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Abstract Based on entropy and similarity measure of intuitionistic fuzzy sets,

a novel approach is proposed to determine weights of the IFOWA operator in

this paper. Then, an intuitionistic fuzzy dependent OWA (IFDOWA) operator is

defined and applied to handling multi-attribute group decision making problem with

intuitionistic fuzzy information. Finally, an example is given to demonstrate the ratio-

nality and validity of the proposed approach.
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1 Introduction

The ordered weighted aggregating (OWA) operator [26], as an important tool for

aggregating information, has been investigated and applied in many documents

[1, 9, 12, 20, 25, 32]. One critical issue of the OWA operator is to determine

its associated weights. Up to now, a lot of methods have been proposed to deter-

mine the OWA weights. Xu [21] classified all those weight-determining approaches

into two categories: argument-independent approaches [6, 12, 15, 20, 26, 28] and

argument-dependent approaches [1, 7, 21, 23, 27, 29]. For the first category, Yager

[26] suggested an approach to compute the OWA weights based on linguistic quan-

tifiers provided by Zadeh [30, 31]. O’Hagan [12] defined degree of orness and
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constructed a nonlinear programming to obtain the weights of OWA operator.

Xu [20] made an overview of methods for obtaining OWA weights and developed a

novel weight-determining method using the idea of normal distribution. For the sec-

ond category, Filev and Yager [7] developed two procedures to determine the weights

of OWA operator. Xu and Da [23] established a linear objective-programming model

to obtain the OWA weights. Xu [21] proposed a new dependent OWA operator which

can relieve the influence of unfair arguments on the aggregated results. In [27, 29],

Yager and Filev developed an argument-dependent method to generate the OWA

weights with power function of the input arguments.

With the growing research of intuitionistic fuzzy set theory [2, 3] and the expan-

sion of its application, it is more and more important to aggregate intuitionistic fuzzy

information effectively. Xu [22, 24] proposed some intuitionistic fuzzy aggregation

operators to aggregate the intuitionistic fuzzy information. In [22], Xu pointed out

that the intuitionistic fuzzy OWA (IFOWA) weights can be obtained similar to the

OWA weights, such as the normal distribution-based method. However, the charac-

teristics of the input arguments are not considered in these methods.

In this paper, we investigate the IFOWA operator, and establish a new argument-

dependent method to determine the IFOWA weights. To do that, this paper is

organized as follows. Section 2 reviews the basic concepts about intuitionistic fuzzy

information. In Sect. 3, a new argument-dependent approach to obtain the IFOWA

weights is proposed based on entropy and similarity measure. A intuitionistic fuzzy

dependent OWA (IFDOWA) operator is developed and its properties are studied.

Section 4 provides a practical approach to solve multi-attribute group decision mak-

ing problem with intuitionistic fuzzy information based on IFDOWA operator. The

concluding remarks are given in Sect. 5.

2 Preliminaries

Some basic concepts of intuitionistic fuzzy sets, some operators, entropy and simi-

larity measures are reviewed.

2.1 The OWA Operator and Intuitionistic Fuzzy Sets

Definition 2.1 [26] Let (a1, a2,… , an) be a collection of numbers. An ordered

weighted averaging (OWA) operator is a mapping: Rn → R, such that

OWA(a1, a2,… , an) = w1a𝜎(1) + w2a𝜎(2) +⋯ + wna𝜎(n), (1)

where a
𝜎(j) is the jth largest of aj(j = 1, 2,… , n), and w = (w1,w2,… ,wn)T is an

associated vector of the operator with wj ∈ [0, 1] and
∑n

j=1 wj = 1.
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Definition 2.2 [2, 3] Let X be a universe of discourse. An intuitionistic fuzzy set

(IFS) in X is an object with the form

A = {
⟨
x, 𝜇A(x), 𝜈A(x)

⟩
|x ∈ X} (2)

where 𝜇A ∶ X→ [0, 1], 𝜈A ∶ X→ [0, 1] with the condition 0≤𝜇A(x)+𝜈A(x)≤ 1,
∀x ∈ X. The numbers 𝜇A(x) and 𝜈A(x) denote the degree of membership and non-

membership of x to A, respectively.

