Complex Fuzzy Set-Valued Complex Fuzzy
Integral and Its Convergence Theorem

Sheng-quan Ma and Sheng-gang Li

Abstract This paper is devoted to propose the convergence problem of complex
fuzzy set-valued complex fuzzy integral base on the complex fuzzy sets values com-
plex fuzzy measure. We introduces the concepts of the complex fuzzy set-valued
complex fuzzy measure in [1], the complex fuzzy set-valued measurable function
in [2], and the complex fuzzy set-valued complex fuzzy integral in [3]. And then,
we focuses on convergence problem of complex fuzzy set-valued complex fuzzy
integral, obtained some convergence theorems.

Keywords Complex fuzzy set-valued measure - Complex fuzzy set-valued mea-
surable function + Complex fuzzy set-valued complex fuzzy integral - Convergence
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1 Introductions

In 1998, fuzzy measure range is extended to the fuzzy real number field by Wu
et al. [4] etc., which give the definition of Sugeno integral base on fuzzy number
fuzzy measure, Guo et al. [5] etc. Also give the definition of (G) integral on fuzzy
measure of fuzzy valued functions, which will be generalized the Sugeno integral to
fuzzy sets [6]. In 1989 Buckley [7] proposed the concepts of fuzzy complex number,
including people need to consider the measure and integration problems of fuzzy
complex numbers, introduction fuzzy distance by Zhang [8—12], which discussed
the fuzzy real valued measure problem of fuzzy sets, and give the fuzzy real valued
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fuzzy integral; in 1996, fuzzy measure and measurable function concept is extended
to fuzzy complex sets by Qiu et al. [13], which given the concept of complex fuzzy
measure, complex fuzzy measurable function and complex fuzzy integral, Wang
and Li [14] etc. in 1999 based on the concepts of fuzzy number of Buckley, gives
the concept of fuzzy complex valued measures and fuzzy complex valued integral,
obtain some important results. The [15—17] study measurable function and its integral
of complex fuzzy number set, especially Sugeno and Choquet type fuzzy complex
numerical integral and its properties, and its application in classification technique.
In this paper, base on the research work on the basis of [1-3], gives the convergence
theorem of complex fuzzy set-valued complex fuzzy integral, lays a foundation for
the complex fuzzy set-valued complex fuzzy integral theory.

2 Complex Fuzzy Set-Valued Complex Fuzzy Measure

Definition 1 ([18]) Suppose (X, F) is a classic measurable space, E — F, mapp~ing
f X — [—o00,+o0],fis calle~d real valued Illeasurable function of (X, F) on E, if
and only if Vo € (—o0, +00), ENxE, € F, EﬂxCF € F,where Fy = {x : f(x) >

o}, mapping f X — F*(R), f is called real valued measurable function of (X, F)
on E ifand only if VA € (0, 1], 3.~ (x), fo. T (x) is areal valued measurable function,
where

Fo= | MU a2 | Ao, £l

r€[0,1] r€[0,1]

Definition 2 ([1]) Suppose Z is a non-empty complex numbers set, F(Z) is set
kinds on Z that consisting of by all complex fuzzy set p is fuzzy complex valued
distance that defined in F'(Z), set function

fi: F(Z)— F{(K)={A+iB:A BeFi(R),i=+v-1},
A+iB (A+iB) e FX(K)
called complex fuzzy set-valued complex fuzzy measure on (Z, F(Z)) if and only
if
I fu(¢) =0,0=(0,0),0 € F*(K),

2. YA,B € F(Z),A C B = u(A) < ji(B), where Reji(A) < Refi(B), Imji
(A) < Imj(B),

3. (AW CF (D) A, C A (n=1,2.. ):>,011n1u (UA)

4, {An] CF(Z)Ay D Appi(n=1,2..),

note as &t = Rept + ilmp 2 AR +ifg, (i =+/—1).
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Definition 3 ([2]) Suppose Z C K is a non-empty set of complex numbers,
(Z, F(Z)) is a classical complex measurable space, E € F(2), mapping f : Z —
K, called f is a complex valued measurable function on E about (Z, F(Z)), if and
only if Va +ib € K, E N xr,, € F(Z),and E N x“F,, € F(Z), where

Fop ={z€ KIRe[f(2)] =z a,Im[f(2)] = b}.

