties of DNA languages.
Theor. Comput. Sci. 290, 1557–1579 (2003)

14. Jonoska, N., Kari, L., Mahalingam, K.: Involution solid and join codes. Fundamenta
Informaticae 86, 127–142 (2008)

15. Jonoska, N., Mahalingam, K., Chen, J.: Involution codes: with application to DNA
coded languages. Nat. Comput. 4, 141–162 (2005)

16. Jürgensen, H.: Syntactic monoids of codes. Acta Cybernetica 14, 117–133 (1999)
17. Jürgensen, H., Konstantinidis, S.: Codes. In: Rozenberg and Salomaa [26], pp.

511–607
18. Kari, L., Kitto, R., Thierrin, G.: Codes, involutions, and DNA encodings. In:

Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 376–393. Springer, Heidelberg (2002)

19. Kari, L., Konstantinidis, S., Kopecki, S.: Transducer descriptions of DNA code
properties and undecidability of antimorphic problems (2015). arXiv preprint
arXiv:1503.00035

20. Kari, L., Konstantinidis, S., Losseva, E., Wozniak, G.: Sticky-free and overhang-
free DNA languages. Acta Informatica 40, 119–157 (2003)

21. Kari, L., Konstantinidis, S., Sośık, P.: Bond-free languages: formalizations, maxi-
mality and construction methods. IJFCS 16, 1039–1070 (2005)

22. Kari, L., Konstantinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Theor. Comput. Sci. 334, 131–159 (2005)

23. Kari, L., Sośık, P.: Aspects of shuffle and deletion on trajectories. Theor. Comput.
Sci. 332, 47–61 (2005)

24. LaSer: Independent LAnguage SERver. http://laser.cs.smu.ca/independence/.
Accessed February 2015

25. Mauri, G., Ferretti, C.: Word design for molecular computing: a survey. In: Chen,
Junghuei, Reif, John H. (eds.) DNA 2003. LNCS, vol. 2943, pp. 37–47. Springer,
Heidelberg (2004)

26. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. I. Springer,
Berlin (1997)

27. Shyr, H.: Free Monoids and Languages, 2nd edn. Hon Min Book Company,
Taichung (1991)

28. Shyr, H., Thierrin, G.: Codes and binary relations. In: Malliavin, M.P. (ed.)
Séminaire d’Algèbre Paul Dubreil, Paris 1975–1976 (29ème Année). Lecture Notes
in Mathematics, vol. 586, pp. 180–188. Springer, Berlin (1977)

29. Stockmeyer, L., Meyer, A.: Word problems requiring exponential time (prelimi-
nary report). In: Proceedings of the 5th Annual ACM Symposium on Theory of
Computing, pp. 1–9. ACM (1973)

30. Yu, S.: Regular languages. In: Rozenberg and Salomaa [26], pp. 41–110

http://fado.dcc.fc.up.pt/
http://dx.doi.org/10.1007/s00236-014-0208-8
http://arxiv.org/abs/1503.00035
http://laser.cs.smu.ca/independence/

On Simulation Cost of Unary Limited Automata

Martin Kutrib(B) and Matthias Wendlandt

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany
{kutrib,matthias.wendlandt}@informatik.uni-giessen.de

Abstract. A k-limited automaton is a linear bounded automaton that
may rewrite each tape cell only in the first k visits, where k ≥ 0 is a
fixed constant. It is known that these automata accept context-free lan-
guages only. We investigate the descriptional complexity of deterministic
limited automata accepting unary languages. Since these languages are
necessarily regular, we study the cost in the number of states when a k-
limited automaton is simulated by finite automata. For the conversion
of a 4n-state 1-limited automaton into one-way or two-way deterministic
or nondeterministic finite automata a lower bound of n · F (n) states is
shown, where F denotes Landau’s function. So, even the ability deter-
ministically to rewrite any cell only once gives an enormous descriptional
power. For the simulation cost for removing the ability to rewrite each
cell k ≥ 1 times, that is, the cost for the simulation of (sweeping) k-
limited automata by deterministic finite automata, we obtain a lower
bound of n · F (n)k. A polynomial upper bound is shown for the simula-
tion by two-way deterministic finite automata, where the degree of the
polynomial is quadratic in k. If the k-limited automaton is rotating, the
upper bound reduces to O(nk+1). A lower bound of Ω(nk+1) is derived
even for nondeterministic two-way finite automata. So, for rotating k-
limited automata, the trade-off for the simulation is tight in the order of
magnitude.

1 Introduction

The cost for the simulation of one formal model by another is one of the main topics
of descriptional complexity, where the cost are measured in close connection to the
sizes of the models. Such simulations are of particular interest when both formal
models capture the same family of languages. A fundamental result is that nonde-
terministic finite automata can be simulated by deterministic finite automata by
paying the cost of exponentially many states (see, for example, [16]). Among the
many models characterizing the regular languages, an interesting variant is the
linear bounded automata where the rewrite operations are restricted. If any tape
cell may be visited only a constant number of times, it is shown in [5] that even
linear-time computations cannot accept non-regular languages. This result has
been improved to O(n log n) time in [4]. Recent results [24] show that the upper
as well as the lower bound for converting a weight-reducing machine of this type
into a deterministic finite automaton is doubly exponential.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 153–164, 2015.
DOI: 10.1007/978-3-319-19225-3 13

154 M. Kutrib and M. Wendlandt

A related result in [1] shows that if a two-way finite automaton is allowed
to freely place a pebble on the tape, then again no non-regular language can be
accepted, even if the time is unlimited. A doubly exponential upper and a lower
bound for the simulation by a deterministic finite automaton is derived in [16].

A generalization of the machines studied in [5] is introduced by Hibbard [6].
He investigated linear bounded automata that may rewrite each tape cell only
in the first k visits, where k is a fixed constant. However, afterwards the cells
can still be visited any number of times (but without rewriting their contents).
It is shown in [6] that the nondeterministic variant characterizes the context-free
languages provided k ≥ 2, while there is a tight and strict hierarchy of language
classes depending on k for the deterministic variant. One-limited automata,
deterministic and nondeterministic, can accept only regular languages. From
these results it follows that any unary k-limited automaton accepts regular lan-
guages only.

Recently, the study of limited automata from the descriptional complexity
point of view has been initiated by Pighizzini and Pisoni [20,21]. In [21] it was
shown that the deterministic 2-limited automata characterize the determinis-
tic context-free languages, which complements the result on nondeterministic
machines. Furthermore, conversions between 2-limited automata and pushdown
automata are investigated. For the deterministic case the upper bound for the
conversion from 2-limited automata to pushdown automata is doubly exponen-
tial. Conversely, the trade-off is shown to be polynomial. Comparisons between
1-limited automata and finite automata are done in [20]. In particular, a double
exponential trade-off between nondeterministic 1-limited automata and one-way
deterministic finite automata is shown. For deterministic 1-limited automata
the conversion costs a single exponential increase in size. These results imply
an exponential trade-off between nondeterministic and deterministic 1-limited
automata, and they show that 1-limited automata can have less states than
equivalent two-way nondeterministic finite automata.

For a restricted variant of limited automata, so-called strongly limited auto-
mata, it is shown that context-free grammars as well as pushdown automata can
be transformed in strongly limited automata and vice versa with polynomial
cost [19].

Here, we consider deterministic k-limited automata accepting unary languages.
The descriptional complexity of unary regular languages has been studied in many
ways. On one hand, many automata models such as one-way finite automata, two-
way finite automata, pushdown automata, or context-free grammars for unary
languages are investigated and compared to each other with respect to simula-
tion results and the size of the simulation (see, for example, [3,15,18,23]). On the
other hand, many results concerning the state complexity of operations on unary
languages have been obtained (see, for example, [7,10,14,22]).

The results on the expressive power of limited automata imply that any unary
language accepted by some k-limited automaton is regular. So, it is of interest
to investigate the descriptional complexity in comparison with the models men-
tioned above. We establish upper and lower bounds for the conversion of unary
deterministic k-limited automata to one-way and two-way finite automata.

On Simulation Cost of Unary Limited Automata 155

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, the reversal of a word w by wR, and for the length of w we
write |w|. We use ⊆ for inclusions and ⊂ for strict inclusions.

Let k ≥ 0 be an integer. A deterministic k-limited automaton is a restricted
linear bounded automaton. It consists of a finite state control and a read-write
tape whose initial contents is the input word in between two endmarkers. At
the outset of a computation, the automaton is in the designated initial state
and the head of the tape scans the left endmarker. Depending on the current
state and the currently scanned symbol on the tape, the automaton changes its
state, rewrites the current symbol on the tape, and moves the head one cell to
the left or one cell to the right. However, the rewriting is restricted so that the
machine may rewrite each tape cell only in the first k visits. Subsequently, the
cell can still be scanned but the content cannot be changed any longer. So, a
deterministic 0-limited automaton is a two-way deterministic finite automaton.
An input is accepted if the machine reaches an accepting state and halts.

The original definition of such devices in [6] is based on string rewriting
systems whose sentential forms are seen as configurations of automata. Let
u1u2 · · · ui−1suiui+1 · · · un be a sentential form that represents the tape contents
u1u2 · · · un and the current state s. Basically, in [6] rewriting rules are provided
of the form sui → u′

is
′ which means that the state changes from s to s′, the tape

cell to the right of s is scanned and rewritten from ui to u′
i, and ui−1s → su′

i−1,
which means that the state changes from s to s′, the tape cell to the left of s
is scanned and rewritten from ui−1 to u′

i−1. In this context, an automaton that
changes its head direction on a cell scans the cell twice. In [20,21] and below,
limited automata are defined in a way that reflects this behavior.

Formally, a deterministic k -limited automaton (k-DLA, for short) is a system
M = 〈S,Σ, Γ, δ,�,�, s0, F 〉, where S is the finite, nonempty set of internal
states, Σ is the finite set of input symbols, Γ is the finite set of tape symbols
partitioned into Γk ∪ Γk−1 ∪ · · · ∪ Γ0 where Γ0 = Σ, � /∈ Γ is the left and
� /∈ Γ is the right endmarker, s0 ∈ S is the initial state, F ⊆ S is the set of
accepting states, and δ : S × (Γ ∪ {�,�}) → S × (Γ ∪ {�,�}) × {−1, 1} is the
partial transition function, where −1 means to move the head one cell to the
left, 1 means to move it one cell to the right, and whenever (s′, y, d) = δ(s,�)
is defined then y = �, d = 1 and whenever (s′, y, d) = δ(s,�) is defined then
y = �, d = −1.

In order to implement the limited number of rewrite operations, δ is required
to satisfy the following condition. For each (s′, y, d) = δ(s, x) with x ∈ Γi, (1) if
i = k then x = y, (2) if i < k and d = 1 then y ∈ Γj with j = min{
 i

2� ·2+1, k},
and (3) if i < k and d = −1 then y ∈ Γj with j = min{
 i+1

2 � · 2, k}.
It is worth mentioning that these conditions make the a priori global condi-

tion of a head turn on some cell local. The clever transformation of the original
definition to the automata world used in [20,21] gives that, if a cell content is
from Γi then the head position is always to the right of that cell if i is odd, and
it is to the left of the cell if i is even, as long as i < k.

156 M. Kutrib and M. Wendlandt

A configuration of the k-DLA M is a triple (s, v, h), where s ∈ S is the
current state, v ∈ �Γ ∗� is the current tape contents, and h ∈ {0, 1, . . . , |w| +
1} gives the current head position. If h is 0, the head scans the symbol �, if
it satisfies 1 ≤ i ≤ |w|, then the head scans the ith letter of w, and if it is
|w| + 1, then the head scans the symbol �. The initial configuration for input
w is set to (s0,�w�, 0). During the course of its computation, M runs through
a sequence of configurations. One step from a configuration to its successor
configuration is denoted by . Let a0 = � and an+1 = �, for n ≥ 0, then
we set (s,�a1a2 · · · ah · · · an�, h) (s′,�a1a2 · · · a′

h · · · an�, h + d) if and only if
(s′, a′

h, d) = δ(s, ah).
A k-DLA halts, if the transition function is undefined for the current configu-

ration. An input is accepted if the automaton halts at some time in an accepting
state, otherwise it is rejected. The language L(M) accepted by M is the set of
all accepted inputs.

A k-DLA is said to be sweeping if the direction of the head movement changes
only on the endmarkers.

In order to clarify the notions we continue with an example that is later used
for lower bounds.

Example 1. Let k ≥ 1 and n ≥ 2. The finite unary language L = {ank+1},
that consists of one word only, is accepted by a sweeping k-limited automaton
M = 〈S, {a}, Γ, δ,�,�, s0, F 〉 with n + 2 states and 2k + 1 tape symbols.

The principal idea of the construction is to sweep k times across the tape,
where in each sweep n − 1 out of every n non-marked symbols are marked. In
this way, in the mth sweep it is checked whether the number of non-marked
symbols is a multiple of nm. In the final (k + 1)st sweep it is checked whether
exactly n non-marked symbols exist. If yes, the length � of the input is �

nk = n

which implies � = nk+1.
Formally, we set S = {s0, s1, . . . , sn−1, s+, s−}, F = {s+}, and the tape

alphabet to be Γ = {a, a1, a
′
1, a2, a

′
2, . . . , ak, a′

k}.
Whenever the head reaches an endmarker M has to be in state s0. Otherwise

the computation halts rejecting. In this way it is verified whether the input length
is a multiple of nm, respectively.

1. δ(s0,�) = (s0,�, 1)
2. δ(s0,�) = (s0,�,−1)

The first sweep is realized by Transitions 3 and 4.

3. δ(si, a) = (si+1, a
′
1, 1), for 0 ≤ i ≤ n − 2

4. δ(sn−1, a) = (s0, a1, 1)

For sweeps 2 ≤ m ≤ k, Transitions 5 to 7 are used. Let d = 1 if m is odd and
d = −1 if m is even.

5. δ(si, am−1) = (si+1, a
′
m, d), for 0 ≤ i ≤ n − 2

6. δ(sn−1, am−1) = (s0, am, d)
7. δ(si, a

′
m−1) = (si, a

′
m, d), for 0 ≤ i ≤ n − 1

On Simulation Cost of Unary Limited Automata 157

Finally, in the (k + 1)st sweep the states are reused in the same way to count
up to n unmarked symbols. But after the first cycle state s+ is entered instead of
state s0. If M reaches another unmarked symbol in state s+ it rejects. Otherwise
the computation halts accepting on the endmarker in state s+.

8. δ(si, ak) = (si+1, ak, d), for 0 ≤ i ≤ n − 2
9. δ(sn−1, ak) = (s+, ak, d)

10. δ(si, a
′
k) = (si, a

′
k, d), for 0 ≤ i ≤ n − 1

11. δ(s+, a′
k) = (s+, a′

k, d)
12. δ(s+, ak) = (s−, ak, d) �

As is often the case in connection with unary languages, Landau’s function

F (n) = max{lcm(c1, c2, . . . , cl) | l ≥ 1, c1, c2, . . . , cl ≥ 1 and c1+c2+· · ·+cl = n}

plays a crucial role, where lcm denotes the least common multiple. It is well
known that the ci always can be chosen to be relatively prime. Moreover, an
easy consequence of the definition is that the ci can always be chosen so that
c1, c2, . . . , cl ≥ 2, c1 + c2 + · · · + cl ≤ n, and lcm(c1, c2, . . . , cl) = F (n) (cf., for
example, [17]). Since F depends on the irregular distribution of the prime num-
bers, we cannot expect to express F (n) explicitly by n. The function itself
was investigated by Landau [12,13] who proved the asymptotic growth rate
limn→∞

ln(F (n))√
n·ln(n) = 1. The upper and lower bounds F (n) ∈ e

√
n·ln(n)(1+o(1)) and

F (n) ∈ Ω
(
e
√

n·ln(n)
)

have been derived in [2,25].

3 Simulation Cost of 1-DLA

We start with simulations of unary 1-DLA by finite automata. Upper bounds
for general regular languages have been obtained in [20] as follows. Any n-state
1-DLA can be simulated by a one-way deterministic finite automaton (1DFA)
with no more than n·(n+1)n states. The currently best lower bound for the sim-
ulations of unary 1-DLA by two-way nondeterministic finite automata (2NFA)
was also obtained in [20], where it is shown that for infinitely many integers n
there is a unary regular language recognized by an n-state, 3-tape-symbol 1-DLA
such that each equivalent 2NFA requires a number of states which is quadratic
in n. The next theorem improves this lower bound. It is worth mentioning that,
to this end, the number of tape symbols is set to n + 1.

Theorem 2. Let n ≥ 2 be a prime number. Then there is a unary 4n-state and
n + 1 tape symbol 1-DLA M , such that n · F (n) states are necessary for any
2NFA to accept the language L(M).

Proof. As mentioned above, there are positive integers c1, c2, . . . , cl ≥ 2 such that
c1 + c2 + · · ·+ cl ≤ n and lcm(c1, c2, . . . , cl) = F (n). The witness language is the
singleton L = {an·F (n)}. We construct a 1-DLA M = 〈S, {a}, Γ, δ,�,�, s0, {p+}〉
accepting L with at most 4n states and n + 1 tape symbols, where

158 M. Kutrib and M. Wendlandt

Γ = {a} ∪ { ti,j | 1 ≤ i ≤ l, 0 ≤ j ≤ ci − 1 }, and
S = {s0, p+, p−, r0, . . . , rn−2, r

′
0, . . . , r

′
n−3, ql+1, . . . , qn}

∪{ si,j | 1 ≤ i ≤ l, 0 ≤ j ≤ ci − 1 }.

A tape symbol ti,j occurring on some cell m means that m mod ci = j. An
input is accepted only if its length is a multiple of n. We consider the input to
be partitioned into blocks of length n. The 1-DLA rewrites the input symbols
in each block xn + 1, xn + 2, . . . , xn + n by t1,j1 , t2,j2 , . . . , tl,jl , �, . . . , �, where
j1 = (xn+1) mod c1, . . . , jl = (xn+ l) mod cl. For each block these rewritings
are successively from left to right. To this end, the states si,j are used, where
state si,j with the head on cell m means (m − 1) mod ci = j. The idea of this
part of the construction is as follows. When one of the first l − 1 cells, say cell �,
of the new block has been rewritten (Transition 3), states ri and r′

i are used
to move the head back to cell � + 1 of the previous block. Basically, state ri

or r′
i means to move the head back for another i cells. The content of cell � + 1

of the previous block is then used to continue the counting modulo � + 1 (by
states s�+1,j , Transition 2 and further transitions below) until the next still-
unwritten cell is reached (Transition 3). This is cell �+1 of the new block. After
rewriting cell l of a block the states qi are used to write the symbol � to the
remaining cells of the block (Transitions 4 and 5). Afterwards, states ri and r′

i

are again used to start the rewriting of the next block (Transition 6). Further
roles played by the states ri and r′

i are explained below. Let y ∈ Γ \ {�, a}.

1. δ(s0,�) = (s1,0,�, 1)
2. δ(si,j , y) = (si,(j+1) mod ci , y, 1), for 1 ≤ i ≤ l and 0 ≤ j ≤ ci − 1
3. δ(si,j , a) = (rn−2, ti,(j+1) mod ci ,−1), for 1 ≤ i ≤ l − 1 and 0 ≤ j ≤ ci − 1
4. δ(sl,j , a) = (ql+1, tl,(j+1) mod cl , 1), for 0 ≤ j ≤ cl − 1
5. δ(qi, a) = (qi+1, �, 1), for l + 1 ≤ i ≤ n − 1
6. δ(qn, a) = (rn−2, �,−1), for l + 1 ≤ i ≤ n − 1

The very first block is treated differently, since there is no predecessor block.
However, whenever the head is moved back to the left endmarker, the index of
states ri and r′

i says how to continue the counting (Transitions 1, 7, and 8).

7. δ(rn−i,�) = (si,0,�, 1), for 2 ≤ i ≤ l
8. δ(r′

n−i,�) = (si,0,�, 1), for 2 ≤ i ≤ l

Now we turn to the end of the computation and the roles played by the states ri

and r′
i. Let w be the input. Its length |w| is a multiple of n if and only if there is

no partial block at the end. It is a multiple of F (n) if and only if |w| is divisible
by all the ci, that is, |w| mod ci = 0. In order to test whether the length of the
input up to and including the current block is a multiple of F (n), it is sufficient
to inspect the first l cells of the block. The test is positive if the contents t�,j
of all cells 1 ≤ � ≤ l is so that (j + n − �) mod c� = 0. This test is performed
while M is in states ri and r′

i, which move the head to the left. Moreover, since
only the first input that meets the criteria may be accepted, M remembers a

On Simulation Cost of Unary Limited Automata 159

negative test result by changing from some state ri to a primed version r′
i−1

(Transitions 11, 12). Once in a primed state the head is moved back without
further tests (Transitions 11, 12).

9. δ(ri, �) = (ri−1, �,−1), for 1 ≤ i ≤ n − 3
10. δ(r′

i, �) = (r′
i−1, �,−1), for 1 ≤ i ≤ n − 3

11. δ(ri, ti′,j′) = (ri−1, ti′,j′ ,−1),
if (j′ +n− i′) mod ci′ = 0, for 1 ≤ i ≤ n−2, 1 ≤ i′ ≤ l, 0 ≤ j′ ≤ ci′ −1

12. δ(ri, ti′,j′) = (r′
i−1, ti′,j′ ,−1),

if (j′ +n− i′) mod ci′ �= 0, for 1 ≤ i ≤ n−2, 1 ≤ i′ ≤ l, 0 ≤ j′ ≤ ci′ −1
13. δ(r′

i, ti′,j′) = (r′
i−1, ti′,j′ ,−1), for 1 ≤ i ≤ n − 3, 1 ≤ i′ ≤ l, 0 ≤ j′ ≤ ci′ − 1

When the head reaches its destination, M is in state r0 or r′
0. If the destination

is not the first cell of the block or the test was negative, M takes the cell contents
to continue the counting (Transition 14 and 15). If the destination is the first cell
of the block and the test was positive the first cell is tested as well. Dependent
on the result, either the rewriting of the next block is started (Transition 16) or
state p+ is entered (Transition 17).

14. δ(r0, ti′,j′) = (si′,j′ , ti′,j′ , 1), for 2 ≤ i′ ≤ l, 0 ≤ j′ ≤ ci′ − 1
15. δ(r′

0, ti′,j′) = (si′,j′ , ti′,j′ , 1), for 1 ≤ i′ ≤ l, 0 ≤ j′ ≤ ci′ − 1
16. δ(r0, t1,j′) = (s1,j′ , t1,j′ , 1), if (j′ + n − 1) mod c1 �= 0, for 0 ≤ j′ ≤ c1 − 1
17. δ(r0, t1,j′) = (p+, t1,j′ , 1), if (j′ + n − 1) mod c1 = 0, for 0 ≤ j′ ≤ c1 − 1

Once in state p+ it is known that the input length, up to and including the
current block, is the least multiple of F (n). So, it remains to be tested that
there is no further input symbol a at the right of the block. By Transition 18 the
head is moved to the right as long as there appears neither the input symbol a
nor the right endmarker. If the right endmarker appears the computation halts in
the accepting state p+. If there is a further a to the right of the current block, the
rejecting state p− is entered and the computation halts rejecting (Transition 19).
Let y ∈ Γ \ {�, a}.

18. δ(p+, y) = (p+, y, 1)
19. δ(p+, a) = (p−, a, 1)

From the construction follows that M accepts the shortest input that is a multi-
ple of n and a multiple of F (n). Since n is prime, and the ci are relatively prime
and less than n, all ci and n are relatively prime as well. So, M accepts an·F (n).
The numbers of states and tape symbols claimed follow also from the construc-
tion. So, it remains to be verified that no further inputs are accepted by M .

The only possibility to accept is in state p+ on the right endmarker. Since
state p+ is entered only when the head is on the first cell of a block after the test
was positive, we derive that the input is a multiple of n and F (n). Since there is
no transition leading from state p+ to any other state except for p−, it follows
that the input is the shortest word which is a multiple of n and F (n) and, thus,
L(M) = {an·F (n)}.

160 M. Kutrib and M. Wendlandt

Finally, any two-way nondeterministic finite automaton that accepts a unary
singleton language needs as least as many states as the length of the sole word
in the language. ��
Since even a 2NFA needs at least n states to accept the unary singleton language
{an}, the proof of Theorem2 reveals the same lower bound for one-way and two-
way deterministic and nondeterministic finite automata.

Corollary 3. Let n ≥ 2 be a prime number. Then there is a unary 4n-state
and n+1-tape-symbol 1-DLA M , such that n ·F (n) states are necessary for any
2DFA, 1DFA, or 1NFA to accept the language L(M).

4 Simulation Cost of k-DLA

This section is devoted to deriving bounds on the cost for removing the ability
to rewrite each cell k ≥ 1 times. That is, the cost for the simulation of k-DLA by
deterministic finite automata. We start with a lower bound for the simulation by
1DFA. Interestingly, this lower bound is greater than the lower bound n·F (n)k−1

known for the simulation of unary one-way k-head finite automata [11]. Both
types of devices accept only regular unary languages, but only trivial bounds
are currently known for the cost of their mutual simulations.

Theorem 4. Let k, n ≥ 2 be integers so that n is prime. Then there is a unary
sweeping (n + 1)-state, 2k-tape-symbol k-DLA M , so that n · F (n)k states are
necessary for any 1DFA to accept the language L(M).

Proof. For any constants k ≥ 2 and prime n ≥ 2, we construct a unary sweeping
k-DLA M = 〈S, {a}, Γ, δ,�,�, s0, {s+}〉, where S = {s0, s1, . . . , sn−1, s+}, Γ0 =
{a}, Γ1 = {a1}, and Γi = {�i, ai}, for 2 ≤ i ≤ k.

There are integers c1, c2, . . . , cl ≥ 2 so that c1 + c2 + · · · + cl ≤ n and
lcm(c1, c2, . . . , cl) = F (n). We set p(1) = 0, q(1) = c1 − 1, p(i) = q(i − 1) + 1,
q(i) = p(i) + ci − 1, for 2 ≤ i ≤ l. So, we obtain in particular q(l) ≤ n − 1.

Let w be an input. In its first sweep, M rewrites any input cell with the
symbol a1. The purpose of the first sweep is to determine the value |w| mod n
(Transitions 1 and 2). If the value does not belong to the set {p(1), p(2), . . . , p(l)}
the computation halts rejecting (Transitions 3).

1. δ(s0,�) = (s0,�, 1)
2. δ(si, a) = (s(i+1) mod n, a1, 1), for 0 ≤ i ≤ n − 1
3. δ(sp(j),�) = (sp(j),�,−1), for 1 ≤ j ≤ l

The principal idea of the further computation is as follows. In the first sweep a
value p(j) is determined. Now M fixes the j and uses k further sweeps to test
whether the length of the input is a multiple of ck

j . A detailed analysis of the
language accepted follows after the construction. In the next k − 1 sweeps only
the states sp(j) to sq(j) are used. During a sweep every cjth non-blank symbol is
kept non-blank, while all the others are rewritten by a blank (Transitions 4, 5,

On Simulation Cost of Unary Limited Automata 161

and 6). If the number of non-blank symbols found during the sweep is not a
multiple of cj , that is, M reaches the opposite endmarker not in state sp(j) the
computation halts rejecting (Transitions 7 and 8). The following transitions are
used for the mth sweep, 2 ≤ m ≤ k, where d = 1 if m is odd, and d = −1 if m
is even.

4. δ(si, am−1) = (s(i+1), �m, d), for p(j) ≤ i ≤ q(j) − 1
5. δ(sq(j), am−1) = (sp(j), am, d)
6. δ(si, �m−1) = (si, �m, d), for p(j) ≤ i ≤ q(j)
7. δ(sp(j),�) = (sp(j),�, 1)
8. δ(sp(j),�) = (sp(j),�,−1)

After the kth sweep no further rewritings are possible. However, M continues
with one more sweep for which the states sp(j) to sq(j) and s+ are used, where
s+ just replaces sp(j) after the first cycle.

9. δ(si, ak) = (s(i+1), ak, d), for p(j) ≤ i ≤ q(j) − 1
10. δ(sq(j), ak) = (s+, ak, d)
11. δ(si, �k) = (si, �k, d), for p(j) ≤ i ≤ q(j)
12. δ(s+, ak) = (sp(j)+1, ak, d)
13. δ(s+, �k) = (s+, �k, d)

Finally, if M reaches the endmarker with state s+, the input is accepted since
the transition function is undefined for s+ on endmarkers and s+ ∈ F .

Now we turn to determining the language L(M). Let � = |w| be the length
of the input. The first sweep is used to count � modulo n. If the head arrives at
the right endmarker in any state not in {sp(1), sp(2), . . . , sp(l)}, the computation
halts and rejects. Let us assume the state is sp(j), for 1 ≤ j ≤ l. Then we know
� = x1 · n + p(j), for some x1 ≥ 0.

For sweep 2 ≤ m ≤ k, if the head arrives at the endmarker in any state
not equal to sp(j), the computation halts and rejects. Otherwise, the number
of non-blank cells have been divided by cj and the number of non-blank cells
found during the sweep is a multiple of cj . So, we have � = x2 · cm−1

j , for some
x2 ≥ 0. If M accepts after a further sweep, it has checked once more whether the
number of non-blank cells found during the sweep is a multiple of cj . Therefore,
we derive � = x3 · ck

j , for some x3 ≥ 0. The further reasoning is as for k-head
finite automata shown in [11]. We recall it for the sake of completeness.

Together we have that the length of the input has to meet the two properties
� = x1 · n + p(j) and � = x3·ck

j . Since n is prime and cj is less than n, the
numbers n and cj are relatively prime. We conclude that n and ck

j are relatively
prime as well. So, there is a smallest x′ so that x′ck

j is congruent 1 modulo n.
We derive that there is a y′ so that x′ck

j = y′n + 1. This implies p(j)x′ck
j =

p(j)y′n + p(j) and, thus, there is an � having the properties mentioned above at
all. By extending the length of the input by multiples of nck

j an infinite set of
input lengths � meeting the properties are derived. More precisely, given such an
�, the difference to the next input length longer than � meeting the properties

162 M. Kutrib and M. Wendlandt

has to be a multiple of n and a multiple of ck
j . Since both numbers are relatively

prime, it has to be a multiple of nck
j . The language Lj consisting of all input

lengths having these two properties is regular, and every 1DFA accepting unary
Lj has a cycle of at least nck

j states.
The language L(M) is the union of the languages Lj , 1 ≤ j ≤ l. Since all cj

and n are pairwise relatively prime, all ck
j and n are pairwise relatively prime. So,

an immediate generalization of the proof of the state complexity for the union
of two unary 1DFA languages [26] shows that every 1DFA accepting L(M) has
a cycle of at least lcm{nck

j | 1 ≤ j ≤ l } = n(c1c2 · · · cl)k = n · F (n)k states. ��
Now we turn to an upper bound that shows that removing the ability to rewrite
each cell k ≥ 1 times, but keeping the two-way head movement, costs only a
polynomially number of states. From the resulting unary 2DFA an upper bound
for one-way devices can be derived by the known bounds for removing the two-
way head movement.

Theorem 5. Let k, n ≥ 1 be integers and M be a unary n-state sweeping
k-DLA. Then O(n

k2+3k+2
2) states are sufficient for a 2DFA to accept the lan-

guage L(M). The 2DFA can effectively be constructed from M .

Example 1 provides the witness language L = {ank+1} for a lower bound. Since
L is a unary singleton, every 2NFA, 2DFA, 1NFA, or 1DFA needs at least nk+1

states to accept it. Since the example shows that L is accepted by some (n + 2)-
state k-DLA the following lower bound follows.

Theorem 6. Let k ≥ 1 and n ≥ 2 be integers. Then there is a unary sweeping
(n + 2)-state, (2k + 1)-tape-symbol k-DLA M , so that nk+1 states are necessary
for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language L(M).

The quadratic degree of the polynomial for the upper bound shown in
Theorem 5 is essentially due to the fact that the non-unary tape contents after
the first sweep cannot be recomputed. Instead, the computation has to be sim-
ulated by states that reflect the contents. The problem with the recomputation
is caused by the alternating directions of the sweeps. So, a recomputation would
require reversibility of the single sweeps. But in general these sweeps have an
irreversible nature. Further restrictions of sweeping two-way automata studied in
the literature are so-called rotating automata [8]. A rotating k-DLA is a sweeping
k-DLA whose head is reset to the left endmarker every time the right endmarker
is reached. So, the computation of a rotating machine can be seen as on a cir-
cular input with a marker between the last and first symbol. While every unary
2DFA can be made sweeping by adding one more state [9], and unary sweeping
2DFA can be made rotating without increasing the number of states, for unary
2DFA all these modes are almost the same. However, this is not true for limited
automata. The next theorem shows that the simulation of rotating k-DLA by
2DFA is cheaper. Moreover, it will turn out that the upper and lower bounds
are tight in the order of magnitude. The degree of the polynomials is the same.

On Simulation Cost of Unary Limited Automata 163

Theorem 7. Let k, n ≥ 1 be integers and M be a unary n-state rotating k-DLA.
Then O(nk+1) states are sufficient for a (sweeping) 2DFA to accept the lan-
guage L(M). The 2DFA can effectively be constructed from M .

The construction of the sweeping k-DLA accepting the singleton language L =
{ank+1} given in Example 1 can easily be modified to the construction of an
equivalent rotating k-DLA. So, we have the following lower bound that matches
the upper bound in the order of magnitude.

Theorem 8. Let k ≥ 1 and n ≥ 2 be integers. Then there is a unary rotating
(n + 2)-state, (2k + 1)-tape-symbol k-DLA M , so that nk+1 states are necessary
for any 2NFA, 2DFA, 1NFA, or 1DFA to accept the language L(M).

References

1. Blum, M., Hewitt, C.: Automata on a 2-dimensional tape. In: Symposium on
Switching and Automata Theory (SWAT 1967), pp. 155–160. IEEE (1967)

2. Ellul, K.: Descriptional Complexity Measures of Regular Languages. Master’s the-
sis. University of Waterloo, Ontario, Canada (2004)

3. Geffert, V., Mereghetti, C., Pighizzini, G.: Converting two-way nondeterministic
unary automata into simpler automata. Theoret. Comput. Sci. 295, 189–203 (2003)

4. Hartmanis, J.: Computational complexity of one-tape Turing machine computa-
tions. J. ACM 15, 325–339 (1968)

5. Hennie, F.C.: One-tape, off-line Turing machine computations. Inform. Control 8,
553–578 (1965)

6. Hibbard, T.N.: A generalization of context-free determinism. Inform. Control 11,
196–238 (1967)

7. Holzer, M., Kutrib, M.: Unary language operations and their nondeterministic
state complexity. In: Ito, M., Toyama, M. (eds.) DLT 2002. LNCS, vol. 2450, pp.
162–172. Springer, Heidelberg (2003)

8. Kapoutsis, C.A., Královic, R., Mömke, T.: Size complexity of rotating and sweeping
automata. J. Comput. System Sci. 78, 537–558 (2012)

9. Kunc, M., Okhotin, A.: On deterministic two-way finite automata over a unary
alphabet. Technical report. 950, Turku Centre for Computer Science (2011)

10. Kunc, M., Okhotin, A.: State complexity of operations on two-way finite automata
over a unary alphabet. Theoret. Comput. Sci. 449, 106–118 (2012)

11. Kutrib, M., Malcher, A., Wendlandt, M.: Simulations of unary one-way multi-head
finite automata. Int. J. Found. Comput. Sci. 25, 877–896 (2014)

12. Landau, E.: Über die Maximalordnung der Permutationen gegebenen Grades.
Archiv der Math. und Phys. 3, 92–103 (1903)

13. Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen. Teubner,
Leipzig (1909)

14. Mera, F., Pighizzini, G.: Complementing unary nondeterministic automata. The-
oret. Comput. Sci. 330, 349–360 (2005)

15. Mereghetti, C., Pighizzini, G.: Optimal simulations between unary automata.
SIAM J. Comput. 30, 1976–1992 (2001)

16. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: Symposium on Switching and Automata Theory (SWAT 1971),
pp. 188–191. IEEE (1971)

164 M. Kutrib and M. Wendlandt

17. Nicolas, J.L.: Sur l’ordre maximum d’un élément dans le groupe Sn des permuta-
tions. Acta Arith. 14, 315–332 (1968)

18. Pighizzini, G.: Deterministic pushdown automata and unary languages. Int. J.
Found. Comput. Sci. 20, 629–645 (2009)

19. Pighizzini, G.: Strongly limited automata. In: Non-Classical Models of Automata
and Applications (NCMA 2014). books@ocg.at, vol. 304, pp. 191–206. Austrian
Computer Society, Vienna (2014)

20. Pighizzini, G., Pisoni, A.: Limited automata and regular languages. Int. J. Found.
Comput. Sci. 25, 897–916 (2014)

21. Pighizzini, G., Pisoni, A.: Limited automata and context-free languages. Fund.
Inform. 136, 157–176 (2015)

22. Pighizzini, G., Shallit, J.: Unary language operations, state complexity and Jacob-
sthal’s function. Int. J. Found. Comput. Sci. 13, 145–159 (2002)

23. Pighizzini, G., Shallit, J., Wang, M.W.: Unary context-free grammars and push-
down automata, descriptional complexity and auxiliary space lower bounds. J.
Comput. System Sci. 65, 393–414 (2002)

24. Pr̊uša, D.: Weight-reducing hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

25. Szalay, M.: On the maximal order in Sn and S∗
n. Acta Arithm. 37, 321–331 (1980)

26. Yu, S.: State complexity of regular languages. J. Autom., Lang. Comb. 6, 221–234
(2001)

On Some Decision Problems for Stateless
Deterministic Ordered Restarting Automata

Kent Kwee and Friedrich Otto(B)

Fachbereich Elektrotechnik/Informatik, Universität Kassel, 34109 Kassel, Germany
{kwee,otto}@theory.informatik.uni-kassel.de

Abstract. The stateless deterministic ordered restarting automata
accept exactly the regular languages, and it is known that the trade-off
for turning a stateless deterministic ordered restarting automaton into
an equivalent DFA is at least double exponential. Here we show that the
trade-off for turning a stateless deterministic ordered restarting automa-
ton into an equivalent unambiguous NFA is exponential, which yields an

upper bound of 22O(n)
for the conversion into an equivalent DFA, thus

meeting the lower bound up to a constant. Based on the new transfor-
mation we then show that many decision problems, such as emptiness,
finiteness, inclusion, and equivalence, are PSPACE-complete for stateless
deterministic ordered restarting automata.

Keywords: Restarting automaton · Ordered rewriting · Descriptional
complexity · Decision problem

1 Introduction

The deterministic ordered restarting automaton (or det-ORWW-automaton) was
introduced in [9] in the setting of picture languages. While the nondeterministic
variant of this type of automaton even accepts some languages that are not
context-free, it has been shown in [9] that the deterministic variant accepts
exactly the regular languages.

In [10] an investigation of the descriptional complexity of the det-ORWW-
automaton was initiated. It was shown that each det-ORWW-automaton can be
simulated by an automaton of the same type that has only a single state, which
means that for these automata, states are actually not needed. Accordingly,
such an automaton is called a stateless det-ORWW-automaton (stl-det-ORWW-
automaton). For these automata, the size of their working alphabets can be taken
as a measure for their descriptional complexity, and it has been shown that
these automata are polynomially related in size to the weight-reducing Hennie
machines studied by Pr̊uša in [12]. Actually, for n ≥ 1, there exists a regular
language that is accepted by a stl-det-ORWW-automaton of size O(n) such that
each DFA for this language has size at least 22

n

. On the other hand, each stl-
det-ORWW-automaton of size n can be simulated by a DFA of size 22

O(n2·log n)
.

Thus, there is a huge gap between the upper and lower bounds.
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 165–176, 2015.
DOI: 10.1007/978-3-319-19225-3 14

166 K. Kwee and F. Otto

Here we present a new construction that, for a stl-det-ORWW-automaton
of size n, yields an equivalent unambiguous NFA of size 2O(n), which implies
that there is an equivalent DFA of size 22

O(n)
. Actually, we will show that

these bounds are sharp (up to the O-notation). We then exploit our construc-
tion to establish that many basic decision problems, like emptiness, universality,
finiteness, inclusion, and equivalence, are PSPACE-complete for stl-det-ORWW-
automata. In addition, we consider the problem of deciding, given a stl-det-
ORWW-automaton, whether the language accepted belongs to a certain subclass
of the regular languages. For the subclasses of strictly locally k-testable lan-
guages (k ≥ 1), nilpotent languages, combinatorial languages, and some others,
we obtain that the corresponding decision problems are PSPACE-complete, too.

This paper is structured as follows. In Sect. 2, we introduce the stl-det-
ORWW-automata, and we restate the main results on them from [10]. Then, in
Sect. 3, we present the announced construction of an NFA from a given stl-det-
ORWW-automaton, and in Sect. 4 we consider the decision problems mentioned
above. The paper closes with Sect. 5, which summarizes our results briefly and
states a number of open problems for future work.

2 Stateless Deterministic Ordered Restarting Automata

A stateless deterministic ordered restarting automaton (stl-det-ORWW-automa-
ton) is a one-tape machine that is described by a 6-tuple M = (Σ,Γ,�,�, δ, >),
where Σ is a finite input alphabet, Γ is a finite tape alphabet such that Σ ⊆ Γ ,
the symbols �,� �∈ Γ serve as markers for the left and right border of the work
space, respectively,

δ : (((Γ ∪ {�}) · Γ · (Γ ∪ {�})) ∪ {��}) ��� {MVR} ∪ Γ ∪ {Accept}

is the (partial) transition function, and > is a partial ordering on Γ . The tran-
sition function describes three different types of transition steps:

(1) A move-right step has the form δ(a1a2a3) = MVR, where a1 ∈ Γ ∪ {�} and
a2, a3 ∈ Γ . It causes M to shift the window one position to the right. Observe
that no move-right step is possible, if the window contains the symbol �.

(2) A rewrite/restart step has the form δ(a1a2a3) = b, where a1 ∈ Γ ∪ {�},
a2, b ∈ Γ , and a3 ∈ Γ ∪ {�} such that a2 > b holds. It causes M to replace
the symbol a2 in the middle of its window by the symbol b and to restart.

(3) An accept step has the form δ(a1a2a3) = Accept, where a1 ∈ Γ ∪{�}, a2 ∈ Γ ,
and a3 ∈ Γ ∪ {�}. It causes M to halt and accept. In addition, we allow an
accept step of the form δ(��) = Accept.

If δ(u) is undefined for some word u, then M necessarily halts, when it sees u in
its window, and we say that M rejects in this situation. Further, the letters in
Γ � Σ are called auxiliary symbols.

A configuration of a stl-det-ORWW-automaton M is a pair of words (α, β),
where |β| ≥ 3, and either α = λ (the empty word) and β ∈ {�} · Γ+ · {�} or

Decision Problems for Deterministic Ordered Restarting Automata 167

α ∈ {�} ·Γ ∗ and β ∈ Γ ·Γ+ · {�}; here αβ is the current content of the tape, and
it is understood that the window contains the first three symbols of β. In addi-
tion, we admit the configuration (λ,��). A restarting configuration has the form
(λ,�w �); if w ∈ Σ∗, then (λ,�w �) is also called an initial configuration. Fur-
thermore, we use Accept to denote the accepting configurations, which are those
configurations that M reaches by an accept step. We let �M denote the single-
step computation relation that M induces on the set of configurations, and the
computation relation �∗

M of M is the reflexive and transitive closure of �M .
Any computation of a stl-det-ORWW-automaton M consists of certain phases.

A phase, called a cycle, starts in a restarting configuration, the head is moved along
the tape by MVR steps until a rewrite/restart step is performed and thus, a new
restarting configuration is reached. If no further rewrite operation is performed,
any computation necessarily finishes in a halting configuration – such a phase is
called a tail. By �c

M we denote the execution of a complete cycle, and �c∗
M is the

reflexive transitive closure of this relation. It can be seen as the rewrite relation
that M induces on its set of restarting configurations.

An input w ∈ Σ∗ is accepted by M if the computation of M which starts
with the initial configuration (λ,�w �) ends with an accept step. The language
consisting of all input words that are accepted by M is denoted by L(M).

As each cycle ends with a rewrite operation, which replaces a symbol a by
a symbol b that is strictly smaller than a with respect to the given ordering >,
we see that each computation of M on an input of length n consists of at most
(|Γ | − 1) · n cycles and a tail. Thus, M can be simulated by a deterministic
single-tape Turing machine in time O(n2). The following example illustrates the
way in which a stl-det-ORWW-automaton works.

Example 1. Let n ≥ 2 be a fixed integer, and let M = (Σ,Γ,�,�, δ, >) be
defined by taking Σ = {a, b} and Γ = Σ ∪ { ai, bi, xi | 1 ≤ i ≤ n − 1 }, by
choosing the ordering > such that a > ai > xj and b > bi > xj hold for all
1 ≤ i, j ≤ n − 1, and by defining the transition function δ in such a way that
M proceeds as follows: on input w = w1w2 · · · wm, w1, . . . , wm ∈ Σ, M numbers
the first n − 1 letters of w from left to right, by replacing wi = a (b) by ai (bi)
for i = 1, . . . , n − 1. If wn �= a, then the computation fails, but if wn = a, then
M continues by replacing the last n − 1 letters of w from right to left using
the letters x1 to xn−1. If the n-th last letter is b or some bi, then M accepts,
otherwise the computation fails again.

Then L(M) = {w ∈ {a, b}m | m > n, wn = a, and wm+1−n = b }. As shown
in [6], every det-RR(1)-automaton for L(M) has at least O(2n) states. Here a
det-RR(1)-automaton is another type of deterministic restarting automaton that
characterizes the regular languages (see [7]).

While nondeterministic ORWW-automata are quite expressive, the deterministic
variants are fairly weak. Taking the size of the tape alphabet as the measure
for the descriptional complexity of a stl-det-ORWW-automaton, the following
results are shown in [10].

168 K. Kwee and F. Otto

Theorem 2

(a) For each DFA A = (Q,Σ, q0, F, ϕ), there is a stl-det-ORWW-automaton
M = (Σ,Γ,�,�, δ, >) such that L(M) = L(A) and |Γ | = |Q| + |Σ|.

(b) For each stl-det-ORWW-automaton M with an alphabet of size n, there exists

a DFA A of size 22
O(n2 log n)

such that L(A) = L(M) holds.
(c) For each n ≥ 1, there exists a regular language Bn ⊆ {0, 1, $}∗ such that Bn

is accepted by a stl-det-ORWW-automaton over an alphabet of size O(n), but
each DFA for accepting Bn has at least 22

n

states.

Thus, there is a double exponential trade-off for converting a stl-det-ORWW-
automaton into a DFA. Observe, however, that the gap between the lower and
upper bounds is still huge.

3 Simulating a stl-det-ORWW-automaton by an NFA

Here we present our main result, which consists in the construction of an unam-
biguous NFA A of size 2O(n) from a stl-det-ORWW-automaton M of size n such
that A accepts the same language as M . In order to simplify this construction,
we require that M only accepts on reaching the right sentinel �. This is not a
restriction, as shown by the following lemma.

Lemma 3. From a stl-det-ORWW-automaton M = (Σ,Γ,�,�, δ, >), one can
construct a stl-det-ORWW-automatonM ′ = (Σ,Δ,�,�, δ′, >) such thatL(M ′) =
L(M), |Δ| ≤ |Γ | + 1, and M ′ only accepts when its window contains the right
sentinel �.

To motivate our main construction we consider an example.

Example 4. Let M be a stl-det-ORWW-automaton on the input alphabet Σ =
{a1, a2, a3, a4, a5} and the working alphabet Γ = Σ ∪ {b1, b2, b3, b4, c1, c2, c3, c4}
with the ordering ai > bi > ci for all 1 ≤ i ≤ 4, and let the transition function
be given by the following table:

δ(�a1a2) = b1, δ(�b1a2) = MVR, δ(b1a2a3) = MVR, δ(a2a3a4) = b3,
δ(b1a2b3) = b2, δ(c2c3a4) = MVR, δ(�c1b2) = MVR, δ(c1b2b3) = MVR,
δ(b2b3a4) = c3, δ(c2c3c4) = MVR, δ(�c1c2) = MVR, δ(c1c2c3) = MVR,
δ(c1b2c3) = c2, δ(c3a4a5) = b4, δ(c2c3b4) = MVR, δ(c3b4a5) = c4,
δ(�b1b2) = c1, δ(c3c4a5) = MVR, δ(c4a5�) = Accept.