For each IFS A in X, we call 𝜋A(x) = 1 − 𝜇A(x) − 𝜈A(x) the intuitionistic index of

x in A, which denotes the hesitancy degree of x to A.

For convenience, we call 𝛼 = (𝜇
𝛼

, 𝜈
𝛼

) an intuitionistic fuzzy value (IFV) [24],

where 𝜇
𝛼

∈ [0, 1], 𝜈
𝛼

∈ [0, 1], and 𝜇
𝛼

+ 𝜈
𝛼

≤ 1. Let 𝛩 be the universal set of IFVs.

For comparison of IFVs, Chen and Tan [5] defined a score function while Hong

and Choi [8] defined an accuracy function. Based on the two functions, Xu [24]

provided a method to compare two intuitionistic fuzzy values (IFVs).

Definition 2.3 [24] Let 𝛼 = (𝜇
𝛼

, 𝜈
𝛼

) and 𝛽 = (𝜇
𝛽

, 𝜈
𝛽

) be two IFVs, s(𝛼) = 𝜇
𝛼

− 𝜈
𝛼

and s(𝛽) = 𝜇
𝛽

− 𝜈
𝛽

be the score degrees of 𝛼 and 𝛽, respectively; h(𝛼) = 𝜇
𝛼

+ 𝜈
𝛼

and

h(𝛽) = 𝜇
𝛽

+ 𝜈
𝛽

be the accuracy degrees of 𝛼 and 𝛽, respectively. Then

(1) If s(𝛼) < s(𝛽), then 𝛼 is smaller than 𝛽, denoted by 𝛼 < 𝛽;

(2) If s(𝛼) = s(𝛽), then

(1) If h(𝛼) = h(𝛽), then 𝛼 and 𝛽 represent the same information, i.e., 𝜇
𝛼

= 𝜇
𝛽

and 𝜈
𝛼

= 𝜈
𝛽

, denoted by 𝛼 = 𝛽;

(2) If h(𝛼) < h(𝛽), then 𝛼 is smaller than 𝛽, denoted by 𝛼 < 𝛽;

(3) If h(𝛼) > h(𝛽), then 𝛼 is bigger than 𝛽, denoted by 𝛼 > 𝛽.

Definition 2.4 [22, 24] Let 𝛼 = (𝜇
𝛼

, 𝜈
𝛼

) and 𝛽 = (𝜇
𝛽

, 𝜈
𝛽

) be two IFVs. Then, two

operational laws of IFVs are given as follows:

(1) 𝛼 = (𝜈
𝛼

, 𝜇
𝛼

);
(2) 𝛼 ⊕ 𝛽 = (𝜇

𝛼

+ 𝜇
𝛽

− 𝜇
𝛼

𝜇
𝛽

, 𝜈
𝛼

𝜈
𝛽

);
(3) 𝜆𝛼 = (1 − (1 − 𝜇

𝛼

)𝜆, 𝜈𝜆
𝛼

), 𝜆 ≥ 0;

(4) 𝜆(𝛼1 + 𝛼2) = 𝜆𝛼1 + 𝜆𝛼2;

(5) 𝜆1𝛼 + 𝜆2𝛼 = (𝜆1 + 𝜆2)𝛼.

With the thorough research of intuitionistic fuzzy set theory and the continu-

ous expansion of its application scope, it is more and more important to aggregate

intuitionistic fuzzy information effectively. Xu [22, 24] proposed some intuitionistic

fuzzy aggregation operators to aggregate the intuitionistic fuzzy information.

