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Foreword

The 10th International Federated Conference on Distributed Compting Techniques
(DisCoTec) took place in Montbonnot, near Grenoble, France, during June 2–5, 2015.
It was hosted and organized by Inria, the French National Research Institute in Com-
puter Science and Control. The DisCoTec series is one of the major events sponsored
by the International Federation for Information Processing (IFIP). It comprises three
conferences:

– COORDINATION, the IFIP WG6.1 International Conference on Coordination Mod-
els and Languages.

– DAIS, the IFIP WG6.1 International Conference on Distributed Applications and
Interoperable Systems.

– FORTE, the IFIP WG6.1 International Conference on Formal Techniques for Dis-
tributed Objects, Components and Systems.

Together, these conferences cover a broad spectrum of distributed computing sub-
jects, ranging from theoretical foundations and formal description techniques to systems
research issues.

Each day of the federated event began with a plenary keynote speaker nominated by
one of the conferences. The three invited speakers were Alois Ferscha (Johannes Ke-
pler Universität, Linz, Austria), Leslie Lamport (Microsoft Research, USA), and Willy
Zwaenepoel (EPFL, Lausanne, Switzerland).

Associated with the federated event were also three satellite workshops, that took
place on June 5, 2015:

– The 2nd International Workshop on Formal Reasoning in Distributed Algorithms
(FRIDA), with a keynote speech by Leslie Lamport (Microsoft Research, USA).

– The 8th International Workshop on Interaction and Concurrency Experience (ICE),
with keynote lectures by Jade Alglave (University College London, UK) and Steve
Ross-Talbot (ZDLC, Cognizant Technology Solutions, London, UK).

– The 2nd International Workshop on Meta Models for Process Languages (MeMo).

Sincere thanks go to the chairs and members of the Program and Steering Com-
mittees of the involved conferences and workshops for their highly appreciated efforts.
Organizing DisCoTec was only possible thanks to the dedicated work of the Organizing
Committee from Inria Grenoble-Rhône-Alpes, including Sophie Azzaro, Vanessa Pere-
grin, Martine Consigney, Alain Kersaudy, Sophie Quinton, Jean-Bernard Stefani, and
the excellent support from Catherine Nuel and the people at Insight Outside. Finally,
many thanks go to IFIP WG6.1 for sponsoring this event, and to Inria Rhône-Alpes and
his director Patrick Gros for their support and sponsorship.

Alain Girault
DisCoTec 2015 General Chair
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Preface

This volume contains the proceedings of the 15th IFIP International Conference on
Distributed Applications and Interoperable Systems (IFIP DAIS 2015) held during
June 2–4, 2015 in Grenoble. DAIS is one of the three conferecenes that form the Dis-
CoTec 2015, the 10th International Federated Conference on Distributed Computing
Techniques, together with COORDINATION and FORTE.

The proceedings volume includes 17 papers, among which 14 are full papers and
3 are short papers. The papers relate to areas such as fault tolerance, privacy, resource
management, social recommenders, and cloud systems.

The program of the DisCoTec 2015 federated conference also includes invited talks
by Alois Ferscha (Johannes Kepler Universität, Austria), Leslie Lamport (Microsoft
Research, USA), and Willy Zwaenepoel (EPFL, Switzerland).

We would like to thank the Program Committee members for their effort in evaluat-
ing the submitted papers, and thank all the authors of submitted papers for considering
DAIS for their work. Additionally, we would like to thank the DAIS Steering Com-
mittee for their support in organizing and setting up the conference. We also thank the
developers and maintainers of the EasyChair conference management system for mak-
ing their system available to the research community.

Finally, our thanks also go to IFIP, Inria, and Génération ROBOTS for their support
for the DisCoTec 2015 federated conference.

April 2015 Alysson Bessani
Sara Bouchenak
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and José Luis Vivas

Similitude: Decentralised Adaptation in Large-Scale
P2P Recommenders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Davide Frey, Anne-Marie Kermarrec, Christopher Maddock,
Andreas Mauthe, Pierre-Louis Roman, and François Täıani
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Fluidify: Decentralized Overlay Deployment

in a Multi-cloud World

Ariyattu C. Resmi1(�) and François Taiani1,2

1 Université de Rennes 1 - IRISA, Rennes, France
2 ESIR, Rennes, France

{rariyatt,francois.taiani}@irisa.fr

Abstract. As overlays get deployed in large, heterogeneous systems-of-
systems with stringent performance constraints, their logical topology
must exploit the locality present in the underlying physical network. In
this paper, we propose a novel decentralized mechanism—Fluidify—for
deploying an overlay network on top of a physical infrastructure while
maximizing network locality. Fluidify uses a dual strategy that exploits
both the logical links of an overlay and the physical topology of its under-
lying network. Simulation results show that in a network of 25,600 nodes,
Fluidify is able to produce an overlay with links that are on average 94%
shorter than that produced by a standard decentralized approach based
on slicing, while demonstrating a sub-linear time complexity.

1 Introduction

Overlays are increasingly used as a fundamental building block of modern dis-
tributed systems, with numerous applications [15,5,8,11,22,25,13]. Unfortunately,
many popular overlay construction protocols [10,27,1] do not usually take into
account the underlying network infrastructure on which an overlay is deployed,
and those that do tend to be limited to a narrow family of applications or over-
lays [30,29]. This is particularly true of systems running in multiple clouds, in
which latency may vary greatly, and ignoring this heterogeneity can have stark
implications in terms of performance and latency.

In the past, several works have sought to take into account the topology
of the underlying infrastructure to realise network-aware overlays [30,29,28,21].
However, most of the proposed solutions are service-specific and they do not
translate easily to other overlays. To address this lack, we propose a novel decen-
tralized mechanism—called Fluidify—that seeks to maximize network locality
when deploying an overlay network. Fluidify uses a dual strategy that exploits
both the logical links of an overlay and the physical topology of its underly-
ing infrastructure to progressively align one with the other. Our approach is
fully decentralized and does not assume any global knowledge or central form of
co-ordination.

The resulting protocol is generic, efficient, scalable. Simulation results show
that in a network of 25,600 nodes, Fluidify is able to produce an overlay with links
that are on average 94% shorter than that produced by a standard decentralized

c© IFIP International Federation for Information Processing 2015
A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 1–15, 2015.
DOI: 10.1007/978-3-319-19129-4_1



2 A.C. Resmi and F. Taiani

approach based on slicing, while converging to a stable configuration in a time
that is sub-linear (≈ O(n0.6)) in the size of the system.

The remainder of the paper is organized as follows.We first present the problem
we address and our intuition (Sec. 2). We then present our algorithm (Sec. 3),
and its evaluation (Sec. 4). We finally discuss related work (Sec. 5), and conclude
(Sec. 6).

2 Background, Problem, and Intuition

Overlay networks organize peers in logical topologies on top of an existing net-
work to extend its capabilities, with application to storage [22,25], routing [8,11],
recommendation [27,1], and streaming [15,5]. Although overlays were originally
proposed in the context of peer-to-peer (P2P) systems, their application today
encompasses wireless sensor networks [7] and cloud computing [3,13].

2.1 The Problem: Building Network-Aware Overlays

One of the challenges when using overlays, in particular structured ones, is to
maintain desirable properties within the topology, in spite of failures, churn, and
request for horizontal scaling. This challenge can be addressed through decentral-
ized topology construction protocols [10,27,17,14], which are scalable and highly
flexible. Unfortunately, such topology construction solutions are not usually de-
signed to take into account the infrastructure on which an overlay is deployed.
This brings clear advantages in terms of fault-tolerance, but is problematic from
a performance perspective, as overlay links may in fact connect hosts that are
far away in the physical topology. This is particularly likely to happen in hetero-
geneous systems, such as multi-cloud deployment, in which latency values might
vary greatly depending on the location of individual nodes.

For instance, Fig. 1(a) depicts a randomly connected overlay deployed over two
cloud providers (rounded rectangles). All overlay links cross the two providers,
which is highly inefficient. By contrast, in Fig. 1(b), the same logical overlay
only uses two distant links, and thus minimizes latency and network costs.

(a) Randomly connected overlay (b) Locality aware overlay 

Geographical Area Physical Machine Logical Data 

Fig. 1. Illustration of a randomly connected overlay and a network-aware overlay
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This problem has been explored in the past [30,29,28,21,20], but most of the
proposed solutions are either tied to a particular service or topology, or limited
to unstructured overlays, and therefore cannot translate to the type of systems
we have just mentioned, which is exactly where the work we present comes in.

2.2 Our Intuition: A Dual Approach

Our proposal, Fluidify, uses a dual strategy that exploits both an overlay’s logical
links and its physical topology to incrementally optimize its deployment.

We model a deployed overlay as follows: each node possesses a physical index,
representing the physical machine on which it runs, and a logical index, rep-
resenting its logical position in the overlay. Each node also has a physical and
logical neighbourhood: the physical neighbors of a node are its d closest neigh-
bors in the physical infrastructure, according to some distance function dnet()
that captures the cost of communication between nodes. The logical neighbors
of a node are the node’s neighbors in the overlay being deployed. For simplicity’s
sake, we model the physical topology as an explicit undirected graph between
nodes, with a fixed degree. We take d to be the fixed degree of the graph, and
the distance function to be the number of hops in this topology.

Fig. 2(a) shows an initial configuration in which the overlay has been deployed
without taking into account the underlying physical infrastructure. In this ex-
ample, both the overlay (solid line) and the physical infrastructure (represented
by the nodes’ positions) are assumed to be rings. The two logical indices 0 and
1 are neighbors in the overlay, but are diametrically placed in the underlying
infrastructure. By contrast Fig. 2(c) shows an optimal deployment in which the
logical and physical links overlap.

Our intuition, in Fluidify, consists of exploiting both the logical and physical
neighbors of individual nodes, in a manner inspired from epidemic protocols, to
move from the configuration of Fig. 2(a) to that of Fig. 2(c). Our basic algo-
rithm is organized in asynchronous rounds and implements a greedy approach as
follows: in each round, each node n randomly selects one of its logical neighbors
(noted p) and considers the physical neighbor of p (noted q) that is closest to
itself. n evaluates the overall benefit of exchanging its logical index with that of
q. If positive, the exchange occurs (Fig. 2(b) and then Fig. 2(c)).

Being a greedy algorithm, this basic strategy carries the risk of ending in a
local minimum (Fig.3). To mitigate such situations, we use simulated annealing

(a) Initial overlay (b) After round 1 (c) After round 2 
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Fig. 2. Example of basic Fluidify approach on a system with n=6 and d=2
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Fig. 3. Example of local minimum of a system with n=10 and d=2

(taking inspiration from recent works on epidemic slicing[19]), resulting in a
decentralized protocol for the deployment of overlay networks that is generic,
efficient and scalable.

3 The Fluidify Algorithm

3.1 System Model

We consider a set of nodes N = {n1, n2, .., nN} in a message passing system.
Each node n possesses a physical (n.net) and a logical index (n.data). n.net
represents the machine on which a node is deployed. n.data represents the role
n plays in the overlay, e.g. a starting key in a Chord ring [17,25].

Table 1 summarizes the notations we use. We model the physical infrastruc-
ture as an undirected graph Gnet = (N,Enet), and capture the proximity of nodes
in this physical infrastructure through the distance function dnet(). In a first ap-
proximation, we use the hop distance between two nodes in Gnet for dnet(), but
any other distance would work. Similarly, we model the overlay being deployed
as an undirected graph Gdata = (N,Edata) over the nodes N .

Our algorithms use the k-NN neighborhood of a node n in a graph Gx, i.e. the
k nodes closest to n in hop distance in Gx, which we note as Γ k

x (n) . We assume
that these k-NN neighborhoods are maintained with the help of a topology
construction protocol [10,27,1]. In the rest of the paper, we discuss and evaluate
our approach independently of the topology construction used, to clearly isolate
its workings and benefits. Under the above model, finding a good deployment of
Gdata onto Gnet can be seen as a graph mapping problem, in which one seeks to
optimize the cost function

∑
(n,m)∈Edata

dnet(n,m).

3.2 Fluidify

The basic version of Fluidiy (termed Fluidify (basic)) directly implements the
ideas discussed in Sec. 2.2 (Fig. 4): each node n first chooses a random logical
neighbor (noted p, line 2), and then searches for the physical neighbor of p
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Table 1. Notations and Entities

n.net physical index of node n
n.data logical index of node n
dnet distance function to calculate the distance between two nodes in physical space
Gnet the physical graph (N,Enet)
Gdata the logical graph (N,Edata)

Γ k
net(n) k closest nodes to n in Gnet, in hop distance

Γ k
data(n)k closest nodes to n in Gdata, in hop distance

Table 2. Parameters of Fluidify

knet size of the physical neighborhood explored by Fluidify
kdata size of the logical neighborhood explored by Fluidify
K0 initial threshold value for simulated annealing
rmax fade-off period for simulated annealing (# rounds)

1: In round(r) do
2: p ← random node from Γ kdata

data (n)
3: q ← argmin

u∈Γ
knet
net (p)

Δ(n, u)

4: conditional swap(n, q, 0)

5: Procedure Δ(n, u)
6: δn ← ∑

(n,r)∈Edata
dnet(u, r)−∑

(n,r)∈Edata
dnet(n, r)

7: δu ← ∑
(u,r)∈Edata

dnet(n, r)−∑
(u,r)∈Edata

dnet(u, r)

8: return δn + δu

9: Procedure conditional swap(n, q, δlim)
10: if Δ(n, q) < δlim then
11: swap n.data and q.data
12: swap Γ kdata

data (n) and Γ kdata
data (q)

13: end if

Fig. 4. Fluidify (basic)

(noted q) that offers the best reduction in cost (argmin operator at line 3)1. The
code shown slightly generalises the principles presented in Sec. 2, in that the
nodes p and q are chosen beyond the 1-hop neighborhood of n and p (lines 2
and 3), and consider nodes that are kdata and knet hops away, respectively.

The potential cost reduction is computed by the procedureΔ(n, u) (lines 5-8),
which returns the cost variation ifnanduwere to exchange their roles in the overlay.
The decision whether to swap is made in conditional swap(n, q, δlim) (with δlim = 0
in Fluidify Basic).

To mitigate the risk of local minimums, we extend it with simulated anneal-
ing [19], which allows two nodes to be swapped even if there is an increase in the
cost function. We call the resulting protocol Fluidify (SA), shown in Figure 5.
In this version, we swap nodes if the change in the cost function is less than a

1 argminx∈S

(
f(x)

)
returns one of the x in S that minimizes f(x).
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1: In round(r) do
2: p ← random node from Γ kdata

data (n)
3: q ← argmin

u∈Γ
knet
net (p)

Δ(n, u)

4: conditional swap(n, q,Δlimit(r))

5: Procedure Δlimit(r)
6: return max

(
0,K0 × (1− r/rmax)

)

Fig. 5. Fluidify (SA)

limit, Δlimit(r), that gradually decreases to zero as the rounds progress (line 4).
Δlimit(r) is controlled by two parameters,K0 which is the initial threshold value,
and rmax which is the number of rounds in which it is decreased to 0. In the
remainder of this paper, we use Fluidify to mean Fluidify (SA).

4 Evaluation

4.1 Experimental Setting and Metrics

Unless otherwise indicated, we use rings for both infrastructure graph Gnet and
overlay graph Gdata. We assume that the system has converged when the system
remains stable for 10 rounds.

The default simulation scenario is one in which the system consists of 3200
nodes, and use 16-NN logical and physical neighborhoods (knet = kdata = 16)
when selecting p and q. The initial threshold value for simulated annealing (K0)
is taken as |N |. rmax is taken as |N |0.6 where 0.6 was chosen based on the analysis
of the number of rounds Fluidify (basic) takes to converge.

We assess the protocols using two metrics:

– Proximity - captures the quality of the overlay constructed by the topology
construction algorithm. Lower value denotes a better quality.

– Convergence time - measures the number of rounds taken by the system to
converge.

Proximity is defined as the average network distance of logical links normalized
by the diameter of the network graph Gnet:

proximity =

E
(n,m)∈Edata

dnet(n,m)

diameter(Gnet)
(1)

where E represents the expectation operator, i.e. the mean of a value over a
given domain, and diameter() returns the longest shortest path between pairs
of vertices in a graph, i.e. its diameter. In a ring, it is equal to N/2.

4.2 Baselines

The performance of our approach is compared against three other approaches.
One is Randomized (SA) (Fig. 6) where each node considers a set of ran-
dom nodes from N for a possible swap. The other is inspired from epidemic
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1: In round(r) do
2: S ← knet random nodes from N
3: q ← argminu∈S Δ(n, u)
4: conditional swap

(
n, q,Δlimit(r)

)

Fig. 6. Randomized (SA)

1: In round(r) do
2: S ← Γ

kdata
data (n)

3: q ← argminu∈S Δ(n, u)
4: conditional swap(n, q, 0)

Fig. 7. PROP-G

1: In round(r) do
2: q ← argmin

u∈Γ
knet
net (n)

Δ(n, u)

3: conditional swap
(
n, q,Δlimit(r)

)

Fig. 8. Slicing (SA)

1: In round(r) do
2: p← random node from Γ

kdata
data (n)

3: S ← Γ
knet

2
net (p) ∪ Γ

knet
2

net (n)
4: q ← argminu∈S Δ(n, u)
5: conditional swap(n, q, 0)

Fig. 9. Data-Net & Net

1: In round(r) do
2: p ← random node from Γ kdata

data (n)

3: S ← Γ
knet

2
net (p) ∪

{
knet
2

rand. nodes ∈ N \ Γ
knet

2
net (p)

}

4: q ← argminu∈S Δ(n, u)
5: conditional swap(n, q, 0)

Fig. 10. Data-Net & R

slicing[19,9], and only considers the physical neighbors of a node n for a possible
swap (Slicing (SA), in Figure. 8). The third approach is similar to PROP-G[20],
and it only considers logical neighbours of a node n for a possible swap (PROP-
G (SA), in Figure. 7). In all these approaches simulated annealing is used as
indicated by (SA). The only difference between the above four approaches is the
way in which the swap candidates are taken.

To provide further comparison points, we also experimented with some com-
binations of the above approaches. Fig. 9 (termed Data-Net & Net) is a com-
bination of Fluidify (basic) with Slicing (SA). Fig. 10 (termed Data-Net & R)
is a combination of Fluidify (basic) with Randomized (SA). We also tried a
final variant, combination-R, in which once the system has converged using Flu-
idify (basic) (no more changes are detected for a pre-determined number of
rounds), nodes look for random swap candidates like we did in Fig. 6.

4.3 Results

All the results (Figs. 11-18 and Tables 3-5) are computed with Peersim [18]
and are averaged over 30 experiments. The source code is made available in
http://armi.in/resmi/fluidify.zip. When shown, intervals of confidence are com-
puted at 95% confidence level using a student t-distribution.
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round 5 round 25 round 52

(a) Fluidify (SA)

round 5 round 25 round 49

(b) Slicing (SA)

Fig. 11. Illustrating the convergence of Fluidify (SA) & Slicing (SA) on a ring/ring
topology. The converged state is on the right. (N = K0 = 400, knet = kdata = 16)

Table 3. Performance of Fluidify against various baselines

Nodes
Proximity(%) Convergence (rounds)

Fluid(SA) Slicing(SA) Rand(SA) PROP-G(SA) Fluid(SA) Slicing(SA) Rand(SA) PROP-G(SA)

100 4.06 10.46 7.70 13.88 18.10 17.16 23.80 17.03
200 2.70 10.12 6.27 12.99 28.50 26.33 43.43 25.13
400 1.71 9.76 5.35 12.65 42.50 39.20 85.36 38.06
800 1.26 9.34 4.83 12.14 64.13 58.93 136.76 57.16

1,600 0.86 8.80 4.41 11.57 96.80 90.56 198.03 85.13
3,200 0.69 8.47 3.82 11.31 144.40 138.20 274.80 128.14
6,400 0.51 8.13 3.07 11.27 216.10 203.40 382.10 198.24

12,800 0.46 7.66 2.28 11.01 324.00 292.10 533.67 263.32
25,600 0.43 6.99 1.79 10.02 485.00 418.60 762.13 392.81

Evaluation of Fluidify (SA). The results obtained by Fluidify (SA) and
the three baselines on a ring/ring topology are given in Table 3 and charted in
Figs. 12 and 13. In addition, Fig. 11 illustrate some of the rounds that Fluid-
ify (SA) and Slicing (SA) perform. Fig. 12 shows that Fluidify clearly outper-
forms the other three approaches in terms of proximity over a wide range of
network sizes.

Fig 13 charts the convergence time against network size in loglog scale for
Fluidify and its competitors. Interestingly all approaches show a polynomial con-
vergence time. This shows the scalability of Fluidify even for very large networks.
If we turn to Tab. 3, it is evident that as the network size increases, the time
taken for the system to converge also increases. Both Fluidify and Slicing (SA)
converges around the same time with Slicing (SA) converging a bit faster than
Fluidify. Randomized (SA) takes much longer (almost twice as many rounds).
PROP-G (SA) converges faster in comparison to all other approaches. The bet-
ter convergence of PROP-G (SA) and Slicing (SA) can be explained by the fact
that both approaches run out of interesting swap candidates more rapidly than
Fluidify. It is important to note that all approaches are calibrated to consider
the same number of candidates per round. This suggests that PROP-G (SA)
and Slicing (SA) runs out of potential swap candidates because they consider
candidates of lesser quality, rather than considering more candidates faster.

Fig. 14 shows how the proximity varies with round for our default system
settings. Initial avg. link distance was around N/4 where N is the network size
and this is expected as the input graphs are randomly generated. So the initial
proximity was approximately equal to 50%. Fluidify was able to bring down
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Fig. 14. Proximity over time (N =
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Fig. 15. Average link distances in con-
verged state (N = K0 = 3200, knet =
kdata = 16). Fluidify (SA)’s links are both
shorter and more homogeneous.

the proximity from 50% to 0.7%. A steep decrease in proximity was observed
in initial rounds and later it decreases at a lower pace and finally settles to a
proximity value of 0.7% as shown in Fig 14. Randomized (SA) and PROP-G (SA)
were able to perform well in the initial stages but later on the gain in proximity
decreases. Slicing (SA) is unable to get much gain in proximity from the start
itself and converges to a proximity value of 8.4%. Cumulative distribution of
nodes based on the avg. link distance in a converged system for all the three
approaches is depicted in Fig. 15. It is interesting to see that nearly 83% of the
nodes are having an average link distance less than 10 and 37% were having an
average link distance of 1 in the case of Fluidify. But for Slicing (SA) even after
convergence, a lot of nodes are having an average link distance greater than 200.
Slicing (SA) clearly fails in improving the system beyond a limit.

The maximum, minimum and the mean gain obtained per swap in a default
system setting using Fluidify is shown in Fig. 16(a). As the simulation progresses
the maximum, minimum and the mean value of the cost function per swap in
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Fig. 16. Variation of the cost function per swap over time. Lower is better. (N =
K0 = 3200, knet = kdata = 16, note the different scales) Fluidify (SA) shows the
highest amplitude of variations, and fully exploits simulated annealing, which is less
the case for Randomized (SA), and not at all for slicing.

each round starts getting closer and closer and finally becomes equal on conver-
gence. Maximum gain per swap (negative cost) is obtained in the initial rounds
of the simulation. Maximum value obtained by the cost function is expected to
gradually decrease from a value less than or equal to 3200, which is the initial
threshold value for simulated annealing, to 0. Variation of cost function for Ran-
domized (SA) (Fig. 16(b)) and PROP-G (SA) also shows a similar behaviour
where the system progresses with a very small gain for a long period of time.
The most interesting behaviour is that of Slicing (SA) (Fig.16(c)) which does
not benefit much with the use of simulated annealing. The maximum gain that
can be obtained per swap is 32 and the maximum negative gain is 2. This is
because only the physically closer nodes of a given node are considered for a
swap and the swap is done with the best possible candidate.

The message cost per round per node will be equal to the amount of data
that a node exchanges with another node. In our approach the nodes exchange
their logical index and the logical neighbourhood. We assume that each index
value amounts to 1 unit of data. So the message cost will be 1+kdata which will
be 17 in default case. The communication overhead in the network per cycle will
be equal to the average number of swaps occurring per round times the amount
of data exchanged per swap. A single message costs 17 units. So a swap will cost
34 units. In default setting, an average of 2819 swaps happen per round and this
amounts to around 95846 units of data per round.

All the four approaches that we presented here are generic and can be used for
any topologies. Table. 4 shows how the three approaches fares for various topolo-
gies in a default setting. Fluidify clearly out performs the other approaches.

Effects of Variants. Figure. 17 shows that compared to its variants like Flu-
idify (basic), combination-R, Data-Net & Net (Fig. 9), Data-Net & R (Fig. 10),
Fluidify (SA) is far ahead in quality of convergence. Here also we consider a
ring/ring topology with default setting. The convergence time taken by Fluidify
is slightly higher compared to its variants as shown in Fig. 18.

Table 5 shows how varying the initial threshold value for Fluidify affects
its performance. From the table it is clear that as the initial threshold value
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Table 4. Performance on various topologies

Approach Physical topology Logical topology Proximity(%) Convergence(#Rounds)

Fluidify(SA) torus torus 2.4(±0.05) 162(±2.34)
Fluidify(SA) torus ring 2.6(±0.03) 171(±3.6)
Fluidify(SA) ring torus 1.8(±0.06) 156(±2.36)
Slicing(SA) torus torus 4.5(±0.05) 130(±2.16)
Slicing(SA) torus ring 5.2(±0.02) 128(±3.26)
Slicing(SA) ring torus 9.5(±0.08) 143(±4.1)

Randomized(SA) torus torus 3.82(±0.08) 423(±2.41)
Randomized(SA) torus ring 4.05(±0.04) 464(±3.28)
Randomized(SA) ring torus 2.7(±0.05) 442(±3.82)
PROP-G(SA) torus torus 4.6(±0.05) 132(±2.34)
PROP-G(SA) torus ring 5.6(±0.03) 130(±3.6)
PROP-G(SA) ring torus 10.1(±0.06) 128(±2.36)
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Table 5. Impact of K0 on Fluidify (SA)

K0 Proximity (%) Convergence (rounds)

320 2.4 156
640 1.6 145
1600 1.1 146
3200 0.7 144

increases the proximity that we obtain also become better and better. With a
higher threshold value, more swaps will occur and therefore there is a higher
chance of getting closer to the global minimum. The threshold value that gives
the best performance is used for all our simulations.

5 Related Work

Fully decentralized systems are being extensively studied by many researchers.
Many well known and widely used P2P systems are unstructured. However,
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there are several overlay networks in which the node locality is taken into ac-
count. Structured P2P overlays, such as CAN [22], Chord [25], Pastry [24], and
Tapestry [31], are designed to enhance the searching performance by giving some
importance to node placement. But, as pointed out in [23], structured designs
are likely to be less resilient, because it is hard to maintain the structure required
for routing to function efficiently when hosts are joining and leaving at a high
rate. Chord in its original design, does not consider network proximity at all.
Some modification to CAN, Pastry, and Tapestry are made to provide locality
to some extent. However, these results come at the expense of a significantly
more expensive overlay maintenance protocol.

One of the general approaches used to bridge the gap between physical and
overlay node proximity is landmark clustering. Ratnasamy et al. [21] use land-
mark clustering in an approach to build a topology-aware CAN [22] overlay
network. Although the efficiency can be improved, this solution needs extra de-
ployment of landmarks and produces some hotspots in the underlying network
when the overlay is heterogeneous and large. Some [30] [29] have proposed meth-
ods to fine tune the landmark clustering for overlay creation. The main disad-
vantage with landmark system is that there needs to be a reliable infrastructure
to offer these landmarks at high availability. Application layer multicast algo-
rithms construct a special overlay network that exploits network proximity. The
protocol they use are often based on a tree or mesh structure. Although they
are highly efficient for small overlays, they are not scalable and creates hotspots
in the network as a node failure can make the system unstable and difficult to
recover. Later proximity neighbour selection [2] was tried to organise and main-
tain the overlay network which improved the routing speed and load balancing.
Waldvogel and Rinaldi [12][28] propose an overlay network(Mithos) that focuses
on reducing routing table sizes. It is a bit expensive and only very small overlay
networks are used for simulations and the impact of network digression is not
considered.

Network aware overlays are used to increase the efficiency of network services
like routing, resource allocation and data dissemination. Works like [16] and [4]
combines the robustness of epidemics with the efficiency of structured approaches
in order to improve the data dissemination capabilities of the system. Gossip
protocols which are scalable and inherent to network dynamics can do efficient
data dissemination. Frey et al.[5] uses gossip protocols to create a system where
nodes dynamically adapt their contribution to the gossip dissemination according
to the network characteristics like bandwidth and delay. Kermarrec et al. [6] use
gossip protocols for renaming and sorting. Here nodes are given id values and
numerical input values. Nodes exchange these input values so that in the end
the input of rank k is located at the node with id k. Slicing method [19][9]
was made use of in resource allocation. Specific attributes of network(memory,
bandwidth, computation power) are taken into account to partition the network
into slices. Network aware overlays can be used in cloud infrastructure [26] to
provide efficient data dissemination.
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Most of the works on topology aware overlays are aimed at improving a partic-
ular service such as routing, resource allocation or data dissemination. What we
are proposing is a generalized approach for overlay creation giving importance to
data placement in the system. It has higher scalability and robustness and less
maintenance cost compared to other approaches. The simulated annealing and
slicing approach is motivated mainly by the works [19],[6],[9]. But these works
concentrated mainly on improving a single network service while we concentrate
on a generalized solution that can significantly improve all the network services.

6 Conclusion and Future Work

In this paper, we present–Fluidify–a novel decentralized mechanism for overlay
deployment. Fluidify works by exploiting both the logical links of an overlay
and the physical topology of its underlying network to progressively align one
with the other and thereby maximizing the network locality. The proposed ap-
proach can be used in combination with any topology construction algorithm.
The resulting protocol is generic, efficient, scalable and can substantially improve
network overheads and latency in overlay based-systems. Simulation results show
that in a ring/ring network of 25,600 nodes, Fluidify is able to produce an over-
lay with links that are on average 94% shorter than that produced by a standard
decentralized approach based on slicing.

One aspect we would like to explore in future is to deploy Fluidify in a real
system and see how it fares. A thorough analytical study of the behaviour of our
approach is also intended.

Acknowledgments. This work was partially funded by the DeSceNt project granted
by the Labex CominLabs excellence laboratory of the French Agence Nationale de la
Recherche (ANR- 10-LABX-07-01).
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Abstract. In recent years, the electrical consumption of data centers
has increased considerably leading to a rise in the expenditure bill and
in greenhouse gas emissions. Several existing on/off algorithms reduce
energy consumption in data centers or Clouds by turning off unused (idle)
machines. However, the turning off/on of servers consumes a certain
amount of energy and also induces the wear and tear of disks. Based
on the data streaming paradigm which deals with large amount of data
on-line, we present in this paper MERCi-MIsS, a proposal whose aim is
to save energy in data centers and Clouds and tackle the above tradeoff
problems without degrading, as much as possible, the quality of services
of the system. MERCi-MIsS dynamically estimates the future workload
based on the recent past workload, deciding if servers should then be
turned either on or off. We have implemented MERCi-MIsS on top of
Twitter Storm. Evaluation results from experiments using real traces
from Grid’5000 confirm the effectiveness and efficiency of MERCi-MIsS
algorithm to save energy and avoid disk damage while the quality of
service is only slightly degraded.

1 Introduction

In a Cloud environment, the provider renders available a great number of re-
sources for clients to perform their tasks. Cloud computing has been presented
as a green approach in front of traditional data centers since their resources are
shared by a huge number of users, optimizing, thus, the use of the resources.

Although Cloud computing seems the correct approach for saving energy,
more effort must be made in order to design efficient Cloud data centers [1].
In the Cloud, clients and providers have different responsibilities: the client is
responsible for his/her application while the provider is interested in adopting
energy-aware and cost effective policies. Furthermore, providers’ energy-aware
solutions should deal with a large number of applications. Therefore, based on
a global view of the system, providers have to apply energy saving techniques
which will not interfere in aspects which are responsibility of the clients.

One well-known approach to reduce energy consumption, called on/off algo-
rithm, consists in turning off unused (idle) machines [2, 3], since the power of
idle machines is estimated between 25-60% of the peak power [4, 5]. However,
such an algorithm entails some negative impacts. Firstly, the turning off/on of

c© IFIP International Federation for Information Processing 2015
A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 16–29, 2015.
DOI: 10.1007/978-3-319-19129-4_2
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servers consumes energy. Hence, a server should stay off during a minimum time
period (called critical time) which compensates the energy in rebooting it when
compared with the energy of keeping it idle [3, 6]. A second negative impact is
that the reduction of the number of available resources can degrade the quality
of service (QoS) engaged by the provider through the Service Level Agreement
(SLA), i.e., an agreement between the provider and the client which sets up the
QoS that the provider should guarantee. The non satisfaction of SLAs could re-
sult in penalization to the provider. In this paper, we consider that the violation
of SLA leads to monetary charges to the provider, i.e., the latter must reimburse
the client if some service does not satisfy the SLA requirements. Finally, booting
affects disk lifetime, i.e., the probability of disk damage, and thus replacement,
increases with the number of boots [2, 7–11]. Thus, an energy saving solution
should take into account the costs of the wear and tear of disks.

Considering the above discussed points, this paper presents MERCi-MIsS 1,
a streaming-based algorithm which dynamically decides the number of servers
to turn on/off. MERCi-MIsS proposes an energy saving strategy taking into ac-
count energy cost and disk wear-and-tear cost. MERCi-MIsS exploits a streaming
model which is able to process great volume of data and, thus, decides on the fly
about the number of servers to turn on/off. It exploits global system information,
in terms of the number of required working, idle, off, turning on, and turning
off servers. It also dynamically estimates the minimum number of idle servers
which the system must keep in order to provide energy saving while ensuring
the execution of unexpected works. We have also extended the critical time in
order to take into account the wear and tear related to disk ignitions.

Performance evaluation experiments were conducted over traces concerning
the usage of French Grid’5000 platform (a scientific experiment-driven research
environment: www.grid5000.fr). Results confirm that MERCi-MIsS outperforms
some energy saving algorithms found in the literature. It also provides shorter
average time delay for processing clients’ works than these algorithms.

Roadmap. Firstly, in Sec. 2, we discuss the minimum time that a server must
be off in order to save energy boot. In Sec. 3, we present MERCi-MIsS, how it
predicts the workload, computes both the monetary cost of non-working servers
and of disk wear-and-tear. Evaluation is presented in Sec. 4. Sec. 5 discusses
some related work. Finally, Sec. 6 concludes and proposes some future work.

2 Minimal Period of Time for off Servers

The turning off and on of servers induces energy consumption. If we decide to
turn off a server, it must be off for at least a minimum period of time which
compensates the energy spent in rebooting it. In [3], the authors denote such a
period of time the critical time (TS). They also propose how to evaluate it.

Considering the parameters given in Table 1, the critical time TS is the min-
imum period of time that a server is turning off which renders the energy spent

1 Maximizing Energy and disk ReplaCement saving — MInimizing SLA penalties.
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Table 1. Event parameters for a single server

Eon→off energy cost of turning off (J) Pidle energy power of an idle server (W)
Eoff→on energy cost of turning on (J) Poff energy power of an off server (W)
δon→off time spent in turning off (sec) δtot time spent in turning off&on (sec)
δoff→on time spent in turning on (sec) δtot = δon→off + δoff→on

$E cost of the energy ($ / J) $B cost of a boot ($)

Pidle

PoffEon→off Eoff→on

δoff→onδon→off

Fig. 1. Energy consumption of different states. Real experiment in Grid’5000.

in booting a server equals to the energy in keeping it idle, i.e., TS such that
Eidle(TS) = Ereboot(TS), where the energy spent in TS seconds of an idle server
is Eidle(TS) = Pidle × TS while the energy for rebooting the server for the same
period is Ereboot(TS) = Eon→off +Poff ×(TS−δtot )+Eoff→on , (the energy spent
for both turning off and on the server plus the energy to keep it off). Hence, the

critical time TS is
Eon→off+Eoff→on−Poff ×δtot

Pidle−Poff
.

For instance, Fig. 1 shows an energy experiment conducted on a Dell Power
Edge R720 server. The energy spent in turning on and off the server (green area
in Fig. 1) is Eoff→on +Eon→off = 19, 749J, which respectively takes δoff→on +
δon→off = 158 seconds. Considering the average power of an off server and idle
is Poff = 8W and Pidle = 97W resp., a power off server consumes in TS seconds
Ereboot(TS) = 19, 749+8(TS− 158) and an idle one consumes Eidle(TS) = 97TS.
Hence, if the server keeps off at least TS = 208sec., the decision of turning it off
is an efficient one; otherwise, it is not worthwhile turning it off.

In the same paper, the authors argue that a TS must be increased with the
Tr factor which is related to the wear and tear with regard to the disk ignitions.
However, they do not explain how to compute Tr.

We propose, therefore, in this article, an estimation for Tr. To this end, we
add to Ereboot(TS) the energy cost (in Joules) associated with disk damage due
to ignitions. Considering the cost of a new disk device (in money units) and the
number of ignitions that a disk supports [8], the disk-cost of a boot (in money
units) is estimated as $B. By dividing it by the cost of the energy $E , ($B /
$E), it is possible to estimate the energy spent in Joules due to disk damage. We
have, then Ereboot(t) = Eon→off + Poff × (t− δtot ) + Eoff→on + $B / $E. Thus,
the minimum critical time TS is:

TS =
Eon→off+Eoff→on−Poff ×δtot

Pidle−Poff
+ $B

$E(Pidle−Poff ) (1)

In conclusion, an on/off algorithm must ensure this minimum critical time is
used in order to both save energy and the cost of disk replacement.
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3 MERCi-MIsS

MERCi-MIsS is an on/off algorithm based on streaming over sliding window
model. That is, data are processed on-the-fly, continuously producing an output.
We describe the MERCi-MIsS architecture in Section 3.1. On/Off algorithms
turn on and off servers according to the needs of the system and prediction of
future workload. Usually, algorithms estimate future workload based on previous
one aiming at minimizing energy consumption as well as satisfying unexpected
works, i.e., works that arrive when the system has not enough available servers.
Thus, having a minimum number of idle servers helps to solve some unexpected
situations. We denote m0 such a minimum number of idle servers. In this case,
at every time, the system can always process a new work that needs at most
m0 servers. Considering m0 idle servers and the prediction of future workload
based on the past workload, MERCi-MIsS decides about the number of servers
to turn off or on at a given time. Section 3.2 describes how MERCi-MIsS takes
decisions. In Section 3.3 we present how we evaluate the service maintainability
cost associated with the energy spent in turn on/off servers and disk replacement.

3.1 MERCi-MIsS Architecture

We consider that time is discretized in seconds, i.e., at every second it is possible
to obtain the state of each server. At any time t, MERCi-MIsS needs the infor-
mation about the current number of required servers and the current state of
the system. While the former can be inferred from the workload with which the
scheduler has to deal, the latter depends on the current processing works and
might be affected by energy-aware policies. Figure 2 presents the architecture.

The number of required servers is predicted by MERCi-MIsS based on the
history of clients’ requests sent to the scheduler. Upon receiving a request, the
scheduler decides when to execute the work. Notice, that, in some cases, clients
must wait for their requests to be serviced (e.g., the system has not enough
available servers). Hence, at any time t, the scheduler deduces the number of
required servers to satisfy clients requests and providing the history of such a
number to MERCi-MIsS, which stores it to predict future requirements.

SystemClients

〈time, # required servers〉

Scheduler

system state

on/off decisions

w
o
rk
lo
a
d

MERCi-MIsS

history
information

Fig. 2. MERCi-MIsS interaction with scheduler and system
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Concerning the system state, MERCi-MIsS continuously receives information
about it (the current number of working servers, idle servers, and off servers),
producing as output the decisions about how many servers to turn off and on.

3.2 MERCi-MIsS Turn on/off Decisions

MERCi-MIsS exploits stream processing over sliding windows. As we have al-
ready discussed, the number of current required servers can be deduced by the
scheduler workload. To this end, it keeps a window W with the most recent
number of required servers, informed by the scheduler. Concerning the state
of the system, at t, MERCi-MIsS receives as input 〈nw(t), nidle(t), noff (t)〉 and
produces as output the decisions about how many servers to turn off don→off (t)
and how many servers to turn on doff→on(t). Tab. 2 summarizes our notations.

One of the aims of MERCi-MIsS is to guarantee a minimum number, m0, of
idle servers at any time t. If some clients request more than m0 servers, some
servers must be turned on. On the other hand, when MERCi-MIsS decides to
turn off some servers, it ensures that at least m0 idle servers are on.

MERCi-MIsS, which decides either to turn on or off some servers, is described
in Algorithm 1. We point out that both actions can not be taken at the same time
since they are contradictory. If the system does not have a minimum of m0 idle
servers (lines 1-3), a number of servers will be turned on in order to ensure m0

idle servers (at most we can turn on noff (t) servers). Otherwise, MERCi-MIsS
tries to turn off some servers (lines 4-9), aiming at saving energy.

According to the critical time TS , we can turn off all the servers which will not
be used in the next TS seconds (i.e. we need to estimate the maximum number
of working servers in the next TS seconds). However, the future workload is
not known. Hence, MERCi-MIsS exploits the outliers border given in boxplot.
The latter is a statistics graph where several descriptive values of a sample are
represented. It shows five values from a data set: the upper and lower extremes,
the upper and lower hinges (quartiles), and the median [12]. Values of the data
set greater than the upper extreme are considered outliers. Hence, we can view
the upper extreme UE, as a “normal” maximum bound of the data set. MERCi-
MIsS estimates the future maximum number of working servers as the upper
extreme value related to the number of working servers over the past history.

When the system has at leastm0 idle nodes MERCi-MIsS algorithm calculates
the number of servers to turn off (lines 4-9). To energy efficiency, the number of
servers to turn off is the number of servers not used within at least the next TS

seconds. In the current time t, the maximum number of servers to be used in

Table 2. Servers type and decisions at time t

nw(t) nb. of working servers at t non→off (t) nb. of servers turning off at t
nidle(t) nb. of idle servers at t noff→on(t) nb. of servers turning on at t
non (t) nb. of power on servers at t

non (t) = nw(t) + nidle(t)
don→off (t) decision about the number of

servers to turn off at t
noff (t) nb. of power off servers at t doff→on(t) decision about the number of

servers to turn on at t
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Algorithm 1. MERCi-MIsS algorithm

Parameters: m0, minimum number of idle servers;
w, whisker length;
δoff→on , the time spends in turn on

Input: 〈nw(t), nidle(t), noff (t)〉, system state
Output: don→off (t), number of servers to turn off;

doff→on (t), number of servers to turn on
1 if nidle(t) < m0 then
2 don→off (t) = 0
3 doff→on(t) = min{noff (t),m0 − nidle(t)}
4 else
5 Q1 ← quartile(1,W)
6 Q3 ← quartile(3,W)
7 UE = Q3 + w (Q3−Q1)

8
don→off (t) = max{0,min{non (t)− UE,

nidle(t) + doff→on (t− δoff→on)−m0}}
9 doff→on(t) = 0

the next TS seconds is given by nm(t) = max{nw(s) : s ∈ [t+ 1, t+ TS ]}. Thus,
we can turn off all the other servers which are on, i.e., non(t)− nm(t).

Note that we are considering that the number of future required servers, nm(t),
is known at t and, in this case, non(t)−nm(t) represents the most efficient energy
saving. However, this is not a realistic assumption since we can not foresee the
future. Therefore, it is necessary to estimate nm(t) based on previous history of
working servers. One first idea would be to use the maximum number of these
servers in the recent history. Nevertheless, such an approach could induce a bad
estimation if an unusual situation with high number of servers took place in
recent history. In order to avoid such a mistake, MERCi-MIsS uses UE, the
upper extreme value of boxplot, to estimate the number of working servers and
the decision about the servers to turn off is (1) don→off (t) = non(t) − UE. The
upper extreme value UE is based on the first and third quartile2 (respectively,
Q1 and Q3) as well as a parameter w, called whisker length (usually w = 1.5).
The upper extreme value is, thus, computed as UE = Q3 + w (Q3−Q1). Note
that MERCi-MIsS computes quartiles over the sliding window W related to the
number of required servers.

On the other hand, in order to ensure m0 number of idle servers at time
t + 1, the maximum number of servers to turn off at time t should be equal to
nidle(t+1)−m0. However, since nidle(t+1) is unknown, MERCi-MIsS estimates
the number of idle servers at time t+1 as the number of current idle servers plus
the number of servers that MERCi-MIsS decides to turn on at time t− δoff→on ,
i.e., such servers will be on at time t+1. Hence, for guaranteeing m0 idle servers

2 Quartiles are ranked statistics which split data set into four equal groups. First
quartile, Q1, is a value that is (equal or) greater that the 25% of the data values
(resp. Q3 is equal or greater that the 75%).
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at t+1, we have that the number of servers to turn off satisfies (2) don→off (t) =
nidle + doff→on(t− δoff→on)−m0.

Taking into account both conditions, i.e., the number of servers not used
within at least the next TS seconds and m0 idle servers at time t+1, the number
of nodes to turn off at t is equal to the minimum of (1) and (2) (line 8).

Exploiting System Information. In the estimation of m0 at t + 1, MERCi-
MIsS considers that the number of working servers at time t+1 is the same as the
current number of working servers at t. However, there exist some cases where
the system could give more information about the number of working servers
and MERCi-MIsS could exploit it. For instance, if the workload was stored in a
queue that MERCi-MIsS could have access to, the number of working servers at
time t+ 1 could be inferred (provided that the workload queue is not empty).

3.3 Service Maintainability Cost

Service cost is composed of two costs: the service performance cost, associated
with the clients’ works execution, and the service maintainability cost related to
the energy spent in turning on/off servers as well as disk replacement. One of
the main goal of on/off algorithms is to reduce service maintainability cost as
much as possible without degrading the QoS for the clients.

Service performance cost is related to the energy consumed by working servers.
It is well-known that the energy spent by working servers depends on the work
that must be executed, i.e., the clients’ requests [13]. Estimating this energy
consumption is not a trivial task. However, we can consider that a server which
executes a given work spends the same energy regardless when the work is exe-
cuted. In other words, the energy consumed by working servers to process a fixed
workload is the same independently on the work that each server performs. Con-
sequently, the service performance cost does not depend on the energy-aware
policy. However, the turning on and off of servers introduces different energy
consumption and disk replacements. The cost associated with them depends on
the energy-aware policy and is considered as service maintainability cost. In this
section, we focus in describe the service maintainability cost.

Service maintainability cost,maintenance$, has two parts: 1) energy¬w, mon-
etary cost of energy of non-working servers (idle servers, off servers, and turning
on and off actions); and 2) the monetary cost to replace disks.

maintenance$ = $E × energy¬w + $replacementdisk (2)

At time t, the system has nw(t) working servers, nidle(t) servers, (i.e., non(t) =
nw(t)+nidle (t)), noff (t) off servers, turning off servers (don→off (t)), and turning
on servers (doff→on(t)). Note that even if these values are related to time t,
the evaluation of energy consumption concerns the whole period of time during
which the system is running. In the cost of energy¬w, both idle and off states
are quite stable in terms of energy consumption. It is then possible to have
representative average consumption values: Pidle and Poff power (Joules / sec)
for idle and off servers respectively while the energy cost to turn on (respectively,
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off) a server is Eon→off (respectively, Eoff→on). Based on the energy parameters
of Table 1 and the notations of Table 2, the energy consumed by non working
servers, energy¬w, for the whole execution period of the system is given by:

energy¬w =
∑

t

(
Pidle × nidle(t) + Poff × noff (t)+
+Eon→off × don→off (t) + Eoff→on × doff→on(t)

) (3)

The money cost associated with disk damage has a direct relation with the
number of boots. As a boot is a turning off which will be eventually followed by
a turning on, we cannot consider non→off (·)+noff→on(·) as the number of boots,
otherwise, in the whole execution of the system, we would sum twice the number
of boots. As a consequence, we consider the number of boots as the number of
turning off non→off (·) (eventually turning off servers will be power on). Hence,
the disk money cost (in $) is given by Equation 4.

$replacementdisk =
∑

t $B × non→off (t) (4)

In Sec. 2, we defined TS as the minimal critical time for saving energy which
also includes the energy associated with disk replacement. Therefore, if TS is
respected, maintenance$ represents the minimum service maintainability cost.

Besides the monetary cost, maintenance$, we must consider the time delay
to attend clients’ requests which affects the quality of service. We propose a
tradeoff metric based on the Energy-Delay product (EDP) [14], where the energy-
performance tradeoff is evaluated by multiplying the energy by the time delay.
To capture the disk damage we propose Energy&Disk-Delay product (EDDP) in
Eq. 5 as the product of the energy consumed in the whole experiment (energy of
non working servers plus disk replacement) by the average time delay to attend
to clients’ requests. Minimizing EDDP is equivalent to maximizing its inverse
which represents the “performance-per-cost”, where performance is the inverse
of average time delay (service has low performance, if the time delay is high).

EDDP =

(

energy¬w +
$remplacementdisk

$E

)

× timedelay (5)

maintenance$ estimation and EDDP concern all servers in the system during
the whole experiment. However, considering just one server, we know that if it
stays off at least TS seconds, some energy is saved when compared to keeping it
idle. In fact, the longer the period of time the server is off, the higher the energy
saved. Hence, if a server keeps offΔt time, the service maintainability saved cost,
denoted saving$, is given by Equation 6, where Etot = Eon→off + Eoff→on .

saving$(Δt) = $E × (
(Pidle − Poff )×Δt− Etot + Poff × δtot

)− $B (6)

The minimum saving$ takes place at TS + 1, i.e., saving$(TS + 1) = $E ×
(Pidle − Poff ). Notice that, if a server is off TS + a, the service maintainability
saving is saving$(TS + a) = a× $E × (Pidle − Poff ).
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4 Evaluation

In this section we firstly present the evaluation environment and input traces.
Then we give a brief description of some algorithms with which we compared
MERCi-MIsS, and finally, some comparative evaluation results are presented.

4.1 Evaluation Setup

MERCi-MIsS input (i.e., number of working servers) can be obtained by mon-
itoring the states of the nodes or by inferring from users’ reservation traces.
We used real traces from [15] corresponding to 6 months (from 1st Feb. 2009
to 27 February 2010) related to reservations in Grid’5000 (12,948 reservations).
Users made resource reservations indicating the submission time, the number of
requested nodes, and the maximum duration of the reservations (however, users
can cancel reservations before the ending time). Using the number of requested
servers, the starting time, and the ending time, the number of working servers
can be inferred. Assuming that the number of servers reserved by the users is the
number of working servers, although users cannot use some of them, we assume
that all the reserved servers must be on. Unfortunately, in the original traces,
the actual ending time is not provided. Hence, we simulate this value considering
the maximum duration as the actual duration. Energy values, cost, and duration
are summarizing in Tab. 3. Eoff→on , Eon→off , δoff→on , δon→off , Poff , and Pidle

are obtained from a real experiment where 20 Grid’5000 servers of the Lyon site,
which represent more than 20% of servers of the site, were booted 50 times (the
Lyon site has electrical consuming monitoring). The obtained results are similar
to the ones presented in [3]. The costs of a boot B$ and the cost of energy E$

are taken from [8]. According to Sec. 2, the critical time TS=1457 sec.

Table 3. MERCi model parameters

Eoff→on 24,536.04J Eon→off 1,501J Poff 9.58W Pidle 150.16W
δoff→on 120sec δon→off 10sec $B 0.5 cents/boot $E 10 cents/KWH

MERCi-MIsS evaluation experiments were conducted using Petrel-Storm on
Grid’5000 platform. Storm [16] is an event processor to streams and Petrel-Storm
is a tool for writing, submitting, debugging, and monitoring Storm topologies in
Python [17]. By exploiting Grid’5000 traces, the input stream S = {Rt}t cor-
responds to a set of reservations R at time t. In the simulation, the interaction
with the system which provides information about the system state (Sec. 3.1)
does not take place. Instead, Storm operator maintains itself the system state
(nw(t), nidle(t), noff (t)). Hence, for each time t, the operator produces the deci-
sion about turning on doff→on(t) or off don→off (t). Using the stream approach,
we have implemented:

Perfect Prediction. An ideal on/off algorithm which always has enough avail-
able servers and ensures the minimum maintenance$ cost. Thus, every arriving
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work immediately starts executing without any delay. However, the perfect pre-
diction is only feasible provided the future workload is known.