Given the word w = a1a2a3a4a5 as input, M executes the following accepting
computation, where the rewritten letters are underlined:

(λ,�a1a2a3a4a5�) �c
M (λ,�b1a2a3a4a5�) �c

M (λ,�b1a2b3a4a5�) �c
M

(λ,�b1b2b3a4a5�) �c
M (λ,�c1b2b3a4a5�) �c

M (λ,�c1b2c3a4a5�) �c
M

(λ,�c1c2c3a4a5�) �c
M (λ,�c1c2c3b4a5�) �c

M (λ,�c1c2c3c4a5�) �∗
M Accept.

To encode this computation in a compact way, we introduce a 3-tuple of vectors
T = (L,W,R) for each position on the tape of M , where

Decision Problems for Deterministic Ordered Restarting Automata 169

– W is a sequence of letters W = (x1, x2, . . . , xr) over Γ such that x1 > x2 >
· · · > xr using the ordering on Γ defined by M ,

– L is a sequence of indices L = (i1, . . . , ir−1) such that i1 ≤ · · · ≤ ir−1 ≤ |Γ |,
– R is a sequence of indices R = (j1, . . . , jr−1) such that j1 ≤ · · · ≤ jr−1 ≤ |Γ |.
The idea is that W encodes the sequence of letters that are produced by M in an
accepting computation for a particular field, and L and R encode the information
on the neighbouring letters to the left and to the right that are used to perform
the corresponding rewrite operations. For the computation above we obtain the
following sequence of triples, where Λ denotes an empty sequence:

L0 W0 R0

Λ � Λ
L1 W1 R1

1 a1 1
1 b1 2

c1

L2 W2 R2

2 a2 2
3 b2 3

c2

L3 W3 R3

1 a3 1
2 b3 1

c3

L4 W4 R4

3 a4 1
3 b4 1

c4

L5 W5 R5

Λ a5 Λ
L6 W6 R6

Λ � Λ

For example, the triple (2, b3, 1) ∈ (L3,W3, R3) means that b3 is rewritten into c3,
while the left neighbouring field contains the second letter of its sequence W2,
and the right neighbouring field contains the first letter of its sequence W4.

If a letter is not rewritten at all, like a5, then the corresponding sequences L
and R are empty. In fact, there is a consistency condition that must be met by
the sequences Ri−1 and Li for each index i, as the rewrites at positions i−1 and
i are executed in some order, and this order is encoded in these sequences. For
example, L3 = (1, 2), which means that a3 is rewritten into b3, while tape field 2
still contains the original letter a2, and b3 is rewritten into c3, while tape field 2
contains the next letter b2. Thus, before the second rewrite at position 3 can
occur, the letter a2 at position 2 has been rewritten into b2, which is expressed
by the fact that R2 = (2, 3) starts with the number 2. Finally, the second number
in R2 states that b2 is rewritten into c2 only after the second rewrite at position 3
has been performed. Hence, R2 = (2, 3) and L3 = (1, 2) lead to the sequence of
rewrite steps (1 : a3 → b3), (2 : a2 → b2), (3 : b3 → c3), (4 : b2 → c2).
�
To formalize the notion of compatibility of two finite non-decreasing sequences
of integers R = (r1, . . . , rk) and L = (�1, . . . , �s), where k, s ≥ 0, we define a
multiset order(R,L) as follows:

order(R,L) = { ri + i − 1 | i = 1, . . . , k } ∪ { �j + j − 1 | j = 1, . . . , s }.

Now the pair of sequences (R,L) is called consistent, if order(R,L) = {1, 2, . . . ,
k + s}, that is, it is the integer interval [1, k + s]. In the example above, we obtain
order(R2, L3) = order((2, 3), (1, 2)) = {2, 4, 1, 3} = {1, 2, 3, 4}, thus we assign a
number between 1 and 4 = |R2| + |L3| to each of the rewrites at positions i − 1
and i, in this way specifying the order in which these rewrites must be executed.

Based on the above ideas, we will now establish the following general result.

Theorem 5. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton. Then
an unambiguous NFA A = (Q,Σ,ΔA, q0, F) can be constructed from M such that
L(A) = L(M) and |Q| ∈ 2O(|Γ |).

170 K. Kwee and F. Otto

Proof. Let M = (Σ,Γ,�,�, δM , >) be a stl-det-ORWW-automaton. At the
extra cost of at most one additional tape symbol, we can assume by Lemma 3
that M executes an accept step only when its window contains the right sen-
tinel �. Let n = |Γ |. As a first step we construct an NFA B for the characteristic
language LC(M) = {w ∈ Γ ∗ | (λ,�w�) �∗

M Accept } of M , which consists of
all words over Γ that M accepts.

The NFA B = (Q,Γ,ΔB , q0, F) is constructed as follows:

– The set Q contains the initial state q0, a designated final state qF , and all
pairs of triples of the form ((L1,W1, R1), (L2,W2, R2)), where, for i = 1, 2,

• Wi is a sequence of letters Wi = (wi,1, . . . , wi,ki
) from Γ of length 1 ≤ ki ≤ n

such that wi,1 > wi,2 > · · · > wi,ki
, or Wi = (�) and ki = 1,

• Li is a sequence of positive integers Li = (li,1, . . . , li,ki−1) of length ki − 1
such that li,1 ≤ li,2 ≤ · · · ≤ li,ki−1 ≤ n,

• Ri is a sequence of positive integers Ri = (ri,1, . . . , ri,ki−1) of length ki − 1
such that ri,1 ≤ ri,2 ≤ · · · ≤ ri,ki−1 ≤ n,

• the sequences R1 and L2 are consistent, that is, order(R1, L2) = {1, 2, . . . ,
k1 + k2 − 2}.

The transition relation ΔB is given through the following rules, where x ∈ Γ
and ((Li−1,Wi−1, Ri−1), (Li,Wi, Ri)), i = 2, 3, are states from Q:

– ΔB(q0, λ) � qF , if δM (��) = Accept.

– ΔB(q0, x) � ((Λ, (�), Λ), (L1,W1, R1)), if x = w1,1.

– ΔB (((L1,W1, R1), (L2,W2, R2)), x) � ((L2,W2, R2), (L3,W3, R3)), if
1. x = w3,1,

2. ∀1 ≤ j ≤ k2 − 1 : δM

(
w1,l2,jw2,jw3,r2,j

)
= w2,j+1,

3. ∀1 ≤ j ≤ k3 − 1 : δM

(
w1,l2,l3,j

w2,l3,jw3,j

)
= MVR, where l2,k2 = k1 is

taken, and

4. δM (w1,k1w2,k2w3,k3) = MVR.

– ΔB (((L1,W1, R1), (L2,W2, R2)), λ) � qF , if
1. R2 is a sequence of 1’s of length k2 − 1,

2. δM (w1,k1w2,k2�) = Accept, and

3. ∀1 ≤ j ≤ k2 − 1 : δM

(
w1,l2,jw2,j �

)
= w2,j+1.

We will prove that L(B) = LC(M) holds.

Claim 1. LC(M) ⊆ L(B).

Proof. Let w ∈ Γ ∗ be a word that belongs to the language LC(M). Thus, the
computation of M that starts with the restarting configuration (λ,�w�) is
accepting. If w = λ, then δM (��) = Accept, which implies that qF ∈ ΔB(q0, λ).
It follows that w ∈ L(B) holds in this case.

Decision Problems for Deterministic Ordered Restarting Automata 171

Now assume that w = w1w2 · · · wn for some n ≥ 1 and letters w1, . . . , wn ∈ Γ .
As w ∈ LC(M), we can now use the accepting computation of M for w to con-
struct a representation as in the example above. This representation translates
into a sequence of states of B, and it can be shown that this sequence of states
yields an accepting computation of B for the input w.
�

Claim 2. L(B) ⊆ LC(M).

Proof. We have to check that we can deduct a valid computation of M from
an accepting computation of B. So let w ∈ Γ ∗ be any word in L(B), and let
n = |w|. If w = λ, then qF ∈ δB(q0, λ), which implies that δM (��) = Accept
holds, which in turn means that w ∈ LC(M).

If w = w1 ∈ Γ , then there exist sequences W1 = (w1,1, . . . , w1,k1) over Γ and
L1 = (l1,1, . . . , l1,k1−1) and R1 = (r1,1, . . . , r1,k1−1) over N such that

– w1,1 = w1,
– ((Λ, (�), Λ), (L1,W1, R1)) ∈ ΔB(q0, w1), and
– qF ∈ ΔB(((Λ, (�), Λ), (L1,W1, R1)), λ).

From the definition of ΔB it follows that either k1 = 1, and then Accept ∈
δM (�w1�), or k1 > 1, and then l1,j = 1 = r1,j for all j = 1, . . . , k1 − 1, w1,j+1 ∈
δM (�w1,j�) for all j = 1, . . . , k1 − 1, and Accept ∈ δM (�w1,k1�). Hence, we
see that the computation of M that begins with the restarting configuration
(λ,�w�) accepts, that is, w = w1 ∈ LC(M).

Now assume that w = w1 · · · wn for some n ≥ 2 and letters w1, . . . , wn ∈ Γ .
As B accepts on input w, there exist sequences Wi = (wi,1, . . . , wi,ki

) over Γ
and sequences of integers Li = (li,1, . . . , li,ki−1) and Ri = (ri,1, . . . , ri,ki−1),
i = 1, . . . , n, such that all of the following conditions are met:

1. ((Λ, (�), Λ), (L1,W1, R1)) ∈ ΔB(q0, w1),
2. ((Li−1,Wi−1, Ri−1), (Li,Wi, Ri)) ∈

ΔB((Li−2,Wi−2, Ri−2), (Li−1,Wi−1, Ri−1)), wi) for all i = 2, . . . , n,
3. qF ∈ ΔB((Ln−1,Wn−1, Rn−1), (Ln,Wn, Rn)), λ).

From the definition of ΔB we see that, for all i = 1, . . . , n, ki ≥ 1 and wi,1 = wi.
Now let N = N(R1, . . . , Rn) =

∑n
i=1 |Ri| =

∑n
i=1(ki − 1). By induction on N

we will prove the following technical statement.

Claim 2.1. The computation of M that begins with the restarting configuration
(λ,�w�) consists of N cycles and an accepting tail, that is, it has the form

(λ,�w�) �c
M (λ,�z(1)�) �c

M · · · �c
M (λ,�z(N)�) �∗

M (�u, v�) �M Accept,

where z(N) = uv and |v| = 2.

Proof. If N = 0, then ki = 1 for all i = 1, . . . , n, and hence, Wi = (wi) and
Li = Ri = Λ for all i = 1, . . . , n. From the definition of ΔB it follows that
δM (wi−2wi−1wi) = MVR for all i = 2, . . . , n, where w0 = � is taken, and
δM (wn−1wn�) = Accept. Thus, the computation of M that begins with the
restarting configuration (λ,�w�) is simply an accepting tail computation.

172 K. Kwee and F. Otto

Now assume that N ≥ 1. Then ki > 1 for some indices i ∈ {1, . . . , n}, and
accordingly, the corresponding sequences Li and Ri are non-empty. Because
of the consistency of the pairs (Ri−1, Li), i = 1, . . . , n, there exists an index
j ∈ {1, . . . , n} such that lj,1 = 1 = rj,1. Let s ∈ {1, . . . , n} be the mini-
mal index such that ls,1 = 1 = rs,1 holds. It follows that ks > 1 and that
Ws = (ws,1, ws,2, . . . , ws,ks

), where ws = ws,1 > ws,2. Let ŵ denote the word
ŵ = w1 · · · ws−1ws,2ws+1 · · · wn ∈ Γn. For this word the following result can be
shown.

Claim 2.1.1. (λ,�w�) �c
M (λ,�ŵ�).

We continue with the proof of Claim 2.1 by establishing the following claim,
which will allow us to perform the intended inductive step.

Claim 2.1.2. The word ŵ is accepted by the NFA B.

Proof. For all i = 1, . . . , n, we define sequences Ŵi over Γ and sequences of
integers L̂i and R̂i as follows:

Ŵi =
{

(wi,2, . . . , wi,ki
), if i = s,

Wi, otherwise;

L̂i =

⎧
⎨

⎩

(li,2, . . . , li,ki−1), if i = s,
(li,1 − 1, . . . , li,ki−1 − 1), if i = s + 1,
Li, otherwise;

R̂i =

⎧
⎨

⎩

(ri,2, . . . , ri,ki−1), if i = s,
(ri,1 − 1, . . . , ri,ki−1 − 1), if i = s − 1,
Ri, otherwise,

and we take k̂i to denote the length of the sequence Ŵi, i = 1, . . . , n. Then
k̂s = ks − 1, and k̂i = ki for all i �= s. In order to unify the notation we
write ŵ = w1 · · · ws−1ws,2ws+1 · · · wn as ŵ = ŵ1 · · · ŵn. Also we write Ŵi

as Ŵi = (ŵi,1, . . . , ŵi,k̂i
), and L̂i and R̂i as L̂i = (l̂i,1, . . . , l̂i,k̂i−1) and R̂i =

(r̂i,1, . . . , r̂i,k̂i−1), i = 1, . . . , n. It can now be shown that the above sequences
satisfy all of the following conditions::

1. ((Λ, (�), Λ), (L̂1, Ŵ1, R̂1)) ∈ ΔB(q0, ŵ1),
2. ((L̂i−1, Ŵi−1, R̂i−1), (L̂i, Ŵi, R̂i)) ∈

ΔB((L̂i−2, Ŵi−2, R̂i−2), (L̂i−1, Ŵi−1, R̂i−1)), ŵi) for all i = 2, . . . , n,

3. qF ∈ ΔB((L̂n−1, Ŵn−1, R̂n−1), (L̂n, Ŵn, R̂n)), λ).

It follows that the word ŵ is accepted by B using the sequence of states defined
above. As

N(R̂1, . . . , R̂n) =
n∑

i=1

(k̂i − 1) =
n∑

i=1

(ki − 1) − 1 = N(R1, . . . , Rn) − 1 = N − 1,

Decision Problems for Deterministic Ordered Restarting Automata 173

we can apply our induction hypothesis, which implies that the computation of M
that begins with the restarting configuration (λ,�ŵ�) consists of N − 1 cycles
and an accepting tail. Together with Claim 2.1.1 this says that the computation
of M that begins with the restarting configuration (λ,�w�) consists of N cycles
and an accepting tail, which completes the proof of Claim 2.1.
�
From the claims above we obtain that L(B) = LC(M) holds. As M is determinis-
tic, there is only a single accepting computation of B for each word w ∈ LC(M).
It follows that B is unambiguous.
�
Claim 3. |Q| ∈ 2O(|Γ |).

Proof. The set Q of states of B contains the two designated states q0 and qF

and certain states that consist of pairs of triples of the form (L,W,R), where W
is a sequence of letters W = (a1, . . . , am) from Γ such that a1 > · · · > am, and
L and R are sequences of integers L = (l1, . . . , lm−1) and R = (r1, . . . , rm−1)
such that 1 ≤ l1 ≤ · · · ≤ lm−1 and 1 ≤ r1 ≤ · · · ≤ rm−1. From upper bounds for
the number of these sequences we will obtain an upper bound for the size of Q.

From the condition on the sequence W we see that m ≤ n = |Γ |, and also
lm−1 ≤ n and rm−1 ≤ n. The sequence W defines the subset {w1, . . . , wm} of Γ ,
and different sequences W and W ′ yield different subsets. Hence, the number
2n − 1 of non-empty subsets of Γ is an upper bound for the number of different
subsequences W .

The sequence L can be interpreted as a multiset over the set of integers
{1, . . . , n}, because it can contain repetitions. This multiset is of size at most n−1
(counting elements with their multiplicities). There are

(
n+r−1

r

)
such multisets of

size r (see, e.g., [14]), and hence, the number of possible sequences L is bounded
from above by the expression

n−1∑

r=0

(
n + r − 1

r

)
≤

n−1∑

r=0

(
2n

r

)
≤

2n∑

r=0

(
2n

r

)
= 22n,

and the same is true for the number of possible sequences R. Hence, there are
at most 22n · 2n · 22n = 25n different triples of the form (L,W,R), and so the
number of states of B is bounded from above by the number 210n.
�
It follows that B is of size 2O(n). From B we now obtain an NFA A for the
language L(M) = LC(M) ∩ Σ∗ by simply deleting all transitions from ΔB that
read a letter x ∈ (Γ � Σ). Then it is immediate that A is an unambiguous NFA
of size 2O(n) that accepts the language L(A) = L(B) ∩ Σ∗ = L(M).
�

For all n ≥ 3, the language Un = {a2n} can be shown to be accepted by a
stl-det-ORWW-automaton with an alphabet of 3n − 1 letters, while each NFA
for Un needs at least 2n +1 states. Hence, the bound given in Theorem 5 is sharp
up to the O-notation. In addition, we have the following consequence, which is
a clear improvement over the upper bound given in Theorem 2 (b).

Corollary 6. For each stl-det-ORWW-automaton M with alphabet of size n,
there exists a DFA C of size 22

O(n)
such that L(C) = L(M) holds.

174 K. Kwee and F. Otto

4 Decision Problems for stl-det-ORWW-automata

The emptiness problem for an NFA A = (Q,Σ, δ, q0, F) of size |Q| = m is decid-
able nondeterministically in space O(log m) (see, e.g., [5]), and so, by Savitch’s
Theorem [13] it follows that NFA-Emptiness ∈ DSPACE((log |Q|)2). Based on this
observation we can use Theorem 5 to derive the following result.

Theorem 7. The emptiness problem for stl-det-ORWW-automata is PSPACE-
complete.

Proof. Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton such that
|Γ | = n. By Theorem 5, there exists an NFA A of size 2O(n) such that L(A) =
L(M). Now we can check emptiness of L(A) deterministically using space
(log(2O(n)))2 = O(n2). Thus, we see that stl-det-ORWW-Emptiness ∈ PSPACE.

Now let A1, . . . , At be t ≥ 2 DFAs over a common input alphabet Σ of size k
such that Ai has ni states, 1 ≤ i ≤ t. From these DFAs we can construct a stl-det-
ORWW-automaton M with a tape aphabet of size k · (1 + n1 + · · · + nt−1) + nt

such that L(M) =
⋂t

i1
L(Ai) [10]. Hence, M has at most O((k · ∑t

i=1 ni)3)
transitions, and so it can be computed from A1, . . . , At in polynomial time. Now
L(M) �= ∅ iff L(A1) ∩ · · · ∩ L(At) �= ∅, which shows that the above construction
yields a polynomial-time reduction from the DFA-Intersection-Emptiness Problem
to stl-det-ORWW-Emptiness. As the former is PSPACE-complete (see, e.g., [4]),
we see that the latter is also PSPACE-hard. Together with the membership in
PSPACE shown above, PSPACE-completeness follows.
�
From this theorem we also get the following completeness results.

Corollary 8. For stl-det-ORWW-automata, universality, finiteness, inclusion,
and equivalence are PSPACE-complete.

Proof. Universality: Let M be a stl-det-ORWW-automaton with input alpha-
bet Σ. In polynomial time we can construct a stl-det-ORWW-automaton M c

for the language L(M c) = (L(M))c = Σ∗ � L(M) from M such that M c uses
the same tape alphabet as M [10]. The automaton M is universal, that is,
L(M) = Σ∗, iff L(M c) = ∅. PSPACE-completeness of the universality problem
now follows from PSPACE-completeness for the emptiness problem.

Inclusion and Equivalence: Let M1 and M2 be stl-det-ORWW-automata with
alphabets of sizes n1 and n2, respectively. In polynomial time we can construct
a stl-det-ORWW-automaton M with an alphabet of size O(n1 · n2) from M1

and M2 such that L(M) = L(M1) ∩ L(M2)c [10]. Now L(M1) ⊆ L(M2) iff
L(M1) ∩ L(M2)c = ∅ iff L(M) = ∅. It follows that the inclusion problem is in
PSPACE, which in turn implies immediately that the equivalence problem is in
PSPACE.

On the other hand, let M ′ be a stl-det-ORWW-automaton that accepts
the empty set. Then L(M) = L(M ′) iff L(M) ⊆ L(M ′) iff L(M) = ∅. Thus,
PSPACE-completeness of the inclusion and the equivalence problems follows
from PSPACE-completeness for the emptiness problem.

Decision Problems for Deterministic Ordered Restarting Automata 175

Finiteness: Let M = (Σ,Γ,�,�, δ, >) be a stl-det-ORWW-automaton. We
take a new symbol �, that is, � �∈ Γ , and define a stl-det-ORWW-automaton
M ′ = (Σ′, Γ ′,�,�, δ′, >) as follows:

– Σ′ = Σ ∪ {�} and Γ ′ = Γ ∪ {�},
– the transition function δ′ is obtained from δ by simply interpreting an occur-

rence of the symbol � as an occurrence of the right delimiter �.

Then L(M ′) = L(M) ∪ (L(M) · � · Σ′∗), which means that L(M ′) is finite iff
L(M) = ∅. PSPACE-hardness of finiteness now follows from PSPACE-hardness
of the emptiness problem.

On the other hand, from a stl-det-ORWW-automaton M with an alphabet
of size n we can construct an NFA A of size 2O(n) such that L(M) = L(A). Just
like emptiness, also infiniteness is decidable for A nondeterministically in space
log(2O(n)) ∈ O(n), and hence, it is decidable deterministically in space O(n2).
Thus, finiteness for stl-det-ORWW-automata is indeed PSPACE-complete.
�
In the literature many subfamilies of the regular languages have been studied
(see, e.g., [1,3,11]). Here we only consider some of them, beginning with the
strictly locally testable languages of [8,15], but the corresponding problem can
be stated for any subclass of REG.

A language L ⊆ Σ∗ is strictly k-testable for some k ≥ 1 if L ∩ Σk · Σ∗ =
(A · Σ∗ ∩ Σ∗ · B) � Σ+ · (Σk � C) · Σ+ for some finite sets A,B,C ⊆ Σk. For
example, the language (a + b)∗ is strictly 1-testable, and the language a(baa)+

is strictly 3-testable, but the language (aa)∗ is not strictly locally testable.
For each k ≥ 1, if a language L is given through a DFA, then it is decidable in

polynomial time whether or not L is strictly locally k-testable. Also it is decidable
in polynomial time whether L is strictly locally testable [2]. We are interested in
the corresponding variant of these problems in which the language considered is
given through a stl-det-ORWW-automaton. Here we have the following result.

Theorem 9. The following problem is PSPACE-complete for each k ≥ 1:

INSTANCE: A stl-det-ORWW-automaton M .
QUESTION: Is the language L(M) strictly locally k-testable?

The construction in the proof shows that the problem of deciding strictly locally
testability is at least PSPACE-hard for stl-det-ORWW-automata, but it remains
open whether this problem is in PSPACE.

Using the same kind of reasoning it can be shown that, for a stl-det-ORWW-
automaton, also the problems of deciding whether the accepted language is nilpo-
tent, combinatorial, circular, suffix-closed, prefix-closed, suffix-free, or prefix-free
(see, e.g., [1,3] for the definitions of these notions) are PSPACE-complete.

5 Concluding Remarks

We have shown that stl-det-ORWW-automata, although being deterministic
devices, can provide exponentially more succinct representations for regular lan-
guages than NFAs. In addition, we have shown that many decision problems

176 K. Kwee and F. Otto

of interest are PSPACE-complete for stl-det-ORWW-automata. However, some
open problems remain, for example:

– Can the given upper bounds be further improved by providing small constants
in the exponents?

– Is the problem of deciding whether the language L(M) that is accepted by
a given stl-det-ORWW-automaton M is strictly locally testable decidable in
polynomial space?

References

1. Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting
subregular languages. Theor. Comp. Sci. 410, 3209–3222 (2009)

2. Caron, P.: Families of locally testable languages. Theor. Comp. Sci. 242, 361–376
(2000)

3. Dassow, J.: Subregular restrictions for some language generating devices. In: Fre-
und, R., Holzer, M., Truthe, B., Ultes-Nitsche, U. (eds.) Proceedings of the Fourth
Workshop on Non-Classical Models for Automata and Applications (NCMA 2012).
books@ocg.at, Band, vol. 290, pp. 11–26. Oesterreichische Computer Gesellschaft,
Wien (2012)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

5. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata - a survey. Inform. Comp. 209, 456–470 (2011)

6. Hundeshagen, N., Otto, F.: Characterizing the regular languages by nonforgetting
restarting automata. In: Mauri, G., Leporati, A. (eds.) DLT 2011. LNCS, vol. 6795,
pp. 288–299. Springer, Heidelberg (2011)

7. Kutrib, M., Reimann, J.: Succinct description of regular languages by weak restart-
ing automata. Inform. Comp. 206, 1152–1160 (2008)

8. McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst.
Theor. 8, 60–76 (1974)

9. Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 431–442. Springer, Heidelberg (2014)

10. Otto, F.: On the descriptional complexity of deterministic ordered restarting
automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS,
vol. 8614, pp. 318–329. Springer, Heidelberg (2014)

11. Pin, J.-E.: Syntactic semigroups. In: Rozenberg, G., Salomaa, A. (eds.) Handbook
of Formal Languages, vol. 1, pp. 679–746. Springer, Berlin (1997)

12. Pr̊uša, D.: Weight-reducing Hennie machines and their descriptional complexity.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014)

13. Savitch, J.E.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comp. Syst. Sci. 4, 177–192 (1970)

14. Stanley, R.P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge University
Press, Cambridge (2012)

15. Zalcstein, Y.: Locally testable languages. J. Comp. Syst. Sci. 6, 151–167 (1972)

Quantum Queries on Permutations

Taisia Mischenko-Slatenkova1, Alina Vasilieva2, Ilja Kucevalovs2,
and Rūsiņš Freivalds1,2(B)

1 Institute of Mathematics and Computer Science, University of Latvia,
Raiņa bulvāris 29, Riga 1459, Latvia

Taisia.Mischenko@gmail.com, Rusins.Freivalds@mii.lu.lv
2 Faculty of Computing, University of Latvia, Raiņa bulvāris 19, Riga 1586, Latvia

Alina.Vasilieva@lu.lv, Ilja.Kucevalovs@intellisoft.lv

Abstract. K. Iwama and R. Freivalds considered query algorithms where
the black box contains a permutation. Since then several authors have
compared quantum and deterministic query algorithms for permutations.
It turns out that the case of n-permutations where n is an odd number is
difficult. There was no example of a permutation problem where quantiza-
tion can save half of the queries for (2m+1)-permutations if m ≥ 2. Even
for (2m)-permutations with m ≥ 2, the best proved advantage of quan-
tum query algorithms is the result by Iwama/Freivalds where the quantum
query complexity is m but the deterministic query complexity is (2m−1).
We present a group of 5-permutations such that the deterministic query
complexity is 4 and the quantum query complexity is 2.

1 Introduction

Many papers on query algorithms consider computation of Boolean functions.
The input of the query algorithm is a black box oracle containing the values of
the variables x1 = a1, x2 = a2, . . . , xn = an for an explicitly known Boolean
function f(x1, . . . , xn). The result of the query algorithm is to be the value
f(a1, . . . , an). The query algorithm can ask for the values of the variables. The
queries are asked individually, and the result of any query influences the next
query to be asked or the result to be output.

The complexity of the query algorithm is defined as the number of queries
asked of the black box oracle. Deterministic query algorithms prescribe the next
query uniquely, depending only on the previously received answers from the black
box oracle. Probabilistic query algorithms allow randomization of the process of
computation. They sometimes allow reduction of the complexity of the algorithm
dramatically [1].

Quantum query algorithms (see a formal definition in [6]) consist of a finite
number of states, where each of them can query the black box oracle and deter-
mine how to change states. In fact they alternate query operations and unitary
transformations. In the steps called query operations the states of the algorithm

The research was supported by the project ERAF Nr.2DP/2.1.1.1/13/APIA/
VIAA/027.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 177–184, 2015.
DOI: 10.1007/978-3-319-19225-3 15

178 T. Mischenko-Slatenkova et al.

are divided into subsets corresponding to the allowed quantum-parallel queries.
If each of states qi1 , . . . , qim asks a query “xi =?” then for every possible answer
“xi = j” a unitary operation over the states qi1 , . . . , qim is pre-programmed. In the
steps called unitary transformations the amplitudes of all states are transformed
according to a unitary matrix. Every sequence of steps is ended in a special oper-
ation called measurement, in which the amplitudes (being complex numbers) for
all the states are substituted by real numbers called probabilities by the following
rule. The complex number a+ bi is substituted by the real number a2 + b2. It fol-
lows from the unitarity of all the operations that the total of the probabilities of
all states equals 1. Some states are defined to be accepting, and the other states
are defined to be rejecting. This distinction is not seen before the measurement.
After the measurement the probabilities of the accepting states are summed up
and the result is called the accepting probability. We say that the quantum query
algorithm is exact if the accepting probability is always either 1 or 0.

The notion of promise for quantum algorithm was introduced by Deutsch
and Jozsa [10], and Simon [13]. In quantum query algorithms for problems
under promise, the domain of correctness of the algorithm is explicitly restricted.
We are not interested in behavior of the algorithm outside this restriction. For
instance, in this paper all the query algorithms are considered under a promise
that the target function describes a permutation (in a way precisely stated
below).

Recently there have been many papers studying query algorithms computing
Boolean functions. Powerful methods to prove lower bounds for quantum query
complexity were developed by A. Ambainis [2,3]. A good reference is the survey
by Buhrman and de Wolf [6].

We consider in this paper a more general class of functions f(x1, · · · , xn),
namely, functions {0, 1, 2, . . . , n− 1}n → {0, 1}. The domain {0, 1, 2, . . . , n− 1}n
includes a particularly interesting case — permutations. For instance,

x1 = 4, x2 = 3, x3 = 2, x4 = 1, x5 = 0

can be considered as a permutation of 5 symbols {0,1,2,3,4} usually described
as 43210. Under such a restriction the functions f : {0, 1, 2, . . . , n−1}n → {0, 1}
can be considered as properties of permutations. For instance, the function

f(0, 1, 2) = 1, f(1, 2, 0) = 1, f(2, 0, 1) = 1, f(0, 2, 1) = 0, f(1, 0, 2) = 0, f(2, 1, 0) = 0

describes the property of 3-permutations to be even (as opposed to the property
to be odd).

The property of a permutation to be even or odd can be defined in many
equivalent ways. One of the most popular definitions used below is as follows.
A permutation x1 = a1, x2 = a2, . . . , xn = an is called even (odd) if it can be
obtained from the identical permutation x1 = 0, x2 = 1, . . . , xn = n − 1 by an
even (odd) number of transpositions, i.e., mutual changes of exactly two elements
of the permutation: substituting xi = ai and xj = aj by xi = aj and xj = ai. It
is a well-known fact that the property of being even or odd does not depend on
the particular sequence of transpositions. Deciding whether a given permutation
is even or odd is called deciding the parity of this permutation.

Quantum Queries on Permutations 179

Our Contribution. It is easy to see that for every n-permutation (n−1) queries
uniquely determine the permutation. Hence for arbitrary permutation problems
the deterministic query complexity never exceeds (n−1). Theorem 1 below gives
us a hope that sometimes half of the number of queries can be eliminated by
quantization. The proof of Theorem 1 suggests that Fourier transforms might be
used again in counterparts of this theorem for larger values of n. However, it is
far from obvious how to organize the pairs of the values of results of the queries
into a linear string which is needed to apply the Fourier transform.

The paper [12] attempted to show that quantum query algorithms can use
only about a half of the number of queries needed for deterministic query algo-
rithms for deciding parity of permutations. Unfortunately, this attempt was only
partially successful. It was proved that for 2m-permutations it suffices to have
m quantum queries but for 2m+ 1-permutations it suffices to have m+ 1 quan-
tum queries. In both cases this is more than half of the deterministic query
complexity.

In this paper we were not able to construct an effective quantum query algo-
rithm to decide parity of 5-permutations. Instead we propose another permuta-
tion problem for 5-permutations where a quantum algorithm is indeed exactly
twice as efficient as the best deterministic algorithm.

As proved in [4,5,7–9,11], for every problem where a quantum algorithm is
more efficient than any deterministic algorithm, it is crucially important to have
a rich structure of symmetries. This is why we use a group of 5-permutations such
that it has interesting automorphisms. We believe that our algorithm admits a
generalization for larger values of n, but up to now we have been able to use it
only for 5-permutations.

2 First Example

Theorem 1. [12] There is an exact quantum query algorithm deciding the par-
ity of 3-permutations with one query.

Proof. By way of quantum parallelism, in the state q1 we ask the query x1 with
an amplitude 1√

3
, in the state q2 we ask the query x2 with an amplitude 1√

3
,

and in the state q3 we ask the query x3 with an amplitude 1√
3
.

If the answer from the black box to the query x1 is 0, we do not change the
amplitude of the state q1. If the answer is 1, we multiply the existing amplitude
by ei

2π
3 . If the answer is 2, we multiply the existing amplitude by ei

4π
3 .

If the answer from the black box to the query x2 is 0, we multiply the
amplitude of the state q2 by ei

4π
3 . If the answer is 1, we do not change the

amplitude. If the answer is 2, we multiply the existing amplitude by ei
2π
3 .

If the answer from the black box to the query x3 is 0, we multiply the
amplitude of the state q3 by ei

2π
3 . If the answer is 1, we multiply the existing

amplitude by ei
4π
3 . If the answer is 2, we do not change the amplitude.

180 T. Mischenko-Slatenkova et al.

We process the obtained amplitudes of the states q1, q2, q3 by a unitary trans-
formation corresponding to the matrix

⎛

⎜⎝
(1√

3
) (1√

3
) (1√

3
)

(1√
3
) (1√

3
)ei

2π
3 (1√

3
)ei

4π
3

(1√
3
) (1√

3
)ei

4π
3 (1√

3
)ei

2π
3

⎞

⎟⎠

This transformation is a particular case of a Fourier transform. If we are
computing f(0, 1, 2), f(1, 2, 0) or f(2, 0, 1) (these are all even 3-permutations)
the amplitude of the state q1 becomes, correspondingly, 1, ei

2π
3 or ei

4π
3 . After

measuring this state we get the probability 1. If we are computing f(0, 2, 1)
(which is an odd permutation) the amplitude of the state q1 becomes 0 but the
amplitude of the state q2 becomes 1. If we are computing f(1, 0, 2) or f(2, 1, 0)
(which are odd permutations) the amplitude of the state q1 becomes 0, but the
amplitude of the state q3 becomes ei

4π
3 or ei

2π
3 , correspondingly. ��

3 Further Results

We define a group GR of 5-permutations consisting of 20 permutations. These
permutations are:

01234 12340 23401 34012 40123
02413 13024 24130 30241 41302
03142 14203 20314 31420 42031
04321 10432 21043 32104 43210

First of all, we note that the 5-permutations in GR can be represented as
linear functions modulo 5.

x x + 1 x + 2 x + 3 x + 4
2x 2x + 1 2x + 2 2x + 3 2x + 4
3x 3x + 1 3x + 2 3x + 3 3x + 4
4x 4x + 1 4x + 2 4x + 3 4x + 4

These permutations can be considered as group with a 2-argument algebraic
operation “multiplication of permutations”. The properties of this group GR
have been well-known for a long time. For instance, it is known that GR is not
a commutative group and it is not a cyclic group.

In this section we prove that there is an exact quantum query algorithm
deciding the membership in the group GR of 5-permutations with 2 queries.
Obviously, 4 deterministic queries are needed for this problem because if a per-
mutation

P = {x0 = a0, x1 = a1, x2 = a2, x3 = a3, x4 = a4}
is in GR and only 3 queries are asked, there remain two possibilities, namely,
either xi = ai, xj = aj and the permutation is in GR, or xi = aj , xj = ai and
the permutation is not in GR.

Quantum Queries on Permutations 181

We will prove below that there is an exact quantum query algorithm deciding
the membership in the group GR of 5-permutations with two queries.

We need a numbering of 20 values of all possible pairs (ai, aj) where ai and aj
are values from the black box (i.e., the elements of the permutation in question).
We might arrange these 20 values in accordance with the above-presented table
but we prefer a slightly different layout.

01 12 23 34 40
02 24 41 13 30
04 43 32 21 10
03 31 14 42 20

These values correspond to the linear functions

x x + 1 x + 2 x + 3 x + 4
2x 2x + 1 2x + 2 2x + 3 2x + 4
4x 4x + 1 4x + 2 4x + 3 4x + 4
3x 3x + 1 3x + 2 3x + 3 3x + 4

There is a certain regularity in this layout. Each row can be obtained from
the preceding row multiplying it by 2 modulo 5. Each column can be obtained
from the preceding column adding 1 modulo 5.

Now we introduce two distances among the values of these pairs. The distance
Dr[(u, v), (a, b)] between the pair (u, v) and the pair (a, b) is the value (the number
of the row of (a, b)) — (the number of the row of (u, v)) (mod 4). The distance
Dc[(u, v), (a, b)] between the pair (u, v) and the pair (a, b) is the value (the number
of the column of (a, b) — (the number of the column of (u, v)) (mod 5).

Our quantum query algorithm (in a way of quantum parallelism) enters (with
equal amplitudes 1√

20
) 20 states. In each of these states the algorithm asks one

of the 20 possible queries (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈ {0, 1, 2, 3, 4}, and
i �= j. In the result of these queries the amplitude is multiplied either by (−1)
or by (+1). The following is a description of the value of these multipliers.

There are 20 values of all possible pairs (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈
{0, 1, 2, 3, 4}, and xi �= xj . For every pair of queries (xi, xj) where xi �= xj , the
answer-pair (ai, aj) corresponds to the answer-pair (aj , ai) of the query (xj , xi).
However, for the sake of symmetry, we have considered a quantum query algo-
rithm with 20 possible pairs of queries.

Since the black box contains a permutation, the results of the query are also
such that ai ∈ {0, 1, 2, 3, 4}, aj ∈ {0, 1, 2, 3, 4}, and ai �= aj . Hence there are
exactly 20 values of all possible answer-pairs (ai, aj).

For each of these 20 pairs (xi, xj) we get the corresponding pair of answers
(ai, aj) and again ai ∈ {0, 1, 2, 3, 4}, aj ∈ {0, 1, 2, 3, 4}, and ai �= aj . We can
consider 20 distances Dr[(xi, xj), (ai, aj)] and 20 distances Dc[(xi, xj), (ai, aj)].

In the table below each of these pairs of distances is considered as a pair (w, z)
where w = Dr[(xi, xj), (ai, aj)] and z = Dc[(xi, xj), (ai, aj)]. Please observe that
while asking the query (xi, xj) we automatically get an answer to the query

182 T. Mischenko-Slatenkova et al.

(xj , xi) as well but for this pair the distances may be different. Our quantum
query algorithm uses this distinction essentially.

Suppose that the permutation in the black box is 03241 and we consider the
pair of queries (x2, x4). Then the pair of answers (a2, a4) equals (2, 1) and the pair
of answers for (x4, x2) denoted as (a4, a2) equals (1, 2). Then Dr[(x2, x4), (a2, a4)]
is equal to Dr[(2, 4), (2, 1)] = 1, Dc[(2, 4), (2, 1)] = 2, Dr[(4, 2), (1, 2)] = 1, and
Dc[(4, 2), (1, 2)] = 3.

The following table describes in which cases the multiplier is +1 and in which
cases it is −1. The first column corresponds to the pair

(w1, z1) = (Dr[(xi, xj), (ai, aj)],Dc[(xi, xj), (ai, aj)]),

the second column corresponds to

(w2, z2) = (Dr[(xj , xi), (aj , ai)]),Dc[(xj , xi), (aj , ai)]),

the last column corresponds to the multiplier (+1) or (−1). For instance, the
above-mentioned example is described in the table below as

(1, 2) (1, 3) → +1

The table is as follows.

(0, 0) (0, 0) → +1
(0, 1) (0, 4) → +1
(0, 2) (0, 3) → +1
(0, 3) (0, 2) → +1
(0, 4) (0, 1) → +1
(1, 0) (1, 0) → +1
(1, 1) (1, 4) → +1
(1, 2) (1, 3) → +1
(1, 3) (1, 2) → +1
(1, 4) (1, 1) → +1
(2, 0) (2, 0) → −1
(2, 1) (2, 4) → −1
(2, 2) (2, 3) → −1
(2, 3) (2, 2) → −1
(2, 4) (2, 1) → −1
(3, 0) (3, 0) → −1
(3, 1) (3, 4) → −1
(3, 2) (3, 3) → −1
(3, 3) (3, 2) → −1
(3, 4) (3, 1) → −1

Lemma 1. If the permutation in the black box is from the group GR then all
the 20 multipliers are equal.

Proof. If the permutation corresponds to the function ax + b where a = 3 or
a = 4 then the multiplier equals (−1). ��

Quantum Queries on Permutations 183

Lemma 2. If the permutation in the black box is one of the following

01243, 01342, 01423, 01324, 01432

then exactly 10 multipliers equal (−1) and exactly 10 multipliers equal (+1).

Proof. By explicit counting. ��
Lemma 3. If the permutation in the black box f(x) can be obtained from a
permutation g(x) in the set

{ 01243, 01342, 01423, 01324, 01432 }
as f(x) ≡ ag(x) + b(mod 5) then exactly 10 multipliers equal (−1) and exactly
10 multipliers equal (+1).

Proof. The definition of the values of multipliers depend only on the distances
Dr but not on the distances Dc. Application of a linear function at+ b does not
change the distance Dr. ��
Lemma 4. If the permutation in the black box is not from the group GR then
exactly 10 multipliers equal (−1) and exactly 10 multipliers equal (+1).

Proof. The group G5 of all 5-permutations consists of 120 elements. GR is a
subgroup of G5 consisting of 20 elements. Lagrange’s theorem on finite groups
shows that G5 is subdivided into 6 cosets of equal size, one of the cosets being
GR. The other 5 cosets GC1, GC2, GC3, GC4, GC5 can be described as the set
of all permutations f(x) such that f(x) ≡ ag(x) + b(mod 5) and g(x) ∈ GCi.
It follows from Lemma 3 that exactly 10 multipliers equal (−1) and exactly 10
multipliers equal (+1). ��
Theorem 2. There is an exact quantum query algorithm deciding the member-
ship in the group GR of 5-permutations with two queries.

Proof. Our quantum query algorithm (in a way of quantum parallelism) enters
(with equal amplitudes 1√

20
) 20 states. In each of these states the algorithm asks

one of the 20 possible queries (xi, xj) where xi ∈ {0, 1, 2, 3, 4}, xj ∈ {0, 1, 2, 3, 4},
and i �= j. In the result of these queries the amplitude is multiplied either by
(−1) or by (+1) as described in the table above. Lemmas 1 and 4 ensure that our
quantum algorithm accepts all permutations in GR and rejects all permutations
not in GR with probability 1. ��

References

1. Ablayev, F.M., Freivalds, R.: Why sometimes probabilistic algorithms can be more
effective. In: Gruska, J., Rovan, B., Wiedermann, J. (eds.) MPCS 1986. LNCS, vol.
233, pp. 1–14. Springer, Heidelberg (1986)

2. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci. 64(4), 750–767 (2002)

184 T. Mischenko-Slatenkova et al.

3. Ambainis, A.: Polynomial degree vs. quantum query complexity. In: Proceedings
of FOCS 1998, pp. 230–240 (1998)

4. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weak-
nesses and generalizations. In: Proceedings of FOCS 1998, pp. 332– 341. Also
quant-ph/9802062

5. Ambainis, A., de Wolf, R.: Average-case quantum query complexity. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 133–144. Springer, Heidelberg
(2000)

6. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a
survey. Theoret. Comput. Sci. 288(1), 21–43 (2002)

7. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds
by polynomials. J. ACM 48(4), 778–797 (2001)

8. Buhrman, H., Cleve, R., de Wolf, R., Zalka, C.: Bounds for small-error and zero-
error quantum algorithms. In: Proceedings of FOCS 1999, pp. 358–368 (1999)

9. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited.
Proc. R. Soc. Lond. A 454, 339–354 (1998)

10. Deutsch, D., Jozsa, R.: Rapid solutions of problems by quantum computation.
Proc. R. Soc. Lond. A 439, 553 (1992)

11. Freivalds, R.: Languages recognizable by quantum finite automata. In: Farré, J.,
Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 1–14. Springer,
Heidelberg (2006)

12. Freivalds, R., Iwama, K.: Quantum queries on permutations with a promise. In:
Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 208–216. Springer, Heidelberg
(2009)

13. Simon, I.: String matching algorithms and automata. In: Bundy, A. (ed.) CADE
1994. LNCS, vol. 814, pp. 386–395. Springer, Heidelberg (1994)

http://arxiv.org/abs/quant-ph/9802062

Complement on Free and Ideal Languages

Peter Mlynárčik(B)

Mathematical Institute, Slovak Academy of Sciences,
Grešaková 6, 040 01 Košice, Slovakia

mlynarcik1972@gmail.com

Abstract. We study nondeterministic state complexity of the comple-
ment operation on the classes of prefix-free, suffix-free, factor-free and
subword-free languages and on the class of ideal languages. For the cases
prefix-free and suffix-free we improve the lower bound, and improve the
upper bound for suffix-free languages in the binary case. In all other
cases, we find tight bounds for sufficient alphabet sizes.

1 Introduction

The complement of a formal language L over an alphabet Σ is the language
Lc = Σ∗ \ L, where Σ∗ is the set of all strings over an alphabet Σ. The comple-
mentation is an easy operation on regular languages represented by deterministic
finite automata (DFAs) since to get a DFA for the complement of a regular lan-
guage, it is enough to interchange the final and non-final states in a DFA for
this language.

On the other hand, complementation on regular languages represented by
nondeterministic finite automata (NFAs) is an expensive task. First, we have
to apply the subset construction to a given NFA, and only after that, we may
interchange the final and non-final states. This gives an upper bound 2n.

Sakoda and Sipser [9] gave an example of languages over a growing alpha-
bet size meeting this upper bound on the nondeterministic state complexity
of complementation. Birget claimed the result for a three-letter alphabet [1],
but later corrected this to a four-letter alphabet. Holzer and Kutrib [4] proved
the lower bound 2n−2 for a binary n-state NFA language. Finally, a binary n-
state NFA language meeting the upper bound 2n was described by Jirásková
in [5]. In the unary case, the complexity of complementation is known to be in
eΘ(

√
n ln(n)) [4,5].

Jirásková and Mlynárčik [7] gave tight bounds in case of prefix- and suffix-
free languages over a ternary alphabet and for binary languages gave the lower
bound F (n − 2) + 1, where F (n) is the Landau function, and F (n) is in the
class eθ(

√
n ln(n)). The upper bound for binary alphabet was improved to 2n−1 −

2n−3 + 1, but only in the prefix-free case. The suffix-free case remained open.
In this paper, we investigate the complementation operation on prefix-free

and suffix-free binary languages, where we give significantly better lower bounds

P. Mlynárčik—Research supported by VEGA grant 2/0084/15.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 185–196, 2015.
DOI: 10.1007/978-3-319-19225-3 16

186 P. Mlynárčik

2�n
2 �−1 and give an improved upper bound for the suffix-free language 2n−1 −

2n−3+2. We also deal with factor-free and subword-free languages, where we give
tight bounds for proper alphabet. For the factor-free case over binary alphabets
we get a result similar as to that mentioned above. In the second part of the
paper we deal with complementation ideal languages, including right ideals, left
ideals, two-sided ideals, and all-sided ideals. In the first three cases we give
a tight bound in binary case, and in the last case the tight bound is for an
exponentially-growing alphabet.

2 Preliminaries

Recall that a language is prefix-free if it does not contain two distinct strings,
one of which is a prefix of the other. The suffix-free languages are defined in a
similar way.

To prove the minimality of nondeterministic finite automata, we use a fooling
set lower-bound technique [1,8].

Definition 1. A set of pairs of strings {(x1, y1), (x2, y2), . . . , (xn, yn)} is called
a fooling set for a language L if for all i, j in {1, 2, . . . , n},
(F1) xiyi ∈ L, and
(F2) if i �= j, then xiyj /∈ L or xjyi /∈ L.

