
Programming by Optimisation Meets
Parameterised Algorithmics: A Case Study

for Cluster Editing

Sepp Hartung1(B) and Holger H. Hoos2

1 Institut Für Softwaretechnik und Theoretische Informatik,
TU Berlin, Berlin, Germany
sepp.hartung@tu-berlin.de

2 Department of Computer Science, University of British Columbia,
Vancouver, Canada
hoos@cs.ubc.ca

Abstract. Inspired by methods and theoretical results from para-
meterised algorithmics, we improve the state of the art in solving
Cluster Editing, a prominent NP-hard clustering problem with appli-
cations in computational biology and beyond. In particular, we demon-
strate that an extension of a certain preprocessing algorithm, called the
(k+1)-data reduction rule in parameterised algorithmics, embedded in a
sophisticated branch-&-bound algorithm, improves over the performance
of existing algorithms based on Integer Linear Programming (ILP) and
branch-&-bound. Furthermore, our version of the (k+1)-rule outperforms
the theoretically most effective preprocessing algorithm, which yields a
2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically
for the first time here. Our new algorithm was developed by integrating
Programming by Optimisation into the classical algorithm engineering
cycle – an approach which we expect to be successful in many other
contexts.

1 Introduction

Cluster Editing is a prominent NP-hard combinatorial problem with impor-
tant applications in computational biology, e.g. to cluster proteins or genes (see
the recent survey by Böcker and Baumbach [6]). In machine learning and data
mining, weighted variants of Cluster Editing are known as Correlation

Clustering [4] and have been the subject of several recent studies (see, e.g.,
[8,12]). Here, we study the unweighted variant of the problem, with the goal of
improving the state of the art in empirically solving it. Formally, as a decision
problem it reads as follows:

Sepp Hartung—Major parts of this work were done during a research visit of SH at
the University of British Columbia in Vancouver (Canada), supported by a “DFG
Forschungsstipendium” (HA 7296/1-1).

c© Springer International Publishing Switzerland 2015
C. Dhaenens et al. (Eds.): LION 9 2015, LNCS 8994, pp. 43–58, 2015.
DOI: 10.1007/978-3-319-19084-6 5

44 S. Hartung and H.H. Hoos

Cluster Editing

Input: An undirected graph G = (V,E) and a positive integer k ∈ N.
Question: Is there a set of at most k edge insertions and deletions that

transform G into a cluster graph, that is, a graph in which each
connected component is a complete graph?

Cluster Editing corresponds to the basic clustering setting in which pairwise
similarities between the entities represented by the vertices in G are expressed by
unweighted edges, and the objective is to find a pure clustering, in the form of a
cluster graph, by modifying as few pairwise similarities as possible, i.e., by remov-
ing or adding a minimal number of edges. Notably, this clustering task requires
neither the number of clusters to be specified, nor their sizes to be bounded.

Related Work. The Cluster Editing problem is known to be APX-hard [10]
but can be approximated in polynomial time within a factor of 2.5 [25]. Further-
more, various efficient implementations of exact and heuristic solvers have been
proposed and experimentally evaluated (see the references in [6]). These methods
can be divided into exact algorithms, which are guaranteed to find optimal solu-
tions to any instance of Cluster Editing, given sufficient time, and inexact
algorithms, which provide no such guarantees, but can be very efficient in prac-
tice. State-of-the-art exact Cluster Editing algorithms are based on integer
linear programming (ILP) or specialised branch-&-bound methods (i.e., search
tree) [6,7]. Theoretically, the currently best fixed-parameter algorithm runs in
O(1.62k + |G|) time and it is based on a sophisticated search tree method [5].

Our work on practical exact algorithms for Cluster Editing makes use
of so-called data reduction rules [11,16,17,19] – preprocessing techniques from
parameterised algorithmics that are applied to a given instance with the goal
of shrinking it before attempting to solve it. Furthermore, when solving the
problem by a branch-&-bound search, these data reduction rules can be “inter-
leaved” [23], meaning that they can be again applied within each recursive
step. If after the exhaustive application of data reduction rules the size of the
remaining instance can be guaranteed to respect certain upper bounds, those
instances are called problem kernels [14,23]. Starting with an O(k2)-vertex prob-
lem kernel [17], the best state-of-the-art kernel for Cluster Editing contains
at most 2k-vertices [11].

Our Contribution. Starting from a search tree procedure originally devel-
oped for a more general problem called M-Hierarchical Tree Clustering

(M -Tree Clustering) [20], and making heavy use of data reduction rules, we
developed a competitive state-of-the-art exact solver for (unweighted) Cluster

Editing
1.

To achieve this goal, and to study the practical utility of data reduction
rules for Cluster Editing, we employed multiple rounds of an algorithm engi-
neering cycle [24] that made use of the Programming by Optimisation (PbO)

1 Notably, our implementation is still able to solve M -Tree Clustering. However, here
our focus is on improving over state-of-the-art exact solvers for Cluster Editing.

Programming by Optimisation Meets Parameterised Algorithmics 45

paradigm [21]. In a nutshell, PbO is based on the idea to consider and expose
design choices during algorithm development and implementation, and to use
automated methods to make those choices in a way that optimises empiri-
cal performance for given use contexts, characterised by representative sets of
input data.

