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Abstract In this paper, we show the extended general variational inequality prob-
lems are equivalent to solving the general Wiener–Hopf equations. By using the
equivalence, we establish a general iterative algorithm for finding the solution of
extended general variational inequalities.We also discuss the convergence criteria for
the algorithm. Our results extend and improve the corresponding results announced
by many others.
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1 Introduction

Variational inequality theory describes a broad spectrum of interesting and important
developments involving a link among various fields of mathematics, physics, eco-
nomics and engineering sciences [1–11]. Projection methods and their variant forms
including the Wiener–Hopf equations are being used to develop various numerical
methods for solving variational inequalities. It has been shown that the Wiener–
Hopf equations are more flexible and general than the projection methods. Noor
[1–7] and Qin [10] have used theWiener–Hopf equations technique to study the sen-
sitivity analysis, dynamical systems aswell as to suggest and analyze several iterative
methods for solving variational inequalities. A new class of variational inequalities
involving three nonlinear operators, which is called the extended general variational
inequalities, is introduced and studied by Noor [9].
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Motivated and inspired by the above research, we establish the equivalence
between extended general variational inequalities and general Wiener–Hopf equa-
tions in this paper. This alternative formulation is used to propose and analyze a
new iterative algorithm for computing approximate solutions of extended general
variational inequalities. We also study the conditions under which the approximate
solution obtained from the iterative algorithms converges to the exact solution of
the general variational inequalities. Results proved in this paper may be viewed as
significant and improvement of previously known results.

2 Problem Statement and Preliminaries

Let H be a real Hilbert space whose inner product norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. Let K be a nonempty closed convex subset of H . For given nonlinear
operators T, g, h : H → H , we consider the problem of finding u ∈ H : h(u) ∈ K
such that

〈T u, g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K . (1)

The inequality of the type (1) is called the extended general variational inequality,
which was introduced by Noor in [9]. We would like to emphasize that problem (1)
is equivalent to that of finding u ∈ H : h(u) ∈ K such that

〈T u + h(u) − g(u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K . (2)

This equivalent formulation is also useful from the applications point of view.
We now list some special cases of the extended general variational inequalities.
(I) If g = h, then problem (1) is equivalent to that of finding u ∈ H : g(u) ∈ K

such that
〈T u, g(v) − g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which is known as general variational inequality, introduced and studied by Noor
[3].

(II) For g = I , the identity operator, the extended general variational inequality
(1) collapses to: Find u ∈ H : h(u) ∈ K such that

〈T u, v − h(u)〉 ≥ 0, ∀v ∈ K ,

which is also called the general variational inequality; see Noor [6].
(III) For h = I , the identity operator, then problem (1) is equivalent to that of

finding u ∈ K such that

〈T u, g(v) − u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which is also called the general variational inequality, see Noor [8].
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(IV) For g = h = I , the identity operator, the extended general variational
inequality (1) is equivalent to that of finding u ∈ K such that

〈T u, v − u〉 ≥ 0, ∀v ∈ K ,

which is known as the classical variational inequality.
(V) If K ∗ = {u ∈ H ; 〈u, v〉 ≥ 0,∀v ∈ K } is a polar (dual) convex cone of a

closed convex cone K in H , then problem (1) is equivalent to that of finding u ∈ K
such that

g(u) ∈ K , T u ∈ K ∗, 〈g(u), T u〉 = 0

which is known as the general complementarity problem, which includes many pre-
viously known complementarity problems as special cases; see [2, 3, 6].

From the above discussion, it is clear that the extended general variational inequal-
ity (1) is most general and includes several known classes of variational inequalities
and related optimization problems as special cases. These variational inequalities
have important applications inmathematical programming and engineering sciences.

Related to the variational inequalities, we have the problems of solving the
Wiener–Hopf equations. Now let

QK = I − gh−1PK ,

where PK is the projection of H onto K , I , is the identity operator. If g−1, h−1 exists,
then we consider the problem of finding z ∈ H such that

ρ−1QK z + T h−1PK z = 0, (3)

where ρ > 0 is a constant. Equations of the type (3) are called general Wiener–Hopf
equations. Note that, for g = h, we obtain the original Wiener–Hopf equation, intro-
duced by Shi [11]. It is well known that the variational inequalities andWiener–Hopf
equations are equivalent. This equivalent has played a fundamental and basic role
in developing some efficient and robust methods for solving variational inequalities
and related optimization problems.

Recall the following definitions:

Definition 2.1 An operator T : H → H is said to be:

(I) Strongly monotone if there exists a constant α > 0 such that

〈T u − T v, u − v〉 ≥ α‖u − v‖2,∀u, v ∈ H.

(II) β-Lipschitz continuous if there exists a constant β > 0 such that

‖T u − T v‖ ≤ β‖u − v‖,∀u, v ∈ H.

