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    Chapter 26   
 Oxidative Stress Responses in Aquatic 
and Marine Fishes       

     Michael     J.     Carvan     III      and     Richard     T.     Di     Giulio    

        Oxidative stress can be defi ned as the deleterious cellular effects arising from the 
production of reactive oxygen species (ROS) beyond the capacity of antioxidant 
defense systems to detoxify them. ROS are reactive O 2 -based molecules including 
the superoxide anion radical (O 2   −.  ), the hydroxyl radical (  .  OH), hydrogen peroxide 
(H 2 O 2 ), ozone (O 3 ) and singlet oxygen ( 1 O 2 ). The importance of oxidative stress and 
antioxidant defenses in human health and disease has been a major topic of research 
and clinical application for decades (see review by [ 1 ]). More recently, there has 
been an increasing appreciation for these phenomena in fi shes, particularly in the 
context of pollution of freshwater and marine systems. This has spurred substantial 
research into a mechanistic understanding of oxidative stress in fi shes. The mecha-
nistic study of oxidative stress in fi shes serves many purposes: (1) increase our 
understanding of the basic biochemical and molecular mechanisms related to oxida-
tive stress in fi sh; (2) explore evolutionary adaptations to oxidative stress to inform 
our understanding in other vertebrate species, including humans; and (3) understand 
the impact of prooxidant environmental stressors on fi sh population health. Many 
xenobiotics induce the production of ROS by several biochemical mechanisms 
(Fig.  26.1 ) such as the impairment of membrane-bound electron transport (e.g., 
mitochondrial, microsomal electron transport), redox cycling, inactivation of anti-
oxidant enzymes, depletion of free radical scavengers, photosensitization, and facil-
itation of Fenton reactions [ 2 ]. A number of reviews have been published that 
discuss the nature of ROS, mechanisms by which they are produced naturally and 
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via xenobiotics, antioxidant defense systems, cellular targets and organismal 
 consequences [ 2 ,  3 ].

   Many environmental chemicals of varying chemical classes have been shown to 
cause oxidative stress in marine and freshwater fi shes. The severity of the oxidative 
stress can be infl uenced by temperature [ 4 – 6 ], salinity [ 7 – 9 ], and hypoxia [ 10 – 12 ]. 
It is unclear in many cases whether these stressors are acting synergistically or addi-
tively with xenobiotic chemicals since antioxidants and oxidative stress responses 
can be infl uenced by many environmental factors, including temperature [ 13 – 15 ], 
dissolved oxygen [ 16 – 19 ], salinity [ 20 ], and acidifi cation [ 21 ]. A very interesting 
case is the notothenoid ice fi sh that have adapted to the cold, oxygen-rich waters of 
Antarctica through genomic loss or gene amplifi cation [ 22 ,  23 ] and have a pro-
nounced loss of heat shock response and a non-traditional battery of oxidative 
stress-responsive genes [ 24 ]. This suggests that they might be highly sensitive to the 
effects of oxidative stress or any other stressor that might promote oxidative stress 
[ 25 ]; therefore, questions arise regarding their ability to adapt to warming in the 
Antarctic and the increased environmental pollution via global transport mecha-
nisms and expanding ecotourism. 

 The association of pesticide exposure and oxidative stress is well established for 
many environmentally-relevant agents, and their structural diversity leads to a 

  Fig. 26.1    An overview of ROS generation by redox cycling, key enzymatic antioxidant defenses, 
and cellular targets       
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 spectrum of effects. For example, a number of pesticides have been shown to impact 
catalase activity [ 26 – 28 ], lipid peroxidation [ 29 – 31 ], and mitochondrial function 
[ 32 – 34 ]. A relatively recent and thorough review of pesticide-induced oxidative 
stress in fi sh was produced by Slaninova and coworkers [ 35 ]. 

 Metals are known inducers of oxidative stress in many species of fi sh, promoting 
the formation of ROS through either redox cycling [ 36 – 38 ] or interaction with anti-
oxidant defenses, especially with thiol-containing antioxidants and enzymes [ 39 –
 41 ]. Sevcikova et al. have published a thorough review of metals and oxidative 
stress in fi sh [ 42 ]. 

