
A Novel Algorithm to Train Multilayer
Hardlimit Neural Networks Based on a Mixed

Integer Linear Program Model

Jose B. da Fonseca(B)

Faculty of Sciences and Technology, New University of Lisbon,
2829-615 Caparica, Portugal

jbfo@fct.unl.pt

http://www.dee.fct.unl.pt

Abstract. In a previous work we showed that hardlimit multilayer neu-
ral networks have more computational power than sigmoidal multilayer
neural networks [1]. In 1962 Minsky and Papert showed the limitations
of a single perceptron which can only solve linearly separable classifica-
tion problems and since at that time there was no algorithm to find the
weights of a multilayer hardlimit perceptron research on neural networks
stagnated until the early eighties with the invention of the Backpropaga-
tion algorithm [2]. Nevertheless since the sixties there have arisen some
proposals of algorithms to implement logical functions with threshold ele-
ments or hardlimit neurons that could have been adapted to classification
problems with multilayer hardlimit perceptrons and this way the stagna-
tion of research on neural networks could have been avoided. Although
the problem of training a hardlimit neural network is NP-Complete, our
algorithm based on mathematical programming, a mixed integer linear
model (MILP), takes few seconds to train the two input XOR function
and a simple logical function of three variables with two minterms. Since
any linearly separable logical function can be implemented by a percep-
tron with integer weights, varying them between -1 and 1 we found all
the 10 possible solutions for the implementation of the two input XOR
function and all the 14 and 18 possible solutions for the implementation
of two logical functions of three variables, respectively, with a two layer
architecture, with two neurons in the first layer. We describe our MILP
model and show why it consumes a lot of computational resources, even
a small hardlimit neural network translates into a MILP model greater
than 1G, implying the use of a more powerful computer than a common
32 bits PC. We consider the reduction of computational resources as the
near future work main objective to improve our novel MILP model and
we will also try a nonlinear version of our algorithm based on a MINLP
model that will consume less memory.

Keywords: Hardlimit neural networks · Mixed integer linear program-
ming · Training a hardlimit neural network with a MILP model · Solving
a MILP model with the cplex solver

c© Springer International Publishing Switzerland 2015
I. Rojas et al. (Eds.): IWANN 2015, Part II, LNCS 9095, pp. 477–487, 2015.
DOI: 10.1007/978-3-319-19222-2 40

478 J.B. da Fonseca

1 Introduction

In their famous book Perceptrons [2] Minsky and Papert showed that a single
perceptron can only solve linearly separable classification problems and to solve
a nonlinearly separable classification problem they would need a multilayer per-
ceptron. Since at that time, 1962, there was no algorithm to find the weights of
a multilayer perceptron, research on neural networks stagnated until the early
eighties with the invention of the Backpropagation algorithm. Nevertheless since
the early sixties there appeared many algorithms to train hardlimit neural net-
works or multilayer threshold gates to implement logical functions that could
have been adapted to solve nonlinearly separable classification problems. The
first published work on the synthesis of multilayer threshold gates to implement
logical functions seems to be [3]. So why to create one more algorithm? Because it
is shown that the training of a multilayer hardlimit perceptron is NP-Complete
[4,5] and we will show that our solution is more efficient than previous algo-
rithms in terms of runtime, although it consumes a lot of memory that increases
exponentially with the network size. Nevertheless our MILP model is simple and
beautiful with only two constraints and given a set of possible integer values
of weights it always finds all the possible solutions with a given architecture.
We could have used a nonlinear model that would consume much less mem-
ory since the weights could be, in this case, represented by a simple array of
integers, since it is shown that any logical function can be implemented by a
multilayer hardlimit neural network with integer weights [4]. Nevertheless the
nonlinear model could be trapped in a local optimum and the nonlinear model
needs an initial feasible solution. On the contrary our MILP model always finds
the global optimum since it is a linear model. We have already done some exper-
iments with a nonlinear MNILP model but the results are very poor: the model
did not converge to any solution using all possible nonlinear solvers.

2 What is Mathematical Programming? What is a MILP
Model?

A mathematical programming model is a set of constraints over the variables of
the model subjected to a maximization or minimization of an objective variable
also defined in terms of the model variables. A linear mathematical program
model is a mathematical program where all constraints are linear and also the
expression that defines the objective variable. A mixed integer linear program
model (MILP) is a linear mathematical programming model with integer and
binary variables. A linear model can neither have the multiplication or division
of two variables nor a nonlinear operation over a model variable. To solve the
MILP model we use a black box algorithm, the solver, normally the Cplex solver
[6], through a modelling language, the GAMS software, that makes transparent
the use of the solver by a non specialist.