Definition 2.5 [22] Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs. An

intuitionistic fuzzy weighted averaging (IFWA) operator is a mapping:𝛩
n → 𝛩, such

that

IFWA(𝛼1, 𝛼2,… , 𝛼n)=w1𝛼1⊕ w2𝛼2⊕⋯⊕ wn𝛼n=

(

1 −
n∏

j=1
(1 − 𝜇

𝛼j
)wj

,

n∏

j=1
𝜈

wj
𝛼j

)

(3)
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where w = (w1,w2,… ,wn)T is the weighting vector of 𝛼i(i = 1, 2,… , n) with wj ∈
[0, 1] and

∑n
j=1 wj = 1.

Definition 2.6 [22] Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs. An

intuitionistic fuzzy ordered weighted averaging (IFOWA) operator is a mapping:

𝛩

n → 𝛩, such that

IFOWA(𝛼1, 𝛼2,… , 𝛼n) = w1𝛼𝜎(1) ⊕ w2𝛼𝜎(2) ⊕⋯⊕ wn𝛼𝜎(n)

=

(

1 −
n∏

j=1
(1 − 𝜇

𝛼
𝜎(j)
)wj

,

n∏

j=1
𝜈

wj
𝛼
𝜎(j)

)

(4)

where 𝛼
𝜎(j) is the jth largest of 𝛼j(j = 1, 2,… , n), and w = (w1,w2,… ,wn)T is an

associated vector of the operator with wj ∈ [0, 1] and
∑n

j=1 wj = 1.

2.2 Entropy and Similarity Measure for IFSs

Introduced by Burillo and Bustince [4], Intuitionistic fuzzy entropy is used to esti-

mate the uncertainty of an IFS. Szmidt and Kacprzyk [13] defined an entropy mea-

sure ESK for an IFS. Wang and Lei [14] gave an entropy measure EWL

ESK(A) =
1
n

n∑

i=1

maxCount(Ai ∩ AC
i
)

maxCount(Ai ∪ AC
i
)
, (5)

where Ai = {⟨xi, 𝜇A(xi), 𝜈A(xi)⟩} is a single element IFS,

Ai ∩ AC
i = {⟨xi,min{𝜇A(xi), 𝜈A(xi)}, max{𝜇A(xi), 𝜈A(xi)}⟩},

Ai ∪ AC
i = {⟨xi,max{𝜇A(xi), 𝜈A(xi)},min{𝜈A(xi), 𝜇A(xi)}⟩}. For every IFS A,

maxCount(A) =
n∑

i=1
(𝜇A(xi) + 𝜋A(xi)) is the biggest cardinality of A.

EWL(A) =
1
n

n∑

i=1

min
{
𝜇A(xi), 𝜈A(xi)

}
+ 𝜋A(xi)

max
{
𝜇A(xi), 𝜈A(xi)

}
+ 𝜋A(xi)

. (6)

Wei and Wang [18] proved that ESK and EWL are equivalent. For convenience, we

use the entropy measure EWL in the following.

Based on EWL, the entropy measure for an intuitionistic fuzzy value 𝛼 = (𝜇
𝛼

, 𝜈
𝛼

)
can be given as

E(𝛼) =
min{𝜇

𝛼

, 𝜈
𝛼

} + 𝜋
𝛼

max{𝜇
𝛼

, 𝜈
𝛼

} + 𝜋
𝛼

. (7)

Similarity measure [10], another important topic in the theory of intuitionistic

fuzzy sets, is to describe the similar degree between two IFSs. Wei and Tang [17]

constructed a new similarity measure SWT for IFSs based on entropy measure EWL.
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SWT (A,B) =
1
n

n∑

i=1

1 − min{|𝜇A(xi) − 𝜇B(xi)|, |𝜈A(xi) − 𝜈B(xi)|}
1 + max{|𝜇A(xi) − 𝜇B(xi)|, |𝜈A(xi) − 𝜈B(xi)|}

. (8)