Turn-Off Algorithm. In this algorithm, idle servers are always turned off. How-
ever, the algorithm does not ensure that a server stays off TS seconds. Further-
more, the average time delay to satisfy clients’ requests can be greater compared
to other algorithms since the probability of having unexpected works which can
not be immediately executed is higher than in an algorithm which always keeps
some idle available servers.

EARI [3]. An on/off algorithm for reservation-based systems (users reserve
resources for a fixed time). EARI relies on the prediction of the next reservations.
It estimates the number of servers to turn off whenever there are no waiting
reservation requests to be scheduled. Nevertheless, no policy about turning on
servers is described. Given M possible servers to turn off, EARI estimates the
next reservation R with arrival time t using n servers. If R arrives before TS

seconds, then n servers stay on during TS and M − n servers are turned off. If
after TS seconds no reservation arrives, the above n servers are released, i.e.,
they will be considered to belong to the pool of possible servers to turn off.
The estimation of reservation values (starting time t and number of servers n)
is based on the history of previous reservations. Basically, the predicted value
is the mean of the previous values (mean(N)) corrected with the mean of the
previous errors (mean(EN)). Basically, the predicted value is the mean of the 5
previous values corrected with the mean of the 3 previous errors.

MERCi-MIsS. For performance evaluation, we consider a time-based sliding
window of size 5min, slide of 3min, and the whisker length w = 1.5. While
MERCi-MIsS bases its estimation on recent time (the last 5 minutes), EARI
uses the last (5) reservation values. Notice that we could consider a longer time
interval (till 3h) in EARI which would correspond to a much higher number of
reservations. However, the risk of loosing the correlation between time and the
number of reservations could greatly increase.

4.2 Evaluation Results

In this section, we present a comparative by evaluating: 1) the tradeoff between
the service maintainability cost and the average time delay to attend clients’s
requests; 2) the service maintainability cost; 3) the impact on the time delay and
the number of delayed reservations; and 4) the processing time to take decisions.

Tradeoff Between Maintainability Cost and Time Delay. Energy-aware
policies must try to reduce service maintainability cost without increasing time
delay for processing clients’ work which degrades QoS. Fig. 3a shows the average
time delay versus the service maintainability cost. The closer to the point (0,0),
the lower the time delay and the service maintainability cost (better energy-
aware policy). EARI has higher service maintainability cost and time delay than
MERCi-MIsS. MERCi-MIsS has also a lower time delay than the Turn-Off policy.
However, MERCi-MIsS has a slightly higher service maintainability cost than
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(a) Time delay vs. service maint. cost (b) Energy&Disk-Delay product

(c) Maintability Cost (d) Reservation delay

(e) Energy consumption rate (f) Booting rate (g) Nb. of idle servers/sec

Fig. 3. Turn Off, EARI and MERCi-MIsS performace

the latter. The results of Fig. 3b also confirm that MERCi-MIsS presents the
smallest EDDP (see Sec. 3.3). From both results, MERCi-MIsS has the best
tradeoff between energy of non working servers, disk replacement, and time delay.

Service Maintainability Cost. Fig. 3c shows such a cost ($) for each algo-
rithm. Blue and green portions of the bars are, resp., the cost related to the
energy spent by non-working servers energy¬w and disk replacement. Turn-Off
is the best for monetary cost, but, it degrades the time delay as discussed later.
In order to understand more deeply the service maintainability cost, we show
different aspects: (1) Fig. 3e concerns the energy consumption of non working
servers; (2) Fig. 3f is related to the number of boots (disk damage); and, (3)
Fig. 3g shows the average number of idle servers per second. The energy bars in
Fig. 3e are the energy consumed in the service maintainability divided by the
energy in the perfect prediction algorithm. Three different colors make distin-
guishable the fraction of energy spent in different states (boot, off, and idle). As
expected, Turn-Off algorithm consumes less energy in idle servers (the number
of idle servers is close to 0 in Figure 3g). It is, thus, the best algorithm for saving
energy. Notice that the number of idle servers in the perfect prediction is very
low (0.62 server per second in average). On the other hand, MERCi-MIsS con-
sumes 29% less energy than EARI. Fig. 3g confirms that such a reduction is due
to idle servers. Bars in Fig. 3f represent the number of boots with regard to the
perfect prediction. As expected, Turn-off performs the greatest number of boots
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which is almost twice the number in perfect prediction algorithm. In both Turn-
off and EARI, the boot rate is higher than in the perfect prediction algorithm,
contrarily to MERCi-MIsS, which presents lower boot rate than the latter (the
ratio is smaller than 1). Fig. 3g, which shows the average number of idle servers
per second, allows a better understanding of the different energy-aware policies.
Turn-Off has a number of idle servers per second close to 0 (not 0 because a
server must be in idle state to be turned off) while EARI has higher number
of idle servers per second than MERCi-MIsS (2.4 times). Observing Fig. 3e-3g,
we conclude that, during some periods, EARI maintains a large number of idle
servers which are not required (EARI fails in the future workload prediction).

Reservation Delay. Keeping servers in the off state has an impact on the QoS.
Fig. 3d shows two results: 1) in the left side (blue), the average time delay for
reservation; and 2) in the right side (green), the percent of delayed reservations.
As expected, Turn-Off has a large number of delayed reservations (almost the
whole reservation set) and the largest time delay. The impact of off servers on
the QoS in the MERCi-MIsS is lower than in the EARI (shorter time delay
and smaller number of delayed reservations). Therefore, in MERCi-MIsS, the
number of off servers induces less degradation of the QoS than in the other
algorithms. Such a result strengthens the previous one which concludes that
MERCi-MIsS provides a better prediction of the future workload than the other
algorithms. Comparing to the latter, it presents shorter time delay while using
fewer resources. Hence, it has lower service maintainability cost.

Time for Decision Processing. On/Off algorithms should present a perfor-
mance which allows the respective implementation in real environments. Tab. 4
summarizes the time spent to decide about the turn on/off actions. Obviously,
the Turn-Off is the fastest one since no information is processed to take such a
decision. EARI has a time processing close to Turn-Off due to the size of the
processed information which is quite small (the last 5 reservations). MERCi-
MIsS has the largest time processing because it considers the number of working
servers of the last 5 minutes. However, we should emphasize that MERCi-MIsS
time processing is feasible, i.e., 197 micro-sec while the time step is 1 sec. Hence,
the three policies have time processing which are suitable for real environments.

Table 4. Decision time processing in microseconds

Turn-off EARI MERCi-MIsS

3.09 5.22 169.91

5 Related Work

In [18], authors present a survey on techniques for improving the energy efficiency
of large-scale distributed systems. A taxonomy and survey of energy-efficient
data centers and cloud computing systems can be found in [19].

The first on/off algorithm which considers disk damage was proposed in
[2] where authors presented Muse, an operating system for a hosting center.
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The prediction approach focuses on estimating the resource demand of each cus-
tomer considering her/his current request load level, contrarily to MERCi-MIsS
algorithm, which characterizes the system load based on client demands, being,
thus, more suitable for environments with a huge number of clients or with a
dynamic set of users.

The concept of critical time, the minimum period of time which a server
must be off to save energy, was introduced in [3]. The article then proposes the
EARI algorithm for reservations-based environments such as Grid’5000, on top
of which they conducted some evaluation experiments. We have extended their
critical time concept with the time corresponding to the fraction that must be
added to the former in order to consider the energy spent due to disk damage.

[20] presents two algorithms (online and offline) to turn off content delivery
networks during periods of low load. The algorithms have three goals: max-
imize energy reduction, minimize the impact on client-perceived service avail-
ability, and reduce the wear-and-tear on hardware reliability. However, they have
been designed to content delivery networks which operate as application service
providers and can not be applied in other context such as infrastructure as a
software (IaaS) or software as a service (SaaS).

The article [11] presents an online algorithm based on the number of active
servers xt at any time t. It uses a cost function to minimize some costs such as
energy cost, cost related with network delay, and the cost of booting (including
delay, mitigation, and disk damage). Nevertheless, as we have discussed in previ-
ous sections, the number of active working servers are not sufficient to compute
the total energy cost because turning on and off servers consumes energy (anal-
ogous situation for power off servers). Therefore, an energy cost function must
consider other server states than just active state. Concretely, the cost related
to the disk damage is a linear function of the difference in consecutive times
xt − xt−1. Hence, it is not fair to take into account just active servers such as
in scenarios where, whenever one server concludes its turning on, the system
decides to turn off one server. In this case, the number of active servers is always
xt − xt−1 = 0 and the model does not consider any disk damage.

A different approach of on/off algorithms is based on processor dynamic volt-
age/frequency scaling [8, 21]. However, processors consist of a small fraction of
the total server power [22], entailing a moderate energy savings [13]. In [8], the
authors consider disk damage to the dynamic voltage/frequency scaling strategy.

6 Conclusions and Future Work

We have presented MERCi-MIsS whose aim is to reduce energy consumption in
data centers without degrading the provided quality of services. MERCi-MIsS
takes into account the energy spent by servers and disk damage due to wear-
and-tear of ignitions and continuously decides how many servers to power off
or on. We have conducted some simulation experiments based on real traces.
The results related to the Energy&Disk-Delay product (EDDP) metric, which
expresses the above three aspects, confirm that MERCi-MIsS reduces in more
than 39% the value of this metric when compared to the other algorithms.
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As future work, we plan to evaluate heterogeneous systems by grouping servers
according to their respective critical time and then applying MERCi-MIsS on
each group. We will also evaluate the performance over other workloads.

Acknowledgements. This research is founding by the French National Agency for
Research, ANR-10-SEGI-0009.
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Abstract. In fully distributed machine learning, privacy and security
are important issues. These issues are often dealt with using secure mul-
tiparty computation (MPC). However, in our application domain, known
MPC algorithms are not scalable or not robust enough. We propose a
light-weight protocol to quickly and securely compute the sum of the in-
puts of a subset of participants assuming a semi-honest adversary. During
the computation the participants learn no individual values. We apply
this protocol to efficiently calculate the sum of gradients as part of a
fully distributed mini-batch stochastic gradient descent algorithm. The
protocol achieves scalability and robustness by exploiting the fact that
in this application domain a “quick and dirty” sum computation is ac-
ceptable. In other words, speed and robustness takes precedence over
precision. We analyze the protocol theoretically as well as experimen-
tally based on churn statistics from a real smartphone trace. We derive
a sufficient condition for preventing the leakage of an individual value,
and we demonstrate the feasibility of the overhead of the protocol.

Keywords: Fully distributed learning · Mini-batch stochastic gradient
descent · P2P smartphone networks · Secure sum

1 Introduction

Our long-term research objective is to design fully distributed machine learning
algorithms for various distributed systems including networks of smartphones,
smart meters, or embedded devices. The main motivation for a distributed solu-
tion in our cloud-based era is to preserve privacy by avoiding the central collec-
tion of any personal data. Another advantage of distributed processing is that
this way we can make full use of all the local personal data, which is impossible
in cloud-based or private centralized data silos that store only specific subsets
of the data.

In our previous work we proposed several distributed machine learning algo-
rithms in a framework called gossip learning. In this framework models perform
random walks over the network and are trained using stochastic gradient descent
[18] (see Section 4). This involves an update step in which nodes use their local
data to improve each model they receive, and then forward the updated model
along the next step of the random walk. Assuming the random walk is secure—
which in itself is a research problem on its own, see e.g. [13]—it is hard for an
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adversary to obtain the two versions of the model right before and right after the
local update step at any given node. This provides reasonable protection against
uncovering private data.

However, this method is susceptible to collusion. If the nodes before and after
an update in the random walk collude they can recover private data. In this paper
we address this problem, and improve gossip learning so that it can tolerate a
much higher proportion of honest but curious (or semi-honest) adversaries. The
key idea behind the approach is that in each step of the random walk we form
groups of peers that securely compute the sum of their gradients, and the model
update step is performed using this aggregated gradient. In machine learning
this is called mini-batch learning, which—apart from increasing the resistance
to collusion—is known to often speed up the learning algorithm as well (see, for
example, [8]).

It might seem attractive to run a secure multiparty computation (MPC) al-
gorithm within the mini-batch to compute the sum of the gradients. The goal of
MPC is to compute a function of the private inputs of the parties in such a way
that at the end of the computation, no party knows anything except what can
be determined from the result and its own input [24]. Secure sum computation
is an important application of secure MPC [7].

However, we do not only require our algorithm to be secure but also fast, light-
weight, and robust, since the participating nodes may go offline at any time [2] and
they might have limited resources. One key observation is that for the mini-batch
algorithm we do not need a precise sum; in fact, the sum over any group that is
large enough to protect privacy will do. At the same time, it is unlikely that all
the nodes will stay online until the end of the computation. We propose a protocol
that—using a tree topology and homomorphic encryption—can produce a “quick
and dirty” partial sum even in the event of failures, has adjustable capability of
resisting collusion, and can be completed in logarithmic time.

2 RelatedWork

There are many approaches that have goals similar to ours, that is, to perform
computations over a large and highly distributed database or network in a secure
and privacy preserving way. Our work touches upon several fields of research in-
cluding machine learning, distributed systems and algorithms, secure multiparty
computation and privacy. Our contribution lies in the intersection of these areas.
Here we focus only on related work that is directly relevant to our present contri-
butions.

Algorithms exist for completely generic secure computations, Saia and Zamani
give a comprehensive overview with a focus on scalability [22]. However, due to
their focus on generic computations, these approaches are relatively complex and
in the context of our application they still do not scale well enough, and do not
tolerate dynamic membership either.

Approaches targeted at specific problems aremore promising. Clifton et al. pro-
pose, among other things, an algorithm to compute a sum [7]. This algorithm re-
quires linear time in the network size and it does not tolerate node failure either.
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Bickson et al. focus on a class of computations over graphs, where the computa-
tion is performed in an iterative manner through a series of local updates [3]. They
introduce a secure algorithm to compute local sums over neighboring nodes based
on secret sharing. Unfortunately, this model of computation does not cover our
problem as we want to compute mini-batches of a size independent of the size of
the direct neighborhood, and the proposed approach does not scale well in that
sense. Besides, the robustness of the method is not satisfactory either [17]. Han et
al. address stochastic gradient search explicitly [12]. However, they assume that
the parties involved have large portions of the database, so their solution is not
applicable in our scenario.

The algorithm of Ahmad and Khokhar is similar to ours [1]. They also use a
tree to aggregate values using homomorphic encryption. In their solution all the
nodes have the same public key and the private key is distributed over a subset of
elite nodes using secret sharing. The problem with this approach in our applica-
tion is that for each mini-batch a new key set has to be generated for the group,
which requires frequent access to a trusted server, otherwise the method is highly
vulnerable in the key generation phase.

We need to mention the area of differential privacy [9], which is concerned with
the the problem that the (perhaps securely computed) output itself might con-
tain information about individual records. The approach is that a carefully de-
signed noise term is added to the output. Gradient search has been addressed in
this framework (for example, [20]). In our distributed setup, this noise term can
be computed in a distributed and secure way [10].

3 Model

Communication. Wemodel our system as a very large set of nodes that communi-
cate via message passing. At every point in time each node has a set of neighbors
forming a connected network. The neighbor set can change over time, but nodes
can send messages only to their current neighbors. Nodes can leave the network or
fail at any time. We model leaving the network as a node failure. Messages can be
delayed up to a maximum delay. Messages cannot be dropped, so communication
fails only if the target node fails before receiving the message.

The set of neighbors is either hard-wired, or given by other physical constraints
(for example, proximity), or set by an overlay service. Such overlay services are
widely available in the literature and are out of the scope of our present discus-
sion. It is not strictly required that the set of neighbors are random, however, we
will assume this for the sake of simplicity. If the set is not random, then imple-
menting a randomwalk with a uniform stationary distribution requires additional
well-proven techniques such as Metropolis-Hastings sampling or structured rout-
ing [23].

Data Distribution. We assume a horizontal distribution, which means that each
node has full data records. We are most interested in the extreme case when each
node has only a single record. The database that we wish to perform data mining
over is given by the union of the records stored by the nodes.
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Adversarial Model. We assume that the adversaries are honest but curious (or
semi-honest). That is, nodes corrupted by an adversary will follow the protocol
but the adversary can see the internal state of the node as well as the plaintext of
the messages that the node receives or sends. The goal of the adversary is to learn
about the private data of other nodes (note that the adversary can obviously see
the private data on the node it observes directly).

We assume a static adversarial model, which means that the corrupted nodes
are picked a priori, independently of the state of the protocol or the network. As
of the number of corrupted nodes, we will consider the threshold model, in which
at most a given number of nodes are corrupted, as well as a probabilistic model,
in which any node can be corrupted with a given constant probability [16].

Wiretapping is assumed to be impossible. In other words, communication chan-
nels are assumed to be secure. This can easily be implemented if there is a public
key infrastructure in place.

We also assume that adversaries are not able to manipulate the set of neighbors.
In each application domain this assumption translates to different requirements.
For example, if an overlay service is used to maintain the neighbors then this ser-
vice has to be secure itself.

4 Background on Gossip Learning

Although not strictly required for understanding our key contribution, it is impor-
tant to briefly overview the basic concepts of stochastic gradient descent search,
and our gossip learning framework (GOLF) [18].

The basic problem of supervised binary classification can be defined as follows.
Let us assume that we are given a labeled database in the form of pairs of feature
vectors and their correct classification, i.e. z1 = (x1, y1), . . . , zn = (xn, yn), where
xi ∈ R

d, and yi ∈ {−1, 1}. The constant d is the dimension of the problem (the
number of features). We are looking for amodel fw : Rd → {−1, 1} parameterized
by a vector w that correctly classifies the available feature vectors, and that can
also generalize well; that is, which can classify unseen examples too.

Supervised learning can be thought of as an optimization problem, where we
want to minimize the empirical risk

En(w) =
1

n

n∑

i=1

Q(zi, w) =
1

n

n∑

i=1

�(fw(xi), yi) (1)

where function Q(zi, w) = �(fw(xi), yi) is a loss function capturing the prediction
error on example zi.

Training algorithms that iterate over available training data, or process a
continuous stream of data records, and evolve a model by updating it for each
individual data record according to some update rule are called online learning
algorithms. Gossip learning relies on this type of learning algorithms. Ma et al.
provide a nice summary of online learning for large scale data [15].
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Stochastic gradient search [5,6] is a generic algorithmic family for implementing
online learning methods. The basic idea is that we iterate over the training exam-
ples in a random order repeatedly, and for each training example zt we calculate
the gradient of the error function (which describes classification error), and mod-
ify the model along this gradient to reduce the error on this particular example
according to the rule

wt+1 = wt − γt∇wQ(zt, wt) (2)

where γt is the learning rate at step t that often decreases as t increases.
A popular way to accelerate the convergence is the use of mini-batches, that

is, to update the model with the gradient of the sum of the loss functions of a
few training examples (instead of only one) in each iteration. This allows for fast
distributed implementations as well [11].

In gossip learning,models perform randomwalks on the network and are trained
on the local data using stochastic gradient descent. Besides, several models can
perform random walks at the same time, and these models can be combined time-
to-time to accelerate convergence.Our approach here will be based on this scheme,
replacing the local update step with a mini-batch approach.

5 Our Solution

Based on the assumptions in Section 3 and building on the GOLF framework out-
lined in Section 4 we now present our algorithm for computing a mini-batch gradi-
ent in a single step of the mini-batch gradient descent algorithm. First of all, recall
that models perform random walks over the nodes in the network. At each step,
when a node receives a model to update, it will first create a mini-batch group by
building a rooted tree. According to our assumptions adversaries cannot manipu-
late the neighborhood and they do not corrupt the protocol execution, so this can
be achieved via simple local flooding algorithms.

Let us now describe what kind of tree is needed exactly. The basic version of
our algorithm will require a trunked tree.

Definition 1 (Trunked Tree).Any rooted tree is 1-trunked. For k > 1, a rooted
tree is k-trunked if the root has exactly one child node, and the corresponding sub-
tree is a (k − 1)-trunked tree.

Let N denote the intended size of the mini-batch group. We assume that N is
significantly less than the network size. Let S be a parameter that determines the
desired security level (N ≥ S ≥ 2).We can now state that we require an S-trunked
tree rooted at the node that is being visited by gossip learning.

This tree can be constructed on an overlay network by taking S − 1 random
steps, and then performing a flooding algorithm with appropriately set time-to-
live and branching parameters.The exact algorithm for this is not very interesting,
mostly because it can be very simple. The reason is that when building the tree,
no attention needs to be paid to reliability. We generate the tree quickly and use
it only once quickly. Normally, some subtrees will be lost in the process but our
algorithm is designed to tolerate this.
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The effect of certain parameters, such as the branching factor and node failures,
will be discussed later in the evaluation. In rare cases, when the neighborhood
size is too small or when there are many cycles in the network, it could be hard to
achieve the desired branching factor, which can result in a deeper tree than desired
resulting in an increased time-complexity. Apart from this performance issue, the
algorithm will function correctly even in these cases. From now on, for simplicity,
we assume that the desired branching factor can be achieved.

The sum we want to calculate is over vectors of real numbers. We discuss the
one-dimensional gradient from now on for simplicity. Homomorphic encryption
works over integers, to be precise, over the set of residue classes Zn for some large
n. For this reason we need to discretize the real interval that includes all possi-
ble sums we might calculate, and we need to map the resulting discrete intervals
to residue classes in ZM where M defines the granularity of the resolution of the
discretization. This mapping is natural, we do not go into details here. Since the
gradient of the loss function for most learning algorithms is bounded, this is not
a practical limitation.

The basic idea of the algorithm is to divide the local value into S shares, encrypt
these with asymmetric additively homomorphic encryption (such as the Paillier
cryptosystem), and send them to the root via the chain of ancestors. Although
the shares travel together, they are encrypted with the public keys of different
ancestors. Along the route, the arrays of shares are aggregated, and periodically
re-encrypted. Finally, the root calculates the sum.

The algorithm consists of three procedures, shown in Algorithm 1. These are
run locally on the individual nodes. Procedure Init is called once after the node
becomes part of the tree. Procedure OnMessageReceived is called whenever a
message is received by the node. A message contains an array of dimension S that
contains shares encoded for S ancestors. The first element msg[1] is encrypted for
the current node, so it can decrypt it. The rest of the shares are shifted down by one
position and added (with homomorphic encryption) to the local array of shares to
be sent. After all the messages have been processed, the ith element (1 ≤ i ≤ S−1)
of the array shares is now encrypted with the public key of the ith ancestor of the
current node and contains a share of the sum of the subtree except the local value
of the current node. The Sth element is stored unencrypted in variable known-

Share.
ProcedureOnNoMoreMessagesExpected is called when the node has received

a message from all of its children, or when the remaining children are considered
to be dead by a failure detector. The timeout used here has to take into account
the depth of the given subtree and the maximal delay of a message. In the case of
leaf nodes, this procedure is called right after Init.

The function call Ancestor(i) returns the descriptor of the ith ancestor of the
current node that contains the necessary public keys as well. During tree building
this information can be given to each node. For the purposes of this function, the
parent of the root is defined to be itself. Function Encrypt(x, y) encrypts the inte-
ger x with the public key of node y using an asymmetric additively homomorphic
cryptosystem. Decrypt(x) decrypts x with the private key of the current node.
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Algorithm 1.

procedure Init
shares ← new array[1..S]
for i ← 1 to S do

shares[i] ← Encrypt(0, Ancestor(i))
end for
knownShare ← 0

end procedure

procedure OnMessageReceived(msg)
for i ← 1 to S − 1 do

shares[i] ← shares[i] ⊕ msg[i+ 1]
end for
knownShare ← knownShare + Decrypt(msg[1])

end procedure

procedure OnNoMoreMessagesExpected
if IAmTheRoot() then

for i ← 1 to S − 1 do
knownShare ← knownShare + Decrypt(shares[i])

end for
Publish((knownShare + localValue) modM)

else
randSum ← 0
for i ← 1 to S − 1 do

rand ← Random(M)
randSum ← randSum + rand
shares[i] ← shares[i] ⊕ Encrypt(rand, Ancestor(i))

end for
knownShare ← knownShare + localValue − randSum
shares[S] ← Encrypt(knownShare modM , Ancestor(S))
SendToParent(shares)

end if
end procedure

Operation a⊕b performs the homomorphic addition of the two encrypted integers
a and b to get the encrypted form of the sum of these integers. FunctionRandom(x)
returns a uniformly distributed random integer in the range [0, x− 1].

If the current node is the root, then the elements of the received array are de-
crypted and summed. The root can decrypt all the elements because it is the par-
ent of itself, so all the elements are encrypted for the rootwhen themessage reaches
it. If the current node is not the root then the local value has to be added, and the
Sth element of the array has to be filled. First, the local value is split into S shares
according to the S-out-of-S secret-sharing scheme discussed in [16]: S − 1 out of
the S shares are uniformly distributed random integers between 0 and M − 1.
The last share is the difference between the local value and the sum of the random
numbers (mod M). This way, the sum of shares equals the local value (mod M).
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Also, the sum of any non-empty proper subset of these shares is uniformly dis-
tributed, therefore nothing can be learned about the local value without knowing
all the shares.

The shares calculated this way can be encrypted and added to the correspond-
ing shares, and finally the remaining Sth share is re-encrypted with the public key
of the Sth ancestor and put into the end of the array. When this array is sent to
the parent, it contains the S shares of the partial sum corresponding to the full
sub-tree.

We note here that if during the algorithm a child node never responds, then its
subtree will be essentially missing (will have a sum of zero) but other than that the
algorithm will terminate normally. This is acceptable in our application, because
for a mini-batch we simply need the sum of any number of gradients, this will not
threaten the convergence of the gradient descent algorithm.

6 Discussion

6.1 Security

To steal information, that is, to learn the sum over a subtree, the adversary needs
to catch and decrypt all the S shares of the corresponding message that was sent
by the root of the subtree in question. Recall that if the adversary decrypts less
thanS shares from anymessage, it still has only a uniform randomvalue due to our
construction. To be more precise, to completely decrypt a message sent to node
c1, the adversary needs to corrupt c1 and all its S − 1 closest ancestors, denoted
by c2, .., cS , so he can obtain the necessary private keys.

The only situationwhen the shares of amessage are not encryptedwith the pub-
lic keys of S different nodes—and hence when less than S nodes are sufficient to be
corrupted—is when the distance of the sender from the root is less than S. In this
case, the sender node is located in the trunk of the tree. However, decrypting such
a message does not yield any more information than what can be calculated from
the (public) result of the protocol and the local values (gradients) of the nodes
needed to be corrupted for the decryption. This is because in the trunk the sender
of the message in question is surely the only child of the first corrupted node, and
the message represents the sum of the local values of all the nodes, except for the
ones needed to be corrupted. To put it in a different way, corrupting less than S
nodes never gives more leverage than learning the private data of the corrupted
nodes only.

Therefore, the only way to steal extra information (other than the local values
of the corrupted nodes) is to form a continuous chain of corrupted nodes c1, .., cS
towards the root, where ci+1 is the parent of ci. This makes it possible to steal the
partial sums of the subtrees rooted at the children of c1. For this reason we now
focus only on the N − S vulnerable subtrees not rooted in the trunk.

As a consequence, a threshold adversary cannot steal information if he corrupts
at most S−1 nodes. A probabilistic adversary that corrupts each node with prob-
ability p can steal the exact partial sum of a given subtree whose root is not cor-
rupted with probability pS .
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Even if the sum of a given subtree is not stolen, some information can be learned
about it by stealing the sums of other subtrees. However, this information is lim-
ited, as demonstrated by the following theorem.

Theorem 1. The private value of a node that is not corrupted cannot be exactly
determined by the adversary as long as at least one of the S closest ancestors of the
node is not corrupted.

Proof. Let us denote by t the target node, and by u the closest ancestor of t that
is not corrupted. The message sent by t cannot be decrypted by the adversary,
because one of its shares is encrypted to u (because u is one of the S closest ances-
tors of t). The same holds for all the nodes between t and u. Therefore the smallest
subtree that contains t and whose sum can be stolen also contains u. Due to the
nested nature of subtrees, bigger subtrees that contains t also contains u as well.
Also, any subtree that contains u also contains t (since t is the descendant of u).
Therefore u and t cannot be separated. Even if every other node is corrupted in
the subtree whose sum is stolen, only the sum of the private values of u and t can
be determined.

Therefore pS is also an upper bound on the probability of stealing the exact
private value of a given node that is not corrupted.

6.2 Complexity

In a tree with a maximal branching factor of B each node sends only one mes-
sage, and receives at most B. The length of a message is O(SC), an array of S
encrypted integers, where C is the length of the encrypted form of an integer. Let
us now elaborate on C. First, as stated before, the sum of the gradients is repre-
sented on O(logM) bits, where M is a design choice defining the precision of the
fixed point representation of the real gradient. Let us assume for now that we use
the Paillier cryptosystem [19]. In this case, we need to set the parameters of our
cryptosystem in such a way that the largest number it can represent is no less than
n = min(BSM,NM), which is the upper bound of any share being computed by
the algorithm (assuming B ≥ 2). In the Paillier cryptosystem the ciphertext for
this parameter setting has an upper bound of O(n2) for a single share. Since

S logn2 = S logmin(BSM,NM)2 ≤ 2(S2 logB + S logM), (3)

the number of bits required is O(S2 logB + S logM).
The computational complexity is O(BSE) per node, where E is the cost of en-

cryption, decryption, or homomorphic addition. All these three operations boil
down to one or two exponentiations in modular arithmetic in the Paillier cryp-
tosystem. Note that this is independent of N .

The time complexity of the protocol is proportional to the depth of the tree. If
the tree is balanced, this results in S +O(logN) steps altogether.
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6.3 Robustness

As mentioned before, if a node failure occurs then the subtree rooted at that node
is left out of the sum. In our application this does not render the output useless,
since in mini-batch methods one can apply mini-batches of varying size.

Let us take a closer look at the possible effect of node failure. From the point of
starting to build the tree until the root computes the end result a certain number
of nodes might fail at random. The worst-case scenario is when all these nodes
fail right after the construction of the tree but before starting to propagate shares
upwards.

We have conducted experiments to assess the robustness of the trees under var-
ious parameter settings. In the initialization step, a random graph of 1,000,000
nodes is generated in the following way: 20% percent of the nodes are marked pub-
lic and then each node gets 20 links to random public nodes. These links represent
bidirectional communication channels. It has been argued that such a construc-
tion is a viable approach in the presence of NAT devices on the open Internet [21].
Also, recently Berta et al. [2] estimated that the NAT types of about 20% of smart-
phones are either open access or full cone. Thus, the parameter setting and the
overlay above is a good representation of one application domain: smartphone net-
works.

After this, random trees are generatedwith a depth ofD and amaximal branch-
ing factor of B, in the following way: a root is chosen randomly, which selects B
of its neighbors as children, then each of them, in turn, selects B of their respec-
tive neighbors, and so on, until depth D is reached. No node selects its parent,
but multiple nodes may try to select the same node, in which case it becomes the
child of only one of them. Therefore nodes can have less than B children, but this
happens infrequently, if the graph is large enough compared to the tree. These
trees are used to calculate the expected value of the ratio of the nodes that are
reachable from the root via a chain of available nodes, assuming a given chance
for node failure, in the worst case scenario we outlined above. If the probability
of node failure is f , a node located at level d of the tree (the root has level 0) will
successfully contribute its local value to the sum with probability (1 − f)(d+1).)
The results are shown in Figure 1. Each curve represents a given setting of B and
D. Each point is based on 50 different random trees.

To provide an indication of feasible failure rates in an actual network, we an-
alyzed the trace collected by Berta et al. [2]. In this trace a node was defined to
be available when it had network connectivity and when it was on a charger at
the same time. Figure 2 shows statistics about smartphone availability. For each
hour, we calculated the probability that a node that has been online for at least a
minute remains online for 1, 5 or 10 more minutes. As the figure illustrates, these
probabilities are rather high even for a 10 minute extra time, which is certainly
sufficient to complete a mini-batch for any reasonable batch size, given that the
time complexity is logarithmic in size. Comparing this with Figure 1, under these
realistic failure rates the resulting computation will cover a large subset of the
intended mini-batch.
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Fig. 1. The expected value of the ratio of nodes that successfully contribute to the
computation, plotted as a function of the probability of node failure. B denotes maximal
branching factor and D denotes depth. (An isolated node has depth 0.)
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7 Variations

Although the robustness of the algorithm is useful, we have to be careful when
publishing a sum based on too few participants. The algorithm can be modified
to address this issue. Let us denote by R the minimal required number of actual
participants (S ≤ R ≤ N). Eachmessage is padded with an (unencrypted) integer
n indicating the number of nodes its data is based on.When the node exactly S−1
steps away from the root (thus in the trunk) is about to send its message, it checks
whether n + S − 1 ≥ R holds (since the remaining nodes towards the root have
no children except the one on this path). If not, it sends a failure message instead.
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The nodes fewer than S − 1 steps away from the root transmit a failure message
if they receive one, or if they fail to receive any messages.

One can ask the question whether the trunk is needed, as the protocol can be
executed on any tree unmodified. However, having no trunkmakes it easier to steal
information about subtrees close to the root. If the tree is well-balanced and the
probability of failure is small, these subtrees can be large enough for the stolen
partial sums to not pose a practical privacy problem in certain applications. The
advantages include a simpler topology, a faster running time, and increased ro-
bustness.

Another option is to replace the top S − 1 nodes with a central server. To be
more precise, we can have a server simulate the top S − 1 nodes with the local
values of these nodes set to zero. This server acts as the root of a 2-trunked tree.
From a security point of view, if the server is corrupted by a semi-honest adversary,
we have the same situation when the top S − 1 nodes are corrupted by the same
adversary. As we have shown in Section 6.1, one needs to corrupt at least S nodes
in a chain to gain any extra advantage, so on its own the server is not able to obtain
extra information other than the global sum. Also, the server does not need more
computational capacity or bandwidth than the other nodes. This variation can be
combined with the size propagation technique described above. Here, the child of
the server can check whether n ≥ R holds.

8 Evaluation of Convergence Speed

Here, we illustrate the cost of using mini-batch learning instead of stochastic gra-
dient descent, and we also illustrate the overhead of our cryptographic techniques
on the mini-batch algorithm.

We simulated our algorithm over the Spambase binary classification data set
from the UCI repository[14], which consists of 4601 records, 39.4% of which are
positive. 10% of the records were reserved for testing. Each node had one record
resulting in a network size of 4601. The trees we tested had a trunk length of S
with D additional levels below the trunk with a branching factor of B. Each node
stays alive during the calculation of the batch-sum with probability P resulting
in E nodes (E is a random variable) that end up participating in the computation
(see Figure 1).

The learning method we used was logistic regression [4]. We used the
L2-regularized logistic regression online update rule

w ← t

t+ 1
w +

η

t+ 1
(y − p)x

where w is the weight vector of the model, t is the number of samples seen by the
model (not including the new one), x is the feature vector of the training example,
y is the correct label (1 or 0), p is the prediction of the model (probability of the
label being 1), and η is the learning parameter. We generalize this rule to mini-
batches of size E as follows:

w ← t

t+ E
w +

(
1

E

E∑

i=1

η

t+ i

)
E∑

i=1

(yi − pi)xi
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where (yi−pi)xi is supposed to be calculated by the individual nodes, and summed
using Algorithm 1. After the update, t is increased by E instead of 1. η was set to
1000.

Our baseline is the case when one instance of stochastic gradient descent (SGD)
is started by each node and the nodes immediately forward all received models af-
ter updating it, thereby utilizing all the available bandwidth (in practice users can
set upper bounds on this utilization, we assumed the maximal bandwidth is the
same at all the nodes). We run mini-batch with and without cryptography (secure
mini-batch andmini-batch). The number of instances we start of these mini-batch
variants are chosen so that they use the same bandwidth as SGD. With cryptog-
raphy we use Algorithm 1 to compute the gradient sum. Without cryptography
we use the same tree but we do not encode the messages. Instead, we propagate
the plain partial sum instead of S different encoded shares. Note that mini-batch
with and without cryptography is in fact identical except that with cryptography
all the messages are at most about 2S times larger and thus they take this much
longer to transmit (see Section 6.2).
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Fig. 3. Misclassification rate (zero-one error) of secure mini-batch (left) and mini-batch
(right) averaged over the nodes and over 1000 different runs as a function of time (mea-
sured in SGD steps).

Figure 3 shows our results. Clearly, mini-batch gradient does not result in se-
rious performance loss in itself. Cryptography does add overhead that is linearly
proportional to the parameter S, since the message size includes the factor of S
due to sending this number of shares.

9 Conclusion

We proposed a secure sum protocol to prevent the collusion attack in gossip learn-
ing. The main idea is that instead of SGD we implement a mini-batch method
and the sum within the mini-batch is calculated using our novel secure algorithm.
We can achieve very high levels of robustness and very good scalability through
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exploiting the fact that the mini-batch gradient algorithm does not require the
sum to be precise. The algorithm runs in logarithmic time and it is designed to
calculate a partial sum in case of node failures. It can tolerate collusion unless
there are S consecutive colluding nodes on any path to the root of the aggregation
tree, where S is a free parameter. Under practical parameter settings the commu-
nication complexity of the secure mini-batch algorithm is only approximately a
constant factor of 2S larger than that of the plain mini-batch algorithm.
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Abstract. An important cloud federation enabler is the development of
suitable business models, which has so far received relatively little atten-
tion from investigators. Few efforts have been dedicated to investigation
of business models for enabling cloud federations, especially with regard
to distribution issues, in which centralized solutions are usually preferred.
Hence, in our work we focus on the use of fully decentralized mechanisms
supporting federation of private clouds based on barter mechanisms. We
analyze the adaptation of fully decentralized incentive mechanisms pre-
viously used in the context of P2P desktop grids, and show that they are
not suitable for federated cloud systems because fairness cannot always
be guaranteed. We show initial results concerning the use of a mechanism
intended to guarantee a higher level of fairness and thereby to promote
voluntary participation in a decentralized federation without any central
or trusted enforcing authority.

Keywords: Cloud and grid computing · Cooperation incentives and
fairness · Peer to peer computing

1 Introduction

Organizations with variable and peaky demand patterns often turn to public
clouds (cf. “cloud bursting” [4]) in order to meet unexpected or short-term needs.
However, during off-peak times resources might become idle, which constitutes
an efficiency loss for the organization. An alternative for cloud providers is to
participate in a federation for exchanging idle resources. In particular private
cloud providers, due to the usually limited amount of owned resources, would
greatly benefit from this [2].

From the architectural perspective, cloud federations can be either central-
ized or Peer-to-Peer (P2P) [3]. In centralized architectures, resource allocation
is typically performed by a trusted central entity that is able to prevent free
riding and to perform the best matching of consumers and providers. In P2P
federations, on the other hand, participants must communicate and negotiate
directly with each other. The advantages of decentralized topologies include ex-
tensibility, deployment, management, use and growth. The drawbacks, however,
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include difficulties in discovery, routing, security, and the fact that participants
are mostly unknown to each other and cannot be assumed to be trustworthy or
collaborative. Moreover, peers should be assumed to be selfish and to have an
economic incentive to become free riders.

Similarly, from a market perspective cloud federations can be also classified as
centralized or decentralized. In a centralized market system, bids and requests
are collected by a central entity or market auctioneer that matches them and
decide the best matching of buyers and sellers. In decentralized markets, on the
other hand, buyers and sellers must explore the market by themselves and bar-
gain directly with each other. Participants may provide resources in exchange
for payment or by bartering. Payment schemes would require the introduction of
complex management mechanisms and procedures, whereas bartering schemes
can be implemented e.g. in the shape of flexible credit and debit local annota-
tions. The latter would be very suitable for the federation of private clouds, since
it is a wholly money-less and distributed scheme that can do without any trusted
centralized entities. Obviously, there is a close relation between the architecture
and the market structures of private cloud federations. In this work, we propose
a lightweight P2P cloud federation infrastructure implementing a decentralized
market system.

An important challenge concerns the promotion of cooperation among ratio-
nal selfish individuals in a decentralized context with no central and trusted
enforcing authority. In this kind of system, participants are usually left to them-
selves and only with limited information about the actual behavior or intention
of other actors, may not keep promises, and must rely solely on their own expe-
rience, acquired through interactions with each other, in order to decide to what
extent they should trust other partners. It is therefore natural to expect that, at
first hand, participants will prefer to act as free riders. Moreover, collaborative
partners may defect from the federation if they are not satisfied with the results
of participation. Some form of individual incentives must therefore be enforced
in order to ensure sustained voluntary participation. Our aim is to propose one
such mechanism enabling the collaborative peer to make efficient decisions that
guarantees both its satisfaction, defined as the ratio between received and re-
quested resources (which should ideally be one), and fairness, defined as the ratio
between the amount of resources obtained and the amount of resources provided
(which should ideally be approximately one on the long run). The challenge is
to find a scheme that guarantees that the levels of both fairness and satisfaction
are good enough to ensure that most participants will not defect and free riders
will be isolated or kept with a low degree of satisfaction.

For the reasons explained above, incentives or punishment procedures must
exist in order to promote cooperation and keep the federation alive. The scheme
we propose in this paper leverages the notion of the Network of Favors (NoF)
[1], an incentive mechanism for resource sharing in P2P opportunistic desktop
grids. In NoF, each peer uses only its own locally stored interaction history with
other peers, which is basically the balance of favors exchanged (total amount of
favors a peer A consumed from peer B minus total amount of favors a peer A
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donated to peer B), in order to decide which ones will be given priority in resource
requests. We call this notion of NoF the Satisfaction-Driven NoF (SD-NoF). In
the SD-NoF a collaborator always supply all of its idle resources to the federa-
tion, with the expectation of accumulating credits with other peers, which may
be converted to favors in the future. This ensures the best possible levels of sat-
isfaction to collaborators, independently of the level of resource contention. This
scheme is suitable for opportunistic desktop grids, since the costs of providing
resources, which are intended primarily for in-house consumption, are assumed
to be so low that collaborators may disregard fairness and focus only on max-
imizing satisfaction. However, in the case of private and P2P federated clouds,
resources are dedicated, and the associated overhead costs (management staff,
energy and space) may not be negligible. Fairness may thus become an impor-
tant goal, which may be achieved by limiting the amount of supplied resources,
thereby isolating free riders more efficiently specially in scenarios with low re-
source contention. To this end, we introduce a feedback control loop mechanism
regulating the amount of supplied resources. Briefly, in order to reward cooper-
ative actors and isolate free riders, a peer in the federation will draw upon its
current assessment of fairness in order to define the amount of offered resources,
even if it would have at any given moment more idle resources than those of-
fered. By contrast to the SD-NoF, we call this new scheme Fairness-Driven NoF
(FD-NoF).

The outcome is a mechanism that more closely conforms to the game theo-
retical results derived from the notion of reciprocal altruism [5], which shows
how selection can operate against cheaters or non-reciprocators (the free riders
in the NoF). Altruistic behavior is defined as a behavior that benefits another
unrelated individual at a certain cost for the contributing individual. Selection
would seem to favor “cheaters”, i.e. those individuals that fail to reciprocate
favors. However, selection might also discriminate against cheaters if the altruist
is able to curtail future altruistic gestures to those individuals, assuming that
the sum of the benefits for the altruist of those lost acts outweighs their cost.
As a result, the altruist will prefer to exchange altruistic acts with other altruist
individuals, not with cheaters.

2 Feedback Control Loop Mechanism

Andrade et al. [1] proved that whenever there is resource contention1 between col-
laborators (κ), the SD-NoFworkswell and prioritizes collaborators before free rid-
ers. However, only prioritizing collaborators is not enough in scenarios with
low resource contention (κ < 1), since in this case all the surplus resourceswill nev-
ertheless be offered, thus benefiting free riders. To avoid this, collaborators could
try to regulate the amount of resources provided, thereby indirectly increasing the
value of κ. Collaborators are not able to directly control the value of κ in a de-
centralized P2P system, and may not even have an interest in doing it. However,

1 Contention is a metric that characterizes the degree of competition for offered
resources, defined as the ratio of requested resources by provided resources.
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contentionmaybe indirectly increasedwhen collaborators try to balance their level
of fairness. The simplest way to do it is by decreasing the amount of provided re-
sources. If fairness is close to 1 for each collaborator, the value of contention will
also be close to 1. However, the overall level of satisfaction may decrease thereby,
and affect not only free riders but collaborators as well.

Each collaborator is then equipped with the feedback control loop mechanism
and must define on its own a threshold value τ for the desired minimum level of
fairness. The mechanism enhances fairness by controlling the amount of provided
resources until its value becomes higher than τ ; once the desired level of fairness
has been achieved, the algorithm will instead focus on enhancing satisfaction by
increasing the amount of resources provided. Roughly, the feedback control loop
mechanism decides whether to decrease or increase the amount of resources pro-
vided by a fixed value at each step of the simulation, in this work chosen to be 5%
of the total resources capacity, in order to achieve the desired levels of both fairness
and satisfaction. By this mechanism, a collaborator couldmomentarily “leave” the
federation, by supplying no resources, until it receives again some favors.

2.1 Simulation Model

To assess the behavior of the participants in the FD-NoF, we have built a simula-
tor for a simplified model of a resource sharing P2P federation of cloud providers.
The federation consists of a community of n peers, with (1− f) ·n collaborators
and f · n free riders, 0 ≤ f ≤ 1. We are interested in understanding how the set
of collaborators perform in relation to the set of free riders. Thus, to eliminate
the influence that different kinds of participants might have in the results, we
assume that all collaborators have the same capacity and needs, and free riders
the same needs. The simulation proceeds in steps. At each step each collabora-
tor can be in a consumer state with probability of π or in a provider state with
probability 1−π. Each collaborator is assumed to have a total resource capacity
of C, and the amount of demand requested by any consuming collaborator is
D · C, where D ≥ 0. In the SD-NoF, when in a provider state a collaborator
will always offer all of its resources, i.e. C. At each step, the resources are given
to one or more peers selected from the set of consuming peers according to the
balance of favors exchanged (more details of NoF in [1]). Free riders, in contrast,
never provide resources and are always in a consumer state, each one requesting
D · C resources at every step.

2.2 Scenarios

Our goal is to understand the behavior of the peers in scenarios with low, mod-
erate and high levels of κ, with values ranging over the set {0.5, 1.0, 2.0, 4.0}.

We are interested in the scenarios in which the amount of free riders may
seriously affect the level of fairness for collaborators. The higher the percentage
of free riders in the system, the more resources, which are provided solely by
collaborators, they will collectively consume in total, thereby affecting negatively
the level of fairness for collaborators. Thus, we chose f = 0.75 for all scenarios.
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The larger the number of participants in the federation, the worse will be the
situation to the free riders, even with constant f . This is because the larger the
total amount of collaborators, the less will be at each step the deviation from the
expected value of the total amount of providers, and hence the probability that
a significant amount of resources will be available to free riders, which would
imply that the number of providers is a bit higher than average. Then, we fix n
to 100 in all scenarios.

Finally, for simplicity we consider C = 1. In summary, our design of experi-
ments will have three parameters with constant values, n = 100, f = 0.75 and
C = 1, and two variables with changing values: D and π — which both gener-
ates the different levels of κ. We run the simulations in 4000 steps, sufficient for
ensuring that the fairness of collaborators achieves stability.

3 Results and Analysis

In order to evaluate the Feedback Control Loop we simulated the scenarios
presented in section 2.2 in both SD-NoF and FD-NoF. Figure 1 shows the average
fairness of collaborators (lines) and the individual fairness of each one of them
(circles) along the four κ values, at the last step of the simulation in both SD-NoF
and FD-NoF, the latter with τ ∈ {0.8, 0.95}.

(a) f = 0.75 and τ = 0.8. (b) f = 0.75 and τ = 0.95.

Fig. 1. Average and density of fairness to collaborators along κ ∈ {0.5, 1, 2, 4} with
SD-NoF and FD-NoF.

From Figure 1 we may observe that the Feedback Control Loop Mechanism
was able to increase the values of fairness in low and moderate κ scenarios. Be-
cause f is high (75%), although free rider’s individual satisfaction tends to be
low (due to the high resource contention between themselves), their collective ac-
tion strongly affects the fairness of collaborators in SD-NoF, which is on average
0.48 and 0.81 for contention values of 0.5 and 1, respectively (see yellow line on
Figures 1a and 1b). In this case, FD-NoF increased the fairness of collaborators
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on average by 60% and 15%, respectively, when τ was set to 0.95, and by 48%
and 3%, respectively, when τ was set to 0.8.

Moreover, in scenarios with high values of κ, FD-NoF behaves similarly to
SD-NoF, regardless the high f value and τ , which is good since SD-NoF already
works fine in these scenarios. One can also notice that the higher is the value
of τ , the tougher is the task of the controller. Thus, not surprisingly, when we
used τ = 0.95, only few collaborators could indeed approach it when κ = 0.5.
Obviously, as κ increases, the Feedback Control Loop Mechanism gets more
efficient. Also, smaller values of τ lead to less variability among collaborators.

In summary, FD-NoF achieves its goal: collaborators improve their level of
fairness by controlling the amount of supplied resources.

4 Conclusions and Future Works

In our work we introduce the FD-NoF, an enhancement of the NoF [1], by
defining a Feedback Control Loop mechanism to regulate the amount of resources
provided. With the aid of this mechanism collaborators may achieve greater
levels of fairness by indirectly increasing the levels of resource contention. FD-
NoF behaves similarly to SD-NoF in high resource contention scenarios, which is
a positive result since SD-NoF by itself already provides good values of fairness.

As future work, we will implement the FD-NoF as part of the middleware2,
and deploy and evaluate the performance of the FD-NoF on the federated cloud
that comprises the computing infrastructure of the EUBrazilCC project3. More-
over, we will refine the FD-NoF in order to accelerate convergence by introducing
delegation schemes enabling the donation of services on behalf of a third agent.
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Abstract. Decentralised recommenders have been proposed to deliver
privacy-preserving, personalised and highly scalable on-line recommenda-
tions. Current implementations tend, however, to rely on a hard-wired sim-
ilarity metric that cannot adapt. This constitutes a strong limitation in the
face of evolvingneeds. In this paper, we propose a framework to develop dy-
namically adaptive decentralised recommendation systems. Our proposal
supports a decentralised form of adaptation, in which individual nodes can
independently select, and update their own recommendation algorithm,
while still collectively contributing to the overall system’s mission.

Keywords: Distributed Computing · Decentralised Systems · Collabo-
rative Filtering · Recommendation Systems · Adaptation

1 Introduction

With the growth of the modern web, recommendation has emerged as a key ser-
vice to help users navigate today’s on-line content. Designing highly scalable and
privacy-preserving recommenders is hard, and one promising approach consists
in exploiting fully decentralised mechanisms such as gossip [21,5], or DHTs [29].
These decentralised recommenders, however, have so far used a mostly homoge-
neous design. They typically rely on one similarity metric [30] to self-organise
large numbers of users in implicit communities and offer powerful means to com-
pute personalised recommendations. Figuring out the right similarity metric that
best fits the needs of a large collection of users is, however, highly challenging.

To address this challenge, we explore, in this paper, how dynamic adapta-
tion can be applied to large-scale decentralised recommenders by allowing each
individual node to choose autonomously between different similarity metrics.
Extending on earlier works in the field [19,12], we propose several adaptation
variants, and show how small changes in adaptation decisions can drastically
impact a recommender’s overall performance, while demonstrating the feasibil-
ity of decentralised self-adaptation in peer-to-peer recommender systems.
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In the following, we motivate and present our work (Sec. 2 and 3), evaluate it
(Sec. 4 and 5), before discussing related work (Sec. 6), and concluding (Sec. 7).

2 Background

Modern on-line recommenders [20,11,28,22,9] remain, in their vast majority,
based around centralised designs. Centralisation comes, however, with two crit-
ical drawbacks. It first raises the spectre of a big-brother society, in which a few
powerful players are able to analyse large swaths of personal data under little
oversight. It also leads to a data siloing effect. A user’s personal information
becomes scattered across many competing services, which makes it very difficult
for users themselves to exploit their data without intermediaries [31].

These crucial limitations have motivated research on decentralised recommen-
dation systems [5,7,4,25], in particular based on implicit interest-based over-
lays [30]. These overlays organise users (represented by their machines, also
called nodes) into implicit communities to compute recommendations in a fully
decentralised manner.