We show that, using a clever implementation of a well-known (from a theoret-
ical point of view, out-dated) reduction rule, called (k+ 1)-Rule, we can achieve
improvements over existing state-of-the-art exact solvers for Cluster Editing

on challenging real-world and synthetic instances. For example, for the synthetic
data with a timeout of 300 s our so-called Hier solver times out only on 8 % of
the 1476 instances, while the best previously known solver has a rate of 22 %.
Furthermore, we demonstrate that on the hardest instances the (k + 1)-Rule
dominates on aggregate all other data reduction rules we considered, and that
using the best known data reduction rules [9,11] (yielding the best known kernel
of size 2k) does not yield further significant improvements.

Achieving these results involved multiple rounds of optimizing the implemen-
tation of the (k+1)-Rule as well as the use of automated algorithm configuration
tools in conjunction with a new method for selecting the sets of training instances
used in this context. It is based on the coefficient of variation of the running time
observed in preliminary runs, which we developed in the context of this work,
but believe to be more broadly useful.

Overall, our work demonstrates that the adoption of the Programming by
Optimisation paradigm, and in particular, the use of automated algorithm con-
figuration methods can substantially enhance the “classical” algorithm engineer-
ing cycle and aid substantially in developing state-of-the-art solvers for hard
combinatorial problems, such as Cluster Editing. We note that a similar
approach has been taken by de Oca et al. [13] to optimise a particle swarm
optimization algorithm.

2 Preliminaries

We use standard graph-theoretic notations. All studied graphs are undirected
and simple without self-loops and multi-edges. For a given graph G = (V,E)
with vertex set V and edge set E, a set consisting of edge deletions and addi-
tions over V is called an edge modification set. For a given Cluster Editing-
instance (G, k) an edge modification set S over V is called a solution, if it is of
size at most k and transforms G into a cluster graph, which we denote by G⊗S.
For convenience, if two vertices {u, v} are not adjacent, we call {u, v} a non-edge.

It is well-known that a graph G = (V,E) is a cluster graph if, and only
if, it is conflict-free, where three vertices {u, v, w} ⊆ V form a conflict if
{u, v}, {v, w} ∈ E, but {u,w} /∈ E – in other words, a conflict consists of three
vertices with two edges and one non-edge. We denote by C(G) the set of all con-
flicts of G. Branching into either deleting one of the two edges in a conflict or
adding the missing edge is a straight-forward search tree-strategy that results in
a O(3k+ |V |3) algorithm to decide an instance ((V,E), k) [17]. This algorithm can
be generalised to M -Tree Clustering [20] and is the basic algorithm implemented
in our Hier solver.

46 S. Hartung and H.H. Hoos

Parametrised Algorithmics. Since our algorithm makes use of data reduction
rules known from parametrised algorithmics, and Cluster Editing has been
intensely studied in this context, we briefly review some concepts from this
research area (see [14,23]). A problem is fixed-parameter tractable (FPT) with
respect to a parameter k if there is a computable function f such that any
instance (I, k), consisting of the “classical” problem instance I and parameter k,
can be exactly solved in f(k) · |I|O(1) time. In this work k always refers to the
“standard” parameter solution size.

The term problem kernel formalizes the notion of effective and (provably) effi-
cient preprocessing. A kernelization algorithm reduces any given instance (I, k)
in polynomial time to an equivalent instance (I ′, k′) with |I ′| ≤ g(k) and
k′ ≤ g(k) for some computable function g. Here, equivalent means that (I, k) is a
yes-instance if, and only if, (I ′, k′) is a yes-instance. The instance (I ′, k′) is called
problem kernel of size g. For example, the smallest problem kernel for Cluster

Editing consists of at most 2k vertices [11]. A common way to derive a problem
kernel is by the exhaustive application of data reduction rules. A data reduc-
tion rule is a polynomial-time algorithm which computes for each instance (I, k)
an equivalent reduced instance (I ′, k′) and it has been applied exhaustively if
applying it once more would not change the instance.

PbO and Automated Algorithm Configuration. Programming by Optimi-
sation (PbO) is a software design approach that emphasises and exploits choices
encountered at all levels of design, ranging from high-level algorithmic choices
to implementation details [21]. PbO makes use of powerful machine learning and
optimisation techniques to find instantiations of these choices that achieve high
performance in a given application situation, where application situations are
characterised by representative sets of input data, here: instances of the Clus-

ter Editing problem. In the simplest case, all design choices are exposed as
algorithm parameters and then optimised for a given set of training instances
using an automated algorithm configurator. In this work, we use SMAC [22] (in
version 2.08.00), one of the best-performing general-purpose algorithm configura-
tors currently available. SMAC is based on sequential model-based optimisation,
a technique that iteratively builds a model relating parameter settings to empir-
ical performance of a given (implementation of a) target algorithm A, here: our
Cluster Editing solver Hier, and uses this model to select promising algorithm
parameter configurations to be evaluated by running A on training instances.

By following a PbO-based approach, using algorithm configurators such as
SMAC, algorithm designers and implementers no longer have to make ad-hoc
decisions about heuristic mechanisms or settings of certain parameters. Further-
more, to adapt a target algorithm to a different application context, it is sufficient
to re-run the algorithm configurator, using a set of training instances from the
new context.

We note that the algorithm parameters considered in the context of auto-
mated configuration are different from the problem instance features considered
in parameterised algorithmics, where these features are also called parameters.

