
A Distributed Feature Selection Approach Based
on a Complexity Measure

Verónica Bolón-Canedo(B), Noelia Sánchez-Maroño,
and Amparo Alonso-Betanzos

Laboratory for Research and Development in Artificial Intelligence (LIDIA),
Computer Science Department, University of A Coruña, 15071 A Coruña, Spain

{vbolon,nsanchez,ciamparo}@udc.es

Abstract. Feature selection is often required as a preliminary step for
many machine learning problems. However, most of the existing methods
only work in a centralized fashion, i.e. using the whole dataset at once.
In this paper we propose a new methodology for distributing the fea-
ture selection process by samples which maintains the class distribution.
Subsequently, it performs a merging procedure which updates the final
feature subset according to the theoretical complexity of these features,
by using data complexity measures. In this way, we provide a framework
for distributed feature selection independent of the classifier and that can
be used with any feature selection algorithm. The effectiveness of our pro-
posal is tested on six representative datasets. The experimental results
show that the execution time is considerably shortened whereas the per-
formance is maintained compared to a previous distributed approach and
the standard algorithms applied to the non-partitioned datasets.

1 Introduction

The technological per-capita capacity to store information has almost doubled
every 40 months since the 1980s, and for example in 2012, every day 2.5 exabytes
of data were created. In this scenario, where data is not only big in volume, but
also in complexity and variety, machine learning techniques have become indis-
pensable when extracting useful information from huge amounts of meaningless
data. If one analyzes the size (samples × features) of the datasets posted in
the UCI Machine Learning Repository [1], it is easy to see that it has increased
dramatically [2]. In the 1980s, the maximal size of the data was about 100; then
in the 1990s, this number increased to more than 1500; and finally in the 2000s,
it further increased to about 3 million. The proliferation of this type of datasets
had brought unprecedented challenges to machine learning researchers. Learning
algorithms can degenerate their performance due to overfitting, learned models
decrease their interpretability as they are more complex, and finally speed and
efficiency of the algorithms decline in accordance with size.

Machine learning can take advantage of feature selection to be able to reduce
the dimensionality of a given problem. Feature selection (FS) is the process of
detecting the relevant features and discarding the irrelevant and redundant ones,
c© Springer International Publishing Switzerland 2015
I. Rojas et al. (Eds.): IWANN 2015, Part II, LNCS 9095, pp. 15–28, 2015.
DOI: 10.1007/978-3-319-19222-2 2



16 V. Bolón-Canedo et al.

with the goal of obtaining a small subset of features that describes properly the
given problem with a minimum degradation or even improvement in performance
[3]. Feature selection, as it is an important activity in data preprocessing, has
been an active research area in the last decade, finding success in many different
real world applications, especially those related with classification problems.

Feature selection methods are divided into three categories: filters, wrappers
and embedded methods. While wrappers involve optimizing a predictor as part of
the selection process, filters rely on the general characteristics of the training data
to select features with independence of any predictor. The embedded methods
use machine learning models for classification, and then an optimal subset of
features is built by the classifier algorithm. As stated in [4], even when the subset
of features might be not so accurate as with embedded and wrapper methods,
filters are preferable due to their computational and statistical scalability, so they
will be the focus of this research. Traditionally, FS methods have been applied
in a centralized manner, i.e. a single learning model to solve a given problem.
However, there might be several reasons to use a FS method in a distributed way.
First, nowadays the data are sometimes distributed in multiple locations. Second,
and more common, when dealing with large amounts of data, most existing FS
methods are not expected to scale well and their efficiency may significantly
deteriorate or even become inapplicable. Therefore, a possible solution might be
to distribute the data, run a FS method on each partition and then combine
the results. There are two main techniques for partitioning and distributing
data: vertically, i.e. by features, and horizontally, i.e. by samples. Distributed
learning has been used to scale up datasets that are too large for batch learning
in terms of samples [5–8]. While not common, there are some other developments
that distribute the data by features [9–11]. Even less common, there are also
approaches that address the distribution both vertically and horizontally [12].

This paper will be focused on the most common approach: distribution by
samples. We will present a methodology in which several rounds of FS will be per-
formed on different partitions of the data. Then, the partial outputs need to be
combined into a single subset of relevant features. In our previous work [13], the
distribution of the samples across the different nodes was performed randomly,
which could lead to situations where some classes are not represented in all the
nodes. Moreover, our previous approach used of a method to combine the partial
outputs that involves classification algorithms, which introduced an important
overhead. Different than our previous study, and trying to overcome these two
disadvantages, in this work (i) we partition the data taking into account the class
distribution, (ii) we propose a new method to combine the partial outputs which
makes use of data complexity measures, leading to an impressive reduction in the
time necessary for this task, and (iii) we present a case study trying to determine
if, since we reduced the running time impressively, it is worth considering more
computations trying to improve the accuracy. The experimental results from six
different databases demonstrate that our new proposal can maintain the perfor-
mance of both the original FS methods and our previous approach in [13], as
well as showing important savings in running times.



