
Modeling Retina Adaptation
with Multiobjective Parameter Fitting
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Abstract. The retina continually adapts its kinetics, average response
and sensitivity to the conditions of the environment. Retinal neurons
adapt essentially to the mean light intensity and its temporal fluctu-
ations over the mean, also called temporal contrast. Contrast adapta-
tion has two distinct temporal expressions with fast and slow compo-
nents. Here, we present a configurable retina simulation environment that
accurately reproduces both contrast components. A contrast increase in
the visual input accelerates kinetics of the filter, reduces sensitivity and
depolarizes the membrane potential. Slow adaptation does not affect
the temporal response but produces a progressive hyperpolarization of
membrane potential. The implemented model for contrast adaptation
provides a neural basis of each retinal stage, from photoreceptors up to
ganglion cells, to explain the observed retina behavior. Both forms of
contrast adaptation, fast and slow, are captured by a combined model of
shunting feedback of bipolar cells and short-term plasticity (STP) at the
bipolar-to-ganglion synapse. Biological accuracy of the model is evalu-
ated by comparison of the measured neural response with the simulated
response fitted to published physiological data. One problem with the
simulated model is finding its optimal parameter settings, since the model
response is described by a complex system of different retina stages with
linear, nonlinear and feedback connections. We propose to use a multiob-
jective genetic optimization to automatically search the parameter space
and easily find a feasible configuration solution.

Keywords: Visual adaptation · Multiobjective genetic optimization ·
Retina simulator · Shunting inhibition · Short-term plasticity

1 Introduction

The visual system quickly adapts its dynamic range to encode more efficiently
changes in the environment [1–3]. Neural sensitivity is increased when input sig-
nals are weak to improve the signal-to-noise ratio. However, when input signals
are strong the neural amplification factor is reduced and the time course accel-
erated to prevent the response from saturation and to anticipate faster temporal
patterns. At the earliest stages of the visual system neurons adapt primarily to
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the mean light intensity and its standard deviation relative to the mean over
time, known as temporal contrast. Our work focused on reproducing contrast
adaptation mechanisms using a retina model automatically configured by a mul-
tiobjective genetic algorithm.

Two different temporal components have been observed for contrast adap-
tation: a fast change that occurs within the first 100 ms and a slow change
over 10 s [4–8]. When contrast of the visual input changes from low to high
values, temporal filtering quickly accelerates, sensitivity decreases, and the aver-
age response increases. If a high variance is maintained over time, the temporal
response is not modified but the ganglion membrane potential shows a slow
decay. Upon a decrease in contrast, all these changes reverse direction but with
asymmetric time constants for slow adaptation [4,7,9].

Several models have been proposed for contrast adaptation [4,10–13]. How-
ever they focused on only a few aspects of adaptation or do not fully characterize
all neural stages in the retina. Moreover, some of them used functional modules
that do not clearly connect with the underlying biophysical mechanisms. We
present a retina model that reproduces both slow and fast components of con-
trast adaptation and provides a neural mechanism at each retinal stage, from
photoreceptors up to ganglion cells, to explain the observed retina behavior.
To evaluate the biological accuracy of the model, the physiological experiment
described by Ozuysal and Baccus [4] was reproduced using a configurable retina
simulation environment that can approximate different retina models. Further
details of this platform are provided in previous publications [14]. A multiob-
jective genetic algorithm automatically fits responses of the simulated multi-
stage model to neural responses measured in the experiment. Since the simulated
response and its objective function cannot be easily described by a mathematical
model, because of the multiple complex interactions among the different retina
stages (e.g., feedback connections), a genetic algorithm is used as an efficient
approach to find an optimal solution.

The rest of the paper is organized as follows. In section 2 we detail the
neural model implemented to reproduce contrast adaptation. Parameter fitting
and simulation results of the physiological experiment are described in section 3.
Finally, in section 4, we discuss the conclusions.

2 Retinal Circuitry for Contrast Adaptation

Contrast adaptation originates in bipolar cells and neither photoreceptors nor
horizontal cells are involved in the process [5,6]. Recent experiments have shown
that contrast adaptation effects are still present under physiological blockade
of amacrine synapses, ruling out a critical role for amacrine cells in driving
contrast adaptation [2,5,15]. Slow adaptation mechanisms are apparently driven
by prolonged depression of glutamate release at bipolar cell synapses [4,9,16–19],
whereas inactivation of voltage-dependent Na+ channels in ganglion cells [7,20]
and calcium-related mechanism in bipolar cells [15] may be responsible for the
fast component. In addition, a large fraction of adaptation has been observed at
the bipolar-to-ganglion synapse [5,21].