Programming by Optimisation Meets Parameterised Algorithmics 47

3 Our Algorithm

Basic Algorithm Design. The algorithm framework underlying our Hier solver
is outlined in Algorithm 1; the actual implementation has several refinements of
this three-step approach, and many of them are exposed as algorithm parameters
(in total: 49) to be automatically configured using SMAC.

Given a graph G as input for the optimization variant of Cluster Editing,
we maintain a lower and upper bound, called kLB and kUB, on the size of an
optimal solution for G. As long as lower and upper bound are not equal, we
call our branch-&-bound search procedure (Line 8) to decide whether (G, kLB)
is a yes-instance. At the heart of our solver lies the following recursive pro-
cedure for solving the (decision variant) Cluster Editing-instance (G, kLB).
First, a set of data reduction rules is applied to the given instance (see Line 2 in
decisionSolver). Next, a lower bound is computed on the size of a minimum
solution using our LP-based lower bound algorithm. If this lower bound is larger
than k, then we abort this branch, otherwise we proceed with the search. After-
wards, if there are still conflicts in the resulting graph, one of these is chosen,

ALGORITHM 1. Pseudo code of our Hier solver.

1 Algorithm Hier ()
Input: Graph G.
Output: The size kOPT of a minimum edge modification set S such

that G ⊗ S is a cluster graph.
33 Compute a lower bound kLB ≤ kOPT

55 Compute an upper bound kOPT ≤ kUB

77 while kLB < kUB do
8 if decisionSolver(G, kLB)=YES then
9 return kLB

10 else
11 increase kLB //details are subject to two algorithm parameters
12 end

13 end

1 Procedure decisionSolver(G, k)
Input: Graph G and integer k.
Output: YES/NO whether there is a size-at-most-k edge modification set

for G.
2 (G, k) ← Apply data reduction rules to (G, k)
3 if LP-based lower bound on modification cost for G > k then return NO
4 {u, v, w} ← a conflict in G
5 if {u, v} is unmarked ∧ decisionSolver (G − uv, k − 1) =YES then

return YES
6 else Mark edge {u, v} unmodifiable
7 if {v, w} is unmarked ∧ decisionSolver (G − vw, k − 1) =YES then

return YES
8 else Mark edge {v, w} unmodifiable
9 if decisionSolver(G + uw, k − 1) =YES then return YES

10 else return NO

48 S. Hartung and H.H. Hoos

say {u, v, w}. Then the algorithm branches into the three possibilities to resolve
the conflict: Delete the edge {u, v}, delete {v, w}, or add the edge {u,w}.

On top of this, if the branch of deleting edge {u, v} has been completely
explored without having found any solution, then in all other branches this edge
can be marked as unmodifiable (the branch for deleting {v, w} is handled anal-
ogously). Moreover, in all three recursive steps, the (non-)edge that was intro-
duced to solve the conflict {u, v, w} gets marked as unmodifiable. Furthermore,
the choice of the conflict to resolve prefers conflicts involving unmodifiable (non-)
edges, since this reduces the number of recursive calls by one or, in the best case,
completely determines how to resolve the conflict. Combining this with solving
“isolated” conflicts is known to reduce the (theoretical) time complexity from
O(3k + |V |3) to O(2.27k + |V |3) [17]. Our empirical investigation revealed that
this improvement is also effective in practice.

Data Reduction Rules. In total, we considered seven data reduction rules
and implemented them such that each of them can be individually enabled or
disabled via an algorithm parameter. We first describe three rather simple data
reduction rules. First, there is a rule (Rule 2 in Hier) that deletes all vertices
not involved in any conflict (see [20] for the correctness). A second simple rule
(Rule 4 in Hier) checks all sets of three vertices forming a triangle, and in case
two of the edges between them are already marked as unmodifiable it also marks
the third one (deleting this edge would result in a unresolvable conflict). The
last simple rule (Rule 6 in Hier) checks each conflict and resolves it in case of
there is only one way to do this as a result of already marked (non-)edges.

We describe the remaining “sophisticated” data reduction rules in chrono-
logical order of their invention. Each of it either directly yields or is the main
data reduction rule of a problem kernel.

(k+ 1)-Rule: Gramm et al. [17] provide a problem kernel of size O(k3) that
can be computed in O(n3) time. More specifically, the kernel consists of at most
2k2 + k vertices and at most 2k3 + k2 edges. At the heart of this kernel lies the
following so-called (k + 1)-Rule (Rule 1 in [17]):

Given a Cluster Editing-instance (G, k), if there are two ver-
tices {u, v} in G that are contained in at least k + 1 conflicts in C(G),
then in case of {u, v} /∈ E add the edge {u, v} and otherwise delete the
edge {u, v}.

The (k + 1)-Rule is correct, since a solution that is not changing the (non-)edge
{u, v} has to resolve all the ≥ k+1 conflicts containing {u, v} by pairwise disjoint
edge modifications; however, this cannot be afforded with a “budget” of k.