Now we give a similarity measure between two IFVs 𝛼 = (𝜇
𝛼

, 𝜈
𝛼

) and 𝛽 = (𝜇
𝛽

, 𝜈
𝛽

)
based on SWT :

S(𝛼, 𝛽) =
1 − min{|𝜇

𝛼

− 𝜇
𝛽

|, |𝜈
𝛼

− 𝜈
𝛽

|}
1 + max{|𝜇

𝛼

− 𝜇
𝛽

|, |𝜈
𝛼

− 𝜈
𝛽

|}
. (9)

3 IFDOWA Operator and Its Properties

In [22], Xu pointed out that the IFOWA weights can be determined similarly to the

OWA weights. For example, we can use the normal distribution-based method. How-

ever, those methods belong to the category of argument-independent approaches.

Here we develop an argument-dependent approach to determine the IFOWA weights

based on intuitionistic fuzzy entropy and similarity measure.

We suppose 𝛼j = (𝜇
𝛼j
, 𝜈

𝛼j
)(j = 1, 2,… , n) is a collection of IFVs, (𝛼

𝜎(1), 𝛼𝜎(2),

… , 𝛼
𝜎(n)) is a permutation of (𝛼1, 𝛼2,… , 𝛼n) such that 𝛼

𝜎(i) ≥ 𝛼
𝜎(j) for all i ≤ j. The

weighting vector of IFOWA operator w = (w1,w2,… ,wn)T is to be determined, such

that wj ∈ [0, 1] and
∑n

j=1 wj = 1.

During the information aggregating process, we usually expect that the uncer-

tainty degrees of arguments are as small as possible. Thus, the smaller uncertainty

degree of argument 𝛼
𝜎(j), the bigger the weight wj. Conversely, the bigger uncertainty

degree of argument 𝛼
𝜎(j), the smaller the weight wj. The uncertainty degrees of argu-

ments can be measured by Formula (7). Thus, the weighting vector of the IFOWA

operator can be defined as:

wa
j =

1 − E(𝛼
𝜎(j))

n∑

j=1
[1 − E(𝛼

𝜎(j))]
, j = 1, 2,… , n. (10)

In the following, we define the weighting vector of the IFOWA operator from

another viewpoint. In real-life situation, the arguments 𝛼
𝜎(j)(j = 1, 2,… , n) usually

take the form of a collection of n preference values provided by n different indi-

viduals. Some individuals may assign unduly high or unduly low preference values

to their preferred or repugnant objects. In such a case, we shall assign very small

weights to these “false” or “biased” opinions, that is to say, the more similar an

argument 𝛼
𝜎(j) is to others, the bigger the weight wj. Conversely, the less similar an

argument 𝛼
𝜎(j) is to others, the smaller the weights wj. The similar degree between

two arguments can be calculated by Formula (9).
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Definition 3.1 Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs, (𝛼

𝜎(1), 𝛼𝜎(2),

… , 𝛼
𝜎(n)) is a permutation of (𝛼1, 𝛼2,… , 𝛼n) such that 𝛼

𝜎(i) ≥ 𝛼
𝜎(j) for all i ≤ j.

Then, the overall similarity degree between 𝛼
𝜎(j) and other arguments 𝛼

𝜎(l)(l =
1, 2,… , n, l ≠ j) is defined as

S(𝛼
𝜎(j)) =

n∑

l=1
l≠j

S(𝛼
𝜎(j), 𝛼𝜎(l)), j = 1, 2,… , n. (11)

So, we define the weighting vector w = (w1,w2,… ,wn)T of the IFOWA operator

as following:

wb
j =

S(𝛼
𝜎(j))

n∑

j=1
S(𝛼

𝜎(j))
, j = 1, 2,… , n. (12)

According to the above analysis, the weighting vector of the IFOWA operator

associates not only with wa
, but also with wb

. Thus, we use the linear weighting

method to derive the combined weighting vector of the IFOWA operator

wj = 𝜆wa
j + (1 − 𝜆)wb

j , where 𝜆 ∈ [0, 1], j = 1, 2,… , n. (13)