Modeling Retina Adaptation with Multiobjective Parameter Fitting 177

A well-known mathematical tool, the linear-nonlinear analysis (LN) [5–8,22],
is usually used to fully characterize contrast adaptation. A LN analysis gener-
ates two output plots, represented by a linear filter and a static nonlinearity,
that describe the filtering properties of a neuron. The LN analysis separates the
temporal behavior of the cell from nonlinear response components (e.g., synaptic
rectification or membrane depolarization). The neural response is first correlated
with the input pattern to obtain the temporal filter. This filter is convolved after-
wards with the stimulus to generate a linear model of the response. Then, the
fixed nonlinearity is calculated by plotting the response against this linear model
of the response [2,6].

Our model of contrast adaptation places temporal adaptation and changes
of the static nonlinearity at different retina stages. Both forms of contrast adap-
tation, fast and slow, are captured by a combined model of shunting feed-
back [10,11] and short-term plasticity (STP) at the bipolar-to-ganglion synapse
[4,9,16–19] (Figure 1). A whole retina architecture is described by this model.
Every retinal layer of the model is represented by a series of biophysical mech-
anisms that explain some specific aspect of the signal processing, such as mem-
brane potential integration or synaptic rectification. These mechanisms, provided
by a simulation environment [14], are based on well-known retina models recur-
rently used in the literature to characterize different physiological experiments.

Visual input is first processed by the photoreceptor layer through a double-
stage process that includes a temporal linear filter and a static nonlinearity. Since
contrast adaptation is not present at this retina stage, a linear approximation of
the neural response, L(t), is defined based on the linear kernel K(x, y, τ) [23,24]:

L(t) =
∫ ∞

0

dτ

∫
(x,y)εRF

K(x, y, τ)s(x0 − x, y0 − y, t − τ)dxdy (1)

where s(x, y, t) is the visual stimulus and RF the receptive field of the cell. The
neural response depends linearly on all past values of the input stimulus located
in the cells receptive field RF . This integral corresponds to the well-defined
convolution operation:

L(t) = (s ∗ K)(x0, y0, t) (2)

K(x, y, t) can be broken down as a product of two functions, one that accounts
for the spatial receptive field and the other one for the temporal receptive field:

K(x, y, t) = Ks(x, y)Kt(t) (3)

The spatial receptive field, Ks(x, y), is modeled as a Gaussian function, sim-
ilarly to kernels used in the receptive field model proposed by Rodieck [25] and
Enroth-Cugell and Robson [26]. An exponential cascade function, Et(t), based
on the implementation of Virtual Retina [10], was adapted to model the tem-
poral filter, Kt(t). This type of filters, with multiple low-pass stages, has been
commonly used to characterize processes such as the phototransduction cascade
in cones [27].

Et(t) =
(nt)n exp(−nt/τ)

(n − 1)!τn+1
(4)



178 P. Mart́ınez-Cañada et al.

Fig. 1. Schematic view of the retina circuit proposed to reproduce contrast adapta-
tion, where L and M correspond to L- and M-cones, respectively. Temporal kernels of
photoreceptors (top-right) and horizontal cells (top-left) are represented by low-pass
kernels implemented as exponential cascade filters with different time constants. Sub-
traction of the signal from photoreceptors and horizontal cells at the Outer Plexiform
Layer, which is the layer of neural synapses that connects photoreceptors, horizontal
and bipolar cells, produces the typical biphasic shape observed in bipolar and subse-
quent neural layers. The proposed model places temporal adaptation and changes of
the static nonlinearity at different retina stages. Bipolar shunting feedback mechanism
is responsible for adaptation of the linear filter, whereas the STP module at bipolar-
to-ganglion synapse for polarization and hyperpolarization offsets of the nonlinearity.
It is shown at the bottom of the figure a representation of the type of results that are
obtained for the contrast experiment (shunting feedback and STP module). Further
details of this experiment and the nomenclature used are included in the text and in
Figure 2.