A Distributed Feature Selection Approach Based on a Complexity Measure 17

2 Methods

2.1 Distributed Feature Selection Algorithm

The idea of distributing the data horizontally builds on the assumption that
combining the output of multiple experts is better than the output of any single
expert. The proposed methodology consists of performing several fast feature
selectors on several partitions of the data, combining then the partial outputs
into a single subset of features. The feature selection distributed algorithm is
applied to the training dataset in several iterations or rounds. This repetition
ensures capturing enough information for the combination stage. For this sake,
at each round we start by dividing each dataset D into several small disjoint
subsets Di. Since the partition is being made by samples, it is necessary to bear
in mind that random distributions of the data might imply that some of the
classes are not represented exhaustively in all nodes. To solve this inconvenience,
we divide the data maintaining the original class proportions in the training
dataset, i.e. if a dataset has 70% of instances from the positive class and 30%
from the negative class, in each partition of the dataset this distribution will
be maintained. In this manner, we ensure that all the feature selectors in the
different partitions are able to learn all classes.

After having the dataset partitioned into smaller subsets of data Di, each
feature selector is run on each of them, generating a corresponding selection
in which the features selected to be removed receive a vote. At this point, a
new round starts so a new partition of the dataset is performed and another
round of voting is accomplished until reaching the predefined number of rounds.
After all the small datasets Di in each round have been used (which could be
done in parallel, as all of them are independent of each other), the combination
method builds the final selection S as the result of the filtering process that we
will explain in detail in the next paragraph. This set S will be used to train a
classifier C and to test its performance over a new set of samples (test dataset).

Combining the partial outputs on the different partitions of data is not an
easy-to-solve question. Since at each round and partition, each feature to be
removed receives a vote, at the end of the process we will have a number of
votes for each feature which may range from 0 to vmax, being vmax the number
of features or attributes in each dataset n times the number of rounds r. To
decide which features to remove, it is necessary to estimate a threshold of votes.
In our previous work [13], the method to calculate this threshold estimated the
best value for the number of votes from its effect on the training set. Following
the recommendations exposed in [14], we selected the number of votes taking into
account two different criteria: the training error and the percentage of features
retained. Both values must be minimized to the extent possible, by minimizing
the fitness criterion e[v]:

e[v] ← α × error + (1 − α) × featPercentage (1)

To calculate this criterion, a term α was introduced to measure the relative
relevance of both values and was set to α = 0.75 as suggested in [14], giving more



18 V. Bolón-Canedo et al.

influence to the classification error. Since the maximum number of votes vmax

in some cases might be in the order of thousands, instead of evaluating all the
possible values for the number of votes we opted for delimiting it into an interval
[minV ote,maxV ote] computed by using the mean and standard deviation such
that minV ote = avg − 1/2std and maxV ote = avg + 1/2std.

The drawback of our previous approach is that, by involving a classifier in
the process of selecting the optimal threshold, in some cases the time necessary
for this task was higher than the time required by the feature selection process,
even without distributing the data, which introduced an important overhead in
the running time. Furthermore, this fact made our methodology dependent on
the classifier chosen, in a similar way than the wrapper approach does.

Trying to overcome the aforementioned problems, in this paper we propose
to modify the function for calculating the threshold of votes by making use
of data complexity measures, which have been proposed in the last few years
in order to characterize the complexity of datasets beyond estimates of error
rates [15]. Thus, instead of evaluating the merit of a candidate subset of features
by its classification error rate, we propose to calculate the complexity of the
dataset with the candidate features. The rationale behind this decision is that we
assume that good candidate features would contribute to decrease the complexity
and must be maintained, whilst bad candidate features would contribute to
increase the complexity and must be discarded. Since our intention is to propose
a framework that could be applicable to both binary and multiclass datasets,
among the existing complexity measures, the Fisher discriminant ratio [15] was
chosen, which is applicable to problems with any number of classes. Fisher’s
multiple discriminant ratio for C classes is defined as:

f =

∑C
i=1,j=1,i �=j pipj(μi − μj)2

∑C
i=1 piσ2

i

, (2)

where μi, σ2
i , and pi are the mean, variance, and proportion of the ith class,

respectively. In this work we will use the inverse of the Fisher ratio, 1/f , such that
a small complexity value represents an easier problem. Therefore, we propose to
replace the formula for calculating e[v] defined in Eq. (1) with the one that we
present in Eq. (3), expecting to achieve two important goals (1) a reduction in
the time necessary to calculate the threshold and (2) a method independent on
the classifier.

e[v] ← α × 1/f + (1 − α) × featPercentage (3)

The algorithm for the whole methodology is detailed in Algorithm 1. At the
end, the final selection S returned by the algorithm is applied to the training and
test sets in order to obtain the ultimate classification accuracies. It must be noted
that this algorithm can be used with any feature selection method, although the
use of filters is recommended since they are faster than other techniques. Note
that the method can be also applied on ranker methods, however it is required to
establish another threshold to determine the number of features to be removed
in each subset of data.



