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Preface

The large variety of heuristic algorithms for hard optimization problems raises
numerous interesting and challenging issues. Practitioners are confronted with the
burden of selecting the most appropriate method, in many cases through an expensive
algorithm configuration and parameter tuning process, and subject to a steep learning
curve. Scientists seek theoretical insights and demand a sound experimental method-
ology for evaluating algorithms and assessing strengths and weaknesses. A necessary
prerequisite for this effort is a clear separation between the algorithm and the experi-
menter, who, in too many cases, is “in the loop” as a crucial intelligent learning
component. Both issues are related to designing and engineering ways of “learning”
about the performance of different techniques, and ways of using past experience about
the algorithm behavior to improve performance in the future. This is the scope of the
Learning and Intelligent OptimizatioN (LION) conference series.

This volume contains papers presented at the 9th LION (Learning and Intelligent
OptimizatioN) conference held during January 12–15, 2015 in Lille, France.

This meeting, which continues the successful series of LION events (see LION 5 in
Rome–Italy, LION 6 in Paris–France, LION 7 in Catania–Italy, and LION 8 in
Gainesville–USA), is exploring the intersections and uncharted territories between
machine learning, artificial intelligence, mathematical programming, and algorithms for
hard optimization problems. The main purpose of the event is to bring together experts
from these areas to discuss new ideas and methods, challenges and opportunities in
various application areas, general trends, and specific developments. Optimization and
machine learning researchers are now forming their own community and identity. The
International Conference on Learning and Optimization is proud to be the premiere
conference in the area.

A total of 58 papers were submitted to LION 9: 43 submissions of long papers and
15 submissions of short papers. Each manuscript was independently reviewed by at
least three members of the Program Committee. 14 long papers and 17 short papers
were accepted (some long submissions have been asked to be shortened). Hence, the
selection rate for long papers is of 33 %.

During the conference, we were pleased to listen to four plenary speakers:

– David Corne, Heriot-Watt University, UK. Psychic machines: mind-reading with
machine learning

– Alex Freitas, University of Kent, UK. Automating the Design of Decision Tree
Algorithms with Evolutionary Computation

– Daniel Le Berre, Artois University, Lens, France. From Boolean Satisfaction to
Boolean Optimization: Application to Dependency Management

– Remi Munos, Inria Lille Nord Europe, France. The optimistic principle applied to
function optimization and planning



In addition, two tutorials were presented:

– Thomas Stützle, FNRS-IRIDIA, ULB, Belgium. Automatic Algorithm Configu-
ration: From Parameter Tuning to Automatic Design

– Sébastien Verel, Littoral Côte d’Opale University, Calais, France. Fitness land-
scape: the metaphor and beyond

January 2015 Clarisse Dhaenens
Laetitia Jourdan

Marie-Eléonore Marmion
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From Sequential Algorithm Selection
to Parallel Portfolio Selection

M. Lindauer B , Holger H. Hoos , and F. Hutter

1 University of Freiburg, Freiburg Im Breisgau, Germany
{lindauer,fh}@cs.uni-freiburg.de

2 University of British Columbia, Vancouver, Canada
hoos@cs.ubc.ca

Abstract. In view of the increasing importance of hardware parallelism,
a natural extension of per-instance algorithm selection is to select a set of
algorithms to be run in parallel on a given problem instance, based on fea-
tures of that instance. Here, we explore how existing algorithm selection
techniques can be effectively parallelized. To this end, we leverage the
machine learning models used by existing sequential algorithm selectors,
such as 3S , ISAC , SATzilla and ME-ASP, and modify their selection
procedures to produce a ranking of the given candidate algorithms; we
then select the top n algorithms under this ranking to be run in parallel
on n processing units. Furthermore, we adapt the pre-solving schedules
obtained by aspeed to be effective in a parallel setting with different time
budgets for each processing unit. Our empirical results demonstrate that,
using 4 processing units, the best of our methods achieves a 12-fold aver-
age speedup over the best single solver on a broad set of challenging
scenarios from the algorithm selection library.