A Novel Algorithm to Train Multilayer Hardlimit Neural Networks 479

3 Description of a MILP Model to Train Hardlimit
Multilayer Neural Networks

The main idea behind our work is expressed by the following theorem:

Theorem 1. Any linearly separable logical function of n variables can be com-
puted by a Rosenblatt neuron or threshold gate with integer weights such that

|wi| ≤ (n + 1)(n+1)/2

2n
, i = 0, ..., n (1)

For n=3, this theorem guarantees that all linearly separable logical func-
tions of three variables can be implemented by a single Rosenblatt perceptron
or threshold gate with integer weights varying between -2 and 2. You can find
a demonstration of theorem 1 in [4]. Since there are only 104 linearly separa-
ble functions over 256 possible functions of three variables, we considered an
architecture with two layers, two hidden neurons in the first layer and an output
neuron, to implement a two input XOR and a three variable function. Prelim-
inary results seem to show that we can implement almost all logical functions
of three variables with this architecture with the integer weights varying only
between -1 and 1 to reduce the model size, but we found one counter example
f =m1+m2+m3+m4 where the MILP did not find any solution for this archi-
tecture. Varying the integer weights between -2 and 2 we exhausted the memory
because the model takes a dimension of 1.8G and the GAMS software on a 32
bits machine only uses 2G RAM. In a near future we plan to install GAMS on
a 64 bits machine that will not have this memory limit.

The brain of our MILP model is an indexed binary variable, weights(w i,biasj),
that assumes the value 1 for all combinations of integer weights that are considered
solutions of the implementation of the logical function. For the case of a two input
XOR defined by (2) the solutions are generated by the set of linear constraints (3).

xor(b0, b1) ≡ b0 �= b1 ≡ b0b̄1 + b̄0b1 (2)

∀wij , biasi, b0, b1 : (3)
weights(wij)f(wij , biasi, b0, b1) = xor 2in(b0, b1)weights(wij , biasi)

The set of linear constraints (3) are equivalent to the simpler set of nonlinear
constraints (4), since we make a restriction based on a logical operation over a
model variable. In this sense (3) results from a linearization of (4).

∀wij , biasi, b0, b1 \ {weights(wij , biasi) = 0} : (4)
f(wij , biasi, b0, b1) = xor(b0, b1)

Since we want to obtain all possible solutions of the XOR with a given archi-
tecture and integer weights varying between -1 and 1, we must maximize the
number of solutions, the objective variable which is defined by (5).

480 J.B. da Fonseca

obj =
∑

wij ,biasi

weights(wij , biasi) (5)

For the case of a XOR function (5) is implemented by the following line of
GAMS code: calc obj.. sum((w11, w12, w13, w14, w21,w22, bias1, bias2, bias3),
weights(w11, w12, w13, w14, w21, w22, bias1, bias2, bias3))=e=obj;

So we linearized a very nonlinear set of constraints. But the price we paid
is very high: since the binary variable weights and the constraint calc ws1 are
indexed by all the weights and input variables in this simple example we will
have a search space with dimension 39x4=78732, assuming only three possible
values for the weights -1, 0, 1 which generates a model with 18M. But if we
increase the domain of variation of weights to -2,-1,0,1,2 we will have a search
space with dimension 59x4= 7812500 which corresponds to a model with 1.3G
and we got an out of memory message in a machine with 2G RAM. The set of
linear constraints (4) is implemented by the following GAMS code:

calc ws1(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3,b0,b1).. weights(w11,w12,
w13, w14, w21, w22, bias1, bias2, bias3) * f(w11, w12, w13, w14, w21, w22, bias1,
bias2, bias3, b0, b1) =e= xor 2in(b0,b1) * weights(w11, w12, w13, w14, w21,
w22, bias1, bias2, bias3);

Whenweights(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3)=0theconstraint
is relaxed and equivalent to 0=e=0 and when weights(w11, w12, w13, w14, w21,
w22, bias1, bias2, bias3)=1 the constraint imposes that the output of the neural
network, f(w11,w12,w13,w14,w21,w22, bias1, bias2, bias3, b0, b1),must be equal
to the desired output xor 2in(b0, b1) for all combinations of (b0, b1), i.e. (w11,w12,
w13,w14,w21,w22,bias1, bias2, bias3) is a solutionof theweights that implementa
two inputxor.Wehavealreadydevelopedafirstversionofanonlinearmodel to solve
this problem but although the model got smaller, about 5M, all nonlinear solvers
we have access did not reach any solution.