A Distributed Feature Selection Approach Based on a Complexity Measure 19

Algorithm 1. Pseudo-code for the proposed distributed methodology
Data: d(m×n+1) ← labeled training dataset with m samples and n input features

X ←set of features, X = {x1, . . . , xn}
s ← number of submatrices of d with p samples
V ← vector of votes
r ← number of rounds
α ← 0.75

Result: S ← subset of features \S ⊂ X
/* Obtaining a vector of votes for discarding features */

1 initialize the vector of votes V to 0, |V |=n
2 for each round do
3 Split d into s disjoint submatrices maintaining the class distribution
4 for each submatrix do
5 apply a feature selection algorithm
6 F ← features selected by the algorithm
7 E ← features eliminated by the algorithm \E ∪ F = X
8 increment one vote in vector V for each feature in E

end

end
/* Obtain threshold of votes, Th, to remove a feature */

9 minV ote ← minimum threshold considered
10 maxV ote ← maximum threshold considered
11 for v ← mixVote to maxVote with increment 5 do
12 Fth ← subset of selected features (number of votes < v)
13 1/f ← inverse of Fisher ratio computed on training dataset d using only

features in Fth

14 featPercentage ← percentage of features retained
(

|Fth|
|X| × 100

)

15 e[v] ← α × 1/f + (1 − α) × featPercentage

end
16 Th ← min(e), Th is the value which minimizes the function e
17 S ← subset of features after removing from X all features with a number of

votes ≥ Th

2.2 Experimental Setup

In order to test our distributed framework for feature selection, we have cho-
sen the same six benchmark datasets as in our previous work [13], which are
described in Table 1 depicting their properties (number of features, number of
training and test samples and number of classes). These datasets can be consid-
ered representative of problems from medium to large size, since the horizontally
distribution is not suitable for small-sample datasets. All of them can be free
downloaded from the UCI Machine Learning Repository [1]. Those datasets orig-
inally divided into training and test sets were maintained, whereas, for the sake



20 V. Bolón-Canedo et al.

of comparison, datasets with only training set were randomly divided using the
common rule 2/3 for training and 1/3 for testing. The number of packets (s) to
divide the dataset in each round is also displayed in the last column of Table 1.
This number was calculated trying to maintain a proportion between the number
of samples and the number of features with the constraint of having, at least,
three packets per dataset.

Table 1. Dataset description

Dataset Features Training Test Classes Packets

Connect4 42 45038 22519 3 45
Isolet 617 6238 1236 26 5
Madelon 500 1600 800 2 3
Ozone 72 1691 845 2 11
Spambase 57 3067 1534 2 5
Mnist 717 40000 20000 2 5

The distributed approach proposed herein can be used with any feature selec-
tion method, although a subset of features is mandatory and so, a threshold is
required for ranker methods. In this work, five well-known filters, based on dif-
ferent metrics, were chosen. While three of them return a feature subset (CFS,
Consistency-based and INTERACT), the other two (ReliefF and Information
Gain) are ranker methods so, as aforementioned, a threshold is necessary in
order to obtain a subset of features. In this research we have opted for retaining
the c top features, being c the number of features selected by CFS, since it is a
widely-used method and, among the three subset methods chosen, it is the one
which usually selects the larger number of features. It is also worth noting that
although most of the filters work only over nominal features, the discretization
step is done by default by Weka [16], working as a black box for the user.

– Correlation-based Feature Selection (CFS) is a simple filter algorithm
that ranks feature subsets according to a correlation based heuristic evalu-
ation function [17]. Theoretically, irrelevant features should be ignored and
redundant features should be screened out.

– The Consistency-based Filter [18] evaluates the worth of a subset of
features by the level of consistency in the class values when the training
instances are projected onto the subset of attributes.

– The INTERACT algorithm [19] is based on symmetrical uncertainty (SU).
The authors stated that this method can handle feature interaction, and
efficiently selects relevant features. The first part of the algorithm requires a
threshold, but since the second part searches for the best subset of features,
it is considered a subset filter.

– Information Gain [20] is one of the most common attribute evaluation
methods. This filter provides an ordered ranking of all the features and then
a threshold is required.



A Distributed Feature Selection Approach Based on a Complexity Measure 21

– ReliefF [21] is an extension of the original Relief algorithm that adds the
ability of dealing with multiclass problems and is also more robust and capa-
ble of dealing with incomplete and noisy data. This method may be applied
in all situations, has low bias, includes interaction among features and may
capture local dependencies which other methods miss.

3 Experimental Results

In this section we present and discuss the experimental results in terms of (a) the
number of selected features; (b) the classification accuracy; and (c) the feature
selection runtime. Three different approaches will be compared in the tables of
this section: the centralized standard approach (C), the distributed approach
presented in our previous work, which distributes the data randomly and merge
the partial feature selection results by taking classification accuracy into account
(D-Clas) and the distributed approach proposed herein, which distributes the
data maintaining the class distribution and merges the partial outputs using
data complexity measures (D-Comp). The name of the specific filter used will
be added at the beginning. For example, the centralized approach employing
CFS will be represented as CFS-C. Finally, the last subsection presents a case
study to determine the most suitable interval for the threshold of votes.