Lemma 2 ([1,8]). Let F be a fooling set for a language L. Then every NFA
(with multiple initial states) for the language L has at least |F| states. ��
Although the difference between the size of fooling set and the size of minimal
NFA can be large, we successfully use the fooling set technique throughout the
paper [6].

Landau’s function is frequently needed, and is defined as follows:
Let n be a positive integer. Then F (n) = max{lcm(x1, x2, . . . , xk)|x1 + x2 +

· · · + xk = n}. The function F (n) is in the class eθ(
√

n ln(n)) (Landau, 1903).

3 Free Languages

Let G be the language accepted by the NFA over {a, b} shown in Fig. 1 with
n − 1 states. Let L = cG. The language L is a suffix-free language over {a, b, c}
recognized by an n-state NFA A, shown in Fig. 2 and nsc(Lc) ≥ 2n−1 [7]. Now
let us define a homomorphism h as follows: h(c) = 00, h(a) = 10, h(b) = 11
(used in [2]). After applying h on the language L, we have a binary language
K = h(L) over {0, 1}.

Lemma 3. The language K is a suffix-free language.

Proof. Every string in L contains exactly one symbol c at the beginning, so every
string in K begins with the string 00 and this substring does not appear later
in string. If there is a string w = uv and u �= ε, then v does not contain 00 and
therefore v �∈ K. So K is suffix-free. ��

Complement on Free and Ideal Languages 187

1 2 3 n−2 n−1
a,b a,b a,b a,b a,b

b

b
b

b

b

b

b

b

Fig. 1. An NFA of a binary regular language G with nsc(G) = 2n−1

1 2 3
a,b a,b a,b a,b a,b

b

b
b

b

b

b

b

b

0 n−2 n−1
c

Fig. 2. An NFA of a ternary suffix-free regular language L with nsc(G) = 2n−1

Now let us define NFA A′ for the language K. We use the description of automa-
ton A for original language L. Let A = (Q, {a, b, c}, δ, 0, {n − 1}) (NFA shown
in Fig. 2). The idea is replace every transition q

a−→ qa by adding a new state q′

and two transitions q
1−→ q′ 0−→ qa, and similarly for the symbol b q

1−→ q′ 1−→ qb

and transition 0 c−→ 1 we replace by adding 0′ and two transitions 0 0−→ 0′ 0−→ 1.

Lemma 4. The NFA A′ defined above recognizes the language K. ��
Lemma 5. The NFA A′ is a minimal NFA for the language K. ��
Lemma 6. Let n ≥ 3 and K be the binary language defined above.
Then nsc(Kc) ≥ 2n−1.

Proof. As shown in [7, Lemma 5], the set F = {(cxS , yS) | S ⊆ {1, 2, . . . , n − 1}}
is a fooling set for Lc. Let us define F ′ = {(h(cxS), h(yS)) | S ⊆ {1, 2, . . . , n−1}}.
Let us show that the F ′ is a fooling set for Kc.

(F1) For every pair (h(cxS), h(yS)), we have cxSyS ∈ Lc, so cxSyS �∈ L and
since homomorphism h is a bijection, we have h(cxSyS) �∈ K so (h(cxS),
h(yS)) ∈ Kc.

(F2) Let (h(cxS), h(yS)), (h(cxT), h(yT)) be two distinct pairs. Without loss
of generality, let cxSyT �∈ Lc. So cxSyT ∈ L, then h(cxSyT) ∈ K, so
h(cxSyT) �∈ Kc.

Hence F ′ is a fooling set for Kc. Since |F ′| = 2n−1, nsc(Kc) ≥ 2n−1. ��

188 P. Mlynárčik

Proposition 7. Let L be a suffix-free language L over alphabet Σ. Then for
every x ∈ Σ the language R = xL is suffix-free. ��
Above we found a binary language with an even nondeterministic state com-
plexity, and now we want to find a binary language with an odd one. Now let us
consider the language K1 = 0K, where K is described above. By Proposition 7,
K1 is a suffix-free language.

Lemma 8. Let K and K1 be binary suffix-free languages mentioned above. Then
nsc(K1) = 2n + 1.

Proof. Let us consider the automaton A′ for the language K. Let us construct
an automaton A′′ from A′ by simply adding a new state 0′ and transition from
0′ to the original initial state 0 on symbol 0. State 0′ becomes a new initial state.

Now let us consider the minimality of A′′. Let F be a fooling set for K. Let
us construct F ′ from F as follows: F ′ = {(0u, v) | (u, v) ∈ F} ∪ {ε, 000(10)n−2}.

The set F ′ is a fooling set for K1 and |F ′| = 2n + 1, so nsc(K1) = 2n + 1. ��
Lemma 9. Let n ≥ 3 and K1 be the binary language defined above. Then
nsc(Kc

1) ≥ 2n−1.

Proof. Let F be a fooling set for language Kc (see Lemma 6). Let us construct
the set F ′ = {(0u, v) | (u, v) ∈ F}. Let us show that F ′ is a fooling set for Kc

1.

(F1) If uv ∈ Kc, then uv �∈ K, then also 0uv �∈ K1, so 0uv ∈ Kc
1.

(F2) If (u, v), (x, y) ∈ F and without loss of generality, uy �∈ Kc, so uy ∈ K.
Then 0uy ∈ K1 and 0uy �∈ Kc

1.

Hence F ′ is a fooling set for Kc
1. Since |F ′| = 2n−1, nsc(Kc

1) ≥ 2n−1. ��
We summarize our results in the following theorem.

Theorem 10. Let n ≥ 6. There is a binary suffix-free language L such that
nsc(L) = n and nsc(Lc) ≥ 2�n

2 �−1.

Now we consider an upper bound. Let us recall the following result.

Lemma 11. Let n ≥ 12. Let L be a binary prefix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 1. [7, Lemma 9]

Notice that the proof at [7, Lemma 9] also works for NFAs with multiple initial
states. We are also going to use it for suffix-free languages.

Theorem 12. Let n ≥ 12. Let L be a binary suffix-free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 2.

Proof. After reversing an NFA for L, we obtain an n-state NFA (possibly with
multiple initial states) for a prefix-free language LR. By Lemma 11, nsc((LR)c) ≤
2n−1 −2n−3 +1. Since (LR)c = (Lc)R, we have nsc((Lc)R) ≤ 2n−1 −2n−3 +1. It
follows that (Lc)R is accepted by an NFA N which has at most 2n−1 − 2n−3 + 1
states. Now we reverse the NFA N , and get a NFA NR, possibly with multiple
initial states. By adding one more state, we get an NFA for Lc with at most
2n−1 − 2n−3 + 2 states and with a unique initial state. ��

Complement on Free and Ideal Languages 189

Similarly as in the case of suffix-free language, we can apply the same homomor-
phism h on the ternary prefix-free language L from [7, Lemma 3]. We only have
to be careful with the proof of the prefix-free property of the language h(L).
Now every string in h(L) ends with 00. The only proper prefix of a string in
h(L) which ends with 00 has an odd length. But such a string does not belong
to h(L). Therefore h(L) is prefix-free.

We can construct NFA A for h(L) with 2n states similarly as in the suffix-free
case. The main difference between the automaton for the case of a binary suffix-
free language, and for a binary prefix-free language is the final state. Similarly as
in suffix-free case we can prove that A is minimal and therefore nsc(h(L)) = 2n.
Finally, we use a similar approach to find a binary prefix-free language with an
odd number of states, such that we add a new state n′ and the transition from
original final state n to n′ on symbol 0. State n′ become a new final state. Such
a language is still prefix-free.

Hence we get the following result for binary prefix-free languages.
When we use the result from Lemma 11 we can state the following result.

Theorem 13 (ComplementonBinaryprefix-free, suffix-free languages).
Let n ≥ 12. Let L be a binary prefix-free or suffix free language with nsc(L) = n.
Then nsc(Lc) ≤ 2n−1 − 2n−3 + 2. The lower bound is 2�n

2 �−1.

In the paper [7, Lemma 8] we presented a binary suffix-free and prefix-free lan-
guage L with nsc(L) ≤ n, such that every NFA for its complement requires at
least F (n−2)+1 states, where F (n) is the Landau function. The function F (n) is
in 2Θ(

√
n log(n)); therefore limn→∞ F (n − 2) + 1/2� n

2 �−1 = 0. So the lower bound
in our Theorem 13 is significantly higher.

After investigation of prefix and suffix free languages we will investigate other
free classes of languages: factor-free and subword-free languages. First we present
a lemma which we use in our next considerations.

Lemma 14. Let L be a language such that ε ∈ L. Let u and v be strings, and
let u /∈ L. Let A be a set of pairs of strings such that the sets A ∪ {(ε, v)} and
A ∪ {(u, v)} are fooling sets for L. Then nsc(L) ≥ |A| + 2. ��
Let w be a string. We say that a string v is a factor of the w iff there are strings
x, v, y, such that w = xvy. Moreover, if xy �= ε, we say that v is a proper factor.
We say a language L is factor-free iff there are no two strings u, v in L, such that
u is a proper factor of v.

Theorem 15. Let n ≥ 3. Let L be a factor-free language over an alphabet Σ
such that nsc(L) = n. Then nsc(Lc) ≤ 2n−2+1, and the bound is tight if |Σ| ≥ 3.

Proof. We first prove the upper bound. Let A be an n-state NFA for L. Since
L is factor-free, it is suffix-free and also prefix-free. It follows that no transition
goes to the initial state of A, and all the final states in the subset automaton
are equivalent. Hence the subset automaton has at most 2n−2 + 2 reachable and
pairwise distinguishable states. After exchanging the final and non-final states,

190 P. Mlynárčik

we get a DFA for Lc of at most 2n−2+2 states. In the same way as for prefix-free
languages in [7, Lemma 2], we can use a nondeterminism to save one state. This
gives the upper bound 2n−2 + 1.

To prove tightness, consider the binary language G accepted by the (n − 2)-
state NFA N shown in Fig. 1. Let L = c ·G · c. Then L is accepted by an n-state
NFA A shown in Fig. 3.

Let F = {(xS , yS) | S ⊆ {1, 2, . . . , n−2}} be a fooling set for the language Gc

[5, Theorem 5]. Notice that the strings xS and yS have the following properties:

(1) by xS , the initial state goes to the set S;
(2) the string yS is rejected by N from every state in S and it is accepted by N

from every state in {1, 2, . . . , n − 2} \ S.

Then F ′ = {(cxS , ySc) | S ⊆ {1, 2, . . . , n − 2}} is a fooling set for Lc. Let
A = {(cxS , ySc) | S ⊆ {1, 2, . . . , n − 2} and S �= ∅}, v = y∅ · c, u = can−3c. Let
us show that Lc, A, u and v satisfy the conditions of Lemma14.

First, we have ε ∈ Lc and u /∈ Lc. Next, the string ε · y∅ · c is in Lc since
it does not begin with c. The string uv = can−3c · y∅c is in Lc since it contains
three c’s. The set A is a fooling set for Lc since A ⊆ F ′. Notice that the string
y∅c is accepted by A from each state in {1, 2, . . . , n − 2} since y∅ is accepted by
N from each state in {1, 2, . . . , n − 2} [5, Theorem 5]. Thus, if S is non-empty,
then cxSy∅c /∈ Lc since by cxS the NFA A reaches the non-empty set S, from
which it accepts y∅c. It follows that the conditions in Lemma14 are satisfied,
and therefore we have nsc(Lc) ≥ |A| + 2 = 2n−2 + 1. This completes our proof.

��

a,b a,b a,b a,b

b

b

b

c
0 1 2 n−3 n−2 n−1

b

b

b

c

Fig. 3. An NFA of a ternary factor-free language L with nsc(Lc) = 2n−2 + 1

It remains to find the bounds for the binary case.
Let us start with the upper bound. Let L be a binary factor-free language

with nsc(L) = n, accepted by an n-state NFA N . The NFA N has to have
properties as an automaton for a prefix- or suffix-free language, so there is just
one final state with no outgoing transition and no transition goes to the initial
state. We obtain a similar lemma as in the case of binary prefix-free languages
in [7, Lemma 9].

Lemma 16. There is a positive integer n0 such that for every n > n0, if L is a
binary factor-free language with nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1.

Complement on Free and Ideal Languages 191

For the lower bound, let us consider the language L = cGc, where G is accepted
by the (n − 2)-state NFA shown in Fig. 1. Then L is accepted by an n-state
NFA A shown in Fig. 3. By a similar strategy as in the binary case of prefix- or
suffix-free language, we apply the homomorphism h on the language L. Every
string w in h(L) has the form 001u1100 or 001u1000 and the string u does not
contain the string 00. So in the first case, any proper factor belonging to h(L)
does not exist. In the second case, every proper factor belonging to h(L) has to
have the form 001u100 but it has an odd length, and since every string in h(L)
has an even length, such a string is not in h(L). So h(L) is factor-free. We get
an NFA A for h(L) in a similar way as in the suffix-free or prefix-free cases. The
NFA A is minimal and has 2n states, so nsc(h(L)) = 2n.

We deal with odd values of n similarly as before. Thus we get the following
result.

Lemma 17. Let n ≥ 8. There is a binary factor-free language L such that
nsc(L) = n and nsc(Lc) ≥ Ω(2

n
2).

We summarize our results about binary factor-free languages in the following
theorem.

Theorem 18. There is a positive integer n0 such that for every n > n0, if L is
a binary factor-free language with nsc(L) = n then nsc(Lc) ≤ 2n−2 − 2n−4 + 1.
The lower bound is Ω(2

n
2).

Let w be a string such that w = u0v1u1v2u2 · · · vmum, where every ui and uj

are strings in Σ∗. We say that the string v = v1v2 · · · vm is a subword of the w.
Moreover if v �= w, we say that v is a proper subword.

For example let w = abbacb. Strings abac, bbb, bc are subwords of w, but the
string aca is not a subword of w.

Let L be a language. We say L is subword-free iff there are no two strings
u, v in L such that u is a proper subword of v.

Proposition 19. Let L be a language. If L is subword-free, then L is finite.

Theorem 20. Let n ≥ 4. Let L be a subword-free language over an alphabet
Σ such that nsc(L) = n. Then nsc(L) ≤ 2n−2 + 1, and the bound is tight if
|Σ| ≥ 2n−2.

Proof. The upper bound is the same as for factor-free languages. To prove tight-
ness, let Σ = {aS | S ⊆ {1, 2, . . . , n − 2} be an alphabet with 2n−2 symbols.

Consider the language L accepted by the NFA A = (Q,Σ, δ, 0, {n − 1}),
where Q = {0, 1, . . . , n − 1}, and the transition function δ is defined as follows:
for each symbol aS in Σ, δ(0, aS) = S; δ(i, aS) = ∅ if 1 ≤ i ≤ n − 2 and i ∈ S;
δ(i, aS) = {n − 1} if 1 ≤ i ≤ n − 2 and i /∈ S; and δ(n − 1, aS) = ∅.
Notice that each string in L is of length 2, so L is subword-free. Consider the
set of pairs F = {(aS , aS) | S ⊆ {1, 2, . . . , n − 2}}. Let us show that the set F is
a fooling set for Lc.

192 P. Mlynárčik

(F1) For each S, the string aSaS is in Lc, since A goes to S by aS and aS is
rejected by A from each state in S.

(F2) Let S �= T . Then, without loss of generality, there is a state q in {1, 2, . . . , n−
2} such that q ∈ S and q /∈ T . Then aSaT in not in Lc since A goes to the
state q by aS , and then to the accepting state n − 1 by aT .

Hence F is a fooling set for Lc.
Let A = {(aS , aS) | ∅ �= S ⊆ {1, 2, . . . , n − 2}}, u = a{1}a{2}, v = a∅. Let

us show that Lc, A, u, and v satisfy the condition in Lemma14. First, we have
ε ∈ Lc and u /∈ Lc. Next, we have ε · v ∈ Lc since it is a one-symbol string,
and uv ∈ Lc since it is of length 3. Finally, notice that a∅ is accepted from each
state in {1, 2, . . . , n − 2}. It follows that if S �= ∅, then aSa∅ is accepted by A,
so it is not in Lc. Hence A ∪ {(ε, v)} and A ∪ {(u, v)} are fooling sets for Lc. By
Lemma 14, we have nsc(Lc) ≥ 2n−2 + 1. ��
Let us now consider the case for unary alphabets. An arbitrary free language L
can contain only one string. We have L = {an} for some fixed natural number
n ≥ 0. The complement of L consists of every string with length different from n.
We can extend the theorem in [7, Theorem 4] by a more general theorem about
every free language.

Theorem 21. Let L be a unary prefix-free or suffix-free or factor-free or subword-
free language with nsc(L) = n. Then nsc(Lc) = Θ(

√
n).

Proof. The proof is the same as in [7, Lemma 6]. ��

4 Complement on Ideal Languages

Definition 22. Let L be a language over an alphabet Σ. Then we have four
classes of ideals.

(1) The language L is a right ideal iff L = LΣ∗.
(2) The language L is a left ideal iff L = Σ∗L.
(3) The language L is two-sided ideal iff L = Σ∗LΣ∗.
(4) The language L is all-sided ideal iff L = L Σ∗, where operation is shuffle

operation.

The next proposition describes the form of a minimal NFA for some right ideal
language.

Proposition 23. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a right ideal if and only if A contains just
one final state with a loop on every letter of alphabet Σ.

Theorem 24. Let n ≥ 3. Let L be a right ideal over an alphabet Σ such that
nsc(L) = n. Then nsc(L) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.

Complement on Free and Ideal Languages 193

Proof. Let A = (Q,Σ, δ, s, F) be a minimal n-state NFA for a right ideal L.
Then by Proposition 23 the NFA A has a unique final state f which goes to
itself on every input symbol; that is, we have δ(f, a) = {f} for each a in Σ. It
follows that in the subset automaton of the NFA A, all final states are equivalent
since they accept all the strings in Σ∗. Hence the subset automaton has at most
2n−1+1 reachable and pairwise distinguishable states. By interchanging the final
and non-final states, we get a DFA B for Lc. The DFA B has a dead state. After
removing the dead state, we get an NFA N for Lc of at most 2n−1 states.

To prove tightness, let L = G · b · (a + b)∗, where G is the language accepted
by the binary (n− 1)-state NFA N shown in Fig. 1. Then L is a right-ideal. The
NFA N is minimal because F = {(ai, an−2−ib) | 0 ≤ i ≤ n − 2} ∪ {(an−2b, ε)} is
a fooling set for L.

Let F = {(uS , vS) | S ⊆ {1, 2, . . . , n−1}} be a fooling set for Gc as described
in [5, Theorem 5]. We prove that the set F ′ = {(uS , vS ·b) | S ⊆ {1, 2, . . . , n−1}}
is a fooling set for Lc.

(F1) For each S, the string uSvS is in Gc, so it is not accepted by N . It follows
that the string uSvSb is not accepted by A. Thus uSvSb is in Lc.

(F2) Let S �= T . Then uSvT /∈ Gc or uT vS /∈ Gc. In the former case, the string
uSvT is accepted by the NFA N , and therefore the string uSvT b is accepted
by A. Hence uSvT b /∈ Lc. The latter case is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1. ��
The next proposition describes the form of a minimal NFA for some left ideal
languages.

Proposition 25. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a left ideal if and only if there is a minimal
NFA A in which the initial state has a loop on every input.

Theorem 26. Let n ≥ 3. Let L be a left ideal over an alphabet Σ such that
nsc(L) = n. Then nsc(L) ≤ 2n−1, and the bound is tight if |Σ| ≥ 2.

Proof. Let A = (Q,Σ, δ, s, F) be a minimal n-state NFA for a left ideal L. By
Proposition 25 we can add a loop on the initial state s on every input symbol,
we get an NFA N which is equivalent to A. Since the initial state s of N goes to
itself on every input symbol, each reachable subset of the subset automaton of
N contains the initial state s, so the number of all reachable subsets is at most
2n−1.

To prove tightness, let the language L be accepted by NFA A in Fig. 4.
Then L is a binary left ideal by Proposition 25. The NFA A is minimal because
F = {(ai, an−1−i) | 0 ≤ i ≤ n − 1} is a fooling set for L.

We are going to consider Lc. Let F = {(uS , vS) | S ⊆ {1, 2, . . . , n − 1}},
where string uS is such that the state 1 goes to the set S after reading uS in
NFA A and the string vS is such that it is rejected by the NFA from every state
p ∈ S and it is accepted by the NFA from every state p /∈ S for any subset S.

Now, we prove that the set F ′ = {(a · uS , vS) | S ⊆ {1, 2, . . . , n − 1}} is a
fooling set for Lc.

194 P. Mlynárčik

b

b

b

0 1 2 n−2 n−1
a

b

a,b

a,b a,b a,b a,b

Fig. 4. An NFA of a binary left ideal language L with nsc(Lc) = 2n−1

(F1) For each S, the string uSvS is not accepted from state 1, so it follows that
the string auSvS is not accepted by A. Thus auSvS is in Lc.

(F2) Let S �= T . Then uSvT /∈ Lc or uT vS /∈ Lc. Let uSvT be accepted by the
NFA A, and therefore the string auSvT is accepted by A. Hence auSvT /∈
Lc. The latter case is symmetric.

Hence F ′ is a fooling set for Lc, which means that nsc(L) = 2n−1. ��

Proposition 27. Let L be a language over Σ and let A be a minimal NFA such
that L(A) = L. The language L is a two-sided ideal if and only if there is a
minimal NFA A with an initial state with a loop on every input and just one
final state with a loop on every input.

Proof. A language L is two-sided ideal if and only if it is left ideal and right
ideal; therefore, the proposition follows from Propositions 23, 25. ��
Theorem 28. Let n ≥ 3. Let L be a two-sided ideal over an alphabet Σ such
that nsc(L) = n. Then nsc(L) ≤ 2n−2, and the bound is tight if |Σ| ≥ 2.

Proposition 29. Let L be a language over Σ. The language L is an all-sided
ideal if and only if there is a minimal NFA A with just one final state and with
a loop in every state on every letter of an alphabet Σ, such that L(A) = L.

We can notice that it is not necessary to have a loop for every state on every input
symbol. For example a minimal NFA for the binary language L with strings of
length at least 3 does not need to have loops on every states except the final one.

Theorem 30. Let n ≥ 3. Let L be an all-sided ideal over an alphabet Σ such
that nsc(L) = n. Then nsc(Lc) ≤ 2n−2, and the bound is tight if |Σ| ≥ 2n−2.

Proof. The upper bound is the same as for two-sided ideals. To prove tightness,
let Σ = {aS | S ⊆ {1, 2, . . . , n−2}} be an alphabet with 2n−2 symbols. Consider
the language L accepted by the NFA A = ({0, 1, . . . , n − 1}, Σ, δ, 0, {n − 1})
where for each symbol aS , we have δ(0, aS) = {0} ∪ S; δ(i, aS) = {i} if i ∈ S;
δ(i, aS) = {i, n − 1} if i ∈ {1, 2, . . . , n − 2} \ S; δ(n − 1, aS) = {n − 1}.

Since in each state of A, we have a loop on every input symbol, the language
L is an all-sided ideal by Proposition 29.

Let F = {(aS , aS) | S ⊆ {1, 2, . . . , n − 2}}. Let us show that F is a fooling
set for Lc.

Complement on Free and Ideal Languages 195

(F1) For each S, the NFA A reaches the set {0} ∪ S by aS . By the next aS , the
NFA A remains in the set {0} ∪ S, and rejects. Thus aSaS ∈ Lc.

(F2) Let S and T be two subsets of {1, 2, . . . , n − 2} with S �= T . Without loss
of generality, there is a state i with i ∈ S and i /∈ T . By aS , the NFA A
goes to {0} ∪ S. Since i ∈ S, the NFA A goes to i by aS . Then it goes to
the state n − 1 by aT since i /∈ T . Hence A accepts aSaT , and therefore
aSaT /∈ Lc.

Thus F is a fooling set for Lc. It follows that nsc(Lc) ≥ 2n−2. ��
Let us consider a unary alphabet. Every type of ideal language has the form
L = {ak | k ≥ n}, where n is some fixed natural number. Thus, every minimal
NFA A for every type of an ideal language L has a tail of n − 1 states ending
by final state with a loop (see the example in Fig. 5). Such an automaton A is
a DFA, so after exchanging of finality and nonfinality of states we get the DFA
A′ with every state final except one, which is the dead state. After leaving the
dead state we get the NFA B with n − 1 states accepting a complement Lc.

These considerations can be summarized in the following theorem.

Theorem 31. Let L be ideal over an unary alphabet, such that nsc(L) = n.
Then nsc(Lc) = n − 1.

a a a

a

a
0 1 n−1 n

Fig. 5. Minimal NFA for language ak, k ≥ n

5 Conclusions

Let us summarize our results. Let L be a language such that nsc(L) = n.
Firstly, let us review the case for alphabets of size 3 or more. For the suffix-

free and prefix-free cases the results come from [7]. The bounds 2n−1 are tight in
both cases. For the case of factor-free, the bounds 2n−2+1 are tight. For the case
of subword-free the upper bound is 2n−2 + 1 and it is tight when |Σ| ≥ 2n−2.

Secondly, let us review the case for binary free languages. For suffix-free
languages, the lower bound is 2�n

2 �−1 and upper bound is 2n−1 − 2n−3 + 2, for
prefix-free languages the lower bound is the same as in case of suffix-free and the
upper bound [7, Lemma 9] is 2n−1 − 2n−3 + 1, for factor-free the lower bound is
Ω(2

n
2) and the upper bound is 2n−2 − 2n−4 + 1.

For right and left ideals the bounds 2n−1 are tight. For two-sided ideals the
bounds 2n−2 are tight. For all-sided languages the upper bound is 2n−2 and it
is tight when |Σ| ≥ 2n−2.

Finally, we will discuss the case for unary alphabets. In this case, the situation
is the same for every class is : the lower bound is Θ(

√
n) and the upper bound

is Θ(
√

n).

196 P. Mlynárčik

For ideals, the situation is the same: nsc(Lc) = n − 1.
The possibility of improving the bounds for binary cases for prefix-, suffix- and

factor-free languages remains open. Also in the case for subword-free languages it
remains to solve the binary case. Also the possibility of finding non-exponential
alphabets for witness languages for the lower bound in the case of subword-free
languages remains open. The possibility of finding non-exponential alphabet for
witness language for lower bound in case of all-sided ideal languages remains open.

Acknowledgements. I would like to thank to Galina Jirásková for many helpful
discussions which led to writing this article.

References

1. Birget, J.C.: Partial orders on words, minimal elements of regular languages, and
state complexity. Theoret. Comput. Sci. 119, 267–291 (1993). ERRATUM: Partial
orders on words, minimal elements of regular languages, and state complexity
(2002). http://clam.rutgers.edu/birget/papers.html

2. Cmorik, R., Jirásková, G.: Basic operations on binary suffix-free languages. In:
Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D. (eds.)
MEMICS 2011. LNCS, vol. 7119, pp. 94–102. Springer, Heidelberg (2012)

3. Chrobak, M.: Finite automata and unary languages. Theoret. Comput. Sci. 47,
149–158 (1986)

4. Holzer, M., Kutrib, M.: Nondeterministic descriptional complexity of regular lan-
guages. Int. J. Found. Comput. Sci. 14, 1087–1102 (2003)

5. Jirásková, G.: State complexity of some operations on binary regular languages.
Theoret. Comput. Sci. 330, 287–298 (2005)

6. Jirásková, G.: Note on minimal automata and uniform communication protocols.
In: Grammars and Automata for String Processing: From Mathematics and Com-
puter Science to Biology, and Back: Essays in Honour of Gheorghe Paun, pp.
163–170. Taylor and Francis (2003)

7. Jirásková, G., Mlynárčik, P.: Complement on prefix-free, suffix-free, and non-
returning NFA languages. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.)
DCFS 2014. LNCS, vol. 8614, pp. 222–233. Springer, Heidelberg (2014)

8. Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic
finite automata. Inform. Process. Lett. 59, 75–77 (1996)

9. Sakoda, W.J., Sipser, M.: Nondeterminism and the size of two-way finite automata.
In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing,
pp. 275–286 (1978)

10. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

http://clam.rutgers.edu/birget/papers.html

Universal Disjunctive Concatenation and Star

Nelma Moreira1, Giovanni Pighizzini2(B), and Rogério Reis1

1 Centro de Matemática e Faculdade de Ciências da, Universidade do Porto,
Porto, Portugal

{nam,rvr}@dcc.fc.up.pt
2 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

pighizzini@di.unimi.it

Abstract. Two language operations that can be expressed by suit-
ably combining complement with concatenation and star, respectively,
are introduced. The state complexity of those operations on regular lan-
guages is investigated. In the deterministic case, optimal exponential
state gaps are proved for both operations. In the nondeterministic case,
for one operation an optimal exponential gap is also proved, while for
the other operation an exponential upper bound is obtained.

1 Introduction

In a recent paper, we investigated automata with partially specified behaviors,
shortly called don’t care automata (dcFA) [5]. These devices are defined as stan-
dard nondeterministic finite state automata, with the only difference that they
have two sets of final states: the set of accepting states and the set of rejecting
states. In this way, a dcFA A defines two languages: the accepted language L⊕(A)
and the rejected language L�(A). It is required that these two languages are
disjoint.

Don’t care automata can be interesting in situations where it is not necessary
to fix the behavior on each possible string, because, for instance, some strings
will never be received by the automaton (e.g., when the input of the automaton
is generated by a source which produces strings in a certain format), or because
for other reasons the answer of the automaton on some strings is not interesting.
In the same paper, we studied the optimal reductions, in terms of states, of such
devices to compatible deterministic automata; namely to standard deterministic
automata which “agree” with the behavior of the given don’t care automata.

Triggered by a paper published in 1994 [7], a lot of work has been con-
ducted in the last 20 years to study the state complexity of operations on finite
automata. Inspired by this research, we started to investigate how standard
operations (boolean, concatenation and Kleene star) could be extended to dcFAs.

N. Moreira and R. Reis—Authors partially funded by the European Regional Devel-
opment Fund through the programme COMPETE and by the Portuguese Govern-
ment through the FCT under project UID/MAT/00144/2013.
G. Pighizzini—Author partially supported by MIUR under the project PRIN
“Automi e Linguaggi Formali: Aspetti Matematici e Applicativi”, code H41J120001
90001.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 197–208, 2015.
DOI: 10.1007/978-3-319-19225-3 17

198 N. Moreira et al.

An obvious requirement is that an operation extended to dcFAs matches the orig-
inal operation, if the behavior of the automaton is fully specified. For instance,
considering union, a string should be accepted when it is accepted by at least
one of the two given automata and should be rejected when it is rejected by
both automata. Considering don’t care values, it is quite obvious how to extend

no ? yes
no no ? yes
? ? ? yes
yes yes yes yes

this behavior, as depicted in the table to the right, where yes
and no represent acceptance and rejection, respectively, and
? represents an unspecified behavior. Similar tables can be
filled in for intersection and complement. Notice that this is
related to three-valued logic [6].

For the other regular operations, concatenation and star, the situation is
slightly more complicated and, probably, more interesting. Let us consider two
dcFAs A and B on the same input alphabet Σ that have completely specified
behaviors, i.e., L⊕(A) ∪ L�(A) = L⊕(B) ∪ L�(B) = Σ�. A dcFA C for con-
catenation should accept all the strings which can be obtained by concatenating
strings accepted by A and B, i.e., L⊕(C) = L⊕(A)L⊕(B), and should reject all
the strings which cannot be obtained in this way; namely, all the strings w such
that for each factorization w = uv either u /∈ L⊕(A) or v /∈ L⊕(B). Since in this
case L�(A) and L�(B) are the complement of L⊕(A) and L⊕(B), respectively,
this is equivalent to saying that for each factorization w = uv either u ∈ L�(A)
or v ∈ L�(B).

This leads to consider a new language operation, that we call universal dis-
junctive concatenation and, in a similar way, starting from the star, another new
operation called universal disjunctive star. This paper is devoted to investigating
the state complexity of these two operations in both deterministic and nonde-
terministic cases. Using the fact that these two operations can be expressed by
combining complement with concatenation and star, respectively, we prove that
in the deterministic case their state complexity is exponential.

We deepen this investigation by considering the nondeterministic case.
We prove that given two nondeterministic automata (NFAs) A and B with m
and n states, there exists an NFA accepting the universal disjunctive concatena-
tion of the languages accepted by A and B, with at most 2m+n states.
Furthermore, the exponential gap cannot be reduced in the worst case.

We also prove that for each NFA A with n states there exists an NFA with
no more than 2n states accepting the universal disjunctive star of L(A).

In the final part of the paper, we shortly discuss the state complexity of
operations on don’t care automata.

2 Universal Disjunctive Concatenation

Given a language L over an alphabet Σ, let us denote by pref(L) the language
consisting of all prefixes of strings in L. The set of all nonempty prefixes of L,
i.e., pref(L) \ {ε}, is denoted by pref+(L). By p(L) we denote the prefix-closed
interior of L; namely the largest subset of L which is prefix closed.

Similar definitions can be given by considering suffixes. Hence, we let suff(L)
denote the set of all suffixes of strings in L, suff+(L) denote the set suff(L) \ {ε},

Universal Disjunctive Concatenation and Star 199

and s(L) denote the suffix-closed interior of L, namely the largest subset of L
which is suffix closed.

The complement of L will be denoted by L.

Definition 1. Let L1 and L2 be languages over an alphabet Σ. The universal
disjunctive concatenation of L1 and L2 is the language L1 � L2 defined as

L1 � L2 = {w ∈ Σ� | ∀x1, x2, w = x1x2 ⇒ (x1 ∈ L1 ∨ x2 ∈ L2)}.

Example 2. Given Σ = {a, b}, consider L1 the set of all strings containing an
even number of occurrences of a and L2 = a(a+ b)�. Then, L1 �L2 = (aa+ b)�.
Given a string w, let us number the occurrences of the letter a in w, starting
from 1. Each prefix of w containing an even number of a’s belongs to L1. If a
prefix ends with an odd numbered a then it does not belong to L1. Thus, in
order to have w ∈ L1 � L2, the remaining suffix should belong to L2; hence,
it should start with an a. Hence each odd numbered a should be immediately
followed by another a.

We point out the role of the alphabet Σ we are considering in the definition of
the operation �. For instance, given L = a�, if Σ = {a} then L � L = a� = L.
However, if the alphabet we are considering is Σ = {a, b}, then L � L = a� +
a�ba�; namely, L is the set of all strings which contain at most one occurrence of
the letter b. This is due to the fact that this operation involves, in some sense,
complementation, as we will explain below. We can observe that, for Σ = {a, b},
L is the set of strings that contain at least one occurrence of the letter b and,
hence, L L is the set of all strings that contain at least two occurrences of b.
Thus, its complement coincides with L � L.

Actually, this is a general property. In fact, just by using the definition of �,
we can observe that given two languages L1 and L2, w /∈ L1 � L2 if and only if
there are two strings u, v such that w = uv, u /∈ L1, and v /∈ L2. Thus,

L1 � L2 = L1 L2 . (1)

As a consequence, the operation � preserves regularity; namely, if L1 and L2

are regular, then L1 � L2 is regular too. A special case of this operation when
L1 = ∅ was studied by Birget [2]. We now study some basic properties of the �
operation.

Proposition 3. The operation � is associative, i.e., L1 � (L2 � L3) = (L1 �
L2) � L3, for all languages L1, L2, L3.

Because � is associative it makes sense to write L1 � L2 � L3 and it is not
difficult to realize that

L1 � L2 � L3 = {w | ∀x, y, z, w = xyz ⇒ x ∈ L1 ∨ y ∈ L2 ∨ z ∈ L3} .

Proposition 4. The � operation has an identity element. For any language L,
Σ+ � L = L � Σ+ = L.

200 N. Moreira et al.

Proof. Immediate consequence of Eq. (1), observing that Σ+ = {ε}. �	
We note there are no languages L1, L2, apart from Σ+, such that L1�L2 = Σ+,
i.e. � has no nontrivial inverses. In general, it is easy to see that

Proposition 5. Let L1, L2 be languages. If ε /∈ L1, then L1 � L2 ⊆ L2 and
L2 � L1 ⊆ L2.

Proposition 6. Let L be a language. Then ∅ � L = s(L) and L � ∅ = p(L).

Proof. From the definition of �, it easily follows that a string w belongs to ∅�L
only if each suffix of w belongs to L. Hence, ∅�L ⊆ s(L). Conversely, if w ∈ s(L)
then each suffix of w belongs to L, which would imply that w ∈ ∅�L. In a similar
way, it can be proved that L � ∅ = p(L). �	
Proposition 7. Let L,X ⊆ Σ� be languages.

(a) If L is prefix closed then L ⊆ L � X.
(b) pref(L) ⊆ pref(L) � L.
(c) If ε /∈ L then pref(L) � L = pref(L).
(d) pref+(L) � L = L.

Proof. (a) is trivial.
(b) Immediately follows from (a).
(c) Since w = wε and ε /∈ L, from w ∈ pref(L) � L, we obtain w ∈ pref(L).

Hence pref(L) � L ⊆ pref(L). The converse inclusion is given in (b).
(d) Let w ∈ L, then for every x, y such that xy = w, x ∈ pref+(L) unless x = ε,

but in that case y = w ∈ L. On the other hand, if w ∈ pref+(L) � L then,
as εw = w, necessarily w ∈ L. �	

Notice that if ε ∈ L then pref(L) � L could differ from both L and pref(L). For
instance, given Σ = {a}, for L = {ε, aa}, we have pref(L) � L = {ε, a, aa, aaa}.

We can prove properties similar to those in Proposition 7, considering suffixes:

Proposition 8. Let L,X ⊆ Σ∗ be languages.

(a) If L is suffix closed then L ⊆ X � L.
(b) suff(L) ⊆ L � suff(L).
(c) If ε /∈ L then L � suff(L) = suff(L).
(d) L � suff+(L) = L.

Proposition 9. If L1 is prefix closed and L2 is suffix closed, then L1L2 ⊆
L1 � L2.

Proof. Suppose w ∈ L1L2. Let x ∈ L1 and y ∈ L2 be such that w = xy. Then
for all strings u, v verifying w = uv either u is a prefix of x, thus implying
u ∈ L1, or v is a suffix of y, thus implying v ∈ L2. This allows to conclude
that w ∈ L1 � L2. �	
Our previous example with Σ = {a, b} and L1 = L2 = a� shows that the
inclusion proved in Proposition 9 can be proper.

Universal Disjunctive Concatenation and Star 201

Now we are going to study the state complexity of the operation �. First of
all, by using results on the state complexity of concatenation [7], we can obtain
the following bound:

Theorem 10. For all integers m,n ≥ 2, let A′ be an m-state DFA and A′′ an
n-state DFA. Then any DFA that accepts L(A′) � L(A′′) needs at most m2n −
(m − f)2n−1 states, where f is the number of final states of A′. Futhermore,
this bound is tight.

Proof. It follows immediately from Eq. (1) that the state complexity of � coin-
cides with the state complexity of concatenation because the state complexity
of the complement of a language L coincides with the state complexity of L.
Hence, the upper bound follows from Theorem 2.3 in [7], after switching the
role of final and nonfinal states in the automaton A′, due to the comple-
mentation. The lower bound also derives from a result in the same paper
(Theorem 2.1). �	
The investigation of the state complexity of � is now deepened by proving that
the bound in Theorem 10 cannot be reduced if we allow the resulting automaton
to be nondeterministic. To this aim, for each integer n ≥ 1, let us consider the
following language over Σ = {a, b}:

Ln = (a(a + b)n−1)�(ε + a(a + b)<n) + (b(a + b)n−1)�(ε + b(a + b)<n) , (2)

where (a+b)<n denotes less than n repetitions of a+b. In other words, a string w
belongs to Ln if and only if the same symbol occurs in all positions in + 1 of w,
with i ≥ 0 and in + 1 ≤ |w|.
Theorem 11. Let Ln be the language defined in (2). Then:

(a) The minimum DFA accepting Ln has 2n + 2 states.
(b) s(Ln) = {xky | for some x ∈ {a, b}n, k ≥ 0, y ∈ pref(x)}.
(c) Each NFA accepting s(Ln) requires at least 2n states.

Proof. (a) A DFA accepting Ln is depicted in Fig. 1. By a standard distinguisha-
bility argument, it can be proved that it is minimal.

(b) From the definition of Ln, we can observe that a string w ∈ s(Ln) if and only
if each two symbols of w at distance n, i.e., with n − 1 symbols in between,
are equal. This implies that w consists of a prefix x of length n which is
repeated a certain number of times and a suffix y of length < n, which is a
prefix of x.

(c) Consider the set S = {(x, x) | x ∈ {a, b}n}. From (b), it follows that for
x, y ∈ {a, b}n, xx ∈ s(Ln) and xy /∈ s(Ln). Hence, S is a fooling set for s(Ln)
and each NFA accepting it requires at least #S states [1]. �	

As a consequence of Theorem 11 we can now conclude that the exponential upper
bound given in Theorem 10 cannot be reduced, even if the resulting automaton
is nondeterministic.

202 N. Moreira et al.

· · ·

· · ·

a

b

a, b

a, b

a, b

a, b

b

a a

b

a, b

Fig. 1. The minimum DFA accepting Ln.

Theorem 12. Let A be the 1-state automaton accepting the empty language.
For each integer n there exists an n-state DFA B accepting a language defined
over a binary alphabet such that each NFA accepting L(A) � L(B) requires at
least 2�(n−2)/2� states.

Proof. Given k = (n−2)/2�, consider the language Lk, defined according to (2).
If n is even, we choose as DFA B the minimum automaton accepting Lk. If n
is odd, we obtain B by splitting the trap state of the minimum automaton
accepting Lk in two states (this can be done with a simple change in the transi-
tion graph in Fig. 1). This adds one extra state, without changing the accepted
language.

In both cases, the DFA B has n states and recognizes L�(n−2)/2� = Lk. From
Proposition 6, it turns out that ∅ � Lk = s(Lk). Hence, by Theorem 11, each
NFA accepting ∅ � Lk requires 2k states. �	
We point out that Theorem 12 improves a similar gap proved in [2], by consid-
ering a three-letter alphabet.

Now, we further investigate the nondeterministic case, by studying the state
complexity of � in the case of nondeterministic automata. The upper bound in
Theorem 10 is derived from (1) which uses a double complementation. This leads
to a double exponential upper bound on the state complexity, when the given
automata are nondeterministic. However, it produces a deterministic automaton.
It could be interesting to see if the state complexity can be reduced, if we want
to derive a nondeterministic automaton. This could be done using alternating
automata [4]. However, in the next result we present a direct construction.

Theorem 13. For each integers m,n ≥ 1, let A′ be an m-state NFA and A′′

an n-state NFA, then there is an NFA that accepts L(A′) � L(A′′) with at most
2m+n states.

Proof. Let A′ = 〈Q′, Σ, δ′, I ′, F ′〉, A′′ = 〈Q′′, Σ, δ′′, I ′′, F ′′〉, L′ = L(A′), and
L′′ = L(A′′). We define an NFA A = 〈Q,Σ, δ, i, F 〉 which accepts the language
L′ � L′′. First we informally explain how A works, in the case the two given
automata A′ and A′′ are deterministic. Let i′ and i′′ be their initial states.
Given a string w ∈ Σ�, in order to test if w ∈ L′ � L′′, the automaton A has to
check that for each prefix of w which is rejected by A′ the corresponding suffix is
accepted by A′′. To this aim, while reading w, A simulates the deterministic con-
trol of A′. Each time that in the simulation A′ reaches a nonfinal state — namely

Universal Disjunctive Concatenation and Star 203

the prefix read so far does not belong to L′ — the automaton A starts the sim-
ulation of a computation of A′′ to check if the remaining suffix belongs to L′′.
In this way, A works by simulating in parallel a computation of A′ on the given
input and, for each suffix corresponding to a prefix not in L′, one computation
of A′′. At the end, A must verify that all the computations are accepting.

The automaton A is implemented using states (q, α) where q ∈ Q′ and α ⊆
Q′′. The first component is used for the simulation of A′, the second one keeps
track of the states reached by A′′ on the suffixes under examination. So, if the
initial state i′ of A′ is final, then A starts its computation in (i′, ∅). Otherwise,
since ε /∈ L′, A needs to verify that all the input belongs to L′′ and hence it
starts the computation in (i′, {i′′}). When in the state (q, α) the automaton A
reads a symbol σ, it moves to the state (p, β) where p = δ′(q, σ) and β contains
all the states that are reached by states in α reading σ. In this way, the second
component continues the inspection of input suffixes. However, if p /∈ F ′ then A
needs to simulate A′′ on the incoming input suffix. To this aim, in this case,
β also contains the state i′′. At the end of the computation, A has to verify that
all the suffixes under examination are accepted by A′′. Hence, if (q, α) is the
state reached at the end of the computation, all states in α should belong to F ′′.
However, since we also have to verify that either the input w belongs to L′ or
ε ∈ L′′, we should additionally ask if either q ∈ F ′ or i′′ ∈ F ′′. Notice that
the resulting automaton A is deterministic. The resulting DFA A is formally
defined with Q = Q′ × 2Q′′

; i = (i′, ∅) if i′ ∈ F ′ and i = (i′, {i′′}) otherwise;
F = {(q, α) | α ⊆ F ′′ ∧ (q ∈ F ′ ∨ i′′ ∈ F ′′)} and

δ((q, α), σ) =

{
(δ′(q, σ), δ′′(α, σ)), if δ′(q, σ) ∈ F ′;
(δ′(q, σ), δ′′(α, σ) ∪ {i′′}), otherwise.

Furthermore, in the construction above, we can observe that all the states (q, α)
with q /∈ F ′ and i′′ /∈ α are not reachable in A. Then the total number of states
of A is at most m2n − (m − f)2n−1, where f is the number of final states of A′,
which is exactly the same number derived in Theorem 10.

When A′′ is nondeterministic, the construction is slightly more complicated.
In fact, on each suffix we could have different computations. We need to verify
that at least one of them is accepting. To do that, we simply use nondetermin-
istic choices. Hence, when in the state (q, α) the automaton reads a symbol σ,
each possible next state (p, β) is obtained by taking p = δ′(q, σ) and by non-
deterministically choosing a state s ∈ δ′′(r, σ) to be in β for each state r ∈ α.
When p /∈ F ′, the automaton A needs to start a computation of A′′ on the incom-
ing suffix. Hence, a nondeterministically chosen state i′′ ∈ I ′′ is added to β. The
formal definition of A, in the case of A′ deterministic and A′′ nondeterministic
is the following:

– Q = Q′ × 2Q′′
,

– I =
{{(i′, ∅)}, if i′ ∈ F ′;

{(i′, {i′′}) | i′′ ∈ I ′′}, otherwise;
– for (q, α) ∈ Q′ × 2Q′′

, σ ∈ Σ, let us consider the following set

204 N. Moreira et al.

next(α, σ) = {γ ∈ 2Q′′ | ∃f : α → γ s.t. f is surjective and
f(r) = s ⇒ s ∈ δ′′(r, σ)} ,

the set δ((q, α), σ) contains all the states (p, β) ∈ Q′ × 2Q′′
such that

p = δ′(q, σ) and β =
{

γ, if p ∈ F ′;
γ ∪ {i′′}, otherwise; for some γ ∈ next(α, σ), i′′ ∈ I ′′,

– F =
{{(q, α) | q ∈ F ′, α ⊆ F ′′}, if I ′′ ∩ F ′′ = ∅;

{(q, α) | q ∈ Q′, α ⊆ F ′′}, otherwise.

Finally, when even A′ is nondeterministic, we can preliminary convert it into
an equivalent DFA applying the subset construction, and then proceed as above
described. In this case, the set of states of the resulting automaton is a subset
of 2Q′ × 2Q′′

. Hence, its cardinality is bounded by 2m+n. �	
From Theorem 12, it follows that the exponential upper bound in Theorem 13
cannot be reduced.

3 Universal Disjunctive Star

In this section we study the other operation we are interested in, the universal
disjunctive star, defined in the following way:

Definition 14. Let L ⊆ Σ� be a language. Let L�0 = Σ+ and L�k = L�k−1 �
L, for each integer k > 0. Then we define the universal disjunctive star as

L� =
⋂

k≥0

L�k.

