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Foreword

The volume put forward by Profs. Cao, Liu, Zhong, and Mi constitutes a collection
of papers presented at the 7th International Conference on Fuzzy Information and
Engineering (ICFIE’2014) and the 1st International Conference of Operations
Research and Management (ICORM’2014) held during November 7–11, 2014 in
Zhuhai, China.

The areas of Fuzzy Engineering and Fuzzy Information have been recently
enjoying a vivid growth with a significant progress and numerous and innovative
applications in a variety of areas. Theory, methodology, algorithms, and develop-
ment guidelines and reports on the best practices come hand in hand. Fuzzy sets
with their generalizations, conceptual enhancements, and new operations, trans-
formations, and processing mechanisms call for a systematic and coherent treatment
of the fundamentals to move them to the next level of sophistication. The
methodology of fuzzy sets has been the cornerstone of successful and efficient
algorithms. There are several visible directions including a hybridization of fuzzy
sets and other technologies of Soft Computing (Computational Intelligence). The
ensuing algorithms fully benefit from the prudently orchestrated synergy of the
fuzzy sets, neurocomputing and population-based optimization.

Operations Research and Management are undoubtedly those domains in which
the role of information granules and fuzzy sets, in particular, assume a central
position. In this regard, two tendencies are apparently visible. In the first one, we
witness augmenting the existing approaches, sometimes quite well established, by
bringing into the picture fuzzy sets. The intention is to endow the existing methods
with the new quality, new insights, and functionalities including raising support for
enhanced human-centricity of the ensuing systems. The second one, which becomes
more dominant nowadays, looks at the original treatment of the problem, its quite
substantial reformulation and engagement of fuzzy sets in a fully innovative,
non-traditional fashion not being biased of how the problem was handled so far.

This volume offers a truly diverse collection of contributions in which the
authors report on the recent accomplishments in the area. The papers can be split
into several general categories, which reflect upon the main research directions,
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namely Fuzzy Systems and Applications, Fuzzy Mathematics and Applications,
Fuzzy Information and Computing, and finally Operations Research and
Management and Applications.

The Editors deserve our congratulations on professionally assembling such a
diverse and representative collection of research studies covering a spectrum of
fundamental and applied facets of fuzzy set technology.

Prof. Witold Pedrycz
University of Alberta
Edmonton, Canada

vi Foreword



Preface

This book is a monograph from submissions by the 7th International Conference on
Fuzzy Information and Engineering (ICFIE’2014) and the 1st International
Conference of Operations Research and Management (ICORM’2014) during
November 7–11, 2014 in Zhuhai, China. The monograph is published by Advances
in Intelligent and Soft Computing (AISC), Springer, ISSN: 1867-5662.

This year, we received more than 100 submissions. Each paper underwent a
rigorous review process. Only high-quality papers are included in the book.

The book, containing papers, is divided into five main parts:

In Part I, subjects on “Fuzzy Systems and Its Applications.”
In Part II, themes on “Fuzzy Mathematics and Its Applications.”
In Part III, topics discussed on “Fuzzy Information and Computer.”
In Part IV, ideas circling around “Operations Research and Management and Its
Applications.”
In Part V, dissertations on “Others.”

We appreciate the organizations sponsored by International Fuzzy Information
and Engineering Association (chips); Fuzzy Information and Engineering Branch of
ORSC; Operations Research Society of Guangdong Province; China Guangdong,
Hong Kong and Macao Operations Research Society and undertaken by Beijing
Normal University, Zhuhai, Guangdong, China.

Heartfelt thanks to the Guangdong Provincial Science and Technology
Association, Guangzhou University, China, for fund for co-sponsorships.

We are grateful to Mazandaran University, Iran; Fuzzy Information and
Engineering Branch of International Institute of General Systems Studies in China
(IIGSS-GB) for support.

We appreciate the Editorial Committee, reviewers, in particular, Prof. Witold
Pedrycz in Canada’s chief scientist intelligent computing. We are thankful to our
students: Postdoctoral: Xue-gang Zhou, Ph.D.: Xiao-peng Yang; Master: Ze-jian
Qin and Geng-tao Zhang, who have contributed a lot to the development of this
issue. We wish to express our heartfelt appreciation to all the authors and partici-
pants for their great contributions that made these conferences possible and all the
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hard work worthwhile. Meanwhile, we are thankful to China Education and
Research Foundation; China Science and Education Publishing House, and China
Charity Press Publishing and its president Mr. Dong-cai Lai for sponsoring.

Finally, we thank the publisher, Springer, for publishing the AISC (Notes: Our
series of conference proceedings by Springer, like Advances in Soft Computing
(ASC), AISC, (ASC 40, ASC 54, AISC 62, AISC 78, AISC 82 and AISC 147,
included into EI and indexed by Thomson Reuters Conference Proceedings Citation
Index (ISTP); AISC 211 and AISC 254 awaiting EI index), and thank the supports
coming from international magazine Fuzzy Information and Engineering by
Elsevier, and Operations Research Management and Fuzzy Mathematics by China
Science and Education Press (Hong Kong).

Zhuhai, P.R. China Bing-Yuan Cao
December 2014 Zeng-Liang Liu

Yu-Bin Zhong
Hong-Hai Mi
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Part I
Fuzzy Systems and Its Applications



Analytic Representation Theorem
of Fuzzy-Valued Function Based
on Methods of Fuzzy Structured Element

Si-Cong Guo, Ying Zhao and Hua-Dong Wang

Abstract The paper introduces the representation method of fuzzy structured ele-
ment in fuzzy-valued function analytics systematically. It includes the concept of
the fuzzy structured element, operations of fuzzy numbers, the analytic expression
of fuzzy-valued functions and its differential and integral, they are all based on the
fuzzy structured element. Theorems of the fuzzy structured element not only provide
methods for analytic representation of fuzzy analysis and operations, but also start a
new way for studying on the theory and application of fuzzy analysis.

Keywords Fuzzy structured element · Fuzzy numbers · Fuzzy-valued functions ·
Analytic representation theorems · Differential and integral calculus

1 Introduction

The concept of fuzzy numbers and fuzzy-valued functions was firstly proposed by
Chang and Zadeh [3]. And then, followed by Dubois and Prade [4, 5] who defined
operations of fuzzy numbers and differential of fuzzy-valued functions by the exten-
sion principle [15].Many papers have shown researches on fuzzy numbers and fuzzy-
valued functions, such as [1, 2, 6, 7, 13, 14, 17].

S.-C. Guo · Y. Zhao (B)

Institute of Intelligence Engineering and Mathematics, Liaoning Technical University,
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From the point of uncertainmathematic developing system, it is natural and signif-
icant to make fuzzy analytics as an extension of interval analytics. Based on this idea,
the theoretical framework of fuzzy number calculations, fuzzy-valued functional dif-
ferential and its integral in the sense ofRiemann have a strong background objectively
[4, 5]. Theories of interval analysis has been developed quite mature in past several
decades [16]. The connection between fuzzy analytics and interval analytics is the
expansion principle [12] in fuzzymathematics. However, the expansion principle has
crisp arguments on its expressing, and then the operations and transformations of
fuzzy numbers and fuzzy-valued functions cannot be operated practically, these are
also barriers affecting the practical application of the fuzzy analysis method. In order
to solve problems in the real world effectively with fuzzy analytics like the classic
analytics, some breakthroughs should be made in the problems, such as the quick
expression of fuzzy number calculations, the analytic expressions of elementary
fuzzy-valued functions, differential and integral calculus of fuzzy-valued functions,
discriminate for convergence and summation of fuzzy series, analytic expressions of
fuzzy-valued functions, and so on.

2 Fuzzy Structured Element and Fuzzy Numbers

Convexity and normality are two constant properties of the fuzzy numbers [3, 4, 13].
Let A be a convex and normal fuzzy set on the real numbers field R, f is a monotonic
function on R, by the expansion principle of Zadeh, it is easy to know that the fuzzy
set f (A) must be convex and normal. This implies that convexity and normality are
inherent structured properties of the fuzzy numbers for monotonic transformations.
Therefore, we defined a fuzzy set on R with convexity and normality, and called it a
fuzzy structured element, then all fuzzy numbers can be obtained by the monotonic
transformations of the fuzzy structured element. This is the basic idea of proposing
and building the fuzzy structured element [8].

Definition 2.1 ([8]) Let E be a fuzzy set on R, E(x) is the membership function
of E,∀x ∈ R, then, E is called a fuzzy structured element, if E(x) satisfies the
following properties:

(1) E(0) = 1, E(1 + 0) = E(−1 − 0) = 0;
(2) E(x) is a function of monotonic increasing and right continuous on [−1, 0],

monotonic decreasing and left continuous on (0, 1];
(3) E(x) = 0(−∞ < x < −1 or 1 < x < +∞).
E is called a normal fuzzy structured element, if (1) ∀x ∈ (−1, 1), E(x) > 0;

(2) E(x) is increasing and continuous on [−1, 0], strictly monotonic decreasing and
continuous on (0, 1].

E is called a symmetrical fuzzy structured element, if E(x) = E(−x).

Theorem 2.1 ([10])Let E be any fuzzy structured element on R, and E(x) is its mem-
bership function, the function f (x) is continuous and monotonic on [−1, 1], f̂ (x) is
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a set-valued function extensional from f (x). Then f̂ (E) is a bounded closed fuzzy
number on R, and the membership function of f̂ (E) is E( f −1(x)), where f −1(x) is
a rotational symmetric function for x and y (If f (x) is a strictly monotonic function,
then f −1(x) is the inverse function of f (x)).

Theorem 2.2 ([10]) For a given normal fuzzy structured element E and any finite
fuzzy number A, there always exists a monotonic bounded function f on [−1, 1],
such that A = f (E).

Theorem 2.3 ([10]) Suppose that E is a fuzzy structured element on R, f is a
monotonic bounded function on [−1, 1], E is a given fuzzy structured element on
R, a fuzzy number A. If f is monotonic increasing, then the λ−level set of A is
a closed interval on R, and it can be denoted as Aλ = [ f (E)]λ = f [e−

λ , e+
λ ] =

[ f (e−
λ ), f (e+

λ )]. If Aλ = [a−
λ , a+

λ ], Bλ = [b−
λ , b+

λ ] is monotonic decreasing, then
Aλ = [ f (e+

λ ), f (e−
λ )].

Further contents about fuzzy structured element can be found in [9–11].

3 Same Sequential Transformations of Monotonic Functions
and Operations of Fuzzy Numbers

It is easy to know that if f (x) is a monotonic function on the symmetrical internal
[−1, 1], then both f (−x) and − f (x) are monotonic functions. If f (x) satisfies
f (x) > 0 or f (x) < 0, then 1

f (x)
is also a monotonic function, and it has opposite

monotonicity with f (−x). Therefore, we can obtain that− f (−x), 1
f (−x)

and− 1
f (x)

have same sequential monotonicity with f (−x) on [−1, 1]. Denote the family of all
functions which are bounded and have same monotonicity on [−1, 1] by D[−1, 1].
Give f ∈ D[−1, 1], same sequential monotonic transformations of f are defined
as following:

τ0 : f → τ0( f ) = f τ0 = f,
τ1 : f → τ1( f ) = f τ1 = − f (−x),

τ2 : f → τ2( f ) = f τ2 = 1
f (−x)

, ( f (−x) �= 0),

τ3 : f → τ3( f ) = f τ3 = − 1
f (x)

, ( f (x) �= 0).

Let A and B be two fuzzy numbers, ⊗ be a binary operation on the real field. If
f (A, B) = A ⊗ B, by the multivariate expansion principle, we have

A ⊗ B = ∪
λ∈[0,1]

λ ∧ (Aλ ⊗ Bλ),∀λ ∈ [0, 1],

where Aλ = [a−
λ , a+

λ ], Bλ = [b−
λ , b+

λ ] are the λ−level sets of A and B, respectively.

Theorem 3.1 Suppose that E is a given symmetrical fuzzy structured element, g is a
monotonic and bounded function on [−1, 1], a fuzzy number B = g(E), then we have

(1)−B = gτ1(E), (2) 1/B = gτ2(E), (3) 1/B = gτ1τ2(E) = gτ3(E).
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Proof Suppose that g is a monotonic increasing function, Eλ = [e−
λ , e+

λ ] denotes
the λ−level set of E .

(1) For all λ ∈ [0, 1], Bλ = [g(E)]λ = [g(e−
λ ), g(e+

λ )], by the definition of inter-
val numbers, we have −Bλ = [g(−e−

λ ), g(−e+
λ )]. Since E is a symmetrical fuzzy

structured element, then −Bλ = [−g(−e−
λ ),−g(−e+

λ )] = [gτ1(Eλ)] = [gτ1(E)]λ.
By expansion principle,−Bλ = ∪

λ∈[0,1]
λ∧(−Bλ) = ∪

λ∈[0,1]
λ∧[gτ1(E)]λ = gτ1(E).

(2) For all λ ∈ [0, 1], Bλ = [g(E)]λ = [g(e−
λ ), g(e+

λ )], by the definition of
interval numbers,

( 1
B

)
λ

= 1
Bλ

= [ 1
g(e+

λ )
, 1

g(e−
λ )

] = [ 1
g(−e−

λ )
, 1

g(−e+
λ )

] = gτ2(Eλ) =
[gτ2(E)]λ.

According to the expansion principle, the conclusion is proved.

(3) Since 1
Bλ

=
[

1
g
(−e−

λ

) , 1
g
(−e+

λ

)

]
, then we have

− 1

Bλ

=
[

− 1

g
(−e+

λ

) ,− 1

g
(−e−

λ

)

]

=
[

− 1

g
(
e−
λ

) ,− 1

g
(
e+
λ

)

]

= gτ3 (Eλ) = [
gτ3 (E)

]
λ
.

Theorem 3.2 Let E be a symmetrical fuzzy structured element. Then

f (e−
λ ) = − f τ1(e+

λ ), f (e+
λ ) = − f τ1(e−

λ ).

Proof On the one hand, since f τ1(x) = − f (−x), then f τ1(e−
λ ) = − f (−e−

λ ). On
the other hand, since E is a symmetrical fuzzy structured element, then e−

λ = −e+
λ , so

we obtain that f (e−
λ ) = − f τ1(e+

λ ). Similarly, we can prove that f (e+
λ ) = − f τ1(e−

λ ).

Theorem 3.3 Suppose that E is a symmetrical fuzzy structured element, f, g ∈
D[−1, 1] (suppose that they are all monotonic increasing functions), fuzzy numbers
A = f (E) and B = g(E),∀λ ∈ [0, 1], then fλ(E) = [ f (e−

λ ), f (e+
λ )], f τk (x) are

same order monotonic transformations of f (x), then
(1) If A and B are any bounded fuzzy numbers, then A + B = ( f + g)(E), with

the membership function μA+B(x) = E(( f + g)−1(x)).
(2) If A and B are any bounded fuzzy numbers, then A − B = ( f + gτ1)(E), with

the membership function μA−B(x) = E(( f + gτ1)−1(x)).
(3) If A and B are positive fuzzy numbers, then A · B = ( f · g)(E), with the

membership function μA·B(x) = E(( f · g)(x)).
(4) If A and B are negative fuzzy numbers, then A · B = ( f τ1 · gτ1)(E), with the

membership function μA·B(x) = E(( f τ1 · gτ1)−1(x)) = E(−( f · g)−1(x)).
(5) If A is a negative fuzzy number, B is a positive fuzzy number, then A · B =

( f τ1 · g)τ1(E) = (− f · gτ1)(E), with the membership function

μA·B(x) = E(( f · gτ1)−1(x)).

(6) If A and B are positive fuzzy numbers, and 0 is not included in the support of
B, that is 0 /∈ supp B, then A ÷ B = A · 1

B = f (E) · gτ2 (E) = ( f · gτ2) (E), with
the membership function μA÷B(x) = E(( f · gτ2)−1(x)).
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(7) If A and B are negative fuzzy numbers, and 0 is not included in the support of
B, that is 0 /∈ supp B, then A ÷ B = A · 1

B = f τ1 (E) · gτ3 (E) = ( f τ1 · gτ3) (E),
with the membership function μA÷B(x) = E(( f τ1 · gτ3)−1(x)).

(8) If A is a negative fuzzy number, B is a positive fuzzy number, and 0 is not
included in the support of B, then A ÷ B = (− f · gτ3)(E), with the membership
function μA÷B(x) = E((− f · gτ3)−1(x)).

Proof Suppose that f, g ∈ D[−1, 1] and they are allmonotonic increasing functions,
for any λ ∈ [0, 1], we have [ f (E)]λ = [ f (e−

λ ), f (e+
λ )], [g(E)]λ = [g(e−

λ ), g(e+
λ )].

(1) Let H = A + B, by the definition of interval numbers, [H ]λ = [ f (E)]λ +
[g(E)]λ. Then A + B = ( f + g) (E). Since f + g is a monotonic and bounded
function on [−1, 1], therefore, μA+B(x) = E(( f + g)−1(x)).

(2) Let H = A − B · y the definition of interval number, we have

[H ]λ = [ f (E)]λ − [g(E)]λ = [ f (e−
λ ) − g(e+

λ ), f (e+
λ ) − g(e−

λ )].
Since E is a symmetrical fuzzy structured element, according to Theorem 3.1, we
obtain that

[H ]λ = [ f (e−
λ ) − g(e+

λ ), f (e+
λ ) − g(e−

λ )]
= [ f (e−

λ ) + gτ1(e−
λ ), f (e+

λ ) + gτ1(e+
λ )] = [ f (E)]λ + [g(E)]λ,

then A − B = ( f + gτ1)(E). Since f + g is a monotonic and bounded function on
[−1, 1], therefore, μA−B(x) = E(( f + gτ1)−1(x)).

(3) Let H = A · B, since A and B are positive fuzzy numbers. Then 0 ≤ f (e−
λ ) ≤

f (e+
λ ), 0 ≤ g(e−

λ ) ≤ g(e+
λ ). By the definition of interval number, we have

Aλ · Bλ = [ f (E)]λ · [g(E)]λ = [ f (e−
λ ) · g(e−

λ ), f (e+
λ ) · g(e+

λ )]
= [( f g)(e−

λ ), ( f g)(e+
λ )] = [( f g)(E)]λ = [h(E)]λ,

where h = f · g. Therefore, H = h(E) = ( f · g)(E), from Theorem 2.1, we have
μH (x) = μA·B(x) = [E( f · g)−1(x)].

(6) Since A and B are positive fuzzy numbers, f and g are monotonic increasing
functions, then 0 ≤ f (e−

λ ) ≤ f (e+
λ ), 0 ≤ g(e−

λ ) ≤ g(e+
λ ). By the definition of

interval number, we have

Aλ ÷ Bλ = [ f (E)]λ ÷ [g(E)]λ
= [

f (e−
λ ), f (e+

λ )
] ÷ [

g(e−
λ ), g(e+

λ )
]

=
[

f (e−
λ )

g(e+
λ )

,
f (e+

λ )

g(e−
λ )

] [
f (e−

λ )

g(e−
λ )

,
f (e+

λ )

g(e+
λ )

]

= [
f (e−

λ ) · gτ2(e−
λ ), f (e+

λ ) · gτ2(e+
λ )

]

= f (Eλ) · gτ2(Eλ) = [
( f · gτ2)(E)

]
λ

then A ÷ B = ( f · gτ2)(E), therefore, μA÷B(x) = E(( f · gτ2)−1(x)).
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The conclusions of (4), (5), (7) and (8) can be proved similarly.
In many situations of fuzzy number operations, the monotonic functions f and x

are easily to be founded. Therefore, through the way in Theorem 3.3, the choice of
the membership function after the fuzzy number operation can be made easily.

4 Order of Fuzzy Numbers

The property that the fuzzy number space and the family of standard monotonic
functions on [−1, 1] is homeomorphic implies that a bounded real fuzzy number and a
standardmonotonic function B[−1,1] on [−1, 1] is one to one [9]. Therefore, the order
between fuzzy numbers is equivalent to the order relation between two corresponding
monotonic functions, which provides a way to simplify the calculation of ranking
fuzzy numbers. Denote the class of all bounded fuzzy numbers is denoted by N (R).

Definition 4.1 Let A, B ∈ N (R), for any λ ∈ (0, 1], Aλ = [
a−
λ , a+

λ

]
, Bλ =[

b−
λ , b+

λ

]
. If a−

λ ≥ b−
λ , a+

λ ≥ b+
λ , then we call A ≥ B, and the order “≥” is named

as the natural order of fuzzy numbers.

According to the express theorem of the fuzzy structured element, suppose that
E is any given fuzzy structured element, the fuzzy numbers A and B are denoted as
A = f (E), B = g(E), then A ≥ B is equal to that f (x) ≥ g(x) with respect to all
x ∈ [−1, 1]. Since (N (R),≥) is a partial order set, sometimes there exists the order
“≥” between two fuzzy numbers A and B, sometimes there exists not. So the order
relation is not appropriate for ranking fuzzy numbers.

Definition 4.2 Let A ∈ N (R), and A = f (E), we define

O(A) =
∫ 1

−1
f (x)dx

as the adjoint number of fuzzy number A.

Definition 4.3 Let A, B ∈ N (R). If O(A) > O(B), then we define that A � B.
If O(A) = O(B), we define that A ∼ B. (Similarly, we can define the dual order
“≺”). If A � B and A ∼ B, we define that A � B (Similarly, we can define the dual
order “�”).

For any A, B ∈ N (R), one of the relations A � B, A ≺ B and A ∼ B must be
true, and it satisfies the properties as follows:

(1) If A � B, B � C , then A � C ;
(2) If A � B, B � A, then A ∼ B. That is, (N (R),�) is a full ordered set, and if

A ≥ B, then A � B must be true. Conversely, it might not be true. We call the order
“�” as structured order.
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5 Analytical Representations of Fuzzy-Valued Functions

A function is amapping from a set of numbers onto another set of numbers, we define
the mapping from a set of real numbers onto a set of fuzzy numbers as a fuzzy-valued
function. Let X and Y be two real sets. D ⊆ X , f is a mapping from D to N (R).
For any x ∈ D, there exists a unique fuzzy number y ∈ N (R), such that y = f (x),
we call that f is a fuzzy-valued function on D.

Theorem 5.1 Suppose that E is a given normal fuzzy structured element on Y, f̃ (x)

is any bounded fuzzy-valued function on X, there always exists a binary function
g(x, y), such that for any given x ∈ X, g(x, y) is a monotonic bounded function
with respect to y on [−1, 1], and satisfies f̃ (x) = g(x, E).

Proof Since E is a given normal fuzzy structured element, f̃ (x) is a bounded fuzzy-
valued function on X . According to the definition of fuzzy-valued functions, for all
given x ∈ X, f̃ (x) is a bounded and closed fuzzy number. From Theorem 2.3, for a
given x , there exists a monotonic and bounded function gx (y) with respect to y on
Y , such that f̃ (x) = gx (E). Since x ∈ X , then gx (E) is a function with respect to
x , we denote it as gx (E) = g(x, E) = g(x, y)|y=E .

Example 5.1 Let E be a given normal fuzzy structured element on Y . Then f̃1(x) =
h(x) + p(x)E , where h(x) is a bounded function, p(x) ≥ 0, f̃2(x) = h(x), where
h(x) �= 0 are fuzzy-valued functions on X . FromTheorem 2.2, themembership func-
tions of these fuzzy-valued functions can be denoted by fuzzy structured element E as

μ f̃1(x)
(y) = E

(
y − h(x)

p(x)

)
μ f̃2(x)

(y) = E

(
1

a
ln

y

h(x)

)
,∀x ∈ X, y ∈ Y.

6 The Ordered Cone and the Local Ordered Cone

Definition 6.1 Let K be a real cone, and 0 ∈ K is its vertice. We define the relation
of sequence as x > y ⇔ x − y ∈ K . If K0 is a subset of K , for any x, y ∈ K0, x > y
or y > x , then K0 is called an ordered cone.

Considering a class of binary functions F D = { f (x, y)|x ∈ R, y ∈ [−1, 1]}. For
any x ∈ X , f (x, y) is a monotonic function with respect to y on [−1, 1], f (x, y)

can be regarded as a family of monotonic functions with a parameter x , we define
that fx (y) = f (x, y), x ∈ X .

Theorem 6.1 Suppose that fx (y) = f (x, y) ∈ F D, for any x ∈ X, if there exists a
ε−neighborhood of x denoted as (x−ε, x + ε), then for any x + �x ∈ (x−ε, x + ε),
fx+�x (y) − fx (y) is still a monotonic function on [−1, 1], then for any −1 ≤ y1 ≤
y2 ≤ 1, we have
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fx+�x (y2) − fx+�x (y1) ≥ fx (y2) − fx (y1)

or
fx+�x (y2) − fx+�x (y1) ≤ fx (y2) − fx (y1).

Proof Suppose that g(y) = fx+�x (y) − fx (y) is a monotonic increasing function
with respect to y, then g(y1) ≤ g(y2). We have fx+�x (y1)− fx (y1) ≤ fx+�x (y2)−
fx (y2), that is fx+�x (y2) − fx+�x (y1) ≥ fx (y2) − fx (y1). If g(y) = fx+�x (y) −
fx (y) is a monotonic increasing function with respect to y, then we can obtain
similarly fx+�x (y2) − fx+�x (y1) ≤ fx (y2) − fx (y1).

Theorem 6.2 Let fx (y) = f (x, y) be a monotonic function with respect to y on
[−1, 1], which satisfies Theorem 6.1 and it is differentiable at the point x ∈ X. Then
f ′
x (y) = ∂ f (x,y)

∂x is still monotonic with respect to y on [−1, 1].
Proof Suppose that g(y) = fx+�x (y) − fx (y) is a monotonic increasing function
with respect to y, according to Theorem 6.1, for any −1 ≤ y1 ≤ y2 ≤ 1, we have
fx+�x (y1) − fx (y1) ≤ fx+�x (y2) − fx (y2), then

f ′
x (y1) = lim

�x→0

f (x + �x, y1) − f (x, y1)

�x
= lim

�x→0

fx+�x (y1) − fx (y1)

�x

≤ lim
�x→0

fx+�x (y2) − fx (y2)

�x
= lim

�x→0

f (x + �x, y2) − f (x, y2)

�x
= f ′

x (y2).

Therefore, for any −1 ≤ y1 ≤ y2 ≤ 1, we have then f ′
x (y) is a monotonic with

respect to y on [−1, 1]. If g(y) = fx+�x (y) − fx (y) is a monotonic decreasing
function with respect to y, we can prove it similarly.

Definition 6.2 Let f (x, y) be amonotonic functionwith respect to y on [−1, 1]. For
any x ∈ D, there exists a ε−neighborhood at x (the size of ε is related to x), composes
an ordered cone for variable x in this ε−neighborhood, then fx (y) = f (x, y) is
called a local ordered cone on D.

7 General Forms of Fuzzy-Valued Functional Differential
and Riemann Integral

In fuzzy analytics, differential and integral of fuzzy valued functions have some
different definitions, the following two definitions are depending on the definition of
the derivative on interval-valued functions and the expansion principle, and they are
two of the most common definitions.

Definition 7.1 ([5]) Suppose that f̃ (x) is a fuzzy-valued function on D ⊆ X, fλ(x)

= [ f1(λ)(x), f2(λ)(x)] is the λ−level set of f̃ (x), the derivative of fλ(x) is
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f ′
λ(x) = [min{ f ′

1(λ)(x), f ′
2(λ)(x)},max{ f ′

1(λ)(x), f ′
2(λ)(x)}]. If for any λ ∈ (0, 1],

fλ(x) is derivable, then fuzzy-valued function f̃ (x) is derivable on D, and

f̃ ′(x) = ∪
λ∈(0,1]

λ ∧ f ′
λ(x).

Definition 7.2 ([12]) Let fλ(x) = [ f1(λ)(x), f2(λ)(x)] be the λ−level set of f̃ (x).
For any λ ∈ (0, 1], the interval-valued functions f1(λ)(x) and f2(λ)(x) are integrable
on D (in the sense of Riemann), then f̃ (x) is integrable on D, and

∫

D

f̃ (x)dx = ∪
λ∈(0,1]

λ ∧
∫

D

fλ(x)dx,

∫

D

fλ(x)dx = [
∫

D

f1(λ)(x)dx,

∫

D

f2(λ)(x)dx].

The structure of the fuzzy-valued functional derivative inDefinition 7.2 ismeaningful
in the view that fuzzy-valued functions are generated from interval-valued functions.

Definition 7.3 This will give a definition of fuzzy-valued functions based on the
fuzzy structured element, and show that it is equal to Definition 7.2 and the derivative
of fuzzy-valued functions can be transformed to the derivative of general functions.

Definition 7.4 Suppose that f̃ (x) = g(x, E) is a fuzzy-valued function generated
by the fuzzy structured element E, g(x, y) is a monotonic bounded function for y
on [−1, 1] and spans an ordered cone or a local ordered cone, then f̃ (x) is derivable

on D, and d f̃ (x)
dx = ∂g(x,y)

∂x

∣∣y=E .
The following theorem proves that the forms of derivative in both Definitions 7.2

and 7.3 are equivalent.

Theorem 7.1 A necessary and sufficient condition for that the fuzzy-valued function
f̃ (x) = g(x, E) is derivable under the conditions of Definition 7.3 is that for any
λ ∈ (0, 1], the λ−level set fλ(x) of f̃ (x) is derivable on D, and its derivative f̃ (x)

is a fuzzy-valued function on D.

Proof From Definition 7.3, ∀y0 ∈ [−1, 1], if f̃ (x) is derivable on D, then f̃ (x)

is derivable with respect to x on D ⊆ X . Since for any λ ∈ (0, 1], fλ(x) =
[g(x, e−

λ ), g(x, e+
λ )], e−

λ ∈ [−1, 1], e+
λ ∈ [−1, 1]. We obtain that g(x, e−

λ ) and
g(x, e+

λ ) are derivable for x on D. That is, for any λ ∈ (0, 1], the λ−level set fλ(x)

of f̃ (x) is derivable on D; On the contrary, for any λ ∈ (0, 1], the λ−level set fλ(x)

of f̃ (x) is derivable on D, then fλ(x) = [g(x, e−
λ ), g(x, e+

λ )] is derivable for x on
D ⊆ X , that is g(x, e−

λ ) and g(x, e+
λ ) are derivable for x on D. Since themembership

function E(x) of the fuzzy structured element E is monotonic on [−1, 0] and [0, 1],
when λ is taken over (0, 1], e−

λ is taken over [−1, 0], e+
λ is taken over [0, 1], thus for
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any y0 ∈ [−1, 1], g(x, y0) is derivable for x on D ⊆ X , let y = y0, that is g(x, y)

is derivable on [−1, 1] for x .

Since g(x, y) spans an ordered cone on X , then the derivative g′(x, y) is still a
monotonic bounded function for y on [−1, 1], this ensures the derivative g′(x, E) =
∂g(x,y)

∂x |y=E is also a fuzzy-valued function on D, the theorem is proved.

Theorem 7.2 Let f̃ (x) = g(x, E) be a fuzzy-valued function generated by the fuzzy
structured element E. If g(x, y) is integrable with respect to x on D ⊆ X (in the
sense of Riemann), then the fuzzy-valued function f̃ (x) is integrable on D, and∫

D f̃ (x)dx = ∫
D g(x, y)dx

∣
∣y=E .

Proof Suppose that g(x, y) is monotonic increasing function for y on [−1, 1], λ ∈
(0, 1], Eλ = [e−

λ , e+
λ ], by Definition 7.2, we obtain that

∫

D
f̃ (x)dx = ∪

λ∈(0,1]
λ∧

∫

D
fλ(x)dx = ∪

λ∈(0,1]
λ ∧[

∫

D
g(x, e−

λ )dx,

∫

D
g(x, e+

λ )dx].

Let J (y) = ∫
D g(x, y)dx . Since g(x, y) is monotonic increasing function with

respect to y on [−1, 1], then J (y) is a monotonic increasing function for y on
[−1, 1]. Thus
∫

D f̃ (x)dx = ∪
λ∈(0,1]

λ ∧[J (e−
λ ), J (e+

λ )] = ∪
λ∈(0,1]

λ ∧ J (Eλ) = ∪
λ∈(0,1]

λ ∧ Jλ(E)

= J (E) = ∫

D
g(x, y)dx

∣∣y=E .

8 Conclusions

This paper introduced the method of the fuzzy structured element, transformed the
operations and the order of fuzzy numbers into operations and sequence of functions
from B[−1,1] by the fuzzy structured element, respectively. We have obtained many
important theorems of fuzzy-valued functions, including the representation theorems
and general forms of differential and Riemann integral.
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Posynomial Geometric Programming
with Intuitionistic Fuzzy Coefficients

Zeinab Kheiri and Bing-yuan Cao

Abstract In this paper, we introduce posynomial geometric programming prob-
lems with intuitionistic fuzzy numbers, it is formulated in intuitionistic fuzzy envi-
ronment introducing intuitionistic fuzzinees in objective and constraint coefficients.
This paper presents an approach based on (α,β)-cuts of intuitionistic fuzzy numbers
to solve posynomial geometric programming problems with the data as triangular
and trapezoidal intuitionistic fuzzy numbers.

Keywords Intuitionistic fuzzy set · Triangular and trapezoidal intuitionistic fuzzy
numbers · Posynomial geometric programming · (α,β)-cuts and interval-valued
function

1 Introduction

Geometric programming (GP) provides a power tool for solving a variety of opti-
mization problems. In the real world, many applications of geometric programming
(GP) are engineering design problems in which some of the problem parameters
are estimating of actual values. Posynomial geometric programming many appli-
cation oriented mathematical models deal with real numbers. In our daily life, we
frequently deal with vague or imprecise information. The intuitionistic fuzzy sets
were first introduced by Atanassov [1] which is a generalization of the concept of
fuzzy set. The generalized concept of intuitionistic fuzzy number (IFN) introduced by
Grzegrorzewski [5] in 2003 receives high attention and different definitions of IFNs
have been proposed. Wang et al. [14] gave the definition of intuitionistic trapezoidal

Z. Kheiri · B. Cao
School of Mathematics and Information Science, Key Laboratory of Mathematics
and Interdisciplinary Sciences of Guangdong, Higher Education Institutes,
Guangzhou University, Guangzhou 510006, Guangdong, China
e-mail: caobingy@163.com

B. Cao (B)

Guangzhou University, Guangzhou 510550, China

© Springer International Publishing Switzerland 2016
B.-Y. Cao et al. (eds.), Fuzzy Systems & Operations Research
and Management, Advances in Intelligent Systems and Computing 367,
DOI 10.1007/978-3-319-19105-8_2

15



16 Z. Kheiri and B. Cao

fuzzy number and interval intuitionistic trapezoidal fuzzy number. Recent years have
witnessed a growing interest in the study of decisionmaking problemswith intuition-
istic fuzzy sets/numbers, see, [7, 9, 15]. The approaches to modeling uncertainty of
linear programming by the intuitionistic fuzzy methodology are also described in [4,
10]. Dubey and Mehra [4] solved linear programming with triangular intuitionistic
fuzzy numbers in which triangular intuitionistic fuzzy numbers are converted to crisp
set and solved. In this paper, we consider Posynomial Geometric Programming with
intuitionistic fuzzy coefficient, and by using (α,β)-cuts, the intuitionistic posyno-
mial geometric programming transformed into interval optimization problem. This
interval optimization problems by parametric functional form of an interval number
reduce to crisp Posynomial Geometric Programming and then solve the problem by
dual problem of the Geometric Programming. This paper is organized as follows:
Sect. 2 the concepts of triangular, trapezoidal intuitionistic fuzzy numbers and cut
sets as well as arithmetical operations are introduced. In Sect. 3 a preliminary of
Geometric Programming is presented. Formulation of intuitionistic fuzzy Posyno-
mial Geometric Programming (IFPGP) with intuitionistic fuzzy coefficients and the
conversion of IFPGP into classical posynomial geometric programming have been
done in Sect. 4. Numerical examples and a comparison analysis are given in Sect. 5.
The paper is concluded in Sect. 6.

2 Preliminaries

Wequote several different definitions of triangular and trapezoidal intuitionistic fuzzy
numbers.

Definition 1 ([1]) An intuitionistic fuzzy set (IFS) ÃI in X is given by

ÃI = {〈x,μÃI (x), νÃI (x)〉 : x ∈ X},

where the functions μÃI (x) : X → [0, 1] and νÃI (x) : X → [0, 1], with the condition
0 ≤ μÃI (x) + νÃI (x) ≤ 1, define respectively, the degree of membership and degree
of non-membership of the element x ∈ X to the set ÃI which is a subset of X. For
each ÃI in X, we can compute the intuitionistic index of the element in x to the set
ÃI , which is defined as follows:

πÃI (x) = 1 − μÃI (x) − νÃI (x),

where πÃI (x) is also called a hesitancy degree of x to ÃI . it is obvious that x ∈ X, 0 ≤
πÃI (x) ≤ 1.

Definition 2 An intuitionistic fuzzy subset ÃI = {(x,μÃI (x), νÃI (x)) : x ∈ R} of the real
line is called an intuitionistic fuzzy number (IFN) if:
(i) A is IF-normal, if there exist at least two points x0, x1 ∈ X such that μÃI (x0) = 1,
and νÃI (x1) = 0, it is easily seen that given intuitionistic fuzzy set ÃI is IF-normal if
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there is at least one point that surely belongs to A and at least one point which does
not belong to ÃI ,
(ii) ÃI is IF-convex, an Intuitionistic Fuzzy Set ÃI = {(x,μÃI (x), νÃI (x)) : x ∈ R} of the
real line is called IF-convex, if ∀x1, x2 ∈ R,∀λ ∈ [0, 1]

μÃI (λx1 + (1 − λ)x2) ≥ min{μÃI (x1),μÃI (x2)},

νÃI (λx1 + (1 − λ)x2) ≤ max{νÃI (x1), νÃI (x2)},

Thus A is IF convex if its membership function is fuzzy convex and its non member-
ship function is fuzzy concave,
(iii) μÃI (x) is upper semicontinuous and νÃI (x) is lower semicontinuous,
(iv) ÃI = {(x ∈ R}|νÃI (x) < 1} is bounded.
Definition 3 ([13]) A generalized triangular intuitionistic fuzzy number (GTIFN)
ãI = 〈(a, lμ, rμ,ωa), (a, lν, rν, υa)〉 is a special intuitionistic fuzzy set on a real
number setR, whosemembership function and non-membership function are defined
as follows

μãI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a+lμ
lμ

ωa, a − lμ ≤ x ≤ a,

ωa, x = a,
a+rμ−x

rμ
ωa, a ≤ x ≤ a + rμ,

0, otherwise.

νãI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a−x)+υa(x−a+lν )
lν

, a − lν ≤ x ≤ a,

υa, x = a,

(x−a)+υa(a+rν−x)
rν

, a ≤ x ≤ a + rμ,

1, otherwise,

where lμ, rμ, and lν, rν are called the spreads of membership and non-membership
functions, respectively, and a is called mean value. ωa and υa represent the maximum
degree of membership and minimum degree of non-membership, respectively, such
that they satisfy the conditions 0 ≤ ωa ≤ 1, 0 ≤ υa ≤ 1 and 0 ≤ ωa + υa ≤ 1.

If a − lν ≥ 0, then generalized triangular intuitionistic fuzzy number (GTIFN)
ãI is called positive GTIFN and if a + rν ≤ 0 is called negative GTIFN.

When ωa = 1, υa = 0 is called normal intuitionistic fuzzy number, namely
traditional fuzzy number.

Definition 4 An intuitionistic fuzzy number ãI = 〈(a1, a2, γμ, τμ,ωa), (a1, a2, γν,

τν, υa)〉 is said to be a generalized trapezoidal intuitionistic fuzzy number (GTrIFN)
if its membership and non-membership functions, are respectively, given by
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μãI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−a1+γμ

γμ
ωa, a1 − γμ ≤ x ≤ a1,

ωa, a1 ≤ x ≤ a2,
a2+τμ−x

τμ
ωa, a2 ≤ x ≤ a2 + τμ,

0, otherwise.

νãI (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a1−x)+υa(x−a1+γν )

γν
, a1 − γν ≤ x ≤ a1,

υa, a1 ≤ x ≤ a2,
(x−a2)+υa(a2+τν−x)

τν
, a2 ≤ x ≤ a2 + τν,

1, otherwise,

where a1 ≤ a2, γμ, τμ ≥ 0. γμ, τμ, and γν, τν are called the spreads of membership
and non-membership functions, respectively, such that γμ ≤ γν and τμ ≤ τν .

ωa and υa represent the maximum degree of membership and minimum degree
of non-membership, respectively, satisfying 0 ≤ ωa ≤ 1, 0 ≤ υa ≤ 1 and
0 ≤ ωa + υa ≤ 1. When ωa = 1, υa = 0 is called normal intuitionistic fuzzy
number, namely traditional fuzzy number. Generally, there is (a1, a2, γμ, τμ) =
(a1, a2, γν, τν) intuitionistic trapezoidal fuzzy number ãI , here, denoted as ãI =
〈(a1, a2, γμ, τμ);ωa, υa〉. When a1 = a2, the intuitionistic trapezoidal fuzzy number
becomes intuitionistic triangular fuzzy number.Ageneralized trapezoidal intuitionis-
tic fuzzy number is called positive if
a1 − γν ≥ 0.

Definition 5 ([8]) Scalar multiplication:
(i) If ãI = 〈(a, lμ, rμ,ωa), (a, lν, rν, υa)〉 is a GTIFN, then

KãI =
{ 〈(ka, klμ, krμ,ωa), (ka, klν, krν, υa)〉, for k > 0,

〈(ka,−krμ,−klμ,ωa), (ka,−krν,−klν, υa)〉, for k < 0,

(ii) If ãI = 〈(a1, a2, γμ, τμ,ωa), (a1, a2, γν, τν, υa)〉 be GTrIFN, then

kãI =
{ 〈(ka1, ka2, kγμ, kτμ,ωa), (ka1, ka2, kγν , kτν , υa)〉, for k > 0,

〈(ka1, ka2,−kτμ,−kγμ,ωa), (ka1, ka2,−kτν ,−kγν , υa)〉, for k < 0.

Definition 6 A (α,β)-cut set of GTIFN ãI = 〈(a, lμ, rμ,ωa), (a, lν, rν, υa)〉 is
defined as

ãI
α,β = {x : μã(x) ≥ α, νã(x) ≤ β},

where 0 ≤ α ≤ ωa, υa ≤ β ≤ 1.
A α-cut set of GTIFN ãI is a crisp subset of R, which is defined as

âα = [aL(α), aR(α)] = [(a − lμ) + lμα

ωa
, (a + rν) − rνα

ωa
].
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According to Definitions 3 and 7, by using membership function, μã(x) ≥ α, we
have

x − a + lμ
lμ

ωa ≥ α → x ≥ (a − lμ) + lμα

ωa
,

and

a + rμ − x

rμ
ωa ≥ α → x ≤ (a + rν) − rνα

ωa
,

we gain

[aL(α), aR(α)] = [(a − lμ) + lμα

ωa
, (a + rν) − rνα

ωa
].

Similarly a β-cut of GTIFN ãI is defined as

âβ = [aL(β), aR(β)] = [(a − lν) + (1 − β)lν
1 − υa

, (a + rν) − (1 − β)rν

1 − υa
].

Definition 7 The (α,β)-cut set of GTrIFN ãI = 〈(a1, a2, γμ, τμ,ωa), (a1, a2, γν,

τν, υa)〉 is defined as usually, by

ãI
α,β = {x : μã(x) ≥ α, νã(x) ≤ β},

where 0 ≤ α ≤ ωa, υa ≤ β ≤ 1.
A α-cut set of GTrIFN ãI is a crisp subset of R, which is defined as

âα = [aL(α), aR(α)] = [(a1 − γμ) + γμα

ωa
, (a2 + τμ) − τμα

ωa
].

Similarly a β-cut of GTrIFN ã is defined as

âβ = [aL(β), aR(β)] = [(a1 − γν) + (1 − β)γν

1 − υa
, (a2 + τν) − (1 − β)τν

1 − υa
].

Theorem 1 ([8]) Let ãI be any GTIFN or GTrIFN. For any α ∈ [0,ωa] and β ∈
[υa, 1], where 0 ≤ α + β ≤ 1 the following equality is valid:

ãI
α,β = âα ∩ âβ . (1)

Proof See [1].
According Theorem 1 and definition of the intersection between âα and âβ , we

have following result
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ãα,β = [aL, aR], (2)

where

aL = max{aL(α), aL(β)}, (3)

and

aR = min{aR(α), aR(β)}. (4)

Theorem 2 ([4]) For each a > 0, the exponential function f (x) = ax, is continuous.

Note 1: Multiplication of two continuous functions is continuous. Ishihashi and
Tanaka [6] defined three definitions to rank intervals. In this paper, according to our
approach, we just introduce their definition for order relation is determined by left
and right limits of an interval.

Definition 8 Let A = [aL, aR] and B = [bL, bR] are two closed intervals, then order
relation between two closed intervals as

A ≤ B, iff aL ≤ bL and aR ≤ bR. (5)

Definition 9 ([10]) (Interval-valued function) Let a > 0, b > 0 and consider the
interval [a, b]. Fromamathematical point of view, any real number can be represented
on a line. Similarly, we can represent an interval by a function. If the interval is of
the form [a, b], the interval-valued function is taken as

h(ρ) = a(1−ρ)bρ for ρ ∈ [0, 1]. (6)

The choice of the parameter ρ reflects some attitude on the part of the decisionmaker.

Lemma 1 For given [a, b], a > 0, b > 0, then h(ρ) = a(1−ρ)bρ for ρ ∈ [0, 1] is a
strictly monotone increasing continuous function.

Proof According to Theorem 2 and Note 1, h(ρ) is continuous.
Since 0 ≤ ρ ≤ 1, then

d(h(ρ))

dρ
= ρ(1 − ρ)

1

aρb(1−ρ)
≥ 0,

then h(ρ) is monotone increasing and the proof is complete.

Lemma 2 Let A = [aL, aR] and B = [bL, bR] are two closed intervals, if A ≤ B
then for ρ ∈ [0, 1]

hA(ρ) ≤ hB(ρ).
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Proof From Definition 8, aL ≤ bL and aR ≤ bR, since ρ ∈ [0, 1], we obtain two
following inequalities

a(1−ρ)

L ≤ b(1−ρ)

L , (7)

aρ
R ≤ bρ

R. (8)

Then we have a(1−ρ)

L aρ
R ≤ b(1−ρ)

L bρ
R, hence, hA(ρ) ≤ hB(ρ).

3 Posynomial Geometric Programming

The general primal problem of posynomial geometric programming (PGP) [2, 12]
is to

min g0(x)
s.t. gi(x) ≤ 1, (1 ≤ i ≤ p),

x > 0,
(9)

where the functions gi, 0 < i < p are posynomials, i.e.,

gi(x) =
Ji∑

k=1

cikΠ
m
l=1xγikl

l (1 ≤ k ≤ Ji, 1 ≤ i ≤ p, 1 ≤ l ≤ m). (10)

The exponents γikl are arbitrary real numbers, the coefficients cik are assumed to be
positive constants and the decision variables x = (x1, . . . , xn)

T ∈ Rn are required to
be strictly positive. In trade-off analysis we vary the constraints and see the effect
on the optimal value of the problem. Starting from the geometric programming (1)
that is a standard PGP, we form a perturbed PGP [12], by replacing the number one
with parameter bi which are all positive constants, on the right-hands side of each
constraint.

min g0(x)
s.t. gi(x) ≤ bi, (1 ≤ i ≤ p),

x > 0.
(11)

When bi = 1, this reduces to the standard PGP, Eq. (9), otherwise, the constraints
need some amendment to be standard PGP, Eq. (9). To solve the standard PGP can use
the dual problem of the PGP [12]. The corresponding posynomial GP dual problem
is to
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max d(w) = ∏J0
k=1(

c0k
w0k

)w0k
∏p

i=1

∏Jp

k=1(
cikλi
wik

)wik

s.t. λi = ∑Ji
k=1wik,

λ0 = 1,
∑p

i=1

∑Ji
k=1γiklwik = 0 1 ≤ l ≤ m,

wik > 0 0 ≤ i ≤ p, 1 ≤ k ≤ Jp.

(12)

The quantity J − (m +1) is termed a degree of difficulty in geometric programming.
In the case of a constrained geometric programming problem, J denotes the total
number of terms in all the posynomials and m represents the number of primal
variables. The posynomial function contains J0 terms in the objective function and
Jp terms in the inequality constrains where J = J0 + J1 + · · · + Jp.

4 Posynomial Geometric Programming with Intuitionistic
Fuzzy Coefficient

In this section, Posynomial Geometric Programming with intuitionistic fuzzy coeffi-
cient and its solution producer are described. Let c̃I

ik, (0 ≤ i ≤ p) and b̃I
i , (1 ≤ i ≤ p)

denote the intuitionistic fuzzy number that can be GTrIFN, GTIFN or STrIFN. The
posynomial geometric programming problem with intuitionistic fuzzy number coef-
ficients is of the following form:

min g̃0(x) = ∑J0
k=1c̃I

0kΠ
m
l=1xγ0kl

l

s.t. g̃i(x) = ∑Ji
k=1c̃I

ikΠ
m
l=1xγikl

l ≤ b̃I
i , (1 ≤ i ≤ p),

x > 0,

(13)

by using (α,β)-cut of the intuitionistic fuzzy coefficients and parameter bi and
according to Eq. (1), the model is reduced to

min
∑J0

k=1[cL0k , cR0k ]Πm
l=1xγ0kl

l

s.t.
∑Ji

k=1[cLik , cRik ]Πm
l=1xγikl

l ≤ [bLi , bRi ], (1 ≤ i ≤ p),

x > 0,

(14)

where

cLik = max{cLik (α), cLik (β)}, (0 ≤ i ≤ p), (15)

cRik = min{cRik (α), cRik (β)}, (0 ≤ i ≤ p), (16)

bLi = max{bLi(α), bLi(β)}, (1 ≤ i ≤ p), (17)

bRi = min{bRi(α), bRi(β)}, (1 ≤ i ≤ p). (18)
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In model (14), we denote g0(x) = ∑J0
k=1[cL0k , cR0k ]Πm

l=1xγ0kl

l (x), and

gi(x) =
Ji∑

k=1

[cLik , cRik ]Πm
l=1xγikl

l .

The model (14) is the posynomial geometric programming problem with interval
coefficients. This model (14) can be transformed into the following parametric form:

min g0(x; ρ) = ∑J0
k=1(cL0k )

(1−ρ)(cR0k )
ρΠm

l=1xγ0kl
l

s.t. gi(x; ρ) = ∑Ji
k=1(cLik )

(1−ρ)(cRik )
ρΠm

l=1xγikl
l ≤ (bLi )

(1−ρ)(bRi )
ρ, (1 ≤ i ≤ p),

x > 0.

(19)

The following theorem shows that model (14) can be transformed to a parametric
posynomial geometric programming that is model (19).

Theorem 3 The interval posynomial geometric programming problem

min
∑J0

k=1[cL0k , cR0k ]Πm
l=1xγ0kl

l

s.t.
∑Ji

k=1[cLik , cRik ]Πm
l=1xγikl

l ≤ [bLi , bRi ], (1 ≤ i ≤ p),

x > 0,

(20)

is equivalent to following parametric posynomial geometric programming

min g0(x; ρ) = ∑J0
k=1(cL0k )

(1−ρ)(cR0k )
ρΠm

l=1xγ0kl
l

s.t. gi(x; ρ) = ∑Ji
k=1(cLik )

(1−ρ)(cRik )
ρΠm

l=1xγikl
l ≤ (bLi )

(1−ρ)(bRi )
ρ, (1 ≤ i ≤ p),

x > 0.
(21)

Proof LetQ1 andQ2 be the sets of all feasible solutions to (20) and (21), respectively.
Then x ∈ Q1 if and only if:

Ji∑

k=1

[cLik , cRik ]Πm
l=1xγikl

l ≤ [bLi , bRi ]. (22)

Then, for any k, we take dk ∈ [cLik , cRik ] and q ∈ [bLi , bRi ], problem (22) is substituted
by the following crisp problem:

Ji∑

k=1

dkΠ
m
l=1xγikl

l ≤ q. (23)

FromDefinition 9, the interval-valued functions of C = [cLik , cRik ] and B = [bLi , bRi ]
for any fixed i, are obtained respectively as
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hC(ρ) = c(1−ρ)

Lik
cρ

Rik
for ρ ∈ [0, 1],

hB(ρ) = b(1−ρ)

Li
bρ

Ri
for ρ ∈ [0, 1].

According to Lemma 1, hC(ρ) and hB(ρ) are strictly monotone increasing continuous
functions.Weobtaindk ∈ hC(ρ) andq ∈ hB, then forρ ∈ [0, 1],problem (23) reduces
to

Ji∑

k=1

c(1−ρ)

Lik
cρ

Rik
Πm

l=1xγikl

l ≤ b(1−ρ)

Li
bρ

Ri
. (24)

Then x ∈ Q2, hence Q1 = Q2.
Now we suppose x0 = (x01, . . . , x0n)

T to be an optimal feasible solution to (20),
then for all x ∈ Q1, we have:

g0(x) ≥ g0(x0)

⇔
J0∑

k=1

[cL0k , cR0k ]Πm
l=1xγ0kl

l ≥
J0∑

k=1

[cL0k , cR0k ]Πm
l=1xγ0kl

0l

We take

ϕk ∈ [cL0k , cR0k ]

for any k, then above problemes turn to

J0∑

k=1

ϕkΠ
m
l=1xγ0kl

l ≥
J0∑

k=1

ϕkΠ
m
l=1xγ0kl

0l . (25)

From Definition 9, the interval-valued function of D = [cL0k , cR0k ], is obtained

hD(ρ) = c(1−ρ)

L0k
cρ

R0k
for ρ ∈ [0, 1].

Then ϕk ∈ hD(ρ), problem (25) reduces to

J0∑

k=1

c(1−ρ)

L0k
cρ

R0k
Πm

l=1xγ0kl

l ≥
J0∑

k=1

c(1−ρ)

L0k
cρ

R0k
Πm

l=1xγ0kl

0l . (26)

We conclude that x0 is an optimal feasible solution to (21).
Problem (19) called perturbed PGP, that the constraints need some amendment to

be standard PGP, Eq. (6). We turn the inner program of model (19) to the following
standard posynomial geometric program form:
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min g0(x; ρ) = ∑J0
k=1(cL0k )

(1−ρ)(cR0k )
ρΠm

l=1xγ0kl

l

s.t. gi(x; ρ) = ∑Ji
k=1

(cLik )(1−ρ)(cRik )ρ

(bLi )
(1−ρ)(bRi )

ρ Πm
l=1xγikl

l ≤ 1, (1 ≤ i ≤ p),

x > 0,

(27)

We drive standard posynomial geometric program problem, and can solve by the
dual problem of the PGP.

For ρ = 0 and ρ = 1 the lower bound and upper bound of the interval value
of the parameter is used to find the optimal solution respectively. These two values
yield the lower and upper bounds of the optimal solution. Although, one can gain
the intermediate optimal result by using a proper value of ρ.

5 Numerical Examples

We present few examples to depict the working of the proposed technique for solving
with intuitionistic fuzzy coefficients.

Design of a Two-Bar Truss

We consider a simple mechanical design problem, the two-bar truss is subjected to
a vertical load 2p and is to be designed for minimum weight. The members have a
tubular section with mean diameter d and wall hickness t and the maximum permis-
sible stress in each member (σ0) is approximately equal to 60,000 psi. Determine the
values of h and d using geometric programming for the following data [12]:
p =33,000 Ib, t = 0.1 in., b = 30 in., σ0 =60,000psi, andρ (density) = 0.3 lb/in3.

min 2ρπdt
√

b2 + h2

st. p
πdt

√
b2+h2

h ≤ σ0,

d, h ≥ 0.

(28)

The optimal solution is h∗ = 30, d∗ = 2.474874 and optimal objective value is
19.74. Now we consider the intuitionistic fuzzy optimization model of the two-bar
truss as following:

min 2ρ̃Iπdt
√

b2 + h2

st. p̃I

πdt

√
b2+h2

h ≤ σ̃I
0,

d, h ≥ 0.

(29)

where p̃I = ˜33, 000
I
Ib = 〈(33000, 10, 30; 0.5); (33000, 40, 50; 0.25)〉, t = 0.1 in.,

b = 30 in., σ̃0
I = ˜60, 000

I = 〈(60000, 20, 30; 0.75); (60000, 30, 70; 0.2)〉, psi,

and ρ̃I(density) = ˜0.3I
lb/in3 = 〈(0.3, 0.04, 0.08; 0.75); (0.3, 0.06, 0.14; 0.2)〉, are

the TIFNs. It can be seen that the objective and constraint functions are not posyn-
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omials, due to the presence of the
√

b2 + h2. The functions can be converted to
posynomials by introducing a new variable y as

y = b2 + h2.

Thus the intuitionistic fuzzy optimization problem can be stated as:

min 0.628 ˜0.3I
dy1/2

˜33,000
I

0.314 y1/2d−1h−1 ≤ ˜60, 000
I
,

900y−1 + y−1h2 ≤ 1
y, d, h ≥ 0.

(30)

According to Definition 5, achieve the following model:

min 〈(0.188, 0.025, 0.050; 0.75); (0.188, 0.037, 0.087; 0.2)〉dy1/2

s.t. 〈(105095.54, 31.84, 95.54; 0.5); (105095.54, 127.38, 159.23; 0.25)〉y1/2d−1h−1

≤ ˜60, 000
I
,

900y−1 + y−1h2 ≤ 1,
y, d, h ≥ 0,

(31)

by using (α,β)-cut of the intuitionistic fuzzy coefficients and parameter σ̃0
I that are

α = 0.2,β = 0.5 and according to Eq. (1), the model (19) is reduced to

min (0.174, 0.220)dy1/2

s.t. (105076.43, 105148.61)y1/2d−1h−1 ≤ (59988.75, 60022),
900y−1 + y−1h2 ≤ 1,
y, d, h ≥ 0.

(32)

This interval optimization problem can be transformed into the parametric form (10),

min (0.174)(1−ρ)(0.220)ρdy1/2

s.t. (105076.43)1−ρ(105148.61)ρy1/2d−1h−1 ≤ (59988.75)(1−ρ)(60022)ρ,

900y−1 + y−1h2 ≤ 1,
y, d, h ≥ 0,
ρ ∈ [0, 1].

(33)

Turn this parametric perturbed PGP to standard geometric program form:
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Table 1 Numerical results

ρ Optimal objective value d∗ y∗ h∗

0 18.28673 2.477140 1800.000 30

0.1 18.72100 2.477173 1800.000 30

0.2 19.16559 2.477205 1800 30

0.3 19.62074 2.477238 1800 30

0.4 20.08669 2.477271 1800 30

0.5 20.56371 2.477304 1800 30

0.6 21.05206 2.477337 1800 30

0.7 21.55201 2.477370 1800 30

0.8 22.06382 2.477402 1800 30

0.9 22.58780 2.477435 1800 30

1 23.13703 2.478841 1799.999 30

min (0.174)(1−ρ)(0.220)ρdy1/2

(105076.43)1−ρ(105148.61)ρ

(59988.75)(1−ρ)(60022)ρ y1/2d−1h−1 ≤ 1,

900y−1 + y−1h2 ≤ 1,

y, d, h ≥ 0,

ρ ∈ [0, 1].

(34)

This model is parametric standard PGP, for ρ ∈ [0, 1], numerical solutions of this
problem are presented in following Table 1.

For ρ = 0, the lower bound of interval value of the coefficient is used to find the
optimal solution. And ρ = 1, present the upper bound of the interval coefficients is
used for the optimal solution. These two values yield the lower and upper bounds of

the optimal solution. We change ˜33, 000
I
to 32990, 33030, 32960, 33050, ˜60, 000

I

to 59980, 66030, 65970, 66070, and ˜0.3I
to 0.26, 0.38, 0.24, 0.44, in model (19)

respectively. Then finding optimal objective values, 17.13109, 25.02297, 15.85812,
28.91133. Thus from the above discussion we see that the optimal objective values
for ρ ∈ [0, 1], are between 15.85812 and 28.91133.

The Optimal Box Design Problem

A box manufacturer wants to determine the optimal dimensions for making boxes
to sell to customers. the cost for productions is C1 = 2/sqft dollars and the cost
for producing the top and bottom is C1 = 3/sqft dollars are more cardboard is
used for the top and bottom of the boxes. The volume of the box is to be set at a
limit of V = 4ft3 which can be varied for difference customer specifications. If the
dimensions of the box are W for the width, H for the box height, and L for the box
length, what should the dimension be based on the cost values and box volume [3].
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The problem is minimization the box cost for a specific box volume, the primal
objective function is:

min COST = C1HW + C1HL + C2WL
st. WLH ≥ V ,

W , L, H ≥ 0.
(35)

However, the model is not geometric programming, because in geometric program-
ming the inequalities must be written in the form of ≤. Thus, the primal constraint
becomes:

min COST = 2HW + 2HL + 3WL
st. 4W−1L−1H−1 ≤ 1,

W , L, H ≥ 0.
(36)

The optimal solution is L∗ = 1.386723, W∗ = 1.386723, H∗ = 2.080084 and
optimal objective value is 17.30699. Now we consider the intuitionistic fuzzy opti-
mization model of the optimal box design problem as following:

min COST = 2̃I HW + 2̃I HL + 3̃I WL
st. 4̃I W−1L−1H−1 ≤ 1,

W , L, H ≥ 0,
(37)

where 2̃I = 〈(1.5, 2.5, 0.5, 0.5; 0.75); (1.5, 2.5, 0.6, 0.7; 0.2)〉,
3̃I = 〈(2.8, 3.2, 0.6, 0.8; 3/4); (2.8, 3.2, 0.5, 0.5; 0.2; 1/6)〉
and 4̃I = 〈(3.5, 4.69, 0.5, 0.6; 3/4); (3.5, 4.69, 0.25, 0.1; 1/4)〉 are GTrINFs.

By using (α,β)-cut of the intuitionistic fuzzy coefficients that are α = 0.3, β =
0.6 and according to Eq. (1), the model (26), is reduced to:

min COST = (1.2, 2.8)HW + (1.2, 2.8)HL + (2.54, 3.46)WL
st. (3.65, 4.63)W−1L−1H−1 ≤ 1,

W , L, H ≥ 0.
(38)

This interval optimization problem can be transformed into the parametric form (10),

min COST = (1.2)1−ρ(2.8)ρHW + (1.2)1−ρ(2.8)ρHL + (2.54)1−ρ(3.46)ρWL

s.t. (3.65)1−ρ(4.63)ρW−1L−1H−1 ≤ 1

W , L, H ≥ 0.

(39)

This model is parametric standard PGP, for ρ ∈ [0, 1], numerical solutions of this
problem are presented in following Table 2.

We change 2̃I to 1, 3, 0.9, 3.2, 3̃I to 2.2, 4, 2.3, 3.7, and 4̃I to 3, 4.09, 3.25, 4.79 in
model (24) respectively. Then COST∗ = 8.116018, 25.33403, 8.099305, 28.63159.
Thus from the above discussionwe see that the optimal objective values forρ ∈ [0, 1],
are between 8.099305 and 28.63159.
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Table 2 Numerical results for optimal box design problem

ρ COST L∗ W∗ H∗

0 10.95759 1.199168 1.199168 2.538240

0.1 11.90166 1.230542 1.230542 2.468273

0.2 12.92707 1.262840 1.262840 2.400236

0.3 14.04082 1.295933 1.295933 2.334074

0.4 15.25053 1.329892 1.329892 2.269735

0.5 16.56446 1.364742 1.364742 2.207170

0.6 17.99160 1.400505 1.400505 2.146330

0.7 19.54169 1.437205 1.437205 2.087167

0.8 21.22533 1.474867 1.474867 2.029634

0.9 23.05403 1.513516 1.513516 1.973688

1 25.04029 1.553177 1.553177 1.919283

6 Conclusion

The present paper propose a solution procedure for posynomial geometric program-
ming with IFN, where the coefficients of objective and constraint functions and
right side are GTIFNs or GTrIFNs. The new concept of the posynomial geometric
programming in an intuitionistic fuzzy number environment is introduced in this
paper. In this approach, we use (α,β)-cut of the intuitionistic fuzzy numbers turn
into interval numbers. To solve the interval optimization problem by interval-valued
function to crisp PGP. Themost important advantage, nobody solve the PGP problem
in intuitionistic fuzzy numbers environment.

Acknowledgments Thanks to the support by National Natural Science Foundation of China (No.
70771030 and No. 70271047) and Project Science Foundation of Guangzhou University.

References

1. Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer Physica Verlag,
Heidelberg (1999)

2. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: Atutorial on Geometric Programming.
Springer Science, Business Media, LLC (2007)

3. Creese, R.C.: Geometric programming for desing and cost optimization (with illustrative case
study problems and solutions). Synthesis Lectures On Engineering (2010)

4. Dubey, D., Mehra, A.: Linear programming with triangular intuitionistic fuzzy number. In:
EUSFLAT (2011)

5. Grzegorzewski, P.: Intuitionistic fuzzy numbers. In: Accepted for the Proceedings of the IFSA
2003 World Congress

6. Ishihashi, H., Tanaka,M.:Multiobjective programming in optimization of the interval objective
function. Euro. J. Oper. Res. 48, 219–225 (1990)



30 Z. Kheiri and B. Cao

7. Jianqiang,W., Zhong, Z.: Aggregation operators on intuitionistic trapezoidal fuzzy number and
its application to multi-criteria decision making problems. J. Syst. Eng. Electron. 20, 321326
(2009)

8. Li, D.F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application
to MADM problems. Comput. Math. Appl. 60, 1557–1570 (2010)

9. Li, D.F., Nan, J.X., Zhang, M.J.: A ranking method of triangular intuitionistic fuzzy numbers
and application to decision making. Int. J. Comput. Intell. Syst. 3, 522–530 (2010)

10. Mahapatra, G.S., Mandal, T.K.: Posynomial parametric geometric programming with interval
valued coefficient. J. Optim. Theory Appl. 154, 120132 (2012)

11. Nachammai, A.L., Thangaraj, Dr. P.: Solving intuitionistic fuzzy linear programming by using
metric distance ranking. Researcher 5(4), 65–70 (2013)

12. Rao, S.S.: Engineering Optimization Theory and Practice, 3rd edn. A Wiley Interscience Pub-
lication, Wiley, New York (1996)

13. Seikh, M.R., Nayak, P., Pal, M.: Generalized triangular fuzzy numbers in intuitionistic fuzzy
environment. Int. J. Eng. Res. Dev. 5, 08–13 (2012)

14. Wang, J.Q., Zhang, Z.: Aggregation operators on intuitionistic fuzzy numbers and its applica-
tions to multi-criteria decision making problems. J. Syst. Eng. Electron. 20, 321–326 (2009)

15. Wei, G., Lin, R., Zhao, X.,Wang, H.: Some aggregating operators based on the Choquet integral
with fuzzy number intuitionistic fuzzy information and their applications to multiple attribute
decision making. Control Cybern. 41 (2012)



Generalized Multi-fuzzy Soft Set
and Its Application in Decision Making

Hai-dong Zhang, Shi-long Liao and Wei-yuan Ma

Abstract The soft set theory, proposed byMolodtsov, can be used as a generalmath-
ematical tool for dealing with uncertainty. By introducing a generalization parameter
which itself is multi-fuzzy, we define generalized multi-fuzzy soft sets which are an
extension to the multi-fuzzy soft sets. Some operations on a generalized multi-fuzzy
soft set are investigated, such as complement operation, union and intersection oper-
ations, “AND” and “OR” operations. Finally, application of generalized multi-fuzzy
soft sets in decision making problems has been shown.

Keywords Multi-fuzzy set · Multi-fuzzy soft set · Generalized multi-fuzzy soft
set · Decision making

1 Introduction

Molodtsov [1] initiated a novel concept called soft sets as a new mathematical tool
for dealing with uncertainties. The soft set theory is free from many difficulties that
have troubled the usual theoretical approaches. It has been found that fuzzy sets,
rough sets, and soft sets are closely related concepts [2]. Soft set theory has potential
applications in many different fields including the smoothness of functions, game
theory, operational research, Perron integration, probability theory, andmeasurement
theory [1, 3]. Research works on soft sets are very active and progressing rapidly
in these years. Maji et al. [4] defined several operations on soft sets and made a
theoretical study on the theory of soft sets. Jun [5] introduced the notion of soft
BCK/BCI-algebras. Jun and Park [6] discussed the applications of soft sets in ideal
theory of BCK/BCI-algebras. Feng et al. [7] applied soft set theory to the study
of semirings and initiated the notion of soft semirings. Furthermore, based on [4],
Ali et al. [8] introduced some new operations on soft sets and improved the notion
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of complement of soft set. They proved that certain De Morgans laws hold in soft
set theory. Qin and Hong [9] introduced the notion of soft equality and established
lattice structures and soft quotient algebras of soft sets. Park et al. [10] discussed
some properties of equivalence soft set relations.

The soft set model can be combined with other mathematical models. Maji et al.
[11, 12] presented the notion of generalized fuzzy soft sets theory which is based
on a combination of the fuzzy set and soft set models. Yang et al. [13] presented the
concept of the interval-valued fuzzy soft sets by combining interval-valued fuzzy set
[14–16] and soft set models. Feng et al. [17] provided a framework to combine fuzzy
sets, rough sets and soft sets all together, which gives rise to several interesting new
concepts such as rough soft sets, soft rough sets and soft rough fuzzy sets. Shabir
[18] presented a new approach to soft rough sets by combining the rough set and soft
set.

Recently, authors [19] proposed the concept of themulti-fuzzy set which is amore
general fuzzy set using ordinary fuzzy sets as building blocks, and its membership
function is an ordered sequence of ordinary fuzzy membership functions. The notion
of multi-fuzzy sets provides a new method to represent some problems which are
difficult to explain in other extensions of fuzzy set theory, such as color of pixels.
By combining the multi-fuzzy set and soft set models, Yang et al. [20] presented the
concept of the multi-fuzzy soft set, and provided its application in decision making
under an imprecise environment. The purpose of this paper is to extend the concept of
multi-fuzzy soft set by introducing a generalization parameter which itself is multi-
fuzzy, from which we can obtain a new soft set model: generalized multi-fuzzy soft
set theory.

The rest of this paper is organized as follows. The following section briefly reviews
some background on soft set, multi-fuzzy set and multi-fuzzy soft set. In Sect. 3,
the concept of generalized multi-fuzzy soft set is presented. Some operations on
the generalized multi-fuzzy soft set are then defined. Also their some interesting
properties have been investigated. An application of generalized multi-fuzzy soft set
in decisionmaking problem has been shown in Sect. 4. Section5 concludes the paper.

2 Preliminaries

In this section we give few definitions regarding soft sets and multi-fuzzy sets.

Definition 1 ([1]) Let U be an initial universe set and E be a universe set of para-
meters. A pair (F, A) is called a soft set over U if A ⊂ E and F : A → P(U ),

where P(U ) is the set of all subsets of U.

Definition 2 ([12]) Let U be an initial universe set and E be a universe set of
parameters. A pair (F, A) is called a fuzzy soft set over U if A ⊂ E and F : A →
F(U ), where F(U ) is the set of all fuzzy subsets of U.
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Definition 3 ([19]) Let U be an initial universe set and k be a positive integer. A
multi-fuzzy set Ã in U is a set of ordered sequences.

Ã = {u/(μ1(u), μ2(u), . . . , μk(u)) : u ∈ U },
where μi ∈ F(U ), i = 1, 2, . . . k.

The function μ Ã = (μ1, μ2, . . . , μk) is called the multi-membership function of
multi-fuzzy set Ã, and k is called the dimension of Ã. The set of all multi-fuzzy sets
of dimension k in U is denoted by Mk F S(U ).

If
k∑

i=1
μi (u) ≤ 1,∀u ∈ U , then the multi-fuzzy set of dimension k is called

a normalized multi-fuzzy set. If
k∑

i=1
μi (u) = l > 1, for some u ∈ U, we

redefine the multi-membership degree (μ1(u), μ2(u), . . . , μk(u)) : u ∈ U } as
1
l (μ1(u), μ2(u), . . . , μk(u)) : u ∈ U }, then the non-normalized multi-fuzzy set
can be changed into a normalized multi-fuzzy set.

Example 1 Suppose a color image is approximated by a m × n matrix of pixels. Let
U be the set of all pixels of the color image. For any pixel u in U, the membership
values μr (u), μg(u), μb(u) are being the normalized red value, green value and
blue value of the pixel u respectively. So the color image can be approximated by
the collection of pixels with the multi-membership function (μr , μg, μb) and it can
be represented as a multi-fuzzy set

Ã = {u/(μr (u), μr (u), μb(u)) : u ∈ U }.
In a two dimensional image, color of pixels cannot be characterized by a mem-

bership function of an ordinary fuzzy set, but it can be characterized by a three
dimensional membership function (μr , μg, μb). In fact, a multi-fuzzy set can be
understood to be a more general fuzzy set using ordinary fuzzy sets as its building
blocks.

Definition 4 ([19]) Let Ã = {u/(μ1(u), μ2(u), . . . , μk(u)) : u ∈ U } and B̃ =
{u/(γ1(u), γ2(u), . . . , γk(u)) : u ∈ U } be two multi-fuzzy sets of dimension k in
U . We define the following relations and operations

(1) Ã � B̃ iff μi (u) ≤ γi (u),∀u ∈ U , and 1 ≤ i ≤ k.
(2) Ã = B̃ iff μi (u) = γi (u),∀u ∈ U , and 1 ≤ i ≤ k.
(3) Ã � B̃ = {u/(μ1(u) ∨ γ1(u), μ2(u) ∨ γ2(u), . . . , μk(u) ∨ γk(u)) : u ∈ U }.
(4) Ã 
 B̃ = {u/(μ1(u) ∧ γ1(u), μ2(u) ∧ γ2(u), . . . , μk(u) ∧ γk(u)) : u ∈ U }.
(5) Ãc = {u/(μc

1(u), μc
2(u), . . . , μc

k(u)) : u ∈ U }.
Definition 5 ([20]) Let U be an initial universe set and E be a universe set of
parameters. A pair (F̃, A) is called a multi-fuzzy soft set of dimension k over U,
where F̃ is a mapping given by F̃ : A → Mk F S(U ).

A multi-fuzzy soft set is a mapping from parameters to Mk F S(U ). It is a para-
meterized family of multi-fuzzy subsets of U . For e ∈ A, F̃(e) may be considered
as the set of e-approximate elements of the multi-fuzzy soft set (F̃, A).
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Example 2 Suppose that U = {c1, c2, c3, c4} is the set of color cloths under consid-
eration, A = {e1, e2, e3} is the set of parameters, where e1 stands for the parameter
‘color’ which consists of red, green and blue, e2 stands for the parameter ‘ingredient’
which is made from wool, cotton and acrylic, and e3 stands for the parameter ‘price’
which can be various: high, medium and low. We define a multi-fuzzy soft set of
dimension 3 as follows

F̃(e1) = {c1/(0.4, 0.2, 0.3), c2/(0.2, 0.1, 0.6), c3/(0.1, 0.3, 0.4), c4/(0.3, 0.1, 0.3)},
F̃(e2) = {c1/(0.1, 0.2, 0.6), c2/(0.3, 0.2, 0.4), c3/(0.5, 0.3, 0.1), c4/(0.6, 0.1, 0.3)},
F̃(e3) = {c1/(0.3, 0.4, 0.1), c2/(0.4, 0.1, 0.2), c3/(0.2, 0.2, 0.5), c4/(0.7, 0.1, 0.2)}.

3 Generalized Multi-fuzzy Soft Sets

3.1 Concept of Generalized Multi-fuzzy Soft Sets

In this subsection, we give a modified definition of multi-fuzzy soft set.

Definition 6 Let U be an initial universe and E be a set of parameters. The pair
(U, E) is called a soft universe. Suppose that F̃ : E → Mk F S(U ), and f̃ is a
multi-fuzzy subset of E , i.e. f̃ : E → I k = [0, 1]k, we say that F̃ f̃ is a generalized
multi-fuzzy soft set (GMFSS, in short) over the soft universe (U, E) if and only if
F̃ f̃ is a mapping given by

F̃ f̃ : E → Mk F S(U ) × I k,

where F̃ f̃ (e) = (F̃(e), f̃ (e)), F̃(e) ∈ Mk F S(U ), and f̃ (e) ∈ I k .

For all e ∈ E, F̃ f̃ (e) is actually a generalized multi-fuzzy set of (U, E), where
u ∈ U , it can be written as:

F̃ f̃ (e) = (F̃(e), f̃ (e)).

Here, F̃(e) = {u/(μ1
F̃(e)

(u), μ2
F̃(e)

(u) · · · μk
F̃(e)

(u)) : u ∈ U },
f̃ (e) = (μ1

f̃ (e)
(u), μ2

f̃ (e)
(u), . . . , μk

f̃ (e)
(u)).

Remark 1 A generalized multi-fuzzy soft set is also a special case of a soft set
because it is still a mapping from parameters to Mk F S(U ) × I k ,

(1) If k = 1, then F̃ f̃ will be degenerated to be a generalized fuzzy soft sets [11].

(2) If k = 2, μ1
F̃(e)

(u) + μ2
F̃(e)

(u) ≤ 1 and μ1
f̃ (e)

(u) + μ2
f̃ (e)

(u) ≤ 1, then F̃ f̃

will be degenerated to be a generalized intuitionistic fuzzy soft sets [21].
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Example 3 Let U be a set of three shirts under consideration of a decision maker
to purchase, which is denoted by U = {u1,u2,u3}. Let E = {e1, e2, e3} be set
of parameters, where e1 stands for the parameter ‘color’ which consists of red,
green and blue, e2 stands for the parameter ‘ingredient’ which is made from wool,
cotton, and acrylic, and e3 stands for the parameter ‘price’ which can be vari-
ous: high, medium and low. Let f̃ : E → I 3 be defined as follows: f̃ (e1) =
(0.3, 0.6, 0.1), f̃ (e2) = (0.3, 0.5, 0.2), f̃ (e3) = (0.6, 0.2, 0.1). We define a func-
tion F̃ f̃ : E → M3F S(U ) × I 3, given by as follows:

F̃ f̃ (e1) = ({u1/(0.2, 0.6, 0.2),u2/(0.1, 0.8, 0.1),u3/(0.2, 0.6, 0.2)}, (0.3, 0.6, 0.1)),
F̃ f̃ (e2) = ({u1/(0.2, 0.2, 0.5),u2/(0.3, 0.6, 0.1),u3/(0.7, 0.2, 0.0)}, (0.3, 0.5, 0.2)),
F̃ f̃ (e3) = ({u1/(0.8, 0.1, 0.1),u2/(0.3, 0.4, 0.1),u3/(0.6, 0.2, 0.2)}, (0.6, 0.2, 0.1)).
Then F̃ f̃ is a GMFSS over (U, E).

In matrix from this can be expressed as

F̃ f̃ =
⎛

⎝
(0.2, 0.6, 0.2) (0.1, 0.8, 0.1) (0.2, 0.6, 0.2) (0.3, 0.6, 0.1)
(0.2, 0.2, 0.5) (0.3, 0.6, 0.1) (0.7, 0.2, 0.0) (0.3, 0.5, 0.2)
(0.8, 0.1, 0.1) (0.3, 0.4, 0.1) (0.6, 0.2, 0.2) (0.6, 0.2, 0.1)

⎞

⎠ ,

where the ith row vector represent F̃ f̃ (ei ), the ith column vector represent ui , the

last column represent the range of f̃ and it will be called membership multi-fuzzy
matrix of F̃ f̃ .

Definition 7 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). Now F̃ f̃ is said to be a

generalized multi-fuzzy soft subset of G̃ g̃ if and only if

(1) f̃ is a multi-fuzzy subset of g̃;
(2) F̃(e) is also a multi-fuzzy subset of G̃(e),∀e ∈ E .

In this case, we write F̃ f̃ � G̃ g̃ .

Example 4 Consider the GMFSS F̃ f̃ over (U, E) given in Example 3. Let G̃ g̃ be
another GMFSS over (U, E) defined as follows:

G̃ g̃(e1) = ({u1/(0.1, 0.5, 0.0),u2/(0.1, 0.5, 0.1),u3/(0.1, 0.4, 0.1)}, (0.2, 0.5, 0.1)),
G̃ g̃(e2) = ({u1/(0.1, 0.1, 0.4),u2/(0.2, 0.4, 0.1),u3/(0.6, 0.1, 0.0)}, (0.2, 0.3, 0.1)),
G̃ g̃(e3) = ({u1/(0.5, 0.1, 0.0),u2/(0.1, 0.3, 0.1),u3/(0.5, 0.1, 0.1)}, (0.4, 0.1, 0.1)).
Clearly, we have G̃ g̃ � F̃ f̃ .

Definition 8 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). Now F̃ f̃ and G̃ g̃ are said
to be a generalized multi-fuzzy soft equal if and only if

(1) F̃ f̃ is a generalized multi-fuzzy soft subset of G̃ g̃;

(2) G̃ g̃ is a generalized multi-fuzzy soft subset of F̃ f̃ ,

which can be denoted by F̃ f̃ = G̃ g̃ .
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3.2 Operations on Generalized Multi-fuzzy Soft Sets

Definition 9 Let F̃ f̃ be aGMFSS over (U, E). Then the complement of F̃ f̃ , denoted

by F̃c
f̃
, is defined by F̃c

f̃
= G̃ g̃ , where G̃(e) = F̃c(e), and g̃(e) = f̃ c(e).

From the above definition, we can see that (F̃c
f̃
)c = F̃ f̃ .

Example 5 Consider the GMFSS G̃ g̃ over (U, E) defined in Example 4. Thus, by
Definition 9, we have

G̃c
g̃ =

⎛

⎝
(0.9, 0.5, 1.0) (0.9, 0.5, 0.9) (0.9, 0.6, 0.9) (0.8, 0.5, 0.9)
(0.9, 0.9, 0.6) (0.8, 0.6, 0.9) (0.4, 0.9, 1.0) (0.8, 0.7, 0.9)
(0.5, 0.9, 1.0) (0.9, 0.7, 0.9) (0.5, 0.9, 0.9) (0.6, 0.9, 0.9)

⎞

⎠ .

Definition 10 The union operation on the two GMFSSs F̃ f̃ and G̃ g̃ , denoted by

F̃ f̃ � G̃ g̃ , is defined by a mapping given by H̃h̃ : E → Mk F S(U ) × I k, such that

H̃h̃(e) = (H̃(e), h̃(e)), where H̃(e) = F̃(e) � G̃(e), h̃(e) = f̃ (e) � g̃(e).

Definition 11 The intersection operation on the two GMFSSs F̃ f̃ and G̃ g̃ , denoted

by F̃ f̃ 
 G̃ g̃ , is defined by a mapping given by H̃h̃ : E → Mk F S(U )× I k, such that

H̃h̃(e) = (H̃(e), h̃(e)), where H̃(e) = F̃(e) 
 G̃(e), h̃(e) = f̃ (e) 
 g̃(e).

Example 6 Let us consider theGMFSS F̃ f̃ in Example 3. Let G̃ g̃ be another GMFSS
over (U, E) defined as follows:

G̃ g̃(e1) = ({u1/(0.5, 0.5, 0.8),u2/(0.2, 0.4, 0.1),u3/(0.8, 0.4, 0.2)}, (0.4, 0.5, 0.7)),
G̃ g̃(e2) = ({u1/(0.4, 0.1, 0.8),u2/(0.1, 0.4, 0.7),u3/(0.6, 0.4, 0.5)}, (0.2, 0.3, 0.5)),
G̃ g̃(e3) = ({u1/(0.6, 0.4, 0.3),u2/(0.3, 0.5, 0.1),u3/(0.6, 0.4, 0.8)}, (0.6, 0.8, 0.3)).

Then

F̃ f̃ � G̃ g̃ =
⎛

⎝
(0.5, 0.6, 0.8) (0.2, 0.8, 0.1) (0.8, 0.6, 0.2) (0.4, 0.6, 0.7)
(0.4, 0.2, 0.8) (0.3, 0.6, 0.7) (0.7, 0.4, 0.5) (0.3, 0.5, 0.5)
(0.8, 0.4, 0.3) (0.3, 0.5, 0.1) (0.6, 0.4, 0.8) (0.6, 0.8, 0.3)

⎞

⎠ ,

F̃ f̃ 
 G̃ g̃ =
⎛

⎝
(0.2, 0.5, 0.2) (0.2, 0.4, 0.1) (0.2, 0.4, 0.2) (0.3, 0.5, 0.1)
(0.2, 0.1, 0.5) (0.1, 0.4, 0.1) (0.6, 0.2, 0.0) (0.2, 0.3, 0.2)
(0.6, 0.1, 0.1) (0.3, 0.4, 0.1) (0.6, 0.2, 0.2) (0.6, 0.2, 0.1)

⎞

⎠ .

Definition 12 A GMFSS is said to a generalized F̃−empty multi-fuzzy soft set,
denoted by F̃0̃, if F̃0̃ : E → Mk F S(U )× I k , such that F̃0̃(e) = (F̃(e), 0̃(e)),where
0̃(e) = (0, 0, . . . 0),∀e ∈ E .

If F̃(e) = {u/(0, 0, . . . , 0) : u ∈ U } then the generalized F̃−empty multi-fuzzy
soft set is called a generalized empty multi-fuzzy soft set, denoted by ∅̃.
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Definition 13 A GMFSS is said to a generalized F̃−universal multi-fuzzy soft set,
denoted by F̃1̃, if F̃1̃ : E → Mk F S(U )× I k , such that F̃1̃(e) = (F̃(e), 1̃(e)),where
1̃(e) = (1, 1, . . . , 1),∀e ∈ E .

If F̃(e) = {u/(1, 1, . . . , 1) : u ∈ U } then the generalized F−universal multi-
fuzzy soft set is called a generalized universal multi-fuzzy soft set, denoted by 1̃.

From Definitions 12 and 13, obviously we have

(1) ∅̃ � F0̃ � F̃ f̃ � F̃1̃ � 1̃,

(2) ∅̃
c = 1̃,

(3) 1̃c = ∅̃.

Theorem 1 Let F̃ f̃ be a GMFSS over (U, E). Then the following holds:

(1) F̃ f̃ � ∅̃ = F̃ f̃ , F̃ f̃ 
 ∅̃ = ∅̃,

(2) F̃ f̃ � 1̃ = 1̃, F̃ f̃ 
 1̃ = F̃ f̃ ,

(3) F̃ f̃ � F0̃ = F̃ f̃ , F̃ f̃ 
 F0̃ = F0̃,

(4) F̃ f̃ � F1̃ = F1̃, F̃ f̃ 
 F1̃ = F̃ f̃ .

Proof Straightforward.

Remark 2 Let F̃ f̃ be a GMFSS over (U, E). If F̃ f̃ �= 1̃ or F̃ f̃ �= ∅̃, then F̃ f̃ � F̃c
f̃

�=
1̃, and F̃ f̃ 
 F̃c

f̃
�= ∅̃.

Theorem 2 Let F̃ f̃ , G̃ g̃ and H̃h̃ be any three GIMFSSs over (U, E). Then the fol-
lowing holds:

(1) F̃ f̃ � G̃ g̃ = G̃ g̃ � F̃ f̃ ,

(2) F̃ f̃ 
 G̃ g̃ = G̃ g̃ 
 F̃ f̃ ,

(3) F̃ f̃ � (G̃ g̃ � H̃h̃) = (F̃ f̃ � G̃ g̃) � H̃h̃,

(4) F̃ f̃ 
 (G̃ g̃ 
 H̃h̃) = (F̃ f̃ 
 G̃ g̃) 
 H̃h̃ .

Proof The properties follow from the definitions.

Theorem 3 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). Then De-Morgan’s laws
are valid:

(1) (F̃ f̃ � G̃ g̃)
c = F̃c

f̃

 G̃c

g̃,

(2) (F̃ f̃ 
 G̃ g̃)
c = F̃c

f̃
� G̃c

g̃.

Proof For all e ∈ E,

(F̃ f̃ � G̃ g̃)
c = ((F̃(e) � G̃(e), f̃ (e) � g̃(e)))c

= (F̃c(e) 
 G̃c(e)), ( f̃ c(e) 
 g̃c(e))

= (F̃c(e), f̃ c(e)) 
 (G̃c(e) 
 g̃c(e)) = F̃c
f̃

 G̃c

g̃.

Likewise, the proof of (2) can be made similarly.
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Theorem 4 Let F̃ f̃ , G̃ g̃ and H̃h̃ be any three GMFSSs over (U, E). Then,

(1) F̃ f̃ � (G̃ g̃ 
 H̃h̃) = (F̃ f̃ � G̃ g̃) 
 (F̃ f̃ � H̃h̃),

(2) F̃ f̃ 
 (G̃ g̃ � H̃h̃) = (F̃ f̃ 
 G̃ g̃) � (F̃ f̃ 
 H̃h̃).

Proof The proof follows from definition and distributive property of multi-fuzzy set.

Definition 14 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). The “F̃ f̃ AN D G̃ g̃”,

denoted by F̃ f̃ ∧ G̃ g̃ , is defined by F̃ f̃ ∧ G̃ g̃ = H̃h̃ , where H̃h̃(α, β) = (H̃(α, β),

h̃(α, β)), H̃(α, β) = F̃(α) 
 G̃(β), and h̃(α, β) = f̃ (α) 
 g̃(β), for all (α, β) ∈
E × E .

Definition 15 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). The “F̃ f̃ O R G̃ g̃”,

denoted by F̃ f̃ ∨ G̃ g̃ , is defined by F̃ f̃ ∨ G̃ g̃ = Õõ, where Õõ(α, β) = (Õ(α, β),

õ(α, β)), Õ(α, β) = F̃(α) � G̃(β), and õ(α, β) = f̃ (α) � g̃(β), for all (α, β) ∈
E × E .

Example 7 Let us consider two GMFSSs G̃ g̃ and F̃ f̃ in Example 6. Then we have

G̃ g̃ ∧ F̃ f̃ = H̃h̃ and G̃ g̃ ∨ F̃ f̃ = Õõ as follows:

H̃h̃(e1, e1) = ({u1/(0.2, 0.5, 0.2),u2/(0.1, 0.4, 0.1),u3/(0.2, 0.4, 0.2)}, (0.3, 0.5, 0.1)),
H̃h̃(e1, e2) = ({u1/(0.2, 0.2, 0.5),u2/(0.2, 0.4, 0.1),u3/(0.7, 0.2, 0.0)}, (0.3, 0.5, 0.2)),
H̃h̃(e1, e3) = ({u1/(0.5, 0.1, 0.1),u2/(0.2, 0.4, 0.1),u3/(0.6, 0.2, 0.2)}, (0.4, 0.2, 0.1)),
H̃h̃(e2, e1) = ({u1/(0.2, 0.1, 0.2),u2/(0.1, 0.4, 0.1),u3/(0.2, 0.4, 0.2)}, (0.2, 0.3, 0.1)),
H̃h̃(e2, e2) = ({u1/(0.2, 0.1, 0.5),u2/(0.1, 0.4, 0.1),u3/(0.6, 0.2, 0.0)}, (0.2, 0.3, 0.2)),
H̃h̃(e2, e3) = ({u1/(0.4, 0.1, 0.1),u2/(0.1, 0.4, 0.1),u3/(0.6, 0.2, 0.2)}, (0.2, 0.2, 0.1)),
H̃h̃(e3, e1) = ({u1/(0.2, 0.4, 0.2),u2/(0.1, 0.5, 0.1),u3/(0.2, 0.4, 0.2)}, (0.3, 0.6, 0.1)),
H̃h̃(e3, e2) = ({u1/(0.2, 0.2, 0.3),u2/(0.3, 0.5, 0.1),u3/(0.6, 0.2, 0.0)}, (0.3, 0.5, 0.2)),
H̃h̃(e3, e3) = ({u1/(0.6, 0.1, 0.1),u2/(0.3, 0.4, 0.1),u3/(0.6, 0.2, 0.2)}, (0.6, 0.2, 0.1))

and

Õõ(e1, e1) = ({u1/(0.5, 0.6, 0.8),u2/(0.2, 0.8, 0.1),u3/(0.8, 0.6, 0.2)}, (0.4, 0.6, 0.7)),
Õõ(e1, e2) = ({u1/(0.5, 0.5, 0.8),u2/(0.3, 0.6, 0.1),u3/(0.8, 0.4, 0.2)}, (0.4, 0.5, 0.7)),
Õõ(e1, e3) = ({u1/(0.8, 0.5, 0.8),u2/(0.3, 0.4, 0.1),u3/(0.8, 0.4, 0.2)}, (0.6, 0.5, 0.7)),
Õõ(e2, e1) = ({u1/(0.4, 0.6, 0.8),u2/(0.1, 0.8, 0.7),u3/(0.6, 0.6, 0.5)}, (0.3, 0.6, 0.5)),
Õõ(e2, e2) = ({u1/(0.4, 0.2, 0.8),u2/(0.3, 0.6, 0.7),u3/(0.7, 0.4, 0.5)}, (0.3, 0.5, 0.5)),
Õõ(e2, e3) = ({u1/(0.8, 0.1, 0.8),u2/(0.3, 0.4, 0.7),u3/(0.6, 0.4, 0.5)}, (0.6, 0.3, 0.5)),
Õõ(e3, e1) = ({u1/(0.6, 0.6, 0.3),u2/(0.3, 0.8, 0.1),u3/(0.6, 0.6, 0.8)}, (0.6, 0.8, 0.3)),
Õõ(e3, e2) = ({u1/(0.6, 0.4, 0.5),u2/(0.3, 0.6, 0.1),u3/(0.7, 0.4, 0.8)}, (0.6, 0.8, 0.3)),
Õõ(e3, e3) = ({u1/(0.8, 0.4, 0.3),u2/(0.3, 0.5, 0.1),u3/(0.6, 0.4, 0.8)}, (0.6, 0.8, 0.3)).

Theorem 5 Let F̃ f̃ and G̃ g̃ be two GMFSSs over (U, E). Then

(1) (F̃ f̃ ∧ G̃ g̃)
c = F̃c

f̃
∨ G̃c

g̃,

(2) (F̃ f̃ ∨ G̃ g̃)
c = F̃c

f̃
∧ G̃c

g̃.
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Proof (1) Suppose that F̃ f̃ ∧ G̃ g̃ = H̃h̃ , where H̃h̃(α, β) = (F̃(α) 
 G̃(β), f̃ (α) 

g̃(β)). Therefore, for all (α, β) ∈ E × E, we have H̃ c

h̃
(α, β) = (F̃c(α) �

G̃c(β), f̃ c(α) � g̃c(β)).
Again suppose that F̃c

f̃
∨ G̃c

g̃ = Õõ, where Õõ(α, β) = (F̃c(α)� G̃c(β), f̃ c(α)�
g̃c(β)). Hence H̃ c

h̃
= Õõ.

Likewise, the proof of (2) can be made similarly.

Theorem 6 Let F̃ f̃ , G̃ g̃ and H̃h̃ be any three GMFSSs over (U, E). Then we have

(1) F̃ f̃ ∧ (G̃ g̃ ∧ H̃h̃) = (F̃ f̃ ∧ G̃ g̃) ∧ H̃h̃,

(2) F̃ f̃ ∨ (G̃ g̃ ∨ H̃h̃) = (F̃ f̃ ∨ G̃ g̃) ∨ H̃h̃,

(3) F̃ f̃ ∧ (G̃ g̃ ∨ H̃h̃) = (F̃ f̃ ∧ G̃ g̃) ∨ (F̃ f̃ ∧ H̃h̃),

(4) F̃ f̃ ∨ (G̃ g̃ ∧ H̃h̃) = (F̃ f̃ ∨ G̃ g̃) ∧ (F̃ f̃ ∨ H̃h̃).

Proof The proof follows from definition and distributive property of multi-fuzzy set.

4 Application of Generalized Multi-fuzzy Soft Sets

In this section, we define an aggregate multi-fuzzy set of a GMFSS. We also define
GMFSS aggregation operator that produce an aggregate multi-fuzzy set from a
GMFSS over (U, E).

Definition 16 Let F̃ f̃ be a GMFSS over (U, E), i.e. F̃ f̃ ∈ GMFSS(U, E). Then
GMFSS-aggregation operator, denoted by G M F SSagg , is defined by

G M F SSagg : G M F SS(U, E) → Mk F S(U ), G M F SSagg F̃ f̃ = H̃ ,

where

H̃ = {u/μH̃ (u) = (μ1
H̃

(u), μ2
H̃

(u), . . . , μk
H̃

(u)) : u ∈ U }
which is a multi-fuzzy set over U . The value H̃ is called aggregate multi-fuzzy set
of F̃ f̃ .

Here, the membership degree μH̃ (ui ) of ui is defined as follows

μH̃ (ui ) = (a1
i , a2

i , . . . , ak
i ) = (in f {1,

∑

x∈E

μ1
f̃
(x)μ1

F̃(x)
(ui )}, in f {1,

∑

x∈E

μ2
f̃
(x)μ2

F̃(x)
(ui )}, . . . ,

in f {1,
∑

x∈E

μk
f̃
(x)μk

F̃(x)
(ui )}).

From the above definition, it is noted that the G I V F SSagg on the multi-fuzzy set
is an operation by which several approximate functions of a GMFSS are combined to
produce a single multi-fuzzy set that is the aggregate multi-fuzzy set of the GMFSS.
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Once an aggregate multi-fuzzy set has been arrived at, it may be necessary to choose
the best single alternative from this set. Therefore, we can construct a GMFSS-
decision making method by the following algorithm.

Step 1 Construct a GMFSS over (U, E),
Step 2 Find the aggregate multi-fuzzy set H̃ ,
Step 3 Compute the score ri of ui such that

ri =
∑

u j ∈U

((a1
i − a1

j ) + (a2
i − a2

j ) + · · · + (ak
i − ak

j )).

Step 4 Find the largest value in S where S = max
ui ∈U

{ri }.

Example 8 Assume that a company want to fill a position. There are four candidates
who form the set of alternatives,U = {u1,u2,u3,u4}. Thehiring committee consider
a set of parameters, E = {x1, x2, x3}, where x1 stands for “experience”, which
includes three levels: rich, average, poor, x2 stands for “computer knowledge” which
includes three levels: skilled, average, poor, and x3 stands for “young age”, which
includes three levels: old, middle, little.

After a serious discussion each candidate is evaluated from point of view of the
goals and the constraint according to a chose subset

f̃ = {x1/(0.69, 0.10, 0.21), x2/(0.32, 0.58, 0.10), x3/(0.23, 0.47, 0.27)}.
Finally, the committee constructs the following GMFSS over (U, E).

