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Abstract. Schizophrenia is a complex and severe neurological disorder that affects 
lots of people worldwide. Despite its strong evidence of heritability revealed by 
lots of genetic studies, research for locating of schizophrenia associated genes  
remains frustrating as numerous efforts had failed to identify biomarkers that could 
strongly impact the diagnosis and prognosis of schizophrenia. The major challenge 
lies in the weak discrimination of single gene marker and the enormous number  
of gene variants that exist in human genome. In this paper we propose a hybrid  
feature selection method that utilizes the biological structural information of the 
gene variants to tackle this problem. A set of statistical techniques are developed to 
encourage the clustering of multiple informative SNP variants on the same gene, 
which boost the probability of finding biologically meaningful features and sup-
presses false discoveries. As a result, the proposed method achieves significantly 
better performance on a published schizophrenia human genome data set compared 
with previous studies, with an area-under-ROC-curve of 65% and an odd ratio of 
2.82 (95%CI: 1.80 – 4.40). 36 gene markers are discovered to be associated with 
the onset of schizophrenia with many of which verified directly or indirectly  
by previous literature. The method proposed in this paper can be also adopted for 
efficient control of false discoveries in finding biomarkers from genomic data. 
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1 Introduction 

Schizophrenia is a heterogeneous and multi-factored disease that affects approximate-
ly 0.5-1.2% of individual worldwide [1]. Schizophrenia is very complex partly due to 
the complicating of brain and the enormous neuronal interconnections and permuta-
tions thereof in humans. It is thought to be caused by both genetic and environmental 
factors and the interactions between them [2]. Though genetic factors are considered 
to be the main issues since schizophrenia has a heritability of about 80%, the research 
based on genetics has been frustrating because numerous efforts had failed to identify 
biomarkers that could strongly impact the diagnosis and prognosis of schizophrenia. 
However, with the development of high-throughput genotyping technologies,  
many biomarkers especially single nucleotide polymorphisms (SNPs, also termed as 
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common genetic variants) have been identified to be associated with schizophrenia as 
some studies shown [3-6].  

Considering the major goal of schizophrenia genetic research is to choose a list of 
genetic loci with significant biomarkers, machine learning methods become good 
choices since they have been applied in many biological-related researches success-
fully such as microarray analyses, etc. In the field of schizophrenia, few studies had 
adopted machine learning methods from different aspects. One study identified 36 
SNPs related to schizophrenia using logit linear models to represent the relationship 
between genotype and risk of schizophrenia. Results indicated that a Bayesian  
approach could identify genes possibly involved in the etiology of schizophrenia [7]. 
To identify relationships between brain structure volumes and cognitive performance, 
and the differences of these relationships between control and schizophrenia patients, 
a study used a Bayesian decision-theoretic method to find morphological biomarker 
features that best explained neuropsychological test scores in the context of a multiva-
riate response linear model with interactions [8]. A study paid attention to the brain 
cortical thickness in order to investigate possible subtypes of schizophrenia patients 
using Lloyd’s k-means cluster analysis and found no subtypes specific to patients [9]. 
Another study used a hybrid machine learning method for fusing fMRI and SNP data 
to classify schizophrenia patients and healthy controls [10]. These studies showed that 
machine learning methods can identify biomarkers (such as SNPs) with biological 
significance for the deep researching of schizophrenia.  

Nevertheless, despite these attempts, the genetic origin of schizophrenia remains 
almost unrevealed. Specifically, most of the above works merely discovers a set of 
weak associated biomarkers (most of which have statistical significance p >0.001), 
without giving a complete prediction model. Most of them are not cross-validated or 
have only marginal separation on the validation data. Although in [10] the authors 
claimed to achieve 87% accuracy in leave-one-out cross validation of a small data set, 
they actually used the information of the validation sample (with label information) 
during the feature selection phase, hence the result is not a real cross-validation accu-
racy, but should be regarded as a training accuracy which is not externally validated 
and the replicability is questionable. Hence, finding a discriminative model for sepa-
rating schizophrenia vs. normal genotypes will still be a milestone in the research of 
schizophrenia genomics. 