(III) μ-coercive if there exists a constant μ > 0 such that
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〈T u − T v, u − v〉 ≥ μ‖T u − T v‖2,∀u, v ∈ H.

Clearly, every μ-coercive operator is 1/μ-Lipschitz continuous.
(IV) Relaxed η-coercive if there exists a constant η > 0 such that

〈T u − T v, u − v〉 ≥ (−η)‖T u − T v‖2, ∀u, v ∈ H

(V) Relaxed (ω, t)-coercive if there exist two constants ω, t > 0 such that

〈T u − T v, u − v〉 ≥ (−ω)‖T u − T v‖2 + t‖u − v‖2, ∀u, v ∈ H.

For ω = 0, T is strongly monotone. This class of mappings is more general that the
class of strongly monotone mappings.

We also need the following well-known result.

Lemma 2.1 Let K be a closed convex subset of H. Then, for a given z ∈ H, u ∈ K
satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ K ,

if and only if u = PK z, where PK is the projection of H onto K .

It is well known that the projection operator PK is a nonexpansive operator.

3 Main Results

First of all, using the technique of Noor [2], we prove the following result.

Theorem 3.1 The extended general variational inequality (1) has a solution u ∈
H : h(u) ∈ K if and only if z ∈ H satisfies the general Wiener–Hopf equation (3),
where

z = g(u) − ρT u, h(u) = PK z,

where PK is the projection of H onto K and ρ > 0 is a constant.

Proof Let u ∈ H : h(u) ∈ K be a solution of the extended general variational
inequality (1). Then, from (2), we have

〈h(u) − (g(u) − ρT u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K

which implies, using Lemma 2.1, that

h(u) = PK (g(u) − ρT u).
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Using QK = I − gh−1PK , we have

(I − gh−1PK )(g(u) − ρT u) = g(u) − ρT u − gh−1PK (g(u) − ρT u)

= g(u) − ρT u − gh−1h(u) = −ρT u

= ρT h−1PK (g(u) − ρT u).

It follows that
ρ−1QK z + T h−1PK z = 0,

where z = g(u) − ρT u.
Conversely, let z ∈ H be a solution of the general Wiener–Hopf equation (3).

Then, we have

ρT h−1PK z = −QK z = (gh−1PK − I )z = gh−1PK z − z. (4)

It follows from (4) and Lemma 2.1 that

0 ≤ 〈gh−1PK z − z, g(v) − gh−1PK z〉 = 〈ρT h−1PK z, g(v) − gh−1PK z〉

for all v ∈ H : g(v) ∈ K . It follows that u = h−1PK z, that is, h(u) = PK z is a
solution of (1) and g(u) = gh−1PK Z . Using (4), we have

z = g(u) − ρT u.

This completes the proof.

From the above Theorem 3.1, one can easily see that extended general variational
inequalities and general Wiener–Hopf equations are equivalent. This equivalent is
very useful from the numerical point of view. Using this equivalence and by an
appropriate rearrangement, we suggest and analyze the following iterative algorithms
for solving the extended general variational inequalities (1).

The general Wiener–Hopf equation (3) can be rewritten as

QK z = −ρT h−1PK z,

which implies that
z − gh−1PK z = −ρT h−1PK z,

Thus
z = gh−1PK z − ρT h−1PK z = g(u) − ρT u.
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Using the equality z = (1 − αn)z + αnz, we obtain

z = (1 − αn)z + αn(g(u) − ρT u).

This formulation enables us to suggest the following iterative algorithm for solving
the extended general variational inequalities (1).

Algorithm 3.1 For any z0 ∈ H , compute the sequence {zn}by the iterative processes

h(un) = PK zn, zn = g(un)−ρT un, zn+1 = (1−αn)zn +αn(g(un)−ρT un). (5)

In order to prove our next main result, we need the following lemma.

Lemma 3.1 ([10])Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − λn)an + bn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in [0,1] with
∑∞

n=1 λn =
∞, bn = o(λn), then

limn→∞ an = 0.

Theorem 3.2 Let K be a closed convex subset of a real Hilbert space H. Let g :
H → H be a relaxed (ω1, t1)-coercive and μ1-Lipschitz continuous mapping, h :
H → H be a μ1-Lipschitz continuous mapping and let T : H → H be a relaxed
(ω2, t2)-coercive and μ2-Lipschitz continuous mapping. Let {zn}, {un} and {h(un)}
be sequences generated by Algorithm 3.1, {αn} is a sequence in [0, 1]. Assume that
the following conditions are satisfied:

2θ1 + θ2 < 1, (C1)

where θ1 =
√
1 + μ2

1 − 2t1 + 2ω1μ
2
1, θ2 =

√
1 + ρ2μ2

2 − 2ρt2 + 2ρω2μ
2
2.

