
Solving Large MULTIZENOTRAVEL Benchmarks
with Divide-and-Evolve

Alexandre Quemy1(B), Marc Schoenauer1, Vincent Vidal2, Johann Dréo3,
and Pierre Savéant3

1 TAO Project, INRIA Saclay and LRI Paris-Sud
University and CNRS, Orsay, France

alexandre.quemy@gmail.com, marc.schoenauer@inria.fr
2 ONERA-DCSD, Toulouse, France

Vincent.Vidal@onera.fr
3 THALES Research and Technology, Palaiseau, France

{pierre.saveant,johann.dreo}@thalesgroup.com

Abstract. A method to generate various size tunable benchmarks for
multi-objective AI planning with a known Pareto Front has been recently
proposed in order to provide a wide range of Pareto Front shapes and
different magnitudes of difficulty. The performance of the Pareto-based
multi-objective evolutionary planner DaEYAHSP are evaluated on some
large instances with singular Pareto Front shapes, and compared to those
of the single-objective aggregation-based approach.

1 Introduction

Multi-Objectives Problems (MOP) involves several contradictory criteria to be
optimized. The Pareto Set of a MOP is the set of the best trade-offs between
these objectives, i.e., solutions that cannot be improved w.r.t. one objective
without deteriorating at least another one. The projection of the Pareto Set on
the objective space is called the Pareto Front.

Many benchmark suites exist for continuous multi-objective optimization,
for which the exact Pareto Front can be analytically computed, and with known
difficulties (e.g. dimensionality, shape of the Pareto Fronts, existence of local
Pareto-optima, . . . ). For combinatorial optimization, the situation is not yet
so clear, and whereas there exist famous benchmark problems of all sizes, their
Pareto Fronts are generally not exactly known except the simplest ones (see e.g.,
MOCOLIB at http://www.mcdmsociety.org/MCDMlib.html).

The context of the present work is that of AI planning: a planning domain
D is defined by (i) a set of predicates, that define the state of the system when
instantiated, and (ii) a set of possible actions that can be triggered in states
where their pre-conditions are satisfied, resulting in a new state. A planning
problem instance PD(I,G) is defined on a given planning domain D by a list of
objects, used to instantiate the predicates to define the states, an initial state
I and a goal state G. The aim is to come up with a feasible plan, i.e., a set
of actions that, when applied in turn to the initial state, lead the system to
c© Springer International Publishing Switzerland 2015
C. Dhaenens et al. (Eds.): LION 9 2015, LNCS 8994, pp. 262–267, 2015.
DOI: 10.1007/978-3-319-19084-6 25

http://www.mcdmsociety.org/MCDMlib.html


Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve 263

cI

c1

ci

cn

cG
di di

d1i

din

d1 d1

dn dn

d1n

Fig. 1. A schematic view of a general MultiZenoTravel problem.

the goal state, that is optimal w.r.t. a given measure: the number of actions,
or the total cost of the plan when actions have non-uniform costs, or the total
makespan (total duration of the plan) when actions have durations, and can be
run in parallel, as in the present work.

The present work presents the first results of DaEYAHSP, an Evolution-
ary Pareto-based multi-objective planner [5] on large instances of MultiZeno-
Travel domain with known Pareto Fronts, as proposed in [6]. The paper is
organized as follows: Sect. 2 introduces the MultiZenoTravel benchmark
suite, and the ZenoSolver algorithm that can derive the true Pareto Front
for these instances. Sample very diverse experimental Pareto Fronts illustrate
its versatility. Experimental results on some of the large MultiZenoTravel
instances obtained by Divide-and-Evolve, the only Pareto-based evolutionary AI
planner to-date [5], are compared with those of its single-objective version using
the weighted sum aggregation on problems with non-convex fronts in Sect. 3.

2 MULTIZENOTRAVEL Benchmarks and ZENOSOLVER

MiniZenoTravel is a simple temporal planning domain related to logistics,
inspired by the well-known ZenoTravel problem of IPC series1. It involves
cities, passengers, and planes (see e.g., Fig. 1); Planes can fly from one city to
another when a link exists; Planes fly either empty, or carrying a unique passen-
ger – and these are the only possible actions. In a MiniZenoTravel instance
(Fig. 1), there are n central cities Ci, linked as a clique, and all are linked to
the initial city CI and the goal city CG; the flight durations are di from city
Ci to city CI or CG, and dij between cities Ci and Cj . There are t passengers
and p planes, and all are in CI in the initial state I, and all passengers must be
in city CG in the goal state G. The single objective version aims at minimizing
the total makespan. Previous work [5,7] proposed a multi-objective version of
these benchmarks called MultiZenoTravel, by adding a cost ci for landing
in city Ci: the second objective is to minimize the total cost of the plan. More
recent work [6] extended these benchmarks to problems of various complexity,
and proved that such problems could provide Pareto Fronts of various shapes
and difficulties, thanks to ZenoSolver, an exact Pareto solver.

1 http://ipc.icaps-conference.org/.

http://ipc.icaps-conference.org/


264 A. Quemy et al.

Table 1. Large instances: parameters and generation statistics.