The major challenge in finding replicable schizophrenia gene markers is that this 
disease is likely caused by a collection of genetic factors but no gene is discovered to 
be strongly informative. Due to the large number of human gene variation factors (for 
example, there are approximately 10 million SNPs on the human genome) and the 
restricted number of samples under study, a large number of false-positive biomarkers 
will be selected which seems to be informative on the training data but will fail in the 
validation data. Most existing feature selection methods are not powerful enough to 
control the false-positive rate in such a high dimension and weak indicator case. 

In this paper we propose a feature selection strategy to tackle this problem by  
taking into account the distribution information of the selected factors on the genomic 
structure. Specifically, the clustering of multiple informative features on the same 
gene or chromosome will provide an additional indication that these features are  
not likely random. For example, some previous works have found a set of schizophre-
nia-associated SNPs clustered on the same gene [6] or a set of genes on the same 
chromosome [11]. By exploiting this character and favor clustered features, we are 
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able to select features that are more reliable and control the false positive rate. A cru-
cial issue is to quantitatively describe the degree of enrichment for features on a gene 
or a chromosome. We employ the idea of multi-dimensional chi-square test and  
design a hybrid pipeline to pick out a set of gene variants that are enriched on a few 
genes. As a result, we derive a prediction model that achieves a C-statistics accuracy 
of 0.65 on a ten-fold cross-validation test, which is significantly higher than previous 
results. A set of schizophrenia-associated genes, and SNPs on them, are identified, 
which are proved to be with rational biology interpretation.  

2 Material and Methods 

2.1 Dataset 

We downloaded SNP array data GSE27923 [11] from NCBI GEO [12, 13]. The data-
set contained 120 schizophrenia patient-parents trio samples. In all the 360 persons 
detected, 128 were schizophrenia patients (including 120 schizophrenia patients, 6 of 
these patients’ father and 2 of these patients’ mother were also schizophrenia patients) 
and 232 were healthy controls. Four SNP array platforms were used for each person: 
Affymetrix Human Mapping 50K Hind240 SNP Array, Affymetrix Human Mapping 
50K Xba240 SNP Array, Affymetrix Human CentHindAv2 SNP Array and Affyme-
trix Human CentXbaAv2 SNP Array. The SNP probes could be mapped to 115,117 
NCBI dbSNP [14] entries altogether, which scatter on all 22 human chromosomes  
and each SNP entry contains three sub-genotypes. 

2.2 Overall Framework 

Fig.1 demonstrates the framework of the overall procedure in this paper. We split the 
original data in to ten folds randomly. In each iteration, 9 folds of the data are used for  
 

 

Fig. 1. Framework of the feature selection and validation procedure 
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model building and one fold for model validation. The procedure is iterated until all 
folds are used for validation. The compound result of all validations is used to eva-
luate the performance of the model. In order to deal with the high dimensional nature 
of the data and the small sample size, we propose a hybrid feature selection scheme 
combining multiple steps, which will be introduced in the next section.  

2.3 Feature Selection 

2.3.1 Symmetric Uncertainty 
Because the gene SNP features are expressed in categorical variables, traditional fil-
tering methods for continuous variables such as Student’s t-test are not able to apply 
to the data directly. Although one can convert categorical variables into continuous 
one using encoding techniques, due to the small number of samples and imbalance 
distribution of attribute values, traditional filtering methods usually have poor  
performance after conversion. On the other hand, chi-square test is often used for 
detecting the statistical significance between groups of categorical attributes but is 
known to be too sensitive to the variance of the data, hence is not suitable for feature 
selection. In this paper we use the symmetric uncertainty (SU) [15] as the metric for 
filtering feature selection, which is expressed by the following equation: 

 SUሺX, Yሻ ൌ ଶூሺ௑,௒ሻுሺ௑ሻାுሺ௒ሻ (1) 

Where X is the values of samples on the studied variable and Y is the class labels of 
sample, I is the mutual information between X and Y, H(X) and H(Y) are the entropy 
of X and Y, respectively. A higher SU score indicates a higher distinction between 
different classes of samples on feature X. 