We heuristically improved the effectiveness of the (k + 1)-Rule by the fol-
lowing considerations: For a graph G denote by C({u, v}) ⊆ C(G) all conflicts
containing {u, v}. If |C({u, v})| ≥ k + 1, then the (k + 1)-Rule is applicable.
Otherwise, let Cu,v(G) ⊆ C(G) \ C({u, v}) be all conflicts that are (non-)edge-
disjoint with C({u, v}), meaning that any pair of vertices occurring in a conflict
in Cu,v(G) does not occur in a conflict in C({u, v}). By the same argument
as for the correctness of the (k + 1)-Rule, it follows that if any lower bound

Programming by Optimisation Meets Parameterised Algorithmics 49

on the number of edge modifications needed to solve all conflicts in Cu,v(G)
plus |C({u, v})| exceeds k, then the (non-)edge {u, v} needs to be changed (all
these conflicts require pairwise disjoint edge modifications). We use our heuristic
algorithm described below to compute a (heuristic) lower bound on the modifi-
cation cost of Cu,v(G).

As our experimental analysis reveals, the heuristically improved version of
the (k + 1)-Rule is the most successful one in Hier. Its operational details are
configurable by three algorithm parameters (not counting the parameters to
enable/disable it), and we implemented two different versions of it (Rule 0 & 1 in
Hier). These versions differ in their “laziness”: Often it is too time consuming to
exhaustively apply the (k+1)-Rule, as any edge modification requires an update
on the lower bound for Cu,v(G). In addition to various heuristic techniques,
we implemented a priority queue that (heuristically) delivers the (non-)edges
that are most likely reducible by the (k + 1)-Rule.

O(M ·k)-vertex Kernel: There is a generalisation of Cluster Editing called
M -Tree Clustering, in which the input data is clustered on M levels [2]. The
parametrised complexity of M -Tree Clusteringhas been first examined by Guo
et al. [20], who introduced a (2k · (M + 2))-vertex kernel which is computable in
O(M ·n3) time. This kernel basically corresponds to a careful and level-wise appli-
cation of the 4k-vertex kernel by Guo [19] for Cluster Editing. The underlying
technique is based on so-called critical cliques – complete subgraphs that have
the same neighbourhood outside and never get split in an optimal Cluster

Editing-solution. We refer to Guo et al. [20] for a detailed description of the
implemented O(M · k) kernel (Rule 3 in Hier).

2k-vertex Kernel: The state-of-the-art problem kernel for Cluster Editing

has at most 2k-vertices and is based on so-called edge-cuts [11]. In a nutshell,
for the closed neighbourhood Nv of each vertex v, the cost of completing it to
a complete graph (adding all missing edges into Nv) and cutting it out of the
graph (removing all edges between a vertex in Nv and a vertex not in Nv) is
accumulated. If this cost is less than the size of Nv, then Nv is completed and cut
out. This kernel has been generalised to M -Tree Clusteringwithout any increase
in the worst-case asymptotic size bound [9]. We implemented this kernel in its
generalized form for M -Tree Clustering(Rule 7), but omitted a rule that basically
merges Nv after it has been completed and cut out of the graph; although this
rule is necessary for the bound on the kernel size, as it removes vertices from
the graph, Hier will not deal with these vertices again and thus simply ignores
them.

Lower- and Upper-Bound Computation. We implemented two lower-bound
algorithms (LP-based and heuristic) and one upper-bound heuristic. Our prelim-
inary experiments revealed that high-quality lower- and upper-bound algorithms
are a key ingredient for obtaining strong performance in our Cluster Editing

solver. In total, these algorithms expose twenty-two algorithm parameters that
influence their application and behaviour.

LP-based Lower Bound Computation: We implemented the ILP-
formulation for M -Tree Clusteringproposed by Ailon and Charikar [3], which

50 S. Hartung and H.H. Hoos

corresponds to the “classical ILP-formulation” for Cluster Editing in case
of M = 1 [6]. The formulation involves a 0/1-variable for each vertex of the graph
and a cubic number of constraints. Our LP-based lower bound algorithm simply
solves the relaxed LP-formulation where all variables take real values from the
interval [0, 1], which provides a lower bound on any ILP-solution. If after having
solved the relaxed LP-formulation the time limit (set via an algorithm parame-
ter) has not been exceeded, then we require a small fraction of the variables to be
0/1-integers and try to solve the resulting mixed-integer-linear-program (MIP)
again. Surprisingly, to obtain optimal integer solutions, in many cases, one only
needs to require a small fraction of the variables (≈10 %) to be 0/1-integers.
Using this mechanism, we are frequently able to provide optimal bounds on the
solution size, especially for small instances where the LP-formulation can be
solved quickly.

Heuristic Lower Bound Computation: Given a set of conflicts C (not nec-
essarily all, as in the application of the (k + 1)-Rule), our second lower bound
algorithm heuristically determines a maximum-size set of independent conflicts
based on the following observation. Consider the conflict graph for C, which con-
tains a vertex for each conflict in C and an edge between two conflicts if they
have a (non-)edge in common. A subset of vertices is an independent set if there
is no edge between any two vertices in it. Similarly to the correctness argument
for the (k + 1)-Rule, it follows that the size of an independent set in the con-
flict graph of C is a lower bound on the number of edge modifications needed to
resolve all conflicts in C. Computing a maximum-size independent set in a graph
is a classical NP-hard problem, and we thus implemented the commonly known
“small-degree heuristic” to solve it: As long as the graph is not empty, choose one
of the vertices with smallest degree, put it into the independent set and delete it
and all its neighbours. We apply this small-degree heuristic multiple times with
small (random) perturbations on the order in which the vertices get chosen (not
necessarily a smallest degree vertex is chosen, but only one with small degree).
In total, there are four algorithm parameters which determine the precise way
in which the order is perturbed and how often the heuristic is applied.