2.1 Interest-Based Implicit Overlays

More precisely, these overlays seek to connect users1 with their k most similar
other users (where k is small) according to a predefined similarity metric. The
resulting k-nearest-neighbour graph or knn is used to deliver personalised rec-
ommendations in a scalable on-line manner. For instance, in Figure 1, Alice has
been found to be most similar to Frank, Ellie, and Bob, based on their browsing
histories; and Bob to Carl, Dave, and Alice.

Although Bob and Alice have been detected to be very similar, their browsing
histories are not identical: Bob has not visited Le Monde, but has read the
New York Times, which Alice has not. The system can use this information to
recommend the New York Times to Alice, and reciprocally recommend Le Monde
to Bob, thus providing a form of decentralised collaborative filtering [13].

Gossip algorithms based on asynchronous rounds [10,30] turn out to be partic-
ularly useful in building such interest-based overlays. Users typically start with
a random neighbourhood, provided by a random peer sampling service [17].
1 In the following we will use user and node interchangeably.
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They then repeatedly exchange information with their neighbours, in order to
improve their neighbourhood in terms of similarity. This greedy sampling pro-
cedure is usually complemented by considering a few random peers (returned by
a decentralised peer sampling service [17]) to escape local minima.

For instance, in Figure 2, Alice is interested in hearts, and is currently con-
nected to Frank, and to Ellie. After exchanging her neighbour list with Bob, she
finds out about Carl, who appears to be a better neighbour than Ellie. As such,
Alice replaces Ellie with Carl in her neighbourhood.

2.2 Self-Adaptive Implicit Overlays

The overall performance of a service using a knn overlay critically depends on the
similarity metric it uses. Unfortunately, deciding at design time which similarity
metric will work best is highly challenging. The same metric might not work
equally well for all users [19]. Further, user behaviour might evolve over time,
thereby rendering a good initial static choice sub-efficient.

Instead of selecting a static metrics at design time, as most decentralised rec-
ommenders do [5,3,4], we propose to investigate whether each node can identify
an optimal metric dynamically, during the recommendation process. Adapting
a node’s similarity metric is, however, difficult for at least three reasons. First,
nodes only possess a limited view of the whole system (their neighbourhood) to
make adaptation decisions. Second, there is a circular dependency between the
information available to nodes for adaptation decisions and the actual decision
taken. A node must rely on its neighbourhood to decide whether to switch to
a new metric. But this neighbourhood depends on the actual metric being used
by the node, adding further instability to the adaptation. Finally, because of the
decentralised nature of these systems, nodes should adapt independently of each
other, in order to limit synchronisation and maximise scalability.

3 Decentralised Adaptation

We assume a peer-to-peer system in which each node p possesses a set of items,
items(p), and maintains a set of k neighbours (k = 10 in our evaluation). p’s
neighbours are noted Γ (p), and by extension, Γ 2(p) are p’s neighbours’ neigh-
bours. Each node p is associated with a similarity metric, noted p.sim, which
takes two sets of items and returns a similarity value.

The main loop of our algorithm (dubbed Similitude) is shown in Alg. 1
(when executed by node p). Ignoring line 3 for the moment, lines 2-4 implement
the greedy knn mechanism presented in Section 2. At line 4, argtopk selects
the k nodes of cand (the candidate nodes that may become p’s new neighbours)
that maximise the similarity expression p.sim

(
items(p), items(q)

)
.

Recommendations are generated at lines 5-6 from the set itΓ of items of all
users in p’s neighbourhood (noted items

(
Γ (p)

)
). Recommendations are ranked

using the function score at line 8, with the similarity score of the user(s) they
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Algorithm 1. Similitude
1: in every round do
2: cand ← Γ (p) ∪ Γ 2(p) ∪ 1 random node
3: adaptsim(cand)

4: Γ (p) ←
argtopk

q∈cand

(
p.sim

(
items(p), items(q)

))

5: itΓ ← items
(
Γ (p)

) \ items(p)

6: rec ←
argtop

m

i∈itΓ

(
score

(
i, p.sim, items(p), Γ (p)

))

7: end round

8: function score(i, sim, items, Γ )

9: return
∑

q∈Γ |i∈items(q)

sim(items, items(q))

10: end function

Algorithm 2. Adaptsim
1: function adaptsim(cand)
2: top_sims ←

argmax
s∈SIM

(
avg4

(
eval_sim(s, cand)

))

3: if p.sim �∈ top_sims then
4: p.sim ← random element from top_sims
5: end if
6: end function

7: function eval_sim(s, cand)
8: hiddenf ← proportion f of items(p)
9: visiblef ← items(p) \ hiddenf

10: Γf ← argtopk

q∈cand

(
s
(
visiblef , items(q)

))

11: itf ← items
(
Γf

) \ visiblef

12: recf ←
argtopm

i∈itf

(
score(i, s, visiblef , Γf )

)

13: return S =
|recf ∩ hiddenf |

|recf |
14: end function

are sourced from. Recommendations suggested by multiple users take the sum of
all relevant scores. The top m recommendations from itΓ (line 6) are suggested
to the user (or all of them if there are less than m).

3.1 Dynamic Adaptation of Similarity

The adaptation mechanism we propose (adaptsim) is called at line 3 of Alg. 1,
and is shown in Alg. 2. A node p estimates the potential of each available metric
(s ∈ SIM , line 2) using the function eval_sim(s). In eval_sim(s), p hides
a fraction f of its own items (lines 8-9) and creates a ‘temporary potential
neighbourhood’ Γf for each similarity metric available (line 10, f = 20% in our
evaluation). From each temporary neighbourhood, p generates a set of recom-
mendations (lines 11-12) and evaluates them against the fraction f of internally
hidden items, resulting in a score S for each similarity s (its precision (Figure 5)).

This evaluation is repeated four times and averaged to yield a set of the
highest-achieving metrics (top_sims) (note that multiple metrics may achieve
the same score). If the current metric-in-use p.sim is not in top_sims, p switches
to a random metric from top_sims (lines 3-4).

After selecting a new metric, a node suspends the metric-selection process
for two rounds during which it only refines its neighbours. This cool-off period
allows the newly selected metric to start building a stable neighbourhood thereby
limiting oscillation and instability.
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3.2 Enhancements to Adaptation Process

We now extend the basic adaptation mechanism presented in Section 3.1 with
three additional modifiers that seek to improve the benefit estimation, and limit
instability and bias: detCurrAlgo, incPrevRounds and incSimNodes .

detCurrAlgo (short for “detriment current algorithm”) slightly detracts from
the score of the current metric in use. This modifier tries to compensate for the
fact that metrics will always perform better in neighbourhoods they have built
up themselves. In our implementation, the score of the current metric in use is
reduced by 10%.

incPrevRounds (short for “incorporate previous rounds”) takes into consid-
eration the scores Sr−i obtained by a metric in previous rounds to compute a
metric’s actual score in round r, S�

r (Figure 3). In doing so, it aims at reduc-
ing the bias towards the current environment, thereby creating a more stable
network with respect to metric switching.

incSimNodes (short for “incorporate similar nodes”) prompts a node to refer
to the metric choice of the most similar nodes it is aware of in the system. This is
based on the knowledge that similar metrics are preferable for nodes with similar
profiles, and thus if one node has discovered a metric which it finds to produce
highly effective results, this could be of significant interest to other similar nodes.
The modifier works by building up an additional score for each metric, based on
the number of nodes using the same metric in the neighbourhood. This additional
score is then balanced with the average of the different metrics’ score (Figure 4).

4 Evaluation Approach

We validate our adaptation strategies by simulation. In this section, we describe
our evaluation protocol; we then present our results in Section 5.

4.1 Data Sets

We evaluate Similitude on two datasets: Twitter, and MovieLens. The former
contains the feed subscriptions of 5,000 similarly-geolocated Twitter users, ran-
domly selected from the larger dataset presented in [8]2. Each user has a profile
containing each of her Twitter subscriptions, i.e., each subscribed feed counts
as a positive rating. The MovieLens dataset [1] contains 1 million movie ratings
from 6038 users, each consisting of an integer value from 1 to 5. We count values
3 and above as positive ratings. We pre-process each dataset by first removing
the items with less than 20 positive ratings because they are of little interest
to the recommendation process. Then, we discard the users with less than five
remaining ratings. After pre-processing, the Twitter dataset contains 4569 users
with a mean of 105 ratings per user, while the MovieLens dataset contains 6017
users with a mean of 68 ratings per user.
2 An anonymised version of this dataset is available at

http://ftaiani.ouvaton.org/ressources/onlyBayLocsAnonymised_21_Oct_2011.tgz

http://ftaiani.ouvaton.org/ressources/onlyBayLocsAnonymised_21_Oct_2011.tgz


56 D. Frey et al.

S�
r = Sr +

5∑

i=1

(0.5− i
10
)× S�

r−i

Fig. 3. Incorporating previous rounds
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Fig. 4. Incorporating similar nodes

Precision(ui ∈ users) = |reci∩hiddeni|
|reci|

Recall(ui ∈ users) = |reci∩hiddeni|
|hiddeni|

Fig. 5. Precision and recall

Overlap(ui, uj) = |itemsi ∩ itemsj |
Big(ui, uj) = |itemsj |

OverBig(ui, uj) = Overlap(ui, uj) +Big(ui, uj)

Jaccard(ui, uj) =
Overlap(ui,uj)

itemsi∪itemsj

Fig. 6. The four similarity metrics used

4.2 Evaluation Metrics

We evaluate recommendation quality using precision and recall (Figure 5). Pre-
cision measures the ability to return few incorrect recommendations, while recall
measures the ability to return many correct recommendations. In addition, we
evaluate specific aspects of our protocol. First, we count how many nodes reach
their optimal similarity metrics—we define more precisely what we understand
by optimal in Section 4.5. Finally, we observe the level of instability within the
system, by recording the number of nodes that switch metric during each round.

4.3 Simulator and Cross Validation

We measure recommendation quality using a cross-validation approach. We split
the profile of each user into a visible item set containing 80% of its items, and
a hidden item set containing the remaining 20%. We use the visible item set to
construct the similarity-based overlay and as a data source to generate recom-
mendations as described in Section 3. We then consider a recommendation as
successful if the hidden item set contains a corresponding item.

In terms of protocol parameters, we randomly associate each node with an
initial neighbourhood of 10 nodes, as well as with a randomly selected similarity
metric to start the refinement process. At each round, the protocol provides each
node with a number of suggestions equal to the average number of items per user.
We use these suggestions to compute precision and recall. Each simulation runs
for 100 rounds; we repeat each run 10 times and average the results. Finally, we
use two rounds of cool-off by default.

4.4 Similarity Metrics

We consider four similarity metrics: Overlap, Big, OverBig and, Jaccard [19],
shown in Figure 6. These metrics are sufficiently different to represent distinct
similarity choices for each node, and offer a representative adaptation scenario.

Overlap counts the items shared by a user and its neighbour. As such, it tends
to favour users with a large number of items. Big simply counts the number of
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items of the neighbour, presuming that the greater the number of items available,
the more likely a match is to be found somewhere in the list. This likewise favours
users with a larger number of items. OverBig works by combining Big and
Overlap—thereby discrediting the least similar high-item users. Finally Jaccard
normalises the overlap of items by dividing it by the total number of items of
the two users; it therefore provides improved results for users with fewer items.

It is important to note that the actual set of metrics is not our main fo-
cus. Rather, we are interested in the adaptation process, and seek to improve
recommendations by adjusting the similarity metrics of individual nodes.

4.5 Static Metric Allocations

We compare our approach to six static (i.e., non-adaptive) system configurations,
which serve as baselines for our evaluation. In the first four, we statically allocate
the same metric to all nodes from the set of metrics in Figure 6 (Overlap, Big,
OverBig, and Jaccard). These baselines are static and homogeneous.

The fifth (HeterRand) and sixth (HeterOpt) baselines attempt to capture two
extreme cases of heterogeneous allocation. HeterRand randomly associates each
node with one of the four above metrics. This configuration corresponds to a
system that has no a-priori knowledge regarding optimal metrics, and that does
not use dynamic adaptation. HeterOpt associates each node with its optimal
similarity metric. To identify this optimal metric, we first run the first four base-
line configurations (static and homogeneous metrics). For each node, HeterOpt
selects one of the metrics for which the node obtains the highest average pre-
cision. HeterOpt thus corresponds to a situation in which each node is able to
perfectly guess which similarity metric works best for itself.

5 Experimental Results

5.1 Static Baseline

We first determine the set of optimal metrics for each node in both datasets
as described in Section 4.5. To estimate variability, we repeat each experiment
twice, and compare the two sets of results node by node. 43.75% of the nodes
report the same optimal metrics across both runs. Of those that do not, 35.43%
list optimal metrics that overlap across the two runs. In total, 79.18% of nodes’
optimal metrics match either perfectly or partially across runs. Figure 7 depicts
the distribution obtained in the first run for both datasets.

5.2 Basic Similitude

We first test the basic Similitude with no modifiers, and a cool-off period of
two rounds. Figures 8 and 9 present precision and recall (marked Similitude
(basic)). Figure 10 depicts the number of users selecting one of the optimal
metrics, while Figure 11 shows the switching activity of users.
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These results show that Similitude allows nodes to both find their optimal
metric and switch to it. Compared to a static random allocation of metrics
(HeterRand), Similitude improves precision by 47.22%, and recall by 33.75%.
A majority of nodes (59.55%) reach their optimal metrics, but 17.43% remain
unstable and keep switching metrics throughout the experiment.

5.3 Effects of the Modifiers

detCurrAlgo has a negative effect on every aspect: precision, recall, number
of nodes on optimal metrics, and stability (Figures 8 through 11). Precision and
recall decrease by 5.08% and 6.93% respectively compared to basic Similitude.
At the same time, the final number of nodes on their optimal metrics decreases
by 6.02%, and unstable nodes increase by 35.29%.

This shows that, although reducing the current metric’s score might intuitively
make sense because active metrics tend to shape a node’s neighbourhood to their
advantage, this modifier ends up disrupting the whole adaptation process. We
believe this result depends on the distribution of optimal metrics (Figure 7).
Since one metric is optimal for a majority of nodes, reducing its score only causes
less optimal metrics to take over. It would be interesting to see how this modifier
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behaves on a dataset with a more balanced distribution of optimal metrics than
the two we consider here.

incPrevRounds , unlike detCurrAlgo, increases precision by 12.57% and re-
call by 24.75% with respect to basic Similitude, while improving stability by
55.92%. The number of nodes reaching an optimal metric improves by 18.81%.

As expected, incPrevRounds greatly improves the stability of the system; it
even enhances every evaluation metric we use. The large reduction in the number
of unstable nodes, and the small increase in that of nodes reaching their optimal
metrics suggest that incPrevRounds causes nodes to settle on a metric faster,
whether or not that metric is optimal. One possible explanation is that, if one
metric performs especially well in a round with a particular set of neighbours,
all future rounds will be affected by the score of this round.

incSimNodes, like incPrevRounds , improves basic Similitude on every aspect.
Precision increases by 11.91%, recall by 16.88%, the number of nodes on their
optimal metrics by 16.53%, and that of unstable nodes decreases by 49.26%.

With this modifier, most of the nodes switch to the same similarity metric
(Jaccard). Since incSimNodes tends to boost the most used metric in each node’s
neighbourhood, it ends up boosting the most used metric in the system, creating
a snowball effect. Given that Jaccard is the optimal metric for most of the nodes,
it is the one that benefits the most from incSimNodes .

Even if completely different by design, both incPrevRounds and incSimNodes
have very similar results when tested with Twitter. This observation cannot be
generalised as the results are not the same with MovieLens (Figures 15 and 16).

All modifiers activates all three modifiers with the hope of combining their ef-
fects. Results show that this improves precision and recall by 29.11% and 43.99%
respectively. The number of nodes on optimal metrics also increases by 32.51%.
Moreover none of the nodes switch metrics after the first 25 rounds.

Activating all the modifiers causes most nodes to employ the metric that is
optimal for most nodes in Figure 7, in this case Jaccard . This explains why no
node switches metrics and why the number of nodes reaching optimal metrics
(70.15%) is very close to the number of nodes with Jaccard as an optimal metric
(75.31%). The difference gets even thinner without cool-off (Section 5.5): 73.43%
of the nodes use their optimal metrics.

5.4 Weighting the Modifiers

We balance the effect of the two additive modifiers (incPrevRounds and inc-
SimNodes) by associating each of them with a multiplicative weight. A value of
0 yields the basic Similitude, a value of 1 applies the full effect of the modifier,
while a value of 0.5 halves its effect. We use a default weight of 0.5 for both of
them because they perform best with this value when operating together.

Figure 12 shows the precision and recall of incPrevRounds and incSimNodes
with their respective weights ranging from 0 (basic Similitude) to 1, with a 0.1
step. incPrevRounds peaks at a weight of 0.5 even when operating alone, while
incSimNodes peaks at 0.7, but it still performs very well at 0.5.
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5.5 Varying the Cool-Off Period

As described in Section 3.1, the cool-off mechanism seeks to prevent nodes from
settling too easily on a particular metric. To assess the sensitivity of this param-
eter, Figures 13 and 14 compare the results of Similitude with all the modifiers,
when the cool-off period varies from 0 (no cool-off) to 5 rounds.

Disabling cool-off results in a slight increase in precision (5.45%) and in recall
(7.23%) when compared to 2 rounds of cool-off. Optimal metrics are reached by
3.73% more nodes, and much faster, attaining up to 73.43% nodes. Removing
cool-off reduces a metric’s ability to optimise a neighbourhood to its advantage,
as there is only a single round of clustering before the metric is tested again.
While cool-off can offer additional stability in adaptive systems, the stability
provided by the modifiers appears to be sufficient in our model. Cool-off, instead,
leads metrics to over-settle, and produces a negative effect.

5.6 MovieLens Results

Figures 15 and 16 show the effect of Similitude on precision and recall with
the different modifiers using the MovieLens dataset. The results are similar to
those obtained with Twitter (Figures 8 and 9).
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As with the Twitter dataset, basic Similitude outperforms HeterRand in
precision by 24.52% and in recall by 21.02%. By the end of the simulations,
59.95% of the nodes reach an optimal metric and 15.73% still switch metrics.

The behaviour of the modifiers compared to basic Similitude is also simi-
lar. detCurrAlgo degrades precision by 7.58%, recall by 9.86%, the number of
nodes on optimal metrics by 7.07%, and the number of nodes switching met-
rics by 33.40%. incPrevRounds improves precision by 21.02%, recall by 31.19%,
the number of nodes on optimal metrics by 20.52%, and the number of nodes
switching metrics by 62.08%. incSimNodes improves precision by 15.75%, recall
by 17.38%, the number of nodes on optimal metrics by 15.12%, and the number
of nodes switching metrics by 28.61%.

All modifiers improves precision by 29.11%, recall by 43.99%, the number of
nodes on optimal metrics by 32.51%, and there are no nodes switching metrics
after the first 25 rounds. As with the Twitter dataset, activating all the modifiers
makes all the nodes use the similarity metric which is optimal for the majority
of the system: Jaccard . The number of nodes reaching optimal metrics (79.44%)
and the number of nodes with Jaccard as optimal metric (81.40%) are almost
identical. Without cool-off, Similitude even reaches 80.57% nodes on an optimal
metric, getting even closer to that last number.

5.7 Complete System

We now compare the results of the best Similitude variant (all the modifiers
and 0 cool-off, noted Similitude (optimised)) with the six static configurations
we introduced in Section 4.5.

For the Twitter dataset, Figure 17 shows that our adaptive system out-
performs the static random allocation of metrics by 73.06% in precision, and
overcomes all but one static homogeneous metrics, Jaccard , which is on par with
Similitude (optimised). For the MovieLens dataset, Figure 18 shows very
similar results where Similitude (optimised) has a higher precision than Het-
erRand by 65.85%, is on par with Jaccard , and has a slightly lower precision than
HeterOpt (−2.6%). Selecting Jaccard statically would however require knowing
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that this metric performs best, which may not be possible in evolving systems (in
which Jaccard might be replaced by another metric as users’ behaviours change).

5.8 Discussion

Similitude (optimised) enables a vast majority of the nodes (73.43% for Twit-
ter, 80.57% for MovieLens) to eventually switch to an optimal metric, which corre-
sponds to the number of nodes having Jaccard as their optimal metric (Figure 7).
By looking at these number, we can say that our system has the ability to dis-
cover which metric is the best suited for the system without needing prior evalua-
tion. While this already constitutes a very good result, there remains a difference
between Similitude and HeterOpt (the optimal allocation of metrics to nodes),
which represents the upper bound that a dynamically adaptive system might be
able to reach. Although achieving the performance of a perfect system might prove
unrealistic, we are currently exploring potential improvements.

First, incSimNodes could be reworked in order to have a more balanced be-
haviour to avoid making the whole system use only one similarity metric, even
if it is the most suited one for the majority of the nodes. Next, we observe that
nodes appear to optimise their neighbourhood depending on their current met-
ric, as opposed to basing their metric choice on their neighbourhood. This may
lead to local optima because metrics perform notably better in neighbourhoods
they have themselves refined. Our initial attempt at avoiding such local optima
with the detCurrAlgo proved unsuccessful, but further investigation could result
in rewarding future work. For example, we are considering decoupling the choice
of the metric from the choice of the neighbourhood. Nodes may compare the
performance of metrics using randomly selected neighbourhoods, and then move
to the clustering process only using the best-performing metric.

Finally, it would be interesting to see how detCurrAlgo, incSimNodes and
more generally Similitude behave on a dataset with a more balanced distribu-
tion of optimal metrics since their effects and results highly depend on it.
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6 Related Work

Several efforts have recently concentrated on decentralised recommenders
[14,24,2,6,27] to investigate their advantages in terms of scalability and privacy.
Earlier approaches exploit DHTs in the context of recommendation. For exam-
ple, PipeCF [14] and PocketLens [24] propose Chord-based CF systems to de-
centralise the recommendation process on a P2P infrastructure. Yet, more recent
solutions have focused on using randomised and gossip-based protocols [5,18,4].

Recognised as a fundamental tool for information dissemination [16,23], Gos-
sip protocols exhibit innate scalability and resilience to failures. As they copy
information over many links, gossip protocols generally exhibit high failure re-
silience. Yet, their probabilistic nature also makes them particularly suited to
applications involving uncertain data, like recommendation.

Olsson’s Yenta [26] was one of the first systems to employ gossip protocols
in the context of recommendation. This theoretical work enhances decentralised
recommendation by taking trust between users into account. Gossple [5] uses
a similar theory to enhance navigation through query expansion and was later
extended to news recommendation [7]. Finally, in [15], Hegedűs et al. present
a gossip-based learning algorithm that carries out ‘random walks’ through a
network to monitor concept drift and adapt to change in P2P data-mining.

7 Conclusion

We have presented Similitude, a decentralised overlay-based recommender that
is able to adapt at runtime the similarity used by individual nodes. Similitude
demonstrates the viability of decentralised adaptation for very large distributed
systems, and shows it can compete against static schemes.

Although promising, our results shows there is still room for improvement.
In particular, we would like to see how a dataset with a more balanced distri-
bution of optimal metrics affects Similitude and its modifiers. We also think
that the detCurrAlgo and incSimNodes modifiers could benefit from further im-
provements, and thus bring the performance of Similitude closer to that of a
static optimal-metric allocation.

Acknowledgements. This work was partially funded by the French National Re-
search Agency (ANR) project SocioPlug - ANR-13-INFR-0003 (http://socioplug.univ
-nantes.fr).
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Abstract. Large scale distributed data stores rely on optimistic replica-
tion to scale and remain highly available in the face of network partitions.
Managing data without coordination results in eventually consistent data
stores that allow for concurrent data updates. These systems often use
anti-entropy mechanisms (like Merkle Trees) to detect and repair diver-
gent data versions across nodes. However, in practice hash-based data
structures are too expensive for large amounts of data and create too
many false conflicts.

Another aspect of eventual consistency is detecting write conflicts.
Logical clocks are often used to track data causality, necessary to detect
causally concurrent writes on the same key. However, there is a non-
negligible metadata overhead per key, which also keeps growing with
time, proportional with the node churn rate. Another challenge is delet-
ing keys while respecting causality: while the values can be deleted, per-
key metadata cannot be permanently removed without coordination.

We introduce a new causality management framework for eventually
consistent data stores, that leverages node logical clocks (Bitmapped Ver-
sion Vectors) and a new key logical clock (Dotted Causal Container) to
provides advantages on multiple fronts: 1) a new efficient and lightweight
anti-entropy mechanism; 2) greatly reduced per-key causality metadata
size; 3) accurate key deletes without permanent metadata.

Keywords: Distributed Systems · Key-Value Stores · Eventual Consis-
tency · Causality · Logical Clocks · Anti-Entropy

1 Introduction

Modern distributed data stores often emphasize high availability and low la-
tency [2,9,7] on geo-replicated settings. Since these properties are at odds with
strong consistency [3], these systems allow writing concurrently on different
nodes, which avoids the need for global coordination to totally order writes,
but creates data divergence. To deal with conflicting versions for the same key,
generated by concurrent writes, we can either use the last-writer-wins rule [5],
which only keeps the “last” version (according to a wall-clock timestamp for
example) and lose the other versions, or we can properly track each key causal
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history with logical clocks [10], which track a partial order on all writes for a
given key to detect concurrent writes.

Version Vectors [13] – the logical clocks used in Dynamo – are an established
technique that provides a compact representation of causal histories [14]. How-
ever, Version vectors do not scale well when multiple users concurrently update
the same node, as they would require one entry per user. To address this Riak, a
commercial Dynamo inspired database, uses a newer mechanism – called Dotted
Version Vectors [1] – to handle concurrent versions on the same node in addition
to the concurrency across nodes. While these developments improved the scal-
ability problem, the logical clock metadata can still be a significant load when
tracking updates on lots of small data items.

In this paper, we address the general case in which, for each key, multiple
concurrent versions are kept until overwritten by a future version; no updates
are arbitrarily dropped. We present a solution that expressively improves the
metadata size needed to track per-key causality, while showing how this also
benefits anti-entropy mechanisms for node synchronization and add support for
accurate distributed deletes. Brief summary of the contributions:

High Savings on Causality Metadata. Building on Concise Version Vectors
[11], and on Dotted Version Vectors [1], we present a new causality management
framework that uses a new logical clock per node to summarize which key ver-
sions are currently locally stored or have been so in the past. With the node
clock, we can greatly reduce the storage footprint of keys’ metadata by factoring
out the information that the node clock already captures. The smaller footprint
makes the overall metadata cost closer to last-write-wins solutions and delivers
a better metadata-to-payload ratio for keys storing small values, like integers.

Distributed Key Deletion. Deleting a key in an eventually consistent system
while respecting causality is non-trivial when using traditional version vector
based mechanisms. If a key is fully removed while keeping no additional meta-
data, it will re-appear if some node replica didn’t receive the delete (by lost
messages or network partitions) and still has an old version (the same applies
for backup replicas stored offline). Even worse, if a key is deleted and re-created,
it risks being silently overwritten by an older version that had a higher version
vector (since a new version vector starts again the counters with zeros). This
problem will be avoided by using the node logical clock to create monotonically
increasing counters for the key’s logical clocks.

Anti-Entropy. Eventuallyconsistentdatastores relyonanti-entropymechanisms
to repair divergent versions across the key space between nodes. It both detects con-
current versions and allows newer versions to reach all node replicas. Dynamo [2],
Riak [7] and Cassandra [9] use Merkle-trees [12] for their anti-entropy mechanism.
This is an expensive mechanism, in both space and time, that requires frequent up-
dates of an hash tree and presents a trade-off between hash tree size and risk of false
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positives. We will show how a highly compact and efficient node clock implementa-
tion, using bitmaps and binary logic, can be leveraged to support anti-entropy and
dispense the use of Merkle-trees altogether.

2 Architecture Overview and System Model

Consider a Dynamo-like [2] distributed key-value store, organized as large num-
ber (e.g., millions) of virtual nodes (or simply nodes) mapped over a set of
physical nodes (e.g., hundreds). Each key is replicated over a deterministic sub-
set of nodes – called replica nodes for that key –, using for example consistent
hashing [6]. Nodes that replicate common keys are said to be peers. We assume
no affinity between clients and server nodes. Nodes also periodically perform an
anti-entropy protocol with each other to synchronize and repair data.

2.1 Client API

At a high level, the system API exposes three operations: 1) read: key → P(value)×
context; 2) write: key× context× value → (); 3) delete: key× context → ().

This API is motivated by the read-modify-write pattern used by clients to
preserve data causality: the client first reads a key, updates the value(s) and
only then writes it back. Since multiple clients can concurrently update the
same key, a read operation can return multiple concurrents values for the client
to resolve. By passing the read’s context back to the subsequent write, every
write request provides the context in which the value was updated by the client.
This context is used by the system to remove versions of that key already seen
by that client. A write to a non-existing key has an empty context. The delete
operation behaves exactly like a normal write, but with an empty value.

2.2 Server-Side Workflow

The data store uses several protocols between nodes, both when serving client
requests, and to periodically perform anti-entropy synchronization.

Serving Reads. Any node upon receiving a read request can coordinate it, by
asking the respective replica nodes for their local key version. When sufficient
replies arrive, the coordinator discards obsolete versions and sends to the client
the most recent (concurrent) version(s), w.r.t causality. It also sends the causal
context for the value(s). Optionally, the coordinator can send the results back to
replica nodes, if they have outdated versions (a process known as Read Repair).

Serving Writes/Deletes. Only replica nodes for the key being written can coor-
dinate a write request, while non-replica nodes forward the request to a replica
node. A coordinator node: (1) generates a new identifier for this write for the
logical clock; (2) discards older versions according to the write’s context; (3) adds
the new value to the local remaining set of concurrent versions; (4) propagates
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the result to the other replica nodes; (5) waits for configurable number of acks
before replying to the client. Deletes are exactly the same, but omit step 3, since
there is no new value.

Anti-Entropy. To complement the replication done at write time and to ensure
consistency convergence, either because some messages were lost, or some replica
node was down for some time, or writes were never sent to all replica nodes
to save bandwidth, nodes perform periodically an anti-entropy protocol. The
protocol aims to figure out what key versions are missing from which nodes (or
must be deleted), propagating them appropriately.

2.3 System Model

All interaction is done via asynchronous message passing: there is no global clock,
no bound on the time it takes for a message to arrive, nor bounds on relative
processing speeds. Nodes have access to durable storage; nodes can crash but
eventually will recover with the content of the durable storage as at the time of
the crash. Durable state is written atomically at each state transition. Message
sending from a node i to a node j, specified at a state transition of node i by
sendi,j , is scheduled to happen after the transition, and therefore, after the next
state is durably written. Such a send may trigger a receivei,j action at node j
some time in the future. Each node has a globally unique identifier.

2.4 Notation

We use mostly standard notation for sets and maps. A map is a set of (k, v)
pairs, where each k is associated with a single v. Given a map m, m(k) returns
the value associated with the key k, and m{k �→ v} updates m, mapping k to
v and maintaining everything else equal. The domain and range of a map m is
denoted by dom(m) and ran(m), respectively. fst(t) and snd(t) denote the first
and second component of a tuple t, respectively. We use set comprehension of the
forms {f(x) | x ∈ S} or {x ∈ S | P red(x)}. We use �− for domain subtraction;
S �− M is the map obtained by removing from M all pairs (k, v) with k ∈ S. We
will use K for the set of possible keys in the store, V for the set of values, and I

for the set of node identifiers.

3 Causality Management Framework

Our causality management framework involves two logical clocks: one to be used
per node, and one to be used per key in each replica node.

The Node Logical Clock. Each node i has a logical clock that represents all
locally known writes to keys that node i replicates, including writes to those
keys coordinated by other replica nodes, that arrive at node i via replication
or anti-entropy mechanisms;
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The Key Logical Clock. For each key stored by a replica node, there is a
corresponding logical clock that represents all current and past versions seen
(directly or transitively) by this key at this replica node. In addition, we
attached to this key logical clock the current concurrent values and their
individual causality information.

While this dual-logical clock framework draws upon the work of Concise Ver-
sion Vectors (cvv) [11], our scope is on distributed key-value stores (kvs) while
cvv targets distributed file-systems (dfs). Their differences pose some challenges
which prevent a simple reuse of cvv:

– Contrary to dfs where the only source of concurrency are nodes themselves,
kvs have external clients making concurrent requests, implying the gener-
ation of concurrent versions for the same key, even when a single node is
involved. Thus, the key logical clock in a kvs has to possibly manage mul-
tiple concurrent values in a way that preserves causality;

– Contrary to dfs, which considers full replication of a set keys over a set of
replicas nodes, in a kvs two peer nodes can be replica nodes for two non-
equal set of keys. E.g., we can have a key k1 with the replica nodes {a, b}, a
key k2 with {b, c} and a key k3 with {c, a}; although a, b and c are peers (they
are replica nodes for common keys), they don’t replicated the exact same
set of keys. The result is that, in addition to gaps in the causal history for
writes not yet replicated by peers, a node logical clock will have many other
gaps for writes to key that this node is not replica node of. This increases
the need for a compact representation of a node logical clock.

3.1 The Node Logical Clock

A node logical clock represents a set of known writes to keys that this node
is replica node of. Since each write is only coordinated by one node and later
replicated to other replica nodes, the nth write coordinated by a node a can
be represented by the pair (a, n). Henceforth, we’ll refer to this pair as a dot.
Essentially, a dot is a globally unique identifier for every write in the entire
distributed system.

A node logical clock could therefore be a simple set of dots. However, the set
would be unbound and grow linearly with writes. A more concise implementation
would have a version vector to represent the set of consecutive dots since the first
write for every peer node id, while keeping the rest of the dots as a separate set.
For example, the node logical clock: {(a, 1), (a, 2), (a, 3), (a, 5), (a, 6), (b, 1), (b, 2)}
could be represented by the pair ([(a, 3), (b, 2)], {(a, 5), (a, 6)}), where the first
element is a version vector and the second is the set of the remaining dots.
Furthermore, we could map peer ids directly to the pair of the maximum con-
tiguous dot and the set of disjointed dots. Taking our example, we have the map:
{a �→ (3, {5, 6}), b �→ (2, {})}.

Crucial to an efficient and compact representation of a node logical clock is the
need to have the least amount of gaps between dots as possible. For example, the
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51 2 3 4 6 7 8

…
…
…

nC

nA

nB

{ nA -> (3, 011012 or 22),
  nB -> (5, 02         or 0  ),
  nC -> (1, 00012   or 8  ) }

=

Fig. 1. A bitmapped version vector example and its visual illustration. The bitmap
least-significant bit is the first bit from the left.

dots in a node logical clock that are from the local node are always consecutive
with no gaps, which means that we only need maximum dot counter mapped to
the local node id, while the the set of disjointed dots is empty.

The authors of [11] defined the notion of an extrinsic set, which we improve
and generalize here as follows (note that an event can be seen as a write made
to a particular key):

Definition 1 (Extrinsic). A set of events E1 is said to be extrinsic to another
set of events E2, if the subset of E1 events involving keys that are also involved
in events from E2, is equal to E2.

This definition means that we can inflate our node logical clock to make it
easier to compact, if the resulting set of dots is extrinsic to the original set.
In other words, we can fill the gaps from a node logical clock, if those gaps
correspond to dots pertaining to keys that the local node is not replica node of.

Taking this into consideration, our actual implementation of a node logical
clock is called Bitmapped Version Vector (bvv), where instead of having the
disjointed dots represented as a set of integers like before, we use a bitmap
where the least-significant bit represents the dot immediately after the dot in
the first element of the pair. A 0 means that dot is missing, while a 1 is the
opposite. The actual structure of a bvv uses the integer corresponding to the
bitmap to efficiently represent large and sparse sets of dots. Figure 1 gives a
simple bvv example and its visual representation.

Functions over Node Logical Clocks. Lets briefly describe the functions
necessary for the rest of the paper, involving node logical clocks (we omit the
actual definitions due to size limitations):

– norm(base, bitmap) normalizes the pair (base, bitmap). In other words, it
removes dots from the disjointed set if they are contiguous to the base, while
incrementing the base by the number of dots removed. Example: norm(2, 3) =
(4, 0);

– values(base, bitmap) returns the counter values for the all the dots repre-
sented by the pair (base, bitmap). Example: values(2, 2) = {1, 2, 4};

– add((base, bitmap), m) adds a dot with a counter m to the pair (base, bitmap).
Example: add((2, 2), 3) = (4, 0);
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– base(clock) returns a new node logical clock with only the contiguous dots from
clock, i.e., with the bitmaps set to zero. Example: base({a �→ (2, 2), . . .}) =
{a �→ (2, 0), . . .};

– event(c, i) takes the node i’s logical clock clock and its own node id i, and
returns a pair with the new counter for a new write in this node i and
the original logical clock c with the new counter added as a dot. Example:
event({a �→ (4, 0), . . .}, a) = (5, {a �→ (5, 0), . . .});

3.2 The Key Logical Clock

A key logical clock using client ids is not realistic in the kind of key-value store
under consideration, since the number of clients is virtually unbound. Using sim-
ple version vectors with node ids also doesn’t accurately capture causality, when
a node stores multiple concurrent versions for a single key [1]. One solution is to
have a version vector describing the entire causal information (shared amongst
concurrent versions), and also associate to each concurrent version their own dot.
This way, we can independently reason about each concurrent versions causality,
reducing false concurrency. An implementation of this approach can be found in
Dotted Version Vector Sets (dvvs) [1].

Nevertheless, logical clocks like dvvs are based on per-key information; i.e.,
each dot generated to tag a write is only unique in the context of the key being
written. But with our framework, each dot generated for a write is globally
unique in the whole system. One of the main ideas of our framework is to take
advantage of having a node logical clock that store these globally unique dots,
and use it whenever possible to remove redundant causal information from the
key logical clock.

Contrary to version vectors or dvvs, which use per-key counters and thus
have contiguous ranges of dots that can have a compact representation, the use
of globally unique dots poses some challenges in defining dcc and its operations:
even if we only have one version per-key, we still don’t necessarily have a con-
tiguous set of dots starting with counter one. Therefore, a compact and accurate
implementation of a key logical clock is problematic: using an explicit set of dots
is not reasonable as it grows unbounded; neither is using a bvv- like structure,
because while a single bvv per node can be afforded, doing so per key is not
realistic, as it would result in many low density bitmaps, each as large as the
node one. Since there may be millions of keys per node, the size of a key logical
clock must be very small.

The solution is to again leverage the notion of extrinsic sets, by filling the
gaps in the clock with dots pertaining to other keys, thus not introducing false
causal information. The subtlety is that every key logical clock can be inflated
to a contiguous set of dots, since every gap in the original set was from dots
belonging to other keys1.
1 The gaps are always from other keys, because a node i coordinating a write to a

key k that generates a dot (i, n), is guaranteed to have locally coordinated all other
versions of k with dots (i, m), where m < n, since local writes are handle sequentially
and new dots have monotonically increasing counters.
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values((d, v)) = {x | (_, x) ∈ d}
context((d, v)) = v

add(c, (d, v)) = fold(add, c, dom(d))
sync((d1, v1), (d2, v2)) = ((d1 ∩ d2) ∪ {((i, n), x) ∈ d1 ∪ d2 | n > min(v1(i), v2(i))},

join(v1, v2))
discard((d, v), v′) = ({((i, n), x) ∈ d | n > v′(i)}, join(v, v′))

add((d, v), (i, n), x) = (d{(i, n) �→ x}, v{i �→ n})
strip((d, v), c) = (d, {(i, n) ∈ v | n > fst(c(i))})
fill((d, v), c) = (d, {i �→ max(v(i), fst(c(i))) | i ∈ dom(c)})

Fig. 2. Functions over Dotted Causal Containers (also involving bvv)

Dotted Causal Container. Our key logical clock implementation is called
Dotted Causal Container (dcc). A dcc is a container-like data structure, in the
spirit of a dvvs, which stores both concurrent versions and causality information
for a given key, to be used together with the node logical clock (e.g. a bvv). The
extrinsic set of dots is represented as a version vector, while concurrents versions
are grouped and tagged with their respective dots.

Definition 2. A Dotted Causal Container (dcc for short) is a pair (I × N ↪→
V) × (I ↪→ N), where the first component is a map from dots (identifier-integer
pairs) to values, representing a set of versions, and the second component is a
version vector (map from [replica node] identifiers to integers), representing a set
extrinsic to the collective causal past of the set of versions in the first component.

Functions over Key Logical Clocks. Figure 2 shows the definitions of func-
tions over key logical clocks (dcc) – which also involves node logical clocks (bvv)
– necessary for the rest of the paper. Function values returns the values of the
concurrent versions in a dcc; add(c, (d, v)) adds all the dots in the dcc (d, v) to
the bvv c, using the standard fold higher-order function with the function add
defined over bvvs. Function sync merges two dccs: it discards versions in one
dcc made obsolete by the other dcc’s causal history, while the version vectors
are merged by performing the pointwise maximum. The function context simply
returns the version vector of a dcc, which represents the totality of causal his-
tory for that dcc (note that the dots of the concurrent versions are also included
in the version vector component). Function discard((d, v), c) discards versions in
a dcc (d, v) which are made obsolete by a vv c, and also merges c into v. Func-
tion add((d, v), (i, n), x) adds to versions d a mapping from the dot (i, n) to the
value x, and also advances the i component of the vv v to n.

Finally, functions strip and fill are an essential part of our framework. Function
strip((d, v), c) discards all entries from the vv v in a dcc that are covered by the
corresponding base component of the bvv c; only entries with greater sequence
numbers are kept. The idea is to only store dccs after stripping the causality
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information that is already present in the node logical clock. Function fill adds
back the dots to a stripped dcc, before performing functions over it.

Note that, the bvv base components may have increased between two con-
secutive strip �→ fill manipulation of a given dcc, but those extra (consecutive)
dots to be added to the dcc are necessarily from other keys (otherwise the dcc
would have been filled and updated earlier). Thus, the filled dcc still represents
an extrinsic set to the causal history of the current concurrent versions in the
dcc. Also, when nodes exchange keys: single dccs are filled before being sent;
if sending a group of dccs, they can be sent in the more compact stripped form
together with the bvv from the sender (possibly with null bitmaps), and later
filled at the destination, before being used. This causality stripping can lead
to significant network traffic savings in addition to the storage savings, when
transferring large sets of keys.

4 Server-Side Distributed Algorithm

We now define the distributed algorithm corresponding to the server-side work-
flow discussed in section 2.2; we define the node state, how to serve updates
(writes and deletes); how to serve reads; and how anti-entropy is performed. It
is presented in Algorithm 4, by way of clauses, each pertaining to some state
transition due to an action (basically receive), defined by pattern-matching over
the message structure; there is also a periodically to specify actions which happen
periodically, for the anti-entropy. Due to space concerns, and because it is a side
issue, read repairs are not addressed.

In addition to the operations over bvvs and dccs already presented, we make
use of: function nodes(k), which returns the replica nodes for the key k; function
peers(i), which returns the set of nodes that are peers with node i; function
random(s) which returns a random element from set s.

4.1 Node State

The state of each node has five components: gi is the node logical clock, a bvv; mi

is the proper data store, mapping keys to their respective logical clocks (dccs);
li is a map from dot counters to keys, serving as a log holding which key was
locally written; vi is a version vector to track what other peers have seen of the
locally generated dots; we use a vv and not a bvv, because we only care for
the contiguous set of dots seen by peers, to easily prune older segments from li
corresponding to keys seen by all peers; ri is an auxiliary map to track incoming
responses from other nodes when serving a read request, before replying to the
client. It is the only component held in volatile state, which can be lost under
node failure. All other four components are held in durable state (that must
behave as if atomically written at each state transition).
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Algorithm 1 i

durable state:
gi : bvv, node logical clock; initially gi = {j �→ (0, 0) | j ∈ peers(i)}
mi : K ↪→ dcc, mapping from a key to its logical clock; initially mi = {}
li : N ↪→ K, log of keys locally updated; initially li = {}
vi : vv; other peers’ knowledge; initially vi = {j �→ 0 | j ∈ peers(i)}

volatile state:
ri : (I × K) ↪→ (dcc × N), requests map; initially ri = {}

on receivej,i(write, k : K, v : V, c : vv):
if i �∈ nodes(k) then

u = random(nodes(k)) // pick a random replica node of k

sendi,u(write, k, v, c) // forward request to node u

else
d = discard(fill(mi(k), gi), c) // discard obsolete versions in k’s dcc
(n, g′

i) = event(gi, i) // increment and get the new max dot from the local bvv
d′ = if v �= nil then add(d, (i, n), v) else d // if it’s a write, add version
m′

i = mi{k �→ strip(d′, g′
i)} // update dcc entry for k

l′
i = li{n �→ k} // append key to log
for u ∈ nodes(k) \ {i} do

sendi,u(replicate, k, d′) // replicate new dcc to other replica nodes
on receivej,i(replicate, K : K, d : dcc):

g′
i = add(gi, d) // add version dots to node clock gi, ignoring dcc context

m′
i = mi{k �→ strip(sync(d, fill(mi(k), gi)), g′

i)} // sync with local and strip
on receivej,i(read, K : K, n : N):

r′
i = ri{(j, k) �→ ({}, n)} // initialize the read request metadata
for u ∈ nodes(k) do

sendi,u(read_request, j, k) // request k versions from replica nodes
on receivej,i(read_request, u : I, k : K):

sendi,j(read_response, u, k, fill(mi(k), gi)) // return local versions for k

on receivej,i(read_response, u : I, k : K, d : dcc):
if (u, k) ∈ dom(ri) then

(d′, n) = ri((u, k)) // d′ is the current merged dcc
d′′ = sync(d, d′) // sync received with current dcc
if n = 1 then

r′
i = {(u, k)}�− ri // remove (u, k) entry from requests map
sendi,u(k, values(d′′), context(d′′)) // reply to client u

else
r′

i = ri{(u, k) �→ (d′′, n − 1)} // update requests map
periodically:

j = random(peers(i))
sendi,j(sync_request, gi(j))

on receivej,i(sync_request, (n, b) : (N × N)):
e = values(gi(i)) \ values((n, b)) // get the dots from i missing from j

K = {li(m) | m ∈ e ∧ j ∈ nodes(li(m))} // remove keys that j isn’t replica
node of
s = {k �→ strip(mi(k), gi) | k ∈ K} // get and strip dccs with local bvv
sendi,j(sync_response, base(gi), s)
v′

i = vi{j �→ n} // update vi with j’s information on i

M = {m ∈ dom(li) | m < min(ran(v′
i)} // get dots i seen by all peers

l′
i = M �− li // remove those dots from the log

m′
i = mi{k �→ strip(mi(k), gi) | m ∈ M, k ∈ li(m)} // strip the keys removed

from the log
on receivej,i(sync_response, g : bvv, s : K ↪→ dcc):

g′
i = gi{j �→ g(j)} // update the node logical clock with j’s entry

m′
i = mi{k �→ strip(sync(fill(mi(k), gi), fill(d, g)), g′

i) | (k, d) ∈ s}

. Distributed algorithm for node
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4.2 Updates

We have managed to integrate both writes and deletes in a unified framework.
A delete(k, c) operation is translated client-side to a write(k, nil, c) operation,
passing a special nil as the value.

When a node i is serving an update, arriving from the client as a (write, k, v, c)
message (first “on” clause in our algorithm), either i is a replica node for key k
or it isn’t. If it’s not, it forwards the request to a random replica node for k. If
it is: (1) it discards obsolete versions according to context c; (2) creates a new
dot and adds its counter to the node logical clock; (3) if the operation is not a
delete (v �= nil) it creates a new version, which is added to the dcc for k; (4) it
stores the new dcc after stripping unnecessary causal information; (5) appends
k to the log of keys update locally; (6) sends a replicate message to other replica
nodes of k with the new dcc. When receiving a replicate message, the node adds
the dots of the concurrent versions in the dcc (but not the version vector) to
the node logical clock and synchronizes with local key’s dcc. The result is then
stripped before storing.

Deletes. For notational convenience, doing mi(k) when k isn’t in the map, results
in the empty dcc: ({}, {}); also, a map update m{k �→ ({}, {})} removes the
entry for key k. This describes how a delete ends up removing all content from
storage for a given key: (1) when there are no current versions in the dcc; (2)
and when the causal context becomes older than the node logical clock, resulting
in an empty dcc after stripping. If these conditions are not met at the time the
delete was first requested, the key will still maintain relevant causal metadata,
but when this delete is known by all peers, the anti-entropy mechanism will
remove this key from the key-log li, and strip its remaining causal history in the
dcc, resulting in a automatic and complete key and metadata removal 2.

With traditional logical clocks, nodes either maintained the context of the
deleted key stored forever, or they would risk the reappearance of deleted keys
or even losing new key-values created after a delete. With our algorithm using
node logical clocks, we solve both cases: regarding losing new writes after deletes,
updates always have new dots with increasing counters, and therefore cannot be
causally in the past of previously deleted updates; in the case of reappearing
deletes from anti-entropy with outdated nodes or delayed messages, a node can
check if it has already seen that delete’s dot in its bvv without storing specific
per-key metadata.

4.3 Reads

To serve a read request (third “on” clause), a node requests the corresponding
dcc from all replica nodes for that key. To allow flexibility (e.g. requiring a
2 The key may not be entirely removed if in the meantime, another client has insert

back this key, or made a concurrent update to this key. This is the expected behavior
when dealing with concurrent writes or new insertions after deletes. Excluding these
cases, eventually all keys that received a delete request will be removed.
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quorum of nodes or a single reply is enough) the client provides an extra argu-
ment: the number of replies that the coordinator must wait for. All responses are
synchronized, discarding obsolete versions, before replying to the client with the
(concurrent) version(s) and the causal context in the dcc. Component ri of the
state maintains, for each pair client-key, a dcc maintaining the synchronization
of the versions received thus far, and how many more replies are needed.

4.4 Anti-entropy

Since node logical clocks already reflect the node’s knowledge about current
and past versions stored locally, comparing those clocks tells us exactly what
updates are missing between two peer nodes. However, only knowing the dots
that are missing is not sufficient: we must also know what key a dot refers to.
This is the purpose of the li component of the state: a log storing the keys of
locally coordinated updates, which can be seen as a dynamic array indexed by
a contiguous set of counters.

Periodically, a node i starts the synchronization protocol with one of its peers
j. It starts by sending j’s entry of i’s node logical clock to j. Node j receives
and compares that entry with its own local entry, to detect which local dots
node i hasn’t seen. Node j then sends back its own entry in its bvv (we don’t
care about the bitmap part) and the missing key versions (dccs) that i is also
replica node of. Since we’re sending a possibly large set of dccs, we stripped
them of unnecessary causal context before sending, to save bandwidth (they were
stripped when they where stored, but the node clock has probably advanced since
then, so we strip the context again to possibly have further savings).

Upon reception, node i updates j’s entry in its own bvv, to reflect that i
has now seen all updates coordinated by j reflected in j’s received logical clock.
Node i also synchronizes the received dccs with the local ones: for each key, its
fills the received dcc with j’s logical clock, it reads and fills the equivalent local
dccs with i’s own logical clock, and then synchronizes each pair into a single
dcc and finally locally stores the result after striping again with i’s logical clock.

Additionally, node j also: (1) updates the i’s entry in vj with the max con-
tiguous dot generated by j that i knows of; (2) if new keys are know known
by all peers (i.e. if the minimum counter of vj has increased), then remove the
corresponding keys from the key-log li. This is also a good moment to revisit
the locally saved dccs for these keys, and check if we can further strip causality
information, given the constant information growth in the node logical clock. As
with deletes, if there were no new updates to a key after the one represented by
the dot in the key-log, the dcc will be stripped of its entire causal history, which
means that we only need one dot per concurrent version in the stored dcc.

5 Evaluation

We ran a small benchmark, comparing a prototype data store based on our
framework, against a traditional one based on Merkle Trees and per-key logical
clocks. The system was populated with 40000 keys, each key replicated in 3
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Table 1. Results from a micro-benchmark run with 10000 writes

Key/Leaf
Ratio

Hit
Ratio

Total
Metadata

Metadata
Per Repair

Average Entries
Per Key L. Clock

Merkle Tree

1 60.214 % 449.65 KB 4.30 KB
VV or
DVV 310 9.730 % 293.39 KB 2.84 KB

100 1.061 % 878.40 KB 7.98 KB
1000 0.126 % 6440.96 KB 63.15 KB

BVV & DCC – 100 % 3.04 KB 0.019 KB DCC 0.231

nodes, and we measured some metrics over the course of 10000 writes, 10%
losing a message replicating the write to one replica node. The evaluation aimed
to compare metadata size of anti-entropy related messages and the data store
causality-related metadata size. We compared against four Merkle Trees sizes to
show how its “resolution”, i.e., the ratio of keys-per-leaf impacts results.