3.1 Number of Selected Features

Table 2 shows the number of features selected by each approach. In the first block
of the table we can see the features selected by the centralized and distributed
“D-Comp” approaches, which are not dependent on the classifier. Then, the
table visualizes the number of features selected by the distributed approach
“D-Clas” for each classifier, since the stage devoted to finding the threshold of
votes makes use of a given learning algorithm. As can be seen, the number of
features selected by centralized and distributed approaches is similar, in some
cases being even larger in the centralized approach (see Connect4 with INT or
Cons). Therefore, we can affirm that applying a distributed approach does not
imply a larger selection of features.

3.2 Classification Accuracy Results

This section presents the classification accuracy obtained by C4.5 [22], naive
Bayes [23], k-NN [24] and SVM [25] classifiers both with the centralized and
distributed approaches (Table 3). The best result for each dataset and classifier is
highlighted in bold face, whilst the best result for each dataset (regardless of the
classifier employed) is also shadowed. As expected, the results are very variable
depending on the dataset and the classifier. For some datasets (Connect4 and
Isolet) the highest accuracies are achieved by centralized approaches, although
the results obtained by distributed approaches are only inferior in 1 or 2%. For
other datasets (Madelon, Spambase and Mnist) the best results are reported



22 V. Bolón-Canedo et al.

Table 2. Number of features selected by the different approaches tested

Connect4 Isolet Madelon Ozone Spambase Mnist
Full set 42 617 500 72 57 717
CFS-C 7 186 18 20 19 61
CFS-D-Comp 8 105 9 8 18 77
INT-C 36 56 23 16 26 40
INT-D-Comp 7 62 11 6 15 62
Cons-C 39 11 22 16 20 18
Cons-D-Comp 7 31 11 5 12 48
IG-C 7 186 18 20 19 61
IG-D-Comp 7 131 10 9 18 67
ReliefF-C 7 186 18 20 19 61
ReliefF-D-Comp 9 138 13 17 15 67

C
4
.5

CFS-D-Clas 9 132 14 14 19 90
IG-D-Clas 9 142 15 13 19 79
ReliefF-D-Clas 9 146 18 12 17 74
INT-D-Clas 9 75 14 12 19 72
Cons-D-Clas 9 32 15 6 18 50

N
B

CFS-D-Clas 9 132 14 14 20 90
IG-D-Clas 9 142 15 13 19 79
ReliefF-D-Clas 9 146 18 13 19 74
INT-D-Clas 9 75 14 12 19 72
Cons-D-Clas 10 32 15 6 20 50

k
-N

N

CFS-D-Clas 9 131 14 14 19 90
IG-D-Clas 10 142 15 13 19 79
ReliefF-D-Clas 11 145 18 12 17 74
INT-D-Clas 10 78 14 12 19 72
Cons-D-Clas 10 34 15 6 18 50

S
V
M

CFS-D-Clas 9 137 14 14 19 90
IG-D-Clas 9 142 15 13 20 79
ReliefF-D-Clas 9 149 18 12 17 74
INT-D-Clas 9 70 14 12 19 72
Cons-D-Clas 9 28 15 6 18 50

by a distributed approach, improving in up to 6% the centralized approach (see
Mnist). Finally, for Ozone dataset the three approaches tested obtain the highest
accuracy. The important conclusion, however, is that by distributing the data
there is not a significant degradation in classification accuracy. In fact, in some
cases the accuracy is improved. It is worth mentioning, for example, the case of
Isolet, in which Cons-D-Clas and Cons-D-Comp combined with SVM classifier
report 68.12% and 60.49% accuracy, respectively, whilst the same filter method
in the standard centralized approach degrades its performance until 31.17%,
probably due to the small number of features selected by the centralized filter
(see Table 2).

3.3 Runtime

Table 4 reports the runtime of the feature selection algorithms, both for cen-
tralized and distributed approaches. Notice that in both distributed approaches
(D-Clas and D-Comp), the feature selection stage at each subset of data is the
same, so the time required will be referred as “D” for both of them. Also, in
the distributed approach, considering that all the subsets can be processed at
the same time, the time displayed in the table is the maximum of the times
required by the filter in each subset generated in the partitioning stage. In these



A Distributed Feature Selection Approach Based on a Complexity Measure 23

Table 3. Test classification accuracy. Best results are highlighted.