Heuristic Upper Bound Computation: Given a graph G and the set of
conflicts C(G) in G, we use the following heuristic algorithm to compute an upper
bound on the minimum modification cost for G. The score of an (non-)edge is
the number of its occurrences in C(G), and the score of a conflict is simply
the maximum over the scores of all its modifiable (non-)edges. The algorithm
proceeds as follows: While there are still conflicts in C(G), choose a conflict with
highest score in C(G) and among the modifiable (non-)edges change (delete if
it is an edge otherwise add) one of those with highest score. Furthermore, mark
the corresponding (non-)edge as unmodifiable. Before solving the next conflict,
we exhaustively apply Rule 6, which solves all conflicts for which two of its
(non)-edges have been marked as unmodifiable.

In our implementation, the score of an edge is randomly perturbed, and thus
we run the algorithm described above multiple times and return the minimum

Programming by Optimisation Meets Parameterised Algorithmics 51

over all these runs. The time limit for this computation as well as the maximum
number of rounds are exposed as algorithm parameters.

4 Experimental Results

Algorithms and Datasets. We compare our solver, Hier, with two other exact
solvers for (weighted) Cluster Editing: The Peace solver by Böcker et al. [7]
applies a sophisticated branching strategy based on merging edges, which yields
a search tree of size at most O(1.82k). This search tree algorithm is further
enhanced by a set of data reduction rules that are applied in advance and during
branching. Böcker et al. [7] compared the empirical performance of Peace against
that obtained by solving an ILP-formulation (due to Grötschel and Wakabayashi
[18]) using the commercial CPLEX solver 9.03. In August 2013, a new version 2.0
of this ILP-based approach has become available, which now directly combines
data reduction rules with an ILP-formulation. We refer to this solver as Yoshiko2

(developed by G. Klau and E. Laude, VU University Amsterdam).
We compare our algorithm to Peace and Yoshiko (version 2.0) on the synthetic

and biological datasets provided by Böcker et al. [7]. The (unweighted) synthetic
dataset consists of 1475 instances that are generated from randomly disturbed
cluster graphs with 30–1040 vertices (median: 540) and densities of 11–99 %.
These instances have been observed to be substantially harder than the biological
dataset, which consists of 3964 instances that have been obtained from a protein
similarity network.3 The number of vertices in the biological dataset range from 3
to 3387, but the median is only 10, and thus, most instances are rather easy.
Since the biological instances are weighted Cluster Editing-instances and Hier
is restricted to unweighted Cluster Editing (as a result of its ability to solve
the general M -Tree Clusteringproblem), we transformed them into unweighted
instances by setting edges only for the c% of the pairs with highest weight
(corresponds to highest similarity). Using three different values of c = 33, 50,
and 66, we obtained 11 889 biological instances in total.

Implementation and Execution Environment. All our experiments were
run on an Intel Xeon E5-1620 3.6 Ghz machine (4 Cores + Hyper-Threading)
with 64 GB memory under the Debian GNU/Linux 6.0 operating system, with a
time limit of 300 s per problem instance. Our Hier solver was implemented in Java
and is run under the OpenJDK runtime environment in version 1.7.0 25 with
8 GB heap space. We use the commercial Gurobi MIP solver in version 5.62 to
compute our LP-based lower bound [1]. The source code along with the scenario
file used for configuration with SMAC is freely available.4 For Yoshiko, we used the
binary provided by the authors, and we compiled Peace using the provided Make
file with gcc, version 4.7.2. Our Hier solver sets up parallel threads for computing

2 http://www.mi.fu-berlin.de/w/LiSA/YoshikoCharles.
3 We removed the largest instance with 8836 vertices from the dataset. It is more than

two times larger than the second largest instance and could not be solved.
4 http://fpt.akt.tu-berlin.de/cluEdit/.

http://www.mi.fu-berlin.de/w/LiSA/YoshikoCharles
http://fpt.akt.tu-berlin.de/cluEdit/

52 S. Hartung and H.H. Hoos

the lower and upper bounds, but otherwise runs in only one thread. Peace uses
a single thread, while Yoshiko makes extensive use of the parallel processing
capabilities of the CPU (according to its output, Yoshiko sets up 8 threads). All
running times were measured in wall-clock seconds.

Results for Synthetic Dataset. Table 1 and the scatter plots in Fig. 1 provide
an overview of our experimental findings on the synthetic dataset. Hier-OptS
refers to Hier with the best configuration found by SMAC. Before discussing how
we obtained this configuration we first discuss the performance of Hier’s default
configuration (always referred to simply as Hier) to that of Yoshiko and Peace.

As can be seen from these results, Hier clearly outperforms both Yoshiko and
Peace (see columns 4–6 in Table 1). Furthermore, it seems that search-tree based
algorithms, such as Peace and Hier, generally perform better than the ILP-based
Yoshiko-solver. We suspect that this is mainly due to the instance sizes which
are considerably larger than for the biological dataset. As can be seen in the
top left scatter plot in Fig. 1, Peace is on average faster than Hier for instances
solvable within ≤25 s by both solvers. However, the higher the time required by
both solvers, the more Hier starts to dominate on average, and, of course, its
overall success is heavily due to the smaller timeout-rate of 7.8 % (Peace: 21 %).