Keywords: Algorithm selection · Parallel portfolios · Constraint solv-
ing · Answer Set Programming

1 Introduction

For many challenging computational problems, such as SAT, ASP or QBF, there
is no single dominant solver. Instead, the state of the art for these problems con-
sists of a set of non-dominated solvers, each of which performs best on certain
types of problem instances. In this situation, per-instance automated algorithm
selection techniques can be used to leverage the strength of such complemen-
tary sets, or portfolios, of solvers (see, e.g., [16,27]). Fundamentally, for a new
problem instance, these techniques map a set of cheaply computable instance
features to a solver to be run. This mapping is typically learned, using machine
learning techniques, from a representative set of training data. Unfortunately,
even the best per-instance algorithm selection techniques do not always succeed
in identifying the best solver for all problem instances, and their performance
can suffer as a result of such incorrect selections.

©
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Selection

Pre-Solving1: Features f(i)

Instance i

Select Algorithm a∗
1 Solve i with a∗

1

Pre-Solving2: Select Algorithm a∗
2 Solve i with a∗

2

Pre-Solving3: Select Algorithm a∗
3 Solve i with a∗

3

Pre-Solving4: Select Algorithm a∗
4 Solve i with a∗

4

Algorithm
Portfolio A

Fig. 1. Parallel portfolio selection with parallel pre-solving for four processing units.

Considering the fact that increases in computational power are nowadays
primarily achieved through increased hardware parallelism, one approach for
improving instance-based algorithm selection techniques is to select not one, but
multiple solvers from a given portfolio, and to run these in parallel. The key
idea behind this approach is to hedge against incorrect single-solver selections
while exploiting readily available parallelism. There is some evidence in the liter-
ature that manually crafted per-instance parallel portfolio selectors can achieve
impressive performance. For example, the portfolio SAT solver CSHCpar [21,22]
won the open parallel track in the 2013 SAT Competition. The idea of CSHCpar
is simple yet effective: It always runs, independently and in parallel, the par-
allel SAT solver Plingeling with 4 threads, the sequential SAT solver CCASat ,
and three per-instance selected solvers. These per-instance solvers are selected
by three models that are trained on application, hard-combinatorial and ran-
dom SAT instances, respectively. While CSHCpar is particularly designed for
the SAT Competition with its 8 available cores and its three types of instances,
in the following, we investigate a general, fully automated approach for selecting
parallel portfolios without any of the special assumptions underlying CSHCpar .

Given the large variety of existing sequential algorithm selectors, we study
the question how such existing selectors can be effectively parallelized. To this
end, we use the learned models of sequential algorithm selectors and modify the
selection procedure such that we rank algorithms for a given instance and select
the top n algorithms for n processing units (e.g., processors or processor cores).

State-of-the-art algorithm selectors make extensive use of pre-solving sched-
ules, i.e., they run a sequence of solvers prior to per-instance algorithm selection
[14,31]. This makes it possible to solve easy instances quickly, without inducing
the overhead of feature computation. To effectively use parallel resources and
minimize sequential bottlenecks, our approach uses parallel rather than sequen-
tial pre-solving schedules, which can be obtained using parallel algorithm sched-
ule systems, such as, aspeed [8] or 3S [14].

Figure 1 shows the extension of sequential algorithm selection to parallel
portfolio selection with pre-solving schedules. On the first processing unit, we
execute the standard workflow of sequential algorithm selectors: to solve a given
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instance i, we run a pre-solving schedule for a limited amount of time (e.g.,
10% of the overall time budget [14]); if the pre-solving schedule fails to solve i,
we compute instance features f(i) (i.e., numerical properties of the instance), and
then, based on f(i), select the putatively best algorithm for the given instance.
In the parallel workflow, we can spend the time used by feature computation for
longer pre-solving schedules on all threads but the first.

To ensure the scalability of parallel portfolios selection to many algorithms
and processing units, we aim to develop methods that satisfy the following
requirement:

(i) the online selection of parallel portfolios has to be efficient, i.e., polynomial
in the size of the parallel portfolio.

Our general methods for parallel portfolio selection are applicable in any scenario
for which the following assumptions hold:

(ii) the algorithm portfolio consists of deterministic algorithms; and on each
processing unit, we select a different algorithm;

(iii) algorithms running in parallel do not communicate (e.g., no clause sharing
of SAT solvers); and

(iv) we do not have special structural knowledge about the problem domain
(e.g., we do not know that SAT instances can be divided into three types).