Since
∑n

j=1[1 − E(𝛼
𝜎(j))] =

∑n
j=1[1 − E(𝛼j)] and

∑n
j=1 S(𝛼𝜎(j)) =

∑n
j=1 S(𝛼j), For-

mulas (10), (12) and (13) can be rewritten as:

wa
j =

1 − E(𝛼
𝜎(j))

n∑

j=1
[1 − E(𝛼j)]

, j = 1, 2,… , n. (14)

wb
j =

S(𝛼
𝜎(j))

n∑

j=1
S(𝛼j)

, j = 1, 2,… , n. (15)

wj =
𝜆[1 − E(𝛼

𝜎(j))]
n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼

𝜎(j))
n∑

j=1
S(𝛼j)

, (16)

where 𝜆 ∈ [0, 1] j = 1, 2,… , n.

Definition 3.2 Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs. An intu-

itionistic fuzzy dependent OWA (IFDOWA) operator is a mapping: 𝛩
n → 𝛩, such

that
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IFDOWA(𝛼1, 𝛼2,… , 𝛼n) = w1𝛼𝜎(1) ⊕ w2𝛼𝜎(2) ⊕⋯⊕ wn𝛼𝜎(n)

=

(

1 −
n∏

j=1
(1 − 𝜇

𝛼
𝜎(j)
)wj

,

n∏

j=1
𝜈

wj
𝛼
𝜎(j)

)

(17)

where (𝛼
𝜎(1), 𝛼𝜎(2),… , 𝛼

𝜎(n)) is a permutation of (𝛼1, 𝛼2,… , 𝛼n) such that 𝛼
𝜎(i) ≥ 𝛼

𝜎(j)
for all i ≤ j, w = (w1,w2,… ,wn)T is the associated weighting vector which can be

calculated by Formula (16).

By Formulas (16) and (17), we obtain

IFDOWA(𝛼1, 𝛼2,… , 𝛼n) =
n
⊕

j=1
𝛼
𝜎(j)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜆[1 − E(𝛼
𝜎(j))]

n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼

𝜎(j))
n∑

j=1
S(𝛼j)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

=
n
⊕

j=1
𝛼j

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜆[1 − E(𝛼j)]
n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼j)

n∑

j=1
S(𝛼j)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(18)

Yager [27] pointed that an OWA operator is called neat if the aggregated value is

independent of the ordering. Therefore, the IFDOWA operator is a neat operator. By

Formulas (16) and (17), we can get the following properties.

Theorem 3.1 Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs, (𝛼

𝜎(1), 𝛼𝜎(2),

… , 𝛼
𝜎(n)) be a permutation of (𝛼1, 𝛼2,… , 𝛼n) such that 𝛼𝜎(i) ≥ 𝛼

𝜎(j) for all i ≤ j. Sup-
pose E(𝛼

𝜎

(j)) is the entropy of 𝛼
𝜎

(j) and S(𝛼
𝜎

(j)) is the similarity degree between 𝛼
𝜎

(j)
and other arguments. If E(𝛼

𝜎

(i)) ≤ E(𝛼
𝜎

(j)) and S(𝛼
𝜎

(i)) ≥ S(𝛼
𝜎

(j)), then wi ≥ wj.

Theorem 3.2 Let 𝛼i = (𝜇
𝛼i
, 𝜈

𝛼i
)(i = 1, 2,… , n) be a collection of IFVs. If 𝛼i = 𝛼j,

for all i, j, then wj =
1
n
for all j.