Notice that by this definition, it turns out that a string w ∈ L� if and only if
for each factorization of w as w = x1x2 · · · xk, with k ≥ 1, at least one factor xi

belongs to the language L. We now show that we can restrict our attention to the
nonempty factors. Due to space limitations, we omit the proof of the following
propositions.

Proposition 15. For each integer i ≥ 0:

(a) If ε ∈ L, then Σ<i ⊆ L�i.
(b) If w ∈ Σ�, |w| = i, and w ∈ L�i, then for each j > i, w ∈ L�j.
(c) If ε /∈ L and |w| = i, w ∈ L�i if and only if for each j > i, w ∈ L�j.

As a consequence we obtain:

Proposition 16. Given L ⊆ Σ� and w ∈ Σ�, w ∈ L� if and only if, for each
0 ≤ i ≤ |w|, w ∈ L�i.

As a consequence of the previous proposition, we get that a string w ∈ L� if
and only if for each decomposition of w in at most |w| factors, at least one of
them belongs to L. Hence, we can express L� as:

L� = {w ∈ Σ� | ∀k ≤ |w| ∀x1, . . . , xk ∈ Σ+, w = x1 · · · xk,∃i ≤ k xi ∈ L}. (3)

Universal Disjunctive Concatenation and Star 205

We can also observe that
L� = (L)� (4)

that implies that the class of regular languages is closed under of this opera-
tion. Considering Eq. (4), � is exactly the Kleene interior studied by Brzozowski
et al. [3] when characterising the number of different languages that can occur by
successive application of star and complement to a given regular language. Fur-
thermore, using the results about the state complexity of the star [7, Corollary
3.2, Theorem 3.3], we immediately obtain the following result:

Theorem 17. For any n-state DFA A, n ≥ 1, there exists a DFA A′ of at most
2n−1 + 2n−2 states such that L(A′) = (L(A))�. Furthermore, this bound cannot
be reduced in the worst case.

We now consider the state complexity of � in the nondeterministic case. We prove
that the upper bound remains exponential.

Theorem 18. For any n-state NFA A, n ≥ 1, there exists an NFA A′ with at
most 2n states such that L(A′) = (L(A))�.

Proof. To make clearer the main argument used to define A′ from A, first we
discuss the construction for the deterministic case. Subsequently, we will describe
the generalization to the nondeterministic case.

Let us start by supposing A = 〈Q,Σ, δ, I, F 〉, with I = {i}, is deterministic.
We also suppose that ε /∈ L, i.e., i /∈ F . We describe a DFA A′ = 〈Q′, Σ, δ′, I ′, F ′〉
which accepts the language L�.

First of all, we remind the reader that, by definition, ε /∈ L�. So let us
consider an input w ∈ Σ+. The automaton A′ has to verify that for each fac-
torization of w in k ≥ 1 nonempty factors, at least one of them belongs to the
language L. In the following, a factorization satisfying such a property will be
said to be accepted.

A′ works by exploring all input factorizations in parallel computation branches
that are generated while reading the input in the following way. Suppose that a
string u has been read and consider a computation branch corresponding to a
factorization u = u1u2 · · · uh of the input in h ≥ 1 nonempty strings. Before read-
ing the next input symbol γ, the computation branch is split into two branches
according to the following possible factorizations of wγ:

(a) u1, . . . , uhγ; namely, γ will be considered as a further symbol of the hth
factor,

(b) u1, . . . , uh, γ; namely, γ will be considered as a new factor.

Now suppose that the string u is the prefix of the input w that has been read
so far, namely, w = uv, for some v ∈ Σ�. Let w = w1 · · · wk be a factorization
of w in a computation branch which is obtained, after inspecting the suffix v,
from the computation branch on the factorization u = u1 · · · uh. Then, wj = uj

for j = 1, . . . , h − 1 (however uh could be a proper prefix of wh).
Suppose uj ∈ L, for some j < h. In this case, the factorization of w is

accepted regardless the suffix v and all factors uj′ , with j′ > j, namely, each

206 N. Moreira et al.

input factorization which begins by u1, . . . , uj is accepted and, thus, the input
symbols after the factor uj do not need to be inspected.

On the other hand, if uj /∈ L for each j < h, then the computation branch
has to test the membership to L of the factor uh. To do this, it remembers the
state q = δ(i, uh). We observed that before reading the next input symbol, the
computation branch is split in two. In the computation branch corresponding
to (a), the simulation of A is continued from the state q. For (b) there are two
possibilities. If q ∈ F , i.e., uh ∈ L, then all factorizations beginning by u1, . . . , uh

are accepted and A′ does not need to consider the remaining part of the input.
Thus, the second computation branch is not needed. Otherwise a computation
branch corresponding to (b) is generated in order to inspect, from the initial
state, a factor which begins with the next input symbol.

The automaton has to accept when each computation branch discovers that
its corresponding factorization is accepted. This can happen either by testing
during the computation that a factor is in L or at the end of the input by
reaching a final state, so proving that the last factor is in L.

For each computation branch, the automaton A′ needs only to remember the
current state. This allows to implement A′ by keeping in its finite state control
the set of states which are reached by computation branches. More precisely, the
formal definition of A′ = 〈Q′, Σ, δ′, i′, F ′〉 is as follows

– Q′ = 2Q,
– i′ = {i},

– for α ∈ Q′, σ ∈ Σ, δ′(α, σ) =
{

δ(α, σ), if δ(α, σ) ⊆ F ;
δ(α, σ) ∪ {i}, otherwise;

– F ′ = {α ∈ Q′ | α ⊆ F}.

In particular, in the definition of δ′(α, σ), the part δ(α, σ) corresponds to the
computation branch (a), while the part {i} corresponds to (b) and it is not added
when after reading a symbol σ all the states are final, namely, all factors that
end in σ (after the already inspected input prefix) are in L. See Fig. 2.

q0 q1 q2

q3

a

b

b

a
a, b

a, b

q0 q1 q0 q2

q3 q1 q3
q0 q2
q3

a

b

b

a a
b

a, b
a

b

a

b

Fig. 2. Let Σ = {a, b} and L = Σ�\{ab}. TheDFAdepicted on the left recognizesL\{ε}.
Applying to it the construction presented in the proof of Theorem 18, the DFA depicted
on the right is obtained, which accepts L� = Σ� \ {(ab)�}.

Now, we switch to the nondeterministic case supposing that A = 〈Q,Σ, δ, I, F 〉
is nondeterministic, where I = {i} with i /∈ F . We build an NFA A′ which accepts

Universal Disjunctive Concatenation and Star 207

the language L�. The general working strategy of A′ is similar to that described
for the deterministic case: in parallel computation branches, A′ inspects all dif-
ferent factorizations of the input. However, in this case A′ needs also to simulate
the nondeterministic choices of A.

In the construction for the operation �, the purpose of the nondeterministic
simulation was to check the membership of an input suffix to the language L′′.
In this construction the situation is more delicate, because we have to check
input factors instead of suffixes. For the initial state there is only one choice.
However, from a state r we can have a nondeterministic choice which leads to
the acceptance of a certain factor x and to the rejection of another factor y, and
a different choice which leads to reject x and to accept y. Since A′ has to inspect
all different factorizations, both choices have to be considered. Thus, each time
A′ needs to simulate a transition from a state r on a symbol σ, a nonempty set
of transitions from r on σ is nondeterministically selected, guessing that this set
will lead to test that each factorization inspected in computation branches that
visit the state r at that point is accepted.

The formal definition of A′ = 〈Q′, Σ, δ′, I ′, F ′〉, obtained along these lines, is
the following:

– Q′ = 2Q,
– I ′ = I = {i},
– for α ∈ Q, σ ∈ Σ, let us consider the following set:

next(α, σ) = {γ ∈ 2Q | ∃f : α → 2γ s.t. γ =
⋃

r∈α

f(r) ∧

∧∀r ∈ α(∅ �= f(r) ⊆ δ(r, σ))}; (5)

the set δ′(α, σ) contains all β ∈ 2Q such that β =
{

γ, if γ ⊆ F ;
γ ∪ {i}, otherwise;

for some γ ∈ next(α, σ),
– F ′ = {α ∈ Q′ | α ⊆ F}.

Finally, we study an upper bound on the state complexity. Given an NFA with n
states accepting a language L, by adding one more state i, we can obtain an
NFA A in the form required by our last construction, accepting the language L\
{ε}. Notice that L� = (L \ {ε})�. Thus, the number of states of the resulting
automaton A′ is at most 2n+1. However, inspecting the construction, we can see
that only at most one-half of them can be reached. In fact, from the definition
of δ′ we observe that each state β in the range of δ′ is defined by a subset γ ⊆
Q\{i}, taking β = γ when all the states in γ are final, and β = γ∪{i} otherwise.
This gives 2n possibilities. However, γ = ∅ should not be considered because it
is not reachable (see the definition of next(α, σ)) and, on the other hand, the
state {i} does not belong the range of δ′ but it is used at the beginning of the
computation. Hence, we conclude that the total number of reachable states is at
most 2n. �	

208 N. Moreira et al.

4 Conclusion

As mentioned in the Introduction, the investigation of universal disjunctive con-
catenation and star was initially motivated by the study of state costs of boolean
and regular operations on dcFAs. To this respect, we now sketch some results
that can be easily derived. All automata we consider in this discussion are non-
deterministic.

First of all, the complementation of a dcFA can be trivially done, without
increasing the number of its states, just switching the set of accepting states
with the set of rejecting states. For the other operations, we can proceed as
follows. From each dcFA A, we can get two NFAs A⊕ and A� with at most
the same number of states as A, recognizing the languages L⊕(A) and L�(A).
Hence, given two dcFAs A and B we can easily build a dcFA C, corresponding
to the union, by combining A⊕ and B⊕, according to the standard construction
for the union, and A� and B�, according to the standard construction for the
intersection. The number of states of C is polynomial with respect to those of A
and B. We can proceed in a similar way for the intersection.

In the case of the concatenation, the accepting part of C is obtained by
combining A⊕ and B⊕, as in the standard construction for the concatenation.
Since we are interested in a nondeterministic automaton, this uses a number of
states which is bounded by the sum of the states in A and B. The rejecting
part of C should recognize the language A� � B�, so according to Theorems 12
and 13, it uses an exponential number of states. In a similar way, for the star we
have a polynomial number of states for the accepting part, but an exponential
upper bound for the rejecting part, according to Theorem 18.

References

1. Birget, J.C.: Intersection and union of regular languages and state complexity. Inf.
Process. Lett. 43(4), 185–190 (1992)

2. Birget, J.C.: The state complexity of Σ�L and its connection with temporal logic.
Inf. Process. Lett. 58, 185–188 (1996)

3. Brzozowski, J.A., Grant, E., Shallit, J.: Closures in formal languages and Kura-
towski’s theorem. Int. J. Found. Comput. Sci. 22(2), 301–321 (2011)

4. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981). http://doi.acm.org/10.1145/322234.322243

5. Moreira, N., Pighizzini, G., Reis, R.: Optimal state reductions of automata
with partially specified behaviors. In: Italiano, G.F., Margaria-Steffen, T.,
Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-
Testing. LNCS, vol. 8939, pp. 339–351. Springer, Heidelberg (2015).
http://dx.doi.org/10.1007/978-3-662-46078-8 28

6. Putnam, H.: Three-valued logic. Philos. Stud. 8(5), 73–80 (1957)
7. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)

http://doi.acm.org/10.1145/322234.322243
http://dx.doi.org/10.1007/978-3-662-46078-8_28

Quasi-Distances and Weighted Finite Automata

Timothy Ng, David Rappaport, and Kai Salomaa(B)

School of Computing, Queen’s University, Kingston, ON K7L 3N6, Canada
{ng,daver,ksalomaa}@cs.queensu.ca

Abstract. We show that the neighbourhood of a regular language L
with respect to an additive quasi-distance can be recognized by an addi-
tive weighted finite automaton (WFA). The size of the WFA is the same
as the size of an NFA (nondeterministic finite automaton) for L and the
construction gives an upper bound for the state complexity of a neigh-
bourhood of a regular language with respect to a quasi-distance. We give
a tight lower bound construction for the determinization of an additive
WFA using an alphabet of size five. The previously known lower bound
construction needed an alphabet that is linear in the number of states
of the WFA.

Keywords: Regular languages · Weighted finite automata · State com-
plexity · Distance measures

1 Introduction

In many applications it is crucial to measure the similarity between data. How
we define the distance between objects depends on what the objects we want
to compare are and why we want to compare them [5]. One of the most com-
monly used similarity measures for words is the Levenshtein distance [13], also
called the edit distance [4,11,12,15]. By the edit distance between languages L1

and L2 we mean the smallest distance between a word of L1 and of L2, respec-
tively. This definition is natural for error correction applications; however, other
definitions such as the relative distance or Hausdorff distance have also been
considered [3,5].

The edit distance is additive with respect to concatenation of words in the
sense defined by Calude et al. [2]. Pighizzini [15] has shown that the edit distance
between a word and a language recognized by a one-way nondeterministic auxil-
iary pushdown automaton is computable in polynomial time. Konstantinidis [12]
showed that the edit distance of a regular language, that is, the smallest edit
distance between two distinct words in the language can be computed in poly-
nomial time. Han et al. [8] gave a polynomial time algorithm to compute the
edit distance between a regular language and a context-free language. Error/edit
systems for error correction have been studied by Kari and Konstantinidis [10],
and the error correction capabilities of regular languages with respect to edit
operations were recently investigated by Benedikt et al. [1].

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 209–219, 2015.
DOI: 10.1007/978-3-319-19225-3 18

210 T. Ng et al.

A quasi-distance is a generalization of the notion of distance in that it allows
the possibility of distinct elements having distance zero. Calude et al. [2] showed
that the neighbourhood of a regular language with respect to an additive distance
or quasi-distance is regular. The neighbourhood of radius r of a language L
consists of all words that have distance at most r from some word of L.

In an additive weighted finite automaton (WFA) [17] the weight of a path is
the sum of the weights of the individual transitions that make up the path and
the weight of an accepted word w is the minimum weight of a path from the start
state to a final state that spells out w. Note that this differs significantly from
weighted automata used, for example, in image processing applications [6,7].

For a given nondeterministic finite automaton (NFA) A, an additive distance
d and radius r, Salomaa and Schofield [17] gave a construction for an additive
weighted finite automaton (WFA) which recognizes the neighbourhood of radius
r of the language recognized by A. The construction relies on the fact that addi-
tive distances are finite, that is, the neighbourhood of any word is always finite.
This makes the construction not suitable for quasi-distances, since neighbour-
hoods of additive quasi-distances are not guaranteed to be finite [2].

Here we show that neighbourhoods of a regular language with respect to
an additive quasi-distance can be recognized by a WFA. Given an NFA A, the
WFA recognizing a constant radius neighbourhood of L(A) can be constructed
in polynomial time. The construction relies on the property that the neighbour-
hoods with respect to a quasi-distance are regular and a finite automaton for
the neighbourhood can be constructed effectively. The construction yields also
an upper bound for the size of a deterministic finite automaton (DFA) needed
to recognize the neighbourhood of radius r of a regular language (given by an
NFA) with respect to a quasi-distance. The upper bound is significantly better
than the bound obtained by constructing an NFA for the neighbourhood [2] and
then determinizing the NFA.

We study also the state complexity of additive WFAs. A WFA A within a given
weight bound R recognizes a regular language, and Salomaa and Schofield [17]
gave an upper bound for the size of a DFA for this language. They also gave a
matching lower bound construction; however, the WFAs used for the lower bound
construction needed an alphabet of size linear in the number of states of the WFA.
Here we give a tight lower bound construction for the “determinization of WFAs”
using a five-letter alphabet.

The paper concludes with a discussion of open problems on the state com-
plexity of neighbourhoods of a regular language with respect to an additive
distance or quasi-distance.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and reg-
ular languages [9,19,20]. A general reference for weighted finite automata is [6].

In the following Σ is always a finite alphabet, Σ∗ is the set of words over Σ
and ε is the empty word. The length of a word w is |w|. When there is no danger

Quasi-Distances and Weighted Finite Automata 211

of confusion, a singleton set {w} is denoted simply as w. The set of non-negative
integers (respectively, rationals) is N0 (respectively, Q0).

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F)
where Q is a finite set of states, Σ is an alphabet, δ is a multi-valued transition
function δ : Q × Σ → 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is a set of final
states. We extend the transition function δ to Q × Σ∗ → 2Q in the usual way.
A word w ∈ Σ∗ is accepted by A if δ(q0, w)∩F �= ∅ and the language recognized
by A consists of all strings accepted by A.

The automaton A is a deterministic finite automaton (DFA) if, for all q ∈ Q
and a ∈ Σ∗, δ(q, a) either consists of one state or is undefined. A DFA A is
complete if δ is defined for all q ∈ Q and a ∈ Σ. Two states p and q of a DFA A
are equivalent if δ(p,w) ∈ F if and only if δ(q, w) ∈ F for every string w ∈ Σ∗.
A DFA A is minimal if each state of Q is reachable from the initial state and no
two states are equivalent.

The (right) Kleene congruence of a language L ⊆ Σ∗ is the relation ≡L⊆
Σ∗ × Σ∗ defined by setting, for x, y ∈ Σ∗,

x ≡L y iff [(∀z ∈ Σ∗) xz ∈ L ⇔ yz ∈ L].

A language L is regular if and only if the index of ≡L is finite and, in this case,
the index of ≡L is equal to the size of the minimal complete DFA for L [19,20].
The minimal DFA for a regular language L is unique. The state complexity of
L, sc(L), is the size of the minimal complete DFA recognizing L.

Definition 1 [17]. An additive weighted finite automaton (WFA) is a 6-tuple
A = (Q,Σ, γ, ω, q0, F) where Q is a finite set of states, Σ is an alphabet, γ :
Q × Σ → 2Q is the transition function, ω : Q × Σ × Q → Q0 is a partial weight
function where ω(q1, a, q2) is defined if and only if q2 ∈ γ(q1, a), q0 ∈ Q is the
initial state, and F ⊆ Q is the set of accepting states.

Strictly speaking, the transitions of γ are also determined by the domain of
the partial function β. In the following by a WFA we always mean an additive
weighted finite automaton as in Definition 1. By a transition of A on symbol a ∈
Σ we mean a triple (q1, a, q2) such that q2 ∈ γ(q1, a), q1, q2 ∈ Q. A computation
path α of a WFA A along a word w = a1a2 · · · am, ai ∈ Σ, i = 1, . . . , m, from
state p1 to p2 is a sequence of transitions that spell out the word w,

α = (q0, a1, q1)(q1, a2, q2) · · · (qm−1, am, qm),

where p1 = q0, p2 = qm, and qi ∈ γ(qi−1, ai), 1 ≤ i ≤ m. The weight of a
computation path is

ω(α) =
m∑

i=1

ω(qi−1, ai, qi).

We let Θ(p1, w, p2) denote the set of all computation paths along a word w from
p1 to p2. The language recognized by A within the weight bound r ≥ 0 is the set
of words for which there exists a computation path that is accepted by A and
has weight at most r, defined as

212 T. Ng et al.

L(A, r) = {w ∈ Σ∗ : (∃f ∈ F)(∃α ∈ Θ(q0, w, f)) ω(α) ≤ r}.

Proposition 1 [17]. If A is a WFA with n states where all transition weights
are integers and r ∈ N0, then L(A, r) can be recognized by a DFA with at most
(r + 2)n states.

3 WFA Construction for a Quasi-Distance
Neighbourhood

We construct a WFA to recognize the neighbourhood of a regular language with
respect to a quasi-distance. First we recall some definitions concerning additive
distances and quasi-distances between words [2].

A function d : Σ∗ × Σ∗ → Q0 is a distance if it satisfies, for all x, y, z ∈ Σ∗,

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

The function d is a quasi-distance if it satisfies conditions 2 and 3 and d(x, y) = 0
always when x = y, that is, a quasi-distance allows the possibility that distinct
word may have distance zero. The neighbourhood of radius r of a language L is
the set

E(L, d, r) = {x ∈ Σ∗ : (∃y ∈ L) d(x, y) ≤ r}.

A distance d is said to be finite if the neighbourhood of any given radius of an
individual word with respect to d is finite. A (quasi-)distance d is additive if for
every factorization w = w1w2 and radius r ≥ 0,

E(w, d, r) =
⋃

r1+r2=r

E(w1, d, r1) · E(w2, d, r2).

It is known that the neighbourhood of a regular language with respect to a quasi-
distance is regular [2]. The next lemma constructs a WFA for this language. The
construction is inspired by related constructions in [2,18].

An additive (quasi-)distance d is determined by the finite number of values
d(a, b), d(a, ε), where a, b ∈ Σ. For the complexity estimate of the lemma we
assume that d is a fixed additive quasi-distance that is given by listing the
values d(a, b), d(a, ε), a, b ∈ Σ.

Lemma 1. Let N = (Q,Σ, δ, q0, F) be an NFA with n states, d an additive
quasi-distance, and R ≥ 0 is a constant. There exists an additive WFA A with
n states such that for any 0 ≤ r ≤ R,

L(A, r) = E(L(N), d, r)

Furthermore, the WFA A can be constructed in time O(n3).

Quasi-Distances and Weighted Finite Automata 213

Proof. We define an additive WFA A = (Q,Σ, γ, ω, q0, F) as follows. The tran-
sition function γ is defined by setting, for p ∈ Q, a ∈ Σ,

γ(p, a) = {q : (∃x ∈ Σ∗) q ∈ δ(p, x) and d(a, x) ≤ R}.

That is, for each pair of states p, q, we add a transition from p to q on a in the
WFA A if there is a word x ∈ Σ∗ with d(a, x) ≤ R that takes p to q in the NFA
N . The transition (p, a, q) in A has weight

ω((p, a, q)) = min
x∈Σ∗

{d(a, x) : q ∈ δ(p, x)}. (1)

We claim that a word w spells out a path in A with weight r (≤ R) from the
start state q0 to a state q1 if and only if some word u with d(w, u) ≤ r takes the
state q0 to q1 in the NFA B.

We prove the “only if” direction of the claim using induction on the length
of w. If w = ε, then q1 = q0 and there is nothing to prove. For the inductive
step consider w = ub, u ∈ Σ∗, b ∈ Σ, where the claim holds for u. Since w takes
state q0 to q1 by a path with weight r in the WFA A, the word u takes q0 to a
state p by a path of weight r1 where r1 + ω(p, b, q1) = r.

By the inductive assumption, there exists up ∈ Σ∗, d(u, up) ≤ r1 such that
up in the NFA N takes q0 to the state p. By the definition of the transition
weights of A in (1), there exists a word vp,b, with d(b, vp,b) = ω(p, b, q1) such
that in the NFA N the word vp,b takes state p to state q1.

Since d is additive and r1 + ω(p, b, q1) = r, we have

E(u, d, r1) · E(b, d, ω(p, b, q1)) ⊆ E(w, d, r).

Thus, d(w, upvp,b) ≤ r and in the NFA N the word upvp,b takes the start state
q0 to q1. This concludes the proof of the “only if” direction of the claim.

An analogous argument establishes the “if” direction of the claim. Since the
start states of A and N coincide and A and N have the same set of final states,
the claim implies that, for any r ≤ R, L(A, r) = E(L(N), d, r).

It remains to give an upper bound for the time complexity of finding the
weights (1) in order to verify the claim concerning the time bound for construct-
ing A. Since d is additive, for given p, q ∈ Q and a ∈ Σ, the set of words x
such that d(a, x) ≤ R and x takes p to q in the NFA N is regular. This means
that, for p ∈ Q and a ∈ Σ, the set γ(p, a) can be efficiently constructed and the
weights of the transitions of N are computed as follows.

A word x = b1b2 · · · bm, bi ∈ Σ is in the neighbourhood of a of radius R if
and only if there exists an index i ∈ {1, . . . , m} such that

d(a, bi) +
∑

j∈{1,...,m},j �=i

d(ε, bj) ≤ R.

For the radius R neighbourhood of a, a ∈ Σ, we define the two-state WFA
Ba = ({I0, I1}, Σ, η, ρ, I0, {I1}), shown in Fig. 1. The states of Ba are {I0, I1}.
For each symbol σ ∈ Σ, we define self-loop transitions η(q, σ) = q with weight

214 T. Ng et al.

I0start I1
σ|d(σ, a)

σ|d(σ, ε) σ|d(σ, ε)

Fig. 1. The WFA Ba recognizing the language {x ∈ Σ : d(a, x) ≤ R}

d(σ, ε) for both states and the transition η(I0, σ) = I1 with weight d(σ, a) for the
transition which consumes the symbol a.

Let Ma = ({I0, I1} × Q,Σ, δa, ωa, (I0, q0), I1 × F) be the WFA obtained as
a cross product of the WFA Ba and the NFA N . The states of Ma are of the
form (P, q), where P ∈ {I0, I1} and q ∈ Q. The transitions of Ma are defined by
setting, for q ∈ Q, σ ∈ Σ,

δa((I0, q), σ) = {(I0, δ(q, σ)), (I1, δ(q, σ))},

δa((I1, q), σ) = {(I1, δ(q, σ))}.

The weights of transitions ((P1, q1), σ, (P2, q2)) defined in δMa
are defined

ωa((P1, q1), σ, (P2, q2)) =

{
d(σ, ε), if P1 = P2;
d(σ, a), if P1 �= P2.

For states p, q ∈ Q, paths from states (I0, p) to (I1, q) are labelled by words x
with weight d(a, x).

We compute the paths with the least weight for every pair of states of Ma.
There are 2n states in the product machine and minimal weight paths for every
pair of states can be computed in time O(n3) via the Floyd-Warshall algorithm
[4]. A transition from p to q on a is added if there is a path from (I0, p) to (I1, q)
with weight at most R. ��
Lemma 1 gives the following result.

Theorem 1. Suppose that L has an NFA with n states and d is a quasi-distance.
The neighbourhood of L of radius R can be recognized by an additive WFA having
n states within weight bound R.

As a consequence of Theorem 1 and Proposition 1 we get in Corollary 1 an upper
bound for the state complexity of the neighbourhood of a regular language with
respect to an additive quasi-distance d where all values d(u, v), u, v ∈ Σ∗ are
integers.

We note that if a quasi-distance d associates a non-negative integer value
withany pair of words, then the weights of the WFA A constructed in the proof
of Lemma 1 are integral. Furthermore, a neighbourhood with respect to a quasi-
distance d with rational values can be converted to a neighbourhood with respect
to a quasi-distance with integral values by multiplying the radius and the values

Quasi-Distances and Weighted Finite Automata 215

of d by a suitably chosen constant. This can be done since the distance between
any two words is determined by distances between two alphabet symbols and
alphabet symbols and the empty word.

Corollary 1. Let N be an NFA with n states, R ∈ N0, and d a quasi-distance
Σ∗ × Σ∗ → N0. Then the neighbourhood E(L(N), d, R) can be recognized by a
DFA with (R + 2)n states.

The upper bound (R + 2)n is significantly better than what is obtained by first
constructing an NFA for E(L(N), d, R) as in [2] and then determinizing the
NFA. If the set of states of N is Q, Theorem 8 of [2]1 constructs an NFA for
E(L(N), d, R) with set of states Q×D where D ⊆ N, roughly speaking, consists
of all integers at most R that can be represented as a sum of distances between
an element of Σ and an element of Σ∗.

We do not have a lower bound corresponding to the upper bound of Corol-
lary 1, and the state complexity of neighbourhoods of regular languages with
respect to an additive distance or quasi-distance remains an open question.
Povarov [16] has given a lower bound for the radius-one Hamming neighbourhood
of a regular language that is tight within an order of magnitude.

In the next section we will give a lower bound construction for the size of
a DFA needed to simulate an additive WFA that matches the upper bound
of Proposition 1. However, this does not necessarily shed light on the state
complexity of neighbourhoods of regular languages because an arbitrary additive
WFA need not recognize a neighbourhood of a (regular) language.

4 State Complexity of Weighted Finite Automata

Salomaa and Schofield [17] have given a matching lower bound construction for
Proposition 1 using a family of WFAs over an alphabet of size 2n − 1 where n
is the number of states of the WFA. Here, we define a family of WFAs over a
five-letter alphabet which reaches the upper bound (r + 2)n.

Let An = (Qn, Σ, γ, ω, 1, n) be an additive WFA with Qn = {1, 2, . . . , n} and
Σ = {a, b, c, d, e}. The transition function γ with q ∈ Q and σ ∈ Σ is defined

γ(q, σ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{1, 2}, if q = 1, σ = a or q = 2, σ = b;
{3}, if q = 1, σ = b or q = 2, σ = a;
{q + 1}, if q = 3, . . . , n − 1 and σ = a, b;
{q}, if q = 1, . . . , n and σ = c, d, e.

The weight function ω for a transition α ∈ Qn × Σ × Qn is defined

ω(α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if α = (1, c, 1);
1, if α = (2, d, 2);
1, if α = (q, e, q) for all q ∈ Q;
0, for all other transitions defined by γ.

1 Theorem 8 of [2] assumes that N is deterministic. However, the construction used
in the proof works also for an NFA.

216 T. Ng et al.

3

1start

2

4 · · · n − 1 n

a, d
c, e|1

b, c
d, e|1

ab

b

a

a, b a, b a, b a, b

c, d
e|1

c, d
e|1

c, d
e|1 c, d

e|1

Fig. 2. The weighted finite automaton An used in the proof of Lemma 2.

The transition diagram for An is shown in Fig. 2 with the non-zero weights of
each transition marked after the alphabet symbols labeling the transition. For
example, state 1 has self-loops on a and d with weight zero and self-loops on c
and e with weight one.

We will use the WFAs An to give a lower bound for the size of DFAs for a
language recognized by a WFA within a given weight bound. First in Lemma 2
we establish a technical property of the weights of computations of An reaching
a particular state and for this purpose we introduce the following notation.

For 0 ≤ ki ≤ r + 1 and 1 ≤ i ≤ n, we define the words

w(k1, . . . , kn) =

{
acknbdkn−1ackn−2 · · · ack3bdk2ck1 , if n is odd;
abdknackn−1bdkn−2 · · · ack3bdk2ck1 , if n is even.

Lemma 2. Let n ∈ IN. The WFA An after processing the input w(k1, . . . , kn)
can reach the state s, 1 ≤ s ≤ n, on a path with weight ks. Furthermore, any
computation of An on input w(k1, . . . , kn) that reaches state s, 1 ≤ s ≤ n, has
weight ks.

Proof. In the string w(k1, . . . , kn) occurrences of symbols a and b alternate. Thus
the computation of A can exit states 1 and 2 after making a self-loop on a in
state 1 or a self-loop on b in state 2 and, furthermore, this is the only way for
the computation to get out of the “binary cycle” of states 1 and 2.

Below using a case analysis we verify that, for 1 ≤ s ≤ n, An has a compu-
tation with weight ks that ends in state s and, furthermore, any computation
ending in s has weight ks.

Quasi-Distances and Weighted Finite Automata 217

(i) First consider the case where n is even. Consider a computation of An that
reaches a state s where s ≥ 2 is even. Note that after exiting the cycle of
states 1 and 2, only the symbols a or b move the computation to the next
state. Thus, the only way to reach s is that the computation must make a
self-loop on b in state 2 directly before reading the substring dks . After that
the following ks symbols d are read via the weight one transitions. This also
applies for the case s = 2.

If s ≥ 3 is odd, in order to reach state s, directly before reading the
substring cks the computation must on input a make a self-loop in state 1
and then the following ks symbols c are read with transitions of weight one
in state 1.
Finally consider the case s = 1. In order to end in state 1, the computation
must not have made any self-loops on a in state 1 or b in state 2. If this is
done the computation ends in a state z with z ≥ 2. Thus, reading the final
b takes the computation from state 2 to state 1, where the transition on d
is taken k2 times. The computation remains in state 1 and reads the rest of
the word ck1 on the transition of weight 1 exactly k1 times.

(ii) Next consider the case where n is odd. The above argument remains the
same, almost word for word. The only minor difference is in the case s = n.
In order to reach state n, the computation must read the first symbol a using
a self-loop and then the following kn symbols c using transitions of weight
1. (Note that when n is odd, in w(k1, . . . , kn) the first symbol a is followed
by kn symbols c.)

��
Lemma 3. Let An be the WFA defined above and r ∈ IN. Then the minimal
DFA for L(An, r) needs (r + 2)n states.

Proof. It is sufficient to show that all words w(k1, . . . , kn), 0 ≤ ki ≤ r + 1,
i = 1, . . . , n, belong to distinct classes of ≡L(An,r).

Consider two distinct words w(k1, . . . , kn) and w(k′
1, . . . , k

′
n) with 0 ≤ ki, k

′
i ≤

r + 1, i = 1, . . . , n. There exists an index j such that kj �= k′
j . Without loss of

generality, we assume that kj < k′
j . Choose

z = er−kjan−j .

Since kj < k′
j ≤ r + 1, it follows that r − kj ≥ 0 and z is a well-defined word.

We claim that

w(k1, . . . , kn) · z ∈ L(A, r), w(k′
1, . . . , k

′
n) · z �∈ L(A, r).

By Lemma 2, A has a computation on input w(k1, . . . , kn) that ends in state j
with weight kj . In state j, A reads the first r − kj symbols e of z, after which
the total weight is kj + (r − kj) = r. The zero weight transitions on the suffix
an−j take the automaton from state j to the final state n.

Now consider from which states q the WFA A can reach the accepting state
n on input z. On any state of A, the symbols c, d, e define self-loops. On states

218 T. Ng et al.

3 ≤ q ≤ n − 1, transitions to state q + 1 only occur on a, b. For states q = 1, 2, a
transition to state q +1 occurs only on a. Thus, A can reach the accepting state
n from a state q on input z only if q = j.

Thus, the only possibility for A to accept w(k′
1, . . . , k

′
n) · z would be that the

computation has to reach state j on the prefix w(k′
1, . . . , k

′
n). By Lemma 2, the

weight of this computation can only be k′
j . But when continuing the computation

on z from state j, A has to read the first r − kj symbols e, each with a self-loop
transition having weight one. After this, the weight of the computation will be
k′

j + r − kj > r. Thus, w(k′
1, . . . , k

′
n) · z �∈ L(A, r).

Thus, the equivalence relation ≡L(A,r) has index at least (r + 2)n. ��
As a consequence of Lemma 3 and Proposition 1 we have:

Theorem 2. If A is an n state WFA with integer weights for transitions and
r ∈ IN, then

sc(L(A, r)) ≤ (r + 2)n.

For n, r ∈ IN, there exists an n state WFA A with integral weights defined
over a five-letter alphabet such that sc(L(A, r)) = (r + 2)n.

5 Conclusion

For the state complexity of a language recognized by an additive WFA with a
given weight we have established a tight lower bound using a constant size alpha-
bet. The earlier known lower bound construction [17] used a variable alphabet
that has size linear in the number of states of the WFA.

We have also constructed a WFA recognizing the neighbourhood of a regular
language with respect to an additive quasi-distance. This yields an upper bound
(r + 2)n for the state complexity of a neighbourhood of radius r of an n state
NFA language with respect to an additive quasi-distance. The upper bound
is significantly better than a bound obtained by directly constructing an NFA
for the neighbourhood [2] and then determinizing the NFA. The same upper
bound (r + 2)n has been known previously for neighbourhoods with respect to
an additive distance.

The precise state complexity of neighbourhoods with respect to a distance or
a quasi-distance remains open. Povarov [16] gives an upper bound n · 2n−1 + 1
for the Hamming neighbourhood of radius one of an n-state regular language
and an almost matching lower bound. For neighbourhoods of radius r ≥ 2 no
good lower bounds are known. Finding such lower bounds will be a topic of a
forthcoming paper [14].

References

1. Benedikt, M., Puppis, G., Riveros, C.: Bounded repairability of word languages.
J. Comput. Syst. Sci. 79, 1302–1321 (2013)

2. Calude, C.S., Salomaa, K., Yu, S.: Distances and quasi-distances between words.
J. Univ. Comput. Sci. 8(2), 141–152 (2002)

Quasi-Distances and Weighted Finite Automata 219

3. Choffrut, C., Pighizzini, G.: Distances between languages and reflexivity of rela-
tions. Theoret. Comput. Sci. 286, 117–138 (2002)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

5. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009)
6. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata.

EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009)
7. Eramian, M.: Efficient simulation of nondeterministic weighted finite automata. J.

Automata Lang. Comb. 9, 257–267 (2004)
8. Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language

and a context-free language. Int. J. Found. Comput. Sci. 24, 1067–1082 (2013)
9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite

automata — a survey. Inf. Comput. 209, 456–470 (2011)
10. Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. J.

Automata Lang. Comb. 9, 293–309 (2004)
11. Konstantinidis, S.: Transducers and the properties of error detection, error-

correction, and finite-delay decodability. J. Univ. Comput. Sci. 8, 278–291 (2002)
12. Konstantinidis, S.: Computing the edit distance of a regular language. Inf. Comput.

205, 1307–1316 (2007)
13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and

reversals. Sov. Phys. Dokl. 10(8), 707–710 (1966)
14. Ng, T., Rappaport, D., Salomaa, K.: State complexity of neighbourhoods and

approximate pattern matching (March 2015, Submitted for publication)
15. Pighizzini, G.: How hard is computing the edit distance? Inf. Comput. 165, 1–13

(2001)
16. Povarov, G.: Descriptive complexity of the Hamming neighborhood of a regular lan-

guage. In: Proceedings of the 1st International Conference Language and Automata
Theory and Applications, LATA 2007, pp. 509–520 (2007)

17. Salomaa, K., Schofield, P.: State complexity of additive weighted finite automata.
Int. J. Found. Comput. Sci. 18(6), 1407–1416 (2007)

18. Schofield, P.: Error Quantification and Recognition Using Weighted Finite
Automata. MSc thesis, Queen’s University, Kingston, Canada (2006)

19. Shallit, J.: A Second Course in Formal Languages and Automata Theory.
Cambridge University Press, Cambridge (2009)

20. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 1, pp. 41–110. Springer, Heidelberg (1997)

The State Complexity of Permutations on Finite
Languages over Binary Alphabets

Alexandros Palioudakis1, Da-Jung Cho1, Daniel Goč2, Yo-Sub Han1,
Sang-Ki Ko1, and Kai Salomaa2(B)

1 Department of Computer Science, Yonsei University, 50 Yonsei-Ro,
Seodaemum-Gu, Seoul 120–749, Republic of Korea
{alex,dajung,emmous,narame7}@cs.yonsei.ac.kr

2 School of Computing, Queen’s University, Kingston, Ontario K7L 3N6, Canada
{goc,ksalomaa}@cs.queensu.ca

Abstract. We investigate the state complexity of the permutation oper-
ation over finite binary languages. We first give an upper bound of the
state complexity of the permutation operation for a restricted case of
these languages. We later present a general upper bound of the state
complexity of permutation over finite binary languages, which is asymp-
totically the same as the previous case. Moreover, we show that there is
a family of languages that the minimal DFA recognizing each of these
languages needs at least as many states as the given upper bound for
the restricted case. Furthermore, we investigate the state complexity of
permutation by focusing on the structure of the minimal DFA.

Keywords: Finite automata · State complexity · Finite languages ·
Permutation · Parikh equivalence

1 Introduction

Finite automata are well studied in the theory of computation. McCulloch and
Pitts [14] first introduced this model of computation. Following on these ideas
Kleene [10] wrote the first paper on finite automata and regular expressions.
Later, Rabin and Scott [18] first studied the nondeterministic version of finite
automata, for which they received the Turing Award, the highest award in com-
puter science.

Since then, much work has been done in the descriptional complexity of
finite automata [12,13,15,16]. The descriptional complexity of finite automata
is usually measured in the number of transitions or the number of states that a
finite automaton requires in order to accept a given language. Most researchers
have focused on the state complexity of finite automata [6,9].

A widely studied topic in the state complexity of finite automata is the
state complexity of language operations. Yu et al. [20] studied the state com-
plexity of some basic operations. Han and Salomaa [7] studied the state com-
plexity of union and intersection of finite languages. Holzer and Kutrib [8]
c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 220–230, 2015.
DOI: 10.1007/978-3-319-19225-3 19

The State Complexity of Permutations 221

studied the nondeterministic state complexity of some basic language operations.
Câmpeanu et al. [1] studied the state complexity of basic language operation for
finite languages. Domaratzki [2] studied the state complexity of proportional
removals and recently, Goč et al. [5] studied the nondeterministic state complex-
ity of proportional removals. For more information on the state complexity of
language operations, the reader can consult the recent review by Gao et al. [4].

Here we investigate the operational state complexity of the permutation oper-
ation. The family of regular languages is not closed under permutation and,
hence, in this paper we focus on finite languages. We first compute an upper
bound of the state complexity of the permutation on a restricted case of regular
languages over binary alphabets. We show an upper bound for the state com-
plexity of permutation for general binary finite languages. We mention that the
permutation operation is related to the Parikh mapping, which maps each string
over n letters to an n-dimensional vector whose components give the number of
occurrences of the letters in the string [11,17]. Ellul et al. [3] have given strong
lower bounds for the size of NFAs or regular expressions recognizing permuta-
tions of symbols of a growing alphabet.

In Sect. 2, we briefly present definitions and notation used throughout the
paper. In Sect. 3, we give the state complexity of permutation of binary languages
recognized by DFAs that form a chain, and present a general upper bound of
the state complexity of permutation of binary finite languages. In Sect. 4, we
give an upper bound on the state complexity of permutation for languages that
recognize strings with equal length. Moreover, we give lower bounds that are
tight in the restricted cases and asymptotically tight in the general case.

2 Preliminaries

We assume that the reader is familiar with the basic definitions concerning finite
automata [19,21] and descriptional complexity [6,9]. Here we just fix some nota-
tion needed in the following.

The set of strings over a finite alphabet Σ is Σ∗, the length of w ∈ Σ∗ is |w|
and ε is the empty string. Moreover, for a letter a ∈ Σ and a string w ∈ Σ∗, we
denote the numbers of occurrences of the letter a in the string w by |w|a. The
set of positive integers is denoted by N. The cardinality of a finite set S is #S.

A deterministic finite automaton (DFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is a finite set of states, Σ is a finite alphabet, δ : Q × Σ → Q is the
transition function (partial function), q0 ∈ Q is the start state and F ⊆ Q is the
set of accepting states. The function δ is extended in the usual way as a function
Q × Σ∗ → Q and the language recognized by A consists of strings w ∈ Σ∗

such that δ(q0, w) ∈ F . By the size of A, we mean the number of states of A,
size(A) = #Q.

The minimal size of a DFA recognizing a regular language L is called the
state complexity of L and denoted by sc(L). Note that we allow DFAs to be
incomplete and, consequently, the deterministic state complexity of L may differ
by one from the definition using complete DFAs.

222 A. Palioudakis et al.

An important relation of languages is the Myhill-Nerode relation RL of a
language L. The relation RL contains pairs of strings x and y if and only if for
every z ∈ Σ∗ both strings x · z and y · z belong in L or both strings x · z and
y · z do not belong in L. It is well known that the MyhillNerode relation of the
language L has finite number of equivalence classes if and only if the language
L is regular. Moreover, the unique minimal DFA for L has the same number of
states as the number of equivalence classes of RL. Hence, when we want to find
a lower bound on the state complexity of a regular language L, it is sufficient
to find a set of strings S such that, for every strings w,w′ ∈ S, there is a string
u ∈ Σ∗ with w · u ∈ L and w′ · u /∈ L, or w · u /∈ L and w′ · u ∈ L. Then, we have
that sc(L) ≥ #S.

We consider the state complexity of the operation of permutation on finite
languages. We now define the permutation per(L) of a regular language L over
the alphabet Σ as follows: A string w belongs in per(L) if and only if there is a
string u ∈ L such that the strings w and u have the same number of occurrences
of every letter of Σ. Formally, we define

per(L) = {w ∈ Σ∗ | (∃u ∈ L)(∀a ∈ Σ)(|u|a = |w|a)}.

Remark that the family of regular languages is not closed under permutation.
For example, for the language (a · b)∗, the permutation of this language contains
all the strings w such that |w|a = |w|b, which is not a regular language.

Given an alphabet Σ = {a1, a2, . . . , ak}, let Ψ : Σ∗ → [N0]k be a map-
ping defined by Ψ(w) = (|w|a1 , |w|a2 , . . . , |w|ak

). This function is called a Parikh
mapping and Ψ(w) is called the Parikh vector of w. The Parikh mapping is
extended for a set of strings, with Ψ : 2Σ∗ → 2[N0]

k

be a mapping defined by
Ψ(L) = {Ψ(w) | w ∈ L}. Two languages L1, L2 are Parikh equivalent, denoted
by L1 ≡Parikh L2, if Ψ(L1) = Ψ(L2). Similarly, we say that two DFAs A,B are
Parikh equivalent if Ψ(L(A)) = Ψ(L(B)) and denote it by A ≡Parikh B.

3 Permutation Operation for Chain DFAs

We consider the problem of finding the state complexity of the permutation of a
binary language L. We start with giving an upper bound for the restricted case
of the language L where each string of L has length sc(L) − 1.

Lemma 1. Let n be a positive integer and L ⊆ {a, b}n−1 be a finite language
such that sc(L) = n. Then, we have the following inequality for the state com-
plexity of the permutation of L:

sc(per(L)) ≤ n2 + n + 1
3

.

Proof. Let A be the minimal DFA recognizing L over the alphabet {a, b}. Since
we have that L ⊆ {a, b}n−1, we know that each string w of L is of length n − 1.
Hence, the DFA A forms a chain, that is, we can enumerate the states of A such
that for all 1 ≤ h ≤ n − 1 at least one of the following is true; δ(h, a) = h + 1

The State Complexity of Permutations 223

or δ(h, b) = h + 1. Additionally, each state h has only one target state h + 1 for
1 ≤ h ≤ n − 1 and the transition function for h is one the the following three
cases:

1. δ(h, a) = h + 1 (a-transition)
2. δ(h, b) = h + 1 (b-transition)
3. δ(h, a) = h + 1, δ(h, b) = h + 1 (a&b-transition)

By the definition of the language per(L), we have all the possible permuta-
tions of the strings of L. The order of the different types of transitions (a, b,
or a&b) of A does not affect per(L). Hence, we can assume that, without loss
of generality, we start with a-transitions, followed by b-transitions, followed by
a&b-transitions. From this assumption, we have that L is of the form aibj(a+b)k

for some non-negative integers i, j, k such that i+j +k = n−1. It is not difficult
to construct a DFA with (i+1) · (j +1)+k ·j +k · i+k states recognizing per(L).
Since we search for an upper bound of the state complexity of per(L), we can
find for which values of i, j, k the function f(i, j, k) = (i+1)·(j+1)+k ·j+k ·i+k,
and i+j+k = n−1, has a maximal value. It is easy to verify that f is maximized
when i, j, k are i = j = k = n−1

3 . Thus, for integer values of i, j, k

max f(i, j, k) =

{
n2+n+1

3 , ifn ≡ 1 (mod 3);
n2+n

3 , otherwise.

�

In Lemma 1, we assume that every string w in L has a specific length—|w| =
sc(L) − 1. This restriction ensures that the states of the minimal DFA recogniz-
ing L form a chain. Now, we move one step further and show an upper bound
of the state complexity of the permutation of L without such restrictions.

Lemma 2. Let L be a binary finite language and m = max{|w| | w ∈ L} for
some positive integer m. Then, we have

sc(per(L)) ≤ m2 + m + 2
2

.

Proof. We construct a DFA A that recognizes per(L) over the binary alpha-
bet {a, b}. We keep track at each state of A what is the number of occurrences
of a’s and what is the number of occurrences of b’s that we have already read.
Then A has states of the form (i, j), for 0 ≤ i, j ≤ m, where i (and j) keeps
track of the occurrences of a’s (and b’s, respectively). Since m is the length of the
longest string in L, we know that there is no computation path in A with more
than m + 1 states. Thus, for all states (i, j) of A we have i + j ≤ m. Moreover,
it is immediate that all states (i, j) with i + j = m are final and equivalent—we
can merge them to one final state.

Now we counter the number of states. The total number of states of the
resulting DFA is 1 + 2 + · · · + m + 1(the merged final state) = m·(m+1)

2 + 1. The
final states of A are all states (i, j) such that there is a string w ∈ L with |w|a = i
and |w|b = j. �

224 A. Palioudakis et al.

We notice that the maximum length of all the strings of the language L can be at
most the state complexity of L minus one; in other words, we have 1+max{|w| |
w ∈ L} ≤ sc(L). By this observation and Lemma 2, we have the following
corollary.