Function f, the output of the multilayer perceptron, is defined as a parameter
given by (6).

f = (((6)
(((b0 − 1)(w11 − 2) + (b1 − 1)(w12 − 2) + bias1 − 2 ≥ 0)(w21 − 2) +

(b0 − 1)(w13 − 2) + (b1 − 1)(w14 − 2) + bias2 − 2 ≥ 0)(w22 − 2) +
bias3 − 2)) ≥ 0

Note that the subtraction of the weights by 2 is only correct for weights
varying in {-1,0,1}. For a greater set of variation we must increase this constant.
Equation (6) is implemented by the single line of GAMS code:
f(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3, b0, b1)= ((((((ord(b0)-1)
* (ord(w11)-2) + (ord(b1)-1)*(ord(w12)-2) + ord(bias1)-2) ge 0) * (ord(w21)-2)
+ (((ord(b0)-1) * (ord(w13)-2) + (ord(b1)-1)*(ord(w14)-2) + ord(bias2)-2)
ge 0) * (ord(w22)-2) + ord(bias3)-2)) ge 0);

A Novel Algorithm to Train Multilayer Hardlimit Neural Networks 481

3.1 Implementing a Three Input Logical Function

As a second example we will show how to obtain the weights of a two layer
hardlimit perceptron, with two neurons in the first layer, to implement a three
input logical function defined by (7) and the weights varying between -1 and 1 to
reduce the combinatorial explosion. We use two layers of neurons because from
the 256 possible functions of three variables only 106 are linearly separable and
so the remaining cannot be implemented by a single neuron. Augmenting the
number of neurons in the first layer and the weight variation domain to -2..2 we
got an out of memory with a 2G RAM PC and so there are lots of three input
logical functions that still cannot be implemented with this architecture since to
implement all the nonlinearly separable logical functions of three variables we
will need more neurons in the first layer and to augment the variation domain
to -2..2 to guarantee the implementation of minterms in the first layer following
theorem 1. The sets of constraints (8) impose that for all solutions the output
of the network must be equal to the desired function.

f(b0, b1, b2) = m1 + m4 = b̄2b̄1b0 + b2b̄1b̄0 (7)

∀wij , biasi, b0, b1, b2 : (8)
weights(wij , biasi)f(wij , biasi, b0, b1, b2) =
weights(wij , biasi)f3in(wij , biasi, b0, b1, b2)

4 Conclusions and Future Work

Although there exist many published algorithms to train multilayer threshold
gates or hardlimit neural networks to implement logical functions, we showed
that our algorithm, to our knowledge the first in the literature to be based on a
MILP model and solved by the Cplex solver, has better runtimes and is simpler
than previous works and can also solve classification problems. In a near future
we plan to implement a nonlinear MINLP model that will consume much less
memory, although it will have the drawbacks of the possibility of getting trapped
in a local optimum and the necessity of an initial feasible suboptimal solution.

References

1. Barahona da Fonseca, J.: Are Rosenblatt multilayer perceptrons more powerfull
than sigmoidal multilayer perceptrons? From a counter example to a general result.
In: Proceedings of ESANN 2013, Ciaco, Belgium, pp. 345–350 (2013)

2. Minsky, M., Papert, S.: Perceptrons. MIT Press, Massachusetts (1965)
3. Gonzalez, R., Lawler, E.L.: Two-level threshold minimization. In: Proceedings of

the Sixth Annual Symposium on Switching Circuit Theory and Logical Design,
41–4 (1965)

482 J.B. da Fonseca

4. Orponen, P.: Computational Complexity of Neural Networks: a Survey. NC-TR-
94-010 Technical Report, Department of Computer Science, University of London,
England (1994)

5. Blum, A.L., Rivest, R.L.: Training a 3-node neural network is NP-complete. Lecture
Notes in Computer Science, 661 (1993)

6. ILOG: Cplex Solver (2005)

A GAMS code of the First MILP Model to Implement a
two input XOR with a two layer Threshold Gate

