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Abstract. We introduce a new problem arising in small and medium-
sized container terminals: the Two-Dimensional Pre-Marshalling Prob-
lem (2D-PMP). It is an extension of the well-studied Pre-Marshalling
Problem (PMP) that is crucial in container storage. The 2D-PMP is par-
ticularly challenging due to its complex side constraints that are challeng-
ing to express and difficult to consider with standard techniques for the
PMP. We present three different heuristic approaches for the 2D-PMP.
First, we adapt an existing construction heuristic that was designed for
the classical PMP. We then apply this heuristic within two metaheuris-
tics: a Pilot method and a Max-Min Ant System that incorporates a
special pheromone model. In our empirical evaluation we observe that
the Max-Min Ant System outperforms the other approaches by yielding
better solutions in almost all cases.

Keywords: Ant colony optimization · Construction heuristics ·
Container terminal · Pilot-Method · Pre-Marshalling problem

1 Introduction

Containers are an essential component of today’s shipping industry. They are
standardized to facilitate shipment and storage. Container shipment typically
proceeds in chains of different transport modes, such as trains, ships or trucks.
Container terminals are crucial to the overall shipment process since they act as
hubs between the different transport modes. They deal with container exchange
between vessels, and container storage until the appropriate vessels arrive.

Container storage planning is a key factor in container terminal organization
and affects all other operations of the terminal. It is concerned with storing con-
tainers in such a way that they can be quickly retrieved when they are due for fur-
ther shipment. Containers are stored in so-called container bays which are rows
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of adjacent container stacks. When a container is due for shipment it is typically
removed from its bay by a gantry crane that can access the topmost containers
of each stack. Due containers may sometimes be blocked by other containers that
are stacked upon them. In this case, the blocking containers have to be relocated
to access the due containers, which increases the loading time. This can cause
severe delays for vessel loading and vessel departures, resulting in displeased
terminal clients and ultimately additional costs. Therefore, container terminals
rearrange (pre-marshal) container bays to assure that each container is reachable
when it is due. The Pre-Marshalling Problem (PMP) is concerned with finding
a sequence of container relocations of minimal length, such that in the resulting
bay no container is blocked when removed according to its due-time.

In this paper we introduce a new variant of the PMP, the Two-Dimensional
Pre-Marshalling Problem (2D-PMP), which occurs in smaller and medium-sized
container terminals. Those terminals do not use gantry cranes to load vessels but
so-called reach stackers. Reach stackers are powerful forklifts that can carry fully
loaded containers, however, most conventional reach stackers can only access the
leftmost and rightmost stacks of a container bay. This means that due containers
can be blocked by containers stacked next to them, in addition to containers
stacked upon them. Thus, a new 2-dimensional restriction on how containers may
be stacked such that they can be removed according to their due-times without
having to relocate blocking containers needs to be considered. Our use-case is
based on the Ennshafen container terminal1 in Enns, Austria. Another example
of a smaller to medium-sized container terminal is the Frihamnen container
terminal in Stockholm, Sweden. Space is an issue for them since they are located
in the city center, so agile vehicles like the reach stacker are required to perform
most of the work.

This work is based on a master thesis [1] which can be referred to for
detailed algorithm explanations, further implementation details and more elab-
orate results.

Related Work

The classical PMP is known to be NP-hard [2] and is well-studied [3]. The 2D-
PMP is a novel problem for which, to the best of our knowledge, no solution
approach has yet been published. In the following, we therefore give a chrono-
logical overview of the most prominent methods for the PMP.

Lee and Hsu [4] present a MIP model in form of a multi-commodity flow
formulation in which nodes represent slots in the container bay, and arcs connect
slots. Thus, container moves are represented with flows, and constraints assure
that the moves are valid. The number of moves is restricted by an upper bound,
and the objective is to find a flow that yields a desirable bay in a minimal
number of moves. This formulation grows substantially in the number of moves
and therefore has difficulties to scale.

1 http://www.ennshafen.at/en/container terminal/technical data.

http://www.ennshafen.at/en/container_terminal/technical_data
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Caserta and Voß [5] propose a corridor-method based approach for solving
the PMP. Given an initial solution (constructed by a method similar to the
GRASP heuristic), the approach builds a corridor around the incumbent solution
and performs low-level decisions using a combination of greedy heuristics and a
roulette-wheel approach. In their experiments, the authors obtained new upper
bounds for existing benchmarks with their approach.