Corollary 1. Let L be a binary finite language and sc(L) = n for some positive
integer n. Then we have

sc(per(L)) ≤ n2 − n + 2
2

.

In the following theorem, we give a lower bound on the state complexity of the
permutation of a language. This bound is asymptotically tight with the general
upper bound in Corollary 1.

Theorem 1. For any n0 ∈ N, there exists a regular language L with sc(L) = n,
for n ≥ n0, such that

sc(per(L)) ≥ n2 + n + 1
3

.

Proof. Let n = 3k + 1 ≥ n0, k ∈ N and Ln = L(akbk(a + b)k). In Fig. 1, for
k = 3 and n = 10, we see that Ln can be accepted by an incomplete DFA with
n states.

b b, aa b b, a b, aaa b

Fig. 1. The state minimal DFA recognizing the language L10.

We prove a lower bound for the state complexity of per(Ln).

per(Ln) = {w ∈ Σ3·k | |w|a, |w|b ≥ k, n = 3 · k + 1}.

Let X and Y be the sets of strings as follows:

X = {aibj : 0 ≤ i ≤ 2k, 0 ≤ j ≤ k} and Y = {aibj : 0 ≤ i < k, k < j ≤ 2k}.

We show that all strings of X ∪ Y are pairwise inequivalent with respect to
the Myhill-Nerode congruence of per(Ln). Let u = aibj and u′ = ai′

bj′
be two

arbitrary distinct strings from X ∪Y . We consider first the case where |u| �= |u′|
and later we consider three separate cases u, u′ ∈ X, u, u′ ∈ Y , and, u ∈ X and
u′ ∈ Y (same case as u′ ∈ X and u ∈ Y):

1. We have that |u| �= |u′|. It is straightforward to verify that u and u′ are
inequivalent since one can easily find a string z such that uz ∈ per(Ln) and
|u′z| �= 3 · k—u′z /∈ per(Ln).

2. We have |u| = |u′| and u, u′ ∈ X. Since u �= u′, either |u|a < |u′|a or
|u′|a < |u|a. Without loss of generality, we assume that |u|a < |u′|a. For
z = a2·k−ibk−j , we have uz ∈ per(Ln). However, for the string u′z, we have
|u′z|a > 2 · k, which means, since |uz| = |u′z| = 3 · k, that |u′z|b < k and
u′z /∈ per(Ln).

The State Complexity of Permutations 225

3. We have |u| = |u′| and u, u′ ∈ Y . Similar with the second case above, we
assume that, without loss of generality, |u|b < |u′|b. For z = ak−ib2·k−j ,
we have uz ∈ per(Ln). However, we have |u′z|b > 2 · k, which implies that
u′z /∈ per(Ln).

4. We have that u ∈ X and u′ ∈ Y and |u| = |u′|. Since u′ ∈ Y and u ∈ X,
we know that |u′|b > k and |u|b ≤ k. This implies that |u|a > |u′|a because
|u| = |u′|. Now for the string z = ak−ib2·k−j , we have uz ∈ per(Ln). However,
for the string u′z, we have that |u′z|a < k and, thus, u′z /∈ per(Ln).

An example of the minimal DFA recognizing the language per(L10) is presented
in Fig. 2.

a

b

a

b

a

b

b

b

a, b
a

b

b

aa

b

a

a

a

b

a

a a, b

b

b

a

b

a

a

a

a

b

a

b

a

b

b

b

a

b

a

a

a

b

b

a

a, b

a

b

b

a

a

b b

b

b

a

a

b

a

bb

a

b

Fig. 2. The minimal DFA recognizing the language per(L10)).

Hence, the number of states of the minimal DFA recognizing the language
per(Ln) has at least (2 · k + 1) · (k + 1) + k2 = 3 · k2 + 3 · k + 1 states. We know
that n = 3 · k + 1 (namely, k = n−1

3) and, thus, the minimal DFA for per(Ln)
has at least

3 ·
(

n − 1
3

)2

+ 3 ·
(

n − 1
3

)
+ 1 =

n2 − 2 · n + 1
3

+ (n − 1) + 1 =
n2 + n + 1

3

states. �

From the simple case studied in Lemma 1 and Theorem 1, we have the following
corollary.

226 A. Palioudakis et al.

Corollary 2. Let n be a positive integer and L ⊆ {a, b}n−1 be a finite language
such that sc(L) = n. Then the state complexity of the permutation of L is bounded
by the inequality,

sc(per(L)) ≤ n2 + n + 1
3

.

Moreover, sometimes n2+n+1
3 states are necessary for the minimal DFA recog-

nizing per(L).

4 Upper Bound for Sets of Equal Length Strings

We prove an upper bound for the state complexity of permutation of sets of
equal length strings. The upper bound coincides with the lower bound from
Theorem 1, which also uses sets of equal length strings.

We begin by introducing some terminology for DFAs that recognize sets of
equal length strings. In the following, we consider a DFA A = (Q,Σ, δ, q0, {qf})
recognizing a subset of Σ�, Σ = {a, b}. Without loss of generality A has one
final state and has no useless states. The number of states of A is n.

The level of a state q ∈ Q is the length of a string w such that δ(q0, w) = q. The
level of a state is a unique integer in {0, 1, . . . , �}. The set of level z states is Q[z]
for 0 ≤ z ≤ �. We say that level z is singular if |Q[z]| = 1, 0 ≤ z ≤ �. Levels 0 and �
are always singular. A linear transition is a transition between two singular levels.
A linear transition can be labeled by a, b or a&b. (A linear transition labeled by
a&b is strictly speaking two transitions.) The number of linear transitions labeled
by a (respectively, by b, a&b) is denoted iA (respectively, jA, kA).

The length of the nonlinear part of A is

hA = � − (iA + jA + kA). (1)

Thus hA denotes the number of pairs (z, z + 1), for 0 ≤ z < �, such that at least
one of the levels z or z + 1 is not singular.

Consider 0 ≤ x ≤ �, 0 ≤ y ≤ �, and x+1 < y, where levels x and y are singular
and all levels strictly between x and y are non-singular. A nonlinear block Bx,y

of A between the levels x and y is a subautomaton of A consisting of all states
of ∪x≤z≤yQ[z] and the transitions between them. The initial (respectively, final)
state of the subautomaton is the state having level x (respectively, y). The length
of the nonlinear block Bx,y is y −x. The length of a block is always at least two.

Note that a nonlinear block begins and ends in a singular level and all levels
between these are non-singular. In the following, nonlinear blocks are called
simply blocks. Examples of blocks are illustrated in Fig. 3.

The sum of the lengths of the blocks of A equals to hA. The estimation of
the length of accepted strings � in terms of the number of states n depends on
the types of blocks that A has.

Assume that the total length hA of the blocks of A is fixed. Then the maximal
value of � can be reached if all blocks have length two (and hA is even). Note
that a block of length two has always exactly 4 states. Thus, we have

The State Complexity of Permutations 227

Fig. 3. A DFA with a block of length 2 and a block of length 4.

� ≤ n − 1 − 1
2
hA. (2)

Example of the worst-case situation where � = n−1− 1
2hA is illustrated in Fig. 4.

Fig. 4. n = 13 and hA = 8, � = 8.

4.1 Estimate for DFAs Having Blocks of Length Two

We begin by providing an upper bound in the case where a DFA A includes
blocks of length two and none of bigger length. As observed in the following
subsection the same upper bound holds for arbitrary DFAs recognizing sets of
equal length strings. The proof of the general case is based on similar ideas but
is considerably more complicated. In this extended abstract we include the proof
only for the case where the DFA has blocks of length at most two.

A block of length two that recognizes the language {aa, bb} is called a dia-
mond (see Fig. 5). There are a total of 9 different blocks of length two and it is
easy to see that any block of length two that is not a diamond is “redundant”
in the sense that it can be replaced by linear transitions and the modified DFA
is Parikh-equivalent to A. This is stated in the following lemma.

Lemma 3. Assume that A has a block of length two that is not a diamond.
Then there exists a DFA A1 having n − 1 states such that L(A1) ≡Parikh L(A).

Next we observe that if A has one or more diamonds, then without loss of
generality A can be assumed to have no linear transitions with label a&b.

Lemma 4. Assume that A has r ≥ 1 diamonds and kA ≥ 1. Then there exists
a DFA A2 with n − r states such that L(A2) ≡Parikh L(A).

228 A. Palioudakis et al.

b

a

b

a

Fig. 5. A diamond.

Proof. This follows from the observation that when kA ≥ 1,

(aa + bb)r(a + b)kA ≡Parikh (a + b)2r+kA .

�

By Lemmas 3 and 4, when computing an upper bound estimate for the state
complexity of per(L(A)), in the case where A has blocks of length two, we can
assume that all blocks of length two are all diamonds and, furthermore, that
kA = 0 (i.e., A has no linear transitions labeled with a&b).

With the above assumptions combining with (1) and (2), we have

3
2

· hA + iA + jA ≤ n − 1.

We construct a DFA B recognizing per(L(A)). Note that it is sufficient for B
to count a’s up to iA+hA and count b’s up to jA+hA with the further restriction
that the sum of the counts is at most iA + jA + hA. The states of B consist of
pairs (x, y), where x is the a-count and y is the b-count. The states can be listed
as follows:

– (iA + 1) · (jA + 1) pairs, where a-count is at most iA and b-count is at most jA.
– When a-count is iA + z, for 1 ≤ z ≤ hA, b-count can be between 0 and

jA + hA − z. This results in 1
2hA(2jA + hA + 1) states. (The number of states

comes from calculating, for some positive integers m and n, the cardinality
of the following set {(i0, j0) | 1 ≤ i0 ≤ m, 0 ≤ j0 ≤ n + m − i}. After some
calculations we conclude that the set has 1

2m(2n + m + 1) elements.)
– Additionally, for each b-count greater than jA, we need to count up to iA

a’s, which results in hA · (iA + 1) added states. (The situation where also the
a-count is above iA was included already in states listed above.)

In total, B has

iAjA + hAiA + hAjA +
1
2
h2

A + iA + jA +
3
2
hA + 1

states.
This number is maximized whenever iA = 2

7 (n − 1), jA = 2
7 (n − 1), and

hA = 2
7 (n−1) leading to a value of 2

7 (n−1)2+n (in these cases 3
2 ·hA+iA+jA =

n − 1). (This maximization can be easily checked by mathematics software such
as Maple.) This polynomial is bounded by n2+n+1

3 and only reaches that bound
in the trivial case where iA = 0, jA = 0, hA = 0, and n = 1.

The State Complexity of Permutations 229

Above we have verified the following:

Proposition 1. If A is a DFA with n states that recognizes a set of equal length
strings over {a, b} and the nonlinear part of A has only blocks of length two, then

sc(per(L(A)) ≤ n2 + n + 1
3

.

4.2 Estimate for General DFAs for Equal Length Languages

The result of the following theorem extends the result of Proposition 1 to all
DFAs recognizing sets of equal length strings. Due to the limit on the number
of pages the proof of Theorem 2 is omitted in this extended abstract.

Theorem 2. Let A be an n-state DFA accepting a language L ⊆ Σ�. Then there
exists a DFA C accepting per(L) with no more than n2+n+1

3 states.

From Theorem 1, we already know that the upper bound of Theorem 2 can
be reached.

Corollary 3. For every n0 ∈ N, there is a positive integer � and a regular
language L ⊆ Σ�, with sc(L) = n, for n ≥ n0, such that every DFA accepting
per(L) needs at least n2+n+1

3 states.

5 Conclusions

We have studied the deterministic state complexity of permutation of finite lan-
guages over binary alphabets. More specifically, we have presented asymptotically
tight upper and lower bounds for the general case. We have also established the
matching upper and lower bound on the restricted cases when the given language
recognizes strings with equal length. Matching bounds of the general case remain
open. Moreover, the state complexity of permutation over non-binary languages
remains open, as well as, the nondeterministic state complexity of finite languages.

Acknowledgment. This research was supported by the Basic Science Research Pro-
gram through NRF funded by MEST (2012R1A1A2044562), the International Coop-
eration Program managed by NRF of Korea (2014K2A1A2048512) and the Natural
Sciences and Engineering Research Council of Canada Grant OGP0147224.

References

1. Câmpeanu, C., Culik, K., Salomaa, K., Yu, S.: State complexity of basic operations
on finite languages. In: Boldt, O., Jürgensen, H. (eds.) WIA 1999. LNCS, vol. 2214,
pp. 60–70. Springer, Heidelberg (2001)

2. Domaratzki, M.: State complexity of proportional removals. J. Autom. Lang.
Comb. 7(4), 455–468 (2002)

3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular expressions: new results and
open problems. J. Autom. Lang. Comb. 10(4), 407–437 (2005)

230 A. Palioudakis et al.

4. Gao, Y., Moreira, N., Reis, R., Yu, S.: A review of state complexity of individ-
ual operations. Technical report, Universidade do Porto, Technical Report Series
DCC-2011-08, Version 1.1, September (2012). www.dcc.fc.up.pt/Pubs (To appear
in Computer Science Review, 2015)

5. Goč, D., Palioudakis, A., Salomaa, K.: Nondeterministic state complexity of pro-
portional removals. In: Jurgensen, H., Reis, R. (eds.) DCFS 2013. LNCS, vol. 8031,
pp. 102–111. Springer, Heidelberg (2013)

6. Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A., Wotschke, D.:
Descriptional complexity of machines with limited resources. J. UCS 8(2), 193–234
(2002)

7. Han, Y.S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. Int. J. Found. Comput. Sci. 19(03), 581–595 (2008)

8. Holzer, M., Kutrib, M.: State complexity of basic operations on nondeterministic
finite automata. In: Champarnaud, J.-M., Maurel, D. (eds.) CIAA 2002. LNCS,
vol. 2608, pp. 148–157. Springer, Heidelberg (2003)

9. Holzer, M., Kutrib, M.: Descriptional and computational complexity of finite
automata – a survey. Inf. Comput. 209(3), 456–470 (2011)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. Technical
report, DTIC Document (1951)

11. Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under Parikh
equivalence. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014.
LNCS, vol. 8614, pp. 294–305. Springer, Heidelberg (2014)

12. Lupanov, O.: A comparison of two types of finite sources. Problemy Kibernetiki 9,
328–335 (1963)

13. Maslov, A.: Estimates of the number of states of finite automata. In: Soviet Math-
ematics Doklady, Translation from Doklady Akademii Nauk SSSR 194, vol. 11, pp.
1266–1268, 1373–1375 (1970)

14. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: SWAT (FOCS), pp. 188–191. IEEE Computer Society (1971)

16. Moore, F.: On the bounds for state-set size in the proofs of equivalence between
deterministic, nondeterministic, and two-way finite automata. IEEE Trans. Com-
put. C–20(10), 1211–1214 (1971)

17. Parikh, R.J.: On context-free languages. J. ACM (JACM) 13(4), 570–581 (1966)
18. Rabin, M.O., Scott, D.S.: Finite automata and their decision problems. IBM J.

Res. Dev. 3(2), 114–125 (1959)
19. Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cam-

bridge University Press, Cambridge (2008)
20. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994)
21. Yu, S.: Handbook of Formal Languages, Volume 1, Chap. Regular Languages, pp.

41–110. Springer, Heidelberg (1998)

www.dcc.fc.up.pt/Pubs

Star-Complement-Star on Prefix-Free Languages

Matúš Palmovský1 and Juraj Šebej2(B)

1 Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

palmovsky@saske.sk
2 Institute of Computer Science, Faculty of Science, P.J. Šafárik University,

Jesenná 5, 040 01 Košice, Slovakia
juraj.sebej@gmail.com

Abstract. We study the star-complement-star operation on prefix-free
languages. We get a tight upper bound 2n−3+2 for the state complexity of
this combined operation on prefix free languages. To prove tightness, we
use a binary alphabet. Then we present the results of our computations
concerning star-complement-star on binary prefix-free languages. We also
show that state complexity of star-complement-star of every unary prefix-
free language is one, except for the language {a}, where it is two.

1 Introduction

If we apply the operations of star and complement in any order and any number
of times on a formal language, then we can get only a finite number of distinct
languages [1]. To get the state complexities of the resulting languages, it is
enough to know the complexity of languages L∗ and L∗c∗; notice that a language
and its complement have the same complexity [10,14].

The star-complement-star operation on regular languages was studied by
Jirásková and Shallit in [8]. They obtained an upper bound of 23n log n and a lower
bound of 2

1
8n log n on the state complexity of this combined operation. Hence

the state complexity of star-complement-star on regular languages is 2Θ(n log n).
However since we have Θ in an exponent, the gap between the upper bound and
the lower bound is large.

On the class of prefix-free languages, investigated, for example, in [2–5,9],
the star is an easy operation [5]. If a prefix-free language is accepted by a deter-
ministic finite automaton (DFA) of n states, then its star is accepted by a DFA
of at most n states. The question that arises is whether we can use this fact
to get a tight upper bound on the state complexity of star-complement-star on
prefix-free languages; cf. the result on cyclic shift of prefix-free languages in [6].

In this paper we give a positive answer. We prove that if a prefix-free language
L is recognized by an n-state DFA, then the language ((L∗)c)∗, which we denote
by L∗c∗, is recognized by a DFA of at most 2n−3 + 2 states. We prove that this
upper bound is tight already in the binary case.

M. Palmovský—Research supported by VEGA grant 2/0084/15.
J. Šebej—Research supported by VEGA grant 1/0142/15.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 231–242, 2015.
DOI: 10.1007/978-3-319-19225-3 20

232 M. Palmovský and J. Šebej

Then we present the results of our computations. Using the lists of minimal
n-state binary prefix-free non-isomorphic DFAs, n = 3, 4, 5, 6, 7, 8, we computed
the state complexity of star-complement-star for each automaton in the list.
We also computed the frequencies of the resulting complexities and average
complexities. We also observed that for n = 4, 5, 6, 7, 8, there is exactly one n-
state DFA A (up to renaming the input symbols) such that state complexity of
the star-complement-star of the language L(A) is two. In the second part of our
paper we prove that this is true for every n ≥ 4.

We conclude the paper by discussing the unary case. Here the state complex-
ity of star-complement-star of every unary prefix-free language is one, except for
the case L = {a}, where it is two.

2 Preliminaries

Let Σ be a finite alphabet and Σ∗ the set of all strings over Σ. The empty string
is denoted by ε. The length of a string w is |w|. A language is any subset of Σ∗.
We denote the size of a set A by |A|, and its power-set by 2A.

A deterministic finite state automaton is a quintuple A = (Q,Σ, δ, s, F),
where Q is a finite set of states; Σ is a finite alphabet; δ : Q × Σ → Q is the
transition function, s ∈ Q is the initial state; F ⊆ Q is the set of final states
(or accepting states). A non-final state q is a dead state if δ(q, a) = q for each a
in Σ. The language accepted or recognized by the DFA A is defined to be the
set L(A) = {w ∈ Σ∗ | δ(s, w) ∈ F}.

A nondeterministic finite automaton is a quintuple A = (Q,Σ, δ, s, F), where
Q,Σ, s, and F are the same as for a DFA, and δ : Q × Σ → 2Q is the transition
function. Through the paper we use the notation (p, a, q) to mean that there is
a transition from p to q on input a, that is, q ∈ δ(p, a). The language accepted
by the NFA A is defined to be the set L(A) = {w ∈ Σ∗ | δ(s, w) ∩ F �= ∅}.

Two automata are equivalent if they recognize the same language.
A DFA A is minimal if every equivalent DFA has at least as many states

as A. It is known that every regular language has a unique minimal DFA (up to
isomorphism), and that a DFA A = (Q,Σ, δ, s, F) is minimal if and only if all
its states are reachable and distinguishable.

The state complexity of a regular language L, denoted by sc(L), is the number
of states in the minimal DFA accepting the language L.

Every NFA can be converted to an equivalent DFA by the subset construction
[12,13] as follows. Let A = (Q,Σ, δ, s, F) be an NFA. Construct the DFA A′ =
(2Q, Σ, δ

′
, {s}, F ′), where F ′ = {R ⊆ Q | R∩F �= ∅}, and δ

′
(R, a) =

⋃
r∈R δ(r, a)

for each R in 2Q and each a in Σ. The DFA A′ is called the subset automaton of
the NFA A. The subset automaton may not be minimal since some of its states
may be unreachable or equivalent.

For languages K and L the concatenation K · L is defined to be K · L =
{uv | u ∈ K, v ∈ L}. The language Lk with k ≥ 0 is defined inductively by
L0 = {ε}, L1 = L, Li+1 = Li · L. The Kleene closure (star) of a language L is
the language L∗ =

⋃
i≥0 Li. We denote by L∗c∗ the star-complement-star of L.

Star-Complement-Star on Prefix-Free Languages 233

For a language L accepted by a DFA A, the following construction gives an
NFA A∗ for the language L∗ [7].

Construction 1. Let A = (Q,Σ, δ, s, F) be a DFA accepting a language L.
Construct an NFA A∗ for the language L∗ from the DFA A as follows:

– For each state q in Q and each symbol a in Σ such that δ(q, a) ∈ F, add the
transition on a from q to s.

– If s /∈ F , then add a new initial state q0 to Q and make this state accepting.
For each symbol a in Σ, add the transition on a

from q0 to δ(s, a) if δ(s, a) /∈ F , and
from q0 to δ(s, a) and from q0 to s if δ(s, a) ∈ F .

If w = uv for some strings u and v, then u is a prefix of w. If, moreover, the
string v is non-empty, then u is a proper prefix of w. A language is prefix-free
if it does not contain two distinct strings one of which is a prefix of the other.
It is known that L is prefix-free if and only if the minimal DFA for L contains
exactly one final state that goes to the dead state on every input symbol [5,9].

For a prefix-free language L accepted by a minimal DFA A, the following
construction gives a DFA B for the language L∗.

Construction 2. Let A = (Q,Σ, δ, s, {f}) be a DFA accepting a prefix-free
language L. Construct a DFA B = (Q,Σ, δB , f, {f}) for L∗, where

δB(q, a) =

{
δ(q, a), if q �= f ;
δ(s, a), if q = f.

3 State Complexity of Star-Complement-Star
on Prefix-Free Languages

The aim of this section is to prove that the tight bound on the state complexity
of the star-complement-star operation on prefix-free languages is 2n−3 + 2. We
start with an upper bound. Recall that if a prefix-free language L is accepted by
an n-state DFA, then the language L∗ is accepted by a DFA of at most n states.
The DFA for L∗ is described in Construction 2.

Lemma 3. Let n ≥ 3. Let L be a binary prefix-free language with sc(L) = n.
Then sc(L∗c∗) � 2n−3 + 2.

Proof. Let A = (Q,Σ, δ, s, {f}) be a minimal DFA for a prefix-free language
L, where Q = {s, 1, 2, . . . , n − 3, f, d} and δ(f, a) = δ(d, a) = d for each a in
Σ. Now we describe a DFA B for L∗, a DFA C for L∗c, and an NFA C∗ for
L∗c∗. Then we illustrate these constructions on a simple example in Fig. 1. First,
construct a DFA B = (Q,Σ, δB , f, {f}) for L∗ as described in Construction 2.
Next, construct a DFA C for L∗c from the DFA B by interchanging the final
and non-final states. Finally, construct an NFA C∗ for L∗c∗ as described in
Construction 1.

234 M. Palmovský and J. Šebej

a

b

a

a

c b,c

c a,b,c

s df1
b

a,b,cc
a

b

a

a

c b,c

s 1 f d

b

q0

a,b,ca,b,c

a,b,c

b
a

b

b,ca,b,c

a,b,c

b

a
df1s a,b,c

a

a

b a a,b,c

a,b,c

b,cc

1 f ds

Fig. 1. A DFA A for L (top-left); a DFA B for L∗ (top-right); a DFA C for L∗c

(bottom-left); an NFA C∗ for L∗c∗ (bottom-right).

Our aim is to show that the subset automaton of the NFA C∗ has at most
2n−3 + 2 reachable and distinguishable states. Notice that if a reachable subset
contains a final state of C∗, then it also contains the state s. Next, the empty
set is unreachable since A is deterministic and complete. Let S be a reachable
subset. Consider four cases:

(1) d /∈ S, f /∈ S. Then S is a non-empty subset of {s, 1, 2, . . . , n − 3}. Since S
contains a final state of NFA C∗, it must also contain the state S. Hence we
have at most 2n−3 subsets in this case.

(2) d /∈ S, f ∈ S. Then either S = {f} or S = {f} ∪ S
′
where ∅ �= S

′ ⊆
{s, 1, 2, . . . , n − 3}. In the second case, S

′
contains a final state of NFA C∗.

It follows that S
′
also contains the state s. Then {f} ∪ S

′
is equivalent to S

′

which was considered in case (1). Thus we get only one new subset, that is,
the subset {f}.

(3) d ∈ S. Then S is equivalent to {d} since every string is accepted from {d}
in the subset automaton.

(4) The initial set {q0} is equivalent to {s}.

It follows that the subset automaton has at most 2n−3 +2 reachable and distin-
guishable states.
�

..........

a,b

a

a,bb

b

a

b

aa,b

b

a,ba,bas 1 2 n−5 n−4 n−3 n−2 n−1

Fig. 2. The DFA of a binary witness prefix-free language for star-complement-star
meeting the upper bound 2n−3 + 2.

Star-Complement-Star on Prefix-Free Languages 235

q0

a,b

a,b

a,b

a

a,b

a,b

a

b

b

aa,b

a

a,b

a,b

a,b

a,b

a,ba n−1n−2n−3n−4n−52

a,b

1

Fig. 3. The NFA C∗ for L∗c∗, where L is accepted by the DFA in Fig. 2.

Now we prove that the upper bound 2n−3+2 can be met by a binary prefix-free
language.

Lemma 4. Let n ≥ 3. There exists a binary regular prefix-free language L with
sc(L) = n such that sc(L∗c∗) = 2n−3 + 2.

Proof. If n = 3, then 2n−3 + 2 = 3. Consider the language L = {a} over the
binary alphabet {a, b}. Then L∗c∗ = {a, b}∗ \ a+, so sc(L∗c∗) = 3.

Now let n ≥ 4. Let L be the binary prefix-free language accepted by the DFA
A shown in Fig. 2. Construct a DFA B for L∗ from the DFA A by removing the
transitions (n − 2, a, n − 1) and (n − 2, b, n − 1), and by adding the transitions
(n − 2, a, 1) and (n − 2, b, n − 2).

Then interchange the final and non-final states to get a DFA C for L∗c.
Finally, construct an NFA C∗ for L∗c∗ from C by adding a new initial and final
state q0 going to {1, n − 2} by a and to {n − 2} by b; next, for each state q with
q �= n − 3 add the transitions (q, a, n − 2) and (q, b, n − 2), and finally, add the
transition (n − 3, a, n − 2). The NFA C∗ is shown in Fig. 3. Our aim is to show
that the subset automaton of the NFA C∗ has 2n−3 + 2 reachable and pairwise
distinguishable states.

First, by induction on |S|, we prove that every subset S of {1, 2, . . . , n − 2}
containing n − 2 is reachable.

The basis, |S| ≤ 2, holds since we have

{q0} b−→ {n − 2} a−→ {1, n − 2} bi−1

−−−→ {i, n − 2}, if 1 ≤ i ≤ n − 5,

{n − 5, n − 2} a−→ {1, n − 4, n − 2} bn−→ {n − 4, n − 2},

{n − 5, f} b−→ {n − 3, n − 2}.

Assume that 2 ≤ k ≤ n−3, and that each set S, where |S| = k and n−2 ∈ S,
is reachable. Let S = {i1, i2, . . . , ik, n−2}, where 1 ≤ i1 < i2 < · · · < ik ≤ n−3,
be a set of size k + 1 and containing the state n − 2. Consider several cases:

(i) i1 = 1. Take S′ = {i2 −1, . . . , ik −1, n−2}. Then |S′| = k and n−2 ∈ S′.
Hence S′ is reachable by the induction hypothesis. Since

S′ a−→ {1, i2, . . . , ik, n − 2} = S,

236 M. Palmovský and J. Šebej

the set S is reachable.
(ii) i1 ≥ 2 and ik = n−4. Take S′ = {1, i2−i1+1, . . . , ik−1−i1+1, n−4, n−2}.

Then |S′| = k + 1 and n − 2 ∈ S′. Hence S′ is reachable by (i). Since

S′ = {1, i2 − i1 + 1, . . . , ik−1 − i1 + 1, n − 4, n − 2} bi1−1

−−−→ S, the set S is
reachable.

(iii) i1 ≥ 2 and ik ≤ n − 5. Take S
′
= {1, i2 − i1 + 1, . . . , ik − i1 + 1, n − 2}.

Since S
′ bi1−1

−−−→ {i1, i2, . . . , ik, n − 2} = S, the set S is reachable.
(iiiA) i1 ≥ 2, ik = n − 3, and ik − 1 ≤ n − 5.

Take S
′
= {i1−1, i2−1, . . . , ik−1−1, n−5, n−2}. Then ik−1−1 ≤

n − 6, |S′| = k + 1, n − 5 ∈ S′ and n − 2 ∈ S′. Hence S′ is reached
by (iii). Since S

′ b−→ {i1, i2, . . . , ik−1, n − 3, n − 2} = S, the set S is
reachable.

(iiiB) i1 ≥ 2, ik = n − 3, and ik − 1 = n − 4.
Take S

′
= {i1 − 1, i2 − 1, . . . , ik−2 − 1, n − 5, n − 4, n − 2}. Since

S
′ b−→ {i1, i2, . . . , ik−2, n−3, n−4, n−2} = S, the set S is reachable.

We proved that each subset of {1, 2, . . . n−2} containing n−2 is reachable. The
set {q0} is the initial state and {n − 2, n − 1} is reached from {n − 3, n − 2} by
a. This gives 2n−3 + 2 reachable subsets.

Let us show that all the reachable subsets are pairwise distinguishable. Let
S and T , two distinct subsets of {1, 2, . . . , n − 2} containing n − 2. Let i be the
greatest state in {1, 2, . . . , n − 2} which is in exactly one of S and T . Without
loss of generality, we can assume that i ∈ S and i /∈ T . Consider three cases:

(1) i = n − 3. Then the string abn−4abn−4 is accepted from S. This string is
rejected from T since T goes to a subset of {1, n − 3} by abn−4a, and then
to {n − 2} by bn−4.

(2) i = n− 4. Then we have S
bn−4

−−−→ {n− 4, n− 2} and T
bn−4

−−−→ {n− 2}, so bn−4

is accepted from S and rejected from T .

(3) i ≤ n − 5. Then we have S
bn−4−i

−−−−→ S′, where n − 3 ∈ S′, T bn−4−i

−−−−→ T ′ where
n − 3 /∈ T ′. Since S′ and T ′ are distinguishable by (1), the sets S and T are
distinguishable as well.

Next we distinguish state {q0} from all other subsets S = {1, 2, . . . , n − 2}, such
that n − 2 ∈ S. If n − 3 ∈ S, then we can distinguish S from {q0} by abn. If
n − 3 /∈ S, then we can distinguish S from {q0} by b.

We also need to distinguished {n − 2, n − 1} from all subsets S and {q0}.
The state {q0} can be distinguished from {n − 2, n − 1} by b. The subsets of
{1, 2, . . . , n − 2} can be distinguished from {n − 2, n − 1} by bnabn.
�
We summarize the results of the two lemmas above in the following theorem.

Theorem 5. Let n ≥ 3. Let L be a prefix-free language over an alphabet Σ with
sc(L) = n. Then sc(L∗c∗) ≤ 2n−3 + 2, and the bound is tight if |Σ| ≥ 2.
�

Star-Complement-Star on Prefix-Free Languages 237

Table 1. The frequencies of the complexities and the average complexity of star-
complement-star on prefix-free languages in the binary case; n = 3, 4, 5, 6, 7.

n\sc(L∗c∗) 1 2 3 4 5 6 7 8 9 10 Average

3 - 2 1 - - - - - - - 2.333

4 18 1 7 2 - - - - - - 1.75

5 374 1 83 37 24 2 - - - - 1.737

6 10374 1 1638 353 482 359 172 42 26 6 1.71

7 356623 1 47123 5259 7501 8194 8044 4450 2663 1867 1.738

Table 2. The frequencies of the complexities 11–18 of star-complement-star on prefix-
free languages in the binary case; n = 7.

n\sc(L∗c∗) 11 12 13 14 15 16 17 18 19 20

7 896 447 608 174 - - 164 26 - -

4 Computations

We did some computations concerning the star-complement-star operation on
binary prefix-free languages. Having the lists of all the minimal prefix-free and
pairwise non-isomorphic n-state deterministic automata, n = 3, 4, 5, 6, 7, 8, we
computed the state complexity of the star-complement-star of corresponding
languages. We computed the frequency of the resulting complexities and an
average complexities. Our results are summarized in Tables 1 and 2. The results
for n = 8 can be found at http://im.saske.sk/∼palmovsky/StarComplementStar.

Notice that for n = 4, 5, 6, 7, there is exactly one n-state DFA A such that
the state complexity of the star-complement-star of the language L(A) is two. In
the remaining part of this section, we prove that this is true for every n ≥ 4. Our
first lemma shows that for every n ≥ 4, there exist at least one such language.

.............

a,b

a,baaa

b
b

b

s n−3 n−1a,ba1 2 n−2

Fig. 4. The DFA of a binary prefix-free language L such that sc(L∗c∗) = 2.

Lemma 6. Let n ≥ 4. Let L be the binary prefix-free language accepted by the
DFA shown in Fig. 4. Then sc(L∗c∗) = 2.

Proof. Construct the DFA for L∗c as shown in Fig. 5. Next, construct the NFA
N for L∗c∗ as shown in Fig. 6. Let us determinize NFA N . The reachable states of

http://im.saske.sk/~{}palmovsky/StarComplementStar

238 M. Palmovský and J. Šebej

the subset automaton of N is shown in Fig. 7. Notice that all the final subsets are
equivalent. It follows that after minimization we get the two-state DFA shown
in Fig. 8(D). Hence sc(L∗c∗) = 2.
�

.............as

b

a,baaa

a

1

a,b

2

b
b

b

n−1n−3 n−2

Fig. 5. A DFA for L∗c, where L is accepted by the DFA in Fig. 4.

q0aaa

a

b

a

a,b

a

a,b
a,b

a,b

21 n−3 n−2

Fig. 6. An NFA N for L∗c∗, where L is accepted by the DFA in Fig. 4.

q0aa aa

b

a

1,f

b
b

a
b

b

1,2,f 1,2,...,n−3,f

f

Fig. 7. The reachable states of the subset automaton of the NFA N from Fig. 6.

The next lemma shows how a minimal DFA for L∗c∗ look if we know that
sc(L∗c∗) = 2 and L is a binary prefix-free language.

Lemma 7. Let n ≥ 4. Let L be a binary prefix-free language with sc(L) = n
such that sc(L∗c∗) = 2. Then the minimal DFA for L∗c∗, up to renaming the
input symbols, must look like the one shown in Fig. 8(D).

Star-Complement-Star on Prefix-Free Languages 239

C

DB

b

a b

baa

b

A
b

b

a
1 221

1 2 1 2

Fig. 8. The transitions in a two-state DFA for L∗c∗.

Proof. Let B be a minimal 2-state DFA for the language L∗c∗ with the state set
{1, 2}, in which the state 1 is the initial state. Let δ be the transition function
of the DFA B.

(a) Since B accepts the star of some language, the initial state 1 must be accept-
ing. As B is minimal, the state 2 must be non-final, and it must be reachable.
Without loss of generality, we can assume that it is reached from the initial
state 1 by letter b, so δ(1, b) = 2 as shown in Fig. 8(A). As B is deterministic,
we have b /∈ L∗c∗, and therefore b /∈ L∗c. It follows that b ∈ L∗, which means
that b ∈ L.

(b) Now we show that δ(1, a) = 1. Assume for a contradiction, that δ(1, a) = 2;
see Fig. 8(B). Then a /∈ L∗c∗, and therefore a /∈ L∗c. But then a ∈ L∗, which
means that a ∈ L. As a, b ∈ L, and L is a binary prefix-free language, there
are no other words in L, so sc(L) = 3. This is a contradiction with n ≥ 4.
Therefore δ(1, a) = 1.

(c) Next we show that δ(2, b) = 2; see Fig. 8(C). Since b ∈ L as shown in (a), we
have b ∈ L∗ and bb ∈ L∗. It follows that b /∈ L∗c and bb /∈ L∗c. This means
that bb /∈ L∗c∗, and therefore δ(2, b) = 2.

(d) Finally, we show that δ(2, a) = 1; see Fig. 8(D). Assume, in order to get
a contradiction, that δ(2, a) = 2. This means that ba /∈ L∗c∗. Therefore
ba /∈ L∗c, so ba ∈ L∗. It follows that either ba ∈ L or a, b ∈ L. As shown
in (b) the latter case cannot occur. The former case contradicts (a) and
the prefix-free property because b ∈ L. Hence δ(2, a) = 1, and our proof is
complete.
�

Now we prove that, up to renaming input symbols, the language accepted by the
DFA in Fig. 4 is a unique binary prefix-free language whose star-complement-star
is of complexity two.

Lemma 8. Let n ≥ 4. Let L be a binary prefix-free language such that sc(L) = n
and sc(L∗c∗) = 2. Then, up to renaming the input symbols, a minimal n-state
DFA for L must look like the one shown in Fig. 4.

240 M. Palmovský and J. Šebej

Proof. We are going to construct a minimal n-state DFA A for a binary prefix-
free language L. Let A = {Q, {a, b, }, δ, s, {f}}. We start with the state set Q
with |Q| = n, in which s is the initial state. Since L is prefix-free, the DFA A
has exactly one final state which goes to the dead state on both a and b. Let
us denote the final state by f and the dead state by d, so δ(f, a) = δ(f, b) =
δ(d, a) = δ(d, b) = d.

By Lemma 7, the DFA B for L∗c∗ looks like the DFA shown in Fig. 8(D), and
therefore b must be in L. Hence δ(s, b) = f . To reach more then 3 states, one of
the remaining states must be reached from s by a. Let us denote this state by 1.

Next, we will describe the construction of states 1, . . . , n − 3 by induction.
Let us assume that for every i such that 1 ≤ i ≤ n − 4, the transition function
δ is defined as follows:

δ(i, b) = f , and
δ(i, a) = i + 1.

Since ai+1b /∈ L∗c∗, we have aib /∈ L∗c and aib ∈ L∗. It follows that either aib ∈ L,
or we can split aib into more strings which are in L. But in A, we cannot accept
any aj with j ≤ i. This means that aib ∈ L, and therefore δ(i + 1, b) = f .

Now, we are going to define δ(i + 1, a). First, we will discuss the case when
i+1 �= n − 3. The same arguments as in definition of δ{s, a} can be used, so we
need to reach more states, and therefore δ(i + 1, a) = i + 2.

Next, let i+1 = n − 3, that is, we have already reached all n states. If δ(n −
3, a) ∈ {s, 1, 2, . . . , n − 3}, then the states in {s, 1, 2, . . . , n − 3} are equivalent.
Therefore n − 3 goes by a either to d, or to f . Let δ(i + 1, a) = d, so an−2 is
not in L.

We know that an−2b /∈ L∗c∗, and therefore an−2b /∈ L∗c and an−2b ∈ L∗. This
means that an−2b ∈ L or we can split an−2b into more strings from L. Since
δ(n− 3, a) = d, the string an−2b is not in L. Moreover, no ai with i ≤ n− 2 is in
L. It follows that an−2b is not L∗, which is a contradiction. Hence δ(n−3, a) = f ,
and our proof is complete.
�
As a corollary of the three lemmas above, we get the following theorem.

Theorem 9. Let n ≥ 4. There exists exactly one binary prefix-free language
(up to renaming the input symbols) such that sc(L) = n and sc(L∗c∗) = 2. Such
a language L is accepted by the DFA in Fig. 4.
�

5 Unary Alphabet

Recall that a unary language is prefix free if it is empty or if it contains exactly
one string. In the following theorem we discuss the state complexity of the star-
complement-star operation on unary prefix-free languages.

Theorem 10. Let L be a unary prefix free language. Then sc(L∗c∗) = 1, except
for the case when L = {a} in which sc(L∗c∗) = 2.

Proof. We consider four cases:

Star-Complement-Star on Prefix-Free Languages 241

(a) L = ∅. Then L∗ = ε and L∗c = a∗ \ ε. Thus L∗c∗ = a∗ and sc(L∗c∗) = 1.
(b) L = ε. Then L∗ = ε, and we have already obtained this in case (a). So in

this case, we again get sc(L∗c∗) = 1.
(c) L = a. Then L∗ = a∗ and L∗c = ∅. Therefore L∗c∗ = ε and sc(L∗c∗) = 2.
(d) L = an, where n ≥ 2. Then a /∈ L. Therefore a /∈ L∗, so a ∈ L∗c. It follows

that L∗c∗ = a∗, so sc(L∗c∗) = 1. Our proof is complete.
�

6 Conclusions

We investigated the star-complement-star operation on prefix-free languages. We
proved that if a language L is accepted by an n-state deterministic finite automa-
ton, then the language L∗c∗ is accepted by a deterministic finite automaton of
at most 2n−3 +2 states. We also proved that this upper bound is tight for every
alphabet containing at least two symbols.

Our computations showed that if n ∈ {4, 5, 6, 7, 8}, then there exist exactly
one, up to renaming input symbols, binary prefix-free language with sc(L) = n
and sc(L∗c∗) = 2. We proved that this true for all n ≥ 4.

We showed that the state complexity of the star-complement-star of a unary
language is 1, except for the language {a}, where it is 2. Taking into account that
the only prefix-free language with state complexity 1 or 2 is the empty language
or the language {ε}, respectively, and that ∅∗c∗ = ε∗c∗ = Σ∗, we can summarize
the results of our paper in the following theorem.

Theorem 11. Let fk(n) be the state complexity of the star-complement-star
operation on prefix-free regular languages over a k-letter alphabet defined to be

fk(n) = max{sc(L∗c∗) | L ⊆ Σ∗, |Σ| = k, sc(L) = n, and L is prefix-free}.

Then

1. if k ≥ 2, then fk(n) =

{
1, if n = 1 or n = 2;
2n−3 + 2, if n ≥ 3;

2. if n ≥ 4, then there exists exactly one, up to renaming input symbols, binary
prefix-free language such that sc(L) = n and sc(L∗c∗) = 2;

3. f1(n) =

{
2, if n = 3;
1, otherwise.

�

References

1. Brzozowski, J.A., Grant, E., Shallit, J.: Closures in formal languages and Kura-
towski’s theorem. Int. J. Found. Comput. Sci. 22(2), 301–321 (2011). doi:10.1142/
S0129054111008052

2. Eom, H.-S., Han, Y.-S., Salomaa, K.: State complexity of k -union and k -
intersection for prefix-free regular languages. In: Jurgensen, H., Reis, R. (eds.)
DCFS 2013. LNCS, vol. 8031, pp. 78–89. Springer, Heidelberg (2013)

http://dx.doi.org/10.1142/S0129054111008052
http://dx.doi.org/10.1142/S0129054111008052

242 M. Palmovský and J. Šebej

3. Eom, H., Han, Y., Salomaa, K., Yu, S.: State complexity of combined operations
for prefix-free regular languages. In: Paun, G., Rozenberg, G., Salomaa, A. (eds.)
Discrete Mathematics and Computer Science. In: Memoriam Alexandru Mateescu
(1952–2005), pp. 137–151. The Publishing House of the Romanian Academy (2014)

4. Han, Y., Salomaa, K., Wood, D.: Nondeterministic state complexity of basic oper-
ations for prefix-free regular languages. Fundamenta Informaticae 90(1–2), 93–106
(2009). doi:10.3233/FI-2009-0008

5. Han, Y., Salomaa, K., Wood, D.: Operational state complexity of prefix-free regular
languages. In: Ésik, Z., Fülöp, Z. (eds.) Automata, Formal Languages, and Related
Topics – Dedicated to Ferenc Gécseg on the occasion of his 70th birthday, pp. 99–
115. Institute of Informatics, University of Szeged, Hungary (2009)

6. Jirásek, J., Jirásková, G.: Cyclic shift on prefix-free languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 246–257. Springer, Heidelberg
(2013)

7. Jirásková, G., Palmovský, M.: Kleene closure and state complexity. In: Vinar, T.
(ed.) Proceedings of the Conference on Information Technologies – Applications
and Theory, Slovakia, 11–15 September 2013. CEUR Workshop Proceedings, vol.
1003, pp. 94–100 (2013). CEUR-WS.org, http://ceur-ws.org/Vol-1003/94.pdf

8. Jirásková, G., Shallit, J.: The state complexity of star-complement-star. In: Yen,
H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 380–391. Springer,
Heidelberg (2012)

9. Krausová, M.: Prefix-free regular languages: closure properties, difference, and left
quotient. In: Kotásek, Z., Bouda, J., Černá, I., Sekanina, L., Vojnar, T., Antoš, D.
(eds.) MEMICS 2011. LNCS, vol. 7119, pp. 114–122. Springer, Heidelberg (2012)

10. Maslov, A.: Estimates of the number of states of finite automata. Sov. Math. Dokl.
11, 1373–1375 (1970)

11. Salomaa, A., Salomaa, K., Yu, S.: State complexity of combined operations. Theor.
Comput. Sci. 383(2–3), 140–152 (2007). doi:10.1016/j.tcs.2007.04.015

12. Sipser, M.: Introduction to the Theory of Computation. PWS Publishing Company,
Boston (1997)

13. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language,
Grammar, Handbook of Formal Languages, vol. 1, pp. 41–110. Springer, New York
(1997)

14. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations
on regular languages. Theor. Comput. Sci. 125(2), 315–328 (1994). doi:10.1016/
0304-3975(92)00011-F

http://dx.doi.org/10.3233/FI-2009-0008
http://CEUR-WS.org
http://ceur-ws.org/Vol-1003/94.pdf
http://dx.doi.org/10.1016/j.tcs.2007.04.015
http://dx.doi.org/10.1016/0304-3975(92)00011-F
http://dx.doi.org/10.1016/0304-3975(92)00011-F

Groups Whose Word Problem
is a Petri Net Language

Gabriela Aslı Rino Nesin and Richard M. Thomas(B)

Department of Computer Science, University of Leicester, Leicester LE1 7RH, UK
garn1@le.ac.uk, rmt@mcs.le.ac.uk

Abstract. There has been considerable interest in exploring the connec-
tions between the word problem of a finitely generated group as a formal
language and the algebraic structure of the group. However, there are
few complete characterizations that tell us precisely which groups have
their word problem in a specified class of languages. We investigate which
finitely generated groups have their word problem equal to a language
accepted by a Petri net and give a complete classification, showing that
a group has such a word problem if and only if it is virtually abelian.

Keywords: Finitely generated group ·Wordproblem ·Petri net language

1 Introduction

There has been considerable interest in exploring the connections between the
word problem of a finitely generated group as a formal language and the algebraic
structure of the group. Whilst the seminal work of Boone and Novikov in the
1950’s showed that a finitely presented group could have a word problem that is
not recursive, it was not really until the 1970’s that languages lower down in the
Chomsky hierarchy were investigated. Anisimov showed in 1971 that a group
has a regular word problem if and only if it is finite [1]. Whilst this result is not
difficult to prove, asking such a question was an innovative idea, and naturally
led to an investigation as to what happens with other classes of languages.

Muller andSchupp showed in [17] (modulo a subsequent result ofDunwoody [3])
that a group has a context-free word problem if and only if it is virtually free.
Indeed, the word problem of such a group must be deterministic context-free,
and even an NTS language [2]. Apart from Dunwoody’s result, this characteri-
zation uses other deep group-theoretical results (such as Stallings’ classification
of groups with more than one end).