∑∞
n=0

αn = ∞. (C2)

Then the sequence {zn}, {un} and {h(un)} converge strongly to z∗, u∗ and h(u∗),
respectively, where z∗ ∈ H is a solution of the general Wiener–Hopf equation (3),
u∗ ∈ H : h(u∗) ∈ K is a solution of the extended general variational inequality (1).

Proof Letting z∗ ∈ H be a solution of the general Wiener–Hopf equation (3), we
have

h(u∗) = PK z∗ , z∗ = g(u∗) − ρT u∗, z∗ = (1 − αn)z∗ + αn(g(u∗) − ρT u∗),

where u∗ ∈ H : h(u∗) ∈ K is a solution of the extended general variational
inequality (1). Observing (5), we obtain
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‖zn+1 − z∗‖ = ‖(1 − αn)zn + αn(g(un) − ρT un) − z∗‖
= ‖(1 − αn)zn + αn(g(un) − ρT un) − (1 − αn)z∗ + αn(g(u∗) − ρT u∗)‖
≤ (1 − αn)‖zn − z∗‖ + αn‖g(un) − g(u∗) − ρ(T un − T u∗)‖. (6)

On the other hand, we have

‖g(un) − g(u∗) − ρ(T un − T u∗)‖
= ‖un − u∗ − (un − u∗) + g(un) − g(u∗) − ρ(T un − T u∗)‖
≤ ‖un − u∗ − (g(un) − g(u∗))‖ + ‖un − u∗ − ρ(T un − T u∗)‖. (7)

Now, we shall estimate the first term of right side of (7)

‖un − u∗ − g(un) − g(u∗)‖
= ‖un − u∗‖2 − 2〈g(un) − g(u∗), un − u∗〉 + ‖(g(un) − g(u∗))‖2
≤ ‖un − u∗‖2 + 2ω1‖g(u)n − g(u)∗‖2 − 2t1‖un − u∗‖2 + ‖g(un) − g(u∗)‖2
≤ ‖un − u∗‖2 + 2μ2

1ω1‖un − u∗‖2 − 2t1‖un − u∗‖2 + μ2
1‖un − u∗‖2

= (1 + 2μ2
1ω1 − 2t1 + μ2

1)‖un − u∗‖2 = θ21 ‖un − u∗‖2, (8)

where θ1 =
√
1 + 2μ2

1ω1 − 2t1 + μ2
1.

Next, we shall estimate the second term of right side of (7)

‖un − u∗ − ρ(T un − T u∗)‖
≤ ‖un − u∗‖2 − 2ρ〈T un − T u∗, un − u∗〉 + ρ2‖T un − T u∗‖2
≤ ‖un − u∗‖2 + 2ρω2‖T un − T u∗‖2 − 2ρt2‖un − u∗‖2 + ρ2‖T un − T u∗‖2
≤ ‖un − u∗‖2 + 2ρω2‖T un − T u∗‖2 − 2ρt2‖un − u∗‖2 + ρ2‖T un − T u∗‖2
= (1 + 2ρμ2

2ω2 − 2ρt2 + ρ2μ2
2)‖un − u∗‖2 = θ22 ‖un − u∗‖2, (9)

where θ2 =
√
1 + 2ρμ2

2ω2 − 2ρt2 + ρ2μ2
2.

Substitute (8) and (9) into (7) yields that

‖g(un) − g(u∗) − ρ(T un − T u∗)‖ ≤ (θ1 + θ2)‖un − u∗‖. (10)

Substituting (10) into (6), we arrive at

‖zn+1 − z∗‖ ≤ (1 − αn)‖zn+1 − z∗‖ + αn(θ1 + θ2)‖un − u∗‖. (11)

Observe that

‖un −u∗‖ = ‖un −u∗ − (h(un)−h(u∗))+ (PK zn − PK z∗)‖ ≤ θ1‖un −u∗‖+‖zn+1− z∗,
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which implies that

‖un − u∗‖ ≤ 1

1 − θ1
‖zn+1 − z∗‖. (12)

Now, substituting (12) into (11), we have that

‖zn+1 − z∗‖ ≤ (1 − αn(1 − θ1 + θ2

1 − θ1
))‖zn+1 − z∗‖,

From condition (C1), (C2) and Lemma 3.1, we have

limn→∞ ‖zn+1 − z∗‖ = 0.

From (12), we have
limn→∞ ‖un − u∗‖ = 0.

On the other hand, we have

‖h(un) − h(u∗)‖ ≤ μ1‖un − u∗‖.

It follows that
limn→∞ ‖h(un) − h(u∗)‖ = 0.

This completes the proof.

4 Conclusion

In this paper,we show that the extended general variational inequalities are equivalent
to the general Wiener–Hopf equations. A general iterative algorithm for finding the
solution of extended general variational inequalities is established by the equivalence.
We also discuss the convergence criteria for the algorithm.
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