Yager [26] further introduced two characterizing measures called dispersion mea-

sure and orness measure, respectively, associated with the weighting vector w of the

OWA operator, where the dispersion measure of the aggregation is defined as

disp(w) = −
n∑

j=1
wj lnwj, (19)

which measures the degree to which w takes into account the information in the

arguments during the aggregation. Particularly, if wj = 0 for any j, disp(w) = 0; if

w = (1
n
,

1
n
,… ,

1
n
)T , disp(w) = ln n.
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The second one, the orness measure of the aggregation, is defined as

orness(w) = 1
n − 1

n∑

j=1
(n − j)wj, (20)

which lies in the unit interval [0, 1] and characterizes the degree to which the aggre-

gation is like an or operation. Particularly, if w = (1, 0,… , 0)T , orness(w) = 1; if

w = (1
n
,

1
n
,… ,

1
n
), disp(w) = 0.5; if w = (0,… , 0, 1)T , orness(w) = 0.

From Formulas (16), (19) and (20), it follows that

disp(w) = −
n∑

j=1

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜆[1 − E(𝛼
𝜎(j))]

n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼

𝜎(j))
n∑

j=1
S(𝛼j)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

⋅ (21)

ln

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜆[1 − E(𝛼
𝜎(j))]

n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼

𝜎(j))
n∑

j=1
S(𝛼j)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

.

orness(w) = 1
n − 1

n∑

j=1
(n − j) ⋅

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜆[1 − E(𝛼
𝜎(j))]

n∑

j=1
[1 − E(𝛼j)]

+
(1 − 𝜆)S(𝛼

𝜎(j))
n∑

j=1
S(𝛼j)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

. (22)

Example 3.1 Let 𝛼1 =(0.2, 0.5), 𝛼2 =(0.4, 0.2), 𝛼3 =(0.5, 0.4), 𝛼4 =(0.3, 0.5), 𝛼5 =
(0.7, 0.1) be a collection of IFVs. The re-ordered argument 𝛼j(j = 1, 2, 3, 4, 5) in

descending order are 𝛼
𝜎(1) = (0.7, 0.1), 𝛼

𝜎(2) = (0.4, 0.2), 𝛼
𝜎(3) = (0.5, 0.4), 𝛼

𝜎(4) =
(0.3, 0.5), 𝛼

𝜎(5) = (0.2, 0.5). Suppose 𝜆 = 0.5, by (14), (15) and (16), we obtain

wa=(0.3823, 0.1433, 0.0956, 0.1638, 0.2150), wb=(0.1632, 0.2101, 0.2145, 0.2123,
0.1999).

Thus, w = (0.27275, 0.17670, 0.15505, 0.18805, 0.20745). By (19) and (20), we

have

disp(w) = −
5∑

j=1
wj lnwj = 1.5902.

orness(w) = 1
5 − 1

5∑

j=1
(5 − j)wj = 0.3609.
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By (17) and (18), we have IFDOWA(𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) = (0.4724, 0.2648). There-

fore, the collective argument is (0.4724, 0.2648).

4 The Application of IFDOWA Operator in Multi-attribute
Group Decision

In this section, we apply the IFDOWA operator to multi-attribute group decision-

making problem which can be described as follows.

We suppose X =
{
x1, x2,… , xn

}
is a set of evaluation alternatives,

D =
{
d1, d2,… , ds

}
is a set of decision makers, U =

{
u1, u2,… , um

}
is an attribute

set, and v = (v1, v2,… , vm)T is a weighting vector of attributes such that vj ∈ [0, 1]
and

∑m
j=1 vj = 1. Let R(k) =

(
r(k)ij

)

n×m
(k = 1, 2,… , s) be intuitionistic fuzzy deci-

sion matrices, where r(k)ij = (𝜇(k)
ij , 𝜈

(k)
ij ) is an IFV and provided by the decision maker

dk ∈ D for the alternative xi ∈ X with respect to the attribute uj ∈ U.