Inst. n t p Generating functions Pareto# h PPP(k) Iter.(k) Time

1 20 6 2 5
2 i +

(i mod 2)
10

5
2 i +

(i mod 2)
10 409 4015 1568220 3317140 16 h 46

2 3 21 2 61 861 53 233 2006 s

3 10 10 3 383 7205 1056804 7918940 51 h

4 8 26 25
√
i i 15 190 34176 60457 4240 s

ZenoSolveris a C++11 software dedicated to generate and exactly solve
MultiZenoTravel instances in cases where di + dj < dij for all (i, j). Firstly,
it allows to tune the problem parameters in order to adjust the difficulty or to
obtain different shapes of Pareto Fronts. In particular, vectors c and d are gen-
erated using two user-defined functions, f and g, such that ci = xcf(i) + yc and
di = xdg(n− i)+yd, ensuring that both objectives are conflicting. ZenoSolver
outputs the corresponding PDDL file (Planning Domain Definition Language, uni-
versally used to describe planning problems), that can be directly used by any
standard AI planner, and computes the true Pareto Front (see all details in [6]).

We identified some large instances with very diverse front shapes and com-
plexities, that could become a basic set of representative instances for Multi-
ZenoTravel, allowing fair comparisons between various solvers and approaches.
Table 1 gives the parameters used by ZenoSolver to build some of them, as well
as some statistics about their complexity: The generating time strongly varies,
from some minutes for Instance 1 up to 51h for Instance 3. The choice of the
generating functions was purely empirical, guided by the fact that we wanted
to obtain mainly piecewise concave fronts with uneven point distributions. This
is why none of these fronts is linear, and most contain concave parts, i.e., parts
where all points are above the segment made of the two extreme points. Unfor-
tunately, this is not obvious on Fig. 2, due to the large scale used here (but see
[6] for some zooms). Note the small number of Pareto points of Instance 4, in
spite of the complexity of this instance (26 persons), due to the small ratio p

t .

3 Multi-objective Experiments

3.1 Divide-and-Evolve

Based on the Divide-and-Conquer paradigm, this generic hybrid evolutionary
approach has been originally introduced in [7]. The main idea to solve a plan-
ning problem PD(I,G) is to find a sequence of states S1, . . . , Sn, and to use some
embedded planner to solve in turn the series of planning problems PD(Sk, Sk+1),
for k ∈ [0, n] (with the convention that S0 = I and Sn+1 = G). The generation
and optimization of the sequence of states (Si)i∈[1,n] is driven by an evolutionary
algorithm, and each subproblems PD(Sk, Sk+1) is handled to an external ‘embed-
ded’ planner. The concatenation of the corresponding plans (possibly with some
compression step) is a solution of the initial problem. A more detailed presenta-
tion is given in [1].



Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve 265

0 2e+04 4e+04 6e+04 8e+04 1e+05 1.2e+05 1.4e+05 1.6e+05 1.8e+05
Makespan

0
5e

+
04

50
+e 5.1

50
+e 1

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

5e+04 1e+05 1.5e+05 2e+05 2.5e+05 3e+05
Makespan

5e
+

04
1e

+
05

1.
5e

+
05

2e
+

05

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

0 5000 1.5e+04 2.5e+04 3.5e+04 4.5e+04 5.5e+04 6.5e+04
Makespan

0
1e

+
04

2e
+

04
3e

+
04

4e
+

04
5e

+
04

6e
+

04
7e

+
04

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

500 1000 1500 2000 2500 3000 3500 4000 4500
Makespan

30
00

40
00

50
00

60
00

70
00

80
00

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

Fig. 2. Attainment surfaces for the Instances 1, 2, 3 and 4.

3.2 Experimental Conditions

The MOEA used here is IBEAH− [10], the Indicator Base Evolutionary Algo-
rithm [10] using the Hypervolume Difference Indicator, that was demonstrated
the best choice in previous work [5]. DaEYAHSP internal parameters have been
tuned with ParamILS [3], also using H−. For each instance, 20 independent
runs limited to 5400 s (1800 for instance 4) have been performed. This limit
is arbitrary but early experiments on small MultiZenoTravel instances not
shown here have empirically demonstrated (stagnation of the hypervolume for
all runs) that indeed the algorithm had reached a stationary state within this
limit. All performance assessments and comparisons have been done using the
PISA platform [2].

3.3 DAEYAHSP on Large Instances

Attainment surfaces are displayed on Fig. 2: the darker the region in objective
space, the higher the probability to reach it (full white meaning that none of the
20 runs ever reached it). The attainment surfaces for the Instance 1 are uniformly
distributed close to the true Pareto Front, even though very few Pareto optima
were actually reached. The surfaces for Instances 2 and 3 are much further from



266 A. Quemy et al.

400 600 800 1000 1200 1400 1600 1800
Makespan

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

400 600 800 1000 1200 1400 1600 1800
Makespan

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

400 600 800 1000 1200 1400 1600 1800 2000
Makespan

50
0

10
00

15
00

20
00

C
os

t

Pareto Front
worst
80%
60%
40%
20%
best

Fig. 3. Attainment surface for Pareto approach after 900 s and 5400 s (left, center) and
for aggregation after 5400 s (right).

the exact front (only 2 points are found for the Instance 3 out of 383). On the
opposite, even if with a smaller budget, most of the actual Pareto optima are
found for Instance 4, except on the most concave part.