 Aromatic hydrocarbons are found in nearly all aquatic environments around the 
globe. They are structurally diverse, but all are composed of one or more benzene 
rings. In general, aromatic hydrocarbons are metabolized in fi sh by Phase I enzymes 
(e.g., cytochrome P450s or epoxide hydrolase) to reactive intermediates that are 
substrates for conjugation by Phase II enzymes to create hydrophilic metabolites for 
excretion. As part of this metabolic process, reactive oxygen species are produced 
that lead to the induction of antioxidant enzymes and protective molecules [ 43 – 45 ]. 
Also, the metabolic products of PAHs include quinones that can generate ROS via 
redox cycling [ 46 ]. The toxicity of aromatic hydrocarbons can also be increased by 
exposure to UV light in the environment, which has been demonstrated in a number 
of fi sh species and life stages [ 47 – 49 ]. 

 Microcystins are potent cyanobacterial toxins produced by  Microcystis spp.  dur-
ing bloom events, and their effects on fi sh and other aquatic animals have been 
reviewed recently [ 50 ,  51 ]. In cultured fi sh cells, purifi ed microcystin causes 
increases in lipid peroxidation and the expression of several antioxidant enzymes 
[ 52 ]. In many whole organism studies using fi sh, the exposures occur via the addi-
tion of cultured  Microcystis spp.  to the water in which the fi sh are being held. Under 
these conditions, there is also an increase in lipid peroxidation and the expression of 
several antioxidant enzymes with the liver being the most affected organ followed 
by kidney and gills [ 53 ]. A few studies have observed that  Microcystis spp.  expo-
sure also inhibits protein serine/threonine phosphatase in liver that may initiate a 
metabolic response to the toxin (Olivares [ 54 ]). Interestingly,  Amado  et al. suggest 
that hyperphosphorylation linked to ROS is responsible for inducing and maintain-
ing the antioxidant response to  Microcystis spp.  exposure [ 50 ]. The exact mechanis-
tic linkages between oxidative stress, phosphorylation state and oxidative stress 
responses induced by  Microcystis spp.  remain to be determined. 

26.1     Small Molecule Antioxidant Defenses 

 A number of small molecules have been shown to have a protective effect in fi sh 
under environmentally-induced oxidative stress. We will briefl y discuss what are 
often considered the most important small molecules in the prevention of 
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ROS- induced damage—glutathione, ascorbic acid (vitamin C), and tocopherol 
(vitamin E). Glutathione is considered the most important small molecule for cel-
lular defense against ROS-induced damage. As observed in mammals, tissue gluta-
thione levels are often depleted after short-term oxidant exposures but elevated after 
long-term exposures [ 3 ,  55 ,  56 ]. Glutathione-associated antioxidant enzymes—glu-
tathione peroxidase, glutathione reductase, and glutathione S-transferase—(dis-
cussed below) are also critical for maintenance of normal cellular redox status and 
protection against ROS [ 2 ]. Non-glutathione small molecules are increasingly under 
scrutiny and evidence suggests they also play a critical role in protection against 
ROS. Ascorbic acid (vitamin C) levels are modulated by environmental chemicals 
[ 57 ,  58 ] and other environmental stressors including osmotic stress [ 20 ] and redox 
stress associated with air breathing [ 59 ]. Tissue ascorbic acid levels have been 
shown to protect against lipid peroxidation [ 60 ]. The majority of studies using fi sh 
to investigate the protective effect of tocopherol (vitamin E) are based on dietary 
supplementation, which can reduce oxidative stress-related biomarkers [ 61 – 63 ]. 
Environmental toxicants can modulate the levels of tocopheral which may infl uence 
ROS-induced damage [ 64 ,  65 ].  