Connect4 Isolet Madelon Ozone Spambase Mnist
C
4
.5

CFS-C 61.22 81.59 80.50 97.63 81.16 86.99
CFS-D-Clas 61.25 82.23 76.88 95.86 79.27 88.65
CFS-D-Comp 61.25 81.53 80.62 96.09 79.73 88.55
INT-C 60.48 78.96 80.63 96.92 78.16 87.24
INT-D-Clas 61.66 79.03 82.38 94.79 80.83 88.62
INT-D-Comp 61.25 79.35 80.62 96.92 80.44 88.45
Cons-C 60.49 56.00 80.63 98.70 84.62 87.00
Cons-D-Clas 61.66 77.10 82.63 96.33 79.34 90.46
Cons-D-Comp 61.25 72.87 80.62 97.75 85.27 89.46
IG-C 63.90 81.40 72.75 98.22 83.83 87.83
IG-D-Clas 62.34 81.08 79.63 97.87 85.33 87.88
IG-D-Comp 62.27 79.41 80.62 97.87 81.68 87.77
ReliefF-C 63.49 79.54 73.88 98.11 78.81 87.34
ReliefF-D-Clas 63.00 80.56 87.50 98.46 84.75 87.95
ReliefF-D-Comp 63.00 81.53 84.12 95.98 84.88 88.06

N
B

CFS-C 60.28 75.05 71.75 78.22 57.69 71.88
CFS-D-Clas 58.83 73.89 70.13 76.69 57.24 73.34
CFS-D-Comp 58.83 75.30 70.50 77.63 58.87 73.49
INT-C 53.85 71.26 70.00 78.22 57.95 70.94
INT-D-Clas 59.16 70.75 70.13 75.03 74.77 71.06
INT-D-Comp 58.83 69.60 70.00 76.21 78.42 71.30
Cons-C 54.12 42.78 70.00 98.70 91.00 72.78
Cons-D-Clas 59.16 69.92 70.38 73.25 92.89 75.74
Cons-D-Comp 58.83 64.91 70.00 98.46 92.05 74.61
IG-C 60.42 69.34 70.38 74.08 76.53 70.74
IG-D-Clas 60.28 67.54 70.63 77.63 89.70 68.09
IG-D-Comp 60.20 66.77 70.50 78.46 66.95 68.07
ReliefF-C 60.42 62.67 68.63 71.36 41.85 69.82
ReliefF-D-Clas 60.50 56.51 71.50 60.95 91.79 70.93
ReliefF-D-Comp 60.50 53.69 72.25 66.86 92.05 70.89

k
N
N

CFS-C 53.90 56.00 85.63 96.45 79.14 87.93
CFS-D-Clas 57.61 54.78 65.63 96.57 77.31 91.65
CFS-D-Comp 53.68 54.65 88.50 94.56 79.92 91.57
INT-C 58.27 52.92 88.75 94.44 79.73 86.87
INT-D-Clas 57.61 49.84 71.75 95.27 76.86 91.79
INT-D-Comp 53.68 50.42 88.75 94.79 76.92 91.72
Cons-C 58.06 49.90 88.75 98.70 80.83 87.36
Cons-D-Clas 57.61 58.31 71.63 95.27 77.38 96.31
Cons-D-Comp 53.68 57.41 88.75 95.50 76.79 95.14
IG-C 51.29 54.78 74.25 95.98 78.62 89.63
IG-D-Clas 57.01 59.72 86.13 95.50 78.42 90.77
IG-D-Comp 54.52 61.83 88.50 94.79 77.71 90.97
ReliefF-C 61.81 59.14 75.25 95.98 76.99 89.97
ReliefF-D-Clas 57.01 57.09 90.88 96.80 80.70 91.35
ReliefF-D-Comp 57.01 55.93 88.38 96.33 80.18 91.77

S
V
M

CFS-C 60.42 83.45 66.50 98.70 85.85 79.58
CFS-D-Clas 60.42 82.42 67.13 98.70 82.27 81.52
CFS-D-Comp 60.42 82.30 66.75 98.70 85.46 81.49
INT-C 60.42 73.83 66.38 98.70 80.31 78.54
INT-D-Clas 60.42 78.00 68.50 98.70 81.49 80.84
INT-D-Comp 60.42 75.18 66.38 98.70 81.10 80.87
Cons-C 60.42 31.17 66.38 98.70 81.88 75.14
Cons-D-Clas 60.42 68.12 66.50 98.70 81.94 80.85
Cons-D-Comp 60.42 60.49 66.38 98.70 81.16 80.52
IG-C 60.42 82.94 67.13 98.70 83.83 78.28
IG-D-Clas 60.42 79.67 67.13 98.70 83.38 79.30
IG-D-Comp 60.42 80.12 66.75 98.70 83.38 79.15
ReliefF-C 60.42 84.61 67.50 98.70 81.94 75.43
ReliefF-D-Clas 60.42 82.36 67.50 98.70 83.57 75.72
ReliefF-D-Comp 60.42 81.98 67.25 98.70 83.77 75.86