Definition 4 ([2]) Suppose Z is a non-empty complex numbers set, E € F(2),
mapping f : Z — Fo(K),z— f (2) =Ref (2) +ilmf (2) € Fo (K),i = v/—1,

Fo= U *(refc)] +i U #[mf@]

€[0,1] 2€[0,1]

U ARe fi. (2) +i U AIm £ (2)

€[0,1] Ar€[0,1]

2 U rRef @ Reff @]+ U A @.mfF @),
A€[0,1]

2€[0,1]

then (Z, F (Z), i) is complex fuzzy valued fuzzy measure space, called f is com-
plex fuzzy valued complex fuzzy measurable function on E about (Z, F (Z), iv) if
and only if VA € [0, 1], Re f,\(z), Im f,\(z), which are complex valued measurable
function on E about (Z,F(Z))

record A
Faps={z=a+iB :RefF (2) > o, Imf (2) > B},
where
Ref" (2) > a,
express
Ref," (z) = wandRef; (2) = o, Imfi" (2) = B,
express

Imf," (z) > BandImf, (z) > B, Ve, B € [0, 0),

thus, f is complex fuzzy valued complex fuzzy measurable function on E about
(Z,F(Z), ) if and only if VA € [0, 1], E N XFyp, € F(Z), ENXF,, €

FZM ( ) express all of the complex fuzzy set-valued measurable function on E.
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3 Complex Fuzzy Set-valued Complex Fuzzy Integral
and Its Properties

Definition 5 _([3]) Suppose (Z, F (2), ) is complex fuzzy set-valued fuzzy mea-
sure space, E € F(Z), [ : Z — Fo(K), define f is complex fuzzy set-valued
complex fuzzy integral on E about fi,

/E e ( /E Re fdir. /E Imfdﬁ)l,

/E Refdir= | A[ / Refi~dfir. / Refﬁd;zR}

2€[0,1] E E

where

ael0,00) a€l0,00)

A[ /E Im f,~djiz, /E Imfﬁdfu]

= U Al sup aAImﬂ;(AﬁXFMf, sup a/\Im;l;LL(AﬂXFMZJr ,
ref0,1]  L€l0.:00) "7 ael0,00) “

= U A |: sup a ARefi; (A N XFM_F) , sup « ARe,&}f (A~ N Xp,, 1+):|
rel0,1]

[ = U

2e[0,1]

where
Fre1” ={zIRefi” (2) = a},

Fraa’ ={zIRefi" (2) = o},
Fra2” ={zllmfi” (2) > a},
Fra2" ={zllmf;* (2) = o},

now called f complex fuzzy set-value complex fuzzy integrable in E about /L.

Complex fuzzy set-valued complex fuzzy integral has the following important
properties:

Theorem 1 (/3]) Suppose (Z, F (Z) , 1) is complex fuzzy set-valued fuzzy measure
space:
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1. VEe F(Z), feM (E) then
| faier .
E

2. Suppose E € F(2), sz eM (E), X 1s the characteristic function OfE, then
[z fdi= [ fxzdf,
3 L EcF2).IffeM (E) if i (E) — 0, then

/Efdﬁ=(),

4 Lt A,BeF ). IffeM (E) if A C B, then

/ fdi < / fdi.
A B

5. Letﬁe]:(Z).[fﬁ,ﬁeM(E),ifﬂ C foin A, then

/A fidii /A fadi,

these properties are demonstrated in [18]. Here ignore.

4 Complex Fuzzy Set-Value Complex Fuzzy Integral
and Its Convergence Theorem

Theorem 2 Suppose (Z,F (Z), i) is complex fuzzy set-valued fuzzy measure

space, { i } is non-negative complex fuzzy set-valued complex fuzzy integrable func-
tion sequence in (Z, F (Z), 1), A € F(Z), ifin A, {fn} monotone convergence in
[ incrementing, then ”li)ngo Ja fodit = [, fdji.

Proof Suppose A = X, because f,, < f, (n=1,2,...), so by the generalized
complex fuzzy set-valued complex fuzzy integral properties have the following result

im [ fdi < / Fdi.
n—oo X X

now to proof the opposite inequality.
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Let I = [y fdfi. Then

1. if I = 0, conclusion obvious,
2. if0 < I < oo+ ioo then

I= sup S (Rea, Re,&(f)a) +i sup S (Ima, Imj (fa))

Rea€[0,00) Ima€[0,00)

to know the exist oy > 0 makes

~ ] X 1
s (Reak, Reji (fak)) >Rel—5. (Imak, Imji (fak)) >Iml—>.

(k=1,2,..)), another f, 1 ~f have

(7)., 1 (1),

then using the properties of generalized triangle norm, know exist n, such that,
when n > ng,

s (Reak, Reji ( fak))