Table 1 shows the results of our benchmark. There is always significant over-
head with Merkle Trees, worse for larger keys-per-leaf ratios, where there are
many false positives. Even for smaller ratios, where the “hit ratio” of relevant-
hashes over exchanged-hashes is higher, the tree itself is large, resulting in sub-
stantial metadata transferred. In general, the metadata overhead to perform
anti-entropy with our scheme is orders of magnitude smaller than any of the
Merkle Tree configurations.

Concerning causality-related metadata size, being negligible the cost of node-
wide metadata amortized over a large database, the average per-key logical clock
metadata overhead is also significantly smaller in our scheme, since most of the
time the causality is entirely condensed by the node-wide logical clock. With
traditional per-key logical clocks, the number of entries is typically the degree
of replication, and can be larger, due to entries for retired nodes that remain in
the clock forever, a problem which is also solved by our scheme.

6 Related Work

The paper’s mechanisms and architecture extend the specialized causality mech-
anisms in [11,1], apply it over a eventually consistent data store. In addition to
the already mentioned differences between our mechanism and Concise Version
Vectors [11], our key logical clock size is actually bounded by the number of
active replica nodes, unlike PVEs (the cvv key logical clock is unbounded).

Our work also builds on concepts of weakly consistent replication present in
log-based systems [15,8,4] and data/file synchronization [13]. The assignment
of local unique identifiers for each update event is already present in [15], but
each node totally orders its local events, while we consider concurrent clients to
the same node. The detection of when an event is known in all other replicas
nodes – a condition for log pruning – is common to the mentioned log-based
systems; however, our log structure (the key log) is only an inverted index that
tracks divergent data replicas, and thus is closer to optimistic replicated file-
systems. Our design can reduce divergence both as a result of foreground user
activity (both on writes, deletes, and read repair) and by periodic background
anti-entropy, while using a common causality framework.
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Abstract. The integration of multiple database technologies, includ-
ing both SQL and NoSQL, allows using the best tool for each aspect
of a complex problem and is increasingly sought in practice. Unfortu-
nately, this makes it difficult for database developers and administrators
to obtain a clear view of the resulting composite data processing paths,
as they combine operations chosen by different query optimisers, imple-
mented by different software packages, and partitioned across distributed
systems. This work addresses this challenge with the X-Ray framework,
that allows monitoring code to be added to a Java-based distributed sys-
tem by manipulating its bytecode at runtime. The resulting information
is collected in a NoSQL database and then processed to visualise data
processing paths as required for optimising integrated database systems.
This proposal is demonstrated with a distributed query over a federation
of Apache Derby database servers and its performance evaluated with
the standard TPC-C benchmark workload.

Keywords: Distributed databases · Monitoring · Java instrumentation

1 Introduction

The performance of data management systems depends on how operations are
mapped to different hardware and software components. This mapping is driven
by the developer, by query compilation and optimisation in the system itself,
and finally by database administrators. Obtaining the best performance thus
depends on monitoring and analysing such mapping. Relational database man-
agement systems have traditionally included tools to expose the execution plan
for a query, identifying what implementation is used for each abstract rela-
tional operation, in what order, and including a detailed accounting of I/O op-
erations, memory pages, and CPU time used. As an example, in PostgreSQL
this is provided by EXPLAIN ANALYZE [27] and presented graphically with pgAd-
min3 [14].

Recently, driven by novel applications, there has been a growing trend towards
using different data management techniques and tools for different purposes,
instead of always resorting to relational database management systems [26]. For
instance, the CoherentPaaS platform-as-a-service integrates various SQL and
NoSQL data stores in a common framework [3,20]. Moreover, the large scale
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of current applications means using distributed data stores that scale out with
data size and traffic, such as HBase, trading off in the process query processing
capability and transactional ACID guaranties.

This poses several challenges to monitoring and analysis. First, some of the
data stores now commonly used have only minimal support for data collection
on individual operations, providing only aggregate resource measurements. In
fact, the additional application code needed for integration and to overcome the
limitations of NoSQL data stores is likely to have no monitoring capabilities
at all. Second, even when monitoring tools are available for the required data
stores, they provide partial views that cannot easily be reconciled and integrated
into a coherent observation, namely, by tracking its relation to a common user
request. Finally, when multiple instances of a specific data store are used for scale
out, such as in replication and sharding configurations, distributed monitoring
information has to be collected and organised according to its role in a global
operation, for instance, to reason about load balancing and parallelism.

This work addresses these challenges with X-Ray, a framework for monit-
oring and analysis of distributed and heterogeneous data processing systems.
First, it provides a way to add monitoring code to applications and data stores
running in the Java platform. By using bytecode instrumentation, this does
not rely on the availability of the source code and can be applied conditionally
to avoid overhead in production systems. Second, it provides mechanisms for
tracking the interaction of multiple threads, on synchronisation primitives, and
of distributed processes communicating with sockets. Finally, it provides a tool
to reconcile monitoring data from multiple software components in a distrib-
uted system taking into consideration their relation to actual user requests, thus
providing a cross-cutting unified view of the system’s operation.

The rest of this paper is structured as follows: Section 2 introduces the X-Ray
approach and how it is applied to monitor data processing systems. Section 3
describes how it is implemented using bytecode instrumentation. Section 4 eval-
uates the proposal with a case study and a benchmark. Section 5 contrasts the
proposed approach with related work. Finally, Section 6 concludes the paper.

2 Approach

Figure 1 presents an overview of the proposed X-Ray architecture. From left
to right, X-Ray targets distributed applications and data stores with software
components in multiple servers, virtual hosts, and Java virtual machines. These
applications generate monitoring events through the X-Ray Capture layer to
the X-Ray Storage and Processing layer, to be used in the X-Ray Analysis and
Visualisation layer. Label icons identify the main configuration points for the
system.

The main component of X-Ray Capture uses bytecode instrumentation, a
mechanism for modifying compiled programs. It uses asm [10], a stateless bytecode
manipulation librarymodelled on the hierarchical visitor pattern [15]. This instru-
mentation inserts instructions to generate logging events and maintain context.
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Fig. 1. Overview of the X-Ray architecture

This is the main configuration point for monitoring Java programs. Bridges or file
processing can be used to obtain information about non-X-Ray-ready programs.
Finally, an agent periodically monitors and collects metrics about the underlying
Java runtime from Java Management Extensions(JMX) [12].

Bytecode instrumentation can be customised by choosing what methods to
alter and what operations to perform. Logback enables processing various actions
for the same message. Those actions are executed by entities called appenders,
programmable in Java, and configurable with a simple XML or Groovy file.

The resulting events are routed through Simple Logging Facade for Java (slf4j),
a logging facade for Java [23], and Logback, a logging framework implementing the
(slf4j) API [22]. Logback works as an event spooler: it enriches events with addi-
tional information and delivers them asynchronously to the X-Ray Storage and
Processing module. In the Storage and Processing module, events can be stored
in HBase (the sink database), that can be configured to sustain high-throughput
writes.

The Analysis Library contains analysis procedures applicable to the monit-
oring data, specially concerned with request tracking across software modules
and components. It joins logs originating from different machines and produces
a global coherent representation, interpreting remote communication events and
pseudo-nodes labelled with the socket address used for the communication and
connecting them in the right place on the graphs. A visual representations is
then made available to the end-user, with Graphviz or D3.js, or even exported
to enable further processing and interaction with external systems.

2.1 Request Tracking

The key feature of the X-Ray Capture layer is being able to chain operations
performed on behalf of each end-user request, to highlight the decomposition of a
data processing request in terms of software components and hardware resources.
This is achieved by using tags and probes, as follows.
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Instrumentation provides the ability to add tags to entities being observed.
A tag is an automatically generated unique identifier that increases the data
that can be collected by X-Ray, motivated by the recognition that certain com-
putations happen in distinct contexts, even if the executed code is the same.
In detail, a tag can be associated with an object or thread and through con-
figuration instructions it is possible to generate, remove, move, or copy it to a
thread or object when a method is executed. Thus, during execution tags can
be associated with multiple threads and objects and flow through them.

It is also possible to associate a tag with message send and receive events in
sockets thus supporting communication between different virtual machines. This
takes advantage of FIFO order and the unique identifier of the socket (including
both addresses and ports, as well as a timestamp) to establish a mapping between
tags existing at both ends.

Probes implemented in X-Ray allow information to be collected on entry and
exit(s) of selected methods. The target data – name and reference of executing
class, name and signature of the method, the current thread and the paramet-
ers/return value – are accessible to all defined probes. Moreover, the probe also
collects tags associated with the current object and thread.

This makes it is possible to follow a logical work unit, even if it is scattered
across multiple threads and processes. The simplest usage just adds a tag to
the thread on starting to execute the request and removes it on completion.
This makes all work done by that thread, regardless of the software component
invoked, to be associated with that request.

Consider a more complex example of an application that uses a background
thread to periodically write multiple outstanding data items produced by differ-
ent clients. This is harder to track as the work done by the background thread
contributed to multiple requests. With X-Ray, one would copy the tag from the
request thread to the object queued for the background writer. On reception,
the tag would be copied from the object to the background writer thread. When
the background thread uses the I/O resource, it would be tagged with the tags
of all corresponding requests.

Finally, consider an example of a client/server system, where a request is
partially executed at the client and at the server. In this case, one would tag
the client thread upon starting the request, but also server threads whenever a
remote invocation is received. Moreover, when a remote invocation is issued and
received, socket tagging will map client and server side tags.

2.2 Configuration

X-Ray can be configured in two ways: using annotations or configuration files.
Both have the same expressive power, but the second approach is more flexible.
If these two configurations strategies are used in parallel and conflict in some
parameters, the value from configuration files will override the annotations.

Annotation use implies access to source code of the program to alter, and each
change in the configuration requires a program recompilation to take effect. It
also results in configuration being spread over several files instead of a centralised
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place to read or alter everything. But this solution has certain advantages: it is
simple and comes bundled with the code. Also, because it is applied directly on
the entity to examine, it is not affected by refactoring.

On the other hand, configurations written in files do not require access to
source code. Likewise, it is not necessary to recompile the program after each
change – simply restarting the program is enough. Configurations are all grouped
and separated from the code, which eases its reading or alteration and is architec-
turally cleaner. As for disadvantages, it is fragile in case of refactoring. Entities
(class, method and package) identifiers are not exactly equal to the entities they
represent so a manual search and replace may fail to modify them, and likewise
IDE-assisted refactoring can also be ineffective.

2.3 Usage Methods

The first alternative to apply X-Ray is to use a custom class loader. It is configured
to read configuration files and react accordingly to classes to be loaded, selectively
altering them or returning the original class unchanged, as appropriate.

Because of security restrictions preventing deep and potential unsafe changes,
it is not possible to alter methods in the java.* packages or native methods.
Also if X-Ray attempted to further alter the program representation, by chan-
ging multiple times the same class, the Java Runtime Environment (JRE) would
give an error (a java.lang.LinkageError) about an attempted duplicated class
definition, which is disallowed. This makes it impossible to change instrumenta-
tion properties during the application run and seeing these changes take effect.
The solution is to use the Java Agent or modify the desired configurations and
restart the program through the X-Ray class loader.

Another solution is to statically modify the bytecode. Instead of modifying
the program each time it is executed, it can be done just once. This is how
JarRecompiler works: it alters all the necessary files from a JAR and saves
them to a new file. This new JAR can then be normally used.

As the bytecode alteration is done just once, clients of the altered code do not
need the asm library to run it. A disadvantage of this method is that it is less
flexible - it is necessary to do a JAR recompilation every time a configuration
is changed and one wants to see the effects of those changes. To mitigate it,
a Maven plugin was developed for generating the altered JAR in the package

phase. It is also not possible to alter native methods. As the recompiler acts on
JAR files, it is possible to modify methods in the java.* packages if the input
JAR corresponds to one where JRE classes are, but this is not recommended as
it would permanently alter them.

The last option is a Java Agent [21, java.lang.instrument documentation].
Depending on the support provided by the JVM, it can be initiated along with
the program by passing an argument to the command line or it can be attached
to a running instance after it has started. Similar to static recompilation, it is
transparent for all normal code interactions and, as the class loader solution, to
test some change, a simple program re-run is enough. Depending on how agents
are configured, they have the ability to alter JRE classes and native methods
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and redefine classes already instrumented. A disadvantage of the use of agents
is that not all Java Virtual Machines (JVMs) support it. Among those that do,
there is no standard way to do some things, specially initiating an agent after
the virtual machine start-up [16, § 8.4.3.4].

3 Implementation

Instrumentation of Java programs to insert tags and probes starts by reading
configuration files, if available, adding their commands to the framework’s in-
ternal state. Classes are then loaded, either due to the program running or by
statically traversing the JAR file, depending on the usage method chosen. For
each of them, it scans the file and for each method decides if it should be in-
strumented using configuration from files and configurations acquired by reading
annotations in the currently analysed class and other loaded classes.

This may require visiting the bytecode of super-classes or of the implemented
interfaces if they were not already visited, as the decisions on a class may depend
on information contained in other classes. If any method should be altered, the
new code for the method body is generated. After going through all the class
code one of these situations will happen:

1. The original code of the class was altered at some point, and so this new
code is returned to the JVM to be used by the program.

2. No original code was instrumented by lack of indications; if so the original
code is simply returned.

This process happens again each time a class is needed, until all are loaded and
transformed. This approach is only possible because the binary representation
of Java programs corresponds to a well specified, platform independent format
that can be manipulated.

If any method was changed for analysis, it is altered in at least two sites:
its entry and exit(s). The exits can be normal – from return statements – or
exceptional – from throw statements. At method entry and exit the method
and class names are collected, as well as a reference to the current object and
executing thread. At method entry, parameters will be saved and at method
exit, the return value is stored too.

Each time the execution flow passes through the method, indications of pas-
sage through its entry and an exit are given to X-Ray and optionally from there
to other systems and all the collected information made available. Remote com-
munication events are also listened for and reported.

3.1 Selection of Instrumentation Targets

X-Ray operates every time it is called to resolve a class, meaning, to return
the bytecode associated with a class. The decision whether to instrument or
not is made for each method, on a case-by-case basis. A method m in class C
will be altered by X-Ray if there is configuration on: the analysed method m;
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m’s enclosing class C; the package of C; the original method declaration or a
super implementation of m, if that indication is inheritable; a supertype that
C extends or implements, if that type’s configurations are to be inherited; or
a package that contains a supertype C extends or implements, but only if that
indication is inherited. Otherwise, the original method code is returned and the
rest of the class is visited. The given conditions are tested by the order they were
presented.

When a settings conflict arises the priority is given to the more specific in-
dications, followed by the closest ones. For example if the class C of method m
should log events with the TRACE level and there is an original implementation
of m with log level of DEBUG, m will have the DEBUG level.

3.2 Modifications to Targets

X-Ray adds fields and other information needed for its operation. The first
change is the addition of a reference to a slf4j logger object as a new static
field. Tags also require the creation of a new field. These constructed fields
are named in an unusual way to avoid colliding with existing code (using the
“$ xray ” prefix) and with a special marker to indicate they were generated
(their ACC SYNTHETIC flag is set). This might be useful to other class manipu-
lation or reading tools to warn them it might not be necessary to process these
constructs or to enable the use of all tools simultaneously.

Before copying the original instruction to the new class representation, the
necessary logging instructions are inserted. These instructions capture all the rel-
evant execution information and pass it through calls to methods on core X-Ray
classes, needed at runtime. These X-Ray methods are responsible for producing
logging events following a certain structure, sending them to the defined outputs
and invoking any user-defined probes.

Each event has a unique identifier associated with it. The identifier is com-
posed of a VMID (Virtual Machine Identifier) and a sequence number. The
VMID is an unique identifier for each JVM, based on some of its unique prop-
erties and it is valid as long as its IP address remains unique and constant (cfg.
[21, java.rmi.dgc.VMID documentation][21, java.rmi.server.UID document-
ation]). The sequence number is a local identifier that is incremented once after
each logged event. Each event has a type (like call logging, remote communica-
tion or performance metrics) and a time stamp.

At method entry each parameter value will be saved by X-Ray. For objects,
a reference is saved and for primitive types, boxing of the original value is per-
formed. At method exit, before the terminating statements, the return value or
exception is also saved, as well as a flag indicating whether the method returned
normally or not. Stored data includes also the name and reference of the current
object (Java’s this), the method name, signature and the running thread.

For the most part they are passed using slf4j parametrised messages, if not
directly obtainable from logback. Other information is copied using Mapped
Diagnostic Context (MDC), a per-thread key-value map, available at run-time
in several code locations.
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1 xray("org.apache.derby.iapi.sql.execute") {
2 instrument("NoPutResultSet") {
3 inherit = true
4 log "openCore()V"
5 log "getNextRowCore()Lorg/apache/derby/iapi/sql/execute/ExecRow;"
6 }
7 }
8 xray("org.apache.derby.impl")
9

10 xray("org.apache.derby.client.am") {
11 instrument("NetResultSet") {
12 tag "next()Z"
13 send("next()Z", "?laddr", "?raddr")
14 }
15 }
16 xray("org.apache.derby.impl.drda") {
17 instrument("DRDAConnThread") {
18 tag "processCommands()V"
19 receive("processCommands()V", "?laddr", "?raddr")
20 }
21 }

Fig. 2. X-Ray configuration for federated Apache Derby

4 Evaluation

4.1 Case Study

The first experiment is to monitor a distributed query. The query is made to
a federated SQL database management system built with Apache Derby. That
database is composed of two nodes, communicating with each other. The final
element of the distributed query is the client, which initiates the computation
by making a request to one the servers. To satisfy the request the server must
execute a sub-query on the other server, join the partial results, and return the
final values of the query to the client. The goal in this case study is to apply the
X-Ray framework to assess if it is possible to monitor this process, see how to
do it and observe the obtained results.

Most of the configuration needed for X-Ray to do this is shown in Figure 2.
In detail, lines 1 to 7 set probes on the base class of relational operators. Then,
in line 8, the package implementing such operators is declared as being instru-
mented. This means that all classes found extending such base class, i.e., all
operator implementations, get instrumented.

Moreover, lines 10 to 15 target the JDBC driver, which is the entry point
into Apache Derby. It sets a tag on entry of the next() method that is used to
retrieve data. Moreover, it links this tag to a message being sent on the socket
connection to the server. Some other methods in the client driver (not shown) are
also instrumented in the same manner. Finally, lines 16 to 21 target the server-
side protocol handler, by setting a tag on each received message and then linking
it to the context of the client socket, thus relating it to the corresponding client-
side context. This requires minor changes to Derby’s source code, to expose the
communication ports to X-Ray.
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As a result we obtain Figures 3(b) and 3(a). They were obtained by saving
the logs produced by client and database servers to HBase, and by invoking the
analysis component to read that information from HBase, reconstruct it, and
add relevant remote communication event nodes between the datastore nodes
and the client.

The resulting flow graph shown in Figure 3(b), was rendered by d3.js and
served by Apache Jetty. It is accessible and continuously updated at runtime.
Each bar represents a logged object and its width how many times it emitted
logging events to X-Ray. Figure 3(a) was produced by Graphviz from a dot file
also being continuously updated. It is similar to other graphs used to repres-
ent relationships between objects. X-Ray could be used to track the relations
between methods, as presented in [7,8]. All these graphics, additionally, have the
added feature of also representing remote connections.

Note that node labelled as “[8]” denotes a socket connecting two processes
and that the relation between parts of the computation taking place in different
processes is done automatically by the X-Ray system. Furthermore, most of the
nodes represent classes whose name ends in ResultSet. Except the one labelled
NetResultSet, all of them were obtained from the configuration in lines 1 to 8 of
Figure 2: the inheritance of configuration makes this succinct. Finally, it is clear
that the structure of the computation and the amount of data handled by each
software component is exposed to developers and administrators.

4.2 Performance

The performance impact of X-Ray instrumentation and probes was measured by
starting a Derby server and running the TPC-C transaction processing bench-
mark [13]. The goal is to obtain significant statistics about the state of the data-
base over the course of the benchmark, to see what was the overhead of using
X-Ray and if it was even possible to instrument such a large code base developed
by a third-party and that potentially makes use of features that conflict with
the framework.

The database where the TPC-C benchmark was run is a single warehouse
with approximately 200MB of data and for the workload, 1 (one) client making
requests without delay between them (i.e. with no think time). Two machines
were used for these tests, both with 128GiB of RAM, 24 cores and a disk with
7200 rpm. Their OS was Ubuntu 12.04.3 LTS (GNU/Linux 3.2.0-27-generic

x86 64) and their Java environment was the Oracle JVM version 1.7.0 60. One
of them was used to run the Apache Derby instance plus the benchmark client
and the other was used to run HBase.

Table 1 shows results obtained with the following configurations:

Baseline. No instrumentation was used.
Instrumented. Run with the instrumentation turned on, but not using any

appender.
Logging to file. Using TPC-C with instrumentation plus enabling logs to

stdout and redirecting them to a file.
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ProjectRestrictResultSet [1]

HashJoinResultSet [2]

BulkTableScanResultSet [3] HashTableResultSet [4]

VTIResultSet [5]

NetConnection [6] NetResultSet [7]

localhost:53134-localhost:1527 [8]

DRDAConnThread [9]

ProjectRestrictResultSet [10]

SortResultSet [11]

ProjectRestrictResultSet [12]

GroupedAggregateResultSet [13]

ProjectRestrictResultSet [14]

HashJoinResultSet [15]

BulkTableScanResultSet [16] HashScanResultSet [17]

(a) Nested operator invocations. (b) Data-flow between operators.

Fig. 3. Visualisations of a distributed SQL query

Table 1. Execution times of running TPC-C on Derby

Configuration Latency (ms) Throughput (tpmC)

Baseline 50.2 526
Instrumented 57.3 478
Logging to text file 64.1 414
Logging to HBase 67.4 7
Asynchronous HBase 63.3 422
Lossy asynchronous to HBase 61.4 437

Logging to HBase. Having the HBase-appender save logging information to
HBase. In the HBase-appender auto-flush was turned off.

Asynchronous to HBase. Using the previous appender, but wrapped under
an asynchronous appender [2,4] that performs logging in other threads, asyn-
chronously.

Lossy synchronous to HBase. Again, the HBase-appender is employed, but
this time wrapped under the asynchronous appender provided by Logback [18]
that may drop messages at times of congestion.
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Table 2. Space occupied and number of lines written during the benchmark

Configuration Size (Bytes) Size (lines)

Logging to File 317 024 499 2 040 975
Logging to HBase 436 240 260 760

For the Logging to file and Logging to HBase tests, Table 2 shows the size
occupied in disk at the end of the benchmark and the number of lines written.
In the case of the Logging to file test, the number of lines and size refer to the
written file, and in the case of the Logging HBase run, size is the size of the data
written to HBase during the benchmark, and number of lines is the number
of written entries on its tables. It is possible to recognise that data written to
HBase was much less than what was written in the file. But considering the total
number of transactions, we have Hbase with 436240/877 � 497.42 and file with
317024499/6400 � 49535.08 bytes per transaction. This means that each set of
events representing a transaction takes ≈ 99.6 times more space to represent in
a file than in a table in HBase. The Logging to file run is portrayed to show an
upper limit to logging load. In practice, better performance could be achieved by
tweaking some parameters, such as changing Logback appender layout, delaying
writes to disk or using several log files and removing old ones.

It is possible to see that when using instrumentation (Instrumented) the
benchmark ran at 90.87% of the original speed; that is only a 9.13% slowdown.
Although simply using logging events to HBase synchronously incurs an heavy
penalty, when using an asynchronous approach, the result is far more accept-
able – 88.28% of the simple instrumentation speed, or 19.77% of the original
Baseline run. If one does not care about the possibility of dropping events, a
better 16.92% can be achieved.

5 Related Work

There are already some monitoring or analysis solutions for distributed contexts.
Their purposes range from assisting debugging, identifying system bottlenecks
and network problems, discovering most frequent paths between nodes, to de-
tecting potential intrusions.

NetLogger [17] has a architecture similar to X-Ray, but no support for auto-
matic insertion of logging statements. To use it developers need to add explicit
invocations to the framework to benefit from it, which forces access to source
code. Pinpoint [11] does monitoring of components in a distributed system auto-
matically, by tagging client requests with an identifier. Although useful, it only
works for J2EE applications. Pip [24] allows users to configure its operation by us-
ing a domain-specific language. It with predicates about communications, times,
and resource consumption can be made and at runtime those predicates can
be validated or invalidated. Relations between components can be discerned
by the construction of causal paths, with the help of the provided configura-
tions and collected information. As with NetLogger, the source code is required,
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as annotations are used to generate events. iPath [9] is a dynamic instrumenta-
tion tool with some interesting properties for a distributed setting. It was con-
ceived and works on distributed systems. It also allows a more focused analysis
as the methods to analyse can be chosen and this selection can be altered at run-
time. Yet it is a native solution and although one can choose what methods to
instrument, when the call stack is walked to update the calling context inform-
ation, all methods including those that were not declared for observation will
be recorded in the calls information structure. Aspect-Oriented Programming
(AOP) [19] has also been used for monitoring. However, on one hand it provides
too much freedom when altering programs, hence, additional complexity, and on
the other hand does not provide the event spooling and processing components
of X-Ray. Frameworks such as AspectJ [1] could also have been used instead of
asm [10], although this would add some overhead to class loading in comparison
to the simple processing done now.

All these proposals, like X-Ray, require some information about the software
to examine. This enables the extraction of more targeted and meaningful in-
formation. On the other hand, treating target sysems as black boxes makes the
tool applicable when no internal details are known.

A system that follows the latter model is presented in [25]: considering that
information about the components or middleware of a distributed service may
be minimal and the source code unavailable, the proposed request tracing tool
considers each component as a black box, a device that receives input, processes
it in an unknown fashion and returns an output. As the processing is opaque
to the rest of the system, the tracing tool follows requests, as they are passed
between components until the computation associated to the request is produced
(and optionally sent to the entity that made the request). A means to recognise
the most frequent paths is also provided. This analysis is made on-line as the
system and the logger nodes are running, without the need to stop them. In-
formation can be collected on demand, meaning that it can enabled or disabled,
or done intermittently, using sampling. The detection of communication from
one component to the others is made within the kernel when a send or receive
system call is used. That detection depends on SystemTap [5] hence this solu-
tion it is not OS independent and has no JVM support implemented. Another
similar solution is present in [6]. It only traces network messages, without any
knowledge of node internals or message semantics and infers the dominant causal
paths through them. It uses timing information from RPC messages and signal-
processing techniques to infer inter-call causality. But although the principle that
no information exists about the components is a valid one and the results ob-
tained are useful, for X-Ray different assumptions were made: even if the source
code of a component cannot be altered and deployed, it is still available or its
general API is, and so should be used.

6 Conclusions

In this paper, X-Ray, a framework for distributed systems analysis and monit-
oring was presented. Due to its flexible instrumentation mechanism, accepting



92 P. Guimarães and J. Pereira

configurations and altering bytecode accordingly, it is applicable to any system
on the Java platform. The main contribution is the ability to track requests
across thread and process boundaries, and to expose distributed data processing
operations. Unlike existing solutions, it tries to balance the need for application-
specific information, that normally require source code, with the goal of working
with highly heterogeneous components.

During the qualitative analysis made when applying X-Ray to Apache Derby,
its applicability and usefulness when instrumenting and analysing a large code-
base was demonstrated. Derby is particularly demanding, as it makes use of
dynamic code generation, which was dealt with by using the JVM agent. On the
other hand, a certain amount of knowledge of the source code was still required,
specially to make communication ports available to instrumentation code, but
with mechanisms such as reflection and callbacks, access to the source at runtime
is still not required. As for the quantitative measurements made, they confirmed
that the proposed solution is lightweight and its usage does not impose an ex-
pensive overhead.
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18. Gülcü., Pennec, S., Harris, C.: The logback manual, Chapter 4: Appenders,
http://logback.qos.ch/manual/appenders.html#AsyncAppender

19. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Marc Loingtier, J.,
Irwin, J.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.) ECOOP
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Abstract. With the trend of ever growing data centers and scaling core
counts, simple programming models for efficient distributed and concur-
rent programming are required. One of the successful principles for scal-
able computing is the actor model, which is based on message passing.
Actors are objects that hold local state that can only be modified by the
exchange of messages. To avoid typical concurrency hazards, each actor
processes messages sequentially. However, this limits the scalability of the
model. We have shown in former work that concurrent message process-
ing can be implemented with the help of transactional memory, ensuring
sequential processing, when required. This approach is advantageous in
low contention phases, however, does not scale for high contention phases.
In this paper we introduce a combination of dynamic resource allocation
and non-transactional message processing to overcome this limitation.
This allows for efficient resource utilization as these two mechanisms can
be handled in parallel. We show that we can substantially reduce the
execution time of high-contention workloads in a micro-benchmark as
well as in a real-world application.

1 Introduction

Recent scaling trends lead to ever growing data centers and cloud computing
is gaining attention. Further, the scaling trends at the CPU level let us expect
increasing core counts in the following years. This causes limitations of perfor-
mance gains as it is difficult to program distributed and concurrent applications
efficiently. The current methods using shared memory do not keep up with the
hardware scaling trends and might need to be abandoned. The actor model, ini-
tially proposed by Hewitt [1], is a successful message passing approach that has
been integrated into popular local and distributed frameworks [2]. An actor is
an independent, asynchronous object with an encapsulated state that can only
be modified locally based on the exchange of messages. Received messages are
processed sequentially avoiding the necessity of locks. With increasing numbers
of actors the model is inherently parallel. To sum up, the actor model introduces
desirable properties such as encapsulation, fair scheduling, location transparency,
and data consistency to the programmer.

While the data consistency property of the actor model is important for pre-
serving application safety, it is arguably too conservative in concurrent settings
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as it enforces sequential processing of messages, which limits throughput and
hence scalability. With sequential processing, access to the state will be subop-
timal when operations do not conflict, e.g., modifications to disjoint parts of the
state and multiple read operations.

In previous work [3], we improved the message processing performance of
the actor model while being faithful to its semantics. Our key idea was to use
transactional memory (TM) to process messages in an actor concurrently as
if they were processed sequentially. TM provides automatic conflict resolution
by aborting and restarting transactions when required. However, we noticed
that in cases of high contention, the performance of parallel processing dropped
close to or even below the performance of sequential processing. To improve the
performance of such high contention workloads, we propose to parallelize the
processing of messages in a transactional context with messages that can run in
a non-transactional context.

First, we determine the optimal number of threads that execute transactional
operations as the performance of an application is dependent on the level of
concurrency [4], [5]. To avoid high rollback counts in high contention phases
fewer threads are desired. In contrast to low contention phases where the number
of threads can be increased. Second, we extract messages for which we can relax
the atomicity and isolation and process them as non-transactional messages.

Much of the contention in our tests was caused by read-only operations on
TM objects [3]. Rollbacks could be avoided by relaxing the semantics of read
operations such as proposed by Herlihy et al. [6] who introduced early release,
which allows to delete entries from the read set. Another way is to suspend
the current transaction temporarily, which is called Escape Action [7]. These
approaches are only partly realized in current STMs such as the Scala STM
(based on CCSTM [8]). Scala STM uses Ref objects to manage and isolate
the transactional state. The Ref object does not permit accessing its internal
state in a non-transactional context. Instead, Scala STM provides an unrecorded
read facility, in which the transactional read does not create an entry in the
read set but bundles all meta-data in an object. At commit time the automatic
validity check is omitted, but may be done by the caller manually. However,
in the presence of concurrent writes on the same value, the unrecorded read
might cause conflicts and hence performance would degrade. Our proposal is
to break the isolation guarantees of the Ref object in specific cases, i.e., if we
limit the reads to specific isolated values, we can omit using the unrecorded read
and grant direct access. By using direct access for a number of scenarios in the
context of the actor model, we can process a substantial amount of read-only
messages while not conflicting with messages processed in regular transactions
(TM messages).

Possible candidates for such read-only operations can accept inconsistencies
while not interrupting with transactional states. Examples are operations that
can be used to make heuristic decisions, or operations that are known to be
safe because of algorithm-specific knowledge. Furthermore, debugging and log-
ging the current state in long-running applications are candidates for read-only
operations.
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The read-only and the TM messages may require different levels of concur-
rency. Following this observation, during high contention phases, we reduce the
number of threads processing regular TM messages, which in turn allows us
to increase the number of threads processing read-only messages. By handling
these two message types separately (i.e., providing a separate queue for each
of the message types) we can optimally use all available resources. We show
the applicability of our approach by using a micro-benchmark and a real-world
application.

This paper is organized as follows: In Section 2 we give an overview on related
work. In Section 3 we introduce the basics of our former work and in Section 4 we
discuss the proposed extensions. The benchmarks are described and evaluated
in Section 5. Finally, we conclude our paper.

2 Background and Related Work

Actor models are inherently concurrent. They are widely used for implementing
parallel, distributed, and mobile systems. An actor is an independent, asyn-
chronous object with an encapsulated state that can only be modified locally
based on the exchange of messages. It comprises a mailbox in which messages
can be queued, as well as a set of dedicated methods for message processing [9].

The actor model provides macro-step semantics [10] by processing messages
sequentially. As a consequence, it also guarantees the following properties:

Atomicity. The state of an actor can only be observed before or after operations
took place, therefore changes on the state are perceived either all at once or not
at all.

Isolation. The actor model forbids any concurrent access to the local state of
an actor. This means that any operation on the state of the actor is done as if
it were running alone in the system.

These characteristics make actor models particularly attractive and contribute
to their popularity. Numerous implementations of actor models exist in popular
languages like Java, C, C++, and Python. We decided to use Scala, which is
a general-purpose language that runs on top of the JVM and combines func-
tional and object-oriented programming patterns. The recent versions of Scala
integrate the Akka Framework [11] for implementing actors. Scala also supports
transactional memory (TM) [12], a programming model that provides atomicity,
isolation, and rollback capabilities within transactional code regions [13]. TM
provides built-in support for checkpointing and rollback, which we exploit for
controlling concurrent message processing. Existing actor frameworks such as
those surveyed by Karmani et al. in [2] do not include TM and differ regarding
the way they handle parallelism. As an example, implementations of Habanero-
Scala and Habanero-Java [14] introduce parallelism by mixing the actor model
with the fork-join model (async-finish model). Actors can start concurrent sub-
tasks (async blocks) for the handling of a single message.

When all sub-tasks complete their execution, the actor resumes its operation
and can process further messages. While this approach avoids concurrent access
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to the actor’s state, it must be used carefully as it provides no protection against
synchronization hazards such as data races and deadlocks.

Parallel actor monitors (PAM) [15] support concurrent processing by schedul-
ing multiple messages in actor queues. Using PAM, the programmer must under-
stand the concurrency patterns within the application and define application-
specific schedulers. This may prove particularly challenging for applications
where concurrency patterns vary during execution. In contrast, our approach
(see Section 4) removes any programmer intervention and automatically allows
concurrent executions when possible.

To optimally use the resources and to improve performance, researchers pro-
posed several mechanisms to match the level of concurrency with the current
workload. Heiss and Wagner [5] discuss the problem of thrashing in concurrent
transactional programs. Thrashing is a phenomenon that takes place in phases
of high contention in which it is likely that the throughput suddenly drops. They
propose three ways to avoid thrashing. First, they propose to set an upper bound
that sets the maximum number of concurrent transactions; second, they propose
to use analytical models for preventing high contention phases; and third, they
propose to monitor the current load and decide dynamically on the best level of
concurrency. The last approach is seen as a dynamic optimization problem that
considers the relationship of concurrency level and throughput. Similarly, Di-
dona et al. [4] propose to dynamically adjust the level of concurrency according
to the number of commits and aborts. The optimal number of threads is found
with the help of two phases: (1) measurement phase and (2) decision phase.
In the first phase the application is profiled with a fixed number of threads, in
the second phase a hill-climbing approach is applied to increase and decrease the
number of threads according to the given workload, maximizing the transaction’s
throughput based on successful commits. While the basic idea is interesting, the
variation of the thread count based on the throughput might be disadvantageous
for transactions with different granularity.

3 Concurrent Message Processing

To motivate our proposed work, we relate to the enhancements of the Actor
Model as presented in our former work [3]. There, we reduced the execution
time without violating the main characteristics of the Actor Model. Our main
idea was based on the observation that we can guarantee atomicity and isola-
tion if we encapsulate the handling of messages inside transactions. Thanks to
the rollback and restart capability of transactions, several messages can be pro-
cessed concurrently, even if they access the same state. The concurrent message
processing only changes the message handling provided by the Akka framework
as integrated in Scala 2.10.0. Specifically, we altered the behavior of the actor’s
mailbox processing code. In the original Akka implementation a dispatcher is
responsible for ensuring that the same mailbox is not scheduled for processing
messages more than once at a given time. We adapted the dispatcher to assign
each message processing to a thread of the thread pool. Further, each message
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Fig. 1. Concurrent message processing in a read-dominated workload within a shared
linked list

processing is handled in a transaction for which we use the default Scala STM.
Our work performed well for read-dominated as well as write-dominated work-
loads and we outperformed the state-of-the-art Habanero Scala [14] in their dis-
tributed list benchmark shared amongst list actors with 97% of reads, 2% writes
and 1% sum operations created by request actors. Figure 1 shows performance
improvements over sequential processing and Habanero Scala for all numbers of
list actors in a shared linked list. On the x-axis we show the effects of increasing
the number of request actors (125-500), while the y-axis displays the execution
time in seconds (log scale), i.e., the time needed to finish processing all requests.
The lower the execution time, the better. A higher number of list actors also
leads to higher contention, increased rollback counts and hence decreased per-
formance. With 16 list actors, concurrent processing as well as Habanero Scala
perform close to sequential processing.

4 Dynamic Concurrent Message Processing

For improving the performance in high contention workloads we propose the
following combination of methods. First, we adapt the level of concurrency for
processing actor messages according to the current contention level. Second, we
extract read-only message processing from the transactional context. And third,
we exploit the fact that the two types of messages do not interfere and occupy the
existing threads with both types of messages according to the current contention
level. As a result, we occupy all threads with work. To differentiate between these
two types of messages, we adapted the concurrent mailbox implementation in
Akka (as part of Scala 2.10) to handle two different queues as shown in Figure 2.
One queue collects the messages to be processed in a transactional context (STM
messages), and another one for the processing of read-only messages. We further
adapted the actor message dispatcher such that it picks messages from both
queues and forwards them for processing to the thread pool. Our new dispatcher
automatically adapts the number of STM messages and read-only messages to
be processed according to the current contention of the workload. The detailed
principles of processing STM messages and read-only messages are described in
the following sections.
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state

Mailbox

Fig. 2. The different handling of STM messages and read-only messages. Dispatcher
assigns a dynamic number of threads for message processing.

4.1 STM Message Processing

At the beginning of an application we start from a random number of threads
from the thread pool to process transactional messages (STM messages) and
then, driven by a predefined threshold α, the level of concurrency is adapted.
The dispatcher assigns the rest of the threads to process read-only messages. α
is dependent on the knowledge of the current number of commits and rollbacks
of transactionally processed messages and their ratio. Instead of focusing on the
throughput such as Didona et al. [4], we are able to support transactions of
any granularity by steering α with the commit-to-rollback ratio. If the current
commit-to-rollback ratio is lower than α, we divide the number of threads pro-
cessing transactional messages by two; if it is higher, we multiply them by two.
We chose the commit-to-rollback ratio in combination with the fixed α thresh-
old due to its simplicity. To find the right α value for the current workload, we
consider a short profiling phase monitoring the relation of commits and rollbacks.

4.2 Read-only Message Processing

The second category of messages are read-only messages. They are handled in a
separate queue from the messages that require TM context. Scala STM [16] is
based on CCSTM [8] (which extends SwissTM [17]). It is a write-back TM, where
writes are cached and written to the memory on commit. Further, it provides
eager conflict detection for writes and lazy conflict detection for reads. Validation
is done based on a global time stamp. In Scala STM transactional objects are
encapsulated in so-called Ref s. This implies that any access to a transactional
object has to be within an atomic block, which ensures strong atomicity and
isolation.

We argue that in some cases we can relax isolation, e.g., for performing approx-
imate read-only operations. A ubiquitous example is a sequential data structure
such as a linked list. While traversing the list in read-only mode, a concurrent
write of a value, which has been already read, causes a conflict. For such cases,
Scala STM provides a mechanism called unrecorded read. An unrecorded read
is a transactional read, which returns an UnrecordedRead object containing the
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value, the version number before read, and a validity field of the read. The va-
lidity field returns true when there were no changes to the value, which helps to
resolve the ABA problem [8].

In Scala STM the unrecorded read can be accessed through calling the re-
laxedGet method. By using it, we can perform a read that will not be validated
during commit. The relaxedGet method has to be executed inside of an atomic
block:

atomic{

val unvalidatedValue = ref.relaxedGet({(_,_) => true})

}

Unrecorded reads do not yield new entries in the read set, but still need to en-
sure reading the latest version of a TM object. Scala STM checks for concurrent
writes and forces eager conflict detection, which, in turn, causes a rollback of
the writing transaction. As we see later this resolution strategy leads to similar
runtime behavior as of the regular transactions.

To remove the overhead associated with unrecorded reads, we propose to pro-
vide direct access to the Ref object’s data (which is safely possible due to the
write-back characteristic of Scala STM). We extended Scala STM’s Ref imple-
mentation with a singleRelaxedGet method and provide an example for generic
references below.

class GenericRef[A](@volatile var data: A) extends BaseRef[A] {

...

def singleRelaxedGet(): A = data

}

Its usage is then straightforward as shown in the next example:

val relaxedValue = ref.singleRelaxedGet()

As the data variable in GenericRef is marked as volatile, the singleRelaxedGet
read-only operation can therefore safely interleave with other transactional write
operations while guaranteeing to see the latest result. Moreover, singleRelaxed-
Get does not interfere with other transactional operations, i.e., it cannot force
another transaction to roll back.

5 Evaluation

Our optimizations are expected to be most useful in applications where state is
shared among many actors. Hence, to evaluate our approach, we use a bench-
mark application provided by Imam and Sarkar [14] that implements a stateful
distributed sorted integer linked-list. It is the same benchmark as in our former
work and shown in Section 3 in comparison to Habanero Scala. This bench-
mark is relevant as sequential data structures are typical applications for re-
laxed atomicity and isolation (see, e.g., early release). The read-only operation
is a non-consistent sum that traverses each list element.
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To show wider applicability we also consider a real-world scientific application
that is used to simulate the hydraulic subsurface. The read-only operations in
this application are used to control progress and debugging and hence should
not interfere with any regular operation.

The thread pool is configured to support two scenarios. First, we specify a
static ratio, in which 90% of threads are assigned to process STM messages
and the rest processes read-only messages. In the second case we consider a
dynamic ratio, but ensure that the number of threads assigned to process any
message type never drops below the ratio of 10%. We compare the performance
of our proposed singleRelaxedGet to the default atomic block and the relaxedGet
method provided by Scala STM.

We execute the benchmarks on a 48-core machine equipped with four 12-core
AMD Opteron 6172 CPUs running at 2.1GHz. Each core has private L1 and L2
caches and a shared L3 cache. The sizes of both instruction and data caches are
64KB at L1, 512KB at L2, and 5MB at L3.

5.1 List Benchmark

The list benchmark comprises two actor types: request and list actors. Request
actors send requests such as lookup, insert, remove, and sum. List actors are
responsible for handling a range of values (buckets) of a distributed linked list.
We implemented a list element as an object containing a value field and a next
field, which is wrapped in a Scala STM Ref object.

In a list with l list actors, where each actor stores at most n elements repre-
senting consecutive integer values, the ith list actor is responsible for elements
in the [(i − 1) · n, (i · n) − 1] range, e.g., in a list with 4 actors and 8 entries
in total, each actor is responsible for two values. A request forwarder matches
the responsible list actors with the incoming requests. For the sum operation,
we traverse each list element in every list actor. This operation is read-only and
does not necessarily report a consistent value. It should not conflict with other
accesses to the list.

We run the benchmark with 32 threads (to be able to divide and multiply
the thread count by two) in 7 runs from which we take the median throughput
and number of rollbacks for the results. Also, we create 8 list actors that are in
responsible for 41,216 list elements. We create 500 request actors, where each
actor sends 1,000 messages to the list. After each of the request actors finished
their 1,000 requests the benchmark terminates.

To read a value from the list, we consider three different options: (1) the reg-
ular transactional read (node.next.get()), (2) the unrecorded read accessed via
(node.next.relaxedGet()) and (3) our direct access (node.next.singleRelaxedGet())
method.

In our experiments we consider a write-dominated and a mixed workload. The
write-dominated workload is configured as follows: Each request actor sends 98%
of requests to modify the list (insert or remove), 1% of lookup requests and 1%
of sum requests.
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In the first experiments, we evaluate the impact of different access approaches
to the sum operation if the threads are assigned statically. The static approach
(90% STM:10% read-only) reserves 3 threads (10%) for the processing of read-
only messages and 29 threads (90%) for processing STM messages. Figure 4
demonstrates the message throughput (left) and the rollback count over time
(right). The shorter the line, the better the execution time. The singleRelaxed-
Get() outperforms the other operations with respect to both, execution time
(50%) and throughput (40%). However, we observe a drastic increase of roll-
backs (90%). This observation is counter intuitive, as one would expect to have
a lower number of rollbacks to achieve higher throughput. In fact, when we use
atomic and relaxedGet() to implement the sum operation, we cause significantly
more read-write conflicts. Scala STM resolves them by waiting for the write op-
erations to finish to follow up with the execution of the read operations. On the
contrary, when we use the singleRelaxedGet() operation, we remove transactional
read operations, which increases the likelihood of concurrent write operations. As
a result, we get more write-write conflicts, which are typically resolved eagerly
by rolling back one of the transactions.

Since the performance of transactional operations can be further improved,
we dynamically determine the optimal number of threads as described in Sec-
tion 4.1. We schedule a thread, which obtains the total number of commits and
rollbacks every second, and decides the optimal number of threads to schedule
for the processing of STM and read-only messages. Initially, the thread counts
are randomly chosen and within the first two seconds the number of threads
converges to the optimal values with the help of α. For determining α we profile
the application for a short time. In the case of the list benchmark this results in
α = 0.21, hence if the commit-to-rollback ratio is below α the number of threads
will be reduced else increased (multiplied or divided by two).

In Figure 4 we see that the throughput and rollback values for the atomic
and relaxedGet() operations are not significantly different when compared to
the static approach. This behavior is expected as the operations interfere with
the concurrently executing transactional write operations. This causes more con-
tention as both the STM messages and the read-only messages are conflicting.

Fig. 3. Throughput (left) and rollback count (right) for the list write-dominated work-
load: static thread allocation
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Fig. 4. Throughput(left)androllbackcount(right) forthe listwrite-dominatedworkload:
dynamic thread allocation

Fig. 5. Throughput (left) and rollback count (right) for the list mixed workload: static
thread allocation

Fig. 6. Throughput (left) and rollback count (right) for the list mixedworkload: dynamic
thread allocation

On the contrary, the singleRelaxedGet() operation never conflicts with other
list operations. Hence, we can efficiently use the threads not processing STM
messages resulting in increased throughput (65%) and reduced runtime (70%).

In the mixed read-write workload, consisting of 50% of requests to modify the
list, 49% lookup requests and 1% sum requests, we show the applicability of
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Fig. 7. (a) Matching SG point with the same pattern in the TI. (b) Two possibilities
of closest neighbor pattern with probable invalidation of the closest neighbor selection
if T1 finishes before T2.

singleRelaxedGet in a more read-dominant scenario. With the help of a profiling
phase, we setα to 0.08. Figures 5 and 6 show similar results as the write-dominated
list benchmark, amplifying the benefits of singleRelaxedGet. The dynamic thread
assignment further reduces the rollback counts in comparison to the static assign-
ment. In order to compare to Figure 1 the request ratio has to be increased, leading
to results below 1 second for the singleRelaxedGet. It would hence clearly outper-
form the default implementation of Habanero Scala.

5.2 Simulation of the Hydraulic Subsurface

The aim of multiple-point geostatistical simulations is to simulate the hydraulic
properties of the subsurface. A number of techniques has been developed for
executing the simulation, the most popular of them is multiple-point geostatis-
tics [18], which analyzes the relationship between multiple variables in several
locations at a time. For its implementation, we can use the Direct Sampling sim-
ulation introduced by Mariethoz et al [19]. A simulation consists of a Training
Image (TI) and a Simulation Grid (SG). The task is to fill unknown points of
the simulation grid according to the known points from the training image (see
Figure 7(a)). The algorithm starts with selecting a random point x to be filled
in the SG. Then, it locates n closest neighbors, which are already filled. The
neighbors and x are considered as a pattern, for which the algorithm searches in
the TI. If found, x can be filled.

Given that in the field of hydraulic subsurface simulation the simulation grid
and the training image are of a very large size, sequential processing is not effi-
cient. Two cases of parallelization are possible: (1) the parallelization of searching
within the training image, (2) the parallelization of the node filling within the
simulation grid. In this paper we concentrate on the parallelization of the node
filling within the SG as parallelizing the TI would only comprise independent
read operations. Our implementation of the actor-based simulation considers a
main actor that stores the SG and the TI. Consider Figure 7(b) having two
points T 1 and T 2 to be simulated concurrently. We can see that these are close
and if simulated, are likely to be part of the n closest neighbor pattern. Thus,
the point that finishes first invalidates the current simulation of the other point
and a synchronization mechanism is required. In our implementation, all SG
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points are protected by a Scala STM Ref object, which causes a rollback once
a SG point is simulated that has been visited during a nearest neighbor search.
Besides the main actor we implemented a number of worker actors, either sim-
ulating the SG points (simulation actors) or responsible for logging the current
state (log actors). Simulation actors claim a number of points to be simulated
and initiate the closest neighbor search and the TI matching for each of the
points at the main actor. We run the benchmark with 32 worker actors, with
each simulation actor requesting to process 30 simulation points at once, finally
sending 167 messages during the benchmark.

Researchers using the multiple-point geostatistics simulation usually validate
the results manually by visualizing the simulated result. Since the simulation can
take several hours, intermediate results are of interest; we can use them to see
whether the simulation is on the right track. This case is especially of interest,
because once the points are simulated, they do not change anymore. Therefore,
these intermediate results do not require full consistency and should not interfere
with the main simulation. We select these messages to be handled as read-only
messages sent by log actors. The list benchmark considered a constant number
of sum messages while here, each log actor sends a request to the main actor,
repeating it upon receiving a response. In the experiments we consider 8 log
actors. The size of the SG is 750 times 750 elements and we investigate the 15
closest neighbors for each point, finally we profiled α = 1.2. We use the sample
image provided by the MPDS [19] distribution as the TI.

As shown in Figure 8 the static thread allocation results for throughput sug-
gest that it is possible to increase the number of processed query messages with
the help of singleRelaxedGet, while reducing the execution time in comparison
to the atomic case by approximately 40 seconds. The total number of rollbacks,
however, remains stable. Figure 9 (left) demonstrates that the dynamic thread
allocation improves the execution time of the singleRelaxedGet by another 20
seconds. The throughput seems to decrease in comparison to the static scenario,
which is not true considering the total throughput. While the amount of work
performed is in both scenarios the same, we are able to successfully process more
messages in the period of second 20-50 in the dynamic scenario. This can be seen

Fig. 8. Throughput (left) and rollbacks (right) of STM messages and read-only mes-
sages over time: static thread allocation
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Fig. 9. Throughput (left) and rollbacks (right) of STM messages and read-only mes-
sages over time: dynamic thread allocation

by the low rollback counts shown in Figure 9 (right) for the same period. In the
beginning of the execution, however, the rollback counts reflect the effects of
adjusting the concurrency level. In total the dynamic scenario results in lower
rollback counts than the static scenario. In all of the cases singleRelaxedGet in
combination with the dynamic handling of STM messages is able to outperform
concurrent message processing.