Step 1 Let the constructed GMFSS, F̃ f̃ , be as follows,

F̃ f̃ =
⎛

⎝
(0.42, 0.28, 0.20) (0.22, 0.49, 0.18) (0.28, 0.42, 0.20) (0.36, 0.54, 0.10) (0.69, 0.10, 0.21)
(0.22, 0.19, 0.18) (0.15, 0.45, 0.20) (0.68, 0.22, 0.00) (0.25, 0.35, 0.30) (0.32, 0.58, 0.10)
(0.61, 0.19, 0.10) (0.37, 0.43, 0.10) (0.61, 0.29, 0.10) (0.62, 0.28, 0.10) (0.23, 0.47, 0.27)

⎞

⎠ .

Step 2 The aggregate multi-fuzzy set can be found as

H̃ = {u1/(0.50, 0.23, 0.09),u2/(0.28, 0.51, 0.08),u3/(0.55, 0.31, 0.07),
u4/(0.47, 0.39, 0.08)}
Step 3 For all ui ∈ U , compute the score ri of ui such that

ri =
∑

u j ∈U

((a1
i − a1

j ) + (a2
i − a2

j ) + · · · + (ak
i − ak

j )).

Thus, we have r1 = −0.28, r2 = −0.08, r3 = 0.16, r4 = 0.20.
Step 4 The decision is anyone of the elements in S where S = max

ui ∈U
{ri }.

In our example, the candidate u4 is the best choice because max
ui ∈U

{ri } = {u4}.
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5 Conclusion

Soft set theory, proposed byMolodtsov, has been regarded as an effective mathemat-
ical tool to deal with uncertainty. However, it is difficult to be used to represent the
fuzziness of problem. In order to handle these types of problem parameters, some
fuzzy extensions of soft set theory are presented, yielding fuzzy soft set theory. In this
paper, the notion of generalized multi-fuzzy soft set theory is proposed. Our gener-
alized multi-fuzzy soft set theory is an extension of generalized fuzzy soft set theory
and generalized intuitionistic fuzzy soft set theory. Some operations are defined on
generalizedmulti-fuzzy soft sets. The basic properties of the generalizedmulti-fuzzy
soft sets are also presented and discussed. Finally, an application of this theory has
been applied to solve a decision making problem.
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Distance Measures for Interval-Valued
Intuitionistic Hesitant Fuzzy Sets

Ya-ru Wei, Lin-qing Gao, Chao Wang and Ming-hu Ha

Abstract In order to effectively deal with some decision-making problems on
interval-valued intuitionistic hesitant fuzzy environment, some distance measures
for interval-valued intuitionistic hesitant fuzzy sets are defined, and corresponding
properties are given and proved. The effectiveness and practicality of the distance
measures are verified finally.

Keywords Interval-valued intuitionistic hesitant fuzzy sets · Distance measures ·
Decision-making · Fuzzy sets

1 Introduction

In 1965, the definition of fuzzy sets was introduced by Zadeh [1] to deal with fuzzy
and uncertain information problems in our life. In order to expand the fuzzy sets, the
concept of intuitionistic fuzzy sets (IFS) was proposed by Atanassov [2, 3] in 1986.
Intuitionistic fuzzy sets are more flexibility and practicality than the traditional fuzzy
sets in dealing with ambiguity and uncertainty. While, in some practical problems,
due to many affect factors such as the complexity of the objective environment,
professional skills of decision makers, decision makers often fail to provide accurate
preference information for decision schemes. In order to expand the intuitionistic
fuzzy sets, the concept of interval-valued intuitionistic fuzzy sets was proposed by
Atanassov [4] in 1989, whose membership and non-membership are represented by
interval numbers. The interval-valued intuitionistic fuzzy sets (IVIFS) may be better
to describe the decision-makers’ preference information and reflect the nature and
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characteristics of the problem. Similarly, hesitant fuzzy sets as an expansion of the
fuzzy sets were proposed by Torra and Narukawa [5] and Torra [6] in 2009 and 2010,
which the membership of an element is a set composed by several possible values
between 0 and 1. Subsequently, the relationship [7], distance and similarity measures
[8], operators [9–11] of hesitate fuzzy set were discussed.

Distance measures have a wide range of applications in approximate reasoning,
decision analysis and medical diagnosis. The distance measures for the above exten-
sions of fuzzy set theory played an important role in the decision-making information
aggregation. In 2013, the definition of interval-valued intuitionistic hesitant fuzzy
sets (IVIHFS) and some operations was given by Zhang [12], but the corresponding
distance measures have not been proposed. In this paper, the distance measures for
interval-valued intuitionistic hesitant fuzzy set will be defined and discussed.

2 Distance Measures for IVIHFS

In 2013, Zhang [12] introduced the interval-valued intuitionistic hesitant fuzzy sets
(IVIHFS), which extends the hesitant fuzzy set to interval-valued intuitionistic hes-
itant fuzzy environments. IVIHFS are very useful tools to deal with the situation in
which decision maker hesitate between several possible interval-valued intuitionistic
fuzzy numbers when assess to an attribute.

Definition 2.1 (see [12]) Let X be a nonempty set. Then an interval-valued intu-
itionistic hesitant fuzzy set (IVIHFS) on X is given by

Ẽ = {〈x, hẼ (x)〉|x ∈ X},

where hẼ (x) is a set of some IVIFNS.
For convenience, h̃ = hẼ (x) is denoted as an interval-valued intuitionistic hesitant

fuzzy element (IVIHFE), and H̃ is a set of all the IVIHFEs. If α ∈ h̃, then α is an
IVIFN denoted by α = (μα, να) = ([μ−

α , μ+
α ], [ν−

α , ν+
α ]).

Definition 2.2 Let Ã = {〈x, h̃ Ã(x)〉|x ∈ X}, B̃ = {〈x, h̃ B̃(x)〉|x ∈ X} be two
IVIHFS. Then h̃ Ã(x) and h̃ B̃(x) are IVIHFEs. The distance measure for IVIHFS as
following:

d(h̃ Ã(xi ), h̃ B̃(xi )) = 1

4lxi

lxi∑

j=1

d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi )), (1)

where hσ( j)

Ã
(xi ) and hσ( j)

B̃
(xi ) are the j th largest values in h̃ Ã(x) and h̃ B̃(x); lxi =

max(l(h Ã(xi )), l(hB̃(xi ))), l(h Ã(xi )) and l(hB̃(xi )) are the number of h̃ Ã(x) and
h̃ B̃(x) respectively, which will be used thereafter.
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Definition 2.3 Let Ã = {〈x, h̃ Ã(x)〉|x ∈ X}, B̃ = {〈x, h̃ B̃(x)〉|x ∈ X} be two
IVIHFS. Based on the normalized Hamming distance, we can give an interval-valued
intuitionistic hesitant fuzzy normalized Hamming distance:

dIVIHFH( Ã, B̃) = 1
n

n∑

i=1

[
1

lxi
d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi ))

]

= 1
n [ 1

4lxi

lxi∑

j=1
(|(μσ( j)

Ã
(xi ))

+ − (μ
σ( j)

B̃
(xi ))

+| + |(μσ( j)

Ã
(xi ))

− − (μ
σ( j)

B̃
(xi ))

−|
+ |(νσ( j)

Ã
(xi ))

+ − (ν
σ( j)

B̃
(xi ))

+| + |(νσ( j)

Ã
(xi ))

− − (ν
σ( j)

B̃
(xi ))

−|)],
(2)

where

h̃σ( j)

Ã
(xi ) =

(
[(μσ( j)

Ã
(xi ))

−, (μ
σ( j)

Ã
(xi ))

+], [(νσ( j)

Ã
(xi ))

−, (ν
σ( j)

Ã
(xi ))

+]
)

,

h̃σ( j)

B̃
(xi ) =

(
[(μσ( j)

B̃
(xi ))

−, (μ
σ( j)

B̃
(xi ))

+], [(νσ( j)

B̃
(xi ))

−, (ν
σ( j)

B̃
(xi ))

+]
)

.

Proposition 2.1 Let Ã, B̃ and C̃ be three IVIHFS on X = {x1, x2, . . . , xn}. Then
the distance measure betweenÃ and B̃ is defined by d( Ã, B̃), which satisfies the
following properties:

(1) 0 ≤ d( Ã, B̃) ≤ 1;
(2) d( Ã, B̃) = 0 if and only if Ã = B̃;
(3) d( Ã, B̃) = d(B̃, Ã);
(4) d( Ã, B̃) ≤ d( Ã, C̃) + d(C̃, B̃).

It is proved that the interval-valued intuitionistic hesitant fuzzy normalized Ham-
ming distance satisfies the above proposition.

Proof (1) By the distance of interval-valued intuitionistic fuzzy sets, we have

0 ≤ d(h̃ Ã(xi ), h̃ B̃(xi )) ≤ 1.

So 0 ≤ dIVIHFH( Ã, B̃) ≤ 1;
(2) When Ã = B̃, we can easily get dIVIHFH( Ã, B̃) = 0.

Now we need prove d( Ã, B̃) = 0 ⇒ Ã = B̃.
Let dIVIHFH( Ã, B̃) = 0. We can get

1

lxi

d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi )) = 0 ⇒ d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi )) = 0,

So h̃σ( j)

Ã
(xi ) = h̃σ( j)

B̃
(xi ) and Ã = B̃.

(3) For any two interval-valued intuitionistic fuzzy numbers M̃ and Ñ , there have
d(M̃, Ñ )=d(Ñ , M̃). Similarly,d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi ))=d(h̃σ( j)

B̃
(xi ), h̃σ( j)

Ã
(xi ));
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(4) Let dIVIHFH( Ã, B̃) = 1
n

n∑

i=1

[
1

4lxi

lxi∑

j=1
d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi ))

]

,

dIVIHFH( Ã, C̃) = 1

n

n∑

i=1

⎡

⎣ 1

4lxi

lxi∑

j=1

d(h̃σ( j)

Ã
(xi ), h̃σ( j)

C̃
(xi ))

⎤

⎦ ,

dIVIHFH(C̃, B̃) = 1

n

n∑

i=1

⎡

⎣ 1

4lxi

lxi∑

j=1

d(h̃σ( j)

C̃
(xi ), h̃σ( j)

B̃
(xi ))

⎤

⎦ .

Then we have

dIVIHFH( Ã, C̃) + dIVIHFH(C̃, B̃) = 1

n

n∑

i=1

⎡

⎣ 1

4lxi

lxi∑

j=1

(d(h̃σ( j)

Ã
, h̃σ( j)

C̃
) + d(h̃σ( j)

C̃
, h̃σ( j)

B̃
)

⎤

⎦.

For the three interval-valued intuitionistic fuzzy numbers M̃ , Ñ and P̃ , we have

d(M̃, P̃) + d(P̃, Ñ ) ≥ d(M̃, Ñ ).

So we have

d(h̃σ( j)

Ã
(xi ), h̃σ( j)

C̃
(xi )) + d(h̃σ( j)

C̃
(xi ), h̃σ( j)

B̃
(xi )) ≥ d(h̃σ( j)

Ã
(xi ), h̃σ( j)

B̃
(xi )).

Then,
dIVIHFH( Ã, C̃) + dIVIHFH(C̃, B̃) ≥ dIVIHFH( Ã, B̃).

It is obvious that the interval-valued intuitionistic hesitant fuzzy normalized Ham-
ming distance measure satisfies Proposition 2.1.

Definition 2.4 Let Ã = {〈x, h̃ Ã(x)〉|x ∈ X}, B̃ = {〈x, h̃ B̃(x)〉|x ∈ X} be two
IVIHFS. Then the generalized interval-valued intuitionistic hesitant fuzzy weighted
distance is given by:

dGIVIHFW( Ã, B̃) = [
n∑

i=1
wi (

1
4lxi

lxi∑

j=1
|(μσ( j)

Ã
(xi ))

+ − (μ
σ( j)

B̃
(xi ))

+|λ

+ |(μσ( j)

Ã
(xi ))

− − (μ
σ( j)

B̃
(xi ))

−|λ + |(νσ( j)

Ã
(xi ))

+ − (ν
σ( j)

B̃
(xi ))

+|λ
+ |(νσ( j)

Ã
(xi ))

− − (ν
σ( j)

B̃
(xi ))

−|λ)] 1
λ ,

(3)

where
n∑

i=1
wi = 1 and λ > 0.
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While, the corresponding similarity measure is given by:

s( Ã, B̃) = 1 − d( Ã, B̃).

3 Example Analysis

Nowan example is given to verify the effectiveness and practicality of interval-valued
intuitionstic hesitant fuzzy distance measure.

Example 3.1 A factory intends to select a new site for new buildings (adopted by
[13]). Three alternatives Ai (i = 1, 2, 3) are available, and three criteria to decide
which site to choose: P1 (price); P2 (location); P3 (environment). The criteria weight
vector is ω = (0.5, 0.3, 0.2)T . Assume that the characteristics of the alternative
Ai (i = 1, 2, 3) with respect to the criteria P = (P1, P2, P3) are respected by
IVIHFEs. The result shows in Table1.

The optimal alternative is got according to the following processing:
Step 1: The Standardization of interval-valued intuitionistic hesitant fuzzymatrix.

Each element h̃ Ãi
(x j )(i = 1, 2, 3; j = 1, 2, 3) in the interval-valued intuitionistic

hesitant fuzzy numbers sorted in descending order, and then get a new matrix ¨̃H ,
listed in Table2.

Step 2: Calculate the interval-valued intuitionistic hesitant fuzzy weighted Ham-
ming distance between every alternative and the ideal site {([1,1],[0,0])}.

dH Ã1
= 0.1375 + 0.1875 + 0.0825 = 0.4075,

dH Ã2
= 0.200 + 0.1388 + 0.0850 = 0.4238,

dH Ã3
= 0.2875 + 0.1088 + 0.0575 = 0.4538.

Table 1 The intial desicion matrix

P1 P2 P3

A1 {([0.5,0.6],[0.3,0.4]), {([0.2,0.4],[0.5,0.6])} {([0.3,0.5],[0.3,0.4]),

([0.7,0.8],[0.1,0.2]), ([0.5,0.6],[0.2,0.3])}

([0.6,0.8],[0.1,0.2])}

A2 {([0.3,0,6],[0.2,0.3])} {([0.4,0.5],[0.4,0.5]), {([0.3,0.4],[0.5,0.6]),

([0.4,0.6],[0.3,0.4])} ([0.5,0.6],[0.2,0.3])}

A3 {([0.2,0.3],[0.6,0.7]), {([0.6,0.7],[0.2,0.3]), {([0.7,0.8],[0.1,0.2]),

([0.4,0.5],[0.3,0.4])} (0.4,0.6],[0.3,0.4])]} ([0.4,0.6],[0.2,0.3])}
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Table 2 The desicion matrix added

P1 P2 P3

A1 {([0.7,0.8],[0.1,0.2]), {([0.2,0.4],[0.5,0.6])} {([0.5,0.6],[0.2,0.3]),

([0.6,0.8],[0.1,0.2]), (0.3,0.5],[0.3,0.4])}

([0.5,0.6],[0.3,0.4])}

A2 {([0.3,0.6],[0.2,0.3])} {([0.4,0.6],[0.3,0.4]), {([0.5,0.6],[0.2,0.3]),

([0.4,0.5],[0.4,0.5])} ([0.3,0.4],[0.2,0.3])}

A3 {([0.4,0.5],[0.3,0.4]), {([0.6,0.7],[0.2,0.3]), {([0.7,0.8],[0.1,0.2]),

([0.2,0.3],[0.6,0.7])} ([0.4,0.6],[0.3,0.4])} ([0.4,0.6],[0.2,0.3])}

Table 3 Sorting distance

Ã1 Ã2 Ã3 Sorting result

0.4075 0.4238 0.4538 Ã1 < Ã2 < Ã3

Step 3: Sort the distance that calculated according to the step 3 (shown in Table3),
the alternative with the minimum distance is optimal. After summarizing, we can get
as following Table3.

4 Conclusions

In this paper, two distance measures, the interval-valued intuitionistic hesitant fuzzy
normalized Hamming distance and the interval-valued intuitionistic hesitant fuzzy
normalized weighted Hamming distance are discussed. The distance measures of
interval-valued intuitionstic hesitant fuzzy set provide a theoretical foundation for
decision-making in forms of interval-valued intuitionstic hesitant fuzzy sets. How-
ever, the distancemeasures withmembership degree often have subjectivity, and how
to reduce subjectivity will be further studied.
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Fuzzy Inference Modeling Method Based
on T-S Fuzzy System

Ming-zuo Jiang, Chun-ling Zhang, Xue-hai Yuan and Hong-xing Li

Abstract A kind of fuzzy inference modeling method based on T-S fuzzy system is
proposed. New input-output models and state-space models are constructed respec-
tively by applying this method to time-invariant second-order freedom movement
systems modeling. The obtained differential equation models are used to simulate
the second-order equations, and the results show that the models achieve a good
approximation precision.

Keywords Fuzzy control · Fuzzy inference modeling method · T-S fuzzy system ·
Input-Output model · State-space model

1 Introduction

It is well known that the theory of automatic control is mainly based on mathe-
matical models of systems which are often represented as differential equations. By
using these models, we can, for example, design control scheme and analyze system
properties such as stability, controllability and observability.

We know that fuzzy control is suitable for the control systems with fuzzy envi-
ronment being hard to model. The structure of fuzzy system is one of the important
problems of fuzzy system. Fuzzy systemmainly consists of fuzzification, fuzzy infer-
ence and defuzzification [1–6]. In detail, fuzzification includes singleton fuzzifier and
parameter singleton fuzzifier [7]; fuzzy inference involves Compositional Rules of
Inference (CRI) [8] andTriple IMethod [9]; defuzzification contains center of gravity
method, center average method and maximum value method. The structure of fuzzy
system is closely related to fuzzy inference modeling. In 2002, based on interpola-
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tion mechanism of fuzzy logic system [10], Li put forward a new kind of modeling
method of fuzzy system [11]. It transforms fuzzy inference rule base describing a
time-invariant system into nonlinear differential equations with variable coefficients.
Furthermore, in 2009, Li realized fuzzy modeling of time-varying system [12]. In
2013, [13] gave a fuzzy inference modeling method based on fuzzy transformation.

In recent years, T-S fuzzy system has drawn broad attention of scholars. As we
know, the rule consequents of this kind of systems are represented by linear or
nonlinear relationship between inputs and outputs, so each rule containsmore system
information such that few rules are needed to express system information. It also
provides a crisp output that need not to be defuzzified, which makes the technique
computationally efficient for describing nonlinear systems. Moreover, T-S fuzzy
models enjoy great advantages in stability analysis and controller design for nonlinear
systems because of its relatively simple and fixed structure and universal function
approximation capability. Therefore, T-S fuzzy system has been recognized as one
of the successful tools to handle complex nonlinear systems.

In this paper, we present a kind of fuzzy inference modeling method based on
T-S fuzzy system. It is applied to time-invariant second-order freedom movement
systems modeling, and new input-output models and new state-space models are
respectively established. In addition, some simulation examples are given to show
the advantages of this method.

2 Preliminaries

In 1985, Takagi and Sugeno proposed T-S fuzzy system [1, 14]. It is essentially
a nonlinear model that can effectively deal with complex multi-variable nonlinear
system. Unlike Mamdani fuzzy system, the rule consequent of T-S fuzzy system is
represented by a linear or nonlinear relationship between input and output so that
more information can be contained in each rule. Therefore, the use of fewer rules
can achieve the demanded control effect, which makes the controller more simple
[1, 14–17]. The fuzzy rule base of a T-S fuzzy system comprises of a collection of
fuzzy if-then rules in the following form:

If x is Ai and y is B j , then

zi j = c0i j + c1i j x + c2i j y(i = 1, 2, . . . m; j = 1, 2, . . . n), (1)

where Ai (i = 1, . . . , m) and B j ( j = 1, . . . , n) in (1) are both fuzzy sets with
triangular membership functions. The coefficients c0i j , c1i j and c2i j in (1) can be
defined as below.

For differential functions, the coefficients are determined by taking the deriva-
tives. Let g(xi , y j ) = zi j (i = 1, . . . , m; j = 1, . . . , n), where g ∈ C2([a1, b1] ×
[a2, b2]). Then we have c0i j = g(xi , y j ) − c1i j xi − c2i j y j , c1i j = ∂g

∂x

∣∣∣
(x,y)=(xi ,y j )

,
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and c2i j = ∂g
∂y

∣∣
∣
(x,y)=(xi ,y j )

. For non-differential functions, numerical approximation

mechanism allows us to determine the coefficients as follows:

z = f (x, y)

≈ f (xi , y j ) + f (xi+1,y j )− f (xi ,y j )

xi+1−xi
(x − xi ) + f (xi ,y j+1)− f (xi ,y j )

y j+1−y j
(y − y j )

= f (xi+1,y j )− f (xi ,y j )

xi+1−xi
x + f (xi ,y j+1)− f (xi ,y j )

y j+1−y j
y

+ f (xi , y j ) − f (xi+1,y j )− f (xi ,y j )

xi+1−xi
xi − f (xi ,y j+1)− f (xi ,y j )

y j+1−y j
y j .

(2)

Therefore, the coefficients are got here:

c0i j = f (xi , y j ) − f (xi+1, y j ) − f (xi , y j )

xi+1 − xi
xi − f (xi , y j+1) − f (xi , y j )

y j+1 − y j
y j ,

c1i j = f (xi+1, y j ) − f (xi , y j )

xi+1 − xi
, c2i j = f (xi , y j+1) − f (xi , y j )

y j+1 − y j
.

3 Fuzzy Inference Modeling Method Based
on T-S Fuzzy System

3.1 Input-Output Model of Time-Invariant System

In this section, we will discuss the problem of second-order time-invariant freedom
movement system (input u(t) = 0)modeling. Let the universes of the input variables
respectively be Y = [a1, b1], Ẏ = [a2, b2] and the output variable Ÿ = [c, d], then
y(t) ∈ Y, ẏ(t) ∈ Ẏ , ÿ(t) ∈ Ÿ . Let A = {Ai (y)}1≤i≤m, B = {B j (ẏ)}1≤ j≤n

and C = {Ci j (ÿ)}1≤i≤n,1≤ j≤m be the fuzzy partitions of the universes Y, Ẏ and Ÿ
respectively. yi , ẏ j and ÿi j with the conditions a1 = y1 < y2 < · · · < ym = b1
and a2 = ẏ1 < ẏ2 < · · · < ẏn = b2 are respectively the peak points of triangular
membership functions Ai (y), B j (ẏ) and Ci j (ÿ). There is no demand for order to ÿi j .
For fuzzy inference rules

If y(t) is Ai and ẏ(t) is B j , then ÿ(t) is Ci j (i = 1, 2, . . . m; j = 1, 2, . . . n), we
are ready to prove the following main results.

Theorem 1 Model the second-order time-invariant freedom movement system based
on T-S fuzzy system; the obtained input-output model can be expressed by the fol-
lowing nonlinear differential equation with variable coefficients:

ÿ(t) = S(y(t), ẏ(t))
= a1(y(t), ẏ(t))y(t) + a2(y(t), ẏ(t))ẏ(t)

+ a3(y(t), ẏ(t))y2(t) + a4(y(t), ẏ(t))y(t)ẏ(t) + a5(y(t), ẏ(t))ẏ2(t)
+ a6(y(t), ẏ(t))y2(t)ẏ(t) + a7(y(t), ẏ(t))y(t)ẏ2(t) + a8(y(t), ẏ(t)).

(3)
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Proof Basedon fuzzy logic interpolationmechanism,when (y(t), ẏ(t)) ∈ [yi , yi+1] ×
[ẏ j , ẏ j+1], the local equation on the piece (i, j) can be written as

ÿi j (t) = Ai (y(t))B j (ẏ(t))ÿi j + Ai+1(y(t))B j (ẏ(t))ÿi+1 j

+ Ai (y(t))B j+1(ẏ(t))ÿi j+1 + Ai+1(y(t))B j+1(ẏ(t))ÿi+1 j+1,
(4)

where the concrete forms of the inference antecedents are

Ai (y(t)) = yi+1 − y(t)

yi+1 − yi
, Ai+1(y(t)) = y(t) − yi

yi+1 − yi
,

B j (ẏ(t)) = ẏ j+1 − ẏ(t)

ẏ j+1 − ẏ j
, B j+1(ẏ(t)) = ẏ(t) − ẏ j

ẏ j+1 − ẏ j
, (5)

and those of the inference consequents are

ÿi j = c0i j + c1i j y(t) + c2i j ẏ(t), ÿi+1 j = c0i+1, j + c1i+1, j y(t) + c2i+1, j ẏ(t),

ÿi , j+1 = c0i, j+1 + c1i, j+1y(t) + c2i, j+1 ẏ(t), ÿi+1, j+1 = c0i+1, j+1 + c1i+1, j+1y(t) + c2i+1, j+1 ẏ(t).

(6)
Substitute (5) and (6) into (4), after simplification, we obtain

ÿi j (t) = ai j
1 y(t) + ai j

2 ẏ(t) + ai j
3 y2(t) + ai j

4 y(t)ẏ(t) + ai j
5 ẏ2(t) + ai j

6 y2(t)ẏ(t) + ai j
7 y(t)ẏ2(t) + ai j

8 .

When (y(t), ẏ(t)) /∈ [yi , yi+1] × [ẏ j , ẏ j+1],

ai j
1 = ai j

2 = ai j
3 = ai j

4 = ai j
5 = ai j

6 = ai j
7 = ai j

8 = 0.

When (y(t), ẏ(t)) ∈ [yi , yi+1] × [ẏ j , ẏ j+1], h1 = yi+1 − yi , h2 = ẏ j+1 − ẏ j ,

ai j
1 = (−ẏ j+1c0i j + yi+1 ẏ j+1c1i j + ẏ j+1c0i+1, j − yi ẏ j+1c1i+1, j + ẏ j c0i, j+1

− yi+1 ẏ j c1i, j+1 − ẏ j c0i+1, j+1 + yi ẏ j c1i+1, j+1)/h1h2,

ai j
2 = (−yi+1c0i j + yi+1 ẏ j+1c2i j + yi c0i+1, j − yi ẏ j+1c2i+1, j + yi+1c0i, j+1

− yi+1 ẏ j c2i, j+1 − yi c0i+1, j+1 + yi ẏ j c2i+1, j+1)/h1h2,

ai j
3 = (−ẏ j+1c1i j + ẏ j+1c1i+1, j + ẏ j c1i, j+1 − ẏ j c1i+1, j+1)/h1h2,

ai j
4 = (c0i j − yi+1c1i j − ẏ j+1c2i j − c0i+1, j + yi c1i+1, j + ẏ j+1c2i+1, j

− c0i, j+1 + yi+1c1i, j+1 + ẏ j c2i, j+1 + c0i+1, j+1 − yi c1i+1, j+1 − ẏ j c2i+1, j+1)/h1h2,

ai j
5 = (−yi+1c2i j + yi c2i+1, j + yi+1c2i, j+1 − yi c2i+1, j+1)/h1h2,

ai j
6 = (c1i j − c1i+1, j − c1i, j+1 + c1i+1, j+1)/h1h2,

ai j
7 = (c2i j − c2i+1, j − c2i, j+1 + c2i+1, j+1)/h1h2,

ai j
8 = (yi+1 ẏ j+1c0i j − yi ẏ j+1c0i+1, j − yi+1 ẏ j c0i, j+1 + yi ẏ j c0i+1, j+1)/h1h2.
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By summing the coefficients of the local equations, we have

a1(y(t), ẏ(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
1 , a2(y(t), ẏ(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
2 , a3(y(t), ẏ(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
3 ,

a4(y(t), ẏ(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
4 , a5(y(t), ẏ(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
5 , a6(y(t), ẏ(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
6 ,

a7(y(t), ẏ(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
7 , a8(y(t), ẏ(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
8 .

Thenwe derive the overall nonlinear differential equationwhen (y(t), ẏ(t)) ∈ Y ×Ẏ :

ÿ(t) =
m−1∑

i=1

n−1∑

j=1

ÿi j (t)

=
m−1∑

i=1

n−1∑

j=1

[ai j
1 y(t) + ai j

2 ẏ(t) + ai j
3 y2(t) + ai j

4 y(t)ẏ(t)

+ ai j
5 ẏ2(t) + ai j

6 y2(t)ẏ(t) + ai j
7 y(t)ẏ2(t) + ai j

8 ]

=
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
1

⎞

⎠ y(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
2

⎞

⎠ ẏ(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
3

⎞

⎠ y2(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
4

⎞

⎠ y(t)ẏ(t)

+
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
5

⎞

⎠ ẏ2(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
6

⎞

⎠ y2(t)ẏ(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
7

⎞

⎠ y(t)ẏ2(t) +
⎛

⎝
m−1∑

i=1

n−1∑

j=1

ai j
8

⎞

⎠

= a1(y(t), ẏ(t))y(t) + a2(y(t), ẏ(t))ẏ(t) + a3(y(t), ẏ(t))y2(t) + a4(y(t), ẏ(t))y(t)ẏ(t)

+ a5(y(t), ẏ(t))ẏ2(t) + a6(y(t), ẏ(t))y2(t)ẏ(t) + a7(y(t), ẏ(t))y(t)ẏ2(t) + a8(y(t), ẏ(t)).

Example 1 The Van der Pol equation ÿ(t) − μ(1 − y2(t))ẏ(t) + y(t) = 0 with the
initial condition (y(0), ẏ(0)) = (2, 0) is simulated, where μ = 1. Let time T = 20.
The universes of Y and Ẏ are both divided into seven rules. The simulation curves
and the original curves of y(t) and ẏ(t) are respectively shown in Figs. 1 and 2, where
the dotted lines show the simulation curves and the solid lines represent the original
curves. More details about the simulation steps can be found in reference [2]. As can
be seen from Figs. 1 and 2, the simulation curves almost coincide with the original
curves, which means that the model established by fuzzy inference modeling method
based on T-S fuzzy system has good approximation accuracy.
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Fig. 1 Simulation curve of y(t)

0 5 10 15 20
-3

-2

-1

0

1

2

3

t

Fig. 2 Simulation curve of ẏ(t)
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3.2 State-Space Models of Time-Invariant Systems

This section takes second-order time-invariant freedom movement system as an
example to analyze the state-space model in detail. The universes of x1(t), x2(t),
ẋ1(t) and ẋ2(t) are respectively denoted by X1 = [a1, b1], X2 = [a2, b2], X ′

1 =
[c1, d1] and X ′

2 = [c2, d2], where the fuzzy partitions of these universes are
A = {Ai }(1≤i≤m), B = {B j }(1≤ j≤n), C = {Ci j }(1≤i≤m,1≤ j≤n) and D =
{Di j }(1≤i≤m,1≤ j≤n) respectively. Ai , B j , Ci j and Di j are taken as triangular mem-

bership functions, and their peak points are respectively x (1)
i , x (2)

j , ẋ (1)
i j , ẋ (2)

i j with

the conditions a1 = x (1)
1 < x (1)

2 < · · · < x (1)
m = b1 and a2 = x (2)

1 < x (2)
2 <

· · · < x (2)
m = b2. There is no demand for order to ẋ (1)

i j and ẋ (2)
i j . Then we can get the

following fuzzy inference rules:
If x1(t) is Ai , x2(t) is B j , then

ẋ1(t) is Ci j and ẋ2(t) is Di j . (i = 1, 2, . . . m; j = 1, 2, . . . n). (7)

The fuzzy rule base (7) can be represented as a piecewise interpolation function of
two variables based on T-S fuzzy system and fuzzy logic interpolation mechanism
as follows:

(ẋ1(t), ẋ2(t)) = (S1(x1(t), x2(t)), S2(x1(t), x2(t))), (8)

where

ẋ1(t) = S1(x1(t), x2(t)) =
m∑

i=1

n∑

j=1

Ai (x1(t))B j (x2(t))ẋ (1)
i j ,

and

ẋ2(t) = S2(x1(t), x2(t)) =
m∑

i=1

n∑

j=1

Ai (x1(t))B j (x2(t))ẋ (2)
i j .

Thus the fuzzy rule base can be expressed as nonlinear differential equations with
variable coefficients, and then we get the following theorem.

Theorem 2 For second-order time-invariant system modeling, based on T-S fuzzy
system, if Ai (x1(t)) and B j (x2(t)) are both triangular membership functions, the
obtained state-space model can be constructed as the following nonlinear differential
equations with variable coefficients:

ẋ1(t) = S1(x1(t), x2(t))

= a11(x1(t), x2(t))x1(t) + a12(x1(t), x2(t))x2(t)

+ a13(x1(t), x2(t))x21 (t) + a14(x1(t), x2(t))x1(t)x2(t)

+ a15(x1(t), x2(t))x22 (t) + a16(x1(t), x2(t))x21 (t)x2(t)

+ a17(x1(t), x2(t))x1(t)x22 (t) + a18(x1(t), x2(t)), (9)
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ẋ2(t) = S2(x1(t), x2(t))

= a21(x1(t), x2(t))x1(t) + a22(x1(t), x2(t))x2(t)

+ a23(x1(t), x2(t))x21 (t) + a24(x1(t), x2(t))x1(t)x2(t)

+ a25(x1(t), x2(t))x22 (t) + a26(x1(t), x2(t))x21 (t)x2(t)

+ a27(x1(t), x2(t))x1(t)x22 (t) + a28(x1(t), x2(t)). (10)

For l = 1, 2, we have

al1(x1(t), x2(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
l1, al2(x1(t), x2(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
l2, al3(x1(t), x2(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
l3,

al4(x1(t), x2(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
l4, al5(x1(t), x2(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
l5, al6(x1(t), x2(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
l6,

al7(x1(t), x2(t)) =
m−1∑

i=1

n−1∑

j=1

ai j
l7, al8(x1(t), x2(t)) =

m−1∑

i=1

n−1∑

j=1

ai j
l8 .

The local coefficients on the piece (i, j) are defined as:
When (x1(t), x2(t)) /∈ [x (1)

i , x (1)
i+1] × [x (2)

j , x (2)
j+1],

ai j
l1 = ai j

l2 = ai j
l3 = ai j

l4 = ai j
l5 = ai j

l6 = ai j
l7 = ai j

l8 = 0,

and when (x1(t), x2(t)) ∈ [x (1)
i , x (1)

i+1] × [x (2)
j , x (2)

j+1], h1 = x (1)
i+1 − x (1)

i , h2 =
x (2)

j+1 − x (2)
j ,

ai j
l1 = (−x (2)

j+1c0(l)i j + x (1)
i+1x (2)

j+1c1(l)i j + x (2)
j+1c0(l)i+1, j − x (1)

i x (2)
j+1c1(l)i+1, j

+ x (2)
j c0(l)i, j+1 − x (1)

i+1x (2)
j c1(l)i, j+1 − x (2)

j c0(l)i+1, j+1 + x (1)
i x (2)

j c1(l)i+1, j+1)/h1h2,

ai j
l2 = (−x (1)

i+1c0(l)i j + x (1)
i+1x (2)

j+1c2(l)i j + x (1)
i c0(l)i+1, j − x (1)

i x (2)
j+1c2(l)i+1, j

+ x (1)
i+1c0(l)i, j+1 − x (1)

i+1x (2)
j c2(l)i, j+1 − x (1)

i c0(l)i+1, j+1 + x (1)
i x (2)

j c2(l)i+1, j+1)/h1h2,

ai j
l3 = (−x (2)

j+1c1(l)i j + x (2)
j+1c1(l)i+1, j + x (2)

j c1(l)i, j+1 − x (2)
j c1(l)i+1, j+1)/h1h2,

ai j
l4 = (c0(l)i j − x (1)

i+1c1(l)i j − x (2)
j+1c2(l)i j − c0(l)i+1, j + x (1)

i c1(l)i+1, j + x (2)
j+1c2(l)i+1, j

− c0(l)i, j+1 + x (1)
i+1c1(l)i, j+1 + x (2)

j c2(l)i, j+1 + c0(l)i+1, j+1 − x (1)
i c1(l)i+1, j+1 − x (2)

j c2(l)i+1, j+1)/h1h2,

ai j
l5 = (−x (1)

i+1c2(l)i j + x (1)
i c2(l)i+1, j + x (1)

i+1c2(l)i, j+1 − x (1)
i c2(l)i+1, j+1)/h1h2,

ai j
l6 = (c1(l)i j − c1(l)i+1, j − c1(l)i, j+1 + c1(l)i+1, j+1)/h1h2,

ai j
l7 = (c2(l)i j − c2(l)i+1, j − c2(l)i, j+1 + c2(l)i+1, j+1)/h1h2,

ai j
l8 = (x (1)

i+1x (2)
j+1c0(l)i j − x (1)

i x (2)
j+1c0(l)i+1, j − x (1)

i+1x (2)
j c0(l)i, j+1 + x (1)

i x (2)
j c0(l)i+1, j+1)/h1h2.
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The proof of this theorem can be completed by the method analogous to that of
Theorem 1. According to this theorem, it follows that we can piecewisely solve the
solutions of (9) and (10).

Example 2 In Example 1, let x1(t) = y(t), x2(t) = ẏ(t), then the simulation curves
and the original curves of x1(t) and of x2(t) are shown in Figs. 1 and 2, respectively.

4 Comparison of Different Fuzzy Inference Modeling
Methods

In this section, a simulation experiment under condition of time-invariant will be pro-
vided to compare approximation performance of the models using different fuzzy
modeling methods. They are fuzzy inference modeling method based on T-S fuzzy
system, fuzzy inference modeling methods mentioned in references [11, 12], and
fuzzy inference modeling method based on fuzzy transformation [13]. By compar-
ing the maximum approximation errors of the input-output models and state-space
models, it turns out that the proposed method is effective and superior in approxi-
mating equations.

In order to evaluate approximation capability of the proposed method, different
fuzzy inference modeling methods are used to simulate the Var der Pol equation. The
set of the initial values and the numbers of rules are the same as those of Example
1. We make careful comparison and overall summary of approximate effect of these
models. For simplicity, the following notations are needed:

Model I represents the model using fuzzy inference modeling method based on
Mamdani fuzzy system [11].

Model II represents the model using fuzzy inference modeling method based on
fuzzy transformation [13].

Model III represents the model using fuzzy inference modeling method based on
T-S fuzzy system.

The simulation curves of the three models of the Var der Pol equation are similar
to Figs. 1 and 2. In order to directly distinguish which model has more powerful
ability to approach the Var der Pol equation, the maximum approximation errors of
the input-output models and the state-space models are given in the below two tables.

As can be seen in Tables1 and 2, themax errors of themodel using fuzzy inference
modeling method based on T-S fuzzy system is smaller than those of the model using

Table 1 Max errors of different input-output models

Max error Model

Model I Model II Model III

The max errors of y(t) 0.2650 0.5202 0.2471

The max errors of ẏ(t) 0.5745 0.7834 0.4318
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Table 2 Max errors of different state-space models

Max error Model

Model I Model II Model III

The max errors of x1(t) 0.2650 0.4581 0.2471

The max errors of x2(t) 0.5745 0.6642 0.4318

fuzzy inference modeling method based on Mamdani fuzzy system and the model
using fuzzy inference modeling method based on fuzzy transformation. The approx-
imation effect is better than the other two methods, so fuzzy inference modeling
method based on T-S fuzzy system has the superiority to some extent.

5 Conclusion

This paper presents a fuzzy inference modeling method based on T-S fuzzy system.
Wemodel the time-varying and time-invariant second-order freedommovement sys-
tems and simulate the Var der Pol equation by the obtained differential equation
model. Moreover, we compare the simulation results of this model with another two
models using the fuzzy inference modeling method based onMamdani fuzzy system
and the fuzzy inference modeling method based on fuzzy transformation. It is shown
that the proposed method can better approximate the original equation.

Acknowledgments Thanks to the support byNational Science Foundation ofChina (No. 90818025
and No. 61074044).
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Extended General Variational Inequalities
and General Wiener–Hopf Equations

Xiao-Min Wang, Yan-Yan Zhang, Na Li and Xiu-Yan Fan

Abstract In this paper, we show the extended general variational inequality prob-
lems are equivalent to solving the general Wiener–Hopf equations. By using the
equivalence, we establish a general iterative algorithm for finding the solution of
extended general variational inequalities.We also discuss the convergence criteria for
the algorithm. Our results extend and improve the corresponding results announced
by many others.

Keywords Variational inequalities · Wiener–Hopf equations · Iterative algorithm

1 Introduction

Variational inequality theory describes a broad spectrum of interesting and important
developments involving a link among various fields of mathematics, physics, eco-
nomics and engineering sciences [1–11]. Projection methods and their variant forms
including the Wiener–Hopf equations are being used to develop various numerical
methods for solving variational inequalities. It has been shown that the Wiener–
Hopf equations are more flexible and general than the projection methods. Noor
[1–7] and Qin [10] have used theWiener–Hopf equations technique to study the sen-
sitivity analysis, dynamical systems aswell as to suggest and analyze several iterative
methods for solving variational inequalities. A new class of variational inequalities
involving three nonlinear operators, which is called the extended general variational
inequalities, is introduced and studied by Noor [9].
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Motivated and inspired by the above research, we establish the equivalence
between extended general variational inequalities and general Wiener–Hopf equa-
tions in this paper. This alternative formulation is used to propose and analyze a
new iterative algorithm for computing approximate solutions of extended general
variational inequalities. We also study the conditions under which the approximate
solution obtained from the iterative algorithms converges to the exact solution of
the general variational inequalities. Results proved in this paper may be viewed as
significant and improvement of previously known results.

2 Problem Statement and Preliminaries

Let H be a real Hilbert space whose inner product norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. Let K be a nonempty closed convex subset of H . For given nonlinear
operators T, g, h : H → H , we consider the problem of finding u ∈ H : h(u) ∈ K
such that

〈T u, g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K . (1)

The inequality of the type (1) is called the extended general variational inequality,
which was introduced by Noor in [9]. We would like to emphasize that problem (1)
is equivalent to that of finding u ∈ H : h(u) ∈ K such that

〈T u + h(u) − g(u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K . (2)

This equivalent formulation is also useful from the applications point of view.
We now list some special cases of the extended general variational inequalities.
(I) If g = h, then problem (1) is equivalent to that of finding u ∈ H : g(u) ∈ K

such that
〈T u, g(v) − g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which is known as general variational inequality, introduced and studied by Noor
[3].

(II) For g = I , the identity operator, the extended general variational inequality
(1) collapses to: Find u ∈ H : h(u) ∈ K such that

〈T u, v − h(u)〉 ≥ 0, ∀v ∈ K ,

which is also called the general variational inequality; see Noor [6].
(III) For h = I , the identity operator, then problem (1) is equivalent to that of

finding u ∈ K such that

〈T u, g(v) − u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which is also called the general variational inequality, see Noor [8].
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(IV) For g = h = I , the identity operator, the extended general variational
inequality (1) is equivalent to that of finding u ∈ K such that

〈T u, v − u〉 ≥ 0, ∀v ∈ K ,

which is known as the classical variational inequality.
(V) If K ∗ = {u ∈ H ; 〈u, v〉 ≥ 0,∀v ∈ K } is a polar (dual) convex cone of a

closed convex cone K in H , then problem (1) is equivalent to that of finding u ∈ K
such that

g(u) ∈ K , T u ∈ K ∗, 〈g(u), T u〉 = 0

which is known as the general complementarity problem, which includes many pre-
viously known complementarity problems as special cases; see [2, 3, 6].

From the above discussion, it is clear that the extended general variational inequal-
ity (1) is most general and includes several known classes of variational inequalities
and related optimization problems as special cases. These variational inequalities
have important applications inmathematical programming and engineering sciences.

Related to the variational inequalities, we have the problems of solving the
Wiener–Hopf equations. Now let

QK = I − gh−1PK ,

where PK is the projection of H onto K , I , is the identity operator. If g−1, h−1 exists,
then we consider the problem of finding z ∈ H such that

ρ−1QK z + T h−1PK z = 0, (3)

where ρ > 0 is a constant. Equations of the type (3) are called general Wiener–Hopf
equations. Note that, for g = h, we obtain the original Wiener–Hopf equation, intro-
duced by Shi [11]. It is well known that the variational inequalities andWiener–Hopf
equations are equivalent. This equivalent has played a fundamental and basic role
in developing some efficient and robust methods for solving variational inequalities
and related optimization problems.

Recall the following definitions:

Definition 2.1 An operator T : H → H is said to be:

(I) Strongly monotone if there exists a constant α > 0 such that

〈T u − T v, u − v〉 ≥ α‖u − v‖2,∀u, v ∈ H.

(II) β-Lipschitz continuous if there exists a constant β > 0 such that

‖T u − T v‖ ≤ β‖u − v‖,∀u, v ∈ H.

(III) μ-coercive if there exists a constant μ > 0 such that
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〈T u − T v, u − v〉 ≥ μ‖T u − T v‖2,∀u, v ∈ H.

Clearly, every μ-coercive operator is 1/μ-Lipschitz continuous.
(IV) Relaxed η-coercive if there exists a constant η > 0 such that

〈T u − T v, u − v〉 ≥ (−η)‖T u − T v‖2, ∀u, v ∈ H

(V) Relaxed (ω, t)-coercive if there exist two constants ω, t > 0 such that

〈T u − T v, u − v〉 ≥ (−ω)‖T u − T v‖2 + t‖u − v‖2, ∀u, v ∈ H.

For ω = 0, T is strongly monotone. This class of mappings is more general that the
class of strongly monotone mappings.

We also need the following well-known result.

Lemma 2.1 Let K be a closed convex subset of H. Then, for a given z ∈ H, u ∈ K
satisfies the inequality

〈u − z, v − u〉 ≥ 0, ∀v ∈ K ,

if and only if u = PK z, where PK is the projection of H onto K .

It is well known that the projection operator PK is a nonexpansive operator.

3 Main Results

First of all, using the technique of Noor [2], we prove the following result.

Theorem 3.1 The extended general variational inequality (1) has a solution u ∈
H : h(u) ∈ K if and only if z ∈ H satisfies the general Wiener–Hopf equation (3),
where

z = g(u) − ρT u, h(u) = PK z,

where PK is the projection of H onto K and ρ > 0 is a constant.

Proof Let u ∈ H : h(u) ∈ K be a solution of the extended general variational
inequality (1). Then, from (2), we have

〈h(u) − (g(u) − ρT u), g(v) − h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K

which implies, using Lemma 2.1, that

h(u) = PK (g(u) − ρT u).
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Using QK = I − gh−1PK , we have

(I − gh−1PK )(g(u) − ρT u) = g(u) − ρT u − gh−1PK (g(u) − ρT u)

= g(u) − ρT u − gh−1h(u) = −ρT u

= ρT h−1PK (g(u) − ρT u).

It follows that
ρ−1QK z + T h−1PK z = 0,

where z = g(u) − ρT u.
Conversely, let z ∈ H be a solution of the general Wiener–Hopf equation (3).

Then, we have

ρT h−1PK z = −QK z = (gh−1PK − I )z = gh−1PK z − z. (4)

It follows from (4) and Lemma 2.1 that

0 ≤ 〈gh−1PK z − z, g(v) − gh−1PK z〉 = 〈ρT h−1PK z, g(v) − gh−1PK z〉

for all v ∈ H : g(v) ∈ K . It follows that u = h−1PK z, that is, h(u) = PK z is a
solution of (1) and g(u) = gh−1PK Z . Using (4), we have

z = g(u) − ρT u.

This completes the proof.

From the above Theorem 3.1, one can easily see that extended general variational
inequalities and general Wiener–Hopf equations are equivalent. This equivalent is
very useful from the numerical point of view. Using this equivalence and by an
appropriate rearrangement, we suggest and analyze the following iterative algorithms
for solving the extended general variational inequalities (1).

The general Wiener–Hopf equation (3) can be rewritten as

QK z = −ρT h−1PK z,

which implies that
z − gh−1PK z = −ρT h−1PK z,

Thus
z = gh−1PK z − ρT h−1PK z = g(u) − ρT u.
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Using the equality z = (1 − αn)z + αnz, we obtain

z = (1 − αn)z + αn(g(u) − ρT u).

This formulation enables us to suggest the following iterative algorithm for solving
the extended general variational inequalities (1).

Algorithm 3.1 For any z0 ∈ H , compute the sequence {zn}by the iterative processes

h(un) = PK zn, zn = g(un)−ρT un, zn+1 = (1−αn)zn +αn(g(un)−ρT un). (5)

In order to prove our next main result, we need the following lemma.

Lemma 3.1 ([10])Assume that {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1 − λn)an + bn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} is a sequence in [0,1] with
∑∞

n=1 λn =
∞, bn = o(λn), then

limn→∞ an = 0.

Theorem 3.2 Let K be a closed convex subset of a real Hilbert space H. Let g :
H → H be a relaxed (ω1, t1)-coercive and μ1-Lipschitz continuous mapping, h :
H → H be a μ1-Lipschitz continuous mapping and let T : H → H be a relaxed
(ω2, t2)-coercive and μ2-Lipschitz continuous mapping. Let {zn}, {un} and {h(un)}
be sequences generated by Algorithm 3.1, {αn} is a sequence in [0, 1]. Assume that
the following conditions are satisfied:

2θ1 + θ2 < 1, (C1)

where θ1 =
√
1 + μ2

1 − 2t1 + 2ω1μ
2
1, θ2 =

√
1 + ρ2μ2

2 − 2ρt2 + 2ρω2μ
2
2.

∑∞
n=0

αn = ∞. (C2)

Then the sequence {zn}, {un} and {h(un)} converge strongly to z∗, u∗ and h(u∗),
respectively, where z∗ ∈ H is a solution of the general Wiener–Hopf equation (3),
u∗ ∈ H : h(u∗) ∈ K is a solution of the extended general variational inequality (1).

Proof Letting z∗ ∈ H be a solution of the general Wiener–Hopf equation (3), we
have

h(u∗) = PK z∗ , z∗ = g(u∗) − ρT u∗, z∗ = (1 − αn)z∗ + αn(g(u∗) − ρT u∗),

where u∗ ∈ H : h(u∗) ∈ K is a solution of the extended general variational
inequality (1). Observing (5), we obtain
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‖zn+1 − z∗‖ = ‖(1 − αn)zn + αn(g(un) − ρT un) − z∗‖
= ‖(1 − αn)zn + αn(g(un) − ρT un) − (1 − αn)z∗ + αn(g(u∗) − ρT u∗)‖
≤ (1 − αn)‖zn − z∗‖ + αn‖g(un) − g(u∗) − ρ(T un − T u∗)‖. (6)

On the other hand, we have

‖g(un) − g(u∗) − ρ(T un − T u∗)‖
= ‖un − u∗ − (un − u∗) + g(un) − g(u∗) − ρ(T un − T u∗)‖
≤ ‖un − u∗ − (g(un) − g(u∗))‖ + ‖un − u∗ − ρ(T un − T u∗)‖. (7)

Now, we shall estimate the first term of right side of (7)

‖un − u∗ − g(un) − g(u∗)‖
= ‖un − u∗‖2 − 2〈g(un) − g(u∗), un − u∗〉 + ‖(g(un) − g(u∗))‖2
≤ ‖un − u∗‖2 + 2ω1‖g(u)n − g(u)∗‖2 − 2t1‖un − u∗‖2 + ‖g(un) − g(u∗)‖2
≤ ‖un − u∗‖2 + 2μ2

1ω1‖un − u∗‖2 − 2t1‖un − u∗‖2 + μ2
1‖un − u∗‖2

= (1 + 2μ2
1ω1 − 2t1 + μ2

1)‖un − u∗‖2 = θ21 ‖un − u∗‖2, (8)

where θ1 =
√
1 + 2μ2

1ω1 − 2t1 + μ2
1.

Next, we shall estimate the second term of right side of (7)

‖un − u∗ − ρ(T un − T u∗)‖
≤ ‖un − u∗‖2 − 2ρ〈T un − T u∗, un − u∗〉 + ρ2‖T un − T u∗‖2
≤ ‖un − u∗‖2 + 2ρω2‖T un − T u∗‖2 − 2ρt2‖un − u∗‖2 + ρ2‖T un − T u∗‖2
≤ ‖un − u∗‖2 + 2ρω2‖T un − T u∗‖2 − 2ρt2‖un − u∗‖2 + ρ2‖T un − T u∗‖2
= (1 + 2ρμ2

2ω2 − 2ρt2 + ρ2μ2
2)‖un − u∗‖2 = θ22 ‖un − u∗‖2, (9)

where θ2 =
√
1 + 2ρμ2

2ω2 − 2ρt2 + ρ2μ2
2.

Substitute (8) and (9) into (7) yields that

‖g(un) − g(u∗) − ρ(T un − T u∗)‖ ≤ (θ1 + θ2)‖un − u∗‖. (10)

Substituting (10) into (6), we arrive at

‖zn+1 − z∗‖ ≤ (1 − αn)‖zn+1 − z∗‖ + αn(θ1 + θ2)‖un − u∗‖. (11)

Observe that

‖un −u∗‖ = ‖un −u∗ − (h(un)−h(u∗))+ (PK zn − PK z∗)‖ ≤ θ1‖un −u∗‖+‖zn+1− z∗,
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which implies that

‖un − u∗‖ ≤ 1

1 − θ1
‖zn+1 − z∗‖. (12)

Now, substituting (12) into (11), we have that

‖zn+1 − z∗‖ ≤ (1 − αn(1 − θ1 + θ2

1 − θ1
))‖zn+1 − z∗‖,

From condition (C1), (C2) and Lemma 3.1, we have

limn→∞ ‖zn+1 − z∗‖ = 0.

From (12), we have
limn→∞ ‖un − u∗‖ = 0.

On the other hand, we have

‖h(un) − h(u∗)‖ ≤ μ1‖un − u∗‖.

It follows that
limn→∞ ‖h(un) − h(u∗)‖ = 0.

This completes the proof.

4 Conclusion

In this paper,we show that the extended general variational inequalities are equivalent
to the general Wiener–Hopf equations. A general iterative algorithm for finding the
solution of extended general variational inequalities is established by the equivalence.
We also discuss the convergence criteria for the algorithm.
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Econometric Study on the Influencing
Factors of China Life Insurance Product
Demand Based on Fuzzy Variable Time
Series

Xiao-yue Zhou and Kai-qi Zou

Abstract In this paper a new kind of time series named fuzzy variable time series
is proposed and the econometric models of the influencing factors of China life
insurance product demand based on it are constructed. This paper focuses on the
importance of the variable with fuzziness and defines the discrete and continuous
fuzzy variable time series. The multiple regression model and long-term equilibrium
regression model of influencing factors of China life insurance product demand
based on fuzzy variable time series are gotten. The gap between the econometrics
and fuzzy mathematics is bridged by the concept of fuzzy variable which will lead
a new development pattern for quantized model of econometrics.

Keywords Fuzzy variable · Fuzzy variable time series · Influencing factor

1 Introduction

The analysis of life insurance demand of modern life theory is based on the expected
utility theory and it is established by Menahem in 1965 [1]. In the early studies, the
multiple regression models are applied to study the demand factors of life insurance
products [2–5]. Later, the panel data model, time series model and the autoregressive
distributed lag model are applied to discuss this problem on many interrelated ref-
erence literatures [6–9]. In these researches, a kind of variable is always neglected
which is the variable with fuzziness, such as the higher educational level, and so on.
The model can’t be scientific enough if the data are not denoted correctly [10]. For
the fuzziness of these data nothing but fuzzy logic can be applied and more and more
researchers realize the importance of it. In the work of [11–13], Song and Chissom
presented the theory of fuzzy time series to overcome the drawback of the classical
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time series methods. They defined the universe of discourse and proposed the fuzzy
set and fuzzy relationship. Later, many scholars began to focus on fuzzy time series
and some achievements are gotten [14–16]. In these papers, the authors deal with the
forecasting problems under a fuzzy environment and they get some fuzzy inferential
rules which are different from any stochastic methods. But these fuzzy time series
are impossible for the researchers to get an econometric model and the quantity rela-
tionship of variables. In order to find the variables with fuzziness for econometrics,
we have to seek after new ways.

2 Fuzzy Variable Time Series

2.1 Definitions of Fuzzy Variable Time Series

In classical econometrics the variables can be classified into exogenous variable,
lagged dependent variable and dummy variable. In empirical analysis some econo-
metric data with fuzzy characteristics are not defined rationally such as the educa-
tional level of the whole population. The educational level should be expressed by
fuzzy language such as ‘high’, ‘not high’, ‘low’ or the grade of membership. That
means it should be a variable represented by fuzzy sets. But the ratio of the graduates
to the whole population is usually used to represent the educational level in econo-
metric model and the importance of people with other educational level is ignored.
Themethod of fuzzy variable based on fuzzy theory is proposed to solve this problem
in this paper. The variable with fuzzy characteristic is defined as fuzzy variable.

Definition 2.1 Let u ∈ U .
μA : U → [0, 1].

Here μA is a mapping from U to the interval [0, 1] and A is called a fuzzy subset in
U . μ is called the membership function of A and written as μA. The value of μA(u)

represents the grade of membership of u in A and it shows the grade that u belongs
to A in [17].

Definition 2.2 Let aui j be the time series of a variable of period j in econometrics.

μA : U → [0, 1],

μA is themembership function of A. The value ofμA(ui ) is the grade of membership
of ui to A. Let

z j =
∑n

i=1 aui j · μA(ui )
∑n

i=1 aui j
.

Here u = 1, 2, . . ., n,
∑n

i=1 aui j is the sum of aui j of period j . z j is called the
discrete fuzzy variable time series of period j .
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The continuous fuzzy variable time series zx of time x are gotten and listed as:

zx =
∫ x

x0
μA(ui ) · aui ydy
∫ x

x0
aui ydy

for x0 ≤ x ≤ 1.

Definition 2.3 Let z j be the fuzzy variable time series of period j .

z j = E(z j ) =
∑k

j=1 z j

k
=

∑k
j=1

∑n
i=1 aui j ·μA(ui )∑n

i=1 aui j

k

z j is defined as the mean of z j and it denotes the average level of z j .

D(z j ) =
∑k

j=1(z j − z j )
2

k

D(z j ) is defined as the variance of z j and it measures how the data z j is close to
the mean.

In Papers [18–20] get some econometric models based on fuzzy variable time
series are gotten and the results show that they can be applied in econometric study
and make the models more objective and accurate. The application of fuzzy variable
combined econometrics with fuzzy mathematics basically.

2.2 An Example of Fuzzy Variable Time Series

The data are always real numbers in practical study and it is very significant for
the researchers to get fuzzy variable time series for the variables with fuzziness
accurately. In econometrics, some variables with fuzziness are not denoted scientific
enough such as the variable ‘level of population ageing’. Ageing of population is a
summary term for shift in the age distribution of a population toward older ages. For
consciousness of the old age security, the higher the level of the population ageing
is, the more the demand of life insurance product is. The ‘level of population ageing’
is usually defined by the ratio of the people whose age is above 60 to the whole
population. But ‘the level of the population ageing’ is a fuzzy concept and it should
be quantized by the method of fuzzy variable. Consider L.A. Zadeh’s membership
function of ‘old people’, the membership function of age u to fuzzy set A ‘level of
population ageing’ is defined as shown:

μA(ui ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 −
[
1 + ( 26−25

5 )2
]−1

i f ui ≤ 26

1 −
[
1 + (

ui −25
5 )2

]−1
i f 27 ≤ ui ≤ 79

1 i f ui ≥ 80

(1)
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The fuzzy degree of fuzzy set A ‘level of population ageing’ is calculated by (1),
that is

L(A) = 2

80

∑80

i=1
|μA(ui ) − A0.5(ui )| = 0.4096.

L(A) states that the variable data ‘level of population ageing’ is so fuzzy that fuzzy
variable should be used to denote it. The fuzzy variable time series of the ‘level of
population ageing’ in China from 1995 to 2007 are gotten as below.

z1995 = 0.4409, z1996 = 0.5181, z1997 = 0.4715, z1998 = 0.4837, z1999 = 0.4946,
z2000 = 0.5064, z2001 = 0.5131, z2002 = 0.5267, z2003 = 0.5464, z2004 = 0.5487,
z2005 = 0.5022, z2006 = 0.5227, z2007 = 0.5162

The fuzzy variable time series of ‘level of population ageing’ reveal that the
ageing of population is deeper and deeper and our country is a representative nation
of ‘getting old’ as shown in Fig. 1.

What’s this trend telling us? The improvement ofmedical conditions and the rising
of living standards bring rapid ageing population which leads China to an ageing
society. Not only old people but also young people need life insurance products, so it
is necessary to consider the demand of whole population when we study the demand
for life insurance products.
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Fig. 1 Fuzzy variable time series of the level of population ageing from 1995 to 2007
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3 Influencing Factors Models of China Life Insurance
Product Demand

3.1 Multiple Regression Model of the Influencing Factors of
China Life Insurance Product Demand

In econometrics, linear regression is an approach for modeling the relationship
between a scalar dependent variable y and one ormore independent variables denoted
x . For more than one independent variable, the process is called a multiple linear
regression. Thus the normal model takes the form

yi = β0 + β1x1i + β2x2i + · · · + βk xki + μi , i = 1, 2. . ., n

In this model, y is the dependent variable, x1i , x2i , . . ., xki are called independent
variables, βk is the parameters to be estimated and n is the sample size. This paper
applies the multiple regression models to study the demand relationship between life
insurance products and its influencing factors.

3.1.1 Dependent Variable of the Model

The amount of money to be charged for a certain amount of insurance coverage is
called the premium. The more the premium is the more the demand of life insurance
product is. In the model the premium of China life insurance industry is taken as the
dependent variable. Because it increases rapidly, the logarithm of it is gotten into the
model, noted by LNPREMIUM.

3.1.2 Independent Variables of the Model

(1) Economic development level
The gross domestic product (GDP) and per capita disposable income (INCOME)
are used to represent this factor.

(2) Related goods
The substitute goods of life insurance product are the saving, stock, real estate,
and so on. For the short-term nature of stock investment and the long-term nature
of life insurance product, the factor of stock isn’t put into the model in this paper.
Because the substitute relationship between saving and life insurance product
is not obvious enough, the author doesn’t focus on it. The cross-elasticity of
demand between life insurance product and real estate is bigger than 0 which
denotes that the real estate (HOUSE) can be considered as the substitute good
of life insurance product as shown in Table1.
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Table 1 Cross-elasticity of demand between life insurance product and real estate

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Cross-
elasticity

6.99 −32.69 4.70 15.12 15.99 6.52 0.37 0.99 1.78 1.47 1.52

(3) The factors of population
Themost important factors of population are the total population of China (POP-
ULATION), the age structure (AGE) and the degree of culture form (CULTURE).
If the proportion of old people to the whole population rises the demand of life
insurance product will increase. The proportion is denoted by the ageing of pop-
ulation and its fuzzy variable time series are gotten in 2.2 already. The awareness
of insurance is enhancedwith the degree of culture of the population being higher
and higher.
The L-fuzzy degree of the degree of culture form is 0.4 which shows that it is so
fuzzy that it should be defined according to the method of fuzzy variable. The
fuzzy variable time series of the degree of culture form from 1993 to 2010 are
gotten as below.

z1993 = 0.2722, z1994 = 0.2689, z1995 = 0.2711, z1996 = 0.2748, z1997 = 0.2716,
z1998 = 0.2753, z1999 = 0.2813, z2000 = 0.2881, z2001 = 0.2889, z2002 = 0.2826,
z2003 = 0.2846, z2004 = 0.2917, z2005 = 0.3031, z2006 = 0.3205, z2007 = 0.3407,
z2008 = 0.3637, z2009 = 0.3807, z2010 = 0.3957

The degree of culture form in China is rising slowly as shown in Fig.2.
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Fig. 2 Fuzzy variable time series of the degree of culture form from 1993 to 2010
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3.1.3 The Multiple Regression Model of the Demand Factors of China
Insurance Life Product

The multiple regression model is gotten as shown:

LNPREMIUM = −806.02 + 1.34 ∗ AGE + 6.24 ∗ LNCULTURE − 9.16 ∗ LNGDP+
0.50 ∗ LNHOUSE + 6.13 ∗ LNINCOME + 73.71 ∗ LNPOPULATION

R-squared=0.993915, F-statistic=163.3274, Durbin-Watson stat=2.1070
By rejecting the variablePOPULATION, the short-termmultiple regressionmodel

of the demand factors of China life insurance industry is shown as:

LNPREMIUM = −39.17 + 2.0837 ∗ AGE + 4.7506 ∗ LNCULTURE+
3.5759 ∗ LNGDP − 0.8056 ∗ LNHOUSE + 0.4751 ∗ LNINCOME

Some conclusions are gotten from this model. Firstly, the level of economic devel-
opment is very important to the demand of China life insurance product. When GDP
or INCOME increases 1%, the demand of China life insurance product will increase
3.58 or 0.474%. The economic development will promote the demand of life insur-
ance product and the life insurance industry grows fast in economic developed area.
Secondly the degree culture form increases 1%, the demand will increases 2.0827%.
The result shows that the CULTURE plays an important role in the life insurance
industry developing and the demand of life insurance product will increase with
the deepening of the aging degree in China. At last, the coefficient of real estate is
negative which illustrates the substitute relationship between life insurance product
and real estate. The demand of life insurance product will reduce if the house price
increases continously.

3.2 The Long-Term Equilibrium Regression Model of the
Influencing Factors of China Life Insurance Product
Demand

The theory of cointegration is the basis of dynamic econometrics. For the cointegra-
tion relationship of dependent variable and independent variable the autoregressive
distributed lag model can be changed to VEC model.

In most cases, if we combine two variables which are I(1), then their combination
will also be I(1). More generally, if we combine variables with differing orders of
integration, the combinationwith differing orders of integration, the combinationwill
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have an order of integration equal to the largest. i.e. If Xi,t ∼ I(di ) for i = 1, 2, . . ., k,
so we have k variables each integrated of order di .

Let

zt =
k∑

i=1

αi Xi,t

Then zt ∼ I(max di ).

Definition 3.1 Let zt be a k × 1 vector of variables, then the components of zt are
cointegrated of order (d , b) if

(i) All components of zt are I(d)
(ii) There is at least one vector of coefficients α such that αzt ∼ I(d−b).

The variables are cointegrated which means that a linear combination of them
will be stationary. Johansen and Juselius proposed a method of testing the cointegra-
tion of variables called JJ test in 1990s. By JJ testing the lnPREMIUM, lnHOUSE,
lnINCOME are cointegrated under the level of 5% and a long-term model is gotten.

lnPREMIUM = c + 6.9256lnINCOME − 6.0509lnHOUSE

Focus on this model, the conclusions that the demand of life insurance is pro-
portional to per capita disposable income (INCOME) and inversely proportional to
the real estate price over a long period of time are gotten. The results show that the
economic developing level take great influence on the demand of China life insur-
ance industry. The rising wages and regulation of housing price will lead to a higher
demand of life insurance product in the long run.

4 Conclusion

The techniques used in econometrics have been employed in a widening variety
of fields, including political methodology health economics, and numerous others.
Many researchers focus more attention on the applications of econometrics but the
variable data with fuzziness are always neglected. The author proposes a new kind
of variable named fuzzy variables according to fuzzy theory. The discrete and con-
tinuous fuzzy variable time series are gotten and they can be applied in econometric
models and data mining. In this paper the short-term and long-term demand factors
models of China life insurance industry are gotten by using the method of fuzzy
variable time series. The results show that the economic developing level take great
influence on the demand of China life insurance industry and the structure of age has
the same changing direction with the demand of life insurance industry.
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Sufficient Conditions of Cut Sets
on Intuitionistic Fuzzy Sets

Yiying Shi, Xuehai Yuan, Yuchun Zhang and Yuhong Zhang

Abstract In this paper, a monomorphism is established from the three-valued fuzzy
sets to intuitionistic fuzzy sets, and with this monomorphism, the three-valued fuzzy
sets can be embedded in intuitionistic fuzzy sets. Then the general definition of the
cut sets on the intuitionistic fuzzy sets is proposed. Finally, the axiomatic descriptions
for different cut sets are presented and three most intrinsic properties for each cut
sets are listed.

Keywords Intuitionistic fuzzy sets · Cut sets · Sufficient condition · Monomor-
phism

1 Introduction

Since the concept of fuzzy sets was proposed by Zadeh in 1965, the theory has been
widely applied in many fields [1]. It deals with inference that is approximate rather
than exact. Compared with classical sets, in which the value of the variable is zero or
one, fuzzy logical sets variable may have the truth value that ranges between 0 and
1 in degree. But in the fuzzy membership function, the degrees of certainty, negativ-
ity and uncertainty can’t be expressed simultaneously. Usually a certain degree of
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hesitation or uncertainty is existed in cognitive process of human beingswhichmakes
people’s perception expressed as certainty, negativity and uncertainty. So in 1983,
Atanassov put forward the concept of intuitionistic fuzzy sets covering membership,
non-membership and hesitation degree [2, 3]. In recent years the theory is utilized
in decision-making, fuzzy control, logic programming and pattern recognition, etc.

In theory of fuzzy sets and systems, cut sets are the bridges between the fuzzy
sets and classical sets which play significant roles in fuzzy optimization, decision
making [4, 5], fuzzy algebra [6, 7], fuzzy reasoning [8, 9], fuzzy topology [10, 11],
fuzzy measure, fuzzy analysis [12–16], fuzzy logic [17], and so on. Based on cut
sets, the decomposition theorems and representation theorems can be established
[18]. The cut sets of intuitionistic fuzzy sets are studied in [19], and the cut sets,
the decomposition theorems and representation theorems on intuitionistic fuzzy sets
are studied in [20, 21]. These results play an active role in the corresponding fuzzy
systems. But until now there are not axiomatic descriptions for the cut sets of the
intuitionistic fuzzy sets. Therefore, in this article we present axiomatic descriptions
for different cut sets. This paper is organized as follows: The preliminaries are listed
in Sect. 2. The definition of the f -cut sets and the sufficient conditions are introduced
in Sect. 3. And Sect. 4 is the conclusions.

2 Preliminary

Definition 1 ([1]): Let X be a set .The mapping A : X → [0, 1] is called a fuzzy
subset of X.

Definition 2 ([20, 21]): Let X be a set and μA : X → [0, 1], νA : X → [0, 1] be
two mappings. If

μA(x) + νA(x) ≤ 1,∀x ∈ X

then we call A = (X, μA, νA) an intuitionistic fuzzy set over X, and denote A(x) =
(μA(x), νA(x)).

Let IF(X) denote the class of all intuitionistic fuzzy sets over X, and A =
(X, μA, νA) ∈ IF(X), B = (X, μB , νB) ∈ IF(X).

(1) A ⊂ B ⇔ μA(x) ≤ μB(x), νA(x) ≥ νB(x),∀x ∈ X .
(2) Ac = (X, νA, μA).
(3) A ∪ B = (X, μA∪B , νA∪B), where μA∪B(x) = μA(x) ∨ μB(x), νA∪B(x) =

νA(x) ∧ νB(x).
(4) A ∩ B = (X, μA∩B, νA∩B), where μA∩B(x) = μA(x) ∧ μB(x), νA∩B(x) =

νA(x) ∨ νB(x).
(5) X̃(x) ≡ (1, 0), φ̃(x) ≡ (0, 1),∀x ∈ X .
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Definition 3 ([20, 21]): Let A be a subset of X and λ ∈ [0, 1].
(1) If Aλ, Aλ ∈ 3X and

Aλ(x) =
⎧
⎨

⎩

1 μA(x) ≥ λ
1
2 μA(x) < λ ≤ 1 − νA(x)

0 λ > 1 − νA(x)

, Aλ(x) =
⎧
⎨

⎩

1 μA(x) > λ
1
2 μA(x) ≤ λ < 1 − νA(x)

0 λ ≥ 1 − νA(x)

then we call Aλ and Aλ the λ-upper cut set and λ-strong upper cut set of A, respec-
tively.

(2) If Aλ, Aλ ∈ 3X and

Aλ(x) =
⎧
⎨

⎩

1 νA(x) ≥ λ
1
2 νA(x) < λ ≤ 1 − μA(x)

0 λ > 1 − μA(x)

, Aλ(x) =
⎧
⎨

⎩

1 νA(x) > λ
1
2 νA(x) ≤ λ < 1 − μA(x)

0 λ ≥ 1 − μA(x)

then we call Aλ and Aλ the λ-lower cut set and λ-strong lower cut set of A, respec-
tively.

(3) If A[λ], A[λ] ∈ 3X and

A[λ](x) =
⎧
⎨

⎩

1 μA(x) + λ ≥ 1
1
2 νA(x) ≤ λ < 1 − μA(x)

0 λ < νA(x)

, A[λ](x) =
⎧
⎨

⎩

1 μA(x) + λ > 1
1
2 νA(x) < λ ≤ 1 − μA(x)

0 λ ≤ νA(x)

then we call A[λ] and A[λ] the λ-upper quasi cut set and λ-strong upper quasi cut set
of A, respectively.

(4) If A[λ], A[λ] ∈ 3X and

A[λ](x) =
⎧
⎨

⎩

1 νA(x) + λ ≥ 1
1
2 μA(x) ≤ λ < 1 − νA(x)

0 λ < μA(x)

, A[λ](x) =
⎧
⎨

⎩

1 νA(x) + λ > 1
1
2 μA(x) < λ ≤ 1 − νA(x)

0 λ ≤ μA(x)

,

then we call A[λ] and A[λ] the λ-lower quasi cut set and λ-strong lower quasi cut set
of A, respectively.

Definition 4 ([20, 21]): Let A ∈ 3X , λ ∈ [0, 1],

fi : [0, 1] × 3X → L X (λ, A) �→ fi (λ, A), i = 1, 2, . . ., 8

be the following mappings:

f1(λ, A)(x) =
⎧
⎨

⎩

(0, 1) A(x) = 0
(λ, 1 − λ) A(x) = 1
(0, 1 − λ) A(x) = 1

2

, f2(λ, A)(x) =
⎧
⎨

⎩

(λ, 1 − λ) A(x) = 0
(1, 0) A(x) = 1
(λ, 0) A(x) = 1

2

,
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f3(λ, A)(x) =
⎧
⎨

⎩

(1 − λ, λ) A(x) = 0
(0, 1) A(x) = 1
(0, λ) A(x) = 1

2

, f4(λ, A)(x) =
⎧
⎨

⎩

(1, 0) A(x) = 0
(1 − λ, λ) A(x) = 1
(1 − λ, 0) A(x) = 1

2

,

f5(λ, A)(x) =
⎧
⎨

⎩

(0, 1) A(x) = 0
(1 − λ, λ) A(x) = 1
(0, λ) A(x) = 1

2

, f6(λ, A)(x) =
⎧
⎨

⎩

(1 − λ, λ) A(x) = 0
(1, 0) A(x) = 1
(1 − λ, 0) A(x) = 1

2

,

f7(λ, A)(x) =
⎧
⎨

⎩

(λ, 1 − λ) A(x) = 0
(0, 1) A(x) = 1
(0, 1 − λ) A(x) = 1

2

, f8(λ, A)(x) =
⎧
⎨

⎩

(1, 0) A(x) = 0
(λ, 1 − λ) A(x) = 1
(λ, 0) A(x) = 1

2

,

then we have the following theorems:

Theorem 1 ([20, 21]): Let A = (X, μA, νA) be an intuitionistic fuzzy set. Then

(1) A = ∪
λ∈[0,1]

f1(λ, Aλ) = ∩
λ∈[0,1]

f2(λ, Aλ).

(2) A = ∪
λ∈[0,1]

f1(λ, Aλ) = ∩
λ∈[0,1]

f2(λ, Aλ).

(3) If mapping H: [0, 1] → 3X satisfies

Aλ ⊂ H(λ) ⊂ Aλ,

then

(I) A = ∪
λ∈[0,1]

f1(λ, H(λ)) = ∩
λ∈[0,1]

f2(λ, H(λ)).

(II) λ1 < λ2 ⇒ H(λ1) ⊃ H(λ2).

(III) Aλ = ∩
α<λ

H(α), Aλ = ∪
α>λ

H(α).

Theorem 2 ([13]): Let A = (X, μA, νA ) be an intuitionistic fuzzy set. Then

(1) A = ∪
λ∈[0,1]

f3(λ, Aλ) = ∩
λ∈[0,1]

f4(λ, Aλ).

(2) A = ∪
λ∈[0,1]

f3(λ, Aλ) = ∩
λ∈[0,1]

f4(λ, Aλ).

(3) If mapping H: [0, 1] → 3X satisfies

Aλ ⊂ H(λ) ⊂ Aλ,

then

(I) A = ∪
λ∈[0,1]

f3(λ, H(λ)) = ∩
λ∈[0,1]

f4(λ, H(λ)).

(II) λ1 < λ2 ⇒ H(λ1) ⊃ H(λ2).

(III) Aλ = ∩
α<λ

H(α), Aλ = ∪
α>λ

H(α).
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Theorem 3 ([20, 21]): Let A = (X, μA, νA ) be an intuitionistic fuzzy set. Then

(1) A = ∪
λ∈[0,1]

f5(λ, A[λ]) = ∩
λ∈[0,1]

f6(λ, A[λ]).
(2) A = ∪

λ∈[0,1]
f5(λ, A[λ]) = ∩

λ∈[0,1]
f6(λ, A[λ]).

(3) If mapping H: [0, 1] → 3X satisfies

A[λ] ⊂ H(λ) ⊂ A[λ],

then

(I) A = ∪
λ∈[0,1]

f5(λ, H(λ)) = ∩
λ∈[0,1]

f6(λ, H(λ)).

(II) λ1 < λ2 ⇒ H(λ1) ⊂ H(λ2).

(III) A[λ] = ∩
α>λ

H(α), A[λ] = ∪
α<λ

H(α).

Theorem 4 ([20, 21]): Let A= (X,μA,νA) be an intuitionistic fuzzy set. Then

(1) A = ∪
λ∈[0,1]

f7(λ, A[λ]) = ∩
λ∈[0,1]

f8(λ, A[λ]).

(2) A = ∪
λ∈[0,1]

f7(λ, A[λ]) = ∩
λ∈[0,1]

f8(λ, A[λ]).

(3) If mapping H: [0, 1] → 3X satisfies

A[λ] ⊂ H(λ) ⊂ A[λ],

then

(I) A = ∪
λ∈[0,1]

f7(λ, H(λ)) = ∩
λ∈[0,1]

f8(λ, H(λ)).

(II) λ1 < λ2 ⇒ H(λ1) ⊂ H(λ2).

(III) A[λ] = ∩
α>λ

H(α), A[λ] = ∪
α<λ

H(α).

3 Definition of the f -cut Sets and Sufficient Conditions
of the Cut Sets

Lemma 1 Let ϕ : 3X → IF(X)A �→ ϕ(A) = (A, Ac) be a mapping. Then

(1) ϕ is an injection.
(2) ϕ can preserve the operations such as union (∪), intersection (∩) and comple-

mentary (c).

Proof
(1) It is easy to prove.
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(2)
ϕ(A ∪ B)(x) = ((A ∪ B)(x), 1 − (A ∪ B)(x))

= (A(x) ∨ B(x), 1 − A(x) ∨ B(x))

= (A(x) ∨ B(x), (1 − A(x)) ∧ (1 − B(x)))

= (A(x), (1 − A(x)) ∨ (B(x), (1 − B(x)))

= (ϕ(A) ∪ ϕ(B))(x).

ϕ(A ∩ B)(x) = ((A ∩ B)(x), 1 − (A ∩ B)(x))

= (A(x) ∧ B(x), 1 − A(x) ∨ B(x))

= (A(x) ∧ B(x), (1 − A(x)) ∨ (1 − B(x)))

= (A(x), (1 − A(x)) ∧ (B(x), (1 − B(x)))

= (ϕ(A) ∩ ϕ(B))(x).

ϕ(Ac)(x) = (Ac(x), A(x))

= (1 − A(x), A(x))

= (A(x), (1 − A(x))c

= (ϕ(A)c)(x).

Remark By Lemma 1, it is can be concluded that A and ϕ(A) constitute a monomor-
phism. That is to say, A has no distinctive with ϕ(A). By the above lemma, the
three-valued fuzzy sets can be viewed as the intuition fuzzy sets, so in the following
A and ϕ(A) can be indiscriminately.

Definition Let f : [0, 1] × IF(X) → 3X be a mapping, then we call f (λ, A) is a
f -cut set of the intuition fuzzy set A.

Property 1 If the mapping f : [0, 1] × IF (X) → 3X satisfies the following con-
ditions:

(1) f (λ, ∩
t∈T

At ) = ∩
t∈T

f (λ, At ).

(2) When λ > 0 and A is a three-valued fuzzy set, we have f (λ, A) = A.

(3)

f (λ, f2(α, A)) =
{

X α ≥ λ

f (λ, A) α < λ
.

Then ∀A ∈ IF(X), ∀ λ ∈ I , we have f (λ, A) = Aλ.

Proof When λ > 0,
f (λ, A) = f (λ,∩

α
f2(α, Aα))

= ∩
α

f (λ, f2(α, Aα))

= ∩
α<λ

f (λ, f2(α, Aα))

= ∩
α<λ

f (λ, Aα)

= ∩
α<λ

Aα

= Aλ .

When λ = 0, we let α > 0, then f (λ, f2(α, A)) = X = A0.
Therefore, ∀A ∈ IF(X), ∀ λ ∈ I,we have f (λ, A) = Aλ.
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Property 2 If the mapping f : [0, 1] × IF(X) → 3X satisfies the following condi-
tions:

(1) f (λ, ∪
t∈T

At ) = ∪
t∈T

f (λ, At ).

(2) When λ < 1 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f1(α, A)) =
{

φ α ≤ λ

f (λ, A) α > λ
.

Then ∀A ∈ IF (X), ∀ λ ∈ I,we have f (λ, A) = Aλ.

Proof When λ < 1,
f (λ, A) = f (λ,∪

α
f1(α, Aα))

= ∪
α

f (λ, f1(α, Aα))

= ∪
α>λ

f (λ, f1(α, Aα))

= ∪
α>λ

f (λ, Aα)

= ∪
α>λ

Aα

= Aλ.

When λ = 1, we let α < 1, then f (λ, f1(α, A)) = φ = A1.
Therefore ∀A ∈ IF(X), ∀ λ ∈ I , we have f (λ, A) = Aλ.

Property 3 If the mapping f : [0, 1] × IF (X) → 3X satisfies the following con-
ditions:

(1) f (λ, ∩
t∈T

At ) = ∩
t∈T

f (λ, At ).

(2) When λ > 0 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f4(α, A)) =
{

X α ≥ λ

f (λ, A) α < λ
.

Then ∀A ∈ IF (X), ∀ λ ∈ I,we have f (λ, A) = Aλ.

Proof When λ > 0,
f (λ, A) = f (λ,∩

α
f4(α, Aα))

= ∩
α

f (λ, f4(α, Aα))

= ∩
α<λ

f (λ, f4(α, Aα))

= ∩
α<λ

f (λ, Aα)

= ∩
α<λ

Aα

= Aλ.

When λ = 0, we let α > 0, then f (λ, f4(α, A)) = X = A0.
Therefore ∀A ∈ IF(X),∀λ ∈ I, we have f (λ, A) = Aλ.
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Property 4 If the mapping f : [0, 1] × IF (X) →3X satisfies the following condi-
tions:

(1) f (λ, ∪
t∈T

At ) = ∪
t∈T

f (λ, At ).

(2) When λ < 1 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f3(α, A)) =
{

φ α ≤ λ

f (λ, A) α > λ
.

Then ∀A ∈ IF (X), ∀ λ ∈ I, we have f (λ, A)= Aλ.

Proof When λ < 1,
f (λ, A) = f (λ,∪

α
f3(α, Aα))

= ∪
α

f (λ, f3(α, Aα))

= ∪
α>λ

f (λ, f3(α, Aα))

= ∪
α>λ

f (λ, Aα)

= ∪
α>λ

Aα

= Aλ.

When λ = 1, we let α = 1, then f (λ, f3(α, A)) = φ = A1.
Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A) = Aλ.

Property 5 If the mapping f : [0, 1] × IF (X) →3X satisfies the following condi-
tions:

(1) f (λ, ∩
t∈T

At ) = ∩
t∈T

f (λ, At ).

(2) When λ < 1 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f6(α, A)) =
{

X α ≤ λ

f (λ, A) α > λ
.

Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A) = A[λ].

Proof When λ < 1,
f (λ, A) = f (λ,∩

α
f6(α, A[α]))

= ∩
α

f (λ, f6(α, A[α]))
= ∩

α>λ
f (λ, f6(α, A[α]))

= ∩
α>λ

f (λ, A[α])
= ∩

α>λ
A[α]

= A[λ].

When λ = 1, we let α = 1, then f (λ, f6(α, A)) = X = A[1].
Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A) = A[λ].
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Property 6 If the mapping f : [0, 1] × IF (X) →3X satisfies the following condi-
tions:

(1) f (λ, ∪
t∈T

At ) = ∪
t∈T

f (λ, At ).

(2) When λ > 0 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f5(α, A)) =
{

φ α ≥ λ

f (λ, A) α < λ
.

Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A) = A[λ].

Proof When λ > 0,

f (λ, A) = f (λ,∪
α

f5(α, A[α]))
= ∪

α
f (λ, f5(α, A[α]))

= ∪
α<λ

f (λ, f5(α, A[α]))
= ∪

α<λ
f (λ, A[α])

= ∪
α<λ

A[α]
= A[λ].

when λ = 0, we let α = 0, then f (λ, f5(α, A)) = φ = A[0].
Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A)= A[λ].

Property 7 If the mapping f : [0, 1] × IF (X) →3X satisfies the following condi-
tions:

(1) f (λ, ∩
t∈T

At ) = ∩
t∈T

f (λ, At ).

(2) When λ < 1 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f8(α, A)) =
{

X α ≤ λ

f (λ, A) α > λ
.

Then ∀A ∈ IF(X), ∀ λ ∈ I , we have f (λ, A) = A[λ].

Proof When λ < 1,

f (λ, A) = f (λ,∩
α

f8(α, A[α]))
= ∩

α
f (λ, f8(α, A[α]))

= ∩
α>λ

f (λ, f8(α, A[α]))
= ∩

α>λ
f (λ, A[α])

= ∩
α>λ

A[α]

= A[λ].
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When λ = 1, we let α = 1, then f (λ, f8(α, A)) =X = A[1].
Then ∀A ∈ IF (X), ∀ λ ∈ I , we have f (λ, A) = A[λ].

Property 8 If the mapping f : [0, 1] ×IF (X) →3X satisfies the following condi-
tions:

(1) f (λ, ∪
t∈T

At ) = ∪
t∈T

f (λ, At ).

(2) When λ > 0 and A is a three-valued set, we have f (λ, A) = A.

(3)

f (λ, f7(α, A)) =
{

φ α ≥ λ

f (λ, A) α < λ
.

Then ∀A ∈ IF(X), ∀ λ ∈ I , we have f (λ, A) = A[λ].

Proof When λ > 0,

f (λ, A) = f (λ,∪
α

f7(α, A[α]))
= ∪

α
f (λ, f7(α, A[α]))

= ∪
α<λ

f (λ, f7(α, A[α]))

= ∪
α<λ

f (λ, A[α])

= ∪
α<λ

A[α]

= A[λ].

When λ = 0, we let α = 0, then f (λ, f7(α, A)) = φ = A[0].
Then ∀A ∈ IF(X), ∀ λ ∈ I , we have f (λ, A)= A[λ].

4 Conclusions

This paper establishes a monomorphism which is from the three-valued fuzzy sets
to intuitionistic fuzzy sets, and the three-valued fuzzy sets can be embedded in the
intuitionistic fuzzy sets with this monomorphism. And the general definition of the
cut sets on the intuitionistic fuzzy sets is proposed. Finally, the sufficient conditions
are given which can make the f -cut sets be the existed sets.
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On the Fuzzy Fractional Posynomial
Geometric Programming Problems

F. Zahmatkesh and Bing-yuan Cao

Abstract In this paper we consider the solution method for fuzzy fractional posyn-
omial geometric programming (FFPGP) problems. The problem of concern involves
positive trapezoidal fuzzy numbers in the objective function. The proposed approach
relies on posing the FFPGP problem as a multi-objective posynomial geometric pro-
gramming (MOPGP) problem by using simple transformation and condense tech-
nique. An illustrative example is included to demonstrate the correctness of the
proposed solution algorithm.

Keywords Trapezoidal fuzzy number ·Fractional programming ·Posynomial func-
tion · Multi-objective posynomial geometric programming

1 Introduction

In various applications of nonlinear programming a ratio of two functions is to be
maximized or minimized. Ratio optimization problems are commonly called frac-
tional programming (FP) problems. Fractional objectives appear in many real world
situations. For instance, we often need to optimize the efficiency of some activities
like cost/time, cost/profit, and output/employee. One of the earliest fractional pro-
grams (though not called so) is an equilibrium model for an expanding economy
introduced by Neumann [16] in 1937. There are different solution algorithms for
determining the optimal solution of particular kinds of fractional programming prob-
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lems. In 1962 Charnes and Cooper published their classical paper [8] in which they
show that a linear fractional program can be reduced to a linear program with help
of a nonlinear variable transformation. Jagannathan [12] supplied theoretical insight
into the relationship between nonlinear fractional programming and nonlinear para-
metric programming. Dinkelbach [9] developed a method based on Jagannathan’s
theorem for solving nonlinear fractional problems. Chang [6] proposed an approxi-
mate approach to solving posynomial fractional programming problems by deriving
the linear programming relaxation of the problem based on piecewise linearization
techniques.

Sakawa et al. [20] used fuzzy mathematical programming to study linear frac-
tional programming (LFP) problems with fuzzy goals or coefficients. Hladik [11]
considered a linear FP problem with interval data and presented a method for com-
puting the range of optimal values. A number of studies have been done by authors
in the field of linear, nonlinear, integer fractional programming and multi-objective
fractional programming problems under fuzziness [7, 15, 18, 19].

According to our experience, it is believed that the solution method in fuzzy
fractional posynomial geometric programming has not been given comprehensive
attention in the literature before. In the present paper, an attempt is made to study
fractional posynomial geometric programming problem with positive trapezoidal
fuzzy coefficients in objective function. The rest of this paper is organized as follows:
fuzzy notations and definitions used in the remaining parts of the paper are presented
in Sect. 2. Section3 describes fuzzy fractional posynomial geometric programming
problem and presents its solving procedure. Then one numerical example is presented
to illustrate the tractability of the proposed approach in computational efficiency.
Finally, brief conclusions are given in Sect. 5.

2 Preliminaries and Notations

In this section, we give some notions and definitions on which our research in this
paper is based.

Fuzzy sets first introduced by Zadeh [21] in 1965 as a mathematical way of
representing vagueness in everyday life.According to [14], the characteristic function
μA of a crisp setA ⊆ X assigns a value either 0 or 1 to eachmember inX. This function
can be generalized to a function μÃ such that the value assigned to the element of
the universal set X fall within a specified range i.e. μÃ : X → [0, 1]. The assigned
value indicates the membership grade of the element in the set A. The function μÃ
is called the membership function and the set Ã = {(x,μÃ(x)); x ∈ X} defined by
μÃ(x) for each x ∈ X is called a fuzzy set. A fuzzy set Ã, defined on the universal set
of real numbers R, is said to be a fuzzy number if its membership function has the
following characteristics:

1. μÃ : R → [0, 1] is continuous.
2. μÃ(x) = 0 for all x ∈ (−∞, a] ∪ [d,∞).
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3. μÃ(x) is strictly increasing on [a, b] and strictly decreasing on [c, d].
4. μÃ(x) = 1 for all x ∈ [b, c], where a < b < c < d.

Definition 2.1 ([14]) A fuzzy number Ã = (a, b, c, d) is said to be a trapezoidal
fuzzy number if its membership function is given by:

μÃ(x) =

⎧
⎪⎨

⎪⎩

(x−a)
(b−a) , a < x < b,
1, b ≤ x ≤ c,
(x−d)
(c−d) , c < x < d.

(1)

Definition 2.2 ([10]) A trapezoidal fuzzy number Ã = (a, b, c, d) is said to be
positive (negative) trapezoidal fuzzy number, denoted by Ã > 0 (̃A < 0), if and only
if a > 0 (c < 0).

Definition 2.3 ([13]) Let M̃ = (a1, b1, c1, d1), Ñ = (a2, b2, c2, d2) be two positive
trapezoidal fuzzy numbers and λ ∈ R

+. Then,

λ · M̃ = (λa1,λb1,λc1,λd1), (2)

M̃ + Ñ = (a1 + a2, b1 + b2, c1 + c2, d1 + d2). (3)

Definition 2.4 ([3]) Let x1, . . . , xm denote m real positive variables, and x =
(x1, . . . , xm) a vector with components xl. A real valued function u of x, with the
form

u(x) = cxγ1
1 xγ2

2 . . . xγm
m , (4)

where c > 0 and γl ∈ R is called a monomial function, or more informally, a
monomial (of the variables x1, . . . , xm). A sum of one or more monomials, i.e., a
function of the form

g(x) =
J∑

k=1

ckxγk1
1 xγk2

2 . . . xγkm
m , (5)

where ck > 0, is called a posynomial function or, more simply, a posynomial (with
J terms, in the variables x1, . . . , xm). Posynomials are closed under addition, mul-
tiplication, and positive scaling. Posynomials can be divided by monomials (with
the result also a posynomial): if g is a posynomial and u is a monomial, then g

u is a
posynomial.

Definition 2.5 ([5]) A multi-objective posynomial geometric programming
(MOPGP) problem can be stated as:

Find x = (x1, x2, . . . , xm)
T so as to

min g(t)0 (x) =
∑J(t)

0

k=1
c(t)0k

∏m

l=1
x

γ(t)
0kl

l t ∈ {1, 2, . . . , n},
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subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 1, 2, . . . , p,

xl > 0, l = 1, 2, . . . ,m,
(6)

where c(t)0k and cik are positive real constant coefficients for all t, i, k;
γ(t)
0kl and γikl are arbitrary real constant exponents for all t, i, k, l;

J(t)
0 is the number of terms present in the tth objective function g(t)0 (x), t =
1, 2, . . . , n;
Ji is the number of terms present in the ith constraint, i = 1, 2, . . . , p.

In the above multi-objective posynomial geometric programming problem there
are n number of minimization type objective functions, p number of inequality type
constraints and m number of strictly positive decision variables.

3 Problem Formulation and Solution Concept

In this section, a fuzzy fractional posynomial geometric programming problem and
its solution strategy are described.

3.1 Problem Formulation

The problem to be considered in this paper is the following fuzzy fractional posyn-
omial geometric programming (FFPGP) problem:

Find x = (x1, x2, . . . , xm)
T so as to

max
g̃1(x) = ∑J1

k=1 c̃1k
∏m

l=1 xγ1kl

l

g2(x) = ∑J2
k=1 c2k

∏m
l=1 xγ2kl

l

subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 3, 4, . . . , p + 2,

xl > 0, l = 1, 2, . . . ,m,
(7)

where x = (x1, x2, . . . , xm)
T is a variable vector, and T stands for transpose;

c2k and cik are positive real constant coefficients for all k and i = 3, 4, . . . , p + 2;
c̃1k = (a1k, b1k, c1k, d1k) are positive trapezoidal fuzzy numbers for all k;
γ1kl, γ2kl and γikl are arbitrary real constant exponents for all k, l and i = 3, 4, . . . , p +
2;
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J1 and J2 represent the number of product terms of numerator and of denominator in
the objective function, respectively;
Ji is the number of terms present in the ith constraint, i = 3, 4, . . . , p + 2;
g̃1(x) is fuzzy posynomial function and gi(x) are posynomial functions for i =
3, 4, . . . , p + 2;
g2(x) is posynomial function and positive for all x in the feasible region.

3.2 Solution Concept

In this subsection, a solution method for the FFPGP problem involving positive
trapezoidal fuzzy coefficient in objective function is presented.

At first based on Eq. (3), optimization problem (7) can be written as the following
equivalent formulation:

min
(
∑J1

k=1 a1k
∏m

l=1 xγ1kl
l ,

∑J1
k=1 b1k

∏m
l=1 xγ1kl

l ,
∑J1

k=1 c1k
∏m

l=1 xγ1kl
l ,

∑J1
k=1 d1k

∏m
l=1 xγ1kl

l )
∑J2

k=1 c2k
∏m

l=1 xγ2kl
l

subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 3, 4, . . . , p + 2,

xl > 0, l = 1, 2, . . . ,m.
(8)

Next, by using Eq. (2) rearrange the problem (8) to obtain the following equivalent
optimization problem:

min (

∑J1
k=1 a1k

∏m
l=1 xγ1kl

l
∑J2

k=1 c2k
∏m

l=1 xγ2kl
l

,

∑J1
k=1 b1k

∏m
l=1 xγ1kl

l
∑J2

k=1 c2k
∏m

l=1 xγ2kl
l

,

∑J1
k=1 c1k

∏m
l=1 xγ1kl

l
∑J2

k=1 c2k
∏m

l=1 xγ2kl
l

,

∑J1
k=1 d1k

∏m
l=1 xγ1kl

l )
∑J2

k=1 c2k
∏m

l=1 xγ2kl
l

) (9)

subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 3, 4, . . . , p + 2,

xl > 0, l = 1, 2, . . . ,m.

Now, let us define g11(x)
g2(x)

=
∑J1

k=1 a1k
∏m

l=1 x
γ1kl
l

∑J2
k=1 c2k

∏m
l=1 x

γ2kl
l

, g21(x)
g2(x)

=
∑J1

k=1 b1k
∏m

l=1 x
γ1kl
l

∑J2
k=1 c2k

∏m
l=1 x

γ2kl
l

, g31(x)
g2(x)

=
∑J1

k=1 c1k
∏m

l=1 x
γ1kl
l

∑J2
k=1 c2k

∏m
l=1 x

γ2kl
l

, g41(x)
g2(x)

=
∑J1

k=1 d1k
∏m

l=1 x
γ1kl
l )

∑J2
k=1 c2k

∏m
l=1 x

γ2kl
l

, then the the problem (9) can be understood

as the following multi-objective optimization problem:
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min (
g11(x)

g2(x)
,
g21(x)

g2(x)
,
g31(x)

g2(x)
,
g41(x)

g2(x)
)

subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 3, 4, . . . , p + 2,

xl > 0, l = 1, 2, . . . ,m.
(10)

In this problem the constraints gi(x) for all i = 3, 4, . . . , p + 2, are posynomial
inequalities and constraints xl > 0 for all l = 1, 2, . . . ,m, are monomial inequali-
ties. They are all allowable expressions required in MOPGP problem. However, the
objective functions are not allowable inMOPGP problem. To deal with this difficulty,
we propose to approximate the denominator posynomials of objective functions with
monomial functions, but leave their numerator as posynomial functions. The required
monomial approximation can be computed using the following arithmetic-geometric
mean approximation.