1 e 1
>Rel -5 (Imak, Imji (fak)) SIml=s (k= 1.2,

when n > ny,
- 1
/fndﬂ>1——,(k=1,2,---),
X k

by the arbitrariness of k have
/ fdp < lim | fudi.
X n— o0 X
3. if I = 0o + ioo, then ;. > 0 makes

s (Reak, Reji ((fak))) >k,

SImay, Imi(fu))>k, (k=1,2,...),

exit ny, such that when n > ny,

S (Reak, Rejt (fak)> > k,
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s (Imozk, Imji (fak)) >k,
then
Jim | fadii 2 /X faiv = S (Reox. Refi (fuy ) )
+iS (Imak,lm/l (fak)) S ktik(k=1,2,..),

that is ,,ILH;OIX fadit > [y fdfi.
Theorem 3 Suppose (Z,F (Z), i) is complex fuzzy set-valued fuzzy measure
space, { fn} is complex fuzzy set value complex fuzzy integrable function sequence

in(Z,F(Z), i), AeF(2),ifinA, {fn} decrease monotonically converges to f,

and for arbitrarily ¢; > 0, (i = 1, 2), where ¢ = &1 + &> exit ng makes

ﬂ(’x|fno >/fd,tl+s]ﬂA) < 00+ i00,
A

then
iim [ i = [ Fi
PVOOff1 fi' ,SOfAfldlszfAfzdﬁz...’then
i | = 3, | .
n—>o0
there

O/S/fnd,u_ A Re/ fodit+i N Im | fadf,
n=1l /4 n=1 A

/A fudii = /A fdia
x / fodii > / fdii
n=1/4 A

if O/SlfAfnd,a > [, fdfi, then [, fdji = A < 00 +ico where A = A| + i), and
n=
there is y; € (0, o0) where y = y1 4+ iy», (i = 1, 2) makes

due to Vn, fn > f, SO

have

OO
n—l fnd,u >y > A,
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=Vn, sup S (Rea, Re/l[(fn)a N A])

Reae[0,00)

i sup S (Ima, Imji ((f")a n A])) >y,

Imae[0,00)

= Vn, S (y, i ((f")y n A)) =5 (Rey, Reji ((f")y N A))
+iS (Imy, Imji ((ﬁ,)y N A)) >y,

take & = 24 (1 = 1, 2) exit n,
ﬁ(<x|fno >/Afd,a~|—5]ﬁA) < 004000,y =M +28 > A+ ¢
= {XIfnozy} c {XIfno >k+8},
= (a0 (7)) = ({11 = 242 na) <00t ice

By the continuity of 1, A N (fnl)y D2AN (ﬁ”)y D...,
()
[0 - (o0 ==

/ fdp = sup S (Rea, Reji [fa N A])

A Reae[0,00)

1DQ

——

=

(

+i sup S (Im(x, Impa [fa N A])

Ima€[0,00)
> (Rey, Reji [fy n A]) +iS (Imy, Imji [fy N A]) > =A1+ik,

~ oo ~ - ~ .
conflicting with [, fdfi = X, so /\lfA fudin = [, fdx, thatis
n=
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lim [ fudp = / fdj.

Theorem 4 Suppose (Z,F (Z), 1) is complex fuzzy set-valued fuzzy measure

space, { fn} is complex fuzzy set value complex fuzzy integrable function sequence

in(Z,F(Z),it) A € F(2Z), ifin A, {fn} convergence in f and for arbitrary
ex > 0, (k =1, 2), where, ¢ = & + iey exit ng makes

ﬁ([x| sup f >/fd;1+8] ﬂA) < 00+ io0.
nzno A
then ,,l“éofA fudin = [, fdi.

Proof Lethy = v fe g = A fiThen (i} | fand (3} t F.Gn < fu <
S0 a -

/ dndii < / fudii < / Fndii
A A A

lim [ gudip= lim [ fudit
A

n— o0 A n—o0

by theory 3,

= lim hpdit = lim fd,u
n—oo A n—od
Definition 6 ([3]) Given a fuzzy complex value fuzzy measure space (C F, ,EL) , let

fn (n=1,2,...) and f : C — F*(C) are fuzzy complex value fuzzy measurable
function, A € F then

() { fn} almost everywhere converges to f on A, if i (E) =0forE € F

and makes { f } converges to f point by point on A — E, note that f~n e f ;

o (£) <

and makes { fu } uniform converges to f point by point, note that e f

2) { fn} almost uniform converges to fonA,ifdE € Ffore > 0,

3) { fn} pseudo almost everywhere converges to f Jif o (A —FE ) = ( ~) for
E € F and makes { fn} converges to f point by point on A — E, note that f, Pae f:
“4) {fn} pseudo almost uniform converges to f, if lim n (A — Ek) =0 (A)
for {Ek} C F and makes { fn} uniform converges to f point by point on A — E for

any fixed point, k = 1,2, 3 ... note that fn Ly f;
5 { fn} converges in measure to f ,if
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ti (1o o] = ] ) =0

for any & > 0, note that f, & f;
(6) { fn} pseudo converges in measure to f, if

s (1 - 7] =} ) =1 (3)
note that f,,p—'lg f.