* XOR 2in

sets b0 /0*1/;

alias(b1,b0);

sets w11 /1*3/;

alias(w12, w13, w14, w21, w22, bias1, bias2, bias3, w11);

Parameter xor_2in(b0,b1), f(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3, b0, b1);

*Definition of a 2 Input XOR:

xor_2in(b0,b1)=(ord(b0) ne ord(b1));

* Output of the Neural Network:

f(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3, b0, b1)=

(((

(((ord(b0)-1) * (ord(w11)-2) + (ord(b1)-1)*(ord(w12)-2) +

ord(bias1)-2) ge 0) * (ord(w21)-2) +

(((ord(b0)-1) * (ord(w13)-2) + (ord(b1)-1)*(ord(w14)-2) + ord(bias2)-2) ge 0) * (ord(w22)-2) +

ord(bias3)-2)) ge 0) ;

variable obj;

binary variable

weights(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3);

CONSTRAINTS

calc_ws1(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3,b0,b1)..

calc_ws1(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3,b0,b1)..

weights(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3)*

f(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3, b0, b1)=e=

xor_2in(b0,b1)*weights(w11,w12,w13,w14,w21,w22,bias1,bias2,bias3);

calc_obj.. obj=e=

sum((w11,w12,w13,w14, w21,w22, bias1, bias2, bias3),

weights(w11,w12,w13,w14, w21,w22, bias1, bias2, bias3));

Model Xor2in /all/;

Solve Xor2in using mip maximizing obj;

display weights.l, obj.l;

B Output of a Run of the First MILP Model

---- 49 VARIABLE weights.L

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

1

2.3 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

1

3.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 3

2

2.1 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 1

2

A Novel Algorithm to Train Multilayer Hardlimit Neural Networks 483

1.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 1

3

2.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 3

1

1.1 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 1

3

2.2 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 3

1

1.1 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

2

2.1 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

2

1.2 1.000

---- 49 VARIABLE obj.L = 10.000

These 10 solutions correspond to the following sets of weight values, respectively:

w11= -1 w12= -1 w13= -1 w14= -1 w21= -1 w22= 1

bias1=0 bias2=1 bias3=-1

w11= -1 w12= -1 w13= -1 w14= -1 w21= 1 w22= -1

bias1=1 bias2=1 bias3=-1

w11= -1 w12= 1 w13= -1 w14= 1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=0

w11= -1 w12= 1 w13= -1 w14= 1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=0

w11= -1 w12= 1 w13= 1 w14= -1 w21= -1 w22= -1

bias1=0 bias2=0 bias3=1

w11= -1 w12= 1 w13= 1 w14= -1 w21= 1 w22= 1

bias1=-1 bias2=-1 bias3=-1

This solution corresponds to the first direct implementation of the XOR, the two neurons in the first layer

implement the two minterms, m2 and m1 respectively, and the third neuron implement the OR of these minterms

resulting in the two input xor

w11= 1 w12= -1 w13= -1 w14= 1 w21= -1 w22= -1

bias1=0 bias2=0 bias3=1

w11= 1 w12= -1 w13= -1 w14= 1 w21= 1 w22= 1

bias1=-1 bias2=-1 bias3=-1

This solution also corresponds to the second direct implementation of the XOR, the two neurons in the first layer

implement the two minterms, m1 and m2 respectively, and the third neuron implement the OR of these minterms.

This solution is equivalent to the previous since it is irrelevant which neuron in the first layer implements

m1 or m2.

w11= 1 w12= -1 w13= 1 w14= -1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=0

w11= 1 w12= -1 w13= 1 w14= -1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=0

C GAMS code of the Second MILP Model to Implement
a Three Variable Logical Function, with a single
Perceptron

* F 3in=m6

sets b0 /0*1/;

alias(b1,b2,b0);

sets w11 /1*5/;

alias(w12, w13, w14, w15, w16,w21, w22, bias1, bias2, bias3, w11);

Parameter f_3in_d(b0,b1,b2), f(w11,w12,w13, bias1, b0, b1,b2);

f_3in(b0,b1,b2)=(ord(b0)=1) * (ord(b1)=2) * (ord(b2)=2);

f(w11,w12,w13, bias1, b0, b1,b2)=

(((ord(b0)-1) * (ord(w11)-3) + (ord(b1)-1)*(ord(w12)-3) + (ord(b2)-1)*(ord(w13)-3)