6 Conclusions

In this paper we introduce dynamic concurrent message processing in the actor
model for high contention workloads. We propose to extract read-only messages
from the transactional context if consistency is not required as well as adapt
the number of threads to the workload. By handling transactional messages
with a different level of concurrency we can efficiently use the remaining re-
sources (threads in a thread pool) for processing read-only messages. We showed
the applicability of our approach as well as candidates for messages processed
with relaxed consistency. In a list benchmark and a real-world application we
demonstrated that our approach helps reducing the execution time, while also
decreasing the rollback counts. In future work we target to improve the perfor-
mance by introducing a learning phase (e.g., with the help of hill-climbing) for
guiding the level of concurrency.
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Abstract. Cloud infrastructures offer a wide variety of resources to
choose from. However, most cloud users ignore the potential benefits
of dynamically choosing cloud resources among a wide variety of VM
instance types with different configuration/cost tradeoffs. We propose to
automate the choice of resources that should be assigned to arbitrary
non-interactive applications. During the first executions of the applica-
tion, the system tries various resource configurations and builds a custom
performance model for this application. Thereafter, cloud users can spec-
ify their execution time or financial cost constraints, and let the system
automatically select the resources which best satisfy this constraint.

1 Introduction

Cloud computing offers unprecedented levels of flexibility to efficiently deploy
demanding applications. Cloud users have access to a large variety of computing
resources with various combinations of configurations and prices. This allows
them in principle to use the exact type and number of resources their appli-
cation needs. However, this flexibility also comes as a curse as choosing the
best resource configuration for an application becomes extremely difficult: cloud
users often find it very hard to accurately estimate the requirements of complex
applications [1].

Most cloud applications are either long-running service-oriented applications,
or batch jobs which perform a computation with no user interaction during
execution. Batch applications may use frameworks such as MapReduce, or simply
behave as blackboxes executing arbitrary operations. Although frameworks such
as Elastic MapReduce allow users to dynamically vary the number of resources
assigned to a computation [2,3], other types of HPC applications require that the
resource configuration must be chosen prior to execution – and kept unchanged
during the entire computation.

Selecting the “right” set of resources for an arbitrary application requires a
detailed understanding of the relationship between resource specifications and
the performance the application will have using these resources. This is hard
because the space of all possible resource configurations one may choose from
can be extremely large. For example, Amazon EC2 currently offers 29 different
instance types. An application requiring just five nodes must therefore choose
one out of 295 = 20, 511, 149 possible configurations.

Furthermore, users’ expectations may be more complex than executing the
application as fast as possible: the fastest execution may require expensive re-
sources. Depending on the circumstances, a user may therefore want to choose
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the fastest option, the cheapest, or any option implementing a tradeoff between
these two extremes.

We propose to automate the choice of resources that should be assigned to
arbitrary non-interactive applications that get executed repeatedly. Upon the
first few executions of the application, the system tries a different resource con-
figuration for each execution. It then uses the resulting execution times and costs
to build a custom performance model for the concerned application. After this
phase, users can simply specify the execution time or the financial cost they can
tolerate for each execution, and let the system automatically find the resource
configuration which best satisfies this constraint.

The system indifferently supports single– and multithreaded applications built
around frameworks such as MPI and OpenMP. Its only assumption is that the
execution time and cost are independent from the application’s input. Although
slightly limiting, this assumption is met in a number of HPC applications which
are optimized to perform high-volume, repetitive tasks where successive execu-
tions process inputs with the same size and runtime behavior. This is the case
in particular of the two real-world applications we use in our evaluations (one
in the domain of oil exploration, the other in the domain of high-performance
database maintenance).

Allowing the automatic selection of computing resources for arbitrary batch
cloud applications requires one to address a number of challenges. First, we need
to describe arbitrary applications in such a way that a generic application man-
ager can automate the choice of resources that the application may use. Second,
we need an efficient search strategy to quickly identify the resource configura-
tions that should be tested. Finally, we need to generate performance models
that easily allow one to choose resources according to the performance/cost ex-
pectations of the users.

Wepropose four configuration selection strategies respectively based onuniform
search of the configuration space, resource utilization optimization, simulated an-
nealing and a resource utilization-driven simulated annealing. Evaluations show
that the latter strategy identifies interesting configurations faster than the others.

Section 2 discusses related work. Section 3 shows how to abstract arbitrary
applications in a single generic framework. Sections 4, 5 and 6 respectively
present the system architecture, its profiling strategies, and their evaluation.
Finally, Section 7 concludes.

2 Related Work

In HPC, most performance modeling techniques can be classified into analyt-
ical predictive methods, code analysis or profiling [4,5]. Analytical methods
require developers to provide a model of their application. They can be very
accurate, but building good models is labor-intensive and hard to automate.
Moreover, user estimates of application runtimes are often highly inaccurate [1].
Code analysis automates this process, but it usually restricts itself to coarse-
grained decisions such as the choice of the best acceleration device for optimizing
performance [6].
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In cloud environments, performance modeling was studied for specific types of
applications such as Web applications. Besides the numerous techniques which
dynamically vary the number of identically-configured resources to follow the
request workload, one can use machine learning techniques over historical traces
in order to define horizontal and vertical scaling rules to handle various types of
workloads [7]. Similarly, when scaling decisions are necessary, one may dynam-
ically choose the best resource type based on short-term traffic predictions [8].
Some other works exploit the fact that identically-configured cloud resources of-
ten exhibit heterogeneous performance [9]. For instance, one can benchmark the
performance of each individual virtual machine instance before deciding how it
can best be used in the application [10,11].

Performance modeling has been addressed for specific types of scientific appli-
cations. For bags-of-tasks applications, one can observe the statistical distribu-
tion of task execution times, and automatically derive task scheduling strategies
to execute the bag under certain time and cost constraints [12]. Similar work
has also been realized for MapReduce applications [13,14].

For arbitrary HPC applications which do not fit the MapReduce or the bags-
of-tasks models, the only solution currently proposed by Amazon EC2 is to em-
pirically try a variety of instance types and choose the one which works best [15].
CopperEgg automates this process by monitoring the resource usage of an ar-
bitrary application over a 24-hour period before suggesting an appropriate in-
stance type to support this workload [16]. However, as we shall see in Section 6,
utilization-based methodologies do not necessarily lead to optimal results. Be-
sides, CopperEgg does not allow the user to choose her preferred optimization
criterion. Our work, in contrast, aims at finding Pareto-optimal configurations
for arbitrary batch applications, and it supports the automatic selection of re-
sources which match a given optimization criterion.

3 Handling Arbitrary Applications

Each time a user wants to launch the application, she provides a Service-Level
Objective (SLO) taking one of two forms: either impose a maximum execution
cost while requesting to execute as fast as possible; or impose a maximum execu-
tion time while minimizing the cost of the execution. The system is in charge of
automatically selecting the resource configuration which best satisfies this SLO.

To allow a generic application manager to handle arbitrary batch applica-
tions, each SLO file contains a link to an Application Manifest which describes
the application’s structure and the type of resources it depends on to execute
correctly. The manifest is typically written by the application developer.

Figure 1 shows a simple example which describes the types of resources an
application needs, with their number, configuration and role. The Configuration
attribute describes the properties that resources may have. A computing resource
may thus for example specify a number of cores and memory size, while a storage
resource may describe properties such as the disk size and supported IOPS. Each
field may specify either a fixed value, or a set of acceptable values to choose from.

We do not specify the network capacity between provisioned machine in-
stances in our manifests, as current clouds do not allow a user to specify such



Heterogeneous Resource Selection for Arbitrary HPC 111

ApplicationName: HelloWorld

...

Resources {
Resource1 (

Type: Virtual Machine

Role: Worker

Number: 1

Configuration: {
Cores: {1..16}
Memory: {2,4,6,8,12,
16,24,48,64,96,124}

}), ...

}

Fig. 1. Application Manifest Example Fig. 2. System Overview

properties 1. A logical extension of this work would be to also specify available
bandwidth between resources, provided that the underlying cloud can take such
requests into account.

Finally, one can assign a Role to a resource. This allows us to describe appli-
cations with multiple components potentially having specific requirements. For
example, a master/slave application may separately describe Master and Slave
resources.

4 System Model

This section introduces our system model supporting the automatic management
of batch applications under user objectives. In the following, we explain the
architecture of our system and the profiling policies we employ.

4.1 Architecture

Our system architecture is depicted in Figure 2. A user triggers an execution
of the application by submitting an SLO and its associated manifest file to the
application manager.

The application manager is an application-agnostic component in charge of
choosing and provisioning the resource configurations, deploying and executing
the application and of measuring the execution time and implied cost. Initially,
it has no knowledge about the types of resources it should choose for a newly-
submitted application. After loading the manifest file, in case no performance
model is specified, the Controller forwards the application to the Profiler which
executes the application repeatedly using a different resource configuration every
time. Note that it is important for our system that execution times should be

1 Amazon EC2 lets users choose a network performance level among ‘Low’, ‘Moderate’,
‘High’ and ‘10 Gigabit.’ However, these qualifiers do not imply any clear guarantees
on the resulting available bandwidth.
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as deterministic as possible. We therefore need to rely on the cloud to minimize
interferences with other co-located instances.

This profiling process continues until either a predefined number of execu-
tions has been performed or a profiling budget has been exceeded. The result
of these executions (cost and execution time) is used to build a performance
model which is sent to the Configuration Designer. If a performance model was
already specified in the manifest, the Controller skips the Profiler and sends
the application and its model directly to the Configuration Designer. Based on
this model, the Configuration Designer then selects a configuration that satisfies
the SLO and launches the execution. In both cases, the execution is handled by
the Execution Manager which provisions the configuration through a Dynamic
Resource Scheduler and finally executes the application on it.

Each time an application execution is performed, the system monitors its
total execution time and cost, and derives a relation between them and the re-
source configuration. Failed executions due to a cloud failure are re-launched
on identical configured resources while executions failed due to unmet applica-
tion requirements are assigned a very high execution time/cost, making them
unselectable in the future.

The results generated after several executions with various resource configura-
tions can be plotted as shown in Figure 3(a). Each point represents the execution
time and cost that are incurred by one particular resource configuration. The
figure shows the result of an exhaustive exploration of a search space with 176
possible configurations. In a more challenging scenario the number of configura-
tions would be much greater, and this type of exhaustive exploration would be
practically unfeasible.

4.2 Pareto Frontier

It is interesting to notice that not all configurations provide interesting proper-
ties. Regardless of the application, a user is always interested in minimizing the
execution time, the financial cost, or a trade-off between the two 2.

Figure 3 presents the search space of the “RTM” application used later in the
evaluation. Configurations which appear at the top-right of the figure are both
slow and expensive. Such configurations can be discarded as soon as we discover
another configuration which is both faster and cheaper. The remaining con-
figurations form the Pareto frontier of the explored search space. Figure 3(b)
highlights the set of Pareto-optimal points of this application: they all imple-
ment interesting tradeoffs between performance and cost: points on the top-left
represent inexpensive-but-slow configurations, while points on the bottom-right
represent fast-but-expensive configurations.

The Pareto frontier (and the set of configurations leading to these points)
forms the performance model that the application manager uses to choose con-
figurations satisfying the user’s SLOs. If an SLO imposes a maximum execution

2 An interesting extension of this work would be to consider additional evaluation
metrics such as carbon footprint. This can be easily done as long as the relevant
metrics are designed such that a lower value indicates a better evaluation.
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(a) Exhaustive exploration of the re-
source configuration space

(b) The set of Pareto-optimal configura-
tions is shown in black

Fig. 3. Resource configuration space of the RTM application

time, the system discards the Pareto configurations which are too slow, and se-
lects the cheapest remaining one. Conversely, if the SLO imposes a maximum
cost, it discards the Pareto configurations which are too expensive, and selects
the fastest remaining one.

4.3 Profiling Policies

Profiling an application requires one to execute it a number of times in order
to measure is performance and cost using various resource configurations. This
process may be realized in two different ways, depending on the user’s prefer-
ences:
1. The offline approach triggers artificial executions of the application whose

only purpose is to generate a performance model. In this case, the output of
executions is simply discarded.

2. The online approach opportunistically uses the first actual executions re-
quested by the user to try various resource configurations and lazily build a
performance model.

Choosing one of these approaches requires the user to make a simple tradeoff.
In offline profiling, the user will incur delays and costs of the profiling executions
before a performance model has been built. On the other hand, all the subsequent
executions will benefit from a complete performance model. In online profiling,
although the first executions may not fulfill their SLO until a performance model
has been built, the overall marginal cost and delays will be reduced.

5 Performance Profiling

The main issue when building the performance model of an application is that
the space of all possible configurations is usually much too large to allow an ex-
haustive exploration. We therefore need to carefully choose which configurations
should be tested, such that we identify the optimal configurations as quickly as
possible.
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5.1 Search Space

The search space of resource configurations to explore for an application is gen-
erated using the application manifest. Each resource parameter which should be
chosen by the platform constitutes one dimension of the space. The number of
possible configurations therefore increases exponentially as new dimensions are
added, an issue often referred to as the curse of dimensionality.

In the example from Figure 1, the search space of the application has 2 di-
mensions (corresponding to numbers of cores and memory). This creates a total
of 16 × 11 = 176 possible configurations (due to 16 possible numbers of cores,
and 11 possible memory sizes). Within these 176 configurations, only a subset
of them may offer interesting tradeoffs between performance and cost.

5.2 Search Strategies

The goal of the profiling process is to search through the space of possible config-
urations and to quickly identify configurations that implement interesting per-
formance/cost tradeoffs. It aims not only to find the fastest or the cheapest
configuration but also configurations which offer interesting tradeoffs between
these two extremes.

We define four strategies that can be used to explore a configuration space:

Uniform Search strategy explores stepwise points in the resource search space
to select a configuration for the profiling process. As shown in Algorithm 1, the
application is executed for all combinations of stepwise resource values (lines
2-5). Although uniform search is extremely simple, it may waste time exploring
large areas which are unlikely to deliver interesting performance/cost tradeoffs.
In addition, low exploration step values result in high complexity, while using
high step values (to decrease the complexity) may skip relevant configurations.

Utilization-Driven strategy is a simplified version of the CopperEgg strat-
egy [16]. It iteratively refines an initial resource configuration by monitoring the
resource utilization generated by the application. As shown in Algorithm 2, the
algorithm starts with a random resource configuration (lines 1-2), and monitors
the utilization of each resource type in configurations (lines 8-9). If a resource
is highly used by the application, the algorithm then allocates a higher amount

Algorithm 1. Uniform Search

Input: Application A, Resources R = {R1, R2, ..., Rn}
Output: Set of configurations, their execution time and cost Sr,t,c

1: Sr,t,c ← ∅
2: for r1 = min1 to max1 by step1 do
3: for r2 = min2 to max2 by step2 do
4: ...
5: for rn = minn to maxn by stepn do
6: r ← {r1, r2, ..., rn}
7: (t, c) ← execution time and cost of running A on r
8: Sr,t,c ← Sr,t,c ∪ {(r, t, c)}
9: ...
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Algorithm 2. Utilization-Driven

Input: Application A, Resources R = {R1, R2, ..., Rn}
Output: Set of configurations, their execution time and cost Sr,t,c

1: r ← {r1, r2, ..., rn} where ri is a uniform random sample of Ri ∈ R
2: Q ← {r}
3: Sr,t,c ← ∅
4: while Q �= ∅ do
5: r ← dequeue(Q)
6: (t, c) ← execution time and cost of running A with resource configuration r
7: Sr,t,c ← Sr,t,c ∪ {(r, t, c)}
8: for i = 1 to |R| do
9: if Ri is over- or underutilized then
10: if Ri is overutilized then
11: r′i ← next value of Ri (value after ri)
12: else if Ri is underutilized then
13: r′i ← previous value of Ri (value before ri)

14: enqueue(Q, {r1, r2, ..., r′i, ..., rn})

of this resource in the hope of delivering better performance (lines 10-11). On
the other hand, if a resource utilization is low, the algorithm then reduces this
resource amount in the hope of reducing resource costs (lines 12-13). Otherwise,
it stops its exploration once there is no configuration that neither overuses nor
underuses its resources. This strategy is simple and intuitive but, as we shall
see later, it may stop prematurely whenever it reaches a local minimum in the
search space.

Standard Simulated Annealing (SA) is a well known generic algorithm for
global optimization problems [17]. It initially tries a wide variety of configura-
tions, then gradually focuses its search around configurations that were already
found to be interesting. To control how many bad configurations are accepted as
interesting, it relies on a global time-varying parameter called the temperature.

Algorithm 3 shows the SA routine applied to the resource configurations. The
algorithm starts with a random resource configuration (line 1), and explores
new configurations in the neighborhood of the current configuration (line 5).
The neighbor() function determines a new configuration by drawing random val-
ues around the current configuration using a normal distribution determined by
the temperature. ratelearn is a scale constant for adjusting updates and upper
and lower are the parameter r’s interval bounds. The temperature decreases
gradually (line 10), which means that the algorithm accepts new configurations
to explore with slowly decreasing probability (lines 8-10). Due to its convergence
to optimal solution in a fixed amount of time, simulated annealing quickly ex-
plores the search space, focusing most of its efforts in the “interesting” parts of
the search space.

In order for the algorithm to explore configurations that are both cost-efficient
and performance-efficient, we evaluate each configuration based on the product
between the cost and the execution time it generates.The minimization of the
product is guaranteeing the minimization of at least one of them. Using this util-
ity function the algorithm explores the entire Pareto frontier, instead of focusing
on optimizing only the execution time or the cost.
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Algorithm 3. Standard SA

Input: Application A, Resources R, Temperatures Tcooling and Tcurrent

Output: Set of configurations, their execution time and cost Sr,t,c

1: r ← {r1, r2, ..., rn} , ri is random value of resource Ri ∈ R
2: (t, c) ← execution time and cost of running A with resource configuration r
3: Sr,t,c ← {(r, t, c)}
4: while Tcurrent > Tcooling do
5: rnew ← neighbor(r, Tcurrent)
6: (tnew, cnew) ← execution time and cost of running A with resource configuration

rnew

7: Sr,t,c ← Sr,t,c ∪ {(rnew, tnew, cnew)}
8: if ProbabilityAcceptance((t, c), (tnew, cnew), Tcurrent) > random() then
9: r, t, c ← rnew, tnew , cnew

10: decrease Tcurrent

neighbor(r, Tcurrent)

1: σ ← min(sqrt(Tcurrent), (upper− lower)/(3 ∗ ratelearn))
2: updates ← random.Normal(0, σ, size(r))
3: rnew ← r + updates ∗ ratelearn
4: return rnew

Algorithm 4 NeighborDirectedSA(r, Tcurrent)

1: if Probabilitydirected < random() then
2: for i = 1 to |R| do
3: if ri is over- or underutilized then
4: if ri is overutilized then
5: σ ← 1− ri
6: rnewi ← ri + random.Normal(0, σ, 1)
7: else if ri is underutilized then
8: σ ← ri
9: rnewi ← ri + random.Normal(0, σ, 1)

10: else
11: rnewi ← ri

12: if no update has been done then
13: rnew ← neighbor(r, Tcurrent)

14: else
15: rnew ← neighbor(r, Tcurrent)

16: return rnew

Directed Simulated Annealing is a variant of the previous algorithm. As
shown in Algorithm 4, the difference lies in the implementation of the neighbor()
function: instead of choosing configurations randomly around the current best
one, Directed Simulated Annealing uses resource utilization information to drive
the search towards better configurations. If a resource is under-utilized (resp.
over-utilized), Directed SA increases (resp. decreases) this resource value by a
random amount. Otherwise, if the monitoring data cannot offer any direction to
drive the search, Directed SA updates the resource value in any direction. This
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strategy can therefore be seen as a combination of the Utilization-Driven and
the Standard Simulated Annealing strategies.

6 Evaluation

This section evaluates the search strategies presented in the previous section. We
focus on three evaluation criteria: (i) the convergence speed of different search
strategies towards identifying the full set of Pareto-optimal configurations; (ii)
the quality of configurations we can derive from these results when facing various
SLO requirements; and (iii) the costs and delays imposed by offline vs. online
profiling.

We base our evaluations on two real HPC applications:

– Reverse Time Migration (RTM) is a computationally-intensive algorithm
used in the domain of computational seismography for creating 3D models of
underground geological structures [18]. It is typically used by oil exploration
companies to repeatedly analyze the geology of fixed-sized areas. We use a
multithreaded, single-node implementation of this application.

– Delta Merge (DM) is a re-implementation of an important maintenance pro-
cess in the SAP HANA in-memory database [19]. This operation is used to
merge a table snapshot with subsequent update operations (which are kept
separately) in order to generate a new snapshot. For consistency reasons the
database table must remain locked during the entire operation. It is there-
fore important to minimize the execution time of Delta-Merge as much as
possible.

Both application manifests define resource configurations between 1 and 16
CPU cores and 11 discrete values between 2 and 124GB of memory. We simplify
the RTM case by imposing a CPU frequency of 2.2GHz for the physical machine
hosting the VMs, while for DM we authorize 4 possible values. This creates a
relatively small search space with 172 configurations for RTM and a significantly
larger one for DM. Figure 3 shows the result of this exhaustive evaluation for
RTM.

We run experiments in the Grid’5000 testbed [20]. For RTM, we use machines
equipped with two 10-core CPUs running at 2.2GHz, 128GB of RAM and 10Gb
Ethernet connectivity. Additional machines with different CPU frequency, num-
ber of cores and amount of memory are used for executing the DM application.

All machines run a 64-bit Debian Squeeze 6.0 operating system with the
Linux-2.6.32-5-amd64 kernel. We use QEMU/KVM version 0.12.5 as the hyper-
visor. We deploy the OpenNebula cloud infrastructure in these machines so our
application manager can request dynamic VM configurations via the OCCI in-
terface. We repeated all experiments three times, and kept the average values
for execution time.

As our applications typically run within tens of minutes, we define execution
costs for resources on a per-minute basis according to a simple cost model derived
from a linear regression over the price of cloud resources at Amazon EC2:

CostV M = 0.0396 ∗NCores + 0.0186 ∗NMemory(GB) + 0.0417
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(a) RTM after 1 execution (b) RTM after 10 executions(c) RTM after 20 executions

(d) DM after 1 execution (e) DM after 10 executions (f) DM after 20 executions

Fig. 4. Pareto frontiers for RTM (a,b,c) and DM (d,e,f)

When using cores of different frequency, the cost is scaled accordingly. Note that
our system does not rely on this simplistic cost model. It is general enough to
accept any other function capable of giving a cost for any VM configuration.

6.1 Convergence Speed

To understand which search strategy identifies efficient configurations faster,
we compute the Pareto frontiers generated by each strategy after 10 and 20
executions. The results are presented in Figure 4.

In the case of Uniform Search, we use a step equal to the unit for each dimen-
sion of the search space. It therefore actually completes an exhaustive search
of the configuration space. We can observe that this strategy converges very
slowly. It eventually finds the full Pareto frontier, but only after it completes its
exhaustive space exploration.

The Utilization-Driven strategy starts from a randomly generated configura-
tion in the search space. This randomly-chosen starting point creates a different
search path for each run of this strategy. In the worst case, this strategy starts
with a configuration which neither over- nor underutilizes its resources, so the
search stops after a single run. In the best case, the algorithm starts from a
configuration already very close to the Pareto frontier, in which case it actu-
ally identifies a number of good configurations. We show here an average case
(neither the best nor the worst we have observed): it quickly identifies a few
interesting configurations but then stops prematurely so it does not identify the
entire frontier.
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Table 1. Performance after 10 executions of RTM under cost (C) constraints. The
values correspond to the average and standard deviation of 100 runs of the search
techniques.

������Strategy

SLO Cost < 0.15e Cost < 0.25e Cost < 0.35e

Time Failed Time Failed Time Failed

Uniform Search - 100% 60.21min ± 0.00 0% 58.91min ± 0.00 0%

Utilization-driven 16.82min ± 4.50 83% 18.56min ± 7.44 1% 18.62min ± 7.77 0%

Standard SA 13.01min ± 2.17 15% 13.12min ± 5.74 2% 11.46min ± 3.78 1%

Directed SA 12.67min ± 1.58 0% 12.00min ± 0.24 0% 11.34min ± 1.21 0%

Exhaustive search 12.07min - 11.84min - 9.12min -

Finally, Standard SA and Directed SA also start from randomly generated
configurations. We can however observe that they converge faster than the oth-
ers towards the actual Pareto frontier. For both applications, after just 10 itera-
tions they already identified many interesting configurations. We can note that
Directed SA converges faster than Standard SA.

6.2 SLO Satisfaction Ratio

Another important aspect of the search result is the range of SLO requirements
it can fulfill, and the quality of the configurations that will be chosen by the
platform under these SLOs. We now compare the quality of solutions proposed
by the different search strategies after having had the opportunity to issue just
10 profiling executions.

Table 1 presents the execution times that would be observed with the RTM
application if the SLO imposed various values of maximum cost. Several search
techniques rely on random behavior so we compute the average and standard
deviations of 100 runs of each profiling technique. We also show the number
of runs where the strategy failed to propose a configuration for a given SLO.
Conversely, Table 2 shows the costs that would be obtained with the RTM
application after defining a maximum execution time. For both tables we also
show the performance that would result from an exhaustive search of the entire
space. Tables 3 and 4 show similar results for the DM application.

It is clear from all the tables that Directed SA provides better configurations.
With its good approximation of the entire Pareto frontier, it can handle all
SLOs from the table. The other strategies have only a partial or sub-optimal
frontier and cannot find configurations for demanding SLOs. At the same time,
when several strategies can propose solutions that match the SLO constraint,
the solutions found by Directed Simulated Annealing are almost always better,
with a lower standard deviation.

6.3 Profiling Costs

Another important aspect is the time and cost incurred by the profiling process
which can be minimized based on user’s choice on profiling approach:offline or
online.

Table 5 presents the cost and duration overhead of offline profiling for the
RTM application using 20 experiments. The utilization-driven strategy appears
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Table 2. Performance after 10 executions of RTM under time (T) constraints. The
values correspond to the average and standard deviation of 100 runs of the search
techniques.
��������Strategy

SLO Time < 10.00min Time < 20.00min Time< 30.00min

Cost Failed Cost Failed Cost Failed

Uniform Search - 100% - 100% - 100%

Utilization-driven 0.28e ± 0.00 98% 0.16e ± 0.01 33% 0.17e ± 0.05 6%

Standard SA 0.35e ± 0.08 36% 0.16e ± 0.05 0% 0.15e ± 0.05 0%

Directed SA 0.40e ± 0.08 30% 0.14e ± 0.00 0% 0.14e ± 0.00 0%

Exhaustive search 0.28e - 0.13 e - 0.13 e -

Table 3. Performance after 10 executions of DM under cost (C) constraints. The values
correspond to the average and standard deviation of 100 runs of the search techniques.

������Strategy

SLO Cost < 0.02e Cost < 0.04e Cost < 0.06e

Time Failed Time Failed Time Failed

Uniform Search 2.23min ± 0.00 0% 2.10min ± 0.00 0% 2.10min ± 0.00 0%

Utilization-driven 2.11min ± 0.25 74% 2.14min ± 0.64 22% 2.20min ± 0.91 12%

Standard SA 3.47min ± 1.42 26% 2.14min ± 0.92 5% 1.97min ± 0.63 3%

Directed SA 2.62min ± 1.10 7% 1.66min ± 0.18 0% 1.60min ± 0.16 0%

Exhaustive search 1.81min - 1.46min - 1.46min -

Table 4. Performance after 10 executions of DM under time (T) constraints. The
values correspond to the average and standard deviation of 100 runs of the search
techniques.

������Strategy

SLO Time < 2.00min Time < 3.00min Time< 4.00min

Cost Failed Cost Failed Cost Failed

Uniform Search - 100% 0.02e ± 0.00 0% 0.02e ± 0.00 0%

Utilization-driven 0.03e ± 0.02 49% 0.03e ± 0.02 10% 0.03e ± 0.02 4%

Standard SA 0.04e ± 0.02 28% 0.02e ± 0.01 6% 0.02e ± 0.01 1%

Directed SA 0.02e ± 0.01 1% 0.02e ± 0.00 0% 0.02e ± 0.00 0%

Exhaustive search 0.01e - 0.01 e - 0.01 e -

to be cheap and fast, but this is only due to the fact that it stops after a small
number of iterations.

Uniform Search starts its exploration from the cheapest available resource
types which incur long execution times, thus, the execution becomes expensive.

Standard SA is slightly cheaper and faster than Directed SA mostly due to a
an initial temperature chosen too low which means that the algorithm converges
quickly before issuing 20 executions (we use the SciPy [21] implementation of
SA).

Directed SA does not have this limitation as it does not rely all the time on
the temperature to choose a next configuration. This strategy therefore explores
more configurations, thus having a higher total cost and execution time than
Standard SA. On the other hand, it identifies more optimal configurations.

Figure 5 shows the execution times and costs incurred by the user using the
Directed Simulated Annealing strategy in conjunction with online profiling. In
this case, no artificial execution is generated. On the other hand, as we can see
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Table 5. Total cost and duration overhead for an offline profiling of RTM limited to
20 executions. The values represent the average of 100 profiling processes with each
search technique.

Strategy Total cost Duration

Uniform Search 19.92 e 1727.93 min

Utilization-driven 2.63 e 234.51 min

Standard SA 7.09 e 426.41 min

Directed SA 9.38 e 635.39 min

Fig. 5. Cost and Execution Time fluctuation in an online profiling of RTM limited to
20 executions

in the figure, many executions violate an arbitrary SLO of 0.30e. However, it
is interesting to notice that the overall group of execution remains within its
aggregated budget (with a negative cost overhead of -0.21e). Similarly, when
applying an arbitrary SLO of 30 minutes of execution time, numerous individual
executions violate the SLO but overall the execution time overhead is again
negative (-20.82 minutes).

We conclude that the search based on Directed Simulated Annealing shows the
fastest convergence to optimal configurations and provides a better satisfaction
for the SLOs. It generates good configurations to be used when creating an
application profile in a smaller number of executions.

For users willing to tolerate SLO violations on individual executions, the on-
line profiling strategy provides obvious benefits: it remains within the aggregate
time or budget of the overall profiling phase, and therefore offers fast and cost-
effective generation of a full performance model. On the other hand users un-
willing or unable to tolerate individual SLO violations can revert to the offline
strategy, at the expense of artificial executions which consume both time and
money.

7 Conclusion

Assigning the appropriate computational resources for efficient execution of ar-
bitrary cloud applications is a difficult problem. We presented an automatic
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profiling methodology that allows a application-agnostic platform to select re-
sources according to an SLO.

Our work so far relies on the assumption that execution time and cost are
independent from the input. The next step in our agenda consists in modeling
applications with input-dependent performance.
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Abstract. Designing and implementing distributed systems is a hard
endeavor, both at an abstract level when designing the system, and at
a concrete level when implementing, debugging and evaluating it. This
stems not only from the inherent complexity of writing and reasoning
about distributed software, but also from the lack of tools for testing
and evaluating it under realistic conditions. Moreover, the gap between
the protocols’ specifications found on research papers and their imple-
mentations on real code is huge, leading to inconsistencies that often
result in the implementation no longer following the specification. As an
example, the specification of the popular Chord DHT comprises a few
dozens of lines, while its Java implementation, OpenChord, is close to
twenty thousand lines, excluding libraries. This makes it hard and error
prone to change the implementation to reflect changes in the specifi-
cation, regardless of programmers’ skill. Besides, critical behavior due
to the unpredictable interleaving of operations and network uncertainty,
can only be observed on a realistic setting, limiting the usefulness of
simulation tools. We believe that being able to write an algorithm im-
plementation very close to its specification, and evaluating it in a real
environment is a big step in the direction of building better distributed
systems. Our approach leverages the MINHA platform to offer a set of
built in primitives that allows one to program very close to pseudo-code.
This high level implementation can interact with off-the-shelf existing
middleware and can be gradually replaced by a production-ready Java
implementation. In this paper, we present the system design and show-
case it using a well-known algorithm from the literature.

Keywords: Testing and evaluation · Distributed systems · Simulation
and emulation

1 Introduction

Real distributed systems are often built around several collaborating middle-
ware components such as a membership or coordination service. The correctness
and performance of these systems depends not only on the particular algorithm
used to solve the problem, but also on the interactions among the supporting
middleware components. Despite its importance and criticality, experimentally
assessing such distributed systems in a large scale setting is a daunting task.
Unfortunately, interesting behavior - and bugs - often arise exclusively in large
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scale settings where intra-component concurrency, the interleaving among com-
ponents’ operations and network uncertainty, expose the system to previously
overlooked issues. This is aggravated by the fact that the very conditions that
cause the problems to appear in the first place are often hard to determine,
and harder to reproduce. Simulators such as ns-2 [12] or PeerSim [11] partially
address this problem, but their usefulness is limited to validating the design
and specification, not production code. This requires maintaining the simulation
and real implementations in tandem, which due to the huge gap in complexity
between them, becomes error-prone and time consuming as we have witnessed
first-hand several times [10]. Test beds such as PlanetLab [3] or a cloud infras-
tructure allow to perform very large scale deployments, but system observability
and reproducibility of testing conditions on normal and faulty conditions poses
several challenges. As a matter of fact, not only a coherently global observation
is physically impossible, but also the system’s behavior remains largely unpre-
dictable and unreproducible. Other tools allow to run real code but are limited
to a particular framework and language [8], or are limited in scope [2,14,5], thus
precluding the integration with required off-the-shelf middleware components
and providing only rough estimates of system behavior and performance.

In this paper, we take a different approach to the problem. Instead of building
yet another simulator, we rely on the MINHA 1 platform [4] and extend it
with capabilities to write distributed algorithms at a high abstraction level.
Briefly, MINHA virtualizes multiple Java Virtual Machines (JVM) instances
in a single JVM while simulating key environment components, reproducing
the concurrency, distribution, and performance characteristics of a much larger
distributed system. By virtualizing time, it is possible to get a global observation
of all operation and system variables, while simulation models make it possible to
reproduce specific testing conditions. This allows to run and evaluate unmodified
Java code in real, yet reproducible conditions.

In this work we extend MINHA to provide a simplified API that features
common distributed systems functionality allowing to write algorithms very con-
cisely. Despite this, such code still runs as real code and can interact with off-
the-shelf middleware components. This allows one to not only develop and test
algorithms faster but also to incrementally replace the concise implementations,
close to pseudo-code, with fully fledged Java implementations for critical parts of
the system. Since MINHA accurately reflects the cost of executing real code, suc-
cedaneum components can be used with the guarantee that its behavior can be
analyzed, controlled and evaluated under precise reproducible conditions, thus
minimizing measurements fluctuations. Arguably, working closer to the specifi-
cation allows better reasoning about the problem at hand and therefore easier
detection and correction of problems. This is achieved through the JSR-223 Java
Scripting API [7] which allows to run scripting languages inside the JVM. We
consider the Python programming language in particular, but our approach lends
itself to be used in any language supported by JSR-223.

1 www.minha.pt

www.minha.pt
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The rest of this paper is organized as follows. We begin by providing back-
ground on important characteristics of MINHA and JSR-223 in Section 2. Then
we describe our system in Section 3 and present a concrete use case by providing
the implementation of the Chord DHT in Section 4. Related work is debated in
Section 5 and, finally, Section 6 concludes the paper and discusses future work.

2 Background

In this section we provide some background and context for our framework. We
describe two frameworks on which our own work relies, MINHA and JSR-223.

The MINHA [4] framework is capable of virtualizing multiple JVM instances
in a single JVM. It is able to do so simulating a real distributed environment
by virtualizing the network, CPU scheduling and by virtualizing most of the
standard Java APIs. As a consequence, it is possible to run multiple instances
of any Java application in a single machine. Each instance believes it is running
in its own machine and runs without the need to adapt any of its code. By
running multiple instances of an application in a single JVM, MINHA reduces
significantly the resources typically required for evaluating it in a large scale
scenario. This makes large scale evaluation practical.

One critical advantage of MINHA is the fact it virtualizes time. Once time is
virtualized, it is possible to perform a global system observation at any moment
of the simulation. Moreover, contrary to execution in a real environment, there
is no overhead introduced by observation and control or even by debugging, so
execution time can be considered for analysis. Global observation of system state
and each application instance variables greatly eases the process of detecting and
solving problems the application may exhibit.

Another important aspect of the MINHA platform is that environments and
software models can be replaced by simulation models, and incorporated in a
standard test harness to be run automatically as code evolves. By resorting to
simulated components and running the system with varying parameters, the im-
pact of extreme environments can be assessed and reproducing testing conditions
becomes automatic. Thanks to this holistic approach, when a component does
not yield the expected results, the developer can quickly identify and fix any
problem that may exist, and reevaluate the new component version for the same
exact conditions. The ability to easily replace software components or mock them
allows for iterative development and allows for component-targeted evaluation
and validation, which greatly eases the development of reliable software.

Additionally, MINHA not only allows to run real applications, but it also
virtualizes a significant part of a modern Java platform, thus providing unprece-
dented support for running existing code. In particular, the virtualization of
threading and concurrency control primitives provides additional detail when
simulating concurrent code, as is usually the case of middleware components.
Code is run unmodified and time is accounted using the CPU time-stamp counter
to closely obtain true performance characteristics.

MINHA’s API allows the invocation of arbitrary methods, several scheduling
options, asynchronous invocations, and callbacks. As presented in Listing 1.1,
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World world = new World ( ) ;
Entry<Main> [ ] e = world . c r e a t eEn t r i e s ( 1 0 ) ;
for ( int i =0; i<e . l ength ; i++)

e . queue ( ) . main ( ” t e s t . Main” , ” arg0 ” , ” arg1 ” ) ;
world . runAl l ( e ) ;
world . c l o s e ( ) ;

Listing 1.1. Asynchronous invocation of 10 identical MINHA entries

creating and invoking a number of identical application instances is quite straight
forward. Basically, each entry object will represent an application instance run-
ning in its own host to which it is passed the application to run as a parameter.
In this case the application is test.Main and ten instances of this application
are run. These and other utilities that allow to create and control entries for
user defined interfaces, make it very simple to simulate large scale applications
without having to modify its code.

The JSR-223 Java Scripting API [7] is a framework that allows developers
to run scripting language code in the JVM. Any JSR-223 compliant scripting
language can be used. This way, it becomes possible to write Java applications
that can be easily customizable and extendable in a scripting language of choice.
Possible languages include Python (via Jython), JavaScript (via Rhino) or Lua
(via LuaJ). This flexibility is also very useful for reusing code from existing pro-
tocols implemented in a scripting language. Scripting languages are convenient
because they are easy to learn and use, allow complex tasks to be performed
in relatively few steps, thus requiring less lines of code, and code testing can
be made on the fly with handy interpreters. Mainly, their conciseness allow one
to prototype ideas quickly, focusing on early proof of concept implementations
close to pseudo-code.

Importantly, access between the scripting language and regular Java classes
is bidirectional, meaning that the scripting language has access to regular Java
and vice-versa. Therefore, algorithms programmed in our simplified API can still
access other middleware components such as a group communication toolkit. As
shown in Listing 1.2, one can expose an object (File f) as a variable to the
script, that, as such, can access it and call methods on it. On the other hand, it
is also possible to define a script object (var o = new Object()), expose it to
the Java class, and invoke methods on it through the Invocable interface.

The flexibility in choosing any JSR-223 compliant scripting language, together
with its bidirectional exposure, are determining factors for the integration of
components written in different languages.

public class Bid i r e c t {
public static void main ( S t r ing [ ] args ) throws Exception {
ScriptEngineManager manager = new ScriptEngineManager ( ) ;
Scr iptEngine engine = manager . getEngineByName (” JavaScr ipt ” ) ;
// S c r i p t to Java
F i l e f = new F i l e ( ” t e s t . txt ” ) ;
engine . put ( ” f i l e ” , f ) ;
engine . eva l ( ” p r i n t ( f i l e . getAbsolutePath ( ) ) ” ) ;
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// Java to S c r i p t
S t r ing s = ”var o=new Object ( ) ; o . h i=funct ion (n ) { p r in t ( ’ Hi

’+n) ;} ” ;
engine . eva l ( s ) ;
Invocab le inv = ( Invocab le ) engine ;
Object o = engine . get ( ”o” ) ;
inv . invokeMethod ( o , ” h i ” , ” S c r i p t Method” ) ;

}
}

Listing 1.2. Example of Bidirectional access between scripts and Java

3 Framework Design

As described previously, the MINHA framework allows to run unchanged Java
applications in a simulated environment. It allows us to instantiate an arbitrary
large number of peers, each with its own IP address, as if they were running in
their own machines. To each peer it is possible to assign a Java application or
service to run. In the same simulation, different peers may run different appli-
cations and may interact with each other through the (simulated) network.

Naturally, it is the responsibility of the developer to implement all the com-
munication code for the application. Moreover, as it is real Java code, the devel-
oper must deal with all the implementation details of socket management, data
marshalling / unmarshalling and message dispatching. This can be a serious
drawback when the application is still in early design and prototyping phase. In
fact, having developers focusing on these tasks prevents them from dedicating
time to the core components of the protocol.

Our framework provides a way of concisely prototyping real code distributed
algorithms. These prototypes can be tested and validated in large-scale simula-
tions leveraging MINHA. Integrating the JSR-223 scripting framework, we allow
each MINHA peer to run any JSR-223 compliant scripting language code. Ad-
ditionally, by providing a high level API to the developer, our framework hides
lower level intricacies from the developer, such as all the boilerplate code relating
to thread and socket management, data marshalling / unmarshalling, and event
dispatching.

In Figure 1 we depict the framework architecture and the exposed high level
API. The API consists in three system primitives and four types of methods each
application must implement. The three primitives are send, call and periodic.
Two of the primitives abstract message dispatch - send - and remote procedure
call - call - without the developer needing to write any communication code.
The periodic primitive allows the user to register, at boot time, service methods
to be invoked periodically. In order to make a runnable application, besides
implementing these periodic methods themselves, the developer needs to provide
a boot method, a get state method and all those events remotely invoked with
send or call, locally triggered through receive. Method boot is invoked by the
platform before actually running the application and should be used to bootstrap
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Fig. 1. Framework architecture

the application data structures and any required initializing procedures. The
get state method should return a representative state of the peer for system
observation purposes. Finally, receive is invoked each time a message is delivered
to the application and triggers the target event having the necessary logic to
process such message. Besides the API, the framework is organized in three
main components built on top of MINHA: network controller, peer controller
and service controller.

Network Controller: In MINHA multiple virtual JVMs can be run in each JVM,
significantly reducing the resources required by typical alternatives. This com-
ponent is responsible for interfacing our framework with MINHA. The system
parameters are specified in a YAML configuration file. The number of peers to
run and the number of simulation rounds to perform are two of the required
configuration parameters. The network controller creates a MINHA host, which
runs in a virtualized JVM, for every peer to run. Alongside this step, each one of
this hosts is assigned a unique IP address by the MINHA platform. The compo-
nent is also responsible for loading both the script engine for each peer and all
the user-defined scripts, which implement the framework’s API. After instanti-
ating all peers and scheduling their start-up, it initiates the MINHA simulation.
Because this component interfaces with the MINHA platform it can perform
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operations outside the simulation environment. In particular, the network con-
troller is able to globally observe the system. In the current implementation,
this is achieved by having all applications implement the get state method. The
get state method implementation is application dependent and should return a
representative state of the peer. The goal is to be able to globally observe the
state of the system by being able to inspect, for the same virtual time, the in-
ner state of every peer in the system. This observation can be done periodically
according to user configuration.

Peer Controller: This controller corresponds to a MINHA entry, or peer. This
component will run the user application, which can actually consist of a stack
of what we call services. These services can be smaller applications or protocols
that are used as building blocks for a larger application. For instance, in a typical
epidemic application [9], different protocols are used as they rely on each other. In
our platform, each service is implemented in a JSR-223 compliant language and
implementing the exposed API. Alternatively, a service can also be a third-party
off-the-shelf application whose specific interface is exposed to the other services
leveraging the bidirectional characteristic of the JSR-223 framework. With all
the services ready, the user then declares, in the configuration file, which services
to run on each peer and, for each service, specific configuration parameters it
may require. At runtime, the peer controller loads the list of services to run and
their respective configurations, such as protocol specific parameters, port, and
times for periodic behavior. It then instantiates each service by invoking the
correspondent boot method, exposing in the scripting side all the necessary Java
objects such as loggers and communication end-points. Only then it starts the
service controller for each service. Third-party services are also instantiated and
started through their specific interfaces. All services have access to the list of
other services available, which enables integration.

Service Controller: The service controller is responsible for the mechanisms nec-
essary to offer the API abstraction of the framework. It schedules the necessary
threads to allow periodic invocation of protocol methods, according to configura-
tion. It handles message passing by managing the necessary sockets for inter-peer
communication as well as data marshalling and unmarshalling mechanisms. Since
distributed protocols can have multiple periodic procedures executing concur-
rently, one active thread is started for each cyclic method registered through the
periodic primitive. Each thread will then periodically invoke, through JSR-223,
its respective procedure. A passive thread listens for messages continuously and
assigns a worker for processing each incoming message through receive, which
in turn inspects the message type and invokes the corresponding event, whose
implementation the user must provide.



Practical Evaluation of Large Scale Applications 131

4 Use Case

In this section we present a concise implementation of the well-known Chord
distributed hash table [13], as a use case that shows the benefits of using our
framework. Chord maps keys to nodes in a peer-to-peer structured infrastruc-
ture. When joining the network, a node receives a unique identifier that de-
termines its position in a ring. Every node is responsible for the keys that fall
between itself and its predecessor, keeping track of the latter and maintaining
a finger table whose entries point to nodes at an exponentially increasing dis-
tance, the first one corresponding to its successor. For completeness, we provide
the specification found in the Chord paper in Listing 1.3.

The corresponding implementation in our system using Python is presented
on Listing 1.4. The boot initializes the protocol. Specifically note the registration
of all the cyclic procedures using the periodic primitive. These are stabiliza-
tion tasks which have to be performed at regular intervals. Namely, function
stabilize verifies that a node is its own successor’s predecessor and notifies the
successor, function fix fingers iteratively refreshes fingers, and check pred

checks if a node’s predecessor has failed. At the end of initialization, function
join is invoked, allowing the node to join the Chord ring. Here, only its suc-
cessor is set, since its predecessor will be updated as part of the stabilization
mechanism.

1 n . find successor ( id )
2 i f ( id ∈ (n , su c c e s s o r ) )
3 return su c c e s s o r ;
4 else
5 n ’ = closest preceding node ( id ) ;
6 return n ’ . find successor ( id ) ;

7 n . closest preceding node ( id )
8 for i = m downto 1
9 i f ( f i n g e r [ i ] ∈ (n , id ) )

10 return f i n g e r [ i ] ;
11 return n ;

12 n . join (n ’ )
13 p redece s so r = ni l ;
14 su c c e s s o r = n ’ . find successor (n ) ;

15 n . s tabi l i ze ( )
16 x = su cc e s s o r . p redece s sor ;
17 i f ( x ∈ (n , su c c e s s o r ) )
18 su c c e s s o r = x ;
19 su c c e s s o r . notify (n) ;

20 n . notify (n ’ ) :
21 i f ( p redece s so r i s n i l or n ’ ∈ ( p redece s sor , n ) )
22 predece s so r = n ’
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23 n . f ix f ingers ( )
24 next = next + 1 ;
25 i f ( next > m)
26 next = 1 ;
27 f i n g e r [ next ] = find successor (n + 2next−1 ) ;

28 n . check predecessor ( )
29 i f ( p redece s so r has fa i l ed )
30 predece s so r = ni l ;

Listing 1.3. Chord specification as found in the original researh paper [13]

Primitives call and send respectively perform a non-blocking and blocking
(waits for a returned result) communication with another node in the overlay.
Their arguments include the destination IP, the name of the event to trigger,
and its necessary parameters. The receiver node then invokes receive (from
the super-class), which in turn applies the correspondent event. Such events in-
clude function find successor, that looks for the successor of a given identifier,
get pred for returning the predecessor, poke working as a ping, and notify for
telling a node that its predecessor might be incorrect. Notice that an extra pa-
rameter, src, is provided to each event, corresponding to the sender’s IP. This is
necessary because some protocols require pairwise interactions. Finally, function
closest preceding node returns the highest predecessor of a given identifier
found in the finger table, and between (from utilities) determines the inclusion
of a value in a given range.

All these procedures correspond to executable code that can be readily de-
ployed. As most of the complexity is hidden inside our infrastructure, we end up
with an extremely concise specification. In fact, excluding boot and the single
comment line, and without compromising code legibility, we have 35 LOC, an
increase of only 17% over the pseudo-code from the original paper (compare with
Listing 1.3), which does not contain initialization code, and a decrease of 15%
over SPLAY’s implementation [8] (also excluding initialization).

1 class ChordService ( P2Pservices . S e r v i c e ) :
2 def boot ( s e l f , ∗∗kwargs ) :
3 s e l f .m = kwargs [ ’m’ ]
4 s e l f . iD = random . rand int (1 , 2∗∗ s e l f .m)
5 s e l f . pred = None
6 s e l f . f i n g e r = [ None ] ∗ s e l f .m
7 s e l f . r e f r e s h = 0
8 s e l f . periodic ( s t a b i l i z e , f i x f i n g e r s , check pred )
9 s e l f . j o i n ( kwargs [ ’ s t a r t node ’ ] )

10 def j o i n ( s e l f , n ) :
11 s e l f . pred = None
12 s e l f . f i n g e r [ 0 ] = s e l f . ca l l (n . ip , f i n d s u c c e s s o r , s e l f . iD )

13 def c l o s e s t p r e c ed i ng node ( s e l f , iD ) :
14 for n in reversed ( s e l f . f i n g e r ) :
15 i f n != None and between (n . iD , s e l f . iD , iD ) :
16 return n
17 return s e l f
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18 def s t a b i l i z e ( s e l f ) :
19 x = s e l f . ca l l ( s e l f . f i n g e r [ 0 ] . ip , get pr ed )
20 i f x != None and between (x . iD , s e l f . iD , s e l f . f i n g e r [ 0 ] . iD ) :
21 s e l f . f i n g e r [ 0 ] = x
22 s e l f . send ( s e l f . f i n g e r [ 0 ] . ip , not i f y , s e l f )

23 def f i x f i n g e r s ( s e l f ) :
24 s e l f . r e f r e s h = ( s e l f . r e f r e s h % s e l f .m) + 1
25 s e l f . f i n g e r [ s e l f . r e f r e s h −1] = s e l f . f i n d s u c c e s s o r ( ( s e l f . iD

+ 2∗∗( s e l f . r e f r e s h −1) ) % 2∗∗ s e l f .m)

26 def check pred ( s e l f ) :
27 i f s e l f . pred != None :
28 try :
29 s e l f . ca l l ( s e l f . pred . ip , poke )
30 except Timeout :
31 s e l f . pred = None

32 # invoked by r e c e i v e
33 def f i n d s u c c e s s o r ( s e l f , s rc , iD ) :
34 i f between ( iD , s e l f . iD , s e l f . f i n g e r [ 0 ] . iD ) :
35 return s e l f . f i n g e r [ 0 ]
36 n = s e l f . c l o s e s t p r e c ed i ng node ( iD)
37 return s e l f . ca l l (n . ip , f i n d s u c c e s s o r , iD )

38 def get pr ed ( s e l f , s r c ) :
39 return s e l f . pred

40 def poke ( s e l f , s r c ) :
41 pass

42 def no t i f y ( s e l f , s rc , n) :
43 i f s e l f . pred==None or between (n . iD , s e l f . pred . iD , s e l f . iD ) :
44 s e l f . pred = n

Listing 1.4. Concise implementation of Chord.

As for the configuration, consider for instance the YAML file shown in List-
ing 1.5. A simulation of twenty rounds (simulation rounds) is defined for
a network of one thousand peers (number of peers), each round running for
sixty seconds (round time) of simulated time (time units are in milliseconds).
After each round a global observation is performed over the entire network,
therefore simulation rounds specifies the number of snapshots to be taken.
Each peer runs a single protocol, ChordService, whose parameters have to be
provided also. General protocol parameters include, for instance, the port where
the service will run (here 32143), as well as the periodic interval for cyclic
procedures (five seconds in this case). Configurations specific to the protocol
are also defined, in this case m is set to ten, resulting in a ring space of 1024
positions.
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−−−
# simu lat ion con f i g
number of peers : 1000
s imu lat ion rounds : 20
round time : 60000
s e r v i c e s : [ ChordService ]

# s e r v i c e c on f i g
ChordService :

port : 32143
p e r i o d i c i n t e r v a l : 5000
m: 10 # 2ˆm nodes and keys , with i d e n t i f i e r s o f l ength m

. . .

Listing 1.5. YAML file with simulation and service parameters.