Assumption (ii) simplifies the selection of a parallel portfolio because there is no
noise in the training data, and repeated runs of algorithms are not increasing
the chance of solving an instance such that we should select each algorithm at
most once. Since communication between algorithms often results in stochastic
behavior (e.g., nearly all parallel SAT solvers with clause sharing are stochas-
tic), Assumption (iii) helps to satisfy Assumption (ii). Furthermore, if algorithms
would communicate, the performance of an algorithm could not be estimated
independently from the other algorithms in the portfolio. We note that Assump-
tion (ii) does not allow the selection of parallel algorithms, e.g., the parallel SAT
solver Plingeling . Last but not least, Assumption (iv) states that, in contrast to
the CSHCpar solver, we have no structural knowledge about the problem domain,
since such knowledge is only available for specific problems.

Given Assumption (ii), our approach cannot utilize more processing units
than there are algorithms in our portfolio (4 to 31 algorithms in our experiments).
Therefore, the approaches we consider focus on parallelization with a relatively
modest number of processing units, as found in current off-the-shelf computing
hardware. Other approaches exist for scaling to higher degrees of parallelism
(see, e.g., [3]).

In the following, we will first discuss related work (Sect. 2). Next, in Sect. 3,
we extend well-known algorithm selection approaches from SATzilla [31], ME-
ASP [23], ISAC [15], and 3S [14] to parallel portfolio selection respecting our
requirements. Then, in Sect. 4, we adapt the algorithm (pre-solving) schedules of
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aspeed [8] to the setting of Fig. 1, with different time budgets for each process-
ing unit. Finally, we present an evaluation of our per-instance parallel portfolios
on scenarios of the algorithm selection library , which allows a fair and thor-
ough evaluation on a set of 12 different constraint solving domains from SAT,
MAXSAT, CSP, QBF, and ASP, and pre-marshalling.

2 Related Work

Our work draws on two lines of research reaching back to John Rice’s semi-
nal work on algorithm selection [27] and the work by Huberman et al. [10] on
parallel algorithm portfolios. It addresses the dynamic resource allocation chal-
lenge, which has been identified as one of the seven challenges in parallel SAT
solving [7].

Recently, the algorithm selection approach of CSHC [21], which is based
on cost-sensitive hierarchical clustering, was extended to selection of parallel
portfolios in CSHCpar [22] . This approach differs from ours in that it relies
on explicitly identified, distinct classes of problem instances (as is the case with
the different tracks of the SAT Competition) and provides no obvious way of
adjusting the number of processing units.

The extension of 3S [14] to parallel portfolio selection, dubbed 3Spar [20]
(see Footnote 2), selects a parallel portfolio using k-NN to find the k most
similar instances in instance feature space. Using integer linear programming
(ILP), 3Spar constructs a static pre-solving schedule offline and a per-instance
parallel algorithm schedule online, based on training data of the k most similar
instances. The ILP problem that needs to be solved for every instance is NP -hard
and its time complexity grows with the number of parallel processing units and
number of available solvers. Unlike our approach, during the feature computation
phase, 3Spar runs in a purely sequential manner. Since feature computation can
require a considerable amount of time (e.g., more than 100 s on industrial SAT
instances), this can leave important performance potential untapped.

ISAC [15] combines algorithm configuration and algorithm selection by (i)
clustering the training instances in the feature space and (ii) using an algorithm
configuration procedure [2,12] to optimize a parametric solver on each cluster.
For a new problem instance i to be solved, ISAC selects the configuration which
was determined for the cluster closest to i. The most recent ISAC version, ISAC
2.0 , performs only algorithm selection and uses the best of a fixed set of algo-
rithms in Step (ii); it also provides a method for selecting parallel portfolios for
each cluster of instances by searching over all

(|A|
n

)
combinations of |A| algo-

rithms and n processing units. As this approach quickly becomes infeasible for
growing |A| and n, Yuri Malitsky, author of ISAC 2.0, recommends to limit its
use to at most 4 processing units (README file).