Symmetric uncertainty has been previously employed in some feature selection 
methods (e.g., FCBF [16]) but in our experiment we found that these methods per-
form poorly on the  schizophrenia data, because by using the symmetric uncertainty 
as the only metric for selection, many false positive features are included in the mod-
el. In this paper, we propose multiple statistical technologies to tackle this problem 
and avert the short-coming of previous approaches. 

2.3.2 Chromosome Ranking and Selection 
The high dimensional nature of the gene SNP array and the limited number of  
samples poses a severe challenge to feature selection. In order to pick out reliable 
features, a trade-off should be considered between the completeness of the feature set 
and the control of false discoveries. In this paper we apply a conservative strategy that 
we only consider genes on a chromosome with a significant number of informative 
features.  Although some informative features will be lost by using this strategy, it is 
discovered that the false discovery rate is efficiently lowered. The detailed procedure 
of chromosome selection is described below: 
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1. Compute the SU score of each SNP variable; 
2. Sort all variables by their SU score in descending order; 
3. For a given variable i, suppose ri is the rank order of the variable, the rank score for 

the variable is given by rsi = max(100-ri,0); 
4. The rank score for a chromosome is calculated as: 

 S௖௛௥ ൌ ∑ ௥௦ೡ೔ೡ೔א౾|ஆ|   (2) 

where Ξ is the set of all SNP variables located on the chromosome chr and |Ξ| is 
the number of SNP varialbles on that chromosome 

5. Chromosomes with rank score >0.1 are selected and the SNP variables located on 
the chromosomes are all included for next feature selection steps. 

2.3.3 Gene-Wise Benjamini–Hochberg Correction 

The Benjamini–Hochberg procedure [17] is a technique for false discovery rate con-
trol which take into account the total number of variables under consideration. A  
larger number of variables considered will increase the risk of false discovery and 
thus more stringent criteria should be applied to control the risk. On the other hand, a 
larger number of informative features will imply more chance of finding true positive. 
The BH procedure applied a balancing strategy by re-calculating the measurement of 
significance as:  

௞ݍ  ൌ min ቀ௠௞ ,௞݌ ௞ାଵቁݍ ,      ݇ ൌ ݉ െ 1 … ௠ݍ    ,1 ൌ  ௠ (3)݌

where {pk} is the ordered set of the p-values for all variables derived from a normal 
statistical test (such as Student’s t-test or chi-square test), satisfying ݌ଵ ൑ ଶ݌ ൑ ڮ  ൑݌௠, and m is the total number of variables in a given data set.  

One thing to address is that unlike Student’s t-test or chi-square test, there is no 
traditional measurement of significance for symmetric uncertainty. Nevertheless, we 
empirically observe that the distribution of SU score approximates the chi-square 
distribution. Hence we used the following method to calculate the significance  
(p-value) of SU score for each variable: 

ௌ௎ሺܺ௞ሻ݌  ൌ 1 െ ሺܨ ௌ௎ሺ௑ೖ,௒ሻ௠௘௔௡೔אΩ൫ௌ௎ሺ௑೔,௒ሻ൯ , 1ሻ (4) 

where F(x,1) is the cumulative distribution function for the chi-square distribution 
with degree of freedom 1, Ω is the entire set of all variables and Xk is the variable 
under investigation. 

It should be noted that the calculation of p-value is uniform for all variables, while 
the calculation of the q-value is applied on SNPs located on each gene separately. By 
this means, genes with a large number of SNP mutations are filtered with a more strict 
criteria and the overall chance of false discovery is suppressed, leading the selected 
features to be more stable. 
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2.3.4 Gene-Wise Chi-square Test 
The BH procedure is powerful in reducing the number of false features. However, it 
does not provide a mechanism to boost informative genes. In biology, the phenome-
non that a significant number of disease-associated SNPs clustering on the same gene 
provide a strong indicator that the gene should play an important role on the devel-
opment of the disease. To quantitatively measure this phenomenon and enough  
clustered feature, we apply a multi-dimensional chi-square model: 

ሻܩሺ݌  ൌ min ௝ୀଵ..|ீ|ሺ1 െ ሺܨ ∑ ௌ௎ሺ௑ೖ,௒ሻೖసభ..ೕ௠௘௔௡೔אΩ൫ௌ௎ሺ௑೔,௒ሻ൯ , ݆ሻ) (5) 

where ܩ ൌ ሼXଵ, ܺଶ, … , |ܺீ|ሽ is a set of SNP variables on the same gene which are 
sorted in increasing values of their single-SNP significance ݌ௌ௎ሺܺ௞ሻ. Eq. 5 seeks for 
an optimal number of variables which maximizes the statistical significance of the 
model, and use it as the significance of the gene. In this manner the clustering effect 
of informative variables on the same gene is encouraged. 