Based on the IFWA operator and the IFDOWA operator, we rank the alternatives

xi(i = 1, 2,… , n) by the following steps:

Step 1. Utilize the IFWA operator to derive the individual overall aggregated values

z(k)i (i = 1, 2,… , n, k = 1, 2,… , s) of the alternatives xi(i = 1, 2,… , n) by decision

makers dk(k = 1, 2,… , s), where

z(k)i = IFWAv(r
(k)
i1 , r

(k)
i2 ,… , r(k)im ) = v1r

(k)
i1 ⊕ v2r

(k)
i2 ⊕⋯⊕ vmr

(k)
im , (23)

where v = (v1, v2,… , vm)T is the weighting vector of the attributes of uj(j = 1, 2,
… ,m), with vj ∈ [0, 1] and

∑m
j=1 vj = 1.

Step 2. Utilize the IFDOWA operator to derive the overall aggregated values zi(i =
1, 2,… , n) of the alternatives xi(i = 1, 2,… , n), where

zi = IFDOWAw(z
(1)
i , z(1)i , z(2)i ,… , z(s)i ) = w(i)

1 z
𝜎(1)
i ⊕ w(i)

2 z
𝜎(2)
i ⊕⋯⊕ w(i)

s z
𝜎(s)
i , (24)

where w(i) = (w(i)
1 ,w

(i)
2 ,… ,w(i)

s )(i = 1, 2,… , n) are calculated by Formula (16).

Step 3. Utilize the Definition 2.2 to compare the overall aggregated values

zi(i = 1, 2,… , n) and rank the alternatives xi(i = 1, 2,… , n).
We adopt the example used in [11, 19] to illustrate the proposed approach.

Example 4.1 The information management steering committee of Midwest Ameri-

can Manufacturing Corp. must prioritize for development and implementation a set

of six information technology improvement projects xi(i = 1, 2,… , 6), which have

been proposed by area managers. The committee is concerned that the projects are

prioritized from highest to lowest potential contribution to the firm’s strategic goal of

gaining competitive advantages in the industry. In assessing the potential contribu-

tion of each project, three factors are considered, u1: productivity, u2: differentiation,
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and u3: management, whose weight vector is v = (0.35, 0.35, 0.30). Suppose that

there are four decision makers dk(k = 1, 2, 3, 4). They provided their preferences with

IFVs r(k)ij = (𝜇(k)
ij , 𝜈

(k)
ij )(i = 1, 2,… , 6, j = 1, 2, 3) over the projects xi(i = 1, 2,… , 6)

with respect to the factors uj(j = 1, 2, 3), which are listed as follows:

R(1) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0.3, 0.2) (0.6, 0.1) (0.5, 0.2)
(0.5, 0.1) (0.3, 0.2) (0.4, 0.2)
(0.4, 0.3) (0.5, 0.2) (0.3, 0.1)
(0.3, 0.1) (0.5, 0.3) (0.3, 0.2)
(0.4, 0.3) (0.5, 0.3) (0.4, 0.2)
(0.5, 0.4) (0.2, 0.1) (0.3, 0.2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R(2) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0.5, 0.3) (0.2, 0.1) (0.3, 0.3)
(0.3, 0.1) (0.5, 0.3) (0.4, 0.2)
(0.3, 0.4) (0.4, 0.3) (0.3, 0.1)
(0.5, 0.3) (0.6, 0.3) (0.5, 0.2)
(0.5, 0.3) (0.3, 0.2) (0.3, 0.2)
(0.5, 0.3) (0.4, 0.3) (0.2, 0.1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R(3) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0.4, 0.2) (0.5, 0.1) (0.5, 0.3)
(0.4, 0.1) (0.6, 0.3) (0.5, 0.2)
(0.2, 0.2) (0.3, 0.1) (0.5, 0.3)
(0.5, 0.4) (0.6, 0.2) (0.3, 0.1)
(0.6, 0.3) (0.5, 0.2) (0.6, 0.2)
(0.4, 0.2) (0.3, 0.1) (0.5, 0.1)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