Lee and Chao [6] introduce a neighbourhood search method that improves
an initial feasible solution by applying different local search heuristics and an
integer program that possibly reduces the length of the move sequence in the
incumbent solution, yielding the same final bay configuration.

Exposito et al. [7] propose a “lowest priority first” construction heuristic,
see Sect. 3, as well as an instance generator for the PMP. The heuristic aims
at placing containers at positions that seem most suitable, starting with the
container that will be removed last.

Bortfeldt and Forster [8] present a tree-search heuristic for the PMP, where
the tree depth is restricted by an upper bound. The tree search incorporates
a classification and ordering of the possible moves at each configuration, which
drives the search towards promising directions. This method is competitive with
the approaches from [5,6].

Prandtstetter [9] proposes a dynamic programming approach for the PMP
where states represent the container bay and are extended by container moves.
This method is quite successful since symmetric and dominated states (with a
weaker lower bound) are easily detected and discarded.

Rendl and Prandtstetter [10] introduce a constraint programming model for
the PMP where decision variables represent the container bay state and moves
are set exclusively by the search strategy, which applies the heuristic from [8].

Tierney et al. [11] present a novel solution technique for solving pre-marshalling
problems to optimality using the A* and IDA* algorithms. Both algorithms per-
form a path-based search guided by a cost estimation heuristic. Additionally, the
search is directed by combining branching rules, symmetry breaking and strong
lower bounds. Branching rules are used to prevent move reversal, unrelated and
transitive moves, and empty stack symmetry.

2 The Two-Dimensional Pre-Marshalling Problem

Pre-marshalling problems arise in container terminals where containers are stored
in stacks that are arranged in container bays. A container bay consists of a num-
ber of adjacent stacks that may not exceed a maximum height; see Fig. 1 for
a sample bay with four stacks. Each container is assigned a priority value that
indicates when the container is due to be removed from the bay. The smaller the
priority value, the sooner the container will be removed from the container bay.

The priority of a container is often not known at its arrival in the bay, there-
fore containers are frequently stacked more or less arbitrarily. As a consequence,
due containers would often be blocked by other containers that are due at a later
time. In the container bay in the left of Fig. 1, for example, the shaded containers
are blocked since containers with higher priority values are placed upon them.
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−→

Fig. 1. A container bay with four stacks where the numbers represent the priority
values of the containers. Shaded containers are blocked for the gantry crane. The left
figure shows the bay before pre-marshalling, the right thereafter.

−→

Fig. 2. Left: The classically pre-marshalled container bay from Fig. 1, now serviced by
reach stackers. The shaded container is blocked horizontally. Right: A configuration
where all containers can directly be removed by reach stackers.

The classical Pre-marshalling Problem (PMP) is concerned with relocating
containers in a bay most economically in such a way that thereafter all containers
can be immediately retrieved from the bay in the order given by the priority
values. More specifically, the PMP seeks a minimal sequence of container moves
that yields a container bay without blocked containers.

In large container terminals all container movements are performed exclu-
sively by gantry cranes that can access the topmost container of each stack. In
small and medium-sized terminals gantry cranes are only used to move contain-
ers within a bay, while reach stackers remove containers to load vessels.

Reach stackers are forklifts that can carry one container at a time, but their
access is restricted to the top containers of the leftmost and rightmost stacks
of a bay. This is a significant restriction, since containers can be blocked verti-
cally (by containers in the same stack) but also horizontally (by containers in
neighbouring stacks). The classical PMP only considers vertical blocking, and
therefore does not sufficiently improve the container bay configuration in the
scenario with reach stackers. For instance, Fig. 2(left) illustrates that the pre-
marshalled configuration from Fig. 1(right) still has a blocked container when
considering reach stackers for removal.

Therefore, we introduce the Two-Dimensional Pre-Marshalling Problem
(2D-PMP) that considers blocking from two dimensions, i.e., vertically and
horizontally.