Within the context-free languages there are essentially not many other pos-
sibilities if we assume certain natural conditions on the class of languages.
Herbst [8] showed that, if F is a cone that is a subset of the context-free lan-
guages, then the class of groups whose word problem lies in F is either the class
of groups with a regular word problem, the class of groups with a one-counter

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 243–255, 2015.
DOI: 10.1007/978-3-319-19225-3 21

244 G.A.R. Nesin and R.M. Thomas

word problem1 or the class of groups with a context-free word problem. He also
classified the groups with a one-counter word problem as being the virtually
cyclic groups. This was extended in [10], where it was shown that a group has
a word problem that is a finite intersection of one-counter languages if and only
if it is virtually abelian. There is also an interesting result in [4], where it is
shown that a group has a word problem that is accepted by a blind counter
machine if and only it is virtually abelian; see Sect. 7 for the definition of such
an automaton and for some further discussion.

Whilst other classes of languages have been investigated, there are very few
complete characterizations. We investigate groups whose word problem is a ter-
minal Petri net language and establish the following:

Theorem 1. A finitely generated group G has word problem that is a terminal
Petri net language if and only if G is virtually abelian.

Whilst this gives a correspondence between an important family of languages
and a natural class of groups, there are many variations on Petri net languages
which could potentially give rise to different classes of groups. Many of these
modifications are so powerful that the class of languages is found to be equal
to the class of recursively enumerable languages, but there are other interesting
possibilities, such as the class obtained by allowing λ-transitions in the Petri net.

The structure of this paper is as follows. We recall some basic facts about
Petri nets and group theory in Sects. 2 and 4. In Sect. 3 we comment on the
equivalence of various definitions for Petri net languages. Given this background
material, showing that a finitely generated virtually abelian group has a word
problem that is a Petri net language is fairly straightforward, and we do this in
Sect. 5. The proof of the converse is rather more involved and we provide that
in Sect. 6. We finish in Sect. 7 by commenting how this class of groups relates to
certain other classes which have arisen in considering word problems.

2 Petri Nets

In this section we set out our conventions and notation for Petri nets and recall
some properties of the class of languages they accept. A labelled Petri net is a
tuple P = (S, T,W,m0, Σ, l) where:

(i) S is a finite set, called the set of places; we will assume that an order is
imposed on S and so it will be displayed as a tuple.

(ii) T is a finite set disjoint from S, called the set of transitions.
(iii) W : (S × T) ∪ (T × S) → N is the weight function, assigning a multiplicity

to pairs of places and transitions. If W (x, y) = n then we will write x
n−→ y.

If W (x, y) = 0 then we say there is no arrow from x to y.
(iv) The initial marking m0 ∈ N

S assigns a natural number to each place.

1 The one-counter languages are those languages accepted by a pushdown automaton
where we have a single stack symbol apart from a bottom marker.

Groups Whose Word Problem is a Petri Net Language 245

(v) Σ is a finite set called the alphabet and the labelling function l : T → Σ
assigns a label to each transition.

The function l can be extended to a function T ∗ → Σ∗ in the natural way (where
we define λl to be λ). Note that l does not have to be bijective (if it were we
would have a “free Petri net”), but we do assume that l is a (total) function.

As usual, we represent a labelled Petri net by a labelled directed graph,
where the places are represented by circles, transitions by rectangles (we will
denote transitions by their labels for simplicity), the weight function by arrows
and arrow multiplicities by numbers on the arrows (with no arrow drawn if the
multiplicity is zero and no number if the multiplicity is one). Markings (i.e.,
elements of NS) are represented by tokens or natural numbers in each place.

Now we describe the execution semantics of Petri nets. Let m ∈ N
S be a

marking and t ∈ T be a transition. We say that t is enabled at m if, for all s ∈ S,
we have W (s, t) � m(s); we denote this by m[t〉. If t is enabled at m, we can fire t
to get a new marking m′ ∈ N

S , defined by m′(s) = m(s) + W (t, s) − W (s, t) for
all s ∈ S, and we write m[t〉m′ noting that asserting this automatically implies
that m[t〉 must hold. We generalize this to sequences w of transitions (i.e., to
elements w of T ∗) and define m[w〉m′ in the obvious way.

We will need the notion of a labelled Petri net accepting a language; there
are various possibilities and we consider the “terminal language” of a Petri net.
We extend the definition of a labelled Petri net P = (S, T,W,m0, Σ, l) to include
a finite set of terminal markings M ⊂ N

S and write P = (S, T,W,m0,M,Σ, l).
The (terminal) language L(P) recognized by P is the set

{l(w) : m0[w〉m some m ∈ M,w ∈ T ∗}
We say that a language L ⊆ Σ∗ is a Petri net language (PNL for short) if there is
a labelled Petri net whose terminal language is L and let PNL denote the class
of all Petri net languages. The class PNL has several nice closure properties
(see references such as [13]), some of which we note here for future reference:

Proposition 2. (i) PNL contains all regular languages.
(ii) PNL is closed under union.
(iii) PNL is closed under intersection.
(iv) PNL is closed under inverse GSM mappings (and, in particular, under

inverse homomorphisms).

Some authors define Petri net languages in a slightly different way; several clever
constructions (see pages 8–21 in [7]) show that these definitions are equivalent,
up to the inclusion of the empty word λ in the language. We will survey some
of these approaches in the next section.

3 Equivalence of the Various Definitions

We will now give various different definitions of Petri net languages and note
their equivalence. We are not sure that all of this has been explicitly proved in
previous papers, but it does appear that these equivalences are already known.

246 G.A.R. Nesin and R.M. Thomas

Our definition of a PNL is the same as that given by Jantzen in [13]. We
will keep our terminology of labelled Petri net and PNL as above. The following
definition is used by Petersen to define CSS (computation sequence sets) in [19]:

Definition 3. A P-Petri net N is a 5-tuple (P, T,Σ, S, F) where P is a finite
set of places, T is a finite set of transitions disjoint from P , Σ is the input
alphabet (or the set of labels), S ∈ P is a designated start place, F ⊆ P is a
designated set of final places, and each transition t ∈ T is a triple consisting of
a label in Σ, a multiset (bag) I of input places, and a bag O of output places.

This is almost the same as our definition, except for the designated start and final
places. The labelling implies that there can be more than one transition with
the same label, and the multiplicity of a place in a bag is just the multiplicity of
its arrow to or from the transition in our original definition. Enabled transitions
and so on are defined in the same way. We then have the following:

Definition 4. The Computation Sequence Set of a P-Petri net is the set of all
sequences of labels of transitions leading from the start marking (one token in
the start place, none anywhere else) to one of the final markings (one token in
one of the final places, none in any other place).

Let CSS denote the class of languages which are the CSS of a P-Petri net.
Hack’s definition of a labelled Petri net in [7] is the same as the one given here

(he actually splits the weight function into two separate forwards and backwards
incidence functions, but this is not an essential difference). He then has the
following:

Definition 5. The set of H-terminal label sequences of a labelled Petri net N
for a final marking mf �= m0 is the set labels of sequences of transitions leading
from m0 to mf .

Essentially, the difference between our definition and Hack’s is twofold: he only
allows one final marking, and this final marking cannot be equal to the start
marking. His motivation is that one then avoids having any H-terminal languages
containing λ: if one keeps the unique final marking condition but allows these
languages to contain λ, then the class of H-terminal languages of labelled Petri
nets would no longer be closed under union (see page 8 in [7]). Hack calls this
class L0, and we shall adopt this terminology. It is known (see pages 19–20 of [7])
that L0 and CSS are the same up to inclusion of the empty word:

Theorem 6. For any language L, we have that L ∈ CSS ⇐⇒ L − {λ} ∈ L0.

It is clear that CSS ⊆ PNL and the reverse inclusion also holds: one can use a
“standardisation” of the Petri nets described in [7] to transform a Petri net into
a P -Petri net without changing the terminal language. This gives the following:

Theorem 7. PNL = CSS.

Groups Whose Word Problem is a Petri Net Language 247

4 Group Theory

In this section we review the background material we need from group theory
and establish some general facts about groups whose word problem is a Petri net
language. For general information about group theory, see [14,20] for example.

Let A be a finite set and let A−1 be another set disjoint from, but in a one-to-
one correspondence with, A; we write a−1 for the element in A−1 corresponding
to the element a in A. Let Σ = A ∪ A−1. We say that A is a generating set for
a group G if we have a monoid homomorphism ϕ from Σ∗ onto G such that
(aϕ)−1 = a−1ϕ for all a ∈ A; we normally then identify an element x ∈ Σ
with the image xϕ ∈ G, so that A becomes a subset of G. A group with such
a finite generating set is said to be finitely generated. The groups considered in
this paper will all be finitely generated.

With this convention we define the word problem WA(G) of G with respect
to the generating set A to be {α ∈ Σ∗ : α =G 1G} where the notation α =G β
(where α, β ∈ Σ∗) denotes the fact that α and β represent the same element
of G (i.e., that αϕ = βϕ) and α =G g (where α ∈ Σ∗ and g ∈ G) denotes the
fact that α represents the element g of G (i.e., that αϕ = g).

With this definition the word problem WA(G) is a subset of Σ∗ and hence is
a language; so we can consider which groups have their word problem in a given
class of languages. This would seem to depend on the choice of A but, under
certain mild assumptions of F , this does not matter (see [9] for example):

Proposition 8. If a class of languages F is closed under inverse homomor-
phism and the word problem of a group G with respect to some finite generating
set lies in F then the word problem of G with respect to any finite generating set
lies in F .

Given Proposition 2 (iv), we may talk about the word problem of a finitely
generated group G being a PNL without reference to the choice of generating
set. If F is any class of languages closed under inverse homomorphism then we
will (mildly) abuse notation and write G ∈ F if the word problem of G lies in F .

As the class PNL is closed under inverse homomorphisms and intersection
with regular languages (the latter fact following from parts (i) and (iii) of
Proposition 2), we have the following immediate consequence of Lemma 2 of [11]:

Proposition 9. The class of finitely generated groups with word problem a PNL
is closed under taking finitely generated subgroups.

We also have the following:

Proposition 10. If G and H are finitely generated groups with word problems
in PNL then the word problem of the direct product G × H is also in PNL.

Proof. If P1 and P2 are Petri nets recognising the word problems of G and H
with respect to finite generating sets A and B respectively (where A ∩ B = ∅)
then the disjoint union of P1 and P2 recognizes the word problem of G × H. �

248 G.A.R. Nesin and R.M. Thomas

Of fundamental importance in what follows will be the so-called Heisenberg
group, which is the group of matrices

⎧
⎨

⎩

⎛

⎝
1 a c
0 1 b
0 0 1

⎞

⎠ : a, b, c ∈ Z

⎫
⎬

⎭

under multiplication. This is an example of a “nilpotent group”. One way of
defining this concept is to let Z(G) denote the centre of a group G (i.e., the set
of elements in G that commute with all the elements of G) and then define a
series of normal subgroups Z1(G) � Z2(G) � · · · of G as follows:

Z1(G) := Z(G), Zi+1(G)/Zi(G) := Z(G/Zi(G)) for i � 1.

We say that G is nilpotent if Zi(G) = G for some i ∈ N.
A generalization of this is to say that a group G is virtually nilpotent if G has

a nilpotent subgroup H of finite index in G (where the index of a subgroup H is
the number of distinct right cosets of the form Hg for g ∈ G). In general, if ℘ is
any property of groups, then we say that G is virtually ℘ if G has a subgroup
of finite index with the property ℘. It is a standard result that, if H has finite
index in G, then H is finitely generated if and only if G is finitely generated.
The following fact (see [11] for example) will be important here:

Proposition 11. A finitely generated torsion-free virtually nilpotent group that
does not contain the Heisenberg group is virtually abelian.

The term “torsion-free” means that the group does not contain any non-trivial
elements of finite order.

The notion of finite index will be particularly relevant in this paper. Given
that PNL is closed under union with regular sets and inverse GSM mappings
by Proposition 2, we have the following immediate consequence of Lemma 5 in
[11]:

Proposition 12. If H is a finitely generated group with word problem in PNL
and G is a group containing H as a finite index subgroup, then the word problem
of G is also in PNL.

Returning to generating sets, we say that a group G with finite generating set
A has polynomial growth if there is a polynomial p(x) such that the number of
distinct elements of G represented by words in (A ∪ A−1)∗ of length at most n
is bounded above by p(n).

5 Virtually Abelian Implies PNL Word Problem

In this section we prove one direction of Theorem 1, showing that a finitely
generated virtually abelian group G has its word problem in PNL. We start
with the case where G is abelian:

Groups Whose Word Problem is a Petri Net Language 249

a a−1

a−1 a

Fig. 1. A labelled Petri net recognizing the word problem of Z. The empty marking is
both initial and terminal, and there are no other terminal markings.

Proposition 13. The word problem of a finitely generated abelian group is
always a PNL.

Proof. Let G be a finitely generated abelian group. According to the structure
theorem for finitely generated abelian groups, G is expressible as a direct product

Z
r × Z/a1Z × · · · × Z/amZ

where r � 0, m � 0 and ai = pni
i for some prime pi and some natural number

ni � 1. As noted in the introduction, the word problem of a finite group such as
Z/aZ is regular, and hence a PNL. The word problem of Z with respect to some
generating set {a} is a PNL as shown in Fig. 1.

The result now follows from Proposition 10. �
Propositions 12 and 13 immediately give the following:

Corollary 14. Any finitely generated virtually abelian group has word problem
in PNL.

6 PNL Word Problem Implies Virtually Abelian

Now we consider the converse to Corollary 14 which (together with Corollary 14)
will establish Theorem 1. First we prove the following:

Proposition 15. A finitely generated group with PNL word problem has poly-
nomial growth.

Proof. Let G be a group generated by a finite set A, let Σ = A ∪ A−1, and
assume that the word problem WA(G) of G is recognized by a Petri net P =
(S, T,W,m0,M,Σ, l) with initial marking m0 and set of terminal markings M .

We call markings that are reachable from m0 in P and which allow the
possibility of reaching a terminal marking acceptable markings. Note that, given
an acceptable marking m, any two sequences of transitions reaching m from m0

must represent the same element of G. This is because, if m0[t1 . . . tn〉m and
m0[t′1 . . . t′k〉m and if m is acceptable, then there is a sequence of transitions w
from m to some terminal marking m′. But then

m0[t1 . . . tn〉m[w〉m′ and m0[t′1 . . . t′k〉m[w〉m′,

and hence both sequences of transitions label elements of WA(G), i.e.,

250 G.A.R. Nesin and R.M. Thomas

(t1 . . . tnw)l =G 1G =G (t′1 . . . t′kw)l,

from which we get that (t1 . . . tn)l =G (t′1 . . . t′k)l.
So we have a natural mapping θ from the set of acceptable markings to G.

As P recognizes the word problem of G, for each group element g there must
be an acceptable marking m with mθ = g; otherwise no word ww−1, where w
represents g, can be accepted by P . So the mapping θ is surjective.

In order to show polynomial growth, we want to show that there is a poly-
nomial p(n) such that the number of elements of G represented by a sequence
of generators of length n is at most p(n). Since the mapping θ is surjective, it is
therefore sufficient to bound the number of acceptable markings reachable by a
sequence of transitions of length n by such a polynomial p(n).

If a sequence t1 . . . tn reaches an acceptable marking and if tσ(1) · · · tσ(n) does
as well for some permutation σ of {1, 2, . . . , n}, then the two sequences reach
the same marking2; this follows directly from the effect on a marking of firing
a transition. In counting the number of acceptable markings, one can therefore
ignore the order in which the transitions fire: the only important thing is their
multiplicities. If T = {u1, u2, . . . , uk} then there are at most as many acceptable
markings induced by sequences of n transitions as there are possible values for
μ(u1), . . . , μ(uk) ∈ N such that μ(u1)+ · · ·+μ(uk) = n, where μ(ui) denotes the
multiplicity of ui in the transition sequence. It is now clear that the number of
acceptable markings is bounded above by the polynomial (n + 1)k, as there are
at most n + 1 choices for each of the μ(ui). �
Using Gromov’s wonderful theorem [6] about groups with polynomial growth we
immediately deduce the following:

Corollary 16. A finitely generated group whose word problem is a PNL is vir-
tually nilpotent.

We now want to show that a finitely generated group whose word problem is a
PNL is virtually abelian. As we will show later, it is enough to show that the
Heisenberg group’s word problem is not a PNL. To show this, we use Lambert’s
pumping lemma; we state here a corollary to it (see Theorem 5.1 in [15]):

Theorem 17. Let P = (S, T,W,m0, Σ, l) be a labelled Petri net and mf a final
marking. Let a ∈ Σ. Defining

L(a) := {|l(u)|a : m0[u〉mf}

we have that L(a) is infinite if and only if it contains an arithmetic sequence
with a non-zero common difference.

2 Recall that the ti are actual transitions, not labels of transitions (i.e., generators);
therefore this argument does not imply that G is abelian as, for example, being able
to swap labels a and b in one such sequence does not mean that we would necessarily
be able to do so in all such sequences.

Groups Whose Word Problem is a Petri Net Language 251

a b A B

a b A B C

Fig. 2. A labelled Petri net recognizing K. The initial marking is a token in the bottom
left place, and the terminal marking is a token in the bottom right place.

Note that the use of only one final marking does not pose a problem, because of
Theorems 6 and 7. Our result will follow from Theorem 18 below.

Theorem 18. Let Σ = {a, b, A,B,C}. Then L = {aibjAiBjCij : i, j ∈ N} is
not a Petri net language.

Proof. Assume that L is a Petri net language. If so, then we can intersect it with
the language K = {anbnAnBnCk : n, k ∈ N} to get {anbnAnBnCn2

: n ∈ N}.
K is a Petri net language, recognisable by the Petri net (Fig. 2).

Since Petri nets are closed under intersection, we have that L∩K ∈ PNL as
well. By Theorem 17, L(C) = {n2 : n ∈ N} would then contain an arithmetical
sequence, a contradiction. �
We can now deduce the required result about the Heisenberg group:

Corollary 19. The word problem of the Heisenberg group H is not a PNL.

Proof. If a, b and c, respectively, denote the matrices
⎛

⎝
1 1 0
0 1 0
0 0 1

⎞

⎠ ,

⎛

⎝
1 0 0
0 1 1
0 0 1

⎞

⎠ and

⎛

⎝
1 0 1
0 1 0
0 0 1

⎞

⎠

then a, b and c generate H and every relation in H can be deduced from the
relations

ac = ca, bc = cb and a−1b−1ab = c;

see [14] for example. Let W denote the word problem of H with respect to
{a, b, c}. To ease clutter, we let A represent a−1, B represent b−1 and C represent
c−1. We claim that the language L from Theorem 18 is just W ∩ a∗b∗A∗B∗C∗.
To see this, we note that ab =G bac. So we get

aibj =G ai−1abbj−1 =G ai−1bacbj−1 =G ai−1babj−1c =G ai−1babbj−2c
=G ai−1b2abj−2c2 =G · · · =G ai−1bjacj =G · · ·
=G bjaicij .

Now:

aibjAkBlCm =G 1 ⇐⇒ bjaicijAkBlCm =G 1 ⇐⇒ bjaiAkBlcijCm =G 1 .

252 G.A.R. Nesin and R.M. Thomas

It is clear that, if i = k, j = l and ij = m, then bjaiAkBlcijCm =G 1. On
the other hand, if bjaiAkBlcijCm =G 1, then this still holds true in the factor
group G = G/〈c〉 which is a free abelian group of rank 2 generated by a and b. So
b
j
aiA

k
B

l
=G 1, which gives that i = k and j = l. So bjaiAkBlcijCm =G cijCm,

and so we must have that m = ij as well. So aibjAkBlCm =G 1 if and only if
i = k, j = l and ij = m, which is what we wanted to establish.

Since the class PNL is closed under intersection with regular languages, we
have that W /∈ PNL. �
Our result now follows:

Proposition 20. If a finitely generated group G has a PNL word problem, then
G is virtually abelian.

Proof. We know already that G is virtually nilpotent by Corollary 16. Assume
that G is not virtually abelian; then G has a nilpotent but not virtually abelian
subgroup K of finite index in G. In turn, it is known (see 5.4.15 (i) of [20],
for example) that K must have a torsion-free subgroup L of finite index, and L
must then be nilpotent but not virtually abelian. By Proposition 11 we have that
H � L � K � G where H is the Heisenberg group. So H is a finitely generated
subgroup of G. Since G has a PNL word problem, so does H by Proposition 9,
contradicting Corollary 19. �
Taken together with Corollary 14, this completes the proof of Theorem 1.

7 Relation to Other Classes of Languages

In this section, we put our results into some context, comparing the class of
groups with word problem in PNL with those in some other classes of languages.
We let OC denote the class of one-counter languages, CF the class of context-free
languages and coCF the class of co-context-free languages (i.e., languages that
are complements of context-free languages).

The one-counter languages are those languages accepted by a pushdown
automaton where we have a single stack symbol apart from a bottom marker.
We could think of the stack as a counter where we store a natural number and
can test for zero. If we have two such counters, it is well known that we can
simulate a Turing machine, and so such machines accept all the recursively enu-
merable languages; however there are natural variations which restrict the class
of languages that can be accepted. If we allow the counters to contain integers
and accept a word if we can reach a designated accept state with all the coun-
ters equal to zero, then we have a BMM (blind multicounter machine). We could
strengthen the model to allow the counters to contain natural numbers and,
whilst we still cannot test if the counters are empty, transitions that attempt
to decrease a counter which currently has value zero are not enabled; we again
accept if we can reach a designated accept state with all the counters equal to
zero. Such a machine is called a PBMM (partially blind multicounter machine).

Groups Whose Word Problem is a Petri Net Language 253

It was shown in [5] that every Petri net language is accepted by such a machine
but that, if L is the language {anbn : n � 0}, which is in both OC and PNL,
then L∗ is not accepted by a PBMM, and hence is not in PNL. Since L∗ ∈ OC,
we have that OC �⊆ PNL. On the other hand, it is well known that PNL �⊆ CF
(let alone OC); for example, the language {anbncn : n � 0} is in PNL.

We mentioned in the introduction that the groups whose word problem is a
one-counter or context-free language have been classified. As we have just seen,
these families of languages are both incomparable with PNL. However, when
we turn to word problems of groups, the situation changes:

Proposition 21. If G ∈ OC then G ∈ PNL.

Proof. A group with one-counter word problem is virtually cyclic by [8] and
hence virtually abelian; the result follows from Corollary 14. �
Of course, since OC �⊆ PNL, finite intersections of one-counter languages are not
necessarily in PNL; however this situation also changes when we restrict our-
selves to word problems. As we mentioned in the introduction, it was shown [10]
that a group has a word problem that is the intersection of finitely many one-
counter languages if and only if it is virtually abelian; so we have the following:

Corollary 22. G ∈ PNL if and only if G ∈ ⋂
fin OC.

We mention in passing that, not only is
⋂

fin OC not a subset of PNL, but PNL
is not a subset of

⋂
fin OC either:

Proposition 23. L = {anbm : 1 � m � 2n, 1 � n} is in PNL but not
⋂

fin OC.

Proof. It is known that L ∈ PNL; see [12]. Assume that L ∈ ⋂
fin OC, say

L = L1 ∩ · · · ∩ Ln

where the Li are one-counter languages. Let K be the regular language a∗b∗.
Since L ⊆ K, we have L = (L1 ∩ K) ∩ · · · ∩ (Ln ∩ K) and so, without loss

of generality, we can assume that Li ⊆ K for all i (as the intersection of a
one-counter language and a regular language is one-counter). Since the Parikh
mapping Φ : Σ∗ → N

2 defined by w �→ (|w|a, |w|b) is bijective on K, we have

LΦ = L1Φ ∩ · · · ∩ LnΦ.

By Parikh’s theorem (see Theorem 2 in [18]) we know that any context-free
language, and hence any one-counter language, has a semilinear Parikh image.
Since the Li are all one-counter, LiΦ is semilinear for all i. Since any intersection
of semilinear sets is semilinear, L would have a semilinear Parikh image. However,
L does not have a semilinear Parikh image [12], a contradiction. �
There is a characterization of groups whose word problem is accepted by a BMM
in [4], where it is shown that the word problem is accepted by such a machine
with n counters if and only if the group G has a free abelian subgroup of rank n

254 G.A.R. Nesin and R.M. Thomas

of finite index in G. Whilst the class of groups is the same as that characterized
here, the languages accepted by BMMs form a proper subclass of PNL (see [5]).
The proof in [4] has some similarities with our approach; we are grateful to one
of the referees for pointing out this connection.

We finish with a comment relating groups with a word problem in PNL to
those with a word problem in coCF . The latter is a very interesting class of
groups (see [11,16] for example) but we do not yet have a classification as to
which groups lie in this class. However, we can say the following:

Proposition 24. If G ∈ PNL then G ∈ coCF , but the converse is false.

Proof. By Proposition 6 in [11], all virtually abelian groups are in coCF , and so
the inclusion follows from Proposition 20.

For the converse consider the free group on two generators; this is not virtually
abelian, and so is not in PNL, but it is in coCF (see [11] for example). �

Acknowledgments. Some of the research for this paper was done whilst the authors
were visiting the Nesin Mathematics Village in Turkey; the authors would like to thank
the Village both for the financial support that enabled them to work there and for
the wonderful research environment it provided that stimulated the results presented
here. The authors would like to thank the referees for their helpful and constructive
comments. The second author also would like to thank Hilary Craig for all her help
and encouragement.

References

1. Anisimov, A.V.: Group languages. Cybernet. Syst. Anal. 7, 594–601 (1971)
2. Autebert, J.M., Boasson, L., Sénizergues, G.: Groups and NTS languages. J. Com-

put. Syst. Sci. 35, 243–267 (1987)
3. Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math. 81,

449–457 (1985)
4. Elder, M., Kambites, M., Ostheimer, G.: On groups and counter automata. Inter-

nat. J. Algebra Comput. 18, 1345–1364 (2008)
5. Greibach, S.A.: Remarks on blind and partially blind one-way multicounter

machines. Theor. Comput. Sci. 7, 311–324 (1978)
6. Gromov, M.: Groups of polynomial growth and expanding maps. Publications

Mathematiques de l’Institut des Hautes Etudes Scientifiques, vol. 53, pp. 53–78
(1981)

7. Hack, M.: Petri net languages. Computation Structures Group Memo 124, Project
MAC, M.I.T. (1975)

8. Herbst, T.: On a subclass of context-free groups. RAIRO Theor. Infor. Appl. 25,
255–272 (1991)

9. Herbst, T., Thomas, R.M.: Group presentations, formal languages and characteri-
zations of one-counter groups. Theor. Comput. Sci. 112, 187–213 (1993)

10. Holt, D.F., Owens, M.D., Thomas, R.M.: Groups and semigroups with a one-
counter word problem. J. Aust. Math. Soc. 85, 197–209 (2008)

11. Holt, D.F., Rees, S., Röver, C.E., Thomas, R.M.: Groups with context-free co-word
problem. J. Lond. Math. Soc. 71, 643–657 (2005)

Groups Whose Word Problem is a Petri Net Language 255

12. Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Theor. Inf. Appl.
13, 19–30 (1979)

13. Jantzen, M.: Language theory of Petri nets. In: Brauer, W., Reisig, W., Rozenberg,
G. (eds.) Petri Nets: Central Models and Their Properties. LNCS, vol. 254, pp.
397–412. Springer, Heidelberg (1987)

14. Johnson, D.L.: Presentations of groups. In: London mathematical society stu-
dent texts, CUP, 2nd edn. Cambridge University Press, Cambridge (1997). http://
books.google.co.uk/books?id=RYeIcopMH-IC

15. Lambert, J.: A structure to decide reachability in Petri nets. Theoret. Comput.
Sci. 99, 79–104 (1992)

16. Lehnert, J., Schweitzer, P.: The co-word problem for the Higman-Thompson group
is context-free. Bull. Lond. Math. Soc. 39, 235–241 (2007)

17. Muller, D., Schupp, P.: Groups, the theory of ends, and context-free languages. J.
Comput. Syst. Sci. 26, 295–310 (1983)

18. Parikh, R.J.: On context-free languages. J. ACM 13, 570–581 (1966)
19. Peterson, J.L.: Computation sequence sets. J. Comput. Syst. Sci. 13, 1–24 (1976)
20. Robinson, D.: A Course in the Theory of Groups, 2nd edn. Springer, New York

(1995)

http://books.google.co.uk/books?id=RYeIcopMH-IC
http://books.google.co.uk/books?id=RYeIcopMH-IC

Regular Realizability Problems
and Context-Free Languages

A. Rubtsov2,3(B) and M. Vyalyi1,2,3

1 Computing Centre of RAS, Moscow, Russia
2 Moscow Institute of Physics and Technology, Moscow, Russia

3 National Research University Higher School of Economics, Moscow, Russia
{rubtsov99,vyalyi}@gmail.com

Abstract. We investigate regular realizability (RR) problems, which are
the problems of verifying whether the intersection of a regular language –
the input of the problem – and a fixed language, called a filter, is non-
empty. In this paper we focus on the case of context-free filters. The
algorithmic complexity of the RR problem is a very coarse measure of
the complexity of context-free languages. This characteristic respects the
rational dominance relation. We show that a RR problem for a maximal
filter under the rational dominance relation is P-complete. On the other
hand, we present an example of a P-complete RR problem for a non-
maximal filter. We show that RR problems for Greibach languages belong
to the class NL. We also discuss RR problems with context-free filters
that might have intermediate complexity. Possible candidates are the
languages with polynomially-bounded rational indices. We show that
RR problems for these filters lie in the class NSPACE(log2 n).

1 Introduction

The context-free languages form one of the most important classes for formal
language theory. There are many ways to characterize complexity of context-free
languages. In this paper we propose a new approach to classification of context-
free languages based on the algorithmic complexity of the corresponding regular
realizability (RR) problems.

By ‘regular realizability’ we mean the problem of verifying whether the inter-
section of a regular language – the input of the problem – and a fixed language,
called a filter, is non-empty. The filter F is a parameter of the problem. Depend-
ing on the representation of a regular language, we distinguish the deterministic
RR problems RR(F) and the nondeterministic ones NRR(F), which correspond
to the description of the regular language either by a deterministic or by a non-
deterministic finite automaton.

A. Rubtsov—Supported in part by RFBR grant 14–01–00641.
M. Vyalyi—Supported in part RFBR grant 14–01–93107 and the scientific school
grant NSh4652.2012.1.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 256–267, 2015.
DOI: 10.1007/978-3-319-19225-3 22

Regular Realizability Problems and Context-Free Languages 257

The relation between algorithmic complexities of RR(F) and NRR(F) is still
unknown. For our purpose – the characterization of the complexity of a context-
free language – the nondeterministic version is more suitable. One of the reasons
for this choice is a rational dominance relation �rat (defined in Sect. 2). We show
below that the dominance relation on filters F1 �rat F2 implies the log-space
reduction NRR(F1) �log NRR(F2). So our classification is a very coarse version
of the well-known classification of CFL by the rational dominance relation (see
the book [2] for a detailed exposition of this topic).

Depending on a filter F , the algorithmic complexity of the regular realiz-
ability problem varies drastically. There are RR problems that are complete for
complexity classes such as L, NL, P, NP, PSPACE [1,11]. In [12] a huge
range of possible algorithmic complexities of the deterministic RR problems was
presented. We prove below that for context-free nonempty filters the possible
complexities are in the range between NL-complete problems and P-complete
problems. Examples of P-complete RR problems are provided in Sect. 3. The fil-
ter consisting of all words provides an easy example of an NL-complete RR prob-
lem. In this case, the problem is exactly the reachability problem for digraphs.
The upper bound by the class P follows from the reduction of an arbitrary
NRR-problem specified by a context-free filter to the problem of verifying the
emptiness of a language generated by a context-free grammar. We prove it in
Sect. 3.

We will call a context-free language L easy if NRR(L) ∈ NL and hard if
NRR(L) is P-complete. In Sect. 3 we present an example of a non-generator of
the CFLs cone, which is hard in this sense. In Sect. 4 we provide examples of
easy languages. They cover a rather wide class – the so-called Greibach languages
introduced in [7].

The exact border between hard and easy languages is unknown. Moreover,
there are candidates for an intermediate complexity of RR problems. They are
languages with polynomially-bounded rational indices.

The rational index was introduced in [5]. Recall that rational index ρL(n)
of a language L is a function that returns the maximum length of the shortest
word from the intersection of the language L and a language L(A) recognized
by an automaton A with n states, provided L(A) ∩ L �= ∅:

ρL(n) = max
A:|QA|=n, L(A)∩L�=∅

min{|u| |u ∈ L(A) ∩ L}. (1)

The growth rate of the language’s rational index is an another measure of the
complexity of a language. This measure is also related to the rational dominance
(see Sect. 5 for details).

In Sect. 5 we prove that the RR problem for a context-free filter having
polynomially-bounded rational index is in the class NSPACE(log2 n). Note
also that there are many known CFLs having polynomially-bounded rational
indices [10]. But the RR problems for these languages are in NL. It would be
interesting to find more sophisticated examples of CFLs having polynomially-
bounded rational indices.

258 A. Rubtsov and M. Vyalyi

2 Preliminaries

The main point of our paper is investigation of the complexity of the NRR-
problem for filters from the class of context-free languages CFL.

Definition 1. The regular realizability problem NRR(F) is the problem of ver-
ifying non-emptiness of the intersection of the filter F with a regular language
L(A), where A is an NFA. Formally

NRR(F) = {A | A is an NFA and L(A) ∩ F �= ∅}.

It follows from the definition that the problem NRR(A∗) for the filter consisting
of all words under alphabet A is the well-known NL-complete problem of digraph
reachability. We will show below that NRR(L) ∈ P for an arbitrary context-free
filter L. So it is suitable to use deterministic log-space reductions in the analysis
of algorithmic complexity of the RR problems specified by CFL filters. We denote
the deterministic log-space reduction by �log.

Let us recall some basic notions and fix notation concerning the CFLs. For
a detailed exposition see [2,3]. We will refer to the empty word as ε. Let An

and Ān be the n-letter alphabets consisting of the letters {a1, a2, . . . , an} and
{ā1, ā2, . . . , ān} respectively. A well-known example of a context-free language,
the Dyck language Dn, is defined by the grammar

S → SS | ε | a1Sā1 | · · · | anSān.

Fix alphabets A and B. A language L ⊆ A∗ is rationally dominated by
L′ ⊆ B∗ if there exists a rational relation R such that L = R(L′), where R(X) =
{u ∈ A∗ | ∃v ∈ X (v, u) ∈ R}. We denote rational domination as �rat. We say
that languages L, L′ are rationally equivalent if L �rat L′ and L′ �rat L.

A rational relation is a graph of a multivalued mapping τR. We will call the
mapping τR with a rational graph as a rational transduction. So L�rat L

′ means
that L = τR(L′). Such a transduction can be realized by a rational transducer
(or finite-state transducer) T , which is a nondeterministic finite automaton with
input and output tapes, where ε-moves are permitted. We say that u belongs to
T (v) if for the input v there exists a path of computation on which T writes the
word u on the output tape and halts in the accepting state. Formally, a rational
transducer is defined by the 6-tuple T = (A,B,Q, q0, δ, F), where A is the input
alphabet, B is the output alphabet, Q is the (finite) state set, q0 is the initial
state, F ⊆ Q is the set of accepting states and δ : Q × (A ∪ ε) × (B ∪ ε) × Q is
the transition relation.

Let two rational transducers T1 and T2 correspond to rational relations R1

and R2, respectively. We say that a rational transducer T = T1 ◦ T2 is the
composition of T1 and T2 if the relation R corresponding to T such that R =
{(u, v) | ∃y(u, y) ∈ R1, (y, v) ∈ R2}.

Define the composition of transducer T and automaton A in the same way:
automaton B = T ◦ A recognizes the language {w | ∃y ∈ L(A) (w, y) ∈ R}.

The following proposition is an algorithmic version of the Elgot-Mezei theo-
rem (see, e.g., [2, Theorem 4.4]).

Regular Realizability Problems and Context-Free Languages 259

Proposition 1. The composition of transducers and the composition of a trans-
ducer and an automaton are computable in deterministic log space.

A rational cone is a class of languages closed under rational dominance. Let T (L)
denote the least rational cone that includes language L and call it the rational
cone generated by L. Such a cone is called principal . For example, the cone Lin
of linear languages (see [2] for definition) is principal: Lin = T (S), where the
symmetric language S over the alphabet X = {x1, x2, x̄1, x̄2} is defined by the
grammar

S → x1Sx̄1 | x2Sx̄2 | ε.

For a mapping a
→ La the substitution σ is the morphism from A∗ to the
power set 2B∗

such that σ(a) = La. The image σ(L) of a language L ⊆ A∗

is defined in the natural way. The substitution closure of a class of languages L
is the least class containing all substitutions of languages from L to the languages
from L. We need two well-known examples of the substitution closure. The class
Qrt of the quasirational languages is the substitution closure of the class Lin.
The class of Greibach languages [7] is the substitution closure of the rational
cone generated by the Dyck language D1 and the symmetric language S.

It is important for our purposes that rational dominance implies a reduction
for the corresponding RR problems.

Lemma 1. If F1 �rat F2 then NRR(F1) �log NRR(F2).

Proof. Let T be a rational transducer such that F1 = T (F2) and let A be an
input of the NRR(F1) problem. Construct the automaton B = T ◦ A and use
it as an input of the NRR(F2) problem. It gives the log-space reduction due to
Proposition 1.

In particular, this lemma implies that if a problem NRR(F) is complete in a
complexity class C, then for any filter F ′ from the rational cone T (F) the problem
NRR(F ′) is in the class C.

We will use the following reformulation of the Chomsky-Schützenberger the-
orem.

Theorem (Chomsky, Schützenberger). CFL = T (D2).

In the next section, we prove that NRR(D2) is P-complete under deterministic
log-space reductions. Thus, it follows from the Chomsky-Schützenberger theorem
and Lemma 1 that any problem NRR(F) for a CFL filter F lies in the class P.

3 Hard RR Problems with CFL Filters

In this section we present examples of hard context-free languages. The first
example is the Dyck language D2.

By use of Lemma 1 and the Chomsky-Schützenberger theorem, we conclude
that any generator of the CFL cone is hard. But there are additional hard lan-
guages. We provide such an example, too.

We start with some technical lemmas. The intersection of a CFL and a regular
language is a CFL. We need an algorithmic version of this fact.

260 A. Rubtsov and M. Vyalyi

Lemma 2. Let G = (N,Σ,P, S) be a fixed context-free grammar. Then there
exists a deterministic log-space algorithm that takes a description of an NFA A =
(QA, Σ, δA, q0, FA) and constructs a grammar G′ = (N ′, Σ, P ′, S′) generating
the language L(G) ∩ L(A). The grammar size is polynomial in |QA|.
This fact is well-known. We provide the proof because the construction will be
used in the proof of Theorem 5 below.

Proof (of Lemma 2). First, to make the construction clearer, we assume that
automaton A has no ε-transitions. Let N ′ consist of the axiom S′ and nonter-
minals [qAp], where A ∈ N and q, p ∈ QA. Construct P ′ by adding for each rule
A → X1X2 · · · Xn from P the set of rules

{[qAp] → [qX1r1][r1X2r2] · · · [rn−1Xnp] | q, p, r1, r2, . . . , rn−1 ∈ QA}
to P ′. Also add to P ′ rules [qσp] → σ if δA(q, σ) = p and S′ → [q0Sqf] for each
qf from FA.

Now we prove that L(G′) = L(G) ∩ L(A). Let G derive the word w =
w1w2 · · · wn. Then grammar G′ derives all possible sentential forms

[q0w1r1][r1w2r2] · · · [rn−1wnqf],

where qf ∈ FA and ri ∈ QA. And [q0w1r1][r1w2r2] · · · [rn−1wnqf] ⇒∗ w1w2 · · · wn

iff there is a successful run for the automaton A on w. If G′ derives a word w
then each symbol wi of the word has been derived from some nonterminal [qwip].
Due to the construction of the grammar G′ the word w has been derived from
some sentential form [q0w1r1][r1w2r2] · · · [rn−1wnqf], which encodes a successive
run of A on w. Thus G′ derives the word w only if G does as well.

The size of G′ is polynomial in QA. The size of N ′ is |N | · |QA|2 + 1. Let k
be the length of the longest rule in P . Then for each rule from P there are at
most |QA|k+1 rules in P ′ and for rules in the form [qσp] → σ or S′ → [q0Sqf]
there are at most O(|QA|2) rules in P ′.

Finally, the grammar G′ is log-space constructible, because the rules of
P ′ corresponding to the particular rule from P can be generated by inspect-
ing all (k + 1)-tuples of states of A and k = O(1). Adding ε-transitions just
increases k + 1 to 2k. For each rule A → X1 · · · Xn we add rules [qAp] →
[qX1q1][q2X2q3] · · · [q2n−1Xnp], where qi = qi+1 or qi

ε−→ qi+1 for all i. In the case
of [qσp] → σ rules we add all such rules that q

ε−→ q′, p′ ε−→ p and δ(q′, σ) = p′.

Note that if grammar G is in Chomsky normal form, then the number of non-
terminals of the grammar G′ is O(|QA|2). Recall that for a grammar in the
Chomsky normal form, the right-hand side of each rule consists of either two
nonterminals, or one terminal. The empty word may be produced only by the
axiom and the axiom does not appear in a right-hand side of any rule.

Also we need an algorithmic version of the Chomsky-Schützenberger theorem.

Lemma 3. There exists a deterministic log-space algorithm that takes a descrip-
tion of a context-free grammar G = (N,Σ,P, S) and produces a rational trans-
ducer T such that T (D2) = L(G).

Regular Realizability Problems and Context-Free Languages 261

Now we are ready to prove hardness of the Dyck language D2.

Theorem 1. The problem NRR(D2) is P-complete.

Proof. To prove P-hardness we reduce the well-known P-complete problem of
verifying whether a context-free grammar generates an empty language [6] to
NRR(D2). Based on a grammar G, construct a transducer T such that T (D2) =
L(G) using Lemma 3. Let A be a nondeterministic automaton obtained from
the transducer T by ignoring the output tape. Then L(A) ∩ D2 is nonempty iff
L(G) is nonempty. The mapping G → A is the required reduction.

To prove that NRR(D2) lies in P we reduce this problem to the problem of
non-emptiness of a language generated by a context-free grammar.

For an input A construct the grammar G such that L(G) = L(A)∩D2 using
Lemma 2.

Corollary 1. Any generator of the CFL cone is a hard language.

Now we present another example of a hard language. Boasson proved in [4]
that there exists a principal rational cone of non-generators of the CFL cone
containing the family Qrt of the quasirational languages.

Below we establish P-completeness of the nondeterministic RR problem for
a generator of this cone. The construction follows the exposition in [3].

For brevity we denote the alphabet of the Dyck language D1 by A = {a, ā}∗.
Recall that the syntactic substitution of a language M into a language L is

L ↑ M = {m1x1m2x2 · · · mrxr | m1, . . . , mr ∈ M, x1x2 · · · xr ∈ L} ∪ ({ε} ∩ L).

We also use the language S# = S ↑ #∗ which is the syntactic substitution of the
language #∗ in the symmetric language S.

Let M = aS#ā∪ε. The language M (∞) is defined recursively in the following
way: x ∈ M (∞) iff either x ∈ M or

x = ay1az1āy2az2ā · · · yn−1azn−1āynā,

where y1, yn ∈ X∗, yi ∈ X+ for 2 ≤ i ≤ n−1,aziā ∈ M (∞) anday1y2 · · · ynā ∈ M .
Let πX : (X ∪ A)∗ → A∗ be the morphism that erases symbols from the

alphabet X. The language M (+) is defined to be π−1
X (A∗ \ D1).

Finally, we set S↑
= M (∞) ∪ M (+).

Note that the languages S and S# are rationally equivalent. So S# is a
generator of the cone Lin of the linear languages.

By combining this observation with Propositions 3.19 and 3.20 from [3], we
get the following fact.

Theorem 2. S↑
is not a generator of the CFL cone, but the cone generated by

S↑
contains all quasirational languages.

The language S↑
is the union of two languages. In the proof of theP-completeness

for the problem NRR(S↑
#), we will use automata that do not accept words from

the language M (+). For this purpose we need a notion of a marked automaton.

262 A. Rubtsov and M. Vyalyi

Definition 2. An NFA A over the alphabet An ∪ Ān is marked if there exists
a function h : QA → Z satisfying the relations

h(q′) = h(q) + 1, if there exists a transition q
aj−→ q′ in A,

h(q′) = h(q) − 1, if there exists a transition q
āj−→ q′ in A,

h(q) = 0, if q is either the initial state or an accepting state of A. (2)

In what follows we will identify for brevity the (directed) paths along the graph
of an NFA and the corresponding words in the alphabet of the automaton. The
vertices of the graph, i.e., the states of the automaton, are identified in this way
with the positions of the word.

The height of a position is the difference between the number of the sym-
bols ai and the number of the symbols āi preceding the position. In terms of
the position heights, the words in D1 are characterized by two conditions: the
height of any position is nonnegative and the height of the final position is 0.

Proposition 2. Let A be an NFA such that D2 ∩ L(A) �= ∅. Then there exists
a word w ∈ D2 ∩ L(A) �= ∅ such that the height of any position in the word w
is O(|QA|)2.
Proof. The heights of positions are upperbounded by the height of the derivation
tree in the grammar generating the language D2 ∩ L(A) �= ∅.

It is easy to see that for any grammar generating a non-empty language there
is a word such that the height of a derivation tree for the word is at most the
number of nonterminals in the grammar.

To finish the proof, we use the grammar constructed by Lemma 2 from
the grammar generating D2 in the Chomsky normal form. This grammar has
O(|QA|2) nonterminals.

In the proof below we need a syntactic transformation of automata over the
alphabet A2 ∪ Ā2.

Proposition 3. There exists a transformation μ that takes a description of an
automaton A over the alphabet A2 ∪ Ā2 and produces a description of a marked
automaton A′ = μ(A) such that (i) L(A) ∩ D2 �= ∅ iff L(A′) ∩ D2 �= ∅ and (ii)
for any w ∈ L(A′) the height of any position is nonnegative and the height of the
final position is 0. The transformation μ is computed in deterministic log space.

Proof. Let m be an upper bound on the heights of the positions in a word
w ∈ L(A)∩D2. By Proposition 2, m is O(|QA|2). Note that m can be computed
in deterministic log space.

The state set of the automaton A′ is QA × {0, . . . , m} ∪ {r}, where r is the
specific absorbing rejecting state.

If q
α−→ q′, where α ∈ {a1, a2}, is a transition in the automaton A then there

are transitions (q, i) α−→ (q′, i+1) for all 0 ≤ i < m and the transition (q,m) α−→ r
in the automaton A′.

Regular Realizability Problems and Context-Free Languages 263

If q
α−→ q′, where α ∈ {ā1, ā2}, is a transition in the automaton A then there

are transitions (q, i) α−→ (q′, i − 1) for all 0 < i ≤ m and the transition (q, 0) α−→ r
in the automaton A′.

The initial state of the automaton A′ is (q0, 0), where q0 is the initial state
of the automaton A. The set of accepting states of the automaton A′ is F ×{0},
where F is the set of accepting states of the automaton A.

It is clear that the description of the automaton A′ is constructed in deter-
ministic log space.

Condition (ii) is forced by the construction of the automaton A′. It remains
to prove that condition (i) holds.

Note that if L(A)∩D2 = ∅ then L(A′)∩D2 = ∅ too. In the other direction,
if L(A)∩D2 �= ∅, then by Proposition 2 there exists a word w ∈ L(A)∩D2 such
that the height of any position in the word does not exceed m. So the word is
accepted by the automaton A′.

Theorem 3. NRR(S↑
#) is P-complete under deterministic log space reductions.

Proof. We reduce NRR(D2) to NRR(S↑
#).

Let A be an input of the problem NRR(D2) and A′ = μ(A) be the marking
transformation of the automaton A.

We are going to construct the automaton B over the alphabet A ∪ X ∪ {#}
such that L(A′) ∩ D2 �= ∅ iff L(B) ∩ S↑

�= ∅.
The morphism ϕ : (A2 ∪ Ā2)∗ → (A ∪ X ∪ {#})∗ is defined as follows:

ϕ : a1
→ ax1,

ϕ : ā1
→ x̄1ā##, (3)
ϕ : a2
→ ax2,

ϕ : ā2
→ x̄2ā##.

The automaton B accepts words of the form ax1x2wx̄2x̄1ā, where w = ϕ(u).
It simulates the behavior of the automaton A′ on the word u and accepts iff A′

accepts the word u.
It follows from the definitions that if u ∈ D2 then ax1x2ϕ(u)x̄2x̄1ā ∈ M (∞).