Consider a posynomial function g(x) = ∑J
k=1 uk(x) with uk(x) being the mono-

mial terms. Thenwe have the following expression by the arithmetic-geometricmean
inequality:

g(x) ≥ ĝ(x) =
∏J

k=1
(

uk(x)

αk(y)
)αk(y), (11)

where the parameters αk(y) can be obtained by computing:

αk(y) = uk(y)

g(y)
, ∀k, (12)

where y is a fixed point with y > 0. It can be easily verified that ĝ(x) is the best local
monomial approximation of g(x) near y [3]. Then an objective function on a ratio of
two posynomials min f (x)

g(x) can be approximated with min f (x)
ĝ(x) andmin f (x)

g(x) ≤min f (x)
ĝ(x)

holds. Applying the presented monomial approximation method to the posynomial
function g2(x), we get the following optimization problem:

min (
g11(x)

ĝ2(x)
,
g21(x)

ĝ2(x)
,
g31(x)

ĝ2(x)
,
g41(x)

ĝ2(x)
) (13)

subject to satisfying:

gi(x) =
∑Ji

k=1
cik

∏m

l=1
xγikl

l ≤ 1, i = 3, 4, . . . , p + 2,

xl > 0, l = 1, 2, . . . ,m,

where ĝ2(x) is the corresponding monomial function approximated by using
Eqs. (11) and (12). Since posynomial function can be divided by monomial function



On the Fuzzy Fractional Posynomial Geometric Programming Problems 103

and the result also is a posynomial function (based onDefinition 2.4), so optimization
problem (13) is a MOPGP problem that can be solved by using the following fuzzy
programming method. It is assumed that the present problem (13) is feasible and has
optimal solution.

3.3 Fuzzy Programming Method

Fuzzy programming problem due to Zimmermann [22] based on the concept given
by Bellman and Zadeh [1] has been successfully applied to solve various types of
multi-objective decision making problems. The following steps [5, 17] are used in
solving a multi-objective optimization problem with a linear membership function
by geometric programming technique to find an optimal compromise solution.

Step 1: Solve the MOPGP as a single objective posynomial geometric program-
ming problem using only one objective at a time and ignoring the others by using
geometric programming algorithm [4]. Repeat the process n times for n different
objective functions.

Let x(1), x(2), . . . , x(n) be the respective optimum solutions for n different posyn-
omial geometric programming problems.

Step 2: Evaluate all these n objective functions over all n optimal solutions
x(1), x(2), . . . , x(n).

Step 3: For each objective function, we find:

lt = min(g(t)0 (x(1)), g(t)0 (x(2)), . . . , g(t)0 (x(n))), (14)

ut = max(g(t)0 (x(1)), g(t)0 (x(2)), . . . , g(t)0 (x(n))), (15)

such that:

lt ≤ g(t)0 (x) ≤ ut, t = 1, 2, . . . , n. (16)

Step 4: Define a fuzzy membership function μt(x) for tth objective function
g(t)0 (x), t = 1, 2, . . . , n, as:

μt(g
(t)
0 (x)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, g(t)0 (x) ≤ lt,

ut−g(t)0 (x)
ut−lt

, lt ≤ g(t)0 (x) ≤ ut,

0, g(t)0 (x) ≥ ut .

(17)



104 F. Zahmatkesh and B. Cao

Step 5: Use the max-min operator [2] and formulate a crisp model as:

max xm+1 or min x−1
m+1 (18)

subject to satisfying:

xm+1 ≤ ut − g(t)0 (x)

ut − lt
, t = 1, 2, . . . , n,

gi(x) ≤ 1, (i = 1, 2, . . . , p),

x1, x2, . . . , xm+1 > 0.

Step 6: Solve the crisp posynomial geometric programming problem defined in
Step 5 by using geometric programming algorithm to find optimal solution x∗ and
evaluate all the n number of objective functions at this optimal solution x∗.

3.4 Solution Algorithm

We now summarize the proposed approach for solving the FFPGP with positive
trapezoidal fuzzy coefficients in this work and construct a solution algorithm.

The basic steps of the algorithm are given below:
Step 1: Convert the FFPGP problem into problem (9) with the help of arithmetic

operations on fuzzy numbers (Eqs. (2) and (3)).
Step 2: Evaluate the monomial terms in the denominator posynomials of objective

functions with the given y. Compute their corresponding parameter αk(y) by using
Eq. (12).

Step 3: Perform the condensation on the denominator posynomials of objective
functions using Eq. (11) with parameter αk(y).

Step 4: Change the problem to MOPGP problem (based on Definition 2.4).
Step 5: Solve the MOPGP problem by using fuzzy programming method.

4 Numerical Example

In this section, a numerical example is given to illustrate the approximation tech-
nique for solving the FFPGP with positive trapezoidal fuzzy coefficients in objective
function.

Example 4.1 Consider the following FFPGP:

min
(0.4, 0.5, 0.7, 0.8)x0.671 x2x−1.3

3 x−0.67
7 + (2, 2.8, 6, 7)x−1

1 x4x−1
6 + (1, 5, 6, 9)

2x−0.71
3 x−1

6 + 3x4x−2
5 x7
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subject to satisfying:

0.01x2x−1
3 + x−1

6 x7 + 0.0005x1x−1
2 x−1

5 ≤ 1,

4x3x−1
5 + 2x−0.71

3 x−1
5 + 0.0588x−1.3

3 x7 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, . . . , 7.

According to Eqs. (2) and (3) in Sect. 2, Example can be transformed into the
following form:

min (
0.4x0.671 x2x−1.3

3 x−0.67
7 + 2x−1

1 x4x−1
6 + 1

2x−0.71
3 x−1

6 + 3x4x−2
5 x7

,
0.5x0.671 x2x−1.3

3 x−0.67
7 + 2.8x−1

1 x4x−1
6 + 5

2x−0.71
3 x−1

6 + 3x4x−2
5 x7

,

0.7x0.671 x2x−1.3
3 x−0.67

7 + 6x−1
1 x4x−1

6 + 6

2x−0.71
3 x−1

6 + 3x4x−2
5 x7

,
0.8x0.671 x2x−1.3

3 x−0.67
7 + 7x−1

1 x4x−1
6 + 9

2x−0.71
3 x−1

6 + 3x4x−2
5 x7

)

subject to satisfying:

0.01x2x−1
3 + x−1

6 x7 + 0.0005x1x−1
2 x−1

5 ≤ 1,

4x3x−1
5 + 2x−0.71

3 x−1
5 + 0.0588x−1.3

3 x7 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, . . . , 7.

Now, we have the following approximation of this problem by using Eqs. (11) and
(12) in previous section:

min (
0.4x0.671 x2x−1.3

3 x−0.67
7 + 2x−1

1 x4x−1
6 + 1

ĝ(x)
,
0.5x0.671 x2x−1.3

3 x−0.67
7 + 2.8x−1

1 x4x−1
6 + 5

ĝ(x)
,

0.7x0.671 x2x−1.3
3 x−0.67

7 + 6x−1
1 x4x−1

6 + 6

ĝ(x)
,
0.8x0.671 x2x−1.3

3 x−0.67
7 + 7x−1

1 x4x−1
6 + 9

ĝ(x)
)

subject to satisfying:

0.01x2x−1
3 + x−1

6 x7 + 0.0005x1x−1
2 x−1

5 ≤ 1,

4x3x−1
5 + 2x−0.71

3 x−1
5 + 0.0588x−1.3

3 x7 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, . . . , 7,

where ĝ(x) is the corresponding monomial approximation of posynomial function
2x−0.71

3 x−1
6 + 3x4x−2

5 x7. It has the following formulation by using Eq. (11):

ĝ(x) = (
2x−0.71

3 x−1
6

α1
)α1(

3x4x−2
5 x7

α2
)α2 ,
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where α1 and α2 can be computed by using Eq. (12) as follows:

α1 = 2y−0.71
3 y−1

6

2y−0.71
3 y−1

6 + 3y4y−2
5 y7

,

α2 = 3y4y−2
5 y7

2y−0.71
3 y−1

6 + 3y4y−2
5 y7

.

The following algorithm parameters were set in the implementation of the pro-
posed method: y1 = 1, y2 = 1, y3 = 1, y4 = 1, y5 = 10, y6 = 10, y7 = 1 and
ε = 10(−7). By using the steps of fuzzy programming method, a crisp model is
formulated as:

max θ
subject to satisfying:

0.5471592x0.671 x2x−0.6826087
3 x−0.1304348

4 x0.26086965 x0.86956526 x−0.8004348
7

+ 2.7357966x−1
1 x0.61739133 x0.86956524 x0.26086965 x−0.1304348

6 x−0.1304348
7

+ 1.3678979x0.61739133 x−0.1304348
4 x0.26086965 x0.86956526 x−0.1304348

7+ 0.1221097θ ≤ 1,
0.3148304x0.671 x2x−0.6826087

3 x−0.1304348
4 x0.26086965 x0.86956526 x−0.8004348

7
+ 1.7630505x−1

1 x0.61739133 x0.86956524 x0.26086965 x−0.1304348
6 x−0.1304348

7
+ 3.1483044x0.61739133 x−0.1304348

4 x0.26086965 x0.86956526 x−0.1304348
7+ 0.1221097θ ≤ 1,

0.3175095x0.671 x2x−0.6826087
3 x−0.1304348

4 x0.26086965 x0.86956526 x−0.8004348
7

+ 2.7215098x−1
1 x0.61739133 x0.86956524 x0.26086965 x−0.1304348

6 x−0.1304348
7

+ 2.7215098x0.61739133 x−0.1304348
4 x0.26086965 x0.86956526 x−0.1304348

7+ 0.1221097θ ≤ 1,
0.2697063x0.671 x2x−0.6826087

3 x−0.1304348
4 x0.26086965 x0.86956526 x−0.8004348

7
+ 2.3599308x−1

1 x0.61739133 x0.86956524 x0.26086965 x−0.1304348
6 x−0.1304348

7
+ 3.0341968x0.61739133 x−0.1304348

4 x0.26086965 x0.86956526 x−0.1304348
7+ 0.1221097θ ≤ 1,

0.01x2x−1
3 + x−1

6 x7 + 0.0005x1x−1
2 x−1

5 ≤ 1,
4x3x−1

5 + 2x−0.71
3 x−1

5 + 0.0588x−1.3
3 x7 ≤ 1,

0.1 ≤ xi ≤ 10, i = 1, 2, . . . , 7,
0 < θ.

The optimal compromise solution is obtained as: θ = 0.7569894, x1 =
1.795215, x2 = 0.1000000, x3 = 0.2152608, x4 = 0.1000000, x5 = 7.120881,
x6 = 0.1005941, x7 = 0.1000000. Sowe can obtain the objective value (0.2136294,
0.4687867, 0.6641215, 0.8734667).
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5 Conclusion

This paper has dealt with a fuzzified version of a fractional posynomial geometric
programming problem in which fuzzy parameters are involved in the objective func-
tion. The algorithm presented here proposed a technique for changing the FFPGP
problem to MOPGP problem and then solving the MOPGP problem. Based on the
obtained results in the last section, we conclude that using the proposed solution
algorithm is useful to solve a FFPGP problem.
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Generalized Fuzzy Imaginary Ideals
of Complemented Semirings

Zu-hua Liao, Chan Zhu, Xiao-tang Luo, Shuang Hu and Wei-long Liu

Abstract Our aim in this paper is to introduce and study the new type of fuzzy ideals
of a complemented semiring called generalized fuzzy imaginary right (resp.left)
ideals and the direct products of them. The equivalence relation of them is given,
besides, the fundamental properties of their intersection, union and level sets are dis-
cussed. Finally, we also investigated the properties of their homomorphic preimage.

Keywords (∈,∈ ∨q(λ,μ))—fuzzy imaginary ideal generalized fuzzy imaginary
ideal homomorphic preimage

1 Introduction

In 1965, Zadeh [1] introduced the concept of a fuzzy subset and studied its properties
on the lines parallel to set theory. In 1971, Rosefeld [2] defined the notion of a fuzzy
subgroup and gave some of its properties. Rosenfelds definition of a fuzzy group
is a turning point for pure mathematicians. Since then, the study of fuzzy algebraic
structure has been pursued in many directions such as groups, rings, modules, vector
spaces and so on. In 1982, Liu [3] defined and studied the theory of fuzzy ideals in
rings. In 1990, Ma [4] gave the definition of imaginary ideals of rings and obtained
some results. Then in 1992, he discussed the relation between the imaginary ideals,
pseudo ideals and ideals of rings [5]. Besides, some relevant examples were also
given by him.

In 1992, Induab scholar Bhakat and Das [6] introduced the concept of (α,β)—
fuzzy subgroup by using belong to (∈) relation and quasi-coincident with (q) relation
between the fuzzy point and the fuzzy sets. In fact, its an important and useful general-
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ized of Rosenfelds fuzzy subgroup. In 2006, Liao etc. generalized “quasi-coinciednt
with” relation (q) between a fuzzy point and a fuzzy set of Liu to “generalized
quasi-coincident with” relation (q(λ,μ)) between a fuzzy point and a fuzzy set, and
extended Rosenfeld’s (∈,∈)—fuzzy algebra, Bhakat and Das’s (∈,∈ ∨q)—fuzzy
algebra and (∈,∈ ∨ q)—fuzzy algebra to (∈,∈ ∨q(λ,μ))—fuzzy algebra [7] with
more abundant hierarchy [8].

Vandiver [9] in 1939 put forward the concept of semiring. The applications of
semirings to areas such as optimization theory, graph theory, theory of discrete event
dynamical systems, generalized fuzzy computation, automata theory, formal lan-
guage theory, coding theory and analysis of computer programs have been exten-
sively studied in the literature [10, 11]. Liu [12] introduced fuzzy ideals in a ring.
Following this definition, Mukherjee and Sen [13, 14] obtained many interesting
results in the theory of rings.

On the study of fuzzy semiring, there has been a large number of research at home
and abroad. Then Feng and Zhan [15] proposed complemented semirings. They put
the Boolean algebra as its proper class, and studied the algebraic structure of it.
This paper is the continuation of the above work. Section2 of this paper list some
necessary preliminaries that support our results. Section3 is the kernel of the whole
paper, which displaymain results obtained by the authors, including the relationships
among genenralized fuzzy imaginary ideal, (∈,∈ ∨q(λ,μ))—fuzzy imaginary ideal
and level subsets of a fuzzy set and relative properties about the intersection, union
and homomorphic preimage of such genenralized fuzzy imaginary ideal. In Sect. 4,
we make a conclusion of the article.

2 Preliminaries

In this section we recall some basic notions and results which will be needed in the
sequel.

Definition 2.1 ([16]) A semiring S is a structure consisting of a nonempty set S
together with two binary operations on S called addition and multiplition (denoted
in the usual manner) such that

(1) S together with addition is a semigroup. o is additive identity element;
(2) S together with multiplition is a semigroup. 1 is multiplitive identity element;
(3) a(b + c) = ab + ac, (a + b)c = ac + bc,∀a, b, c ∈ S ;
(4) o · a = a · o = o ;

Definition 2.2 ([15]) Assume a is an element of semiring S, if there exists a com-
plement a which makes aa = o, a + a = 1, a is called complemented. S is said to
be a complemented semiring if every element of S has a complement.

Definition 2.3 ([17]) Let S be a semiring. A nonempty subset A of S is said to be a
complemented subsemiring of S if A is closed under three binary operations on S:
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(1) If a, b ∈ A, then a + b ∈ A;
(2) If a, b ∈ A, then ab ∈ A;
(3) If a ∈ A, then a ∈ A.

Definition 2.4 ([18]) Letα,λ,μ ∈ [0, 1] andλ < μ. If A(x) ≥α, then a fuzzy point
xα is said to belongs to a fuzzy subset Awritten xα ∈ A; ifλ < α and A(x)+α > 2μ,
then a fuzzy point xα is called to be generalized quasi-coincident with a fuzzy subset
A, denoted by xαq(λ,μ)A. If xα ∈ A or xαq(λ,μ)A, then xα ∈ ∨q(λ,μ)A.

Definition 2.5 ([17]) Letα,λ,μ ∈ [0, 1] and λ < μ. A fuzzy subset A of S is called
an (∈,∈ ∨q(λ,μ))—fuzzy complemented subsemiring of S, if ∀t, r ∈ (λ, 1], a, b ∈
S, satisfy:

(1) If at , br ∈ A, we have (a + b)t∧r ∈ ∨q(λ,μ)A;
(2) If at , br ∈ A, there exist (ab)t∧r ∈ ∨q(λ,μ)A;
(3) If at ∈ A, at ∈ ∨q(λ,μ)A holds.

Definition 2.6 ([17]) Let α,λ,μ ∈ [0, 1] and λ < μ, A is a fuzzy set of S. We call
A a generalized fuzzy complemented subsemiring of S if ∀a, b ∈ S satisfy:

(1) A(a + b) ∨ λ ≥ A(a) ∧ A(b) ∧ μ;
(2) A(ab) ∨ λ ≥ A(a) ∧ A(b) ∧ μ;
(3) A(a) ∨ λ ≥ A(a) ∧ μ.

Definition 2.7 Let Si (1 ≤ i ≤ n) be complemented semirings and direct product:∏
1≤i≤n Si = {(a1, a2, . . . an)|ai ∈ Si }. Then∏

1≤i≤n Si is a complemented semiring
under the operations as following:

(a1, a2, . . . an) + (b1, b2, . . . bn) = (a1 + b1, a2 + b2, . . . , an + bn);
(a1, a2, . . . an)(b1, b2, . . . bn) = (a1b1, a2b2, . . . anbn);
(a1, a2, . . . an) = (a1, a2, . . . an).

Definition 2.8 Let Ai (1 ≤ i ≤ n) be fuzzy subsets of Si . Then a fuzzy set
∏

1≤i≤n Ai

defined as (
∏

1≤i≤n Ai )(x1, x2, . . . xn)= inf1≤i≤n Ai (xi ) is called hboxfuzzy direct
product.

Theorem 2.1 ([17]) Let A be a fuzzy subset of S. Then A is a generalized fuzzy
complemented subsemiring of S if and only if A is an (∈,∈ ∨q(λ,μ))—fuzzy comple-
mented subsemiring of S.

Theorem 2.2 ([12]) Let A be a fuzzy subset of S. Then A is a generalized fuzzy com-
plemented subsemiring of S if and only if ∀α ∈ (λ,μ], nonempty Aα is a subsemiring
of S.

Theorem 2.3 ([12]) Let A and B be generalized fuzzy complemented subsemirings
of S. Then A ∩ B is a generalized fuzzy complemented subsemiring of S.

Theorem 2.4 ([17]) A subset A of S is a complemented subsemiring of S if and only
if χA is a generalized fuzzy complemented subsemiring of S.

Theorem 2.5 ([17]) Let f : S → H be a homomorphism. If B is a generalized fuzzy
complemented subsemiring of H, then f −1(B) is a generalized fuzzy complemented
subsemiring of S.
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3 (∈,∈ ∨q(λ,μ))—Fuzzy Imaginary Ideals of Complemented
Semiring

Definition 3.1 Let A be a complemented subsemiring of S. Then A is said to be
a imaginary right (resp.left) ideal of S if for all x ∈ A, y ∈ S and xy ∈ A(resp.
yx ∈ A) imply y ∈ A.

Definition 3.2 Let A be a generalized fuzzy complemented subsemiring of S. Then
A is called a generalized fuzzy imaginary right (resp.left) ideal of S if for all x, y ∈ S,
A(y) ∨ λ ≥ A(x) ∧ A(xy) ∧ μ(A(y) ∨ λ ≥ A(x) ∧ A(yx) ∧ μ).

Definition 3.3 Let A be an (∈,∈ ∨q(λ,μ))—fuzzy complemented subsemiring of S,
α ∈ (λ, 1]. Then A is called an (∈,∈ ∨q(λ,μ))— fuzzy imaginary right (resp.left)
ideal of S if ∀xα ∈ A, y ∈ S and (xy)α ∈ A( resp.(yx)α ∈ A) implies yα ∈
∨q(λ,μ)A.
We say A an (∈,∈ ∨q(λ,μ))—fuzzy imaginary ideal of S if A is both an (∈,∈
∨q(λ,μ))—fuzzy imaginary right deal of S and an (∈,∈ ∨q(λ,μ))—fuzzy imaginary
left ideal of S.

Theorem 3.1 Let A be a fuzzy subset of S. Then the following conditions are
equiavalent:

(1) A is an (∈,∈ ∨q(λ,μ))—fuzzy imaginary right (resp. left) ideal of S;
(2) A is a generalized fuzzy imaginary right (resp. left) ideal of S;
(3) nonempty set Aα is a imaginary right (resp. left) ideal of S for all α ∈ (λ,μ].
Proof (1) ⇒ (2)

We obtain that A is a generalized fuzzy complemented subsemiring of S based on
Theorem 2.1. Assume that ∃x0, y0 ∈ S such that A(y0)∨λ < A(x0)∧ A(x0y0)∧μ.
Chooseα such that A(y0)∨λ < α < A(x0)∧A(x0y0)∧μ, then A(y0) < α, A(x0) >
α, A(x0y0) > α and λ < α < μ, so (x0)α ∈ A and (x0y0)α ∈ A, thus (y0)α ∈
∨q(λ,μ)A based on Definition 3.3. But A(y0) < α, thus A(y0) + α < α+α ≤ 2μ, a
contradiction. So A is a generalized fuzzy imaginary right ideal of S.

(2) ⇒ (1)
From Theorem 2.1, we know that A is an (∈,∈ ∨q(λ,μ))—fuzzy subsemiring of

S. For all x, y ∈ S and α ∈ (λ, 1], if xα ∈ A and (xy)α ∈ A, then A(x) ≥ α
and A(xy) ≥ α. Since A is a generalized fuzzy imaginary right ideal of S, then
A(y) ∨ λ ≥ A(x) ∧ A(xy) ∧ μ ≥ α ∧ μ. If α > μ, then A(y) ∨ λ ≥ μ, by λ < μ,
so A(y) ≥ μ, then A(y) + α ≥ μ + α > 2μ, i.e., yαq(λ,μ)A. On the other hand, if
α ≤ μ, then we can obtain that A(y) ≥ α, i.e., yα ∈ A, so yα ∈ ∨q(λ,μ)A.
Thus A is an (∈,∈ ∨q(λ,μ))—fuzzy imaginary right ideal of S.

(2) ⇒ (3)
We know that Aα is a subsemiring of S based on Theorem 2.2. For all x ∈ Aα

and y ∈ S, if xy ∈ Aα, then A(x) ≥ α and A(xy) ≥ α. Since A is a generalized
fuzzy imaginary right ideal of S, then for all α ∈ (λ,μ], we have A(y) ∨ λ ≥
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A(x) ∧ A(xy) ∧ μ ≥ α ∧ μ = α, by λ < α, so A(y) ≥ α, i.e., y ∈ Aα.
Therefore Aα is a imaginary right ideal of S for all α ∈ (λ,μ].

(3) ⇒ (2)
We obtain that A is a generalized fuzzy complemented subsemiring of S based

on Theorem 2.2. Assume that there exists x0, y0 ∈ S such that A(y0)∨ λ <A(x0)∧
A(x0y0) ∧ μ. Choose α such that A(y0) ∨ λ < α < A(x0) ∧ A(x0y0) ∧ μ, then
A(y0) < α, A(x0) > α, A(x0y0) > α and λ < α < μ, i.e., x0 ∈ Aα and x0y0 ∈
Aα. Since Aα is an imaginary right ideal of S, then y0 ∈ Aα, i.e., A(y0) ≥ α, a
contradiction to A(y0) < α. Therefore A is a generalized fuzzy imaginary right
ideal of S.

Similarly, we can prove the other results.

The above theorems show that generalized fuzzy imaginary right (resp. left) ideal
and (∈,∈ ∨ q(λ,μ))—fuzzy imaginary right (resp.left) ideal are equivalent. Thus we
can prove a normal fuzzy set be an (∈,∈ ∨ q(λ,μ))—fuzzy imaginary right (resp.left)
ideal by proving it to be a generalized fuzzy imaginary right (resp.left) ideal, which
is easer than the former. Meanwhile, Theorem 3.1 establishes a kind of link be-
tween generalized fuzzy imaginary right (resp.left) ideal and ordinary imaginary
right (resp.left) ideal.

Next we prove the theorem for imaginary right ideal. Analogous arguments apply
to imaginary left ideal.

Theorem 3.2 Let A and B be generalized fuzzy imaginary right (resp. left) ideal of
S. Then A ∩ B is a generalized fuzzy imaginary right (resp.left) ideal of S.

Proof We obtain that A ∩ B is a generalized fuzzy complemented subsemiring of S
based on Theorem 2.3, for all x, y ∈ S, we have

(A ∩ B)(y) ∨ λ = (A(y) ∧ B(y)) ∨ λ = (A(y) ∨ λ) ∨ (B(y) ∨ λ) ≥ (A(x) ∧
A(xy) ∧ μ) ∧ (B(x) ∧ B(xy) ∧ μ) = (A ∩ B)(x) ∧ (A ∩ B)(xy) ∧ μ.

Therefore A ∩ B is a generalized fuzzy imaginary right ideal of S.

Corollary 3.1 Let Ai (i ∈ I ) be generalized fuzzy imaginary right (resp.left) ideals
of S. Then ∩i∈I Ai is a generalized fuzzy imaginary right (resp.left) ideal of S.

Theorem 3.3 Let Ai (i ∈ I ) be generalized fuzzy imaginary right (resp. left) ideals
of S, and ∀i, j ∈ I, Ai ⊆ A j or A j ⊆ Ai . Then ∪i∈I Ai is a generalized fuzzy
imaginary right (resp.left) ideals of S.

Proof Firstly, we prove∨i∈I (Ai (x)∧ Ai (y)∧μ) = (∪i∈I Ai )(x)∧(∪i∈I Ai )(y)∧μ.
Obviously,∨i∈I (Ai (x)∧ Ai (y)∧μ) ≤ (∪i∈I Ai )(x)∧ (∪i∈I Ai )(y)∧μ. Assume that
∨i∈I (Ai (x)∧ Ai (y)∧μ) �= (∪i∈I Ai )(x)∧ (∪i∈I Ai )(y)∧μ, then there exists r such
that∨i∈I (Ai (x)∧ Ai (y)∧μ) < r < (∪i∈I Ai )(x)∧(∪i∈I Ai )(y)∧μ. Since Ai ⊆ A j

or A j ⊆ Ai for all i, j ∈ I , then exists k ∈ I such that r < Ak(x) ∧ Ak(y) ∧ μ.
On the other hand Ai (x) ∧ Ai (y) ∧ μ < r for all i ∈ I , a contradiction. Thus
∨i∈I (Ai (x) ∧ Ai (y)∧ μ) = (∪i∈I Ai )(x) ∧ (∪i∈I Ai )(y) ∧ μ.
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Next, for all x, y ∈ S, we have (1) (∪i∈I Ai )(x + y) ∨ λ = ∨i∈I Ai (x + y) ∨ λ =
∨i∈I (Ai (x + y)∨λ) ≥ ∨i∈I (Ai (x)∧ Ai (y)∧μ) = (∪i∈I Ai )(x)∧(∪i∈I Ai )(y)∧μ;
Similarly, we can prove that (2) (∪i∈I Ai )(x)∨λ = (∨i∈I Ai (x))∨λ = ∨i∈I (Ai (x)∨
λ) ≥ ∨i∈I (Ai (x) ∧ μ) = (∪i∈I Ai )(x) ∧ μ;
(3) (∪i∈I Ai )(xy) ∨ λ = (∨i∈I Ai (xy)) ∨ λ = ∨i∈I (Ai (xy) ∨ λ) ≥ ∨i∈I (Ai (x) ∧
Ai (y)∧μ) = (∪i∈I Ai )(x) ∧ (∪i∈I Ai )(y) ∧ μ;
(4) (∪i∈I Ai )(y) ∨ λ = (∨i∈I Ai (y)) ∨ λ = ∨i∈I (Ai (y) ∨ λ) ≥ ∨i∈I (Ai (x) ∧
Ai (xy) ∧ μ)= (∪i∈I Ai )(x) ∧ (∪i∈I Ai )(xy) ∧ μ.
Therefore ∪i∈I Ai is a generalized fuzzy imaginary right (resp.left) ideal of S.

Theorem 3.4 LetA1 and A2 be generalized fuzzy imaginary right (resp.left) ideals of
S1 and S2 respectively, then A1× A2 is a generalized fuzzy imaginary right (resp.left)
ideal of S1 × S2.

Proof Firstly, we prove that A1 × A2 is a generalized fuzzy subsemiring of S1 × S2.
For all x, y ∈ S1 × S2, where x = (x1, x2), y = (y1, y2), since A1 and A2 are
generalized fuzzy subsemirings of S1 and S2 respectively, then (A1 × A2)(x + y)∨
λ = (A1 × A2)((x1, x2) + (y1, y2)) ∨ λ = (A1 × A2)(x1 + y1, x2 + y2) ∨ λ =
(A1(x1 + y1) ∧ A2(x2 + y2))∨λ = (A1(x1 + y1) ∨ λ) ∧ (A2(x2 + y2) ∨ λ) ≥
(A1(x1) ∧ A1(y1) ∧ μ) ∧ (A2(x2) ∧ A2(y2)∧μ) = (A1 × A2)((x1, x2)) ∧ (A1 ×
A2)((y1, y2)) ∧ μ = (A1 × A2)(x) ∧ (A1 × A2)(y) ∧ μ.
Semilarly, we can prove that (A1 × A2)(x) ∨ λ ≥ (A1 × A2)(x) ∧ μ and (A1 ×
A2)(xy) ∨ λ ≥ (A1 × A2)(x) ∧ (A1 × A2)(y) ∧ μ.
So A1 × A2 is a generalized fuzzy subsemiring of S1 × S2.
Next, for all x, y ∈ S1 × S2, where x = (x1, x2), y = (y1, y2), (A1 × A2)(y)∨ λ =
(A1 × A2)((y1, y2))∨λ = (A1(y1)∧ A2(y2))∨λ = (A1(y1)∨λ)∧(A2(y2)∨λ) ≥
(A1(x1)∧ A1(x1y1)∧μ)∧ (A2(x2)∧ A2(x2y2)∧μ) = (A1 × A2)((x1, x2))∧(A1 ×
A2)((x1y1, x2y2)) ∧ μ = (A1 × A2)((x1, x2)) ∧ (A1 × A2)((x1, x2)(y1, y2)) ∧
μ = (A1 × A2)(x) ∧ (A1 × A2)(xy) ∧ μ.
Thus A1 × A2 is a generalized fuzzy imaginary right (resp.left) ideal of S1 × S2.

Theorem 3.5 Let Ai be generalized fuzzy imaginary right (resp.left) ideals of Si ,
then

∏
1≤i≤n Ai is a generalized fuzzy imaginary right (resp.left) ideal of

∏
1≤i≤n Si .

Proof Firstly, we prove that
∏

1≤i≤n Ai is a generalized fuzzy sbusemiring of∏
1≤i≤n Si . For all x, y ∈ ∏

1≤i≤n Si , where x = (x1, x2, . . . xn) and y = (y1,
y2, . . . yn), then (

∏
1≤i≤n Ai )(x + y)∨λ = (inf1≤i≤n Ai (xi + yi ))∨λ = inf1≤i≤n(Ai

(xi + yi ) ∨ λ) ≥ inf1≤i≤n(Ai (xi ) ∧ Ai (yi ) ∧ μ) = inf Ai (xi ) ∧ inf Ai (yi ) ∧ μ =
(
∏

1≤i≤n Ai )(x) ∧ (
∏

1≤i≤n Ai )(y) ∧ μ.
Similarly, (

∏
1≤i≤n Ai )(xy) ∨ λ ≥ (

∏
1≤i≤n Ai )(x) ∧ (

∏
1≤i≤n Ai )(y) ∧ μ;

(
∏

1≤i≤n Ai )(x)∨ λ = inf1≤i≤n Ai (xi )∨ λ = inf1≤i≤n(Ai (xi )∨ λ) ≥ inf1≤i≤n(Ai

(xi ) ∧ μ) = inf1≤i≤n Ai (xi ) ∧ μ = (
∏

1≤i≤n Ai )(x) ∧ μ.
Therefore

∏
1≤i≤n Ai is a generalized fuzzy subsimiring of

∏
1≤i≤n Si .

Next, For all x, y ∈ ∏
1≤i≤n Si , where x = (x1, x2, . . . xn) and y = (y1, y2, . . . yn),

then (
∏

1≤i≤n Ai )(y) ∨ λ = inf Ai (yi ) ∨ λ = inf(Ai (yi ) ∨ λ) ≥ inf(Ai (xi ) ∧
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Ai (xi yi ) ∧ μ) = inf Ai (xi ) ∧ inf Ai (xi yi ) ∧ μ = (
∏

1≤i≤n Ai )(x) ∧ (
∏

1≤i≤n Ai )

(xy) ∧ μ.
Thus

∏
1≤i≤n Ai is a generalized fuzzy imaginary right ideal of

∏
1≤i≤n Si .

Theorem 3.6 Let A be a subset of S. Then χA is a generalized fuzzy imaginary right
(resp.left) ideal of S if and only if A is an imaginary right (resp.left) ideal of S.

Proof Let χA be a generalized fuzzy imaginary right ideal of S. We know that A is
a subsemiring of S based on Theorem 2.4. For all x ∈ A, y ∈ S and xy ∈ A, then
χA(x) = 1 and χA(xy) = 1. Since χA is a generalized fuzzy imaginary right ideal
of S, so χA(y)∨λ ≥ χA(x)∧χA(xy)∧μ = μ, by λ < μ, so χA(y) ≥ μχA(y) = 1,
then y ∈ A. Thus A is a imaginary right ideal of S.

Conversely, we can easily obtain that χA is a generalized subsemiring of S based on
Theorem 2.4. Assume that there exist x0, y0 ∈ S satisfy χA(y0) ∨ λ < χA(x0)∧χA

(x0y0) ∧ μ. Choose α holds χA(y0) ∨ λ < α < χA(x0) ∧ χA(x0y0) ∧ μ, then χA

(y0) < α,χA(x0) > α,χA(x0y0) > α and λ < α < μ. Thus x0y0 ∈ A and
x0 ∈ A. Since A is a imaginary right ideal of S, then y0 ∈ A, so χA(y0) = 1 > α, a
contradiction.
Therefore χA is a generalized fuzzy imaginary right ideal of S.

Theorem 3.7 Let A be a generalized fuzzy imaginary right (resp.left) ideal of S.
Then Aλ = {x |A(x) > λ} is a imaginary right (resp.left) ideal of S.

Proof Firstly, we prove that Aλ is a complemented subsemiring of S. Since A is a
generalized fuzzy imaginary right ideal of S, then for all x, y ∈ Aλ, A(x + y)∨ λ≥
A(x)∧ A(y)∧μ > λ, A(x)∨λ ≥ A(x)∧μ > λ, and A(xy)∨λ ≥ A(x)∧ A(y)∧μ>
λ, i.e., A(x + y) > λ, A(x) > λ and A(xy) > λ, so x + y, xy, x ∈ Aλ.

Therefore Aλ is a complemented submiring of S.
Next, for all x ∈ Aλ, y ∈ S and xy ∈ Aλ, then A(x) > λ and A(xy) > λ. Since A is a
generalized fuzzy imaginary right ideal of S, then A(y)∨λ ≥ A(x)∧ A(xy)∧μ > λ,
so A(y) > λ, i.e., y ∈ Aλ.
Therefore Aλ is a imaginary right ideal of S.

Theorem 3.8 Let f : S → H be a homomorphism, if B is a gerneralized fuzzy
imaginary right (resp.left) ideal of H, then f −1(B) is a generalized fuzzy imaginary
right (resp.left) ideal of S.

Proof Based on Theorem 2.5, we can obtain that f −1(B) is a gerneralized fuzzy
complemented subsemiring of S. For all x, y ∈ S, then f (x), f (y) ∈ H , since B is a
gerneralized fuzzy imaginary right ideal of H , then f −1(B)(y)∨λ = B( f (y))∨λ ≥
B( f (x))∧ B( f (x) f (y))∧ μ = B( f (x))∧ B( f (xy))∧ μ = f −1(B)(x)∧ f −1(B)
(xy) ∧ μ.

Therefore f −1(B) is a gerneralized fuzzy imaginary right ideal of S.
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4 Conclusion

In this present investigation, the concept of gerneralized fuzzy imaginary right
(resp.left) ideal and (∈,∈ ∨ q(λ,μ))—fuzzy imaginary right (resp.left) ideal are pro-
posed. Moreover, the relevent properties are studied.
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Statistical Approximation
of the q-Bernstein-Durrmeyer Type
Operators

Mei-Ying Ren

Abstract In 2012, a kind of q-Bernstein-Durrmeyer type operators is introduced,
and some approximate properties of these operators are studied by Ren. In this
paper the statistical approximation properties of these operators are investigated.
The Korovkin type statistical convergence theorem of these operators is established.
Then the rates of statistical convergence of these operators are also studied by means
of modulus of continuity and the help of functions of the Lipschitz class.

Keywords q-Bernstein-Durrmeyer type operators · q-integers · Korovkin type
theorem · Rate of statistical convergence · Modulus of continuity

1 Introduction

After Philips [1] introduced and studied q analogue of Bernstein polynomials, the
applications of q-calculus in the approximation theory become one of the main areas
of research (such as, see [2–6]). Recently the statistical approximation properties
have also been investigated for q-analogue polynomials. For instance, in [7] Kan-
torovich type q-Bernstein operators; in [8] q-Baskakov-Kantorovich operators; in [9]
Kantorovich type q-Szász-Mirakjan operators; in [10] q-Bleimann, Butzer and Hahn
operators; in [11] q-analogue of MKZ operators and in [12] modified q-Bernstein-
Schurer operatorswere introduced and their statistical approximation propertieswere
studied.

In 2012, Ren [13] introduced q-Bernstein-Durrmeyer type operators as follows:

M Q
n,q( f ; x) = f (0)pn,0(q; x)+ f (1)pn,n(q; x)+

n−1∑

k=1

pn,k(q; x)
∫ 1

0
μ

Q
n,k(t) f (t)dt,

(1)
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where f ∈ C[0, 1], x ∈ [0, 1], 0 < q < 1, Q > 0, n ∈ N, pn,k(q; x) :=[
n
k

]

q
xk(1 − x)n−k

q . For 1 ≤ k ≤ n − 1, μQ
n,k(t) = t Q[k]q −1(1−t)Q([n]q −[k]q )−1

B(Q[k]q ,Q([n]q−[k]q )) .

B(x, y) = ∫ 1
0 t x−1(1 − t)y−1dt (x, y > 0) is a Euler Beta function.

In [13], some approximate properties of the q-Bernstein-Durrmeyer type oper-
ators are studied. The goal of this paper is to study the statistical approximation
properties of these operators. The Korovkin type statistical convergence theorem of
these operators is established. Then the rates of statistical convergence of these op-
erators are also studied by means of modulus of continuity and the help of functions
of the Lipschitz class.

Before, proceeding further, let us give some basic definitions and notations from
q-calculus. Details on q-integers can be found in [14, 15].

Let q > 0, for each nonnegative integer k, the q-integer [k]q and the q-factorial
[k]q ! are defined by

[k]q :=
{
(1 − qk)/(1 − q), q �= 1
k, q = 1

and

[k]q ! :=
{ [k]q [k − 1]q · · · [1]q , k ≥ 1
1, k = 0

,

respectively.
Then for q > 0 and integers n, k, n ≥ k ≥ 0, we have

[k + 1]q = 1 + q[k]q and [k]q + qk[n − k]q = [n]q .

For the integers n, k, n ≥ k ≥ 0, the q-binomial coefficients is defined by

[
n
k

]

q
:= [n]q !

[k]q ![n − k]q ! .

Let q > 0, for nonnegative integer n, the q-analogue of (x − a)n is defined by

(x − a)n
q :=

{
1, n = 0

(x − a)(x − qa) · · · (x − qn−1a), n ≥ 1
.

Remark 1 For f ∈ C[a, b], denote ‖ f ‖C[a,b] = max{| f (x)|; x ∈ [a, b]}.

2 Tow Lemmas

Now, we give two lemmas, which are necessary to prove our results.

Lemma 1 (see [13]) For M Q
n,q(t s; x), s = 0, 1, 2, we have
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M Q
n,q(1; x) = 1; (2)

M Q
n,q(t; x) = x; (3)

M Q
n,q(t2; x) = (1 + Q)x

1 + Q[n]q
+ q Q[n − 1]q x2

1 + Q[n]q
. (4)

Lemma 2 (see [13]) For {M Q
n,q( f ; x)}, we have

M Q
n,q((t − x)2; x) = (1 + Q)x(1 − x)

1 + Q[n]q
. (5)

3 Statistical Approximation of Korovkin Type

Now, let us recall the concept of the statistical convergence which was introduced
by Fast [16].

Let set K ⊆ N and Kn = {k ≤ n : k ∈ K }. The natural density of K is defined by
δ(K ) := lim

n→∞
1
n |Kn| if the limit exists (see [17], where |Kn| denotes the cardinality

of the set Kn).
A sequence x = {xk} is call statistically convergent to a number L , if for every

ε > 0, δ{k ∈ N : |xk −L| ≥ ε} = 0.This convergence is denoted as st − lim
k

xk = L .

Note that any convergent sequence is statistically convergent, but not conversely.
Details can be found in [18].

Let B[a, b] denote the class of all real valued bounded functions f on interval
[a, b], and Let C[a, b] denote the class of all real valued continuous functions f on
interval [a, b]. In approximation theory, the concept of statistically convergence was
used by Gadjiev and Orhan [19]. They proved the following Bohman-Korovkin type
approximation theorem for statistically convergence.

Theorem 1 (see [19]) If the sequence of linear positive operators An : C[a, b] →
B[a, b] satisfies the conditions

st − lim
n

‖An(eυ; ·) − eυ‖C[a,b] = 0,

for eυ(t) = tυ, υ = 0, 1, 2. Then for any f ∈ C[a, b],

st − lim
n

‖An( f ; ·) − f ‖C[a,b] = 0.

Next, we give the statistical approximation properties of the q-Bernstein-
Durrmeyer type operators.

Theorem 2 Let q = {qn}, 0 < qn < 1 be a sequence satisfying the following
condition
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st − lim
n

qn = 1, st − lim
n

qn
n = c (c < 1). (6)

Then for any f ∈ C[0, 1] , we have

st − lim
n

‖M Q
n,qn

( f ; ·) − f ‖C[0,1] = 0.

Proof By the definition of the q-Bernstein-Durrmeyer type operators, for any f ∈
C[0, 1], M Q

n,q( f ; x) has positivity and linearity. By Theorem 1, for any f ∈ C[0, 1],
enough to prove that

st − lim
n

‖M Q
n,qn (eυ; ·) − eυ‖C[0,1] = 0, for eυ(t) = tυ, υ = 0, 1, 2.

From (2) and (3), we can easily get

st − lim
n

‖M Q
n,qn

(e0; ·) − e0‖C[0,1] = 0, (7)

st − lim
n

‖M Q
n,qn

(e1; ·) − e1‖C[0,1] = 0. (8)

From (4), we have

M Q
n,qn

(e2; x) − e2(x) = (1 + Q)x

1 + Q[n]qn

+ (
qn Q[n − 1]qn

1 + Q[n]qn

− 1)x2.

Since qn[n − 1]qn = [n]qn − 1, for x ∈ [0, 1], by a simple computation, we have

‖M Q
n,qn

(e2; ·) − e2‖C[0,1] ≤ 2(1 + Q)

1 + Q[n]qn

.

For every given ε > 0, let us define the following sets:

V = {k : ‖M Q
k,qk

(e2; ·) − e2‖C[0,1] ≥ ε},
V1 = {k : 2(1 + Q)

1 + Q[k]qk

≥ ε}.

It is clear that V ⊆ V1, so we get

δ{k ≤ n : ‖M Q
k,qk

(e2; ·) − e2‖C[0,1] ≥ ε} ≤ δ{k ≤ n : 2(1 + Q)

1 + Q[k]qk

≥ ε}. (9)

By condition (6), we have

st − lim
n

2(1 + Q)

1 + Q[n]qn

= 0,
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so, by inequality (9), we get

st − lim
n

‖M Q
n,qn

(e2; ·) − e2‖C[0,1] = 0. (10)

In view of the equalities (7), (8) and (10), the proof is complete.

4 Rates of Statistical Convergence

In this section, we will give the rates of statistical convergence of the operators
M Q

n,q( f ; x).
Let f ∈ C[0, 1]. For any δ > 0, the usual modulus of continuity for f is defined

as ω( f ; δ) = sup
0<h≤δ

sup
x,x+h∈[0,1]

| f (x + h) − f (x)|.
By the property of the usual modulus of continuity, for f ∈ C[0, 1] we have

lim
δ→0+ ω( f ; δ) = 0. (11)

Let f ∈ C[0, 1]. For any t, x ∈ [0, 1] and δ > 0, we have

| f (t) − f (x)| ≤ ω( f, |t − x |) ≤
{

ω( f, δ), |t − x | < δ

ω( f, (t−x)2

δ ), |t − x | ≥ δ
.

In the light of ω( f ;λδ) ≤ (1 + λ)ω( f ; δ) for λ > 0, it is clear that we have

| f (t) − f (x)| ≤ (1 + δ−2(t − x)2)ω( f, δ), (12)

for any t ∈ [0, 1], x ∈ [0, 1] and any δ > 0.
First, we give the rates of convergence of the operators M Q

n,q( f ; x) by means of
modulus of continuity.

Theorem 3 Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (6).
Then for any f ∈ C[0, 1] and x ∈ [0, 1], we have

|M Q
n,qn

( f ; x) − f (x)| ≤ 2ω( f, δn(x)),

where

δn(x) =
{
(1 + Q)x(1 − x)

1 + Q[n]qn

}1/2

. (13)

Proof Using the linearity and positivity of these operators M Q
n,q( f ; x), by Lemma

2, (2) and (12), for f ∈ C[0, 1], x ∈ [0, 1], we get
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|M Q
n,q( f ; x) − f (x)| ≤ M Q

n,q(| f (t) − f (x)|; x)

≤ (1 + δ−2M Q
n,q((t − x)2; x))ω( f, δ)

=
[
1 + δ−2 (1 + Q)x(1 − x)

1 + Q[n]q

]
ω( f, δ).

Taking q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (6) and
choosing δ = δn(x) as in (13), we have |M Q

n,qn ( f ; x) − f (x)| ≤ 2ω( f, δn(x)).

Remark 2 Form the condition (6) one can see that st − lim
n

M Q
n,qn ((t − x)2; x)) = 0

which implies st − lim
n

ω( f, δn(x)) = 0 from (11). This gives the pointwise rate of

statistical coneergence of the operator M Q
n,qn ( f ; x) to the function f (x).

Corollary 1 Let q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (6).
Then for any f ∈ C[0, 1] and x ∈ [0, 1], we have

‖M Q
n,qn

( f ; ·) − f ‖C[0,1] ≤ 2ω( f, ηn),

where

ηn =
{

1 + Q

4(1 + Q[n]qn )

}1/2

. (14)

Proof For x ∈ [0, 1], by Lemma 2, we have M Q
n,q((t − x)2; x) ≤ 1+Q

4(1+Q[n]q ) , so, take
q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (6), we get δn(x) ≤ ηn .
Thus, for f ∈ C[0, 1] and x ∈ [0, 1], by using Theorem 3, one can get

|M Q
n,qn

( f ; x) − f (x)| ≤ 2ω( f, δn(x)) ≤ 2ω( f, ηn),

which implies the proof is complete.

Now, we give the rate of statistical convergence of the operators M Q
n,q( f ; x) with

the help of functions of the Lipschitz class.

Theorem 4 Let 0 < α ≤ 1, M > 0, f ∈ Lipα
M on [0,1], also let q = {qn},

0 < qn < 1 be a sequence satisfying the conditions (6). Then for any x ∈ [0, 1] we
have

‖M Q
n,qn

( f ; ·) − f ‖C[0,1] ≤ Mησ
n ,

where ηn is given by (14).

Proof Let 0 < α ≤ 1, M > 0, f ∈ Lipα
M on [0,1]. We obtain f ∈ C[0, 1], and for

any t, x ∈ [0, 1], we have | f (t)− f (x)| ≤ M |t − x |α. Thus, using the linearity and
positivity of the operators M Q

n,q( f ; x), we obtain

|M Q
n,q( f ; x) − f (x)| ≤ M Q

n,q(| f (t) − f (x)|; x) ≤ M M Q
n,q(|t − x |σ; x).
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Using the Hölder inequality with m = 2
α , n = 2

2−α and (2), for x ∈ [0, 1] we get

|M Q
n,q( f ; x) − f (x)| ≤ M M Q

n,q(|t − x |σ; x)

≤ M
[
M Q

n,q((t − x)2; x)
]σ/2

≤ M
[ 1 + Q

4(1 + Q[n]qn )

]σ/2
.

Taking q = {qn}, 0 < qn < 1 be a sequence satisfying the condition (6), and
choosing ηn as in (14), by Lemma 2, we have

|M Q
n,qn

( f ; x) − f (x)| ≤ M
[
M Q

n,qn
((t − x)2; x)

]σ/2 ≤ Mησ
n ,

the desired result follows immediately.

5 Conclusion

In this paper, some statistical approximation properties of the q-Bernstein-
Durrmeyer type operators are studied. If we use King’s approach to consider King
type modification of the operators which is given by (1), we will obtain better statis-
tical approximation (cf. [20, 21]).
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A New Similarity Measure Between
Vague Sets

Bing-Jiang Zhang

Abstract Similarity measure is one of important, effective and widely-used meth-
ods in data processing and analysis. Vague set, as a generalized fuzzy set, has more
powerful ability to process fuzzy information than fuzzy set. In this paper, we pro-
pose a new similarity measure between vague sets. Compared to existing similarity
measures, our approach is far more reasonable, practical yet useful in measuring the
similarity between vague sets.

Keywords Fuzzy sets · Vague sets · Similarity measure

1 Introduction

In the classical set theory introduced by Cantor, a German mathematician, values of
elements in a set are only one of 0 and 1. That is, for any element, there are only two
possibilities: in or not in the set. Therefore, the theory cannot handle the data with
ambiguity and uncertainty.

Zadeh proposed fuzzy theory in 1965 [1]. The most important feature of a fuzzy
set is that fuzzy set A is a class of objects that satisfy a certain (or several) property.
Each object u ∈ U is assigned a single value between 0 and 1, called the grade of
membership, where U is a universe of discourse. Formally, a membership function
µA : U → [0, 1] is defined for a fuzzy set A, where µA(u), for each u ∈ U ,
denotes the degree of membership of u in the fuzzy set A. This membership function
has the following characteristics: The single degree contains the evidences for both
supporting and opposing u. It cannot only represent one of the two evidences, but it
also cannot represent both at the same time too.

In order to deal with this problem,Gau andBuehrer proposed the concept of vague
set in 1993 [2], by replacing the value of an element in a set with a sub-interval of
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[0, 1]. Namely, a truth-membership function tA(u) and a false-membership func-
tion f A(u) are used to describe the boundaries of membership degree. These two
boundaries form a sub-interval [tA(u), 1− f A(u)] of [0, 1], to generalize the µA(u)
of fuzzy sets, where tA(u) ≤ µA(u) ≤ 1 − f A(u). The vague set theory improves
description of the objective real world, becoming a promising tool to deal with inex-
act, uncertain or vague knowledge. Many researchers have applies this theory to
many situations, such as fuzzy control, decision-making, knowledge discovery and
fault diagnosis, and the tool has presented more challenging than that with fuzzy sets
theory in applications.

In intelligent activities, it is often needed to compare between two fuzzy concepts.
That is, we need to check whether two knowledge patterns are identical or approxi-
mately same, to find out functional dependence relations between concepts in a data
mining system. In order to solve this problem, many measure methods have been
proposed to measure the similarity between two vague sets (values). Each of them
is given from different side, having its own counterexamples.

After analyzing most existing vague sets and vague values similarity measures,
this paper develops a method for the similarity measure of vague sets.

2 Preliminaries

In this section, we review some basic definitions of vague values and vague sets.

Definition 1 Let U be a space of points (objects), with a generic element of U
denoted by u. A vague set A in U is characterized by a truth-membership function
tA(u) and a false-membership function f A(u). tA(u) is a lower bound on the grade of
membership of u derived from the evidence for u, and f A(u) is a lower bound on the
negation of u derived from the evidence against u, tA(u) and f A(u) both associate
a real number in the interval [0, 1] with each point in U , where tA(u) + f A(u) ≤ 1.
That is

tA : U → [0, 1] and f A : U → [0, 1]

This approach bounds the grade of membership of u to a subinterval [tA(u), 1 −
f A(u)] of [0, 1]. We depict these ideas in Fig. 1.

The precision of the knowledge about u is characterized by the difference (1 −
tA(u) − f A(u)). If this is small, the knowledge about u is relatively precise; if it is
large, we know correspondingly little. If tA(u) is equal to (1− f A(u)), the knowledge
about u is exact, and the vague set theory reverts back to fuzzy set theory. If tA(u) and
(1− f A(u)) are both equal to 1 or 0, depending on whether u does or does not belong
to A, the knowledge about u is very exact and the theory reverts back to ordinary
sets.

When U is continuous, a vague set A of the universe of discourse U can be
represented by
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Fig. 1 A vague set

1_ Af

U

V
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1

A =
∫

U
[tA(u), 1 − f A(u)]/u, u ∈ U, (1)

where tA(u) ≤ µA(u) ≤ 1 − f A(u).
WhenU is discrete, a vague set A of the universe of discourseU can be represented

by

A =
n∑

i=1

[tA(ui ), 1 − f A(ui )]/ui , ∀ui ∈ U, (2)

where tA(ui ) ≤ µA(ui ) ≤ 1 − f A(ui ) and 1 ≤ i ≤ n.

Definition 2 Let x be a vague value, where x = [tx , 1 − fx ]. If tx = 1 and fx = 0
(i.e., x = [1, 1]). Then x is called a unit vague value.

Definition 3 Let x be a vague value, where x = [tx , 1 − fx ]. If tx = 0 and fx = 1
(i.e., x = [0, 0]). Then x is called a zero vague value.

Definition 4 Let x and y be two vague values, where x = [tx , 1 − fx ] and y =
[ty, 1 − fy].

If tx = ty and fx = fy , then the vague values x and y are called equal (i.e.,
[tx , 1 − fx ] = [ty, 1 − fy]).
Definition 5 Let A be a vague set of the universe of discourseU = {u1, u2, . . . , un}.
If ∀i , tA(ui ) = 1 and tA(ui ) = 0, then A is called a unit vague set, where 1 ≤ i ≤ n.

Definition 6 Let A be a vague set of the universe of discourseU = {u1, u2, . . . , un}.
If ∀i , tA(ui ) = 0 and f A(ui ) = 1, then A is called a zero vague set, where 1 ≤ i ≤ n.

Definition 7 Let A be a vague set of the universe of discourseU = {u1, u2, . . . , un}.
If ∀i , tA(ui ) = 0 and f A(ui ) = 0, then A is called an empty vague set, where
1 ≤ i ≤ n.

Definition 8 Let A and B be vague sets of the universe of discourse U = {u1, u2,

. . . , un}, A = ∑n
i=1 [tA(ui ), 1 − f A(ui )]/ui , B = ∑n

i=1 [tB(ui ), 1 − fB(ui )]/ui .
If ∀i , [tA(ui ), 1 − f A(ui )] = [tB(ui ), 1 − fB(ui )], then the vague sets A and B are
called equal.
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3 Research into Similarity Measure

Currently, there have been many similarity measurements for vague set (value).
Suppose that x = [tx , 1 − fx ] and y = [ty, 1 − fy] are two vague values in the

universe discourse over the discourse universeU . Let S(x) = tx − fx , S(y) = ty− fy .
The MC , MH , ML and MO models are defined respectively in [3–6] as follows:

MC (x, y) = 1 −
∣∣
∣∣
S(x) − S(y)

2

∣∣
∣∣ = 1 −

∣∣(tx − ty) − ( fx − fy)
∣∣

2
(3)

MH (x, y) = 1 −
∣∣tx − ty

∣∣ + ∣∣ fx − fy
∣∣

2
(4)

ML(x, y) = 1 − |S(x) − S(y)|
4

−
∣∣tx − ty

∣∣ + ∣∣ fx − fy
∣∣

4

= 1 −
∣∣(tx − ty) − ( fx − fy)

∣∣ + ∣∣tx − ty
∣∣ + ∣∣ fx − fy

∣∣

4
(5)

MO(x, y) = 1 −
√
(tx − ty)2 + ( fx − fy)2

2
(6)

For the MC (x, y), MH (x, y) and ML(x, y), consider the vague values x = [0, 1]
and y = [a, a], 0 ≤ a ≤ 1. According to Formulas (3)–(5), we can be checked
that MC (x, y) = MH (x, y) = ML(x, y) = 0.5. This means that the similarity
measure between the vague value with the most imprecise evidence (the precision
of the evidence is equal to zero) and the vague value with the most precise evidence
(the precision of the evidence is equal to one) is equal to 0.5. However, our intuition
shows that the similarity measure in this case should be equal to 0. The Mo(x, y)
model does not consider whether the differences are positive or negative.

References [7, 8] adopt Hamming distance and Euclidean distance to measure
the distances between intuitionistic fuzzy sets as follows:

1. Hamming distance is given by

DH (x, y) =
∣∣tx − ty

∣∣ + ∣∣ fx − fy
∣∣ + ∣∣(tx − ty) + ( fx − fy)

∣∣

2
(7)

2. Euclidean distance is given by

DE (x, y) =
√
(tx − ty)2 + ( fx − fy)2 + ((tx − ty) + ( fx − fy))2

2
(8)

These methods also have some problems. We still consider the vague values
x = [0, 1] and y = [a, a], 0 ≤ a ≤ 1. For the Hamming distance, it can be
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calculated that DH (x, y) = 1. This means that the Hamming distance between tx
and fx are equal to that between ty and fy . For the Euclidean distance, consider the
Euclidean distance between x and y, which is equal to (

√
a2 − a + 1). This means

that the distance between the vague value with the most imprecise evidence and the
vague value with the most precise evidence is not equal to 1. (Actually, the Euclidean
distance in this case is in the interval [

√
3/2, 1).) However, our intuition shows that

the distance in this case should always be equal to 1.

4 A New Similarity Measure

In order to solve all the problems mentioned above, we define a new similarity
measure between the vague values.

Definition 9 Let x and y be two vague values, where x = [tx , 1 − fx ] and x =
[ty, 1− fy]. The similarity measure between the vague values x and y is defined by

M(x, y) = 1 − J + D

2
(9)

where

J = 1 − tx ty + (1 − fx )(1 − fy)
√

t2x + (1 − f 2x )
√

t2y + (1 − f 2y )

and

D =
∣∣tx − ty

∣∣ + ∣∣ fx − fy
∣∣

2

The large the value of M(x, y), the more the similarity between the vague values x
and y.

From Definition 9, we can obtain the following theorem.

Theorem 1 The following statements are true:
1. The similarity measure is bounded, i.e., 0 ≤ M(x, y) ≤ 1.

Proof Since 0 ≤ tx ≤ 1, 0 ≤ ty ≤ 1, 0 ≤ fx ≤ 1, 0 ≤ fy ≤ 1, we have 0 ≤ D ≤ 1,
0 ≤ J ≤ 1, that is 0 ≤ M(x, y) ≤ 1.

2. M(x, y) = 1, if and only if, the vague values x and y are equal (i.e., x = y).

Proof If x = y, from the definition, it is clear that M(x, y) = 1. If M(x, y) = 1,
then D + J = 0. Since 0 ≤ D ≤ 1 and 0 ≤ J ≤ 1, then D = J = 0, we have
tx − ty = 0 and fx − fy = 0, that is x = y.

3. M(x, y) = 0, if and only if, the vague values x and y are [0, 0] and [1, 1] or
[1, 1] and [0, 0].
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Proof For x = [0, 0] and y = [1, 1] (or for x = [1, 1] and y = [0, 0]), by the
definition, we obviously have M(x, y) = 0. If M(x, y) = 0, we have tx − ty = 1
and fx − fy = −1; or tx − ty = −1 and fx − fy = 1. Hence, x = [0, 0] and
y = [1, 1]; or x = [1, 1] and y = [0, 0].

4. The similarity measure is commutative, i.e., M(x, y) = M(y, x).
It is obtained directly from the definition of the M(x, y) model.
Next we generalize the similarity measure to two given vague sets.

Definition 10 Let A and B be two vague sets of the universe of discourse U =
{u1, u2, . . . , un}, where A =

n∑

i=1

[tA(ui ), 1 − f A(ui )]/ui , and B =
n∑

i=1

[tB(ui ),

1 − fB(ui )]/ui ; the similarity measure between the vague sets A and B can be
evaluated as follows:

M(A, B) = 1 − MJ (A, B) + MD(A, B)

2
, (10)

where

MJ (A, B) = 1

n

n∑

i=1

(1 − tA(ui )tB(ui ) + (1 − f A(ui ))(1 − fB(ui ))√[tA(ui )]2 + [(1 − f A(ui ))]2
√[tB(ui )]2 + [(1 − fB(ui ))]2

),

and

MD(A, B) = 1

n

n∑

i=1

|tA(ui ) − tB(ui )| + | f A(ui ) − fB(ui )|
2

Similarly, we give the definition of distance between two vague sets as D(A, B) =
1 − M(A, B).

From Definition 10, we obtain the following theorem for vague sets, which is
similar to Theorem 1.

Theorem 2 The following statements related to M(A, B) are true:

1. The similarity measure is bounded, i.e., 0 ≤ M(A, B) ≤ 1.
2. M(A, B) = 1, if and only if, the vague sets A and B are equal (i.e., A = B).

3. M(A, B) = 0, if and only if, all the vague sets A =
n∑

i=1

[0, 0]/ui and B =
n∑

i=1

[1, 1]/ui are [0, 0] and [1, 1] or A =
n∑

i=1

[1, 1]/ui and B =
n∑

i=1

[0, 0]/ui .

4. The similarity measure is commutative, i.e., sets M(A, B) = M(B, A).
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5 Numerical Experiments

We use the ideas of this paper for choosing the best supplier. There are five suppliers
A1, A2, A3, A4, A5 selected as alternatives, against three attributes C1,C2,C3. We
obtain decision matrix A as follows:

A =

A1
A2
A3
A4
A5

⎡

⎢⎢⎢⎢
⎣

(C1, [0.2, 0.8]) (C2, [0.3, 0.9]) (C3, [0.2, 1.0])
(C1, [0.3, 0.7]) (C2, [0.2, 0.8]) (C3, [0.3, 0.9])
(C1, [0.4, 0.6]) (C2, [0.5, 0.6]) (C3, [0.3, 0.8])
(C1, [0.5, 0.7]) (C2, [0.4, 0.6]) (C3, [0.5, 0.7])
(C1, [0.4, 0.6]) (C2, [0.6, 0.7]) (C3, [0.6, 0.6])

⎤

⎥⎥⎥⎥
⎦

The paper takes the weight of each attribute as 1. The reference sequence A∗ as
follows is composed of the optimal interval value of indicator over all alternatives

A∗ = [(C1, [1, 1]) (C2, [1, 1]) (C3, [1, 1])]

Next, using the formulas (9) and (10), we can calculate the similarity measures
between vague set A∗ and other five vague sets A1 . . . A5 to obtain an order vector
as follows:

(M(A1, A∗), M(A2, A∗), M(A3, A∗), M(A4, A∗), M(A5, A∗))
= (0.7140, 0.7134, 0.7478, 0.7756, 0.7879)

Therefore, the ranking order of five suppliers will be as follows:

A5 > A4 > A3 > A1 > A2

We can say that supplier A5 is the best supplier among the five suppliers.

6 Conclusion

Many similarity measures have been proposed in literature for measuring the degree
of similarity between fuzzy sets. Also several efforts have been made for the similar-
ity measure between vague sets. After analyzing the limitations in current similarity
measures for vague sets, we have proposed a new method for measuring the simi-
larity between vague sets in this paper. The basic idea is to deeply understand the
support, the difference of true-membership and the difference of false-membership,
to significantly distinguish the directions of difference (positive and negative), and
properly use varied-weights in the differences of true and false-membership, for two
vague sets. The examples have illustrated that our approach is effective and practical.
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Distributivity Equations Between
Semi-t-operators Over Semi-uninorms

Feng Qin and Xiao-Quan Xu

Abstract The problem of distributivity was posed many years ago and investigated
in families of certain operations, for example, t-norms, t-conorms, uninorms and
nullnorms. In this paper, we continue to investigate the same topic as the above
by focusing on semi-t-operators over semi-uninorms, which are generalizations of
t-operators and uninorms by omitting commutativity, and associativity and commu-
tativity, respectively. The obtained results are the full characterizations, and extend
the previous ones about distributivity between nullnorms over uninorms, and also
between semi-nullnorms over semi-uninorms.

Keywords Fuzzy connectives · Aggregation operators · Distributivity equation ·
Semi-uninorms · Semi-t-operators

1 Introduction

The problem of distributivity was posed many years ago [1]. In fact, This problem
is related to the so-called pseudo-analysis, where the structure of R as a vector
space is replaced by the structure of semi-ring on any interval [a, b] ⊆ [−∞,∞],
denoting the corresponding operations as pseudo-addition and pseudo-multiplication
[2, 7]. In the semi-ring structure and some generalizations, the distributivity plays a
fundamental and essential role. In this context, the known t-norms and t-conorms,
more recently uninorms, have been used to model the mentioned pseudo-operations
[8]. Hence, this leads to a new direction of investigations, namely, distributivity
between t-norms and t-conorms [10], aggregation functions [3], fuzzy implications
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[9, 14], uninorms and nullnorms [4, 13, 15], semi-uninorms and semi-nullnorms
[5, 6].

In this paper,wewill continue to investigate the above distributivity by considering
semi-t-operators over semi-uninorms, which are generalizations of t-operators and
uninorms by omitting commutativity, and associativity and commutativity, respec-
tively. The obtained results are the full characterizations, and extend the previ-
ous ones about distributivity between nullnorms over uninorms, [13, 15], and also
between semi-nullnorms over semi-uninorms [5, 6]. Since semi-uninorms and semi-
t-operators can be used to model the pseudo-operations in pseudo-analysis, we hope
that this work is helpful for developing pseudo-analysis, information aggregation
and other practical applications.

The remainder of the paper is organized as follows. In Sect. 2, we present some
results concerning basic fuzzy logic connectives and results of distributivity equation
used later in the paper. In Sect. 3, we investigate the distributivity equation of semi-
t-operators over semi-uninorms Nmin

e . Section4 is conclusion and further work.

2 Preliminaries

In this section, we recall basic notations and facts used later in the paper.

Definition 1 (See [8]) An operator U : [0, 1]2 → [0, 1] is called a semi-uninorm
if it is increasing in each variable and has a neutral element e ∈ [0, 1], i.e.,
∀x∈[0,1],U (e, x) = U (x, e) = x . We denote by Ne the family of all semi-uninorms
with neutral element e. We call U ∈ N1 a semi-t-norm or a semi-copula and call
U ∈ N0 a semi-t-conorm.

U ∈ Ne is a uninorm if it is a commutative and associative semi-uninorm (see
[10]).

Theorem 1 (See [5]) If an operator U : [0, 1]2 → [0, 1] is a semi-uninorm with a
neutral element e ∈ (0, 1), then, for all x, y ∈ [0, 1],

U (x, y) =

⎧
⎪⎨

⎪⎩

eTU ( x
e ,

y
e ), if (x, y) ∈ [0, e]2,

e + (1 − e)SU ( x−e
1−e ,

y−e
1−e ), if (x, y) ∈ [e, 1]2,

C(x, y), otherwise,

(1)

where TU : [0, 1]2 → [0, 1] is a semi-t-norm, SU : [0, 1]2 → [0, 1] is a semi-t-
conorm, and C : [0, e) × (e, 1] ∪ (e, 1] × [0, e) → [0, 1] is increasing and fulfils
min(x, y) ≤ C(x, y) ≤ max(x, y) for all (x, y) ∈ [0, e)×(e, 1]∪(e, 1]×[0, e). We
call TU and SU the underlying semi-t-norm and semi-t-conorm of U, respectively.

Definition 2 (See [17]) ByNmax
e (Nmin

e )we denote the family of all semi-uninorms
with the neutral element e ∈ (0, 1) fulfilling the additional condition: ∀x∈(e,1]U (0, x)
= U (x, 0) = x (∀x∈[0,e)U (1, x) = U (x, 1) = x).
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From Theorem 1, we can obtain the structure of elements in Nmax
e and Nmin

e .

Theorem 2 (See [16, 17]) Let U ∈ Ne with neutral element e ∈ (0, 1).

(i) U ∈ Nmin
e if and only if, for all x, y ∈ [0, 1],

U (x, y) =

⎧
⎪⎨

⎪⎩

eTU ( x
e ,

y
e ), if (x, y) ∈ [0, e]2,

e + (1 − e)SU ( x−e
1−e ,

y−e
1−e ), if (x, y) ∈ [e, 1]2,

min(x, y), otherwise.

(2)

(ii) U ∈ Nmax
e if and only if, for all x, y ∈ [0, 1],

U (x, y) =

⎧
⎪⎨

⎪⎩

eTU ( x
e ,

y
e ), if (x, y) ∈ [0, e]2,

e + (1 − e)SU ( x−e
1−e ,

y−e
1−e ), if (x, y) ∈ [e, 1]2,

max(x, y), otherwise.

(3)

It is clear that semi-uninorms have similar structure to uninorms and the members
of Nmin

e and Nmax
e are conjunctive (i.e., U (0, 1) = U (1, 0) = 0) and disjunctive

(i.e., U (0, 1) = U (1, 0) = 1), respectively.

Definition 3 (See [18]) An element s ∈ [0, 1] is called an idempotent element of
operation G : [0, 1]2 → [0, 1] if G(s, s) = s. Operation G is called idempotent if
all elements from [0, 1] are idempotent.

Theorem 3 (See [18]) Let e ∈ [0, 1]. Operations

U (x, y) =
{
max(x, y), if (x, y) ∈ [e, 1]2
min(x, y), otherwise

(4)

and

U (x, y) =
{
min(x, y), if (x, y) ∈ [0, e]2
max(x, y), otherwise

(5)

are unique idempotent uninorms in Nmin
e and Nmax

e , respectively.

Definition 4 (See [10]) An operation V : [0, 1]2 → [0, 1] is called a nullnorm if it
is commutative, associative, increasing, has a zero element z ∈ [0, 1] such that

(i) V (0, x) = V (x, 0) = x for all x ≤ z,
(ii) V (1, x) = V (x, 1) = x for all x ≥ z.

By Definition 4, the case z = 0 leads back to t-norms, while the case z = 1 leads
back to t-conorms.

Definition 5 (See [12]) Operation F : [0, 1]2 → [0, 1] is called t-operator if it is
commutative, associative, increasing and such that F(0, 0) = 0, F(1, 1) = 1 and the
functions F0 and F1 are continuous, where F0(x) = F(0, x) and F1(x) = F(1, x).
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The fact that Definitions4 and 5 are equivalent was proved by Mas et al. [13], but
their respective extensions semi-nullnorms and semi-t-operators are not. In this paper,
only semi-t-operators will be recalled because we only consider the distributivity
between semi-t-operators over semi-uninorms.

Definition 6 (See [6]) An operation F : [0, 1]2 → [0, 1] is called a semi-t-operator
if it is associative, increasing, fulfill F(0, 0) = 0, F(1, 1) = 1 and such that
the functions F0, F1, F0, F1 are continuous, where F0(x) = F(0, x), F1(x) =
F(1, x), F0(x) = F(x, 0) and F1(x) = F(x, 1).

Let Fa,b denote the family of all semi-t-operators such that F(0, 1) = a and
F(1, 0) = b.

Theorem 4 (See [11]) Let F : [0, 1]2 → [0, 1], F(0, 1) = a and F(1, 0) = b.
Operation F ∈ Fa,b if and only if there exists an associative semi-t-norm TF and an
associative semi-t-conorm SF such that

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aSF (
x
a ,

y
a ), if (x, y) ∈ [0, a]2

b + (1 − b)TF (
x−b
1−b ,

y−b
1−b ), if (x, y) ∈ [b, 1]2

a, if (x, y) ∈ [0, a] × [a, 1]
b, if (x, y) ∈ [b, 1] × [0, b]
x, otherwise

(6)

for a ≤ b and

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bSF (
x
b ,

y
b ), if (x, y) ∈ [0, b]2,

a + (1 − a)TF (
x−a
1−a ,

y−a
1−a ) if (x, y) ∈ [a, 1]2

a, if (x, y) ∈ [0, a] × [a, 1]
b, if (x, y) ∈ [b, 1] × [0, b]
y, otherwise

(7)

for b ≤ a.

Remark 1 (See [6]) Clearly, the class Fz,z is a class of associative semi-nullnorms
with zero element z. But this paper does not involve it since the distributivity between
semi-nullnorm and semi-uninorm is investigated by Drewniak et al. [5]. Hence, we
always assume a 
= b for any element of Fa,b.

Next, for convenience sake, let us a new concept quasi-t-operator. Only difference
with semi-t-operator is that quasi-t-operator has not associativity.

Definition 7 (See [6]) Let F : [0, 1]2 → [0, 1], F(0, 1) = a and F(1, 0) = b. We
call F a quasi-t-operator if there exists a semi-t-norm TF and a semi-t-conorm SF

such that F has the form (6) when a ≤ b and the form (7) when b ≤ a.
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Let QFa,b denote the family of all quasi-t-operators such that F(0, 1) = a and
F(1, 0) = b. Now, we recall the distributivity equations (see [1], p. 318).

Definition 8 (See [1]) Let F,G : [0, 1]2 → [0, 1]. We say that

(i) F is left distributive over G, if for all x, y, z ∈ [0, 1],

F(x,G(y, z)) = G(F(x, y), F(x, z)). (8)

(ii) F is right distributive over G, if for all x, y, z ∈ [0, 1],

F(G(y, z), x) = G(F(y, x), F(z, x)). (9)

If Eqs. (8) and (9) are fulfilled simultaneously, for example, F is commutative, we
say that F is distributive over G.

Lemma 1 (See [6]) Let F : X2 → X have right (left) neutral element e in a subset
∅ 
= Y ⊂ X (i.e., ∀x∈Y , F(x, e) = x (F(e, x) = x)). If operation F is distributive
over operation G : X2 → X fulfilling G(e, e) = e, then G is idempotent in Y .

Corollary 1 (See [6]) If operation F : [0, 1]2 → [0, 1] with neutral element e ∈
[0, 1] is distributive over operation G : [0, 1]2 → [0, 1] fulfilling G(e, e) = e, then
G is idempotent.

Lemma 2 (See [6]) Every increasing operation F : [0, 1]2 → [0, 1] is distributive
over max and min.

3 Distributivity of F ∈ Fa,b over G ∈ Nmin
e ∪ Nmax

e

In this section, we will discuss the distributivity of semi-t-operators F ∈ Fa,b over
G ∈ Nmin

e ∪ Nmax
e . Depending on the inequality between a and b of operation F ,

the assumption a 
= b, and the membership between G andNmin
e ∪Nmax

e , there are
four different cases: (1) a < b and G ∈ Nmin

e , (2) a < b and G ∈ Nmax
e , (3) a > b

and G ∈ Nmin
e , (4) a > b and G ∈ Nmin

e . In this paper, only Case (1) are discussed
in detail, the results of Case (2) are listed because proof are similar. For Cases (3)
and (4), their results are omitted because they can be obtained by exchanging a and
b, (4) and (5), (8) and (9). At first, let us prove the following two lemmas which are
useful in whole section.

Lemma 3 Let a, b, e ∈ [0, 1]. If F ∈ Fa,b is left or right distributive over G ∈
Nmin

e , then G is the idempotent uninorm (4).

Proof Let a, b, e ∈ [0, 1]. Then G(0, 0) = 0 and G(1, 1) = 1. If a < b, then F has
the form (6) and 0 is the right neutral element on the set [0, b], 1 is the right neutral
element on the set [a, 1]. Applying twice Lemma 1, operation G is an idempotent
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uninorm and it is given by (4). Similar, if b < a then F has the form (7) and 0 is the
left neutral element on the set [0, a], 1 is the left neutral element on the set [b, 1].
Applying again twice Lemma 1, operation G is yet an idempotent uninorm and it is
given by (4).

Similar to Lemma 3, we have the following lemma.

Lemma 4 Let a, b, e ∈ [0, 1]. If F ∈ Fa,b is left or right distributive over G ∈
Nmax

e , then G is the idempotent uninorm (5).

Next, let us consider Case (1), i.e., a < b and G ∈ Nmin
e .

3.1 a < b and G ∈ Nmin
e

Lemma 5 Let a, b, e ∈ [0, 1] and a < b. If F ∈ Fa,b is left or right distributive
over G ∈ Nmin

e , then e ≥ a.

Proof Over there, we only prove the left distributivity of F ∈ Fa,b over G ∈ Nmin
e

because it is similar to the right distributivity. On the contrary, let us assume that
e < a, then it follows that e = F(e, 0) = F(e,G(1, 0)) = G(F(e, 1), F(e, 0)) =
G(F(e, 1), e) = G(a, e) = a. This is a contradiction. So e ≥ a.

By Lemma 5 and assumption a < b, we only need to consider the following two
subcases: a ≤ e ≤ b and a < b < e. Now, let us study the subcase a ≤ e ≤ b.

Proposition 1 Let a, b, e ∈ [0, 1] and a ≤ e ≤ b. F ∈ Fa,b is left or right
distributive over G ∈ Nmin

e if and only if G is the idempotent uninorm (4).

Finally, let us discuss the case a < b < e.

Proposition 2 Let a, b, e ∈ [0, 1] and a < b < e. F ∈ QFa,b is left distributive
over G ∈ Nmin

e if and only if G is the idempotent uninorm (4) and F has the following
form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aSF (
x
a ,

y
a ) if (x, y) ∈ [0, a]2,

A1, if (x, y) ∈ [b, e]2,
A2, if (x, y) ∈ [e, 1]2,
A3, if (x, y) ∈ [e, 1] × [b, e],
min(x, y), if (x, y) ∈ [b, e] × [e, 1],
a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(10)

such that F(x, 1) = F(1, x) = x and F(x, b) = F(b, x) = b hold for all x ∈ [b, 1],
where SF is a semi-t-conorm, e is a right side neutral element of A1 : [b, e]2 →
[b, e], A2 : [e, 1]2 → [e, 1], A3 : [e, 1] × [b, e] → [b, e] and SF , A1, A2, A3 are
increasing operations having common boundary values.
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Proposition 3 Let a, b, e ∈ [0, 1] and a < b < e. F ∈ QFa,b is right distributive
over G ∈ Nmin

e if and only if G is the idempotent uninorm (4) and F has the following
form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aSF (
x
a ,

y
a ) if (x, y) ∈ [0, a]2,

A1, if (x, y) ∈ [b, e]2,
A2, if (x, y) ∈ [e, 1]2,
A3, if (x, y) ∈ [b, e] × [e, 1],
min(x, y), if (x, y) ∈ [e, 1] × [b, e],
a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(11)

such that F(x, 1) = F(1, x) = x and F(x, b) = F(b, x) = b hold for all x ∈ [b, 1],
where SF is a semi-t-conorm, e is a right side neutral element of A1 : [b, e]2 →
[b, e], A2 : [e, 1]2 → [e, 1], A3 : [b, e] × [e, 1] → [b, e] and SF , A1, A2, A3 are
increasing operations having common boundary values.

By Propositions 1, 2, 3 and Theorem 3.42 in [10], we have the following theorem.

Theorem 5 Let a, b, e ∈ [0, 1] and a < b. F ∈ Fa,b is distributive over G ∈ Nmin
e

if and only if one of two results holds.

(i) If a ≤ e ≤ b, then G is the idempotent uninorm (4).
(ii) If a < b < e then G is the idempotent uninorm (4) and F has the following

form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aSF (
x
a ,

y
a ), if (x, y) ∈ [0, a]2,

b + (e − b)T1(
x−b
e−b ,

y−b
e−b ), if (x, y) ∈ [b, e]2,

e + (1 − e)T2(
x−e
1−e ,

y−e
1−e ), if (x, y) ∈ [e, 1]2,

min(x, y), if (x, y) ∈ [b, e] × [e, 1] ∪ [e, 1] × [b, e],
a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(12)

where SF is a associative semi-t-conorm, T1 and T2 are associative semi-t-norms.

3.2 a < b and G ∈ Nmax
e

In this subsection, we only list the results of the case a < b and G ∈ Nmax
e because

their proofs are similar Sect. 3.1.
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Lemma 6 Let a, b, e ∈ [0, 1] and a < b. If F ∈ Fa,b is left or right distributive
over G ∈ Nmax

e , then b ≥ e.

By Lemma 6 and assumption a < b, we only need to consider the following two
subcases: a ≤ e ≤ b and e < a.

Proposition 4 Let a, b, e ∈ [0, 1] and a ≤ e ≤ b. F ∈ Fa,b is left or right
distributive over G ∈ Nmax

e if and only if G is the idempotent uninorm (5).

Proposition 5 Let a, b, e ∈ [0, 1] and e < a < b. F ∈ QFa,b is left distributive
over G ∈ Nmax

e if and only if G is the idempotent uninorm (5) and F has the following
form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b + (1 − b)TF (
x−b
1−b ,

y−b
1−b ) if (x, y) ∈ [b, 1]2,

A1, if (x, y) ∈ [0, e]2,
A2, if (x, y) ∈ [e, a]2,
A3, if (x, y) ∈ [0, e] × [e, a],
max(x, y), if (x, y) ∈ [e, a] × [0, e],
a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(13)

such that F(x, 0) = F(0, x) = x and F(x, a) = F(a, x) = a hold for all x ∈ [0, a],
where TF is a semi-t-norm, A1 : [0, e]2 → [0, e], e is a right side neutral element
of A2 : [e, a]2 → [e, a], A3 : [0, e] × [e, a] → [e, a] and A1, A2, A3, TF are
increasing operations having common boundary values.

Proposition 6 Let a, b, e ∈ [0, 1] and e < a < b. F ∈ QFa,b is left distributive
over G ∈ Nmax

e if and only if G is the idempotent uninorm (5) and F has the following
form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b + (1 − b)TF (
x−b
1−b ,

y−b
1−b ), if (x, y) ∈ [b, 1]2,

A1, if (x, y) ∈ [0, e]2,
A2, if (x, y) ∈ [e, a]2,
A3, if (x, y) ∈ [e, a] × [0, e],
max(x, y), if (x, y) ∈ [0, e] × [e, a],
a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(14)

such that F(x, 0) = F(0, x) = x and F(x, a) = F(a, x) = a hold for all x ∈ [0, a],
where TF is a semi-t-norm, A1 : [0, e]2 → [0, e], e is a right side neutral element
of A2 : [e, a]2 → [e, a], A3 : [0, e] × [e, a] → [e, a] and A1, A2, A3, TF are
increasing operations having common boundary values.
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By Propositions 4, 5, 6 and Theorem 3.42 in [10], we have the following theorem.

Theorem 6 Let a, b, e ∈ [0, 1] and a < b. F ∈ Fa,b is distributive over G ∈ Nmax
e

if and only if one of two results holds.

(i) If a ≤ e ≤ b, then G is the idempotent uninorm (5).
(ii) If e < a < b then G is the idempotent uninorm (5) and F has the following

form:

F(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eS1(
x
e ,

y
e ), if (x, y) ∈ [0, e]2,

e + (a − e)S2(
x−e
a−e ,

y−e
a−e ), if (x, y) ∈ [e, a]2,

max(x, y), if (x, y) ∈ [0, e] × [e, a] ∪ [e, a] × [0, e],
b + (1 − b)TF (

x−b
1−b ,

y−b
1−b ), if (x, y) ∈ [b, 1]2,

a, if (x, y) ∈ [0, a] × [a, 1],
b, if (x, y) ∈ [b, 1] × [0, b],
x, otherwise,

(15)

where TF is a associative semi-t-norm, S1 and S2 are associative semi-t-conorms.

4 Conclusion and Further Work

In this paper, we investigated the distributivity equations between semi-uninorms
and semi-t-operator, which are generalizations of uninorms and t-operators by omit-
ting their commutativity, respectively. The obtained results extend the previous ones
about distributivity between uninorms and nullnorms or between semi-uninorms and
semi- nullnorms. For examples, Propositions 4.2 and 4.3 in [13] are special cases
of Theorems 6 and 5 of this paper. In the future work, we will concentrate on the
distributivity equations among other cases.
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Complex Fuzzy Set-Valued Complex Fuzzy
Integral and Its Convergence Theorem

Sheng-quan Ma and Sheng-gang Li

Abstract This paper is devoted to propose the convergence problem of complex
fuzzy set-valued complex fuzzy integral base on the complex fuzzy sets values com-
plex fuzzy measure. We introduces the concepts of the complex fuzzy set-valued
complex fuzzy measure in [1], the complex fuzzy set-valued measurable function
in [2], and the complex fuzzy set-valued complex fuzzy integral in [3]. And then,
we focuses on convergence problem of complex fuzzy set-valued complex fuzzy
integral, obtained some convergence theorems.

Keywords Complex fuzzy set-valued measure · Complex fuzzy set-valued mea-
surable function · Complex fuzzy set-valued complex fuzzy integral · Convergence
theorem

1 Introductions

In 1998, fuzzy measure range is extended to the fuzzy real number field by Wu
et al. [4] etc., which give the definition of Sugeno integral base on fuzzy number
fuzzy measure, Guo et al. [5] etc. Also give the definition of (G) integral on fuzzy
measure of fuzzy valued functions, which will be generalized the Sugeno integral to
fuzzy sets [6]. In 1989 Buckley [7] proposed the concepts of fuzzy complex number,
including people need to consider the measure and integration problems of fuzzy
complex numbers, introduction fuzzy distance by Zhang [8–12], which discussed
the fuzzy real valued measure problem of fuzzy sets, and give the fuzzy real valued
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fuzzy integral; in 1996, fuzzy measure and measurable function concept is extended
to fuzzy complex sets by Qiu et al. [13], which given the concept of complex fuzzy
measure, complex fuzzy measurable function and complex fuzzy integral, Wang
and Li [14] etc. in 1999 based on the concepts of fuzzy number of Buckley, gives
the concept of fuzzy complex valued measures and fuzzy complex valued integral,
obtain some important results. The [15–17] studymeasurable function and its integral
of complex fuzzy number set, especially Sugeno and Choquet type fuzzy complex
numerical integral and its properties, and its application in classification technique.
In this paper, base on the research work on the basis of [1–3], gives the convergence
theorem of complex fuzzy set-valued complex fuzzy integral, lays a foundation for
the complex fuzzy set-valued complex fuzzy integral theory.

2 Complex Fuzzy Set-Valued Complex Fuzzy Measure

Definition 1 ([18]) Suppose (X, F) is a classicmeasurable space, E → F , mapping
f : X → [−∞,+∞], f is called real valued measurable function of (X, F) on Ẽ , if
and only if ∀α ∈ (−∞,+∞), Ẽ ∩χFα ∈ F , Ẽ ∩ xc

Fα
∈ F , where Fα = {x : f (x) ≥

α}, mapping f̃ : X → F∗(R), f is called real valued measurable function of (X,F)

on Ẽ , if and only if ∀λ ∈ (0, 1], fλ−(x), fλ+(x) is a real valuedmeasurable function,
where

f̃ (x) =
⋃

λ∈[0,1]
λ[( f (x))−

λ
, ( f (x))+

λ
] Δ=

⋃

λ∈[0,1]
λ[ f −

λ
(x), f +

λ
(x)].

Definition 2 ([1]) Suppose Z is a non-empty complex numbers set, F(Z) is set
kinds on Z that consisting of by all complex fuzzy set ρ̃ is fuzzy complex valued
distance that defined in F(Z), set function

μ̃ : F(Z) → F∗+(K ) = { Ã + i B̃ : Ã, B̃ ∈ F∗+(R), i = √−1},

Ã + i B̃ 
→ μ̃( Ã + i B̃) ∈ F∗+(K )

called complex fuzzy set-valued complex fuzzy measure on (Z , F(Z)) if and only
if

1. μ̃(φ) = 0̃, 0̃ = (0̃, 0̃), 0̃ ∈ F∗(K ),

2. ∀ Ã, B̃ ∈ F(Z), Ã ⊂ B̃ ⇒ μ̃( Ã) ≤ μ̃(B̃), where Reμ̃( Ã) ≤ Reμ̃(B̃), Imμ̃

( Ã) ≤ Imμ̃(B̃),

3. { Ãn} ⊂ F (Z) Ãn ⊂ Ãn+1 (n = 1, 2 . . .) ⇒ ρ̃ lim
n→∞ μ̃ Ãn = μ̃

( ∞⋃
n=1

Ãn

)
,

4.
{

Ãn

}
⊂ F (Z) Ãn ⊃ Ãn+1 (n = 1, 2 . . .) ,

note as μ̃ = Reμ̃ + iImμ̃
Δ= μ̃R + iμ̃I , (i = √−1).
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Definition 3 ([2]) Suppose Z ⊂ K is a non-empty set of complex numbers,
(Z ,F(Z)) is a classical complex measurable space, Ẽ ∈ F(Z), mapping f : Z →
K , called f is a complex valued measurable function on Ẽ about (Z ,F(Z)), if and
only if ∀a + ib ∈ K , Ẽ ∩ χFa,b ∈ F(Z), and Ẽ ∩ χc

Fa,b
∈ F(Z), where

Fa,b = {z ∈ K |Re [ f (z)] ≥ a, Im [ f (z)] ≥ b } .

Definition 4 ([2]) Suppose Z is a non-empty complex numbers set, Ẽ ∈ F(Z),
mapping f̃ : Z → F0 (K ), z 
→ f̃ (z) = Re f̃ (z) + iIm f̃ (z) ∈ F0 (K ), i = √−1,

f̃ (z) =
⋃

λ∈[0,1]
λ

[(
Re f̃ (z

)]

λ
+ i

⋃

λ∈[0,1]
λ

[
Im f̃ (z)

]

λ

Δ=
⋃

λ∈[0,1]
λRe f̃λ (z)+i

⋃

λ∈[0,1]
λIm f̃λ (z)

Δ=
⋃

λ∈[0,1]
λ

[
Re f̃ −

λ (z) ,Re f̃ +
λ (z)

]
+i

⋃

λ∈[0,1]
λ

[
Im f̃ −

λ (z) , Im f̃ +
λ (z)

]
,

then (Z ,F (Z) , μ̃) is complex fuzzy valued fuzzy measure space, called f̃ is com-
plex fuzzy valued complex fuzzy measurable function on Ẽ about (Z ,F (Z) , μ̃) if
and only if ∀λ ∈ [0, 1], Re f̃λ(z), Im f̃λ(z), which are complex valued measurable
function on Ẽ about (Z ,F(Z))

record
F(α,β),λ

Δ= {
z = α + iβ : Re f ±

λ (z) ≥ α, Im f ±
λ (z) ≥ β

}
,

where
Re f ±

λ (z) ≥ α,

express

Re f +
λ (z) ≥ α and Re f −

λ (z) ≥ α, Im f ±
λ (z) ≥ β,

express

Im f +
λ (z) ≥ β and Im f −

λ (z) ≥ β,∀α, β ∈ [0,∞) ,

thus, f̃ is complex fuzzy valued complex fuzzy measurable function on Ẽ about
(Z ,F (Z) , μ̃) if and only if ∀λ ∈ [0, 1] , Ẽ ∩ χF(α,β))λ

∈ F (Z) , Ẽ ∩ χc
F(α,β),λ

∈
F (Z) M̃

(
Ẽ

)
express all of the complex fuzzy set-valuedmeasurable function on Ẽ .
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3 Complex Fuzzy Set-valued Complex Fuzzy Integral
and Its Properties

Definition 5 ([3]) Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy mea-
sure space, Ẽ ∈ F (Z), f̃ : Z → F0 (K ), define f̃ is complex fuzzy set-valued
complex fuzzy integral on Ẽ about μ̃,

∫

Ẽ
f̃ dμ̃

Δ=
(∫

Ẽ
Re f̃ dμ̃R,

∫

Ẽ
Im f̃ dμ̃

)

I
,

where ∫

Ẽ
Re f̃ dμ̃R =

⋃

λ∈[0,1]
λ

[∫

Ẽ
Re fλ

−dμ̃R,

∫

Ẽ
Re fλ

+dμ̃R

]

=
⋃

λ∈[0,1]
λ

[

sup
α∈[0,∞)

α ∧ Reμ̃−
λ

(
Ã ∩ χFλ,α,1

−
)

, sup
α∈[0,∞)

α ∧ Reμ̃+
λ

(
Ã ∩ χFλ,α,1

+
)]

∫

Ẽ
Im f̃ dμ̃I =

⋃

λ∈[0,1]
λ

[∫

Ẽ
Im fλ

−dμ̃I ,

∫

Ẽ
Im fλ

+dμ̃I

]

=
⋃

λ∈[0,1]
λ

[

sup
α∈[0,∞)

α ∧ Imμ̃−
λ ( Ã ∩ χFλ,α,2

− , sup
α∈[0,∞)

α ∧ Imμ̃+
λ ( Ã ∩ χFλ,α,2

+

]

,

where
Fλ,α,1

− = {
z|Re fλ

− (z) ≥ α
}
,

Fλ,α,1
+ = {

z|Re fλ
+ (z) ≥ α

}
,

Fλ,α,2
− = {

z|Im fλ
− (z) ≥ α

}
,

Fλ,α,2
+ = {

z|Im fλ
+ (z) ≥ α

}
,

now called f̃ complex fuzzy set-value complex fuzzy integrable in Ẽ about μ̃.

Complex fuzzy set-valued complex fuzzy integral has the following important
properties:

Theorem 1 ([3]) Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure
space:
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1. ∀Ẽ ∈ F (Z), f̃ ∈ M̃
(

Ẽ
)

, then

∫

Ẽ
f̃ dμ̃ ∈ F∗ (K ) ,

2. Suppose Ẽ ∈ F (Z), if f̃ ∈ M̃
(

Ẽ
)

, χẼ is the characteristic function of Ẽ , then
∫

Ẽ f̃ dμ̃ = ∫
f̃ χẼ dμ̃,

3. Let Ẽ ∈ F (Z). If f̃ ∈ M̃
(

Ẽ
)

, if μ̃
(

Ẽ
)

= 0̃, then

∫

Ẽ
f̃ dμ̃ = 0̃,

4. Let Ã, B̃ ∈ F (Z). If f̃ ∈ M̃
(

Ẽ
)

, if Ã ⊂ B̃, then

∫

Ã
f̃ dμ̃ ⊆

∫

B̃
f̃ dμ̃,

5. Let Ã ∈ F (Z). If f̃1, f̃2 ∈ M̃
(

Ẽ
)

, if f̃1 ⊆ f̃2 in Ã, then

∫

Ã
f̃1dμ̃ ⊆

∫

Ã
f̃2dμ̃,

these properties are demonstrated in [18]. Here ignore.

4 Complex Fuzzy Set-Value Complex Fuzzy Integral
and Its Convergence Theorem

Theorem 2 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space,
{

f̃n

}
is non-negative complex fuzzy set-valued complex fuzzy integrable func-

tion sequence in (Z ,F (Z) , μ̃), A ∈ F (Z), if in A,
{

f̃n

}
monotone convergence in

f̃ incrementing, then lim
n→∞

∫
A f̃ndμ̃ = ∫

A f̃ dμ̃.

Proof Suppose A = X , because f̃n ≤ f̃ , (n = 1, 2, . . .), so by the generalized
complex fuzzy set-valued complex fuzzy integral properties have the following result

lim
n→∞

∫

X
f̃ndμ̃ ≤

∫

X
f̃ dμ̃,

now to proof the opposite inequality.
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Let I = ∫
X f̃ dμ̃. Then

1. if I = 0, conclusion obvious,
2. if 0 < I < ∞ + i∞ then

I = sup
Reα∈[0,∞)

S
(
Reα,Reμ̃

(
f̃
)

α

)
+ i sup

Imα∈[0,∞)

S
(
Imα, Imμ̃

(
f̃α

))

to know the exist αk > 0 makes

S
(
Reαk,Reμ̃

(
f̃αk

))
>ReI− 1

2k
, S

(
Imαk, Imμ̃

(
f̃αk

))
>I m I− 1

2k
,

(k = 1, 2, . . .) , another f̃n ↑ ˜ f have

(
f̃n

)

αk
↑

(
f̃
)

αk
,

then using the properties of generalized triangle norm, know exist nk , such that,
when n ≥ nk ,

S
(
Reαk,Reμ̃

(
f̃αk

))

>ReI− 1

2k
, S

(
Imαk, Imμ̃

(
f̃αk

))
,>I m I− 1

2k
, (k = 1, 2, . . .) ,

when n ≥ nk , ∫

X
f̃ndμ̃ > I − 1

k
, (k = 1, 2, . . .) ,

by the arbitrariness of k have

∫

X
f̃ dμ̃ ≤ lim

n→∞

∫

X
f̃ndμ̃.

3. if I = ∞ + i∞, then αk > 0 makes

S
(
Reαk,Reμ̃

((
f̃αk

)))
> k,

S(Imαk, Imμ̃( f̃αk ))> k, (k = 1, 2, . . .) ,

exit nk , such that when n ≥ nk ,

S
(
Reαk,Reμ̃

(
f̃αk

))
> k,
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S
(
Imαk, Imμ̃

(
f̃αk

))
> k,

then

lim
n→∞

∫

X
f̃ndμ̃ ≥

∫

X
f̃ dμ̃ ≥ S

(
Reαk,Reμ̃

(
f̃αk

))

+i S
(
Imαk, Imμ̃

(
f̃αk

))
> k + ik (k = 1, 2, . . .) ,

that is lim
n→∞

∫
X f̃ndμ̃ ≥ ∫

X f̃ dμ̃.

Theorem 3 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space,
{

f̃n

}
is complex fuzzy set value complex fuzzy integrable function sequence

in (Z ,F (Z) , μ̃), A ∈ F (Z), if in A,
{

f̃n

}
decrease monotonically converges to f̃ ,

and for arbitrarily εi > 0, (i = 1, 2), where ε = ε1 + iε2 exit n0 makes

μ̃

({
x | f̃n0 >

∫

A
f̃ dμ̃ + ε

}
∩ A

)
< ∞ + i∞,

then

lim
n→∞

∫

A
f̃ndμ̃ =

∫

A
f̃ dμ̃.