2.1 Formal Definition of the 2D-PMP

The 2D-PMP considers a container bay with S stacks holding a set of containers
C. Stacks may not exceed a maximum height H. We denote the set of all stacks
as S and the set of all tiers as T . Each container c ∈ C is referred to by its priority
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value, i.e., c ∈ N, which we assume without loss of generality to be unique; i.e.,
a complete ordering is specified for the containers.

We are given an initial bay configuration B, where Bs,t is the container in
the t-th tier in the s-th stack, with (s, t) ∈ S × T and write, Bs,t = 0 if slot Bs,t

is empty. The bay can be altered by performing moves: the topmost container
from a (non-empty) stack can be moved to the top of another stack whose height
is less than H. We denote such a container move from the top of stack i to the
top of stack j by m = (i, j), where i, j ∈ {1, . . . , S}.

A container c that is located at Bs,t is called vertically blocked, if there exists
another container c′ at Bs,t′ with t′ > t (container c′ is placed above c) and
c′ > c. A stack s is called v-perfect, if no container in stack s is vertically blocked.
A container c that is located at Bs,t is called horizontally blocked, if there exist
two containers c′ and c′′ where c′ is located at Bs′,t′ and c′′ at Bs′′,t′′ with s′ < s
(stack s′ is left of stack s) and s′′ > s (stack s′′ is right of stack s) and c < c′

and c < c′′ (container c has the smallest priority value of the three containers).
A stack s in which no container is horizontally blocked, is called h-perfect. The
aim of the 2D-PMP is to obtain with minimum effort a bay configuration in
which all stacks are v-perfect as well has h-perfect.

A solution is thus a sequence of container moves σ = {m1,m2, . . . ,mk} that
makes the initial bay configuration v- and h-perfect, and the 2D-PMP seeks an
optimal solution having minimum length k.

3 Lowest Priority First Heuristic (LPFH)

The Lowest Priority First Heuristic (LPFH) has been proposed in [7] The gen-
eral idea is to distinguish between well-located containers that may remain at
their current position and non-located containers that are moved to obtain an
unblocked configuration.

After classifying each container as well-located or non-located, the LPFH
iteratively performs the following three steps until all containers are well-located:

1. select the non-located container c with highest priority value,
2. select a destination stack s for c so that c becomes well-located,
3. and compute feasible moves to relocate c to s and perform them.

3.1 The 2D Lowest Priority First Heuristic (2D-LPFH)

We extend the LPFH for the 2D-PMP into a new heuristic, 2D-LPFH, by apply-
ing two main changes. First, we adapt the notion of well-located and non-located
containers, and second, we adapt the destination stack selection. The complete
2D-LPFH algorithm for the 2D-PMP is outlined in Algorithm1. In the following,
we highlight the differences to the classical LPFH.

Container Location. A container is called well-located in the 2D-PMP, if it is
neither vertically nor horizontally blocked, and if it is located in one of the
stacks foreseen for its priority (see below). A container is called non-located in
the 2D-PMP, if at least one of the well-located criteria is violated.
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Destination Stack Selection. The destination stack selection consists of three
main steps: First, adequate stacks are identified that are as second step ordered
according to the number of moves that are necessary to move the selected con-
tainer to the respective stack. Third, the destination stack is randomly selected
upon the best λ2 adequate stacks, where λ2 is an appropriately chosen strategy
parameter. In the 2D-LPFH, containers with higher priority value are usually
best placed in a central stack, while containers with low priority values are usu-
ally best placed in one of the outermost stacks. This way it is less likely that
they are horizontally blocking or blocked by other containers. We incorporate this
intuition in the stack selection, where we denote the set of adequate stacks Ac

for container c: First, we calculate the average number of containers per stack as
cps = |C|/S. Second, we determine the first preferred stack as s1 = �c/(2 · cps)�.
Third, we add the “mirror” stack s2 = S − s1 as the second preferred stack
(ifs2 �= s1), i.e., if the first preferred stack s1 is closer to the left edge of the
bay, then the second preferred stack s2 will be closer to the right edge of the bay
and have an equal number of stacks between itself and the right edge as the first
preferred stack s1 and the left edge. In case our configuration has an odd number
of stacks, the middle stack does not have a second preferred stack. Fourth, in
case s1 and s2 are not the outermost stacks, we allow some flexibility by adding
the neighbouring stacks that are closer to the outer border to the set of ade-
quate stack as s1′ = s1 − 1 and s2′ = s2 + 1. Finally, our set of adequate stacks
is Rc = {s1′ , s1, s2, s2′}. This calculation assumes unique priority values. When
moving the selected container to the destination stack we have to enable the
move by removing all containers placed on top of the selected container and all
containers placed on top of the designated slot in the destination stack. These
containers are called interfering containers and they are moved to temporary
stacks; any stack with free slots except the source and destination stacks.