+ ord(bias1)-3) ge 0) ;

variable obj;

484 J.B. da Fonseca

binary variable weights(w11,w12,w13, bias1);

calc_ws1(w11,w12,w13, bias1,b0,b1,b2)..

weights(w11,w12,w13, bias1)*

f(w11,w12,w13, bias1,b0,b1,b2)=e= f_3in(b0,b1,b2)*weights(w11,w12,w13, bias1);

calc_obj.. obj=e=sum((w11,w12,w13, bias1), weights(w11,w12,w13, bias1));

Model f3in /all/;

Solve f3in using mip maximizing obj;

display weights.l, obj.l, f_3in_d;

D Output of the Second MILP Model to Implement a
Three Variable Logical Function, f =m6, with a Single
Perceptron with Weights between -2 and 2

---- 48 VARIABLE weights.L

INDEX 1 = 1

1

4.4 1.000

INDEX 1 = 2

1

4.4 1.000

---- 48 VARIABLE obj.L = 2.000

---- 48 PARAMETER f_3in

1

0.1 1.000

These two solutions correspond to the following weights that implement m6= :

w1=-2, w2=1, w3=1, bias=-2

w1=-1, w2=1, w3=1, bias=-2

E GAMS code of the Third MILP Model to Implement
a Three Variable Logical Function with a Two Layer
Perceptron

* F 3in

sets b0 /0*1/;

alias(b1,b2,b0);

sets w11 /1*3/;

alias(w12, w13, w14, w15, w16,w21, w22, bias1, bias2, bias3, w11);

Parameter f_3in_d(b0,b1,b2),

f(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3, b0, b1,b2);

*f_3in_d=m1 + m4

f_3in_d(b0,b1,b2)=(ord(b0)=1) * (ord(b1)=1) * (ord(b2)=2) +

(ord(b0)=2) * (ord(b1)=1) * (ord(b2)=1);

* Output of the Neural Network, f():

f(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3, b0, b1, b2)=

((((((ord(b0)-1) * (ord(w11)-2) + (ord(b1)-1)*(ord(w12)-2) + (ord(b2)-1)*(ord(w13)-2) + ord(bias1)-2) ge 0) * (ord(w21)

-2) + (((ord(b0)-1) * (ord(w14)-2) +

(ord(b1)-1)*(ord(w15)-2)+ (ord(b2)-1)*(ord(w16)-2) + ord(bias2)-2) ge 0) * (ord(w22)-2) +

ord(bias3)-2)) ge 0) ;

variable obj;

binary variable

weights (w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3);

CONSTRAINTS

calc_ws1(w11,w12,w13,w14,w15,w16,w21,w22, bias1, bias2, bias3, b0,b1,b2)..

weights(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3)*

f(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3,b0,b1,b2)=e=

A Novel Algorithm to Train Multilayer Hardlimit Neural Networks 485

weights(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3)*

f_3in(b0,b1,b2);

calc_obj.. obj=e=sum(

(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3),

weights(w11,w12,w13,w14,w15,w16, w21,w22, bias1, bias2, bias3));

Model f3in /all/;

Solve f3in using mip maximizing obj;

F Output of a Run of the Second MILP Model for
f=m1+m4

---- 47 VARIABLE weights.L

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 2 INDEX 6 = 1 INDEX 7 = 3 INDEX 8 = 1

1

3.2 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1 INDEX 7 = 3 INDEX 8 = 1

1

3.2 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 3 INDEX 7 = 3 INDEX 8 = 1

2

1.2 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 1 INDEX 7 = 3 INDEX 8 = 3

1

1.1 1.000

INDEX 1 = 1 INDEX 2 = 2 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 1 INDEX 7 = 1 INDEX 8 = 3

1

2.3 1.000

INDEX 1 = 1 INDEX 2 = 2 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1 INDEX 7 = 3 INDEX 8 = 1

1

3.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 1 INDEX 7 = 1 INDEX 8 = 3

1

2.3 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 2 INDEX 6 = 1 INDEX 7 = 1 INDEX 8 = 3

1

2.3 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3 INDEX 7 = 1 INDEX 8 = 3

2

2.1 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 3 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 1 INDEX 7 = 1 INDEX 8 = 1

3

2.2 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3 INDEX 7 = 3 INDEX 8 = 3

1

1.1 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 1 INDEX 7 = 3 INDEX 8 = 1