Theorem 5 Suppose (Z, F (Z), 1) is Complex fuzzy set-valued fuzzy measure
space { fn} , f is complex fuzzy set-valued complex fuzzy measurable function

in (Z, F(Z), 1), A € F(2), if f i f, [ is zero-additive, and for arbitrarily
ex > 0, (k=1,2), where ¢ = &1 + iy exit ng makes

ﬁ(|x| sup f,,)]/ fd,&—i—eﬂA) < 00+ 00,
n=ng A
then ,}LH;OIA fudin = [, fdfr.

Proof Because f,, & f in A, then exit B € F (Z), i (B) = 0, fi is zero-additive,
.~ A

fA\B fdp =
sup S (Rea, Reji [ﬁy N (A\B)]) i sup (Ima, Imji [ 7n (A\B)])

Reae[0,00) Imae[0,00)
= S (Rea,Reit | (AN fy) \B S (Ime, Imiz | (AN o) \B
W S (ReaRep [(ANL)\B])+i swp s (imetmiz (40 72) \8])
= sup S (Rea, Rejt (A N fo,)) +i sup S (Ima, Imp (A N fa)>
Reae~[0,oo) Reae[0,00)
= fA fdp.
Similarly

[ = [ fudi
A A\B
and because
[L([x| sup f, > / fd,tl—i—g] OA) < 00+ 0o,
nzng A

and from~the Theorem 2, obtained lim Javg fndit = [y fdir, so Jim Ju fud
L= [y fdi.
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Theorem 6 Suppose (Z,F (Z), i) is complex fuzzy set-valued fuzzy measure

space { f,,} , f is complex fuzzy set-valued complex fuzzy measurable function in

(Z,F(Z),n), A e F(2), lf{fn] uniform convergence in f in A, then

lim fnd,zz/fd;z.
n—oo A A

Proof
() If [, fdji = 00 +ioo, let G, =

II>=

| fx then

lim ﬂdﬁz/gndﬁz/fdﬁzoo+ioo.
A A A

n—oo

fdp= sup S (Reoz, Reji [fa N A]) +i sup S (Ima, Imj [fa n A])
A Reae[0,00) Ima€[0,00)

=L < 00+ i00, then,

v

Vafk,ﬂ[faﬂA] A

IA

Va>k,;l[faﬂA] A;

~ ~ oo~ ~
o, monotone decreasing trend to A, then fo,, € fo, € - and ﬂl fa,, = f>. by under
n= .

continuous of [, i (ﬁ N A) = lim £ (fa,, N A) < A, uniform convergence in f
. n—oo

in A, arbitrarily & > 0, (k = 1, 2) where ¢’ = ¢] + ig} exit ng, Vx € A,

fr@) < f@)+e=sup fr(x) < f(x)+e

n=ngo

:>[x| sup fn(x)z)»+8]ﬂAg{ﬂf@)zk}ﬂA:ﬂﬂA

n=ngo

=>/l([x| sup f (x) Zk+8} ﬂA)

n=ngo

<A<0o0+ioo _ ~
by Theorem 3 has }E%ofA fudin = [, fdjr.
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Theorem 7 Suppose (Z,F (Z), i) is complex fuzzy set-valued fuzzy measure

space, { fn} , f are complex fuzzy set-valued complex fuzzy measurable function

on (Z,F(Z),p), A € F(2) if fna—e;lf on A, and [ is zero-additive, then
lim [, fudit = [, fdji.

n—o00

Proof Similar to the proof method of Theorem 6.

Theorem 8 Suppose (Z,F (Z), i) is complex fuzzy set-valued fuzzy measure

space { fn} , f are complex fuzzy set-valued complex fuzzy measurable function

on(Z,F(Z), ), AeF(2), zfﬂ, . f in A, and [ is zero-additive, and exit
(B} S F(Z),Bi2By2 -+, ji(By) = 0

makes

lim fudfi = fdji.
=00 J A\ By A\ By

Proof If f, %5 fin A, then exit {Ex} € F(Z), i(Ex) — 0, f = f in A\E, let

k
By, = ﬂl E; C E;.

1

Then .
A\By = 0 (A\E).

Vk, f~n = f in A\ Ey, fn = f in A\ B, by Theorem 6 know the conclusion is right.

5 Conclusion

In this paper, the fuzzy measure concepts was extended from general classical set
to ordinary complex fuzzy set, fuzzy, research complex fuzzy set-valued complex
fuzzy measure and its properties, and measurable function in complex fuzzy set value
complex fuzzy measure space and its properties was studied, of the of extension of
the scope of classical measure theory, generalization of the corresponding conclusion
of classical measure theory; research Integral theory problem of complex fuzzy set-
valued function base on complex fuzzy set-valued measure, establish complex fuzzy
set-valued complex fuzzy Integral theory, which is important work in fuzzy complex
analysis. This work extends the fuzzy measure and fuzzy integral theory, to lay a
solid foundation for our future research on complex fuzzy set-valued complex fuzzy
integral application problem.
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