26.2     Antioxidant Transcriptional Response 

 Cellular homeostatic mechanisms have evolved to deal with low levels of oxidative 
stress through modulation of the basal cellular concentrations of glutathione and the 
transcription factor commonly known as NRF2 (HGNC approved name: nuclear 
factor, erythroid 2-like 2, symbol: NFE2L2). With elevated levels of oxidative 
stress, cells can adapt by up-regulation of networks of responsive proteins regulated 
by NRF2 or NFkB (Fig.  26.2 ). Most proteins whose expression is regulated by 
NRF2 activity function as cryoptotectants [ 66 ]. The cellular pool of NRF2 is regu-
lated through binding to KEAP1 (kelch-like ECH-associated protein 1), which pro-
motes NRF2 ubiquitination and limits protein half-life. Under oxidative stress 
conditions, ubiquitination of NRF2 is dramatically reduced and KEAP1 binding 
sites are rapidly saturated. This leads to an increase in free cytosolic NRF2, which 
acts as a redox probe and translocates to the nucleus under oxidative conditions 
[ 66 ]. In the nucleus, NRF2 dimerizes with small MAF proteins to up-regulate the 
transcription of numerous target genes via binding to antioxidant response elements 
(also known as electrophile response elements) [ 67 ].

   NFkB is known to regulate proteins that are cryoprotectants and some that are 
pro-oxidant. While these two functions seem contradictory, the expression of NFkB 
target genes typically promotes cellular survival in response to numerous cellular 
stressors [ 68 ]. The canonical NFkB pathway is activated mostly under proinfl am-
matory conditions. The NFKB1-RELA dimer is held inactive via interaction with 
IkB inhibitory proteins. Under oxidative stress conditions, IkB is phosphorylated 
and subsequently ubiquinated, which allows the NFKB1-RELA dimer to translo-
cate to the nucleus and bind to NFkB binding sites [ 68 ].  
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26.3     Antioxidant Enzymes and Protective Targets 

 These two pathways are largely responsible for transcriptional activation of gene 
products that protect the cell from oxidative stress-associated damage (Table  26.1 ). 
These proteins can be broadly described as antioxidant enzymes or protective tar-
gets. Antioxidant enzymes catalyze the elimination of reactive metabolic intermedi-
ates and ROS, or are important modulators of these processes. Enzymes such as 
superoxide dismutase and catalase act directly to detoxify the inorganic free radi-
cals superoxide and hydrogen peroxide, respectively [ 69 ]. Enzymes such as gluta-
thione S-transferase and UDP glucuronosyltransferases generally catalyze the 
conjugation of small molecules (glutathione and glucuronic acid, respectively) to 
reactive intermediates which makes them readily excretable [ 70 ,  71 ]. In contrast, 
the enzyme glutamate-cysteine ligase, which has a catalytic subunit (GCLC) and a 
modifi er subunit (GCLM), is the rate-limiting enzyme in glutathione synthesis [ 72 ].

  Fig. 26.2    Transcriptional activation in response to oxidative stress via NRF2 and NFkB pathways. 
Both pathways play a key role in the transcriptional responses to oxidative stress. Interestingly, the 
two pathways have been described as mutually stimulatory and inhibitory in an apparently cell- 
types specifi c manner       
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   Proteins that function as protective targets can generally be considered ROS 
scavengers. Many members of the globin gene family (including myoglobin, neuro-
globin, cytoglobin) are thought to play an important role in ROS scavenging and are 
prominent stress-responsive proteins in fi sh [ 73 – 75 ]. The globin X member of the 
gene family is found only in fi shes and may either protect the lipids in cell mem-
brane from oxidation or may act as a redox-sensing or signaling protein [ 76 ]. As in 

    Table 26.1    Selected antioxidant genes controlled by NRF2 and/or NFkB and identifi ed in fi sh 
species   

 Activity  Gene name  Symbol 

 Glutathione biosynthesis  Glutamate-cysteine ligase, catalytic subunit  GCLC 
 Glutamate-cysteine ligase, modifi er subunit  GCLM 
 Glutathione reductase  GSR 

 ROS detoxifi cation  Glutathione peroxidase 1A  GPX1A 
 Glutathione peroxidase 1B  GPX1B 
 Superoxide dismutase 1, soluble  SOD1 
 Superoxide dismutase 2, mitochondrial  SOD2 
 Superoxide dismutase 3, extracellular a  SOD3A 
 Superoxide dismutase 3, extracellular b  SOD3B 
 Catalase  CAT 
 Peroxiredoxin 1  PRDX1 
 Peroxiredoxin 6  PRDX6 