So if L(A′) ∩ D2 �= ∅ then L(B) ∩ S↑
�= ∅.

Now we are going to prove the opposite implication. Let

w = ax1x2ϕ(u)x̄2x̄1ā ∈ S↑
∩ L(B).

The automaton A′ is marked and B simulates the behavior of A′ on u. So the
heights of positions in w are nonnegative and the height of the final position is 0.
Thus w /∈ M (+) = π−1

X (A∗ \ D1). Take a pair of the corresponding parentheses
a, ā in the word w:

w = w0axiw1x̄j āw2.

If i �= j then w /∈ M (∞). So i = j for all pairs of the corresponding parentheses.
This implies u ∈ D2 ∩ L(A′).

264 A. Rubtsov and M. Vyalyi

We just have proved the correctness of the reduction. It can be computed in
log space due to the following observations. To produce the automaton B from
the automaton A we need to extend the state set by a finite number of pre- and
postprocessing states to operate with the prefix ax1x2 and with the suffix x̄2x̄1ā.
Also we need to split all states in QA′ in pairs to organize the simulation of A′

while reading the pairs of symbols axi and x̄iā. The transitions by the symbol
are trivial: q

#−→ q for all q.

4 Easy RR Problems with CFL Filters

Now we present examples of easy languages. The simplest example is regular
languages. Next we prove that the symmetric language and the language D1 are
easy. A simple observation shows that a substitution of easy languages into an
easy language is easy. Thus we conclude that Greibach languages are easy.

Lemma 4. NRR(S) ∈ NL.

The proof of Lemma 4 is a slight modification of the arguments from [1] that
prove a similar result for the language of palindromes.

Lemma 5. Let Lc be a context-free language recognizable by a counter automa-
ton. Then problem NRR(Lc) lies in NL.

In the proof we will use the following fact.

Lemma 6 ([13]) Let M be a counter automaton with n states. Then the shortest
word w from the language L(M) has length at most n3 and the counter of M on
processing the word w doesn’t exceed the value n2.

We now return to the proof of Lemma 5.

Proof. Let M be a counter automaton that accepts by reaching the final state
such that M recognizes the language Lc. Let A be an automaton on the input
of the regular realizability problem.

Construct the counter automaton MA with the set of states QM × QA, the
initial state (qM

0 , qA
0), with the set of accepting states FM × FA and with the

transition relation δMA such that δM (q, σ, z) � (q′, z′), δA(p, σ) = p′ implies
δMA((q, p), σ, z) � ((q′, p′), z′). This is the standard composition construction.

The automaton MA is a counter automaton with |QM | · |QA| = c × n states.
Using Lemma 6 we obtain that the value of MA’s counter does not exceed (cn)2

on the shortest word from L(MA). Then construct automaton B such that L(B)
contains all such words from L(MA) such that the counter of MA does not
exceed (cn)2. The automaton B has O(n3) states and can be constructed in log
space in the straightforward way similar to the proof of Proposition 3. Note that
L(MA) �= ∅ iff L(B) �= ∅. So the map A → B gives a reduction of the problem
NRR(Lc) to the problem NRR(Σ∗), which is in NL.

Regular Realizability Problems and Context-Free Languages 265

The language D1 is recognized by a counter automaton in the obvious way.

Corollary 2. NRR(D1) ∈ NL.

Lemma 7. If L, La for all a ∈ A, are easy languages then σ(L) is also easy.

Proof. Let A be an input for the problem NRR(σ(L)). Define the automaton
A′ over the alphabet A with the state set QA′ = QA. There is a transition
q

a−→ q′ in the automaton A′ iff there exists a word w ∈ La such that q
w−→ q′ in

automaton A.
It is clear from the definition that L(A) ∩ σ(L) �= ∅ iff L(A′) ∩ L �= ∅. To

apply an NL-algorithm for NRR(L) one needs the transition relation of A′. The
transition relation is not a part of the input now. But it can be computed by
NL-algorithms for NRR(La). It is clear that the resulting algorithm is in NL.

Applying Lemma 7, Lemma 4 and Corollary 2, we deduce with the theorem.

Theorem 4. Greibach languages are easy.

5 The Case of Polynomially-Bounded Rational Index

We do not know whether there exists a CFL that is neither hard nor easy.
In this section we indicate one possible class of candidates for an intermediate
complexity: the languages with polynomially-bounded rational indices.

Rational index appears to be a very useful characteristic of a context-free
language because rational index does not increase significantly under rational
transductions.

Theorem (Boasson, Courcelle, Nivat, 1981, [5]). If L′ �rat L then there
exists a constant c such that ρL′(n) ≤ cn(ρL(cn) + 1).

Thus the rational index can be used to separate languages w.r.t. the rational
dominance relation. Note that the rational index of a generator of the CFL
cone has rather good estimations.

Theorem (Pierre, 1992, [9]). The rational index of any generator of the ratio-
nal cone of CFL belongs to exp(Θ(n2/ log n)).

The examples of easy languages in Sect. 4 have polynomially-bounded rational
indices. Moreover, context-free languages with rational index Θ(nγ) for any pos-
itive algebraic number γ > 1 were presented in [10]. All of them are easy. The
proof is rather technical and is skipped here. Thus it is quite natural to suggest
that any language with polynomially-bounded rational index is easy.

Unfortunately we are able to give only a weaker bound on the algorithmic
complexity in the case of polynomially-bounded rational index.

Theorem 5. For a context-free filter F with polynomially-bounded rational index,
the problem NRR(F) lies in NSPACE(log2 n).

266 A. Rubtsov and M. Vyalyi

We use a technique quite similar to the technique from [8]. First we need an
auxiliary result.

Lemma ([8]). For a grammar G in the Chomsky normal form and for an arbi-
trary string w = xyz from L(G) of length n there is a nonterminal A in the
derivation tree, such that A derives y and n/3 ≤ |y| ≤ 2n/3.

Let us return to the proof of the theorem.

Proof (of Theorem 5). Consider a grammar G′ in the Chomsky normal form
such that L(G′) = F . Fix an automaton A with n states such that the minimal
length of w from L(A)∩F equals ρF (n). The length of the word w is polynomial
in n. Consider the grammar G such that L(G) = L(A) ∩ F obtained from the
grammar G′ by the construction from Lemma 2.

The algorithm does not construct the grammar G itself, since such a con-
struction expands the size of grammar G′ up to n3 times. Instead, the algorithm
nondeterministically guesses the derivation tree of the word w in the grammar
G, if it exists. Informally speaking, it restores the derivation tree starting from
its ‘central’ branch.

The main part of the algorithm is a recursive procedure that checks cor-
rectness for a nonterminal A = [qA′p] of the grammar G. We say that the
nonterminal A = [qA′p] is correct if A produces a word w in the grammar G.

If a nonterminal is [qσp], where σ is a terminal then the procedure should
check that q

σ−→ p in the automaton A.
In a general case the procedure of checking correctness nondeterministically

guesses a nonterminal A1 = [1A′
1r1] such that w = p1u1s1, and A1 derives

the word u1 and 1/3|w| ≤ |u1| ≤ 2/3|w|. Then it is recursively applied to the
nonterminal A1. If successful the procedure sets i := 1 and repeats the following
steps:

1. Nondeterministically guess the ancestor Ai+1 = [i+1Ai+1ri+1] of Ai in the
derivation tree. There are two possible cases:
(i) either Ai+1 → [q′C ′i+1]Ai in the grammar G (set up C := [q′C ′i+1])
(ii) or Ai+1 → Ai[ri+1C

′p′] (set up C := [ri+1C
′p′]).

2. Recursively apply the procedure of checking correctness to the nonterminal C.
3. If successful set up i := i + 1.

Repetitions are finished and the procedure returns success if Aj = A. If any call
of the procedure of checking correctness returns failure then the whole procedure
returns failure.

In recursive calls the lengths of words to be checked diminish by a factor at
most 2/3. So the total number of recursive calls is O(log n), where n is the input
length. Data to be stored during the process form a list of triples (an automaton
state, a nonterminal of the grammar G′, a automaton state). Each automaton
state description requires O(log n) space and nonterminal description requires
a constant size space since grammar G′ is fixed. Thus the total space for the
algorithm is O(log2 n).

Regular Realizability Problems and Context-Free Languages 267

Acknowledgments. We are acknowledged to Abuzer Yakaryilmaz for pointing on the
result of Lemma 5 and for reference to a lemma similar to Lemma 6.

References

1. Anderson, T., Loftus, J., Rampersad, N., Santean, N., Shallit, J.: Detecting palin-
dromes, patterns and borders in regular languages. Inf. Comput. 207, 1096–1118
(2009)

2. Berstel, J.: Transductions and Context-Free Languages. Teubner Verlag,
Stuttgart/Leipzig/Wiesbaden (1979)

3. Berstel, J., Boasson, L.: Context-free languages. In: Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science, vol. B, pp. 59–102. Elsevier, Amsterdam (1990)

4. Boasson, L.: Non-générateurs algébriques et substitution. RAIRO Informatique
théorique 19, 125–136 (1985)

5. Boasson, L., Courcelle, B., Nivat, M.: The rational index, a complexity measure
for languages. SIAM J. Comput. 10(2), 284–296 (1981)

6. Greenlaw, R., Hoover, H.J., Ruzzo, L.: Limits to Parallel Computation: P-
Completeness Theory. Oxford University Press, Oxford (1995)

7. Greibach, S.A.: An infinite hierarchy of context-free languages. J. ACM 16, 91–106
(1969)

8. Lewis, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of
context-free and context-sensitive languages. In: Switching Circuit Theory and
Logical Design, pp. 191–202. IEEE, New York (1965)

9. Pierre, L.: Rational indexes of generators of the cone of context-free languages.
Theor. Comput. Sci. 95, 279–305 (1992)

10. Pierre, L., Farinone, J.M.: Rational index of context-free languages with rational
index in Θ(nγ) for algebraic numbers γ. Informatique théorique et applications
24(3), 275–322 (1990)

11. Vyalyi, M.N.: On regular realizability problems. Probl. Inf. Transm. 47(4), 342–352
(2011)

12. Vyalyi, M.N.: Universality of regular realizability problems. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 271–282. Springer, Heidelberg
(2013)

13. Yakaryılmaz, A.: One-counter verifiers for decidable languages. In: Bulatov, A.A.,
Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 366–377. Springer, Heidelberg
(2013)

Generalization of the Double-Reversal Method
of Finding a Canonical Residual Finite

State Automaton

Hellis Tamm(B)

Institute of Cybernetics, Tallinn University of Technology,
Akadeemia tee 21, 12618 Tallinn, Estonia

hellis@cs.ioc.ee

Abstract. Residual finite state automata (RFSA) are a subclass of
nondeterministic finite automata with the property that every state of
an RFSA defines a residual language (a left quotient) of the language
accepted by the RFSA. Every regular language has a unique canonical
RFSA which is a minimal RFSA accepting the language. We study the
relationship of RFSAs with atoms of regular languages. We generalize
the double-reversal method of finding a canonical RFSA, presented by
Denis, Lemay, and Terlutte.

1 Introduction

Residual finite state automata (RFSAs), introduced by Denis, Lemay, and
Terlutte [4,5], are a subclass of nondeterministic finite automata (NFA), such
that every state of an RFSA defines a residual language, that is, a (left) quotient,
of the language accepted by the RFSA. Every regular language has a unique
canonical RFSA which is a minimal RFSA accepting the language. Denis et al.
present two methods to find a canonical RFSA. The first method starts with
a deterministic finite automaton (DFA) of a language, and applies two oper-
ators to it, called saturation and reduction, yielding a canonical RFSA. The
other way they suggest to compute a canonical RFSA is similar to Brzozowski’s
double-reversal method of minimizing a DFA, which applies the reversal and
determinization operations twice. Namely, Denis et al. define a modified subset
construction operation which, when applied to an NFA, produces an RFSA, and
such that when it is used in Brzozowski’s double-reversal algorithm in place of
determinization, results in a canonical RFSA.

We study the relationship of RFSAs with atoms of regular languages, intro-
duced by Brzozowski and Tamm [1,2] as non-empty intersections of uncom-
plemented or complemented quotients of the language. In the same work, a
related NFA called the átomaton was presented, whose states are the atoms of
the language, and it was shown that the átomaton is isomorphic to the reverse
automaton of the minimal DFA of the reverse language.

This work was supported by the ERDF funded CoE project EXCS and the Estonian
Ministry of Education and Research institutional research grant IUT33-13.

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 268–279, 2015.
DOI: 10.1007/978-3-319-19225-3 23

Generalization of the Double-Reversal Method 269

We consider an NFA which we call the “maximized átomaton” of a language,
that uses “maximized atoms”, that is, certain unions of atoms, as its states. We
show that the maximized átomaton is isomorphic to the reverse automaton of
the saturated minimal DFA of the reverse language. In other words, a satu-
rated minimal DFA of a language can be obtained by reversing the maximized
átomaton of the reverse language. We note here that in the recent work by
Myers, Adámek, Milius, and Urbat [6], a new canonical NFA was introduced,
which they called the distromaton, and which appears to be the same NFA as
the maximized átomaton.

We generalize the double-reversal method by Denis et al., characterizing the
class of NFAs for which applying the modified subset construction operation
results in a canonical RFSA. Namely, we show that the modified subset con-
struction, when applied to some NFA, produces a canonical RFSA if and only if
the left language of every state of that NFA is a union of left languages of the
canonical RFSA. This generalization is similar to the result by Brzozowski and
Tamm [1,2], who showed that determinization of an NFA results in a minimal
DFA if and only if the right languages of the states of the reverse automaton of
that NFA are unions of atoms of the reverse language.

In Sect. 2 we present definitions and some properties of automata, factoriza-
tions, quotients, and atoms of regular languages, and in Sect. 3, we recall basic
properties of RFSAs. In Sect. 4, we define and study maximized atoms and the
maximized átomaton of a language. In Sect. 5, we define canonical left languages
of a regular language as the left languages of the states of the canonical RFSA,
study their properties, and generalize the double-reversal method by Denis et al.
of obtaining a canonical RFSA. Section 6 concludes the paper.

2 Automata, Factorizations, Quotients, and Atoms
of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F),
where Q is a finite, non-empty set of states, Σ is a finite non-empty alphabet,
δ : Q × Σ → 2Q is the transition function, I ⊆ Q is the set of initial states, and
F ⊆ Q is the set of final states. As usual, we extend the transition function to
functions δ′ : Q × Σ∗ → 2Q, and δ′′ : 2Q × Σ∗ → 2Q. We use δ for all three
functions. An NFA N ′ = (Q′, Σ′, δ′, I ′, F ′) is a subautomaton of N if Q′ ⊆ Q,
Σ′ ⊆ Σ, I ′ ⊆ I, F ′ ⊆ F , and q ∈ δ′(p, a) implies q ∈ δ(p, a) for every p, q ∈ Q′

and a ∈ Σ′.
The language accepted by an NFA N is L(N) = {w ∈ Σ∗ | δ(I, w) ∩ F �= ∅}.

The right language of a state q of N is Lq,F (N) = {w ∈ Σ∗ | δ(q, w) ∩ F �=
∅}. A state is empty if its right language is empty. Two states of an NFA are
equivalent if their right languages are equal. The left language of a state q of N
is LI,q = {w ∈ Σ∗ | q ∈ δ(I, w)}. A state is unreachable if its left language is
empty.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F),
where Q, Σ, and F are as in an NFA, δ : Q × Σ → Q is the transition function,

270 H. Tamm

and q0 is the initial state. A DFA is an NFA with obvious restrictions. A DFA
is minimal if it has no unreachable states and no pair of equivalent states.

The following two operations on automata are most commonly used: the
determinization operation D applied to an NFA N , yielding a DFA ND, obtained
by the well-known subset construction, where only subsets reachable from the
initial subset of ND are used and the empty subset, if present, is included, and
the reversal operation R which, when applied to an NFA N , yields an NFA NR,
where the sets of the initial and the final states of N are interchanged and all
transitions are reversed.

Let L ⊆ Σ∗ be a non-empty regular language. A subfactorization of a lan-
guage L is a pair (X,Y) of languages from Σ∗, such that XY ⊆ L. A factorization
of L is a subfactorization (X,Y), such that for every subfactorization (X ′, Y ′),
where X ⊆ X ′ and Y ⊆ Y ′, the equalities X = X ′ and Y = Y ′ hold.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗

is the language w−1L = {x ∈ Σ∗ | wx ∈ L}. There is one initial quotient,
ε−1L = L. Left quotients are also known as right residuals, or simply residuals.
It is well known that there is a one-to-one correspondence between the set of
states Q = {q0, . . . , qn−1} of the minimal DFA D = (Q,Σ, δ, q0, F) accepting
L and the set of quotients {K0, . . . , Kn−1} of L, such that Lqi,F (D) = Ki for
i = 0, . . . , n − 1.

An atom of a regular language L with quotients K0, . . . , Kn−1 is any non-
empty language of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and
Ki is the complement of Ki with respect to Σ∗. Thus atoms of L are regular
languages uniquely determined by L and they define a partition of Σ∗. They
are pairwise disjoint and every quotient of L (including L itself) is a union of
atoms. A regular language L with n quotients has at most 2n atoms. An atom
is initial if it has L (rather than L) as a term; it is final if it contains ε. Since L
is non-empty, it has at least one quotient containing ε. Hence it has exactly one
final atom, the atom K̂0 ∩ · · · ∩ K̂n−1, where K̂i = Ki if ε ∈ Ki, and K̂i = Ki

otherwise. Let A = {A0, . . . , Am−1} be the set of atoms of L, let IA be the set
of initial atoms, and let Am−1 be the final atom.

We use a one-one correspondence Ai ↔ Ai between atoms Ai of a language
L and the states Ai of the NFA A defined as follows:

Definition 1. The átomaton of L is the NFA A = (A, Σ, α, IA, {Am−1}),
where A = {Ai | Ai ∈ A}, IA = {Ai | Ai ∈ IA}, and Aj ∈ α(Ai, a) if and
only if Aj ⊆ a−1Ai, for all Ai,Aj ∈ A and a ∈ Σ.

It was shown in [1,2] that in the átomaton, the right language of any state Ai

is the atom Ai.
The next theorem is a slightly modified version of the result by Brzozowski [3]:

Theorem 1. If an NFA N has no empty states and NR is deterministic, then
ND is minimal.

By Theorem 1, for any NFA N , NRDRD is the minimal DFA equivalent to N . This
result is known as Brzozowski’s double-reversal method for DFA minimization.

Generalization of the Double-Reversal Method 271

A new class of NFA’s was defined in [1,2] as follows:

Definition 2. An NFA N = (Q,Σ, δ, I, F) is atomic if for every q ∈ Q, the
right language Lq,F (N) of q is a union of atoms of L(N).

In [1,2], a generalization of Theorem 1 was presented, providing a characteriza-
tion of the class of NFAs for which applying determinization procedure produces
a minimal DFA:

Theorem 2. For any NFA N , ND is minimal if and only if NR is atomic.

3 Residual Finite State Automata

Residual finite state automata (RFSAs) were introduced by Denis, Lemay, and
Terlutte in [4,5]. In this section, we state some basic properties of RFSAs. How-
ever, we note here that we usually prefer to use the term “quotient” over “residual”.

An NFA N = (Q,Σ, δ, I, F) is a residual finite state automaton (RFSA) if
for every state q ∈ Q, Lq,F (N) is a quotient of L(N). Clearly, any DFA without
unreachable states is an RFSA.

Let L be a regular language over Σ. Let K = {K0, . . . , Kn−1} be the set of
quotients of L. A quotient Ki of L is prime if it is non-empty and if it cannot
be obtained as a union of other quotients of L.

The canonical RFSA of L is the NFA C = (K ′, Σ, δ, I, F), where K ′ ⊆ K is
the set of prime quotients of L, Σ is an input alphabet, I = {Ki ∈ K ′ | Ki ⊆ L},
F = {Ki ∈ K ′ | ε ∈ Ki}, and δ(Ki, a) = {Kj ∈ K ′ | Kj ⊆ a−1Ki} for every
Ki ∈ K ′ and a ∈ Σ.

Among all RFSAs of L, the canonical RFSA is minimal regarding to the
number of states, with a maximal number of transitions. One way to build a
canonical RFSA is to use the saturation and reduction operations defined in the
following.

Let N = (Q,Σ, δ, I, F) be an NFA. The saturation operation S, if applied
to N , produces the NFA NS = (Q,Σ, δS , IS , F), with the transiton function
defined as δS(q, a) = {q′ ∈ Q | aLq′,F (N) ⊆ Lq,F (N)} for all q ∈ Q and a ∈ Σ,
and with the set of initial states IS = {q ∈ Q | Lq,F (N) ⊆ L(N)}. An NFA
N is saturated if NS = N . Saturation may add transitions and initial states to
an NFA, without changing its language. Also, if N is an RFSA, then NS is an
RFSA. Clearly, if D is a DFA, then DS is an RFSA.

For any state q of N , let R(q) be the set {q′ ∈ Q\{q} | Lq′,F (N) ⊆ Lq,F (N)}.
A state q is erasable if Lq,F (N) =

⋃
q′∈R(q) Lq′,F (N). If q is erasable, a reduction

operator φ is defined as follows: φ(N , q) = (Q′, Σ, δ′, I ′, F ′) where Q′ = Q \ {q},
I ′ = I if q /∈ I, and I ′ = (I\{q})∪R(q) otherwise, F ′ = F ∩Q′, δ′(q′, a) = δ(q′, a)
if q /∈ δ(q′, a), and δ′(q′, a) = (δ(q′, a) \ {q}) ∪ R(q) otherwise, for every q′ ∈ Q′

and every a ∈ Σ. If q is not erasable, let φ(N , q) = N .
If N is saturated and if q is an erasable state of N , then φ(N , q) is obtained by

deleting q and its associated transitions from N , without adding any transitions.
An NFA N is reduced if there is no erasable state in N . After applying the

272 H. Tamm

reduction operator φ to an NFA, its language remains the same. Also, if N is an
RFSA, then φ(N , q) is an RFSA.

The following proposition is from [4,5]:

Proposition 1. If an NFA N is a reduced saturated RFSA of L, then N is the
canonical RFSA of L.

The canonical RFSA can be obtained from a DFA by using saturation and
reduction operations.

Next we will discuss another method to compute the canonical RFSA, sug-
gested by Denis et al. [4,5]. In Sect. 2, we presented the result that for any
NFA N , NRDRD is a minimal DFA equivalent to N . In [4,5], a similar double-
reversal method is proposed to obtain a canonical RFSA from a given NFA.
Namely, Denis et al. introduce a modified subset construction operation C to be
applied to an NFA as follows:

Definition 3. Let N = (Q,Σ, δ, I, F) be an NFA. Let QD be the set of states of
the determinized version ND of N . A state s ∈ QD is coverable if there is a set
Qs ⊆ QD \ {s} such that s =

⋃
s′∈Qs

s′. The NFA NC = (QC , Σ, δC , IC , FC) is
defined as follows: QC = {s ∈ QD | s is not coverable }, IC = {s ∈ QC | s ⊆ I},
FC = {s ∈ QC | s ∩ F �= ∅}, and δC(s, a) = {s′ ∈ QC | s′ ⊆ δ(s, a)} for any
s ∈ QC and a ∈ Σ.

Applying the operation C to any NFA N produces an RFSA NC . This RFSA is
not necessarily a canonical RFSA. However, Denis et al. [4,5] have the following
result:

Theorem 3. If an NFA N has no empty states and NR is an RFSA, then NC

is the canonical RFSA.

By Theorem 3, for any NFA N , NRCRC is the canonical RFSA equivalent to N .
So it seems that the operation C has a similar role for RFSAs as determinization
D has for DFAs.

4 Maximized Atoms and Maximized Átomaton

One method to obtain a canonical RFSA of a language, is to apply the saturation
and reduction operations to a DFA of the language. In this section we consider
an NFA which we call the “maximized átomaton”, and show that it is isomorphic
to the reverse automaton of the saturated minimal DFA of the reverse language.
Thus, a saturated minimal DFA of a language can be obtained by reversing
the maximized átomaton of the reverse language. We note that the maximized
átomaton is the same NFA as the recently introduced distromaton [6].

Let K0, . . . , Kn−1 be the set of quotients of a regular language L, and let
A0, . . . , Am−1 be the set of atoms of L. For every atom Ai, we define the corre-
sponding maximized atom Mi, such that Mi is the union of all the atoms which
occur in every quotient containing Ai:

Generalization of the Double-Reversal Method 273

Definition 4. The maximized atom Mi of an atom Ai is the union of atoms
Mi =

⋃{Ah | Ah ⊆ ⋂
Ai⊆Kk

Kk}.
Clearly, since atoms are pairwise disjoint, and every quotient is a union of atoms,
Mi =

⋂
Ai⊆Kk

Kk.

Proposition 2. Let Ai and Aj be some atoms of L. The following properties hold:

1. Ai ⊆ Mi.
2. If Ai �= Aj, then Mi �= Mj.
3. Ai ⊆ Mj if and only if Mi ⊆ Mj.
4. Aj ⊆ a−1Mi if and only if Mj ⊆ a−1Mi.

Proof.

1. Clear from Definition 4.
2. Let Ai �= Aj . Then by the definition of an atom, there is some quotient Kk,

such that Ai ⊆ Kk and Aj �⊆ Kk, or Aj ⊆ Kk and Ai �⊆ Kk. If we suppose
that Mi = Mj , then we get that for every quotient Kk, Ai ⊆ Kk if and only
if Aj ⊆ Kk, a contradiction. We conclude that Mi �= Mj .

3. Suppose Ai ⊆ Mj . Then Ai ⊆ ⋂
Aj⊆Kk

Kk, and so Aj ⊆ Kk implies Ai ⊆ Kk

for any quotient Kk. That is, {Kk | Aj ⊆ Kk} ⊆ {Kh | Ai ⊆ Kh}, and so we
get

⋂
Ai⊆Kh

Kh ⊆ ⋂
Aj⊆Kk

Kk. Thus, Mi ⊆ Mj .
Conversely, since by Part 1, Ai ⊆ Mi, we conclude that Mi ⊆ Mj implies
Ai ⊆ Mj .

4. First suppose Aj ⊆ a−1Mi. We consider a−1Mi = a−1⋂
Ai⊆Kh

Kh =
⋂

Ai⊆Kh
a−1Kh.

Since Aj ⊆ a−1Mi, Aj ⊆ ⋂
Ai⊆Kh

a−1Kh holds. We get that if Ai ⊆ Kh, then
Aj ⊆ a−1Kh. Since for every quotient Kh, a−1Kh = Kk for some quotient
Kk, we get that if Ai ⊆ Kh, then Aj ⊆ Kk, where Kk = a−1Kh. We see
by Definition 4 that if Aj ⊆ Kk, then Mj ⊆ Kk. Thus, if Ai ⊆ Kh, then
Mj ⊆ a−1Kh. We have that Mj ⊆ ⋂

Ai⊆Kh
a−1Kh. This means, Mj ⊆ a−1Mi.

Conversely, if Mj ⊆ a−1Mi, then Aj ⊆ Mj ⊆ a−1Mi.
�
Let A be the átomaton of L. The following statement is from [2]:

Proposition 3. The reverse AR of A is the minimal DFA of LR.

Let D be the minimal DFA of LR. By Proposition 3, the states of AR, and
therefore also of A, are the states of D. Since the states of A correspond to
atoms of L, and the states of D correspond to quotients of LR, there is a one-
one correspondence between atoms Ai of L and quotients Qi of LR.

Since by Proposition 2, Part 2, there is a one-one correspondence between the
atoms Ai and the maximized atoms Mi, we also get a correspondence between
maximized atoms Mi of L and quotients Qi of LR. We show the following prop-
erties:

Proposition 4. Let Ai and Aj be some atoms of L. The following properties hold:

1. For any word u ∈ Σ∗, u ∈ Ai if and only if (uR)−1LR = Qi.
2. (QR

i ,Mi) is a factorization of L.

274 H. Tamm

3. Mi ⊆ Mj if and only if Qj ⊆ Qi.
4. Mj ⊆ a−1Mi if and only if Qi ⊆ a−1Qj, for a ∈ Σ.

Proof.

1. The property is a corollary of Proposition 3.
2. By Part 1, if u ∈ Ai, then (uR)−1LR = Qi. This implies that for every Ai, QR

i

is the maximal set of words such that QR
i Ai ⊆ L. That is, u ∈ QR

i if and only if
uAi ⊆ L. Since uAi ⊆ L is equivalent to Ai ⊆ u−1L, we get that u ∈ QR

i if and
only if Ai ⊆ u−1L. Clearly, Mi is maximal set of words such that Mi ⊆ u−1L
for every quotient u−1L, such that Ai ⊆ u−1L. That is, Mi is maximal such
that Mi ⊆ u−1L for every u ∈ QR

i . We get that Mi is the maximal set of words
such that QR

i Mi ⊆ L. Thus (QR
i ,Mi) is a factorization of L.

3. The property is implied by Part 2.
4. First, we consider a−1Qj . Since a quotient of any quotient of a language is

some quotient of the language, let a−1Qj = Qk for some k ∈ {0, . . . , m − 1}.
We consider the atoms Aj and Ak of L, according to the correspondence
between quotients Qj (Qk) of LR and atoms Aj (Ak) of L. By Proposition 3,
D is isomorphic to AR, so we have a−1Qj = Qk if and only if Aj ⊆ a−1Ak.
We show that Mj ⊆ a−1Mi if and only if Ak ⊆ Mi. Let Mj ⊆ a−1Mi hold.
Clearly, Aj ⊆ Mj by Definition 4, so aAj ⊆ aMj holds. Since Mj ⊆ a−1Mi is
equivalent to aMj ⊆ Mi, we get that aAj ⊆ Mi. Since we had Aj ⊆ a−1Ak,
aAj ⊆ Ak holds, and because Mi is a union of atoms, it is implied that
Ak ⊆ Mi. Conversely, if we suppose that Ak ⊆ Mi holds, then Aj ⊆ a−1Ak ⊆
a−1Mi. By Proposition 2, Part 4, Aj ⊆ a−1Mi implies Mj ⊆ a−1Mi.

Now, by Proposition 2, Part 3, Ak ⊆ Mi is equivalent to Mk ⊆ Mi. By
Proposition 4, Part 3, Mk ⊆ Mi holds if and only if Qi ⊆ Qk, that is,
Qi ⊆ a−1Qj holds.
�

Let A = {A0, . . . , Am−1} be the set of atoms of L, with the set of initial atoms
IA ⊆ A, and the final atom Am−1. Let A be the átomaton of L.

Let M = {M0, . . . , Mm−1} be the set of the maximized atoms of L, let
IM = {Mi | Ai ∈ IA} be the set of maximized atoms corresponding to initial
atoms, and let FM = {Mi | Am−1 ⊆ Mi} be the set of maximized atoms that
contain the final atom Am−1.

We define the maximized átomaton M of L, using a one-one correspondence
Mi ↔ Mi between the sets Mi and the states Mi of the NFA M as follows:

Definition 5. The maximized átomaton of L is the NFA defined by M =
(M, Σ, μ, IM ,FM), where M = {Mi | Mi ∈ M}, IM = {Mi | Mi ∈ IM},
FM = {Mi | Mi ∈ FM}, and Mj ∈ μ(Mi, a) if and only if Mj ⊆ a−1Mi for all
Mi,Mj ∈ M and a ∈ Σ.

We show that the maximized átomaton M of L is isomorphic to the reverse NFA
of the saturated version of the minimal DFA D of LR:

Proposition 5. The maximized átomaton M of L is isomorphic to DSR, where
D is the minimal DFA of LR.

Generalization of the Double-Reversal Method 275

Proof. Let D = (Q,Σ, δ, qm−1, F) be the minimal DFA of LR, with its saturated
version DS = (Q,Σ, δS , IS , F). Let Q = {q0, . . . , qm−1}, and let Q0, . . . , Qm−1

be the quotients of LR.
The initial states of M correspond to the initial atoms of L, or equivalently,

to the initial states of the átomaton A. Since by Proposition 3, AR is isomorphic
to D, the initial states of A correspond to the final states of D, which are the
final states of DS , or equivalently, the initial states of DSR.

Any state Mi of M is final if and only if Am−1 ⊆ Mi. By Proposition 2,
Part 3, Am−1 ⊆ Mi is equivalent to Mm−1 ⊆ Mi, and by Proposition 4, Part 3,
Mm−1 ⊆ Mi is equivalent to Qi ⊆ Qm−1. Note that the quotient Qm−1 of LR,
corresponding to the final atom Am−1 of L, is the initial quotient of LR, that
is, Qm−1 = LR. Now we have Qi ⊆ LR which holds if and only if qi is an initial
state of DS , or equivalently, a final state of DSR.

We also have to show that Mj ∈ μ(Mi, a) if and only if qi ∈ δS(qj , a), for
all Mi,Mj ∈ M and a ∈ Σ. Since Mj ∈ μ(Mi, a) if and only if Mj ⊆ a−1Mi,
and qi ∈ δS(qj , a) if and only if aLqi,F (D) ⊆ Lqj ,F (D) that is equivalent to
Qi ⊆ a−1Qj , we have to show that Mj ⊆ a−1Mi if and only if Qi ⊆ a−1Qj . This
equivalence holds by Proposition 4, Part 4.
�
Corollary 1. The maximized átomaton M is isomorphic to ARSR.

5 Obtaining a Canonical RFSA by Applying C

We know from Sect. 3 that applying the operation C to any NFA N , produces an
RFSA NC . This RFSA is not necessarily a canonical RFSA. However, Theorem 3
provides sufficient conditions for obtaining a canonical RFSA by applying C to
an NFA. This is similar to the way how Theorem 1 provides sufficient conditions
for obtaining a minimal DFA.

In Sect. 2, we recalled Theorem 2 from [1,2], a generalization of Theorem 1,
characterizing the class of NFAs for which applying the determinization proce-
dure produces a minimal DFA.

In this section we will present a theorem, similar to Theorem 2, that provides
a characterization of NFAs for which applying C results in a canonical RFSA.

We interchange the languages L and LR of Sect. 4. That is, we consider a
language L, and assume that A0, . . . , Am−1 are the atoms of the reverse language
LR, M0, . . . , Mm−1 are the maximized atoms of LR, and M is the maximized
átomaton of LR. Also, let D be the minimal DFA of L, with the state set Q =
{q0, . . . , qm−1}, and let the quotients of L be {Q0, . . . , Qm−1}. The NFA DS is the
saturated version of D, and DSE is the NFA that is obtained after removing all
erasable states and their associated transitions from DS . Since by Proposition 1,
DSE is the canonical RFSA for L, let us denote it by C = DSE . Clearly, DSE is
a subautomaton of DS , and since by Proposition 5, DS and MR are isomorphic,
C is isomorphic to a subautomaton of MR, where some states of MR may have
been removed, together with their transitions.

For every state qi of C, let us denote the left language of qi by Li; the right
language of qi is Qi. Since the canonical RFSA C is uniquely determined by L, so

276 H. Tamm

are Li’s, and we call these Li’s canonical left languages of L. Since the canonical
RFSA is a state-minimal RFSA with maximal number of transitions, there is no
RFSA with minimal number of states, such that the left language of any of its
states is larger than the left language of the corresponding state of the canonical
RFSA. That is, for every state-minimal RFSA, the left languages of its states
are subsets of corresponding canonical left languages.

Since C is (isomorphic to) a subautomaton of MR, we can set a correspon-
dence between Li’s and those Mi’s which correspond to non-erasable states of
DS . We can see by Proposition 4, Part 2, that (MR

i , Qi) is a factorization of L,
therefore it is clear that for every Li and its corresponding Mi, Li ⊆ MR

i holds.
Since there is a one-to-one correspondence between Ai’s and Mi’s, there is also a
correspondence between Li’s and Ai’s which correspond to Mi’s associated with
non-erasable states of DS .

Proposition 6. The following properties hold for any canonical left languages
Li and Lj of L:

1. AR
i ⊆ Li ⊆ MR

i .
2. If AR

i ∩ Lj �= ∅, then Li ⊆ Lj.

Proof.

1. Suppose that there is some u ∈ AR
i such that u �∈ Li. By Proposition 4,

Part 1, u ∈ AR
i implies that u−1L = Qi. Since u �∈ Li and u−1L = Qi,

there must be a set of quotients, {Qj | j ∈ Ji}, Ji ⊂ {0, . . . , m − 1}, such
that Qi =

⋃
j∈Ji

Qj and u ∈ Lj , j ∈ Ji. We get that Qi is not prime, a
contradiction. Thus AR

i ⊆ Li, and since we saw above that Li ⊆ MR
i holds,

we have AR
i ⊆ Li ⊆ MR

i .
2. Let AR

i ∩ Lj �= ∅ for some Li, Lj . That is, there is a word u ∈ AR
i , such that

u ∈ Lj . By Proposition 4, Part 1, u ∈ AR
i if and only if u−1L = Qi. Since

u ∈ Lj , uQj ⊆ L holds, implying that Qj ⊆ u−1L, that is, Qj ⊆ Qi.
We show that Qj ⊆ Qi implies Li ⊆ Lj . First, if ε ∈ Li, then qi is an

initial state of C, implying Qi ⊆ L. Since Qj ⊆ Qi, we get Qj ⊆ L, which
implies ε ∈ Lj .

Now, let va ∈ Li, such that v ∈ Σ∗ and a ∈ Σ. Then there is some
state qh of C, such that v ∈ Lh and aQi ⊆ Qh. Since Qj ⊆ Qi, we get
aQj ⊆ Qh, implying Qj ⊆ a−1Qh. By the definition of a canonical RFSA,
there is a transition in C from its state qh to qj by a. Thus, Lha ⊆ Lj ,
implying va ∈ Lj . We conclude that Li ⊆ Lj .
�

Now, let N = (Q,Σ, δ, I, F) be an NFA. Let us consider the NFA NC =
(QC , Σ, δC , IC , FC) obtained by applying the operation C to N as in Defini-
tion 3. Next, we will present a few propositions before we can prove our main
theorem, Theorem 4, in the end of this section.

Proposition 7. For any word u ∈ Σ∗ and any state s of NC , if u ∈ LIC ,s(NC),
then u ∈ LI,q(N) for every q ∈ s.

Generalization of the Double-Reversal Method 277

Proof. We prove the statement by induction on the length of u. Let s be a state
of NC , and u ∈ LIC ,s(NC). If |u| = 0, then u = ε. That is, s is an initial state
of NC . By Definition 3, s consists of some initial states of N , that is, ε ∈ LI,q(N)
for every q ∈ s.

Now, let u = va, where v ∈ Σ∗ and a ∈ Σ, and assume that the proposition
holds for v. Let s be a state of NC such that va ∈ LIC ,s(NC). Then there is
some state t of NC such that v ∈ LIC ,t(NC) and s ∈ δC(t, a). By the induction
assumption, we have that v ∈ LI,q(N) for every q ∈ t. Also, by Definition 3,
s ⊆ δ(t, a). Clearly, va ∈ LI,q(N) for every q ∈ s.
�
Proposition 8. Let the left language of every state q of N be a union of Li’s.
Assume that for every Li there is a state si of NC , consisting of states q of N
such that Li ⊆ LI,q(N). Then Li ⊆ LIC ,si(NC).

Proof. We show that for w ∈ Σ∗, and for any Li, if w ∈ Li, then w ∈ LIC ,si(NC).
The proof is by induction on the length of w. If |w| = 0, then w = ε. If ε ∈ Li,
then ε ∈ LI,q(N) for every q ∈ si. That is, every q ∈ si is an initial state of N ,
and by Definition 3, si is an initial state of NC . Thus, ε ∈ LIC ,si(NC).

Now, let w = va, where v ∈ Σ∗ and a ∈ Σ, and assume that our claim
holds for v, that is, if v ∈ Lh for any Lh, then v ∈ LIC ,sh(NC). Let va ∈ Li.
Clearly, since Li is the left language of some state of the canonical RFSA C, there
exists a state of C with the left language Lh, such that v ∈ Lh and Lha ⊆ Li.
We know that there is a state sh of NC , consisting of all states p of N such
that Lh ⊆ LI,p(N). Clearly, v ∈ LI,p(N) for every p ∈ sh. By the induction
assumption, v ∈ LIC ,sh(NC).

We claim that for every q ∈ si there exists some p ∈ sh, such that q ∈ δ(p, a).
Let q ∈ si. Then Li ⊆ LI,q(N). Suppose that there is no state p of N such
that p ∈ sh and q ∈ δ(p, a). Since we have that Lha ⊆ Li holds, also the
inclusion AR

h a ⊆ Li holds by Proposition 6, Part 1. Then there must be some
Lk such that AR

h ∩ Lk �= ∅, and some state p of N , such that Lk ⊆ LI,p(N)
and q ∈ δ(p, a). By Proposition 6, Part 2, we get Lh ⊆ Lk. Consequently,
Lh ⊆ LI,p(N) holds, implying p ∈ sh. Thus, our claim holds, and therefore
si ⊆ δ(sh, a). By Definition 3, NC has a transition from sh to si by a. Thus,
va ∈ LIC ,si(NC).
�
Proposition 9. The RFSA NC is a canonical RFSA if and only if for every
state si of NC , LIC ,si(NC) = Li for some Li.

Proof. If the RFSA NC is canonical, then by definition, there is a one-one cor-
respondence between its states si and canonical left languages Li, such that
LIC ,si(NC) = Li.

Conversely, let NC be such that for each of its states si, LIC ,si(NC) = Li

holds for some Li. Clearly, for any states si and sj of NC , if si �= sj , then
LIC ,si(NC) �= LIC ,sj (NC), implying that there is exactly one state si of NC ,
such that LIC ,si(NC) = Li. Consequently, there is a one-one correspondence
between the states of NC and the states of the canonical RFSA. That means, NC

is a minimal RFSA. We also show that NC is saturated. Indeed, if we suppose

278 H. Tamm

that NC is not saturated, then we could add initial states and/or transitions
to it, without modifying the language NC accepts. First, if we make some non-
initial state si of NC initial, then an empty string is added to its left language,
and so the left language of si is made larger than Li, which is not possible as
we discussed earlier in this section. Now consider adding a transition from si
to sj labelled by a ∈ Σ. Since this addition cannot change the left language of
sj , LIC ,si(NC)a ⊆ LIC ,sj (NC) must hold, implying Lia ⊆ Lj . Since AR

i ⊆ Li,
there has to be some state sh of NC with a transition from sh to sj by a,
and AR

i ∩ LIC ,sh(NC) �= ∅, that is, AR
i ∩ Lh �= ∅. Then by Proposition 6,

Part 2, Li ⊆ Lh. We know by Proposition 7, that Li ⊆ LI,q(N) for every
q ∈ si, and Lh ⊆ LI,q(N) for every q ∈ sh. And clearly, if Li ⊆ LI,q(N), then
q ∈ si, and if Lh ⊆ LI,q(N), then q ∈ sh. Thus, si = {q | Li ⊆ LI,q(N)}
and sh = {q | Lh ⊆ LI,q(N)}. Since Li ⊆ Lh, the inclusion sh ⊆ si holds.
Now, because there is a transition from sh to sj by a, and sh ⊆ si, there must
also be a transition from si to sj by a. We conclude that NC is saturated. By
Proposition 1, NC is a canonical RFSA.
�
Finally, we present the main theorem:

Theorem 4. For any NFA N of L, NC is a canonical RFSA if and only if the left
language of every state of N is a union of some canonical left languages Li of L.

Proof. Let N = (Q,Σ, δ, I, F) be an NFA and let NC = (QC , Σ, δC , IC , FC) be
a canonical RFSA of L. We show that the left language of every state of N is a
union of Li’s. Let q be any state of N . Note that if the left language of q is empty,
then it is an empty union of Li’s. Now consider the case where LI,q(N) �= ∅.
Let u ∈ LI,q(N). Then there is a state si of NC such that u ∈ LIC ,si(NC) and
q ∈ si. Since NC is a canonical RFSA, LIC ,si(NC) = Li for some Li. We get
that u ∈ Li. Consider any other word v ∈ Li. Clearly, v ∈ LIC ,si(NC), implying
v ∈ LI,q(N) by Proposition 7. Thus, Li ⊆ LI,q(N), and we conclude that the
left language of q is a union of Li’s.

Conversely, assume that the left language of every state q of N is a union of
Li’s. First, we claim that for every Li there is some q, such that Li ⊆ LI,q(N).
To see this, suppose that for some Li there is no such q. Let u ∈ AR

i . Then by
Proposition 4, Part 1, u−1L = Qi. Clearly, there is a state q of N , such that
u ∈ LI,q(N). Since by our assumption, Li �⊆ LI,q(N), however, the left language
of q is a union of canonical left languages, there is some Lj , such that u ∈ Lj .
We get that AR

i ∩Lj �= ∅, which by Proposition 6, Part 2 implies Li ⊆ Lj . Thus,
Li ⊆ LI,q(N).

Next, we will show that for every Li, there is a state si of NC , such that
LIC ,si(NC) = Li. So let us consider any Li. Let si be the set of all states q of N ,
such that Li ⊆ LI,q(N). By the claim above, si is not empty. Let q ∈ si. Then
by Proposition 6, Part 1, AR

i ⊆ LI,q(N). Let u ∈ AR
i . We note that if u ∈ Lj for

some Lj �= Li, then Li ⊆ Lj by Proposition 6, Part 2. Consequently, si is the set
of all states q, such that u ∈ LI,q(N). We claim that si is a state of NC . Indeed,
if we suppose that si is not a state of NC , then it is coverable, that is, a union
of some states of NC . Since by Proposition 4, Part 1, u−1L = Qi, we then get

Generalization of the Double-Reversal Method 279

that Qi must be a union of some other quotients of L, which is a contradiction,
because Qi is the right language of a state of a canonical RFSA. Thus, for every
Li there is a corresponding state si of NC . Furthermore, since Li ⊆ LI,q(N) for
every q ∈ si, the inclusion Li ⊆ LIC ,si(NC) holds by Proposition 8. Now, for
every word v ∈ Li\AR

i , let sv = {q | v ∈ LI,q(N)} = {q | v ∈ Lj , Lj ⊆ LI,q(N)}.
Then sv =

⋃
v∈Lj

sj . Clearly, sv is coverable, and cannot be a state of NC .
We have obtained that NC consists of states si, each corresponding to some

Li, therefore, NC has the same number of states as does the canonical RFSA.
Also, we obtained that for every state si of NC , the inclusion Li ⊆ LIC ,si(NC)
holds. Since a canonical RFSA has exactly one state for every Li, with Li being
its left language, and because there is no RFSA with the same number of states
and larger left languages, we get that LIC ,si(NC) = Li for every si. We conclude
by Proposition 9 that NC is a canonical RFSA.
�

6 Conclusions and Future Work

We started a study of the relationship of RFSAs with atoms of regular languages,
defining the maximized atoms and the maximized átomaton of a language, and
showing that the maximized átomaton is isomorphic to the reverse automaton of
the saturated minimal DFA of the reverse language. It is easily implied that the
canonical RFSA of a language is a subautomaton of the reverse automaton of
the maximized átomaton of the reverse language. We believe that the maximized
átomaton and its properties deserve to be studied further, also noting that the
same NFA appeared recently in [6], where the study of its properties was begun.

We defined canonical left languages of a regular language as the left languages
of the states of the canonical RFSA, and generalized the double-reversal method
by Denis, Lemay, and Terlutte, of obtaining a canonical RFSA.