Proof f̃1 ≥ f̃2 ≥ · · · , so
∫

A f̃1dμ̃ ≥ ∫
A f̃2dμ̃ ≥ · · · , then

lim
n→∞

∫

A
f̃ndμ̃ = ∞∧

n=1

∫

A
f̃ndμ̃,

there
∞∧

n=1

∫

A
f̃ndμ̃ = ∞∧

n=1
Re

∫

A
f̃ndμ̃ + i

∞∧
n=1

Im
∫

A
f̃ndμ̃,

due to ∀n, f̃n ≥ f̃ , so ∫

A
f̃ndμ̃ ≥

∫

A
f̃ dμ̃

have
∞∧

n=1

∫

A
f̃ndμ̃ ≥

∫

A
f̃ dμ̃

if
∞∧

n=1

∫
A f̃ndμ̃ >

∫
A f̃ dμ̃, then

∫
A f̃ dμ̃ = λ < ∞ + i∞ where λ = λ1 + iλ2, and

there is γi ∈ (0,∞) where γ = γ1 + iγ2, (i = 1, 2) makes

∞∧
n=1

∫

A
f̃ndμ̃ > γ > λ,
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⇒ ∀n, sup
Reα∈[0,∞)

S
(
Reα,Reμ̃[

(
f̃n

)

α
∩ A]

)

+i sup
Imα∈[0,∞)

S
(
Imα, Imμ̃

((
f̃n

)

α
∩ A]

))
> γ,

⇒ ∀n, S

(
γ, μ̃

((
f̃n

)

γ
∩ A

))
= S

(
Reγ,Reμ̃

((
f̃n

)

γ
∩ A

))

+i S

(
Imγ, Imμ̃

((
f̃n

)

γ
∩ A

))
> γ,

take εl = γl+λl
2 (l = 1, 2) exit n0,

μ̃

({
x | f̃n0 >

∫

A
f̃ dμ̃ + ε

}
∩ A

)
< ∞ + i∞, γl = λl + 2εl > λl + εl

⇒
{

x | f̃n0 ≥ γ
}

⊆
{

x | f̃n0 > λ + ε
}

,

⇒ μ̃

(
A ∩

(
f̃n0

)

γ

)
≤ μ̃

({
x | f̃n0 > λ + ε

}
∩ A

)
< ∞ + i∞.

By the continuity of μ̃, A ∩
(

f̃n1

)

γ
⊇ A ∩

(
f̃n2

)

γ
⊇ . . .,

μ̃

(
A ∩

(
f̃
)

γ

)

= μ̃

( ∞∩
n=1

[
A ∩

(
f̃n

)

γ

])
= lim

n→∞ μ̃

(
A ∩

(
f̃n

)

γ

)
≥ γ ≥ λ

∫

A
f̃ dμ̃

Δ= sup
Reα∈[0,∞)

S
(
Reα,Reμ̃

[
f̃α ∩ A

])

+ i sup
Imα∈[0,∞)

S
(
Imα, Imμ̃

[
f̃α ∩ A

])

≥ S
(
Reγ,Reμ̃

[
f̃γ ∩ A

])
+ i S

(
Imγ, Imμ̃

[
f̃γ ∩ A

])
> λ = λ1 + iλ2,

con f licting wi th
∫

A f̃ dμ̃ = λ, so
∞∧

n=1

∫
A f̃ndμ̃ = ∫

A f̃ dμ̃, that is
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lim
n→∞

∫

A
f̃ndμ̃ =

∫

A
f̃ dμ̃.

Theorem 4 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space,
{

f̃n

}
is complex fuzzy set value complex fuzzy integrable function sequence

in (Z ,F (Z) , μ̃) A ∈ F (Z), if in A,
{

f̃n

}
convergence in f̃ , and for arbitrary

εk > 0, (k = 1, 2), where, ε = ε1 + iε2 exit n0 makes

μ̃

({
x | sup

n≥n0
f̃n >

∫

A
f̃ dμ̃ + ε

}
∩ A

)
< ∞ + i∞.

then lim
n→∞

∫
A f̃ndμ̃ = ∫

A f̃ dμ̃.

Proof Let h̃n = n∨
k=1

f̃k, g̃k = n∧
k=1

f̃k . Then
{

h̃n

}
↓ f̃ and {g̃n} ↑ f̃ , g̃n ≤ f̃n ≤ h̃n ,

so ∫

A
g̃ndμ̃ ≤

∫

A
f̃ndμ̃ ≤

∫

A
h̃ndμ̃

by theory 3,

lim
n→∞

∫

A
g̃ndμ̃ = lim

n→∞

∫

A
f̃ndμ̃

= lim
n→∞

∫

A
h̃ndμ̃ = lim

n→∞

∫

A
f̃ dμ̃.

Definition 6 ([3]) Given a fuzzy complex value fuzzy measure space
(

C, F̃, μ̃
)
, let

f̃n (n = 1, 2, . . .) and f̃ : C → F∗ (C) are fuzzy complex value fuzzy measurable
function, Ã ∈ F̃ then

(1)
{

f̃n

}
almost everywhere converges to f̃ on Ã, if μ̃

(
Ẽ

)
= 0̃ for Ẽ ∈ F̃

and makes
{

f̃n

}
converges to f̃ point by point on Ã − Ẽ , note that f̃n

a.e→ f̃ ;

(2)
{

f̃n

}
almost uniform converges to f̃ on Ã, if ∃Ẽ ∈ F̃ for ε > 0,

∣∣
∣μ̃α

(
Ẽ

)∣∣
∣ < ε

and makes
{

f̃n

}
uniform converges to f̃ point by point, note that f̃n

a.u→ f̃ ;
(3)

{
f̃n

}
pseudo almost everywhere converges to f̃ , if μ̂

(
Ã − Ẽ

)
= μ̃

(
Ẽ

)
for

Ẽ ∈ F̃ and makes
{

f̃n

}
converges to f̃ point by point on Ã− Ẽ , note that f̃n

p.a.e→ f̃ ;
(4)

{
f̃n

}
pseudo almost uniform converges to f̃ , if lim

n→∞ μ̃
(

Ã − Ẽk

)
= μ̃

(
Ã
)

for
{

Ẽk

}
⊂ F̃ and makes

{
f̃n

}
uniform converges to f̃ point by point on Ã − Ẽ for

any fixed point, k = 1, 2, 3 . . . note that f̃n
p.a.u→ f̃ ;

(5)
{

f̃n

}
converges in measure to f̃ , if
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lim
n→∞ μ̃

({
x |

{
f̃n (x) − f̃ (x)

}
> ε

}
∩ Ã

)
= 0

for any ε > 0, note that f̃n
μ̃→ f̃ ;

(6)
{

f̃n

}
pseudo converges in measure to f̃ , if

lim
n→∞ μ̃

({
x |

{
f̃n (x) − f̃ (x)

}
> ε

}
∩ Ã

)
= μ̃

(
Ã
)

,

note that f̃n
p.μ̃→ f̃ .

Theorem 5 Suppose (Z ,F (Z) , μ̃) is Complex fuzzy set-valued fuzzy measure

space
{

f̃n

}
, f̃ is complex fuzzy set-valued complex fuzzy measurable function

in (Z ,F (Z) , μ̃), A ∈ F (Z), if f̃n
a.e→ f̃ , μ̃ is zero-additive, and for arbitrarily

εk > 0, (k = 1, 2), where ε = ε1 + iε2 exit n0 makes

μ̃

({
x | sup

n≥n0
f̃n〉

} ∫

A
f̃ dμ̃ + ε ∩ A

)
< ∞ + i∞,

then lim
n→∞

∫
A f̃ndμ̃ = ∫

A f̃ dμ̃.

Proof Because f̃n
a.e→ f̃ in A, then exit B ∈ F (Z), μ̃ (B) = 0, μ̃ is zero-additive,

∫
A\B f̃ dμ̃

Δ=
sup

Reα∈[0,∞)

S
(
Reα,Reμ̃

[
f̃α ∩ (A\B)

])
+i sup

Imα∈[0,∞)

S
(
Imα, Imμ̃

[
f̃α ∩ (A\B)

])

= sup
Reα∈[0,∞)

S
(
Reα,Reμ̃

[(
A ∩ f̃α

)
\B

])
+i sup

Imα∈[0,∞)

S
(
Imα, Imμ̃

[(
A ∩ f̃α

)
\B

])

= sup
Reα∈[0,∞)

S
(
Reα,Reμ̃

(
A ∩ f̃α

))
+ i sup

Reα∈[0,∞)

S
(
Imα, Imμ̃

(
A ∩ f̃α

))

= ∫
A f̃ dμ̃.

Similarly
∫

A
f̃ndμ̃ =

∫

A\B
f̃ndμ̃,

and because

μ̃

({
x | sup

n≥n0
f̃n >

∫

A
f̃ dμ̃ + ε

}
∩ A

)
< ∞ + i∞,

and from the Theorem 2, obtained lim
n→∞

∫
A\B f̃ndμ̃ = ∫

A\B f̃ dμ̃, so lim
n→∞

∫
A f̃nd

μ̃ = ∫
A f̃ dμ̃.
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Theorem 6 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space
{

f̃n

}
, f̃ is complex fuzzy set-valued complex fuzzy measurable function in

(Z ,F (Z) , μ̃), A ∈ F (Z), if
{

f̃n

}
uniform convergence in f̃ in A, then

lim
n→∞

∫

A
f̃ndμ̃ =

∫

A
f̃ dμ̃.

Proof

(1) If
∫

A f̃ dμ̃ = ∞ + i∞, let g̃n = n∧
k=1

f̃k then

lim
n→∞

∫

A
f̃ndμ̃ ≥

∫

A
g̃ndμ̃ =

∫

A
f̃ dμ̃ = ∞ + i∞.

(2) If

∫

A
f̃ dμ̃ = sup

Reα∈[0,∞)

S
(
Reα,Reμ̃

[
f̃α ∩ A

])
+ i sup

Imα∈[0,∞)

S
(
Imα, Imμ̃

[
f̃α ∩ A

])

= λ < ∞ + i∞, then,
∀α ≤ λ, μ̃

[
f̃α ∩ A

]
≥ λ;

∀α > λ, μ̃
[

f̃α ∩ A
]

≤ λ;

αn monotone decreasing trend to λ, then f̃α1 ⊆ f̃α2 ⊆ · · · and ∞∩
n=1

f̃αn = f̃λ·
by under

continuous of μ̃, μ̃

(
f̃λ·

∩ A

)
= lim

n→∞ μ̃
(

f̃αn ∩ A
)

≤ λ, uniform convergence in f̃

in A, arbitrarily ε′
k > 0, (k = 1, 2) where ε′ = ε′

1 + iε′
2 exit n0,∀x ∈ A,

f̃n (x) ≤ f̃ (x) + ε ⇒ sup
n≥n0

f̃n (x) ≤ f̃ (x) + ε

⇒
{

x | sup
n≥n0

f̃n(x) ≥ λ + ε

}
∩ A ⊆

{
x | f̃ (x) ≥ λ

}
∩ A = f̃λ·

∩ A

⇒ μ̃

({
x | sup

n≥n0
f̃n(x) ≥ λ + ε

}
∩ A

)

≤ λ < ∞ + i∞
by Theorem 3 has lim

n→∞
∫

A f̃ndμ̃ = ∫
A f̃ dμ̃.
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Theorem 7 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space,
{

f̃n

}
, f̃ are complex fuzzy set-valued complex fuzzy measurable function

on (Z ,F (Z) , μ̃), A ∈ F (Z), if f̃n
a.e.u→ f̃ on A, and μ̃ is zero-additive, then

lim
n→∞

∫
A f̃ndμ̃ = ∫

A f̃ dμ̃.

Proof Similar to the proof method of Theorem 6.

Theorem 8 Suppose (Z ,F (Z) , μ̃) is complex fuzzy set-valued fuzzy measure

space
{

f̃n

}
, f̃ are complex fuzzy set-valued complex fuzzy measurable function

on (Z ,F (Z) , μ̃), A ∈ F (Z), if f̃n
a.u→ f̃ in A, and μ̃ is zero-additive, and exit

{Bk} ⊆ F(Z), B1 ⊇ B2 ⊇ · · · , μ̃(Bk) → 0

makes

lim
n→∞

∫

A\Bk

f̃ndμ̃ =
∫

A\Bk

f̃ dμ̃.

Proof If f̃n
a.u→ f̃ in A, then exit {Ek} ⊆ F(Z), μ̃(Ek) → 0, f̃n

u→ f̃ in A\Ek , let

Bk = k∩
i=1

Ei ⊆ Ek .

Then

A\Bk = k∩
i=1

(A\Ei ) ,

∀k, f̃n
u→ f̃ in A\Ek , f̃n

u→ f̃ in A\Bk , by Theorem 6 know the conclusion is right.

5 Conclusion

In this paper, the fuzzy measure concepts was extended from general classical set
to ordinary complex fuzzy set, fuzzy, research complex fuzzy set-valued complex
fuzzymeasure and its properties, andmeasurable function in complex fuzzy set value
complex fuzzy measure space and its properties was studied, of the of extension of
the scope of classical measure theory, generalization of the corresponding conclusion
of classical measure theory; research Integral theory problem of complex fuzzy set-
valued function base on complex fuzzy set-valued measure, establish complex fuzzy
set-valued complex fuzzy Integral theory, which is important work in fuzzy complex
analysis. This work extends the fuzzy measure and fuzzy integral theory, to lay a
solid foundation for our future research on complex fuzzy set-valued complex fuzzy
integral application problem.
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Complex Fuzzy Matrix and Its Convergence
Problem Research

Zhi-qing Zhao and Sheng-quan Ma

Abstract In this paper, gives the definition of complex fuzzy matrix, and study
its convergence problems based on the fuzzy matrix theory, which included the
Convergence in norm and the Convergence in Power, some important conclusions
are obtained, to build and to improve the solid foundation for complex fuzzy matrix
theory.

Keywords Complex fuzzy matrix · Convergence in norm · Convergence in power

1 Introduction

The fuzzymatrix is an important part of fuzzymathematics, which plays an important
role in the fuzziness expression of two dimensional relationship, which has important
applications in the circuit design the exchange of information, cluster analysis, etc.,
but, because the diversity of the research fields and the target, to solve complicated
system problems will require higher dimensions, in this paper, based on the fuzzy
matrix theory, gives the definition of complex fuzzymatrix, and study its convergence
problems of complex fuzzy matrix, to establish complex fuzzy matrix theory and to
laid a solid foundation for the further research.

2 Complex Fuzzy Sets and Complex Fuzzy Number

Definition 1 ([1]) Let R be the real field, C is complex field. For ∀X, Y ∈ F (R),
Z = X + iY , called the complex fuzzy sets, referred to as the complex fuzzy sets.

Definition 2 ([1]) Suppose Z1 = X1 + iY1, Z2 = X2 + iY2 ∈ C F (C), the Opera-

tion of intersection and union be defined as: ∀z = x + iy ∈ C

Z. Zhao · S. Ma (B)
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(Z1 ∩ Z2)(z)
Δ= (X1 ∩ X2)(x)∧ (Y1 ∩ Y2)(y) = (X1(x)∧ X2(x))∧ (Y1(y)∧Y2(y))

(Z1 ∪ Z2)(z)
Δ= (X1 ∪ X2)(x)∧(Y1 ∪ Y2)(y) = (X1(x)∨ X2(x))∧(Y1(y)∨Y2(y)).

Definition 3 Suppose {Zγ = Xγ + iYγ , γ ∈ Γ } ⊆ C F (C), the operations of

infinite intersection and infinite unit of the complex fuzzy sets are defined as: ∀z =
x + iy ∈ C ,

( ∩
γ∈Γ

Zγ )(z)
Δ= ( ∩

γ∈Γ
Xγ )(x) ∧ ( ∩

γ∈Γ
Yγ )(y) = ( ∧

γ∈Γ
Xγ (x)) ∧ ( ∧

γ∈Γ
Yγ (y))

( ∩
γ∈Γ

Zγ )(z)
Δ= ( ∪

γ∈Γ
Xγ )(x) ∧ ( ∪

γ∈Γ
Yγ )(y) = ( ∨

γ∈Γ
Xγ (x)) ∧ ( ∨

γ∈Γ
Yγ (y))

Z1 ∩ Z2, Z1 ∪ Z2, ∩
γ∈Γ

Zγ , ∪
γ∈Γ

Zγ ∈ C F (C).

Definition 4 The regular convex complex fuzzy sets in the complex field, Z =
X + i Y is called a complex fuzzy numbers.

3 Fuzzy Matrix

Definition 5 ([2]) All the elements of amatrix are in the closed interval [0, 1], which
called the fuzzy matrix.

Union, intersection, complement operation, the corresponding element of the two
fuzzy matrix: take big, take small, take up, which obtain a new element matrix called
their union, intersection, complement operation.

Concrete concepts and properties of fuzzy matrix, please refer to the Ref. [2].

4 Complex Fuzzy Matrix

Definition 6 Suppose X is a non empty sets of real numbers, called

C = {A (x) + i B (x), x ∈ X}

is complex fuzzy sets on X , A (x), B (x) are real fuzzy number, A (x) + i B (x) is
complex fuzzy number, where A (x) : X → [0, 1], B (x) : X → [0, 1], which ex-
pressed the real parts and the imaginary parts of C separately, 0 ≤ A (x)+B (x) ≤ 1.
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Definition 7 Suppose C = (
Ai j (x) + i Bi j (x)

)
n×m is matrix, all of the Ai j (x) +

i Bi j (x) is complex fuzzy number for i, j (1 ≤ i ≤ n, 1 ≤ j ≤ n), then called C is
complex fuzzy matrix, note as C F M (n, m).

Definition 8 Suppose

C1 = (
Ai j (x) + i Bi j (x)

)
n×m,

C2 = (
Di j (x) + i Ei j (x)

)
n×m

are complex fuzzy matrix, the operation of the A and B is defined as:

C1 ∪ C2 = (
Ai j (x) ∨ Di j (x), Bi j (x) ∧ Ei j (x)

)
n×m .

Definition 9 Suppose

C1 = (
Ai j (x) + i Bi j (x)

)
n×m,

C2 = (
Di j (x) + i Ei j (x)

)
n×m

are complex fuzzy matrix, the Product operation of the A and B is defined as:

C1C2 = (
C1C2Ri j (x) + iC1C2 Ii j (x)

)
n×m,

C1C2Ri j (x) = ∨
1≤k≤m

(
Aik (x) ∧ Dkj (x)

)
,

C1C2 Ii j (x) = ∧
1≤k≤m

(
Bik (x) ∨ Ekj (x)

)
.

5 Complex Fuzzy Matrix Norm and Convergence in Norm

Definition 10 ([3]) Let F = R or C , V is a linear space over F . If the real vector
function ‖∗‖ on V satisfies the following properties:

1. For arbitrary x ∈ V , ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0,
2. For arbitrary k ∈ F , x ∈ V get ‖kx‖ = ‖k‖ ‖x‖,
3. For arbitrary x, y ∈ V , get ‖x + y‖ ≤ ‖x‖ + ‖y‖,
then ‖x‖ is called vector norm of X in V .

Definition 11 Suppose ‖∗‖ is non negative real function on Fn×n , if

∥∥C1C2Ri j (x)
∥∥ ≤ ∥∥C1Ri j (x)

∥∥ ∥∥C2Ri j (x)
∥∥ ,
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∥∥C1C2 Ii j (x)
∥∥ ≤ ∥∥C1 Ii j (x)

∥∥ ∥∥C2 Ii j (x)
∥∥ ,

then called ‖∗‖ is C F M (n, m).

Definition 12 ([4]) Suppose (V, ‖∗‖) is a n-dimensional normed linear space,
x1, x2, . . . , xk, . . . is a vector sequence of V , α is a fixed vector V , if

lim
k→∞ ‖xk − α‖ = 0,

then called vector sequence x1, x2, . . . , xk, . . . convergence in norm, A is the limit
of a sequence, note as:

lim
k→∞ xk = α or xk → α,

vector sequence does not converge called divergence.

Definition 13 Suppose (V, ‖∗‖) is a n-dimensional normed linear space,
c1, c2, . . . , ck, . . . is a complex fuzzy matrix sequence of V , c (k) constitutes a com-
plex fuzzy matrix function, α = αR + iα I is a fixed complex fuzzy matrix of V ,
if

lim
k→∞ ‖cR (k) − αR‖ = 0, lim

k→∞ ‖cI (k) − α I‖ = 0,

then called complex fuzzy matrix sequence c1, c2, . . ., ck , . . . convergence in norm,
α = αR + iα I is the limit of a sequence, note to: lim

k→∞ x (k) = α or xk → α.

Definition 14 Suppose (V, ‖∗‖) is a n-dimensional normed linear space C (k),
(n = 1, 2, . . .), c : CFM (n, m) → CFM (n, m), then

1. {c (k)} almost everywhere convergence c, in V , if there is E ∈ V , c (E) = 0,

makes {c (k)} pointiest convergence on c in V − E , note as c (k)
a.e→ c in V ,

2. {c (k)} almost uniform convergence c in V , if there is E ∈ V , for any ε > 0,
‖c (E)‖ < ε, makes {c (k)} pointiest uniform convergence on c in V − E , note

as c (k)
a.u→ c in V ,

3. {c (k)} pseudo almost everywhere convergence c in V , if there is E ∈ V ,
c (V − E) = c (E), makes {c (k)} pointiest convergence on c in V − E , note as

c (k)
p.a.e→ c in V ,

4. {c (k)} pseudo almost uniform convergence c in V , if there is {Ek} ⊂ V ,
lim

n→∞ c (V − Ek) = c (A) makes {c (k)} pointiest uniform convergence on c

in V − E , note as c (k)
p.a.u→ c in V .

Theorem 1 A necessary and sufficient condition of null additives of c is for any
A ∈ V , c ∈ CFM (n, m), c (k) ∈ CFM (n, m) and ‖C M F (n, m)‖ < ∞ has

c (k)
a.e→
A

c ⇒ c (k)
p.a.u→

A
c.
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Proof: Necessity:

c (k)
a.e→
V

c ⇒ c (k)
a.u→
V

c,

by consistency theorem has

c (k)
a.e→
V

c ⇒ c (k)
p.a.u→

V
c.

Sufficiency: Suppose for any B ∈ V has c (B) = 0, let x ∈ V − B, c (x) = 0, so

obviously there is c (k)
a.e→
V
0, exist Pk, when k → ∞ has c (V − Pk) → C (V ), and

{c (k)} uniform convergence 0 on V − pk, n = 1, 2, . . ., at this time there will be
V − B ⊇ V − Pk, k = 1, 2, . . ., c (V − B) ≥ c (V − Pk) → c (V ), therefore it is
c (V − B) = c (V ).

6 The Power of Complex Fuzzy Matrix and Its Power
Convergence

Definition 15 Suppose A ∈ C M F (n, n) power K of A is defined as Ak , among
them A1 = A, Ak = Ak−1A.

Theorem 2 Suppose A ∈ C F M (n, n), there are must be a positive integer P and
K, making ∀k ≥ K has Ak+p = Ak.

Proof: Let ∀k ≥ 1, A = (
Ai j (x) + i Bi j (x)

)
,

Ak = (
Ai j (x) + i Bi j (x)

)k
n×n =

(
Ak

i j (x) + i Bk
i j

(x)
)

n×n
,

Ak
i j (x) = ∨

1≤t1,...,tk−1≤n

(
Ait1 ∧ Ait2 ∧ · · · ∧ Aitk−1

)
,

Bk
i j (x) = ∧

1≤t1,...,tk−1≤n

(
Ait1 ∨ Ait2 ∨ · · · ∨ Aitk−1

)
,

because the ∧,∨ is closed, so the elements number of
{

Ak, k ≥ 1
}

in not more than(
n4n

)n
there must be a positive integer P and K, make Ak+p = Ak, so for any k > K

has

Ak+p = A(k−k)+k+p = Ak−k Ak+p = Ak−k Ak = Ak .

Theorem 3 Suppose A ∈ C F M (n, n), which is power sequence monotone increas-
ing of A, hence
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An = An+1 = An+2 = · · · = lim
k→∞ Ak,

that is, power sequences of A is Convergence.

Proof: Because power sequence of A monotone increasing, then An ≤ An+1, and
from the An+1 ≤ A ∨ A2 ∨ · · · ∨ An = An, so An = An+1.

7 Conclusion

In this paper, by studied complex fuzzy matrix convergence problems based on the
fuzzy matrix theory, which included the Convergence in norm and the Convergence
in Power, which is important work in fuzzy complex analysis, to build and to lay a
solid foundation for our future research on complex fuzzy matrix theory.

Acknowledgments This work is supported by International Science and Technology Cooperation
Program of China (2012DF A11270).

References

1. Ma, S.: The Theory of Fuzzy Complex Analysis Foundation. Science Press, Beijing (2010)
2. Fan, Z.: Theory and Application of Fuzzy Matrix. Science Press, Beijing (2006)
3. Yan, L., Gao, Y.: The Principle of Fuzzy Mathematics and Applications, 3rd edn., pp. 90–94.

South China University of Technology Press, Guangzhou (2001)
4. Zhang, Y.: Matrix Theory and Application. Science Press, Beijing (2011)



Rough Fuzzy Concept Lattice and Its
Properties

Chang Shu and Zhi-wen Mo

Abstract Concept lattice and rough set theory, two different methods for knowledge
representation and knowledge discovery, are successfully applied to many fields.
Methods of fuzzy rule extraction based on rough set theory are rarely reported in
incomplete interval-valued fuzzy information systems. Thus, this paper deals with
the relationship of such systems and fuzzy concept lattice. The purpose of this paper
is to study a newmodel called rough fuzzy concept lattice (RFCL) and its properties.

Keywords Rough fuzzy concept lattice · Fuzzy concept lattice ·Rough set theory ·
Fuzzy formal context · Fuzzy formal concept · Fuzzy equivalence class

1 Introduction

With the development of computer science, more and more attention is paid to the
research of its mathematical foundations which have been the common field of math-
ematicians and computer scientists. Domain theory (DT), formal concept analysis
(FCA) and rough set theory (RST) are three important crossing fields based on rela-
tions (orders) and simultaneously related to topology, algebra, logic, etc., and provide
mathematical foundations for computer science and information science.

In this paper, a covariant Galois connection is put forward by approximation oper-
ators of rough sets, thus rough fuzzy concept lattice is established. We also discuss
its properties and attribute reduction of fuzzy format concept based on rough fuzzy
concept lattice. So profoundly reveals the connection of two knowledge discovery
tool, to prepare for the better application prospect.
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2 Rough Fuzzy Concept Lattices

Definition 1
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties and Ĩ (U × A → [0, 1]) is a
fuzzy binary relations defined in object set to the set of properties. For x ∈ U , a ∈ A,

Iδ (x, a) =
{
1, Ĩ (x, a) ≥ δ

0, Ĩ (x, a) < δ
Iδ (x, a) =

{
1, Ĩ (x, a) > δ

0, Ĩ (x, a) ≤ δ
0 ≤ δ ≤ 1 is respec-

tively called δ -cross-sectional relationship and δ -strong cross sectional relationship.

Definition 2
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, Iδ(x, a) is a δ-cross-sectional
relationship. A pair of dual operator between attributes and object set is defined as:

X♦
δ = {a|a ∈ A,∀x ∈ X, (x, a) ∈ Iδ}

B◦
δ = {x |x ∈ U,∀a ∈ B, (x, a) ∈ Iδ}

X ⊆ U, B ⊆ A.

Theorem 1
(

U, A, Ĩ
)

is a fuzzy formal context, where Uis a limited non-null object

set, A is a limited non-empty set of properties, ∀X1, X2, X ⊆ U,∀B1, B2, B ⊆ A,
the following properties are below:

(1) X ⊆ B◦
δ ⇔ X♦

δ ⊆ B;

(2) X1 ⊆ X2 ⇒ X♦
1δ ⊇ X♦

2δ, B1 ⊆ B2 ⇒ B◦
1δ ⊇ B◦

2δ;

(3) X ⊆ X♦◦
δδ

, B◦♦
δδ

⊆ B;

(4) X♦
δ = X♦◦♦

δδδ
, B◦

δ = B◦♦◦
δδδ

;

(5) (X1 ∪ X2)
♦
δ = X♦

1δ ∩ X♦
2δ, (B1 ∪ B2)

◦
δ = B◦

1δ ∩ B◦
2δ .

Proof (1) X ⊆ B◦
δ ⇔ ∀x ∈ X, x ∈ B◦

δ ⇔ ∀x ∈ B◦
δ , so (x, a) ∈ Iδa ∈ B ⇔

∀x ∈ X, when (x, a) ∈ Iδ, then a ∈ B ⇔ X♦
δ ⊆ B.

(2) X1 ⊆ X2 ⇒ ∀x ∈ X1 ⊆ X2, when (x, a) ∈ Iδ, so a ∈ X♦
2δ ⊆ X♦

1δ .
B1 ⊆ B2 ⇒ ∀a ∈ B1 ⊆ B2 ⇒ when (x, a) ∈ Iδ, then x ∈ B◦

2δ ⊆ B◦
1δ.

(3) ∀x ∈ X ⇒ when (x, a) ∈ Iδ, then a ∈ X♦
δ ⇒ ∀a ∈ X♦

δ , when (x, a) ∈ Iδ ,

then x ∈ X♦
δ ⇒ X ⊆ X♦

δ . ∀a ∈ B◦♦
δδ

⇒ when (x, a) ∈ Iδ, then x ∈ B◦
δ ⇒

∀x ∈ B◦
δ , when (x, a) ∈ Iδ , then a ∈ B ⇒ B◦♦

δδ
⊆ B.

(4) For (3) there are clearly X♦◦♦
δδδ

⊆ X♦
δ . On the other hand, ∀x ∈ X, when (x, a) ∈

Iδ, then a ∈ X♦
δ

⇒ ∀a ∈ X♦
δ , when (x, a) ∈ Iδ, so x ∈ X♦◦

δδ
⇒ ∀x ∈ X♦◦

δδ
, (x, a) ∈ Iδso a ∈

X♦◦♦
δδδ

⇒ X♦◦♦
δδδ

⊇ X♦
δ , then X♦◦♦

δδδ
= X♦

δ . B◦
δ = B◦♦◦

δδδ
that such.
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(5) ∀a ∈ (X1 ∪ X2)
♦, when (x, a) ∈ Iδ, x ∈ X1 ∪ X2 ⇒ x ∈ X1, then

(x, a) ∈ Iδ ⇒ a ∈ X♦
1δ, x ∈ X2, when (x, a) ∈ Iδ, then a ∈ X♦

2δ ⇒ a ∈
X♦
1δ ∩ X♦

2δ ⇒ (X1 ∪ X2)
♦
δ ⊆ X♦

1δ ∩ X♦
2δ

∀a ∈ X♦
1δ ∩ X♦

2δ ⇒ a ∈ X♦
1δ((x, a) ∈ Iδ ⇒ x ∈ X1), and a ∈ X♦

2δ
((x, a) ∈ Iδ ⇒ x ∈ X2) ⇒ ∀x ∈ X1 ∪ X2, (x, a) ∈ Iδ ⇒ a ∈
(X1 ∪ X2)

♦
δ . (B1 ∪ B2)

◦
δ = B◦

1δ ∩ B◦
2δ

is similar to be proved, so omit.

Theorem 2
(

U, A, Ĩ
)

is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, for X ⊆ U, B ⊆ A, when
0 < δ1 < δ2 ≤ 1, then X♦

δ2
⊆ X♦

δ1
, B◦

δ2
⊆ B◦

δ1
.

Proof ∀a ∈ X♦
δ2

, ∃x ∈ X ⇒ (x, a) ∈ Iδ2 thus Ĩ (x, a) ≥ δ2 > δ1 ⇒ (x, a) ∈
Iδ1 ⇒ a ∈ X♦

δ1
⇒ X♦

δ2
⊆ X♦

δ1
. B◦

δ2
⊆ B◦

δ1
is similar to be proved, so omit.

Definition 6
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, for the object set X ⊆ U
and the set of properties set B ⊆ A, the up and down approximate are respectively
defined as:

X∇
δ = {

a ∈ A
∣∣a◦

δ ⊆ X
}
, X�

δ =
{

a ∈ A
∣∣a◦

δ

⋂
X �= φ

}

B∇
δ =

{
x ∈ U

∣
∣x♦

δ ⊆ B
}

B�
δ =

{
x ∈ U

∣∣x♦
δ

⋂
B �= φ

}

where a◦
δ = {x |x ∈ U, (x, a) ∈ Iδ} , x♦

δ = {a|a ∈ A, (x, a) ∈ Iδ}.

Theorem 3
(

U, A, Ĩ
)

is a fuzzy formal context, where U is a limited non-null object

set, A is a limited non-empty set of properties, for the object set X ⊆ U and the set
of properties set B ⊆ A, then (∇δ,�δ) , (�δ,∇δ) are all Galois connections.

Proof ∀X ⊆ U, B ⊆ A X ⊆ B�
δ ⇔ x ∈ X, x♦

δ ∩ B �= φ ⇔ when (x, a) ∈
Iδ, so a ∈ B ⇔ X∇

δ ⊆ B, then (∇δ,�δ) is Galois connection; (�δ,∇δ) is similar
to be proved, so omit.

Theorem 4
(

U, A, Ĩ
)

is a fuzzy formal context, where U is a limited non-null object

set, A is a limited non-empty set of properties, for the object set X ⊆ U and the set
of properties set B ⊆ A, when 0 < δ1 < δ2 ≤ 1, then

X∇
δ1

⊆ X∇
δ2

, B�
δ1

⊆ B�
δ2

,

X�
δ1

⊆ X�
δ2

, B∇
δ1

⊆ B∇
δ2

.
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Proof By the definition, conclusion is easy to proved.

Theorem 5
(

U, A, Ĩ
)

is a fuzzy formal context, where U is a limited non-null object

set, A is a limited non-empty set of properties, for ∀X1, X2, X ⊆ U,∀B1, B2, B ⊆ A,
the up and down approximation have the following properties:

(1) X1 ⊆ X2 ⇒ X∇
1δ ⊆ X∇

2δ, X1 ⊆ X2 ⇒ X�
1δ ⊆ X�

2δ,

(2) B1 ⊆ B2 ⇒ B∇
1δ ⊆ B∇

2δ, B1 ⊆ B2 ⇒ B�
1δ ⊆ B�

2δ,

(3) X�∇
δ ⊆ X ⊆ X�∇

δ , B�∇
δ ⊆ B ⊆ B�∇

δ ,

(4) X�∇�
δ = X�

δ , X∇�∇
δ = X∇

δ , B�∇�
δ = B�

δ , B∇�∇
δ = B�

δ ,

(5) (X1 ∩ X2)
∇
δ = X∇

1δ ∩ X∇
2δ, (X1 ∪ X2)

�
δ = X�

1δ ∪ X�
2δ,

(B1 ∩ B2)
∇
δ = B∇

1δ ∩ B∇
2δ, (B1 ∪ B2)

�
δ = B�

1δ ∪ B�
2δ

Proof (1) ∀a ∈ X∇
1δ ⇒ a◦

δ ⊆ X1 ⊆ X2 ⇒ a ∈ X∇
2δ ⇒ X∇

1δ ⊆ X∇
2δ .

∀a ∈ X�
1δ ⇒ a◦

δ ∩ X1 �= φ ⇒ a◦
δ ∩ X2 �= φ ⇒ a ∈ X�

2δ ⇒ X�
1δ ⊆ X�

2δ.

This proof is similar to (1), so omit.

(3)∀x ∈ X∇�

δδ
⇒ x ∈

{
x ∈ U

∣∣∣x♦
δ ∩ X∇

δ �= φ
}
, then a ∈ A, ∀x ∈ X, (x, a) ∈

Iδ ⇒ X∇�

δδ
⊆ X .

∀x ∈ X, so (x, a) ∈ Iδ, a ∈ X♦
δ ⇒ X♦

δ ⊆ X�
δ ⇒ x ∈ X�∇

δδ
.

B∇�

δ ⊆ B ⊆ B�∇
δ is omitted.

(4) a ∈ X�∇�
δ ⇔ a◦

δ ∩ X�∇
δ �= φ ⇔ {x ∈ U |(x, a) ∈ Iδ }∩

{
x ∈ U

∣∣∣x♦
δ ⊆ X�

δ

}

�= φ ⇔ a◦
δ ∩X �= φ, a ∈ X�

δ , so X�∇�
δ = X�

δ . Other proof is similar, so omitted.
(5) ⇔ a ∈ X∇

1δ ∩ X∇
2δ, then (X1 ∩ X2)

∇
δ = X∇

1δ
∩ X∇

2δ
. Other proof is a ∈

(X1 ∩ X2)
∇
δ ⇔ a◦

δ ⊆ X1 ∩ X2 ⇔ a◦
δ ⊆ X1, a◦

δ ⊆ X2 ⇔ a ∈ X∇
1δ, a ∈ X∇

2δ similar,
so omitted.

Definition 7
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, for the object set X ⊆ U and
the set of properties set B ⊆ A. If X = B�

δ , B = X∇
δ , then (X, B) is referred to as

the fuzzy concept of object; if X = B∇
δ , B = X�

δ , then (X, B) is referred to as the
fuzzy concept of attribution, where X is referred as the extension of fuzzy concept,
B is referred as the intension of fuzzy concept.

Definition 8
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, all the concept of fuzzy object

and concept of fuzzy attribute sets of
(

U, A, Ĩ
)
are recorded as:

L O (U, A, Iδ) =
{
(X, B)

∣∣∣X = B�
δ , B = X∇

δ

}
,
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L P (U, A, Iδ) =
{
(X, B)

∣∣
∣X = B∇

δ , B = X�
δ

}
.

Theorem 6
(

U, A, Ĩ
)

is a fuzzy formal context, where U is a limited non-null object

set, A is a limited non-empty set of properties, on the concept of fuzzy object sets
L O (U, A, Iδ) = {

(X, B)
∣
∣X = B�

δ , B = X∇
δ

}
and the concept of fuzzy attribute

sets L P (U, A, Iδ) = {
(X, B)

∣∣X = B∇
δ , B = X�

δ

}
, binary relation are recorded

as:
(X1, B1) ≤ (X2, B2) ⇔ X1 ⊆ X2(B2 ⊆ B1).

Then L O (U, A, Iδ), L P (U, A, Iδ) are all partial order sets.

Proof (1) reflexivity: (X1, B1) ≤ (X1, B1),
(2) symmetry: (X1, B1) ≤ (X2, B2), (X2, B2) ≤ (X1, B1) ⇒ (X1, B1) =

(X2, B2),
(3) transitivity: (X1, B1) ≤ (X2, B2), (X2, B2) ≤ (X3, B3) ⇒ (X1, B1) =

(X3, B3).

Then binary relation ≤ is partial order relation, so L O (U, A, Iδ), L P (U, A, Iδ)
are all partial order sets.

Theorem 7 Let L O (U, A, Iδ), L P (U, A, Iδ) be partial order sets. For

∀ (Xi , Bi ) ∈ L0 (U, A, Iδ) (i ∈ I ) ; ∀ (
X j , B j

) ∈ L p (U, A, Iδ) ( j ∈ J ) ,

the join and intersect operation are defined as:

∧
i∈I

(Xi , Bi ) =
((

∩
i∈I

Xi

)∇�

δ

, ∩
i∈I

Bi

)

,

∨
i∈I

(Xi , Bi ) =
(

∪
i∈I

Xi ,

(
∪

i∈I
Bi

)�∇

δ

)

,

∧
j∈J

(
X j , B j

) =
(

∩
j∈J

X j ,

(
∩

j∈J
B j

)∇�

δ

)

,

∨
j∈J

(
X j , B j

) =
(

( ∪
j∈J

X j )
�∇
δ , ∪

j∈J
B j

)
.

Then L O (U, A, Iδ) L P (U, A, Iδ) are all complete lattices.

Proof For ∀ (Xi , Bi ) , (Xk, Bk) ∈ L O (U, A, Iδ), i, k ∈ I , then

∩
i∈I

Bi ⊆ Bk ⇒
(

∩
i∈I

Bi

)�∇

δ

⊆ B�∇
kδ

= Bk ⇒
(

∩
i∈I

Bi

)�∇

δ

⊆ ∩
k∈I

Bk = ∩
i∈I

Bi ,
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∩
i=I

Bi ⊆
(

∩
i=I

Bi

)�∇

δ

then ∩
i=I

Bi =
(

∩
i=I

Bi

)�∇

δ

.

(
∩

i∈I
Bi

)�

δ

=
(

∩
i∈I

X∇
iδ

)�

δ

=
(

∩
i∈I

Xi

)∇�

δ((
∩

i∈I
Xi

)∇�

δ
, ∩

i∈I
Bi

)

= (

(
∩

i∈I
Bi

)�

δ
, ∩

i∈I
Bi ) ∈ L O (U, A, Iδ), then

((
∩

i∈I
Xi

)∇�

δ
,

∩
i∈I

Bi

)
is lower bound of L O (U, A, Iδ).

On the other hand, if (X, B) is a any lower bound of L O (U, A, Iδ), then

X ⊆ Xi ⇒ X ⊆
(

∩
i∈I

Xi

)∇�

δ

⇒ (X, B) ≤
((

∩
i∈I

Xi

)∇�

δ

, ∩
i∈I

Bi

)

,

so ∧
i∈I

(Xi , Bi ) =
((

∩
i∈I

Xi

)∇�

δ

, ∩
i∈I

Bi

)

is infimum of L O (U, A, Iδ); for

∨
i∈I

(Xi , Bi ) =
(

∪
i∈I

Xi ,

(
∪

i∈I
Bi

)�∇

δ

)

is supremum of L O (U, A, Iδ), this proof is omitted.
From what has been discussed above, L O (U, A, Iδ) is complete lattices.
The proof about L P (U, A, Iδ) is omitted.

Definition 9
(

U, A, Ĩ
)
is a fuzzy formal context, where U is a limited non-null

object set, A is a limited non-empty set of properties, complete lattices

L O (U, A, Iδ) , L P (U, A, Iδ)

are respectively referred to as fuzzy object concept lattice and fuzzy attribute concept
lattice.

3 Conclusion

Concept lattice and rough set theory, two different methods for knowledge represen-
tation and knowledge discovery, are successfully applied to many fields. Methods
of fuzzy rule extraction based on rough set theory are rarely reported in incomplete
interval-valued fuzzy information systems. Thus, this paper deals with the relation-
ship of such systems and fuzzy concept lattice. The purpose of this paper is to study
a new model called fuzzy rough concept lattice (FRCL) and its properties. We study
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four models of FRCL and the relationship of those. Meanwhile transformation algo-
rithms and examples are be given.
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Dual Hesitant Fuzzy Soft Set
and Its Properties

Hai-dong Zhang and Lan Shu

Abstract The soft set theory, originally proposed by Molodtsov, can be used as
a general mathematical tool for dealing with uncertainty. By combining the dual
hesitant fuzzy set and soft set models, we introduce the concept of dual hesitant
fuzzy soft sets. Further some operations on the dual hesitant fuzzy soft sets are
investigated, such as complement operation, “AND” and “OR” operations, sum and
product operations.

Keywords Soft set · Dual hesitant fuzzy set · Dual hesitant fuzzy soft set ·
Operations

1 Introduction

The soft set theory, originally proposed byMolodtsov [8], can be regarded as a general
mathematical tool to deal with uncertainty. It has been found that existing uncertainty
theories such as fuzzy sets [23], rough sets [14], intuitionistic fuzzy sets [1], vague
sets theory [6] and interval-valued fuzzy sets [4] have their inherent difficulties, but
soft set theory as a new mathematical tool for dealing with uncertainties is free
from the difficulties affecting existing methods as pointed out in [8]. In recent years,
research works on soft sets are very active and progressing rapidly. Especially, the
study of hybrid models combining soft sets with other mathematical structures is
also emerging as an active research topic of soft set theory. A lot of extensions of
soft set model have also been developed recently [2, 7, 9–12, 18, 20, 21].
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Zhu et al. [22] introduced the dual hesitant fuzzy set which is a comprehensive set
encompassing fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets [15, 16], and
fuzzy multisets [13] as special cases, and whose membership degrees and nonmem-
bership degrees are represented by two sets of possible values. By several possible
values for the membership and nonmembership degrees, respectively, dual hesitant
fuzzy sets can take much more information given by decision makers into account
in multiple attribute decision making. More recently, many authors have developed
multiple attribute decision-making theories and methods under dual hesitant fuzzy
environment [3, 5, 17, 19].

Up to now, many of researches about decision making based on dual hesitant
fuzzy set are mainly focusing on the dual hesitant fuzzy set itself. Like the above
mentioneduncertainty theories, dual hesitant fuzzy set has also its inherent difficulties
of inadequacy to the parameterization tools, while soft set theory is free from the
difficulties. Therefore, the research about fusions of dual hesitant fuzzy set and soft
set is important and necessary to us. So we present the new hybrid model called
dual hesitant fuzzy soft sets by combining dual hesitant fuzzy set and soft set, and
investigate its some interesting properties.

2 Preliminaries

2.1 Soft Sets

The pair (U, E)will be called a soft universe. Throughout this paper, unless otherwise
stated, U refers to an initial universe, E is a set of parameters, P(U ) is the power set
of U , and A ⊆ E . According to [8], the concept of soft sets is defined as follows.

Definition 1 ([8]) A pair (F, A) is called a soft set over U , where F is a mapping
given by F : A → P(U ).

2.2 Dual Hesitant Fuzzy Sets

Zhu et al. [22] defined a dual hesitant fuzzy set, which is an extension of a hesitant
fuzzy set, in terms of two functions that return two sets of membership values and
nonmembership values, respectively, for each element in the domain as follows.

Definition 2 ([22]) Let U be a fixed set, a dual hesitant fuzzy (DHF, for short) set
D on U is described as:

D = {〈x, hD(x), gD(x)〉|x ∈ U },
in which hD(x) and gD(x) are two sets of some values in [0,1], denoting the possible
membership degrees and non-membership degrees of the element x ∈ U to the set
D respectively, with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+ + η+ ≤ 1, where for
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all x ∈ U , γ ∈ hD(x), η ∈ gD(x), γ+ ∈ h+
D
(x) = ∪γ∈hD(x)max{γ}, η+ ∈ g+

D
(x) =

∪η∈gD(x)max{η}.
For convenience, the pair d(x) = (hD(x), gD(x)) is called aDHFelement denoted

by d = (h, g). The set of all DHF sets on U is denoted by DH F(U ).

Example 1 Let U = {x1, x2} be a reference set, d(x1) = (hD(x1), gD(x1)) =
({0.2, 0.4}, {0.6}) and d(x2) = (hD(x2), gD(x2)) = ({0.3, 0.4}, {0.1, 0.5}) be the
DHF elements of xi (i = 1, 2) to a set D, respectively. Then D can be considered as
a DHF set, that is,

D = {〈x1, {0.2, 0.4}, {0.6}〉, 〈x2, {0.3, 0.4}, {0.1, 0.5}〉}.
LetU be a discrete universe of discourse,A andBbe twoDHFsets onU denoted as

A = {〈x, hA(x), gA(x)〉|x ∈ U } and B = {〈x, hB(x), gB(x)〉|x ∈ U } respectively.
It is noted that the number of values in different DHF elements may be different

and the values ofDHF elements are usually given in a disorder. Suppose that l(hA(x))
and l(gA(x)) stand for the number of values in hA(x) and gA(x), respectively. To
operate correctly, Ye [19] and Chen [3] gave the following assumptions:

(A1) For a DHF set A = {〈x, hA(x), gA(x)〉|x ∈ U }, let σ : (1, 2, . . . , n) −→
(1, 2, . . . , n)be apermutation satisfyinghσ(s)

A
(x) ≥ hσ(s+1)

A
(x) for s = 1, 2, . . . , n −

1, and hσ(s)
A

(x) be the sth largest value in hA(x); let σ : (1, 2, . . . ,m)

−→ (1, 2, . . . ,m) be a permutation satisfying gσ(t)
A

(x) ≥ gσ(t+1)
A

(x) for t =
1, 2, . . . ,m − 1, and g

σ(t)
A

(x) be the t th largest value in gA(x).
(A2) For two DHF sets A and B, when l(hA(x)) 
= l(hB(x)), l(gA(x)) 
=

l(gB(x)), one can make them have the same number of elements through adding
some elements to the DHF element which has less number of elements. In terms of
the pessimistic principle, the smallest element will be added while in the opposite
case, the optimistic principle may be adopted. In the present work, we use the former
case. Therefore, if l(hA(x)) < l(hB(x)), then hA(x) should be extended by adding
theminimum value in it until it has the same length as hB(x); if l(gA(x)) < l(gB(x)),
then gA(x) should be extended by adding the minimum value in it until it has the
same length as gB(x).

In the following, we develop some new methods to decrease the dimension of the
derived DHF element when operating the DHF elements on the premise of assump-
tions given by Ye [19] and Chen [3], which are slightly different from some oper-
ations on DHF sets introduced by Farhadinia in [5]. The adjusted operational laws
are defined as follows.

Definition 3 Let U be a nonempty and finite universe of discourse, and A and B ∈
DH F(U ).Denote k = max{l(hA(x)), l(hB(x))} and l = max{l(gA(x)), l(gB(x))},
then for all 1 ≤ s ≤ k, 1 ≤ t ≤ l,

(1) the complement of A , denoted by A
c, is given by

A
c = {〈x, gA(x), hA(x)〉|x ∈ U } = {〈x, {gσ(t)

A
(x)}, {hσ(s)

A
(x)}〉|x ∈ U },
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(2) the union of A and B, denoted by A � B, is given by

A � B = {〈x, hA(x) ∪ hB(x), gA(x) ∩ gB(x)〉|x ∈ U }
= {〈x, {hσ(s)

A
(x) ∨ hσ(s)

B
(x)}, {gσ(t)

A
(x) ∧ gσ(t)

B
(x)}〉|x ∈ U };

(3) the intersection of A and B, denoted by A � B, is given by

A � B = {〈x, hA(x) ∩ hB(x), gA(x) ∪ gB(x)〉|x ∈ U }
= {〈x, {hσ(s)

A
(x) ∧ hσ(s)

B
(x)}, {gσ(t)

A
(x) ∨ gσ(t)

B
(x)}〉|x ∈ U };

(4) the sum of A and B, denoted by A � B, is given by

A � B = {〈x, hA(x) ⊕ hB(x), gA(x) ⊗ gB(x)〉|x ∈ U }
= {〈x, {hσ(s)

A
(x) + hσ(s)

B
(x) − hσ(s)

A
(x)hσ(s)

B
(x)}, {gσ(t)

A
(x)gσ(t)

B
(x)}〉|x ∈ U };

(5) the product of A and B, denoted by A � B, is given by

A � B = {〈x, hA(x) ⊗ hB(x), gA(x) ⊕ gB(x)〉|x ∈ U }
= {〈x, {hσ(s)

A
(x)hσ(s)

B
(x)}, {gσ(t)

A
(x) + g

σ(t)
B

(x) − g
σ(t)
A

(x)gσ(t)
B

(x)}〉|x ∈ U },

where gσ(t)
A

(x) denotes the t th largest value in gA(x) and hσ(s)
A

(x) denotes the sth
largest value in hA(x).

Example 2 Let U = {x1, x2} be a reference set. Suppose that A and B are two DHF
sets on U defined as follows:

A = {〈x1, {0.6, 0.4, 0.2}, {0.4, 0.3}〉, 〈x2, {0.5, 0.4}, {0.3, 0.1}〉,
B = {〈x1, {0.7, 0.3}, {0.2}〉, 〈x2, {0.6, 0.3, 0.1}, {0.4, 0.0}〉.
According to Definition 3 and assumptions given by Ye [19] and Chen [3], we

have

A � B = {〈x, {hσ(s)
A

(x) ∨ hσ(s)
B

(x)}, {gσ(t)
A

(x) ∧ gσ(t)
B

(x)}〉|x ∈ U }
= {〈x1, {0.7, 0.4, 0.3}, {0.2, 0.2}〉, 〈x2, {0.6, 0.4, 0.4}, {0.3, 0.0}〉};

A � B = {〈x, {hσ(s)
A

(x) ∧ hσ(s)
B

(x)}, {gσ(t)
A

(x) ∨ g
σ(t)
B

(x)}〉|x ∈ U }
= {〈x1, {0.6, 0.3, 0.2}, {0.4, 0.3}〉, 〈x2, {0.5, 0.3, 0.1}, {0.4, 0.1}〉};

A � B = {〈x, {hσ(s)
A

(x) + hσ(s)
B

(x) − hσ(s)
A

(x)hσ(s)
B

(x)}, {gσ(t)
A

(x)gσ(t)
B

(x)}〉|x ∈ U }
= {〈x1, {0.88, 0.58, 0.44}, {0.08, 0.06}〉, 〈x2, {0.8, 0.58, 0.46}, {0.12, 0.0}〉};

A � B = {〈x, {hσ(s)
A

(x)hσ(s)
B

(x)}, {gσ(t)
A

(x) + g
σ(t)
B

(x) − g
σ(t)
A

(x)gσ(t)
B

(x)}〉|x ∈ U }
= {〈x1, {0.42, 0.12, 0.06}, {0.52, 0.44}〉, 〈x2, {0.3, 0.12, 0.04}, {0.58, 0.1}〉}.
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In what follows, we first introduce the concept of the DHF subset.

Definition 4 Let U be a nonempty and finite universe of discourse. Denote k =
max{l(hA(x)), l(hB(x))}, and l = max{l(gA(x)), l(gB(x))}. For all A,B ∈
DH F(U ), A is said to be a DHF subset of B, if hA(x) � hB(x) and gA(x) � gB(x)
holds for any x ∈ U such that

hA(x) � hB(x), gA(x) � gB(x) ⇔ hσ(s)
A

(x) ≤ hσ(s)
B

(x), gσ(t)
A

(x) ≥ gσ(t)
B

(x),
for all 1 ≤ s ≤ k and 1 ≤ t ≤ l.We denote it by A � B.

Obviously, the notation � is reflexive, transitive and antisymmetric on DHF(U).

3 Dual Hesitant Fuzzy Soft Sets

In this subsection, by combining dual hesitant fuzzy sets and soft sets, we first
introduce a new hybrid model called dual hesitant fuzzy soft sets.

Definition 5 Let (U, E) be a soft universe and A ⊆ E . A pairS = (F̃, A) is called
a dual hesitant fuzzy soft set over U , where F̃ is a mapping given by F̃ : A →
DH F(U ).

Generally speaking, for any parameter e ∈ A, F̃(e) is a dual hesitant fuzzy subsets
in U . Following the standard notations, F̃(e) can be written as

F̃(e) = {〈x, hF̃(e)(x), gF̃(e)(x)〉|x ∈ U },

wherehF̃(e)(x) andgF̃(e)(x) are two sets of somevalues in [0,1], denoting the possible
membership degrees and non-membership degrees that object x holds on parameter
e, respectively.

Sometimes for convenience, we write F̃ as (F̃, E). If A ⊆ E , we can also have
a dual hesitant fuzzy soft set (F̃, A).

Example 3 Let U be a set of four participants performing dance programme, which
is denoted by U = {x1, x2, x3, x4}. Let E be a parameter set, where E = {e1, e2, e3}
= {confident; creative; graceful}. Suppose that there are three judges who are invited
to evaluate the membership degrees and non-membership degrees of a candidate
x j to a parameter ei with several possible values in [0,1]. Then dual hesitant fuzzy
soft set S = (F̃, A) defined as below gives the evaluation of the performance of
candidates by three judges.

F̃(e1) = {〈x1, {0.6, 0.7, 0.8}, {0.3, 0.2, 0.1}〉, 〈x2, {0.4, 0.5, 0.6}, {0.3, 0.2, 0.1}〉,
〈x3, {0.8, 0.7, 0.7}, {0.2, 0.1, 0.1}〉, 〈x4, {0.3, 0.4, 0.4}, {0.6, 0.5, 0.4}〉},

F̃(e2) = {〈x1, {0.5, 0.6, 0.4}, {0.4, 0.3, 0.2}〉, 〈x2, {0.5, 0.4, 0.3}, {0.5, 0.3, 0.3}〉,
〈x3, {0.7, 0.8, 0.8}, {0.2, 0.2, 0.1}〉, 〈x4, {0.5, 0.6, 0.6}, {0.4, 0.3, 0.2}〉},
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F̃(e3) = {〈x1, {0.4, 0.4, 0.3}, {0.7, 0.6, 0.6}〉, 〈x2, {0.5, 0.7, 0.7}, {0.3, 0.2, 0.2}〉,
〈x3, {0.5, 0.6, 0.7}, {0.3, 0.2, 0.1}〉, 〈x4, {0.7, 0.6, 0.8}, {0.2, 0.1, 0.1}〉}.

4 Operations on Dual Hesitant Fuzzy Soft Sets

In what follows, we define some operations of dual hesitant fuzzy soft sets and then
some properties can be further established for such operations on dual hesitant fuzzy
soft sets. Firstly, we introduce the concept of dual hesitant fuzzy soft subsets.

Definition 6 Let U be an initial universe and E be a set of parameters. Supposing
that A, B ⊆ E, (F̃, A) and (G̃, B) are two dual hesitant fuzzy soft sets, we say that
(F̃, A) is a dual hesitant fuzzy soft subset of (G̃, B) if and only if:

(1) A ⊆ B, and
(2) ∀e ∈ A, F̃(e) is a DHF subset of G̃(e), i.e. for all x ∈ U and e ∈ A, hσ(s)

F̃(e)
(x) ≤

hσ(s)
G̃(e)

(x), gσ(t)
F̃(e)

(x) ≥ g
σ(t)
G̃(e)

(x).

This relationship is denoted by (F̃, A) � (G̃, B). Similarly, (F̃, A) is said to be
a dual hesitant fuzzy soft super set of (G̃, B) if (G̃, B) is a dual hesitant fuzzy soft
subset of (F̃, A). We denote it by (F̃, A) � (G̃, B).

Example 4 Suppose that U = {x1, x2, x3, x4} is an initial universe and E =
{e1, e2, e3} is a set of parameters. Let A = {e1, e2}, B = E = {e1, e2, e3}. Given
two dual hesitant fuzzy soft sets (F̃, A) and (G̃, B) as follows:

F̃(e1) ={〈x1, {0.6, 0.5, 0.3}, {0.4, 0.3}〉, 〈x2, {0.7, 0.5, 0.5}, {0.3, 0.2}〉,
〈x3, {0.6, 0.5, 0.4}, {0.3, 0.1}〉, 〈x4, {0.5, 0.4, 0.2}, {0.5, 0.4}〉},

F̃(e2) ={〈x1, {0.4, 0.3, 0.2}, {0.6, 0.2}〉, 〈x2, {0.5, 0.4, 0.4}, {0.5, 0.2}〉,
〈x3, {0.4, 0.2}, {0.6, 0.5, 0.3}〉, 〈x4, {0.7, 0.6, 0.4}, {0.3, 0.2}}〉}.

G̃(e1) ={〈x1, {0.7, 0.6, 0.4}, {0.3, 0.2}〉, 〈x2, {0.9, 0.7, 0.6}, {0.1}〉,
〈x3, {0.8, 0.7, 0.6}, {0.2, 0.1}〉, 〈x4, {0.6, 0.5, 0.5}, {0.4, 0.2}〉},

G̃(e2) ={〈x1, {0.6, 0.4, 0.3}, {0.3, 0.1}〉, 〈x2, {0.7, 0.5, 0.4}, {0.3, 0.2}〉,
〈x3, {0.5, 0.4}, {0.2, 0.1}〉, 〈x4, {0.8, 0.7, 0.5}, {0.2, 0.1}〉},

G̃(e3) ={〈x1, {0.6, 0.4, 0.3}, {0.4, 0.1}〉, 〈x2, {0.4, 0.3, 0.3}, {0.6, 0.5}〉,
〈x3, {0.9, 0.8, 0.6}, {0.1}〉, 〈x4, {0.6, 0.4, 0.3}, {0.3, 0.1}〉.

According to Definition 6, we have (F̃, A) � (G̃, B).
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Definition 7 Thecomplement of (F̃, A), denotedby (F̃,A)c, is definedby (F̃,A)c =
(F̃c, A), where F̃c : A → DH F(U ) is a mapping given by F̃c(e), for all e ∈ A
such that F̃c(e) is the complement of dual hesitant fuzzy set F̃(e) on U .

Clearly, we have ((F̃, A)c)c = (F̃, A).

Example 5 Consider the dual hesitant fuzzy soft set (G̃, B) over U defined in
Example 4. Thus, by Definition 7, we have

G̃c(e1) ={〈x1, {0.3, 0.2}, {0.7, 0.6, 0.4}〉, 〈x2, {0.1}, {0.9, 0.7, 0.6}〉,
〈x3, {0.2, 0.1}, {0.8, 0.7, 0.6}〉, 〈x4, {0.4, 0.2}, {0.6, 0.5, 0.5}〉},

G̃c(e2) ={〈x1, {0.3, 0.1}, {0.6, 0.4, 0.3}, 〉, 〈x2, {0.3, 0.2}, {0.7, 0.5, 0.4}〉,
〈x3, {0.2, 0.1}, {0.5, 0.4}〉, 〈x4, {0.2, 0.1}, {0.8, 0.7, 0.5}〉},

G̃c(e3) ={〈x1, {0.4, 0.1}, {0.6, 0.4, 0.3}〉, 〈x2, {0.6, 0.5}, {0.4, 0.3, 0.3}〉,
〈x3, {0.1}, {0.9, 0.8, 0.6}〉, 〈x4, {0.3, 0.1}, {0.6, 0.4, 0.3}〉.

By the suggestions given by Molodtsov in [8], we present the notion of AND and
OR operations on two dual hesitant fuzzy soft sets as follows.

Definition 8 Let (F̃, A) and (G̃, B) be two dual hesitant fuzzy soft sets over U .
Suppose that k = max{l(hA(x)), l(hB(x))} and l = max{l(gA(x)), l(gB(x))}, then
the “(F̃, A) AN D (G̃, B)”, denoted by (F̃, A) ∧ (G̃, B), is defined by

(F̃, A) ∧ (G̃, B) = (H̃ , A × B),

where for all 1 ≤ s ≤ k, 1 ≤ t ≤ l and (α,β) ∈ A × B,

H̃(α,β) = {〈x, hF̃(α)(x) ∩ hG̃(β)(x), gF̃(α)(x) ∪ gG̃(β)(x)〉 : x ∈ U }.

Definition 9 Let (F̃, A) and (G̃, B) be two dual hesitant fuzzy soft sets over U .
Suppose that k = max{l(hA(x)), l(hB(x))} and l = max{l(gA(x)), l(gB(x))}, then
the “(F̃, A) O R (G̃, B)”, denoted by (F̃, A) ∨ (G̃, B), is defined by

(F̃, A) ∨ (G̃, B) = ( Ĩ , A × B),

where for all 1 ≤ s ≤ k, 1 ≤ t ≤ l and (α,β) ∈ A × B,

Ĩ (α,β) = {〈x, hF̃(α)(x) ∪ hG̃(β)(x), gF̃(α)(x) ∩ gG̃(β)(x)〉 : x ∈ U }.

Example 6 Reconsider Example 4. Then we have (F̃, A) ∧ (G̃, B) = (H̃ , A × B)
and (F̃, A) ∨ (G̃, B) = ( Ĩ , A × B) as follows:

H̃(e1, e1) ={〈x1, {0.6, 0.5, 0.3}, {0.4, 0.3}〉, 〈x2, {0.7, 0.5, 0.5}, {0.3, 0.2}〉,
〈x3, {0.6, 0.5, 0.4}, {0.3, 0.1}〉, 〈x4, {0.5, 0.4, 0.2}, {0.5, 0.4}〉},
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H̃(e1, e2) ={〈x1, {0.6, 0.4, 0.3}, {0.4, 0.3}〉, 〈x2, {0.7, 0.5, 0.4}, {0.3, 0.2}〉,
〈x3, {0.5, 0.4, 0.4}, {0.3, 0.1}〉, 〈x4, {0.5, 0.4, 0.2}, {0.5, 0.4}〉},

H̃(e1, e3) ={〈x1, {0.6, 0.4, 0.3}, {0.4, 0.3}〉, 〈x2, {0.4, 0.3, 0.3}, {0.6, 0.5}〉,
〈x3, {0.6, 0.5, 0.4}, {0.3, 0.1}〉, 〈x4, {0.5, 0.4, 0.2}, {0.5, 0.4}〉},

H̃(e2, e1) ={〈x1, {0.4, 0.3, 0.2}, {0.6, 0.2}〉, 〈x2, {0.5, 0.4, 0.4}, {0.5, 0.2}〉,
〈x3, {0.4, 0.2, 0.2}, {0.6, 0.5, 0.3}〉, 〈x4, {0.6, 0.5, 0.4}, {0.4, 0.2}〉},

H̃(e2, e2) ={〈x1, {0.4, 0.3, 0.2}, {0.6, 0.2}〉, 〈x2, {0.5, 0.4, 0.4}, {0.5, 0.2}〉,
〈x3, {0.4, 0.2}, {0.6, 0.5, 0.3}〉, 〈x4, {0.7, 0.6, 0.4}, {0.3, 0.2}〉},

H̃(e2, e3) ={〈x1, {0.4, 0.3, 0.2}, {0.6, 0.2}〉, 〈x2, {0.4, 0.3, 0.3}, {0.6, 0.5}〉,
〈x3, {0.4, 0.2, 0.2}, {0.6, 0.5, 0.3}〉, 〈x4, {0.6, 0.4, 0.3}, {0.3, 0.2}〉},

and

Ĩ (e1, e1) ={〈x1, {0.7, 0.6, 0.4}, {0.3, 0.2}〉, 〈x2, {0.9, 0.7, 0.6}, {0.1}〉,
〈x3, {0.8, 0.7, 0.6}, {0.2, 0.1}〉, 〈x4, {0.6, 0.5, 0.5}, {0.4, 0.2}〉},

Ĩ (e1, e2) ={〈x1, {0.6, 0.5, 0.3}, {0.3, 0.1}〉, 〈x2, {0.7, 0.5, 0.5}, {0.3, 0.2}〉,
〈x3, {0.6, 0.5, 0.4}, {0.2, 0.1}〉, 〈x4, {0.8, 0.7, 0.5}, {0.2, 0.1}〉},

Ĩ (e1, e3) ={〈x1, {0.6, 0.5, 0.3}, {0.4, 0.1}〉, 〈x2, {0.7, 0.5, 0.5}, {0.3, 0.2}〉,
〈x3, {0.9, 0.8, 0.6}, {0.1}〉, 〈x4, {0.6, 0.4, 0.3}, {0.3, 0.1}〉},

Ĩ (e2, e1) ={〈x1, {0.7, 0.6, 0.4}, {0.3, 0.2}〉, 〈x2, {0.9, 0.7, 0.6}, {0.1}〉,
〈x3, {0.8, 0.7, 0.6}, {0.2, 0.1, 0.1}〉, 〈x4, {0.7, 0.6, 0.5}, {0.3, 0.2}〉},

Ĩ (e2, e2) ={〈x1, {0.6, 0.4, 0.3}, {0.3, 0.1}〉, 〈x2, {0.7, 0.5, 0.4}, {0.3, 0.2}〉,
〈x3, {0.5, 0.4}, {0.2, 0.1, 0.1}〉, 〈x4, {0.8, 0.7, 0.5}, {0.2, 0.1}〉},

Ĩ (e2, e3) ={〈x1, {0.6, 0.4, 0.3}, {0.4, 0.1}〉, 〈x2, {0.5, 0.4, 0.4}, {0.5, 0.2}〉,
〈x3, {0.9, 0.8, 0.6}, {0.1}〉, 〈x4, {0.7, 0.6, 0.4}, {0.3, 0.1}〉}.

Theorem 1 Let (F̃, A) and (G̃, B) be two dual hesitant fuzzy soft sets over U. Then

(1) ((F̃, A) ∧ (G̃, B))c = (F̃, A)
c ∨ (G̃, B)

c
,

(2) ((F̃, A) ∨ (G̃, B))c = (F̃, A)
c ∧ (G̃, B)

c
.

Proof (1) Suppose that (F̃, A) ∧ (G̃, B) = (H̃ , A × B). Therefore, by Definitions
7 and 8, we have ((F̃, A) ∧ (G̃, B))c = (H̃ , A × B)c = (H̃ c, A × B), where
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for all (α,β) ∈ A × B, H̃ c(α,β) = {〈x, gH̃(α,β)(x), hH̃(α,β)(x)〉 : x ∈ U } =
{〈x, gF̃(α)(x) ∪ gG̃(β)(x), hF̃(α)(x) ∩ hG̃(β)(x)〉 : x ∈ U }.

On the other hand, byDefinitions 7 and 9, we have (F̃, A)
c∨(G̃, B)

c = (F̃c, A)∨
(G̃c, B) = ( Ĩ , A × B), where for all (α,β) ∈ A × B, Ĩ (α,β) = {〈x, gF̃(α)(x) ∪
gG̃(β)(x), hF̃(α)(x) ∩ hG̃(β)(x)〉 : x ∈ U }. Hence, (H̃ c, A × B) = ( Ĩ , A × B).

(2) The result can be proved in the similar way.

Theorem 2 Let (F̃, A), (G̃, B) and (H̃ ,C) be three dual hesitant fuzzy soft sets
over U. Then we have

(1) (F̃, A) ∧ ((G̃, B) ∧ (H̃ ,C)) = ((F̃, A) ∧ (G̃, B)) ∧ (H̃ ,C),

(2) (F̃, A) ∨ ((G̃, B) ∨ (H̃ ,C)) = ((F̃, A) ∨ (G̃, B)) ∨ (H̃ ,C),

(3) (F̃, A) ∧ ((G̃, B) ∨ (H̃ ,C)) = ((F̃, A) ∧ (G̃, B)) ∨ ((F̃, A) ∧ (H̃ ,C)),

(4) (F̃, A) ∨ ((G̃, B) ∧ (H̃ ,C)) = ((F̃, A) ∨ (G̃, B)) ∧ ((F̃, A) ∨ (H̃ ,C)).

Proof It can be directly followed from Definitions 8 and 9.

Remark 1 Suppose that (F̃, A) and (G̃, B) are two dual hesitant fuzzy soft sets over
U . It is noted that for all (α,β) ∈ A × B, if α 
= β, then (G̃, B) ∧ (F̃, A) 
=
(F̃, A) ∧ (G̃, B), and (G̃, B) ∨ (F̃, A) 
= (F̃, A) ∨ (G̃, B).

Next, based on the operations in Definition 3, we first present sum and product
operations of dual hesitant fuzzy soft sets.

Definition 10 The sum operation on the two dual hesitant fuzzy soft sets F̃ and G̃
over U , denoted by F̃ � G̃ = H̃ , is a mapping given by H̃ : E → DH F(U ), such
that for all e ∈ E ,

H̃(e) = {〈x, hH̃(e)(x), gH̃(e)(x)〉 : x ∈ U }
= {〈x, hF̃(e)(x) ⊕ hG̃(e)(x), gF̃(e)(x) ⊗ gG̃(e)(x)〉 : x ∈ U }.

Definition 11 The product operation on the two dual hesitant fuzzy soft sets F̃ and
G̃ over U , denoted by F̃ � G̃ = Ĩ , is a mapping given by Ĩ : E → DH F(U ), such
that for all e ∈ E ,

Ĩ (e) = {〈x, h Ĩ (e)(x), g Ĩ (e)(x)〉 : x ∈ U }
= {〈x, hF̃(e)(x) ⊗ hG̃(e)(x), gF̃(e)(x) ⊕ gG̃(e)(x)〉 : x ∈ U }.

Example 7 Let us consider the dual hesitant fuzzy soft set G̃ in Example 4. Let F̃
be another dual hesitant fuzzy soft set over U defined as follows:

F̃(e1) ={〈x1, {0.4, 0.3, 0.2}, {0.6, 0.5}〉, 〈x2, {0.6, 0.4, 0.3}, {0.4, 0.2}〉,
〈x3, {0.5, 0.3, 0.1}, {0.4, 0.3}〉, 〈x4, {0.7, 0.6, 0.5}, {0.3, 0.1}〉},
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F̃(e2) ={〈x1, {0.8, 0.6, 0.4}, {0.2, 0.1}〉, 〈x2, {0.7, 0.6, 0.5}, {0.3, 0.2}〉,
〈x3, {0.7, 0.4, 0.3}, {0.3, 0.1}〉, 〈x4, {0.4, 0.2, 0.1}, {0.5, 0.4}〉},

F̃(e3) ={〈x1, {0.4, 0.3, 0.3}, {0.6, 0.4}〉, 〈x2, {0.8, 0.6, 0.5}, {0.2, 0.1}〉,
〈x3, {0.5, 0.4, 0.4}, {0.5, 0.4}〉, 〈x4, {0.7, 0.5, 0.2}, {0.2, 0.0}〉.

Then by Definitions 10 and 11, we have

(F̃ � G̃)(e1) ={〈x1, {0.82, 0.72, 0.52}, {0.18, 0.10}〉, 〈x2, {0.96, 0.82, 0.72}, {0.04, 0.02}〉,
〈x3, {0.90, 0.79, 0.64}, {0.08, 0.03}〉, 〈x4, {0.88, 0.80, 0.75}, {0.12, 0.02}〉},

(F̃ � G̃)(e2) ={〈x1, {0.92, 0.58, 0.58}, {0.06, 0.01}〉, 〈x2, {0.91, 0.80, 0.70}, {0.09, 0.04}〉,
〈x3, {0.85, 0.64, 0.58}, {0.06, 0.01}〉, 〈x4, {0.88, 0.76, 0.55}, {0.10, 0.04}〉},

(F̃ � G̃)(e3) ={〈x1, {0.76, 0.58, 0.51}, {0.24, 0.04}〉, 〈x2, {0.88, 0.72, 0.65}, {0.12, 0.05}〉,
〈x3, {0.95, 0.88, 0.76}, {0.05, 0.04}〉, 〈x4, {0.88, 0.70, 0.44}, {0.06, 0.00}〉}.

(F̃ � G̃)(e1) ={〈x1, {0.28, 0.18, 0.08}, {0.72, 0.06}〉, 〈x2, {0.54, 0.28, 0.18}, {0.46, 0.28}〉,
〈x3, {0.40, 0.21, 0.06}, {0.52, 0.37}〉, 〈x4, {0.42, 0.30, 0.25}, {0.58, 0.28}〉},

(F̃ � G̃)(e2) ={〈x1, {0.48, 0.24, 0.12}, {0.44, 0.19}〉, 〈x2, {0.49, 0.30, 0.20}, {0.51, 0.36}〉,
〈x3, {0.45, 0.16, 0.12}, {0.44, 0.19}〉, 〈x4, {0.32, 0.14, 0.05}, {0.60, 0.46}〉},

(F̃ � G̃)(e3) ={〈x1, {0.42, 0.12, 0.09}, {0.76, 0.46}〉, 〈x2, {0.32, 0.18, 0.15}, {0.68, 0.55}〉,
〈x3, {0.45, 0.32, 0.24}, {0.55, 0.46}〉, 〈x4, {0.42, 0.20, 0.06}, {0.44, 0.10}〉}.

Theorem 3 Let F̃ and G̃ be two dual hesitant fuzzy soft sets over U. Then the
following laws are valid:

(1) F̃ � G̃ = G̃ � F̃,

(2) F̃ � G̃ = G̃ � F̃,

(3) (F̃ � G̃)c = F̃c � G̃c,

(4) (F̃ � G̃)c = F̃c � G̃c.

Proof (1) and (2) are straightforward.
(3) According to Definitions 10 and 3, for all e ∈ E we have

(F̃ � G̃)c = {〈x, gF̃(e)(x) ⊗ gG̃(e)(x), hF̃(e)(x) ⊕ hG̃(e)(x)〉 : x ∈ U }
= {〈x, gF̃(e)(x), hF̃(e)(x)〉 : x ∈ U } � {〈x, gG̃(e)(x),⊕hG̃(e)(x)〉 : x ∈ U }
= F̃c � G̃c.

(4) The result can be proved in the similar way.
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Theorem 4 Let F̃, G̃ and H̃ be any three dual hesitant fuzzy soft sets over U. Then
the following holds:

(1) (F̃ � G̃) � H̃ = F̃ � (G̃ � H̃),

(2) (F̃ � G̃) � H̃ = F̃ � (G̃ � H̃).

Proof The properties follow from Definitions 10 and 11.

5 Conclusion

In this paper, we propose the concept of dual hesitant fuzzy soft sets, and establish
some operations of dual hesitant fuzzy soft sets and then some properties can be
further investigated for such operations on dual hesitant fuzzy soft sets. In the future,
we further investigate relationships between dual hesitant fuzzy soft sets and other
mathematical structures, such as lattice structures and topological structures.
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Three-Valued Random Fuzzy Sets

Bin Yu and Xue-Hai Yuan

Abstract The theory of fuzzy sets was founded by Zadeh as an approach to cope
with the pressing need to deal with phenomena which cannot be modelled properly
by conventional mathematics because they contain factors which are fuzzy in nature.
However, in this frame of the theory of fuzzy sets, we cannot discern two conflicting
fuzzy conceptions properly, and therefore, the excluded middle law is violated. In
this theory, one does not differ fuzzy sets from their membership functions. That
is, a fuzzy set in the sense of Zadeh is equivalent to its membership function. This
may be the main reason why the excluded middle law was violated. In this paper,
we use the concept of three-valued fuzzy sets to provide a mathematical frame of
fuzzy sets theory, such that it can eliminate the suspicion for the objective reality of
membership functions of fuzzy sets. In our frame, fuzzy sets and their membership
functions are not equivalent conceptions.

Keywords Three-valued random fuzzy set · Random set · Fuzzy set · Random
variable

1 Introduction

Zadeh [1] introduced the theory of fuzzy sets was first in 1965 as an approach to
deal with the phenomena which cannot be modelled properly by conventional math-
ematics because they are fuzzy in nature. Now the theory of fuzzy sets has become
a powerful application tool in many area such as economy, psychology, sociology,
linguistics, management science, systems science, control theory, knowledge engi-
neering, picture processing, pattern recognition, etc. However the controversies over
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the mathematical theory of fuzzy sets is far from an end, especially for the objective
reality of membership functions of fuzzy sets. In the application of the fuzzy sets,
to give a proper, objective membership function of a fuzzy set is very important; it
will directly affect the correction of the results we get from the mathematical model
based on fuzzy sets theory. But by far, we do not have a commonly accepted method
of deciding this kind of function. Can we reframe the theory of fuzzy sets theory
such that it can not only eliminate the suspicion for the objective reality of mem-
bership functions of fuzzy sets? In the past twenty years, one has got many valuable
results in this aspect. In this paper, we will continue study this problem based on the
work of others [2–8]. Especially, Yuan’s work [9] provide a way to continue study
this problem. That is our primary motive to introduce the concept of three-valued
random fuzzy set.

2 Three-Valued Random Fuzzy Sets

In this paper, (Ω,A, P) denotes a probability space, and ξ a random variable on

(r.v.) Ω. Set Ξ({0, 1/2, 1}) = {ξ|ξ is r.v. with distribution:
ξ 0 1/2 1
p p1 p2 p3

}. Then

the following properties are evident.

Proposition 1
(1) 0,1/2,1 ∈ Ξ({0, 1/2, 1}).
(2) For arbitrary ξ, η ∈ Ξ({0, 1/2, 1}), we have

ξ ∨ η and ξ ∧ η ∈ Ξ({0, 1/2, 1}).

(3) For arbitrary ξi ∈ Ξ({0, 1/2, 1}), i = 1, 2, . . . ,

∞∨

i=1

ξi and
∞∧

i=1

ξi ∈ Ξ({0, 1/2, 1}),

limn→∞ξn and limn→∞ξn ∈ Ξ({0, 1/2, 1}).

Let

F ′
Ω(X) = {A|A : X → Ξ({0, 1/2, 1})}.

For A, B ∈ F ′
Ω(X), we define

(A
⋃

B)(x) = A(x)
∨

B(x),

(A
⋂

B)(x) = A(x)
∧

B(x),

Ac(x) = 1 − A(x).
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It is easy to see that A
⋂

B, A
⋂

B, Ac ∈ F ′
Ω(X). They are called the union and

the intersection of A and B, and the complement of A, respectively.
Now we introduce a relation ‘∼’ in F ′

Ω(X): for any element A, B in F ′
Ω(X),

we put ‘A ∼ B’ whenever P{A(x) = B(x)} = 1 for every x in X. For every A in
F ′

Ω(X), we denote by Ã the equivalence class containing A:

Ã = {A′|A′ ∈ F ′
Ω(X), A′ ∼ A}.

Put

FΩ(X) = {A′|A ∈ F ′
Ω(X)}.

Proposition 2 Let Ã, B̃ ∈ FΩ(X).

(1) If Ã = B̃, then

E(A(x)) = E(B(x)), (∀x ∈ X),

i.e. P{A(x) = 1} + 1/2P{A(x) = 1/2} = P{B(x) = 1} + 1/2P{B(x) = 1/2}.

(2) If for every x ∈ X, P{A(x) ≤ B(x)} = 1, then for any A′ ∈ Ã, B ′ ∈ B̃ we
have

P{A′(x) ≤ B ′(x)} = 1, (∀x ∈ X).

(3) For any A′ ∈ Ã, B ′ ∈ B̃,

A′ ⋃ B ′ ∼ A
⋃

B,

A′ ⋂ B ′ ∼ A
⋂

B.

Generally, we have
∞⋃

n=1

A′
n ∼

∞⋃

n=1

An,

∞⋂

n=1

A′
n ∼

∞⋂

n=1

An,

limn→∞ A′
n ∼ limn→∞ An,

limn→∞ A′
n ∼ limn→∞ An,

whenever A′
n ∼ An, n = 1, 2, . . . .

(4) For any A′ ∈ Ã, 1 − A′ ∼ 1 − A.
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Definition 1 For every A ∈ F ′
Ω(X), Ã is called a three-valued random fuzzy set

of X with probability space (Ω,A, P). Let

μ Ã(x) = E(A(x)) = P{A(x) = 1} + 1/2P{A(x) = 1/2}.

μ Ã(x) is called the membership function of three-valued random fuzzy set Ã.

Definition 2 Let Ã, B̃ ∈ FΩ(X),
(1) Ã is said to be included in B̃, denoted by Ã ⊂ B̃ if ∀x ∈ X, we have

P{A(x) ≤ B(x)} = 1.

(2) Ã is said to be equal to B̃, denoted by Ã = B̃, if both Ã ⊂ B̃ and B̃ ⊂ Ã are
satisfied.

Definition 3 Let Ã, B̃ ∈ FΩ(X), we define that

Ã
⋃

B̃ = ˜
A

⋃
B,

Ã
⋂

B̃ = ˜
A

⋂
B,

Ãc = 1̃ − A.

They are called the union and the intersection of Ã and B̃, and the complement of
Ã, respectively.

With Proposition 2, we know that all these definitions are well defined.
A three-valued random fuzzy set is also a generalization of a classical set. Let

Ã ∈ FΩ(X), such that ∀x ∈ X, P{A(x) = 1} = 1 or P{A(x) = 0} = 1, then
the relation between x and the three-valued random fuzzy set Ã is determined. Thus
Ã represents a conventional set. On the other hand, the characteristic function of a
classical set can also be regarded as a mapping from X to Ξ({0, 1/2, 1}), and thus
corresponds to an element in FΩ(X). Set

PΩ(X) = { Ã ∈ FΩ(X)|∀x ∈ X,

either
P{A(x) = 1} = 1 or P{A(x) = 0} = 1}.

It is obvious that (PΩ(X),∪,∩, c) is a subalgebra of (FΩ(X),∪,∩, c). Let P(X)

denote the collection of all conventional set of X , then we have the following propo-
sition.
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Proposition 3 The mapping

T : PΩ(X) → P(X),

Ã �→ {x |P{A(x) = 1} = 1},

is an isomorphic map from (PΩ(X),∪,∩, c) to (P(X),∪,∩, c).

Proof We need only to show that

Ã = B̃ iff {x |P{A(x) = 1} = 1} = {x |P{B(x) = 1} = 1}.

With Proposition 2, we know that

{x |P{A(x) = 1} = 1} = {x |P{B(x) = 1} = 1},

when Ã = B̃. On the other hand, if

{x |P{A(x) = 1} = 1} = {x |P{B(x) = 1} = 1},

since Ã, B̃ ∈ PΩ(X), for any x ∈ X, we have

P{A(x) = 0} = 1, or P{A(x) = 1/2} = 1, or P{A(x) = 1} = 1,

and

P{B(x) = 0} = 1, or P{B(x) = 1/2} = 1, or P{B(x) = 1} = 1.

Thus if x ∈ {x |P{A(x) = 1} = 1} = {x |P{B(x) = 1} = 1}, then
P{A(x) = 1, B(x) = 0} + P{A(x) = 1, B(x) = 1/2} + P{A(x) = 0, B(x) = 1}
+ P{A(x) = 0, B(x) = 1/2} + P{A(x) = 1/2, B(x) = 0} + P{A(x) = 1/2, B(x) = 1} = 0,

and hence,

P{A(x) = B(x)}
= P{A(x) = 1, B(x) = 1} + P{A(x) = 1/2, B(x) = 1/2} + P{A(x) = 0, B(x) = 0}
= P{A(x) = 1, B(x) = 1} + P{A(x) = 1/2, B(x) = 1/2} + P{A(x) = 0, B(x) = 0}

+ P{A(x) = 1, B(x) = 0} + P{A(x) = 1, B(x) = 1/2} + P{A(x) = 0, B(x) = 1}
+ P{A(x) = 0, B(x) = 1/2} + P{A(x) = 1/2, B(x) = 0}
+ P{A(x) = 1/2, B(x) = 1} = 1
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If x ∈ {x |P{A(x) = 1} = 1} = {x |P{B(x) = 1} = 1}, then P{A(x) = 1}
= 0, P{B(x) = 1} = 0, and thus

1 = P{A(x) = 1, B(x) = 1} + P{A(x) = 1/2, B(x) = 1/2} + P{A(x) = 0, B(x) = 0}
+ P{A(x) = 1, B(x) = 0} + P{A(x) = 1, B(x) = 1/2} + P{A(x) = 0, B(x) = 1}
+ P{A(x) = 0, B(x) = 1/2} + P{A(x) = 1/2, B(x) = 0} + P{A(x) = 1/2,

B(x) = 1} = P{A(x) = B(x)}.

Because of this conclusion, we will not differ Ã and the set {x |P{A(x) = 1} = 1}
when Ã ∈ PΩ(X). Especially, if for all x ∈ X, P{A(x) = 1} = 1, we have Ã = X ,
if for all x ∈ X, P{A(x) = 0} = 1, we have Ã = ∅.

Proposition 4 Let Ã, B̃, C̃ ∈ FΩ(X). Then
(1) Idempotent law

Ã ∪ Ã = Ã,

Ã ∩ Ã = Ã.

(2) Commutative law

Ã ∪ B̃ = B̃ ∪ Ã,

Ã ∩ B̃ = B̃ ∩ Ã.

(3) Associative law

( Ã ∪ B̃) ∪ C̃ = Ã ∪ (B̃ ∪ C̃),

( Ã ∩ B̃) ∩ C̃ = Ã ∩ (B̃ ∩ C̃).

(4) Absorption law

( Ã ∪ B̃) ∩ Ã = Ã,

( Ã ∩ B̃) ∪ Ã = Ã.

(5) Distributive law

( Ã ∪ B̃) ∩ C̃ = ( Ã ∩ C̃) ∪ (B̃ ∩ C̃),

( Ã ∩ B̃) ∪ C̃ = ( Ã ∪ C̃) ∩ (B̃ ∪ C̃).
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(6) Identity law

Ã ∪ X = X, Ã ∩ X = Ã,

Ã ∪ ∅ = Ã, Ã ∩ ∅ = ∅.

(7) Involution law

Ãcc = Ã.

(8) Dualization law
( Ã ∪ B̃)c = Ãc ∩ B̃c,

( Ã ∩ B̃)c = Ãc ∪ B̃c.

3 The Properties of
⋃

,
⋂

, c

Let x be a fixed element of X . Set

fx ( Ã) = μ Ã(x).

Proposition 5 Let Ã, B̃ ∈ FΩ(X). Then

fx ( Ã ∪ B̃) = fx ( Ã) + fx (B̃) − fx ( Ã ∩ B̃).

Proof fx ( Ã ∪ B̃) = μ Ã∪B̃(x) = E( Ã ∪ B̃(x))

= P{(A ∪ B)(x) = 1} + 1/2P{(A ∪ B)(x) = 1/2}
= P{A(x) = 1 or B(x) = 1} + 1/2P{A(x) = 1/2 or B(x) = 1/2}
= P{A(x) = 1} + P{B(x) = 1} − P{A(x) = 1, B(x) = 1}

+ 1/2P{A(x) = 1/2} + 1/2P{B(x) = 1/2} − 1/2P{(A ∩ B)(x) = 1/2}
= [P{A(x) = 1} + 1/2P{A(x) = 1/2}] + [P{B(x) = 1} + 1/2P{B(x)

= 1/2}] − [P{(A ∩ B)(x) = 1} + 1/2P{(A ∩ B)(x) = 1/2}]
= μ Ã(x) + μB̃(x) − μ Ã∩B̃(x)

= fx ( Ã) + fx (B̃) − fx ( Ã ∩ B̃).

Proposition 6
(1) Let Ã, B̃ ∈ FΩ(X), and Ã ⊂ B̃. Then

fx ( Ã) ≤ fx (B̃).

(2) For arbitrary Ã, B̃ ∈ FΩ(X),

fx ( Ã ∪ B̃) ≥ fx ( Ã) ∨ fx (B̃).
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fx ( Ã ∩ B̃) ≥ fx ( Ã) ∧ fx (B̃).

(3) For any Ã ∈ FΩ(X),

fx ( Ãc} = 1 − fx ( Ã).

(4) For Ãn ∈ FΩ(X), n = 1, 2, . . . , and { Ãn} is monotone, then

lim
n→∞ fx ( Ãn) = fx { lim

n→∞ Ãn}.

Proof
(1) Since Ã ⊂ B̃ is equivalent to P{A(x) ≤ B(x)} = 1, thus with Proposition 1,

we have

fx ( Ã) ≤ fx (B̃).

(2) Follows from (1) directly.
(3) Obvious.
(4) Given that { Ãn} is monotone increasing. Thus we have

P{An(x) ≤ An+1(x)} = 1, n = 1, 2, . . . ,

Set En = {An(x) > An+1(x)}, then P(En) = 0, n = 1, 2, . . .. Denoted by Ω ′ the
set Ω\ ∪∞

n=1 En, then

{A1(x) = 1} ∩ Ω ′ ⊂ {A2(x) = 1} ∩ Ω ′ ⊂ . . .

and

{A1(x) = 1/2} ∩ Ω ′ ⊂ {A2(x) = 1/2} ∩ Ω ′ ⊂ . . . .

Hence, with the property of probability measure P ,

P{ lim
n→∞{An(x) = 1} ∩ Ω ′} = lim

n→∞ P{{An(x) = 1} ∩ Ω ′},

and

P{ lim
n→∞{An(x) = 1/2} ∩ Ω ′} = lim

n→∞ P{{An(x) = 1/2} ∩ Ω ′}.

Noting that P(∪∞
n=1En) = 0, we obtain that

P{ lim
n→∞ An(x) = 1} = lim

n→∞ P{An(x) = 1},
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and

P{ lim
n→∞ An(x) = 1/2} = lim

n→∞ P{An(x) = 1/2},

so

P{ lim
n→∞ An(x) = 1} + 1/2P{ lim

n→∞ An(x) = 1/2}

= lim
n→∞ P{An(x) = 1} + 1/2 lim

n→∞ P{An(x) = 1/2}.

and thus,

lim
n→∞ fx ( Ãn) = fx lim

n→∞ ( Ãn).

For the case when Ãn is monotone decreasing, we can show in the same way. For a
fixed x in X, let

Fx ( Ã, B̃) = μ Ã∪B̃(x),

Gx ( Ã, B̃) = μ Ã∩B̃(x),

Cx ( Ã) = μ Ãc (x).

Proposition 7
(1) As a mapping from FΩ(X) × FΩ(X) to [0, 1], Fx , Gx have the following

properties:
(1) both of Fx and Gx are nondecreasing,
(2) Fx ( Ã, B̃) = Fx (B̃, Ã), Gx ( Ã, B̃) = Gx (B̃, Ã),

(3) Fx ( Ã, Ã) = Gx (B̃, B̃) = fx ( Ã),
(4) Fx ( Ã, B̃) ≥ fx ( Ã) ∨ fx (B̃), Gx ( Ã, B̃) ≤ fx ( Ã) ∧ fx (B̃),

(5) Fx (X, X) = 1, Gx (∅,∅) = 0,
(6) for Ãn ∈ FΩ(X), n = 1, 2, . . . , and { Ãn} is monotone, then

lim
n→∞ Fx ( Ãn, B̃) = Fx ( lim

n→∞ Ãn, B̃),

lim
n→∞ Fx (B̃, Ãn) = Fx (B̃, lim

n→∞ Ãn),

lim
n→∞ Gx ( Ãn, B̃) = Gx ( lim

n→∞ Ãn, B̃),

lim
n→∞ Gx (B̃, Ãn) = Gx (B̃, lim

n→∞ Ãn).
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(2) The mapping Cx : FΩ(X) → [0, 1] has the following properties:
(1) Cx (X) = 0, Cx (∅) = 1.
(2) Cx is nonincreasing.
(3) For Ãn ∈ FΩ(X), n = 1, 2 . . . , and { Ãn} is monotone, then

lim
n→∞ Cx ( Ãn) = Cx ( lim

n→∞ Ãn).

4 (F[0,1](X),
⋃
,
⋂
, c) and (F(X),

⋃
,
⋂
, c)

In this section, we will let F(X) denote the collection of all fuzzy sets in X defined
by Zadeh, and F[0,1](X) the collection of all three-valued random Fuzzy Sets in X
with probability space ([0, 1],B0, P), whereB0 is composed of all Borel set in [0, 1]
and measure P is the Lebesgue measure on [0, 1].

In this part of the paper, we will examine the relations between three-valued
random fuzzy sets in X with probability space ([0, 1],B0, P). As we can see, the
fuzzy sets defined by Zadeh can also be regarded as the equivalent class ofF[0,1](X),
but it is a coarse classification. The operations for three-valued random fuzzy sets
and those in the sense given by Zadeh are also different, they coincide only in some
special cases.
Let

Ξ0 = {ξ : [0, 1] ⇒ {0, 1/2, 1}|ξ is measurable}.

Definition 5 ξ ∈ Ξ0 is called nonincreasing if ∀ω1,ω2 ∈ [0, 1],ω1 ≤ ω2, then

ξ(ω1) ≥ ξ(ω2).

ξ ∈ Ξ0 is called almost certain nonincreasing if there exists a set E ⊂ [0, 1] such
that P(E) = 0, and ξ is nonincreasing on [0, 1]\E .

It is easy to see, if ξ is nonincreasing, and P{ξ = η} = 1, then η is almost certain
nonincreasing. The collection of all almost certain nonincreasing r.v. inΞ0 is denoted
by Ξ∗

0 .

Lemma 1 Given that ξ ∈ Ξ0 is nonincreasing, let α = sup{ξ = 1},β = in f {ξ =
0}, then

(1){ξ = 0} =
{ [β, 1], ξ(β) = 0,

(β, 1], ξ(β) = 1;

(2){ξ = 1} =
{ [0,α), ξ(α) = 0,

[0,α], ξ(α) = 1;

(3){ξ = 1/2} = 〈α,β〉.
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Proof (2) If β < α, then inf{ξ = 0} < sup{ξ = 1}, it is a contradiction to the
condition that ξ ∈ Ξ0 is nonincreasing. So β ≥ α.

β = in f {ξ = 0}, so {ξ = 0} ⊂ [β, 1]; for β ∈ [0, 1], if γ > β = in f {ξ = 0},
then there exists a γ′ ∈ [0, 1], γ′ < γ, and ξ(γ′) = 0.

Since ξ is nonincreasing, ξ(γ) = 0. Thus [β, 1) ⊂ {ξ = 0}. Therefore (2) is true.
In the sequel of the paper, we will use 〈a, b〉 to denote an interval with ends a, b,
when we are not sure whether a and b are included in the interval.

Definition 6 Ã ∈ F[0,1](X) is said to be a three-valued random* fuzzy set if ∀x ∈
X, A(x) ∈ Ξ∗

0 .
The collection of all three-valued random* fuzzy sets are denoted by F∗(X). In

the first section of this paper, we introduce an equivalence relation ‘∼’ in FΩ(X),
where we see that Ã ∼ B̃ is not equivalent to μ Ã = μB̃ . However, for three-valued
random* fuzzy sets we have the following proposition.

Proposition 8 Let Ã, B̃ be three-valued random*-fuzzy sets. Then

Ã = B̃, iff μ Ã(x) = μB̃(x), (∀x ∈ X).

Proof With Proposition 1 we need only to show that Ã(x) = B̃(x) is sufficient for
Ã = B̃.

To show Ã = B̃, it suffices to show ∀x ∈ X, P{A(x) = B(x)} = 1. Without loss
of generality we assume that all the values taken by A and B are nonincreasing.

For A(x), let α = sup{ξ = 1},β = inf{ξ = 0}.
For B(x), let α′ = sup{ξ′ = 1},β′ = inf{ξ′ = 0}.
By Lemma 1,

{A(x) = 0} =
{ [β, 1], A(x)(β) = 0,

(β, 1], A(x)(β) = 1;

{B(x) = 0} =
{

(β′, 1], A(x)(β′) = 0,
[β′, 1], A(x)(β′) = 1;

{A(x) = 1} =
{ [0,α), A(x)(α) = 0,

[0,α], A(x)(α) = 1;

{B(x) = 1} =
{ [0,α′), A(x)(α′) = 0,

[0,α′], A(x)(α′) = 1;

{A(x) = 1/2} = 〈α,β〉,

{B(x) = 1/2} = 〈α′,β′〉.
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Therefore,

P{A(x) = B(x)} = P{A(x) = 1, B(x) = 1}+ P{A(x) = 0, B(x) = 0}+ P{A(x) = 1/2, B(x) = 1/2}

= P{[0,α ∧ β〉} + P{〈α′ ∨ β′〉, 1} + P{〈α ∧ α′,β ∧ β′〉}

= (α ∧ β) + (1 − α′ ∨ β′) + [(β ∧ β′) − (α ∧ α′)].

When μ Ã(x) = μB̃(x), let α < β, we have

α = α′,β = β′.

So,

P{A(x) = B(x)} = α ∧ β + 1 − (α ∨ β) + β − α = 1.

Proposition 9 Let Ã, B̃ be three-valued random*-fuzzy sets. Then

Ã ⊂ B̃, iff μ Ã(x) ≤ μB̃(x), (∀x ∈ X).

Proof Let α = sup{ξ = 1},β = in f {ξ = 0}.
By Proposition 1, we need only to show that P{A(x) ≤ B(x)} = 1 for all x ∈ X

when μ Ã ≤ μB̃ .
Without loss of generality, we assume that all the values taken by A and B are

nonincreasing. Then

{A(x) ≤ B(x)} = [0, 1]\{A(x) > B(x)}
= [0, 1]\[{A(x) = 1, B(x) = 0}, {A(x) = 1, B(x) = 1/2}, {A(x) = 1/2, B(x) = 0}].

But μ Ã(x) ≤ μB̃(x), we have

α ≤ α′,β ≤ β′,

so

α ≤ β,α′ ≤ β′,

and thus

P{A(x) = 1, B(x) = 0} = [0,α〉 ∩ [β′, 1] = 0;

P{A(x) = 1, B(x) = 1/2} = [0,α〉 ∩ [α′,β′ >= 0;

P{A(x) = 1/2, B(x) = 0} = [α,β〉 ∩ [β′, 1] = 0.
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This shows

P{A(x) ≤ B(x)} = 1.