2.3.5 Hybrid Feature Selection Scheme 
With the above procedure we got three kinds of evaluation scores for each SNP varia-
ble: SU score, the q-value of the SNP with the gene, and the chi-square p-value of the 
gene that the SNP belongs to (SNPs belonging to the same gene are all assigned the 
same p-value). We then rank each score individually for all variables selected in  
section 2.3.3, with SU score in descending order and p-value or q-value in ascending 
order. The largest rank of the three ranks is used as the rank of the variable. After that, 
the 30 top-ranked variables in each fold of training dataset are selected for model 
building. 

2.4 Model Building 

The Naïve Bayes Classifier 

 PሺY ൌ y଴|Xሻ ൌ PሺY ൌ y଴ሻ ∏ ܲሺݔ௜௠௜ୀଵ |ܻ ൌ y଴ሻ (6) 

is adopted as the prediction model for clinical outcomes of gene variables. Here 
y0=0 indicates a healthy outcome and y0=1 indicates a disease outcome. ܺ ൌሼxଵ, … ,  ௠ሽ is a test sample with m feature variables selected on the above steps. Theݔ
prior probability P(Y) and conditional probabilities P(xi|Y) are computed from the 
training data set with Laplace smoothing applied [18].  

In each round of cross-validation test, each validation test sample is assigned a 
predicted probability. After the entire ten-fold cross-validation is finished, the predic-
tion results are merged together using the predicted probability as the unified out-
come. The probability P=0.5 is then used as a cut-off to separate the samples into high 
risk (P>=0.5) and low risk (P<0.5) groups. The odds ratio between the two groups is  
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computed, and a receiver operating characteristic (ROC) curve [19] is plotted based 
on the data to evaluate the performance of the derived models. 

3 Results 

Fig.2 depicts the odds ratio obtained by the models created in this paper and its com-
parison to previous results. With the probability cut-off P=0.5, our model achieves an 
odds ratio of 2.82 (95% CI: 1.80 – 4.40) which is significantly better than previous 
reported results on cross-validation data. The odds ratio results of Purcell [3] and Shi 
[6] are taken directly from the original report of their papers, with ratios converted to 
be always larger than 1. The result of Yamada [11] is computed using their published 
data (which is also the material used in this paper) using the best result of the selected 
biomarkers reported in their paper. Among twenty SNP variables reported in [11], 
only two variables have the 95% CI of the odds ratios completely larger than 1 (1.98 
[CI: 1.22-3.21] for SNP rs10496761, and 1.89 [CI: 1.18-3.04] for SNP rs1048076, 
respectively). Hence, although the calculated odds ratio of [11] is relatively high, it is 
not obtained on a validation set and hence the comparison is biased to their results. 
Even so, they are still surpassed by our results. Moreover, these two SNPs only identi-
fy 24% and 35% of the patients, respectively. When combining them together, the 
number of false positive patients grows a lot and the odds ratio drop to near 1. Thus 
the gene markers reported in previous study [11] is not capable of making accurate 
prediction. 
 

 

Fig. 2. Comparison of the odd ratios obtained by the result of this paper and previous studies in 
Purcell [3], Shi [6], Yamada [11], respectively. The markers show the positions of the mean 
odds ratio and the lines show the positions of the 95% confidence intervals (CI). The CI of the 
Purcell marker was not reported. 
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Fig.3 depicts the obtained ROC curve following the ten-fold cross validation pro-
cedure, the area under ROC curve (AUC) is 0.65. As a comparison, using traditional 
filter selection methods such as t-test or chi-square test achieved a poor AUC of near 
0.5. By carrying out a permutation test using 1000 permuted datasets, we further con-
firmed that the result obtained on real dataset is superior to those on permuted data 
(p<0.001) and thus the discovered model is not likely a false discovery. Although the 
discrimination is not very strong for the patient and healthy group, the result already 
outperforms previous ones where only marginal separations were obtained. 