5 Related Work

Considering the current approaches to large scale evaluation of distributed sys-
tems, PlanetLab [3] is a very valuable global research network for assessing
large-scale distributed systems, by allowing experimentation in live networks of
geographically dispersed hosts. In a more lightweight approach, network em-
ulators such as ModelNet [15] can reproduce some of the characteristics of a
networked environment, such as delays and bandwidth, allowing users to eval-
uate unmodified applications across various network models, each machine in
the cluster hosting several end-nodes from the emulated topology. However, in
these test beds, system observability and reproducibility of testing conditions
on normal and faulty environments poses several challenges. Despite that exist-
ing technologies allow to partially observe the state of the system, a coherently
global observation is physically impossible. The lack of knowledge about the sys-
tem seriously hinders the ability to find and address problems, which is further
aggravated by failures and non predictable interactions due to concurrency.

A common approach to this problem is to build a simulation model, that frees
testing from the availability of the target platform for deployment and provides
perfect observability. Simulators such as ns-2 [12] or PeerSim [11] have been
shown to scale to very large systems. However, they can only validate the design
and simulation model not the real implementation. This requires maintaining
the simulation and real implementations in tandem which is error-prone and
time consuming.

An interesting trade-off is achieved by JiST (Java in Simulation Time) [2], an
event-driven simulation kernel that allows code to be written as Java threaded
code, but avoids the overhead of a native thread by using continuations. JiST
does not however virtualize Java APIs and thus cannot be used to run most
existing Java code, neither does it accurately reflect the actual overhead of Java
code in simulation time. Neko [14] provides the ability to use simulation models
as actual code, provided its event-driven API is used instead of the standard
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Java classes. It also does not accurately reflect the actual cost of executing code,
as it uses a simple model that allows the relative cost of the communication
and computation to be adjusted. Protopeer [5] allows switching between event-
driven simulation and a real deployment without modifying the application. This
is achieved by abstracting time and the networking API which offers a limited
set of operations. The simulated network can be subject to message delay and
loss following models already available or others customized by the developer.
The major drawback of Protopeer is the requirement of using a specific API thus
precluding the use of off-the-shelf middleware components.

The approach of MINHA [4] is closer to CESIUM [1], which also accurately
reflects the cost of executing real code in simulated resource usage. MINHA does
however virtualize a significant part of a modern Java platform, thus providing
unprecedented support for running off-the-shelf code. In particular, the virtu-
alization of threading and concurrency control primitives provides additional
detail when simulating concurrent code, as is usually the case of middleware
components.

SPLAY [8] is an integrated system that facilitates the design, deployment
and testing of large-scale distributed applications. It also allows developers to
express algorithms in a concise, simple language that highly resembles pseudo-
code found in research papers. However, SPLAY limits the developer to the
Lua language [6] and does not offer facilities for an incremental integration with
off-the-shelf existing middleware.

6 Discussion and Future Work

In this paper, we present a unified solution for practical testing and validation
of large-scale applications. We achieve this by extending the MINHA simulation
platform with a framework for flexibly and concisely prototyping distributed al-
gorithms. The framework allows to effortlessly integrate prototypes with existing
middleware components and test them in the large.

We believe this framework can effectively ease the development of large scale
distributed systems. Not only ideas can be quickly prototyped and tested but,
when developing a complex system, each component can be mocked and pro-
gressively improved while the entire system keeps working as a whole. This
progressive and iterative development process definitely contributes for higher
quality applications.

We plan to assess the platform by implementing a broad number of protocols.
With this effort we intend not only to show the usefulness of the framework
but also to build a library of useful services that can be used in subsequent
applications. Implementing different kinds of protocols will enable us to ensure
a considerable expressiveness level for the framework, rather than taking the
risk of making it biased towards a particular type of distributed applications.
An automated and simplified mechanism for deploying these applications on real
environments is also in the scope of our short-term work, this in order to take
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full advantage of supporting real code. Last but not least, we plan to evaluate
the performance of the framework itself. Rather than evaluating the distributed
applications themselves, we will assess the simulation overhead and scalability,
taking our library of protocols as an increasingly rich benchmark.
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Abstract. Recommending appropriate content and users is a critical
feature of on-line social networks. Computing accurate recommendations
on very large datasets can however be particularly costly in terms of re-
sources, even on modern parallel and distributed infrastructures. As a
result, modern recommenders must generally trade-off quality and cost to
reach a practical solution. This trade-off has however so far been largely
left unexplored by the research community, making it difficult for practi-
tioners to reach informed design decisions. In this paper, we investigate
to which extent the additional computing costs of advanced recommen-
dation techniques based on supervised classifiers can be balanced by
the gains they bring in terms of quality. In particular, we compare these
recommenders against their unsupervised counterparts, which offer light-
weight and highly scalable alternatives. We propose a thorough evalu-
ation comparing 11 classifiers against 7 lightweight recommenders on a
real Twitter dataset. Additionally, we explore data grouping as a method
to reduce computational costs in a distributed setting while improving
recommendation quality. We demonstrate how classifiers trained using
data grouping can reduce their computing time by 6 while improving
recommendations up to 22% when compared with lightweight solutions.

1 Introduction

As web and on-line services continuously grow to encompass more facets of our
lives, personalization and recommendation are emerging as key technologies to
help users exploit the deluge of data they are submitted to. This is particularly
true in social-networking applications (Facebook, Google+, Linkedin, Twitter),
which receive, store, and, process a continuously growing mass of information
produced for tens to hundreds of millions of users daily.

Implementing a recommendation mechanism that works for such a large user
base over terabytes of data is a highly challenging task: an ideal solution should
be accurate, lightweight, and easily scale to the distributed and cloud envi-
ronments in which modern recommenders are being deployed [1]. Traditional
approaches to user recommendation in social networks have so far heavily relied
on topological metrics to identify new users or items that might be of interest to
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a user. These approaches, pioneered by Liben and Nowell [16], can be unsuper-
vised, in which a topological metric (e.g. number of common neighbors, length of
shortest path) is used directly to predict links in the underlying social graph and
thus derive recommendations. These approaches are typically lightweight, and
scale well, but can provide sub-optimal recommendations, and tend to depend
on the suitability of the chosen metrics for a particular dataset.

In recent years, a second strand has therefore emerged that exploit clas-
sifiers developed for machine learning to improve on these earlier approaches
[18,17,24,19]. These classifiers often use as inputs the same topological metrics
developed for unsupervised learning, and are trained on a part of the social-
graph to construct an appropriate prediction model. Due to this training phase,
these methods can better adapt to the specifics of individual datasets. They are
also able to combine several metrics into one predictor [14], and thus offer a nat-
ural path to merge different types of information into a recommender, including
topological data, semantic information based on the content consumed and pro-
duced by users [18,24], or geographic information in geolocated social networks
(Foursquare, Gowalla) [19].

Unfortunately, training such supervised models can require very large training
sets (up to twice as large as the prediction set [17]), and be particularly costly
in terms of computation time, even on today’s highly distributed, highly parallel
infrastructures found in datacenters and cloud providers. Computation costs
are in turn a fundamental decision factor [13] used to select practical on-line
recommenders, and has led companies as prominent as Netflix [1] to discard
improved, but particularly costly solutions that were difficult to deploy in their
target environment (in Netflix’s case, Amazon’s public cloud).

Almost no information exists nowadays about this fundamental trade-off, bal-
ancing training’s computation cost on modern infrastructures and the quality of
the returned recommendation. This lack of analysis is highly problematic, as it
leads to researchers to focus almost exclusively on quality metrics that ignore a
decision factor that is key to practitioners. In this paper, we analyze this very
trade-off, and present an extensive study that contrast the benefits brought by
supervised classifiers against their computational costs on parallel architectures
under a wide range of operational assumptions. First, we describe a method that
combines topology-based and content-based information to improve the quality
of recommendations. Second, we explore the utilization of data grouping meth-
ods to reduce the computation time required to train classifiers while improving
recommendations. We carry out a thoroughly evaluation using a real dataset
extracted from Twitter that demonstrates the benefits our approach can bring
to scalable user-recommenders.

This work is structured at follows. In Section 2 we state the problems of
user recommendation. Section 3 briefly introduces the related work. Section 4
describes our approach. Section 5 describes the evaluation of this approach and
finally we conclude in Section 6.
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2 Problem Statement

The tremendous growth of users data in modern on-line services has made recom-
mendation a key enabling technology in the last few years [4]. This is particularly
true in on-line social networks such as Facebook, Twitter, or Weibo, which al-
low users to maintain an on-line web of social connections, where they produce
and consume content. These networks serve up to hundreds of millions of users
(for instance Facebook reported 1.15 billion monthly active users in June 2013
[8]), and must select recommendation techniques able to scale to their user-
base, while being amenable to the highly distributed infrastructures in which
these services are typically deployed. The ability to scale and distribute recom-
mendation algorithms has been shown in the past to play a key role in their
acceptability: Netflix for instance revealed in 2012 that it had not adopted the
winning algorithms of its own one million dollar Netflix prize, in part because
of the engineering challenges raised to port the algorithm to their distributed
infrastructure (hosted by Amazon) [1].

In this work, we focus on the problem of recommending users to other users.
This problem can be compared to the link prediction problem [16] where we try
to predict when the user u will create a link with another user v. In order to do
this, we have to compute a recommendation score (score(u, v)) or score function
indicating the interest of u to create a link with v. How to compute this score,
depends on the taken approach. One common approach is to use unsupervised
models consisting of a generic solution that is oblivious to the distinguishing
features of the dataset. A second approach uses supervised models, consisting
of classifiers trained with an excerpt of data extracted from the target dataset.
Generally, this score is given by a pre-computed model that has been previously
trained using the information available in the system. The general approach is
to provide the system with a representative number of observations in order to
compute an accurate model. Once a score function is chosen, we can compute a
matrix of scores among the users in the system and chose the largest scored users
as recommendations. Computing the score among all the users is not practical,
therefore only a small subset is scored. Normally only a subset of close neighbors
are score for each user during the recommendation. Apart from the time cost of
computing the score of the neighbors, we have to consider the cost of training
the supervised models. This aspect is generally ignored, although it is a major
constraint in the design of distributed user-recommenders.

3 Related Work

The problem of link prediction has been addressed in two separated strands. A
first approach follows the seminal work of Liben-Nowell and Kleinberg [16] using
metrics based on the network topology [23,2]. As observed by Yien et al. [25]
these metrics only reflect changes in the network topology being oblivious to the
creation of links regarding other aspects contained into the users metadata. In
this sense, Schifanella et. al [21] find tags to be a good link predictor. However,
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in [7] authors find that tags are not very effective for link-prediction in their
explored datasets.

A second approach employs methods to combine different features in order
to exploit all the available information in the systems. Rowe et al. [18] exploit
Twitter semantics using logistic regression. Authors claim the need for topical
affinity between users to create links. Although their work has some resemblance
with the one we present, their work differs from our approach in the utiliza-
tion of topics instead of natural language and the analysis of just one classifier.
Scellato et al. [19] use supervised learning to predict links in a location-based
social network. The authors train a set of classifiers with different location and
social-based metrics finding that the combination of these metrics results into
an improvement of recommendations. They find that a combination of loca-
tion and social-based metrics does not significantly improve recommendations
compared with only location-based recommenders. Wang et al. [24] present a
framework for link-prediction based on an ensemble of classifiers trained with
graph features and similarity metrics. They claim a 30% improvement of rec-
ommendations when compared with other approaches. However, they ignore the
elapsed time in the training process using an exhaustive amount of information
during training.

Although the aforementioned works emphasize the combination of different
data sources in order to improve recommendations, none of the mentioned works
present any conclusion about computational costs. In practice, many of these
systems are not scalable and only practical for centralized designs [13]. However,
the utilization of methods exploiting different features in user-recommenders
has not been analyzed from a computational perspective that may facilitate the
design of distributed solutions.

4 Proposed Approach

User-recommendation is essentially a classification problem where we determine
whether a candidate is relevant for a user or not. A score(u, v) function deter-
mines the probability of u to establish a link with the candidate v after comparing
both users. In socially oriented systems for any user u we find his outgoing edges
(social links) Γ (v) and part of the content u has consumed or generated. The
content can have different formats such as tagged content (e.g. YouTube videos)
or natural language text (e.g. posts, tweets). Both of them can be managed in
bags of words [18] consisting of a vector containing all the words (or tags) em-
ployed by the user. Each user has an associated corpus Cu containing all the
employed words, where Pu(i) is the probability of finding the word i into the
corpus.

Both Γ (v) and Cv can be employed to compute similarity metrics that can
be used as score functions (score(u, v)). These metrics have been widely used
in distributed systems where the user has a partial vision of the network [22,5]
and also in graph-based solutions [16,3]. The main reason for their utilization is
that they are computationally light and summarize relevant features users may
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Table 1. score(u, v) functions based on content and graph information

Content-based score functions

Jensen-Shannon js 1
2

∑
i Pu(i) log

Pu(i)
Pv(i)

+ 1
2

∑
i Pv(i) log

Pv(i)
Pu(i)

with i ∈ Cu ∩ Cv

Jaccard jacc |Cu ∩ Cv|/|Cu ∪ Cv|
Cosine cos 1−

∑
i wu(i)wv(i)√∑

i wu(i)2
√∑

i wv(i)2
, i ∈ Cu ∩ Cv

Adamic-Adar aa
∑

i∈Cu∩Cv
1/ logPu(i)

Graph-based score functions

Jaccard jaccf |Γ (u) ∩ Γ (v)|/|Γ (u) ∪ Γ (v)|
Adamic-Adar aaf

∑
i∈Γ (u)∩Γ (v) 1/ log |Γ (i)|

Preferential
pa |Γ (u)||Γ (v)|

attachment

have in common. Table 1 shows the score functions used in this work and their
notation.

The Jensen-Shannon divergence measures the distance between two corpuses
using the probability distribution of the words used by each user. The Jaccard
coefficient is a common metric that measures the probability of sharing items
between users. Cosine distance considers the elements and their occurrences as
the dimensions of two vectors. Adamic-Adar weights rare common features [16].
Finally, preferential attachment considers the probability of connecting two users
proportionally to their connectivity degree. For the Jaccard and Adamic-Adar
metrics we present a content-based and a social graph based version.

The aforementioned score functions can be directly used as unsupervised
score-based classifiers to compute the probability of u and v to become connected
or not. However, in some scenarios computing recommendations remains a chal-
lenge. For example, cold-start recommendations [20] will probably fail as there
is no available data. In other scenarios the score can be biased. For example, if u
and v have similar content and a low number of common links, probably v is not
relevant to u. They share similar topics but are distant neighbors. And similarly,
a low content score wit a great social similarity indicates close users although
they consume different contents. Combining both approaches (content-based and
social-based) at the same time can improve recommendations in scenarios where
only one approach may be insufficient.

4.1 Supervised Multi-score Recommenders

There is an extensive literature in supervised classification algorithms [15] that
take advantage of different statistic features. Supervised classifiers have to be
trained with a given set of observations (training dataset) each one containing
a set of features and the class belonging to. Depending on the classifier and the
training dataset, the classifier will come up with a different classification model.

In our approach, we propose to use a training dataset with entries containing
{s1, s2, ..., sn, c} where si is a score function (Table 1) and c indicates whether
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users u and v are connected (1 if connected, 0 otherwise). Ideally, for every user
u in the social graph, we can create a training dataset and then train the cor-
responding classifier. However, this is not a scalable solution as we would need
to compute as many classifiers as users in the system. Additionally, computing
a single model for the whole dataset requires to identify a sample representa-
tive enough which is a difficult task. In order to cope with this problem, we
split the graph into manageable groups and compute classifiers for these groups.
Intuitively, groups composed of users with similar features should have similar
classification models. This permits to train personalized recommendation mod-
els for samples of users. Additionally, by splitting the problem we can consider
the parallelization through distribution using paradigms such as Map-reduce.

Algorithm 1. Supervised score-based model training

1: for each group g do
2: T ← {} training set
3: U random sample of users belonging to g
4: //Fill the training dataset
5: for u ∈ U do
6: N ← neighborsSelection(u, d)
7: for n ∈ N do
8: Compute each similarity metric i
9: si ← scorei(u, n)
10: c ← connected(u, n)
11: Add [s1, s2...sn, c] to T
12: end for
13: end for
14: //Find the best classification model
15: Bi ← {}
16: for each classifier i do
17: Bc

i ← {}
18: for each configuration c do
19: Train Mc using configuration c and cross-fold validarion over T
20: Add AUCMc to Bc

i

21: end for
22: Mi ← model with largest value from Bc

i

23: Save Mi, discard the other models
24: end for
25: Mg ← model with largest AUC from Bi

26: end for

Algorithm 1 describes the steps carried out to train and find the most suitable
model for each group of users g. First, we define the training set T for each group
g. For each g, we select a sample of users U large enough to be representative
but small enough to be computationally feasible. The users are chosen using
the neighborsSelection(u, d) function as explained in Section 4.2. For each of
the users in U we compute the score functions and add them to the training
set T . Once we have all the training sets, we can compute the best classification
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model. Considering the most adequate classifier for a given social graph a priori is
a difficult task. Different classifiers show different performance depending on the
incoming training set. We propose to simultaneously train several classifiers using
cross-fold validation over T . For each classifier we train models Mc for a set of
pre-determined configurations (if the classifier accepts additional configuration),
compute the obtained AUC (Area Under the ROC Curve) for Mc. The AUC
measures the predictive power of the model between 0 and 1. Values larger than
0.5 indicate better performance than a random classifier. The model with the
largest AUC will finally be selected as the classifier for the group (Mg).

4.2 Training Set Users Selection

The training set T described in Algorithm 1 must contain a proportional ratio of
observations belonging to both classes (connected and non-connected) in order
to get an accurate classifier. We select a random sample of users U from group g.
Then for each user u in U we compute the features corresponding to a connected
and a non-connected user. Selecting a connected user we just have to select one v
belonging to Γ (u) and compute the different score(u, v) functions. However, the
remaining users in the graph could be considered as non-connected examples.
We propose a social distance approach to determine which users to consider as
non-connected.

We define the social distance d as the minimal number of links u has to tra-
verse in order to find user v. Previous works observe that most of the new links
in social networks are established for small values of d [25]. We use the social
distance to determine when a user shall be considered as an example of con-
nected or non-connected class in the training set. For d = 1 we consider the
users to be connected as they are currently neighbors. Then for d > 1 we con-
sider non-connected samples. According to this assumption, for large values of d
a classifier must find easier to distinguish between connected and non-connected
users during training. Figure 1 describes how the neighborsSelection(u, d) func-
tion works. In Figure 1a we have the original directed social graph. In Figure 1b
we use d = 2 selecting users 3, 7 and 8 (green) as connected examples with 5 and
6 as non-connected taking 4 as the origin. Similarly, in Figure 1c we use d = 3
being 9 the only non-connected candidate.

5 Evaluation

We evaluate our approach using a Twitter dataset extracted using the public
Twitter API 1. We have crawled Twitter’s social graph for users in the London
area extracting their tweets and list of followings (users they follow) before July
28th 2013. Our dataset accounts for 106,385 users with 11,111,386 following links
and a total of 21 million tweets. The median of the distribution is 94 followings
with 80% of the users having less than 265 followings.

1 http://dev.twitter.com/docs/api/1.1

http://dev.twitter.com/docs/api/1.1
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Fig. 1. Example of training set users selection using d = 2 and d = 3. Vertex 4 indicates
the starting user. Vertices 3, 7 and 8 indicate examples of connected users. With d = 2
vertices 5 and 6 are non-connected vertices. With d = 3 the non-connected vertex is 9.

We aim to understand how a combination of graph and user content infor-
mation can improve user recommendations and how we can reduce the compu-
tational overhead in order to facilitate the scalability of this process. We use
the score functions defined in Table 1 in order to compare two users in terms of
social and content similarities. We use the tweets to compute the content-based
score functions. Tweets use natural language that may reduce the amount of
information we can extract from them. For that reason, we first remove stop
words and punctuation symbols (except hashtags).

We use a set of representative classifiers available in the R Caret package [11].
This package offers a unified interface for a large number of classifiers, simplifying
the implementation. Table 2 enumerates the classifiers we have used for our
experiments. We choose these classifiers in order to have a representative set
with various classifiers that may get some benefit from our approach. For each
training we use cross-fold validation with 10 folds. Then we select a sample of
random users with a variable social distance d and compute the AUC to measure
the quality of recommendations. In order to compare the computational cost of
training we show the average elapsed time for 5 executions. All the experiments
are carried out in a non-fully dedicated 8 Intel Xeon cores machine with 32
GBytes of memory.

Table 2. Summary of employed classifiers used in the evaluation and their abbreviated
names

Method Abbreviated name

Bagging bagFDA
Gradient boosted models [9] gbm,blackboost

Decission tree C5.0Tree
Random forests [6] parRF

K-nearest neighbors knn
Multivariate adaptive regression splines [10] earth

Logistic regression glm,glmnet
General additive models gam
Support Vector Machine svmLinear
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5.1 Single-Score Recommenders

In this section, we show the quality of recommendations simply using score
functions as recommenders. For clarity, we analyze the recommendation power
depending on the nature of the score (graph-based or content-based), the num-
ber of user followings and the social distance d of the users in the evaluation set.
The results showed in Figure 2 indicate that increasing the social distance d im-
proves the performance of recommenders. However, graph-based recommenders
are more accurate than content-based. In particular, we observe that the AUC
increases for users with a larger number of followings. This could be due to the
cold-start effect that limits the amount of available information. However, in the
case of content-based recommenders we observe that the number of followings
do not substantially modify the recommendations.

5.2 Supervised Multi-score Recommenders

After analyzing the recommendations obtained using score functions, we explore
the recommendations obtained with multi-score recommenders. We use the same
evaluation set employed in the previous section with d ≤ 2. First we only combine
score functions from graph-based (Figure 3a) and content-based (Figure 3b)
score functions. Then we combine both in order to check how by combining data
sources we can improve recommendations (Figure 3c).

For graph-based multi-score recommenders (Figure 3a) we observe a signif-
icant improvement for the users with less than 100 followings. This improve-
ment is particularly relevant for users with less than 10 followings achieving a
22% improvement (0.71 AUC compared with graph-based single-score that only
achieved 0.58). However, we do not observe relevant improvements for content-
based multi-score recommenders (Figure 3b) compared with the single-score ver-
sion. Finally, the combination of all the scores (Figure 3c) significantly improves
the recommendations of some classifiers such as glm or svmLinear. In the other
cases there is an improvement of the recommendations, although it is not very
significant.

5.3 Train Set Grouping

In the previous section we show how using multi-score classifiers improves rec-
ommendations. However, in order to facilitate the deployment of a distributed
solution we have to consider the computation cost of training classifiers. The
elapsed time training a classifier depends on the amount of data and the clas-
sifier itself. Additionally, as described in Algorithm 1 our approach considers
the training of several models in order to find the most accurate model. This
operation may require a significant amount of time. In order to reduce this time
while keeping the quality of recommendations, we split users into groups.

In our experiments we split the dataset into five equally-sized groups de-
pending on the number of outgoing edges. The reason behind this partition is
to reduce the diversity of features found in each training set. Intuitively, users



Cheap and Cheerful: Trading Speed and Quality 147

Graph-based

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

aaf jaccf pa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(a) d ≤ 2

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

aaf jaccf pa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(b) d ≤ 3

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

aaf jaccf pa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(c) d ≤ 4

Content-based

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

JS Cos jacc aa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(d) d ≤ 2

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

JS Cos jacc aa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(e) d ≤ 3

0.
5

0.
6

0.
7

0.
8

0.
9

<10 10-20 20-50 50-100 >100

JS Cos jacc aa

Number of followings

A
U

C

0.
5

0.
6

0.
7

0.
8

0.
9

(f) d ≤ 4

Fig. 2. AUC according to the number of followings and the social distance for content-
based similarity metrics

with the same number of outgoing links may have similar profiles, and there-
fore it would be easier to find a model to classify them. We assume that the
information regarding each user (followings and content) is fully available when
computing the scores. In Figure 4 we plot the elapsed average time for training
and the AUC per classifier using a multi-score recommender combining graph
and content-based scores. We classify the same set of users employed in the
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Fig. 3. AUC for multi-score recommenders using graph-based scores, content-based
scores and both kind of scores

0 50 100 150 200 250 300

0.
60

0.
65

0.
70

Time (seconds)

A
U

C

knn
glm

glmnet
parRF

blackboost
gbm

earth
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indicate the results not using and using groups respectively.
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previous section with and without grouping (left and right highlighted areas
respectively).

We observe an increment of the AUC for all the classifiers with a significant
time reduction after grouping. In some cases like parRF the AUC slightly im-
proves while the training is 6 times faster. In other cases like the earth classifier,
the AUC increment is more significant than the saved time. This experiment
shows how partition permits to reduce the training time while not affecting the
quality of recommendations.

5.4 Discussion

There are many aspects to be evaluated in a recommendation system. We know
the evaluation presented in this paper is not complete. However, we think that
many of the results presented in this work are promising and open the door for
new ideas in the development of scalable recommendation systems that can com-
bine multiple sources of information. Our experiments demonstrate how training
classifiers using classic user comparison metrics can improve recommendations.
We observe that there is a significant improvement when dealing with users offer-
ing small amounts of data. Furthermore, we demonstrate how classifiers trained
with metrics based on different sources of information we can get 22% better
recommendations than the best value obtained simply using these metrics. The
combination of graph and content-based slightly improves recommendations.
However, this result may vary in other datasets.

Group partitioning demonstrates to be a good approach to reduce the av-
erage elapsed time in classifiers training. Additionally, we observe how recom-
mendation improves for all the evaluated classifiers after grouping. This result
is particularly promising in order to develop distributed recommender systems
using supervised classifiers. Grouping data with common features improves rec-
ommendations. This makes possible to reduce the amount of training data, and
therefore the elapsed training time. In this work, we only provide one group
partitioning strategy based on the number of outgoing links of the user. A large
number of partition techniques based on topology features can be explored [12].
However, our main goal is to demonstrate the importance of group partition-
ing in terms of recommendations and time. Exploring other grouping techniques
remains for future work. Finally, the reduction in the time needed to train the
models makes possible to compute a larger number of models. And facilitates
the parallelization of the recommendation process. Our experiments indicate
that the gbm (Gradient Boosted Modelling) classifier gets the best results in
almost every scenario. However, this result can differ depending on the dataset.

6 Conclusions

In this work we explore the design of scalable solutions for social recommenders.
First, we propose the utilization of supervised classification methods for user rec-
ommendation in social networks. We describe a method that combines topology-
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based and content-based similarity metrics to improve the quality of recommen-
dations. Second, we explore the utilization of data grouping methods to reduce
the computation time required to train classifiers and make easier the deploy-
ment of distributed solutions. We carry out a thoroughly evaluation using a real
dataset extracted from Twitter that demonstrates the benefits of our approach.
In particular, we find that our solution improves the quality of recommenda-
tions by 22% compared with unsupervised solutions. Additionally, we observe
that data grouping permits to speedup the training of classifiers by 6.

Our work shows promising results and opens several directions in the devel-
opment of scalable social recommenders. We plan to extend our study about the
effects of data grouping in the quality of recommendations and how it facilitates
the deployment of scalable solutions. Additionally, we will extend our evaluation
to other datasets.
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Abstract. Along with development of SOA systems, their requirements
in terms of fault-tolerance increase and become more stringent. To im-
prove reliability of SOA-based systems and applications, a ReServE
service, providing an external support of web services recovery, has been
designed. In this paper we propose to enhance the resilience of ReServE
by replication of log with recovery information, and address problems
related to deployment of this solution.
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1 Introduction

Service-oriented systems (SOA) are increasingly adopted by industry in various
areas of computing. Many web services, especially those found in critical or vital
domains (e.g. healthcare, finance, defense, etc.), have stringent requirements in
terms of availability and reliability. Since in most cases failures of such services
are unacceptable, their dependability has to be ensured [1]. However, building a
dependable SOA systems is a difficult task, due to their specific properties. SOA
systems are highly dependent on the remote web service components of various
characteristics, which are autonomous and loosely-coupled. Web services usu-
ally run on heterogeneous platforms, and are hosted by different organizations.
Such services may be unavailable for an unknown reason, and for an undeter-
mined amount of time. Moreover, their providers may refuse or be unwilling to
cooperate with other providers to overcome failures of their services. They also
may not be able to take part in fault-tolerance processing because of applied
fault-tolerance policies. Therefore, services should not be relied upon, when the
fault-tolerant mechanisms are to be provided.

As a consequence, we have proposed ReServE service, which aims in in-
creasing SOA fault-tolerance [2]. ReServE provides an external support of web
services rollback-recovery with the use of a well-known mechanism of message-
logging [5,9], and ensures that in the case of failure of one or more system
components (i.e. web services or their clients) a consistent state of distributed
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processing is recovered. The interactions exchanged between clients and services
are saved by ReServE in the form of message log, stored in the persistent stor-
age, which is assumed to survive all failures. Such an assumption is difficult to be
guaranteed in real-life [8]. Additionally, although a persistent storage supports
reliability, due to significant MTTR (mean time to recovery), its crash results in
log unavailability for a substantial period of time. This way, another point vul-
nerable to crash is introduced, which can reduce system availability. Therefore,
in this paper we propose to implement the persistent storage used in ReServE
service as a replicated log containing the recovery information. Along with the
replication of a message log, also the logic of the module of ReServE, called
Recovery Management Unit (RMU), which is responsible for the implementation
of a recovery process has to be replicated. Although a general idea of log and
RMU replication is straightforward [7], and relies on storing messages necessary
for recovery of system participants in replicas, its implementation raises several
problems, which have to be solved. Among them are: synchronization of logs
kept by different replicas, handling replicas failures, combining the replication of
recovery information with the recovery processing. In this paper we discuss how
the above problems may be resolved in the context of ReServE.

The paper is organized as follows. Sections 2 and 3 present system model and
general idea of ReServE, respectively. Section 4 discusses the possible approach
to replication of ReServE recovery log. Finally, Section 5 concludes the paper
and presents the future directions of our work.

2 System Model

Throughout this paper, a distributed SOA system is considered [6]. It consists
of service providers that keep resources, and deliver — in the form of provided
web services — a specified functionality to clients. Web services are autonomous
and loosely-coupled. They have a well-defined and standardized interface that
defines how to use them. Clients invoke services by sending requests, so service
invocation results in a computation, subsequent reply to the requesting client,
and possible resource state changes. Service execution may also encompass the
collaboration of other services (without compromising the autonomy of each
individual service). It is assumed that both clients and services are piece-wise
deterministic. Services can concurrently process only such requests that do not
require access to the same or interacting resources. Otherwise, the existence of a
mechanism serializing access to resources, which uniquely determines the order
of operations, is assumed. Communication in the considered system is stateless
— each request contains all the information necessary to understand the re-
quest, independently of any requests that may have preceded it. The considered
communication channels are reliable (the reliability is ensured by the retrans-
mission of messages), but they do not guarantee FIFO property. Additionally,
the crash-recovery model of failures is assumed, i.e., system components may fail
and recover after crashing a finite number of times [1]. Failures may happen at
arbitrary moments, and we require any such failure to be eventually detected, for
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example by a Failure Detection Service [3]. We assume that each service provider
may have its own reliability policy and may use different local mechanisms that
provide fault tolerance.

3 ReServE Architecture

In this Section, the design choices and concepts behind ReServE service are
presented. The detailed description of ReServE has already been presented in
[2,4], and is summarized here in order to make a paper self-contained. Due to the
fact that interactions between clients and services result in a computation and
possible resource state changes, they entail the client-service inter-dependencies.
Upon a failure of one of interacting processes, such dependencies may force other
processes that did not fail to rollback. Otherwise, states of processes could reflect
situations impossible in any correct failure-free execution. Due to SOA assump-
tion on autonomy of services, the failure of one process should not influence the
processing of the others. Since service providers do not provide information on
the internal implementation of services, it is not known which events introduce
inter-process dependencies and result in state changes. Therefore, in general, the
recovery of a failed service should be isolated to avoid the cascading rollbacks of
other processes. Above observation had an impact on the concept of ReServE
functionality. ReServE intercepts the communication between processes and
logs all performed interactions (requests of service invocations and the appropri-
ate replies) in a persistent storage of Recovery Management Unit (RMU). The
intercepted messages reflect the complete history of communication, which is
used to recover the consistent system state in the case of failure. However, since
in SOA participants of processing may have their private mechanisms providing
reliability, their state after the failure may be partially reconstructed with the
use of local mechanisms. Therefore, only those messages, the processing of which
was not reflected in services’ (clients’) recovered state, should be processed again.
The task of RMU is to find such messages, and reissue them to the service in the
same order as before the failure. After re-execution of recovered requests RMU
intercepts replies from the service, because they have already been sent to clients
and other services during the failure-free execution. RMU module ensures also
the idem potency of obtained requests. If it obtains the client’s request, to which
the response has already been saved in its persistent storage, then such a saved
response is sent to the client immediately, without the need of sending the re-
quest to the service once again. Thus, the same message (i.e., the message with
the same identification number) may be send by a client multiple times, with no
danger of multiple service invocations. Another two modules of ReServE ser-
vice are Service Intermediary Modules (SIM) and Client Intermediary Module
(CIM). CIM and SIM serve as proxies for clients and servers and hide the
details of rollback-recovery. For this purpose, both modules intercept messages
issued by clients and servers, so they allow to fully control the flow of messages in
the system. Additionally, SIM monitors the services’ status and react in the case
of its eventual failure by initiating and managing the service rollback-recovery.
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4 Replication of Recovery Information

In this Section we propose to replicate the RMU module of ReServE service,
instead of using the persistent storage. From the perspective of clients and ser-
vices, introducing RMU replication is transparent. Each service has a dedicated
replica of RMU module, in which it is registered, called a Leader. Analogically,
each client has a default RMU replica, called Interceptor. We assume that each
request issued by a client is first replicated, before it is sent to the service. Ana-
logically, the service reply is replicated, before it is sent back to the client.

The crucial issue arising from replication is consistency. Since the replication
in the context of this paper concerns log, i.e. a set of requests and replies, and
adding elements to a set is commutative, i.e. it does not pose a risk of conflicts,
thus consistency maintenance boils down to preserving replica completeness. The
completeness is important for message safety in the sense of the ability to survive
RMU replica crash. We assume that a message is safe if it can be obtained by
a given number N of replicas, despite the crash of some log servers. A number
N ranges from 1 to | RMU |. When N =| RMU |, all correct replicas hold the
message, and the highest level of message safety is achieved. At the same time
the system availability (response time), is decreased because before the message
is sent to its recipient, first all N replicas have to acknowledge the fact that they
obtained the message. In turn, in the worst case, only one complete replica is
required to survive the crash, and to hold the message. In such situation, the
level of system reliability is the smallest, but its availability is uttermost, as the
message obtained by the RMU replica is immediately passed to its recipient. In
the proposed solution it is a role of a Leader to check safety of messages.

The idea of replicating the request among RMU replicas is the following:
each time the Interceptor obtains the new request, it adds it to the log M (be-
ing a set of requests and replies exchanged between clients and services, and
stored by each RMU replica), and broadcasts it to other replicas. The fact of
delivering request to a replica is acknowledged by the communication channel,
and results in adding such a RMU replica to the set A (a set of RMU replicas
that acknowledged obtaining the request). The Leader, after obtaining request
from Interceptor, can immediately send a reply to the client and to Interceptor,
provided it possess the matching reply in its log M. Otherwise, Leader is re-
sponsible for forwarding the request to SIM of the requested service. Since in
the considered replication scheme the request is forwarded only after N requests
replicas exist, the knowledge on the number of replicas maintained in the system
is essential. For this purpose, each RMU replica, after obtaining a request and
storing it in its log, sends acknowledment to Leader that updates its set A. But,
since the receipt of request can be acknowledged by some RMU replicas either
to Interceptor or to Leader (for example in the case of communication channels
with a low bandwidth between the RMU replica and Leader), Interceptor in-
forms Leader , by sending its A to the Leader, which RMU replicas possess a
request. In turn, Leader expands its set A on the basis of information obtained
from Interceptor. Additionally, Leader broadcasts request to all RMU replicas
that did not confirm obtaining this message neither to Interceptor, nor to Leader.
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The purpose of the re-broadcast of request is to allow RMU replica that have
just recovered from the failure to take part in the replication. In case one RMU
replica acts as both the Interceptor, and the Leader, the procedure of updating
the set A is simplified. There may be RMU replicas which do not belong to
the set, although they possess the request message replica. However, this does
not affect the correctness of the proposed solution. After performing the request,
service provider returns the reply through its SIM to the Leader. When Leader
obtains reply for the first time, it stores it in the log M, and broadcast it to all
RMU replicas to replicate reply along with its corresponding request. Finally,
the Leader sends reply to the client. The architecture of replicated ReServE is
shown in Fig.1.
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Fig. 1: ReServE — replication of recovery log

Despite reliable communication channels, an Interceptor, Leader, and other
RMU replicas can fail, which effectively disturbs the communication between
clients and service providers. In order to mask transient communication failures,
the client reissues its request when no reply has been received within a given
time. Thus, the role of the RMU replica is twofold: keep requests for the purpose
of service recovery, and replies for the purpose of client recovery or for filtering
duplicated request. In the case of the Leader crash another RMU replica must
be elected to take the responsibility for further communication with the service.
The Interceptor suspects the Leader crash in two cases. First, when the acknowl-
edgment of obtaining a request broadcasted by the Interceptor is not delivered
to Leader, and when the acknowledgment of obtaining by the Leader a request
reissued by the client is not delivered. In both cases the Interceptor starts the
Leader election procedure.

5 Conclusions and Future Work

In ReServE service considered until now, we have assumed that each service
component can be the subject of failure, except of persistent storage of RMU ,
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where the message log is stored. Since this approach understates the robustness of
message log, in this paper we proposed the preliminary concept of the alternative
solution, based on the replication of RMU and its log.

Applying the replication mechanism will always introduce an overhead. But,
the preliminary performance tests show that in the case of the specic message
size, the overall costs of the proposed approach based on the replication are not
inferior to the cost associated with the costs of saving messages in the stable stor-
age. Thus, the proposed solution is competitive with the one based on persistent
storage, because at similar costs, it increases recovery log availability.

Our future work encompasses the introduction of detailed protocol of recovery
log replication, formal proof of its corectness, and detailed empirical evaluation.
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Abstract. Leader election protocols are a fundamental building block
for replicated distributed services. They ease the design of leader-based
coordination protocols that tolerate failures. In partially synchronous
systems, designing a leader election algorithm, that does not permit mul-
tiple leaders while the system is unstable, is a complex task. As a result
many production systems use third-party distributed coordination ser-
vices, such as ZooKeeper and Chubby, to provide a reliable leader election
service. However, adding a third-party service such as ZooKeeper to a
distributed system incurs additional operational costs and complexity.
ZooKeeper instances must be kept running on at least three machines
to ensure its high availability. In this paper, we present a novel leader
election protocol using NewSQL databases for partially synchronous sys-
tems, that ensures at most one leader at any given time. The leader
election protocol uses the database as distributed shared memory. Our
work enables distributed systems that already use NewSQL databases
to save the operational overhead of managing an additional third-party
service for leader election. Our main contribution is the design, imple-
mentation and validation of a practical leader election algorithm, based
on NewSQL databases, that has performance comparable to a leader
election implementation using a state-of-the-art distributed coordination
service, ZooKeeper.

1 Introduction

One of the main difficulties when designing a replicated distributed system is to
ensure that the nodes will reach agreement on the actions to take. Agreement
protocols are complex to design and inefficient in terms of throughput and la-
tency, for example, classical Paxos [1] in a failure-recovery model. As a result,
most distributed systems rely on a unique leader node to coordinate the tasks
running in the system. For this leader pattern to work correctly the nodes need
to be able to solve the general agreement problem [2] in order to agree on which
one of them is the leader. Solving this problem is the purpose of the leader
election protocol.

Leader election protocols are a fundamental building block that play a cen-
tral role in many scalable distributed systems such as stateful middleware [3],
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distributed filesystems [4], and distributed databases [5]. The typical role of a
leader is to propose global state updates and to disseminate them atomically
among the nodes. Having a unique leader is imperative to avoid multiple leaders
proposing conflicting updates that would compromise the integrity of the system.
Additionally, the failure of the leader should not affect the system availability.
Moreover, the detection of the leader failure and the election of a new leader
should be low latency events (at most, in the order of seconds).

Implementing an algorithm that provides both uniqueness of the leader and
low latency is very challenging. In order to avoid errors and to curtail develop-
ment time, developers often rely on third-party, standalone coordination services
such as Chubby [6] and ZooKeeper [7]. These services have the advantages of be-
ing widely used and well tested but they introduce additional operational costs
and complexity as they must be kept running on at least three machines if the
leader-election service itself is to be highly available.

Many existing distributed systems use highly available relational databases
or key-value stores to manage their persistent data. Why not build the leader
election service using the database as a shared memory? This would allow devel-
opers to exploit the leader pattern without paying the extra operational cost of
a dedicated coordination service. Implementing the leader election using shared
memory is not a new problem; Guerraoui [8] and Fernandez [9, 10] have shown
that a leader election service can be implemented using shared memory. How-
ever, in partially synchronous systems, these solutions do not guarantee that
there will be a unique leader while the system is unstable. They only guarantee
that nodes will eventually agree on a leader once the system has stabilized. As
a result, these solutions are not widely used in production systems.

In contrast, we propose an algorithm based on locking and transaction prim-
itives provided by the database to guarantee that there is at most one leader in
the system at any given time. Traditional highly available relational database
management systems are not suitable for building our leader election service,
since it can take long time for transactions to complete if a database node failure
occurs, which would slow down the leader election process. However, NewSQL
systems have emerged as a new class of distributed, in-memory databases that
are optimized for on-line transaction processing (OLTP) and have low timeouts
for transactions, thus, making them a viable platform for building our leader
election service.

In this paper, we present a practical leader election service based on shared
memory in a NewSQL database. Our implementation uses the Network Database
(NDB) storage engine for MySQL Cluster [5], but our approach is generalizable
to all NewSQL databases. Our main contribution is to prove that two-phase
commit can be used to implement practical leader election algorithm. We val-
idate our algorithm and show that its performance is comparable to a leader
election algorithm implemented using ZooKeeper [7] for cluster sizes of up to
800 processes.
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2 NewSQL Database Systems

Although a database can be used as shared memory to implement leader elec-
tion, some databases do not provide sufficient primitives to implement a reliable
leader election service. Our leader election service requires a highly available
database with support for transactions and locking primitives. Additionally, the
database must ensure that database node failures and slow clients do not cause
transactions to take too long to complete (commit or abort). We will now dis-
cuss different types of database systems and their suitability for leader election
service.

Highly Available Relational Databases typically provide high-availability
using either an active-standby replication protocol that provides eventually con-
sistent guarantees for data (as used in SQLServer [11] and MySQL [12]) or
a shared-state replication protocol, as used in Oracle RAC [13]. For the active-
standby model, a crash of the active node will result in the leader election service
being unavailable until the standby node takes over. There are no guarantees on
how long this failover will take, and, in practice, it can take from seconds up
to minutes to complete depending on the degree of lag at the standby node.
Moreover, until the failover completes, the system remains vulnerable to fail-
ures as the standby node now becomes a single point of failure. For shared-state
databases, it can take up to a minute for transactions to complete if a database
node failure occurs (the default distributed lock timeout in Oracle RAC is 60
seconds [13]). For these reasons, traditional highly available relational databases
are not suitable for building leader election services.

NoSQL Systems are highly available, but they only provide eventually con-
sistent guarantees for data [14,15]. This make them unsuitable as the basis for a
leader election service, as eventually consistent data may lead to multiple leaders
in the system.

NewSQL Systems are a new class of highly available databases that can scale
in performance to levels reached by NoSQL systems, but still provide ACID guar-
antees and a SQL-based declarative query interface [16, 17]. NewSQL systems
achieve high performance and scalability by redesigning the internal architec-
ture of traditional databases, often to a shared-nothing architecture, that take
better advantage of modern multi-core hardware along with increasingly cheap
in-memory storage. NewSQL systems can be scaled-out by adding additional
nodes. What makes NewSQL systems a viable platform for building a leader
election service is that they typically have low timeouts for locks and transac-
tions. Some notable NewSQL systems are the NDB storage engine for MySQL
Cluster [5], FoundationDB [18], and VoltDB [19].
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3 System Model and Eventual Leader Election

Processes. The system consists of a time varying finite set of processes p1,
p2, p3 ... pn. Each process has a unique id assigned by a function that returns
monotonically increasing ids. All the processes are assumed to behave according
to their protocol specification, that is, the processes are not Byzantine. A process
can fail by crashing, but until a process crashes it will execute the protocol
and it will not halt for an indefinite amount of time. When a process fails it
stops executing all operations. A failed process can recover after the failure, but
it is assigned a new id by the monotonically increasing function. There is no
restriction on the number of processes that can fail or join during the execution
of leader election protocol.

The underlying system is partially asynchronous, as it is impossible to de-
velop a leader election service for purely asynchronous systems [20]. In partially
synchronous systems there are positive upper and lower bounds on the commu-
nication and processing latency. These synchrony primitives of the system are
eventually determined by the application. Before these time bounds are deter-
mined, a distributed application may not function as expected. The time after
which the lower and upper time bounds hold is called global stabilization time
(GST). The protocol proceeds in rounds. The duration of these rounds expand
until the GST is reached. Moreover, each process’ local clock drift is significantly
smaller than the round time of protocol.

Shared Memory. All processes communicate through reliable atomic regis-
ters (shared memory) implemented using rows in a table in the database. A
reliable atomic register is always available, moreover, if two read operations r1
and r2 return w1 and w2 respectively and r1 precedes r2 then w1 precedes w2.
Atomic registers can easily be implemented in a relational database using a
strong enough transaction isolation level. To be considered correct, a process
must successfully read and write the register values within a heartbeat period,
that can expand during the execution of the protocol.

Leader Election Service. Eventually a correct process with the lowest id
in the system will be elected as the leader. The service ensures that a correct
leader is elected again in the subsequent rounds. Our service provides stronger
guarantees than Ω [2]. With Ω there could be multiple leaders if the GST has
not been reached. With the help of transactions, our leader election guarantees
at most one leader at any given time and guarantees following properties:

– Integrity: there should never be more than one leader in the system.
– Termination: a correct process eventually becomes a leader.
– Termination: all invocations of the primitive getLeader() invoked by a cor-

rect process should return the leader’s id.
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4 Leader Election in a NewSQL Database

Logically, all processes communicate through shared registers (implemented as
rows in a table). Each process has its own counter that it updates periodically
(in a transaction) to indicate that it is still alive. Each process maintains a local
history of the all processes descriptors. Process descriptor contains id, counter,
ip and port information. Using the local history a process is declared dead if
it fails to update its counter in multiple consecutive rounds. A process declares
itself to be the leader when it detects that it has the smallest id among all
the alive processes in the system. The leader evicts failed processes, and it is
also responsible for increasing the heartbeat round time to accommodate slow
processes.

All processes run in parallel, concurrency control could be handled with a
transaction isolation level set to serializable, ensuring that conflicting transac-
tions will execute one after another. For example, if two processes, Pa and Pb,
want to become leader simultaneously then the transactions will automatically
be ordered such that if Pa manages to execute first then Pb is put on hold. The
transaction Pb waits until transaction Pa has finished.

However, due to poor performance [21], NewSQL systems typically do not pro-
vide serializable as the default transaction isolation level, if they even support
it at all. The strongest isolation level supported by NDB is the read committed
isolation level, guaranteeing that any data read is committed at the moment
it is read. However, it is not sufficient for implementing a reliable leader elec-
tion service. We use row-level locking to implement stronger isolation levels for
transactions. Row-level locking complicates the design, but allows for more fine-
grained concurrency control and thus, higher throughput.

Algorithm 1. Leader Election
Require: VARS � Atomic Register. Holds max id,Tp and evict flag
Require: DESCRIPTORS � Set of atomic registers that stores all descriptors

1: id = ⊥, role = non_leader, leader = ⊥
2: procedure periodicHeartbeatTask
3: while true do
4: begin transaction � Begin new round
5: if role = leader | id = ⊥ | forceExclusiveLock then
6: acquire exclusive lock on VARS register
7: forceExclusiveLock = false
8: else
9: acquire shared lock on VARS register

10: read all DESCRIPTORS � No locks needed
11:
12: updateCounter()
13: leaderCheck()
14: DESCRIPTORS � history � Add to history
15:
16: Tp = VARS.getTimePeriod()
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17: if role = leader & VARS.evictFlag = true then
18: Tp = VARS.updateTimePeriod(Tp + Δ)
19: VARS.evictFlag = false

20: Lhbt = currentTime() � Leader’s lease start time
21: commit transaction
22: sleep(forceExclusiveLock ? 0 : Tp) � Immediately retry with higher locks

23: procedure updateCounter
24: if id ∈ DESCRIPTORS then
25: updateDescriptor(id, getCurrentCounter()+1)
26: else
27: if id != ⊥ then � Case: evicted
28: if transaction lock mode is not exclusive then
29: forceExclusiveLock = true
30: VARS.setEvictFlag()
31: return
32: id = VARS.incrementMaxID()
33: insertDescriptor(id)

34: procedure leaderCheck
35: Ps = history.getSmallestAliveProcess()
36: if Ps.id = id then
37: if transaction lock mode is not exclusive then
38: forceExclusiveLock = true
39: return
40: role = leader
41: removeDeadNodes() � Evict processes
42: else
43: role = non_leader
44: leader = Ps � Possible leader

45: procedure isLeader
46: if role = leader then
47: elapsed_time = currentTime() - Lhbt � Lease check
48: if elapsed_time < (Tp * Maxmhb - μ) then
49: return true
50: return false

51: procedure getLeader
52: if role = leader & isLeader() then
53: return this
54: else if role = non_leader then
55: return leader

4.1 Shared Memory Registers

We implement shared memory registers using rows in tables. Transactions ensure
atomicity of the registers. The atomic register VARS stores global parameters
such as the maximum allocated process id, and the duration of heartbeat rounds.
The maximum allocated process id is used in monotonic id generation. It also
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stores a boolean flag that is used to change the heart beat round time to cater
for slow processes. VARS is backed by single row in a table that contains all
the global variables. DESCRIPTORS represents a set of registers that store
information about all the alive process. It is backed by a table where each row
contains a process descriptor.

Our database, NDB, supports two main locking modes: shared (read) and
exclusive (write) locks. Multiple transactions can concurrently obtain shared
locks on an object. However, only one transaction can obtain an exclusive lock
on an object.

Every processes is an element of one of two disjoint sets. The first set contains
the majority of processes. These are non-leader processes that only update their
counter in each round. The second set of processes contains the leader process,
processes contending to become the leader, and processes that have not yet
obtained a unique id. Usually this group is very small, and it depends upon the
amount of churn in the system.

All the processes in the first set can run concurrently as they only update
their own counters. However, the processes in the second set may take decisions
or change the state of the global variables which can effect other processes.
Therefore, all the transactions of the processes in the second set are serialized.
For example, assume the leader wants to evict a slow process. By taking exclusive
locks, the leader process prevents the slow process from committing any updates
to shared state. When the slow process’ transaction is scheduled, it will notice
its id is missing and it will have to rejoin the system. Similarly, if two processes
are contending to become the leader then their operations should be serialized to
prevent a system state where there are multiple leaders. Moreover, the first round
of new processes are also serialized to generate monotonically increasing ids.

4.2 Leader Election Rounds

Each round encapsulates its operations in a transaction that starts by taking
a lock on the VARS register which acts as a synchronization point. Processes
belonging to the first group acquire shared locks while the processes in the second
group acquire exclusive locks on the VARS register, lines 5 – 9.

After acquiring locks on the VARS register all the processes descriptors are
read without any locks (read committed). The processes update their counters
and check if they can become the new leader. Each process maintains a history
of process descriptors to identify dead processes, lines 12 – 14. Now, we explain
these operations in more detail from the perspective of both groups of processes.

A new process starts by taking exclusive locks in the first round. It obtains a
new monotonically increasing id and stores its descriptor, lines 32 –33. An exclu-
sive lock is required to update the maximum process id in the VARS register. An
evicted process will not find its descriptor, as it has been deleted. The evicted
process cannot obtain a new process id if it does not hold an exclusive lock on
the VARS register. In such a case, the transaction is immediately retried using
exclusive locks, see lines 5, and 27 – 31. Additionally, the evicted process sets a
flag to inform the leader that it was evicted prematurely, see line 30.
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The service then checks for changes in the group membership. A process is
declared dead if it fails to update its counter in multiple consecutive rounds. The
threshold, Maxmhb, determines the number of rounds a process can miss before
it is declared dead. The Maxmhb is usually set to ≥ 2. The process elects itself
to be the leader if it has the smallest id among the alive processes. The leader
process cleans the DESCRIPTORS register by removing the dead processes. If
a non-leader process, that holds a shared lock, finds out that it can become
the leader then it immediately retries the transaction with exclusive locks. It
becomes the leader and removes the dead descriptors. If the process does not
have the smallest id then it sets its role to non_leader and stores the descriptor
of the process that has smallest id in a local variable, lines 34 – 44.