The bottom two scatter plots in Fig. 1 show that Hier-OptS clearly dominates
Yoshiko and Peace on most instances (also on instances solvable in a couple of sec-
onds). We obtained Hier-OptS by using SMAC; however, not by a single “shot”,
but rather by using SMAC repeatedly within an algorithm engineering cycle.
This means that we performed multiple rounds of tweaking the implementation,
testing it, and analysing it on our experimental data. Therein, in each round
we performed multiple SMAC runs in order to analyse not only the default con-
figuration of our current solver but also its optimized variant. We then used
an ablation analysis [15] to further pinpoint the crucial parameter adjustments
made by SMAC. This was important, because it revealed which algorithm para-
meters – and thus, which parts of the algorithm – are particularly relevant for
the overall performance of our solver. For example, we learned that by allowing
more time for the application of our original implementation of the (k+1)-Rule,
we can reduce the number of timeouts. We thus spent serious effort on tweaking
the implementation of the (k+1)-Rule and making more of its details accessible

Table 1. Running time (wall time in s) comparison of four different solvers on the
synthetic dataset (performance on disjoint training and test instances).

Training (#=196) Test (#=953)

Hier Hier-OptS Peace Yoshiko Hier Hier-OptS Hier-OptS-Rule7

Par-10 187.4 127.2 662.2 904.1 255.2 252.7 265.8

Mean 49.7 30.7 92.8 142.0 45.6 40.2 42.0

Median 28.4 7.5 26.4 96.6 18.6 10.1 9.6

% Timeouts 5.1 % 3.6 % 21.1 % 28.2 % 7.8 % 7.9 % 8.3 %

Programming by Optimisation Meets Parameterised Algorithmics 53

to get optimized by SMAC. Of course, if one parameter setting clearly had been
identified by SMAC to be beneficial, then we adjusted the default values of this
parameter for the next round. This is the main reason why the final default
configuration of Hier is already quite competitive (for example, we started with
a version of Hier that had more than 30 % timeouts on the synthetic data).

In each round of the algorithm engineering cycle, we performed at least five
independent SMAC runs, each with a wall-clock time limit of 36 hours and a
cut-off time of 300 s per run of Hier. In each SMAC run about 160–200 configu-
rations were evaluated and about 1200–1500 runs of Hier have been performed.
We not only started SMAC from the default configuration, but also with the
best configuration that had been obtained in previous runs (we obtained our
final best configuration from one of these runs). We chose a validation set of 368
instances uniformly at random from the entire synthetic dataset, and we selected
the best configurations from multiple SMAC runs based on their performance on
this set. Our training set was initially also chosen uniformly at random from
the entire synthetic data set. However, we found that SMAC found better con-
figurations when selecting the training set as follows: We had, from multiple
rounds of the algorithm engineering cycle, multiple performance evaluations for
default and optimised configurations, and we observed that on many instances,
these running times did not vary. More specifically, there were many instances
whose solving times only seemed to improve due to some general improvements
(e. g. parallelizing the lower and upper bound computation) but appeared to be
almost entirely uncorrelated with algorithm parameters. Surprisingly, this was
true not only for rather quickly solvable instances, where one would expect only
minor differences, but also for harder instances. For example, we found instances
that were almost completely unaffected by the data reduction rules and that were
solved by exploring a (more less constant) number of search-tree nodes. In light
of this observation, we computed for each instance the coefficient of variation
(standard deviation divided by the mean) of the running times measured for
different configurations we had run on it. We then selected only the instances
with the highest coefficient of variation into a training set of size 196.

As can be seen in the top right scatter plot in Fig. 1, the configura-
tion Hier-OptS clearly dominates Hier on average. Furthermore, according to
columns 6 and 7 in Table 1, although Hier-OptS improves the timeout-rate only
slightly from 5.1 % to 3.6 % (on training data), the mean and PAR-10 run-
ning times are considerable smaller and the median is less than half.5 Notably,
Hier-OptS enables the (k + 1)-Rule but disables all other data reduction rules.
While this was already observed for Rule 3 (computing the O(M · k) kernel)
in previous studies [20], this was surprising for Rule 7, which computes the 2k-
vertex kernel [9]. The last column in Table 1 provides the results for Hier-OptS
with Rule 7 enabled. Interestingly, while it slightly decreases the running time
(mean and PAR-10) due to slightly more timeouts, the median is even lower
than for Hier-OptS. This shows that Rule 7, in principle, reduces the running

5 PAR-10 is the average with timeouts counted as 10 times the cut-off time.

54 S. Hartung and H.H. Hoos

3

6
10

25

50

100

200
300

3 6 10 25 50 100 200 300

P e
ac
e
[w
al
lt
im

e
in

s]

Hier [wall time in s]

3

6
10

25

50

100

200
300

3 6 10 25 50 100 200 300

H
ie
r -
O
pt

S
[w
al
lt
im

e
in

s]

Hier [wall time in s]

3

6
10

25

50

100

200
300

3 6 10 25 50 100 200 300

Pe
ac
e
[w
al
lt
im

e
in

s]

Hier-OptS [wall time in s]

3

6
10

25

50

100

200
300

3 6 10 25 50 100 200 300

Y o
sh
ik
o
[w
al
lt
im

e
in

s]

Hier-OptS [wall time in s]

Fig. 1. Scatter plots of the running time of all solvers on the test instances of the
synthetic dataset (full synthetic set minus training and validation instances). Timeouts
(>300 s) are plotted at 360 s.

time on many instances, but the cost of applying it is overall not amortised by
its benefits.