 

Fig. 3. The receiver operating characteristic (ROC) curve obtained from ten-fold cross valida-
tion results on the studied dataset using the proposed method 

In ten-fold cross-validation, altogether 74 SNP variables are selected for model 
building in different folds. Genes with at least 10 hits in total during the ten rounds 
are chosen for biological analysis. Table 1 listed the 36 SNP variables selected and 
their biological literature previously reported. We see that most SNP variables are 
located on the X chromosome and autosome No.1, despite that usually 6-8 chromo-
somes will be considered after the chromosome selection step 2.3.3, and many SNPs 
are clustered on the same gene, which exactly as the algorithm expected. Through 
literature search, we found that 6 out of the 16 total genes have been known to be 
biomarkers for schizophrenia, and an additional 3 genes are linked with the gene 
regulation or metabolic functions regarding brain functions, which all persuades that 
our method is powerful of discovering biological relevant gene variants. Moreover, 
our study also discovered some new informative genes that help to predict the onset 
of the disease. The biological meaning of these genes will be further validated 
through further external validations with more data. 
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Table 1. List of selected gene biomarkers selected by the methods proposed in this paper. The 
symbol * denotes that the gene is known to be directly connected with schoziphrenia in 
literature, and + denotes that it is involved in some processes related to the disease or brain 
function disorders. 

Chromosome SNP ID Gene Name Gene Function Literature 

X 

rs996106 

PPP1R2P9 
protein phosphatase 1, regulatory 
(inhibitor) subunit 2 pseudogene 9

[20]+ 

rs723028 
rs205869 
rs205870 
rs4986541 
rs2410977 

X rs2285634 intron variant  TRAPPC2/OFD1 [21]* 

X 
rs5980419 

IDS iduronate 2-sulfatase 
 

rs6540313 
rs7065976 

X 

rs431207 

DMD dystrophin [25]* 
rs725979 
rs1921386 
rs1921395 
rs436628 

X rs6522686 NAP1L3 
nucleosome assembly protein 1-

like 3  

1 

rs2282729 

TNR tenascin R [23][24]* 

rs10489316 
rs10492392 
rs1385540 
rs3766680 
rs4570382 

rs10489311 
1 rs10493026 RUNX3 runt-related transcription factor 3
1 rs10489202 MPC2/BRP44 mitochondrial pyruvate carrier 2 [10]* 

1 rs149912 DCAF6 
DDB1 and CUL4 associated factor 

6 
[10]* 

3 rs1348990 no info 

3 
rs879161 

PHC3 polyhomeotic homolog 3 
rs7638400 

3 rs7619166 ACTRT3 actin-related protein T3 

3 rs10510897 CADPS 
Ca++-dependent secretion activa-

tor 
[27]+ 

17 rs3815341 CCL11 chemokine (C-C motif) ligand 11 [22]* 

17 
rs10515122 

ANKFN1 
ankyrin-repeat and fibronectin 
type III domain containing 1 rs7207271 

19 
rs3810137 

ZNF225 zinc finger protein 225 [26]+ 
rs9304639 

4 Conclusion 

The enormous number of gene variants that exist in human genome poses a major 
challenge to genomics studies and the discovery of disease-related gene biomarkers, 
especially when in the situations where no single strong correlated genes exist. In this 
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paper we proposed a hybrid feature selection method that utilizes the biological struc-
tural information of the gene variants, and adopted a set of statistical techniques to 
make use of the clustering feature of multiple informative SNP variants on the same 
gene, thus boost the probability of finding biologically meaningful against false dis-
coveries. Our study showed that the proposed method achieved significantly better 
performance on the discovery of schizophrenia associated gene markers. In the future, 
the proposed method will be also applied in other types of genomic data mining for 
efficient control of false discoveries in biomarkers discoveries. 
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