24 V. Bolón-Canedo et al.

Table 4. Maximum untime (hh:mm:ss) for the feature selection methods tested

Connect4 Isolet Madelon Ozone Spambase Mnist

CFS-C 00:01:40 00:04:10 00:00:36 00:00:10 00:00:12 00:29:47
CFS-D 00:00:10 00:01:17 00:00:25 00:00:08 00:00:06 00:04:17
IG-C 00:01:37 00:02:51 00:00:41 00:00:09 00:00:11 00:24:11
IG-D 00:00:04 00:00:54 00:00:29 00:00:09 00:00:05 00:03:55
ReliefF-C 00:28:00 00:09:13 00:01:02 00:00:14 00:00:21 08:26:53
ReliefF-D 00:00:11 00:01:43 00:00:40 00:00:08 00:00:04 00:22:26
INT-C 00:01:52 00:03:16 00:00:40 00:00:09 00:00:13 00:52:25
INT-D 00:00:11 00:01:10 00:00:31 00:00:08 00:00:04 00:03:19
Cons-C 00:06:08 00:04:05 00:00:52 00:00:11 00:00:14 01:42:43
Cons-D 00:00:10 00:01:20 00:00:25 00:00:06 00:00:02 00:03:17

Table 5. Average runtime (hh:mm:ss) for obtaining the threshold of votes

Method D-Clas-C4.5 D-Clas-NB D-Clas-kNN D-Clas-SVM D-Comp

CFS 00:00:36 00:00:26 00:00:48 00:01:36 00:00:01
INT 00:00:31 00:00:24 00:00:50 00:01:23 00:00:01
Cons 00:00:29 00:00:23 00:00:46 00:01:41 00:00:01
IG 00:00:38 00:00:28 00:00:46 00:01:43 00:00:01
ReliefF 00:00:33 00:00:26 00:00:41 00:02:02 00:00:01

experiments, all the subsets were processed in the same machine, but the pro-
posed algorithm could be executed in multiple processors. Please note that this
filtering time is independent of the classifier chosen. The lowest time for each
dataset is shadowed.

As expected, the advantage of the distributed approaches in terms of exe-
cution time over the standard method is significant. The time is reduced for
all datasets and filters, except for Ozone with the IG filter, in which it is main-
tained. It is worth mentioning the important reductions when the dimensionality
of the dataset grows. For Mnist dataset, which has 717 features and 40000 train-
ing samples, the reduction is more than notable. In fact, for ReliefF filter, the
processing time is reduced from more than 8 hours to 22 minutes, proving the
adequacy of the distributed approach when dealing with large datasets.

For the distributed approaches, it is necessary to take into account the
time required to calculate the threshold to build the final subset of features.
Since the distributed approach “D-Clas” makes uses of a classifier to establish
the threshold, the time required by this approach depends highly on the classifier,
whilst with the distributed approach “D-Comp” this time is independent of the
classifier. Therefore, in Table 5, we can see the average runtime on all datasets
for each filter and distributed approach. It is easy to note that the time required
to find the threshold in the proposed distributed approach “D-Comp” is notable
lower than the one in our previous approach “D-Clas”, especially with the SVM



A Distributed Feature Selection Approach Based on a Complexity Measure 25

classifier, in which in some cases the reduction goes from 2 minutes to 1 second. In
light of these results, we can conclude that the distributed approaches performed
successfully, since the running time was considerably reduced and the accuracy
did not drop to inadmissible values. In fact, our approach is able to match and in
some cases even improve the standard algorithms applied to the non-partitioned
datasets. Moreover, it has been demonstrated that the distributed approach pro-
posed in this paper, “D-Comp”, outperforms our previous proposal “D-Clas”,
since the time for obtaining the threshold of votes was also reduced and the
performance results are similar.

3.4 Case Study: Determining the Optimal Interval of Votes

Bearing in mind that with our proposed approach based on complexity measures
the time required to find the threshold of votes has been significantly shortened,

Table 6. Test classification accuracy with different intervals of votes. Best results are
highlighted.

Connect4 Isolet Madelon Ozone Spambase Mnist

C
4
.5

CFS-D-Comp 61.25 81.53 80.62 96.09 79.73 88.55
CFS-D-Comp+ 61.20 79.35 79.62 97.63 78.68 88.15
INT-D-Comp 61.25 79.35 80.62 96.92 80.44 88.45
INT-D-Comp+ 61.16 77.42 80.62 97.75 79.47 88.52
Cons-D-Comp 61.25 72.87 80.62 97.75 85.27 89.46
Cons-D-Comp+ 61.16 73.06 80.62 97.75 83.90 89.06
IG-D-Comp 62.27 79.41 80.62 97.87 81.68 87.77
IG-D-Comp+ 61.16 77.55 80.62 97.40 85.40 87.61
ReliefF-D-Comp 63.00 81.53 84.12 95.98 84.88 88.06
ReliefF-D-Comp+ 63.70 80.37 77.50 97.28 81.75 87.39