In case the source and destination stack are the only stacks with free slots
and there is at least one interfering container, the algorithm is blocked and can
not continue. In such cases it is recommended to restart the algorithm because
it might perform a different sequence of moves due to it’s stochastic nature.

Compound Moves. In each iteration, the 2D-LPFH returns a compound move
K = {m1, . . . ,mk}, k ≥ 1, i.e., a sequence of moves, corresponding to all the
individual moves necessary to relocate a non-located container to a better loca-
tion. This especially needs to be taken into account when applying the heuristic
within a metaheuristic. Applying only a subsequence K̂ ∈ K would in general
result in a completely different and usually unintended and worse behaviour.
For instance, K̂ might easily lead to a state having a higher objective value than
when applying the complete K. Therefore, when using the 2D-LPFH within a
metaheuristic, we always consider only complete compound moves K. However,
this does not affect the behaviour of our metaheuristic algorithms as each regular
or compound move can be viewed as a changeset applied to our current bay; the
exact actions or their count are irrelevant to the metaheuristic.
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Algorithm 1. Lowest Priority First Heuristic for the 2D-PMP
Input: B : initial state; λ2, λ3: heuristic parameters
1: N ⇐ non-located containers in B
2: W ⇐ well-located containers in B
3: σ ⇐ empty list
4: while N �= ∅ do
5: c ⇐ container with highest priority value in N located at stack s
6: Ac ⇐ set of adequate stacks for c
7: Sort Ac ascending by the lowest number of interfering containers in each stack
8: s′ ⇐ select random stack from Ac among the top λ2 stacks
9: G ⇐ set of all interfering containers in c’s stack and s′

10: for each g ∈ G that is positioned at stack sg do
11: V ⇐ set of available temporary stacks for g
12: sort V ascending by the highest priority valued non-located container in each

stack
13: s′′ ⇐ select random stack from V among the top λ3 stacks
14: perform move (sg, s′′) on B, obtaining new bay configuration B′

15: append move (sg, s′′) to σ
16: B ⇐ B′

17: end for
18: perform move (s, s′), obtaining new bay configuration B′

19: append move (s, s′) to σ
20: N ⇐ non-located containers in B′

21: W ⇐ well-located containers in B′

22: B ⇐ B′

23: end while
24: return sequence of moves σ

4 Pilot Method

The Pilot method [12] is a meta-heuristic that applies a simpler construction
heuristic H as a lookahead subheuristic to guide a master construction process
towards a more promising solution. Starting from an initially “empty” solution
θ, the subheuristic H constructs n so-called pilot solutions θi, ∀i = 1, . . . , n,
which are partial solutions built from up to k greedy construction steps. Each
pilot solution θi is evaluated by a quality estimation function f that is able
to evaluate partial solutions. The idea is that these quality estimates provide
a better guidance for the master construction process than a simple greedy
criterion. A most promising partial solution θi with the best quality estimation is
then chosen and its first construction step adopted by the master procedure, i.e.,
θ is extended by the corresponding step. Then, the same construction process
with the help of the subheuristic is repeated from the next step onward until a
complete solution is obtained.

We use the Pilot method to solve the 2D-PMP by applying different con-
struction methods operating on partial solutions. Recall that a solution to the
2D-PMP is a sequence of (compound) moves, therefore, a pilot solution θi is a
sequence of (compound) moves θi = {m1, . . . ,mj} with j ≥ 1 ≤ k.
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Evaluation Function. Given a bay configuration Bθi
that has been obtained

by applying the pilot solution θi on the initial configuration B, the evaluation
function f(Bθi

) returns an estimate of the number of (compound) moves that
are necessary to get an unblocked bay configuration. We define f as

f(Bθi
) = bv(Bθi

) +
1
2
bh(Bθi

) + bt(Bθi
) (1)

where bv(Bθi
) and bh(Bθi

) represent the number of containers in Bθi
that are

blocked vertically and horizontally, respectively, and bt(Bθi
) is the cardinality

of the set of containers placed upon all vertically blocked containers (excluding
blocked containers).