1 aslib.net.
2 Unfortunately, no implementation of CSHCpar and 3Spar is publicly available.
3 https://sites.google.com/site/yurimalitsky/downloads.

http://aslib.net
https://sites.google.com/site/yurimalitsky/downloads
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The aspeed system [8] solves a similar scheduling problem as 3Spar , but
generates a static algorithm schedule during an off-line training phase, thus
avoiding overhead in the solving phase. Unlike 3Spar , aspeed does not support
including parallel solvers in the algorithm schedule, and the algorithm schedule
is static and not per-instance selected. For this reason, aspeed is not directly
applicable to per-instance selection of parallel portfolios; however, our approach
uses it to effectively compute parallel pre-solving schedules.

RSR-WG [34] combines a case-based-reasoning approach from CP-Hydra [24]
with greedy construction of parallel portfolio schedules via GASS [28] for CSPs.
Since the schedules are constructed on a per-instance basis, RSR-WG relies on
instance features. In the first step, a schedule is greedily constructed to max-
imize the number of instances solved within a given cutoff time, and in the
second step, the components of the schedule are distributed over the available
processing units. In contrast to our approach, RSR-WG optimizes the number of
timeouts and is not directly applicable to arbitrary performance metrics. Since
the schedules are optimized online on a per-instance base, RSR-WG has to solve
an NP -hard problem for each instance, which is done heuristically.

Finally, there is some work on parallel portfolios with dynamically adjusted
timeshares (see e.g., [5]). Such approaches could eventually be used to dynam-
ically adjust a portfolio determined by any of the methods we study in the
following.

3 Selection of Parallel Portfolios

In this section, we show how to extend existing sequential algorithm selection
approaches to handle parallel portfolio selection. Formally, the selection of par-
allel portfolios is an extension of the per-instance algorithm selection problem,
in which not only one algorithm is selected, but rather a set of algorithms to be
run in parallel.

Definition 1. A per-instance parallel portfolio selection problem can be defined
by a 5-tuple 〈I,D, A, U,m〉, where
– I is a set of instances of a problem,
– D is a probability distribution over I,
– A is a set of algorithms for instances in I,
– U is a set of parallel processing units available, and
– m : I × A → R is a performance metric measuring the performance of algo-

rithm a ∈ A on instance i ∈ I.

A solution of this problem is a mapping φu : I → A for each processing unit
u ∈ U ; we refer to such a mapping as a parallel selection portfolio. The perfor-
mance metric we aim to minimize across the possible parallel selection portfolios
is Ei∼D minu∈U m(i, φu(i)).
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Since we assume that the algorithms do not communicate with each other
(Assumption (iii)), the performance of a parallel selection portfolio is the perfor-
mance of the best algorithm in the selected portfolio. Therefore, a perfect parallel
selection portfolio would, for each instance, select a set of algorithms contain-
ing the best algorithm for that instance. Ultimately, we would therefore like to
model the per-instance correlations between solvers to select complementary sets
of solvers for each instance.

In this work, however, we pursue a different approach, namely that of generi-
cally extending the various existing sequential selection strategies to the parallel
selection setting, with the goal of assessing the merit of this overall approach
and of empirically studying which sequential selection strategies lend themselves
well to this setting. Since these existing sequential selection strategies do not
model per-instance correlation between the algorithms, we restrict ourselves to
constructing the portfolio in a greedy fashion, choosing the n solvers individually
predicted to be best for a parallel portfolio on n processing units. Such a ranking
of algorithms is admitted by most algorithm selection approaches [17].

Our approach requires, for each sequential algorithm selection mechanism
under consideration, a scoring function

s : I × A → R (1)

that ranks the candidate algorithms for a given instance to be solved, such that
the putatively best algorithm receives the lowest score value, the second best the
second lowest score, etc. Then we simply sort the algorithms in A based on their
scorses (breaking ties arbitrarily), using time O(|A| log |A|). Thus, if we can com-
pute the scores efficiently, we obtain a computationally efficient approach to paral-
lel algorithm selection, satisfying Requirement (i). In the following, we show that
we can indeed efficiently compute such scores for five prominent algorithm selec-
tion approaches.

Performance-Based Nearest Neighbor (PNN). The algorithm selection
approach in 3S [21] in its simplest form uses a k-nearest neighbour approach.
For a new instance i with features f(i), it finds the k nearest training instances
Ik(i) in the feature space F and selects the algorithm that has the best training
performance on them. Formally, given a performance metric m : I × A → R,
we define mk(i, a) =

∑
i′∈Ik i m(i′, a) and select algorithm arg mina∈A mk(i, a).