The exponential cascade filter peaks at time τ and the filter shape is
controlled by the number of low-pass stages, n. The synaptic output of pho-
toreceptors is again delayed by a similar low-pass scheme implemented at hor-
izontal cells (Figure 1). Linear subtraction of the signal from photoreceptors
and horizontal cells at the Outer Plexiform Layer, which is the layer of neural
synapses that connects photoreceptors, horizontal and bipolar cells, produces
the typical biphasic shape observed in bipolar and subsequent neural layers [5,6]
(Figure 1).
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Membrane potential of bipolar cells is described by a single-compartment
model. The basic equation that explains the temporal evolution of a single-
compartment model is [23]:

Cm
dV (t)

dt
=

∑
i

Ii(t) +
∑

j

gj(Ej(t) − V (t)) (5)

where the index j indicates the input ionic channel, Cm is the membrane capac-
itance, V the membrane potential, gj is the conductance of the channel, Ej the
reversal potential of the channel and the term

∑
i Ii denotes the sum of external

input currents. Channel conductances are modified by delayed and rectified feed-
back from bipolar output to reproduce the shunting inhibition effect. Shunting
inhibition has been used to reproduce nonlinear mechanisms of the retina, such
as contrast and luminance gain control [10,11], directional selectivity to motion
[28,29], and normalization of the linear response in the primary visual cortex
[30]. Temporal adaptations in the linear filter of the LN analysis are produced
by shunting inhibition (Figure 1).

Polarization and hyperpolarization offsets of the nonlinearity are implemented
by a model of short-term plasticity. It was suggested that opposing mechanisms
of plasticity (i.e., depression and facilitation) could be combined together to com-
pensate the mutual information loss [31]. Following this idea, the model includes a
short-term plasticity module that correlates synaptic weight with the neural input
to simulate a depolarizing offset of the ganglion membrane for high contrast steps
[4,6]. On the other hand, synaptic depression occurs for maintained values of con-
trast with the synaptic offset decaying exponentially back to its resting value. This
module is defined by:

P = P + kf (km(t)abs(input) − P ) (6)

where P is the offset of the synapse, the parameter kf controls the degree of
facilitation, and the factor (km(t)abs(input)−P ) prevents the offset from grow-
ing indefinitely. A rectification of the input is applied by the term of absolute
value. A normalization of the input would be required, and the term would
become abs(input − EV ), if the bipolar input had an offset EV . The variable
km is responsible for the slow depression of the synapse. Its exponential decay
is approximated by:

km(t + 1) = kmInf + (km(t) − kmInf ) exp(−step/tau) (7)

with a temporal constant defined by the quotient of the simulation step and the
parameter tau. kmInf fixes the resting value and is inversely proportional to the
input using a depression factor kd:

kmInf =
kd

abs(input)
(8)
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3 Parameter Fitting and Simulated Neural Response

The model for contrast adaptation is described by a complex multistage system
with different retinal layers interconnected by linear, nonlinear and feedback
synaptic mechanisms. Thus, its simulated neural response and consequently the
optimization error function, understood as the difference between the simulated
and the measured responses, cannot be easily described by mathematical func-
tions. Moreover, the lack of smoothness in the error function and the existence
of multiple local minima are another critical aspects to be considered when
selecting the optimization method. A multiobjective genetic algorithm can be
an efficient and easy solution to simultaneously fit the model to the different
measured neural responses.

We fit the model using a multiobjective genetic algorithm provided by the
Python library DEAP [32]. DEAP is a very flexible and intuitive evolutionary
computation framework that allows a rapid prototyping of different optimization
algorithms. Besides, the retina simulation platform is interfaced with NEST [33]
to generate spiking activity of ganglion cells. An evolutionary computation tool
that is executed in Python, such as DEAP, facilitates its integration with the
NEST simulation script, defined in PyNEST (its Python interface), and sim-
plifies the code by combining both simulation and optimization into a single
script.