Results for Biological Dataset. Our experimental findings for the biological
dataset are summarized in Table 2 and in the scatter plots in Fig. 2.

Unlike for the synthetic dataset, the ILP-based solver Yoshiko clearly out-
performs Peace and Hier. However, comparing results for the latter two revealed
that Hier is still better than Peace (see the upper-right plot in Fig. 2), especially,
on harder instances. In general, since the median of the running times is pretty
small (for Hier ≤ 0.18 s and for Peace and Yoshiko even ≤ 0.01 s), we suspect

Table 2. Running time (wall time in s) comparison of five solvers on the bio-
logical dataset with different “density” parameters c. The median of all solvers is
less than 0.2 s.

c Peace Hier Hier-OptB Yoshiko Yoshiko &Hier-OptB

33 50 66 33 50 66 33 50 66 33 50 66 33 50 66

Par-10 109 124 126 101 94.9 84.4 78.8 78.1 65.8 72.8 82.1 66.4 68.7 68.8 53

Mean 11.9 13.9 14 11.2 11.1 10.1 9.3 9.3 8.6 8.8 9.9 8.5 8.1 8.2 6.7

Timeouts 142 161 164 132 123 109 102 101 84 94 106 85 89 89 68

Programming by Optimisation Meets Parameterised Algorithmics 55

that our Hier solver suffers from the fact that on extremely easy instances the
initialization cost of the Java VM dominates the running time.

While the default configuration of Hier is not competitive with Yoshiko, our
SMAC-optimized configuration, called Hier-OptB, considerably closes this gap.
Although, being greatly slower for density value c = 33, Hier-OptB clearly beats
Yoshiko for c = 50 and even slightly for c = 66. The bottom right plot in Fig. 2
stresses this point by clearly demonstrating that starting from instances that
require at least 10 s on both solvers, Hier-OptB begins to dominate on aver-
age. This behaviour goes together with the observations that can be made from
directly comparing Hier-OptB with Hier (see the bottom-left plot in Fig. 2): For
instances up to 1 s, Hier and Hier-OptB roughly exhibit the same performance, but
the higher the running times get, the clearer Hier-OptB is dominating on average.
We suspect that this is mainly caused by an algorithm parameter adjustments
made in Hier-OptB that heavily increases the time fraction spend to compute the
initial lower bound. While easy instances do not largely benefit from computing
a slightly better lower bound, on large instances this might save expensive calls
of the search-tree solver for the decision variant. Even better performance can
be obtained by running Hier-OptB and Yoshiko in parallel on the same instances,
as evident from the bottom right plot of Fig. 2. To demonstrate the potential of

0.1

1

10

100

300

0.1 1 10 100 300

Y o
sh
ik
o
[w
al
lt
im

e
in

s]

Peace [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

P e
ac
e
[w
al
lt
im

e
in

s]

Hier [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

H
ie
r -
O
pt

B
[w
al
lt
im

e
in

s]

Hier [wall time in s]

0.1

1

10

100

300

0.1 1 10 100 300

Y o
sh
ik
o
[w
al
lt
im

e
in

s]

Hier-OptB [wall time in s]

Fig. 2. Scatter plots of the running time of all solvers on the biological dataset (point
colour/value for c: black/33, blue/50, red/66). Timeouts (>300 s) are plotted at 360 s
(Color figure online).

56 S. Hartung and H.H. Hoos

this approach, the last column in Table 2 shows the running times of a virtual
solver that takes the minimum of Yoshiko and Hier-OptB for each instance.

To obtain Hier-OptB, SMAC was used in the same way as for the synthetic
data, but could typically perform about 7500 algorithm runs and evaluate 3500
different configurations, because the instances tend to be easier. Due to the
small median running time, we once again selected the training set based on
the coefficient of variation but only among those instances, where at least one
previous run needed at least 0.5 s. On the 327 training instances, the PAR-10
running time value of Hier is 850 s and could be improved to 149 s for Hier-OptB.
This improvement was mainly due to a reduction in the number of timeouts
from 90 down to 12.

We note that Hier-OptB enables all data reduction rules, except the two
simple Rules 4 & 6. However, Rule 7 (computing the 2k-vertex kernel) is also
almost disabled, since it is applied only in every 88th recursive step (adjusted
by an algorithm parameter) of the search tree. For all other enabled rules, this
“interleaving constant” is at most 13. Overall, having a more heterogeneous set
of data reductions seems to be important on the biological dataset, but not for
synthetic data, where only the (k+1)-Rule was enabled. Our default Hier enables
all rules except Rules 4 and 7.