To extend this approach to parallel portfolios, we determine the same k
nearest training instances Ik(i) and simply select the n algorithms with the best
performance for Ik. Formally, our scoring function in this case is simply:

sPNN (i, a) = mk(i, a). (2)

In terms of complexity, identifying the k nearest instances costs time O(#f · |I| ·
log |I|), with #f denoting the number of used instance features; and averaging
the performance values over the k instances costs time O(k · |A|).
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Distance-Based Nearest Neighbor (DNN). ME-ASP [23] implements an
interface for different machine learning approaches used in its selection frame-
work, but its released version uses a simple nearest neighbour approach with
neighbourhood size 1, which also worked best empirically [23]. At training time,
this approach memorizes the best algorithm a∗(i′) on each training instance
i′ ∈ I. For a new instance i, it finds the nearest training instance i′ in the
feature space and selects the algorithm a∗(i′) associated with that instance.

To extend this approach to parallel portfolios, for a new test instance i, we
score each algorithm a by the minimum of the distances between i and any
training instance associated with a. Formally, letting d(f(i), f(i′)) denote the
distance in feature space between instance i and i′, we have the following scoring
function:

sDNN (i, a) = min{d(f(i), f(i′)) | i′ ∈ I ∧ a∗(i′) = a}. (3)

If {i′ ∈ I | a∗(i′) = a} is empty (because algorithm a was never the best
algorithm on an instance) then sDNN (i, a) = ∞ for all instances i. Since we
memorize the best algorithm for each instance in the training phase, the time
complexity of this method is dominated by the cost of computing the distance of
each training instance to the test instance, O(|I| · #f), where #f is the number
of features.

Clustering. The selection part of ISAC [15] uses a technique similar to ME-
ASP ’s distance-based NN approach, with the difference that it operates on clus-
ters of training instances instead of on single instances. Specifically, ISAC clusters
the training instances, memorizing the cluster centers Z (in the feature space)
and the best algorithms â(z) for each cluster z ∈ Z. For a new instance, similar
to ME-ASP , it finds the nearest cluster z in the feature space and selects the
algorithm associated with z.

To extend this approach to parallel portfolios, for a new test instance i,
we score each algorithm a by the minimum of the distances between i and any
cluster associated with a. Formally, using d(f(i), z) to denote the distance in
feature space between instance i and cluster center z, we have the following
scoring function:

sClu(i, a) = min{d(f(i), z) | z ∈ Z ∧ â(z) = a}. (4)

As for DNN, if {z ∈ Z | â(z) = a} is empty (because algorithm a was not the
best algorithm on any cluster) then sClu(i, a) = ∞ for all instances i. The time
complexity is as for DNN, replacing the number of training instances |I| with
the number of clusters |Z|.

Regression. The first version of SATzilla [31] used a regression approach,
which, for each a ∈ A, learns a regression model ra : F → R to predict per-
formance on new instances. For a new instance i with features f(i), it selected
the algorithm with the best predicted performance, i.e., arg mina∈A ra(f(i)).
4 In its original version, ISAC is a combination of algorithm configuration and selection,

but only the selection approach was used in later publications.
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This approach trivially extends to parallel portfolios; we simply use scoring
function

sReg(i, a) = ra(f(i)) (5)

to select the n algorithms predicted to perform best. The complexity of model
evaluations differs across models, but it is a polynomial for all models in common
use; we denote this polynomial by Preg. Since we need to evaluate one model per
algorithm, the time complexity to select a parallel portfolio is then O(Preg · |A|).
Pairwise Voting. The most recent SATzilla version [32] uses cost-sensitive
random forest classification to learn for each pair of algorithms a �= a ∈ A
which of them performs better for a given instance; each such classifier ca1,a2 :
F → {0, 1} votes for a or a to perform better, and SATzilla then selects
the algorithms with the most votes from all pairwise comparisons. Formally, let
v(i, a) =

∑
a′∈A\{a} ca,a′(f(i′)) denote the sum of votes algorithm a receives for

instance i; then, SATzilla selects arg maxa∈A v(i, a).
To extend this approach to parallel portfolios, we simply select the n algo-

rithms with the most votes by defining our scoring function to be minimized as:

sV ote(i, a) = −v(i, a). (6)

As for regression models, the time complexity for evaluating a learned classifier
differs across classifier types, but it is polynomial for all commonly-used types;
we denote this polynomial function by Pclass. Since we need to evaluate pairwise
classifiers for all algorithm pairs, the time complexity to select a parallel portfolio
is in O(Pclass · |A| ).