2

1.2 1.000

INDEX 1 = 3 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 3 INDEX 7 = 1 INDEX 8 = 1

3

2.2 1.000

INDEX 1 = 3 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 1 INDEX 7 = 1 INDEX 8 = 3

2

2.1 1.000

---- 47 VARIABLE obj.L = 14.000

---- 47 PARAMETER f_3in_d

0 1

0.0 1.000

1.0 1.000

These 14 solutions correspond to the following sets of weight values, respectively:

1. w11= -1 w12= -1 w13= -1 w14= -1 w15= 0 w16= -1 w21= 1 w22= -1

bias1=1 bias2=0 bias3=-1

2. w11= -1 w12= -1 w13= -1 w14= -1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=1 bias2=0 bias3=-1

3. w11= -1 w12= -1 w13= 1 w14= -1 w15= 1 w16= 1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=0

4. w11= -1 w12= -1 w13= 1 w14= 1 w15= -1 w16= -1 w21= 1 w22= 1

bias1=-1 bias2=-1 bias3=-1**

This solution corresponds to the direct implementation of the two minterms by the two neurons of the first layer and the OR of the

two minterms by the third neuron

5. w11= -1 w12= 0 w13= -1 w14= -1 w15= -1 w16= -1 w21= -1 w22= 1

bias1=0 bias2=1 bias3=-1

486 J.B. da Fonseca

6. w11= -1 w12= 0 w13= -1 w14= -1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=1 bias2=0 bias3=-1

7. w11= -1 w12= 1 w13= -1 w14= -1 w15= -1 w16= -1 w21= -1 w22= 1

bias1=0 bias2=1 bias3=-1

8. w11= -1 w12= 1 w13= -1 w14= -1 w15= 0 w16= -1 w21= -1 w22= 1

bias1=0 bias2=1 bias3=-1

9. w11= -1 w12= 1 w13= 1 w14= -1 w15= -1 w16= 1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=0

10. w11= -1 w12= 1 w13= 1 w14= 1 w15= 1 w16= -1 w21= -1 w22= -1

bias1=0 bias2=0 bias3=1

11. w11= 1 w12= -1 w13= -1 w14= -1 w15= -1 w16= 1 w21= 1 w22= 1

bias1=-1 bias2=-1 bias3=-1

This solution also corresponds to the direct implementation of the two minterms by the two neurons of the first layer and the OR

of the two minterms by the third neuron

12. w11= 1 w12= -1 w13= -1 w14= 1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=0

13. w11= 1 w12= 1 w13= -1 w14= -1 w15= -1 w16= 1 w21= -1 w22= -1

bias1=0 bias2=0 bias3=1

14. w11= 1 w12= 1 w13= -1 w14= 1 w15= -1 w16= -1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=0

G of a Run of the Second MILP Model for f=m1+m7

---- 48 VARIABLE weights.L

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 1

2

2.2 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 2 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 3

1

2.2 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 2 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 1

2

2.1 1.000

INDEX 1 = 1 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 3

1

2.1 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 1

2

2.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 2 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 1

2

2.1 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 2 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 3

1

2.2 1.000

INDEX 1 = 1 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 3

1

2.1 1.000

INDEX 1 = 2 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 3 INDEX 8 = 1

1

2.2 1.000

INDEX 1 = 2 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 1

2

1.2 1.000

INDEX 1 = 2 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 3 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 3

1

1.1 1.000

INDEX 1 = 2 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 1 INDEX 8 = 1

2

1.2 1.000

INDEX 1 = 2 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 3 INDEX 8 = 1

1

2.3 1.000

INDEX 1 = 2 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 3 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 1 INDEX 8 = 3

1

1.1 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 1 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 3 INDEX 8 = 1

1

A Novel Algorithm to Train Multilayer Hardlimit Neural Networks 487

1.2 1.000

INDEX 1 = 3 INDEX 2 = 1 INDEX 3 = 3 INDEX 4 = 2 INDEX 5 = 1 INDEX 6 = 3

INDEX 7 = 3 INDEX 8 = 1

1

1.1 1.000

INDEX 1 = 3 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 1 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 3 INDEX 8 = 1

1

1.2 1.000

INDEX 1 = 3 INDEX 2 = 3 INDEX 3 = 1 INDEX 4 = 2 INDEX 5 = 3 INDEX 6 = 1

INDEX 7 = 3 INDEX 8 = 1

1

1.1 1.000

---- 48 VARIABLE obj.L = 18.000

---- 48 PARAMETER f_3in_d

0 1

1.0 1.000

1.1 1.000

Now does not exist direct solutions, i.e. where the first two neurons implement m1 and m7 and the third neuron implementing the OR

of these two minterms, because the

implementation of m7 by a perceptron of the first layer with integer weights would imply a bias of -3 and weights equal to 1, i.e.

a three input AND, and the weights only vary between -2 and 2.