N
B

CFS-D-Comp 58.83 75.30 70.50 77.63 58.87 73.49
CFS-D-Comp+ 60.28 75.05 70.62 80.83 52.74 72.77
INT-D-Comp 58.83 69.60 70.00 76.21 78.42 71.30
INT-D-Comp+ 60.28 68.63 70.00 84.26 88.98 71.19
Cons-D-Comp 58.83 64.91 70.00 98.46 92.05 74.61
Cons-D-Comp+ 60.28 61.96 70.00 98.46 79.79 73.33
IG-D-Comp 60.20 66.77 70.50 78.46 66.95 68.07
IG-D-Comp+ 60.28 65.55 70.50 79.17 90.35 69.20
ReliefF-D-Comp 60.50 53.69 72.25 66.86 92.05 70.89
ReliefF-D-Comp+ 60.44 50.99 70.62 60.71 87.94 70.60

k
N
N

CFS-D-Comp 53.68 54.65 88.50 94.56 79.92 91.57
CFS-D-Comp+ 51.48 52.02 86.12 95.03 78.10 89.77
INT-D-Comp 53.68 50.42 88.75 94.79 76.92 91.72
INT-D-Comp+ 50.38 54.14 88.75 95.62 77.25 91.26
Cons-D-Comp 53.68 57.41 88.75 95.50 76.79 95.14
Cons-D2 50.38 61.90 88.75 95.50 76.27 93.73
IG-D-Comp 54.52 61.83 88.50 94.79 77.71 90.97
IG-D2 50.38 61.96 88.50 95.27 78.03 90.23
ReliefF-D-Comp 57.01 55.93 88.38 96.33 80.18 91.77
ReliefF-D-Comp+ 56.91 54.91 84.25 96.09 77.38 90.42

S
V
M

CFS-D-Comp 60.42 82.30 66.75 98.70 85.46 81.49
CFS-D-Comp+ 60.42 79.09 67.12 98.70 85.85 80.91
INT-D-Comp 60.42 75.18 66.38 98.70 81.10 80.87
INT-D-Comp+ 60.42 74.15 66.38 98.70 82.46 80.30
Cons-D-Comp 60.42 60.49 66.38 98.70 81.16 80.52
Cons-D-Comp+ 60.42 54.71 66.38 98.70 76.99 79.49
IG-D-Comp 60.42 80.12 66.75 98.70 83.38 79.15
IG-D-Comp+ 60.42 78.64 66.75 98.70 83.51 78.78
ReliefF-D-Comp 60.42 81.98 67.25 98.70 83.77 75.86
ReliefF-D-Comp+ 60.42 79.73 67.88 98.70 80.70 75.42



26 V. Bolón-Canedo et al.

in this case study we would like to analyze if it is possible to increase the interval
of possible number of votes. In Section 2.1 we have explained that this interval
was set to [avg ± 1/2std], trying to avoid a high number of calculations which
could lead to unaffordable computing times. However, since we have seen that
this time is not prohibitive anymore, we performed some experiments setting this
interval to [avg ± std]. In Table 6 we can see the accuracy results comparing our
distributed approach “D-Comp” and this new proposal that we have called “D-
Comp+”. If we compare both approaches for each combination of dataset, filter
and classifier, it turns out that “D-Comp” outperforms or matches “D-Comp+”
in 89 out of 120 cases. Regarding the number of selected features, “D-Comp”
selects in almost all cases a slightly larger number of features than “D-Comp+”,
which apparently leads to better performances. In terms of running time, the
computation of the optimal threshold does not take more than 1 second in any
case, regardless of the interval chosen. Therefore, we can conclude that, although
the low computational times required for finding the threshold would allow us
to try a larger number of possible votes, it is better to maintain our original
proposed approach in which the interval was set to [avg ± 1/2std]. Moreover, if
in the future we need to deal with datasets with millions of data, it is better to
reduce the computation as much as possible.

4 Conclusions

Feature selection is usually applied in a centralized manner. However, if the
data are distributed, feature selection may take advantage of processing multiple
subsets in sequence or concurrently. The need to use distributed feature selection
can be two-fold. On the one hand, with the advent of network technologies, the
data are sometimes distributed in multiple locations and often with multiple
parties. On the other hand, most existing feature selection algorithms do no
scale well and their efficiency significantly deteriorates when dealing with large-
scale data.

In this paper we propose a methodology for distributing the process of fea-
ture selection by tackling the most common distribution in the literature: the
horizontal partition. A previous proposal was able to confront this problem, but
presented certain drawbacks, mainly (1) the partitioning of the data did not
take into account the class distribution, a fact which might lead to partitions
in which a certain class is not represented and (2) the method has shown to be
dependent on the classifier and time-consuming in the process of merging the
partial results from the different partitions.

In this new proposal, we aimed at achieving a method able to overcome
these drawbacks, especially in terms of running time, since in high dimensional
datasets this will be a core issue. For this sake, we modify our previous methodol-
ogy so that the partitions of the dataset maintain the original class distribution.
Then, we propose a new methodology for combining the partial results from
different partitions which makes use of data complexity measures. The ratio-
nale behind this was that features that contribute to decrease the complexity



A Distributed Feature Selection Approach Based on a Complexity Measure 27

of a dataset must be maintained, whereas those that contribute to increase the
complexity must be discarded. By using this new methodology, we were able to
reduce significantly the running time while maintaining the classification perfor-
mance. Moreover, our new approach is independent on the subsequent classifier.
Finally, it is worth mentioning that the proposed method can be used with any
feature selection algorithm without any modifications, so it could be seen as a
general framework for distributed feature selection.