We can notice that, even if n is higher for the Instance 4 than for the Instance 2,
adding planes results here in Pareto front that is easier to reach. This is quite
surprising since the search space for DaEYAHSP is increasing with p.

3.4 Pareto Vs Weighted Sum Aggregation

Finally, let us have a quick look at some comparative results between the multi-
objective version of DaEYAHSP and its single-objective version using a weighted
sum of the objectives. The chosen instance is a concave instance with 30 cities
(resulting in a Pareto Front made of 66 points) not displayed here. All experi-
mental conditions are the same than in [4]. One aggregated run amounts to 11
independent runs, the weight α taking values from 0 to 1 by step of 0.1.

The attainment surfaces (Fig. 3) show that in the case of Pareto approach,
the exact Pareto Front is already delineated after 900 s, even considering only
the worst run. On the opposite, even the best of the 20 runs is still far from the
Pareto Front apart from a few points that lie in the convex parts. This trend,
though preliminary here, nevertheless confirms the well-known fact that weight
sum aggregation has difficulties to reach the concave parts of Pareto fronts.
However, using an archive shows that several non-dominated plans where found
all over the Pareto front, strongly reducing the impact of the weight parameter.
We hypothesize that this is due to the highly stochastic nature of YAHSP, that
seems to be able to reach good results without the help of the genetic algorithm:
A single individual can lead to several different objective vectors depending on
YAHSP strategy and random choices. The causality between the good structure
of an individual and its fitness is thus very weak. Further work will study more
deeply this hypothesis, and try to learn the relation between the individual
structure and its ability to provide good plans.

4 Conclusion and Perspectives

This paper has proposed some first experiments with the recently proposed
MultiZenoTravel test suite for multi-objective AI planning [6], where the



Solving Large MultiZenoTravel Benchmarks with Divide-and-Evolve 267

instance generator comes with ZenoSolver, an exact solver that is able to
identify the true Pareto front for even very large instances. The complete code is
publicly available at https://descarwin.lri.fr, making it easy for everyone to gen-
erate his/her own benchmark instances. However, we hope that the few typical
instances that have been provided here, and that exhibit very different shapes of
Pareto Fronts for very different levels of complexity, could be the starting point
for a general benchmark for AI planning.

The results of DaEYAHSP on some of these instances show the need for further
improvement of the multi-objective search efficiency of MO-DaE. The results
on the aggregation approach raise interesting issues regarding the respective
usefulness of the evolutionary (DaEX) and the AI-planning (YAHSP) parts
of DaEYAHSP. Further experiments are also needed, in which DaEX approach
is used within other state-of-the-art decomposition algorithms (e.g., from the
MOEA/D family [9], or using Tchebychev decomposition), and compared in
detail to other non-Pareto multi-objective planners [8].

References

1. Bibäı, J., Savéant, P., Schoenauer, M., Vidal, V.: An evolutionary metaheuris-
tic based on state decomposition for domain-independent satisficing planning. In:
Brafman, R., et al. (eds.) 20th ICAPS, pp. 18–25. AAAI Press (2010)

2. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and program-
ming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

3. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

4. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Multi-objective
AI planning: comparing aggregation and pareto approaches. In: Middendorf, M.,
Blum, C. (eds.) EvoCOP 2013. LNCS, vol. 7832, pp. 202–213. Springer, Heidelberg
(2013)

5. Khouadjia, M.R., Schoenauer, M., Vidal, V., Dréo, J., Savéant, P.: Pareto-based
multiobjective AI planning. In: Rossi, F. (eds.) Proceedings of the IJCAI. AAAI
Press (2013)

6. Quemy, A., Schoenauer, M.: True Pareto Fronts for Multi-Objective AI Planning
Instances (2015, submitted)

7. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a new memetic scheme
for domain-independent temporal planning. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

8. Sroka, M., Long, D.: Exploring metric sensitivity of planners for generation of
pareto frontiers. In: Kersting, K., Toussaint, M. (eds.) 6th STAIRS, pp. 306–317.
IOS Press (2012)

9. Zhang, Q., Hui, L.: A Multi-objective evolutionary algorithm based on decompo-
sition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

10. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 832–842. Springer, Heidelberg (2004)

https://descarwin.lri.fr

	Solving Large MULTIZENOTRAVEL Benchmarks with Divide-and-Evolve
	1 Introduction
	2 MULTIZENOTRAVEL Benchmarks and ZENOSOLVER
	3 Multi-objective Experiments
	3.1 Divide-and-Evolve
	3.2 Experimental Conditions
	3.3 DAEYAHSP on Large Instances
	3.4 Pareto Vs Weighted Sum Aggregation

	4 Conclusion and Perspectives
	References