Proposition 10 Let Ã, B̃ be three-valued random*-fuzzy sets. Then

μ Ã∪B̃(x) = μ Ã(x) ∨ μB̃(x),

μ Ã∩B̃(x) = μ Ã(x) ∧ μB̃(x).

Proof Let α = sup{ξ = 1},β = in f {ξ = 0}.

μ Ã∪B̃(x) = E(A ∪ B)(x))

= P{(A ∪ B)(x) = 1} + 1/2P{(A ∪ B)(x) = 1/2}
= P{[0,α〉 ∪ [0,α〉} + 1/2P{[α,β〉 ∪ [α′,β′〉}
= (α ∨ α′) + [1/2(β − α) ∨ 1/2(β′ − α′)]
= [α + 1/2(β − α)] ∨ [α′ + 1/2(β′ − α′)]
= E(A(x)) ∨ E(B(x)) = μ Ã(x) ∨ μB̃(x).

In the same way, we can show μ Ã∩B̃(x) = μ Ã(x) ∧ μB̃(x).

Theorem 1 The mapping

Λ : F∗(X) → F(X),

Ã �→ Λ( Ã),

μΛ( Ã(x) = μ Ã(x)

is an isomorphic map from (F∗(X),∪,∩) to (F(X),∪,∩).

Proof
(1) Λ is injective. Let Ã, B̃ ∈ F∗(X), and Ã �= B̃. By Proposition 8, Λ( Ã) �=

Λ(B̃).
(2) Λ is surjective. Let α = sup{ξ = 1},β = in f {ξ = 0}. For arbitrary F ∈

F(X), let fx (α) = χFα(x), where Fα denotes theα−cut of fuzzy set F . Then fx (α)

as a function from [0, 1] to {0, 1/2, 1} is measurable because { fx = 1} = [0,α],
{ fx = 1/2} = 〈α,β〉, { fx = 0} = [β, 1]. Furthermore, ∀α′,α′′ ∈ [0, 1],α′ < α′′,

fx (α
′) = χFα′ (x) ≥ χFα′′ (x) = fx (α

′′).
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Thus F is nonincreasing. Let Ã be a three-valued random*-fuzzy set, such that
A(x)(α) = χFα(x); then

Λ( Ã)(x) = μ Ã(x) = E(A(x))

= P{A(x) = 1} + 1/2P{A(x) = 1/2}

= P{[0,α]} + 1/2P{〈α,β〉} = μF (x).

That is Λ( Ã) = F .
(3) For Ã, B̃ ∈ F∗(X), with Proposition 8, we have

Λ( Ã ∪ B̃) = Λ( Ã) ∪ Λ(B̃),

Λ( Ã ∩ B̃) = Λ( Ã) ∩ Λ(B̃).

To sum up, we know Λ is an isomorphic mapping.
Note that for ξ ∈ Ξ∗

0 , 1 − ξ will not belong to Ξ∗
0 , Ξ∗

0 is not closed for the
complement of three-valued random-fuzzy set. In order to see the difference between
(F∗(X),∪,∩, c∗) and (F(X),∪,∩, c), we give following definition.

Definition 7 Let ξ ∈ Ξ∗
0 and set ξc∗

(α) = 1− ξ(1− α). Then it is evident that ξc∗

is almost certain nonincreasing when ξc∗
is. We call ξc∗

the c∗—complement of ξ.

Definition 8 Let Ã ∈ F∗(X) and set Ãc∗ = Ãc∗
, where Ac∗

is defined by
(Ac∗

)(x) = A(x)c∗
.

We call Ac∗
(x) the c∗—complement of Ã.

Proposition 11 For every Ã ∈ F[0,1](X),

μ Ãc (x) = μ Ãc∗ (x) = 1 − μ Ã(x).

Proof Without loss of generality we assume that ∀x ∈ X, A(x) is nonincreasing.
Let α = sup{ξ = 1},β = in f {ξ = 0}.

μ Ãc∗ (x) = E(Ac∗
(x))

= P{Ac∗
(x) = 1} + 1/2P{Ac∗

(x) = 1/2}
= P{1 − α|A(x)(α) = 0} + 1/2P{α|1 − A(x)(1 − α) = 1/2}
= P{1 − α|A(x)(α) = 0} + 1/2P{1 − α|A(x)(1 − α) = 1/2}
= P{〈β, 1]} + 1/2P{〈α,β〉}
= 1 − β + 1/2(β − α) = 1 − 1/2(α + β)

= 1 − {[0,α] + 1/2〈α,β〈}
= 1 − [P{ Ã(x) = 1} + 1/2P{ Ã(x) = 1/2}]
= 1 − μ Ã(x).

Theorem 1 and Proposition 11 give the following Theorem.
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Theorem 2 The mapping
Λ : F∗(X) → F(X),

Ã �→ Λ( Ã),

μΛ( Ã)(x) = μ Ã(x)

is an isomorphic map from F∗(X),∪,∩, c∗) to (F(X),∪,∩, c).

The above results indicate that the fuzzy sets in the sense of Zadeh correspond
to the coarse classification of the element of F ′[0,1](X), where we do not differ A
from B whenever E(A(x)) = E(B(x)). To see this more clearly, we introduce an
equivalence relation ∼′ in F[0,1](X).

For A, B ∈ F[0,1](X), we put A ∼′ B if E(A(x)) = E(B(x)). Let

Â = {B|B ∼′ A},

F∗
0(X) = { Â|A ∈ F ′[0,1](X)},

and let ξα be the element of Ξ∗
0 , such that ∀β ∈ [0, 1].

Let α = sup{ξ = 1},β = in f {ξ = 0}.

ξαβ (γ) =
⎧
⎨

⎩

1, γ ≤ α,

1/2, α < γ ≤ β,

0, γ > β.

For each Â ∈ F∗
0(X), let

�A(x) = ξE(A(x)), (x ∈ X).

Definition 9 For Â, B̂ ∈ F∗
0(X), we define

Â ∪ B̂ = ΔA ∪̂ ΔB,

Â ∩ B̂ = ΔA ∩̂ ΔB,

Âc = Δ̂Ac .

Theorem 3 (F∗
0 (X),∪,∩, c) is isomorphic to (F(X),∪,∩, c).
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Proof Let

G : F∗
0 (X) → F(X),

Â �→ G( Â),

μG( Â)
(x) = E(A(x)).

It is evident that G is an isomorphic mapping from (F∗
0 (X),∪,∩, c) to (F(X),

∪,∩, c).
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Improved Interval-Valued Intuitionistic
Fuzzy Entropy and Its Applications
in Multi-attribute Decision
Making Problems

Xiang-jun Xie and Xiao-xia Lv

Abstract According to the defect of not fully reflecting the uncertainty, the improved
definition and formula,which consider both aspects of uncertainty (fuzziness and lack
of knowledge), of entropy for interval-valued intuitionistic fuzzy sets are proposed.
The proposed entropy is used to solvemulti-attribute decisionmaking problems. Two
numerical example verifies the appropriateness and effectiveness of the improved
entropy for solving multi-attribute decision making problems.

Keywords Interval-valued intuitionistic fuzzy sets · Interval-valued intuitionistic
fuzzy entropy · Uncertainty · Hamming distance · Multi-attribute decision making

1 Introduction

In order to describe the uncertainty and fuzziness better, professor Zadeh [1] pro-
posed the theory of fuzzy sets (FSs) in 1965. In 1986, Antanassov [2] proposed
the concept of intuitionistic fuzzy sets (IFSs). An IFS, which is a generalization of
fuzzy sets, takes into account the neutral state ‘neither this nor that’ and provides a
more precise description of problems’ vagueness through two indexes-the degree of
non-membership and membership. In practical decision making problems, decision
makers often quantify the amount of decision information by interval numbers instead
of crisp numbers for just being able to provide the approximate range of the degree
of membership and non-membership. In other words, the degree of membership and
non-membership are usually expressed by interval numbers. Therefore, based on
the IFSs, Atanassov and Gargov [3] further proposed the concept of interval-valued
intuitionistic fuzzy sets (IVIFSs). Recent years, many scholars have being studying
the IFSs and IVIFSs, the entropy is a hotspot of the research field.
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The concept of entropy, which is originated in the Thermodynamics, was intro-
duced into information theory by Shannon tomeasure the uncertainty of information.
In 1965, the entropy was first used to measure the fuzziness of a fuzzy set by Zadeh
[1]. Later, Burillo and Bustince [4] defined the entropy for intuitionistic fuzzy sets
to measure the degree of hesitation in 1966. In 2001, Szmidt and Kacprzyk gave
the definition of a new non-probabilistic intuitionistic fuzzy entropy based on the
geometric interpretation for intuitionistic fuzzy sets. About entropy on IVIFSs, Guo
[5] and Liu [6] presented the axiomatic definition of interval-valued intuitionistic
fuzzy entropy. Wang and Wei [7] extended the formula of entropy for IFSs and pro-
posed a new formula for inteval-valued intuitionistic fuzzy entropy based on the
Guo’s axiomatic definition. Gao and Wei [8] defined a new formula based on the
improved Hamming distance for IVIFSs. However, the definition in paper [5] has
some defects. The constraint for the maximum values of entropy consider only one
aspect of uncertainty-fuzziness and neglect the other aspect of uncertainty-lack of
knowledge.

By analyzing the papers about intuitionistic fuzzy entropy, we point out that
the two aspects of uncertainty should both be taken into account to measure the
knowledge of an IFS adequately. As an extension of IFSs, IVIFSs also include both
fuzziness and lack of knowledge. So this paper improved the axiomatic definition
of entropy for IVIFSs and proposed a new formula, which can reflect the amount
of information better. Two applications are illustrated to verify the rationality of the
proposed views in the end.

2 Preliminaries

Definition 1 [2] Let X be a finite and non-empty universe of discourse. An intu-
itionistic fuzzy set A is given by:

A = {〈x, u A (x) , vA (x)〉 |x ∈ X } ,

where u A (x) ∈ [0, 1] denotes the degree of membership of x to A, vA (x) ∈ [0, 1]
denotes the degree of non-membership of x to A. For every x to A, it satisfies the
following condition:

0 ≤ u A (x) + vA (x) ≤ 1.

For a given x ∈ X , πA (x) = 1 − u A (x) − vA (x) is called the intuitionistic fuzzy
index or the hesitation margin.
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Definition 2 [3] Let X be a finite and non-empty universe of discourse. An interval-
valued intuitionistic fuzzy set A is given by:

∼
A =

{
〈x, u A (x) ,

∼
v A (x)〉 |x ∈ X

}

= {〈x,
[
u−

A (x) , u+
A (x)

]
,
[
v−

A (x) , v+
A (x)

]〉 |x ∈ X
} ,

where u−
A (x) ∈ [0, 1] , u+

A (x) ∈ [0, 1] , v−
A (x) ∈ [0, 1] , v+

A (x) ∈ [0, 1] .[
u−

A (x) , u+
A (x)

]
and

[
v−

A (x) , v+
A (x)

]
denote the degree of membership and non-

membership of x to A, with the condition:

u+
A (x) + v+

A (x) ≤ 1.

For a given x ∈ X,
∼
π A (x) = [

1 − u+
A (x) − v+

A (x) , 1 − u−
A (x) − v−

A (x)
]
is called

the interval-valued intuitionistic fuzzy index or the hesitation margin.

Definition 3 [3]Let
∼
A,

∼
B ∈ I V I F S (X) ,

∼
A = {〈x,

[
u−

A (x) , u+
A (x)

]
,
[
v−

A (x) , v+
A

(x)]〉 |x ∈ X } ,
∼
B = {〈x,

[
u−

B (x) , u+
B (x)

]
,
[
v−

B (x) , v+
B (x)

]〉 |x ∈ X
}
. The fol-

lowing basic operations can be defined:

(1)
∼
A ⊆ ∼

B if and only if

{
u−

A (x) ≤ u−
B (x) , u+

A (x) ≤ u+
B (x)

v−
A (x) ≤ v−

B (x) , v+
A (x) ≤ v+

B (x)
;

(2)
∼
A = ∼

B if and only if
∼
A ⊆ ∼

B,
∼
A ⊇ ∼

B;

(3)
∼

AC = {〈x,
[
v−

A (x) , v+
A (x)

]
,
[
u−

A (x) , u+
A (x)

]〉 |x ∈ X
}
.

Definition 4 [8] For two IVIFSs
∼
A = {〈xi ,

[
u−

A (xi ) , u+
A (xi )

]
,
[
v−

A (xi ) , v+
A (xi )

]〉
|xi ∈ X } and ∼

B = {〈xi ,
[
u−

B (xi ) , u+
B (xi )

]
,
[
v−

B (xi ) , v+
B (xi )

]〉 |xi ∈ X
}
, the Ham-

ming distance measure and the weighted Hamming distance measure between
∼
A and

∼
B are defined as follows:

d
(∼

A,
∼
B

)
= 1

4n

∑n
i=1

[∣∣u−
A (xi ) − u−

B (xi )
∣∣ + ∣∣u+

A (xi ) − u+
B (xi )

∣∣

+ ∣∣v−
A (xi ) − v−

B (xi )
∣∣ ∣∣v+

A (xi ) − v+
B (xi )

∣∣

+ ∣∣π−
A (xi ) − π−

B (xi )
∣∣ + ∣∣π+

A (xi ) − π+
B (xi )

∣∣] ,

(1)

d
(∼

A,
∼
B

)

w
= 1

4n

∑n
i=1 wi

[∣∣u−
A (xi ) − u−

B (xi )
∣∣ + ∣∣u+

A (xi ) − u+
B (xi )

∣∣

+ ∣∣v−
A (xi ) − v−

B (xi )
∣∣ ∣∣v+

A (xi ) − v+
B (xi )

∣∣

+ ∣∣π−
A (xi ) − π−

B (xi )
∣∣ + ∣∣π+

A (xi ) − π+
B (xi )

∣∣] .

(2)
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3 Improved Axiomatic Definition and Formula
of the Entropy for Interval-Valued
Intuitionistic Fuzzy Sets

3.1 The Necessity of Improving the Axiomatic Definition
and Formula of Interval-Valued Intuitionistic
Fuzzy Entropy

Definition 5 [5, 6] ∀ ∼
A ∈ I V I F S (X), the mapping E : I V I F S (X) → [0, 1] is

called as entropy if E satisfies the following conditions:

Condition 1: E
(∼

A
)

= 0 if and only if
∼
A is a crisp set;

Condition 2: E
(∼

A
)

= 1 if and only if
[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

]

for every xi ∈ X ;

Condition 3: E
(∼

A
)

= E

( ∼
AC

)
for every

∼
A ∈ I V I F S (X);

Condition 4: For any
∼
B ∈ I V I F S (X), if

∼
A ⊆ ∼

B when u−
B (xi )≤ v−

B (xi ) , u+
B (xi )

≤ v+
B (xi ) for every xi ∈ X , or

∼
A ⊇ ∼

B when u−
B (xi ) ≥ v−

B (xi ) , u+
B (xi ) ≥ v+

B (xi )

for every xi ∈ X , then E
(∼

A
)

≤ E
(∼

B
)
.

Based on the Definition 5, paper [7] and paper [8] gave the concrete formulas of
entropy respectively:

E1

(∼
A
)

= 1

n

∑n

i=1

min
{
u−

A (xi ) , v−
A (xi )

} + min
{
u+

A (xi ) , v+
A (xi )

} + π−
A (xi ) + π+

A (xi )

max
{
u−

A (xi ) , v−
A (xi )

} + max
{
u+

A (xi ) , v+
A (xi )

} + π−
A (xi ) + π+

A (xi )

= 1

n

∑n

i=1

2 − ∣∣u−
A (xi ) − v−

A (xi )
∣∣ − ∣∣u+

A (xi ) − v+
A (xi )

∣∣ + π−
A (xi ) + π+

A (xi )

2 + ∣∣u−
A (xi ) − v−

A (xi )
∣∣ + ∣∣u+

A (xi ) − v+
A (xi )

∣∣ + π−
A (xi ) + π+

A (xi )
,

E2

(∼
A
)

=
min

{
d

(∼
A,

∼
P

)
, d

(∼
A,

∼
Q

)}

max

{
d

(∼
A,

∼
P

)
, d

(∼
A,

∼
Q

)} ,

where
∼
P = {〈xi , [1, 1] , [0, 0]〉 |xi ∈ X } and

∼
Q = {〈xi , [0, 0] , [1, 1]〉 |xi ∈ X } ,

d
(∼

A,
∼
P

)
and d

(∼
A,

∼
Q

)
are calculated by formula (1).

Moreover, different definitions, which are equal to Definition 5 in essence, are
proposed by Zhang [9], Szmidt [10] and Ye [11]. They also define the formulas of
entropy for IVIFSs, the entropy formula in [11] is an extension of the intuitionistic
fuzzy entropy formula based on the trigonometric function proposed in [12].
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Fuzzy entropy measures the fuzziness of a fuzzy set, but researchers have differ-
ences in the definitions of the intuitionistic fuzzy entropy. Burrillo and Bustince [4]
defined the intuitionistic fuzzy entropy as a measure of the degree of the hesitation,
namely the entropy measures how far the intuitionistic fuzzy sets from the fuzzy
sets. We called it B-B axiom for short. The constraint of the maximum value is:
u A (xi ) = vA (xi ) = 0 (i.e. πA (xi ) = 0); Szmidt and Kacprzykv [9] defined the
entropy on intuitionistic fuzzy sets to measure how far the intuitionistic fuzzy sets
from the crisp sets and it (S-K axiom for short) was a measure of the fuzziness. The
intuitionistic fuzzy entropy is maximum if and only if u A (xi ) = vA (xi ). Pal and
Bustince [13] point out that the uncertainty of a intuitionistic fuzzy set includes fuzzi-
ness and lack of knowledge. In order to quantify the uncertainty of an IFS better, they
propose the concept of two-tuple entropy, which is a pair (EI , EF ) consisted of EI

based on B-B axiom and EF based on S-K axiom; Szmidt and Kacprzyk [14] point
out that: the two situations, one with the maximal entropy when u A (xi ) = vA (xi )

and another when u A (xi ) = vA (xi ) = 0 are equivalent from the point of view
of the entropy measure. But the two situations are completely different from the
perspective of decision making. The degree of lack of information should also be
considered when we deal with decision making problems. Then, they propose a new
index (i.e., the measure of lack of information: K (x) = 1 − 0.5 (E (x) + π (x)))

with not changing the axiom in paper [9], where the E (x) is the ratio-based entropy
in [9]. The greater of the K (x), the more amount of information the IFS presents.
It’s difficult to cope with the practical decision making problems using the two-tuple
entropy. Furthermore, the constraint of the minimal entropy in B-B axiom neglect
the inherent fuzziness of an IFS. Relatively speaking, the measure K (x) is a more
better choice.

Example 1 Let A1 = 〈0.3, 0.3〉 and A2 = 〈0.1, 0.1〉. We can calculate that:
K1 (x) = 0.3, K2 (x) = 0.1, namely the amount of information of A1 is more
than A2. It’s obvious that we can not distinguish A1 and A2 if considering only
fuzziness.

In fact, there is a third view about the intuitionistic fuzzy entropy which considers
both fuzziness and lack of information. Lv [15] defined a measure of fuzziness (i.e.,
f A (x) = 1−|u A (x) − vA (x)|) and defined the new axiom formula of intuitionistic
fuzzy entropy, which satisfies the following conditions. Firstly, the entropy gets the
minimal value if and only if the IFS A is a crisp set; Secondly, the constraint of the
maximal entropy is: u A (xi ) = vA (xi ) = 0; Thirdly, the entropy increases with the
fuzziness and degree of hesitation (i.e., degree of lack of information) increasing
(which is called the monotonicity of intuitionistic fuzzy entropy).

The definitions of intuitionistic fuzzy entropy in papers [16–19] also take two
aspects-fuzziness and degree of hesitation-into account. Although the constraints in
the four papers have some small differences, the definitions are essentially the same.
The four formulas are respectively as follows:

E1 (A) = 1

n

∑n

i=1

[
1 −

√
(1 − πA (xi ))

2 − u A (xi ) vA (xi )

]
, (3)
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E2 (A) = 1

n

∑n

i=1

√
(1 − |u A (xi ) − vA (xi )|)2 + π2

A (x)

2
, (4)

E3 (A) = 1

n

∑n

i=1

1 − |u A (xi ) − vA (xi )| + πA (xi )

2
, (5)

E4 (A) = 1

n

∑n

i=1

1 − |u A (xi ) − vA (xi )|2 + π2
A (xi )

2
. (6)

Example 2 Take the above A1 = 〈0.3, 0.3〉 and A2 = 〈0.1, 0.1〉 for example, we cal-
culate that: E1 (A1) = 0.4804, E1 (A2) = 0.8268; E2 (A1) = 0.7616, E2 (A2) =
0.9055; E3 (A1) = 0.7, E3 (A2) = 0.9, E4 (A1) = 0.58, E4 (A2) = 0.82. The
greater the entropy, the less amount of information the intuitionistic expresses, so
the results calculated through formulas (3)–(6) are the samewith the result calculated
byK , namely the intuitionistic fuzzy entropy defined in papers [15–19] can quantify
the amount of information better.

IVIFSs are extensions of IFSs, so it’s same that the entropy for IVIFSs dif-
ferentiate when

[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

]
and

[
v−

A (xi ) , v+
A (xi )

] =[
u−

A (xi ) , u+
A (xi )

] = [0, 0] from the point of view of decision making. It just
means that the fuzziness of an IVIFS is maximal when

[
v−

A (xi ) , v+
A (xi )

] =[
u−

A (xi ) , u+
A (xi )

]
, while fuzziness and degree of lack of knowledge both come to

maximumwhen
[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

] = [0, 0]. So it will be more
reasonable to use

[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

] = [0, 0] as the constraint
of maximal value when we define the entropy for IVIFSs.

3.2 The Improved Axiomatic Definition and Formula
for Interval-Valued Intuitionistic Fuzzy Sets

Definition 6 ∀ ∼
A ∈ I V I F S (X), the mapping E : I V I F S (X) → [0, 1] is called

as entropy if E satisfies the following conditions:

Condition 1: E
(∼

A
)

= 0 if and only if
∼
A is a crisp set;

Condition 2: E
(∼

A
)

= 1 if and only if
[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

] =
[0, 0] for every xi ∈ X ;

Condition 3: E
(∼

A
)

= E

( ∼
AC

)
for every

∼
A ∈ I V I F S (X);

Condition4: For any
∼
B ∈ I V I F S (X), if

∼
A ⊆ ∼

B whenu−
B (xi ) ≤ v−

B (xi ) , u+
B (xi )

≤ v+
B (xi ) for every xi ∈ X , or

∼
A ⊇ ∼

B when u−
B (xi ) ≥ v−

B (xi ) , u+
B (xi ) ≥ v+

B (xi )

for every xi ∈ X , then E
(∼

A
)

≤ E
(∼

B
)
.
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Theorem 1 Let X = {x1, x2, . . . , xn} be a universe.
∼
A = {〈xi ,

[
u−

A (xi ) , u+
A (xi )

]
,[

v−
A (xi ) , v+

A (xi )
]〉 |xi ∈ X

}
, the formula of the entropy is as follows:

E
(∼

A
)

= 1

n

∑n

i=1

2 − ∣
∣u+

A (xi ) − v+
A (xi )

∣
∣2 − ∣

∣u−
A (xi ) − v−

A (xi )
∣
∣2 + (

π−
A (xi )

)2 + (
π+

A (xi )
)2

4
(7)

Proof Condition 1:
∼
A is a crisp set, namely

[
u−

A (xi ) , u+
A (xi )

] = [0, 0] ,
[
v−

A (xi ) , v+
A (xi )

] = [1, 1]

or [
u−

A (xi ) , u+
A (xi )

] = [1, 1] ,
[
v−

A (xi ) , v+
A (xi )

] = [0, 0] .

Then E
(∼

A
)

= 0.

If E
(∼

A
)

= 0, since

2+ (
π−

A (xi )
)2 + (

π+
A (xi )

)2 ≥ 2,
∣∣u+

A (xi ) − v+
A (xi )

∣∣2 + ∣∣u−
A (xi ) − v−

A (xi )
∣∣2 ≤ 2,

So

[
π−

A (xi ) , π+
A (xi )

] = [0, 0] and
∣∣u+

A (xi ) − v+
A (xi )

∣∣ = ∣∣u−
A (xi ) − v−

A (xi )
∣∣ = 1,

namely
∼
A is a crisp set.

Condition 2: If
[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

] = [0, 0], it’s obvious that

E
(∼

A
)

= 1. If E
(∼

A
)

= 1, since

2+ (
π−

A (xi )
)2 + (

π+
A (xi )

)2 ≤ 4,
∣∣u+

A (xi ) − v+
A (xi )

∣∣2 + ∣∣u−
A (xi ) − v−

A (xi )
∣∣2 ≥ 0,

So
[
π−

A (xi ) , π+
A (xi )

] = [1, 1] and
[
v−

A (xi ) , v+
A (xi )

] = [
u−

A (xi ) , u+
A (xi )

] =
[0, 0].

Condition 3: For the two IVIFSs
∼
A and

∼
AC ,

[
π−

A (xi ) , π+
A (xi )

] =
[
π−

AC (xi ) , π+
AC (xi )

]
,

so it’s obvious that the condition 3 is right.

Condition 4:

E
(∼

A
)

= 1
n

∑n
i=1

2−∣
∣u+

A (xi )−v+
A (xi )

∣
∣2−∣

∣u−
A (xi )−v−

A (xi )
∣
∣2+(

π−
A (xi )

)2+(
π+

A (xi )
)2

4

= 1
n

∑n
i=1

2+u+
A (xi )

(
v+

A (xi )−1
)+v+

A (xi )
(
u+

A (xi )−1
)+u−

A (xi )
(
v−

A (xi )−1
)+v−

A (xi )
(
u−

A (xi )−1
)

2

(8)



208 X. Xie and X. Lv

and
if u−

B (xi ) ≤ v−
B (xi ) , u+

B (xi ) ≤ v+
B (xi ) and

∼
A ⊆ ∼

B for every xi ∈ A,
then v−

A (xi ) ≥ v−
B (xi ) ≥ u−

B (xi ) ≥ u−
A (xi ) and v+

A (xi ) ≥ v+
B (xi ) ≥ u+

B (xi ) ≥
u+

A (xi ),
so

u+
A (xi )

(
v+

A (xi ) − 1
) ≤ u+

B (xi )
(
v+

B (xi ) − 1
)
, v+

A (xi )
(
u+

A (xi ) − 1
) ≤ v+

B (xi )
(
u+

B (xi ) − 1
)
,

u−
A (xi )

(
v−

A (xi ) − 1
) ≤ u−

B (xi )
(
v−

B (xi ) − 1
)
, v−

A (xi )
(
u−

A (xi ) − 1
) ≤ v−

B (xi )
(
u−

B (xi ) − 1
)
,

then

E
(∼

A
)

≤ E
(∼

B
)

.

As the above method, when u−
B (xi ) ≥ v−

B (xi ) , u+
B (xi ) ≥ v+

B (xi ) and
∼
A ⊇ ∼

B for
every xi ∈ A, we can conclude that:

E
(∼

A
)

≤ E
(∼

B
)

.

So, the condition 4 is correct.

4 Applications in Multi-attribute Decision Making Problems

Consider a multi-attribute decision making problem with the attribute set C =
{c1, c2, . . . , cn} and the alternative set A = {a1, a2, . . . , am}. LetW = {w1, w2, . . . ,

wn} be the weight set, which is unknown, where
∑n

j=1 w j = 1, w j ∈ [0, 1].
∼
d
i j

= {〈xi j ,
[
u−

A

(
xi j

)
, u+

A

(
xi j

)]
,
[
v−

A

(
xi j

)
, v+

A

(
xi j

)]〉} means the evaluation of the

ith alternative ai satisfies the jth attribute. Then the steps in dealing with the problem
is as follows:

Step 1: construct the decision matrix;
Step 2: calculate the entropy of every attribute E j = ∑m

i=1 ei j by using (7), where
j = 1, 2, . . . , n;
Step 3: calculate the weight value of each attribute by using the model as follows
[16]:

w j = E−1
j

∑n
j=1 E−1

j

. (9)

Step 4: let A∗ = {〈c j , [1, 1] , [0, 0]〉
∣∣c j ∈ C

}
be the positive ideal point. Calculate

the weighted Hamming distance di between every alternative and the positive ideal
point;
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Table 1 Decision matrix 1

Alternative\attribute c1 c2 c3

a1 ([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.2, 0.4]) ([0.1, 0.3] , [0.5, 0.6])

a2 ([0.6, 0.7] , [0.2, 0.3]) ([0.6, 0.7] , [0.2, 0.3]) ([0.4, 0.7] , [0.1, 0.2])

a3 ([0.3, 0.4] , [0.3, 0.6]) ([0.5, 0.6] , [0.3, 0.4]) ([0.5, 0.6] , [0.1, 0.3])

a4 ([0.7, 0.8] , [0.1, 0.2]) ([0.6, 0.7] , [0.1, 0.3]) ([0.3, 0.4] , [0.1, 0.2])

Step 5: sort the di , i = 1, 2, . . . , m, get the best alternative. The smaller the di ,
which means the closer the alternative ai is to the positive ideal point, the better the
alternative.

Example 3 Consider a company is to invest in one of the following four projects: (1)
a1 be a automaker; (2) a2 be a food company; (3) a3 be a computer company; (4) a4
be a firearms manufacturer. Three factors should be considered: (i) c1 risk analysis;
(ii) c2 the development; (iii) c3 the production environment pressure analysis [8].

Step 1: the decision matrix is as follows [8] (Table1):
Step 2: calculate entropy of each attribute by using (7): E1 = 0.4525, E2 =
0.4650, E3 = 0.5025;
Step 3: calculate the weight value of each attribute by using (9): w1 = 0.3480, w2 =
0.3386, w3 = 0.3134;
Step 4: from (2), we get the weighted Hamming distances: d1 = 0.6114. d2 =
0.3813. d3 = 0.5196. d4 = 0.4092;
Step 5: the order of the distances is: d2 < d4 < d3 < d1, so a2 > a4 > a3 > a1, the
second alternative is the best alternative.

The above result is equal to the one in [8]. Taking the degree of lack of knowledge
into account while calculating the weight of the attribute leads to this situation, which
further verifies the impact of the degree of lack of knowledge should not be neglected
in decision making problems.

Example 4 Consider a manufacturer selection problem. The supplier is to choose
one from three manufacturers (i.e., Alternatives a j ( j = 1, 2, 3)). Five evaluating
indexes (i.e., attributes) should be considered: quality of product (c1), cost of product
(c2), time of delivery (c3), transportation cost (c4), service attitude (c5) [20].

Step 1: decision matrix is as follows [20] (Table2):
Step 2: from (7), the entropy of each attribute: E1 = 0.4833, E2 = 0.5133, E3 =
0.5400, E4 = 0.5333, E5 = 0.4800;
Step 3: from (9), we can get each weight of attributes: w1 = 0.2105, w2 = 0.1982,
w3 = 0.1884, w4 = 0.1908, w5 = 0.2120;
Step 4: from (2), the weighted Hamming distance between each attribute and the
positive ideal point: d1 = 0.6077, d2 = 0.6600,d3 = 0.5278;
Step 5: the order of the distances is: d2 > d1 > d3, so the order of the alternatives is:
a3 > a1 > a2. The second alternative is the best, which is the same with the result
in [20] when q = 1, q = 2, q → 0 and q → ∞
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Table 2 Decision matrix 2

Attribute\alternative a1 a2 a3

c1 ([0.4, 0.5] , [0.2, 0.3]) ([0.3, 0.4] , [0.4, 0.5]) ([0.6, 0.7] , [0.1, 0.2])

c2 ([0.2, 0.3] , [0.5, 0.6]) ([0.4, 0.5] , [0.3, 0.4]) ([0.3, 0.4] , [0.3, 0.5])

c3 ([0.4, 0.5] , [0.1, 0.3]) ([0.2, 0.4] , [0.3, 0.5]) ([0.4, 0.6] , [0.1, 0.3])

c4 ([0.2, 0.4] , [0.4, 0.5]) ([0.4, 0.5] , [0.2, 0.3]) ([0.3, 0.5] , [0.3, 0.4])

c5 ([0.4, 0.6] , [0.1, 0.2]) ([0.1, 0.2] , [0.6, 0.7]) ([0.4, 0.5] , [0.2, 0.3])

5 Conclusion

By analyzing the research about the intuitionistic fuzzy entropy, we explain that
the uncertainty of an IFS should include both fuzziness and the degree of lack of
information. The interval-valued intuitionistic fuzzy sets are extension of the intu-
itionistic fuzzy sets, so we should neglect neither fuzziness nor lack of knowledge
when we define the measure of entropy. This paper improved the existing axiomatic
definitions and formulas for IVIFSs and the improved entropy is used to deal with
two decision making problems. The examples further demonstrate the correctness
of the new entropy and its effectiveness in tackling practical problems.
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(∈,∈∨ q)-Fuzzy Filter Theory in FI-algebras

Chun-hui Liu

Abstract The notions of (∈,∈∨ q)-fuzzy filters and (∈,∈∨ q)-fuzzy implicative
(positive implicative, commutative, involution) filters in FI-algebras are introduced
and their properties are investigated. Equivalent characterizations of various (∈,∈
∨ q)-fuzzy filters are obtained. Relations among various (∈,∈∨ q)-fuzzy filters are
discussed and it is proved that a fuzzy set is (∈,∈∨ q)-fuzzy positive implicative
filter iff it is both (∈,∈∨ q)-fuzzy implicative and (∈,∈∨ q)-fuzzy commutative (or
involution) filter.

Keywords Fuzzy logic · FI-algebra · (∈,∈ ∨ q)-fuzzy filter · (∈,∈ ∨ q)-fuzzy
implicative (positive implicative, commutative, involution) filter

1 Introduction

Non-classical logic, extension and development of classical logic, has become a
formal tool for computer science and artificial intelligence to deal with uncertainty
information. To satisfy needs of fuzzy reasoning, many kinds of fuzzy logic alge-
bras have been established. Among them, fuzzy implication algebras (in short, FI-
algebras) posed in Ref. [1] are more extensive. Precisely, MV-algebras, bounded
BCK-algebras, BL-algebras, lattice implication algebras and R0-algebras are all FI-
algebras and implications in FI-algebras generalize implication operators in various
logic algebras. Thus, it ismeaningful to deeply study properties of FI-algebras. Fuzzy
sets introduced firstly by Zadeh in Ref. [2]. At present, some types of generalized
fuzzy filters were introduced in various logical algebras by using the ideas of fuzzy
sets [3–5].

In this paper, we apply the ideas and methods of fuzzy sets to FI-algebras. We
introduce various concepts of (∈,∈∨ q)-fuzzy filters and discuss their properties.
Some significative results are obtained.
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2 Preliminaries

By an fuzzy implication algebra (in short, FI-algebra), wemean an algebra (X,→, 0)
such that the following conditions hold: for all x, y, z ∈ X ,

(I1) x → (y → z) = y → (x → z);
(I2) (x → y) → ((y → z) → (x → z)) = 1;
(I3) x → x = 1;
(I4) x → y = y → x = 1 ⇒ x = y;
(I5) 0 → x = 1.

In any FI-algebra X , The following statements are true, for all x, y, z ∈ X ,

(I6) 1 → x = x , x → 1 = 1;
(I7) ((x → y) → y) → y = x → y;
(I8) (y → z) → ((x → y) → (x → z)) = 1;
(I9) x ≤ y ⇔ x → y = 1;
(I10) x ≤ y ⇒ (z → x ≤ z → y and y → z ≤ x → z);
(I11) 0′ = 1, 1′ = 0, x ≤ x ′′, x ′′′ = x ′;
(I12) x ≤ y ⇒ y′ ≤ x ′,

where 1 = 0 → 0 and x ′ = x → 0.
A fuzzy set on X is a mapping f : X → [0, 1]. A fuzzy set on X with the form

f (y) =
{

t ∈ (0, 1], y = x

0, y 	= x
(1)

is said to be a fuzzy point with support x and value t witch is denoted by xt . For a
fuzzy point xt and a fuzzy set f we have

(1) xt is said to belong to f , written as xt ∈ f , if and only if f (x) � t ;
(2) xt is said to be quasi-coincident with f , written as xt q f , iff f (x) + t > 1;
(3) If xt ∈ f or xt q f , then we write xt ∈∨ q f ;
(4) The symbol ∈∨ q means that ∈∨ q does not hold.

3 (∈,∈∨ q)-Fuzzy Filters in FI-algebras

Definition 3.1 Let X be an FI-algebra. A fuzzy set f on X is called a (∈,∈∨ q)-
fuzzy filter in X , if it satisfies the following conditions:

(F1) (∀t ∈ (0, 1])(∀x ∈ X)(xt ∈ f ⇒ 1t ∈∨ q f );
(F2) (∀t, r ∈ (0, 1])(∀x, y ∈ X)((xt ∈ f and (x → y)r ∈ f ) ⇒ ymin{t,r} ∈∨ q f ).

The set of all (∈,∈∨ q)-fuzzy filters in X is denoted by FF(X).
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Theorem 3.1 The conditions (F1) and (F2) in Definition 3.1 are equivalent to the
following conditions (F3) and (F4), respectively:

(F3) (∀x ∈ X)( f (1) � min{ f (x), 0.5});
(F4) (∀x, y ∈ X)( f (y) � min{ f (x), f (x → y), 0.5}).
Proof It is similar to the proof of Theorem 1 and Theorem 2 in Ref. [5].

Remark 3.1 Let X be an FI-algebra and f a fuzzy set on X .

(1) Theorem 3.1 shows that f ∈ FF(X) iff f satisfies conditions (F3) and (F4).
(2) Let f ∈ FF(X), then it is easy to see by (1) of this remark that f satisfies the

following condition:

(F5) (∀x, y ∈ X)(x ≤ y ⇒ f (y) � min{ f (x), 0.5}).
Theorem 3.2 Let X be an FI-algebra and f a fuzzy set on X. Then f ∈ FF(X) iff
f satisfies the following condition:

(F6) (∀x, y, z ∈ X)(x → (y → z) = 1 ⇒ f (z) � min{ f (x), f (y), 0.5}).
Proof Suppose f ∈ FF(X). Let x, y, z ∈ X such that x → (y → z) = 1. Then
x ≤ y → z, and so we have f (y → z) � min{ f (x), 0.5} by (F5). It follows from
(F4) that f (z) � min{ f (y), f (y → z), 0.5} � min{ f (y), f (x), 0.5}. Conversely,
since for all x ∈ X , x → (x → 1) = 1, we have f (1) � min{ f (x), f (x), 0.5} =
min{ f (x), 0.5}, i.e., (F3) holds. By (I3) we have (x → y) → (x → y) = 1, thus
f (y) � min{ f (x), f (x → y), 0.5}, i.e., (F4) holds. So, f ∈ FF(X)byTheorem3.1.

4 Various (∈,∈∨ q)-Fuzzy Filters

4.1 (∈,∈∨ q)-Fuzzy Implicative Filters

Definition 4.1 Let X be an FI-algebra. A (∈,∈∨ q)-fuzzy filter f in X is called a
(∈,∈∨ q)-fuzzy implicative filter, if it satisfies the following condition:

(F7) (∀x, y, z ∈ X)( f (x → z) � min{ f (x → (y → z)), f (x → y), 0.5}).
The set of all (∈,∈∨ q)-fuzzy implicative filters in X is denoted by FIF(X).

Example 4.1 Let X = {0, a, b, 1}. The operator →1 on X is defined in Table1.
Then (X,→1, 0) is an FI-algebra. Define a fuzzy set on X by f (0) = f (a) =

f (b) = 0.3, f (1) = 0.8, it is easy to verify that f ∈ FIF(X).

Table 1 Definition of →1
on X

→1 0 a b 1

0 1 1 1 1

a 0 1 1 1

b 0 a 1 1

1 0 a b 1
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Theorem 4.1 Let X be an FI-algebra, f ∈ FF(X). Consider the conditions:

(F8) (∀x, y, z ∈ X)( f (y → z) � min{ f (x), f (x → (y → (y → z))), 0.5});
(F9) (∀x, y ∈ X)( f (x → y) � min{ f (x → (x → y)), 0.5});
(F10) (∀x, y, z ∈ X)( f ((x → y) → (x → z)) � min{ f (x → (y → z)), 0.5}).
Then f ∈ FIF(X) ⇔ (F8)⇔ (F9)⇔ (F10).

Proof f ∈ FIF(X) ⇒(F8): Let f ∈ FIF(X). Take x = y in (F7) first, then
by (F3) and (F4) we have that f (y → z) � min{ f (y → (y → z)), f (y →
y), 0.5} = min{ f (y → (y → z)), f (1), 0.5} = min{ f (y → (y → z)), 0.5} �
min{ f (x), f (x → (y → (y → z))), 0.5}. That is, (F8) holds.

(F8) ⇒ (F9): Assume f ∈ FF(X) and f satisfies (F8). Then for all x, y ∈ X we
can obtain by (F3) that f (x → y) � min{ f (1), f (1 → (x → (x → y))), 0.5} =
min{ f (x → (x → y)), 0.5}. So, f satisfies (F9).

(F9) ⇒ (F10): Assume (F9) holds. Since for all x, y, z ∈ X by (I1) and (I2) we
have x → (y → z) = y → (x → z) ≤ (x → y) → (x → (x → z)) = x →
((x → y) → (x → z)). By (I1), (F9) and (F5) we further have that f ((x → y) →
(x → z)) = f (x → ((x → y) → z)) � min{ f (x → (x → ((x → y) →
z))), 0.5} = min{ f (x → ((x → y) → (x → z))), 0.5} � min{min{ f (x → (y →
z)), 0.5}, 0.5} = min{ f (x → (y → z)), 0.5}. That is (F10) holds.

(F10)⇒ f ∈ FIF(X): Assume f ((x → y) → (x → z)) � min{ f (x → (y →
z)), 0.5} for all x, y ∈ X . By ((x → y) → (x → z)) → ((x → y) → (x →
z)) = 1 and Theorem 3.2 we have that f (x → z) � min{ f ((x → y) → (x →
z)), f (x → y), 0.5}. So, by (F10) we have that f (x → z) � min{ f (x → (y →
z)), f (x → y), 0.5}. That is (F7) holds, thus, f ∈ FIF(X).

4.2 (∈,∈∨ q)-Fuzzy Positive Implicative Filters

Definition 4.2 Let X be an FI-algebra. A (∈,∈∨ q)-fuzzy filter f in X is called a
(∈,∈∨ q)-fuzzy positive implicative filter, if it satisfies the following condition:

(F11) (∀x, y, z ∈ X)( f (y) � min{ f (x), f (x → ((y → z) → y)), 0.5}).
The set of all (∈,∈ ∨ q)-fuzzy positive implicative filters in X is denoted by

FPIF(X).

Example 4.2 Let X = {0, a, b, 1}. The operator →2 on X is defined in Table2.
Then (X,→2, 0) is an FI-algebra. Define a fuzzy set on X by f (0) = 0.3, f (a) =

f (b) = f (1) = 0.8, it is easy to verify that f ∈ FPIF(X).

Table 2 Definition of →2
on X

→2 0 a b 1

0 1 1 1 1

a 0 1 1 1

b 0 b 1 1

1 0 a b 1
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Theorem 4.2 Let X be an FI-algebra, f ∈ FF(X). Consider the conditions:

(F12) (∀x, y ∈ X)( f (x) � min{ f ((x → y) → x), 0.5});
(F13) (∀x ∈ X)( f (x) � min{ f (x ′ → x), 0.5});
(F14) (∀x, y, z ∈ X)( f ((x ′ → x) → x) � min{ f (1), 0.5}).
Then f ∈ FPIF(X) ⇔(F12)⇔(F13)⇔ (F14).

Proof f ∈ FPIF(X) ⇒(F12): Assume that f ∈ FPIF(X). Then by using (F11)
and (F3) we have that f (x) � min{ f (1), f (1 → ((x → y) → x)), 0.5} =
min{ f (1), f ((x → y) → x), 0.5} = min{ f ((x → y) → x), 0.5}. So, (F12)
holds.

(F12)⇒ f ∈ FPIF(X): Assume f ∈ FF(X) and (F12) holds. Then for all
x, y, z ∈ X , by (F4) we have that f (y) � min{ f ((y → z) → y), 0.5} �
min{ f (x), f (x → ((y → z) → y)), 0.5}. That is (F11) holds and so f ∈ FPIF(X).

(F12)⇒(F13): Putting y = 0 in (F12), one gets (F13).
(F13)⇒(F12): By (I10) we have x ′ = x → 0 ≤ x → y. By (I10) again we get

(x → y) → x ≤ x ′ → x . By (F13) and (F5) we further have f (x) � min{ f (¬x →
x), 0.5} � min{ f ((x → y) → x), 0.5}, i.e., (F12) holds.

(F14)⇒(F12): Assume f ∈ FF(X) and (F14) holds. Since by (I10) we have
x → 0 ≤ x → y and (x → y) → x ≤ (x → 0) → x = x ′ → x . By (F5)
we get f (x ′ → x) � min{ f ((x → y) → x), 0.5}. Thus by (F4) and (F14), we
have f (x) � min{ f (¬x → x), f ((x ′ → x) → x), 0.5} � min{min{ f ((x →
y) → x), 0.5},min{ f (1), 0.5}, 0.5} = min{ f ((x → y) → x), f (1), 0.5} =
min{ f ((x → y) → x), 0.5}. So, (F12) holds.

(F13)⇒(F14): Assume (F13) holds. Then by (I1), (I2) and (F5) we obtain that
f ((x ′ → x) → x) = f (α) � min{ f ((α → 0) → α), 0.5} = min{ f ((((x ′ →
x) → x) → 0) → ((x ′ → x) → x)), 0.5} = min{ f ((x ′ → x) → ((((x ′ →
x) → x) → 0) → x)), 0.5} � min{ f ((((x ′ → x) → x) → 0) → x ′), 0.5} =
min{ f ((((x ′ → x) → x) → 0) → (x → 0)), 0.5} � min{ f (x → ((x ′ → x) →
x)), 0.5} = min{ f ((x ′ → x) → (x → x)), 0.5} = min{ f (1), 0.5}. So (F14) holds
and the proof is thus finished.

Theorem 4.3 Let X be an FI-algebra. Then FPIF(X) ⊆ FIF(X).

Proof Assume f ∈ FPIF(X). Since z → (y → x) = y → (z → x) ≤ (z → y) →
(z → (z → x)) by (I8), we have by (F5) that f ((z → y) → (z → (z → x))) �
min{ f (z → (y → x)), 0.5}. By (F11), (I1) and (I7)we have further that f (z → x) �
min{ f (1), f (1 → (((z → x) → x) → (z → x))), 0.5} = min{ f (((z → x) →
x) → (z → x)), 0.5} = min{ f (z → (((z → x) → x) → x)), 0.5} = min{ f (z →
(z → x)), 0.5} � min{ f (z → y), f ((z → y) → (z → (z → x))), 0.5} �
min{ f (z → y),min{ f (z → (y → x)), 0.5}, 0.5} = min{ f (z → y), f (z → (y →
x)), 0.5}, i.e., (F7) holds. Thus f ∈ FIF(X) and thus FPIF(X) ⊆ FIF(X).

Remark 4.1 The converse of Theorem 4.3 may not be true. Consider the FI-algebra
(X,→1, 0) in Example 4.1, define a fuzzy set on X by f (0) = f (a) = f (b) =
0.4, f (1) = 0.7, it is easy to verify that f ∈ FIF(X). But f /∈ FPIF(X), since
f ((a′ → a) → a) = f ((0 → a) → a) = f (a) = 0.4 � 0.5 = min{ f (1), 0.5}.
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Theorem 4.4 Let X be an FI-algebra. Then FIF(X) ⊆ FPIF(X) if and only if the
following condition holds for all f ∈ FIF(X):

(F15) (∀x, y ∈ X)( f ((x → y) → y) � min{ f ((y → x) → x), 0.5}).
Proof Assume FIF(X) ⊆ FPIF(X). Then for all f ∈ FIF(X), we have that f ∈
FPIF(X). Since y ≤ (x → y) → y, we have ((x → y) → y) → x ≤ y → x . By
(I1) and (I2), we have further that (((x → y) → y) → x) → ((x → y) → y) ≥
(y → x) → ((x → y) → y) = (x → y) → ((y → x) → y) ≥ (y → x) → x .
Hence by (F11) and (F5) we have that f ((x → y) → y) � min{ f (1), f (1 →
((((x → y) → y) → x) → ((x → y) → y))), 0.5} = min{ f ((((x → y) →
y) → x) → ((x → y) → y)), 0.5} � min{min{ f ((y → x) → x), 0.5}, 0.5} =
min{ f ((y → x) → x), 0.5}, that is f satisfies (F15).

Conversely, let f ∈ FIF(X) and for any x, y ∈ X , it satisfies that f ((x → y) →
y) � min{ f ((y → x) → x), 0.5}. It follows from (I2) that (x → y) → x ≤
(x → y) → ((x → y) → y). Thus by (F5) and (F9), we have that f ((y → x) →
x) � min{ f ((x → y) → y), 0.5} � min{min{ f ((x → y) → ((x → y) →
y)), 0.5}, 0.5} = min{ f ((x → y) → ((x → y) → y)), 0.5} � min{min{ f ((x →
y) → x), 0.5}, 0.5} = min{ f ((x → y) → x), 0.5}. Since y ≤ x → y, we
have (x → y) → x ≤ y → x and by (F5) f (y → x) � min{ f ((x → y) →
x), 0.5}. So, by (F4) we can obtain that f (x) � min{ f (y → x), f ((y → x) →
x), 0.5} � min{min{ f ((x → y) → x), 0.5},min{ f ((x → y) → x), 0.5}, 0.5} =
min{ f ((x → y) → x), 0.5}. Hence f ∈ FPIF(X) by (F12), and so FIF(X) ⊆
FPIF(X).

4.3 (∈,∈∨ q)-Fuzzy Commutative Filters

Definition 4.3 Let X be an FI-algebra. A (∈,∈∨ q)-fuzzy filter f in X is called a
(∈,∈∨ q)-fuzzy commutative filter, if it satisfies the following condition:

(F16) (∀x, y, z ∈ X)( f (((x → y) → y) → x) � min{ f (z), f (z → (y →
x)), 0.5}).
The set of all (∈,∈∨ q)-fuzzy commutative filters in X is denoted by FCF(X).

Example 4.3 Let X = {0, a, b, 1}. The operator →3 on X is defined in Table3.
Then (X,→3, 0) is an FI-algebra. Define a fuzzy set on X by f (0) = f (a) =

f (b) = 0.3, f (1) = 0.8, it is easy to verify that f ∈ FCF(X).

Table 3 Definition of →3
on X

→3 0 a b 1

0 1 1 1 1

a b 1 1 1

b a b 1 1

1 0 a b 1
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Theorem 4.5 Let X be an FI-algebra, f ∈ FF(X). Then f ∈ FCF(X) if and only
if f satisfies the following condition:

(F17) (∀x, y ∈ X)( f (((x → y) → y) → x) � min{ f (y → x), 0.5}).
Proof Assume f ∈ FCF(X). Then taking z = 1 in (F16)wecanobtain that f (((x →
y) → y) → x) � min{ f (1), f (1 → (y → x)), 0.5} = min{ f (1), f (y →
x), 0.5} = min{ f (y → x), 0.5}. That is (F17) holds.

Conversely, assume (F17) holds, i.e., for all x, y ∈ X , f (((x → y) → y) →
x) � min{ f (y → x), 0.5}. Then for all x, y, z ∈ X , since f ∈ FF(X), by (F4),
we have f (y → x) � min{ f (z), f (z → (y → x)), 0.5}. So, f (((x → y) →
y) → x) � min{ f (y → x), 0.5} � min{min{ f (z), f (z → (y → x)), 0.5}, 0.5} =
min{ f (z), f (z → (y → x)), 0.5}, i.e., (F16) holds. Thus f ∈ FCF(X).

Theorem 4.6 Let X be an FI-algebra. Then FPIF(X) ⊆ FCF(X).

Proof Assume f ∈ FPIF(X). Since x ≤ ((x → y) → y) → x , by (I10) we have
that (((x → y) → y) → x) → y ≤ x → y. Letting α = ((x → y) → y) → x ,
by (I1) and (I10), we have that (α → y) → α = ((((x → y) → y) → x) → y) →
(((x → y) → y) → x) ≥ (x → y) → (((x → y) → y) → x) = ((x → y) →
y) → ((x → y) → x) ≥ y → x . So, f ((α → y) → α) � min{ f (y → x), 0.5} by
(F5). Then by (F12) we have that f (((x → y) → y) → x) = f (α) � min{ f ((α →
y) → α), 0.5} � min{min{ f (y → x), 0.5}, 0.5} = min{ f (y → x), 0.5}, that is, f
satisfies (F17). Thus f ∈ FCF(X) by Theorem 4.5.

Remark 4.2 The converse of Theorem 4.6 may not be true. Consider the FI-algebra
(X,→3, 0) in Example 4.3, define a fuzzy set on X by f (0) = f (a) = f (b) =
0.4, f (1) = 0.7, it is easy to verify that f ∈ FCF(X). But f /∈ FPIF(X), since
f (b) = 0.4 � 0.5 = min{ f ((b → a) → b), 0.5}.
Theorem 4.7 Let X be an FI-algebra. Then FPIF(X) = FIF(X) ∩ FCF(X).

Proof By Theorems 4.3 and 4.6 we have that FPIF(X) ⊆ FIF(X) ∩ FCF(X).
To show that FIF(X) ∩ FCF(X) ⊆ FPIF(X), assume f ∈ FIF(X) ∩ FCF(X).

Then for all x, y ∈ X , since x ≤ (x → y) → y, we have (x → y) → x ≤ (x →
y) → ((x → y) → y) by (I10). Thus by (F9) and (F5) we obtain that f ((x →
y) → y) � min{ f ((x → y) → ((x → y) → y)), 0.5} � min{min{ f ((x →
y) → x), 0.5}, 0.5} = min{ f ((x → y) → x), 0.5}. Since y ≤ x → y, we have
(x → y) → x ≤ y → x by (I8). Thus by (F17) and (F5) we obtain further that
f (((x → y) → y) → x) � min{ f (y → x), 0.5} � min{min{ f ((x → y) →
x), 0.5}, 0.5} = min{ f ((x → y) → x), 0.5}. So, by (F4) we have that f (x) �
min{ f ((x → y) → y), f (((x → y) → y) → x), 0.5} � min{min{ f ((x →
y) → x), 0.5},min{ f ((x → y) → x), 0.5}, 0.5} = min{ f ((x → y) → x), 0.5}.
It follows from Theorem 4.2 that f ∈ FPIF(X). Hence FIF(X) ∩ FCF(X) ⊆
FPIF(X).
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Remark 4.3 Let X be an FI-algebra. We claim that FIF(X) � FCF(X) and
FCF(X) � FIF(X). In fact, on the one hand, consider the FI-algebra (X,→1, 0) in
Example 4.1, define a fuzzy set on X by f (0) = f (a) = f (b) = 0.4, f (1) = 0.6,
then f ∈ FIF(X), but f /∈ FCF(X), since f (((b → a) → a) → b) = f (b) =
0.4 < 0.5 = min{ f (a → b), 0.5}. On the other hand, consider the FI-algebra
(X,→3, 0) in Example 4.3, define a fuzzy set on X by f (0) = f (a) = f (b) =
0.4, f (1) = 0.6, then f ∈ FCF(X), but f /∈ FIF(X), since f (b → a) = f (b) =
0.4 < 0.5 = min{ f (b → (b → a)), f (b → b), 0.5}.

4.4 (∈,∈∨ q)-Fuzzy Involution Filters

Definition 4.4 Let X be an FI-algebra. A (∈,∈∨ q)-fuzzy filter f in X is called a
(∈,∈∨ q)-fuzzy involution filter, if it satisfies the following condition:

(F18) (∀x, y ∈ X)( f (y) � min{ f (x), f ((x → y)′′), 0.5}).
The set of all (∈,∈∨ q)-fuzzy involution filters in X is denoted by FINF(X).

Example 4.4 Let X = {0, a, b, 1}. The operator →4 on X is defined in Table4.
Then (X,→4, 0) is an FI-algebra. Define a fuzzy set on X by f (0) = f (a) =

0.3, f (b) = f (1) = 0.8, it is easy to verify that f ∈ FINF(X).

Remark 4.4 Let X be anFI-algebra. ThenFF(X) ⊆ FINF(X) general does not hold.
In fact, consider the FI-algebra (X,→1, 0) in Example 4.1, define a fuzzy set on X
by f (0) = f (a) = 0.4, f (b) = f (1) = 0.6, then f ∈ FF(X), but f /∈ FINF(X),
since f (a) = 0.4 < 0.5 = min{ f (b), f ((b → a)′′), 0.5}.
Theorem 4.8 Let X be an FI-algebra, f ∈ FF(X). Then f ∈ FINF(X) if and only
if f satisfies the following condition:

(F19) (∀x ∈ X)( f (x) � min{ f (x ′′), 0.5}).
Proof Assume f ∈ FINF(X). Then for all x ∈ L , by (F18) and (F3) we can
obtain that f (x) � min{ f (1), f ((1 → x)′′), 0.5} = min{ f (1), f (x ′′), 0.5} =
min{ f (x ′′), 0.5}. That is (F19) holds.

Conversely, assume (F19) holds, i.e., for all x ∈ X , f (x) � min{ f (x ′′), 0.5}.
Then for all x, y ∈ X , since f ∈ FF(X), by (F4),wehave f (y) � min{ f (x), f (x →
y), 0.5} � min{ f (x),min{ f ((x → y)′′), 0.5}, 0.5} = min{ f (x), f ((x → y)′′),
0.5}. i.e., (F18) holds. Thus f ∈ FINF(X).

Table 4 Definition of →4
on X

→4 0 a b 1

0 1 1 1 1

a b 1 1 1

b a a 1 1

1 0 a b 1
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Remark 4.5 Let X be an FI-algebra. We claim that FINF(X) � FIF(X) and
FIF(X) � FINF(X). In fact, on the one hand, consider the FI-algebra (X,→4, 0) in
Example 4.4, define a fuzzy set on X by f (0) = f (a) = f (b) = 0.2, f (1) = 0.9,
then f ∈ FINF(X), but f /∈ FIF(X), since f (a → 0) = f (b) = 0.2 <

0.5 = min{ f (a → a), f (a → (a → 0)), 0.5}. On the other hand, consider
the FI-algebra (X,→1, 0) in Example 4.1, define a fuzzy set on X by f (0) =
f (a) = 0.2, f (b) = f (1) = 0.9, then f ∈ FIF(X), but f /∈ FINF(X), since
f (a) = 0.2 < 0.5 = min{ f (b), f ((b → a)′′), 0.5}.
Theorem 4.9 Let X be an FI-algebra. Then FCF(X) ⊆ FINF(X).

Proof Assume f ∈ FCF(X). Since 0 → (x → y) = 1, by (F17), we have that
f ((x → y)′′ → (x → y)) = f ((((x → y) → 0) → 0) → (x → y)) �
min{ f (0 → (x → y)), 0.5} = min{ f (1), 0.5}. Thus by (F4) we can obtain that
f (y) � min{ f (x), f (x → y), 0.5} � min{ f (x),min{ f ((x → y)′′), f ((x →
y)′′ → (x → y)), 0.5}, 0.5} � min{ f (x),min{ f ((x → y)′′),min{ f (1), 0.5},
0.5}, 0.5} = min{ f (x), f ((x → y)′′), f (1), 0.5} = min{ f (x), f ((x → y)′′), 0.5},
that is, f satisfies (F18). Thus f ∈ FINF(X) by Definition 4.4.

Corollary 4.1 Let X be an FI-algebra. Then FPIF(X) ⊆ FINF(X).

Remark 4.6 The converse of Theorem 4.9 and Corollary 4.1 may not be true. Let
X = {0, a, b, c, 1}. The operator →5 on X is defined in Table5.

Then (X,→5, 0) is an FI-algebra. Define a fuzzy set on X by f (0) = f (a) =
f (b) = 0.3, f (c) = f (1) = 0.8, it is easy to verify that f ∈ FINF(X). But
f /∈ FCF(X), and thus f /∈ FPIF(X), since f (((b → a) → a) → b) = f ((a →
a) → b) = f (1 → b) = f (b) = 0.3 < 0.5 = min{ f (a → b), 0.5}.
Theorem 4.10 Let X be an FI-algebra. Then FPIF(X) = FIF(X) ∩ FINF(X).

Proof By Theorem 4.3 and Corollary 4.1 we have that FPIF(X) ⊆ FIF(X) ∩
FINF(X). To show that FIF(X) ∩ FINF(X) ⊆ FPIF(X), assume f ∈ FIF(X) ∩
FINF(X), Then for all x ∈ X , since x � x ′′, we have x ′ → x � x ′ → x ′′ by
(I10). Thus by (F5) we have that f (x ′ → x ′′) � min{ f (x ′ → x), 0.5}, and thus
by f ∈ FIF(X) and (F9) we have f (x ′′) = f (x ′ → 0) � min{ f (x ′ → (x ′ →
0)), 0.5} = min{ f (x ′ → x ′′), 0.5}. This together with f ∈ FINF(X) and (F19) we
can obtain that f (x) � min{ f (x ′′), 0.5} � min{ f (x ′ → x ′′), 0.5} � min{ f (x ′ →
x), 0.5}, i.e., f satisfies (F13). It follows from Theorem 4.2 that f ∈ FPIF(X).
Hence FIF(X) ∩ FINF(X) ⊆ FPIF(X).

Table 5 Definition of →5
on X

→5 0 a b c 1

0 1 1 1 1 1

a b 1 1 1 1

b a c 1 1 1

c 0 a b 1 1

1 0 a b c 1
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FF(X)

FINF(X)

FCF(X)

FIF(X)

FPIF(X)

Fig. 1 Relations among sets of various (∈,∈∨ q)-fuzzy filters in FI-algebras

5 Conclusion

In this paper, we introduced the notions of (∈,∈∨ q)-fuzzy filters and (∈,∈∨ q)-
fuzzy implicative (resp., positive implicative, commutative, involution) filters in FI-
algebras and investigated their properties and relationships (as Fig. 1). Some signifi-
cant characterizations of thementionedkinds of filters are obtained. SinceFI-algebras
are more extensive, the results obtained in this paper can be applied to some other
logical algebras such as MV-algebras, BL-algebras, R0-algebras, MTL-algebras and
lattice implication algebras and so on. So, it is hoped that more research topics of
Non-classical Mathematical Logic will arise with this work.
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Approach to Group Decision Making
Based on Intuitionistic Uncertain Linguistic
Aggregation Operators

Xin-Fan Wang and Jian-Qiang Wang

Abstract In this paper, we define some new additive operational laws of intuitionis-
tic uncertain linguistic numbers (IULNs). Based on these operational laws, we pro-
pose some new arithmetic aggregation operators, such as the intuitionistic uncertain
linguistic number weighted averaging (IULNWA) operator, intuitionistic uncertain
linguistic number ordered weighted averaging (IULNOWA) operator and intuitionis-
tic uncertain linguistic number hybrid aggregation (IULNHA)operator. Furthermore,
based on the IULNWA and IULNHA operators, we develop a group decisionmaking
approach in which the criterion values take the form of IULNs.

Keywords Group decision making · IULNWA operator · IULNOWA operator ·
IULNHA operator

1 Introduction

In many multi-criteria decision making (MCDM) situations, a realistic approach
may be to use linguistic assessments instead of precise numerical values by means
of linguistic variables, that is, variables whose values are not exact numbers but
linguistic terms. Over the last decades, the linguistic MCDM has been attracting
more and more attention [1–12].

When using linguistic variables, there exists an assumption that the membership
degree of an element to a linguistic term is 1, which cannot describe the confidence
level of the judgment of a decision-maker. Based on the concept of intuitionistic fuzzy
set [13] and its applications in MCDM field [14–21], Wang and Li [22] defined the
concept of intuitionistic linguistic number (ILN). They described the membership
degree and non-membership degree of an element to a linguistic label, which can
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reflect decision-maker’s confidence level for his/her evaluation. Many scholars have
shown their great interests in intuitionistic linguistic MCDM problems [22–28].

From the works of Refs. [22–27], it can be known that an ILN is characterized by
a linguistic term, a membership degree and a non-membership degree. Sometimes,
however, the given linguistic evaluation may not match any of the original linguis-
tic terms, and they may be located between two of them. In such case, it is more
suitable to deal with vagueness and uncertainty taking the form of uncertain lin-
guistic variables [29, 30]. Therefore, based on the ILN [22] and uncertain linguistic
variable [29, 30], Liu and Zhang [31] defined the notion of intuitionistic uncertain
linguistic number (IULN), which is characterized by a uncertain linguistic variable,
a membership degree and a non-membership degree. Some scholars have begun to
address the IULN set theory, especially the intuitionistic uncertain linguistic infor-
mation aggregation problems [31, 32]. Liu and Zhang [31] proposed some intuition-
istic uncertain linguistic aggregation operators, such as the intuitionistic uncertain
linguistic weighted arithmetic averaging (IULWAA) operator, intuitionistic uncer-
tain linguistic ordered weighted averaging (IULOWA) operator and intuitionistic
uncertain linguistic hybrid averaging (IULHA) operator, and applied them to group
decision making. Liu and Jin [32] developed some intuitionistic uncertain linguistic
geometric operators, such as the intuitionistic uncertain linguistic weighted geomet-
ric average (IULWGA) operator, intuitionistic uncertain linguistic ordered weighted
geometric (IULOWG) operator and intuitionistic uncertain linguistic hybrid geo-
metric (IULHG) operator, and proposed a group decision making method based on
these operators. However, the additive operational laws of IULNs in [31] maybe
have some shortcomings (See Example 1). To overcome the drawback, in this paper,
we shall define some new additive operational laws of IULNs, and develop some
new intuitionistic uncertain linguistic aggregation operators and apply them to group
decision making.

In order to do that, we organize this paper as follows. In Sect. 2, we define some
newadditive operational laws of IULNs, and present a simple formula of the degree of
possibility for the comparison between two IULNs. In Sect. 3, we propose some new
arithmetic aggregation operators, such as the intuitionistic uncertain linguistic num-
ber weighted averaging (IULNWA) operator, intuitionistic uncertain linguistic num-
ber ordered weighted averaging (IULNOWA) operator and intuitionistic uncertain
linguistic number hybrid aggregation (IULNHA) operator. In Sect. 4, based on the
IULNWA and IULNHA operators, we develop an approach to group decision mak-
ing, in which the criterion values are expressed as IULNs and the criterion weights
are known completely. Finally, conclusions of this paper are presented in Sect. 5.

2 Preliminaries

Suppose that S = {sθ |θ = 0, 1, . . . , 2l} is a discrete linguistic term set [33], where
l is a positive integer, and sθ has the following characteristics: 1© if a > b, then
sa > sb; 2© the negation operator is defined: neg(sa) = sb such that a + b = 2l. For
example, when l = 4, S can be defined as:
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S = {s0, s1, s2, s3, s4, s5, s6, s7, s8} ={extremely poor, very poor, poor, slightly
poor, fair, slightly good, good, very good, extremely good}.

To preserve all the given information, the discrete linguistic term set S should be
extended to a continuous linguistic term set S̄ = {sθ |θ ∈ [0, q]}, in which sa > sb if
a > b, and q(q > 2l) is a sufficiently large positive integer.

Definition 1 ([34]) Let s̃ = [sθ , sφ], where sθ , sφ ∈ S̄, sθ and sφ are the lower and
the upper limits, respectively. Then we call s̃ the uncertain linguistic variable. Let S̃
be the set of all the uncertain linguistic variables.

Definition 2 ([22]) Let X be a universe of discourse, sθ(x) ∈ S̄. Then an ILN set A
in X is an object having the following form:

A = {(
x,

〈
sθ(x), μA(x), νA(x)

〉) |x ∈ X
}
,

where sθ(x) is a linguistic term, the functions μA(x) and νA(x) determine the degree
of membership and the degree of non-membership of the element x to the linguistic
evaluation sθ(x), respectively, and for each x ∈ X :

0 ≤ μA(x) + νA(x) ≤ 1

Based on Definitions 1 and 2, Liu and Zhang [31] extended the ILN set, and
defined the concept of IULN set as follows.

Definition 3 ([31]) Let X be fixed, s̃(x) ∈ S̃. Then an IULN set Ã in X is defined
as:

Ã = {(
x,

〈
s̃(x), μ Ã(x), ν Ã(x)

〉) |x ∈ X
}
,

which is characterized by a uncertain linguistic variable s̃(x), a membership function
μ Ã(x) and a non-membership function ν Ã(x) of the element x to the linguistic
evaluation s̃(x), and for each x ∈ X : 0 ≤ μ Ã(x) + ν Ã(x) ≤ 1.

For convenience, Liu and Zhang [31] called 〈s̃(x), μ Ã(x), ν Ã(x)〉 the IULN, and
denoted it as β̃ = 〈[sθ(β̃), sφ(β̃)], μβ̃ , νβ̃〉, where [sθ(β̃), sφ(β̃)] ∈ S̃, μβ̃ ∈ [0, 1],
νβ̃ ∈ [0, 1] and μβ̃ + νβ̃ ≤ 1. Let � be the set of all IULNs.

Definition 4 Let β̃1 = 〈[sθ(β̃1)
, sφ(β̃1)

], μβ̃1
, νβ̃1

〉 and β̃2 = 〈[sθ(β̃2)
, sφ(β̃2)

],
μβ̃2

, νβ̃2
〉 be two IULNs. Then

(1) β̃1 ⊕ β̃2 =
〈⎡

⎣s
θ(β̃1)+θ(β̃2)

, sφ(β̃1)+φ(β̃2)

⎤

⎦ ,

[θ(β̃1)+φ(β̃1)]μβ̃1
+[θ(β̃2)+φ(β̃2)]μβ̃2

θ(β̃1)+φ(β̃1)+θ(β̃2)+φ(β̃2)
,

[θ(β̃1)+φ(β̃1)]νβ̃1
+[θ(β̃2)+φ(β̃2)]νβ̃2

θ(β̃1)+φ(β̃1)+θ(β̃2)+φ(β̃2)

〉

;
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(2) λβ̃1 =
〈[

sλθ(β̃1)
, sλφ(β̃1)

]
, μβ̃1

, νβ̃1

〉
, λ ∈ [0, 1].

It can be easily proved that all the above results are also IULNs. Based on Defin-
ition 4, the following relations can be further obtained.

(1) β̃1 ⊕ β̃2 = β̃2 ⊕ β̃1;
(2) (β̃1 ⊕ β̃2) ⊕ β̃3 = β̃1 ⊕ (β̃2 ⊕ β̃3);
(3) λ(β̃1 ⊕ β̃2) = λβ̃1 ⊕ λβ̃2, λ ∈ [0, 1];
(4) λ1β̃1 ⊕ λ2β̃1 = (λ1 + λ2)β̃1, λ1, λ2 ∈ [0, 1].
Example 1 Let β̃1 = 〈[s4, s5], a, b〉(a ∈ [0, 1], b ∈ [0, 1], a + b ≤ 1), β̃2 =
〈[s2, s4], 1, 0〉 and β̃3 = 〈[s4, s5], 0, 1〉 be three IULNs, by Definition 4. We have

β̃1 ⊕ β̃2 = 〈[s6, s9] , 0.4 + 0.6a, 0.6b〉 , (1)

β̃1 ⊕ β̃3 = 〈[s6, s9] , 0.6a, 0.4 + 0.6b〉 . (2)

According to the operational laws of IULNs in [31], we have

β̃1 ⊕ β̃2 = 〈[s6, s9] , 1, 0〉 , (3)

β̃1 ⊕ β̃3 = 〈[s6, s9] , a, b〉 . (4)

Comparing the aforementioned results, it can be known that Eqs. (1) and (2) may
be more easily accepted, and Eqs. (3) and (4) cannot be accepted.

In addition, from the above, we know that [s4, s5] is closer to the sum [s6, s9]
than [s2, s4], so its confidence degree should be higher, that is, the weight of its
membership degree and non-membership degree should be bigger, thus, it is more
suitable that we weight the membership degree and non-membership degree of β̃1
by 4+5

4+5+2+4 = 9
15 and β̃2 by 2+4

4+5+2+4 = 6
15 . Thus, the additional operation laws in

Definition 4 is more reasonable than that in [31].
Based on the degree of possibility of interval numbers [35], in the following, we

define a simple formula for the comparison between any two IULNs.

Definition 5 Let β̃1 = 〈[sθ(β̃1)
, sφ(β̃1)

], μβ̃1
, νβ̃1

〉 and β̃2 = 〈[sθ(β̃2)
, sφ(β̃2)

], μβ̃2
,

νβ̃2
〉 be two IULNs, and let lβ̃1 = [φ(β̃1) − θ(β̃1)](μβ̃1

− νβ̃1
) and lβ̃2 = [φ(β̃2) −

θ(β̃2)](μβ̃2
− νβ̃2

). Then the degree of possibility of β̃1 ≥ β̃2 is defined as:

p(β̃1 ≥ β̃2) = min

{

max

(
φ(β̃1)(μβ̃1

− νβ̃1
) − θ(β̃2)(μβ̃2

− νβ̃2
)

lβ̃1 + lβ̃2
, 0

)

, 1

}

. (5)

From Definition 5, the following useful results can easily be obtained.

(1) 0 ≤ p(β̃1 ≥ β̃2) ≤ 1, 0 ≤ p(β̃2 ≥ β̃1) ≤ 1;
(2) p(β̃1 ≥ β̃2) + p(β̃2 ≥ β̃1) = 1. Especially, p(β̃i ≥ β̃i ) = 0.5, i = 1, 2.
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3 Intuitionistic Uncertain Linguistic Number
Aggregation Operators

To aggregate the intuitionistic uncertain linguistic information, in the following,
we develop some new aggregation operators, such as the IULNWA operator, the
IULNOWA operator and the IULNHA operator.

Definition 6 Let β̃ j = 〈[sθ(β̃ j )
, sφ(β̃ j )

], μβ̃ j
, νβ̃ j

〉( j = 1, 2, . . . , n) be a collection
of IULNs and let IULNWA: �n → �. If

IULNWAw(β̃1, β̃2, . . . , β̃n) = w1β̃1 ⊕ w2β̃2 ⊕ · · · ⊕ wn β̃n, (6)

then IULNWA is called an IULNWA operator of dimension n, where w = (w1,

w2, . . . , wn)T is the weight vector of β̃ j ( j = 1, 2, . . . , n), with w j ∈ [0, 1] and∑n
j=1 w j = 1.

Theorem 1 Let β̃ j = 〈[sθ(β̃ j )
, sφ(β̃ j )

], μβ̃ j
, νβ̃ j

〉( j = 1, 2, . . . , n) be a collection of

IULNs, and w = (w1, w2, . . . , wn)T be the weight vector of β̃ j ( j = 1, 2, . . . , n),
with w j ∈ [0, 1] and

∑n
j=1 w j = 1. Then their aggregated value by using the

IULNWA operator is also an IULN, and

IULNWAw(β̃1, β̃2, . . . , β̃n)

=
〈[

s∑n
j=1 w j θ(β̃ j )

, s∑n
j=1 w j φ(β̃ j )

]
,

∑n
j=1 w j [θ(β̃ j ) + φ(β̃ j )]μβ̃ j

∑n
j=1 w j [θ(β̃ j ) + φ(β̃ j )]

,

∑n
j=1 w j [θ(β̃ j ) + φ(β̃ j )]νβ̃ j

∑n
j=1 w j [θ(β̃ j ) + φ(β̃ j )]

〉

. (7)

Definition 7 Let β̃ j = 〈[sθ(β̃ j )
, sφ(β̃ j )

], μβ̃ j
, νβ̃ j

〉( j = 1, 2, . . . , n) be a collection
of IULNs. An IULNOWA operator of dimension n is a mapping IULNOWA: �n →
�, that has an associated weight vectorω = (ω1, ω2, . . . , ωn)T such thatω j ∈ [0, 1]
and

∑n
j=1 ω j = 1. Furthermore,

IULNOWAω(β̃1, β̃2, . . . , β̃n) = ω1β̃τ (1) ⊕ ω2β̃τ (2) ⊕ · · · ⊕ ωnβ̃τ (n) (8)

where (τ (1), τ (2), . . . , τ (n)) is a permutation of (1, 2, . . . , n) such that β̃τ ( j−1) ≥
β̃τ ( j) for all j .

Theorem 2 Let β̃ j = 〈[sθ(β̃ j )
, sφ(β̃ j )

], μβ̃ j
, νβ̃ j

〉 ( j = 1, 2, . . . , n) be a collection
of IULNs. Then their aggregated value by using the IULNOWA operator is also an
IULN, and
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IULNOWAω(β̃1, β̃2, . . . , β̃n)

=
〈[

s∑n
j=1 ω j θ(β̃τ( j))

, s∑n
j=1 ω j φ(β̃τ( j))

]
,

∑n
j=1 ω j [θ(β̃τ( j)) + φ(β̃τ( j))]μβ̃τ( j)
∑n

j=1 ω j [θ(β̃τ( j)) + φ(β̃τ( j))]
,

∑n
j=1 ω j [θ(β̃τ( j)) + φ(β̃τ( j))]νβ̃τ( j)
∑n

j=1 ω j [θ(β̃τ( j)) + φ(β̃τ( j))]

〉

,

(9)

where ω = (ω1, ω2, . . . , ωn)T is the weight vector related to the IULNOWA operator,
with ω j ∈ [0, 1] and

∑n
j=1 ω j = 1, which can be determined similar to the OWA

weights.
From Definitions 6 and 7, it can be known that the IULNWA operator weights only

the IULNs, whereas the IULNOWA operator weights only the ordered positions of
them. To overcome this limitation, in what follows, we develop an IULNHA operator,
which weights both the given IULNs and their ordered positions.

Definition 8 Let β̃ j = 〈[sθ(β̃ j )
, sφ(β̃ j )

], μβ̃ j
, νβ̃ j

〉 ( j = 1, 2, . . . , n) be a collection
of IULNs. An IULNHA operator of dimension n is a mapping IULNHA: �n →
�, which has an associated vector ω = (ω1, ω2, . . . , ωn)T with ω j ∈ [0, 1] and∑n

j=1 ω j = 1, such that

IULNHAw,ω(β̃1, β̃2, . . . , β̃n) = ω1β̃ ′
τ(1) ⊕ ω2β̃ ′

τ(2) ⊕ · · · ⊕ ωnβ̃ ′
τ(n), (10)

where β̃ ′
τ( j) is the j th largest of weighted IULNs (nw1β̃1, nw2β̃2, . . . , nwn β̃n),w =

(w1, w2, . . . , wn)T is the weight vector of β̃ j ( j = 1, 2, . . . , n), with w j ∈ [0, 1]
and

∑n
j=1 w j = 1, and n is the balancing coefficient.

Furthermore, we have the following:

IULNHAw,ω(β̃1, β̃2, . . . , β̃n) =
〈[

s∑n
j=1 ω j θ(β̃ ′

τ ( j))
, s∑n

j=1 ω j φ(β̃ ′
τ ( j))

]
,

∑n
j=1 ω j [θ(β̃ ′

τ( j)) + φ(β̃ ′
τ( j))]μβ̃ ′

τ ( j)
∑n

j=1 ω j [θ(β̃ ′
τ( j)) + φ(β̃ ′

τ( j))]
,

∑n
j=1 ω j [θ(β̃ ′

τ( j)) + φ(β̃ ′
τ( j))]νβ̃ ′

τ ( j)
∑n

j=1 ω j [θ(β̃ ′
τ( j)) + φ(β̃ ′

τ( j))]

〉

(11)

and the aggregated value derived by using the IULNHA operator is also an IULN.

Theorem 3 If ω = (1/n, 1/n, . . . , 1/n)T , then the IULNHA operator is reduced to
the IULNWA operator; if w = (1/n, 1/n, . . . , 1/n)T , then the IULNHA operator is
reduced to the IULNOWA operator.
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From Theorem 3 it can be known that the IULNHA operator generalizes both the
IULNWA operator and the IULNOWA operator at the same time, and reflects the
importance degrees of both the given IULNs and their ordered positions.

4 Group Decision Making Method Based on the IULNWA
and IULNHA Operators

In the following, we apply the IULNWA and IULNHA operators to develop a group
decision making approach, in which the criterion values take the form of IULNs.

Let A = {A1, A2, . . . , Am} be the set of alternatives, I = {I1, I2, . . . , In} be
the set of criteria, and w = (w1, w2, . . . , wn)T be the weight vector of I j ( j =
1, 2, . . . , n), with w j ≥ 0 and

∑n
j=1 w j = 1. Let D = {d1, d2, . . . , dt } be the set

of decision-makers, and e = (e1, e2, . . . , et )
T be the weight vector of dk (k =

1, 2, . . . , t), with ek ≥ 0 and
∑t

k=1 ek = 1. Suppose that R̃
(k) = (β̃

(k)
i j )m×n (k =

1, 2, . . . , t) are the decisionmatrixes,where β̃
(k)
i j = 〈[s

θ(β̃
(k)
i j )

, s
φ(β̃

(k)
i j )

], μ
β̃

(k)
i j

, ν
β̃

(k)
i j

〉
take the form of IULNs, given by the decision-makers dk (k = 1, 2, . . . , t), for the
alternatives Ai (i = 1, 2, . . . , m) with respect to the criteria I j ( j = 1, 2, . . . , n).
Then the ranking of the alternatives is required.

Step 1 Normalize the decision matrices R̃
(k)

(k = 1, 2, . . . , t). For the benefit-
type criteria, we do nothing; for the cost-type criteria, we utilize the linguistic nega-
tion operator s̄

θ(β̃
(k)
i j )

= neg(s
θ(β̃

(k)
i j )

) = s
2l−θ(β̃

(k)
i j )

and s̄
φ(β̃

(k)
i j )

= neg(s
φ(β̃

(k)
i j )

) =
s
2l−φ(β̃

(k)
i j )

to make the uncertain linguistic evaluation values be normalized.

For convenience, the normalized criterion values of the alternatives Ai with respect
to the criteria I j are also denoted by β̃

(k)
i j (i = 1, 2, . . . , m, j = 1, 2, . . . , n).

Step 2 Utilize the IULNWA operator

β̃
(k)
i = IULNWAw(β̃

(k)
i1 , β̃

(k)
i2 , . . . , β̃

(k)
in ) (12)

to aggregate the criterion values of the i th line of the decision matrices R̃
(k)

(k =
1, 2, . . . , t) and derive the individual overall evaluation values β̃

(k)
i of the alternatives

Ai (i = 1, 2, . . . , m), given by the decision-makers dk (k = 1, 2, . . . , t).
Step 3 Utilize the IULNHA operator

β̃i = IULNHAe,v(β̃
(1)
i , β̃

(2)
i , . . . , β̃

(t)
i )

= v1β̃ ′(τ (1))
i ⊕ v2β̃ ′(τ (2))

i ⊕ · · · ⊕ vt β̃ ′(τ (t))
i (13)

to derive the collective overall evaluation values β̃i of the alternatives Ai (i =
1, 2, . . . , m), where v = (v1, v2, . . . , vt )

T is the weighting vector of the IULNHA
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operator with vk ≥ 0 and
∑t

k=1 vk = 1, and β̃ ′(τ (k))

i is the kth largest of the

weighted IULNs (te1β̃
(1)
i , te2β̃

(2)
i , . . . , tet β̃

(t)
i ), (τ (1), τ (2), . . . , τ (t)) is a permu-

tation of (1, 2, . . . , t), and t is the balancing coefficient.
Step 4 Utilize Eq. (5) to compare each β̃i (i = 1, 2, . . . , m) with all β̃r

(r = 1, 2, . . . , m), and construct a complementary matrix P = (pir )m×m , where
pir = p(β̃i ≥ β̃r ). By summing all elements in each line of matrix P, we derive
pi = ∑n

r=1 pir (i = 1, 2, . . . , m). Then we rank these β̃i (i = 1, 2, . . . , m) in
descending order in accordance with the values of pi (i = 1, 2, . . . , m).

Step 5 Rank all the alternatives Ai (i = 1, 2, . . . , m), and then select the best one
in accordance with β̃i (i = 1, 2, . . . , m).

5 Conclusion

In this paper, we have defined some new additive operational laws of IULNs, which
can overcome the drawback of additive operational laws proposed in [31]. Based on
these operational laws,we have proposed somenewarithmetic aggregation operators,
such as the IULNWA operator, the IULNOWA operator and the IULNHA operator.
Furthermore, based on the IULNWA and IULNHA operators, we have developed a
group decision making method with intuitionistic uncertain linguistic information,
which develops the theories of aggregation operators and linguistic MCDM.

Acknowledgments The work was supported by the National Natural Science Foundation of China
(No. 71221061, 71401185 and No. 71271218), the Humanities and Social Science Foundation of
theMinistry of Education of China (No. 12YJA630114 andNo. 13YJC630200), theNatural Science
Foundation of Hunan Province of China under Grant (No. 2015JJ2047 and 14JJ4050).

References

1. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning.
Part 1. Inf. Sci. 8(3), 199–249 (1975)

2. Herrera, F., Herrera-Viedma, E.: Aggregation operators for linguistic weighted information.
IEEE Trans. Syst. Man Cybern. part A: Syst. Hum. 27(5), 646–656 (1997)

3. Xu, Z.S.: An approach to pure linguistic multiple attribute decision making under uncertainty.
Int. J. Inf. Technol. Decis. Making 4(2), 197–206 (2005)

4. Merigó, J.M., Casanovas, M., Martínez, L.: Linguistic aggregation operators for linguistic
decisionmaking based on theDempster-Shafer theory of evidence. Int. J. Uncertainty Fuzziness
Knowl. Based Syst. 18(3), 287–304 (2010)

5. Wei, G.W.: Some generalized aggregating operators with linguistic information and their appli-
cation to multiple attribute group decision making. Comput. Ind. Eng. 61(1), 32–38 (2011)

6. Xu, Z.S.: Linguistic Decision Making: Theories and Methods. Science Press, Beijing (2012)
7. Xu, Y.J., Merigó, J.M., Wang, H.M.: Linguistic power aggregation operators and their appli-

cation to multiple attribute group decision making. Appl. Math. Model. 36(11), 5427–5444
(2012)



Approach to Group Decision Making Based … 231

8. Yang, W.-E., Wang, J.-Q.: Multi-criteria semantic dominance: a linguistic decision aiding
technique based on incomplete preference information. Eur. J. Oper. Res. 231(1), 171–181
(2013)

9. Yang, W.-E., Wang, J.-Q.: Vague linguistic matrix game approach for multi-criteria decision
making with uncertain weights. J. Intell. Fuzzy Syst. 25(2), 315–324 (2013)

10. Yang, W.-E., Wang, J.-Q., Wang, X.-F.: An outranking method for multi-criteria decision
making with duplex linguistic information. Fuzzy Sets Syst. 198, 20–33 (2012)

11. Wang, J.Q., Peng, L., Zhang,H.Y., Chen,X.H.:Method ofmulti-criteria group decision-making
based on cloud aggregation operators with linguistic information. Inf. Sci. 274, 177–191 (2014)

12. Wang, J.Q., Wang, D.D., Zhang, H.Y., Chen, X.H.: Multi-criteria group decision making
method based on interval 2-tuple linguistic information and Choquet integral aggregation oper-
ators. Soft Comput. 19(2), 389–405 (2015)

13. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
14. Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6), 1179–1187

(2007)
15. Wan, S.P., Li, D.F.: Atanassov’s intuitionistic fuzzy programming method for heterogeneous

multiattribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees. IEEE
Trans. Fuzzy Syst. 22(2), 300–312 (2014)

16. Xu, Z., Cai, X.: Recent advances in intuitionistic fuzzy information aggregation. Fuzzy Optim.
Decis. Making 9(4), 359–381 (2010)

17. Zhao, X.F., Wei, G.W.: Some intuitionistic fuzzy Einstein hybrid aggregation operators and
their application tomultiple attribute decisionmaking. Knowl.-Based Syst. 37, 472–479 (2013)

18. Wang, J.-Q., Zhang, H.-Y.: Multicriteria decision-making approach based on atanassov’s intu-
itionistic fuzzy sets with incomplete certain information on weights. IEEE Trans. Fuzzy Syst.
21(3), 510–515 (2013)

19. Wang, J.-Q., Han, Z.-Q., Zhang, H.-Y.: Multi-criteria group decision-making method based on
intuitionistic interval fuzzy information. Group Decis. Negot. 23, 715–733 (2014)

20. Tan, C.: Generalized intuitionistic fuzzy geometric aggregation operator and its application to
multi-criteria group decision making. Soft Comput. 15(5), 867–876 (2011)

21. Wang, J.-Q., Nie, R.-R., Zhang, H.-Y. and Chen, X.-H.: New operators on triangular intu-
itionistic fuzzy numbers and their applications in system fault analysis. Inf. Sci. 251, 79–95
(2013)

22. Wang, J.-Q., Li, H.-B.: Multi-criteria decision-making method based on aggregation operators
for intuitionistic linguistic fuzzy numbers. Control Decis. 25(10), 1571–1574, 1584 (2010)

23. Zhang, Y., Ma, H., Liu, B., Liu, J.: Group decision making with 2-tuple intuitionistic fuzzy
linguistic preference relations. Soft Comput. 16(8), 1439–1446 (2012)

24. Liu, P.: Some generalized dependent aggregation operators with intuitionistic linguistic num-
bers and their application to group decision making. J. Comput. Syst. Sci. 79(1), 131–143
(2013)

25. Wang, X.-F., Wang, J.-Q., Yang, W.-E.: Multi-criteria group decision making method based on
intuitionistic linguistic aggregation operators. J. Intell. Fuzzy Syst. 26(1), 115–125 (2014)

26. Su, W., Li, W., Zeng, S., Zhang, C.: Atanassov’s intuitionistic linguistic ordered weighted
averaging distance operator and its application to decision making. J. Intell. Fuzzy Syst. 26(3),
1491–1502 (2014)

27. Wang, J.-Q., Wang, P.: Intuitionistic linguistic fuzzy multi-criteria decision-making method
based on intuitionistic fuzzy entropy. Control Decis. 27(11), 1694–1698 (2012)

28. Wang, J.Q., Wang, P., Wang, J., Zhang, H.Y., Chen, X.H.: Atanassov’s interval-valued intu-
itionistic linguistic multi-criteria group decision-making method based on the trapezium cloud
model. IEEE Trans. Fuzzy Syst. 23(3), 542–554 (2015)

29. Xu, Z.S.: A direct approach to group decision making with uncertain additive linguistic pref-
erence relations. Fuzzy Optim. Decis. Making 5(1), 21–32 (2006)

30. Lan, J.B., Sun,Q., Chen,Q.M.,Wang, Z.X.: Group decisionmaking based on induced uncertain
linguistic OWA operators. Decis. Support Syst. 55(1), 296–303 (2013)



232 X.-F. Wang and J.-Q. Wang

31. Liu, P.-D., Zhang, X.: Intuitionistic uncertain linguistic aggregation operators and their appli-
cation to group decision making. Syst. Eng. Theor. Pract. 32(12), 2704–2711 (2012)

32. Liu, P., Jin, F.: Methods for aggregating intuitionistic uncertain linguistic variables and their
application to group decision making. Inf. Sci. 205(1), 58–71 (2012)

33. Herrera, F.,Herrera-Viedma,E.,Verdegay, J.L.:Amodel of consensus in groupdecisionmaking
under linguistic assessments. Fuzzy Sets Syst. 78(1), 73–87 (1996)

34. Xu, Z.S.: Uncertain linguistic aggregation operators based approach to multiple attribute group
decision making under uncertain linguistic environment. Inf. Sci. 168(1–4), 171–184 (2004)

35. Xu, Z.S., Da, Q.L.: The uncertain OWA operator. Int. J. Intell. Syst. 17(6), 569–575 (2002)



Statistical Diagnostic of Center Fuzzy Linear
Regression Model Based on Fuzzy
Decentring Degree

Jia-wei Xu and Ruo-ning Xu

Abstract Aimed at the center fuzzy linear regression model with real input and
fuzzy output, the model parameter estimation is discussed on data deletion of fuzzy
decentring degree. Statistical diagnostic quantity is established to test outliers or
strong influential points in the observed data. And the step is given to examine with
the statistical diagnostic quantity. At last the example suggests that the method can
improve the accuracy of the computational results effectively.

Keywords Center fuzzy linear regression model · Case deletion model · Fuzzy
decentring degree

1 Introduction

Tanakan et al. [1] puts forward the fuzzy linear regression model with numerical
input and fuzzy output first, the computational complexity and the accuracy in which
the model are low; and then Diamond gives the least squares model fitting in with
triangular fuzzy number, the model prediction’s accuracy is improved, but its com-
putational complexity is increased, too. In the model building process, due to the
interference of gross error, random error and so on [2, 3], once mixed with outliers,
the methods will face critical challenges, and even get wrong conclusions. Above
all, it’s necessary to detect outliers or strong influential points of the observed data
while we reduce the computational complexity of the model.

So in order to improve the predictive accuracy of the model, it’s necessary to
find out the data point that influences the model much more when we build up the
model according to the original data. In contrast to the past, we discuss the model
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parameter estimation on data deletion while the model is the center fuzzy linear
regression model with real input and fuzzy output. Fuzzy decentring degree is the
statistical diagnostic quantity which is established to test outliers or strong influential
points in the observed data by using the least-squares method in this paper. At last
the example suggests the statistic constructed of the center fuzzy linear regression
model in this paper that is effective.

2 Preliminaries

In this section, some basic concepts and results on fuzzy numbers are reviewed,
which are necessary for developing our improved method.

Let R be the real number set R+ = {x|x ∈ R, x > 0}.
Definition 2.1 [4] Let Ã be a fuzzy set on R. And

(1) If Ã(x0) = 1, when ∃x0 ∈ R;
(2) If ∀λ ∈ (0, 1], when Aλ = {x|Ã(x) ≥ λ} is a closed convex set;

then Ã is called the fuzzy number on R. R̃ is denoted all the fuzzy numbers on R.

Definition 2.2 [4] On R, if the membership function has the following form:

Ã(x) =
⎧
⎨

⎩

1
a x − m−a

a , m − a ≤ x ≤ m,

− 1
b x + m+b

b , m < x ≤ m + b,

0, otherwise,
(a, b > 0),

the fuzzy number Ã is called triangular fuzzy number, where m is the most possible
value of fuzzy number Ã, a and b are the left and right spread of Ã respectively. We
denote it as Ã = (m, a, b). If a = b, then we say that Ã is symmetric, and write it as
Ã = (m, a).

3 Statistical Diagnostic of Center Fuzzy Linear Regression
Model Based on Fuzzy Decentring Degree

We always discussed the fuzzy linear regression model with real input and fuzzy
output. About the fuzzy linear regression model, in order to evaluate the ith
datum’s effect and influence in regression analysis, we can compare the statis-
tical inference results’ changes of statistical inference results before and after
deleting the ith datum. Thus we can know whether the point is abnormal or
strong influence. The model that deleted the ith datum is called the data deletion
fuzzy linear regression model. In this paper, we assume a set of fuzzy number
as {(xi, ỹi) |ỹi = (yi, pi, qi), i = 1, 2, . . . , n }, and the barycenter of the fuzzy set is
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(x̄, ¯̃y), where x̄ = 1
n

n∑

i=1
xi, ¯̃y = ( 1n

n∑

i=1
yi,

1
n

n∑

i=1
pi,

1
n

n∑

i=1
qi). Then exchange the ith

datum of the fuzzy set to the barycenter coordinate. So the fuzzy linear regression
model Zi(i = 1, 2, . . . , n) which is obtained from the processed data is called the ith
data deleted center fuzzy linear regression equation. Its form is the following:

ỹ[i] = a[i] + b̃[i]x, a[i] ∈ R, b̃[i] ∈ R̃. (1)

According to the least-squares method, we have the following result for the para-
meters above the question.

Theorem 3.1 For ỹ[i] = a[i] + b̃[i]x, a[i] ∈ R, b̃[i] ∈ R̃ , if (xm, ỹm)(m �= i, m =
1, 2, . . . n) is a set of observed data, and ỹm = (ym, lm, rm) is triangular fuzzy
number, then:

a[i] =
∑

m �=i
x2m

∑

m �=i
ym− ∑

m �=i
xm

∑

m �=i
xmym− 1

4

∑

m �=i
x2m(lm−rm)+ ∑

m �=i
xm

∑

m �=i
xm(lm−rm)

(n−1)
∑

m �=i
x2m−(

∑

m �=i
xm)2

,

b̃[i] =
( ∑

m �=i
xmym−â[i]

∑

m �=i
xm

∑

m �=i
x2m

,

∑

m �=i
xmlm

∑

m �=i
x2m

,

∑

m �=i
xmrm

∑

m �=i
x2m

)

.

(2)

Fuzzy center value reflects the value of fuzzy number, and fuzzy decentring degree
is an index to evaluate the value of fuzzy number concentration degree [4]. So in
order to improve the prediction accuracy of the model and detect the much more
relative anomaly or influential data points about the set of data, we combine fuzzy
decentring degree to analyze the prediction data point of the center fuzzy linear
regression model before and after deleting the data in this paper.

Definition 3.1 [4]. For ∀Ã ∈ R̃, we record supp Ã = (a, b) and

(1) When a = b, let C(Ã) = a.

(2) When a �= b, let

C(Ã) =
∫ b

a xÃ(x)dx
∫ b

a Ã(x)dx
. (3)

Then C(Ã) is called the central value of Ã.

Definition 3.2 [4]. For ∀Ã ∈ R̃, we record supp Ã = (a, b), C(Ã) as the central
value of Ã, and

(1) When a = b, let D(Ã) = 0.
(2) When a �= b, let
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D(Ã) =

⎧
⎪⎨

⎪⎩

∫ b
a

[
x − C(Ã)

]2
Ã(x)dx

∫ b
a Ã(x)dx

⎫
⎪⎬

⎪⎭

1
2

. (4)

Then D(Ã) is called the fuzzy decentring degree of Ã.
According to the nature of fuzzy decentring degree, if the fuzzy number Ã is

triangular fuzzy number, we have the following function:

D2(Ã) = 1

18
(p2 + q2 + pq) . (5)

In order to determine theoretically whether the ith datum is outlier or strong
influential point. The next we introduce the evaluation method.

Definition 3.3 [5]. Assume a choose optimal set as U = {u1, u2, . . . , um}, give n
kinds of ranking advises that are L1, L2, . . . , Ln. According to the objective condi-
tions, give the corresponding weights that are ai(i = 1, 2, . . . , n). And Bi(ui) is the
element number which is positioned after ui in Li. Thenwe called the followingB(ui)

is the weighted Borda number of ui:

B(ui) =
m∑

i=1

aiBi(ui). (6)

The scoring method [5] is now presented as follows:

(1) Calculate the weighted Borda number of each element in the collection.
(2) Sort the elements according to the size of the weighted Borda number.

The different model is considered as a element of a big set in practical applica-
tion, and according to the scoring method, we can actually compare the model after
assigning values.