As future work, we plan to test the scalability properties of the proposed
method with datasets larger than 100 000 samples. Moreover, it would be inter-
esting to perform a sensitivity analysis on the value chosen for α. Finally, another
line of future research would be trying other complexity measures.

Acknowledgments. This research has been economically supported in part by the
Ministerio de Economı́a y Competitividad of the Spanish Government through the
research project TIN 2012-37954, partially funded by FEDER funds of the European
Union; and by the Conselleŕıa de Industria of the Xunta de Galicia through the research
project GRC2014/035.

References

1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.
ics.uci.edu/ml (accessed January 2015)

2. Zhao, Z.A., Liu, H.: Spectral feature selection for data mining. Chapman &
Hall/CRC (2011)

3. Guyon, I.: Feature extraction: foundations and applications, vol. 207. Springer,
Heidelberg (2006)

4. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinformatics 23(19), 2507–2517 (2007)

5. Chan, P.K., Stolfo, S.J.: Toward parallel and distributed learning by meta-learning.
In: AAAI workshop in Knowledge Discovery in Databases, pp. 227–240 (1993)

6. Ananthanarayana, V.S., Subramanian, D.K., Murty, M.N.: Scalable, distributed
and dynamic mining of association rules. In: Prasanna, V.K., Vajapeyam, S.,
Valero, M. (eds.) HiPC 2000. LNCS, vol. 1970, pp. 559–566. Springer, Heidelberg
(2000)

7. Tsoumakas, G., Vlahavas, I.: Distributed data mining of large classifier ensembles.
In: Proceedings Companion Volume of the Second Hellenic Conference on Artificial
Intelligence, pp. 249–256 (2002)

8. Das, K., Bhaduri, K., Kargupta, H.: A local asynchronous distributed privacy
preserving feature selection algorithm for large peer-to-peer networks. Knowledge
and information systems 24(3), 341–367 (2010)

9. McConnell, S., Skillicorn, D.B.: Building predictors from vertically distributed
data. In: Proceedings of the 2004 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, pp. 150–162. IBM Press (2004)

10. Skillicorn, D.B., McConnell, S.M.: Distributed prediction from vertically parti-
tioned data. Journal of Parallel and Distributed computing 68(1), 16–36 (2008)

11. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks:
A review and annotated bibliography. Computational Statistics & Data Analysis
53(12), 4046–4072 (2009)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


28 V. Bolón-Canedo et al.

12. Banerjee, M., Chakravarty, S.: Privacy preserving feature selection for distributed
data using virtual dimension. In: Proceedings of the 20th ACM international con-
ference on Information and knowledge management, pp. 2281–2284. ACM (2011)

13. Bolón-Canedo, V., Sánchez-Maroño, N., Cerviño-Rabuñal, J.: Scaling up feature
selection: a distributed filter approach. In: Bielza, C., Salmerón, A., Alonso-
Betanzos, A., Hidalgo, J.I., Mart́ınez, L., Troncoso, A., Corchado, E., Corchado,
J.M. (eds.) CAEPIA 2013. LNCS, vol. 8109, pp. 121–130. Springer, Heidelberg
(2013)

14. de Haro Garćıa, A.: Scaling data mining algorithms. Application to instance and
feature selection. Ph.D. thesis, Universidad de Granada (2011)

15. Basu, M., Ho, T.K.: Data complexity in pattern recognition. Springer (2006)
16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

Weka data mining software: an update. ACM SIGKDD Explorations Newsletter
11(1), 10–18 (2009)

17. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis,
The University of Waikato (1999)

18. Dash, M., Liu, H.: Consistency-based search in feature selection. Artificial intelli-
gence 151(1), 155–176 (2003)

19. Zhao, Z., Liu, H.: Searching for interacting features. In: IJCAI, vol. 7,
pp. 1156–1161 (2007)

20. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning.
Computer Science 98, 181–191 (1998)

21. Kononenko, I.: Estimating attributes: analysis and extensions of relief. In:
Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182.
Springer, Heidelberg (1994)

22. Quinlan, J.R.: C4. 5: programs for machine learning. Morgan kaufmann (1993)
23. Rish, I.: An empirical study of the naive bayes classifier. In: IJCAI 2001 workshop

on empirical methods in artificial intelligence, vol. 3, pp. 41–46 (2001)
24. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine

learning 6(1), 37–66 (1991)
25. Vapnik, V.N.: Statistical learning theory. Wiley (1998)


	A Distributed Feature Selection Approach Based on a Complexity Measure
	1 Introduction
	2 Methods
	2.1 Distributed Feature Selection Algorithm
	2.2 Experimental Setup

	3 Experimental Results
	3.1 Number of Selected Features
	3.2 Classification Accuracy Results
	3.3 Runtime
	3.4 Case Study: Determining the Optimal Interval of Votes

	4 Conclusions
	References