Finally, to investigate to which extent the difference in the use of parallel
processing capabilities of our CPU between Yoshiko and Hier affect our results, we
conducted the following experiment: For the biological dataset and c = 33 (where
Yoshiko performed better than Hier-OptB) we computed for each instance that
could be solved by both solvers the maximum of their running times. According
to these, we then sorted the instances in descending order and performed on the
instances with number 1–100 and 301–400 another run of Yoshiko and Hier-OptB,
were we restricted the CPU to run in single-threaded mode. Table 3 shows the
results of this experiment. To our surprise, despite of the different ways the
solvers explicitly use parallel resources, their performance slows down only by
a factor of less than two when restricted to sequential execution. The reasons
for this unexpected result, especially for the CPLEX-based Yoshiko solver, are
somewhat unclear and invite further investigation.

Table 3. Running time (wall time in s) comparison of Yoshiko and Hier-OptB on
biological data for multi- vs single-threaded execution on our multi-core CPU.

Multi-threaded Single thread

Hier-OptB Yoshiko Hier-OptB Yoshiko

Mean running time, instances 1–100 39.9 44.9 76.1 70.0

Mean running time, instances 301–400 1.7 0.4 3.7 0.8

Timeouts 0 0 7 4

Programming by Optimisation Meets Parameterised Algorithmics 57

5 Conclusions and Future Work

We have shown how, by combining data reduction rules known from parame-
terised algorithmics with a heuristically enhanced branch-&-bound procedure,
we can solve the NP-hard (unweighted) Cluster Editing problem more effi-
ciently in practice than the best known approaches known from the literature.
This success was enabled by integrating Programming by Optimisation into the
classical algorithm engineering cycle and, as a side effect, lead to a new method
for assembling training sets for effective automated algorithm configuration.

It would be interesting to see to which extent further improvements could
be obtained by automatically configuring the LP solver used in our algorithm,
or the MIP solver used by Yoshiko. Furthermore, we see potential for leverag-
ing the complementary strengths of the three algorithms studied here, either by
means of per-instance algorithm selection techniques, or by deeper integration
of mechanisms gleaned from each solver. We also suggest to study more sophis-
ticated methods, such as multi-armed bandit algorithms, to more fine-grainely
determine in which depths of the search tree a data reduction rule should be
applied. Finally, we see considerable value in extending our solver to weighted
Cluster Editing, and in optimising it for the general M-Hierarchical Tree

Clustering problem.

Acknowledgement. We thank Tomasz Przedmojski who provided, as part of his
bachelor thesis, an accelerated implementation of the O(M · k) kernel [20].

References

1. Gurobi 5.62. Software (2014)
2. Agarwala, R., Bafna, V., Farach, M., Narayanan, B., Paterson, M., Thorup, M.:

On the approximability of numerical taxonomy (fitting distances by tree matrices).
SIAM J. Comput. 28(3), 1073–1085 (1999)

3. Ailon, N., Charikar, M.: Fitting tree metrics: hierarchical clustering and phylogeny.
In: Proceedings of the 46th FOCS, pp. 73–82 (2005)

4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

5. Böcker, S.: A golden ratio parameterized algorithm for cluster editing. J. Discrete
Algorithms 16, 79–89 (2012)

6. Böcker, S., Baumbach, J.: Cluster editing. In: Bonizzoni, P., Brattka, V., Löwe, B.
(eds.) CiE 2013. LNCS, vol. 7921, pp. 33–44. Springer, Heidelberg (2013)

7. Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing:
evaluation and experiments. Algorithmica 60(2), 316–334 (2011)

8. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Chromatic correlation clustering.
In: Proceedings of 18th ACM SIGKDD (KDD 2012), pp. 1321–1329. ACM Press
(2012)

9. Cao, Y., Chen, J.: On parameterized and kernelization algorithms for the hier-
archical clustering problem. In: Chan, T.-H., Lau, L., Trevisan, L. (eds.) TAMC
2013. LNCS, vol. 7876, pp. 319–330. Springer, Heidelberg (2013)

58 S. Hartung and H.H. Hoos

10. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
J. Comput. Syst. Sci. 71(3), 360–383 (2005)

11. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst.
Sci. 78(1), 211–220 (2012)

12. Chierichetti, F., Dalvi, N., Kumar, R.: Correlation clustering in MapReduce. In:
Proceedings of 20th ACM SIGKDD (KDD 2014), pp. 641–650. ACM Press (2014)

13. de Oca, M.A.M., Aydin, D., Stützle, T.: An incremental particle swarm for
large-scale continuous optimization problems: an example of tuning-in-the-loop
(re)design of optimization algorithms. Soft Comput. 15(11), 2233–2255 (2011)

14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

15. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations
through ablation. In: Proceedings of 10th MIC, pp. 123–132 (2013)

16. Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized
preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007.
LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data cluster-
ing: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392
(2005)

18. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45(1–3), 59–96 (1989)

19. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8–10), 718–726 (2009)

20. Guo, J., Hartung, S., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Exact algo-
rithms and experiments for hierarchical tree clustering. In Proceedings of 24th
AAAI. AAAI Press (2010)

21. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
22. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

24. Sanders, P., Wagner, D.: Algorithm engineering. It - Inf. Technol. 53(6), 263–265
(2011)

25. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.)
WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)

	Programming by Optimisation Meets Parameterised Algorithmics: A Case Study for Cluster Editing
	1 Introduction
	2 Preliminaries
	3 Our Algorithm
	4 Experimental Results
	5 Conclusions and Future Work
	References