When we make analysis of data,we operate on the following steps:

• Calculate the original fuzzy linear regression equation Z;

(2) Calculate the barycenter of the fuzzy set and exchange the ith datum, and then
calculate the center fuzzy linear regression equation Zi(i = 1, 2, . . . , n) after
deleting the ith datum;

(3) Calculate the ith fuzzy output datum of Z , and its fuzzy decentring degree Di

(i = 1, 2, . . . , n), calculate the ith fuzzy output datum of Zi, and its fuzzy
decentring degree D′

i(i = 1, 2, . . . , n);
(4) Compare the size of each fuzzy decentring degree on step (3), and calculate the

data points’ fuzzy center value of each model that we get from step (1) and (2);
(5) According to the scoring method, calculate the weighted Borda number of the

data deletedmodel, and rank them. The larger is theweightedBorda number, the
better is themodel. The result indicates that the deleted data point corresponding
to the model is outlier or strong influential point.
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Certainly, we should consider to combine the data actual background with the
meaning of the outlier or strong influential point during we diagnose the specific
data points.

4 Example Analysis

Throughmaking a survey on an information company’s sales data [6] in recent years,
we get the following Table1 (The volume ỹi is a triangular fuzzy number). Analyze
the data by the two models presented earlier in this article, and then discuss the
outliers.

For the convenience of calculation, transform in the following at first:

κi = xi − 1986, i = 1, 2, . . . , n. (7)

Set ỹ = a + b̃κi, and then the fuzzy regression equation is:

ỹ = 221.169 + (6.436, 0.294, 0.320)κ.

We can acquire the ith datum deleted center fuzzy linear regression equation by
Eqs. (2) and (7), the following Table2 shows the equations:

So we can obtain different fuzzy output values corresponding to the ith datum
from the equation, according to Eq. (5) to calculate the fuzzy decentring degree, we
can get the following data in Table3:

The data in Table3 show that the eighth output datum fuzzy decentring degree
is the smallest in these equations. So maybe the eighth datum is outlier or strong
influential point compare with other data. According to Eq. (3), we can calculate the
fuzzy center value and then we can get the following data in Table4:

Through the scoring method (The observed data can decide the model while the
product is on sales, and actually, each year sales data effect of the model is the same.
The weights value are 1/n respectively.) we can calculate the value of B(ui) (It’s the
weighted Borda number of x.):

Table 1 The sale of a company’s information

Year Sales volume (million) Year Sales volume (million)

xi ỹi = (yi, pi, qi) xi ỹi = (yi, pi, qi)

1987 (230,2,1) 1992 (257,2,1)

1988 (236,3,2) 1993 (262,3,2)

1989 (241,2,3) 1994 (276,3,3)

1990 (246,1,2) 1995 (281,2,3)

1991 (252,2,2) 1996 (286,1,2)
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Table 2 The center fuzzy linear regression equation

ith datum The ith datum deleted
center fuzzy

ith datum The ith datum deleted
center fuzzy

linear regression
equation Zi

linear regression
equation Zi

1 ỹ1 = 219.669 +
(6.647, 0.296, 0.234)κ

6 ỹ6 = 220.968 +
(6.510, 0.297, 0.339)κ

2 ỹ2 = 213.411 +
(7.532, 0.288, 0.317)κ

7 ỹ7 = 220.672 +
(6.591, 0.283, 0.329)κ

3 ỹ3 = 221.253 +
(6.422, 0.292, 0.309)κ

8 ỹ8 = 221.467 +
(6.319, 0.286, 0.315)κ

4 ỹ4 = 221.664 +
(6.399, 0.302, 0.317)κ

9 ỹ9 = 221.130 +
(6.238, 0.319, 0.322)κ

5 ỹ5 = 221.370 +
(6.426, 0.294, 0.319)κ

10 ỹ10 = 220.042 +
(6.283, 0.363, 0.363)κ

B(u1) = 0.1 × (10 + 10 + 10 + 10 + 10 + 8 + 6 + 3 + 3 + 3) = 7.3.

At the same time, we can get the other weighted Borda numbers of ui(i =
2, 3, . . . , n) are:

B(u2) = 6.2, B(u3) = 5.0, B(u4) = 3.0, B(u5) = 2.9, B(u6) = 2.6, B(u7) = 2.0,

B(u8) = 7.4, B(u9) = 5.5, B(u10) = 4.3.

Obviously, the value of B(I8) is the largest, namely the fuzzy linear regression
model which is obtained by deleting the eighth datum is the best model. In summary,
we makes a theoretical analysis from the above two aspects and the analysis suggests
that the eighth datum is outlier or influential point. If we remove the eighth datum
when we are building the model, the accuracy of the model can be improved much
more.

On the other hand, different fuzzy linear regression can be fitted according to dif-
ferent observation data, so that the prediction conclusion varies with model changes.
When we use the model to predict unknown data in practical application, it’s hard
to consider the conclusion accuracy. Therefore, in order to improve the accuracy of
the forecasting results, we should establish the data deletion model after finding out
the datum which influence is relatively large. At the same time, use the above data
in Table2 to forecast the sales volume of 1997, and then calculate the square of the
corresponding fuzzy decentring degree. We can get the result as follow:

D2
1 = 1.9406, D2

2 = 1.8511, D2
3 = 1.8233, D2

4 = 1.9315, D2
5 = 1.8938,

D2
6 = 2.0140, D2

7 = 1.8907, D2
8 = 1.8224, D2

9 = 2.0690, D2
10 = 2.6632.
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The smaller is the fuzzy decentring degree of the prediction point, and the higher
is its accuracy. Obviously the data show that the fuzzy decentring degree of the
prediction value after deleting the eighth datum from the application is the smallest,
so its accuracy is the highest. From the application of the model, we can know that
when we are building the model, the effect of the eighth datum is the largest. Thus it
has a further sign that the statistical diagnostics about the fuzzy decentring degree is
effective in the paper. And through the scoring method combined with fuzzy center
value we can improve the prediction accuracy of model much better.

5 Conclusion

Based on data deletion, we obtain the parameter estimation of center fuzzy linear
regression model when the data are deleted. We structure a statistical diagnosis that
is the fuzzy decentring degree to test the outliers or strong influential points in the
paper. Firstly, we present the steps of testing the outliers or strong influential points
in the data, and then study the actual history data and distinguish the outliers or
strong influential points. At last, it shows that the statistical diagnosis can improve
the accuracy of the model’s predictive ability and it has practical significance to
improve the prediction accuracy of the model in our life.
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A New Method of Multiple Attributes
Evaluation and Selection in Fuzzy
Environment

Xiao-yan Zhai

Abstract In a complex evaluation system, not only it is often necessary to deal
with multiple attributes decision problems, but also it is unavoidable to deal with the
uncertainness and fuzziness of people’s judgment. This paper considers the multiple
attributes and uncertainness decision problems in the complex decision systems, a
fuzzy multiple attributes evaluation and selection model is built, a new method is
developed for ranking fuzzy priorities from the model, and calculation formulae for
fuzzy priorities are derived. Finally, an applied example on suppliers’ selection is
given for demonstrating the method.

Keywords Fuzzy multiple criteria decision · Evaluation and selection model ·
Fuzzy priority

1 Introduction

People often need to consider many factors or multiple attributes in complex decision
systems and it usually need to give judgment by experts. Therefore it is unavoidable
to consider the uncertainness and fuzziness of people’s thinking and judgment in the
multiple attributes decision problems. Jahanshahloo et al. [1], Wang and Parkan [2]
considered the fuzziness of people’s judgment and built the fuzzy decision models
by using the triangular fuzzy numbers and fuzzy preference relation. It is effective
method to deal with the complex decision problems, but the problems of the con-
struction of the fuzzy numbers and their objectivity should be researched further.
In the paper [3], we present a method that describes people’s fuzzy judgment with
interval fuzzy number on continuous judgment scale. Based on the research on paper
[3], we developed several fuzzy multiple attributes decision methods [4–8]. In this
paper, we will build a fuzzy multiple attributes evaluation and selection model based
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on interval fuzzy number, and present a new ranking method to extract the fuzzy
priorities for multiple criteria decision making. We also apply the model for supplier
selection in the end.

2 Building a Fuzzy Multiple Attributes Evaluation
and Selection Model

2.1 Operation Properties of Positive Bounded Closed Fuzzy
Numbers

Professor Saaty presents an quantificational approach of people’s judgment and
describes people’s judgment according to the 1–9 scale in paper [9], that is, 1, 3, 5, 7, 9
represented equal importance, moderate importance, strong importance, very strong
importance, extreme importance respectively. In paper [3], we consider the uncer-
tainness of people’s judgment and extend the 1–9 scale of the importance comparison
to continuous scale interval (0, 10], and we can used other point x, x ∈ (0, 10], to
present the intermediate state, the bigger the value x is, the more obvious the impor-
tance comparison is. So scale interval (0, 10] can be used to describe the uncertain
judgment of important comparison. We can extend scale interval (0, 10] to positive
real number area and give some relevant definition and conclusions in the following.

Definition 1 Let R+ is a positive real number set. A closed interval ξ = [a, b] =
{x |(0 < a ≤ x ≤ b} on R+ is said to be a judgment interval number if it is evaluated
area given out by decision-maker according to some judgment scale or evaluation
criterion.

Definition 2 ([10]). F(R+) denotes the set of all positive bounded closed fuzzy
numbers, namely Ã ∈ F(R+) iff for every t ∈ (0, 1] the t-level set At = {x ∈
R : Ã(x) ≥ t} is a non-empty bounded closed interval contained in R+ (where
R+ = {x : x > 0, x ∈ R}).
Clearly, the judgment interval number ξ = [a, b] is a real number when a = b,
and judgment interval numbers and positive real numbers all are especial positive
bounded closed fuzzy numbers. In the paper [4], we proved At = {x ∈ R : Ã(x) ≥ t}
could be represented as a positive closed interval, and gave the operations of positive
bounded closed fuzzy numbers as follows:

Theorem 1 Let Ã, B̃ ∈ F(R+), At = [st , rt ], Bt = [pt , qt ], e > 0, then

(1) Ã + B̃ = ⋃

0<t≤1
t (At + Bt ) = ⋃

0<t≤1
t[st + pt , rt + qt ],

(2) Ã · B̃ = ⋃

0<t≤1
t (At · Bt ) = ⋃

0<t≤1
t[st · pt , rt · qt ],

(3) Ã/B̃ = ⋃

0<t≤1
t (At/Bt ) = ⋃

0<t≤1
t[st/qt , rt/pt ],
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(4) e · Ã = ⋃

0<t≤1
t (e · A)t = ⋃

0<t≤1
t[e · st , e · rt ],

(where e · Ã is derived from function f (x) = e · x by extension principle [11])
(5) 1/ Ã = ⋃

0<t≤1
t (1/At ) = ⋃

0<t≤1
t[1/rt , 1/st ].

Here t[a, b] is a fuzzy set on R+ and its membership function is defined as

t [a, b](u) = t�[a, b](u) =
{

t, u ∈ [a, b],
0, u /∈ [a, b], u ∈ R+.

And this notation will be used in the sequel.
In a general way, people’s views or judgment about same problem are often

different because of the difference of their knowledge and experience. Suppose
that there are m decision-makers in the group, every decision-maker make the
uncertainness judgment independently according to some scale. Denoted ξ (k) =
[a(k), b(k)](k = 1, . . . , m) as the judgment interval number, which is given out by
the kth decision-maker. If ξ (k)

⋂
ξ (l) �= φ for any k, l ∈ {1, . . . , m}, it is easy

to prove
m⋂

k=1
ξ (k) �= φ. It is possible to exist the judgment interval numbers ξ (k0)

and ξ (l0) such that ξ (k0)
⋂

ξ (l0) = φ when the judgment ξ (k0) of the k0th decision-
maker and the judgment ξ (l0) of the l0th decision-maker are completely different
(k0, l0 ∈ {1, . . . , m}). For this case, the results can be adjusted by exchanging their
opinions between the k0th and l0th decision-maker, and the result:

ξ (k)
⋂

ξ (l) �= φ for any k, l ∈ {1, . . . , m} (1)

will be reached finally. We call formula (1) as the approximate consistency condition
of the group’s judgments. We get the following conclusion under this condition.

Theorem 2 Let ξ (k) = [a(k), b(k)](k = 1, . . . , m) be a judgment interval number,
ξ (k)

⋂
ξ (l) �= φ (for any k, l ∈ {1, . . . , m}). Then

ã(x) = 1

m

m∑

k=1

χξ(k) (x)x ∈ R+ (2)

is a closed fuzzy number on R+ (here χξ(k) is ξ (k)′s characteristic function).

Proof Let a(k1), a(k2), . . . , a(km ) be the order from small to large of the numbers
a(1), a(2), . . . , a(m), wherek1 , k2, . . . , km is a permutation of 1, . . . , m.We can prove
that ∀k, l ∈ {1, . . . , m}, a(k) ≤ b(l) just based on ξ (k)

⋂
ξ (l) �= φ. So the order from

small to large of the 2m numbers a(1), a(2), . . . , a(m), b(1), b(2), . . . , b(m), can be
expressed as a(k1), a(k2), . . . , a(km ), b(lm ), b(lm−1), . . . , b(l1), where lm , lm−1, . . . , l1
is also a permutation of m, m−1, …, 1. We can obtain formula (3), there ã(x) is a
monotone increasing right continuous ladder function in interval (0, b(lm )). Similarly,
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we can prove that ã(x) is a monotone decreasing left continuous ladder function in
[b(lm ), b(l1)]. Thus ã(x) is a positive bounded closed fuzzy numbers in step form
according to the definition of closed fuzzy number.

ã(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, when 0 ≤ x < a(k1) or b(lm ) < x
t∑

n=1

1
m , when a(kt ) ≤ x < a(kt+1), (t = 1, . . . , m − 1);

t∑

n=1

1
m , when b(lt+1) ≤ x < b(lt ), (t = 1, . . . , m − 1);

1, when a(km ) ≤ x ≤ b(lm ).

(3)

2.2 Building of a Fuzzy Multiple Attributes Evaluation
and Selection Model

A evaluation system usually involves many different factors, which have different
attributes and have some relationship to each other. It is difficult to consider these
factors, attributes, evaluation criterions and their relationship in evaluation process.
In the section, we shall consider the multiple attributes of evaluation problems and
fuzziness of people’s judgment, and extend classical multiple attributes decision
making methods to fuzzy environment, and build a fuzzy multiple attributes evalu-
ation and selection model based on positive bounded closed fuzzy numbers in step
form.

Suppose that there are k projects u1, . . . , uk waiting for selection, and there are
n attributes v1, . . . , vn in the evaluation index system. If the decision-making group
have persons m, every decision-maker give out a range on interval to represent his
uncertainness judgment independently according to some scale. Denoted ξ

(l)
i j =

[a(l)
i j , b(l)

i j ](l = 1, . . . , m) as i th project judgment interval number under j th attribute
(i = 1, . . . , k, j = 1, . . . , n), which is given out by the lth decision-maker. Let
ξ

(l)
i j = [a(l)

i j , b(l)
i j ] (l = 1, . . . , m) satisfy the approximate consistency condition of

the group’s judgments because the results can be adjusted by harmonizing the group’s
views when the group’s judgments are inconsistent, that is we have ξ

(p)
i j

⋂
ξ

(q)
i j �= φ

for any p, q ∈ {1, . . . , m}(i = 1, . . . , k, j = 1, . . . , n). So we can use the formula
(2) to aggregate the group’s uncertainness judgments as a positive bounded closed
fuzzy numbers ãi j (x) on R+ when the group’s judgments satisfy the approximate
consistency condition, that is

ãi j (x) = 1

m

m∑

l=1

χ
ξ

(l)
i j

(x) x ∈ R+ (4)
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Table 1 Evaluation table

Projects Attributes

v1 v2 … vn

u1 ã11 ã12 ã1k

u2 ã21 ã22 ã2k

… … … … …

uk ãk1 ãk2 ãkn

and ãi j (x) represents a group’s judgment or view for ith project under jth attribute.
Denoted ãi j as ãi j (x), the evaluation table of k projects under n attributes can be
established, as shown in Table1.

Based on the above analysis, a fuzzy multiple attributes decision matrix can be
constructed as follows:

Ã =

⎡

⎢
⎢
⎣

ã11 ã12 · · · ã1n

ã21 ã22 · · · ã1n

· · · · · · · · · · · ·
ãk1 ãk2 · · · ãkn

⎤

⎥
⎥
⎦ . (5)

We can take the formula (5) as a fuzzy multiple attributes evaluation and selection
model, and then we shall discuss the problem of the fuzzy priorities from the model
in next section.

3 A Method of Calculating Fuzzy Priorities

3.1 The Normative Method of Fuzzy Multiple Attributes
Decision Matrix

Since the dimension or scale of some attribute values may be different in a fuzzy
multiple attributes evaluation and selection model, it is necessary to be normalized
before deriving fuzzy priorities from the fuzzy multiple attributes decision matrix.
Usually the attribute can be parted tow types: benefit type and cost type. According
to the proportion method in traditional multiple attributes decision-making, we have

zi j = ai j∑n
i=1 ai j

, (when attribute v j is benefit type) (6)

zi j = 1/ai j∑n
i=1

(
1/ai j

) . (when attribute v j is cost type) (7)
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Here ai j represents a attribute value for i th project under j th attribute in non-fuzzy
environment. We can obtain formulae (8) and (9) by form (6), (7) and extension
principle [11]:

z̃i j = ãi j∑n
i=1 ãi j

, (when attribute v j is benefit type) (8)

z̃i j = 1/ãi j∑n
i=1

(
1/ãi j

) , (when attribute v j is cost type). (9)

There ãi j a positive bounded closed fuzzy numbers in step. ∀λ > 0, the λ-level set
of ãi j is a closed interval. Denoted (ãi j )λ = [ai j (λ), bi j (λ)]. When attribute v j is
benefit type, we get formulae (10) by Theorem 1:

z̃i j = ⋃

0<λ≤1
λ (

(ãi j )λ∑n
i=1 (ãi j )λ

)

= ⋃

0<λ≤1
λ (

[ai j (λ) , bi j (λ)]∑n
i=1 [ai j (λ) , bi j (λ)] )

= ⋃

0<λ≤1
λ [ ai j (λ)∑n

i=1 bi j (λ)
,

bi j (λ)∑n
i=1 ai j (λ)

].
(10)

And we also get formulae (12) by Theorem 1 when attribute v j is cost type:

z̃i j = ⋃

0<λ≤1
λ (

1/(ãi j )λ∑n
i=1 (1/(ãi j )λ)

)

= ⋃

0<λ≤1
λ (

1
[ai j (λ) , bi j (λ)]

∑n
i=1

(
1

[ai j (λ) , bi j (λ)]
) )

= ⋃

0<λ≤1
λ [ 1

bi j (λ)
∑n

i=1
1

ai j (λ)

, 1
ai j (λ)

∑n
i=1

1
bi j (λ)

].

(11)

The fuzzy multiple attributes decision matrix Ã = (ãi j ) in (5) can be normalized
based on the above discussions, and we can denoted the normalized fuzzy decision
matrix as Z̃ = (z̃i j ).

3.2 A Method for Calculating Weitgh of Multiple Attributes

It is difficult to determine weights of attributes in the evaluation system because their
relationship is complex. In the analytic hierarchy process presented by Professor
Saaty [9], the judgment matrix can be constructed by pairwise comparisons, and the
priorities can be derived from the judgment matrix. Suppose that v1, . . . , vn are n
attributes, for any vi , v j ∈ V (V = {v1, v2, . . . , vn}), let every decision-maker make
out his judgment of importance comparison independently according to continuous
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scale interval (0, 10]mentioned above. Denote h(l)
i j = [c(l)

i j , d(l)
i j ] (l = 1, . . . , m) as

a judgment interval by the lth decision-maker given out for comparing the importance
of vi and v j (i < j). We can suppose h(l)

i j = [c(l)
i j , d(l)

i j ] (l = 1, . . . , m) satisfy the
approximate consistency condition (1) according to described above. Therefore the
fuzzy judgment ã′

i j (x)(i < j) for the group will be gotten by Theorem 2. Go a step

further, we can obtain a fuzzy judgment matrix Ã′ = (ã′
i j )n×n based on the above

discussions, where ã′
i j (i < j) are positive bounded closed fuzzy numbers in step

form on (0, 10]. Since the diagonal elements represent the importance comparison
of vi with itself, we have that the elements in diagonal all equal to 1, namely ã′

i i =
1(i = 1, . . ., n), and ã′

j i = 1/ã′
i j (i �= j) by (5) in Theorem 1. By applying fuzzy

extension principle [11] to the row addition normalized method in classical analytic
hierarchy process [12], we can derive

w̃i =
∑n

j=1 ã′
i j∑n

l=1
∑n

j=1 ã′
l j

,(i = 1, . . . , n), (12)

here w̃1, . . . , w̃n are the fuzzy wights derived by fuzzy judgment matrix Ã′. In details
let (ã′

i j )λ = [ci j (λ), di j (λ)] since ã′
i j are positive bounded closed fuzzy numbers

(i, j = 1, . . . , n). By the operation properties of Theorem 1 about positive bounded
closed fuzzy numbers, we easily obtain

w̃i = ⋃

0<λ≤1
λ(

∑n
j=1 (ã′

i j )λ∑n
l=1

∑n
j=1 (ã′

l j )λ
)

= ⋃

0<λ≤1
λ(

∑n
j=1 [ci j (λ),di j (λ)]

∑n
l=1

∑n
j=1 [cl j (λ),dl j (λ)] )

= ⋃

0<λ≤1
λ[

∑n
j=1 ci j (λ)

∑n
l=1

∑n
j=1 dl j (λ)

,

∑n
j=1 di j (λ)

∑n
l=1

∑n
j=1 cl j (λ)

] (i = 1, . . . , n),

(13)

namely,

w̃i =
⋃

0<t≤1

λ [(L j )λ,(R j )λ] (i = 1, . . . , n), (14)

where

(L j )λ =
∑n

j=1 ci j (λ)
∑n

l=1
∑n

j=1 dl j (λ)
,(R j )λ =

∑n
j=1 di j (λ)

∑n
l=1

∑n
j=1 cl j (λ)

.

3.3 Synthesis of Priorities for Projects

In following discussion, we will consider the problem to calculate the priorities r̃i

of i projects ui with respect to n different attributes v1, . . . , vn . Suppose that the
weight of attribute v j is w̃ j ( j = 1, . . . , n), and z̃i j is normalized attribute value of
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the project ui (i = 1, . . . , k) under attribute v j . Then the overall fuzzy priorities of
the project ui can be computed according to

r̃i =
∑n

k=1
w̃k z̃ik, (i = 1, . . . , k) (15)

Let
(w̃ j )λ = [p j (λ), q j (λ)], ( j = 1, . . . , n),

(z̃i j )λ = [αi j (λ), βi j (λ)], (i = 1, . . . , k; j = 1, . . . , n).

Then

r̃i =
⋃

0<λ≤1

λ [
∑m

j=1
p j (λ)αi j (λ),

∑m

j=1
q j (λ)βi j (λ)](i = 1, . . . , k).

Similarly, for a multi-level decision problem, we can process the calculation by
the same procedure from the top to bottom.

4 An Example on Supplier Selection

It is very important to select suppliers for amanufactory.Many factors are considered
on supplier selection, such as credit standing, the price, service, etc. Let us consider
the case of theMD&S Electronics Company, which produces electronic components
for a computermanufacturer. There are three different suppliers SP,BLEandHUD(In
order to discuss conveniently, we can denote SP, BLE, HUD as s1, s2, s3 separately)
can be chosen for MD&S. In order to choose the best supplier MD&S committee
to make this decision according to following attribute: c1: credit standing; c2: the
price; c3: service. In Table2, the uncertain judgments ξ

(l)
i j given by the lth decision-

maker are pairwise importance comparison about attribute ci and c j according to
continuous scale interval (0, 10].

Table 2 Judgment for importance comparison

c1 c2 c3

ξ
(1)
12 = [3.0, 3.9] ξ

(1)
13 = [1.0, 2.0]

c1

1 ξ
(2)
12 = [3.0, 4.5] ξ

(2)
13 = [1.5, 2.8]

ξ
(3)
12 = [3.5, 4.5] ξ

(3)
13 = [1.8, 3.0]

c2

1 ξ
(1)
23 = [5.0, 5.5]

ξ
(2)
23 = [5.0, 6.0]

ξ
(3)
23 = [4.5, 6.5]

c3 1
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We can get the fuzzy judgment matrix (see Table3) of attributes according to
Table2.

We can calculate fuzzy wight w̃ j of attribute c j ( j = 1, 2, 3) by formula (13)
(see Table4). Suppose the price be gaved by s1, s2, s3 are 1, 0.9 and 0.8million
respectively and the reciprocal of the price is the corresponding priority. Then after
normalizing the priorities are 0.29, 0.33, 0.35. The fuzzy decision matrix under the
attributes ci , c2 , c3 are as follows (Table5).

We can derive the fuzzy priorities r̃i about suppliers si under the attributes c j by
using formula (10) and (14) (see Table6).

Table 3 Tuzzy judgment matrix table

λ c1 c2 c3

c1 1 1 [3.5, 3.9] [1.8, 2.0]

2/3 [3.0, 4.5] [1.5, 2.8]

1/3 [3.0, 4.5] [1.0, 3.0]

c2 1 [0.256, 0.286] 1 [5.0, 5.5]

2/3 [0.222, 0.333] [5.0, 6.0]

1/3 [0.222, 0.333] [4.5, 6.5]

c3 1 [0.50, 0.556] [0.182, 0.20] 1

2/3 [0.357, 0.667] [0.167, 0.20]

1/3 [0.333, 1.0] [0.154, 0.222]

Table 4 Calculate fuzzy wight

λ w̃1 w̃2 w̃3

1 [0.51, 0.54] [0.28, 0.29] [0.19, 0.20]

2/3 [0.49, 0.58] [0.26, 0.32] [0.18, 0.22]

1/3 [0.46, 0.60] [0.25, 0.33] [0.17, 0.23]

Table 5 The fuzzy decision matrix

λ c1 c2 c3

s1 1 [4.0, 5.0] 0.29 [2.7, 3.2]

2/3 [3.7, 5.3] [2.5, 3.8]

1/3 [3.5, 5.5] [2.0, 4.0]

s2 1 [5.0, 5.5] 0.33 [3.0, 3.5]

2/3 [4.7, 5.8] [3.5, 4.0]

1/3 [3.8, 6.3] [3.5, 4.5]

s3 1 [6.0, 6.8] 0.35 [5.8, 6.5]

2/3 [5.7, 7.1] [5.5, 6.8]

1/3 [5.3, 7.5] [5.0, 7.0]
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Table 6 The fuzzy priorities r̃i

λ r̃1 r̃2 r̃3

1 [0.32, 0.34] [0.38, 0.39] [0.43, 0.50]

2/3 [0.28, 0.36] [0.36, 0.40] [0.36, 0.53]

1/3 [0.26, 0.42] [0.35, 0.43] [0.33, 0.58]

Obviously, the ranking of fuzzy priorities is r̃3 � r̃2 � r̃1, the decision committee
should choose the brand u1 from the results above.

According to demonstration of our example, it is easily to see that the method
presented above is rather simple and convenient for operation and can be used for
dealing with actual multicriteria decision problems in complex systems.
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A Discrete-Time Geo/G/1 Retrial Queue with
Balking Customer, Second Optional Service,
Bernoulli Vacation and General Retrial Time

Yan Chen, Li Cai and Cai-min Wei

Abstract In this paper,we study a discrete-timeGeo/G/1 retrial queuewith a balking
customer and a second optional service where retrial time follows a general distribu-
tion. If an arriving customer finds the server free, he begins the service immediately.
If an arriving customer finds the server busy or to be on vacation, then he will con-
sider whether he enters into the system. After a customer accepts his first essential
service, hemay leave the system or ask for a second service. In thismodel, we assume
that the server, after each service completion, may begin a vacation or wait to serve
the following customer. This paper studies the Markov chain underlying this model,
we establish the probability generating functions of the orbit size and system size.
Finally, some performance measures and some numerical examples are presented.

Keywords Retrial queue ·Balking customer ·Optional service ·Bernoulli vacation
1 Introduction

The retrial queue firstly proposed by Cohen was received extensive attention of
scholars in the past of thirty years. Retrial queue has the characteristics as follows:
If arriving customers find all servers busy, then they leave the server temporarily and
join the retrial group (which is called orbit) to try their luck again after a random time
period, otherwise they will accept the service. Note that they are always in orbit no
matter accepting the service or not. Queues in which customers are allowed to retry
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have been extensively used to model many problems in telephone switching systems,
telecommunication networks and computer systems for competing to gain service
from a central processor unit. Now there is a large number of related literature on
retrial queues and a good survey of the results and fundamental methods of retrial
queues. For detailed overviews of the main results on this topic can be found in the
paper by Artalejo [1, 2], Falin and Templeton [3] and Gómez Corral [4].

In most cases, the standard models in classical queueing theory are systems oper-
ating in continuous time. However, in practice, discrete-time queues are more appro-
priate than their continuous-time counterparts for modelling computer and telecom-
munication systems in which time is slotted. The more detailed discussion and appli-
cations of discrete-time queues can be found in the books by Takagi [5], Woodward
[6] and Tian et al. [7].

In lots of queueing systems, the arriving customers won’t leave the system until
the completion of his service. But in our real life, many arriving customers often
don’t do so. Consequently, the resulting problem, i.e., a balking customer is pay
attention to by more and more learners. Recently, the problem has been extended
to discrete-time retrial queues. Aboubl-Hassan and other scholars [8, 9] studied a
discrete-time Geom/G/1 retrial queue with balking customers.

In addition, now there are two or more chances for the customers to give in the
system. For example, after accepting the first essential service in the system, all cus-
tomers have an alternative choice: one is that some of them require a second service,
another is that some of them leave the the system. Atencia and Moreno [10] studied
a discrete-time Geom/G/1 retrial queue with a second optional service. Wang and
Zhao [11] considered a discrete-time Geom/G/1 retrial queue with starting failures
and a second optional service. We note that the server may stop running temporar-
ily after some time (perhaps some servers need a vacation or some machines need
repairing etc.). So Wang [12] studied a discrete-time Geo/G/1 retrial queues with
general retrial time and Bernoulli vacation. Chen et al. [13] considered a discrete-
time Geo/G/1 retrial queue with Bernoulli vacation and a second optional service.
Wei et al. [14] considered a discrete-time Geom/G/1 retrial queue with balking cus-
tomers and a second optional service. But, there is no work about a general retrial
time Geom/G/1 retrial queue with balking customers, a second optional service and
Bernoulli vacation. That is our motivation to study this model.

2 Model Description and Markov Chain

In this paper, we consider a discrete-time Geom/G/1 retrial queue with a balking
customer, a second optional service, Bernoulli vacation and general retrial time in
the early arrival system (EAS, see Hunter for details [5]). The time slots be marked
by 0, 1, . . . , m, . . . in order. Either the customers leave or vacation ends occurs in
(m−, m), the customer arrives or retries in (m, m+).

It is assumed that customers arrive according to a Bernoulli arrival process with
parameter p, and there is no waiting space in front of the server. Therefore, if the
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customer finds the server busy state or vacation state when he arrives at the system,
he either joins the orbit and waits to attempt service again later with probability θ

or leaves the system forever with probability θ̄ = 1 − θ ; if the customer finds the
server idle when he arrives at the system, the arriving customer begins his service
immediately. After completion of the first basic service, the customer may leave sys-
tem with probability ᾱ = 1−α or choose a second optional service with probability
α. Here, we assume that if two events which customers who complete their basic
service decide to receive an extra service and new arriving customers (external or
repeated) arrive at the system occur at the same time and find the server idle, then
customers of the first case begin their service immediately. Customers of the second
case regard the system as busy and consider whether join the orbit to wait to attempt
service again. Therefore, we say that the customers who decide to receive second
optional service have priority than new arriving customers.

When there is no customer in the orbit, the server may not be coming vacation,
only after the server completed the customer’s service, he can attempt a vacation, that
is, after the customers in the two periods accept their services, the server will wait
for the next customer’s service by probability q or choose a vacation by probability
q̄ = 1 − q.

Suppose that the tow periods of service time are independent and identically
distributed with general distribution {s1,i }∞i=1, {s2,i }∞i=1, and their probability gen-
erating functions S1(x) = ∑∞

i=1 s1,i x i , and S2(x) = ∑∞
i=1 s2,i x i and their cor-

responding nth factorial moments β1,n and β2,n , respectively. Vacation time is
assumed to follow a general distribution {s3,i }∞i=1 with probability generating func-
tion S3(x) = ∑∞

i=1 s3,i x i and nth factorial moments β3,n . Retrial time also follows a
general distribution {ai }∞i=0 with probability generating function A(x) = ∑∞

i=0 ai xi .
The inter-arrival time, the service time, the retrial time and vacation time are all

assumed to bemutually independent. In order to avoid trivial cases, it is also supposed
0 < p < 1, 0 < θ ≤ 1, 0 ≤ α < 1, 0 < q ≤ 1, let ρ1 = pβ1,1, ρ2 = pαβ2,1,
ρ3 = pq̄β3,1, the intensity of traffic system is ρ = ρ1 + ρ2 + ρ3.

At time m+, the system can be described by the process Ym = (Cm, ξi,m, Nm),
where

Cm =

⎧
⎪⎪⎨

⎪⎪⎩

0, the server is idle,
1, the server is busy caused by a first essential service,
2, the server is busy caused by a second optional service,
3, the server is vacation,

and Nm is the number of repeated customers in the orbit. When Cm = 0 and Nm >

0, ξ0,m represents the remaining retrial time; when Cm = 1, ξ1,m represents the
remaining service time of the first essential service; when C2,m = 2, ξm represents
the remaining service time of the second optional service; Cm = 3, ξ3,m represents
the remaining vacation time.

It can be shown that {Ym, m ≥ 1} is the Markov chain of our queueing sys-
tem, whose state space is {(0, 0); (0, i, k) : i ≥ 1, k ≥ 1; (1, i, k) : i ≥ 1, k ≥
0; (2, i, k) : i ≥ 1, k ≥ 0; (3, i, k) : i ≥ 1, k ≥ 0}. Next our goal is to find the
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stationary distribution of the Markov chain {Ym, m ≥ 1} which is defined as follows

π0,0 = lim
m→∞ P{Cm = 0, Nm = 0},

π0,i,k = lim
m→∞ P{Cm = 0, ξ j,m = i, Nm = k}; i ≥ 1, k ≥ 1,

π j,i,k = lim
m→∞ P{Cm = j, ξ j,m = i, Nm = k}, i ≥ 1, k ≥ 0, j = 1, 2, 3,

where i ≥ 1, k ≥ 0, j = 1, 2.

The one-step transition probabilities Pyy′ = P{Ym+1 = y′|Ym = y} are given by:

(1) When k = 0, we have

P(0,0)(0,0) = p̄, P(1,1,0)(0,0) = ᾱ p̄q, P(2,1,0)(0,0) = p̄q, P(3,1,0)(0,0) = p̄.

(2) When i ≥ 1, k ≥ 1, we have

P(0,i+1,k)(0,i,k) = p̄, P(1,1,k)(0,i,k) = p̄ᾱqai P(2,1,k)(0,i,k) = p̄qai ,

P(3,1,k)(0,i,k) = p̄ai .

(3) When i ≥ 1, k ≥ 0, we have

P(0,0)(1,i,0) = ps1,i , (k = 0), P(0,1,k+1)(1,i,k) = p̄s1,i ,
P(0, j,k)(1,i,k) = ps1,i ; j ≥ 1, (k ≥ 1), P(1,1,k)(1,i,k) = ᾱ pqs1,i ,
P(1,1,k+1)(1,i,k) = ᾱ p̄qa0s1,i , P(1,i+1,k−1)(1,i,k) = pθ, (k ≥ 1),
P(1,i+1,k)(1,i,k) = p̄ + pθ̄ , P(2,1,k)(1,i,k) = pqs1,i , P(2,1,k+1)(1,i,k) = p̄qa0s1,i ,
P(3,1,k)(1,i,k) = ps1,i , P(3,1,k+1)(1,i,k) = p̄a0s1,i .

(4) When i ≥ 1, k ≥ 0, we have

P(1,1,k−1)(2,i,k) = pαθs2,i , (k ≥ 1), P(1,1,k)(2,i,k) = α( p̄ + pθ̄ )s2,i ,
P(2,i+1,k−1)(2,i,k) = pθ, (k ≥ 1), P(2,i+1,k)(2,i,k) = p̄ + pθ̄ .

(5) When i ≥ 1, k ≥ 0, we have

P(1,1,k−1)(3,i,k) = ᾱq̄ pθs3,i , (k ≥ 1), P(1,1,k)(3,i,k) = ᾱq̄( p̄ + pθ̄ )s3,i ,
P(2,1,k−1)(3,i,k) = pq̄θs3,i , (k ≥ 1), P(2,1,k)(3,i,k) = ( p̄ + pθ̄ )q̄s3,i ,
P(3,i+1,k−1)(3,i,k) = pθ, (k ≥ 1), P(3,i+1,k)(3,i,k) = p̄ + pθ̄ ,

where δ0,k denotes the Kronecker’s symbol.

3 Measure Performances of System

In this section, we will derive the measure performances of state system. From above
stationary distribution of the Markov chain {Ym, m ≥ 1}, we obtain the Kolmogorov
equations under balance state as follows

π0,0 = p̄π0,0 + ᾱ p̄qπ1,1,0 + p̄qπ2,1,0 + p̄π3,1,0, (1)
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π0,i,k = p̄π0,i+1,k + ᾱ p̄qaiπ1,1,k + p̄qaiπ2,1,k + p̄aiπ3,1,k, i ≥ 1, k ≥ 1, (2)

π1,i,k = δ0,k ps1,iπ0,0 + p̄s1,iπ0,1,k+1 + (1 − δ0,k)ps1,i

∞∑

j=1

π0, j,k + ᾱ pqs1,iπ1,1,k

+ ᾱ p̄qa0s1,iπ1,1,k+1 + (1 − δ0,k)pθπ1,i+1,k−1 + ( p̄ + pθ̄ )π1,i+1,k

+ pqs1,iπ2,1,k + p̄qa0s1,i π2,1,k+1 + ps1,iπ3,1,k + p̄a0s1,iπ3,1,k+1, i ≥ 1, k ≥ 0,
(3)

π2,i,k = (1 − δ0,k)pαθs2,i π1,1,k−1 + α( p̄ + pθ̄ )s2,i π1,1,k
+ (1 − δ0,k)pθπ2,i+1,k−1 + ( p̄ + pθ̄ )π2,i+1,k , i ≥ 1, k ≥ 0,

(4)

π3,i,k = (1 − δ0,k)pᾱq̄θs3,iπ1,1,k−1 + ᾱ( p̄ + pθ̄ )q̄s3,iπ1,1,k

+ (1 − δ0,k)pq̄θs3,iπ2,1,k−1 + ( p̄ + pθ̄ )q̄s3,i π2,1,k

+ (1 − δ0,k)pθπ3,i+1,k−1 + ( p̄ + pθ̄ )π3,i+1,k , i ≥ 1, k ≥ 0.
(5)

The normalization condition is

π0,0 +
∞∑

i=1

∞∑

k=1

π0,i,k +
3∑

j=1

∞∑

i=1

∞∑

k=0

π j,i,k = 1.

To solve Eqs. (1)–(5), let us define the following auxiliary function

Φ0,i (z) =
∞∑

k=1

π0,i,k zk, Φ j,i (z) =
∞∑

k=0

π j,i,k zk, i ≥ 1, j = 1, 2, 3.

In addition, we introduce the following generating functions

Φ0(x, z) =
∞∑

i=1

∞∑

k=1

π0,i,k zk xi , i ≥ 1, Φ j (x, z) =
∞∑

i=1

∞∑

k=0

π j,i,k zk xi , i ≥ 1, j = 1, 2, 3.

From Eq. (1), we have

pπ0,0 = ᾱ p̄qπ1,1,0 + p̄qπ2,1,0 + p̄π3,1,0. (6)

Multiplying both sides of Eqs. (2)–(5) by zk , and summing over k with Eq. (6),
we get

Φ0,i (z) = p̄Φ0,i+1(z) + ᾱ p̄qaiΦ1,1(z) + p̄qaiΦ2,1(z) + p̄aiΦ3,1(z) − paiπ0,0.

(7)

Φ1,i (z) = ( p̄ + pθ̄ + pθ z)Φ1,i+1(z) + p̄

z
s1,iΦ0,1(z) + ps1,iΦ0(1, z)

+ p̄a0 + pz

z
s1,i [ᾱqΦ1,1(z) + qΦ2,1(z) + Φ3,1(z)] + z − a0

z
ps1,iπ0,0.

(8)
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Φ2,i (z) = α( p̄ + pθ̄ + pθ z)Φ1,1(z) + ( p̄ + pθ̄ + pθ z)Φ2,i+1(z). (9)

Φ3,i (z) = ᾱ( p̄ + pθ̄ + pθ z)q̄s3,iΦ1,1(z) + ( p̄ + pθ̄ + pθ z)q̄s3,iΦ2,1(z)( p̄
+ pθ̄ + pθ z)Φ3,i+1(z).

(10)
Multiplying both sides of Eqs. (7)–(10) by xi , and summing over i yields

x − p̄

x
Φ0(x, z) = ᾱ p̄qΦ1,1(z)[A(x) − a0] + p̄qΦ2,1(z)[A(x) − a0] + p̄Φ3,1(z)[A(x) − a0]

− p[A(x) − a0]π0,0 − p̄Φ0,1(z).
(11)

Let x = 1 in Eq. (11). We obtain

pΦ0(1, z) = ᾱ p̄qΦ1,1(z)(1 − a0) + p̄qΦ2,1(z)(1 − a0)
+ p̄Φ3,1(z)(1 − a0) − p(1 − a0)π0,0 − p̄Φ0,1(z).

(12)

Let R(z) = p̄ + pθ̄ + pθ z. We have

x − R(z)

x
Φ1(x, z) = p̄

z Φ0,1(z)S1(x) + pΦ0(1, z)S1(x) + [ p̄a0+pz
z ᾱq S1(x) − R(z)]Φ1,1(z)

+ p̄a0 + pz

z
S1(x)[qΦ2,1(z) + Φ3,1(z)] + z − a0

z
pS1(x)π0,0.

(13)

x − R(z)

x
Φ2(x, z) = αR(z)Φ1,1(z)S2(x) − R(z)Φ2,1(z). (14)

x − R(z)

x
Φ3(x, z) = ᾱq̄ R(z)Φ1,1(z)S3(x) + R(z)q̄Φ2,1(z)S3(x) − R(z)Φ3,1(z).

(15)
Let x = p̄ in Eq. (11). We obtain

p[A( p̄) − a0]π0,0 = ᾱ p̄qΦ1,1(z)[A( p̄) − a0] + p̄qΦ2,1(z)[A( p̄) − a0]
+ p̄Φ3,1(z)[A( p̄) − a0] − p̄Φ0,1(z).

(16)

Let x = R(z). Substituting it into Eqs. (13)–(15) with Eq. (12), we have

R(z)Φ2,1(z) = αR(z)Φ1,1(z)S2(R(z)). (17)

Φ3,1(z) = ᾱq̄Φ1,1(z)S3(R(z)) + q̄Φ2,1(z)S3(R(z)). (18)

From the above equations, we obtain

pa0(1 − z)S1(R(z))π0,0 = (1 − z) p̄S1(R(z))Φ0,1(z)
+{[z + (1 − z) p̄a0]S1(R(z))B(z) − R(z)z}Φ1,1(z),

(19)
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where
B(z) = ᾱq + αq S2(R(z)) + [ᾱ + αS2(R(z))]q̄ S3(R(z)).

From Eqs. (16)–(19), we obtain

Φ0,1(z) = pz[A( p̄) − a0][R(z) − B(z)S1(R(z))]
[z + (1 − z) p̄ A( p̄)]B(z)S1(R(z)) − R(z)z

· π0,0

p̄
. (20)

Φ1,1(z) = p A( p̄)(1 − z)S1(R(z))

[z + (1 − z) p̄ A( p̄)]B(z)S1(R(z)) − R(z)z
· π0,0. (21)

Φ2,1(z) = p A( p̄)(1 − z)αS1(R(z))S2(R(z))

[z + (1 − z) p̄ A( p̄)]B(z)S1(R(z)) − R(z)z
· π0,0. (3.22)

Φ3,1(z) = p A( p̄)(1 − z)[ᾱ + αS2(R(z))]q̄ S1(R(z))S3(R(z))

[z + (1 − z) p̄ A( p̄)]B(z)S1(R(z)) − R(z)z
· π0,0. (22)

In order to obtain the the probability generating function of steady distribution of
Markov chain {Ym, m ≥ 1}, we will introduce the following Lemma, let

Λ(z) = [z + (1 − z) p̄ A( p̄)]S1(R(z))[ᾱq + αq S2(R(z)) + [ᾱ + αS2(R(z))]q̄ S3(R(z))]
− R(z)z.

In order to find the analytical solution for our system, we give two necessary
lemmas as follows:

Lemma 1 [14] If 0 ≤ x ≤ 1, then inequalities S1(x) ≤ x and S2(x) ≤ x are
established.

Lemma 2 [14] If ρ = ρ1 +ρ2 < 1, then Λ(z) > 0 holds for 0 ≤ z < 1. Under this
condition, the following limits exist

lim
z→1

1 − z

Λ(z)
= 1

1 − θ̄ p − θρ
,

where

Λ(z) = ( p̄ + pz)S1( p̄ + pθ̄ + pθ z)[ᾱ + αS2( p̄ + pθ̄ + pθ z)] − z( p̄ + pθ̄ + pθ z).

Sowe can obtain the limits exist based on the above inequalities andL’Hospitials’s
rule, then the proof completed.

Theorem 1 If θρ < θp + p̄ A( p̄), then the Markov chain {Ym, m ≥ 1} has the state
distribution, its probability generating functions are follows
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Φ0(x, z) = A(x) − A( p̄)

x − p̄
· pxz[R(z) − B(z)S1(R(z))]

Λ(z)
· π0,0.

Φ1(x, z) = S1(x) − S1(R(z))

x − R(z)
· px(1 − z)A( p̄)R(z)

Λ(z)
· π0,0.

Φ2(x, z) = S2(x) − S2(R(z))

x − R(z)
· αpx(1 − z)A( p̄)R(z)S1(R(z))

Λ(z)
· π0,0.

Φ3(x, z) = S3(x) − S3(R(z))

x − R(z)
· px(1 − z)A( p̄)q̄[ᾱ + αS2(R(z))]R(z)S1(R(z))

Λ(z)
· π0,0,

where

π0,0 = p̄ A( p̄) + θp − θρ

A( p̄)(1 − θ̄ p − θ̄ρ)
.

Proof From Eqs. (20)–(22) and Eqs. (11)–(15), we can give Φ0(x, z),Φ1(x, z),
Φ2(x, z),Φ3(x, z). By the regular condition π0,0+Φ0(1, 1)+Φ1(1, 1)+Φ2(1, 1)+
Φ3(1, 1) = 1,we obtain π0,0. When π0,0 > 0, we have θρ < θp + p̄ A( p̄), therefore
θρ < θp + p̄ A( p̄) is an ergodic conditions of Markov chain {Ym, m ≥ 1}.

From the above conclusion, we can obtain the following:

Corollary 1 (1) When the server is idle, the probability generating function of the
number of customers in the orbit is given by

π0,0 + Φ0(1, z) = A( p̄)[( p̄ + pz)B(z)S1(R(z)) − z R(z)]
Λ(z)

· π0,0.

(2) When the server is busy, the probability generating function of the number of
customers in the orbit is given by

Φ1(1, z) + Φ2(1, z) = A( p̄)R(z)

θ
· 1 − S1(R(z)) + αS1(R(z))[1 − S2(R(z))]

Λ(z)
· π0,0.

(3) When the server is vacation, the probability generating function of the number
of customers in the orbit is given by

Φ3(1, z) = q̄ A( p̄)R(z)

θ
· [1 − S3(R(z))][ᾱ + αS2(R(z))]S1(R(z))

Λ(z)
· π0,0.

(4) The probability generating function of the number of customers in the orbit is
given by

N (z) = π0,0 + Φ0(1, z) + Φ1(1, z) + Φ2(1, z) + Φ3(1, z)

= A( p̄)

θ
· (1 − θ z)R(z) − θ̄ B(z)S1(R(z))

Λ(z)
· π0,0.
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(5) The probability generating function of the number of customers in the system
is given by:

L(z) = π0,0 + Φ0(1, z) + zΦ1(1, z) + zΦ2(1, z) + Φ3(1, z)

= A( p̄)

θ
· θ̄ [R(z)z − B(z)S1(R(z))] + (1 − z)R(z)[ᾱ + αS2(R(z))]S1(R(z))]

Λ(z)
· π0,0.

Corollary 2 (1) The probability which the system is in idle period is by

π0,0 = p̄ A( p̄) + θp − θρ

A( p̄)(1 − θ̄ p + θ̄ρ)
.

(2) The probability which the system is in busy is by

Φ0(1, 1) + Φ1(1, 1) + Φ2(1, 1) + Φ3(1, 1) = A( p̄)(θp − θ̄ρ) − θ(p − ρ)

A( p̄)(1 − θ̄ p + θ̄ρ)
.

(3) The probability which the server is in idle period is by

π0,0 + Φ0(1, 1) = 1 − θ̄ p − θρ

1 − θ̄ p + θ̄ρ
.

(4) The probability which the server is in busy period is by

Φ1(1, 1) + Φ2(1, 1) = ρ1 + ρ2

1 − θ̄ p + θ̄ρ
.

(5) The probability which the server is in vacation period is by

Φ3(1, 1) = ρ3

1 − θ̄ p + θ̄ρ
.

(6) The number of customers is in the orbit is given by

E(N ) = lim
z→1

N ′(z)

= 2θ(p − ρ)[θp + p̄ A( p̄) + θ̄ p̄ρ A( p̄)] + θ(θ̄ p̄ A( p̄) + θ)[p2E(ρ) + 2F(ρ)]
2( p̄ A( p̄) + θp − θρ)(1 − θ̄ p + θ̄ρ)

.

(7) The mean customer number of system is

E(L) = E(N ) + θ
ρ1 + ρ2

1 − θ̄ p + θ̄ρ
.

where E(ρ) = β1,2 + αβ2,2 + q̄β3,2, F(ρ) = ρ1ρ2 + ρ2ρ3 + ρ1ρ3.
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Remark 1 Two special models.
(a) When α = 0, q = 1, our model can change to the discrete-time Geo/G/1retrial
queue system with a balking customer and general retrial time, we have the proba-
bility generating function of the system size as follows:

L(z) = A( p̄)

θ
· θ p̄(1 − z)S1(R(z)) − θ z(R(z) − S1(R(z))) + z(1 − S1(R(z)))R(z)

Λ(z)
π0,0,

where
Λ(z) = p̄ A( p̄)(1 − z)S1(R(z)) − z[R(z) − S1(R(z))],

its result coincides with the result in [5].
(b) When α = 0, θ = 1, our model can become a discrete time Geo/G/1 retrial

queue system with Bernoulli vacation and general retrial time, so we have

Λ(z) = p̄ A( p̄)(1 − z)S1( p̄ + pz)[q + q̄ S3( p̄ + pz)]
− z[( p̄ + pz) − S1( p̄ + pz)(q + q̄ S3( p̄ + pz))],

therefore, its probability generating function of system size is follows:

L(z) = A( p̄)(1 − z)( p̄ + pz)S1( p̄ + pz)

Λ(z)
π0,0,

where

π0,0 = p + p̄ A( p̄) − ρ1 − ρ3

A( p̄)
,

its result coincides with the result in [6].
(c) When α = 0, θ = 1, q = 1, our model can become a discrete time

Geo/G/1retrial queue system with general retrial time, then obtain

Λ(z) = p̄ A( p̄)(1 − z)S1( p̄ + pz) − z[( p̄ + pz) − S1( p̄ + pz)],

therefore, its probability generating function of system size is follows:

L(z) = A( p̄)(1 − z)( p̄ + pz)S1( p̄ + pz)

Λ(z)
π0,0,

where

π0,0 = p + p̄ A( p̄) − ρ1

A( p̄)
.

It coincides with the result in [7].
(d) Let a0 = 1 in the result of case (c), we have A( p̄) = 1, π0,0 = 1 − ρ, our

model can become a discrete-time Geo/G/1/∞ retrial queue system with random
service policy and general retrial time, its probability generating function of system
size is follows:
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L(z) = (1 − ρ1)(1 − z)S1( p̄ + pz)

S1( p̄ + pz) − z
π0,0.

It is the probability generating function of a discrete time Geom/G/1 retrial queue
which coincides with the result in [8].

Remark 2 Let a0 = 1 (it is (A( p̄) = 1), the the probability generating function of
the system size is in our model as follows:

L(z) = θ̄ [R(z)z − B(z)S1(R(z))] + (1 − z)R(z)[ᾱ + αS2(R(z))]S1(R(z))

θ( p̄ + pz)B(z)S1(R(z)) − z R(z)
· 1 − θ̄ p − θρ

1 − θ̄ p + θ̄ρ
,

when the server is idle, the first customer immediately accepts his service in the orbit.

4 Stochastic Decomposition

In this section, the stochastic decomposition of the probability generating function
of system size can be expressed as follows

L(z) = π0,0 + Φ0(1, z)

π0,0 + Φ0(1, 1)

× θ̄[R(z)z − B(z)S1(R(z))] + (1 − z)R(z)[ᾱ + αS2(R(z))]S1(R(z))

θ( p̄ + pz)B(z)S1(R(z)) − z R(z)
· 1 − θ̄ p − θρ

1 − θ̄ p + θ̄ρ
.

Theorem 2 The total number of customers in the system L can be decomposed as
the sum of two independent random variables, one of which is the number L ′ of
customers in the orbit when the server is idle, and the other one is the number L ′′ in
the Geom/G/1/∞ queue with the balking customer, the second optional service and
Bernoulli vacation. That is, L = L ′ + L ′′,

L(z) = L ′(z) × L ′′(z),

where

L ′′(z) = θ̄ [R(z)z − B(z)S1(R(z))] + (1 − z)R(z)[ᾱ + αS2(R(z))]S1(R(z))

θ( p̄ + pz)B(z)S1(R(z)) − z R(z)

× 1 − θ̄ p − θρ

1 − θ̄ p + θ̄ρ
,

L ′(z) = π0,0 + Φ0(1, z)

π0,0 + Φ0(1, 1)
.

We note that L ′′(z) is the probability generating function of the number of customers
in the classical Geo/G/1 queue system, it is consistent with the results of Remark 2.
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5 Conclusion

Based on Geom/G/1 retrial queue with the balking customer and the second optional
service, this paper considers further the Bernoulli vacation strategy and retrial time
following a general distribution. Using the supplementary variable technique to ana-
lyze the Markov chain, we derive the probability generating functions of the system
state distribution.
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Controlled Remote Information
Concentration via GHZ-type States

Jin-wei Wang, Lan Shu, Zhi-wen Mo and Zhi-hua Zhang

Abstract In this paper, we propose two schemes of controlled remote informa-
tion concentration via maximally entangled GHZ-type states and non-maximally
entangled GHZ-type states. The necessary measurements and operations are given
detailedly.

Keywords Remote information concentration · Qubit · Telecloning · GHZ state

1 Introduction

Quantum entangled states play a pivotal role in quantum information theory. Since
Hillery et al. [1] proposed an original scheme of quantum teleportation, in which
Alice transmitted an unknown quantum state to Bob via maximally entangled three-
qubitGHZ states, different schemes have been investigatedwith differently entangled
states as the channel, such as Bell states [1–3], GHZ states [4–8],W states [9, 10] and
other entangled states [11, 12]. The remote quantum state cloning is the important
one of quantum tasks.

Although we all know that an unknown quantum state can not be perfectly copied
because of the quantumno-cloning theory [13], approximate or probabilistic quantum
cloning has attracted much attention to its potential applications in the quantum
information science [14–16]. For realizing remote quantum cloning, Muro et al.
introduced the concept of telecloning [17, 18], which is the combination of quantum
cloning and quantum teleportation. As the reverse process of telecloning, remote
quantum information concentration was first introduced by Murao and Vedral [17].
From then on, More and more people devote themselves to studying in this field
[19–21]. Recently,Wang andTang have proposed a scheme for the reversal of ancilla-
free phase-covariant telecloning via W states [22]. Based on this study of Wang, Bai
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et al., have proposed some schemes of remote quantum information concentration
via GHZ-type states [23]. Inspired by those papers, we try to study this reversal of
symmetrical 1 → 2 telecloning scheme by using some GHZ-type states.

This paper is organized as follows. We firstly investigate a scheme of controlled
quantum information concentration by using GHZ-type states as quantum channel
in Sect. 2. In Sect. 3, we have study a controlled quantum information concentra-
tion scheme via the partially entangled GHZ-type states. Finally, discussions and
conclusions are given in Sect. 4.

2 Controlled Information Concentration via Maximally
GHZ-type Entangled States

Let us start to introduce our scheme of controlled information concentration by using
maximally entangled GHZ-type states as the channel. We suppose the information
of an unknown equatorial state

|γ〉 = 1√
2
(|0〉 + eia |1〉)

is diluted to a composite system consisting of qubits Alice and Bob, which was held
by two separate parties. And assume that the two qubits are in a symmetrical cloning
state |φ〉A′ B′

|γ〉A′ B′ = 1√
2
(|00〉 + eia |11〉) here a ∈ [0, 2π). (1)

Now our goal is to concentrate the quantum information |γ〉A′ B′ = 1√
2
(|00〉 +

eia |11〉) to a single state hold by David, |γ〉D = 1√
2
(|0〉 + eia |1〉), i.e., |γ〉A′ B′ −→

|γ〉D . That is to say that wewant to recover the equatorial state |γ〉 from the two-qubit
state |γ〉A′ B′ .

For achieving this quantum task, we choice a four qubits maximally entangled
GHZ-type entangled state |φ2〉 as the channel in our scheme. This maximally entan-
gled GHZ-type states are expressed as

|φ2〉 = 1√
8
(|0000〉 + |0010〉 + |0101〉 + |0111〉

+|1000〉 − |1010〉 − |1101〉 + |1111〉), (2)

which can be transformed from the GHZ states

|φ0〉 = 1√
2
(|0000〉 + |1111〉). (3)



Controlled Remote Information Concentration … 269

Fig. 1 A quantum circuit to
generate the 4-qubit
GHZ-type states

H

H

1

2

3

4
|φ0 |φ0 |φ2

As showed in Fig. 1, by implemented two Hadamard operations on the fourth qubit
and the fifth qubit in Eq.3, the GHZ state |φ0〉 is transformed into the following state

|φ′
0〉 = 1√

8
(|0000〉+|0010〉+|0001〉+|0011〉+|1100〉−|1110〉−|1101〉+|1111〉).

Through two CNOT gates, we obtain the maximally entangled GHZ state |φ2〉 in
the end.

Now the total physical system states, which are hold by Alice, Bob, Charlie and
David, can be expressed as follows

|ψ〉A′ AB′ BC D = |γ〉A′ B′ ⊗ |φ〉ABC D

= 1
4 (|000000〉 + |000010〉 + |000101〉 + |000111〉 + |010000〉 − |010010〉 −

|010101〉 + |010111〉 + eia |101000〉 + eia |101010〉 + eia |101101〉 + eia |101111〉 +
eia |111000〉 − eia |111010〉 − eia |111101〉 + eia |111111〉)A′ AB′ BC D .

where the qubits A′ A belong to Alice, qubits B ′ B to Bob, and qubits C, D to
Charlie and David respectively.

Firstly, Alice takes a Bell measurement on the two qubits AA′ hold by herself,
and broadcast her outcomes to the others on a classic channel. The total system states
can be rewritten as

|ψ〉 = 1√
32

|Φ+〉A′ A(|0000〉+|0010〉+|0101〉+|0111〉+eia |1000〉−eia |1010〉−
eia |1101〉 + eia |1111〉)

+ 1√
32

|Φ−〉A′ A(|0000〉+|0010〉+|0101〉+|0111〉−eia |1000〉+eia |1010〉+
eia |1101〉 − eia |1111〉)

+ 1√
32

|Ψ +〉A′ A(|0000〉−|0010〉−|0101〉+|0111〉+eia |1000〉+eia |1010〉+
eia |1101〉 + eia |1111〉)

+ 1√
32

|Ψ −〉A′ A(|0000〉−|0010〉−|0101〉+|0111〉−eia |1000〉−eia |1010〉−
eia |1101〉 − eia |1111〉),

where |Φ±〉 = 1√
2
(|00〉 ± |11〉), |Ψ ±〉 = 1√

2
(|01〉 ± |10〉).

Meanwhile, Bob also measures her qubits B B ′ on the basis {|Φ±〉, |Ψ ±〉} and
broadcasts her measuring results. Thus, after Bob have finished her measurement,
the initial states of total physical system can be rewritten as
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|ψ〉 = 1
8 |Φ+〉(|Φ+〉(|00〉 + |10〉 − eia |01〉 + eia |11〉) + |Φ−〉(|00〉 + |10〉

+ eia |01〉 − eia |11〉) + |Ψ +〉(|01〉 + |11〉 + eia |00〉 − eia |10〉) + |Ψ −〉(|01〉 + |11〉
− eia |00〉 + eia |10〉))

+ 1
8 |Φ−〉(|Φ+〉(|00〉+|10〉+eia |01〉−eia |11〉)+|Φ−〉(|00〉+|10〉−eia |01〉

+ eia |11〉) + |Ψ +〉(|01〉 + |11〉 − eia |00〉 + eia |10〉) + |Ψ −〉(|01〉 + |11〉 + eia |00〉
− eia |10〉))

+ 1
8 |Ψ +〉(|Φ+〉(|00〉−|10〉+eia |01〉+eia |11〉)+|Φ−〉(|00〉−|10〉−eia |01〉

−eia |11〉)+|Ψ +〉(−|01〉+|11〉+eia |00〉+eia |10〉)+|Ψ −〉(−|01〉+|11〉−eia |00〉
+ eia |10〉))

+ 1
8 |Ψ −〉(|Φ+〉(|00〉−|10〉−eia |01〉−eia |11〉)+|Φ−〉(|00〉−|10〉+eia |01〉

+eia |11〉)+|Ψ +〉(−|01〉+|11〉−eia |00〉−eia |10〉)+|Ψ −〉(−|01〉+|11〉+eia |00〉
+ eia |10〉)).

In term ofAlice andBob’smeasuring results, David can recover the right quantum
qubit |γ〉 = 1√

2
(|0〉 + eia |1〉) by taking an appropriate Pauli operation on her qubit

D with Charlie’s help. For example, if Alice and Bob get the results |Φ−〉|Ψ +〉 after
taking their measurement respectively, the quantum states hold by Charlie and David
will be

|ψ〉C D = 1
2 (|00〉 − |10〉 − eia |01〉 − eia |11〉).

If Charlie do not allow David to get this quantum information coming from Alice
and Bob, she do nothing about her qubit C . Otherwise, she need to take a classical
measurement on her qubit C with the basis {0, 1} and broadcast her outcome to the
others via classical channel. Now the quantum states hold in Charlie and David can
be rewritten as follows

|ψ〉C D = 1
2 (|0〉(|0〉 − eia |1〉) − |1〉(|0〉 + eia |1〉)).

According to all of the measuring results informed by Alice, Bob and Charlie,
David can recover the quantum information after taking somePauli operations,which
can be expressed as σ0 = |0〉〈0| + |1〉〈1|, σx = |0〉〈1| + |1〉〈0|, σy = −i |0〉〈1| +
i |1〉〈0|, σz = |0〉〈0| − |1〉〈1|, on the qubit D hold by herself. Let back to the above
instance. If the measuring results of Charlie is |0〉, David can take the operation σx on
the qubit D to get the qubit |γ〉. On the other hand, if the result of Charlie’ measuring
is |1〉, David can also get the qubit |γ〉 by taking the Pauli operation σ0 on the qubit D.

Moreover, when Alice and Bob get any other measuring results, David can also
effectively recover the state |γ〉 after taking some appropriate Pauli operations on the
qubit D hold by herself with the agreement of Charlie.

3 Controlled Information Concentration Via Partially
Entangled GHZ-type States

In this section, we study a quantum information concentration scheme via a partially
entangled GHZ-type sates channel. Just as above scheme, we also suppose that the
symmetrical two-qubit states hold by Alice and Bob are |γ〉A′ B′ (Eq. 1), and our goal
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Fig. 2 A quantum circuit to
generate the 5-qubit
GHZ-type states

H

H
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is to concentrate this quantum information to a single state |γ〉 = 1√
2
(|0〉 + eia |1〉).

However, in this scheme, we replace the maximally entangled GHZ-type states |φ2〉,
which are work as the quantum channel in the first scheme, with a partially entangled
GHZ-type states |φ3〉. The five-qubit partially entangled GHZ-type states |φ3〉 are
expressed as

|φ3〉 = 1√
8
(sinθ|00000〉 + sinθ|00100〉 + sinθ|10000〉 + sinθ|10100〉

+ sinθ|01001〉 + sinθ|01101〉 + sinθ|11001〉 + sinθ|11101〉
+ cosθ|00010〉 − cosθ|00110〉 − cosθ|10010〉 + cosθ|10110〉
cosθ|01011〉 − cosθ|01111〉 + cosθ|11011〉 − cosθ|11111〉). (4)

Similar to the quantum states |φ2〉, this partially entangled GHZ-type states can also
be transformed by a partially entangled GHZ state

|φ1〉 = sinθ|00000〉 + cosθ|11111〉, θ ∈ [0, 2π). (5)

As showed in Fig. 2, by implemented three Hadamard operations on the first
qubit, the third qubit and the fifth qubit in Eq.5, the five-qubit GHZ-type states |φ1〉
is transformed into the following states

|φ′
1〉 = 1√

8
(sinθ|00000〉 + sinθ|00100〉 + sinθ|10000〉 + sinθ|10100〉 + sinθ|00001〉

+ sinθ|00101〉 + sinθ|10001〉 + sinθ|10101〉 + cosθ|01010〉 − cosθ|01110〉
− cosθ|11010〉 + cosθ|11110〉 − cosθ|01011〉 + cosθ|01111〉 + cosθ|11011〉

− cosθ|11111〉),
(6)
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Performing two C-NOT gates onto the second qubit of the |φ1〉′ in Eq.6, we obtain
the partially entangledGHZ-type states |φ3〉 in the end. So that the total system states,
which are hold by Alice, Bob, Charlie and David, can be expressed as the follows

|Ψ 〉A′ AB′ BC ′C D = |γ〉A′ B′ ⊗ |φ3〉ABC ′C D
= 1

4 (sinθ|0000000〉 + sinθ|0000100〉 + sinθ|0100000〉 + sinθ|0100100〉
+ sinθ|0001001〉 + sinθ|0001101〉 + sinθ|0101001〉 + sinθ|0101101〉
+ cosθ|0000010〉 − cosθ|0000110〉 − cosθ|0100010〉 + cosθ|0100110〉
− cosθ|0001011〉 + cosθ|0001111〉 + cosθ|0101011〉 − cosθ|0101111〉
+ eiasinθ|1010100〉 + eiasinθ|1010000〉 + eiasinθ|1110000〉 + eiasinθ|1110100〉
+ eiasinθ|1011001〉 + eiasinθ|1011101〉 + eiasinθ|1111001〉 + eiasinθ|1111101〉
+ eiacosθ|1010010〉 − eiacosθ|1010110〉 − eiacosθ|1110010〉 + eiacosθ|1110110〉
− eiacosθ|1011011〉+eiacosθ|1011111〉+eiacosθ|1111011〉−eiacosθ|1111111〉),

where the qubits A′ A belong to Alice, qubits B′B to Bob, qubits C ′C to Charlie and qubit
D to David respectively. Now the total quantum system states,which are hold by Alice, Bob,
Charlie and David, can be rewritten as

|ψ〉 = 1
8 |Φ+〉A′ A(|Φ+〉B′ B(sinθ|000〉 + sinθ|100〉 + cosθ|010〉 − cosθ|110〉
+ eiasinθ|001〉 + eiasinθ|101〉 + eiacosθ|011〉 − eiacosθ|111〉)
+ |Φ−〉B′ B(sinθ|000〉 + sinθ|100〉 + cosθ|010〉 − cosθ|110〉
− eiasinθ|001〉 − eiasinθ|101〉 − eiacosθ|011〉 + eiacosθ|111〉)
+ |Ψ +〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|011〉 + cosθ|111〉
+ eiasinθ|000〉 + eiasinθ|100〉 − eiacosθ|010〉 + eiacosθ|110〉)
+ |Ψ −〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|011〉 + cosθ|111〉
− eiasinθ|000〉 − eiasinθ|100〉 + eiacosθ|010〉 − eiacosθ|110〉))

+ 1
8 |Φ−〉A′ A(|Φ+〉B′ B(sinθ|000〉 + sinθ|100〉 + cosθ|010〉 − cosθ|110〉
− eiasinθ|001〉 − eiasinθ|101〉 − eiacosθ|011〉 + eiacosθ|111〉)
+ |Φ−〉B′ B(sinθ|000〉 + sinθ|100〉 + cosθ|010〉 − cosθ|110〉
+veiasinθ|001〉 + eiasinθ|101〉 + eiacosθ|011〉 − eiacosθ|111〉)
+ |Ψ +〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|011〉 + cosθ|111〉
−eiasinθ|000〉 − eiasinθ|100〉 + eiacosθ|010〉 − eiacosθ|110〉)
+ |Ψ −〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|011〉 + cosθ|111〉
+ eiasinθ|000〉 + eiasinθ|100〉 − eiacosθ|010〉 + eiacosθ|110〉))

+ 1
8 |Ψ +〉A′ A(|Φ+〉B′ B(sinθ|000〉 + sinθ|100〉 − cosθ|010〉 + cosθ|110〉
+ eiasinθ|001〉 + eiasinθ|101〉 − eiacosθ|011〉 + eiacosθ|111〉)
+ |Φ−〉B′ B(sinθ|000〉 + sinθ|100〉 − cosθ|010〉 + cosθ|110〉
− eiasinθ|001〉 − eiasinθ|101〉 + eiacosθ|011〉 − eiacosθ|111〉)
+ |Ψ +〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|111〉 + cosθ|011〉
+ eiasinθ|000〉 + eiasinθ|100〉 + eiacosθ|010〉 − eiacosθ|110〉)
+ |Ψ −〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|111〉 + cosθ|011〉
− eiasinθ|000〉 − eiasinθ|100〉 − eiacosθ|010〉 + eiacosθ|110〉))

+ 1
8 |Ψ −〉A′ A(|Φ+〉B′ B(sinθ|000〉 + sinθ|100〉 − cosθ|010〉 + cosθ|110〉
− eiasinθ|001〉 − eiasinθ|101〉 + eiacosθ|011〉 − eiacosθ|111〉)
+ |Φ−〉B′ B(sinθ|000〉 + sinθ|100〉 − cosθ|010〉 + cosθ|110〉
+ eiasinθ|001〉 + eiasinθ|101〉 − eiacosθ|011〉 + eiacosθ|111〉)
+ |Ψ +〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|111〉 + cosθ|011〉
− eiasinθ|000〉 − eiasinθ|100〉 − eiacosθ|010〉 + eiacosθ|110〉)
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+ |Ψ −〉B′ B(sinθ|001〉 + sinθ|101〉 − cosθ|111〉 + cosθ|011〉
+ eiasinθ|000〉 + eiasinθ|100〉 + eiacosθ|010〉 − eiacosθ|110〉)).

Just as the first scheme, Alice takes a Bell measurement on her qubits A′ A and Bob takes
a bell measurement on her qubits B′B respectively. Then, they all broadcast their measuring
results on a classical channel. Then Charlie, as the controller, will do nothing on her qubits
if she can not allow David to recover the quantum information coming from Alice and Bob.
Otherwise she must take a classical measurement on the qubits C ′C hold by herself under
the basis {00, 01, 10, 11} one by one and inform David of her measuring results. Taking some
appropriate Pauli operations on the qubit D, David can get the qubit |γ〉 = 1√

2
(|0〉 + eia |1〉).

For example, if themeasuring results ofAlice, Bob andCharlie are |Ψ −〉A′ A|Φ+〉B′ B |01〉C ′C ,
the qubit states hold in David will be

|ψ〉D = 1√
2
(cosθ|1〉 − eiacosθ|0〉) = 1√

2
(|1〉 − eia |0〉).

Then, by taking two Pauli operations σzσx on the qubit D, David can recover the qubit|γ〉
coming from Alice and Bob. That is |γ〉 = σzσx |ψ〉D . Furthermore, if Alice, Bob and Charlie
get other result when they have taken their measured on the qubit hold by themselves, David
can recover the quantum information |γ〉 by taking some appropriate Pauli operations.

4 Conclusion

In this work, we firstly introduce a optimal remote quantum information concentration scheme
by using maximally entangled GHZ-type states, and then extend the scheme to the case with a
five qubits partially entangled GHZ-type state as the channel. Contrast to other schemes [23],
All of the two schemes are implemented deterministically and need no auxiliary qubit in the
last step.
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A New Precipitable Water Vapor STARMA
Model Based on Newton’s Method

Zhihui Li and Zhihong Miao

Abstract The STARMA (space-time autoregressive moving average) model is
introduced in 2002–2008 monthly PWV fitting and forecast. To enhance the model’s
ability of dealing with satellite remote sensing raster data, this article extends the
parameter estimation process in the STARMA model by augmenting the Newton’s
method to high dimensions for solving systemof nonlinear equations, and the process
of parameter estimation is elaborated. This operation is validated by real data exper-
iment results. The confirmation results of this method reveals that the STARMA
model has good accuracy in both fitting and predicting.

Keywords Space-time series modeling · STARMA model · Newton’s method ·
Precipitable water vapour (PWV)

1 Introduction

Everything is in constant movement and development, and during the process of
exploring the regularity of a variety of real world phenomena, we often find that a
lot of observations and measurements have closely relationship with last moment.
And there are a lot of observations change synchronized at neighboring regions. For
example, the wheat harvest of a certain country during this year can be affected by
the harvest during the previous year at the same place and at the neighboring country.

Therefore, STARMA (Space-Time Autoregressive Moving Average) model has
attracted much attention [1–15]. STARMA model has three STAR models charac-
terized by linear dependencies in both space and time.
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Precipitable water vapour (PWV) [16] is defined as the equivalent to the height
of liquid precipitation that would result from condensing all the water vapour in
a specified column of atmosphere from the surface to the top of the atmosphere,
which is a critical indicator of atmospheric water vapor and water resource of the
atmosphere. This papermainly focuses on parameter estimation process of STARMA
model for PWV spatial and temporal trend prediction.

Crespo [17] tried to give a short-term forecast for satellite images with STAR
model firstly. But he didn’t refer to how to solve the parameter estimation nonlinear
in STARMA model. Hence, the Newton’s method is proposed in this paper in order
to apply STARMA model in satellite images sequence prediction.

2 STARMA Model

STARMA model is the extension of ARMA model into spatial-temporal domain.
Suppose Zi,t is the observation of the space-time random variable at site i (i =
1, 2, . . ., N ) and time t. Let Zt be a multivariate time series of N components. W(l)

has elements w(l) (i, j) weighting sequence of N × N spatial contiguity matrices.
With elements w (i, j) > 0 if locations i and j are contiguous at spatial lag l, and w
(i , j) = 0 elsewhere.

Then the general form of the STARMA model is defined as [18]:

Zt =
p∑

k=1

r∑

l=0

φkl W
(l)Zt−k −

q∑

k=1

s∑

l=0

θkl W
(l)εt−k + εt , (1)

where p and r are the maximum autoregressive temporal and spatial orders, respec-
tively; q and s are the maximummoving average temporal and spatial orders, respec-
tively. φkl and θkl are parameters of the autoregressive and moving average at tem-
poral lag kand spatial lag l, respectively, and εt = [ε1,t , ε2,t , . . . , εN ,t ]′ is normally
independently random noise vector at time t .

The STARMA model has two special subclasses. When models that contain no
autoregressive term (p = 0) are considered as Space TimeMoving Average (STMA)
model. When q = 0 the class is considered as Space Time Auto Regressive (STAR)
model.

3 Parameter Estimation Based on Extensive Newton’s
Iteration Method

Basically, the estimation process of parameters φkl and θkl from the STARMAmodel
can be conducted byminimizing the residual sumof squares, also knownasmaximum
likelihood method:
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s(β̂) =
T∑

t=1

(Zt −
p∑

k=1

λk∑

l=0

φ̂kl W
(l)Zt−k +

q∑

k=1

mk∑

l=0

θ̂kl W
(l)εt−k)

2, (2)

where T is the total number of observations in time, estimation of the parameters
β̂ = [φ̂10, φ̂11, . . . , φ̂pλ, θ̂10, θ̂11, . . . , θ̂qm]′ are what wewant to be determined. This
is a quadratic nonlinear optimization problem.

For linear problem, maximum likelihood estimation can be solved with lin-
ear estimation method. For example, in the estimation process of STAR model,
all of the observations can be simplified into a linear model Z = X� + E .
Then the best linear unbiased estimation can be calculated by �̂ = (X ′ X)−1X ′Z ,
where Z = [Z1, Z2, . . . , ZT ]′ represents the observations, model parameters � =
[φ10, φ11, φ20, φ21]′, random error terms E = [ε1, ε2, . . . , εT ]′, and X is the max
matrix.

However, the STMA model and STARMA model are nonlinear, so the above-
mentioned linear estimation method may not be useful. The error terms εt is white
noise, therefore its average comes to zero and variancematrix comes toσ 2 I . The like-
lihood function for nonlinear spatial-temporal model can be acquired from standard
normal joint distribution of the error terms [19]:

L(ε|φ, θ, σ 2) = (2π)−T N/2|σ 2|−T N/2 exp(− 1
2σ 2 ε

′ Iε)
= (2π)−T N/2|σ 2|−T N/2 exp(− s(β̂)

2σ 2 ).
(3)

Its logarithmic form of above equation:

ln L = −(T N/2) ln(2π) − (T N/2) ln(σ 2) − (1/2σ 2)s(β̂), (4)

where s(β̂) is the squared sum of error terms. If we want to get the maximum of
log-likelihood function, that is to get the minimum of s(β̂). Then the parameters φ, θ
and σ 2 can be obtained by computing the partial derivative vector of above equation
(∂L/∂φ = 0, ∂L/∂θ = 0, ∂L/∂σ 2 = 0).

Actually the likelihood equations constitute by p + q + 1 transcendental equa-
tions [20], so we can only get analytical solutions of these equations. But the analyt-
ical solutions is obviously very difficult in spatial-temporal model, especially when
we predict the spatial-temporal trend of image or picture. Therefore, in this article
we consider expanding the Newton iteration method into high dimensions in order
to obtain the approximate solutions.

When exact solutions become very difficult, or sometimes impossible, Newton’s
method is a very simple and effective method to solving equations with approximate
solutions.

The spatial-temporal extension of Newton’s method has four steps.
(1) First of all, according to the linear parameter estimation method, we get the

partial correlation coefficient η̂kl from high order STAR model. The process can
solve with Yule-Walker function,
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Z∗
t =

u∑

k=1

v∑

l=0

η̂kl W
(l)Z∗

t−k + ε∗
t , (5)

where u is the maximum temporal lag, v is the maximum spatial, and they are all
higher than defined from spatial-temporal autocorrelation function (STACF) and
spatial-temporal partial correlation function (STPACF). Z∗

t means the sample at
time t .

(2)Afterwe get the parameter η̂kl , we can use the following equation to estimate ε∗
t

ε∗
t = Z∗

t −
u∑

k=1

v∑

l=0

η̂kl W
(l)Z∗

t−k . (6)

(3) For the time being, we introduce linear estimation method to obtain α̂ which
represents the initial value of β̂:

s(α̂) =
T∑

t=m+1

(Zt −
p∑

k=1

λk∑

l=0

φ̂kl W
(l)Zt−k +

q∑

k=1

mk∑

l=0

θ̂kl W
(l)εt−k)

2, (7)

then:
α̂ = (X ′ X)−1X ′, (8)

where  = [Zm+1, Zm+2, . . . , ZT ]′ the value of m is a very important factor in
deciding whether matrix X is reversible, and t = m+1, …, T . According to the least
square method, X can be expressed as:

X =

⎡

⎢⎢
⎣

Zm W (1)Zm · · · W (r)Zm Zm−1 · · · W (r)Zm−1

Zm+1 W (1)Zm+1 · · · W (r)Zm+1 Zm · · · W (r)Zm

· · · · · · · · · · · · · · · · · · · · ·
ZT −1 W (1)ZT −1 · · · W (r)ZT −1 ZT −2 · · · W (r)ZT −2

...
...
...

...
...
...

...
...
...

ε̂m W (1)ε̂m · · · W (r)ε̂m ε̂m−1 · · · W (r)ε̂m−1 · · ·
ε̂m+1 W (1)ε̂m+1 · · · W (r)ε̂m+1 ε̂m · · · W (r)ε̂m · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

ε̂T −1 W (1)ε̂T −1 · · · W (r)ε̂T −1 ε̂T −2 · · · W (r)ε̂T −2 · · ·

⎤

⎥⎥
⎦ ,

(4) Based on Newton’s iterative method, β̂ can be approximately reach from α̂.
According toNewton’smethod, Gradient operator∇ f (x (k)) andLaplace operator

∇2 f (x (k)) should be calculated respectively. That means we need to calculate∇s(x)

and ∇2s(x) in STARMA model.
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Suppose Ft (x) = Zt −∑p
k=1

∑λk
l=0 φ̂kl W (l)Zt−k +∑q

k=1

∑mk
l=0 θ̂kl W (l)εt−k , then

∇s(x) can be expressed as:

∇s(x) = 2
T∑

t=1

FT
t (x)

∂ F

∂x
, (9)

where x represents β̂ = [φ̂10, φ̂11, . . . , φ̂pλ, θ̂10, θ̂11, . . . , θ̂qm]′. Thenweuse column
vector to show ∇s(x):

∇s(x) =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

...

2
T∑

t=1
FT

t (:, t) ∂ F
∂φkl

...

− − − − − − − − −
...

2
T∑

t=1
FT

t (:, t) ∂ F
∂θkl

...

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

, (10)

where the upper half have p(λ + 1) elements, and the lower half have q(m + 1)
elements. Suppose Jt,i = ∂ Ft

∂xi
, then ∇2s(x) could be written as:

∇2s(x) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

... | ...

2
T∑

t=1
Jt,φ Jt,φ | 2

T∑

t=1
Jt,φ Jt,θ

... | ...

− − − − −− | − − − − −−
... | ...

2
T∑

t=1
Jt,θ Jt,φ | 2

T∑

t=1
Jt,θ Jt,θ

... | ...

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

. (11)

After several iterations, we can terminate the iteration process when
∣∣x (k+1) − xk

∣∣ ≤
ε. At this moment, xk+1 is the approximate optimal solution.
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4 Case Study on PWV STARMA Model

In this section, a case study on PWV STARMA model is presented to demonstrate
the feasibility and effectiveness of the proposed approach. The details are described
below, beginning with PWV data collection.

4.1 PWV Data Collection

The original data of this section come from MODIS MOD08 Gridded Atmospheric
Product (https://wist.echo.nasa.gov). Its spatial resolution is 1km with daily, ten
days and monthly composite data. Average monthly PWV data was used in this case
(Fig. 1).

A total number of 84 views of MODIS monthly data were chosen from 2002 to
2008. Where the first 72 were used to construct the model, and the last 12 monthly
data were specially used to predict. Figure 2 shows the monthly PWV data in 2007.

4.2 Model Construction

The main point of this article is to introduce the estimation method, so the compu-
tation of STACF and STPACF could refer to Pfeifer [7, 8].

According to the STACF and STPACF in Tables 1 and 2, the model can be defined
intoSTARMA(2, 2). Thatmeans p = 2 andq = 2. So theSTARMAmodel is defined
as:

Fig. 1 MOD08 PWV distribution in China

https://wist.echo.nasa.gov
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Fig. 2 Monthly PWV data in 2007

Table 1 Spatial-temporal autocorrelation functions for STARMA model

Spatial lag (h)
Temporal lag (k)

0 1 2

1 –0.1809 –0.1603 –0.1615

2 –0.3167 –0.2794 –0.2847

3 –0.0794 –0.0735 –0.0752

4 0.0038 0.00253 0.0264

5 –0.0015 –0.0013 –0.0013

6 0.0012 0.0016 0.0095
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Table 2 Spatial-temporal partial autocorrelation functions for STARMA model

Spatial lag (h)
Temporal lag (k)

0 1 2

1 –0.5694 –0.1201 0.1142

2 –0.7715 –0.1249 0.0864

3 –0.0930 –0.0246 0.0882

4 0.0726 –0.0471 0.0717

5 0.0411 –0.0454 –0.0404

6 –0.0305 –0.0407 0.0249

Z(t) = ϕ10(t − 1) − ϕ11W (1)Z(t − 1) − ϕ12W (2)Z(t − 1)

− ϕ20Z(t − 2) − ϕ21W (1)Z(t − 2) − ϕ22W (2)Z(t − 2)

+ ε(t) − θ10ε(t − 1) − θ11W (1)ε(t − 1) − θ12W (2)ε(t − 1) (12)

− θ20ε(t − 2) − θ21W (1)ε(t − 2) − θ22W (2)ε(t − 2)

There are 12 parameters need to be specified, β̂ = [φ̂10, φ̂11, . . . , φ̂22, θ̂10, θ̂11,

. . . , θ̂22]′.
Then extensive Newton’s iteration method is applied in the estimation process.

4.3 Model Validation

The results of these 12 parameters and their evaluation are shown in Table 3. In order
to make the model more simplified and effective, significant tests are required. If a

Table 3 STARMA parameters estimation and significant tests

Parameter estimation Value T test P value

ϕ10 –2.6578 41.3269 <0.0001

ϕ11 –0.2337 2.3058 <0.01

ϕ12 0.0989 1.3866 0.085

ϕ20 –1.3542 38.4497 <0.0001

ϕ21 –0.3133 10.0545 <0.0001

ϕ22 –0.095 2.3757 <0.01

θ10 0.0807 0.4954 0.311

θ11 0.0316 0.2099 0.418

θ12 0.0095 0.0870 0.466

θ20 0.0889 0.9494 0.173

θ21 –0.0324 0.3224 0.374

θ22 0.0245 0.3126 0.378



A New Precipitable Water Vapor STARMA Model Based on Newton’s Method 283

Fig. 3 PWV fitting results from STARMA model in June, 2003

Fig. 4 PWV fitting results from STARMA model in November, 2003

parameter is not significant, it means that the independent variable corresponding to
this parameter is not obvious, thus the variable can be deleted from the model.

When P is 0.05, there is 95% probability to refuse the assumption that the variable
is uncorrelated. In statistics, generally P< 0.05was considered significantly efficient,
and P < 0.01 was considered very significant.

From Table 3, it is obviously found that only some parameters are significantly
efficient, which are ϕ10, ϕ11, ϕ12, ϕ20, ϕ21, ϕ22. These parameters θ10, θ11, θ12, θ20,
θ21, θ22 are not significant, so they can be deleted from the model.

Therefore, this model could be further optimized into STAR(2, 0).
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Fig. 5 PWV prediction results from STARMA model in June, 2008

Fig. 6 PWV prediction results from STARMA model in December, 2008

Figures 3 and 4 show the fitting results of PWV calculated by model constructed
with the latest model in June and November, 2003, respectively. And Figs. 5 and
6 show the prediction results of PWV in June and December, 2008, respectively.
The red line represents the computing results by STARMA model, and the blue line
represents the real data. For comparison, the pixel value of the image was arranged
in a row on the horizontal line from 0 to 200 which represents one image with 10*20
grids. As is shown in these results, the trend in STARMA model is similar to real
data.
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4.4 Evaluation of the Model Performance

The correlation coefficient (R), root mean square error (RMSE), mean relative error
(MRE) and the mean absolute error (MAE) were implemented to evaluate the overall
performance of this model. Table 4 shows the fitting accuracy in 2003. Table 5 shows
the prediction accuracy in 2008.

As shown in Tables 4 and 5, the correlation coefficient is very high. Hence, the
model could be considered as an efficient and robust method for predicting PWV.
And the parameters estimation process is successful.

Table 4 Fitting accuracy of STARMA model

Month R RMSE (cm) MRE MAE (cm)

Jan, 2003 0.9806 0.1803 0.5117 0.1624

Feb, 2003 0.9950 0.1252 0.2714 0.1114

Mar, 2003 0.9861 0.2043 0.3632 0.1756

Apr, 2003 0.9950 0.1055 0.0782 0.0790

May, 2003 0.9971 0.1876 0.0878 0.1459

Jun, 2003 0.9943 0.4108 0.1778 0.3611

Jul, 2003 0.9611 0.6577 0.1454 0.4790

Aug, 2003 0.9786 0.3774 0.0899 0.4790

Sep, 2003 0.9948 0.4743 0.1777 0.3806

Oct, 2003 0.9888 0.2391 0.1658 0.1827

Nov, 2003 0.9678 0.2938 0.4961 0.2581

Dec, 2003 0.9900 0.1921 0.2691 0.1451

Table 5 Prediction accuracy of STARMA model

Month R RMSE (cm) MRE MAE (cm)

Jan, 2008 0.9763 0.1394 0.351 0.1183

Feb, 2008 0.9905 0.3074 0.0131 0.2789

Mar, 2008 0.9919 0.0776 0.0796 0.0527

Apr, 2008 0.9964 0.0647 0.0431 0.0414

May, 2008 0.9932 0.2481 0.1656 0.2135

Jun, 2008 0.9798 0.4715 0.1624 0.3764

Jul, 2008 0.989 0.6694 0.148 0.5126

Aug, 2008 0.9861 0.369 0.1028 0.2664

Sep, 2008 0.9837 0.2973 0.1019 0.2258

Oct, 2008 0.9857 0.2017 0.17 0.158

Nov, 2008 0.9875 0.441 0.3144 0.2808

Dec, 2008 0.936 0.1121 0.3021 0.0937
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5 Conclusion

The STARMA model has attracted wide attention in prediction applications. To
optimize overall performance, the estimation processmust be very critical. In the past,
the estimation process is very difficult to solve and sometimes could not be solved at
all. In this paper, a new approach based onNewton’smethod is put forward to give out
the approximate solutions. The proposed approach was illustrated by a case study on
monthly average PWV from 2002 to 2008. The confirmation results of this method
revealed that the STARMA model has good accuracy in both fitting and predicting.
From the value of RMSE, MRE and MAE, there are a few differences between the
STARMA model and the real data. For example, though the correlation coefficient
is very high in June and July, 2008, the RMSE and MAE are not reasonable. This is
mainly due to the great changes of PWV in summer. That is to say, PWV STARMA
model has lower accuracy in summer than in winter. Consequently, further study will
be carried out to improve the performance caused by the seasonal differences.
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Comparison of Candidate-Well Selection
Mathematical Models for Hydraulic
Fracturing

Ting Yu, Xiang-jun Xie, Ling-na Li and Wen-bin Wu

Abstract The selection of a target well and formation is considered as the first step
in hydraulic fracturing (HF) and naturally regarded as a critical decision-making
throughout process of HF treatment. The candidate-well selection process for HF is
taken as a complex, nonlinear and uncertainty system. Modern mathematical meth-
ods, such as Artificial Intelligence (AI), offer the opportunities to examine the sample
data, clarify the relationships among effect factors, in other ways to maximize the
concealed potential. However, the performance of these methods is not specified in
the certain application of candidate-well selection in gas field. This paper aims to pro-
vide a comparison of three candidate-well selection techniques, including BP-ANN,
GA-based FNN, and SVM, as well as make clear the most effective one among them
to pick a target well for HF. The application result of X gas field shows that BP-ANN
is not as effective as GA-based FNN. Despite the advantage of more simple and
intuitive evaluation, SVM has its own limitation in the uncertain system.

Keywords Hydraulic fracturing · Candidate-well selection · Nonlinear and uncer-
tainty system · BP-ANN FNN · SVM

1 Introduction

Due to the continuous growth in hydrocarbons demand, the oil and gas industry
has spared no efforts to increase production in oil and gas reservoirs. Hydraulic
fracturing (HF) is not only applied to enhance ultimate recovery for these wells
with lower production in conventional reservoirs, but also to obtain production for
these wells in unconventional reservoirs, such as tight gas, shale gas, etc. [1, 2].
For these reasons, HF is one of the most common completion operations in oil and
gas wells today [2, 3].
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Choosing a target well and formation is considered as the first stage in HF and of
course regarded as a critical decision-making in the entire process of HF treatment.
However, the oilfield operation shows that the candidate-well selection is not direct
process and up to now, there has not been a standard method for universally selecting
candidatewells through different geological areas. Accurate candidate-well selection
for HF treatment not only saves money and time but also eliminates possible failures
for HF treatment, so it is very important.

The methods, applied in HF candidate-well selection design, in the past two
decades, can be divided into two parts, containing: (1) conventional techniques; and
(2) advanced methods. The former mainly deals with engineering, geological, etc.
aspects in decision making process. The later mainly fill the gap for classification
and manipulation of the parameters and mainly employs Artificial Intelligence (AI)
methods that offers the opportunities to examine the data, illustrate their relation-
ships, and in other ways to maximize the concealed potential [4]. The candidate-well
selecting is a nonlinear and uncertain system, for the data set used is natural ambigu-
ous and imprecise. So the advancedmethods have getmore attention in recent years in
the candidate-well selection design. There are many advanced technologies, such as
Artificial Neural Network (ANN) [5, 6], Fuzzy Neural Network (FNN) [7], Support
Vector Machine (SVM) [8], Pattern Recognition (PR) [9], Gray Relative Analysis
(GRA) [10, 11], Fuzzy Method (FM) [12–14], etc. However, the performance of
these methods is not specified in the certain application of candidate-well selection
for HF in gas field. This paper aims to provide a comparison of three candidate-well
selection techniques, including BP-ANN, FNN, and SVM, as well as make clear the
most effective one among these methods when coping with this problem.

The three models all allow a prediction for production response after fracturing
treatment on the basis of historical measured data of fractured wells to be designed
in a fast manner, offering an effective method to evaluate and select fractured wells
for fracturing treatment.

In this paper, three-layer BP-ANN of candidate-well selection is build due to its
complexity and strong nonlinear characteristic. FNN integrates the fuzzy logic with
neural network, which not only has the advantages of knowledge representation and
fuzzy reasoning, as well as the good self-learning capacity of neural network, but
also the ability of adjusting the rules and the parameters of controller according to
the variation for control subject parameters and the environment. Genetic algorithm
(GA)-based identificationmethod is used to specify FNNmodel parameters such that
the defined error function is minimized. It is a global optimization algorithm with
good robust stability, conducing to better performance compared to others, especially
for the nonlinear systems like FNN. Economic, observation and control technology,
etc., limit the sample data scale obtained from geological data, logging data and
fracturing treatment materials. Support Vector Machine (SVM) is a powerful tool to
deal with this situation with small sample, providing a way to determine the grade
of potential production of gas wells according to the post-production standard.
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2 Three Advanced Methods of Selecting Candidate Wells

The aim of this section is to provide detailed description of three candidate-well
selection designs, including BP-ANN, FNN, and SVM.

2.1 Artificial Neural Network

Artificial neural networks (ANN) have been widely used in many application areas,
such as forecast, pattern recognition and intelligent control, particularly for back-
propagation artificial neural network (BP-ANN), which is a multi-layer perceptron
(MLP) ANN with the error back-propagation training algorithm. The BP-ANN con-
sists of one input layer, one or more hidden layers and one output layer. A set of
nodes compose each layer. Each node in each layer receives one input signal from all
nodes of its previous layer and sends one output signal to all nodes in its next layer,
but the nodes of the same layer are unconnected. Information from the input layer is
multiplied by the corresponding weights which show the strength of that input during
transmitting to the hidden layer, and one input result of each node in the hidden layer
is then computed through an activation function, as the input information in the next
layer. After that, information is processed from the upper layer to the lower layer in
a similar way. The output result goes into an activation function [15].

In our study, three-layer BP-ANN of candidate-well selection for HF is build.
The input layer consists of all the information that influence the effect of post-
fracture response. Its node number is equal to the dimension of feature parameters of
candidate-well selection obtained by the feature extraction technology. The following
is determination the node number of the output layer, that is, the dimension of output
vector, which depends on how to set the target output. Test production, reflecting
post-fracture response very clearly, is set as target output. A schematic description
of proposed ANN is given in Fig. 1.

In order to develop an appropriate BP-ANN of candidate-well selection, twomain
works have to be done. First, a good network structure, the number of nodes in the
hidden layer and activation function for each layer, should be specified. The second
task is to use the error back-propagation training algorithm to modify parameters of
the network (i.e. connective weights and thresholds) to make total error smaller than
a given value [16].

2.2 Fuzzy Neural Network

Compared with ANN, fuzzy neural network (FNN) is capable of the description and
processing of uncertain information, expert knowledge expression, as well as lower
requirement for the sample, and it is also well suited for the complex, uncertain,
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Fig. 1 Structure of three-layer BP-ANN

Fig. 2 Structure of five-layer FNN

and nonlinear systems, like candidate-well selection for HF [17]. In this paper, a
candidate-well selection model based on FNN is designed. As is shown in Fig. 2, its
structure has five layers and the discussion of each layer is as below [18].

Layer 1 (Input Layer): The nodes in this layer, like ANN, represent all the para-
meters (xi , i = 1, . . . , p) that influence the effect of post-fracture response.

Layer 2 (Fuzzification Layer): All parameters are mapped to the fuzzy set in this
layers. Membership function for each fuzzy set is in the form of a Gaussian function:
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u j
i (xi ) = exp

⎡

⎣−1

2

(
xi − m j

i

σ
j

i

)2
⎤

⎦ ( j = 1, . . . , li ), (1)

where li is the number of fuzzy partitions of xi ,m
j
i and σ

j
i are theGaussian function’s

center and width respectively.
Layer 3 (Rule Layer): The number of nodes equals the total IF-THEN fuzzy rules

that describe the input-output relationship of FNN. Each rule has the following form:

Rule j : IF x1 is A j
1, . . . , x p is A j

p

THEN y j is c j
0 + c j

1x1 + · · · + c j
px p (2)

Product or minimum inference is used to obtain the fitness of each rule (u j ), that
is the weight of each rule. The calculation is as follows:

u j =
p∏

i=1

u j
i (xi ) or u j = min1≤i≤p u j

i (xi ) ( j = 1, . . . , l) , (3)

where j ( j ≤ ∏p
i=1 li ) is the total rules.