 Metal binding  Thioredoxin  TXN 
 Metallothionein 2  MT2 

 Glutathione S-transferase  Glutathione S-transferase M  GSTM 
 Glutathione S-transferase M3 (brain)  GSTM3 
 Glutathione S-transferase pi 1  GSTP1 
 Glutathione S-transferase pi 2  GSTP2 
 Microsomal glutathione S-transferase 1.1  MGST1.1 
 Microsomal glutathione S-transferase 1.2  MGST1.2 
 Microsomal glutathione S-transferase 2  MGST2 
 Microsomal glutathione S-transferase 3  MGST3 

 UDP glucuronosyl 
transferase 

 UDP glucuronosyltransferase 1 family, polypeptide A6  UGT1A6 
 UDP glucuronosyltransferase 2 family, polypeptide B1  UGT2B1 
 UDP glucuronosyltransferase 2 family, polypeptide B5  UGT2B5 

 Reduction  NAD(P)H dehydrogenase, quinone 1  NQO1 
 Aldo-keto reductase family 1, member A1A 
(aldehyde reductase) 

 AKR1A1a 

 Aldo-keto reductase family 1, member A1b 
(aldehyde reductase) 

 AKR1A1B 

 Heme oxygenase  Heme oxygenase (decycling) 1a  HMOX1A 
 Heme oxygenase (decycling) 1b  HMOX1B 

 Hydrolysis  Epoxide hydrolase 1, microsomal (xenobiotic)  EPHX 
 Iron transport  Ferritin, heavy polypeptide 1a  FTH1A 

 Ferritin, heavy polypeptide 1b  FTH1B 
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  Fig. 26.3    Schematic of a generalized Adverse Outcome Pathway. Points where oxidative stress 
and subsequent and transcriptional responses play a role are indicated. The gray arrows indicate 
the multiplicity of cellular- and organ-level responses to oxidative stress. Biomarkers are com-
monly used to indicate ( 1 ) oxidative damage that initiates stress responses (e.g. lipid peroxidation, 
oxidative DNA damage, depleted glutathione levels) to indicate ( 2 ) processes that are initiated 
when homeostatic mechanisms are overwhelmed (e.g. apoptosis, necrosis)       

other vertebrates, metallothioneins and thioredoxins are also important free radical 
scavengers [ 16 ,  77 ].  

26.4     Adverse Outcome Pathways, Oxidative Stress, 
and the Health of Wild Fish Populations 

 The effects of oxidative stress can be measured and interpreted at the level of indi-
vidual fi sh as correlations between biomarker activation and measured changes in 
physiology. However, when considering impacts on wildlife, it is the impacts at the 
population level that are most relevant. This relationship between molecular 
responses, individual health, and population effects are rarely straightforward or 
readily apparent. The Adverse Outcome Pathway (AOP) framework as defi ned by 
Ankley et al. [ 78 ] is an approach toward understanding the linkages from a molecu-
lar initiating event, through a series of biological processes, to an ultimate adverse 
outcome of relevance to human or ecological risk assessors (Fig.  26.3 ). This 
approach is based on the 2007 report by U.S. National Research Council (NRC) 
Committee on Toxicity Testing and Assessment of Environmental Agents that 
sought to transform toxicity testing and embrace newly-developed high-throughput 
and computational approaches focused on pathways to inform risks to humans 
(NRC 2007). One primary difference between the NRC approach and the AOP 
framework approach for ecotoxicology or public health is the focus on population- 
level effects in the AOP.

   Oxidative stress and oxidative stress responses are a very important component 
of many AOPs; however, the nature of oxidative stress responses as homeostatic 
pathways precludes consideration as a defi ned AOP [ 79 ]. For example, oxidative 
stress is a key component of proposed AOPs for drug-induced cholestasis and chem-
ical-induced liver fi brosis [ 80 ]. At this time, the role of oxidative stress in the initia-
tion of specifi c disease or dysfunction processes (or AOPs) is rarely well- defi ned. 
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There are numerous biomarkers of oxidative stress that include macromolecular 
damage (e.g., lipid peroxidation, oxidative DNA damage) or changes in expression 
levels of oxidative stress-responsive genes (Table  26.1 ). There is a substantial body 
of scientifi c literature that clearly connects toxicant exposure with the generation of 
oxidative stress and the expression or certain biomarkers. Enhancing our under-
standing of these linkages to disease and dysfunction will increase the certainty 
with which one can apply oxidative stress biomarkers to predict and assess the 
potential for adverse effects at the organism and population level.     
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