Subheuristic. The subheuristic H is a heuristic that extends a current partial
master solution θ, by a (compound) move m ∈ MBθ

where MBθ
is the set of all

legal (compound) moves for the current container bay Bθ. Therefore, applying
k construction steps corresponds to appending k legal (compound) moves to θ.
We apply 2D-LPFH as a subheuristic.

5 An Ant Colony Optimization Approach

We developed a MAX -MIN Ant System (MMAS) [13] to tackle the 2D-PMP.
MMAS is a well known variant of Ant Colony Optimization (ACO) that strongly
favours so-far best solutions. It is characterized by four features: First, only the
best ant may update pheromone trails. Second, pheromone values have strict
upper and lower bounds τmin and τmax, respectively. Third, all pheromone val-
ues are initiated with τmax and the evaporation rate ρ is kept low. Fourth, the
algorithm performs restarts after finding no improvement for a certain number
of iterations, to tackle stagnations.

For solving the 2D-PMP with MMAS, we consider the problem a path-
construction problem, where nodes represent container bay states, and edges
represent container movements. Thus, we search for a (shortest) path from the
initial node to a node that is a valid final state.

We outline the main steps of the MMAS in Algorithm2. In each iteration
the algorithm constructs n ant solutions (line 3) that are subsequently improved
using a simple local search procedure that is discussed in more detail in Sect. 5.3.
The best constructed solution σ is selected in line 11 and the global best solution
σ∗ possibly updated in line 13. In case the number of consecutive iterations
without improvement exceeds the threshold imax (line 17), the pheromone values
are reinitialized (line 18). Finally the pheromone values are updated in lines 22
to 26. The decision whether to use the iteration best or global best solution is
based on the probability pσ∗. These steps are repeated until either a maximum
number of iterations or a time limit has been reached.

In the following sections we give a more detailed description of the different
components of our approach. Section 5.1 outlines the pheromone model, Sect. 5.2
discusses the ant construction algorithm and Sect. 5.3 the local search procedure.
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Algorithm 2. Max-Min Ant System for 2D-PMP
Input: B: initial state; n: ant count; imax: maximum number of consecutive itera-

tions without improvement; pσ∗: probability for using the global best solution for
pheromone update; f : evaluation function

1: i ⇐ 0
2: while stopping criteria not satisfied do
3: {σ1 . . . , σn} ⇐ construct set of n ant solutions from B
4: if {σ1 . . . , σn} = ∅ then
5: continue and register failed attempt
6: end if
7: {σ1 . . . , σn} ⇐ apply local search to all solutions in {σ1, . . . , σn}
8: if σ∗ not assigned then
9: σ∗ ⇐ set σ1 as new global best solution

10: end if
11: σ ⇐ find best solution in {σ1 . . . , σn}
12: if f(σ) < f(σ∗) then
13: σ∗ ⇐ set σ as new global best solution
14: i ⇐ 0
15: else
16: i ⇐ i + 1
17: if i < imax then
18: reinitialize pheromone values
19: i ⇐ 0
20: end if
21: end if
22: if random value ∈ [0, 1) < pσ∗ then
23: update pheromones with global best solution σ∗

24: else
25: update pheromones with iteration best solution σ
26: end if
27: end while
28: return σ∗

5.1 Pheromone Model

We studied different pheromone models in the design of the MMAS. First, we
considered a state-based pheromone model where each container bay state B is
associated with a pheromone value τB. However, since a state can be reached by
different (compound) moves that are not taken into account by the pheromone
model, this model gives little guidance to the agents/ants. We assume that
this is the reason why the state-based model performed poorly in our initial
experiments.