A general evolutionary search was configured whereby the random initial
population of solutions is evolved by applying crossover (two-point crossover)

Fig. 2. Comparison of the LN analysis obtained from simulation results (solid line)
and the LN analysis of physiological data (markers). Four different contrast intervals
are considered in the measurements: ‘L early’ corresponds to the first 10 seconds after
a low contrast step and ‘L late’ to the period from 10 to 20 seconds after a low contrast
step. ‘H early’ and ‘H late’ are defined similarly for a high contrast step. A contrast
increase in the visual input accelerates kinetics of the filter and its response becomes
more differentiating. At the same time, the static nonlinearity shows an increase of
the offset and a decrease of the average slope. Slow adaptation does not affect the
temporal response, thus only two contrast periods are considered for the linear filter,
but produces a progressive hyperpolarization of membrane potential.
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and mutation (gaussian mutation) operators in combination with a selection
mechanism (tournament selection). Individuals are evaluated every new gener-
ation by a multiobjective fitness function with the same minimization weights
for all objectives. The fitness function simulates a forty-second sequence of the
retina model with parameters set by values of the individual evaluated. It com-
putes then the LN analysis of simulation results and generates an error metric
between simulated and measured data. By simplicity and effectiveness, a mean
squared error (MSE) was used as estimator of this error function:

MSE =
∑

i

(rmeasured(i) − rsimulated(i))2 (9)

where rmeasured are sampled values from the LN analysis of physiological results
and rsimulated are generated by simulation. Target physiological data were ob-
tained by sampling curves of the LN analysis published by Ozuysal and Baccus [4].
Nearly total independence of the shunting feedback mechanism, affecting only the
linear filter, and the STP module, responsible for variations of the offset, allows a
double-stage minimization process that reduces the parameter search space and
hence the computation time.

Twelve parameters of the retina model, up to bipolar cells, were first fitted
simultaneously to the high and low contrast curves of the linear filter. These
parameters control the shape of temporal kernels, such as τ and n in equation 4,

Fig. 3. Simulated neural response of ganglion cells over time. A low contrast stimulus
is presented from 0 to 20000 ms, after a high contrast period before 0 ms. At 20000
ms there is a high contrast step. The response to a high contrast step is characterized
by two distinctive temporal behaviors: first a fast hyperpolarization of the membrane
potential is produced, followed by a slow decay with a higher time constant. A low
contrast step is described by a single time constant that produces a slow increase in
the offset, prolonged over the whole period.
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and the shunting feedback mechanism described in equation 5. Then, by fixing
the optimized parameters of the first retina stages we fitted seven parameters of
the STP module to the four curves observed for the static nonlinearity (Figure 2).
Optimal parameter values are within the biological range reported in different
physiological studies (e.g., values of τ for photoreceptors and the slow mechanism
of the STP module are 0.085 and 12 s, respectively).

For a high step contrast, the retina model captures both the decrease in the
time to peak and a more differentiating response of the linear filter, and the
decrease of the average slope of the nonlinearity. Similarly to the LNK model [4]
our simulation cannot reproduce oscillations of the high contrast curve at the
beginning (< 50 ms) and the end (> 150 ms) of the filter time course. These
oscillations of the high contrast curve do not represent the neural response of all
cells measured [6,21]. However, they tend to appear in cells that strongly adapt
to contrast and further research is required to model this behavior.

A high contrast step also produces a fast depolarization of the membrane that
is represented by the increase of the offset in the static nonlinearity (Figure 2).
When a high variance is maintained over time the temporal response is not
modified but the membrane potential shows a slow decay. Upon a decrease in
contrast, all these changes reverse direction but with asymmetric time constants
for slow adaptation [4,7] (Figure 3).

4 Discussion

We described a neural model that reproduces contrast adaptation in the retina.
Both forms of contrast adaptation, fast and slow, are captured by a combined
model of shunting feedback [10,11] and short-term plasticity at the bipolar-
to-ganglion synapse [4,9,16–19] (Figure 1). Unlike other models, a whole retina
architecture is proposed, which provides a neural basis of each retinal stage, from
photoreceptors up to ganglion cells, to explain the observed retina behavior.
We used the neural modules provided by a simulation environment [14] that
reproduce widely studied properties of the retina processing, such as membrane
potential integration or synaptic rectification.

We fit the model using a multiobjective genetic approach since it provides
an easy an efficient solution for dealing with the complexity of the simulated
response and its objective function. Target physiological data were obtained by
the LN analysis published by Ozuysal and Baccus [4]. Independence of the shunt-
ing feedback mechanism, affecting only the linear filter, and the STP module,
responsible for variations of the offset, allows a double-stage minimization pro-
cess that reduces the computational load of searching the whole parameter space.
However, we think that a one-step minimization process may improve the fitting
of some intervals, such as the oscillations observed in some parts of the high
contrast curve. Another computation architectures should be then studied (e.g.,
high-performance computing) to speed up the optimization process. Different
optimization strategies can be also considered to fully exploit the potential of
this model.
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