Layer 4 (Normalized Layer): Node number is equal to that in the Rule Layer. This
layer can realize normalized calculation which is represented as:

ū j = u j
∑l

j=1 u j
. (4)

Layer 5 (Output Layer): The function of this layer is to get the final output by
defuzzification. As designed in ANN, test production is set as target output. The final
output can then be calculated according to the following formula:

y =
l∑

j=1

ū j y j =
l∑

j=1

ū j
(

c j
0 + c j

1x1 + · · · + c j
px p

)
. (5)

After the structure construction of FNN, the parameter identificationmethodmust
be determined. All parameters contain two parts: the parameters m j

i and σ
j

i of these

membership functions, as well as consequent coefficients c j
p of these rules.

Given an input-output training pair (xk, yk)(k = 1, . . . , N ), we wish to design a
method for minimization of the following error function:

ek = 1

2

[
f
(

xk
)

− yk
]2

, (6)
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where f (xk) and yk are defined as the predicted and measured output, respectively.
In this paper, genetic algorithm (GA)-based identification method is established to
specify m j

i , σ
j

i and c j
p such that error function is minimized [19].

2.3 Support Vector Machine

Economic, observation and control technology, etc. aspects, limit the sample data
scale obtained from geological data, logging data and fracturing treatment materi-
als. Support Vector Machine (SVM) is a kind of new, complete and well-formed
machine learning theory and method on the basis of statistical learning theory, and
as a powerful tool for pattern recognition against the limited sample. In this paper,
SVM was used to determine the grade of potential production of gas well according
to the post-production standard.

The real issue of SVM is to solve quadratic programming problem by the aid of
Lagrange multipliers, thereby finding the optimum separating hyperplane, which is
able to classify data points as much as possible and to separate them again into two
classification points as much as possible [20].

Given several input-output training sets(xi , yi )(i = 1, . . . , N ), here, the input
vector xi ∈ Rn , the desired output yi ∈ {+1,−1} (+1 and −1 are two kinds of
class identifiers). The algorithm tries to find a decision function, classifying data as
accurately as possible. The original problem is described as follows [21]:

min 1
2wT w + C

∑N
i=1 ξi

s.t. yi (wT xi + b) ≥ 1 − ξi , ξi ≥ 0
(7)

where C denotes the penalty parameter between the error term and the margin of
hyperplane which balances margin maximization with classification violation.When
we are trying to solve original problem by Lagrange multipliers, the dual form is
obtained as the following form:

min 1
2α

T Aα − eT α

s.t. 0 ≤ αi ≤ C,

yT α = 0,

(8)

where α = (α1, . . . , αN )T , e = (1, . . . , 1)T , y = (
y1, . . . , yN

)
and Ai j = yi y j

K
(
xi , x j

)
, αi are all zeros except for those training patterns close to these separating

planes which are called support vectors. Ai j is the kernel function which converts
nonlinear input data sets into high dimensional linear feature space. According to
the Lagrange multipliers, the decision function is specified by
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f (x) = sgn

{
N∑

i=1

αi yi K
(

xi , x
)

+ b

}

. (9)

Each step of support vector machine classification algorithm is description in
detail as follows:

Step1: choice the right kind of kernel function;
Step2: solve the optimization function and obtain support vector, namely, relevant

Lagrange operators;
Step3: write down the function of optimum separating hyperplane;
Step4: according to the value of sign function, output the grade.

3 Methods Comparison and Results

This section is to application of the above methods, including BP-ANN, FNN based
GA, as well as SVM to construct the complex, uncertain, and non-linear model
candidate-well selection for HF in X gas field. We then compare the results of the
three different methods and display the overall results.

3.1 Artificial Neural Network Forecaster

With BP-ANN, we model a forecaster of the gas production in X gas field, then
verify this model through 10 others gas wells of this field, after that, use the average
error function AE = ∑N

i=1

∣∣ppredicted − pmeasured
∣∣/N to evaluate the performance

of BP-ANN-based candidate-well selection for HF model, in which the hidden layer
number as100, learning rate as 0.2, and the others as defaults.Wecalculate the average
error AE = 0.0226, which is dimensionless value (dimensional value as 0.7746).
The predicted outputs of the BP-ANN-based candidate-well selection forecaster,
measured output, and fitting precision are given in Fig. 3. and Table1.

3.2 Fuzzy Neural Network Forecaster

When we use 12 Gaussian membership functions for FNN candidate-well selection
for HF forecaster, the total identification parameters are 224 by GA, including 72
means and standard deviations of Gaussian membership functions, respectively, as
well as 84 consequent coefficients. The final results based on GA-FNN forecaster
are given in Fig. 4. and Table2.
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Fig. 3 Comparison of predicted and measured results of BP-ANN forecaster

Table 1 Outputs and error of the BP-ANN forecaster

Well
number

H SDT CN Sg P C Qm Q p Atol

1 25.6 85 13 84 13 437 12.92 12.95 0.03

2 14.2 70 16 42 28 409 5.06 4.80 0.26

3 14.8 69 15 50 23 421 4.4 5.95 1.55

4 30 65 13 49 21 365 3.68 4.17 0.49

5 40 77 13 60 18 402 12.84 12.30 0.54

6 25 72 12.5 48 21 428 4.45 2.41 2.04

7 13.2 71 13.4 54 20 441 3.89 2.94 0.95

8 15.8 66 11 72.5 13 519 1.3 0.36 0.94

9 36 76 13 59 18 380 11.93 12.56 0.63

10 24.5 66 12 44 21 433 2.29 1.99 0.30

Note
H = Gas bearing net pay, m; SDT = Acoustic travel time, μs/ft
CN = Compensated neutron, PU; Sg = Gas saturation, %
P = Pad fluid proportion, that is the ratio of pad fluid in total fracturing fluid, %
C = Average of proppant concentration, Kg/m3

Qm = Measured production, 104 m3/d; Q p = Predicted production, 104 m3/d
Atol = The absolute error between measured production and prediction production, 104 m3/d

3.3 Support Vector Machine Classifier

We use SVM of four classifiers to construct the candidate-well selection for HF
design according to post-production standard obtained by mathematical statistics
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Fig. 4 Comparison of predicted andmeasured results of GA-FNN forecaster according to the value
of average error AE, BP-ANN cannot compare with GA-FNN in the application of candidate-well
selection for HF: Complex, uncertain and nonlinear system

Table 2 Outputs and error of the GA-FNN forecaster

Well
number

H SDT CN Sg P C Qm Q p Atol

1 25.6 85 13 84 13 437 12.92 12.44 0.48

2 14.2 70 16 42 28 409 5.06 5.94 0.88

3 14.8 69 15 50 23 421 4.4 3.94 0.46

4 30 65 13 49 21 365 3.68 3.95 0.27

5 40 77 13 60 18 402 12.84 11.9 0.94

6 25 72 12.5 48 21 428 4.45 4.97 0.52

7 13.2 71 13.4 54 20 441 3.89 3.71 0.18

8 15.8 66 11 72.5 13 519 1.3 2.2 0.9

9 36 76 13 59 18 380 11.93 12.2 0.27

10 24.5 66 12 44 21 433 2.29 3.55 1.26

analysis and expert advice, in which the inputs of SVM classifier are the same as BP-
ANN and GA-FNN forester, and the output is the evaluation grade. The higher grade
the gas well calculated, the higher potential production it has. The final classification
results of 10 wells are given in Table3.

SVM classifier method can estimate the potential production of candidate frac-
turing wells simply and intuitively. Post-production standard of candidate fracturing
wells is characterized by their measured production, so from this aspect and the
results of Table3, we get that: the evaluation is not ideal, and grades of Well 3, 7 and
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Table 3 Output grades of SVM classifier

Well number 1 2 3 4 5 6 7 8 9 10

Grade I II I II I II IV III II III

9 are unreasonable due to the unmatched between classification grade obtained by
SVM and measured production.

3.4 Results

GA-based FNN has an advantage over BP-ANN forecaster when designing the com-
plex, uncertain and nonlinear candidate-well selection for HF system. SVMclassifier
method is more direct and compact, but the final classification results shows that it
cannot deal with fuzzy information well because all kinds of uncertainties existed
in the measured data can not characterize a well into a certain category. GA-based
FNN introduces membership function to process the sample data which makes up
for lack of ability to handle the uncertain information for SVM.

4 Conclusion

BP-ANN cannot compare with GA-based FNN in the application of candidate-well
selection for HF in gas field: complex, uncertain and nonlinear system. Despite the
advantage of more simple and intuitive evaluation, SVM has its own limitation in
the uncertain system.

In the future, wewish tomake amuchmore comprehensive analysis for all existed
advanced candidate-well selection methods.
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selection for hydraulic fracturing based on fuzzy methods” which sponsored by Southwest Petro-
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Analysis of Graphic Method to Fuzzy Linear
Programming and Its Application
in Science Diet

Bing-Yuan Cao, Shu-Quan Lu, Pei-Hua Wang and Gen-Tao Zhang

Abstract In this paper, a simple graphic method is mentioned and then used to solve
the problem of two-dimensional fuzzy linear programming. Besides, we discuss the
set of feasible solution constituted by constraint function. Based on this analysis,
some regularities are obtained for an optimal solution. At last, an applied model that
can be solved with the proposed method is found in science diet and health care.

Keywords Fuzzy LP · Fuzzy graphicmethod ·Vegetarian problems · Science diet ·
Application

1 Introduction

In some practical problems, the objective function and constraint conditions are
often not absolute. It has some elasticity. Especially, the two dimensional fuzzy
linear programming model can be considered as follows.

z
∼

max = c1x1 + c2x2.

s.t.

⎧
⎪⎨

⎪⎩

a11x1 + a12x2 <∼ (or>∼ )b1,

a21x1 + a22x2 <∼ (or>∼ )b2,

x1 ≥ 0, x2 ≥ 0,

(1.1)
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the symbol of “<∼” or “>∼” indicates that some approximately equal to or less than

(or greater than) another and the meaning of “
∼

max” signifies fuzzy maximum for a
target function. It shows that the constraints are fuzzy concept.

At present, there are two main methods to solve the FLP model, they are itera-
tive method and Zimmermann method [1, 2]. According to Zimmermann’s idea, he
defines different membership function for fuzzy constraints and fuzzy goal, respec-
tive. Finally, an FLP model can be converted into an LP problem. However it is not
intuitive for us to analyze the changes of the feasible region, because of the machin-
ery of computer programming. Therefore, this paper firstly provides a simplemethod
to the problem of two-dimensional fuzzy linear programming. Secondly, basted on
the intuitive method, the effect of fuzzy extremely produced by the change of the
feasible region is discussed in detail. Finally, we use a variety of methods to compare
and verify its accuracy in science diet, and find some regularity.

2 A Brief Introduction for Graphic Method

2.1 Basic Explanation

Suppose the objective function is z = c1x1 + c2x2, the corresponding fuzzy goal

is
∼
G. If a telescopic value of an objective function is selected as d0 = z

′
0 − z0, its

membership function can be defined as follows.

∼
G(x) = g(cx)

= g(z) =
⎧
⎨

⎩

0, cx ≤ z0,
(cx−z0)

d0
, z0 < cx ≤ z0 + d0,

1, z0 + d0 < cx .

(2.1)

Similarly, we also give the telescopic value for a constraint function d0 = z
′
0 − z0.

And then its membership function
∼
D(x) is given below.

∼
D(x) = f (ax)

= f (y) =
⎧
⎨

⎩

1, ai x ≤ bi ,

1 − (ai1x1+ai2x2−bi )

di
, bi < ai x ≤ bi + di ,

0, bi + di < ai x, (i = 1, 2, . . . , n).

(2.2)

In addition, we define the fuzzy judgment
∼

D f = ∼
D ∩ ∼

G. If x∗ is an optimum
solution to FLP (1.1), it satisfies

∼
D f = max

x≥0

∼
D f (x) = max

x≥0
{ ∼
G( x) ∧ ∼

D(x)}
= max

x≥0
{ ∼
G( x) ∧ ∼

D 1(x) ∧ ∼
D 2(x), . . . ,

∼
D n(x)}.

(2.3)

The following images are given to show the relationship defined above (Figs. 1 and2).
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Fig. 1 Relationship between
G̃ and z

Fig. 2 Relationship between
D̃i and yi

2.2 An Example

We use the following example to illustrate the FLP graphic method [3].

z
∼

max = 7x + 12y

s.t.

⎧
⎪⎨

⎪⎩

9x + 4y <∼ 360,

3x + 10y <∼ 300,

x ≥ 0, y ≥ 0.

(2.4)

(1) Let the first corresponding classical LP problem as follows and then solve it by
using the LP graphical method.

zmax = 7x + 12y

s.t.

⎧
⎨

⎩

9x + 4y ≤ 360,
3x + 10y ≤ 300,
x ≥ 0, y ≥ 0.

(2.5)

In Fig. 3, the convex quadrilateral OABC is the feasible region of LP (2.5). The
line l is a contour line of the objective function, it intersects at point B, which is
one of the apex in feasible region. Easy to know that point B is an optimum, where
coordinate is x = 30.77, y = 20.77 and zmax

0 = 464.63.
(2) Let the constraint function expand to maximum range. We solve the following

new programming using the LP graphical method.
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Fig. 3 Example for FLP
graphic method

zmax = 7x + 12y

s.t.

⎧
⎨

⎩

9x + 4y ≤ 360 + 90,
3x + 10y ≤ 300 + 60,
x ≥ 0, y ≥ 0.

(2.6)

In Fig. 3, the feasible region expands from quadrilateral OABC to O A′ B ′C ′. A
contour line k of the objective function intersect at point B ′, where coordinate is
x = 39.23, y = 24.23 and zmax

1 = 565.37. Besides, it is obvious that the number
d0 = zmax

1 −zmax
0 = 100.74 can be regarded as a telescopic value for a target function.

(3)When the feasible region enlarges, the optimal solution moves from point B to
B ′.Meanwhile, it is easy to verify that one or two constraint conditions are violated in

this process. That is to say, membership function
∼

D1(x) and
∼

D2(x) gradually become

less than before.At the same time, themembership function
∼
G(x)will slowly become

greater and the optimal point B closes to the line k, which is the maximum contour
line of objective function. The question now is to find a suitable point so that the
fuzzy judgment reaches maximum.

Consequently, when the objection function z changes in interval [464.63, 565.37],

the change of membership function
∼
D(x) and

∼
G(x) is shown in Fig. 4. We can get

that the midpoint M of the line BB
′
just is an optimal solution to the FLP (2.1), where

the coordinates is x = 35, y = 22.5 and zmax = 515.

Fig. 4 Relationship between
D̃ f and Z
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2.3 Definition and Method

In order to explain this graphic method, we firstly give some definition to it. Next,
we summarize the steps of the proposed method. This method can be used to solve
the two-dimensional FLP (1.1).

Definition 2.1 A region is said to be a telescopic region, if the telescopic range for
each constraint conditions and the target is the area between two parallel lines, which
was or is expanded before or after.

Definition 2.2 A region is said to be the telescopic parallelogram, if two different
telescopic region intersections is a parallelogram.

Definition 2.3 A triangle, constituted by three lines which membership grade is
number “0” in telescopic region, is said to be a telescopic triangle, if one of vertex
of the triangle is a solution to the fuzzy constraint expanded to a maximum range.

Definition 2.4 A line in telescopic triangle is said to be the diving angle line of an
equal membership grade if the line is divided into one of the corner. The mapping
method is that connect diagonal containing this corner in the telescopic parallelogram.

Hence, the FLP graphic method is as follows.

Step 1. Compute the optimum solution that the constraint conditions are not stretched
by classical LP graphical method.

Step 2. Calculate the optimum solution that the constraint conditions expands to the
maximum range using a classical LP graphical method.

Step 3. Make two diving angle lines of equal membership grade in a telescopic tri-
angle, then their intersection is an optimal solution (like the point M in example).

3 A Two-Dimensional FLP Model in Vegetarian Diet

Vegetarian Diet. If vegetarians can only be limited to eat vegetables or fruit juices,
he/she purchase x units vegetables each week, and y units fruit juices. According
to nutrition experts, each person consumes vitamin should be limited in a certain
scope, but this scope is vague. As a result, the vegetarians have a fuzzy constraint in
selection food. In this way, he will choose about 40g vitamin A, 50g vitamin B, 70g
of vitamin C, 10g of vitamin D and 60g of vitamin E. Besides, the vitamin content
in each units of vegetables or juice can be obtained by measuring. They are shown as
follows. As we know, the price of each units vegetables and fruits juice is about 0.02
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and 0.03 dollars. Consequently, how to determine the quantity for using vegetables
and fruits juice, let him/her not only meet the needs of the body, but also spends less.
(1) Write the known date in the table below.

Location A B C D E Price $
Vegetables 0.1 0.2 0.04 0.1 0.06 0.02
Fruits juice 0.05 0.15 0.2 0.1 0.1 0.03
Vitamins 40 − dA 50 − dB 70 − dc 10 − dD 60 − dE

(2) Establish the two-dimensional FLP model in vegetarian diet.
Suppose vegetarians eat x units vegetable every week and y units fruits juice. And
then, he/she had to buy x units vegetables and y unites juice. If letter c repress of the
target function, he/she will pay the total money c = 0.02x + 0.03y.

The problem is that looking for two numbers x and y, whichmakes fuzzy objective

function C
∼

min minimum, and they must meet the following conditions.

A : 0.1x + 0.05y >∼ 40,

B : 0.2x + 0.15y >∼ 50,

C : 0.04x + 0.2y >∼ 70,

D : 0.1x + 0.1y >∼ 10,

E : 0.06x + 0.1y >∼ 60,

x ≥ 0, y ≥ 0,

(3.1)

where the numbers on the right side of inequality is this.
40− dA = 39.8, 50 − dB = 59.8, 70 − dC = 69.5, 10 − dD = 9.8,

60 − dE = 59.8, respectively.

4 Graphical Method Is Used to Solve the Vegetarian
Diet Model

Step 1. Draw a feasible region of the following LP (4.1) and then solve it by using
an ordinary graphical method as shown in Fig. 5.

min = 0.02x + 0.03y

st.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1x + 0.05y ≥ 40,
0.2x + 0.15y ≥ 50,
0.04x + 0.2y ≥ 70,
0.1x + 0.1y ≥ 10,
0.06x + 0.1y ≥ 60,
x ≥ 0, y ≥ 0.

(4.1)
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Fig. 5 Constraint functions
of programming 4.1

The feasible solution in linear programming [4] is convex, so its optimal solution
can be achieved in one of the vertex. As a result, we can put the four vertices into the
objective function and compare their values. Finally, we get point B to be an optimum
point, where its coordinate is x = 142.86, y = 514.29 and zmin = 18.2859.

Step 2. Draw another feasible region of following LP (4.2), where the numbers
on right side of inequality become smaller and solve it, which is shown in Fig. 6.

min = 0.02x + 0.03y

st.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1x + 0.05y ≥ 39.8,
0.2x + 0.15y ≥ 49.5,
0.04x + 0.2y ≥ 69.5,
0.1x + 0.1y ≥ 9.8,
0.06x + 0.1y ≥ 59.8,
x ≥ 0, y ≥ 0.

(4.2)

Similarly, we compare the function values of some vertex points and found that
point F (141.43, 513.14) is the optimal point, where its value of target function is
zmin = 18.2228.

Step 3. In Fig. 7, draw two diving angle lines of equal membership grade in the
telescopic triangle. According to the fuzzy graphic method mentioned above, the
intersection M of two straight lines is an optimal solution.

Fig. 6 Constraint functions
of programming 4.2
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Fig. 7 FLP graphic method
in vegetarian diet model

In order to draw a more accurate picture, we make a few specification as follows.

1. For programming 4.1, only inequalities

{
0.1x + 0.05y ≥ 40
0.06x + 0.1y ≥ 60

is an active con-

straint, they intersect at a point B(142.82, 514.29).

2. For programming 4.2, only inequalities

{
0.1x + 0.05 ≥ 39.2
0.06x + 0.1y ≥ 59.8

is active con-

straint, they intersect at a point F(142.43, 513.14).
3. We only draw the contour line of objective function and active lines because of the
complex line in feasible region. Besides, the value of telescopic value dA = −0.2,
dB = dC = −0.5, dE = dF = −0.2 is too small to clearly distinguish two sets

of line between

{
0.1x + 0.05y = 40
0.1x + 0.05y = 39.8

and

{
0.06x + 0.1y = 60
0.06x + 0.1y = 59.8

, so image is

magnified.

Result: According to the fuzzy graphic method, a part of the triangle constituted
by 3 lines, where membership grade is “0”, is drawn as the shaded area shown in
Fig. 7. When the numbers on right side of inequality is reduced, the feasible region
will become large. If the optimum point gradually moves from point B to point F ,
its membership grape also changes from number “1” to number “0”. Making two
diving angle lines of the telescopic triangle, we find that their intersection is just
the intersection of two diagonals in parallelogram. Therefore, point M must be the
midpoint of the line B F . It is to say that putting the coordinate into the objective
function can get optimal value zmin = 18.2546.

5 An Analysis and Comparison of Fuzzy Graphic Method

5.1 Analysis

If the numbers of vitamin in model 3 which human body needs were changed into
this: 40 + dA = 40.2, 50 + dB = 50.5, 70 − dc = 69.5, 10 + dD = 10.2, 60 +
dE = 60.2, and corresponding target function dZ = 0.5. The final fuzzy optimal
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values become this.

λ = 1, x = 142.8571, y = 514.2857, zmin = 18.28571.

But with the result x = 144.2857, y = 515.4286, zmin = 18.34857 which the
constrain function is expanded, is still a certain gap. Or, to put it another way, it
is not right for reality that the optimum solution of the programming increasing the
telescopic value can not yet be comparedwith the original. In fact, the primary reason
for the result was a smaller feasible region when the telescopic value is increased,
which means that we take a wrong telescopic value.

5.2 Comparison
(1) The result as shown in Fig. 8 solved by Excel method are consistent with the
graphical method, among them

x = 142.1430, y = 513.7144, zmin = 18.2543.

(2) Turn it into a standard type as follows, and then solve it using a simple algorithm
providing by literature [5].

min z = 0.02x1 + 0.03x2

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0.1x1 + 0.05x2 − x3 = 40,
0.2x1 + 0.15x2 − x4 = 50,
0.04x1 + 0.2x2 − x5 = 70,
0.1x1 + 0.1x2 − x6 = 10,
0.06x1 + 0.1x2 − x7 = 60,
x1, . . . , x7 ≥ 0.

(5.1)

Fig. 8 Final result in excel
method
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Calculate the basis matrix

B−1 =

⎡

⎢
⎢
⎢
⎢
⎣

14.2857 0 0 0 −7.1400
0.5714 0 0 −1 0.7140
1.5714 −1 0 0 0.7138

−8.5729 0 0 0 14.2799
−1.429 0 −1 0 2.5712

⎤

⎥
⎥
⎥
⎥
⎦

.

We can get

B−1(b + d) = B−1

⎡

⎢
⎢
⎢
⎢
⎣

39.8
49.5
69.5
9.8

59.8

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

141.5989
55.6389
55.7270

512.7366
38.7703

⎤

⎥
⎥
⎥
⎥
⎦

> 0.

So the optimum point is

x∗ = 1

2
(142.9284 + 141.5989, 514.1084 + 512.7366) = (142.2636, 513.4225).

where coordinate is x = 142.2636, y = 513.4225 and zmin = 18.2479. This result
also consists with the graphical method.

6 Conclusion

In this paper a two-dimensional FLP model is established about vegetarian problem,
providing a simple and intuitivemethod-graphical, to analyze and discuss the changes
of fuzzy extreme when the telescopic value change. The study founds its way to the
idea that it will directly lead to the change of a feasible region when telescopic
values become larger or smaller. Specifically, suppose the feasible region becomes
smaller after increasing telescopic value. It will result in the outcome λ = 1, which
measures the fuzzy judgment. This shows that, when the optimum solution to the
programming increases the telescopic, we take a wrong value. Still another condition
is an enlarged feasible region when its telescopic value is increased. The optimum
point in FLP model becomes the midpoint between two optimums which increase
the telescopic value and the original, if this two points are corresponding in location.
This will be the content we discuss further.
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A Fixed-Length Source Coding Theorem
on Quasi-Probability Space

Yang Yang, Lin-qing Gao, Chao Wang and Ming-hu Ha

Abstract The existing source coding theorems are established on probability meas-
ure space or Sugeno measure space. It is difficult to deal with the source coding
problems on quasi-probability space which is an extension of probability measure
space and Sugeno measure space. In order to overcome the limitation, fixed-length
source coding problems on quasi-probability space are discussed. Based on the def-
inition and properties of information entropy on quasi-probability space, an asymp-
totic equipartition property of discrete memoryless information source on quasi-
probability space is proved. Then, a fixed-length source coding theorem for discrete
memoryless information source on quasi-probability space is provided.

Keywords Fixed-length source coding theorem · Sugeno measure · Quasi-
probability space · Information entropy

1 Introduction

Information theory developed by Shannon [1] is an intersection of physics (statis-
tical mechanics), mathematics (probability theory), electrical engineering (commu-
nication theory) and computer science (algorithmic complexity) [2]. Source coding
theory, an important branch of information theory, has been applied in encoding,
compression and encryption of different information source such as image, audio
and video [3–8]. The source coding theorem indicates that the expected length of
the optimal code is bounded below by the Shannon entropy of the source, which is
regarded as a sophisticated central part of source coding theory [9].
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However, the classic source coding theorem is established on probability mea-
sure space where the uncertainty of information is described by probability measure
on probability measure space whereas probability measure is a set function which
satisfies additivity or countable additivity [10]. It is well known that in many sit-
uations, the condition of additivity is so strict that it might lead to the failure of
probability measure in describing the uncertainty of some information. Inspired by
this, many non-additive measures are proposed by substituting the additivity require-
ment of probability measures with other requirements [11–18]. For example, Sugeno
[12] proposed a class of non-additive measures, Sugeno measures, by replacing the
additivity with σ − λ rule [17].

Motivated by the generalization of additive measure into non-additive measure,
information theory on probability measure space was extended to the non-additive
measure space. For example, on belief measure space and plausibility measure
space, Klir [19] proposed generalized information theory to make the treatment of
uncertainty-based information more realistic; on possibility space, Sgarro [20, 21]
introduced the possibilistic entropy and gave a model for information sources and
transmission channelswhich is possibilistic rather than probabilistic; onSugenomea-
sure space, Zhang and Yang [22] defined the information entropy based on Sugeno
measure and proved a source coding theorem for discrete information source with
gλ distribution.

In this paper, we try to incorporate quasi-probability [13] into source coding
theory and discuss the fixed-length source coding problems on quasi-probability
space. The concept of quasi-probability is introduced and discussed by Wang and
Klir [13, 14, 17] as a normalized (or regular) quasi-measure. Every quasi-probability
is connected to an additivemeasure by a transformation function (T -function), which
is a significant specialty of quasi-probability. It is well known that one of the main
difficulties for applying non-additive measures is that they are set functions defined
on a class of subsets of a given universal set and thus they require a large number of
parameters. For example, to get a fuzzy measure defined on the power set of a given
universal set X , usuallywemust set 2|X | parameters. Quasi-probability can overcome
the difficulty because any quasi-probability μ can be obtained by μ = θ−1 (θ ◦ μ),
where θ−1 is the inverse function of T -function θ , θ ◦ μ is an additive measure. In
this sense, quasi-probability is more usable than some other non-additive measures
in practice. Furthermore, it has been proved that quasi-probability is an extension
of Sugeno measure and probability measure [17], and therefore, the investigation of
source coding theorem on quasi-probability space is significant.

The rest of the paper is organized as follows: In Sect. 2, some notations of quasi-
probability and information entropy are reviewed. In Sect. 3, main results of this
paper are presented.
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2 Preliminaries

Let X be a non-empty set. F is a σ−algebra of subsets of X , and C is any class of
subsets of X .

Definition 1 ([17]). Let a ∈ (0,∞]. An extended real function θ : [0, a] → [0,∞]
is called a T -function iff θ is continuous, strictly increasing, and such that θ (0) = 0
and θ−1 ({∞}) = ∅ or {∞}, according to a being finite or not.

Obviously, θ−1 is continuous, strictly increasing function when θ is continuous,
strictly function.

Definition 2 ([17]). μ is called a quasi-measure iff there exists a T -function θ such
that θ ◦ μ is an additive measure on C , where (θ ◦ μ) (E) = θ (μ (E)) ,∀E ∈ C .
A normalized quasi-measure μ is called a quasi-probability.

As the relation of the discrete random information source and discrete random
variable on probability measure space, the discrete information source on quasi-
probability space can be depicted by discrete quasi-random variable [23].

Definition 3 ([23]). Let ξ be a discrete quasi-random variable taking values xi

(i = 1, 2, . . .). The expected value of ξ is defined by

Eμ [ξ ] =
∞∑

i=1

xiμi ,

if
∞∑

i=1
|xi |μi < ∞ where μi = μ {ξ = xi }, i = 1, 2, . . ..

Definition 4 ([24]). The self-information of the event ξ = xi on quasi-probability
space (X,F, μ) is defined as I (xi ) = − loga (θ ◦ μ (xi )).

The base of the logarithm a is not specified in the definition. Unless otherwise
specified, we will take all logarithms to base 2, and take log x instead of log2 x .

Definition 5 ([24]). The information entropy of a quasi-random variable ξ is defined

as H (ξ) = E [I (xi )] =
p∑

i=1
I (xi ) · (θ ◦ μ (xi )).

Proposition 1 ([23]). Suppose that ξ is a discrete memoryless information source
on quasi-probability space (X,F, μ), and H (μ) is the information entropy of ξ .
Then the following properties of H (μ) is obtained:

(i) H
(
μ1, μ2, . . . , μp

) = H
(
μ2, μ1, . . . , μp

) = · · · = H
(
μp, μ1, . . . , μp−1

)
.

(ii) H (μ, 0) = H (μ, 0, 0) = H (μ, 0, 0, 0) = · · · = H (μ, 0, . . . , 0) = 0,
μ > 0.

(iii) H
(
μ1, μ2, . . . , μp

) ≥ 0;
(iv) H

(
μ1, μ2, . . . , μp

) ≤ log p.
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3 Main Results

Assume ξ is a discrete memoryless information source with quasi-probability distri-
bution [

ξ

μ (ξ)

]
=

[
x1 · · · xi · · · x p

μ1 · · · μi · · · μp

]
.

Then, the quasi-probability distribution of its Nth extension ζ is given as following

[
ζ

μ (ζ )

]
=

[
y1 · · · y j · · · ypN

μ (y1) · · · μ
(
y j

) · · · μ
(
ypN

)
]

,

where y j = (
x j1 , x j2 , . . . , x jN

)
, j = 1, 2, . . . , pN , and x j1 , x j2 , . . . , x jN ∈{

x1, x2, . . . , x p
}
.

Theorem 1 Suppose ξ is a discrete memoryless information source on quasi-
probability space, and ζ = (ξ1, ξ2, . . . , ξN ) is the N-thextension of ξ , where
ξ1, ξ2, . . . , ξN are independent and identically distributed quasi-random variables.
Then the sequence 1

N I
(
y j

)
is convergent in quasi-probability to H (ξ).

Proof It follows from Definition 5 that E
[
I (x jk )

] = H (ξ). Thus 1
N

N∑

k=1
I
(
x jk

)

is convergent in probability to H (ξ) according to the law of large numbers on
probability measure space.

Since

I
(
y j

)

N
=

− log

(
N∏

k=1
θ ◦ μ jk

)

N
=

N∑

k=1
I
(
x jk

)

N
,

we can obtain that
I(y j)

N is convergent in probability to H(ξ), i.e. ,

θ ◦ μ

({∣∣∣∣
∣

I
(
y j

)

N
− H (ξ)

∣∣∣∣
∣
≥ ε

})

< θ (δ) ,∀ε > 0,∀δ > 0, ∃N0,

when N ≥ N0.
It follows from Definition 2 that

μ

({∣∣∣∣
I (y j )

N
− H(ξ)

∣∣∣∣ ≥ ε

})
< θ−1 ◦ θ (δ) ≤ δ.

Hence, the sequence 1
N I

(
y j

)
is convergent in quasi-probability to H (ξ).
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Theorem 1 enables us to divide the set of all sequences into two sets, the typical
set, where the mean of self-information is close to information entropy H(ξ), and
the nontypical set, which contains the other sequences. In other words, Theorem 1
shows an asymptotic equipartition property (AEP).

Definition 6 Let y j = (
x j1 , x j2 , . . . , x jN

)
denote sequence of length N , where

x j1 , x j2 , . . . , x jN ∈ {
x1, x2, . . . , x p

}
. If ∀ε > 0,

∣∣∣
I(y j)

N − H (ξ)

∣∣∣ < ε, then y j is

said to be a typical sequence, otherwise, y j is said to be a nontypical sequence. In
this paper, the set of typical sequences is denoted by GεN , and the set of nontypical
sequences is denoted by ḠεN .

Lemma 1 If y j = (
x j1 , x j2 , . . . , x jN

) ∈ GεN , then

θ−1
(
2−N [H(ξ)+ε]) < μ

(
y j

)
< θ−1

(
2−N [H(ξ)−ε]) .

Proof It follows from y j = (
x j1 , x j2 , . . . , x jN

) ∈ GεN that

−ε <
I
(
y j

)

N
− H (ξ) < ε,

and therefore
N (H(ξ) − ε) < I (y j ) < N (H(ξ) + ε) .

According to Definition 4, we have

2−N (H(ξ)+ε) < θ ◦ μ(y j ) < 2−N (H(ξ)−ε).

Hence, θ−1
(
2−N (H(ξ)+ε)

)
< μ

(
y j

)
< θ−1

(
2−N (H(ξ)−ε)

)
.

Lemma 2 Let ‖GεN ‖ denote the number of elements in the set GεN . Then

(1 − θ (δ)) 2N (H(ξ)−ε) ≤ ‖GεN ‖ ≤ 2N [H(ξ)+ε].

Proof The lower bound can be derived as follows:
It follows from Theorem 1 that

μ

({∣∣∣∣
I (y j )

N
− H(ξ)

∣∣∣∣ ≥ ε

})
< δ.

Hence, θ ◦ μ
({∣∣∣

I (y j )

N − H(ξ)

∣∣∣ ≥ ε
})

< θ (δ) and (1 − θ (δ)) < θ ◦ μ(GεN ).
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Then we can get

(1 − θ (δ)) < θ ◦ μ(GεN )

≤ ‖GεN ‖ · max
y j ∈GεN

θ ◦ μ(y j )

≤ ‖GεN ‖ · 2−N (H(ξ)−ε),

when N is sufficiently large.
The upper bound can be derived as follows:

1 =
pN
∑

j=1

θ ◦ μ
(
y j

)

≥
∑

y j ∈GεN

θ ◦ μ
(
y j

)

≥
∑

y j ∈GεN

2−N (H(ξ)+ε) = ‖GεN ‖ · 2−N (H(ξ)+ε).

Hence, ‖GεN ‖ ≤ 2N (H(ξ)+ε). The theorem is proved.
As a consequence of Lemma 2, we have

η = ‖GεN ‖
pN

≤ 2N [H(ξ)+ε]

pN
= 2−N [log p−H(ξ)−ε].

Since H (ξ) < log p by the property of information entropy of quasi-random vari-
able, we have log p − H (ξ) − ε > 0, and therefore, η → 0 when N → ∞, that is∥∥ḠεN

∥∥ > ‖GεN ‖.
Theorem 2 (A Fixed-length source coding theorem) Let ξ be a discrete memoryless
information source on quasi-probability space, and ζ = (ξ1, ξ2, . . . , ξN ) be the N-th
extension of ξ , where ξ1, ξ2, . . . , ξN are independent and identically distributed
quasi-random variables. Suppose we encode sequence yi from ζ into a codeword
with length l using code alphabet A = {a1, a2, . . . , ar }. Then the quasi-probability
of decoding failure can be made arbitrarily small when N is sufficiently large if
l
N ≥ H(ξ)+ε

log r , ∀ε > 0.

Proof According to Theorem 1, we have that sequences y j from ζ can be divided
into two sets: typical sequences GεN and nontypical sequences ḠεN . Notice that

μ(ḠεN ) < δ and θ−1 [(1 − θ (δ))] < μ(GεN ), then μ(ḠεN ) → 0, μ(GεN ) → 1
when N is sufficiently large.
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It follows from Lemma 2 that η = ‖GεN ‖
pN → 0 when N is sufficiently large, so

that our attention can be restricted to these typical sequences. Consequently, to prove
the theorem, we need to prove that the number rl of codeword satisfies rl ≥ ‖GεN ‖.

If the length of codeword l satisfies l
N ≥ H(ξ)+ε

log r , then log rl ≥ N (H(ξ) + ε),

so rl ≥ 2N (H(ξ)+ε).
It follows from Lemma 2 that 2N [H(ξ)+ε] ≥ ‖GεN ‖.
Hence, rl ≥ ‖GεN ‖, which implies that every typical sequence y j ∈ GεN has

its own codeword. Certainly, there exists encode failure since nontypical sequences
aren’t under consideration, however, the quasi-probability of sequence y j from ζ

being nontypical sequence tends to 0 when N is sufficiently large.

4 Conclusion

Afixed-length source coding theoremonquasi-probability space is initially derived in
this paper to investigate the source coding problems on quasi-probability space. The
proposed fixed-length source coding theorem can be considered as a generalization
of the source coding theorems on probability measure space and Sugeno measure
space.

Topics for future research may include the variable-length source coding theorem
and the source coding theory with continuous quasi-random information source,
which aim to lay a theoretical foundation for source coding problems on quasi-
probability space.
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The Distribution of Zeros of Solutions
of Differential Equations
with a Variable Delay

Dong-hai Peng and Liu-wei Zhang

Abstract This paper is concerned with the distribution of zeros of solutions of the
first order linear differential equations with a variable delay of the form

x ′(t) + P(t)x (τ (t)) = 0, t ≥ t0,

where P , τ ∈ C([t0, ∞), [0, ∞)), τ(t) ≤ t , τ(t) is nondecreasing, and
lim

t→+∞ τ(t) = +∞. By introducing a class of new series, we are able to derive

sharper upper bounds on the distance between zeros of solutions of the above delay
differential equations. Some examples and a table are given to support our accom-
plishment.

Keywords Distribution of zeros · Oscillation · Variable delay

1 Introduction

In this paper, we investigate the upper bound for the distance between adjacent zeros
of solutions of the first order differential equations with a variable delay of the form

x ′(t) + P(t)x (τ (t)) = 0, t ≥ t0, (1)

where P , τ ∈ C([t0, ∞), [0, ∞)), τ(t) ≤ t , τ(t) is nondecreasing, and lim
t→∞ τ(t) =

∞. For simplicity of notations, we use the notation τ 0(t) = t and inductively define
the iterates of τ−1 by
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τ−i (t) = τ−1
(
τ−(i−1)(t)

)
, i = 1, 2, . . . ,

where τ−1 is the inverse of τ .
In general, let C = C([τ−1(t0), t0], R) denote the Banach space consisting of

all continuous function from [τ−1(t0), t0] to R, which is also called Phase Space
of Eq. (1). Using the method of steps, it follows that for every continuous function
ψ ∈ C([τ−1(t0), t0], R), there exists a unique solution of Eq. (1) valid for t ≥ t0.
For further questions on existence, uniqueness and continuous dependence, see Hale
[1] and Erbe [2]. As is customary, a solution x(t) of Eq. (1) is said to be an eventually
positive solution if x(t) > 0 when t is large enough. A solution of Eq. (1) is said to
be oscillatory if it is neither eventually positive nor eventually negative; otherwise,
it is called nonoscillatory.

We note that most of the existing results have been established for constant delay
equations [3–6]. In [7], Zhang and Zhou firstly considered the distribution of zeros
of the solutions of differential equations with a variable delay, where the following
two sequences defined by

{
f0(ρ) = 1, fn+1(ρ) = eρ fn(ρ),

g1(ρ) = 2(1−ρ)

ρ2 , gm+1(ρ) = 2 (1 − ρ) /
(
ρ2 + 2

g2m (ρ)

)
,

(2)

with 0 < ρ < 1, play an decided important role. After that, by constructing different
sequences, many researcher established more precise results about the distribution
of zeros of solutions to Eq. (1). In [8], Tang and Yu use only an increasing sequence
{rn(ρ)}∞n=0 defined by

r0(ρ) = 1, r1(ρ) = 1

1 − ρ
, rn+2(ρ) = rn(ρ)

rn(ρ) + 1 − eρrn(ρ)
. (3)

It is easy to see that the increasing rate of the sequences defined above is better
than the corresponding sequences in (2). On the base of the sequences in (3), Wu
and Xu [9] give a pair of sequences defined by

⎧
⎨

⎩

f0(ρ) = 1, f1(ρ) = 1
1−ρ

, fn+2(ρ) = fn(ρ)

fn(ρ)+1−eρ fn (ρ) ,

ϕ1(ρ) = 2(1−ρ)

ρ2 , ϕm+1(ρ) = 2
(
1 − ρ − 1

ϕm (ρ)

)
/ρ2.

(4)

More results about this topic, one can refer to [10].
In this paper, by constructing more elaborate sequences, we obtain a better upper

bound estimate for the interval-length successive zeros of the solutions of Eq. (1).
To simplify the description of sequences, we define by (4)

θ(ρ, 1) = ρ2

2
, θ(ρ, n) = eρ fn−2(ρ) − 1 − ρ fn−2(ρ)

f 2n−2(ρ)
, n = 2, 3, . . . .
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In this paper, instead of above sequences, we define the following sequences

{
f0(ρ) = 1, f1(ρ) = 1

1−ρ
, fn+1(ρ) = 1

1−ρ−θ(ρ, n) fn(ρ)

ϕ1(ρ) = 2(1−ρ)

ρ2 , ϕm+1(ρ) = 2
(
1 − ρ − 1

ϕm (ρ)

)
/ρ2 (5)

and {
f0(ρ) = 1, f1(ρ) = 1

1−ρ
, fn+1(ρ) = 1

1−ρ−θ(ρ, n) fn(ρ)
,

φ1(ρ, n) = 1−ρ
θ(ρ, n)

, φm+1(ρ, n) = 1
θ(ρ, n)

(
1 − ρ − 1

φm (ρ, n)

)
.

(6)

The properties of { fn(ρ)} have been discussed in [8–10]. Roughly, if ρ > 1/e,
then either fn(ρ) is nondecreasing and lim

n→∞ fn(ρ) = ∞ or fn(ρ) is negative or

approaches to∞ after a finite numbers of terms. However, for 0 < ρ ≤ 1/e, we have
1 ≤ fn(ρ) ≤ fn+2(ρ) ≤ e for n = 0, 1, 2, . . . and lim

n→∞ fn(ρ) = f (ρ) ∈ [1, e],
where f (ρ) is a real root of the equation

f (ρ) = eρ f (ρ). (7)

Moreover, if φm(ρ, n) > 0 for m = 1, 2, . . . , then φm+1(ρ, n) < φm(ρ, n). So
we get φ1(ρ, n) > (1 − ρ)/(2θ(ρ, n)) when (1 − ρ)2 ≥ 4θ(ρ, n), and

φm+1(ρ, n) = 1

θ(ρ, n)

(
1 − ρ − 1

φm(ρ, n)

)

>
1 − ρ

θ(ρ, n)
− 2

1 − ρ
≥ 1 − ρ

2θ(ρ, n)

for m ≥ 1. Namely, the sequence {φm} is decreasing and bounded below. Thus there
exists a function φ(ρ, n) such that lim

m→∞ φm(ρ, n) = φ(ρ, n) and φ(ρ, n) satisfies

φ(ρ, n) = 2

θ(ρ, n)

(
1 − ρ − 1

φ(ρ, n)

)
.

This implies

φ(ρ, n) = 1 − ρ + √
(1 − ρ)2 − 4θ(ρ, n)

2θ(ρ, n)
. (8)

2 Some Lemmas

In what follows, we shall assume that there exist t1 ≥ t0 and positive constant ρ such
that

(A1) : ∫ t
τ(t) P(s)ds ≥ ρ, for t ≥ t1.
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(A2) : ∫ u
τ(u)

P(s)ds ≥ ∫ t
τ(t) P(s)ds, for τ(t) ≤ u ≤ t.

In order to prove our main results, we present some lemmas.

Lemma 1 Assume that (A1) holds. If there exist T0 ≥ t1 and a solution x(t) of
Eq. (1) such that x(t) is positive on [T0, τ−N (T0)] for some N ≥ 3. Then, for some
m ≤ N − 3,

x(τ (t))

x(t)
< ϕm(ρ), t ∈ [τ−3(T0), τ−(N−m)(T0)],

where ϕm(ρ) is defined by (5).

Proof From (A1), we know that

∫ τ(t)

t
P(s)ds ≥ ρ.

Observe that F(λ) = ∫ λ

t P(s)ds is a continuous function, F(τ−1(t)) ≥ ρ, and

F(t) = 0. Thus, there exists a λt such that
∫ λt

t P(s)ds = ρ, where t < λt ≤ τ−1(t).
When τ−3(T0) ≤ t ≤ τ−(N−1)(T0), integrating both sides of Eq. (1) from t to λt

gives

x(t) − x(λt ) =
∫ λt

t
P(s)x(τ (s))ds. (9)

Since t ≤ s < λt ≤ τ−1(t), we get that τ−2(T0) ≤ τ(t) ≤ τ(s) ≤ τ(λt ) ≤ t.
Integrating both sides of Eq. (1) from τ(s) to t gives

x(τ (s)) − x(t) =
∫ t

τ(s)
P(u)x(τ (u))du. (10)

On the other hand, from Eq. (1), we obtain

x ′(t) = −P(t)x(τ (t)) ≤ 0, t ∈ [τ−1(T0), τ−N (T0)], (11)

which implies that x(t) is nonincreasing on [τ−1(T0), τ−N (T0)]. Thus, x(τ (u)) is
nonincreasing on τ−2(T0) ≤ τ(s) ≤ u ≤ t . It is easy to see that

x (τ (s)) = x(t) + x (τ (t))
∫ t

τ(s)
P(u)du

= x(t) + x (τ (t))

{∫ s

τ(s)
P(u)du −

∫ s

t
P(u)du

}

≥ x(t) + ρx (τ (t)) − x (τ (t))
∫ s

t
P(u)du. (12)
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From (9) and (12), for t ∈ [τ−3(T0), τ−(N−1)(T0)], we get

x(t) = x(λt ) +
∫ λt

t
P(s)x(τ (s))ds

≥ x(λt ) +
∫ λt

t
P(s)

{
x(t) + ρx (τ (t)) − x (τ (t))

∫ s

t
P(u)du

}
ds

= x(λt ) + ρx(t) + ρ2x(τ (t)) − x(τ (t))
∫ λt

t
P(s)

∫ s

t
P(u)duds. (13)

Changing of variable for double integration gives

∫ λt

t

∫ s

t
P(s)P(u)duds =

∫ λt

t

∫ λt

u
P(s)P(u)dsdu.

If we exchange the variable notation of integration s and u, the above equality
becomes

∫ λt

t
ds

∫ s

t
P(s)P(u)du =

∫ λt

t
ds

∫ λt

s
P(u)P(s)ds,

which implies

∫ λt

t
ds

∫ s

t
P(s)P(u)du = 1

2

∫ λt

t
P(s)

{∫ s

t
P(u)du +

∫ λt

s
P(u)du

}
ds

= 1

2

∫ λt

t

∫ λt

t
P(u)P(s)duds = ρ2

2
.

Substituting this into (13), we have

x(t) ≥ x(λt ) + ρx(t) + ρ2

2
x(τ (t)) (14)

≥ ρx(t) + ρ2

2
x(τ (t)), t ∈ [τ−3(T0), τ−(N−1)(T0)]. (15)

By (15), we obtain

x(τ (t))

x(t)
<

2(1 − ρ)

ρ2 = ϕ1(ρ), t ∈ [τ−3(T0), τ−(N−1)(T0)]. (16)

When τ−3(T0) ≤ t ≤ τ−(N−2)(T0), we easily see that τ−3(T0) ≤ t ≤ λt ≤
τ−1(t) ≤ τ−(N−1)(T0). Thus, by (16), we have

x(λt ) >
1

ϕ1(ρ)
x(τ (λt )), t ∈ [τ−3(T0), τ−(N−2)(T0)]. (17)
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Since x(t) is nonincreasing on [τ−1(T0), τ−N (T0)] and τ−2(T0) ≤ τ(λt ) < t <

λt < τ−(N−1)(T0), from (17), we obtain x(λt ) > 1
ϕ1(ρ)

x(t). Substituting this into
(14), we get

x(t) >
1

ϕ1(ρ)
x(t) + ρx(t) + ρ2

2
x(τ (t)), t ∈ [τ−3(T0), τ−(N−2)(T0)].

Therefore

x(τ (t))

x(t)
<

2
(
1 − ρ − 1

ϕ1(ρ)

)

ρ2 = ϕ2(ρ), t ∈ [τ−3(T0), τ−(N−2)(T0)].

Repeating the procedure just described gives

x(τ (t))

x(t)
<

2
(
1 − ρ − 1

ϕm−1(ρ)

)

ρ2 = ϕm(ρ), t ∈ [τ−3(T0), τ−(N−m)(T0)].

The proof is complete.

Lemma 2 Assume that (A1) and (A2) hold. Further assume x(t) be a solution
of Eq. (1) on [t0, ∞), and that there exists T0 ≥ t1 such that x(t) is positive on
[T0, τ−N (T0)] for some N ≥ 3. Then for some N − 2 ≥ n ≥ 1,

x(τ (t))

x(t)
≥ fn(ρ) > 0, t ∈ [τ−(2+n)(T0), τ−N (T0)],

where fn(ρ) is defined by (5).

Proof From (11), we know that x(t) is nonincreasing on [τ−1(T0), τ−N (T0)]. It
follow that

x(τ (t))

x(t)
≥ 1 = f0(ρ) for t ∈ [τ−2(T0), τ−N (T0)]. (18)

When τ−3(T0) ≤ t ≤ T, integrating Eq. (1) from τ(t) to t we get

x(τ (t)) = x(t) +
∫ t

τ(t)
P(s)x(τ (s))ds

≥ x(t) + ρx(τ (t)).

So

x(τ (t))

x(t)
≥ 1

1 − ρ
= f1(ρ) > 0, t ∈ [τ−3(T0), τ−N (T0)]. (19)
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Next we proof that

x(τ (t))

x(t)
≥ f2(ρ) > 0, t ∈ [τ−4(T0), τ−N (T0)].

From (11), (14), and (19) we obtain

x(t) ≥ x
(
τ−1(t)

)
+ ρx(t) + ρ2

2
x(τ (t))

≥ x
(
τ−1(t)

)
+ ρx(t) + ρ2

2(1 − ρ)
x(t)

= x
(
τ−1(t)

)
+ ρx(t) + θ(ρ, 1) f1(ρ)x(t), t ∈ [τ−3(T0), τ−(N−1)(T0)],

which shows that

0 < x
(
τ−1(t)

)
≤ 2 − 4ρ + ρ2

2(1 − ρ)
x(t) = (1 − ρ − θ(ρ, 1) f1(ρ))x(t).

Therefore, 0 < x (t) ≤ (1−ρ−θ(ρ, 1) f1(ρ))x(τ (t)), for t ∈ [τ−4(T0), τ−N (T0)].
That is, for t ∈ [τ−4(T0), τ−N (T0)]

x (τ (t))

x(t)
≥ 1

1 − ρ − θ(ρ, 1) f1(ρ)
= f2(ρ) > 0. (20)

Finally, we prove that

x(τ (t))

x(t)
≥ f3(ρ) > 0, t ∈ [τ−5(T0), τ−N (T0)].

When τ−4(T0) ≤ t ≤ τ−(N−1)(T0), integrating both sides of Eq. (1) from t to λt

gives

x(t) − x(λt ) =
∫ λt

t
P(s)x(τ (s))ds. (21)

Since t ≤ s < λt ≤ τ−1(t), we get that τ−3(T0) ≤ τ(t) ≤ τ(s) ≤ τ(λt ) ≤ t.
Integrating both sides of Eq. (1) from τ(s) to τ(t) gives

x(τ (s)) − x(t) =
∫ t

τ(s)
P(u)x(τ (u))du. (22)

From (21) and (22), for t ∈ [τ−4(T0), τ−(N−1)(T0)], we have
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x(t) = x(λt ) +
∫ λt

t
P(s)x(τ (s))ds

= x(λt ) +
∫ λt

t
P(s)

{
x(t) +

∫ t

τ(s)
P(u)x(τ (u))du

}
ds

= x(λt ) +
∫ λt

t
P(s)

{
x(t) + x(τ (t))

∫ t

τ(s)
P(u)

x(τ (u))

x(τ (t))
du

}
ds. (23)

Dividing both sides of Eq. (1) by x(t) and integrating from τ(u) to τ(t), we obtain

x(τ (u))

x(τ (t))
= exp

(∫ τ(t)

τ (u)

P(η)
x(τ (η))

x(η)
dη

)

, τ (s) ≤ u ≤ t. (24)

Since τ(τ (t)) ≤ η ≤ τ(t), from (18) and (24), we get

x(τ (u))

x(τ (t))
≥ exp

(

f0(ρ)

∫ τ(t)

τ (u)

P(η)dη

)

, t ∈ [τ−4(T0), τ−(N−1)(T0)]. (25)

On the other hand, from condition (A2) and (25), it is easy to see that

∫ t

τ(s)
P(u)

x(τ (u))

x(τ (t))
du

≥
∫ t

τ(s)
P(u) exp

(

f0(ρ)

∫ τ(t)

τ (u)

P(η)dη

)

du

=
∫ t

τ(s)
P(u) exp

[
f0(ρ)

(∫ u

τ(u)

P(η) −
∫ u

τ(t)
P(η)

)
dη

]
du

≥ exp

(
f0(ρ)

(∫ t

τ(t)
P(η)

)) ∫ t

τ(s)
P(u) exp

(
− f0(ρ)

∫ u

τ(t)
P(η)dη

)
du (by (A2))

= exp

(
f0(ρ)

∫ t

τ(t)
P(η)dη

)
1

f0(ρ)

×
[

exp

(

− f0(ρ)

∫ τ(s)

τ (t)
P(η)dη

)

− exp

(
− f0(ρ)

∫ t

τ(t)
P(η)dη

)]

(by Integration by Parts)

= 1

f0(ρ)
exp

(
f0(ρ)

∫ u

τ(u)

P(η)dη

)
exp

(
− f0(ρ)

∫ t

τ(t)
P(η)dη

)

×
[

exp

(

− f0(ρ)

∫ τ(s)

t
P(η)dη

)

− 1

]

≥ 1

f0(ρ)

[
eρ f0(ρ) exp

(
− f0(ρ)

∫ s

t
P(η)dη

)
− 1

]
.
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By the above inequality, it follows from (23) that

x(t) ≥ x(λt ) + ρx(t) − ρ

f0(ρ)
x (τ (t))

+eρ f0(ρ)

f0(ρ)

∫ λt

t
P(s) exp

(
− f0(ρ)

∫ s

t
P(η)dη

)
ds x (τ (t))

≥ x(λt ) + ρx(t) + 1

f 20(ρ)

[
eρ f0(ρ) − 1 − ρ f0(ρ)

]
x (τ (t)) . (26)

By λt ≤ τ−1(t) and (20), we obtain that for t ∈ [τ−4(T0), τ−(N−1)(T0)],

x(t) ≥ x(τ−1(t)) + ρx(t) + f2(ρ)

f 20(ρ)

[
eρ f0(ρ) − 1 − ρ f0(ρ)

]
x(t).

So

x(t)

x(τ−1(t))
≥ 1

1 − ρ − θ(ρ, 2) f2(ρ)
, t ∈ [τ−4(T0), τ−(N−1)(T0)],

which implies that

x(τ (t))

x(t)
≥ 1

1 − ρ − θ(ρ, 2) f2(ρ)
= f3(ρ) > 0, t ∈ [τ−5(T0), τ−N (T0)].

Repeating the above procedure, we get for t ∈ [τ−(2+n)(T0), τ−N (T0)]
x(τ (t))

x(t)
≥ 1

1 − ρ − θ(ρ, n − 1) fn−1(ρ)
= fn(ρ) > 0,

where n = 3, 4, 5, . . . . The proof is complete.

Lemma 3 Assume that (A2) and (A2) hold. If there exist T0 ≥ t1 and a solution x(t)
of Eq. (1) that is positive on [T0, τ−N (T0)] for some N ≥ 5, then, for some n ≥ 2
and m ≥ 1 satisfying 2 + n + m ≤ N,

x(τ (t))

x(t)
< φm(ρ, n), t ∈ [τ−(n+2)(T0), τ−(N−m)(T0)],

where φm(ρ, n) is defined by (6)

Proof As in the proof of Lemma 2, we get that (23), (24), and

x(τ (t))

x(t)
≥ fn(ρ), t ∈ [τ−(2+n)(T0), τ

−N (T0)], n = 1, 2, . . . . (27)
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Since τ 2(t) ≤ η ≤ τ(t), from (24) and (27), we get

x(τ (u))

x(τ (t))
≥ exp

(

fn−2(ρ)

∫ τ(t)

τ (u)

P(η)dη

)

, t ∈ [τ−(2+n)(T0), T ]. (28)

Similar to the proof of Lemma 2, from (A2) and (28), it is easy to see that

∫ t

τ(s)
P(u)

x(τ (u))

x(τ (t))
du ≥ 1

fn−2(ρ)

[
eρ fn−2(ρ) exp

(
− fn−2(ρ)

∫ s

t
P(η)dη

)
− 1

]
.

From (23), we get

x(t) ≥ x(λt ) + ρx(t) + x (τ (t))

f 2n−2(ρ)

[
eρ fn−2(ρ) − 1 − ρ fn−2(ρ)

]
. (29)

Thus

x(t) > ρx(t) + x (τ (t))

f 2n−2(ρ)

[
eρ fn−2(ρ) − 1 − ρ fn−2(ρ)

]
,

which implies that, for t ∈ [τ−(2+n)(T0), τ−(N−1)(T0)],
x(τ (t))

x(t)
<

(1 − ρ) f 2n−2(ρ)

eρ fn−2(ρ) − 1 − ρ fn−2(ρ)
= φ1(ρ, n).

When τ−(2+n)(T0) ≤ t ≤ τ−(N−2)(T0), it is easy to see that τ−(2+n)(T0) ≤ t ≤
λt ≤ τ−1(t) ≤ τ−(N−1)(T0), and therefore, we have

x(λt ) >
1

φ1(ρ, n)
x(τ (λt )), t ∈ [τ−(2+n)(T0), τ−(N−2)(T0)].

Since x(t) is nonincreasing on [τ−1(T0), τ−N (T0)] and τ−(1+n)(T0) ≤ τ(λt ) <

t < λt < τ−(N−1)(T0), we obtain

x(λt ) >
1

φ1(ρ, n)
x(t). (30)

Substituting (30) into (29), for t ∈ [τ−(2+n)(T0), τ−(N−2)(T0)], we have

x(t) >
1

φ1(ρ, n)
x(t) + ρx(t) + x (τ (t))

f 2n−2(ρ)

[
eρ fn−2(ρ) − 1 − ρ fn−2(ρ)

]
.

By the above inequality, it follows that for t ∈ [τ−(2+n)(T0), τ−(N−2)(T0)],

x(τ (t))

x(t)
<

(
1 − ρ − 1

φ1(ρ,n)

)
f 2n−2(ρ)

eρ fn−2(ρ) − 1 − ρ fn−2(ρ)
= φ2(ρ, n).
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Repeating the procedure just described gives

x(τ (t))

x(t)
<

(
1 − ρ − 1

φm−1(ρ,n)

)
f 2n−2(ρ)

eρ fn−2(ρ) − 1 − ρ fn−2(ρ)
= φm(ρ, n),

where t ∈ [τ−(2+n)(T0), τ−(N−m)(T0)]. The proof is complete.

3 Main Results

Our first result is the following.

Theorem 1 Assume that (A1) with ρ > 1/e and (A2) holds. Then, for any T ≥ t1,
every solution of Eq. (1) has at least one zero on [T, τ−k(T )], where

k = min{α, β} and

⎧
⎨

⎩

α = 2 + min
n≥1,m≥1

{n + m| fn(ρ) ≥ ϕm(ρ)} ,

β = 2 + min
n≥1

{n| fn(ρ) < 0 or fn(ρ) = ∞}, (31)

where fn(ρ) and φm(ρ, n) are defined by (5).

Proof Without loss of generality, we might assume that x(t) is a solution to Eq. (1)
for t ∈ [T, τ−k(T )]. Suppose to the contrary that x(t) > 0 for T ≤ t ≤ τ−k(T )(This
situation is the same when x(t) < 0, since y(t) = −x(t) is also a solution of Eq.
(1)). When ρ > 1/e, let k = 2 + m∗ + n∗ satisfy

ϕm∗(ρ) ≤ fn∗(ρ), t ∈ [T, τ−k(T )], (32)

where m∗, n∗ ∈ {1, 2, 3, . . .}. From the definitions of ϕm and fn , we find that m∗
and n∗ must exist. By Lemma 1, we obtain

x(τ (t))

x(t)
< ϕm∗(ρ), t ∈ [τ−3(T ), τ−(k−m∗)(T )]. (33)

On the other hand, by Lemma 2, we have

x(τ (t))

x(t)
≥ fn∗(ρ), t ∈ [τ−(2+n∗)(T ), τ−k(T )]. (34)

Setting t = τ−(2+n∗)(T ) = τ−(k−m∗)(T ) in (33) and (34) gives

fn∗(ρ) ≤ x(τ−(1+n∗)(T ))

x(τ−(2+n∗)(T ))
< ϕm∗(ρ),
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which contradicts (32). So k ≤ α = 2 + min
n≥1,m≥1

{n + m| fn(ρ) ≥ ϕm(ρ)} . Since

fn(ρ) > 0, it is easy to see that k ≤ β = 2 + min
n≥1

{n| fn(ρ) < 0 or fn(ρ) = ∞}.
The proof is complete.

Corollary 1 In addition to the assumption of Theorem 1, further, assume that there
exist constants Mi such that τ−i (T ) − T ≤ Mi , i = 1, 2, . . ., for any t ≥ t1. Then
the distance between the adjacent zeros of every solution of Eq. (1) on [t1, ∞] are
less than Mk, where k is defined by (31).

In a manner similar to the proof of Theorem 1 just completed, we can prove the
following theorems and corollaries.

Theorem 2 Assume that (A1) and (A2) hold with ρ > 1/e. Then, for any T ≥ t1,
every solution of Eq. (1) has at least one zero in [T, τ−k(T )], where

k = min{α, β, γ } and

⎧
⎪⎪⎨

⎪⎪⎩

α = 2 + min
n≥2, m≥1

{n + m| fn(ρ) ≥ φm(ρ, n)} ,

β = 2 + min
n≥1

{n| fn(ρ) < 0 or fn(ρ) = ∞},
γ = 2 + min

n≥2, m≥1
{n + m|φm(ρ, n) < 0} ,

(35)

where fn(ρ) and φm(ρ, n) are defined by (6).

Corollary 2 In addition to the assumption of Theorem 2, further, assume that there
exist constants Mi such that τ−i (T ) − T ≤ Mi , i = 1, 2, . . ., for any t ≥ t1. Then
the distance between the adjacent zeros of every solution of Eq. (1) on [t1, ∞] are
less than Mk, where k is defined by (35).

When 0 < ρ ≤ 1/e in (A1), we have following results.

Theorem 3 Assume that (A1) holds with 0 < ρ ≤ 1/e and (A2) holds. Further,
assume that there exists a sequence {Ti }, Ti → ∞ as i → ∞, such that

∫ Ti

τ(Ti )

P(s)ds ≥ L >
1 + ln f (ρ)

f (ρ)
− 1 − ρ − √

1 − 2ρ − ρ2

2
, (36)

where f (ρ) is a real root of (7) on [1, e]. Then every solution of Eq. (1) has at least
a zero on [τ (2+n∗)(Ti ), τ

−m∗
(Ti )], where Ti ≥ τ−(2+n∗)(t1) and

n∗ + m∗ = min
n≥1, m≥1

{
n + m|L >

1 + ln fn−1(ρ)

fn−1(ρ)
− 1

ϕm(ρ)

}
, (37)

where ϕm(ρ) is defined by (5) and f (ρ) is a real root of (7) on [1, e].
Proof Without loss of generality, we might assume that x(t) is a solution to Eq. (1)
satisfying x(t) > 0 for t ∈ [τ (2+n∗)(Ti ), τ

−m∗
(Ti )], where Ti ≥ τ−(2+n∗)(t1). By

Lemma 1 and Lemma 2, we obtain
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x(τ (t))

x(t)
≥ fn∗(ρ), t ∈ [Ti , τ

−m∗
(Ti )], (38)

x(τ (t))

x(t)
≥ fn∗−1(ρ), t ∈ [τ(Ti ), τ

−m∗
(Ti )], (39)

and
x(τ (t))

x(t)
< φm∗(ρ, n), t ∈ [τ n∗−1(Ti ), Ti ]. (40)

FromEq. (1), it is easy to see that x(t) is nonincreasing on [τ (1+n∗)(Ti ), τ
−m∗

(Ti )]
and τ−(1+n)(T0) ≤ τ(λt ) < t < λt < τ−(N−1)(T0). By (37), we obtain

L >
1 + ln fn∗−1(ρ)

fn∗−1(ρ)
− 1

ϕ∗
m(ρ)

. (41)

Since { fn(ρ)} is increasing, by (38), we have

x(τ (Ti ))

x(Ti )
> fn∗−1(ρ). (42)

So there exists a t∗i ∈ [τ(Ti ), Ti ] such that

x(τ (Ti ))

x(t∗i )
= fn∗−1(ρ). (43)

Integrating Eq. (1) from t∗i to Ti , and noting that τ(Ti ) ≤ t∗i ≤ s ≤ Ti , by (39) and
(40), we obtain that

x(t∗i ) − x(Ti ) =
∫ Ti

t∗i
P(s)x(τ (s))ds ≥ x(τ (Ti ))

∫ Ti

t∗i
P(s)x(τ (s))ds,

which implies

∫ Ti

t∗i
P(s)ds ≤ x(t∗i )

x(τ (Ti ))
− x(Ti )

x(τ (Ti ))
. (44)

From (40), (43) and (44), we get

∫ Ti

t∗i
P(s)ds ≤ 1

fn∗−1(ρ)
− 1

φm∗(ρ, n)
. (45)



336 D. Peng and L. Zhang

Dividing both sides of Eq. (1) by x(t) and integrating from τ(Ti ) to t∗i , we obtain

∫ t∗i

τ(Ti )

x ′(s)
x(s)

ds = −
∫ t∗i

τ(Ti )

P(s)
x(τ (s))

x(s)
ds ≤ − fn∗−1(ρ)

∫ t∗i

τ(Ti )

P(s)ds,

which implies

∫ t∗i

τ(Ti )

P(s)ds ≤ − 1

fn∗−1(ρ)

∫ t∗i

τ(Ti )

P(s)
x ′(s)
x(s)

ds = ln fn∗−1(ρ)

fn∗−1(ρ)
. (46)

From (41), (45) and (46), we have

∫ t∗i

τ(Ti )

P(s)ds ≤ 1 + ln fn∗−1(ρ)

fn∗−1(ρ)
− 1

φm∗(ρ, n)
< L ,

which contradicts (36) and completes the proof.

Corollary 3 Assume that (A1) with 0 < ρ ≤ 1/e and (A2) hold, and

lim sup
t→∞

∫ t

τ(t)
P(s)ds ≥ L >

1 + ln f (ρ)

f (ρ)
− 1 − ρ − √

1 − 2ρ − ρ2

2
,

where f (ρ) is defined by (7). Then every solution of Eq. (1) oscillates.

Theorem 4 Assume that (A1) holds with 0 < ρ ≤ 1/e and (A2) holds. Further,
assume that there exists a sequence {Ti }, Ti → ∞ as i → ∞, such that

∫ Ti

τ(Ti )

Pds ≥ L >
1 + ln f (ρ)

f (ρ)
− φ(ρ, n),

where f (ρ) is a real root of (7) on [1, e]. Then every solution of Eq. (1) has at least
a zero on [τ (2+n∗)(Ti ), τ

−m∗
(Ti )], where Ti ≥ τ−(2+n∗)(t1) and

n∗ + m∗ = min
n≥1, m≥1

{
n + m|L >

1 + ln fn−1(ρ)

fn−1(ρ)
− 1

φm(ρ, n)

}
,

where fn(ρ) and φm(ρ, n) are defined by (6), and φ(ρ, n) is defined by (8).

Corollary 4 Assume that (A1) holds with 0 < ρ ≤ 1/e, and

lim sup
t→∞

∫ t

τ(t)
Pds ≥ L >

1 + ln f (ρ)

f (ρ)
− φ(ρ, n),

where f (ρ) is a real root of (7) on [1, e] and φ(ρ, n) is defined by (8). Then every
solution of Eq. (1) oscillates.
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4 Some Examples

In this section, we will show the application of our estimate for the distance between
adjacent zeros of oscillatory solutions by two examples and a table.

Example 4.1 Consider the delay differential equation as follows:

x ′(t) + 10 + 9t

20t
x(t − 1) = 0.

It is easy to see choosing ρ = 0.45, by Theorem 3.1 in [9], we have

{
ϕ1 = 5.4320 · · · , ϕ2 = 3.6138 · · · , ϕ3 = 2.6991 · · · ,

f1 = 1.8181 · · · , f2 = 2.3164 · · · , f3 = 3.2949 · · · .

Hence f3 = 3.2949 · · · ≥ ϕ3 = 2.6991 · · · ,we get k = 2+3+3 = 8. On the other
hand, by Theorem 1 in this paper, we get

{
ϕ1 = 5.4320 · · · , ϕ2 = 3.6138 · · · , ϕ3 = 2.6991 · · · ,

f1 = 1.8181 · · · , f2 = 2.7329 · · · , f3 = 3.2949 · · · .

Obviously, f2 = 2.7329 · · · ≥ ϕ3 = 2.6991 · · · , we get k = 2+ 2+ 3 = 7. Our
results improve the corresponding theorems in [3–9].

Example 4.2 Consider the delay differential equation as follows:

x ′(t) + 0.4x(t − 1) = 0.

Choosing ρ = 0.4, by Theorem 3.1 in [9], we have

{
ϕ1 = 7.5000 · · · , ϕ2 = 5.8333 · · · , ϕ4 = 5.1667 · · · , ϕ5 = 5.0806 · · · .

f1 = 1.6667 · · · , f7 = 4.1839 · · · , f8 = 5.8467 · · · , f9 = −28.4195 · · · .

Hence f9 = −28.4195 · · · < 0, f8 = 5.8467 · · · ≥ ϕ2 = 5.8333 · · · , we get
α1 = 2 + 9 = 11, α2 = 2 + 8 + 2 = 12, and therefore k = 11. By Theorem 3.1 in
[10], let n = 6 in φm . We have

{
φ1 = 4.5992 · · · , φ3 = 1.9854 · · · , φ4 = 0.7383 · · · , φ5 = −5.7820 · · · .

f1 = 1.6667 · · · , f7 = 4.1839 · · · , f8 = 5.8467 · · · , f9 = −28.4195 · · · .

Obviously, φm < ϕm . Hence f9 = −28.4195 · · · < 0, f8 = 5.8467 · · · ≥ ϕ1 =
4.5992 · · · , we get α1 = 2 + 9 = 11, α2 = 2 + 8 + 1 = 11, and therefore k = 11
also.
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Table 1 The comparison of the ρ

D(x) ≤ 3τ 4τ 5τ 6τ

In [5] 1 ≤ ρ ≤ ∞ 0.6295 ≤ ρ < 1 0.5495 ≤ ρ < 0.6295 0.5159 ≤ ρ < 0.5495

In [7] 1 ≤ ρ ≤ ∞ 0.6290 ≤ ρ < 1 0.5483 ≤ ρ < 0.6290 0.5140 ≤ ρ < 0.5483

In [8] 1 ≤ ρ ≤ ∞ 0.5858 ≤ ρ < 1 0.5307 ≤ ρ < 0.5858 0.4778 ≤ ρ < 0.5307

In [9] 1 ≤ ρ ≤ ∞ 0.5858 ≤ ρ < 1 0.5307 ≤ ρ < 0.5858 0.4778 ≤ ρ < 0.5307

Here 1 ≤ ρ ≤ ∞ 0.5858 ≤ ρ < 1 0.4890 ≤ ρ < 0.5858 0.4446 ≤ ρ < 0.4890

Finally, in our paper, by Theorem 3.2, let n = 6 in φm , we have

{
φ1 = 5.0386 · · · , φ2 = 3.3719 · · · , φ3 = 2.5481 · · · , φ4 = 1.7430 · · · .

f1 = 1.6666 · · · , f2 = 2.7247 · · · , f6 = 3.6292 · · · , f8 = 10.1133 · · · .

Hence f6 = 3.6292 · · · ≥ ϕ2 = 3.3719 · · · , we get α = 2 + 6 + 2 = 10, and
therefore k = 10. That is to say, our results improve the Theorem 3.1 in [10].

Below is a table, the results of the Theorem 1 compared with the previous corre-
sponding results of the literature (Table 1).
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An Approach to Dual Hesitant Fuzzy
Soft Set Based on Decision Making

Yan-ping He

Abstract By combining the dual hesitant fuzzy set and soft set models, the pur-
pose of this paper is to introduce the concept of dual hesitant fuzzy soft sets. Then,
we present an adjustable approach to dual hesitant fuzzy soft sets based on deci-
sion making and some numerical examples are provided to illustrate the developed
approach.

Keywords Soft set · Dual hesitant fuzzy soft set · Level soft set

1 Introduction

Since existing uncertainty theories such as fuzzy sets [1], intuitionistic fuzzy sets
[2, 3] and interval-valued fuzzy sets [4] have their inherent difficulties, the soft set
theory, originally initiated by Molodtsov [5] as a new mathematical tool for dealing
with uncertainties, is free from the inadequacy of the parameterization tools of those
theories. Recently, researchworks on soft sets are very active and progressing rapidly
and many fruitful results have been achieved in the theoretical aspect by combining
soft sets with other mathematical structures [6–11].

Furthermore, Zhu et al. [12] proposed dual hesitant fuzzy sets [13, 14], which
encompass fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and fuzzymultisets
[15] as special cases, and investigated the basic operations and properties of DHFSs,
and then they gave the application of DHFSs in group forecasting. The DHFS is
a comprehensive set encompassing several existing sets, and whose membership
degrees and nonmembership degrees are represented by two sets of possible values.
Therefore, it has the desirable characteristics and advantages of its own and appears
to be a more flexible method to be valued in multifold ways according to the practical
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demands than the existing fuzzy sets, taking into account much more information
given by decision makers.

The purpose of the present paper is to present the new hybrid model called dual
hesitant fuzzy soft sets by combining dual hesitant fuzzy set and soft set, and attempt
to build up a general framework of the decision methodology based on dual hesitant
fuzzy soft set theory. Because the new hybridmodel includes both ingredients of dual
hesitant fuzzy set and soft set, it is more flexible and effective to cope with imperfect
and imprecise information than dual hesitant fuzzy set and soft set.

2 Preliminaries

2.1 Soft Sets and Fuzzy Soft Sets

The concept of soft sets is defined as follows:

Definition 1 ([5]) Let U be an initial universe set and E be a universe set of para-
meters. A pair (F, E) is called a soft set over U if F : E → P(U ), where P(U ) is
the set of all subsets of U .

Combining fuzzy sets and soft sets, Maji et al. [7] initiated the following hybrid
model called fuzzy soft sets, which can be seen as an extension of both fuzzy sets
and crisp soft sets.

Definition 2 ([7]) Let U be an initial universe set and E be a universe set of para-
meters. A pair (F, E) is called a fuzzy soft set over U if F : E → F(U ), where
F(U ) is the set of all fuzzy subsets of U .

2.2 Dual Hesitant Fuzzy Sets

Definition 3 ([12]) Let U be a fixed set. A dual hesitant fuzzy (DHF, for short) set
D on U is described as:

D = {〈x, hD(x), gD(x)〉|x ∈ U },

in which hD(x) and gD(x) are two sets of some values in [0, 1], denoting the possible
membership degrees and non-membership degrees of the element x ∈ U to the set
D respectively, with the conditions: 0 ≤ γ, η ≤ 1 and 0 ≤ γ+ + η+ ≤ 1, where for
all x ∈ U , γ ∈ hD(x), η ∈ gD(x), γ+ ∈ h+

D
(x) = ∪γ∈hD(x)max{γ}, η+ ∈ g+

D
(x) =

∪η∈gD(x)max{η}.
For convenience, the pair d(x) = (hD(x), gD(x)) is called aDHFelement denoted

by d = (h, g). The set of all DHF sets on U is denoted by DHF(U ).
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Remark 1 FromDefinition 3,we can see that it consists of two parts, that is, themem-
bership hesitancy function and the nonmembership hesitancy function, supporting a
more exemplary and flexible access to assign values for each element in the domain,
and can handle two kinds of hesitancy in this situation. The existing sets, including
fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and fuzzy multisets, can be
regarded as special cases of DHF sets.

Example 1 Let U = {x1, x2} be a reference set. d(x1) = (hD(x1), gD(x1)) =
({0.3, 0.4}, {0.7}) and d(x2) = (hD(x2), gD(x2)) = ({0.1, 0.5}, {0.3, 0.8}) be the
DHF elements of xi (i = 1, 2) to a set D, respectively. Then D can be considered as
a DHF set, that is,

D = {〈x1, {0.3, 0.4}, {0.7}〉, 〈x2, {0.1, 0.5}, {0.3, 0.8}〉}.

3 Dual Hesitant Fuzzy Soft Sets

In the section, we first propose the concept of dual hesitant fuzzy soft sets by inte-
grating dual hesitant fuzzy sets with soft sets.

Definition 4 Let (U, E) be a soft universe and A ⊆ E . A pairS = (F̃, A) is called
a dual hesitant fuzzy soft set over U , where F̃ is a mapping given by F̃ : A →
DH F(U ).

In general, F̃(e) can be written as

F̃(e) = {〈x, hF̃(e)(x), gF̃(e)(x)〉|x ∈ U },

where hF̃(e)(x) and gF̃(e)(x) are two sets of some values in [0, 1], denoting the
possible membership degrees and non-membership degrees that object x holds on
parameter e, respectively.

Remark 2 From Remark 1, we know that fuzzy sets, intuitionistic fuzzy sets and
hesitant fuzzy sets can be regarded as special cases of dual hesitant fuzzy sets.
Therefore, under certain conditions a dual hesitant fuzzy soft set can degenerate to
fuzzy soft sets, intuitionistic fuzzy soft sets and hesitant fuzzy soft sets, respectively.

For convenience, we denote F̃ as (F̃, E). If A ⊆ E , we can also denote a dual
hesitant fuzzy soft set by (F̃, A).

Example 2 LetU be a set of four participants performing dance programme,which is
denoted byU = {x1, x2, x3, x4}. Let E be a parameter set, where E = {e1, e2, e3} =
{confident; creative; graceful}. Suppose that there are three judges who are invited to
evaluate the membership degrees and non-membership degrees of a candidate x j to
a parameter ei with several possible values in [0, 1]. Then dual hesitant fuzzy soft set
S = (F̃, A) defined as below gives the evaluation of the performance of candidates
by three judges.
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Table 1 Dual hesitant fuzzy soft set S= (F̃, A)

U e1 e2 e3

x1 {0.6,0.7,0.8},{0.3,0.2,0.1} {0.5,0.6,0.4},{0.4,0.3,0.2} {0.4,0.4,0.3},{0.7,0.6,0.6}

x2 {0.4,0.5,0.6},{0.3,0.2,0.1} {0.5,0.4,0.3},{0.5,0.3,0.3} {0.5,0.7,0.7},{0.3,0.2,0.2}

x3 {0.8,0.7,0.7},{0.2,0.1,0.1} {0.7,0.8,0.8},{0.2,0.2,0.1} {0.5,0.6,0.7},{0.3,0.2,0.1}

x4 {0.3,0.4,0.4},{0.6,0.5,0.4} {0.5,0.6,0.6},{0.4,0.3,0.2} {0.7,0.6,0.8},{0.2,0.1,0.1}

F̃(e1) ={〈x1, {0.6, 0.7, 0.8}, {0.3, 0.2, 0.1}〉, 〈x2, {0.4, 0.5, 0.6}, {0.3, 0.2, 0.1}〉,
〈x3, {0.8, 0.7, 0.7}, {0.2, 0.1, 0.1}〉, 〈x4, {0.3, 0.4, 0.4}, {0.6, 0.5, 0.4}〉},

F̃(e2) ={〈x1, {0.5, 0.6, 0.4}, {0.4, 0.3, 0.2}〉, 〈x2, {0.5, 0.4, 0.3}, {0.5, 0.3, 0.3}〉,
〈x3, {0.7, 0.8, 0.8}, {0.2, 0.2, 0.1}〉, 〈x4, {0.5, 0.6, 0.6}, {0.4, 0.3, 0.2}〉},

F̃(e3) ={〈x1, {0.4, 0.4, 0.3}, {0.7, 0.6, 0.6}〉, 〈x2, {0.5, 0.7, 0.7}, {0.3, 0.2, 0.2}〉,
〈x3, {0.5, 0.6, 0.7}, {0.3, 0.2, 0.1}〉, 〈x4, {0.7, 0.6, 0.8}, {0.2, 0.1, 0.1}〉}.

The tabular representation of S = (F̃, A) is shown in Table1.

All the available information on these participants performing dance programme
can be characterized by a dual hesitant fuzzy soft setS = (F̃, A). In Table1, we can
see that the precise evaluation for an alternative to satisfy a criterion is unknownwhile
possible membership degrees and non-membership degrees of such an evaluation
are given. For example, we cannot present the precise membership degree and non-
membership degree of how confident the candidate x1 performing dance programme
is, but we have a certain hesitancy in providing the membership degree and non-
membership degree of the candidate x1 performing dance programme with respect
to the parameter confident e1. In other words, we provide three possible values 0.6,
0.7 and 0.8 to depict the degree of how confident the candidate x1 is and three possible
values 0.3, 0.2 and 0.1 to depict the degree of how confident the candidate x1 is not.

4 An Adjustable Approach to Dual Hesitant Fuzzy
Soft Sets Based on Decision Making

Since DHF sets were introduced by Zhu [12], DHF set theory has been applied in
dealing with uncertainty decision making problems [16–18]. In the current section,
we shall present an adjustable approach to dual hesitant fuzzy soft sets based on
decision making problems.

Firstly, we introduce the score function of HF elements given by Xia and Xu to
compare two HF elements.
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Definition 5 ([19]) For a HF element hA(x),

s(hA(x)) =
∑

γ∈hA(x)
γ

l(hA(x))

is called the score function of hA(x), where l(hA(x)) is the number of the elements
in hA(x).

On the basis of the score function in Definition 5, we will further introduce the
concept of level soft sets of dual hesitant fuzzy soft sets.

Definition 6 Let S = (F̃, A) be the dual hesitant fuzzy soft set over U , where
A ⊆ E and E is the parameter set. For (α,β) ∈ L∗, the (α,β)-level soft set ofS is
a crisp soft set L(S;α,β) = (F̃(α,β), A) defined by

F̃(α,β)(e) = L(F̃(e);α,β) = {x ∈ U |(s(hF̃(e)(x)), s(gF̃(e)(x))) ≥L∗ (α,β)}
= {x ∈ U |s(hF̃(e)(x)) ≥ α, s(gF̃(e)(x)) ≤ β}

for all e ∈ A.

To illustrate Definition 6, let us consider the dual hesitant fuzzy soft set (F̃, A)
shown in Example 2.

Example 3 (The (0.5, 0.2)-level soft set of the dual hesitant fuzzy soft setS) Recon-
sider Example 2. Now taking α = 0.5 and β = 0.2, then by Definitions 5 and 6, we
can obtain the following (0.5, 0.2)-level soft sets:

F̃(0.5,0.2)(e1) = L(F̃(e1); (0.5, 0.2))
= {x ∈ U |s(hF̃(e1)

(x)) ≥ 0.5, s(gF̃(e1)
(x)) ≤ 0.2} = {x1, x2, x3},

which implies that x1, x2, and x3 are confident on the degree more than 0.5, and
x1, x2, and x3 are not confident on the degree less than 0.2.

F̃(0.5,0.2)(e2) = L(F̃(e2); (0.5, 0.2))
= {x ∈ U |s(hF̃(e2)

(x)) ≥ 0.5, s(gF̃(e2)
(x)) ≤ 0.2} = {x3},

F̃(0.5,0.2)(e3) = L(F̃(e3); (0.5, 0.2))
= {x ∈ U |s(hF̃(e3)

(x)) ≥ 0.5, s(gF̃(e3)
(x)) ≤ 0.2} = {x3, x4}.

In Definition 6, the level pair (or threshold pair) assigned to each parameter is
always the constant value pair (α,β) ∈ L∗.However, in some practical applications,
decision makers need to impose different thresholds on different parameters. To
address this issue, we replace a constant value pair by a function as the thresholds
on membership values and non-membership values, respectively.
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Definition 7 Let (F̃, A) be the dual hesitant fuzzy soft set over U , where A ⊆ E
and E is the parameter set. Let λ : A → L∗ be an intuitionistic fuzzy set in A which
is called a threshold intuitionistic fuzzy set. The level soft set ofS with respect to λ
is a crisp soft set L(S;λ) = (F̃λ, A) defined by

F̃λ(e) = L(F̃(e);λ(e)) = {x ∈ U |(s(hF̃(e)(x)), s(gF̃(e)(x))) ≥L∗ (μλ(e), νλ(e))}
= {x ∈ U |s(hF̃(e)(x)) ≥ μλ(e), s(gF̃(e)(x)) ≤ νλ(e)}

for all e ∈ A.

In order to better understand the above definition, let us consider the following
examples.

Example 4 (The mid-level soft set of dual hesitant fuzzy soft set) Let S = (F̃, A)
be a dual hesitant fuzzy soft sets over U , where A ⊆ E and E is the parameter
set. Based on dual fuzzy soft set (F̃, A), we can define an intuitionistic fuzzy set
midS : A → L∗ by

μmidS (e) = 1

|U |
∑

x∈U

s(hF̃(e)(x)), νmidS (e) = 1

|U |
∑

x∈U

s(gF̃(e)(x)),

for all e ∈ A. The intuitionistic fuzzy set midS is called the mid-threshold of the
dual hesitant fuzzy soft setS. In addition, the level soft set of the dual hesitant fuzzy
soft set S with respect to the mid-threshold intuitionistic fuzzy set midS, namely
L(S; midS) is called the mid-level soft set of S and simply denoted L(S; mid).
In the following discussions, the mid-level decision rule will mean using the mid-
threshold and considering the mid-level soft set in dual hesitant fuzzy soft sets based
decision making.

Let us reconsider the dual hesitant fuzzy soft set S = (F̃, A) with its tabular
representation shown in Table1. The mid-threshold midS of S is an intuitionistic
fuzzy set and can be calculated as follows:

μmidS (e1) = 1

|U |
∑

x∈U

s(hF̃(e1)
(x)) = 1

4
(0.7 + 0.5 + 0.73 + 0.37) = 0.58,

νmidS (e1) = 1

|U |
∑

x∈U

s(gF̃(e1)
(x)) = 1

4
(0.2 + 0.2 + 0.13 + 0.5) = 0.26,

μmidS (e2) = 1

|U |
∑

x∈U

s(hF̃(e2)
(x)) = 1

4
(0.5 + 0.4 + 0.77 + 0.57) = 0.56,

νmidS (e2) = 1

|U |
∑

x∈U

s(gF̃(e2)
(x)) = 1

4
(0.3 + 0.37 + 0.17 + 0.3) = 0.29,

μmidS (e3) = 1

|U |
∑

x∈U

s(hF̃(e3)
(x)) = 1

4
(0.37 + 0.63 + 0.6 + 0.7) = 0.58,
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Table 2 Tabular representation of L(S; mid)

U e1 e2 e3 Choice value (c j )

x1 1 0 0 c1 = 1

x2 0 0 1 c2 = 1

x3 1 1 1 c3 = 3

x4 0 0 1 c4 = 1

νmidS (e3) = 1

|U |
∑

x∈U

s(gF̃(e3)
(x)) = 1

4
(0.63 + 0.23 + 0.2 + 0.13) = 0.30.

Therefore, we have

midS = {〈e1, (0.58, 0.26)〉, 〈e2, (0.56, 0.29)〉, 〈e3, (0.58, 0.30)〉}.

The mid-level soft set of S is a soft set L(S; mid) = (F̃midS , A) and it can be
calculated as follows:

F̃(0.58,0.26)(e1) = L(F̃(e1); (0.58, 0.26))
= {x ∈ U |s(hF̃(e1)

(x)) ≥ 0.58, s(gF̃(e1)
(x)) ≤ 0.26} = {x1, x3},

F̃(0.56,0.29)(e2) = L(F̃(e2); (0.56, 0.29))
= {x ∈ U |s(hF̃(e2)

(x)) ≥ 0.56, s(gF̃(e2)
(x)) ≤ 0.29} = {x3},

F̃(0.58,0.30)(e3) = L(F̃(e3); (0.58, 0.30))
= {x ∈ U |s(hF̃(e3)

(x)) ≥ 0.58, s(gF̃(e3)
(x)) ≤ 0.30} = {x2, x3, x4}.

Table2 gives the tabular representation of the mid-level soft set L(S; mid). If xi ∈
F̃midS (e j ), then xi j = 1, otherwise xi j = 0, where xi j are the entries in Table2.

Example 5 (The top-bottom-level soft set and bottom-bottom-level soft set of dual
hesitant fuzzy soft set) Let S = (F̃, A) be a dual hesitant fuzzy soft sets over U ,
where A ⊆ E and E is the parameter set. Based on the dual hesitant fuzzy soft set
S = (F̃, A), we can define an intuitionistic fuzzy set top − bottomS : A → L∗ by

μtop−bottomS (e) = max
x∈U

s(hF̃(e)(x)), νtop−bottomS (e) = min
x∈U

s(gF̃(e)(x)),

for all e ∈ A. We can also define an intuitionistic fuzzy set bottom − bottomS :
A → L∗ by

μbottom−bottomS (e) = min
x∈U

s(hF̃(e)(x)), νbottom−bottomS (e) = min
x∈U

s(gF̃(e)(x)),
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for all e ∈ A.
The intuitionistic fuzzy set top − bottomS is called the top-bottom-threshold of

the dual hesitant fuzzy soft set S. In addition, the level soft set of the dual hesitant
fuzzy soft set S with respect to the top-bottom-threshold intuitionistic fuzzy set
top − bottomS, namely L(S; top − bottomS) is called the top-bottom-level soft
set of S and simply denoted L(S; top − bottom). In the following discussions,
the top-bottom-level decision rule will mean using the top-bottom-threshold and
considering the top-bottom-level soft set in dual hesitant fuzzy soft sets based on
decision making.

The intuitionistic fuzzy set bottom − bottomS is called the bottom-bottom-
threshold of the dual hesitant fuzzy soft set S. In addition, the level soft set of the
dual hesitant fuzzy soft setS with respect to the bottom-bottom-threshold intuition-
istic fuzzy set bottom − bottomS, namely L(S; bottom − bottomS) is called the
bottom-bottom-level soft set ofS and simply denoted L(S; bottom −bottom). The
bottom-bottom-level decision rule will mean using the bottom-bottom-threshold and
considering the bottom-bottom-level soft set in dual hesitant fuzzy soft sets based
on decision making.

We reconsider the dual hesitant fuzzy soft set S = (F̃, A) with its tabular rep-
resentation shown in Table1. The top-bottom-threshold top − bottomS of S is an
intuitionistic fuzzy set and can be given as follows:

top − bottomS = {〈e1, (0.73, 0.13)〉, 〈e2, (0.77, 0.17)〉, 〈e3, (0.7, 0.13)〉}.

The top-bottom-level soft set ofS is a soft set L(S; top−bottom) = (F̃top−bottomS ,

A) and it can be calculated as follows:

F̃top−bottomS (e1) = L(F̃(e1); (0.73, 0.13))
= {x ∈ U |s(hF̃(e1)

(x)) ≥ 0.73, s(gF̃(e1)
(x)) ≤ 0.13} = {x3},

F̃top−bottomS (e2) = L(F̃(e2); (0.77, 0.17))
= {x ∈ U |s(hF̃(e2)

(x)) ≥ 0.77, s(gF̃(e2)
(x)) ≤ 0.17} = {x3},

F̃top−bottomS (e3) = L(F̃(e3); (0.7, 0.13))
= {x ∈ U |s(hF̃(e3)

(x)) ≥ 0.7, s(gF̃(e3)
(x)) ≤ 0.13} = {x4}.

Table3 gives the tabular representation of the top-bottom-level soft set L(S; top −
bottom). If xi ∈ F̃top−bottomS (e j ), then xi j = 1, otherwise xi j = 0, where xi j are
the entries in Table3.

Similarly, the bottom-bottom-threshold bottom − bottomS ofS is an intuition-
istic fuzzy set and can be given as follows:

bottom − bottomS = {〈e1, (0.37, 0.13)〉, 〈e2, (0.4, 0.17)〉, 〈e3, (0.37, 0.13)〉}.
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Table 3 Tabular representation of L(S; top − bottom)

U e1 e2 e3 Choice value (c j )

x1 0 0 0 c1 = 0

x2 0 0 0 c2 = 0

x3 1 1 0 c3 = 2

x4 0 0 1 c4 = 1

Table 4 Tabular representation of L(S; bottom − bottom)

U e1 e2 e3 Choice value (c j )

x1 0 0 0 c1 = 0

x2 0 0 0 c2 = 0

x3 1 1 0 c3 = 2

x4 0 0 1 c4 = 1

The bottom-bottom-level soft set of S is a soft set L(S; bottom − bottom) =
(F̃bottom−bottomS , A) and it can be calculated as follows:

F̃bottom−bottomS (e1) = L(F̃(e1); (0.37, 0.13)) = {x3},
F̃bottom−bottomS (e2) = L(F̃(e2); (0.4, 0.17)) = {x3},
F̃bottom−bottomS (e3) = L(F̃(e3); (0.37, 0.13)) = {x4}.

Table4 gives the tabular representation of the bottom-bottom-level soft set L(S;
bottom − bottom). If xi ∈ F̃bottom−bottomS (e j ), then xi j = 1, otherwise xi j = 0,
where xi j are the entries in Table4.

In what follows we will establish an adjustable approach to dual hesitant fuzzy
soft sets based on decision making with six steps:

Algorithm 1

Step 1. Input a dual hesitant fuzzy soft set S = (F̃, A).
Step 2. Input a threshold intuitionistic fuzzy set λ : A → L∗ (or give a threshold

value pair (α,β) ∈ L∗; or choose the mid-level decision rule; or choose the top-
bottom-level decision rule; or choose the bottom-bottom-level decision rule) for
decision making.

Step 3. Compute the level soft set L(S;λ) of S with respect to the threshold
intuitionistic fuzzy set λ (or the (α,β)-level soft set L(S; (α,β)); or the mid-level
soft set L(S; mid); or the top-bottom soft set L(S; top − bottom); or the bottom-
bottom soft set L(S; bottom − bottom)).

Step 4. Present the level soft set L(S;λ) (or L(S; (α,β)); or L(S; mid); or
L(S; top − bottom); or L(S; bottom − bottom)) in tabular form. For any xi ∈ U ,
compute the choice value ci of xi .

Step 5. The optimal decision is to select xk if ck = max
i

ci .
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Step 6. If k has more than one value then any one of xk may be chosen.
It should be noted that if there are too many optimal choices in Step 6, we may

go back to the second step and change the threshold (or decision rule) such that only
one optimal choice remains in the end.

Remark 3 The primarymotivation for designingAlgorithm1 is to solve dual hesitant
fuzzy soft set based decision making problem by using level soft sets initiated in this
study. By choosing certain thresholds or decision strategies such as the mid-level or
the top-bottom-level decision rules, we can convert a complex dual hesitant fuzzy
soft set into a crisp soft set called the level soft set. Thus we need not treat dual
hesitant fuzzy soft sets directly in decision making but only deal with the level soft
sets derived from them, which provides us great convenience to decision making.

To illustrate the basic idea of Algorithm 1, we give the following example.

Example 6 Let us reconsider the decision making problem that involves the dual
hesitant fuzzy soft set S = (F̃, A) with tabular representation as in Table1. Sup-
pose that we deal with the decision making problem by mid-level decision rule. In
Example 4, we have obtained the mid-level soft set L(S; mid) ofS with respect to
the threshold intuitionistic fuzzy set midS with its tabular representation given by
Table2.

In Table2, we can calculate choice values as follows:

c1 = 1 + 0 + 0 = 1,

c2 = 0 + 0 + 1 = 1,

c3 = 1 + 1 + 1 = 3,

c4 = 0 + 0 + 1 = 1.

From the choice value listed in Table2, we can conclude that the ranking of the
four candidates is x3 > x1 = x2 = x4, and the best choice is x3.

Next, we use the top-bottom-level decision rule to handle the decision making
problem. Table3 gives the tabular representation of the level soft set L(S; top −
bottom) of S. From Table3, it follows that the ranking of the four candidates is
x3 > x4 > x1 = x2, and the optimal decision is still to select x3.

5 Conclusion

In this study, we propose the concept of dual hesitant fuzzy soft sets. Meanwhile,
an adjustable approach to dual hesitant fuzzy soft sets based on decision making
is proposed by using level soft sets and we also illustrate this novel method with
some concrete examples. This new proposal is proved to be not only more suitable
but more feasible for some real-life applications of decision making in an imprecise
environment.
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In the future, we can further investigate level soft set approach to decision making
based on other extensions of hesitant fuzzy soft set theory, such as interval-valued
hesitant fuzzy soft set theory and dual interval-valued fuzzy soft set theory.
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Extremal Trees of Terminal Wiener Index

Dan-fang Chen, Fu-yi Wei, Hong-ying Zhu,
Yang Wu and Shan-zhang Nong

Abstract The generalized Terminal Wiener Index is the sum of distances between
each pair of vertices of degree k. In this paper, we proved the conjecture of reference
[1]: when k ≥ 4, the generalized terminalWiener index of trees reaches its maximum
value at Tn,k,p caterpillars. We also determined the corresponding p value of the
extremal graph.

Keywords Wiener index · Generalized terminal wiener index · Maximum ·
Extremal graph · Caterpillar

1 Introduction

Let G = (V, E) be a connected simple graph with vertices set V (G) = {v1,
v2, . . . , vn} and edge set E (G) = {e1, e2, . . . , en}. The number of edges connected
with vertex v is called the degree of vertex v, denoted by (v). The vertex with its
degree being one is called a pendent vertex. The distance d(u, v) is defined as the
shortest path between u and v in G. If, for each pair of vertices u and v in G, the
path u − v exists, then graph G is called a connected graph. A tree, denoted by T , is
a connected simple graph with no circle. Deleting an edge e from T but retaining its
vertex, is denoted by T − e while T + e stands for adding an edge between vertices
u and v on T . The caterpillar can be obtained by connecting the pendent vertices
ni (ni ≥ 0, i = 1, 2, . . . , s − 1) to the vertices of the path = v0v1 . . . vs , denoted by
T (n, s; n1n2 . . . ns−1) [2]. To k subdivide an edge e is to replace the edge e with a
path Pk+1.
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Chemical graph theory is closely related to the chemical molecular graphs. In a
simple undirected graph, if every vertex represents one atom of the molecule while
each edge represents the chemical bond between atoms, then such graphs are defined
asmolecular graphs.A topology index ofmolecule graph is amapping formmolecule
graph to the real number set. The topology index of molecule played an important
role in of QSPR [1, 3, 4] researches. Further more, with the application of graph
theory in Cryptography, communication system and Internet, the topology index has
also been more and more applied in other subjects.