We thus extended that model to the move-based pheromone model. In it, we
associate a pheromone value τ(B,m) to each state-move pair (B,m). This way
the pheromone values direct the ants in a more traditional way into following
promising (compound) moves, given the current container bay state. A cru-
cial aspect hereby was to dynamically create pheromone values on the fly and
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Algorithm 3. Ant construction algorithm
Input: B: initial state, f : evaluation function, h: heuristic function
1: fe ⇐ f(B)
2: σ ⇐ empty list
3: while fe > 0∧ stopping criterion do
4: M ⇐ query h for set of all possible (compound) moves in state B
5: if M contains a (compound) move m leading to a final state then
6: append m to σ
7: return σ
8: end if
9: P ⇐ calculate probabilities for all m ∈ M

10: psum ⇐ 0
11: r ⇐ random number between 0 and 1
12: for each m ∈ M do
13: psum ⇐ psum + Pm

14: m′ ⇐ m
15: if psum ≥ r then
16: break
17: end if
18: end for
19: append m′ to σ
20: apply (compound) move m′ to B yielding new state B
21: fe ⇐ f(B)
22: end while
23: return σ

efficiently maintain them in a hash table, as obviously we cannot store them all
in a simple statically allocated matrix due to the state-space’s exponential size.

5.2 Ant Construction Algorithm

The ant construction algorithm is given in Algorithm3. It takes three arguments:
an initial state, an evaluation function and a heuristic function. In each iteration,
it first determines all possible (compound) moves for the current state B (line 4)
by querying the given heuristic algorithm h (e.g. 2D-LPFH). The heuristic algo-
rithm returns a set of all possible (compound) moves M it can execute for the
given state B; i.e. the heuristic algorithm explores the whole search space for one
step (one (compound) move) from the current state and returns all possibilities,
allowing the ant construction heuristic to choose the next (compound) move.
Then, for each possible (compound) move m, the probability pB,m of the ant
applying (compound) move m to B is computed (line 9) by

pB,m =
[τB,m]α[ηB,m]β

∑
l∈MB [τB,l]α[ηB,l]β

, if m ∈ MB, (2)

where τB,m refers to the pheromone value of (compound) move m from state B,
α refers to the priority given to pheromone values, ηB,m refers to the heuristic
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value of (compound) move m for state B, and β refers to the priority given to
heuristic values. The heuristic value ηB,m is acquired by evaluating the state Bm

that is reached by applying (compound) move m to the current state B. We
then select one of the (compound) moves according to their probability and a
random factor (line 11-19). This procedure is repeated until a complete solution
has been constructed or a maximum number of moves has been reached (line 3).

In addition, we check if the final state can be directly reached by a (com-
pound) move and in this case immediately select it without calculating proba-
bilities (line 5). All ant solutions can be constructed in parallel, since the only
shared resource are the read-only pheromone values.

5.3 Improvement Heuristic

We use an improvement heuristic that, given a solution σ, tries to find “shortcuts”
in the solution. More specifically, the algorithm tries to detect non-consecutive
states B1 and B2 that are connected with moves {m1, . . . ,mk} ∈ σ, k ≥ 2, which
can be connected by a single move m′. In this case, the sequence {m1, . . . ,mk}, k ≥
2 can be replaced by m′ in the solution and thus shortens the solution σ. Figure 3
illustrates such a shortcut between states B2 and B5, eliminating moves m2, m3

and m4 and thus shortening the solution by two moves.
The heuristic works as follows. For each move m ∈ σ yielding bay state Bm,

two sets are computed: the set of states that are reachable (within one move)
from Bm, MB, and the set of states that are visited in the solution after the
successor of Bm, denoted by Mσ. If MB ∩ Mσ �= ∅, then a shortcut has been
found, since the state(s) in MB ∩ Mσ can be reached by one move from Bm.
Therefore, we chose the state B′ ∈ MB ∩ Mσ with the largest number of moves
from Bm and replace the moves between Bm and B′ with move m′.

6 Experimental Evaluation

We perform experiments with the LPFH, the Pilot method and the MMAS. The
experiments are all executed on the same machine in a sequential manner and
each experiment was run on the same set of instances.

Problem Instances. We obtained problem instances from the PMP instance gen-
erator provided in [7]. Our instances have s = {4, 6, 8, 10, 12, 14} stacks with
height H = 4 and occupancy rates q = {50%, 75%} (i.e., fill level of the con-
tainer bay). This yields 11 instance categories, because we leave out instances

Fig. 3. Finding a shortcut move m′ from B2 to B5 saving two moves.
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with s = 4 and q = 75% because they are too difficult to solve. Containers
have unique priorities and are randomly positioned within the given bay. The
instances are available online2.