4.3 Global Stabilization Time (GST)

The time bounds for communication and processing latencies are not known
in advance. For large systems the initial round time for periodically updating
the counter may not be sufficiently long enough so that all processes mange
to update their counters in a single round. Moreover, the round time must be
automatically adjusted to cater for slow processes; otherwise, the system may
not stabilize. In our implementation, only the leader process increases the round
time by updating the VARS register (which is read by all processes).

Slow processes are evicted by the leader. When a process finds out that it was
evicted, it obtains a new id and set a flag in the VARS register to notify the
leader that it was wrongfully suspected. When the leader process finds that the
evicted flag is set it increases the round time by a constant value Δ, see lines
16 – 18.

4.4 Leader Lease

Our solution ensures that there is never more than one leader in the system.
However, this invariant is difficult to enforce before the GST has reached. Ad-
ditionally, in order to reduce contention on the registers, methods like isLeader()
and getLeader() return information stored in the local variables. On a slow pro-
cess these variables may contain stale values. For instance, assume a slow process,
La, becomes the leader. After becoming the leader La fails to update its counter
in multiple consecutive rounds. Later, a new process becomes a leader and La is
evicted. However, La will remain oblivious of the fact that it has been evicted,
and its function isLeader() will keep on returning true until La manages to read
new values from the registers.

In order to ensure integrity of the leader election service each leader process
stores a local lease. Whenever the leader process updates its counter, it acquires
a lease for the duration of (Tp∗Maxmhb−μ). The constant, μ, is to accommodate
for clock drifts. Before committing the transaction, a timestamp is stored in Lhbt,
which indicates the start of the leader lease time, line 20. The lease is the the
maximum time during which the leader cannot be evicted by other processes. If
the leader is slow and it fails to update its counter then the lease will eventually
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expire and the process will voluntarily yield its leader role, line 45 – 50. The
election of a new leader will happen after the lease of previous leader has expired,
see theorem 1 for more details.

4.5 Dealing with Failures

Note that the transactions only guarantee the atomicity of the registers. Read
committed isolation ensures that, during transaction execution, partial results
(changes in the registers) are not be visible to other transactions until the trans-
action has committed. When a transaction fails the database rollbacks only the
partial changes in the registers. However, it is the responsibility of the applica-
tion to rollback all the local variables, such as role, Lhbt, Tp, and id. For clarity
reasons we do not show code listing to rollback local variables.

5 Proof

In this section we prove the safety (at most one leader invariant) and the liveness
(termination) properties of our leader election algorithm.

Theorem 1. There is never more than one leader in the system.

Proof. In order to prove that there cannot be two leaders, Ls and Ln, in the
system at the same time we will prove that (I) two processes cannot declare
themselves as leader simultaneously (II) a process cannot become leader while
another process still sees itself as leader.

Case I: In order to become a leader both the processes, Ls and Ln, need to
acquire exclusive locks at the beginning of the transaction. As a result the trans-
actions for Ls and Ln will be serialized. If Ls manages to acquire the exclusive
lock first, it will update the counter and elect itself as a leader (assuming the
transaction commits). Ln will wait until Ls releases the lock. Ln will acquire the
locks after Ls commits the transaction, and it will find out that Ls has already
became the leader. As a result Ln will not declare itself the leader.

In a case where Ls halts after acquiring the exclusive lock, the database will
timeout Ls’s transaction and release the lock. The database will rollback the
transaction and Ls will have to re-acquire the exclusive lock in order to become
a leader. Ls has to reset its local role variable to non_leader.

Case II: When a process becomes the leader it acquires a lease that is valid for
(Tp ∗Maxmhb − μ). The process voluntarily gives up the leader role if it fails to
renew the lease before it expires. In order to ensure that a process Ln cannot
become the leader while a slow leader Ls still has a valid lease, the protocol
needs to ensure that the time needed by Ln to suspect Ls is higher than the
time duration of Ls’s lease.
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Registers

Process Ls

Process Ln

Ls leader lease

Ln leader lease      ...
Process Ls is evicted

t0 t1 t2 Detects that Ls is dead. Retry
transaction with exclusive locks

X

Fig. 1. Black and white circles represent exclusive and shared locks, respectively. Pro-
cess Ls is a slow leader that does not update the counter after t0. Process Ln becomes
leader after the lease for Ls expires.

Assume the processing and network latencies of the process Ln are zero. Fur-
thermore, the process Ln performs a heartbeat (read and update the registers)
soon after Ls commits an update. The process Ln will find out that Ls is alive.
After that, it will have to read the registers Maxmhb times before it can suspect
Ls. Maxmhb heartbeat rounds will take (Tp ∗Maxmhb) seconds, assuming that
Ln’s clock drift is negligible. Thus, the minimum time that Ln needs to suspect
Ls and elect itself as leader is (Tp ∗ Maxmhb), which is strictly more than the
lease time of Ls. The assumption that Ln does not have any processing and net-
work latencies represents a worst case scenario. In a real system the latencies will
always have some positive value which will increase the time needed by Ln to
declare Ls as dead. The constant, μ, should be configured to be higher than the
upper bound on clock drift for any process in the system. In practical systems,
NTP, GPS, atomic clocks are used to ensure low bounds on clock drift.

An illustration of this worst case scenario is presented in Figure 1 where
Maxmhb = 2. The leader Ls is faulty and it does not update the counter after
t0. At time t2 the process Ln detects that Ls is faulty and it can become the
new leader. As Ln does not hold the exclusive lock, it immediately retries the
transaction, acquires the exclusive lock and becomes the leader. The lease of Ls

expires after Tp ∗ 2− μ, which is less than the time Ln must wait to detect the
failure of the process Ls.

Theorem 2. A correct process eventually becomes the leader.

Proof. Assume a system configuration of p1, p2, p3...pk...pn processes. Addition-
ally, assume pk is the only correct process that repeatedly manages to update its
counter every Maxmhb rounds. All the other processes are incorrect such that
these processes do not always manage to update the counter within Maxmhb

rounds. A correct process is never suspected by any process in the system. We
show that the process pk eventually becomes a leader and retains the leader role
in the subsequent rounds.

Assume all the processes have just started and the history of each process is
empty. The process p1 will declare itself to be the leader and it will retain the
role for Tp ∗Maxmhb − μ seconds. During the first Maxmhb rounds no process
will be evicted. If p1 is an incorrect process which fails to update the counter,
its lease for the leadership will expire. In the round (Maxmhb + 1) a process



168 S. Niazi et al.

with least id that managed to update the counter, while p1 was the leader, will
become the new leader. The new leader will evict p1 along with other suspected
processes, if any. An evicted process might rejoin the system, but it is will be
assigned with a new id by the monotonically increasing function. The eviction of
incorrect processes will continue until pk becomes the process with the least id
in the system. The process pk will elect itself as the new leader. As the process
pk is correct it will not miss any heartbeats and it will retain the leader role in
subsequent rounds.

6 Evaluation

We have implemented the leader election using in-memory, highly-available, dis-
tributed database called NDB (Version 7.4.3), the storage engine for MySQL
Cluster [5]. NDB is a real-time, ACID-compliant, relational database with no
single point of failure and support for row-level locking. We use the native Java
API for NDB, ClusterJ, as it provides lower latency and higher throughput than
the SQL API that uses the MySQL Server.

All the experiments were performed on nodes behind a single 1 Gbit switch,
where the network round trip time between any two nodes is in single digit mil-
lisecond range. The NDB setup consisted of six data nodes (6-core AMD Opteron
2.6 GHz, 32GB RAM) with replication factor of 2. We compare our solution with
a leader election solution implemented using ZooKeeper. The ZooKeeper setup
consisted of three quorum nodes (6-core AMD Opteron, 32GB RAM). We used
the leader election library for ZooKeeper (Version 3.4.6) from the Apache Cura-
tor project (Version 2.7.1). Each ZooKeeper client creates a sequential ephemeral
node in predetermined directory. Each node registers a watch (callback request)
for its predecessor. Upon a node failure its successor is notified. The succes-
sor checks if there are any nodes with smaller sequential number. If there are
no smaller nodes available then it elects itself as the new leader; otherwise, it
registers a new watch for its new predecessor.

In the experiments the initial heartbeat round time was set to 2 seconds
and Maxmhb was set to 2. To accurately determine the failover time all the
clients were run on a single machine (12-core Intel Xeon 2.8 GHz, 40 GB RAM).
All experiments were performed fifteen times and the graphs show the average
results, with the error bars showing the standard deviation of the results. In each
experiment N processes are started. When all processes have joined the system,
the round time is continuously monitored for changes. If it does not change for
a certain time (three minutes) then the system is considered stable. After the
system has stabilized the leader process is repeatedly killed 50 times to measure
failover time.

Figure 2a shows the relation between network size and the time to elect a
new leader. Up to 200 processes the service consistently elects a new leader
in around five seconds. However, when the network sizes increases beyond 200
nodes the time to elect new leader also increases. This can also be observed
in figure 2b which shows the relationship between round time and the network
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Fig. 2. Performance of leader election service with the default configuration settings
for NDB (MySQL Cluster). Figure 2a shows the average time to elect a new leader
when the current leader process fails. Figure 2b shows the increase in the heartbeat
round time when the leader detects contention on the registers.

size. For network sizes up to 200 processes, all the processes manage to update
the counter before they are suspected by the leader process. However, when the
network size increases beyond 200, contention on the registers prevents some
processes from writing to the shared register for consecutive heartbeats. The
leader processes detects contention on the registers when an evicted process
raises the evict flag. The leader process increases the heartbeat delay to release
the contention on the registers, which has the side-effect of also increasing the
leader failover time. In the experiments, the heartbeat delay increment (Δ) was
set to 50 milliseconds.

In the implementation of leader election using ZooKeeper, the time to elect
a new leader is determined by two configuration parameters: tick time and
session timeout. We set these values as low as possible to quickly elect a new
leader in case of a leader failure. The lowest allowable values for tick time is 2
seconds, and session timeout is 4 seconds. In order to accurately determine the
fail over time all leader election processes were run on one (12-core Intel Xeon 2.8
GHz, 40 GB RAM) machine. Up to 400 processes ZooKeeper constantly elects
a new leader in six seconds. However the time to elect new leader starts to drop
if we increase the number of clients on the same machine. This is because of
the contention on the CPU and main memory because of which the processes
slowed down. When a leader is killed it may have already skipped a heartbeat.
This results in quicker reelection of a new leader. Due to memory limitations we
could not add more than 800 processes in the experiment.

7 Related Work

Leader election is a well studied problem. All the related research can be classified
into two broad categories: shared memory and message passing based leader
election protocols.
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Guerraoui et al. presented the first failure detector, Ω, that was implemented
using shared memory for an eventually synchronous system [8]. The protocol
is write optimal, only the leader process writes to the shared memory, and all
other non-leader processes only read shared memory. Fernandez et al. further
investigated the problem in systems where all processes are not eventually syn-
chronous [9, 10]. In [9], they propose solutions for systems which require only
one process to eventually behave synchronously. All other process can behave
fully asynchronously provided that their timers are well behaved. In [10], two
t-resilient protocols are presented that require a single, eventually synchronous,
process and t− f processes with well behaved timers, where t is the maximum
number of processes that may fail, and f is maximum number of processes that
can fail in a single run. For synchronous systems, a leader election algorithm
using shared memory is presented in [22], where a semaphore is used to prevent
multiple writers from concurrently updating the counter.

The first leader election protocols using message passing are timer-based.
Processes send messages to each other to indicate they are alive. A process is
suspected if it fails to send a heartbeat message within a time bound. If a heart-
beat is received from a suspected process the timer is increased to accommodate
for slow processes. Eventually time bounds for processing and communication
latencies are determined for the given system by successively increasing the timer
upon receiving a message from a suspected process. Some notable leader election
protocols in the message passing paradigm using timers are [23–25].

Mostefaoui et al. presented a time-free implementation of failure detectors
[26]. It allows the communication and processing times to always increase. The
protocol assumes that the query-response messages obey a certain pattern. The
protocol requires a correct process p and f + 1 processes from a set Q such
that if processes repeatedly wait to receive messages from n− f processes, then
eventually the messages from p are always among the first n−f messages received
by each process in Q. Here n is the system size and f is the maximum number of
processes that can fail. The protocol works for any value of f (i.e., 1 ≤ f < n).

8 Conclusions

We have shown that a reliable leader election service can be implemented using
two phase commit transactions in the NDB storage engine, a NewSQL database.
Our solution ensures that there is never more than one leader, and the time taken
for leader election is comparable to ZooKeeper for clusters of up to 800 processes.
Our algorithm enables distributed systems that already use NewSQL databases
to save the operational overhead of deploying a third-party service, such as
ZooKeeper, for leader election, as our algorithm can easily be re-implemented
for other NewSQL databases.
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Abstract. New computing technologies are expected to change the high-
performance computing landscape dramatically. Future exascale systems
will comprise hundreds of thousands of compute nodes linked by complex
networks—resources that need to be actively monitored and controlled,
at a scale difficult to manage from a central point as in previous systems.

In this context, we describe here on-going work in the Argo exa-
scale software stack project to develop a distributed collection of services
working together to track scientific applications across nodes, control the
power budget of the system, and respond to eventual failures. Our solu-
tion leverages the idea of enclaves: a hierarchy of logical partitions of the
system, representing groups of nodes sharing a common configuration,
created to encapsulate user jobs as well as by the user inside its own
job. These enclaves provide a second (and greater) level of control over
portions of the system, can be tuned to manage specific scenarios, and
have dedicated resources to do so.

1 Introduction

Disruptive new computing technology has already begun to change the scientific
computing landscape. Hybrid CPUs, many-core systems, and low-power system-
on-a-chip designs are being used in today’s most powerful high-performance
computing (HPC) systems. As these technology shifts continue and exascale ma-
chines emerge, the Argo research project aims to provide an operating system
and runtime (OS/R) designed to support extreme-scale scientific computations.
To this end, it seeks to efficiently leverage new chip and interconnect technologies
while addressing the new modalities, programming environments, and workflows
expected at exascale. At the heart of the project are four key innovations: dy-
namic reconfiguring of node resources in response to workload changes, allowance
for massive concurrency, a hierarchical framework for management of nodes, and
a cross-layer communication infrastructure that allows resource managers and
optimizers to communicate efficiently across the platform. These innovations will
result in an open-source prototype system that is expected to form the basis of
production exascale systems deployed in the 2020 timeframe.
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Argo is designed with a hierarchical approach. The system is organized in
enclaves, a set of resources that share the same configuration and can be con-
trolled as a whole. Enclaves can monitor their performance, respond to failures,
and control power usage according to a budget. These enclaves form a hierarchy:
the top enclave is acting over the whole system, while jobs are contained in their
own enclave and the user can subdivide its job enclave further.

We describe here the early stages of an ongoing effort, as part of Argo, to
design the services that will take care of creating, keeping track of, and destroy-
ing enclaves, as well as monitoring and controlling the resources and failures
happening in those enclaves. Our design is influenced by two factors. First, we
expect that future machines will differ significantly from current HPC systems
in size, failure rate, and fine-grained access to resources. Second, we don’t ex-
pect the Argo system to behave as commonly available distributed systems such
as peer-to-peer or cloud infrastructures. Indeed, an HPC machine will still be
composed of known, dedicated resources over which we have total control (as
low level as necessary). As a result, we believe that several services typical of
a distributed infrastructure can benefit from this unique setup and from being
distributed across the hierarchy of enclaves.

In Section 2 we describe more fully the components of the Argo system. In
Section 3 we detail typical services we identified as critical to Argo, while also
representing distinct communication and control patterns that could benefit from
our unique setup. In Section 4 we review related work, and in Section 4 we briefly
discuss future work.

2 The Argo Machine: Architecture, Enclaves and
Underlying Services

While predicting the exact architecture of future exascale systems is difficult,
the Argo project bases its designs on general trends such as those highlighted
in the Exascale Software Project Roadmap [1]. We expect the Argo machine
to be composed of hundreds of thousands of compute nodes, with each node
containing hundreds of cores. Furthermore, those nodes will be linked together by
dedicated and highly efficient networks, integrating smart control and monitoring
interfaces. We also expect that, in order to meet the U.S. DOE exascale budget
limits, complex power management interfaces will be available at all levels of the
machine.

The software stack designed by the Argo project to manage such a machine is
divided into four key components. First, each compute node will use a customized
operating system derived from Linux (NodeOS ). Second, a runtime taking ad-
vantage of massive intranode parallelism (Argobots) will be available. Third, a
global information bus or backplane will provide advanced communication ser-
vices on top of the native network. In particular, a distributed key-value store
and a pub-sub system will be available to other components. Fourth, the Glob-
alOS—the focus of this paper—will manage enclaves and their services.

As stated in Section 1, enclaves are logical groups of nodes sharing the same
configuration. They are organized in a tree, whose root is the enclave containing
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all nodes. Inside an enclave, at least one node (master) hosts the services specific
to this enclave. Masters communicate with each other to distribute control of
the nodes in the system. We note that nodes are members of all enclaves above
them in the hierarchy. In other words, a master node controls all nodes in its
subtree in the hierarchy of enclaves, and not just the masters of its subenclaves.
Enclaves cannot be created inside a compute node: they are logical constructs
intended to manage only the distributed part of the Argo machine. Figure 1 gives
an example of a hierarchy of four enclaves distributed across a system, with each
enclave having its master replicated across several nodes.

This enclave concept is critical to the design of the distributed services man-
aging the Argo machine. In particular, we organize responsibilities so that as
much of the node management as possible is delegated to the deepest master
in the hierarchy. Conversely, the higher in the hierarchy, the less the interaction
between the master and nodes, and the more coarse-grained this interaction is.
We give typical examples in the next section.

A
A

A
A B

B
B
B

C C
D
D

A

B

D

C

Fig. 1. Example of a hierarchy of 4 enclaves. On the left, the squares represent compute
nodes, with the filled ones representing the master and its replica. On the right, the
hierarchy of enclaves is represented as a tree.

3 Typical Services in the Argo Machine

Three services critical to GlobalOS can serve as examples of the different ways
the enclave hierarchy is used in Argo.

3.1 Hierarchical Control Bus for Enclaves

The Argo system is used like any other HPC system: a user submits to the system
a job comprising at least the number of nodes required, the time duration, the
configuration (to be deployed across the job), and the script or application to
run. In our infrastructure, each job is managed as an enclave, a direct child of the
root enclave (which contains all nodes). Furthermore, the user can create enclaves
inside the job, if he needs distinct parts of the allocated nodes to have different
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features or different configurations. This process distributes the responsibilities
of node management between the masters at different levels of the hierarchy.
The root master has the exclusive role of creating enclaves at its level, and
does so only when receiving commands from the job scheduler. A master at the
job enclave level might be responsible only for creating subenclaves; and so on.
Similarly, since the user has control over all nodes in a job enclave, commands to
reconfigure an enclave, a subtree of an enclave, or just one node might happen
at different levels of the hierarchy.

Thus, the chain of command between the root master and a node can be seen
as a bus, where commands flow from master to master, going deeper into the
hierarchy, with each master affecting the process or injecting new commands
until they reach a node. Some commands might be of higher priority (e.g., the
root enclave asking for job termination) or be altered (e.g., a command that
must span an entire enclave instead of just one node). Nevertheless, all enclave
masters are responsible for the continuous working of their enclaves, from the
moment the enclave management is delegated to them until the enclave exits (all
nodes gracefully exit the enclave, including the master) or is destroyed (massive
failure, forceful exit). We are designing this control bus on top of two mecha-
nisms: a logical naming scheme that allows a message or command to be sent
to different stages of the control bus (an enclave, a master, or a specific node)
and a message broker dedicated to the control bus, present on each node, and
forwarding messages across the bus in the right order.

The naming scheme is similar to paths in a filesystem: each enclave is a di-
rectory with the root enclave at the top, and nodes are files in those directories.
A few special names also exist: ’..’ (parent enclave), ’.’ (closest enclave), and
’*’ (all enclaves/nodes). This naming scheme simplifies sending a command to
a specific part of the system, even from a node having only partial knowledge of
the hierarchy: it is enough to know the next master in the path. This knowledge
is kept in the key-value store available in the Argo system, so that every node
knows its own path and how to contact parent and children enclaves. As an
example, a node in the enclave D will have the path /B/D/node.

The message broker infrastructure is also simple. A message broker runs on
each node and uses the key-value store to route messages to the various masters
on the bus. This broker also inspects each message to decide whether commands
need to be triggered locally or whether the message needs to be altered or redi-
rected. This design avoids specifying how those messages should be transported.
Indeed, as several communication services are made available by the backplane,
several communication channels might be available at the same time. For exam-
ple, it might be more efficient to distribute a command across all nodes of an
enclave by using a reliable publish-subscribe interface rather than using point-
to-point communication. Such choices are being evaluated but might depend on
the specific architecture our system is deployed on.
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3.2 Distributed Power Management

Since we expect the size of an exascale machine to involve hundreds of thousands
of compute nodes, controlling the total power consumption of the system is
critical. Indeed, such systems represent tens of megawatts in consumption and
a significant cost to any organization. Therefore, idle parts of the system or
underutilized resources should be put in low-power modes as much as possible.
To do so, we expect the architecture to provide meters distributed across the
system to measure the current power usage and interfaces, similar to dynamic
frequency scaling or Intel’s RAPL [4] on each node. We therefore are designing
a distributed power management service as part of GlobalOS.

This service comprises two components: a reader service, running on each
node, that periodically reports power consumption to its enclave master and
a power control service, installed on enclave masters, that distributes a global
power budget across the enclave hierarchy. The power consumption reader design
is straightforward. On each node, periodically the local measuring interface is
used to gather information, which is then sent to the closest master. Each master
then aggregates the data coming from its enclave and sends it to its parent, and so
on. This information gathering is made possible by the publish-subscribe service
of the backplane, and likewise for the aggregation. The power control service
reacts to information coming from the consumption reader as well as global
power budget limits set by the machine administrators. The exact algorithms
used to distribute this power budget across the hierarchy will be derived from
previous work [3,2].

3.3 Managing Failures as Exceptions

Given the expected size of an exascale machine, failures—in both hardware and
software—will have a statistically greater chance of occurring than in previous
systems. Consequently, all components of Argo are being designed with faults
in mind. This effort includes replication of masters across the enclave hierarchy,
for example.

While failure detection is a complex issue in itself, our focus here is on reac-
tions to failures. We designed a service distributed across the enclave hierarchy
that, when notified of failures, acts like an exception system: each master on the
path between the failed component and the root enclave will receive the notifi-
cation one by one, from the deepest in the hierarchy to the highest, and have
a chance to act on it. If a master cannot act or resolve the failure, the parent
master will take control, and so on.

The specific action a master takes will depend on the component that failed
and on the recovery/reaction strategy active on the failure manager. We plan to
design several strategies, ranging from restarting the component to destroying
the enclave, that users will be able to configure inside their enclaves. We expect
the root enclave to have the most complex strategy, with the additional role of
notifying administrators in case of unrecoverable hardware failures, and having
sole control of powering off and on nodes, for example.
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4 Related Works and Conclusion

Similar projects on a new software stack for exascale systems have recently
emerged, including the Hobbes project directed by Sandia National Laboratories
in the United States and the post-K project directed by RIKEN in Japan. We
are collaborating with them on the design of several components, and we expect
these efforts to result in robust and versatile components to manage an entire
machine. Recent cloud technologies, such as OpenStack, have also started to
address the issues in orchestrating and monitoring distributed resources. These
technologies are, however, targeted to systems with smaller numbers of compute
nodes, no dedicated high-performance networks, and no static knowledge of the
available hardware.

We are still in the design phase of our distributed framework for the provision-
ing, management, and monitoring of an exascale machine. Our goal is to build
on the features of the future architecture and Argo’s communication component,
focusing on a hierarchical and lightweight solution that is tuned as issues become
apparent as the project advances. We hope that in the coming year, with an in-
tegrated Argo prototype implemented, our research will move its focus to the
study and design of efficient management strategies to be implemented into the
various services of the GlobalOS.

Acknowledgement. This work was supported by the U.S. Dept. of Energy, Office
of Science, Advanced Scientific Computing Research Program, under Contract DE-
AC02-06CH11357. Part of this work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344 (LLNL-CONF-669278). The submitted manuscript has been created
by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne").
Argonne, a U.S. Department of Energy Office of Science laboratory, is operated un-
der Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and
others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in
said article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

References

1. Dongarra, J., Beckman, P., et al.: The International Exascale Software Project
Roadmap. International Journal of High Performance Computing Applica-
tions 25(1), 3–60 (2011)

2. Ellsworth, D., Malony, A., Rountree, B., Schulz, M.: POW: system-wide dynamic
reallocation of limited power in hpc. To appear in International ACM Symposium on
High Performance Distributed Computing, HPDC 2015, Portland, OR, USA (2015)

3. Hoffmann, H., Maggio, M.: PCP: A generalized approach to optimizing perfor-
mance under power constraints through resource management. In: International
Conference on Autonomic Computing, ICAC 2014, Philadelphia, PA, USA (2014)

4. Rountree, B., Ahn, D.H., de Supinski, B.R., Lowenthal, D.K., Schulz, M.: Beyond
DVFS: A first look at performance under a hardware-enforced power bound. In:
International Parallel and Distributed Processing Symposium Workshops & PhD
Forum, IPDPSW 2012, Shanghai, China (2012)



© IFIP International Federation for Information Processing 2015 
A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 179–192, 2015. 
DOI: 10.1007/978-3-319-19129-4_15 

The Impact of Consistency on System Latency  
in Fault Tolerant Internet Computing 

Olga Tarasyuk1, Anatoliy Gorbenko1, Alexander Romanovsky2(),  
Vyacheslav Kharchenko1, and Vitalii Ruban1 

1 Department of Computer Systems and Networks,  
National Aerospace University, Kharkiv, Ukraine 

{O.Tarasyuk,A.Gorbenko}@csn.khai.edu, V.Kharchenko@khai.edu  
2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK 

Alexander.Romanovsky@ncl.ac.uk 

Abstract. The paper discusses our practical experience and theoretical results in 
investigating the impact of consistency on latency in distributed fault tolerant 
systems built over the Internet. Trade-offs between consistency, availability and 
latency are examined, as well as the role of the application timeout as the main 
determinant of the interplay between system availability and performance. The 
paper presents experimental results of measuring response time for replicated 
service-oriented systems that provide different consistency levels: ONE, ALL 
and QUORUM. These results clearly show that improvements in system consis-
tency increase system latency. A set of novel analytical models is proposed that 
would enable quantified response time prediction depending on the level of 
consistency provided by a replicated system. 

Keywords: Internet computing · Fault-tolerance · Consistency · Latency ·  
Response time · Modelling 

1 Introduction 

Distributed computing has become an industrial trend, indispensable in dealing with 
enormous data growth. High availability requirements for many modern Internet ap-
plications require the use of system redundancy and data replication. Basic fault toler-
ant solutions such as N-modular, hot- and cold-spare redundancy usually assume a 
synchronous communication between replicas, which means that every message is 
delivered within a fixed and known amount of time [1]. This is a reasonable simplifi-
cation for the local-area systems whose components are compactly located, for in-
stance, within a single data centre.  

This assumption does not appear to be relevant, however, for the wide-area sys-
tems, in which replicas are deployed over the Internet and their updates cannot be 
propagated immediately, which makes it difficult to guarantee consistency.  

The Internet and, more generally, the wide-area networked systems are character-
ized by a high level of uncertainty, which makes it hard to guarantee that a client will 
receive a response from the service within a finite time. It has been previously shown 
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that there is a significant uncertainty of response time in service-oriented systems 
invoked over the Internet [2–4]. Besides, our experience and other studies [4–7] show 
that failures are a regular occurrence on the Internet, clouds and in scale-out data cen-
tre networks. When developers apply replication and other fault tolerant techniques in 
the Internet- and cloud-based systems, they need to understand the time overheads 
and be concerned about delays and their uncertainty.  

In this paper we examine, both in experimental and theoretical terms, how different 
fault-tolerance solutions [8] implemented over the Internet affect system latency  
depending on the level of consistency provided. The paper discusses the trade-offs 
between consistency, availability and latency. Although these relations have been 
identified by the CAP theorem in qualitative terms [9, 10], it is still necessary to quan-
tify how different fault-tolerant techniques affect system latency depending on the 
consistency level. The main contributions of the paper are probabilistic models that 
can predict the system response time depending on the chosen fault-tolerance tech-
nique and/or the selected consistency level, with the probabilistic behaviour of replicas 
as an input parameter. 

The rest of the paper is organized as follows. In Section 2 we discuss the impact of 
the CAP theorem [9, 10] on distributed fault-tolerant systems and examine the trade-
offs between system consistency, availability and latency. Section 3 summarises the 
results of experimental response time measurements for testbed fault-tolerant systems 
that have three replicas distributed over the Internet and support different consistency 
levels. The probabilistic models introduced in Section 4 define the relation between 
system response time and the consistency level provided. Section 5 evaluates the ac-
curacy of the proposed analytical models by applying them in practice and comparing 
their results with our experimental data. Finally, some practical lessons learnt from 
our experimental and theoretical work are summarised in Section 6.  

2 Understanding Trade-offs Between Consistency, Availability 
and Latency in Distributed Fault-Tolerant Systems 

The CAP conjecture [9], which first appeared in 1998-1999, defines a trade-off be-
tween system availability, consistency and partition tolerance, stating that only two of 
the three properties can be preserved in distributed replicated systems at the same 
time. Gilbert and Lynch [10] view the CAP theorem as a particular case of a more 
general trade-off between consistency and availability in unreliable distributed  
systems which assume that updates are eventually propagated.  

System partitioning, availability and latency are tightly connected. A replicated 
fault-tolerant system becomes partitioned when one of its parts does not respond due 
to arbitrary message loss, delay or replica failure, resulting in a timeout. System 
availability can be interpreted as a probability that each client request eventually  
receives a response.  

In many real systems, however, a response that is too late (i.e. beyond the applica-
tion timeout) is treated as a failure. High latency is an undesirable effect for many 
interactive web applications. In [13] the authors showed that if a response time  
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increases by as little as 100 ms, it dramatically reduces the probability of the customer 
continuing to use the system.  

Failure to receive responses from some of the replicas within the specified timeout 
causes partitioning of the replicated system. Thus, partitioning can be considered as a 
bound on the replica’s response time. A slow network connection, a slow-responding 
replica or the wrong timeout settings can lead to an erroneus decision that the system 
has become partitioned. When the system detects a partition, it has to decide whether to 
return a possibly inconsistent response to a client or to send an exception message in 
reply, which undermines system availability.  

The designers of the distributed fault-tolerant systems cannot prevent partitions 
which happen due to network failures, message losses, hacker attacks and components 
crashes and, hence, have to choose between availability and consistency. One of these 
two properties has to be sacrificed. If system developers decide to forfeit consistency 
they can also improve the system response time by returning the fastest response to 
the client without waiting for other replica responses until the timeout, though this 
would increase the probability of providing inconsistent results. Besides, timeout 
settings are also important. If the timeout is lower than the typical response time, a 
system is likely to enter the partition mode more often [11].  

It is important to remember that none of these three properties is binary. For exam-
ple, modern distributed database systems, e.g. Cassandra [14], can provide a discrete set 
of different consistency levels for each particular read or write request. The response 
time can theoretically vary between zero and infinity, although in practice it ranges 
between a minimal affordable time higher than zero and the application timeout. Avail-
ability varies between 0% and 100% as usual. 

The architects of modern distributed database management systems and large-scale 
web applications such as Facebook, Twitter, etc. often decide to relax consistency 
requirements by introducing asynchronous data updates in order to achieve higher 
system availability and allow a longer response time. Yet the most promising ap-
proach is to balance these properties. For instance, the Cassandra NoSQL DDBS in-
troduces a tunable replication factor and an adjustable consistency model so that a 
customer can choose a particular level of consistency to fit with the desired system 
latency. 

The CAP theorem helps the developers to understand the system trade-offs be-
tween consistency and availability/latency [12]. Yet even though this theorem 
strongly suggests that better consistency undermines system availability and latency, 
developers do not have quantitative models to help them to estimate the system re-
sponse time for the chosen consistency level and to achieve a precise trade-off be-
tween them.  

Our interpretation of the CAP theorem and the trade-offs resulting from the CAP is 
depicted in Fig. 1. The application timeout can be considered as a bound between 
system availability and performance (in term of latency or response time) [15]. Thus, 
system designers should be able to set up timeouts according to the desired system 
response time, also keeping in mind the choice between consistency and availability. 
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Fig. 1. The CAP trade-offs 

In the following sections we discuss our practical experience on measuring latency 
of fault-tolerant service-oriented system depending on the provided consistency level 
and also introduce analytical models predicting system response time. 

3 Experimental Investigation of the CAP Impact on  
Fault-Tolerant Service-Oriented Systems 

3.1 Description of the Testbed Architecture  

To investigate the CAP impact on fault-tolerant distributed systems we developed a 
testbed service-oriented system composed out of the three replicated web services 
(see Fig. 2). This is a typical setup employed in many fault-tolerant solutions.  
 

 

Fig. 2. Fault-tolerant service-oriented system 
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A testbed web service was written in Java and its replicas uploaded to Amazon 
Elastic Beanstalk and were deployed in the three different location domains: (i) US 
West (Oregon); (ii) South America (Sao Paulo) and Asia Pacific (Tokyo). Each web 
service replica performs a heavy-computational arithmetic calculation such as finding 
the n digit of Pi when n is a large number and returns the result to the driver. The 
driver is responsible for invoking each of the replicated web services, waiting for the 
web services to complete their execution and return response, and, finally, implement-
ing a particular fault-tolerant scheme upon the obtained results. 

AWS SDK for Java was used to connect web service replicas on Amazon EC2 
from clients (driver) programming code that helps to take the complexity out of cod-
ing by providing Java APIs for AWS services.  

In our study we investigated the three basic fault-tolerant patterns for web services 
[16] corresponding to different consistency levels (ONE, ALL, QUORUM). In all 
cases the driver simultaneously forwards client’s request to all replicated web ser-
vices. The consistency level determines the number of replicas which must return a 
response to the driver before it sends an adjudicated result to the client application: 

• ONE (hot-spare redundancy) – when the FASTEST response is received the driver 
forwards it to the client. This is the weakest consistency level though it guarantees 
the minimal latency; 

• ALL (N-modular redundancy) – the driver must wait until ALL replicas return 
their responses. In this case the response time is constrained by the slowest replica 
though the strongest consistency is provided; 

• QUORUM – the driver must wait for the responses from a QUORUM of replica 
web services. It provides a compromise between the ONE and ALL options trading 
off latency versus consistency. The quorum is calculated as: 
(amount_of_replicas / 2) + 1, rounded down to an integer value. As far as in our 
experiments we use the replication factor of 3, the quorum is 2. 

The driver also implements a timeout mechanism aimed to protect clients from end-
less waiting in case of network or web-services failures or cloud outages. 

3.2 Response Time Measurement 

The driver was implemented as part of the Java client software. The client software 
was run at a host in the Newcastle University (UK) corporate network. It invoked 
replica web services several thousand times in a loop using the driver as a proxy.  

For the particular client’s request we measured the response time of the each web 
service replica and also times when the driver produces responses corresponding to 
different consistency levels. The delay induced by the driver itself was negligible in 
our experiments. 

The measurement results obtained for the first 100 invocations are presented in 
Figs. 3 and 4. Table 1 summarizes basic statistical characteristics of the measured data 
whereas probability density series (pds) of system and replicas response times are depicted 
in Figs. 5 and 6. 
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As expected, when the system is configured to provide consistency level ONE its 
latency in average is less than the average response time of the fastest replica. Aver-
age system latency in case it provides consistency level ALL is larger than the aver-
age response time of the slowest replica. System latency associated with consistency 
level QUORUM is in the middle.  

However, our main observation is that it is hardly possible to make an accurate 
prediction of the average system latency corresponding to the certain consistency 
level when the only common statistical measures of replicas response time (i.e. mini-
mal, maximal and average estimates and standard deviation) are known.  

This finding resulting from our massive experiments and also confirmed by other 
researches [17] show that it is extremely difficult to predict the timing characteristics 
of various types of wide-area distributed systems, including fault-tolerant SOAs, dis-
tributed databases and file systems (e.g. Cassandra, GFS, HDFS), parallel processing 
systems (e.g. Hadoop Map-Reduce). The dynamic and changing nature of timing 
characteristics of such systems can be better captured by employing probability den-
sity functions. 

In the next section we propose a probabilistic modelling approach that addresses 
this problem. It relies on using probability density functions (PDF) of replica response 
times to predict system latency at different consistency levels.  
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Fig. 3. Response time of different web service replicas 
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Fig. 4. System response time corresponding to different consistency levels 
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Table 1. Response time statistics 

Response 
Time, ms 

Replica1  
(Oregon) 

Replica2  
(Sao Paulo) 

Replica3 
(Tokyo) 

System consistency level 
ONE QUORUM ALL 

Minimal  2324 2164 2344 2164 2324 2386 
Average  2428 2434 2588 2342 2449 2660 

Maximal  2821 3371 5573 2509 2830 5573 
Std. deviation 60 228 522 80 72 529 

4 Probabilistic Models of System Response Time for Different 
Consistency Levels 

We propose a set of probabilistic models that allow us to build a combined probability 
density function of system response time by taking into account provided consistency 
level and incorporating response time probability density functions for each replica.  

When the system is configured to provide consistency level ALL, the probability of re-
turning response to the client at time t is equal to the probability that one of the replicas 
(e.g. the first one) returns its response exactly at time t, i.e. g1(t) while two other replicas 

return their responses not later than t (by time t), i.e. )()( tGtg
t

20 2 =∫  and 

)()( tGtg
t

30 3 =∫ . 

So far as we have three replicas, all three possible combinations have to be ac-
counted. As a result, the probability density function of the system response time for 
consistency level ALL can be defined as following: 

)()()()()()()()()()( tGtGtgtGtGtgtGtGtgtf ALL 213312321 ++= .        (1) 

where g1(t), g2(t) and g3(t) – are response time probability density functions of the 
first, second and third replicas respectively; G1(t), G2(t) and G3(t) – are response time 
cumulative distribution functions of the first, second and third replicas respectively. 

When the system is configured to provide consistency level ONE, the probability 
of returning a response to the client at time t is equal to the probability that if only one 
of the replicas (e.g. the first one) returns its response exactly at time t, i.e. g1(t), while 
two other replicas return their responses at the same time or later on, i.e. 

)()( tGtg
t 22 1 −=∫
∞

 and )()( tGtg
t 33 1 −=∫
∞

. 

Keeping in mind three possible combinations we can deduce the probability den-
sity function of the system response time for consistency level ALL as: 
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(2) 

Deducing the response time probability density function for the QUORUM consis-
tency level is based on a combination of the previous two cases. 



186 O. Tarasyuk et al. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
p(t)

Response Time, ms

Replica1 (Oregon)

Replica2 (Sao Paulo)

Replica3 (Tokyo)

Replica2

Replica1

Replica3

 

Fig. 5. Probability density series of replicas response times 
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Fig. 6. Probability density series of system response time for different consistency levels 

The probability of returning response to the client at time t is equal to the probabil-
ity that one of the replicas returns its response exactly at time t; one of the two re-
mained replicas returns its response by time t and another one responds at time t or 
later on. Taking into account all possible combinations the probability density func-
tion of the system response time for consistency level QUORUM can be deduced as: 

( )( )
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                 (3) 

Using similar reasoning it is possible to deduce response time probability density 
functions of a system composed of n replicas: 
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It is extremely hard to build a general form of the probability density function of 
the system response time for consistency level QUORUM. However, the general  
reasoning is as following. The composed probability density function should be  
presented as a sum of m items, where m is a number of k-combinations of n (k is a 
number of replicas constituting a quorum). Each of the m items is a product of two 
factors. The first one defines the probability that a particular combination of k replicas 
return their responses by time t. Another factor defines the probability that the re-
maining (n–k) replicas return their responses after t. 

5 Models Validity  

In this section we check the validity and accuracy of the proposed models by compar-
ing their prediction with the experimental data presented in Section 3. This check 
includes the following four steps: 

• finding out theoretical distribution laws that accurately approximate the measured 
replica response times; 

• applying the proposed mathematical models (1), (2) and (3) to deduce probability 
density functions of the system response time for different consistency levels; 

• estimating replica and system average response times using the theoretical prob-
ability distribution functions; 

• comparing the theoretical and experimental values of replica and system average 
response times. 

5.1 Finding Theoretical Distribution Laws of Replica Response Times 

Theoretical distribution laws approximating replica response times can be found in a 
way described in [2]. It is based on performing a series of hypotheses checks in the 
Matlab numeric computing environment. The techniques of hypothesis testing consist 
of the two basic procedures. First, the values of distribution parameters are estimated 
by analysing an experimental sample. Second, the null hypothesis that experimental 
data has a particular distribution with certain parameters should be tested.  

To perform hypothesis testing itself we used the kstest function: 
[h, p] = kstest(t, cdf), conducting the Kolmogorov-Smirnov test to com-
pare the distribution of t with the hypothesized distribution defined by matrix cdf. 

The null hypothesis for the Kolmogorov-Smirnov test is that t has a distribution de-
fined by cdf. The alternative hypothesis is that x does not have that distribution.  
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Result h is equal to ‘1’ if we can reject the hypothesis, or ‘0’ if we cannot. The  
function also returns the p-value which is the probability that x does not contradict the 
null hypothesis. We reject the hypothesis if the test is significant at the 5% level  (if p-
value is less than 0.05). The p-value returned by kstest was used to estimate the 
goodness-of-fit of the hypothesis. As a result of hypothesis testing we found out that 
the Weibull distribution fits well the response time of the first (Oregon) and the third 
(Tokyo) replicas. The response time of the second replica (Sao Paulo) can be accu-
rately approximated by the Gamma distribution. 

5.2 Deducing Probability Density Functions of the System Response Time 

Mathcad has been used at the second stage of our investigation to deduce theoretical 
distributions of system response times for different consistency levels. It also allows 
to estimate average system latency and to plot probability density functions. Mathcad 
worksheet is shown in Fig. 7. It includes seven modelling steps.  

At the 1st step we define abscissa axis t and its dimension in milliseconds. Sec-
ondly, we set up parameters of replicas response time distribution functions estimated 
in Matlab and also their shifts on the abscissa axis (i.e. minimal response time values).  

At the 3rd and 4th steps the replica response time probability density functions 
g1(t), g2(t), g3(t) and the corresponding cumulative distribution functions G1(t), G2(t), 
G3(t) are defined using Mathcad library functions dweibull and dgamma.  

At the 5th step we define probability density functions of the system response time 
corresponding to different consistency levels by combining replicas pdf and cdf accord-
ing to the proposed equations (1), (2) and (3). 

 

Fig. 7. Mathcad’s worksheet 
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Probability distribution functions of replicas and system response times are shown 
in Figs. 8 and 9. The bulk of the values of probability density function fALL(t) is shifted 
to the right on the abscissa axis as it was expected. The shapes of the fONE(t) and fQUO-

RUM(t) probability density functions are also in line with the reasonable expectations 
and experimentally obtained probability density series (see Fig. 6).  

Finally, at steps 6 and 7 we estimate the system and replicas average response time 
by integrating their theoretical probability distribution functions. 
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Fig. 8. Probability density functions of replicas response times 
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5.3 Accuracy of Mathematical Modelling 

Table 2 shows the deviation between the average values of the system and replicas 
response time estimated practically (see Table 1) and theoretically with the help of the 
obtained probability distribution functions. These results confirm the significant 
closeness between actual and modelled timing characteristics. To be sure that not only 
the average value can be accurately predicted we compare theoretical system prob-
ability density functions (see Fig. 9) and practically obtained probability density  
series (Fig. 6). With this purpose we estimated experimental and theoretical probabili-
ties that system latency at different consistency levels is less than the specified time. 

Table 2. Accuracy of mathematical modelling 

 Replica1  
(Oregon) 

Replica2  
(Sao Paulo) 

Replica3  
(Tokyo) 

System consistency level 
ONE QUORUM ALL 

Approximating theoretical distributions and their parameters 
distribution Weibull Gamma Weibull    

alpha 113.3578 1.5952 176.8796    
beta 2.3041 164.1599 1.7467    
x-shift 2324 2164 2344    

Average response time, ms 
measured 2428 2434 2588 2342 2449 2660 
modelled 2424 2426 2502 2341 2444 2567 
Deviation, % 0.18 0.34 3.32 0.03 0.19 3.51 

Table 3. Deviation between theoretical system pdf and pds obtained experimentally 

Time, 
ms 

Probability that system latency is less than the specified time 
ONE QUORUM ALL 

pds pdf dev.,% pds pdf dev.,% pds pdf dev.,% 
2175 0.01 0.009 10.00 0 0 - 0 0 - 
2225 0.11 0.116 5.45 0 0 - 0 0 - 
2275 0.23 0.252 9.57 0 0 - 0 0 - 
2325 0.43 0.385 10.47 0.01 0 - 0 0 - 
2375 0.59 0.596 1.02 0.08 0.097 21.25 0 0.003 - 
2425 0.84 0.858 2.14 0.43 0.434 0.93 0.11 0.073 33.64 
2475 0.99 0.975 1.52 0.72 0.752 4.44 0.29 0.263 9.31 
2525 1 0.998 0.20 0.89 0.903 1.46 0.52 0.476 8.46 
2575 1 1 0 0.96 0.961 0.10 0.63 0.643 2.06 
2625 1 1 0 0.96 0.984 2.50 0.72 0.761 5.69 
2675 1 1 0 0.99 0.994 0.40 0.8 0.841 5.13 
2725 1 1 0 0.99 0.998 0.81 0.85 0.892 4.94 
2775 1 1 0 0.99 0.999 0.91 0.88 0.924 5.00 
2825 1 1 0 0.99 1 1.01 0.89 0.945 6.18 
2875 1 1 0 1 1 0 0.91 0.959 5.38 
2925 1 1 0 1 1 0 0.91 0.969 6.48 
2975 1 1 0 1 1 0 0.92 0.977 6.20 
3025 1 1 0 1 1 0 0.94 0.982 4.47 
3075 1 1 0 1 1 0 0.95 0.987 3.89 

Average deviation, % 2.12 2.25 7.12 
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The results of this comparison (see Table 3) show a close approximation of the ex-
perimental data by the proposed analytical models, especially for the consistency 
levels ONE and QUORUM. The probabilistic model of the system response time for 
consistency level ALL gives slightly optimistic prediction, though the average devia-
tion from the experimental data is only 7% – that is close enough. 

6 Conclusion and Lessons Learnt 

When employing fault-tolerance techniques over the Internet and clouds, engineers 
need to deal with delays, their uncertainty, timeouts, adjudication of asynchronous 
replies from replicas, and other specific issues involved in global distributed systems. 
The overall aim of this work was to study the impact of consistency on system latency 
in fault tolerant Internet computing. 

Our experimental results clearly show that improving system consistency makes 
system latency worse. This finding confirms one of the generally accepted qualitative 
implications of the CAP theorem [9, 10]. However, so far system developers have not 
had any mathematical tools to help them to accurately predict the response time of 
large-scale replicated systems. While estimating the system worst-case execution time 
remains common practice for many applications (e.g. embedded computer systems, 
server fault-tolerance solutions, like STRATUS, etc.), this is no longer a viable solu-
tion for the wide-area service-oriented systems in which components can be distrib-
uted all over the Internet. In our previous works [2, 3] we demonstrated that extreme 
unpredictable delays exceeding the value of ten average response times can happen in 
such systems quite often. In this paper we have proposed a set of novel analytical 
models providing a quantitative basis for the system response time prediction depend-
ing on the consistency level provided for (or requested by) clients. The models allow 
us to derive the probability distribution function of the system response time which 
corresponds to a particular consistency level (ONE, ALL or QUORUM) by incorpo-
rating the probability density functions of the replica response times. 

The validity of the proposed models has been verified against the experimental 
data reported in Section 3. It has been demonstrated that the proposed models ensure a 
significant level of accuracy in the system average response time prediction, espe-
cially in case of ONE and QUORUM consistency levels. The proposed models  
provide a mathematical basis for predicting latency of distributed fault and intrusion-
tolerance techniques operating over the Internet. The models take into account the 
probabilistic uncertainty of replicas’ response time and the required consistency level.  

The practical application of our work is in allowing practitioners to predict system per-
formance, and in offering them crucial support for the optimal timeout setup and for un-
derstanding the trade-off between system consistency and latency. Trading off system 
consistency against latency requires the knowledge of probability density functions (and 
parameter values) that accurately approximate replicas’ response time. These probabilistic 
characteristics, which can be obtained by testing or during the trial usage, will need to be 
corrected at run-time or at tune-time to improve prediction accuracy. It would be possible 
to replace the response time probability density functions in the proposed models with 
probability density series. This would make it easier to use the models in practice. 
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Abstract. Undo is an important feature of editors. However, even after over two
decades of active research and development, support of undo for real-time col-
laborative editing is still very limited. We examine issues concerning undo in
collaborative text editing and present an approach using a layered commutative
replicated data type (CRDT). Our performance study shows that it provides suf-
ficient responsiveness to the end users.

1 Introduction

Undo is a key feature of editors. In a single-user editor, a user can conveniently undo
earlier editing operations in reverse chronological order. In a collaborative editor, how-
ever, users at different sites may generate operations concurrently. This means that a
user cannot easily perceive a linear operation order. Some systems restrict what can
be undone. For example, with Google Drive (https://drive.google.com), a user can only
undo locally generated operations. User studies show that users indeed expect to be able
to undo other users’ operations when working on common tasks [1]. In the research
community of collaborative editing, selective undo is widely regarded as an important
feature [2–9]. With selective undo, a user can undo an earlier operation, regardless of
when and where the operation was generated.

Current systems that support selective undo are subject to two main limitations.
Firstly, they only support undo of operations on atomic objects (e.g. characters or un-
breakable lines). In the case of string-wise operations such as copy-paste, find-replace
or select-delete, users can typically only undo earlier operations character by charac-
ter. Secondly, selective undo may lead to undesirable effects. For example, a user first
inserts a misspelled word and then makes a correction. The correction depends on the
first insertion of the word. It is undesirable to undo the insertion alone and leave the
correction behind as a groundless modification.

In this paper we propose a novel approach to collaborative text editing that supports
selective undo of string-wise operations. This is the first work that manages undesirable
effects of undo.
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A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 193–206, 2015.
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2 Related Work

There are two general approaches to collaborative editing, based either on operation
transformation (OT) [6, 7, 10] or on commutative replication data types (CRDT) [8, 9,
11–14]. With OT, a remote operation is transformed and integrated in the local site. The
time complexity depends on the lengths of operation histories (linear at best). Further-
more, it is hard to design correct operation transformation functions [15]. One common
way to relax certain required conditions for transformation functions is to restrict the
order in which operations are transformed at all sites. Therefore OT approaches gener-
ally do not scale well and practically require the involvement of central servers. With
CRDT, concurrent insertions are ordered based on the underlying data structure, so the
time complexity may not depend on the lengths of operation histories. [16] reported
that CRDT algorithms are better suited for large-scale distributed environments and
outperform OT algorithms by orders of magnitudes.

Supporting string operations and selective undo requires obtaining at runtime rela-
tions among operations, such as whether a string is part of a larger insertion or whether
an operation is an undo of another operation. Since strings might be split by subsequent
operations and operations are executed concurrently, obtaining such relations can be
complicated. Deriving such relations through operation transformation is particularly
difficult. Currently, most related work can only apply undo to insertion and deletion of
atomic objects [2–8]. To the best of our knowledge, only our previous work [9] sup-
ports selective undo of string operations. However, [9] does not account for possible
undesirable effects of undo.

In this paper, we propose a novel CRDT that captures useful relations among oper-
ations. Our approach offers support for string-based undo and deals with undesirable
effects of selective undo. Our current work is built on our previous work. The gen-
eral view-model system structure is similar to the one described in [9]. The underlying
scheme for character identifiers is similar to the one described in [11].

3 Undo Effects

Allowing undo of any operation without restriction might lead to undesirable effects.