References

1. Brzozowski, J., Tamm, H.: Theory of átomata. In: Mauri, G., Leporati, A. (eds.)
DLT 2011. LNCS, vol. 6795, pp. 105–116. Springer, Heidelberg (2011)

2. Brzozowski, J., Tamm, H.: Theory of átomata. Theor. Comput. Sci. 539, 13–27
(2014)

3. Brzozowski, J.: Canonical regular expressions and minimal state graphs for definite
events. In: Proceedings of the Symposium on Mathematical Theory of Automata.
MRI Symposia Series, vol. 12, pp. 529–561. Polytechnic Press, Polytechnic Institute
of Brooklyn, New York (1963)

4. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. Fund. Inform.
51, 339–368 (2002)

5. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. In: Ferreira, A.,
Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 144–157. Springer, Heidelberg
(2001)

6. Myers, R.S.R., Adámek, J., Milius, S., Urbat, H.: Canonical nondeterministic
automata. In: Bonsangue, M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 189–210.
Springer, Heidelberg (2014)

Quantum State Complexity of Formal Languages

Marcos Villagra and Tomoyuki Yamakami(B)

Department of Information Science, University of Fukui,
3-9-1 Bunkyo, Fukui 910-8507, Japan

{mdvillagra,TomoyukiYamakami}@gmail.com

Abstract. In this extended abstract, our notion of state complexity
concerns the minimal amount of descriptive information necessary for a
finite automaton to determine whether given fixed-length strings belong
to a target language. This serves as a descriptional complexity mea-
sure for languages with respect to input length. In particular, we study
the minimal number of inner states of quantum finite automata, whose
tape heads may move freely in all directions and which conduct a pro-
jective measurement at every step, to recognize given languages. Such a
complexity measure is referred to as the quantum state complexity of lan-
guages. We demonstrate upper and lower bounds on the quantum state
complexity of languages on various types of quantum finite automata.
By inventing a notion of timed crossing sequence, we also establish a
general lower-bound on quantum state complexity in terms of approxi-
mate matrix rank. As a consequence, we show that bounded-error 2qfa’s
running in expected subexponential time cannot, in general, simulate
logarithmic-space deterministic Turing machines.

Keywords: Quantum finite automaton · Quantum state complexity ·
Approximate matrix rank · Minimal automaton · Advice · Timed cross-
ing sequence · Permutation automaton

1 Background and Major Contributions

Finite (state) automata are unarguably one of the simplest machine models rep-
resenting a realistic computation device, and the rich literature over the past 60
years has enthusiastically explored the power and limitation of such machines.
Since the 1980s, in particular, a new wave of building non-conventional comput-
ing devices have arisen and, shortly, a concept of “quantum computer” emerged
on the premise of quantum physics. As a simple model of such a device, Kondacs
and Watrous [9] studied bounded-error quantum finite automata that make uni-
tary evolution and also perform a projective (or von Neumann) measurement at
every step. A striking feature that differentiates quantum finite automata from
their classical counterparts is that all languages recognized by 1-way quantum
finite automata (abbreviated as 1qfa’s) with bounded-error probability are still

M. Villagra is a research fellow of the Japan Society for the Promotion of Sciences
(JSPS).

c© Springer International Publishing Switzerland 2015
J. Shallit and A. Okhotin (Eds.): DCFS 2015, LNCS 9118, pp. 280–291, 2015.
DOI: 10.1007/978-3-319-19225-3 24

Quantum State Complexity of Formal Languages 281

regular languages, while certain bounded-error 2-way quantum finite automata
(or 2qfa’s) can recognize even non-regular languages [9]. In a classical setting,
however, 1-way deterministic finite automata (or 1dfa’s) are no less powerful
than their 2-way counterparts. Moreover, the family of all languages recognized
by bounded-error 1qfa’s is not closed under union and intersection [2], although
the family of regular languages is closed under those operations.

One of the focal points in the study of quantum finite automata has been to
estimate the least number of inner states necessary for quantum finite automata
to “accept” or “recognize” a target language. Such a number serves as a meaning-
ful measure of “conciseness” or “succinctness” of the description of the automa-
ton for the given language. Even equipped with no memory tape, inner states
additionally provided to the finite automaton help store sufficient information
to enhance their power of language recognition. For this reason, the minimal
number of inner states has been used in general to classify the descriptional
complexity of formal languages. Ambainis and Freivalds [1] exemplified the supe-
riority of 1qfa’s in the conciseness of their 1qfa’s over 1dfa’s by proving that a
certain 1qfa can determine whether a given number is divisible by a fixed prime
p using at most O(log p) inner states; on the contrary, any 1-way probabilistic
finite automaton (or 1pfa) requires at least p inner states. Mereghetti et al. [12]
explained how concise 1qfa’s could be on unary languages in comparison with
1pfa’s. Freivalds et al. [8], Yakaryilmaz and Say [18], and Zheng et al. [20] also
studied the conciseness of quantum finite automata of different types.

By contrast, Ambainis, Nayak, Ta-Shma, and Vazirani [3] exhibited an archi-
tectural limitation of 1qfa’s by presenting a special series {Ln}n≥2 of finite lan-
guages, where Ln = {w0 | w ∈ {0, 1}∗, |w| < n}, each Ln of which is recognized
by a certain O(n)-state 1dfa, but requires 2Ω(n) inner states on any bounded-
error 1qfa that even performs superoperators. This result leads us to study the
minimal number of inner states needed for quantum finite automata to recognize
a given language L on inputs of each fixed length n (i.e., to determine whether
or not input strings of length n belong to L) and we generally call this specific
number the state complexity1 of L at n on quantum finite automata and any
finite automaton that achieves this state complexity is called a minimal automa-
ton. To emphasize those underlying quantum finite automata, we prefer to use
the new term of quantum state complexity. This notion enables us to discuss the
complicated behaviors of finite automata that accept each segment of the given
languages, in a more detailed fashion. Moreover, our quantum state complexity
not only indicates a cost of recognizing languages but also helps describe a cost
of performing language operations (Sect. 4), as well as a cost of simulating one
type of machines on another type of machines (Sect. 5).

Despite the aforementioned research efforts on 1qfa’s, there have been a few
studies solely devoted to the quantum state complexity of languages, and thus
a vast area of this emerging field is still uncultivated. This extended abstract

1 Traditionally, “state complexity” refers to the minimal descriptional size of finite
automata that recognize a language on all inputs and this notion has been proven
to be useful to study the complexity of regular languages.

282 M. Villagra and T. Yamakami

therefore intends to fill this void by initiating the development of a coherent
and comprehensive theory of quantum state complexity, particularly, based on
the “original” machine model of Kondacs and Watrous [9], because not only is
this the most studied model in the literature, but also it is one of the simplest
mathematical models whose structures and properties have been analyzed in
great depth.

In the rest of this extended abstract, we wish to present three major contribu-
tions after exploring basic properties of quantum state complexity in Sects. 3–4.
Hereafter, “n” expresses an arbitrary input size.

1. It was proven in [4] that measure-once 1-way quantum finite automata (or mo-
1qfa’s) of [13] are equivalent in recognition power to permutation automata.
Not relying on a non-constructive argument of [4], we take a constructive
approach toward proving a logarithmic lower bound on the state complexity
of the language L01 = {0m1n | m,n ≥ 0} on mo-1qfa’s.

2. Quantum computation assisted by an external information source (called
advice) was first discussed in [14]. Following the setting of [19], we prove that
any language recognized by advised 2qfa’s has at most O(n) state complexity.

3. We introduce a new notion of timed crossing sequence and show a new lower
bound on the state complexity of 2qfa’s in terms of approximate matrix rank.
As a consequence, we show that L (the deterministic log-space class) is not
contained within a certain family of languages recognized by bounded-error
2qfa’s running in expected subexponential time.

Omitted or abridged proofs in this extended abstract will appear shortly in its
complete version.

2 Basic Notions and Notation

Let Z (resp., R, C) denote the set of all integers (resp., real numbers, complex
numbers). Specifically, we write N for the set of all natural numbers (i.e., non-
negative integers) and set N+ = N − {0}. In addition, A denotes the set of all
algebraic complex numbers. Given any number α ∈ C, α∗ denotes its conjugate.
The real unit interval between 0 and 1 is denoted by [0, 1]. Analogously, for
any two numbers m,n ∈ Z with m ≤ n, [m,n]Z indicates the integer interval
between m and n; that is, the set {m,m + 1,m + 2, . . . , n}. The notation |Q|
expresses the cardinality of a finite set Q. Given an m×n complex matrix A, let
AT indicate the transposed matrix of A and A† denotes the adjoint of A. In a
finite-dimensional Hilbert space H, ‖x‖ denotes the �2-norm of vector x and ‖A‖
expresses the operator norm of A, defined by ‖A‖ = max{‖Ax‖/‖x‖ : x �= 0}.

An alphabet is a nonempty finite set. Given such an alphabet Σ, we write Σn

(resp., Σ≤n) for the set of all strings over Σ of length exactly n (resp., of length
at most n). In particular, Σ0 = {λ}, where λ is the empty string. Set Σ∗ to be⋃

n∈N
Σn. Given any language L over Σ and each n ∈ N, Ln and L≤n express

the sets L ∩ Σn and L ∩ Σ≤n, respectively. For brevity, we write L for Σ∗ − L.

Quantum State Complexity of Formal Languages 283

We assume the reader’s basic knowledge regarding a model of measure-many
2-way quantum finite automata (abbreviated as 2qfa’s) [9]. Such a 2qfa M has the
form (Q, Σ̌, q0, δ, A,R) where Q is a finite set of inner states, A and R are sets of
accepting and rejecting inner states, q0 is the initial inner state, δ is a (quantum)
transition function mapping Q×Σ̌×Q×D to C (where the values of δ are called
amplitudes), and Σ̌ stands for Σ ∪ {|c, $}. Notice that M has a single read-only
input tape on which any input string is written, surrounded by two designated
endmarkers |c (left) and $ (right). Our input tape is always assumed to be circular
[9]. Let D = {−1, 0,+1}. A configuration space CONFn of M on inputs of
length n is a Hilbert space span{|q〉|h〉 | q ∈ Q,h ∈ [0, n + 1]Z}. The transition
(or time-evolution) matrices {U

(x)
δ }x∈Σ∗ acting on CONFn are induced from

δ by setting U
(x)
δ |q, h〉 =

∑
p∈Q,d∈D δ(q, xh, p, d)|p, h + d mod (n + 2)〉 with

x = x1x2 · · · xn, x0 = |c, and xn+1 = $. Throughout this extended abstract, we
implicitly demand that each U

(x)
δ should be unitary. Three projections Πacc,

Πrej, and Πnon map quantum states onto the accepting, rejecting, and non-
halting configuration spaces Wacc, Wrej, and Wnon, respectively. A computation
of M on input x proceeds by applying U = U

(x)
δ Πnon. Using a measurement

operator Πacc (resp., Πrej), we define the acceptance (resp., rejection) probability
pM,acc,t(x) (resp., pM,rej,t(x)) of M on x at time t as ‖ΠaccU

t|q0, 0〉‖2 (resp.,
‖ΠrejU

t|q0, 0〉‖2). Let ε be any function from N to [0, 1/2]. Given any language
L over alphabet Σ, M is said to recognize L with error probability at most
ε(n) if (i) for every x ∈ L, it accepts x with probability at least 1 − ε(|x|)
(i.e.,

∑∞
t=0 pM,acc,t(x) ≥ 1 − ε(|x|)) and (ii) for every x ∈ L, it rejects x with

probability at least 1 − ε(|x|) (i.e.,
∑∞

t=0 pM,rej,t(x) ≥ 1 − ε(|x|)). When ε is a
constant in [0, 1/2), we intend to use the more familiar term of “bounded-error
probability.”

In contrast, we define a measure-many 1-way2 quantum finite automata (or
1qfa’s) M as (Q, Σ̌, {Uσ}σ∈Σ̌ , s, A,R), where each unitary operator Uσ acting
on span{|q〉 | q ∈ Q} is applied whenever the tape head scans symbol σ, followed
by a measurement as described above, and the machine must halt “absolutely”
until or just after the right endmarker $ is read.

Given a nonempty subset K of C, we say that M has K-amplitudes if M
uses only amplitudes in K. We then define 2BQFAK (resp., 1BQFAK) as the
collection of all languages that can be recognized by K-amplitude 2qfa’s (resp.,
1qfa’s) with bounded-error probability. Similarly, 2BQFAK(t-time) is defined by
K-amplitude 2qfa’s that run in expected t(n)-time (i.e., the average runtime is
upper-bounded by t(n)). We often drop the subscript K whenever K = C.

3 Quantum State Complexity

As noted in Sect. 1, our “quantum state complexity” of a target language serves as
a complexity measure for each input length n and indicates the minimal

2 This model is sometimes referred to as “real time” because its tape head always
moves to the right without staying still on any tape cell.

284 M. Villagra and T. Yamakami

number of inner states used by quantum finite automata to recognize the language
on length-n inputs with designated error probability using a given amplitude set.

To be more precise, first fix a language L over alphabet Σ, a subset K of
C, and a function ε from N to [0, 1/2). Given any length n ∈ N and any 2qfa
M , we say that M recognizes3 L at n with error probability at most ε(n) using
amplitude set K if (1) M has K-amplitudes, (2) for all x ∈ Ln, M accepts x
with probability at least 1 − ε(n), and (3) for all x ∈ Σn − Ln, M rejects x with
probability at least 1−ε(n). Note that no requirement is imposed on the outside
of Σn. The state complexity of M is the total number of inner states used by M ,
not including the size of Σ.

For any function s on N, L is of (or has) state complexity s(n) on 2qfa’s with
error probability at most ε(n) using amplitude set K if, for every n ∈ N, s(n)
equals the smallest state complexity of any K-amplitude 2qfa Mn that recognizes
L at n with error probability at most ε(n). A 2qfa M that achieves this state
complexity s(n) is called a minimal 2qfa for L at n (or for Ln). In order to clarify
the use of quantum finite automata, we intend to use a new term “quantum state
complexity” in place of “state complexity.”

In the past literature, 2qfa’s were occasionally described by their “partial”
transitions, because they can be easily expanded to “complete” transitions.
To argue on the number of inner states, however, it is important to address
that we should use only “completely specified” 2qfa’s, which are described by
their transition functions defined completely on the domain Q × Σ̌ × Q × D.

The special notation 2QSCK,ε[L](n) stands for the number m for which L
has quantum state complexity m at n with error probability at most ε using
amplitude set K. As did before, we often drop the subscript K when K = C.
If we consider only 2qfa’s whose expected running time is at most t(n), then we
specifically write 2QSCt

K,ε[L](n) to emphasize “t(n).”

Lemma 1. Let L be any language over Σ with |Σ| ≥ 2, let ε be any function
from N to [0, 1/2), and let K be any nonempty amplitude set. For any length n ∈
N, (1) 1 ≤ 2QSCK,ε[L](n) ≤ |Σ|n+1 + 1, (2) 2QSCK,ε[L](n) = 2QSCK,ε[L](n),
and (3) 2QSCC,ε[L](n) ≤ 2QSCR,ε[L](n) ≤ 2 · 2QSCC,ε[L](n).

At this moment, it is helpful to introduce a slightly more lenient notion. A K-
amplitude 2qfa M is said to recognize L up to n with error probability at most
ε(n) if, for all x ∈ L≤n and for all x ∈ Σ≤n −L≤n, M accepts and rejects x with
probability at least 1 − ε(n), respectively. To indicate the corresponding state
complexity measure, we use another notation 2QSCK,ε[L](≤n). It is easy to see
that 2QSCK,ε[L](n) ≤ 2QSCK,ε[L](≤n) for any n ∈ N. Obviously, the following
statement holds.

Lemma 2. Given any language L ∈ 2BQFA, there exist two constants c ≥ 1
and ε ∈ [0, 1/2) such that 2QSCε[L](≤n) ≤ c for any length n ∈ N. A similar
statement also holds for 2BQFA(t-time) and 2QSCt

ε[L](≤n).

3 In other words, M recognizes a so-called “promise problem” (Ln, Σn − Ln) with
error probability at most ε(n).

Quantum State Complexity of Formal Languages 285

Nishimura and Yamakami [15] noted that, following Watrous’ argument [17], the
family 2BQFAA is contained in PL, where PL is the family of all languages recog-
nized by log-space probabilistic Turing machines with unbounded-error proba-
bility. With a use of this fact, it is possible to show that any bounded-error 2qfa
with constant state complexity can be converted into another 2qfa incurring no
error at a cost of subexponentially many inner states.

Lemma 3. For any L ∈ 2BQFAA, 2QSCA,0[L](≤n) = 2O(log2 n) holds.

Proof Sketch. Given any language L in 2BQFAA, take a PL-machine M recognizing
L with unbounded-error probability. Note that PrSPACE(s) ⊆ RevSPACE(s2)
holds for any space bound s(n) = Ω(log n) [16], where PrSPACE and RevSPACE
respectively stand for unbounded-error probabilistic space (with all paths termi-
nating absolutely) and reversible space. Hence, there exists a reversible Turing
machine M ′ recognizing L using O(log2 n) space. It is possible to simulate a use
of such memory space by adding 2O(log2 n) inner states to 2qfa’s. We thus obtain
an error-free 2qfa that recognizes L at a cost of 2O(log2 n) inner states. Notice
that the obtained error-free 2qfa runs in polynomial time. ��
Similarly to 2QSCK,ε[L](n) and 2QSCK,ε[L](≤n), we define two more state com-
plexity measures 1QSCK,ε[L](n) and 1QSCK,ε[L](≤n) based on 1qfa’s instead
of 2qfa’s. Notice that there is relatively rich literature on the state complexity
of 1qfa’s as noted in Sect. 1. Using some of the known results, we can show an
exponential gap between 1QSCε[L](n) and 1QSCε[L](≤n).

Lemma 4. There is a regular language L such that, for any constant ε ∈
(0, 1/2), log2(1QSCε[L](≤n)) ≥ Ω(1QSCε[L](n)) holds for almost all n ∈ N.

Proof. Consider a regular language L0 = {x0 | x ∈ {0, 1}∗} over an alphabet
{0, 1}. Ambainis et al. [3, Theorem 6.1] proved that any bounded-error 1qfa
that allows superoperators requires 2Ω(n) inner states to recognize L0 up to
n + 1. This implies that 1QSCε[L0](≤n) = 2Ω(n) for any fixed constant ε ∈
[0, 1/2). On the contrary, it is easy to see that 1QSCε[L0](n) ≤ n+2, by setting
δn(qi, xi, qi+1) = δn(qn, 1, qacc) = δn(qn, 0, qrej) = 1 for all i ∈ [0, n − 1]Z, where
x0 = |c and x = x1x2 · · · xn. The lemma thus follows. ��
We say that a regular language L does not satisfy the partial order condition
(POC) [4] if the minimal 1dfa (Q,Σ, δ, q0, F) for L satisfies the following: there
are two distinct inner states q1, q2 ∈ Q and three strings x, y, z ∈ Σ∗ for which (i)
δ̂(q1, x) = δ̂(q2, x) = q2 and δ̂(q2, y) = q1 and (ii) δ̂(q1, z) /∈ F and δ̂(q2, z) ∈ F

or vice versa, where δ̂ is an extended transition function of δ. As shown below,
the POC gives a language having high state complexity on 1qfa’s.

Lemma 5. For any regular language L, if L does not satisfy the POC, then
1QSCε[L](≤n) = 2Ω(n) holds for each fixed constant ε ∈ [0, 1/2). Moreover, the
converse does not hold.

286 M. Villagra and T. Yamakami

Proof Sketch. The proof of [4, Theorem 4.1] essentially shows the following claim.
(*) Given a language L over alphabet Γ and a homomorphism h : Σ → Γ ∗, it
holds that 1QSCε[h−1(L)](≤n) ≤ (m + 1)1QSCε[L](≤n′), where m = maxσ∈Γ

|h(σ)| and n′ = maxx∈Γ ≤n |h(x)|.
Next, we generalize [4, Theorem 4.3]. Take q1, q2 and x, y, z associated with

the premise that L over Σ does not satisfy the POC. Assume that δ̂(q1, z) /∈
F and δ̂(q2, z) ∈ F . We also take the minimal string s for which δ̂(q0, s) =
q1. Applying the above claim (*) twice, we can obtain 1QSCε[L](≤an + b) =
Ω(1QSCε[L0](≤n)), where a = |xy| and b = |sz|. The aforementioned result of
Ambainis et al. [3] implies that 1QSCε[L0](≤n) = 2Ω(n). Hence, by reassigning
an + b as “new” n, the lemma easily follows.

The converse of the lemma is not true because (i) there exists a language
not in 1BQFA that does satisfy the POC [2] and (ii) for any L ∈ 1BQFA,
1QSCε[L](≤n) = O(1) for a certain constant ε ∈ [0, 1/2). ��

4 Cost of Performing Language Operations

We begin our study by arguing on how costly (in terms of state complexity) it
is to conduct “operations” among languages. An intersection as well as a union
between two given languages is a fundamental operation in automata theory.
The language family 1BQFA is closed under neither intersection nor union [2]
while it is not yet known whether 2BQFA is closed under those operations.

Toward the above open problem, let us study the case of 2qfa’s. Take two
arbitrary languages L1 and L2 in 2BQFAA and consider their witness 2qfa’s M1

and M2. Simulate each machine on an appropriate log-space Turing machine as
done in the proof of Lemma 3. Combine them into a single log-space machine
that recognizes L1 ◦ L2, where ◦ ∈ {∪,∩}. Convert the resulting machine into
a reversible Turing machine using O(log2 n) space, and then into a 2qfa hav-
ing state complexity of 2O(log2 n). Therefore, we obtain 2QSCA,0[L1 ◦ L2](n) =
2O(log2 n).

Concerning 1qfa’s, by contrast, it is possible to obtain a much better upper
bound on the quantum state complexity of union (as well as intersection) of
languages.

Proposition 6. Let L1 and L2 be two arbitrary languages on a common alpha-
bet and let ◦ ∈ {∪,∩}. Assume that 0 ≤ ε(n) < 3−√

5
2 for all n ∈ N. If

1QSCε[L1](n) = k1(n) and 1QSCε[L2](n) = k2(n), then 1QSCε′ [L1 ◦ L2](n) ≤
8(n + 3)k1(n)k2(n), where ε′(n) = ε(n)(2−ε(n))

1+ε(n)−ε(n)2 .

5 Cost of Simulating 1QFAs on MO-1QFAs

Let us examine a specific type of 1qfa’s, known as measure-once 1qfa’s (or mo-
1qfa’s) [13], each of which conducts a projective measurement only once at the very
end of its computation. In analogy to 1QSCε[L](n), we define MO-1QSCε[L](n)
based on those mo-1qfa’s.

Quantum State Complexity of Formal Languages 287

Lemma 7. Let L be any language and let ε : N → [0, 1/2) be any error bound.
It holds that MO-1QSCε[L](n) ≤ (2n + 7)1QSCε[L](n) for all n ∈ N.

Let us demonstrate a lower bound of MO-1QSCε[L](n). Consider a special lan-
guage L01 = {0m1n | m,n ∈ N} over a binary alphabet {0, 1}, which belongs to
1BQFA with error probability close to 0.32 [1]. Here, we estimate the quantum
state complexity MO-1QSCε[L01](n) of this particular language L01.

Proposition 8. log2 n
log2(4/ε) ≤ MO-1QSCε[L01](n) for any fixed constant ε ∈

(0, 1/2) and for any sufficiently large number n.

To prove this proposition, recall a result of Brodsky and Pippenger [4], who
proved that bounded-error mo-1qfa’s are equivalent in recognition power to per-
mutation automata (also known as group automata [4]). Lemma 9 generalizes
their result. For convenience, we write SCper[L](n) for the (classical) state com-
plexity of L at n for which an underlying computation model is limited to per-
mutation automata.

Lemma 9. SCper[L](n) ≤ MO-1QSCε[L](n)2
(
4
ε

)MO-1QSCε[L](n)/2 holds for any
language L, any fixed constant ε ∈ (0, 1/2), and any sufficiently large n.

Since the proof of [4] employs a non-constructive argument, it does not appear
to serve as a helpful tool to prove Lemma 9. For the lemma, we instead make a
constructive argument, which goes as follows. We first group together all super-
positions of configurations generated by an mo-1qfa into a region given by a
hyperspherical cap with half-chord

√
ε/2 on the hypersphere of unit radius. We

then associate each of such regions with an inner state of a target permutation
automaton. Hence, the state complexity is upper-bounded by the number of such
regions that cover the entire hypersphere. The lemma follows from a result of [6]
and a rough estimation of the area of hyperspherical caps.

To complete the proof of Proposition 8, it suffices to demonstrate a lower
bound of SCper[L01](n) described below.

Lemma 10. SCper[L01](n) ≥ �n/2� + 1 holds for any length n ≥ 2.

6 2QFAs Equipped with Deterministic Advice

Our quantum state complexity measure naturally embodies a non-uniform
nature, in the sense that a state-bounded language family S(s(n)) = {L | ∃ε ∈
[0, 1/2) ∀n ∈ N [2QSCC,ε[L](n) ≤ s(n)]} for a given s : N → N+ always contains
non-recursive languages if s(n) ≥ 3 for all n ∈ N.

Such a non-uniform nature has been dealt in computational complexity the-
ory with a notion of external information source, called advice. Advised quantum
computation was initiated in [14] in the context of polynomial-time quantum
Turing machines and in [19] for quantum finite automata. For classical finite
automata, Damm and Holzer [5] and Freivalds [7] studied quite different types
of advice.

288 M. Villagra and T. Yamakami

Let Γ be any advice alphabet and let η : N → Γ ∗ be any length-preserving
advice function (i.e., |η(n)| = n for all n ∈ N). An advised 2qfa is a machine
M = (Q,Σ, δ, q0, A,R, Γ), which has a single tape split into two tracks, where
an upper track contains the original input x and a lower track contains an advice
string η(|x|), except for two endmarkers. The machine M starts in inner state q0
with the tape composed of the form |c [x

η(|x|)
]
$ and its tape head simultaneously

scans both the ith symbol xi of the input and the ith symbol η(|x|)i of the advice
string, except for the endmarkers. We say that M recognizes a language L with a
help of (or assisted by) advice with error probability at most ε(n) if there exists
a length-preserving advice function η : N → Γ ∗ such that, for any x ∈ L, the
machine M accepts

[x
η(|x|)

]
with probability at least 1−ε(n), and for any x /∈ L,

it rejects
[x

η(|x|)
]

with probability at least 1 − ε(n). The notation 2BQFA/n is
used for a family of all languages recognized by bounded-error advised 2qfa’s.

Lemma 11. Let L be any language in 2BQFA/n over alphabet Σ with |Σ| ≥ 2.
There exists a number ε ∈ [0, 1/2) such that 2QSCε[L](n) = O(n).

This lemma can be contrasted with Lemma 2. The proof of the lemma relies on
the fact that, given each index n, the advice string η(n) is a fixed string and,
when we encode the location of a tape head into a series of inner states, η(n)
can be also embedded into this series.

7 Use of Approximate Matrix Rank

For any given language, we wish to seek a reasonable lower bound of its quantum
state complexity. For this purpose, we will estimate the quantum state complex-
ity in terms of a notion of approximate matrix rank, which was first discussed
in the context of communication complexity theory by Krause [10], who used it
as a tool in analyzing randomized communication protocols. See, e.g., [11] for a
survey of this field.

Fix a language L and consider its characteristic matrix ML defined as follows:
for any x, y ∈ Σ∗, the (x, y)-entry of ML is 1 (resp., 0) if and only if xy ∈ L
(resp., xy ∈ L). Given any number n ∈ N+, ML(n) expresses a submatrix of
ML whose entries are indexed by strings of length at most n. We say that a real
matrix M ε-approximates ML(n) if ‖M − ML(n)‖∞ ≤ ε (namely, for any entry
(x, y) with |xy| ≤ n, |M(x, y) − ML(x, y)| ≤ ε). For a given 2qfa A, pxy denotes
the acceptance probability of A on input xy, and we define Pn = (pxy)x,y to
be a matrix of all such acceptance probabilities, provided that xy is of length
at most n. Note that A recognizes L ∩ Σ≤n with error probability at most
ε(n) if and only if Pn ε-approximates ML(n). Given any matrix M and any
ε > 0, the ε-approximate rank of M , denoted by rankε(M), is defined to be
min{rank(B) | B ε-approximates M}. The following key theorem establishes a
relationship between quantum state complexity and approximate matrix rank.

Theorem 12. Let t be any function on N, let L be any language, and let ε and
ε′ be two arbitrary constants satisfying 0 < ε′ < ε < 1/2. For any input length
n ∈ N, letting t′(n) = �t(n)/(ε − ε′)�, it then holds that

Quantum State Complexity of Formal Languages 289

2QSCt
R,ε′ [L](≤n) ≥

√
rankε(ML(n))√

t′(n)(t′(n) + 1)(n + 1)
.

Using Theorem 12 together with Lemmas 1(3) and 2, we want to prove the
following separation result.

Corollary 13. L � 2BQFA(t-time), where t(n) = 2n/6/n2.

Proof Sketch. Let us consider the well-known disjointness problem DISJ = {xy |
x, y ∈ {0, 1}∗, |x| = |y|, x ∧ y = 0|x|} defined over a ternary alphabet Σ =
{0, 1, }, where ∧ denotes the bit-wise AND operation. Here, assume that DISJ ∈
2BQFA(t-time). Lemmas 1(3) and 2 imply that 2QSCt

R,ε′ [DISJ](≤n) = O(1) for
an appropriate constant ε′ ∈ (0, 1/2).

Choose an error bound ε from (ε′, 1/2). It was proven in [11] that rankε

(MDISJ(n)) = Ω(2n/2). Letting t′(n) = �t(n)/(ε − ε′)�, we apply Theorem 12
and then obtain 2QSCt

R,ε′ [L](≤n) ≥ n/c for a certain constant c ≥ 1. This is
obviously a contradiction. Thus, DISJ /∈ 2BQFA(t-time) follows.

Since DISJ ∈ L, we immediately draw the desired conclusion. ��
Let us return to Theorem 12. This theorem is an immediate consequence of the
statement given below. A t-bounded 2qfa refers to a 2qfa whose computation
paths on input x are all “clipped” at step t(|x|) (if not halted earlier) and any
clipped computation path are treated as “non-halting” computation paths.

Lemma 14. Let Σ be any alphabet and let L be any language over Σ. Assume
that, for each n ∈ N, an R-amplitude t-bounded 2qfa Mn recognizes L up to n
with error probability at most ε′. Let Pn,t(n) be a matrix whose (x, y)-entry is the
probability of Mn’s reaching accepting inner states within time t(n). There exist
two matrices C and D satisfying the following conditions: (i) Pn,t(n) = CDT

and (ii) C and D have rank at most t(n)|Qn|2(n + 2)2(t(n) + 1)2.

Proof Sketch of Theorem 12. Choose a minimal R-amplitude 2qfa Mn with a
set Qn of inner states satisfying that |Qn| = 2QSCt

R,ε′ [L](≤n) and that Mn

recognizes L up to n with error probability at most ε′ in expected time t(n). Let
c = 1/(ε−ε′) and set t′(n) = �ct(n)�. Apply Lemma 14 and take Pn,t′(n), C, and
D in the lemma. Markov’s inequality implies that Mn must be t′-bounded with
error probability at most ε. Hence, it follows that ‖Pn,t′(n)−ML(n)‖∞ ≤ ε. More-
over, it follows that rank(Pn,t′(n)) ≤ max{rank(C), rank(D)} ≤ t′(n)|Qn|2(n +
2)2(t′(n) + 1)2. Since Pn,t′(n) ε-approximates ML(n), we conclude that rankε

(ML(n)) ≤ t′(n)2QSCR,ε′ [L](≤n)2(n + 2)2(t′(n) + 1)2. From this, the theorem
follows directly. ��
In the rest of this section, we are focussed on the proof of Lemma 14. For the
proof, we first need to re-examine an old notion of crossing sequence in light of
quantum computation. Here, we define our new crossing sequences so that they
help us translate a computation of a given 2qfa into a 2-player communication
game, in which the players exchange information on those new crossing sequences
of the computation.

290 M. Villagra and T. Yamakami

Fix any input length n and let x and y be two arbitrary strings satisfying
|xy| ≤ n. Let U

(xy)
δ be a unitary transition matrix of the given 2qfa Mn on input

xy. Take an arbitrary number t ∈ N and define Sn = Q × [0, t]Z. A boundary b
refers to an imaginary line set between a tape cell indexed b and another cell
indexed b+1. Recall that |c is at cell 0. A timed crossing sequence (at boundary b)
with respect to t is a sequence s = s1s2 · · · sm for which (i) m (called the length
and denoted |s|) is a number in [0, t]Z, (ii) each sj (j ∈ [1,m]Z) is of the form
(qj , ij) in Sn, and (ii) ij < ij+1 holds for every j ∈ [1,m − 1]Z. We denote by
CReven

n,t (resp., CRodd
n,t) the set of all nonempty timed crossing sequences whose

lengths are even (resp., odd) and we set CRn,t = CReven
n,t ∪ CRodd

n,t ∪ {λ}, where
λ is the empty timed crossing sequence.

Proof Sketch of Lemma 14. Let Mn be any t(n)-bounded 2qfa that recognizes
L up to n. Given x and y, let b ∈ [0, n + 1]Z denote the boundary that splits
x and y in Mn’s input tape, namely, |x| = b. We set our configuration space
Cn of Mn on inputs of length n to be span{|q〉|d〉 | q ∈ Q, d ∈ [0, n + 1]Z}. We
then partition Cn into two subspaces An = span{|q〉|d〉 | q ∈ Q, d ∈ [0, b]Z} and
Bn = span{|q〉|d〉 | q ∈ Q, d ∈ [b + 1, n + 1]Z} satisfying An ⊕ Bn = Cn. Let PAn

and PBn
be respectively the projections onto An and Bn and define two linear

operators Ax
n = U

(xy)
δ PAn

Πnon and By
n = U

(xy)
δ PBn

Πnon.
Next, let Sn = Q × [0, t]Z, where the second set relates to a “time period.”

Let us consider a timed crossing sequence s = s1s2 · · · sm, where each sj is of
the form (qj , ij) in Sn. We view a computation of Mn on the input xy as a 2-
player communication game between Alice and Bob who interact with each other
in turn. Alice receives x and sees the tape region lying on the left side of the bound-
ary b, while Bob receives y and sees the tape region lying on the right side of
b. First, Alice computes αx

s1
= 〈q1, b + 1|(Ax

n)i1 |q0, 0〉 and sends |q1, b + 1〉 to
Bob. In receiving it, Bob computes βy

s2
= 〈q2, b|(By

n)i2−i1 |q1, b + 1〉 and sends
|q2, b〉 to Alice. More generally, at step 2j, Alice receives |q2j−1, i2j−1〉, computes
αx

s2j
= 〈q2j , b + 1|(Ax

n)i2j−i2j−1 |q2j−1, b〉, and sends |q2j , b + 1〉 to Bob. When Bob
receives |q2j , i2j〉, he computes βy

s2j+1
= 〈q2j+1, b|(By

n)i2j+1−i2j |q2j , b+1〉 and sends
|q2j+1, b〉 back to Alice. This process continues until either 2j or 2j + 1 becomes
m. Each nonempty timed crossing sequence s ∈ CRn,t(n) is associated with its
amplitude γxy

s = αx
sβy

s , where αx
s =

∏m/2
j=1 αx

s2j
and βy

s =
∏m/2

j=1 βx
s2j+1

. Finally,
we obtain the quantum state γxy

s |qm, b + 1〉 if m is odd; γxy
s |qm, b〉 if m is even.

For simplicity, we assume that q0 is a non-halting state. Our goal is to
construct two matrices C and D that satisfy the desired two conditions. For
our purpose, we make C a |Σn+1| × |U |-matrix and D a |Σ|n+1 × |U |-matrix,
where U is composed of all triplets (k, s, s′) for which k ∈ [1, t(n)]Z and s, s′ ∈
CRn,t(n). Note that |U | = t(n)(t(n) + 1)2|Q|2(n + 2)2. We define pevenxy and
poddxy to be two acceptance probabilities produced while (i) the tape head stays
in the left tape region of the boundary b and while (ii) it stays in the right
tape region of b, respectively. More precisely, let pevenxy =

∑t(n)
k=1 ‖WaccPAn

(Ax
n)k

|q0, 0〉 +
∑

s∈CReven
n,t(n):

jm≤k

WaccPAn
(Ax

n)k−jm(γxy
s |qm, b〉)‖2 and poddxy =

∑t(n)
k=1 ‖

Quantum State Complexity of Formal Languages 291

∑
s∈CRodd

n,t(n):jm≤k WaccPBn
(By

n)k−jm(γxy
s |qm, b+1〉)‖2, where s = s1s2 · · · sm and

sm = (qm, jm). Note that each acceptance probability pxy in Pn,t(n) can be
expressed as pxy = pevenxy +poddxy . From this equality, we can construct the required
matrices C and D from {pevenxy }x,y and {poddxy }x,y. We omit further details due to
the page limit. ��

References

1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses,
and generalizations. In: Proceedings of FOCS 1998, pp. 332–342 (1998)

2. Ambainis, A., Ķikusts, A., Valdats, M.: On the class of languages recognizable by
1-way quantum finite automata. In: Ferreira, A., Reichel, H. (eds.) STACS 2001.
LNCS, vol. 2010, pp. 75–86. Springer, Heidelberg (2001)

3. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and
quantum finite automata. J. ACM 49, 496–511 (2002)

4. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 31, 1456–1478 (2002)

5. Damm, C., Holzer, M.: Automata that take advice. In: Hájek, P., Wiedermann, J.
(eds.) MFCS 1995. LNCS, vol. 969, pp. 149–158. Springer, Heidelberg (1995)

6. Dumer, I.: Covering spheres with spheres. Discret. Comput. Geom. 38, 665–679
(2007)

7. Freivalds, R.: Amount of nonconstructivity in deterministic finite automata. Theor.
Comput. Sci. 411, 3436–3443 (2010)

8. Freivalds, R., Ozols, M., Mančinska, L.: Improved constructions of mixed state
quantum automata. Theor. Comput. Sci. 410, 1923–1931 (2009)

9. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proceedings of FOCS 1997, pp. 66–75 (1997)

10. Krause, M.: Geometric arguments yield better bounds for threshold circuits and
distributed computing. Theor. Comput. Sci. 156, 99–117 (1996)

11. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Found.
Trends Theor. Comput. Sci. 3, 263–398 (2009)

12. Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of determin-
sitic, nondeterminsitic, probabilistic and quantum finite automata. RAIRO–Theor.
Inf. and Applic. 35, 477–490 (2001)

13. Moore, C., Crutchfield, J.: Quantum automata and quantum languages. Theor.
Comput. Sci. 237, 275–306 (2000)

14. Nishimura, H., Yamakami, T.: Polynomial time quantum computation with advice.
Inf. Process. Lett. 90, 195–204 (2004)

15. Nishimura, H., Yamakami, T.: An application of quantum finite automata to inter-
active proof systems. J. Comput. Syst. Sci. 75, 255–269 (2009)

16. Watrous, J.: Space-bounded quantum complexity. J. Comput. Syst. Sci. 59,
281–326 (1999)

17. Watrous, J.: On the complexity of simulating space-bounded quantum computa-
tions. Comp. Complex. 12, 48–84 (2003)

18. Yakaryilmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum
finite automata. Disc. Math. Theor. Comput. Sci. 12, 19–40 (2010)

19. Yamakami, T.: One-way reversible and quantum finite automata with advice. Inf.
Comput. 239, 122–148 (2014)

20. Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite
automata. RAIRO–Theor. Inf. and Applic. 48, 187–207 (2014)

Author Index

Broda, Sabine 21
Brzozowski, Janusz 33

Câmpeanu, Cezar 46
Čerņenoks, Juris 58
Čevorová, Kristína 70
Cho, Da-Jung 220
Colcombet, Thomas 3

Duparc, Jacques 81

Eberhard, Sebastian 93
Eremondi, Joey 105

Fournier, Kevin 81
Freivalds, Rūsiņš 177

Goč, Daniel 220

Han, Yo-Sub 220
Hetzl, Stefan 93
Holzer, Markus 117

Ibarra, Oscar H. 105
Iraids, Jānis 58

Jakobi, Sebastian 117
Jirásek, Jozef Štefan 129

Kari, Lila 141
Ko, Sang-Ki 220
Konstantinidis, Stavros 141
Kopecki, Steffen 141
Kucevalovs, Ilja 177
Kutrib, Martin 153
Kwee, Kent 165

Machiavelo, António 21
McQuillan, Ian 105
Mischenko-Slatenkova, Taisia 177
Mlynárčik, Peter 185
Moreira, Nelma 21, 197

Ng, Timothy 209

Opmanis, Mārtiņš 58
Opmanis, Rihards 58
Otto, Friedrich 165

Palioudakis, Alexandros 220
Palmovský, Matúš 231
Pighizzini, Giovanni 197
Podnieks, Kārlis 58

Rappaport, David 209
Reis, Rogério 21, 197
Rino Nesin, Gabriela Aslı 243
Rubtsov, A. 256

Salomaa, Kai 46, 209, 220
Šebej, Juraj 129, 231
Szykuła, Marek 33

Tamm, Hellis 268
Thomas, Richard M. 243

Vasilieva, Alina 177
Villagra, Marcos 280
Vyalyi, M. 256

Wendlandt, Matthias 153

Yamakami, Tomoyuki 280

	Preface
	Organization
	Regular Functions
	Unambiguity in Automata Theory
	Contents
	Invited Talk
	Unambiguity in Automata Theory
	1 Introduction
	2 Unambiguous Word Automata
	3 Unambiguous Tropical Automata
	4 Unambiguous Infinite Tree Automata
	5 Unambiguous Register Automata
	6 Conclusion
	References

	Contributed Papers
	Partial Derivative Automaton for Regular Expressions with Shuffle
	1 Introduction
	2 Regular Expressions with Shuffle
	3 Automata and Systems of Equations
	4 Partial Derivatives
	5 Average State Complexity of the Partial Derivative Automaton
	5.1 Asymptotic Analysis

	6 Conclusion and Future Work
	References

	Upper Bound on Syntactic Complexity of Suffix-Free Languages
	1 Preliminaries
	1.1 Introduction
	1.2 Languages, Automata and Transformations
	1.3 Suffix-Free Languages

	2 Lower Bound for Suffix-Free Languages
	3 Upper Bound for Suffix-Free Languages
	4 Uniqueness of Maximal Witness
	5 Conclusions
	References

	Nondeterministic Tree Width of Regular Languages
	1 Introduction
	2 Tree Width of a Regular Language
	2.1 Unary Languages

	3 Deciding the Tree Width of a Regular Language
	4 Tree Width of Operations
	4.1 Union
	4.2 Concatenation and Reversal
	4.3 Complementation and Intersection

	5 Conclusion
	References

	Integer Complexity: Experimental and Analytical Results II
	1 Introduction
	2 Integer Complexity in Basis
	2.1 Connections to the Sum-of-digits Problem
	2.2 Compression of Powers

	3 Integer Complexity in the Basis {1,+, , -}
	4 Conclusion
	References

	Square on Ideal, Closed and Free Languages
	1 Introduction
	2 Preliminaries
	3 Xsided Ideal Languages
	4 Prefix-Closed Languages
	5 Xfix-Free Languages
	6 Conclusions
	References

	A Tentative Approach for the Wadge-Wagner Hierarchy of Regular Tree Languages of Index [0,2]
	1 Introduction
	2 Preliminaries
	2.1 The Wadge Hierarchy and the Wadge Game
	2.2 The Conciliatory Hierarchy
	2.3 Automata and Conciliatory Trees

	3 Operations on Languages and Their Automatic Counterparts
	3.1 The Sum
	3.2 Multiplication by a Countable Ordinal
	3.3 The Pseudo-Exponentiation

	4 Difference of Co-analytic Sets
	4.1 The Operation (D2(11),)

	5 A Fragment of the Wadge Hierarchy
	6 Conclusion
	References

	Compressibility of Finite Languages by Grammars
	1 Introduction
	2 Grammar-Based Compression of Finite Languages
	3 Incompressible Languages
	3.1 Reduced Grammars
	3.2 Segmented Languages
	3.3 Ordered Grammars
	3.4 The Main Result
	3.5 Remarks

	4 Application to Tree Languages
	5 Application to Proof Theory
	6 Conclusion
	References

	On the Complexity and Decidability of Some Problems Involving Shuffle
	1 Introduction
	2 Preliminaries
	3 Comparing Shuffle on Words to NFAs
	4 Shuffle on Languages
	References

	On the Computational Complexity of Problems Related to Distinguishability Sets
	1 Introduction
	2 Preliminaries
	3 Computational Complexity Results on Distinguishability Sets
	3.1 Results on the Size of Distinguishability Sets
	3.2 Results on the Representation of Distinguishability Sets
	3.3 Results on the Finite Hierarchy of Distinguishability Sets

	4 Conclusions
	References

	Prefix-Free Subsets of Regular Languages and Descriptional Complexity
	1 Introduction
	2 Preliminaries
	3 L' and L1=LL'
	4 L'' and L2= LL''
	5 Largest Finite Maximal Prefix-Free Subsets
	6 Infinite Prefix-Free Subsets
	7 Conclusions
	References

	Transducer Descriptions of DNA Code Properties and Undecidability of Antimorphic Problems
	1 Introduction
	2 Basic Notions and Background Information
	2.1 Formal Languages and (Anti-)morphic Permutations
	2.2 Describing Classic Code Properties by Transducers
	2.3 Describing DNA-Related Properties by Trajectories

	3 New Transducer-Based DNA-Related Properties
	4 Expressiveness of Transducer-Based Properties
	5 The Satisfaction and Maximality Problems
	5.1 The Satisfaction Problem for Non-restricted W-properties
	5.2 The Maximality Problem

	6 Undecidability of the
	7 Conclusions
	References

	On Simulation Cost of Unary Limited Automata
	1 Introduction
	2 Preliminaries
	3 Simulation Cost of
	4 Simulation Cost of
	References

	On Some Decision Problems for Stateless Deterministic Ordered Restarting Automata
	1 Introduction
	2 Stateless Deterministic Ordered Restarting Automata
	3 Simulating a stl-det-ORWW-automaton by an NFA
	4 Decision Problems for stl-det-ORWW-automata
	5 Concluding Remarks
	References

	Quantum Queries on Permutations
	1 Introduction
	2 First Example
	3 Further Results
	References

	Complement on Free and Ideal Languages
	1 Introduction
	2 Preliminaries
	3 Free Languages
	4 Complement on Ideal Languages
	5 Conclusions
	References

	Universal Disjunctive Concatenation and Star
	1 Introduction
	2 Universal Disjunctive Concatenation
	3 Universal Disjunctive Star
	4 Conclusion
	References

	Quasi-Distances and Weighted Finite Automata
	1 Introduction
	2 Preliminaries
	3 WFA Construction for a Quasi-Distance Neighbourhood
	4 State Complexity of Weighted Finite Automata
	5 Conclusion
	References

	The State Complexity of Permutations on Finite Languages over Binary Alphabets
	1 Introduction
	2 Preliminaries
	3 Permutation Operation for Chain DFAs
	4 Upper Bound for Sets of Equal Length Strings
	4.1 Estimate for DFAs Having Blocks of Length Two
	4.2 Estimate for General DFAs for Equal Length Languages

	5 Conclusions
	References

	Star-Complement-Star on Prefix-Free Languages
	1 Introduction
	2 Preliminaries
	3 State Complexity of Star-Complement-Star on Prefix-Free Languages
	4 Computations
	5 Unary Alphabet
	6 Conclusions
	References

	Groups Whose Word Problem is a Petri Net Language
	1 Introduction
	2 Petri Nets
	3 Equivalence of the Various Definitions
	4 Group Theory
	5 Virtually Abelian Implies PNL Word Problem
	6 PNL Word Problem Implies Virtually Abelian
	7 Relation to Other Classes of Languages
	References

	Regular Realizability Problems and Context-Free Languages
	1 Introduction
	2 Preliminaries
	3 Hard RR Problems with CFL Filters
	4 Easy RR Problems with CFL Filters
	5 The Case of Polynomially-Bounded Rational Index
	References

	Generalization of the Double-Reversal Method of Finding a Canonical Residual Finite State Automaton
	1 Introduction
	2 Automata, Factorizations, Quotients, and Atoms of Regular Languages
	3 Residual Finite State Automata
	4 Maximized Atoms and Maximized Átomaton
	5 Obtaining a Canonical RFSA by Applying C
	6 Conclusions and Future Work
	References

	Quantum State Complexity of Formal Languages
	1 Background and Major Contributions
	2 Basic Notions and Notation
	3 Quantum State Complexity
	4 Cost of Performing Language Operations
	5 Cost of Simulating 1QFAs on MO-1QFAs
	6 2QFAs Equipped with Deterministic Advice
	7 Use of Approximate Matrix Rank
	References

	Author Index