Algorithm Parameter Settings. The 2D-LPFH uses λ2,3 = 2 (see [7]), after hav-
ing applied parameter tuning tests with values λ2, λ3 ∈ {1, 2, 3, 5, 10}: restricting
the search space (λ2,3 = 1) does not allow the algorithm enough flexibility to find
good solutions, but loosening the search space too much (λ2,3 ∈ {5, 10}) does
not yield good results within a short time. The semi-greedy approach (λ2,3 = 2)
performs best. However, if given more time (5 min), the λ2,3 ∈ {5, 10} results
improved significantly, but still remained inferior to the semi-greedy approach.
The Pilot method experiments were run with 2D-LPFH as the subheuristic and
k ∈ {2, 3, 4, 5, 6, 7} construction steps for each heuristic. Test have shown that
k ∈ {5, 6, 7} always performs significantly better than k ∈ {2, 3, 4} with only
slight differences among k ∈ {5, 6, 7}. After careful review of all results, k = 7
is chosen as the representing result since it yielded slightly better results than
k = 5, but did not affect run time significantly. Finally, the MMAS uses 2D-
LPFH to calculate the heuristic values during construction and the following
parameters: n = 8, α = 1, β = 2, ρ = 0.02, imax = 75 and pσ∗ = 0.1. All
experiments use the same evaluation function stated in Eq. (1), and after each
algorithm has finished, the improvement heuristic (see Sect. 5.3) is applied. All
of the mentioned parameter values were determined in preliminary tests or are
based on recommended values from [7] and [14]. For more details on the para-
meter selection, see [1].

Experimental Setup. The experiments are carried out on a machine with four
Intel Xeon E5645 processors, each with six cores at 2.40 GHz, along with 200 GB
of RAM. The underlying system is Ubuntu 13.04. with Java 1.7. Our implemen-
tation of MMAS runs the ant construction algorithms in parallel.

All experiments have a time limit of 5 min (wall clock time, the machine not
otherwise utilized) or 500 moves. The ant construction algorithm has a different
move limit of 250 moves since we do not want bad solutions appearing in the
pheromone trails. As you will notice in the results section, 500 moves is a very
generous move limit since we expect solutions with less than 100 moves for the
biggest instances. All our experiments are of stochastic nature so we repeat them
until the final solution is not improved a consecutive number of runs. The 2D-
LPFH, Pilot method and MMAS had a no-improvement iteration number of 25,
25 and 5, respectively.

We perform experiments with the 2D-LPFH, Pilot method and MMAS. Due
to space limitations we only present each approach with its best setup:

1. 2D-LPFH: a single-run of the 2D-LPFH with λ2,3 = 2
2. Pilot: the Pilot method with 2D-LPFH as construction-heuristic and k = 7

lookahead moves

2 http://www.ads.tuwien.ac.at/w/Research/Problem Instances.

http://www.ads.tuwien.ac.at/w/Research/Problem_Instances
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Table 1. Objective values over 50 instances for each category, where “s” denotes the
number of stacks and q the occupancy rate; all stacks have maximum height 4. “avg”
denotes the average objective value and “std” the standard deviation over all solved
instances in the category. “sol” is the number of instances solved per category.