Example 1. The state after two insertions ins1 (with string “this is hard”) and ins2

(“not ”) is “this is not hard”. Undoing ins1 results in state “not ”. If the text
“is hard” is a single unit and the string “not ” is part of it, then, without the text
“is hard”, the string “not ” becomes groundless.

When a user inserts a string str into an existing unit string str0, str0 is the ground of
str. If str0 had not existed, the user would not have inserted str and the existence of str
is groundless.

The definition of unit strings depends on the types of documents. Without loss of
generality, we define a unit string as being generated by a single operation, such as an
insertion or the undo of a deletion. More specifically, if op0 generates string str0 and
ins inserts string str into str0, op0 is the ground operation of op (or op is built on op0)
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and str0 is the ground string of str. Furthermore, the built-on relation is transitive. That
is, if op2 is built on op1 and op1 is built on op0, then op2 is also built on op0.

The effect of undoing an operation op should be as if op and all operations built on
op had never occurred. More specifically, suppose Hs =H0 ·op ·H1 ·undo(op) ·H2 is the
history of operations at site s, where H0 represents the sequence of operations executed
before op, H1 the sequence of operations after op and H2 the sequence of operations
after the undo of op. If we denote by Hõp the sequence of operations as the result of
removal from H of all operations built on op, then Hs and H0 ·Hõp

1 ·Hõp
2 should produce

the same strings. Notice that op and undo(op) may be generated from different sites.
Also, although the operations in H2 occur after the undo of op at site s, H2 may still
contain operations built on op, due to concurrent operations.

Our definition of ground operations might be too general to the user. In practice, the
user may not agree that string str is built on str0 (or str is useful outside the context of
str0). In such situations, the user should be able to decide which operations are not built
on the operation being undone (or to manually select which groundless strings, detected
by the editor, should remain after the undo). Thus, when a user tries to perform an undo
that results in groundless strings, the editor should warn the user, so that the user is able
to determine the final effect of the undo, or to simply give up the undo.

However, due to concurrent operations, a collaborative editor is not always able to
warn the user of possible groundless strings in time. In Example 1, when a user at a
remote site undoes ins1 before ins2 arrives, the undo does not cause any groundless
string. In such cases, all sites should unanimously (without user intervention) eliminate
the groundless string “not ” when they receive both undo(ins1) and ins2.

Example 2. In Example 1, another site first executes ins1 and then executes del1 (“ is

hard”) concurrently with ins2. The string “not ” inserted by ins2 becomes groundless
after a site executes both ins2 and del1.

A concurrent deletion may also cause groundless strings. Notice that a deletion never
causes groundless strings locally. Hence the sites should always unanimously eliminate
groundless strings caused by remote deletions.

Our work ensures that there is no groundless effect of local undo (unless the user
explicitly wants the effect) and there is no groundless effect of remote undo or deletion.
Furthermore, it ensures the traditional correctness criteria convergence and intention
preservation [6] as discussed in Section 6.

4 View and Model

With a collaborative editor, a document is concurrently updated from a number of peers
at different sites. Every peer consists of a view of the document, a model, a log of
operation history and several queues.

A peer concurrently receives local operations generated by the user and remote op-
erations sent from other peers. Local operations take immediate effect in the view. The
peer stores executed local operations and received remote operations in queues. During
a synchronization cycle, it integrates the stored operations in the model and shows the
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effects of integrated remote operations in the view. The peer also records integrated op-
erations in the log. Later, it broadcasts integrated local operations to other peers. At any
time, the user may undo an operation selected from the log.

Every peer has a unique peer identifier pid. An operation originated at a peer has
a peer update number pun that is incremented with every integrated local operation.
Therefore, we can uniquely identify an operation with the pair (pid,pun). In what fol-
lows, we use oppid

pun to denote an operation op identified with (pid,pun).
A view is mainly a string of characters. A user at a peer can insert or delete a sub-

string at a position in the view, and undo an earlier integrated local or remote operation
selected from the log.

A model materializes editing operations and relations among them. It consists of
layers of linked nodes that encapsulate characters. Conceptually, characters have unique
identifiers that are totally ordered (though not every identifier is explicitly represented
in the model). For two characters cl and cr, if cl .id < cr.id, then cl appears to the
left of cr. A character identifier is represented as a sequence of integers. For cl .id =
p0 . . . pk−1 pl

k . . . , cr.id = p0 . . . pk−1 pr
k . . . and pl

k < pr
k, the two identifiers start to differ

at the (k+1)-th integer. Suppose we insert a string of characters c0 . . .cn between cl and
cr. The identifier of character ci (0 ≤ i ≤ n) in the string is p0 . . . pk−1 pk pk+1(pk+2 + i),
where pl

k < pk < pr
k and pk+1 is a function of pid. If another peer inserts a string c′0 . . .c

′
m

at the same place and generates p′k, p′k+1 and p′k+2, the two strings are ordered according
to pk and p′k. If pk = p′k, the two strings are then ordered according to pk+1 and p′k+1
(i.e. according to pids). We refer the interested readers to [11] for a more complete
description of the generation of character identifiers.

Nodes at the lowest layer of a model represent insertions and contain inserted char-
acters. Nodes at higher layers represent deletions. That is, a higher-layer node (outer
node) deletes the characters in the lower-layer nodes (inner nodes) it contains.

A node contains the identifier cidl of its leftmost character and cidr of its rightmost
character. The identifiers of the other characters (i.e. not at the edges of the node) are
not explicitly represented in the model. An insertion node also contains a string str of
characters.

Subsequent operations may split existing nodes. Nodes of the same operation share
an op element as the operation’s descriptor. The descriptor contains the identifier and
type of the operation, a set P (for parents) of references to the descriptors of op’s
ground operations and a set C (for children) of operations built on op. The descriptor
also has an undo element that contains a set U of identifiers of its undo operations
(there might be more than one, as multiple peers might concurrently undo the same
operation). An undo element may itself have its own undo element (e.g. when the orig-
inal operation is redone). Thus the undo elements of an operation form a chain. The
operation is effectively undone if the length of the chain is an odd number.

An insertion is self-visible if it is not effectively undone. A deletion is self-visible
if it is effectively undone. An operation is visible if it is self-visible and all its ground
operations are visible. A character is visible if all operations on it are visible.

There are three types of links among nodes: l-r links maintain the left-right character
order; opl-opr links connect nodes of the same operations; i-o links maintain the inner-
outer relations. The outermost nodes and the nodes inside the same outer node are linked
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12345678

12345678

12345678
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undo2
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1del11
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2. del22

1 2 34 56 78

3. del23

1 2 34 56 78

4. undo2
4

1 2 34 A 56 78

5. ins2
5

1 2 34 A 5 B 6 78

6. ins2
6

1 2 34 X A 5 B 6 78

7. ins3
1

1 2 3 4 X A 5 B 6 7 8

8. del11

Fig. 1. Examples of model updates

with l-r links. When the view and the model are synchronized, the view equals to the
concatenation of all visible characters of the outermost nodes through the l-r links.

Figure 1 shows an example with three peers. The upper part shows a number of
operations generated at the peers. The lower part shows the model snapshots at Peer 2.
Nodes of the same deletion are aligned horizontally. Nodes with dotted border are self-
invisible. Characters in light gray are invisible. We describe how to update the model in
the following section.

5 Operations and Undo

A user may execute the following normal view operations: (i) ins(pos,str) inserts string
str at position pos. (ii) del(pos, len) deletes len characters right to position pos. In addi-
tion to the normal operations, the user can undo any operation selected from the log.

A peer stores executed normal view operations in a queue. It may aggregate con-
secutive operations, for instance, to form string operations from character operations.
During a synchronization cycle, the peer turns view operations into model operations
before integration.

To avoid traversing a large number of nodes for every local operation, a model main-
tains a current position, (νcurr, pcurr), where νcurr is the current node and pcurr is the
offset to the left edge of νcurr. Because a user typically focuses on a small region at a
time, the distances between consecutive operations are often short.
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There are three normal model operations: (i) move(m) moves the current position a
distance of m visible characters (leftwards when negative). (ii) ins(str) inserts string str
at the current position. (iii) del(len) deletes len characters right to the current position.

A peer processes a local undo operation in the order opposite to normal operations.
It first integrates the undo in the model and then synchronizes it to the view.

For each integrated local operation, a peer broadcasts a representation of the model
update to remote peers. A node is uniquely identified by (op.pid,op.pun,cidl), where
(op.pid,op.pun) is the identifier of its operation and cidl is the identifier of its leftmost
character. The peer uses the identifiers of the involved nodes, offsets to the leftmost
characters etc. to describe the update, so that remote peers can unambiguously locate
the referent nodes and split boundaries. Each peer maintains a hash table of nodes using
their identifiers, so locating a referent node takes near-constant time.

A model-view synchronization does the following tasks sequentially: (1) integrating
local operations, (2) integrating remote operations, and (3) updating the view (with a
render procedure). This ensures that, when a model integrates a local operation, there
is no concurrent remote operation in the model.

Procedur localIns(pid, pun, str)
1 (νl ,νr)← split(nextVisible(νcurr, pcurr,0))
2 νins ← Node(cidsBetween(νl .cidr,νr.cidl ,pid,str.len),Op(pid,pun),str)
3 setInsGroundOps(νins.op,νl ,νr)
4 insertBetween(νins,νl ,νr)
5 νcurr, pcurr ← νr,0

e.

Procedure localIns integrates a local insertion. It places the new inserted string to the
right of all invisible characters at the current position. Procedure nextVisible(ν, p,n),
called from localIns (line 1) and localDel (lines 1 and 2), returns the position of the
n-th visible character right to position (ν, p). In Fig. 1-5, Peer 2 inserts “A” of ins2

5 to
the right of the invisible “34”.

If the insertion position is inside an existing node, localIns splits the node (line 1).
Procedure split returns either the new nodes after the split, or two existing nodes if the
split position is at the edge of an existing node. It also splits the corresponding inner
nodes, recursively down to an insertion node at the lowest layer. This way, it exposes the
character identifiers at the position of the split. In Fig. 1-6, when inserting “B”, Peer 2
splits the “56” nodes of both del23 and ins2

1.
Next, localIns creates a new insertion node (line 2). Procedure cidsBetween generates

the character identifiers using the ones at the insertion position.
Procedure setInsGroundOps updates the P and C sets of the insertion and its ground

operations (line 3). If νl and νr are of the same operation, then this operation is a ground
operation of the new insertion. The procedure goes on with νl’s rightmost inner node
and νr’s leftmost inner node, downward until the lowest layer. In Fig. 1-6, both del23 and
ins2

1 are ground operations of ins2
6.
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Finally, localIns connects the new insertion node with the neighboring nodes (line 4)
and moves the current position to the right end of the inserted string (line 5).

Procedure. (pid, pun, len)
1 (νl ,νr)← split(nextVisible(νcurr, pcurr,0))
2 (ν ′

l ,ν
′
r)← split(nextVisible(νr,0, len))

3 νdel ← Node(νr.cidl ,ν ′
l .cidr,Op(pid,pun))

4 insertInners(νdel, [νr..ν ′
l ])

5 insertBetween(νdel,νl ,ν ′
r)

localDel

Procedure localDel splits existing nodes at the deletion boundaries (lines 1 and 2),
inserts a new node for the deletion at the outermost layer (lines 3 and 5) and associates
to it the corresponding inner nodes (line 4). Notice that a deletion may contain invisible
characters inside the deleted string. For example, del23 in Fig. 1-3 contains “34”.

A model integrates a remote update only when the update is ready for integration,
i.e., when all nodes and elements which the update refers to exist in the model (possibly
after some split). For example, ins3

1 in Fig. 1 is ready for integration in models in which
a node of ins2

1 exists. The ready-for-integration condition is less strict than the general
“happen-before” condition in the literature (such as [6]), because only the nodes and
elements which the update directly refers to must exist in the model.

Procedur remoteIns(pid, pun, cid, str, G , ν , p)
1 νins ← Node(cid,stringRightEndCid(cid,str.len),Op(pid,pun),str)
2 setGroundOps(νins.op,G )
3 (νl ,νr)← insNarrow(cid,split(ν , p))
4 extendInsGroundOps(νins.op,νl ,νr)
5 insertBetween(νins, top(νl), top(νr))

e.

A remote insertion specifies the inserted string str, the identifier of the leftmost char-
acter cid, ground operations G of the insertion, and the insertion position (ν, p). Proce-
dure remoteIns re-generates the insertion node νins (line 1) and updates the P and C
sets of νins.op and operations in G (line 2).

Next, remoteIns splits (if necessary) the nodes at the insertion position and narrows
down the position among the concurrent insertions using character identifiers (line 3).
In Fig. 1-7, there is already a concurrent insertion “A” at the position of ins3

1. When the
identifier of “X” is smaller than that of “A”, Peer 2 inserts “X” between “4” and “A”.

The procedure then updates the information about ground operations with respect
to the concurrent operations (line 4): if the neighboring node νl (or νr) is a concurrent
insertion, its ground operations become also the ground operations of the new insertion;
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Fig. 2. Integrating a remote deletion

if a concurrent deletion contains both νl and νr, the deletion becomes a ground operation
of the new insertion. The visibility of the remote insertion is therefore dependent on the
visibility of the containing concurrent deletions. This addresses the issue illustrated in
Example 2. In Fig. 1-7, del23, which is a ground operation of ins2

5 (“A”), becomes a
ground operation of the new ins3

1 (“X”).
Finally, remoteIns connects the nodes at the outermost layer (line 5). In Fig. 1-7, the

“X” node of ins3
1 connects to “234” of del23 and “A” of ins2

5.
A remote deletion specifies the inner nodes of the deletion at the time of its creation.

The referent inner nodes at the current peer may differ from the specified ones in two
ways: (1) the remote peer might have split the inner nodes at deletion boundaries (as
shown with the upward arrows in Fig. 2-1); (2) the current peer might have split the
inner nodes when integrating concurrent operations (as shown with the downward ar-
rows in Fig. 2-1). In the figure, del1 is undone and the insertion of “a” sees the restored
characters of del1. del2 sees both “a” and the restored characters of del1.

Procedur remoteDel(pid, pun, inners)
1 (inners,νl ,νr)← prepareInners(inners)
2 del ← Op(pid,pun); D ← makeDels(pid,pun,del, inners)
3 for ν ∈D do placeDel(ν ,overlappingDels(ν))
4 for ν between(νl ,νr),ν .op.type = ins∧¬overlapping(ν ,D) do
5 setGroundOps(ν .op,{del})
6 connectTopNodes(D)

e.

The prepareInners procedure (line 1 of Procedure remoteDel) uses the specified inner
nodes to split the existing nodes at deletion boundaries and returns the new referent
inner nodes and their left and right neighbors νl and νr (as shown in Fig. 2-2). The
makeDels procedure (line 2) generates a set D of nodes for the remote deletion based on
the referent inner nodes and concurrent operations. Procedure placeDel (line 3) places
the generated deletion nodes against the nodes of the overlapping concurrent deletions.
For example, a deletion with a larger pid is placed above a concurrent deletion with
a smaller pid. The deletion becomes a ground operation of the concurrent insertions
inside the inners nodes (lines 4 and 5). For the new deletion nodes at the outermost
layer, connectTopNodes connects them with the neighboring nodes (line 6).
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In Fig. 1-8, the del11 update specifies a single inner node “4567” of ins2
1. Proce-

dure prepareInners splits the “34” nodes of ins2
1, del22 and del23. Procedure makeDels

generates the nodes for del11. Procedure placeDel places the del11 nodes below those
of del22 and del23. del11 becomes a ground operation of the concurrent insertions ins2

5,
ins2

6 and ins3
1, which makes characters “X”, “A” and “B” invisible. Finally, Procedure

connectTopNodes connects node “7” of del11 with neighboring nodes “6” of del23 and
“8” of ins2

1.
When a user tries to undo an operation and makes the operation invisible, any oper-

ation built on the undone operation becomes groundless (and therefore also invisible).
In Fig. 1-7, undo of undo2

4, or redo of del23, would make the insertions ins2
5, ins2

6 and
ins3

1 (that are contained in del23.op.C ) groundless. If there were other operations built
on these insertions, they would also become groundless.

The user may selectively keep the effects of operations built on the operation being
undone. In Fig. 1-7, if the user decides to redo del23 and keep the visible effect of ins2

6,
the model then removes ins2

6 from del23.op.C and del23 from ins2
6.op.P .

The execution of a local undo starts in the model, with the following steps: (1) in-
tegrate local and remote operations in the queues; (2) integrate the undo with the undo
procedure; (3) move the current position to the edge of the undo; (4) synchronize the
model with the view so that the user sees the effects of the undo.

Procedur undo(pid, pun, op)
1 push((pid,pun),op.undo.U )

e.

Procedure undo integrates both local and remote undo of an operation, which is
either a normal operation or an undo of another operation. Procedure undo can receive
either an op or an undo element as the argument of the op parameter. The procedure
simply inserts the identifier of the undo into the corresponding U set.

For a remote undo, if there has been a concurrent identical undo and the U set was
not empty, inserting a new identifier does not change the visibility of the operation and
there is therefore no effect in the view. For a local undo, the real overhead is the move
of the current position and the synchronization with the view.

6 Correctness

We consider two traditional correctness criteria, convergence and intention preserva-
tion, as defined in [6]. A formal proof is outside the scope of this paper.

Convergence requires that, all peers have the same view when they have integrated
and synchronized the same set of operations. Our approach guarantees convergence
by enforcing the following properties: (a) models of all peers have the same set of
characters; (b) the characters have the same left-right order; (c) the characters have the
same visibility.
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Intention preservation requires that, for any operation op, (a) the effects of executing
op at all peers are the same as the intention of op, and (b) the effect of executing op
does not change the intention of independent operations.

Intention is not formally defined in [6] and is open to different interpretations. Gen-
erally, the intention of an operation is decided at the view of the originating peer. More
specifically, an insertion is between two specific characters; a deletion removes a string
of characters from the view; undo of an insertion removes the inserted characters from
the view; undo of a deletion makes the removed characters re-appear in the view and
the positions of the re-appeared characters must preserve the intentions of the corre-
sponding insertions.

In our approach, there is also induced intention due to concurrent operations and
selective undo. More specifically, the intention of an operation is preserved only when
the intentions of all its ground operations are preserved. When the effect of an operation
disappears (e.g. due to an undo or a deletion), the effects of all operations built on
it should also disappear. The algorithms take care that every operation has the same
induced intention at all peers.

Notice that undoing a deletion brings the deleted characters back in the view only
when the insertions of the corresponding characters are not undone and the characters
are not deleted by any concurrent overlapping deletion. That is, undoing a deletion does
not change the intention of undoing any insertion or the intention of any other deletions.
This is in contrast with related work that defines the effect of concurrent deletions of
the same character as a single deletion: undoing a deletion thus changes the intention of
all concurrent deletions of the same character. For example, in Fig. 1-8, if undoing del11
makes the entire “4567” visible, the intentions of del22 and del23 are not preserved. On
the other hand, concurrent undos of the same operation are regarded as a single undo,
because they are always unambiguously defined on the same operation.

7 Performance

The response time of view operations is an important part of an editor’s responsiveness
to local user operations. Except selective undo, all view operations are executed com-
pletely in the view. Their performance therefore are nearly the same as a single-user
editor. However, local view operations are executed only when system resources (CPU,
memory etc.) are available, so responsiveness is dependent on the overall performance
of the editor, including the more expensive model operations.

Table 1. Time complexity of procedures

split O(hn+ l) move O(m)
render O(m+ rh) undo O(1)
local ins O(s+hn+ l) local del O(s+hn+ l)
remote ins O(kil +kd +hn) remote del O(kd(s+hn+ l)+ki)

Table 1 summarizes the time complexity of the different procedures. In the table,
parameter m is the distance of a move, i.e. the number of nodes at the outermost layer
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Fig. 3. Occurrences of operations with different lengths

a move traverses. l is the length of a character identifier. s is the span of an operation,
i.e. the number of nodes between the leftmost and rightmost nodes of the operation,
including those not belonging to the operation. h is the height of a node, i.e. the number
of layers in the outer-inner structure. n is the number of a node’s inner nodes. ki is
the number of concurrent conflicting insertions and kd is the number of concurrent
overlapping deletions. r is the size of the region to be rendered, i.e. the number of nodes
in the region where new updates should be synchronized to the view.

We have implemented the core algorithms in Emacs Lisp, aiming at supporting col-
laborative editing in a widely used open-source editor. We ran two experiments for
performance study. The first one is based on a trace of operations for editing a paper.
This experiment can be considered to be representative for real-life editing sessions.
It is nonetheless based on the trace of a single-user editor. The second experiment is
based on generated operation traces that force a large number of conflicting concurrent
operations. The measurement was taken under GNU Emacs 24.3.1 running in 32-bit
Linux 3.14.2-ARCH on an old ThinkPad T61p (2007 model) with 2.2GHz Intel Core2
Duo CPU T7500 and 2GB RAM.

In the first experiment, we captured the trace of operations for editing a technical
paper in a two-week period. The paper is based on the templates and even contents
of other papers. Therefore the editing involves a number of copy, paste and deletion
of relatively large text. This trace forms the view operations. We then aggregated and
converted the view operations into model operations. Figure 3 shows the number of
model operations and their lengths (numbers of characters) obtained from the trace.

We ran the trace with two peers. To make sure that operations are valid (i.e. with
valid positions and lengths), the peers behave in the following way. For each operation,
each peer generates and integrates a local operation, and sends the encoded representa-
tion of the update to the other peer. It then receives and integrates the identical update
from the other peer, and undoes immediately the last identical operation of the second
peer. Therefore, only the effects of the operations originated from the first peer remain.
Finally, each peer sends the encoded representation of the undo to the other peer, and
integrates the identical concurrent undo from the other peer.

Figure 4 shows the execution time of different procedures. The y-axis represents
the execution time in milliseconds (ms). The x-axis represents the time at which the
procedures are called.
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Fig. 4. Execution time (ms) of different procedures

The first important observation is that the execution time of all procedures stays
pretty stable and is generally independent of the length of the operation history. This is
mostly due to the use of hashing to locate nodes.

Integrating local and remote insertions takes around 0.05 ∼ 0.1 ms. Note that the
sizes of inserted strings vary from one character to nearly 100K characters, but still
the time for integration varies with very small margins. The reason is that character
strings are mainly generated by view and networking procedures. Furthermore, string
and buffer management in Emacs is efficient.

Integrating local and remote deletions takes around 0.2 ms. There are cases where
integrating a local and remote deletion can take up to 0.6 ms and 17 ms respectively. In
these cases, a deletion involves a relatively large number of nodes. That is, the s and n
in Table 1 are relatively large.

Integrating a local undo takes around 0.2 ms. This includes checking for groundless
strings, moving the current position to the undo, and synchronizing the view with the
model. Integrating a remote undo takes only 0.04 ms.

Procedure move takes less than 0.2 ms the vast majority of times, because editing
operations often focus on a small region for a period of time. Even in the occasions
where the move distances are long, it takes less than 2 ms.

Procedure render takes around 0.1 ms. In the experiment, the model and view are
synchronized after the integration of every remote update or local undo. Therefore, the
execution time of Procedure render does not vary much. It should be pointed out that in
the figure, the time of render is included in the integration of local undo but not in the
other operations.

With respect to memory usage, at the peek, Emacs used an additional 10 MiB of
main memory during the experiment. Totally, 20 MiB was allocated for the experiment,
including the part that has been freed. This memory consumption is shared by two peers.

The first experiment simulates how the algorithms work with a real-life session.
However, it does not reveal how they work when a document is simultaneously edited
by a large number of users, because there are only two peers and conflicts of concur-
rent operations follow exactly the same patterns. In the second experiment, we study
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Fig. 5. Execution time (ms) with conflicting operations

the performance of our work when there are varying number of conflicting or overlap-
ping concurrent operations. In what follows, we use conflicting operation to mean either
conflicting insertions or overlapping insertions and deletions.

We generate the operations for N peers as follows. First, we generate a random po-
sition p in the view. Then for every peer, we generate a random operation at a random
position near p. For the random operations, 50% of them are insertions, 30% are dele-
tions and 20% are undo of an earlier operation that contains position p. An insertion
inserts 10 characters. A deletion deletes 7 characters. They are at random positions be-
tween p− 3 and p+ 3, inclusive. After all peers have integrated all local and remote
operations, we generate a new random position p, and the same process continues. We
run this process until the execution time stabilizes. We vary the number of peers N from
2 to 12. For a reasonably sized document, the number of users that simultaneously edit a
very small region, is normally only a very small fraction of the total number of users. So
we believe the experiment is sufficient for the most challenging situations in real-world
scenarios.

Figure 5 shows the time for integrating remote updates. The time for integrating
local operations is not shown, because when a local operation is integrated, there are
no concurrent remote operations integrated in the model. The results indicate that the
increase of the number of conflicts does not have observable effect on delay.

8 Conclusion

Selective undo has long been regarded as a desirable feature of collaborative editors.
However, support for selective undo has remained for two decades at the “necessary first
step”, namely for character-only operations without any regard of possible undesirable
effects. In this work, we proposed support for selective undo in collaborative editing,
including support for string operations and management of possible undesirable undo
effects. Key to our approach is a layered CRDT that materializes operation relations
essential for string operations and selective undo. We analyzed the complexity of the
algorithms and presented experimental results. The results indicate that the approach
provides sufficient responsiveness to end users.
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There are still open issues to be addressed before end users can finally use this work.
Our next tasks include a GUI for selection of operations to be undone and management
of undo effects, and session management that supports dynamic groups, combination
of synchronous and asynchronous operations, network partition, and so on.
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Abstract. Cloud-based systems are becoming an increasingly attractive
target for malicious attacks. In IaaS environments, malicious attacks on
a cloud customer’s virtual machine may affect the customer, who can-
not use all diagnostic means that are available in dedicated in-house
infrastructures, as well as the cloud provider, due to possible subsequent
attacks against the cloud infrastructure and other co-hosted customers.
This paper presents an integrated approach towards forensics and in-
cident analysis in IaaS cloud environments. The proposed architecture
enables the cloud provider to securely offer forensics services to its cus-
tomers on a self-service platform. The architecture combines three impor-
tant analysis techniques and provides significantly better investigation
capabilities than existing systems: First, it supports host-based forensics
based on virtual machine introspection. Second, it offers live remote cap-
ture of network traffic. Third, and most importantly, it provides hybrid
combinations of the first two techniques, which enables enhanced analysis
capabilities such as support for monitoring encrypted communication.

1 Introduction

1.1 Motivation

The increasing shift of resources towards the cloud makes it necessary to deal
with new IT security challenges. As more and more resources are out-sourced into
the cloud, these will be a more likely target of malicious activities. Traditional
mechanisms for investigating such incidents are, to large extent, insufficient.

A basic problem is the separation between cloud provider and cloud user.
In an Infrastructure-as-a-Service (IaaS) cloud, the cloud customer is responsi-
ble for all software layers within a virtual machine, but in case of a security
incident, the customer cannot apply traditional investigation approaches and
tools that require direct access to the physical hardware. On the other hand,
the cloud provider has no knowledge about internals of the customer’s virtual
machines and thus is also in a weak position for an in-depth investigation. A
second important challenge is multi-tenancy. Significant efficiency benefits of
cloud computing stem from the shared use of resources by multiple customers.
A fundamental requirement of cloud infrastructures is the strict separation be-
tween multiple tenants using shared physical hardware. An investigation of one
customer must not affect the availability, integrity or confidentiality of resources
used by other customers.

c© IFIP International Federation for Information Processing 2015
A. Bessani and S. Bouchenak (Eds.): DAIS 2015, LNCS 9038, pp. 207–220, 2015.
DOI: 10.1007/978-3-319-19129-4_17



208 J. Zach and H.P. Reiser

1.2 Problem Statement

It is straight-forward to use existing post-incident investigation tools that anal-
yse static main memory snapshots or analyse log files created during system
execution in an IaaS cloud environment. Main memory snapshots can efficiently
be created from within active virtual machines, and log files can be obtained from
the system within the virtual machine as well as from the cloud management
system. A fundamental limitations of these approaches, however, is that they en-
able only static a-posteriori analysis. What is currently missing are appropriate
methods for direct live investigations on a running system.

In this paper we propose a novel, integrated architecture for live IaaS foren-
sics. The architecture enables the cloud provider to offer forensics services to
customers via a secure interface. The architecture, which we implemented in the
LiveCloudInspector prototype, makes three important contributions:

– It enables remote host forensics based on virtual machine introspection
(VMI) with a self-service interface for customers;

– It enables efficient, transparent remote network forensics in IaaS cloud in-
frastructures;

– It offers novel analysis capabilities that yield additional insight by combining
host and network forensics.

The combined analysis makes important contributions to enhancing the in-
vestigation process. Specifically, it enables correlating recorded network traffic
with running processes, indicating exactly to which process data has been sent
to or received from; it supports dedicated network monitoring of selected pro-
cesses; and it supports transparent monitoring of encrypted network traffic using
VMI-based session key extraction.

This paper is structured as follows: In the next section, we discuss related
work. In Section 3, we summarize the network monitoring and virtual-machine
introspection mechanisms our work builds upon. Section 4 presents our architec-
ture. Section 5 describes and evaluates our prototype implementation. Finally,
we present our conclusions in Section 6.

2 Related Work

The problem of incident investigation in cloud computing environments has
gained some attention only in the recent years. Birk et al. [2] state that the ability
to perform forensic investigations in the cloud is of high relevance, but seldomly
discussed. The authors argue that guidelines and best practices for investiga-
tions in the cloud are rare, often outdated, or non-existent. Similarly, Taylor et
al. [12] conclude that “currently there do not appear to be any published guide-
lines that specifically address the conduct of computer forensic investigations of
cloud computing systems.”

Dykstra and Sherman [3] tried to deploy existing forensics tools such as Guid-
ance EnCase in an IaaS cloud to acquire forensic data remotely over the Internet.
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The paper provides an excellent discussion of the limitations of such an approach.
In particular, it argues why data acquired that way might not be trustworthy.

Martini and Choo [7] describe a conceptual framework for collecting forensic
data from a cloud environment. The paper includes an extensive discussion of
related work on digital forensics and cloud forensics on a broader scope than we
include here as well as a high-level description of a conceptual framework. To
our knowledge, no practical implementation of that framework exists so far.

In practice, the mechanism with most widespread support by existing cloud
providers is the export of virtual machine snapshots1. Such virtual machine snap-
shots contain data of the virtual disk, but not live data such as the main memory.
They can only be used for off-line forensic investigations. Some providers imple-
ment additional features such as Amazon Cloud Watch2, which provides basic
run-time monitoring features that collect various metrics about run-time be-
haviour, and Amazon Cloud Trail3, which records AWS API calls and delivers
log-files to the customer.

FROST (Forensic OpenStack Tool) [4] has recently been presented as a foren-
sic toolkit within the OpenStack platform. FROST collects data at the cloud
provider and host operating system level und makes it available to the customer
by additional API methods. These methods allow downloading API logs, firewall
logs and retrieving disk images. Similar to our approach, it advocates the idea
of integrating forensics tools and interfaces into a cloud platform management
infrastructure. What differentiates our work from FROST are enhanced mecha-
nisms for data acquisition and analysis, specifically supporting live analysis.

Gebhardt et al. [6] implemented a network forensics tool for the cloud that
extends the OpenNebula management platform. This tools allows recording net-
work traffic on demand and delivering network traffic dumps to the customer for
further investigation. The LiveCloudInspector includes a very similar approach
for network monitoring, but as a main contributions adds additional data acqui-
sition and analysis methods.

Our framework enhances these existing approaches by implementing both
network and host forensics based on dynamic run-time introspection in a single
integrated platform. The combination of network monitoring with host intro-
spection yields better insights and enables useful additional mechanisms such as
automated correlation of network traffic with running processes and automated
decryption of encrypted TLS channels based on secret-key extraction.

3 Background

3.1 Virtual Machine Introspection

Virtual machine introspection (VMI) is an established technology in which the
virtual machine monitor (VMM) transparently inspects internal data of a run-
ning virtual machine. The VMM has full control of all resources of the VM (such

1 http://aws.amazon.com/ec2/vm-import/ [validated on 2014-09-20]
2 http://aws.amazon.com/cloudwatch [validated on 2014-09-20]
3 http://aws.amazon.com/cloudtrail [validated on 2014-09-20]

http://aws.amazon.com/ec2/vm-import/
http://aws.amazon.com/cloudwatch
http://aws.amazon.com/cloudtrail
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as main memory, hard disks, and network devices), and thus is in a position for
accessing all of them.

Our prototype implementation builds upon the state-of-the-art introspection
library LibVMI4, which supports both Xen and KVM hypervisors. LibVMI re-
quires some knowledge about the OS running within the VM to interpret VM
memory correctly. In this paper, we assume that such information exists a priori
and can be provided statically to LibVMI. This should, for example, be the case,
if the user wants to investigate its own virtual machines. In situations in which
such information is not available, our system could be combined with approaches
that automatically bridge this semantic gap, such as Insight-VMI [10].

The first goal of our proposed architecture is to enable remote acquisition of
memory snapshots using VMI in an IaaS cloud-computing environment.

3.2 High-Level Memory Analysis

While LibVMI offers some low-level API for transparently obtaining data from
a running VM, it frequently is desirable to derive more high-level information.
Several existing tools such as F-Response5 and VAD tools6 support such analysis
on the basis of a static main memory snapshot. In our prototype, we use the
Volatility framework7, which can also be combined with live VMI. Volatility has
a modular architecture and, for example, includes modules that based on a target
system’s main memory content enumerate all processes (pslist), existing network
connections (connscan), open files (filescan) and registry entries (hivelist), or
extract sections of main memory of individual processes (memdump).

The second goal of our proposed architecture is to enable secure remote use
of this tool in a public cloud environment.

3.3 Network Monitoring Background

According to Garfinkel [5], tools for network forensics operate either host-based
(such as Wireshark8) or network-wide (such as NIKSUN NetDetector). They
either capture all network packets and store them for later analysis (“catch-it-as-
you-can”) or analyse packets directly after reception and store only information
produced by that analysis for later further processing (“stop-look-and-listen”).

Our third goal is to enable remote packet sniffing in a cloud environment,
which means that we aim at designing a service that captures all network pack-
ets of a virtual machine and stores them for later analysis by the client. For
such a host-based catch-it-as-you-can service, we additionally consider continu-
ous monitoring of virtual machines that are migrated and VMI-assisted filtering
of recorded traffic.

4 https://code.google.com/p/vmitools/ [validated 2014-09-20]
5 https://www.f-response.com/ [validated 2014-10-20]
6 http://vadtools.sourceforge.net [validated 2014-10-20]
7 http://www.volatilityfoundation.org [validated 2014-09-20]
8 https://www.wireshark.org [validated 2014-09-20]

https://code.google.com/p/vmitools/
https://www.f-response.com/
http://vadtools.sourceforge.net
http://www.volatilityfoundation.org
https://www.wireshark.org
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3.4 TLS Decryption Background

Analysis tools such as Wireshark contain protocol dissectors for hundreds of
different protocols. Dissectors are able to automatically interpret and display
protocol details. Wireshark is able to dissect TLS traffic, and if provided with
the RSA private key, it can decrypt messages used for exchanging the RSA-
encrypted session key (RSA key exchange). After obtaining the session key, all
subsequent TLS traffic can easily be decrypted.

Shamir et al. [11] have shown that RSA private keys can be located in main
memory dumps based on algebraic properties. Such approach could be used
for our system, but only with significant limitations: It works only for incoming
connections (otherwise, the session key is sent to the remote host, encrypted with
the remote host’s public key, and the corresponding private key of the remote
host cannot be retrieved locally), and it does not work with other key exchange
mechanisms that offer forward secrecy, such as Diffie Hellman and ECDH.

Our goal is to reuse as much as possible of the Wireshark TLS dissector,
but enhance it with VMI mechanisms that retrieve the session key from main
memory. We want to be able to monitor all TLS traffic, both incoming and
outgoing, and independent of the key exchange mechanisms used.

4 Design and Architecture

Our main goal is to design a secure system that enables cloud users and au-
thorized third parties to perform investigations on some target VMs as a self
service (i.e., without manual support by the cloud provider). In this section, we
first present the role model of our approach and the high-level design, followed
by a detailed description of workflows for simple and complex analysis tasks.

4.1 Role Model

Various roles can be differentiated in an IaaS cloud. Figure 1 illustrates the roles
that we consider. Our design makes the assumption that the cloud provider
itself (including its staff) is trustworthy. We do not consider malicious insiders
(such as a malicious administrator of the cloud provider). Such cases might be
tackled with trusted cloud computing techniques, for example such as presented
by Rocha et al. [9], but this is beyond the scope of the present paper. We consider
the following attacks against our architecture:

– Unauthorized malicious third parties that try to attack the forensics system
from outside;

– Users and external investigators that are authorized to investigate virtual
machines of a specific user, but exploit the forensics system to gain access
to or harm other users, violating the separation of tenants;

– Attackers that deploy (as a user) their own virtual machines within the
cloud infrastructure and use those as a starting point for attacks against the
forensics system.



212 J. Zach and H.P. Reiser

Fig. 1. Trusted and untrusted roles in the LiveCloudInspector architecture: The cloud
service provider (CSP) including its staff is trusted, while all other parties (external
investigators, users, VMs hosted by the CSP) are untrusted

4.2 Design

Figure 2 shows an overview of the architecture of LiveCloudInspector. It distin-
guishes between two parts of the forensics system. First, a dedicated forensics
platform implements all supported workflows as well as the public service inter-
face. Workflows are included for low-level direct main memory dumps of virtual
machines, for selected memory forensic operations, and for network forensics.
The workflow implementations interact with corresponding counterparts that
are deployed as a forensic remote service on all cloud hosts.

Our design does not integrate the forensics mechanisms deeply into a cloud
management platform such as OpenStack9 or OpenNebula10. Instead we aim
at proposing a portable architecture that can, with little effort, be reused on
multiple cloud platforms or different versions of the same platform.

Nevertheless, there are two dependencies on the cloud management system.
First, we do not want to have a separate user management system. Instead, Live-
CloudInspector will use a platform-specific adaptor to interact with the cloud
management system for user authentication and authorization. Second, we de-
pend on the cloud management system for locating the physical host of target
virtual machines and for tracking them on migration operations.

9 http://www.openstack.org [validated 2014-09-20]
10 http://opennebula.org [validated 2014-09-20]

http://www.openstack.org
http://opennebula.org
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Fig. 2. The LiveCloudInspector architecture adds two components to a cloud environ-
ment: A dedicated Forensics Platform and decentralized Forensics Remote Services
deployed on all cloud hosts

The service interface of the forensics platform is the public, remotely accessi-
ble interface for users and external investigators. After checking the authorization
of a client to access the forensics platform via the cloud management system,
it accepts commands for VMI, memory forensics or network forensics, retrieves
the location of a virtual machine from the platform’s management layer, and
finally remotely interacts with the corresponding forensic remote service.

In the following, we first discuss the details of all simple workflows, which are
workflows for either recording network traffic or for VMI-based host forensics,
followed by a discussion of complex workflows, which use a combination of host
introspection and network monitoring in order to derive more in-depth insights.

4.3 Simple Workflows

Remote Main Memory Dump. is the first workflow and enables remote snap-
shots of the main memory of a virtual machine. Note that this is fundamentally
different from the usual disk snapshot generation supported by several cloud
providers. Often, relevant artefacts of problems or malicious activities manifest
themselves only in main memory, and not on persistent disk storage.

In this workflow, a cloud user or an authorized investigator requests a memory
dump at the LiveCloudInspector platform. The platform checks user authenti-
cation and authorization and, if access to the specified VM is granted, retrieves
the physical location of the VM from the cloud management platform and re-
quests a memory dump from the forensics remote service at the physical host.
Finally, the memory dump is made available for download for the cloud user or
investigator.
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The advantage of this workflow is that the investigator can use any tool of
his/her choice to analyse the memory dump. Under the assumption of a trust-
worthy cloud infrastructure and forensics service, a digital signature attached to
the memory dump by the forensics remote service can guarantee the validity of
the snapshot. The disadvantage of this workflow is the cost for transferring the
memory dump (potentially several gigabytes for large VM instances). A further
limitation of the approach is that information in CPU registers or main memory
cache is not recorded in the main memory dump.

It should be noted that in fact main memory forensics in a virtual machine
is much easier than main memory forensics on a traditional physical host. The
main memory of a virtual machine can easily be extracted using introspection
tools such as libVMI, whereas the acquisition of main memory content of physical
machines requires dedicated hardware or, alternatively, software running on the
host that potentially is subject to (unnoticed) alterations.

Remote Memory Forensics enables remote execution of more complex foren-
sics analysis of VM memory. The data source is the same as in the first workflow
(i.e., the main memory of a target virtual machine), but instead of transferring
the whole memory dump to the investigator, the analysis is performed directly
at the target host. For this purpose, such analysis capabilities are enabled di-
rectly as a service. In our prototype implementation, we offer remote execution
of Volatility commands. Volatility supports many high-level diagnostic opera-
tions, as briefly discussed in Section 3, and is able to directly interact with VM
memory using libVMI.

The advantage of this workflow is that the memory snapshots do not need
to be transferred to the investigator. The main disadvantage is that only those
remote forensics tools and operations are supported that have been implemented
in the forensics platform. We do not support the execution of arbitrary code
selected by the user, because this might raise a lot of security questions.

Network Forensics yields additional information for the analysis of anomalous
occurrences and intrusions by observing communication patterns. For example,
somemalware might be periodically communicating with a command-and-control
server. Observing network traffic using physical access to the network is an estab-
lished approach in forensics. In a public IaaS cloud, the investigator has, in most
if not all cases, no direct access to physical hosts. Instead, a mechanism for remote
acquisition of network traffic is required.

Multi-tenancy potentially raises additional challenges for such remote acqui-
sition, depending on how multi-tenancy is handled by the network infrastructure
used by the cloud provider. If each customer (or each VM) has its own, separate
virtual network, the traffic of this virtual network can be used for investigation.
If multiple tenants share the same local network, additional filtering needs to be
applied to the recorded traffic in order to assure strict separation of tenants.

The network monitoring part of the LiveCloudInspector approach is based on
previous work by Gebhardt et al. [6]. Unlike the previous work, which integrated
the forensics service deeply into OpenNebula, our focus was put on minimizing
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Fig. 3. This image illustrates the high-level interactions between forensics platform
(bottom host) and forensics remote service (all other hosts) during VM migration

the dependency on the cloud management system. This makes LiveCloudInspec-
tor portable to other cloud management infrastructures.

The basic network capture service implements the recording of network traf-
fic on request by the user. The traffic capture is remotely initiated by remote
interaction between forensics platform and forensics remote service. In order to
avoid storage overhead on the physical host where the traffic is recorded and also
in order to minimize the delay between recording and analysis, each recorded
packet is directly sent from the forensics remote service to the forensics platform,
where it is made available for download to the investigator.

Virtual Machine Migration is handled by an extension of the network foren-
sics workflow. A cloud management platform may perform live VM migration
for purposes such as load balancing or maintenance operations. Many VM man-
agers support not only cold migration (shutting down a VM and relaunching it
on a different host), but also hot (live) migration (moving the VM to a different
host without shut-down or interruption of client connections).

The LiveCloudInspector supports appropriate coordination mechanisms for
handling continuous network capturing during VM migration, as illustrated by
Figure 3. For this purpose, it is necessary to receive pre-migration and post-
migration events from the cloud management platform, which enable a coordi-
nated activation of traffic acquisition at the migration target and deactivation
at the migration source after finishing the migration. Traffic from both the old
and the new location are collected by the Forensics Platform and presented to
the investigator as a single network capture.
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4.4 Complex Workflows

One of the most significant advantages of a hybrid network and host forensics
approach is that data of both sources can be combined, which yields several
benefits.

Process-Specific Network Monitoring for a single process running within a
virtual machine is a first example of a complex workflow. A problem of remote
network forensics is that potentially large amounts of recorded data (the whole
traffic of a virtual machine) need to be transferred to the investigator.

The LiveCloudInspector allows the investigator to filter the recorded traffic
according to running processes within the VM. In order to achieve this, infor-
mation (IP address and TCP/UDP port numbers) from the captured network
is correlated with data about network connections and processes acquired by
virtual-machine memory introspection. While this is similar to network foren-
sics workflow, it has the big advantage of requiring less data to be transferred
to the investigator.

Correlating Process Names with Network Traffic is a workflow that can
be used for monitoring all network communication and correlating each connec-
tion with information about the communicating process on the local machine.
This might yield only little benefit for incoming connections towards the virtual
machine, as usually the target process will be uniquely identified by the destina-
tion port and target ports other than the intended services will likely be blocked
by a firewall.

Information about corresponding processes can be of valuable benefit for out-
going connections (i.e., originating at the virtual machine under investigation).
In this cases, local port numbers usually do not reveal any information about
the process the connection originates from.

Monitoring Encrypted TLS Communication is a possibly even more in-
teresting benefit of the combination of host and network forensics. The basic
idea is that the session key of a TLS session can directly be extracted using
virtual-machine introspection, and then later be used to decrypt all encrypted
TLS communication.

The TLS decrypter of LiveCloudInspector can be activated by the network
monitor. If a TLS connection is detected, we need to wait for the right point in
time for starting the key search. The session key has been calculated by the TLS
implementation after the initial TLS handshake has finished and encryption is
started using a ChangeCipherSpec message. At this point in time, a main memory
snapshot of the communicating process within the VM is created and the search
for the session key is started concurrent to continuously recording the encrypted
traffic.
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5 Implementation and Evaluation

5.1 Implementation

We have implemented the proposed architecture in the LiveCloudInspector pro-
totype.

This prototype is designed for working with the OpenNebula cloud manage-
ment infrastructure. We tried to avoid strong dependency on a specific cloud
management product, so we expect that it is easy to port our prototype to other
systems. The user interface of LiveCloudInspector is not integrated internally
into OpenNebula, but instead a separate web-based interface was created. For
this purpose, a front-end running as Java Server Pages on an Apache Tomcat
application server were implemented. The front end enables the user to activate
several backends for low-level VMI access, for high-level memory introspection,
and for network forensics.

The user interface interacts with OpenNebula for authenticating users. The
authorization to access virtual machines via LiveCloudInspector is thus not han-
dled with a separate user management system, instead the internal user man-
agement of OpenNebula is used. For this purposes we implemented a Custom
Realm for Tomcat11 that forwards a user authentication request to OpenNebula
authentication core.

A forensics remote service implemented in Java is executed on each cloud host.
This service offers a remote interface for interaction with the forensics server.
We used SIMON Remote12 for implementing calls from the server to the remote
service, as it is easier to deploy than standard Java RMI. The remote service uses
TLS with additional client authentication to make sure that only the forensics
server can interact with the remote service.

Our current prototype for the TLS decryption assumes that the session key is
directly stored in main memory as a byte array. So far, we successfully validated
our key extractor with OpenSSL, JSSE, GnuTLS and Microsoft Schannel imple-
mentations. We directly use the decryption functionality of the Wireshark TLS
dissector, and thus our implementation works with all TLS ciphers supported
by Wireshark.

5.2 Rootkit Case Study

As a first use case we considered a virtual machine infected by the Linux rootkit
KBeast. This rootkit is installed as a kernel module and implements features
such as key logging and a remote backdoor. The rootkit takes various measures
for hiding itself from the user. For example, it hides itself from commands listing
the loaded kernel modules (such as lsmod), it hides the backdoor process from
the process list, and hides network connections of the backdoor from tools such
as netstat. It is, thus, difficult to detect the rootkit by tools running within the
virtual machine.

11 http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html [validated 2014-10-20]
12 http://dev.root1.de/projects/simon [validated 2014-10-20]

http://tomcat.apache.org/tomcat-7.0-doc/realm-howto.html
http://dev.root1.de/projects/simon
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Using our LiveCloudInspector prototype, we were able to remotely execute
volatility functions, e.g., to extract information about kernel modules, network
connections, and process lists via VM introspection. As the rootkit is not able
to manipulate the information extracted using VMI, we were immediately able
to distinguish between an infected and a correct virtual machine.

5.3 Security Evaluation

Our IaaS forensics architecture aims at enhancing the security of cloud com-
puting by enhancing the capabilities for incident analysis, but it also represents
an additional component that increases the system’s complexity and attack sur-
face and possibly causes additional security risks. We therefore discuss protec-
tion mechanisms included in our architecture against the threads described in
Section 4.1.

Unauthorized malicious third parties that try to attack the forensics system
from outside can interact with the service interface of the forensics platform. Our
prototype implements client authentication by delegation to the OpenNebula
platform. Assuming a correct implementation of the authorization system in the
forensics platform, only users that can access the cloud management platform
can access the forensics platform.

Clients that are valid users and thus successfully authenticate to the foren-
sics platform might try to acquire information about other users, violating the
strict separation of tenants. In our system, for both network and host forensics,
OpenNebula’s VM-ID is used to identify the target virtual machine. For all oper-
ations, OpenNebula is contacted for all access to that VM-ID, and OpenNebula
checks the user’s authorization. Only users that are authorized to access a vir-
tual machine via the OpenNebula API are allowed to access it via the forensics
platform.

User input is also used in the interaction between the forensics platform’s
backends and the forensic remote services. In particular, for remote memory
forensics, the user has a lot of control over arguments passed to the Volatility
tool. Careful input validation is necessary in order to avoid possible injection
attacks at this interface.

The Forensic Remote Service can also be a target of malicious attacks, origi-
nating either from outside or from a virtual machine within the cloud infrastruc-
ture. Besides blocking such interaction at the network level using firewall rules we
additionally implemented two-way authentication between the Forensics Plat-
form and Forensics Remote Services, making this kind of attack infeasible.

5.4 Limitations

A frequently discussed limitation of introspection-based tools for malware anal-
ysis is split-personality malware. Examples such as RedPill and variants [8] show
that it is easy for malware to detect whether it is running in a virtualized en-
vironment and thus could behave differently than in a production environment.
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This issue is not a problem for our approach, as we apply VMI directly in the
production environment.

What is a potential problem are attempts to subvert VMI, as shown for exam-
ple by DKSM [1]. Our current prototype implementation is based on LibVMI,
which relies on the assumption that the provided kernel system map corresponds
to the actual kernel in the VM. If the layout of kernel data structures is altered
by malware within the virtual machine, VMI can possibly produce wrong data.
This is not a direct limitation of our architecture itself, but is an implication of
the introspection mechanism in use, and the investigator using our system needs
to be aware of this potential problem. The development of more robust intro-
spection solutions that are not vulnerable to such attacks will help to remedy
this limitation.

Our monitoring approach for encrypted communication works for traffic that
uses standard implementations of TLS. We assume that session keys are stored
in main memory (which all popular implementations of TLS that we are aware
of do), and that traffic is encrypted according to the specification of TLS. This
is most likely true for all software intentionally running within the virtual ma-
chine (this is under full control of the user of the VM). Often, even malware
uses standard TLS for communication on command-and-control channels, but
this could easily be replaced by some other proprietary encryption mechanisms.
Our prototype will not be able to decrypt such connections that use encryption
methods different to standard TLS.

6 Conclusions

In this paper, we have presented the design and implementation of LiveCloudIn-
spector. LiveCloudInspector enables forensics as a service in public cloud envi-
ronments. The architecture combines, in a single system, three mechanisms that
support the analysis of security incidents:

– It enables transparent live host forensics based on virtual-machine introspec-
tion. This feature includes both the possibility of acquiring low-level memory
snapshots and the possibility of analysing the running system with high-level
Volatility commands.

– It enables remote network forensics by implementing a live network traffic
capture mechanism. This mechanism makes sure that captured data is fil-
tered correctly in a multi-tenant environment, and it also supports virtual
machine migration during the capture process.

– It combines network monitoring with VMI-based host analysis. This yields
interesting new analysis capabilities, such as directly monitoring traffic of
specific processes, correlating information about processes with network traf-
fic, and secret key extracting for monitoring encrypted TLS communication.
The session key extraction works for both incoming and outgoing connec-
tions, it even supports channels established with perfect forward secrecy (i.e.,
Diffie-Helman based session key establishment), and unlike interception-
based approaches it is fully transparent for the communication endpoints.
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With these contributions, our architecture enhances the possibilities for in-
vestigating security incidents in infrastructure-as-a-service cloud environments.
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Täıani, François 51, 138
Taiani, François 1
Tarasyuk, Olga 179
Thakur, Rajeev 173
Tirado, Juan M. 138

Vivas, José Luis 45
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