In 1947 [5], whenWiener was studing the boiling point of the alkane molecule, he
defined the Wiener Index: W (G) = ∑

u,v∈V (G) d(u, v); Gutman and his coworkers
introduced the terminal Wiener index T W (G) = ∑

u, v∈V (G)

deg (u) = deg (v) = 1

d(u, v) in their

paper published in 2009 [3]. Ilić and Ilić extended the terminal Wiener index to
generalized terminal Wiener index T Wk(G) = ∑

u, v∈V (G)

deg (u) = deg (v) = k

d(u, v) in their

paper published in 2013 [1] and at the same time, both the upper bound together with
the extremal graph of the generalized terminal Wiener index on n-vertex tree when
k = 3 and a conjecture when k > 3 were given.

This paper studied themathematical properties of the generalized terminalWiener
index of Tn,k,p caterpillars, proved the conjecture of article [1], that is, when k ≥ 4,
the generalized terminal Wiener index reaches its maximum value at Tn,k,p caterpil-
lars. Additionally, we have figured out the corresponding p value when T Wk reaches
its maximum value and have worked out the extremal graph.

2 Preliminary Study and the Proof to the Conjecture

When there is only one k-degree vertex in tree, T Wk ≡ 0. In this paper, we assume,
there are 2 k-degree vertexes at least. We say a tree T is k-bounded if all vertices of
T have degree less than or equal to k.

The lemmas below are to provide theoretical support for the subsequent research
and then enable us to prove the conjecture proposed in article [1].

Lemma 2.1 ([1]) The number of vertices of degree k (k ≥ 2) in a tree with n vertices
is no more than

m = �n − 2

k − 1
�

Tn,k,p represents the caterpillar created by attaching pendent vertices to p vertices
of path P from either end of the path to the middle successively and symmetrically,
Tn,k,p ∼= T (n, s; k − 2, . . . , k − 2︸ ︷︷ ︸

[p/2]

, 2, . . . , 2︸ ︷︷ ︸
s−p−1

, k − 2, . . . , k − 2︸ ︷︷ ︸
[p/2]

), as shown in Fig.1.

Lemma 2.2 ([1]) The generalized terminal Wiener index of Tn,k,p is calculated as:
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Fig. 1 The Tn,k,p caterpillar

T Wk
(
Tn,k,p

) =
{ 1

12 p
(
3np + 5p2 − 3kp2 − 2 − 6p

)
, i f p is even

1
12 (p + 1) (p − 1) (3n + 5p − 3kp − 6) , i f p is odd

Lemma 2.3 ([1]) Let T be a tree with n vertices (n > 4). Then

T W3 (T ) ≤ T W3(Tn,3,[n/2]−1)

with the equality holds if and only if T ∼= Tn,3,[n/2]−1.

Lemma 2.3 demonstrates the extremal tree of n-vertex tree when k = 3 and
the next lemma will prove that the generalized terminal Wiener index reaches its
maximum value at Tn,k,p caterpillars when k ≥ 4.

Theorem 2.1 For k ≥ 4, the generalized terminal Wiener index reaches its maxi-
mum value at Tn,k,p caterpillars.

Proof We assume that the number of vertices of degree k is greater than two.
If T ∗ is not a k-bounded caterpillar, consider a branching vertex ω such that in the

subtree under ω there are only k-bounded caterpillars attached at ω (it can happen
that there are only pendent vertices attached to ω). Let T 1 and T 2 be two caterpillars
attached at ω, such that T 1 has p vertices v1v2 . . . vp of degree k, and T 2 has q
vertices u1u2 . . . uq of degree k, subgraph G has r vertices of degree k, with r ≥ 2
and r ≥ p ≥ q, as shown in Fig. 2 on the left.

Let a1, a2, . . . , ap be the distances from the vertexω to the vertices v1, v2, . . . , vp

and b1, b2, . . . , bq be the distance from the vertex ω to the vertices u1, u2, . . . , uq

respectively.
Let D(ω) be the sum of distances from the vertex ω to each vertex of degree k in

the subgraph G. s denotes the distances between vs and ω, as shown in Fig. 2 on the
left.

Fig. 2 T ∗ before the operation (left) and T ∗ after the operation (right)
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OperationA:Attach caterpillar T2 to the end of caterpillar T1 while keep the degree
ofω unchanged, as shown in Fig. 2 on the right. If the degree of vertex u0 in T2 which
is adjacent to ω is greater than 2, then move pendent vertices u01, u02, . . . , u0x (0 ≤
x ≤ k − 2) attached to u0 to the pendent vertex vs of T1 which is most distanced
from ω, as shown in Fig. 2.

The operation above can be denoted by

T
′ = T ∗ − u0u1 + vsu1 − (u0u01 + u0u02 + · · · + u0u0x )

+ (vsu01 + vsu02 + · · · + vsu0x )

The generalized terminal Wiener index of T ∗ and T ′ after Operation A can be
calculated as follow:

T Wk
(
T ∗) = T Wk (G) + (p + q) D (ω) + r

(∑p

i=1
ai +

∑q

j=1
b j

)

+
∑

i< j
(a j − ai ) +

∑

i< j
(b j − bi ) + q

∑p

i=1
ai +

∑q

j=1
b j

T Wk

(
T

′) = T Wk (G) + (p + q) D (ω) + r
∑p

i=1
ai

+ r

[
q (s − 1) +

∑q

j=1
b j

]
+

∑

i< j
(a j − ai ) +

∑

i< j
(b j − bi )

+ q
[

p (s − 1) −
∑p

i=1
ai

]
+ p

∑q

j=1
b j

By computation, we get

T Wk

(
T

′) − T Wk
(
T ∗) = rq (s − 1) + pq (s − 1) − 2q

∑p

i=1
ai

Since (s − 1) ≥ ap ≥ ai (i = 1, 2, . . . , p) and ≥ p, we have

T Wk

(
T

′) − T Wk
(
T ∗) = q

[
(s − 1) (r + p) − 2

∑p

i=1
ai

]
≥ 2q

∑p

i=0
((s − 1) − ai ) ≥ 0

With the equality holds if and only if r = p = q = 1 and (s − 1) = ap, or q = 0.
Therefore, such operations will not reduce the value of the generalized terminal
Wiener index.

Operation B: If d (v0) > k, then we remove d (v0) − k pendent vertices attached
to v0 and use these vertices to subdivide v0v1.

Apparently the generalized terminal Wiener index will remain increase after
Operate B.
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By applying Operation A finite times, we can transform T into a caterpillar and
it will further turned into a k-bounded caterpillar by operating Operation B for finite
times.

Otherwise, we can remove the edges of the pendent path one by one, and use
them to subdivide some edge e, so that both sides of e contain k-degree vertices. Or
we can attach those removed pendent vertices to some non-pendent vertex on whose
degree is less than k and turn them into k-degree vertices. In this way, T Wk will be
increased. By this way, we can transform the vertices of T ∗ that is greater than 2 but
less than k into2-degree vertices or k-degree vertices, which increase T Wk further.
The above two results both contradict the choosing of T ∗.

After applied all the operations above, assume there are p(p ≥ 2) k-degree
vertexes and h(h ≥ 0) 2-degree vertexes on T ∗, then we rearrange those 2-degree
vertices so that there are no k-degree lie between them, and there are x k-degree
vertices and p − x k-degree vertices lie on each side of the path. Then the generalized
terminal Wiener Index of T ∗ is calculated as:

T Wk
(
T ∗) = 1

6
(x − 1) x (x + 1) + 1

6
(p − x − 1) (p − x) (p − x + 1)

+ x (p − x) (h + 1) + 1

2
x (x − 1) · (p − x)

+ 1

2
(p − x) (p − x − 1) · x

= −h
(

x − p

2

)2 + 1

6
p3 + 1

4
hp2 − p,

As can be seen from the formula, T Wk (T ∗) reaches itsmaximumwhen x = [p/2]
or x = [p/2], namely, when k-degree vertices are equally distributed in the two
sides of path, the generalized terminal Wiener Index of T ∗ achieve its maximum. In
conclusion, the maximum T Wk of the generalized terminalWiener index is achieved
on Tn,k,p caterpillar. �

3 The Generalized Terminal Wiener Index of Trees

Based on Theorem 2.1, for any given n, k, the maximum value of the generalized
terminalWiener index and its extremal graph can be determined as the corresponding
value of p of T Wk

(
Tn,k,p

)
is determined.

Suppose y = f (p) = T Wk
(
Tn,k,p

)
, we now determine the value of p when

y = f (p) reaches its maximum value, for even and odd p respectively.
For the function of T Wk

(
Tn,k,p

)
vary from an even p to an odd p, when n ≥ 4,

they must be discussed separately as follow:
(i) If p is even, according to Lemma 2.2, we have
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T Wk
(
Tn,k,p

) = f (p) = 1

12
p

(
3np + 5p2 − 3kp2 − 2 − 6p

)

Apparently, the curve of y = f (p) goes through point (0, 0). In addition, let
3np + 5p2 − 3kp2 − 2 − 6p = 0, then � = 9(n − 2)2 + 8(5 − 3k). For n ≥ 2k,
thus� > 0. Therefore, there are 2 distinct real roots to this equation, denote them by
p1, p2, by Vieta theorem and p1 p2 > 0, p1+ p2 > 0, we know that p1 > 0, p2 > 0.

Therefore, there are 3 zero-points: 0, p1 and p2 and of y = f (p) and since the
coefficient of the cubic term of −(3k − 5) < 0, as shown in Fig. 3 on the left.

Take a derivative of y = f (p), we have

f
′
(p) = 1

12

[
− (9k − 15) p2 + (6n − 12) p − 2

]

Let f
′
(p) = 0, and we have

p0 =
√
9(n − 2)2 + 6(5 − 3k) + 3(n − 2)

9k − 15

(ii) If p is odd, by Lemma 2.2 we have

T Wk
(
Tn,k,p

) = f (p) = 1

12
(p + 1) (p − 1) (3n + 5p − 3kp − 6)

Apparently, there are 3 zero-points: −1, 1, 3n−6
3k−5 > 0 of y = f (p). Since the

coefficient of the cubic term of −(3k − 5) < 0, as shown in Fig. 3 on the right.
Take a derivative of y = f (p), we have

f ′(p) = 1

12
[−(9k − 15)p2 + (6n − 12)p + 3k − 5],

Let f
′
(p) = 0, we have arrest point

p0 =
√
9(n − 2)2 + 3(3k − 15)2+3(n − 2)

9k − 15
.

Fig. 3 y = f (p), if p is even
(left), if p is odd (right)
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Obviously y = f (p) > 0 when p > 0. As can be seen from the figure, f (p) is
monotone increasing when 0 < p < p0, vice versa.

According to Lemma 2.1, the maximum value of p is m =
⌊

n−2
k−1

⌋
. Hence to find

out the maximum value of f (p), we should first determine which of m and p0 is the
larger one.

By direct computation we have

Lemma 3.1 For k ≥ 4, n ≥ 2k, n−2
k−1 > p0.

Lemma 3.2 For k ≥ 4, f (p0 − 1) > f (p0 + 1).

Proof If p is even:
Since f

′
(p0) = 1

12

(
15p20 − 9kp20 + 6np0 − 12p0 − 2

) = 0, we have

f (p0 − 1) − f (p0 + 1)

= 1

12

[
3n (p0 − 1)2 + 5 (p0 − 1)3 − 3k (p0 − 1)3 − 2 (p0 − 1) − 6 (p0 − 1)2

]

− 1

12

[
3n (p0 + 1)2 + 5 (p0 + 1)3 − 3k (p0 + 1)3 − 2 (p0 + 1) − 6 (p0 + 1)2

]

= −2 × 1

12

(
15p20 − 9kp20 + 6np0 − 12p0 − 2

)
+ 1

6
(3k − 5) ,

= −2 f ′ (p0) + 1

6
(3k − 5) = 1

6
(3k − 5) > 0,

Thus f (p0 − 1) > f (p0 + 1) always holds when k ≥ 4.
Similarly, the same conclusion can be drawn if p is odd. �

Suppose that P∗
even makes T Wk

(
Tn,k,p

)
reaches its maximum value when p is

even, P∗
odd makes T Wk

(
Tn,k,p

)
reaches its maximum value when p is odd.

Theorem 3.1 For positive integer k ≥ 4, n ≥ 2k, suppose P∗
t ∈ {P∗

even, P∗
odd}, then

(1) when m and p have the same parity, or m and p have different parity but
n−2
k−1 − 1 > p0

(2) when m and p have different parity but, n−2
k−1 − 1 ≤ p0, P∗

t =
⌊
n−2
k−1

⌋
− 1.

where p0=
√

9(n−2)2+6(5−3k)+3(n−2)
9k−15 if p is even and p0=

√
9(n−2)2+3(3k−5)2+3(n−2)

9k−15
if p is odd.

Proof If p is even

(1) If m is even, the upper bound of P is pmax = m =
⌊

n−2
k−1

⌋
.
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For n−2
k−1 > p0 always holds (see Lemma 3.1), pmax ≥ �p0�.

Therefore, the range of pmax is

pmax = �p0�(�p0� is even or pmax > p0)

As shown in Fig. 3 on the left, when pmax = �p0�, f (p) is monotone increasing,
so P∗

even = pmax = �p0�(�p0� is even). If pmax > p0, f (p) reaches its maximum
value at p = p0, so under this circumstance, T Wk

(
Tn,k,p

)
reaches its maximum

value at either of the 2 evens near p0, or at p0 if p0 is an even integer.
Therefore, P∗

even is bound to be the even that is closest to p0 and if p0 happens to
be even, then P∗

even is p0.
(i) If �p0� is even, P∗

even = �p0�
When �p0� = p0, apparently it’s true that P∗

even = p0 = �p0�.
When �p0� �= p0, �p0� �= p0 and �p0� + 1 are the two even that are closest to

p0.
Since according to Lemma 3.2, f (p0 − 1) > f (p0 + 1) always holds

f (�p0�) > f (p0 − 1) > f (p0 + 1) > f (p0� + 1) , P∗
even = �p0�

(ii) If �p0� is odd, P∗
even = �p0� − 1 or p0�

For �p0� = p0, p0 − 1 and p0 + 1 are the two even that are closest to p0 and for
f (p0 − 1) > f (p0 + 1) always holds, P∗

even = p0 − 1 = �p0� − 1.
When �p0� �= p0, �p0� − 1 and p0� are the two even that are closet to p0. So

when (�p0� − 1) > f (p0�), P∗
even = �p0� − 1; when f (�p0� − 1) = f (p0�),

P∗
even = �p0� − 1 or p0�; when f (�p0� − 1) < f (p0�), P∗

even = p0�.
(2) If m is odd, the maximum of p is

pmax = m − 1 =
⌊

n − 2

k − 1

⌋
− 1 =

⌊
n − 2

k − 1
− 1

⌋

(i) For n−2
k−1 − 1 ≤ p0, pmax ≤ �p0�.

As can be seen from Fig. 3 on the left, under such circumstances, f (p) is
monotone increasing, so it reaches its maximum value when p = pmax . Therefore,

P∗
even = pmax =

⌊
n − 2

k − 1

⌋
− 1

(ii) When n−2
k−1 − 1 > p0, pmax ≥ �p0�, we have

If �p0� is an even, P∗
even = �p0�, if �p0� is an odd, P∗

even = �p0� − 1 or p0�.
In conclusion, when p is an even, the value of P∗

even is determined as follow:
if m is even, or m is odd, but n−2

k−1 − 1 > p0,

p∗
even =

{ �p0�, if �p0� is even
�p0� − 1 or p0�, if �p0� is odd
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if m is odd and n−2
k−1 − 1 ≤ p0,

p∗
even =

⌊
n − 2

k − 1

⌋
− 1

Similarly, when p is an odd, the value of P∗
odd can be deduced.

Combining the two cases mentioned above, we may arrive at Theorem 3.1. �

Theorem 3.2 can be drawn from Lemma 3.1 and Theorem 3.1.

Theorem 3.2 For k ≥ 4, n ≥ 2k, suppose that T is an n-vertex tree, then

T Wk (T ) ≤ max
{

T Wk
(
Tn,k,P∗

even

)
,T Wk

(
Tn,k,P∗

odd

)}

where P∗
even and P∗

odd is determined by Theorem 3.1.

Conclusions of this paper are applied and we can follow the following steps to
work out the maximum value of the generalized terminal Wiener index of n-vertex
(n ≥ 2k) tree:

(1) Determine the value of P*even and P*odd by Theorem 3.1.

(2) Determine which of TWk

(
Tn,k,P*even

)
and TWk

(
Tn,k,P*odd

)
is the greater one,

and given the maximum value.
(3) Determine the extremal graph.

4 Conclusion

This paper proved the conjecture of reference [1]: when k ≥ 4, the generalized
terminalWiener index reaches itsmaximumvalue at Tn,k,p caterpillars. Furthermore,
we have worked out the maximum value of the generalized terminal Wiener index
of n-vertex tree and its extremal graph.
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A Time-Sensitive Targets System Simulation
Model Based on Extendsim

Tan Kai-jia and Wang Rui

Abstract Precision strike of time-sensitive targets requires high-efficiency systems
to perform surveillance, reconnaissance, tracking, command, control, striking and
effect evaluation in limited time accurately. This paper analyzes architecture and
operational process of time-sensitive targets systems, and presents a discrete-event
simulation model of time-sensitive targets system. Within the model, target generat-
ing and evolving, reconnaissance plane, command and control, fire strike shooter are
modeled based on ExtendSim. Simulation rationale and simulation model in typical
scenario is built. The joint military planner can assess mission success probability
and average length of kill chain, and study variations and sensitivities in a controlled
manner among different plan of weapon resources by the simulation model.

Keywords Time-Sensitive Targets · Simulation · Evaluation · Extendsim

1 Introduction

Time-sensitive targets (TST) are that which have the actual threat, potential threat
or very highly value. TST occur randomly and its striking opportunity is restrained
by time window. TST usually include transient maneuver warfare target (such as
armored forces, surface ships, submarines, etc.), mobile warfare facilities (such as
mobile missile launchers, mobile warning, communications and command facilities,
vehicles for weapons of mass destruction) and the facility with time limited strike
(such as buildings in which terrorists hide or bridges enemy tactical units expected
to pass, etc.) [1].
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Precision strike of TST requires to be completed in a very short period of time, and
needs to combine sensors, command and control (C2) and fire strike weapons to con-
struct system of systems to rapid accurate detection, rapid scientific decision-making
and rapid precision strikes in close coordination and cooperation. As the improve-
ment of information technology, networking, systematic and precise level forweapon
equipment, the system of systems for striking TST is continuous improved, and that
provides a solid material foundation for performing a task of striking TST. However,
how to make the plan of weapon to construct system of systems scientifically accord-
ing to operational missions, battle environment and operational targets becomes a
major issue for joint operation commander to resolve.

A lot of research on system of systems modeling, weapon allocation and man-
agement of targets were conducted. Woitalla [2] described the system of systems
architecture and studied a joint approach for target management for the precision
strike of TST.William [3] analyzed the relationship among sensors, C2 and fire strike
weapons with TCT matrix, and built TST relationship model. Luo [4] established
TST evaluation mathematical models. However, the above research mainly stud-
ied decision-making problem of TST striking weapon system based on analytical
method and cannot descript TST complex and dynamic mission process accurately.
Johnson [5] studied the application of common relevant operational picture (CROP)
on description of architecture and evaluation of effectiveness for striking TST, and
established TST system model based on CROP by event graph method. But event
graph method is not strong on time characteristic modeling, and the operational time
node must be determined before modeling. So, event graph method cannot describe
operation coordination, cooperate, synchronization of operational process of strik-
ing TST accurately. This paper analyzes architecture and operational process of TST
system, and designs a discrete-event simulation model for TST system. Mission suc-
cess probability and average length of kill chain to TST is given as TST operational
effectiveness index. The simulation rational is provided and the evaluating effec-
tiveness simulation model for typical striking TST is built. That helps to improve
effectiveness of striking TST by allocating weapon resources properly based on the
simulation.

2 Analysis of Architecture and Operational Process
of Striking TST

2.1 Architecture of Striking TST

System of systems for striking TST is mainly composed of Sensor node, C2 node,
fire strike shooter node and each node is integrated for interconnected network via
data link to complete surveillance, reconnaissance, identification, decision-making,
tracking, and evaluation for TST.
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Sensors include reconnaissance satellites, unmanned reconnaissance aircraft, bat-
tlefield surveillance aircraft, etc. and the main function is surveillance, reconnais-
sance in detail, tracking and effectiveness evaluation. C2 includes ground command
center, airborne warning and control system, etc. and the main function is to com-
mand and control sensor node and fire strike node, achieve information fusion of
each sensor, analysis and identify targets and use of sensor node and fire strike node
jointly and collaboratively according to targets, battlefield environment and the per-
formance and dynamic quantity of fire strike weapons. Fire strike shooter include
air-based, sea-based and land-based long-range missiles, unmanned attack aircraft,
attack fighters and bombers, etc. and themain function is to strike against TST rapidly
and precisely via the guidance instructions of sensor network and decision-making
of C2.

2.2 Operational Process of Striking TST

The operational process of striking TST is composed of intelligence, surveillance
and reconnaissance, C2, fire strike and impact assessment. Intelligence, surveillance
and reconnaissance for battlefield is completed by reconnaissance satellites, recon-
naissance aircraft and others sensors. Real-time battlefield awareness, navigation and
intelligence information are shared for other operational process via data link. As
suspected TST are detected, C2 node determines TST according to details of TST
by reconnaissance aircraft, and allocates fire strike shooter to strike TST precisely
under instructions guide of intelligence, surveillance and reconnaissance according
to battlefield conditions, target property and fire strike shooter capability. Then TST
impacted information by sensors is feedback to C2 node for effect assessment and
further decisions. The operation process of striking TST is shown in Fig. 1.

Command  
Control

Fire
Strike

Effect 
Assessmen

Real-Time Battlefield Awareness, 
Navigation and Intelligence InformationIntelligence

Surveillance  
Reconnaissance

Suspected TST

Allocation of  Fire 
Strike Shooter

Effect Feed back

Details of TST
Effect

Information
Guidance

Instructions

Precision 
Strike

Fig. 1 The operation process of striking TST
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3 Model Design

3.1 TST Model

TST is the drive of the striking TST operation process. TST model describes target
type, target length, target threat degree, generating time, exposure time window and
striking timewindow. Target types includes maneuver warfare target, mobile warfare
facilities and the facility with time limited strike. Target threat degree, as the priority
decision basis to allocate target to fire strike shooter for C2, is divided into three
levels: serious, heavier and generally. Generating time is the time that TST exposes.
Exposure time window is the period from generation to departure or hide for TST.
TST may be only detected by overhead reconnaissance satellites. Otherwise, TST
will be missed and the striking task for TST fails. Striking time window is the period
from being detected to departure or hide for TST. Striking TST has to be finished
during striking time window, otherwise TST will be missed and the striking task for
TST fails. So, whether to complete tasks during exposure time window and striking
time window are the key restricting factors for striking TST task. Generating time,
exposure time window and striking time window of different TST are different and
random, and the random distribution and distributed parameter can be estimated
based on combat experience.

3.2 Reconnaissance Aircraft Model

Reconnaissance aircraftmodel describes reconnaissance aircraft type, dynamic quan-
tity, reconnaissance capability, time to fly to the TST area and time to assess striking
effect of TST. Reconnaissance aircraft is divided into two types: manned reconnais-
sance aircraft and unmanned reconnaissance aircraft. It is assumed that one recon-
naissance aircraft only conducts reconnaissance for one TST and reconnaissance
ends when striking time window closes or assessment over. The reconnaissance
capability is the probability that the reconnaissance aircraft can reconnoiter TST.
Reconnaissance capability among different reconnaissance aircraft to different TST
is also different. The probability that high resolution aircrafts reconnoiter small length
TST is high, otherwise, the probability that lower resolution reconnoiter is low. The
time for reconnaissance aircraft flying from standby area to TST is random, and the
random distribution and distributed parameter can be estimated based on combat
experience. The reconnaissance capability is also modeled by the binomial distri-
bution. The number of reconnaissance aircraft is limited. When no reconnaissance
aircraft available, lower priority TST needs to be queued for reconnaissance aircraft
in an available state, and higher priority TST can be reconnoitered in a priority.
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Table 1 Part of
reconnaissance aircraft
allocation rules

Allocation rule Description

Rule1 If there is a TST detected and there is
reconnaissance aircrafts available

Then allocate a reconnaissance aircraft to
the TST

Rule2 If there is a TST detected and TST’s
priority is low and there is no
reconnaissance aircrafts available

Then the TST queues for a
reconnaissance aircraft in available

Rule3 If there is a TST detected and TST’s
priority is high and there is no
reconnaissance aircrafts available

Then stop reconnaissance for the TST
with lower priority, allocate the
reconnaissance aircraft to the TST with
high priority, and the TST with lower
priority queues for a reconnaissance
aircraft in available

3.3 C2 Model

C2 model is the core of the whole system of systems, and include reconnaissance
aircraft allocation decision model, TST analysis model, fire strike shooter allocation
decision model and effect analysis model. Reconnaissance aircraft allocation deci-
sion model describes allocation rule considering reconnaissance capability, priority
of TST,matching relationship between reconnaissance aircraft andTST and available
state of reconnaissance aircrafts. Part of rules is shown in Table1. Fire strike shooter
allocation decision model describes allocation rule considering fire strike capability,
priority of TST, matching relationship between weapon and TST and available state
of fire strike shooter. TST analysis model describes time in TST analysis and the
probability of correct target identification. Effect analysis model describes time in
effect analysis and the probability of correct effect identification. The time in TST
analysis and the time in effect analysis are random, and the random distribution and
distributed parameter can be estimated based on combat experience. The probability
of correct target identification and the probability of correct effect identification are
modeled by the binomial distribution.

3.4 Fire Strike Shooter Model

Fire strike shooter model describes type of fire strike shooter, dynamic quantity, fire
strike capability and strike duration. Fire strike shooter is divided in two types:
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long-range strike weapons and their platforms (such as destroyers and bombers
equipped cruise missiles) and close-distance strike weapons and their platforms
(such as bombers and attack aircrafts equipped precision-guided munitions). Fire
strike capability is related to strike accuracy, kill probability, firing range and TST’s
size, mobility and feature. So, different fire strike capability to different TST is
different. Strike duration of long-range strike weapons includes platform preparing
duration that from the time receiving command to the time launching and weapons
flight duration that from the time launching to the time TST stroked. Because of the
short duration from the time launching to the time TST stroked, it can be neglected.
Then strike duration of close-distance strike weapons equals to platform preparing
duration. Platform preparing duration and weapons flight duration are random, and
the random distribution and distributed parameter can be estimated based on combat
experience. The number of fire strike shooter is limited. When no fire strike shooter
available, lower priority TST needs to be queued for fire strike shooter in an available
state, and higher priority TST can be allocated in a priority.

3.5 Effectiveness Index Model

Mission success probability and average length of kill chain to TST is given as TST
operational effectiveness index for evaluating effectiveness of striking TST system.
Mission success probability reflects comprehensive combat effectiveness of system
of systems, and can be represented by the following formula:

PM =
∑J

j=1
∑I

i=1 Ni, j
∑J

j=1
∑I

i=1 Mi, j
(1)

PM is Mission success probability. Ni, j is the quantity of TST i which is destroyed
in striking time window of TST i in the j th simulation run. I is the quantity of TST,
and J is run number of simulation.

Average length of kill chain to TST reflects rapid response ability of system of
systems can be represented by the following formula:

Tkc =
∑J

j=1
∑I

i=1 T a
i, j + T b

i, j + T c
i, j + T d

i, j + T e
i, j + T f

i, j

J · I
(2)

Tkc is average length of kill chain. T a
i, j is the time to fly to TST i in the j th simulation

times. T b
i, j is the time to assess striking effect of TST i in the j th simulation times.

T c
i, j is the striking duration to TST i in the j th simulation times. T d

i, j is the time in
TST i analysis in the j th simulation times. T e

i, j is the time in effect analysis for TST

i in the j th simulation times. T f
i, j is the time in deciding allocation for TST i in the

j th simulation times. I is the quantity of TST, and J is times of simulation.
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Fig. 2 Simulation rationale

3.6 Simulation Rationale

Having built the model of TST model, reconnaissance aircraft model, C2 model, fire
strike shooter model and effectiveness index model, the main simulation rationale
is designed, shown in Fig. 2. In this paper, Monte Carlo simulation is applied to
perform the simulation and the desired result is taken as an average over the number
of observations.

Before the model begins, the inputs which include mission plan, TST informa-
tion, reconnaissance aircraft, and fire strike shooter are setup. Then the simulation

Fig. 3 Hierarchical view of the simulation model for typical scenario in ExtendSim
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starts and is initialized. The simulation process continues until the mission end. The
simulation is repeated many times and the average value of all trials then gives the
probability ofmission success and average length of kill chain. The systemof systems
results are also calculated for further manipulation and analysis.

Based on the model design and simulation rationale, the simulation model is
implemented based onExtendSim.Hierarchical viewof the simulationmodel for typ-
ical scenario in ExtendSim is shown in Fig. 3. In the interior of the block, TSTmodel,
reconnaissance aircraft model, C2 model, fire strike shooter model and effectiveness
index model are modeled by assembling the blocks the software provides, which
improves efficiency of modeling. The model inputs are setup within a Microsoft
Excel and are integrated into the ExtendSim model via the use of hot links [6]. The
outputs are extracted into Excel from the simulation model by the same way.

4 Conclusion

Wehave shown in this paper a simulationmodel used for evaluating systemof systems
effectiveness for striking time-sensitive targets. The simulation environment allowed
the military planner to understand the model to visualize any problems. The mode
can help scientific planningweapon and is great significance for improving efficiency
and rapid response ability for time-sensitive targets.
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Study of the Solvability of the Fuzzy Error
Matrix Set Equation in Equality Form
of Type II 4

Kai-zhong Guo, Ran Li and Jian-xin Li

Abstract The concept of error matrix is presented in this paper, and the types of the
fuzzy error matrix equation are presented too. The paper is aimed at researching the
solvability of the fuzzy error matrix equation which elements are sets and solutions
to it. Theorems about the necessary and sufficient condition for the solvability of the
substitution transformation matrix equation of Type II as XA = B are obtained in
the paper. And an example of solving this equation would be given in the last part of
the paper.

Keywords Fuzzy · Error matrix · Set equation · Equation solving

1 Introduction

Throughout the ages, people glorify scientists and inventors by praising their per-
formance and wise, focusing on their success, thought process and way of thinking,
but rarely to track their footprint of failures and mistakes, especially lack of mul-
tidimensional studies and comprehensive analysis about their error. It is really a
pity.

In fact, the error plays an important role in the history of understanding. Error
and truth always be the guide of scientist and explorers, which are both in the unity
of opposites. The latter one always enlightens people that “rebound lute”, “back to
find the shore”. Joule believed in the theory of perpetual motion machine, buried in
studying it, after many failures, he began to think from the opposite side of the heat
and work in the motion of a machine, and finally discovered the law of conservation
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and transformation of energy. Edison had failed fifty thousand times when he testing
battery, but he said “my harvest is great, I know that more than fifty thousand kinds
of method doesn’t work.”

Indeed, humans always like correct, hope be correct, however, to be correct we
must avoid and eliminate errors, and in order to avoid and eliminate errors, you have
to study the cause and the law of errors. And it is necessary to find out the cause
of errors and the methods for eliminating them when errors happened. And in this
paper we will discuss how to utilize the error matrix equation to eliminate errors.

2 The Concept of Error Matrix

Definition 1 Suppose

⎛
⎜⎜⎝

((
U111 U112 · · · U11k

)
, X11

) ((
U121 U122 · · · U12k

)
, X12

)
((

U211 U212 · · · U21k
)
, X21

) ((
U221 U222 · · · U22k

)
, X22

)
· · · · · ·((

Um11 Um12 · · · Um1k
)
, Xm1

) ((
Um21 Um22 · · · Um2k

)
, Xm2

)

· · · ((
U1n1 U1n2 · · · U1nk

)
, X1n

)
· · · ((

U2n1 U2n2 · · · U2nk
)
, X2n

)
· · · · · ·
· · · ((

Umn1 Umn2 · · · Umnk
)
, Xmn

)

⎞
⎟⎟⎠

be an error matrix with m × n order of K elements.

Definition 2 Suppose

⎛
⎜⎜⎝

U20 S20(t) �P20(x1,x2,...,xn) T20(t) L20(t) y20(t) = f20((u(t), �P20),GU20(t)) GU20(t)
U21 S21(t) �P21(x1,x2,...,xn) T21(t) L21(t) y21(t) = f21((u(t), �P21),GU21(t)) GU21(t)
· · · · · · · · · · · · · · · · · · · · ·
U2t S2t (t) �P2t (x1,x2,...,xn) T2t (t) L2t (t) y2t (t) = f2t ((u(t), �P2t ),GU2t (t)) GU2t (t)

⎞
⎟⎟⎠

be an error matrix with (t+1)×7 or m × 7 order. The element of this error matrix is
set.

Definition 3 The set relationship which containing the unknown set is called set
equations.

Definition 4 Suppose X, A′ and B be m × 7 order error matrix, so XA′ ⊇ (or other
relational operators) B is called TPYE I set (matrix) equations.
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3 Error Matrix Equations

Error matrix equation:

TypeI AX=B A•X=B A�X=B A∨X=B A∧X=B
Type II XA=B X•A=B X�A=B X∨A=B X∧A=B

4 The Solution of Error Matrix Equation

The solution of Type II 1 XA = B

X = (u, x) = (U1, S1(t), �P1, T1(t), L1(t), x(t) = f ((u(t), �P1),GU1(t)))

=

⎛
⎜⎜⎝

U10x S10x (t) �P10x(x1,x2,...,xn) T10x (t) L10x (t) y10x (t)
U11x S11x (t) �P11x(x1,x2,...,xn) T11x (t) L11x (t) y11x (t)
· · · · · · · · · · · · · · ·

U1t x S1t x (t) �P1t x(x1,x2,...,xn) T1t x (t) L1t x (t) y1t x (t)

= f10x ((u(t), �P10x ),GU10x (t)) GU10x (t)
= f11x ((u(t), �P11x ),GU11x (t)) GU11x (t)

· · · · · ·
= f1t x ((u(t), �P1t x ),GU1t x (t)) GU1t x (t)

⎞
⎟⎟⎠

A = (U2, S2(t), �P2, T2(t), L2(t), x2(t) = f2((u(t), �P2),GU2(t)))

=

⎛
⎜⎜⎝

U20 S20(t) �P20(x1,x2,...,xn) T20(t) L20(t) y20(t)
U21 S21(t) �P21(x1,x2,...,xn) T21(t) L21(t) y21(t)
· · · · · · · · · · · · · · ·
U2t S2t (t) �P2t (x1,x2,...,xn) T2t (t) L2t (t) y2t (t)

= f20((u(t), �P20),GU20(t)) GU20(t)
= f21((u(t), �P21),GU21(t)) GU21(t)

· · · · · ·
= f2t ((u(t), �P2t ),GU2t (t)) GU2t (t)

⎞
⎟⎟⎠
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B =

⎛
⎜⎜⎝

V201 Sv201(t) �Pv201(x1,x2,...,xn) Tv201(t) Lv201(t) yv201(t)
V21 j Sv21 j (t) �Pv21 j (x1,x2,...,xn) Tv21 j (t) L21 j (t) yv21 j (t)
· · · · · · · · · · · · · · ·

V2m2m1 Sv2m2m1(t) �Pv2m2m1(x1,x2,...,xn) Tv2m2m1(t) Lv2m2m1(t) yv2m2m1(t)

= fv201((u(t), �Pv201),Gv201(t)) Gv201(t)
= fv21 j ((u(t), �Pv21 j ),Gv21 j (t)) Gv21 j (t)

· · · · · ·
= fv2m2m1((u(t), �Pv2m2m1),Gv2m2m1(t)) Gv2m2m1(t)

⎞
⎟⎟⎠

Definition 4.1 Let

X A′ =

⎛
⎜⎜⎝

(W11, Z11) (W1m, Z12) · · · (W1m1, Z1m1)

(W21, Z21) (W22, Zmm) · · · (W2m2, Z2m2)

· · · · · · · · · · · ·
(Wm21, Zm21) (Wm21, Zm21) · · · (Wm2m1, Zm2m1)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

V201 Sv201(t) �Pv201(x1,x2,...,xn) Tv201(t) Lv201(t) yv201(t)
V21 j Sv21 j (t) �Pv21 j (x1,x2,...,xn) Tv21 j (t) L21 j (t) yv21 j (t)
· · · · · · · · · · · · · · ·

V2m2m1 Sv2m2m1(t) �Pv2m2m1(x1,x2,...,xn) Tv2m2m1(t) Lv2m2m1(t) yv2m2m1(t)

= fv201((v(t), �Pv201),Gv201(t)) Gv101(t)
= fv21 j ((v(t), �Pv21 j ),Gv21 j (t)) Gv11 j (t)

· · · · · ·
= fv2m2m1((v(t), �Pv2m2m1),Gv2m2m1(t)) Gv1m2m1(t)

⎞
⎟⎟⎠

There into,

(
Wi j , Zi j

) = U1i x ∧ U2 j , S1i x (t) ∧ S2 j (t), �P1i x(x1,x2,...,xn) ∧ �P2 j , T1i x (t) ∧ T2 j (t),

L1i x (t) ∧ L2 j (t), x1i x (t) ∧ y2 j (t),G1i x (t) ∧ G2 j (t)
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There into,

⎛
⎜⎜⎝

U10x ∧ U20 S10x (t) ∧ S20(t) �P10x(x1,x2,...,xn) ∧ �P20 T10x (t) ∧ T20(t)
U11x ∧ U21 S11x (t) ∧ S21(t) �P11x(x1,x2,...,xn) ∧ �P21 T11x (t) ∧ T21(t)

· · · · · · · · · · · ·
U1t x ∧ U2t S1t x (t) ∧ S2t (t) �P1t x(x1,x2,...,xn) ∧ �P2t T1t x (t) ∧ T2t (t)

L10x (t) ∧ L20(t) x10x (t) ∧ y20(t) Gu10x (t) ∧ Gu20(t)
L11x (t) ∧ L21(t) x11x (t) ∧ y21(t) Gu11x (t) ∧ Gu21(t)

· · · · · · · · ·
L1t x (t) ∧ L2t (t) x1t x (t) ∧ y2t (t) Gu1t x (t) ∧ Gu2t (t)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

V201 Sv201(t) �Pv201(x1,x2,...,xn) Tv201(t) Lv201(t) yv201(t)
V21 j Sv21 j (t) �Pv21 j (x1,x2,...,xn) Tv21 j (t) L21 j (t) yv21 j (t)
· · · · · · · · · · · · · · ·

V2m2m1 Sv2m2m1(t) �Pv2m2m1(x1,x2,...,xn) Tv2m2m1(t) Lv2m2m1(t) yv2m2m1(t)

= fv201((v(t), �Pv201),Gv201(t)) Gv101(t)
= fv21 j ((v(t), �Pv21 j ),Gv21 j (t)) Gv11 j (t)

· · · · · ·
= fv2m2m1((v(t), �Pv2m2m1),Gv2m2m1(t)) Gv1m2m1(t)

⎞
⎟⎟⎠

By the definition of equal matrices: if two matrices contain each other, so cor-
responding elements in both matrices contain each other. Namely,

(
Wi j , Zi j

) =
(bi j , yi j ) so,

U1i x ∧ U2 j , S1i x (t) ∧ S2 j (t), �P1i x(x1,x2,...,xn) ∧ �P2 j , T1i x (t) ∧ T2 j (t),

L1i x (t) ∧ L2 j (t), x1i x (t) ∧ y2 j (t),G1i x (t) ∧ G2 j (t)

= (bi j , yi j ) = (
V2i j Sv2i j (t) �Pv2i j (x1,x2,...,xn) Tv2i j (t) Lv2i j (t) yv2i j (t)

= fv2i j (v(t), �Pv2i j ),Gv2i j (t)) Gv2i j (t)
)

So the following set equations are obtained:

U10x ∧ U20 = Vv20

S10x (t) ∧ S20(t) = Sv20(t)

�P10x(x1,x2,...,xn) ∧ �P20 = �Pv20(x1,x2,...,xn)
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T10x (t) ∧ T20(t) = Tv20(t)

L10x (t) ∧ L20(t) = Lv20(t)

x10x (t) = f10x (u(t), �P10x ),Gu10x (t)) ∧ y20(t) = fv20(u(t), �Pv20),Gv20(t))

Gu10x (t) ∧ Gu20(t) = Gv20(t)

. . . . . .

U1i x ∧ U2 j = Vv2 j

S1i x (t) ∧ S2 j (t) = Sv2 j (t)

�P1i x(x1,x2,...,xn) ∧ �P2 j = �Pv2 j (x1,x2,...,xn)

T1i x (t) ∧ T2 j (t) = Tv2 j (t)

L1i x (t) ∧ L2 j (t) = Lv2 j (t)

x1i x (t) = f1i x (u(t), �P1i x ),Gu1i x (t)) ∧ y2 j (t) = fv2 j (u(t), �Pv2 j ),Gv2 j (t))

Gu1 j x (t) ∧ Gu2 j (t) = Gv2 j (t)

. . . . . .

Uttx ∧ U2t = Vv2t

Stt x (t) ∧ S2t (t) = Sv2t (t)

�Pttx(x1,x2,...,xn) ∧ �P2t = �Pv2t (x1,x2,...,xn)

Tttx (t) ∧ T2t (t) = Tv2t (t)

Lttx (t) ∧ L2t (t) = Lv2t (t)

xttx (t) = ft t x (u(t), �Pttx ),Guttx (t)) ∧ y2t (t) = yv2t (t) = fv2t (u(t) �Pv2t ),Gv2t (t))

Guttx (t) ∧ Gu2t (t) = Gv2t (t)

About operation symbol “∧”, if both sides of the equation are sets, then it means
“intersection”, if both sides of the equation are numbers, then it means “minimum”.
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As for

(
U 1i x ∧ U2 j

)
h1

(
S1i x (t) ∧ S2 j (t)

)
h2( �P1i x(x1,x2,...,xn) ∧ �P2 j )

∨ h3
(
T1i x (t) ∧ T2 j (t)

)
h4(L1i x (t) ∧ L2 j (t))

h5(x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ y2 j (t))h6(Gu1i x (t) ∧ Gu2 j (t)),

namely “hi , i = 1, 2, … 6” operation of matrix elements, it means that elements
have been computed could “compose” a complete matrix element (proposition). The
mode of combination depends on different situations. One way is to constitute a new
set of error elements or error logic proposition by parameter that operated. And this
way is called the multiplication of m × 7 order error matrix.

Now to analyze the error metric equation XA′ = B. If let X = (x1, x2 ,…, xm2),
B = (B1, B2,…, Bm2) and divide XA′ = B into xi A′ = Bi , i = (1, 2, …, m2), then
there is one unknown noted xi in the equation xiA′ = Bi . So we can get the solution
to XA′ = B by solving xiA′ = Bi , i = (1, 2, …, m2) respectively. Thereout,

Xi A′ = Bi = (
U10x S10x (t) �P10x(x1,x2,...xn) T10x (t) L10x (t)x10x (t)

= f10x ((u(t), �P10x ),Gu10x (t)) Gu10x (t)
)

A′

= (
(bi1, yi1) (bii , yi2) . . . (bim2.yim2) = (U10x ∧ U20) ∨ (S10x (t) ∧ S20(t))

)

∨
( �P10x(x1,x2,...xn) ∧ �P20

)
∨ (T10x (t) ∧ T20(t)) ∨ (L10x (t) ∧ L20(t))

∨
(

x10x (t) = f10x ((u(t), �P10x ),Gu10x (t)) ∧ y20(t)
)

∨ (Gu10x (t) ∧ Gu20(t))

= (
V20 Sv20(t) �Pv20(x1,x2,...xn) Tv20(t) Lv20(t)yv20(t)

= fv20((v(t), �Pv20),Gv20(t)) Gv20(t)
)
. . . . . .

(U10x ∧ U2 j ) ∨ (
S10x (t) ∧ S2 j (t)

) ∨
( �P10x(x1,x2,...xn) ∧ �P2 j

)

∨ (
T10x (t) ∧ T2 j (t)

) ∨ (
L10x (t) ∧ L2 j (t)

)

∨
(

x10x (t) = f10x ((u(t), �P10x ),Gu10x (t)) ∧ y2 j (t)
)

∨ (
Gu10x (t) ∧ Gu2 j (t)

)

= (
V2 j Sv2 j (t) �Pv2 j (x1,x2,...xn) Tv2 j (t) Lv2 j (t)yv2 j (t)

= fv2 j ((v(t), �Pv2 j ),Gv2 j (t)) Gv2 j (t)
)

. . . . . .

(U10x ∧ U2t ) ∨ (S10x (t) ∧ S2t (t)) ∨
( �P10x(x1,x2,...xn) ∧ �P2t

)

∨ (T10x (t) ∧ T2t (t)) ∨ (L10x (t) ∧ L2t (t))

∨
(

x10x (t) = f10x ((u(t), �P10x ),Gu10x (t)) ∧ y2t (t)
)

∨ (Gu10x (t) ∧ Gu2t (t))
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= (
V2t Sv2t (t) �Pv2t (x1,x2,...xn) Tv2t (t) Lv2t (t) yv2t (t) = fv2t ((v(t), �Pv2t ),Gv2t (t)) Gv2t (t)

)

. . . . . . . . .

Xi A′ = Bi = (
U1i x S1i x (t) �P1i x(x1,x2,...xn) T1i x (t) L1i x (t)x1i x (t)

= f1i x ((u(t), �P1i x ),Gu1i x (t)) Gu1i x (t)
)

A′

= (
(bi1, yi1) (bii , yi2) . . . (bim2.yim2) = (U1i x ∧ U2 j ) ∨ (

S1i x (t) ∧ S2 j (t)
) )

∨
( �P1i x(x1,x2,...xn) ∧ �P2 j

)
∨ (

T1i x (t) ∧ T2 j (t)
) ∨ (

L1i x (t) ∧ L2 j (t)
)

∨
(

x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ y2 j (t)
)

∨ (
Gu1i x (t) ∧ Gu2 j (t)

)

= (
V2 j Sv2 j (t) �Pv2 j (x1,x2,...xn) Tv2 j (t) Lv2 j (t) yv2 j (t) = fv2 j ((v(t), �Pv2 j ),Gv2 j (t)) Gv2 j (t)

)

. . . . . .

(U10x ∧ U2 j ) ∨ (
S10x (t) ∧ S2 j (t)

) ∨
( �P10x(x1,x2,...xn) ∧ �P2 j

)

∨ (
T10x (t) ∧ T2 j (t)

) ∨ (
L10x (t) ∧ L2 j (t)

)

∨
(

x10x (t) = f10x ((u(t), �P10x ),Gu10x (t)) ∧ y2 j (t)
)

∨ (
Gu10x (t) ∧ Gu2 j (t)

)

= (
V2 j Sv2 j (t) �Pv2 j (x1,x2,...xn) Tv2 j (t) Lv2 j (t) yv2 j (t)

= fv2 j ((v(t), �Pv2 j ),Gv2 j (t)) Gv2 j (t)
)
. . . . . .

(U1t x ∧ U2t ) ∨ (S1t x (t) ∧ S2t (t)) ∨
( �P1t x(x1,x2,...xn) ∧ �P2t

)

∨ (T1t x (t) ∧ T2t (t)) ∨ (L1t x (t) ∧ L2t (t))

∨
(

x1t x (t) = f1t x ((u(t), �P1t x ),Gu1t x (t)) ∧ y2t (t)
)

∨ (Gutx (t) ∧ Gu2t (t))

= (
V2t Sv2t (t) �Pv2t (x1,x2,...xn) Tv2t (t) Lv2t (t) yv2t (t)

= fv2t ((v(t), �Pv2t ),Gv2t (t)) Gv2t (t)
)

. . . . . .

Xm2A′ = Bm2 = (
U1m2x S1m2x (t) �P1m2x(x1,x2,...xn) T1m2x (t) L1m2x (t) x1m2x (t)

= f1m2x ((u(t), �P1m2x ),Gu1m2x (t)) Gu1m2x (t)
)

A′

= (
(bm21, ym21) (bm2i , ym22) . . . (bim2, yim1)

)
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= (U1m2x ∧ U2m1) ∨ (S1m2x (t) ∧ S2m1(t)) ∨
( �P1m2x(x1,x2,...xn) ∧ �P2m1

)

∨ (T1m2x (t) ∧ T2m1(t)) ∨ (L1m2x (t) ∧ L2m1(t))

∨
(

x1m2x (t) = f1m2x ((u(t), �P1m2x ),Gu1m2x (t)) ∧ y2m1(t)
)

∨ (Gu1m2x (t) ∧ Gu2m1(t))

= (
V2m1 Sv2m1(t) �Pv2 j (x1,x2,...xn) Tv2m1(t) Lv2m1(t)yv2m1(t)

= fv2m1((v(t), �Pv2 j ),Gv2m1(t)) Gv2m1(t)
)

. . . . . .

(U10x ∧ U2m1) ∨ (S10x (t) ∧ S2m1(t)) ∨
( �P10x(x1,x2,...xn) ∧ �P2 j

)

∨ (T10x (t) ∧ T2m1(t)) ∨ (L10x (t) ∧ L2m1(t))

∨
(

x10x (t) = f10x ((u(t), �P1m2x ),Gu10x (t)) ∧ y2m1(t)
)

∨ (Gu10x (t) ∧ Gu2m1(t))

= (V2m1, Sv2m1(t)) �Pv2 j (x1,x2,...xn) Tv2m1(t) Lv2m1(t) yv2m1(t)

= fv2m1((v(t), �Pv2 j ),Gv2m1(t)) Gv2m1(t)

. . . . . .

(U1t x ∧ U2t ) ∨ (S1t x (t) ∧ S2t (t)) ∨
( �P1t x(x1,x2,...xn) ∧ �P2t

)
∨ (T1t x (t) ∧ T2t (t))

∨ (L1t x (t) ∧ L2t (t)) ∨
(

x1t x (t) = f1t x ((u(t), �P1t x ),Gu1t x (t)) ∧ y2t (t)
)

∨(Gu1t (V20, Sv20(t)) �Pv20(x1,x2,...xn)Tv2(t)Lv2(t)yv20(t)
= fv20((v(t), �Pv20),Gv(t))Gv10(t)x(t) ∧ Gu2t (t)

= (V2t , Sv2t (t)) �Pv2t (x1,x2,...xn) Tv2t (t) Lv2t (t) yv2t (t) = fv2t ((v(t), �Pv2t ),Gv(t)) Gv2t (t)

Theorem 1 The sufficient and necessary condition for the solvability of error matrix
equation XA′ = B is the solvability of xi A′=Bi , i=(1, 2, . . .m2).

Proof if XA′ = B has solvability, it is can be known by the definitions of XA′ =
B and xi A′ = Bi , i = (1, 2, …, m2) that they are the equivalent equations, so it is
necessary for xi A′ =Bi , i = (1, 2,…,m2) has solvability; Otherwise, if the solvability
of xi A′ = Bi , i = (1, 2, …, m2) exists, similarly it does for XA′ = B.

Thereout, we use the method of discussing the solvability of xi A′= Bi , i = (0, 1,
2, ……, m2) to discuss the solution of XA′ = B.

Then for XiA′ = Bi , we can get

(
U1i x S1i x (t) �P1i x(x1,x2,...xn) T1i x (t) L1i x (t)x1i x (t)
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= f1i x ((u(t), �P1i x ),Gu1i x (t)) Gu1i x (t)
)

A′

= (U1i x ∧ U20) ∨ (S1i x (t) ∧ S20(t)) ∨
( �P1i x(x1,x2,...xn) ∧ �P20

)

∨ (T1i x (t) ∧ T20(t)) ∨ (L1i x (t) ∧ L20(t))

∨
(

x1i x (t) = f1i x ((u(t), �P10x ),Gu1i x (t)) ∧ x20(t)
)

∨ (Gu1i x (t) ∧ Gu20(t))
. . . . . .

= (U1i x ∧ U2 j ) ∨ (
S1i x (t) ∧ S2 j (t)

) ∨
( �P1i x(x1,x2,...xn) ∧ �P2 j

)

∨ (
T1i x (t) ∧ T2 j (t)

) ∨ (
L1i x (t) ∧ L2 j (t)

)

∨
(

x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ x2 j (t)
)

∨ (
Gu1i x (t) ∧ Gu2 j (t)

)
. . . . . .

= (U1i x ∧ U2m1) ∨ (S1i x (t) ∧ S2m1(t)) ∨
( �P1i x(x1,x2,...xn) ∧ �P2m1

)

∨ (T1i x (t) ∧ T2m1(t)) ∨ (L1i x (t) ∧ L2m1(t))

∨
(

x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ x2m1(t)
)

∨ (Gu1i x (t) ∧ Gu2m1(t))

= (
(bi1, yi1) (bi2, yi2) · · · (bim1.yim1)

)

That is,

(U1i x ∧ U20) ∨ (S1i x (t) ∧ S20(t)) ∨
( �P1i x(x1,x2,...xn) ∧ �P20

)

∨ (T1i x (t) ∧ T20(t)) ∨ (L1i x (t) ∧ L20(t))

∨
(

x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ x20(t)
)

∨ (Gu1i x (t) ∧ Gu20(t))

= (
V20 Sv20(t) �Pv20(x1,x2,...xn) Tv20 j (t) Lv20(t)yv20(t)

= fv20((v(t), �Pv20),G2 jv(t)) Gv20(t)
)

. . . . . .

(U1i x ∧ U2 j ) ∨ (
S1i x (t) ∧ S2 j (t)

) ∨
( �P1i x(x1,x2,...xn) ∧ �P2 j

)

∨ (
T1i x (t) ∧ T2 j (t)

) ∨ (
L1i x (t) ∧ L2 j (t)

)

∨
(

x1i x (t) = f1i x ((u(t), �P1i x ),Gu1i x (t)) ∧ x2 j (t)
)

∨ (
Gu1i x (t) ∧ Gu2 j (t)

)

= (
V2 j Sv2 j (t) �Pv2 j (x1,x2,...xn) Tv2 j (t) Lv2 j (t)yv2 j (t)

= fv2 j ((v(t), �Pv2 j ),Gv2 j (t)) Gv2 j (t)
)

. . . . . .
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(U1t x ∧ U2m1) ∨ (S1t x (t) ∧ S2m1(t)) ∨
( �P1t x(x1,x2,...xn) ∧ �P2m1

)

∨ (T1t x (t) ∧ T2m1(t)) ∨ (L1t x (t) ∧ L2m1(t))

∨
(

x1t x (t) = f1t x ((u(t), �P1t x ),Gu1t x (t)) ∧ x2m1(t)
)

∨ (Gu1t x (t) ∧ Gum1(t))

= (V2t , Sv2t (t)) �Pv2t (x1,x2,...xn) Tv2t (t) Lv2t (t) yv2t (t) = fv2t ((v(t), �Pv2t ),Gv(t)) Gv2t (t)

A series of set equations is obtained,

(U1i x ∧ U20) = V20

(S1i x (t) ∧ S20(t)) = Sv20(t)

( �P1i x(x1,x2,...,xn) ∧ �P20) = �Pv20(x1,x2,...,xn)

(T1i x (t) ∧ T20(t)) = Tv20(t)

(L1i x (t) ∧ L20(t)) = Lv20(t)

(x1i x (t) = f1i x (u(t), �P1i x ),Gu1i x (t)) ∧ x20(t)) = yv20(t) = fv20((u(t), �Pv20),G2 jv(t))

(Gu1i x (t) ∧ Gu20(t)) = Gv20(t)

. . . . . .

(U1i x ∧ U2 j ) = V2 j

(S1i x (t) ∧ S2 j (t)) = Sv2 j (t)

( �P1i x(x1,x2,...,xn) ∧ �P2 j ) = �Pv2 j (x1,x2,...,xn)

(T1i x (t) ∧ T2 j (t)) = Tv2 j (t)

(L1i x (t) ∧ L2 j (t)) = Lv2 j (t)

(x1i x (t) = f1i x (u(t), �P1i x ),Gu1i x (t)) ∧ x2i (t)) = yv2 j (t) = fv2 j ((u(t), �Pv2 j ),G2 jv(t))

(Gu1i x (t) ∧ Gu2 j (t)) = Gv2 j (t)

. . . . . .

(U1t x ∧ U2m1) = V2t

(S1t x (t) ∧ S2m1(t)) = Sv2t (t)
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( �P1t x(x1,x2,...,xn) ∧ �P2m1) = �Pv2t (x1,x2,...,xn)

(T1t x (t) ∧ T2m1(t)) = Tv2t (t)

(L1t x (t) ∧ L2m1(t)) = Lv2t (t)

(x1t x (t) = f1t x (u(t), �P1t x ),Gu1t x (t)) ∧ x2m1(t)) = yv2t (t) = fv2t ((u(t), �Pv2t ),Gv(t))

(Gu1t x (t) ∧ Gu2m1(t)) = Gv2t (t)

Theorem 2 The necessary condition for the solvability of Xi A′ = Bi is

U20 ⊇ V20,

S20(t) ⊇ Sv20(t),

�P20 ⊇ �Pv20(x1,x2,...,xn),

T20(t) ⊇ Tv20(t),

L20(t) ⊇ Lv20(t),

x20 (t) ≥ yv20(t) = fv20
(
(v(t), �pv20) ,G2 jv(t)

)
,

Gu20(t) ⊇ Lv20(t)

. . . . . .

U2 j ⊇ V2 j ,

S2 j (t) ⊇ Sv2 j (t),

�P2 j ⊇ �Pv2 j (x1,x2,...,xn),

T2 j (t) ⊇ Tv2 j (t),

L2 j (t) ⊇ Lv2 j (t),

x2i (t) ≥ yv2 j (t) = fv2 j
((

v(t), �pv2 j
)
,G2 jv(t)

)
,

Gu2 j (t) ⊇ Lv2 j (t),

. . . . . .

U2m1 ⊇ V2t ,
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S2m1(t) ⊇ Sv2t (t),

�P2m1 ⊇ �Pv2t (x1,x2,...,xn),

T2m1(t) ⊇ Tv2t (t),

L2m1(t) ≥ Lv2t (t),

x2m1 (t) ≥ yv2t (t) = fv2t ((v(t), �pv2t ) ,Gv(t)) ,

Gu2m1(t) ⊇ Lv2t (t).

Proof If one of the conditions above is not meet, suppose S2 j (t) ⊇ Sv2 j (t)is not
meet, so no mater what value S1i x (t) is, we can not get (S1i x (t)∧ S2 j (t)) = Sv2 j (t).

Proved.

Theorem 3 The sufficient condition for the solvability of Xi A′ = Bi is

U20 = V20,

S20(t) = Sv20(t),

�P20 = �Pv20(x1,x2,...,xn),

T20(t) = Tv20 j (t),

L20(t) = Lv20(t),

x20 (t) ≥ yv20(t) = fv20
(
(v(t), �pv20) ,G2 jv(t)

)
,

Gu20(t) = Lv20(t),

. . . . . .

U2 j = V2 j ,

S2 j (t) = Sv2 j (t),

�P2 j = �Pv2 j (x1,x2,...,xn),

T2 j (t) = Tv20 j (t),

L20(t) = Lv20(t),

x2i (t) = yv2 j (t) = fv2 j
((

v(t), �pv2 j
)
,G2 jv(t)

)
,
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Gu2 j (t) = Lv2 j (t),

. . . . . .

U2m1 = V2t ,

S2m1(t) = Sv2t (t),

�P2m1 = �Pv2t (x1,x2,...,xn),

T2m1(t) = Tv2t (t),

L2m1(t) = Lv2t (t),

x2m1 (t) = yv2t (t) = fv2t ((v(t), �pv2t ) ,Gv(t)) ,

Gu2m1(t) = Lv2t (t),

Proof Because in the Xi A′ = Bi , we should only take union operation of the corre-
sponding element of A in Xi , that is

U1i x = U20 ∪ U21 ∪ · · · ∪ U2 j ∪ · · · ∪ U2t ,

S1i x = S20(t) ∪ S21(t) ∪ · · · ∪ S2 j (t) ∪ · · · ∪ S2t (t),

�P1i x(x1,x2,...,xn) = �P20 ∪ �P21 ∪ · · · ∪ �P2 j ∪ · · · ∪ �P2t ,

T1i x = T20(t) ∪ T21(t) ∪ · · · ∪ T2 j (t) ∪ · · · ∪ T2t (t),

L1i x = L20(t) ∪ L21(t) ∪ · · · ∪ L2 j (t) ∪ · · · ∪ L2t (t),

x1i x (t) = fli x ((u(t), �Plix ),Gulix (t)) = x20(t) ∪ x21 ∪ · · · ∪ x2 j ∪ · · · ∪ x2t ,

Gu1i x (t) = Gu20(t) ∪ Gu21(t) ∪ · · · ∪ Gu2 j (t) ∪ · · · ∪ Gu2t (t),

proved.
From the discussion about Theorems2 and 3 we can get that the solution to

Xi A′ = Bi exists in the correspondence parameters of the corresponding elements
of A and Bi .
Then we discuss all the solution of Xi A′ = Bi and X A′ = B:

(1) When the conditions of Theorem3 are meet, the solution of the equation set is:

U1i x = U20 ∪ U21 ∪ · · · ∪ U2 j ∪ · · · ∪ U2t ,
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S1i x (t) = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t ,

�P1i x(x1,x2,...,xn) = �P20 ∪ �P21 ∪ · · · ∪ �P2 j ∪ · · · ∪ �P2t ,

T1i x (t) = T20(t) ∪ T21 ∪ · · · ∪ T2 j ∪ · · · ∪ T2t ,

L1i x (t) = L20(t) ∪ L21 ∪ · · · ∪ L2 j ∪ · · · ∪ L2t ,

x1i x (t) = fli x ((u(t), �Plix ),Gulix (t)) = x20(t) ∪ x21 ∪ · · · ∪ x2 j ∪ · · · ∪ x2t ,

Gu1i x (t) = Gu20(t) ∪ Gu21(t) ∪ · · · ∪ Gu2 j (t) ∪ · · · ∪ Gu2t (t).

(2) When one condition of Theorem3 turns from equality to inclusion relation,
suppose S2 j (t) ⊇ Sv2 j (t), so it is must be demanded that Sli x (t) = Sv2 j (t) on
account of Xi A′ = Bi , so must be for

S2 j (t) = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t ,

then, S1i x (t) = S2 j = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t = Sv20(t), that is,

U1i x = U20 ∪ U21 ∪ · · · ∪ U2 j ∪ · · · ∪ U2t ,

S1i x (t) = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t ,

�P1i x(x1,x2,...,xn) = �P20 ∪ �P21 ∪ · · · ∪ �P2 j ∪ · · · ∪ �P2t ,

T1i x (t) = T20(t) ∪ T21 ∪ · · · ∪ T2 j ∪ · · · ∪ T2t ,

L1i x (t) = L20(t) ∪ L21 ∪ · · · ∪ L2 j ∪ · · · ∪ L2t ,

x1i x (t) = fli x ((u(t), �Plix ),Gulix (t)) = x20(t) ∪ x21 ∪ · · · ∪ x2 j ∪ · · · ∪ x2t ,

Gu1i x (t) = Gu20(t) ∪ Gu21(t) ∪ · · · ∪ Gu2 j (t) ∪ · · · ∪ Gu2t (t).

(3) When two conditions of Theorem3 turn from equality to inclusion relation,
suppose S2 j (t) ⊇ Sv2 j (t), so it is must be demanded that Sli x (t) = Sv2i (t) =
Sv2 j (t) on account of Xi A′ = B, so must be for S2i = S2 j = S20(t) ∪ S21 ∪
· · · ∪ S2 j ∪ · · · ∪ S2t .
then, S1i x (t) = S2i = S2 j = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t = Sv20(t).
that is,

U1i x = U20 ∪ U21 ∪ · · · ∪ U2 j ∪ · · · ∪ U2t ,

S1i x (t) = S20(t) ∪ S21 ∪ · · · ∪ S2 j ∪ · · · ∪ S2t ,
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�P1i x(x1,x2,...,xn) = �P20 ∪ �P21 ∪ · · · ∪ �P2 j ∪ · · · ∪ �P2t ,

T1i x (t) = T20(t) ∪ T21 ∪ · · · ∪ T2 j ∪ · · · ∪ T2t ,

L1i x (t) = L20(t) ∪ L21 ∪ · · · ∪ L2 j ∪ · · · ∪ L2t ,

x1i x (t) = fli x ((u(t), �Plix ),Gulix (t)) = x20(t) ∪ x21 ∪ · · · ∪ x2 j ∪ · · · ∪ x2t ,

Gu1i x (t) = Gu20(t) ∪ Gu21(t) ∪ · · · ∪ Gu2 j (t) ∪ · · · ∪ Gu2t (t).

(4) When all conditions of Theorem3 turn from equality to inclusion relation, so it
is must be demanded that S1i x (t) = Sv20(t) = Sv21(t) = · · · = Sv2t (t), so must
be for S2i (t) = Sv20(t) = Sv21(t) = · · · = Sv2t (t), then, S1i x (t) = Sv20(t) =
Sv21(t) = · · · = Sv2t (t).
That is,

U1i x = U20 ∪ U21 ∪ · · · ∪ U2 j ∪ · · · ∪ U2t

S1i x (t) = Sv20(t) = Sv21(t) = · · · = Sv2t (t)

�P1i x(x1,x2,...,xn) = �P20 ∪ �P21 ∪ · · · ∪ �P2 j ∪ · · · ∪ �P2t

T1i x (t) = T20(t) ∪ T21 ∪ · · · ∪ T2 j ∪ · · · ∪ T2t

L1i x (t) = L20(t) ∪ L21 ∪ · · · ∪ L2 j ∪ · · · ∪ L2t

x1i x (t) = fli x ((u(t), �Plix ),Gulix (t)) = x20(t) ∪ x21 ∪ · · · ∪ x2 j ∪ · · · ∪ x2t

Gu1i x (t) = Gu20(t) ∪ Gu21(t) ∪ · · · ∪ Gu2 j (t) ∪ · · · ∪ Gu2t (t)

(5) When two conditions of Theorem3 turn from equality to inclusion relation,
suppose S2i (t) ⊇ Sv2i (t)and S2 j (t) ⊇ Sv2 j (t), if Sv2i (t) 	= Sv2 j (t), so there is
no solution to Xi A′ = B, on account of Xi A′ = B.

That is because: Sli x (t) = S2i , and Sli x (t) = S2 j , can’t meet at the same time. So

S1i x (t) ∧ S20(t) = Sv20(t);

S1i x (t) ∧ S21(t) = Sv21(t);
. . . . . .

S1i x (t) ∧ S2t (t) = Sv2t (t),

are false.
We can discuss other parameters in the same way.
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5 The Example of Application of Error Matrix Equation

For the error matrix equation suppose

A =

⎛
⎜⎜⎝

U1 S1(t) �P1(x1,x2,...,xn) T1(t) L1(t) y1(t) = f1((u(t), �P1),Gu1(t)) Gu1(t)
U2 S2(t) �P2(x1,x2,...,xn) T2(t) L2(t) y2(t) = f2((u(t), �P2),Gu2(t)) Gu2(t)
U3 S3(t) �P3(x1,x2,...,xn) T3(t) L3(t) y3(t) = f3((u(t), �P3),Gu3(t)) Gu3(t)
U4 S4(t) �P4(x1,x2,...,xn) T4(t) L4(t) y4(t) = f4((u(t), �P4),Gu4(t)) Gu4(t)

⎞
⎟⎟⎠

U = {ui |ui ∈ {all shares of SSE} }

U1 = U,

Su1(t) = {China Union} ,
�Pu1(x1,x2,...,xn) = {SSE} ,

Tu1(t) = {PE Ratio} ,

Lu1(t) = {21.7} ,

Yu1(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(China Union,PE Ratio = 21.7) = 1,

Gu1(t) = {PE Ratio < 10}.
U2 = U,

Su2(t) = {SINOPEC} ,
�Pu2(x1,x2,...,xn) = {SSE} ,

Tu2(t) = {PE Ratio} ,

Lu2(t) = {8.05} ,

Yu2(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(SINOPEC, PE Ratio = 8.05) = 0,

Gu2(t) = {PE Ratio < 10} .

U3 = U,

Su3(t) = {CSCEC} ,
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�Pu3(x1,x2,...,xn) = {SSE} ,

Tu3(t) = {PE Ratio} ,

Lu3(t) = {5.29} ,

Yu3(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(CSCEC, PE Ratio = 5.29) = 0,

Gu3(t) = {PE Ratio < 10}.
U4 = U,

Su4(t) = {SINOPEC} ,
�Pu4(x1,x2,...,xn) = {SSE} ,

Tu4(t) = {PE Ratio} ,

Lu4(t) = {11.99} ,

Yu4(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(SINOPEC, PE Ratio = 11.99) = 1,

Gu4(t) = {PE Ratio < 10} .

X =

⎛
⎜⎜⎝

U1x S1x (t) �P1x(x1,x2,...,xn) T1x (t) L1x (t) x1x (t) = f1x ((u(t), �P1x ),Gu1x (t)) Gu1x (t)
U2x S2x (t) �P2x(x1,x2,...,xn) T2x (t) L2x (t) x2x (t) = f2x ((u(t), �P2x ),Gu2x (t)) Gu2x (t)
U3x S3x (t) �P3x(x1,x2,...,xn) T3x (t) L3x (t) x3x (t) = f3x ((u(t), �P3x ),Gu3x (t)) Gu3x (t)
U4x S4x (t) �P4x(x1,x2,...,xn) T4x (t) L4x (t) x4x (t) = f4x ((u(t), �P4x ),Gu4x (t)) Gu4x (t)

⎞
⎟⎟⎠

B =

⎛
⎜⎜⎝

(V1, Sv1(t)) �Pv1(x1,x2,...,xn) Tv1(t) Lv1(t) yv1(t) = fv1((v(t), �Pv1),Gv1(t)) Gv1(t)
(V2, Sv2(t)) �Pv2(x1,x2,...,xn) Tv2(t) Lv2(t) yv2(t) = fv2((v(t), �Pv2),Gv2(t)) Gv2(t)
(V3, Sv3(t)) �Pv3(x1,x2,...,xn) Tv3(t) Lv3(t) yv3(t) = fv3((v(t), �Pv3),Gv3(t)) Gv3(t)
(V4, Sv4(t)) �Pv4(x1,x2,...,xn) Tv4(t) Lv4(t) yv4(t) = fv4((v(t), �Pv4),Gv4(t)) Gv4(t)

⎞
⎟⎟⎠

V1 = U,

Sv1(t) = {China Union} ,
�Pv1(x1,x2,...,xn) = {SSE} ,
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Tv1(t) = {PE Ratio} ,

Lv1(t) = {21.7} ,

Yv1(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(China Union,PE Ratio = 21.7) = 1,

Gv1(t) = {PE Ratio < 10} .

V2 = U,

Sv2(t) = {SINOPEC} ,
�Pv2(x1,x2,...,xn) = {SSE} ,

Tv2(t) = {PE Ratio} ,

Lv2(t) = {8.05} ,
Yv2(t) =

{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(SINOPEC, PE Ratio = 8.05) = 0

Gv2(t) = {PE Ratio < 10} .

V3 = U,

Sv3(t) = { CSCEC } ,
�Pv3(x1,x2,...,xn) = {SSE} ,

Tv3(t) = {PE Ratio} ,

Lv3(t) = {5.29} ,

Yv3(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(CSCEC, PE Ratio = 5.29) = 0,

Gv3(t) = {PE Ratio < 10} .

V4 = U,

Sv4(t) = {SINOPEC} ,
�Pv3(x1,x2,...,xn) = {SSE} ,



388 K. Guo et al.

Tv4(t) = {PE Ratio} ,

Lv4(t) = {11.99} ,

Yv4(t) =
{
1 PE Ratio ≥ 10
0 PE Ratio < 10

⇒ f1(SINOPEC, PE Ratio = 11.99) = 1,

Gv4(t) = {PE Ratio < 10} .

Suppose X = B, then X is the solution of X ∧ A = B on the account of A = B
and Theorem2.

6 Conclusion

We get the necessary condition and the necessary and sufficient condition for the
solvability of the error matrix equation XA = B, and there are also get be proved by
the case studies.
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Empirical Research on Efficiency Measure
of Financial Investment in Education Based
on SE-DEA

Yan-yan Yao and Ren-shou Zhang

Abstract This paper makes use of SE-DEA model to measure the performance of
financial investment in education in Guangdong from 2000 to 2012, solves the prob-
lem that the traditional DEAmodel is unable to further distinguish the effective units,
achieves the discrimination and sorting of the performance of the financial investment
in education in Guangdong, and makes suggestions on a structural adjustment of the
financial investment before making of a relevant policy in Guangdong by means of
computation of looseness amount.

Keywords SE-DEA mode · Financial investment in education · Performance
measurement

1 Introduction

Due to the “non-competitiveness” in the consumption and the “non-excludability”
in the benefits of the educational resource, there are many subjects of educational
investment, including government, social institution, and charity organizations. The
education can not only improve the personal cultural accomplishment and knowledge
level and enable the well-educated person to earn the higher income and social status,
but also generate the spillover effect through the social value created by educated
persons, increase social productivity, and improve the cultural and ethic level of
the nationality; so, the educational resource is generally considered to be a kind of
“mixed public article”[14]. Therefore, the investment in education falls within the
scope of the national public investment, and the government often faces the realistic
problem on how to improve the efficiency while guaranteeing the justice in the
financial fund to be invested. By offering the educational resource, the government
may provide relatively fair competition conditions, increase mobility of the social
class, give vulnerable groups t opportunities of upgrading of social status, change a
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survival environment, narrow gaps between the poor and the rich, and solve problems
in the social class stratification at the source.

The financial investment in the education shall be increased on the basis of a
continuous rise in the demand for social education and continuous enhancement of
the government’s ability to offer the education service. In accordancewith an inverted
U curve theory, there is a relationship in inverted U-shape between the financial input
and output. That is to say that at the early stage of education development, there is a
direct proportional relation between them, meaning the more the input is made, the
more the output is produced; however, at the later stage of its development, the limited
increase in the output will be brought from the increasing input. This paper makes an
analysis of the financial allocation efficiency of the public education in Guangdong
over the past years, and proposes an ideology for solution to the deficiency in the
investment and output.

2 Review of Literatures

2.1 Research at Abroad

In 1950s, in the paper “Role of Government in Education”, Fridman proposed that
the fund invested in the education should be converted into the education vouchers,
which should be distributed to the student families. Students could select their schools
with the voucher at will; the schools could exchange the vouchers with the govern-
ment for cash, so as to guarantee the investment in the educational undertaking, but
also introduce the competition mechanism into an educational system in order to
improve educational quality and achieve survival of the fittest. Such mechanism of
“education voucher” reflects the ideology of assessment made on the performance of
the education expenditure [5]. On the basis of the measurement analysis, Psacharo
[3] discovered that in the developing countries, the average rate of return from the
financial investment in education is lower than 13%; in the developed countries, the
rate of return from the investment in education is higher than 20%, demonstrating
that there is a large gap in efficiency of the financial investment in education among
countries at the different levels of development, and indicating that the efficiency is
increased by re-planning financial resource for education [3]. Taylor [6] measured
the efficiency of financial investment in the education in England by the least square
method; however, there is a popular belief that it is difficult to use the least square
method, maximum likelihood estimation, and stochastic frontier analysis (i.e. SFA
method) for a production function with more investments and more outputs; the
investment in and output from the higher education is a situation with more invest-
ments and more outputs [2]. Jill [7] made an analysis of the investment and output
efficiency of the higher education in England by a data envelopment analysis (DEA)
and on the basis of the data collected from 100 colleges and universities in Eng-
land from 2000 to 2001, and drew the conclusion that the technology efficiency and
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scale efficiency of such 100 colleges and universities in England were higher than
the average levels in Europe [7]. Benson [4] made the overall assessment on the
educational financial system from three perspectives including whether the supply
of the education is sufficient, whether the allocation of the education resource is
efficient, and whether the distribution of the education resource is fair as considered
traditionally in the research literatures on educational finance. Barlow [2] made the
study on the trend of the production efficiency of the college education in England
by the method of time series analysis, and finally drew the conclusion that the mar-
ginal benefit from the financial investment in education in England indicated that it
was possible to improve the utilization efficiency of the financial fund by the further
optimization of the resource, so as to maximize the benefits. Adams [1] thought that
an education performance assessment system should lay the stress on the following
indicators: the resource investment quality, including the schoolbooks for students,
teaching qualification, and the ratio of teachers to students, and other review items;
the result output quality, including the academic record (i.e. test scores), acquisition
of self-knowledge, progress, or passing rate of student; the education process quality,
including the interaction between teachers and students, participation and level of
learners, entertainment of study, and other research items; the education content qual-
ity, including the coverage rate of fundamental knowledge, coherence and portability
of knowledge, and the integration level of the knowledge; the education reputation
quality, including the historical image and public perception of educational insti-
tution; the value affiliation quality, including the influence of the education on the
all-round development of the students.

2.1.1 Research at Home

When representing the financial investment with the operating expense of education
within an annual average budget, representing the investment of human resource
with the number of full-time teachers, and assessing the higher education resource
allocation efficiency by DEA, Fu [10] discovered that the efficiency was not high
in financial investment since 1999. Huang [12] made use of a principal component
analysis to induce and count up a number of variables involved in the higher education
investment and output and the principal component variables with the high economic
significance, and analyzed the relation between the principal component of output
and the principal component of investment by a regression analysis method, so as
to draw a conclusion that the output from the colleges and universities in China was
increased in an extensive manner . Proceeding from the principle of the educational
economics, Xu [15] made an analysis of the principal components for the benefits
of investment in the public higher education from 1995 to 2006, and discovered that
there was an efficiency defect in the investment in the higher education, and there
was an insignificant positive relationship between academic research output and total
investment amount. On a basis of perspective of the governmental welfare, Yan [16]
made some suggestions on construction of the assessment system by proposing the
importance of the education expenditure performance assessment, such as pertinence
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of the assessment indicator, the comprehensiveness of the assessment method, and
independence of the assessment supervision. Feng [9] proposed that an investment
ratio of the public education expenditure should be higher than that of the higher
education, and there was an unbalance development of the basic education in vari-
ous regions and the resource allocation in the education system in China [9]. Zhang
[18] made a research, considering that despite of a continuous increase in a financial
investment in education in China and its increasing in the education, there was still
a problem in the lack of educational funds, mainly because there are unreasonable
factors of the financial education resource allocation structure among the different
hierarchies of the education; therefore, it was important to optimize an expenditure
structure and increase the financial education expenditure benefit while makingmore
financial investments in the education. In accordance with the actual conditions of
the public education expenditure in China, Yan [17] proposed an educational expen-
diture performance assessment indicator system in China, and defined the weights
of the assessment indicators by the AHP method, and made use of data on the public
education expenditure to reach a conclusion that the investment in the public edu-
cation in China was lower compared to that in foreign countries, and a distribution
structure of the public education fund was not in conformity with the requirements
of an assessment indicator system; that is to say that the economy is not ideal, and
the efficiency is declining continuously, but the effectiveness is better [17]. From
the quantitative perspective of a research on the basic education expenditure perfor-
mance assessment, on the basis of analysis on the quasi-public goods property of
the basic education, Pei [8] expounded a theoretical base of the financial basic edu-
cation expenditure performance assessment, reviewed the outcomes acquired from,
problems and difficulties in the performance assessment in China, and guided with
a basic idea established for the financial basic education performance assessment
system in China.

On the basis of summarizing the literatures above, we discovered that the schol-
ars at home and abroad made a great number of researches on the financial educa-
tion expenditure performance, but less qualitative researches and more quantitative
researches; some of scholars used DEA model, but it was impossible to solve the
problem in the efficiency sorting in case ofmore effective samples. This paper intends
to use SE-DEAmodel to assess performance of the financial investment in education
in Guangdong from 2000 to 2012.

3 Selection of DEA Model

3.1 Profile of Traditional DEA Model

Being the most basic one, CCRmodel is used for measurement of the comprehensive
technology efficiency (technology efficiency, TE), i.e. the ratio of the optimal invest-
ment to actual investment on the productive frontier with the unchanged returns to
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scale. The unchanged return to scale means that during process of the production,
when the investment is increased or decreased in the equal proportion, the output is
also increased or decreased in the same equal proportion. If TE = 1, it indicates that
the investment and output reach state of the relatively best efficiency. If TE < 1,
the decision-making unit is DEA invalidity, indicating the decision-making unit is
non-technical valid or non-scale valid. Given that there are N decision-making units
(DecisionMaking Units, hereinafter referred to as DMU), and each decision-making
unit has M resource consumption investment variables and S output variables, xi j

denotes the investment made by the DMU No. j in the investment No.i , and yi j

denotes the output of the DMU No. j to the output No.i , and the investment and
output of the DMU No. j should be:

x j = [x1 j , x2 j .....xmj ]T , j = 1, 2.....n

y j = [y1 j , y2 j .....ymj ]T , j = 1, 2.....n

Given that the weights of the input and output are

v = [v1, v2.....vm]T

u = [u1, u2.....us]T

At this time, the efficiency indicator for assessment of the DMU No. j should be

h j =

s∑

r=1
ur yr j

m∑

i=1
vi xi j

j = 1, 2.....n

Select appropriate weight coefficients v and u, so that they should satisfy the require-
ment of h j ≤ 1, j = 1, 2.....n, then an optimization model should be the next case,
by the linear transformation simplex method, the following solution is obtained

C2R

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

s∑

r=1
ur yr j0

m∑

i=1
vi xi j0

= h∗
j0

s∑

r=1
ur yr j

m∑

i=1
vi xi j

≤ 1, j = 1, 2...n

v = [v1, v2....vm ]T ≥ 0
u = [u1, u2....us ]T ≥ 0

Simple typelinear change, introduction to
−−−−−−−−−−−−−−−−−−−−−−−−−−−→C2R

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min θ
n∑

j=1
X j λ j ≤ θ Xk

n∑

j=1
Y j λ j ≤ Yk

λ j ≥ 0, j = 1, 2......n

The traditional CCRmodel has an advantage in effectives of the assessment of the
DMU with more investments and more output; however, the biggest disadvantage
of such model contains the existence of more effective units. The traditional CCR
model is unable to further distinguish the effective units. In order to make up this
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deficiency, Andersen & Perterson (1993) proposed the SE-DEA model based on the
CCR model [13]:

3.2 SE-DEA Model

The greatest advantage of SE-DEA model is that it is possible to sort the effi-
ciency values of many effective samples. When assessing the performance of the
financial investment in the education, the special DMU in the traditional DEAmodel
is included in the set of all the DMUs, and the super-efficient DEA model keeps the
special DMU to be assessed out of the set, and replace such DMU with the linear
combination of investment and input in other DMUs. Generally, the restraint that the
efficiency value must be 1 in case of the validity of the DMU is eliminated; therefore,
the situation that the value is larger than 1 will appear in case of the valid DMU in the
SE-DEAmodel. The SE-DEAmodel has no influence on the assessment of the valid
unit but distinguishes a number of effective units for the efficiency. The idea of such
model is indicated in Fig. 1. When calculating the performance value of the financial
investment in education c in a year, for the invalid years, the efficiency value of such
two models should be OE′/OE < 1; however, if the financial education expenditure
in a year is valid, and the productive frontier is changed from ABCD(ordinary DEA)
to ABC, the efficiency value should be OC′/OC > 1.

Fig. 1 The performance
value of the financial
investment in education c in
a year
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4 Empirical Analysis

4.1 Selection of Variables and Data Source

By review of the literatures, we discovers that when measuring the education invest-
ment and output efficiency, the average operating expense of education of the stu-
dents in the schools at all levels shall be used as a variable of investment, and the
gross enrollment rate of the schools at all levels shall be used as the output. In this
paper, the average operating expense of education within the budget of elementary
school students, the average operating expense of education within the budget of
junior middle school students, the average operating expense of education within the
budget of senior ones, and the average operating expense of education within the
budget of students in higher education are used as the input variables, and the gross
enrollment rate of the school-age children, the gross enrollment rate of the junior
middle schools, and the gross enrollment rate of senior middle schools, and the gross
enrollment rate of the higher education are used as the output variables, in order to
make a super-efficiency data envelopment analysis. In this paper, the efficiency of
the financial investment in the education is analyzed from four viewpoints including
pure technology efficiency, scale efficiency, overall efficiency, and super efficiency,
and the analysis is made on the current situation and the main problems in the finan-
cial investment in the education in Guangdong and the suggestions on improvement
are made on the basis of data from 2000 to 2012. The data used herein is sourced
from the Statistical Yearbook of Guangdong from 2001 to 2013 and the Statistical
Bulletin of Implementation of Educational Funds in China from 2000 to 2012.

4.2 Calculation Results

The values of investment and output used in this paper are greater than zero, there is an
obvious correlation between the variables of the investment and output, and theDMU
and investment and output investors meet the requirements of SE-DEAmodel. DEA-
SOLVER Pro 5.0 software is use to calculate the financial efficiency of education in
Guangdong from 2000 to 2012, and the results therefore are shown in the Table 1.
The value of the overall technology efficiency in it is calculated with an option of
CCR-I (CCR includes the investment-oriented CCR-I and output-oriented CCR-O,
respectively indicating that in case of the unchanged output, how to minimize the
investment; or in case of the unchanged investment, how tomaximize the output). The
pure technology efficiency (PTE) is used tomeasure the ratio of an optimal investment
to an actual investment of the DMU on the productive frontier with the changeable
returns to scale, and the value of the pure technology efficiency is calculated with
an option of BCC-I in software. The scale efficiency (SE) is used to measure the
distance from a productive frontier in case of the changeable returns to scale and
productive frontier of unchangeable returns to scale, and to indicate the degree of the
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inefficiency due to the impossible production with the unchangeable returns to scale.
It is calculatedwith the formula: Scale efficiency = overall technology efficiency/pure
technology efficiency; the value of the comprehensive super technology efficiency
is calculated with an option of Super-CCR-I in the Super-Radial module (Super-
CCR includes investment-oriented Super-CCR-I and output-oriented Super-CCR-
O, respectively indicating that in case of unchangeable output, how to minimize
the investment; or in case of the unchangeable investment, how to maximize the
output).

4.3 Analysis of Results

From the viewpoint of the technology efficiency, technology efficiency means influ-
ence of the internal management level and technical level of the enterprise on the
production efficiency. In this paper, the technology efficiency refers to the use effi-
ciency of the financial investment in education at the given policy conditions and
financial investment level. From Table1, it is observed that there are twelve years
from 2000 to 2012, in which the technology efficiency reaches the optimal level,
and only in 2002, the optimal technology efficiency is not reached. It indicates that
the technology efficiency of the financial investment in the education in Guangdong
over the past years is in an ideal state.

The scale efficiency means the proportional relation between the investment scale
and the output scale. In this paper, we use the ratio of the increase in the investment

Table 1 Performance of financial investment in education in Guangdong from 2000 to 2012

Year Pure
technology
efficiency (%)

Scale
efficiency (%)

Overall
technology
efficiency (%)

Overall super
technology
efficiency (%)

Returns to
scale

2000 100.00 100.00 100.00 117.15 –

2001 100.00 100.00 100.00 106.86 –

2002 95.80 96.20 92.16 92.07 DRS

2003 100.00 93.10 93.10 93.12 DRS

2004 100.00 95.20 95.20 95.22 DRS

2005 100.00 100.00 100.00 109.76 –

2006 100.00 99.30 99.30 99.29 DRS

2007 100.00 99.20 99.20 99.17 DRS

2008 100.00 92.60 92.60 92.60 DRS

2009 100.00 95.60 95.60 95.61 DRS

2010 100.00 100.00 100.00 100.78 –

2011 100.00 99.20 99.20 99.16 DRS

2012 100.00 93.30 93.30 93.33 DRS
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scale in the operating expense of the education within a budget to an increase in the
gross enrollment rate scale at various stages to represent it. If this value is greater than
1, it indicates that the returns to scale exist in the financial investment in education;
if the value is less than 1, it indicates the scale insufficiency exists in the financial
investment in the education. From the viewpoint of the scale efficiency, during the
13 years from 2000 to 2012, the scale efficiency is lower in the financial investment
in the education in Guangdong; it reaches the optimal state only within four years;
in the remaining 8 years, the scale benefit is decreased progressively.

From the viewpoint of the overall efficiency, during the 13 years from 2000
to 2012, only within four years, the overall efficiency. (If the overall efficiency is
valid, the technology efficiency and scale efficiency must be valid) of the financial
investment in education in Guangdong reaches an optimal state, indicating that the
financial investment in education in Guangdong fails to reach the productive frontier
because of the lower efficiency in most years.

The super efficiency analysis is used to further evaluate the efficiency in the years
with the valid DEA. On the basis of the super efficiency analysis, efficiency of the
financial investment in the education in Guangdong from 2000 to 2012 shows a
downward tendency. See Fig. 2 for details.

As seen from analysis above, the use efficiency is not very high; furthermore, on
the basis of a super efficiency analysis, the efficiency shows a downward tendency.
Overall, there are more years in which the technology efficiency is reached and less
years inwhich the scale efficiency is reached.However, the financial investment in the
education is not valid unless the technology efficiency, scale efficiency, and overall

Fig. 2 Efficiency value of financial investment in education in Guangdong from 2000 to 2012
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Fig. 3 Average operating expense of education for everystudent in schools at all levels in
Guangzhou and China (Unit: RMB Yuan)

efficiency are valid. Specially, within 9 years in which the overall efficiency is not
valid, it is a non-scale valid (progressive decrease in returns to scale), but basically
the technically valid, indicating that the overall efficiency fails to reach the optimal
state due to the mismatching between the scale and investment and output, so it is
necessary to keep the existing investment proportion and management method, and
increase the efficiency by means of the policy. Furthermore, in accordance with the
data from the statistical bullet in of implementation of educational fund in China in
2012, despite of the larger total financial investment in the education in Guangdong,
the average investment is lower for per student; in particular, compared to the national
average level, the operating expense in education of students in the higher education
is lower by RMB 3142 Yuan (See Fig. 3 for details); therefore, it is necessary to
increase the financial investment in education.

From the view points of the looseness of investment, output and the improvement
rate, the looseness of the average investment in an operating expense of education
is larger for every student from elementary schools and junior ones, and that for the
student in higher education is smaller; to senior middle schools, the looseness of
the investment in the funds from 2000 to 2010 is smaller, but shows an increasing
tend over the past two years. From the view point of the output looseness, the output
looseness of enrollment rate of the school-age children is larger, and the enrolment
rate of the primary graduate and the gross enrolment rate of the higher education are
subject to the larger output looseness over the past two years. From the viewpoint
of the DEA improvement rate, the improvement rate of the enrollment rate is higher
in school-age children and gross enrollment rate of junior school before 2010, but
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declines over the past two years to a significant extent; the improvement rate of the
gross enrolment rate of the higher education maintains a higher level over the past
years (Table 2).

Here, it is assumed that the financial investment in the education is unchanged in
order to make research on the output efficiency. Due to the dimensional difference
between the output variables, in order to observe and analyze the extent to which the
output is improved in amore clear way, DEA improvement rate is used to describe the
improvement space. As seen from Table3, all the improvement rates are the positive
numbers, indicating that it is theoretically possible to increase the gross enrolment
rate of the school at all levels from 2000 to 2012 from the viewpoint of efficiency of
financial investment in education; specially, there is a bigger space for improvement
of elementary and junior schools; however, it declines significantly over the past two
years, and the improvement rate of senior school and higher education shows an
upward trend.

Table 2 Analysis of looseness of DEA

Input variables Output variables

S1 S2 S3 S4 S5 S6 S7 S8

2000 – – – – – – – –

2001 – – – – – – – –

2002 56.72 41.77 0 988.31 6.61 6.66 0 0

2003 38.69 15.9 0 1007.41 1.08 0 0.59 0

2004 25.1 20.09 0 197.64 0.46 0 1.58 0

2005 – – – – – – – –

2006 144.62 133.06 235.07 0 9.06 8.74 1.73 0

2007 517.58 617.22 0 1747.7 16.21 16.41 1.01 0

2008 683.44 755.29 0 0 29.86 29.57 0 0.05

2009 489.64 388.85 0 0 23.57 24.06 0 1.55

2010 – – – – – – – –

2011 1037.13 756.83 796.8 0 4.79 4.99 0 1.34

2012 1459.61 1387.53 914.39 0 10.21 11.73 0 2.66

Note S1 denotes the operating expense of education for elementary school student within budget;
S2 denotes expense for junior school students within budget; S3 denotes expense for senior school
students within budget; S4 denotes expense for students in higher education within budget; S5
denotes the rate of the school-age children; S6 denotes the rate of junior school; S7 denotes the rate
of senior schools snd S8 denotes the rate of higher education
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Table 3 Improvement rate of DEA output

Gross enrolment
rate of school-age
students (%)

Gross enrolment
rate of junior
school (%)

Gross enrolment
rate of senior
school (%)

Gross enrolment
rate of higher
education (%)

2000 – – – –

2001 – – – –

2002 15.82 16.13 8.62 8.62

2003 8.56 7.39 8.72 7.39

2004 5.51 5.02 8.22 5.02

2005 – – – –

2006 9.87 9.76 3.57 0.72

2007 17.22 17.95 2.38 0.84

2008 40.33 41.04 7.99 8.18

2009 29.27 30.88 4.59 10.50

2010 – – – –

2011 5.67 6.13 0.84 5.69

2012 18.09 20.58 7.14 17.24

Note The improvement rate is the amount of looseness divided by actual value

5 Measures and Suggestions

The five suggestions next are made on the basis of results of SE-DEA model.
First, in order to solve a problem that a average investment for per student in

Guangdong (e.g. average investment per student in higher education) is lower com-
pared to the national level, the government departments shall increase the investment
in its education practically. Overall, as the largest province in economy, the total
amount of financial investment in education in Guangdong ranks the first place in
China; however, the average investment in the operating expense of education for
every student at all levels is lower than the national average level. For example, the
average operating expense of education for every student in the schools at four levels
is lower than the national level respectively by RMB 447.66 Yuan, RMB 2020.49
Yuan, RMB 522.74 Yuan, and RMB 3142 Yuan, indicating that the amount of its
financial investment is mismatching with the economic aggregate in Guangdong. It is
required to “make up a missed lesson” for its financial investment; the management
at provincial andmunicipal tiers shall further increase the investment in the education
fund, so that the residents in Guangdong will enjoy better education resource.

Besides, it is required to make the structural adjustment and policy guidance to
the financial investment in education, and improve the use efficiency of the financial
fund investment. From 2000 to 2012, the use efficiency of the financial investment in
education in Guangdong is not very high; during this period, the productive frontier
is reached only within four years; by analysis, the efficiency of its financial invest-
ment shows a downward trend. Specially, the technology efficiency of its investment
reaches an optimal level, but the scale efficiency does not reach it (lower investment
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and output ratio), affecting value of the overall efficiency; furthermore, in the years
when the optimal level is not reached, the returns to scale is decreasing progressively.
If the structural adjustment and policy guidance of its financial investment iare not
implemented, the marginal benefit from the increase in the enrolment rate of the
school at all levels will decrease progressively. Therefore, the administrative depart-
ments in charge shall improve the use efficiency of the financial fund investment by
adjusting policy, and the optimization of the financial resource allocation of schools
at all levels.

Then, in order to embody the balanced education development, the government
shall increase investment in the nine-year compulsory education in the underdevel-
oped areas such as the mountainous area East Guangdong, GDWest GD, and North
GD. From the looseness of the investment and output of the nine-year compulsory
education and the improvement rate thereof, the looseness of the investment in its
education is larger; if considering only from optimization of model, the investment
in its operating expense for primary school and junior school within the budget shall
be decreased, because both gross enrolment rate of the school-age children and that
of the junior schools are higher than 95%, and it is difficult to increase the out-
put by increasing the investment. However, the investment in education falls within
the “public goods” and the education in the underdeveloped areas is unbalanced,
the compulsory education shall pay much attention to the fairness; particularly, the
investment shall be increased in the nine-year compulsory education in the under-
developed areas. From the viewpoints of the output looseness of the compulsory
education and the improvement rate thereof, the education and the improvement
rate thereof are larger. It is easy to discover that, the enrolment rate of the primary
graduates in GD in 2012 is 93.5%, lower than the national average level by 5%, indi-
cating that the great efforts shall be made to increase the investment in compulsory
education, particularly the gross enrolment rate of the junior school.

Fourth, the gross enrolment rate of higher education in GD is lower than the
national average level by 1.8%, indicating that there is the great space of improve-
ment. The looseness investment in education operating expense for senior school and
higher education within the budget is at a lower level, indicating that the efficiency
of the financial investment in them in GD is higher; however, the output looseness
and the improvement rate thereof, the output looseness of higher education in GD is
larger, showing an upward trend, and the improvement rate thereof is at the higher
level, indicating that its gross enrolment rate of in GD is deficient, and there is a
bigger space of improvement. Based on statistical data, it is not difficult to discover
that the gross enrolment of the higher education in China is 30%, and that in GD is
28.2%, lower than that of the national. The occurrence of situation is related to the
developed private economy in GD, in particular that a great number of the rural right-
age students in specialized villages and towns with developed private economy will
work in the household handicraft workshops after graduating from the senior schools,
so as to reduce the enrolment rate. With regard to the above situations, the relevant
functional departments shall strengthen propaganda and policy guidance, making
the duly adjustment of specialties of provocation schools, colleges and universities
in GD in order to attract the students to register for examination.
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And finally, the use efficiency of its financial investment is subject to a greater
impact on policy factors, and the efficiency of its financial investment in GD shows
an obvious periodic change. As seen from Fig. 2, the change in the efficiency value
presents wave in a period for every five years, reaching the extreme points in 2000,
2005, and 2010 respectively. It is worth noting that the above three years are the
ending year of the “Ninth Five-Year” Plan, the “Tenth Five-Year” Plan, and the
“Eleventh Five-Year” Plan respectively. The peak value of the efficiency occurring
at the end of each five-year plan indicates that effectiveness of adjustment of the
education policy in the “Five-Year Plan”, fully indicating that the use of the financial
fund in education is subject to the great impact on policy factors, making it possible
to make the structural adjustment of the educational fund allocation and improve the
use efficiency of the financial investment in the education.
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