s q 2D-LPFH Pilot 2D-LPFH 5min MMAS

avg std sol avg std sol avg std sol avg std sol

4 50 % 5.92 ±1.861 50 6.440 ±2.168 50 5.86 ±1.784 50 5.68 ±1.634 50

6 50 % 11.20 ±2.955 50 11.04 ±2.523 50 10.54 ±2.367 50 10.36 ±2.371 50

8 50 % 16.88 ±2.512 50 16.94 ±2.645 50 15.18 ±2.067 50 14.86 ±2.232 50

10 50 % 23.30 ±3.046 50 22.94 ±3.040 50 20.38 ±2.221 50 20.08 ±2.311 50

12 50 % 29.46 ±3.309 50 29.20 ±3.676 50 25.36 ±2.562 50 25.54 ±2.667 50

14 50 % 36.24 ±2.911 50 37.26 ±3.573 50 31.74 ±2.465 50 31.74 ±2.732 50

6 75 % 29.18 ±4.839 28 27.28 ±5.163 32 24.76 ±4.513 34 24.65 ±4.478 34

8 75 % 43.19 ±5.497 36 39.21 ±5.292 38 34.17 ±3.946 46 32.36 ±3.275 42

10 75 % 59.81 ±5.849 37 53.79 ±5.910 43 47.47 ±5.358 45 44.57 ±4.217 44

12 75 % 72.18 ±8.314 34 68.23 ±8.026 43 58.77 ±5.704 47 55.93 ±4.763 46

14 75 % 85.10 ±8.837 31 79.16 ±6.109 38 71.07 ±4.729 42 68.57 ±5.735 42

3. 2D-LPFH 5-min: the 2D-LPFH run sequentially for the same time as the
MMAS, returning the best found result; same configuration as the 2D-LPFH

4. MMAS: the Max-Min Ant System with n = 8, α = 1, β = 2 and the 2D-
LPFH as the heuristic function.

6.1 Results

Table 1 shows the detailed results for all four approaches: the average objective
value (number of moves) for each instance category, the standard deviation, and
the number of solved instances. We first see that the MMAS mostly provides
the best results, closely followed by the 2D-LPFH with a 5-minute runtime. The
third best results come from the Pilot method, followed by the single-run 2D-
LPFH. This is clearly illustrated in Fig. 4, where the average objective is shown
for each solving approach for both occupancy rates, clearly demonstrating that
the MMAS provides the best results.

Furthermore, we observe in Table 1 that all approaches managed to solve all
q = 50% instances. For the q = 75% categories, we notice that the MMAS and
extended run time 2D-LPFH solved almost the same number of instances with
the extended run time 2D-LPFH in a slight lead. They are followed by the Pilot
method and 2D-LPFH.

Note that the Pilot method, as well as the single-run 2D-LPFH only take
several milliseconds, while the MMAS and 2D-LPFH take 5 min to run, so we
do expect the latter approaches to provide better results. Using only the average
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Fig. 4. Average number of moves per category for best algorithm configurations split
by occupancy rate. Values for q = 0.50 are shown on the left and q = 0.75 on the right.

number of moves and number of solved instances, the MMAS and extended run
time 2D-LPFH are the overall best performing test cases. We confirmed this
conclusion using the Wilcoxon Paired Rank Sum test.

Due to space constraints only the most interesting results are included in this
section. For further experimental results and analysis please refer to [1].

7 Conclusions

In this work, we presented a novel challenging problem: the two-dimensional
pre-marshalling problem (2D-PMP). This problem is an extension of the well
studied NP-hard pre-marshalling problem (PMP). The 2D-PMP occurs in small
to medium-sized container terminals and is characterized by complex side con-
straints imposed by the reach stackers used for moving containers to ships. These
side constraints make it difficult to apply existing approaches for the PMP to
the 2D-PMP.

We first extended an existing PMP construction heuristic, the LPFH, to
consider the additional constraints and came up with 2D-LPFH. For obtaining
better solutions, we further integrated it in two metaheuristics: a Pilot method
and a novel Max-Min Ant System (MMAS) approach. The MMAS approach
yielded in our tests mostly the best solutions. Also, we observed that by using
2D-LPFH as a heuristic, the MMAS and Pilot method are able to solve instances
that the 2D-LPFH is not capable of solving itself.

Applying a MMAS approach to this kind of problem is rather unconventional.
In fact, for the classical PMP, no ACO-based approaches have been published so
far. However, for the 2D-PMP that incorporates complex side constraints that
are cumbersome to express, MMAS could be shown to be an amenable solving
approach, since the specialized pheromone model can guide the ants effectively.
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This demonstrates how problems that are difficult to model can be solved effec-
tively by a learning-based algorithm such as Ant Colony Optimisation.

For future work it appears interesting to study further variants and refine-
ments of 2D-LPFH,’ alternative metaheuristics, as well as A∗ or IDA∗ search and
constraint programming techniques for solving small 2D-PMP instances exactly.
Possibly look into adapting work from [11].
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