These 18 solutions correspond to the following sets of values of weights, respectively:

1. w11= -1 w12= -1 w13= 1 w14= -1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=0 bias2=0 bias3=0

2. w11= -1 w12= -1 w13= 1 w14= 0 w15= -1 w16= 1 w21= -1 w22= 1

bias1=0 bias2=0 bias3=-1

3. w11= -1 w12= -1 w13= 1 w14= 0 w15= 1 w16= -1 w21= -1 w22= -1

bias1=0 bias2=-1 bias3=0

4. w11= -1 w12= -1 w13= 1 w14= 1 w15= -1 w16= 1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=-1

5. w11= -1 w12= 1 w13= -1 w14= -1 w15= -1 w16= 1 w21= -1 w22= -1

bias1=0 bias2=0 bias3=0

6. w11= -1 w12= 1 w13= -1 w14= 0 w15= -1 w16= 1 w21= -1 w22= -1

bias1=0 bias2=-1 bias3=0

7. w11= -1 w12= 1 w13= -1 w14= 0 w15= 1 w16= -1 w21= -1 w22= 1

bias1=0 bias2=0 bias3=-1

8. w11= -1 w12= 1 w13= -1 w14= 1 w15= 1 w16= -1 w21= -1 w22= 1

bias1=0 bias2=-1 bias3=-1

9. w11= 0 w12= -1 w13= 1 w14= -1 w15= -1 w16= 1 w21= 1 w22= -1

bias1=0 bias2=0 bias3=-1

10. w11= 0 w12= -1 w13= 1 w14= -1 w15= 1 w16= -1 w21= -1 w22= -1

bias1=-1 bias2=0 bias3=0

11. w11= 0 w12= -1 w13= 1 w14= 1 w15= -1 w16= 1 w21= -1 w22= 1

bias1=-1 bias2=-1 bias3=-1

12. w11= 0 w12= 1 w13= -1 w14= -1 w15= -1 w16= 1 w21= -1 w22= -1

bias1=-1 bias2=0 bias3=0

13. w11= 0 w12= 1 w13= -1 w14= -1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=0 bias2=1 bias3=-1

14. w11= 0 w12= 1 w13= -1 w14= 1 w15= 1 w16= -1 w21= -1 w22= 1

bias1=-1 bias2=-1 bias3=-1

15. w11= 1 w12= -1 w13= 1 w14= -1 w15= -1 w16= 1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=-1

16. w11= 1 w12= -1 w13= 1 w14= 0 w15= -1 w16= 1 w21= 1 w22= -1

bias1=-1 bias2=-1 bias3=-1

17. w11= 1 w12= 1 w13= -1 w14= -1 w15= 1 w16= -1 w21= 1 w22= -1

bias1=-1 bias2=0 bias3=-1

18. w11= 1 w12= 1 w13= -1 w14= 0 w15= 1 w16= -1 w21= 1 w22= -1

bias1=-1 bias2=-1 bias3=-1

	A Novel Algorithm to Train Multilayer Hardlimit Neural Networks Based on a Mixed Integer Linear Program Model
	1 Introduction
	2 What is Mathematical Programming? What is a MILP Model?
	3 Description of a MILP Model to Train Hardlimit Multilayer Neural Networks
	3.1 Implementing a Three Input Logical Function

	4 Conclusions and Future Work
	References
	A GAMS code of the First MILP Model to Implement a two input XOR with a two layer Threshold Gate
	B Output of a Run of the First MILP Model
	C GAMS code of the Second MILP Model to Implement a Three Variable Logical Function, with a single Perceptron
	D Output of the Second MILP Model to Implement a Three Variable Logical Function, f =m6, with a Single Perceptron with Weights between -2 and 2

	E GAMS code of the Third MILP Model to Implement a Three Variable Logical Function with a Two Layer Perceptron
	F Output of a Run of the Second MILP Model for f=m1+m4
	G of a Run of the Second MILP Model for f=m1+m7