R(4) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(0.3, 0.1) (0.5, 0.4) (0.4, 0.3)
(0.5, 0.2) (0.4, 0.3) (0.7, 0.1)
(0.6, 0.1) (0.4, 0.2) (0.2, 0.1)
(0.3, 0.2) (0.5, 0.3) (0.3, 0.2)
(0.4, 0.3) (0.3, 0.1) (0.2, 0.2)
(0.3, 0.1) (0.5, 0.2) (0.4, 0.3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Step 1. Utilize the IFWA operator to derive the individual overall aggregated val-

ues z(k)i (i = 1, 2,… , 6, k = 1, 2, 3, 4) of the alternatives xi(i = 1, 2,… , 6) by decision

makers dk(k = 1, 2, 3, 4):

z(1)1 = (0.4798, 0.1569), z(1)2 = (0.4059, 0.1569), z(1)3 = (0.4104, 0.1872),

z(1)4 = (0.3778, 0.1808), z(1)5 = (0.4371, 0.2656), z(1)6 = (0.3480, 0.2000),

z(2)1 = (0.3480, 0.2042), z(2)2 = (0.4059, 0.1808), z(2)3 = (0.3368, 0.2386),

z(2)4 = (0.5376, 0.2656), z(2)5 = (0.3778, 0.2305), z(2)6 = (0.3864, 0.2158),

z(3)1 = (0.4671, 0.1772), z(3)2 = (0.5071, 0.1808), z(3)3 = (0.3369, 0.1772),

z(3)4 = (0.4884, 0.2071), z(3)5 = (0.5675, 0.2305), z(3)6 = (0.4004, 0.1275),

z(4)1 = (0.4059, 0.2259), z(4)2 = (0.5428, 0.1872), z(4)3 = (0.4325, 0.1275),

z(4)4 = (0.3778, 0.2305), z(4)5 = (0.3097, 0.1808), z(4)6 = (0.4059, 0.1772).

Step 2. Utilize the IFDOWA operator to derive the overall aggregated values

zi(i = 1, 2,… , 6) of the alternatives xi(i = 1, 2,… , 6), where 𝜆 = 0.5:
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z1 = IFDOWAw(1) (z(1)1 , z(2)1 , z(3)1 , z(4)1 ) = (0.4352, 0.1859),

z2 = IFDOWAw(2) (z(1)2 , z(2)2 , z(3)2 , z(4)2 ) = (0.4747, 0.1767),

z3 = IFDOWAw(3) (z(1)3 , z(2)3 , z(3)3 , z(4)3 ) = (0.3877, 0.1722),

z4 = IFDOWAw(4) (z(1)4 , z(2)4 , z(3)4 , z(4)4 ) = (0.4581, 0.2202),

z5 = IFDOWAw(5) (z(1)5 , z(2)5 , z(3)5 , z(4)5 ) = (0.4513, 0.2273),

z6 = IFDOWAw(6) (z(1)6 , z(2)6 , z(3)6 , z(4)6 ) = (0.3876, 0.1737).

Step 3. Utilize the score function to calculate the scores s(zi)(i = 1, 2,… , 6) of over-

all aggregated values zi(i = 1, 2,… , 6) of the alternatives xi(i = 1, 2,… , 6):

s(z1) = 0.2493, s(z2) = 0.2980, s(z3) = 0.2155,

s(z4) = 0.2379, s(z5) = 0.2240, s(z6) = 0.2139.

Use the scores s(zi)(i = 1, 2,… , 6) to rank the alternatives xi(i = 1, 2,… , 6), we

obtain

x2 ≻ x1 ≻ x4 ≻ x5 ≻ x3 ≻ x6.

5 Concluding Remarks

In this paper, we proposed a new argument-dependent approach, based on entropy

and similarity measure, to determine the weights of IFOWA operator. The approach

could relieve the influence of unfair arguments on the aggregated results and reduce

the uncertainty degrees of aggregated results. We then defined an IFDOWA operator

and applied the operator to solving multi-attribute group decision making problems.

It is worth noting that the results in this paper can be further extended to interval-

valued intuitionistic fuzzy environment.
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