4 Parallel Pre-Solving Schedules

State-of-the-art algorithm selectors commonly make use of algorithm schedules
for pre-solving, i.e., they run a sequence of solvers prior to per-instance algorithm
selection [14,31]. If one of the pre-solvers already solves a given instance, we do
not need to compute instance features for the algorithm selection phase and save
the time induced by the feature computation.

Malitsky et al. [21] and Hoos et al. [8] have already presented how to find
timeout-optimal parallel algorithm schedules. In their settings, the schedules on
all processing units get the same amount of runtime. However, as shown in Fig. 1,
the computation of instance features is limited to one processing unit, and we
can run longer pre-solving schedules on all other units. The feature computa-
tion time differs from instance to instance, but since we compute our presolving
schedule offline, we require a constant estimate of the feature computation run-
time, FeatT . To err on the pessismistic side, in each algorithm selection scenario
we estimate FeatT as the maximal feature computation time observed across
the scenario’s training instances.

We added a constraint to the flexible and declarative Answer Set Program-
ming (ASP [4]) encoding of aspeed [8] to ensure that the pre-solving schedule
5 Since 3S [21] is not publicly available, using it was not an option.
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on the first core is limited by a maximal pre-solving time budget, PreT . All pre-
solving schedules on the other processing units are given an additional budget
of FeatT to ensure we use them while the first core computes features. Please
refer to Listing 1.1 for our ASP encoding.

:− not [ s l i c e (1 ,A,T) = T ] PreT .
:− not [ s l i c e (U,A,T) = T : U != 1 ] PreT+FeatT , un i t (U) .

Listing 1.1. ASP constraints in the language of the ASP grounder gringo [6].
slice(U,A,T) denotes that algorithm A has a runtime slice T on processing unit U. The
first integrity contraint limits the sum of runtimes T of all algorithms A on processing
unit 1 by the maximal pre-solving runtime PreT (an external constant). The second
integrity constraint does the same for all other units, but extends the maximal pre-
solving runtime by the feature computation time FeatT (external constant).

The problem of optimizing an algorithm schedule is NP -hard. However, the
empirical results of Hoos et al. [8] indicated that the problem of optimizing
parallel schedules gets easier with more processing units. In contrast, ISAC has
to solve a problem offline that gets more complex with more processing units
and is not applicable with more than 4 units.

5 Empirical Evaluation

We now turn to an empirical assessment of our parallel portfolio selection
approaches on twelve algorithm selection scenarios that make up the Algorithm
Selection Library (ASlib). These scenarios involve a wide range of hard com-
binatorial problems; each of them includes the performance data of a range
of solvers for a set of instances, instance features organized in feature groups
(we use the default feature groups), and associated costs for these features (see
Table 1). We refer to the ASlib website (aslib.net) for the details on all scenarios;
we chose ASlib as the basis for our evaluation since this allows us to compare
our approach in a fair and uniform way against other algorithm selection meth-
ods. Since all experiments are based on the data in the scenarios, we did not
need to run any of the algorithms in the portfolio. This ensures repeatability of
our experiments, but it also means that resource contention between algorithms
running in parallel are not reflected in our results. Depending on the hardware
used (e.g., multi-core vs. multi-processor systems), performance may be reduced
when running too many algorithms in parallel.

6 Since the CSP-2010 scenario consists of only 2 algorithms, it already admits a perfect
portfolio using two processing units. Therefore, we excluded it from our experiments.

7 Instance features typically consist of cheap syntactic features, such as number of vari-
ables and number of clauses, and probing features, i.e., extracting runtime statistics
by running an algorithm for a short time on a given instance.

http://aslib.net
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Table 1. The ASlib algorithm selection scenarios – information on the number of
instances |I|, number of unsolvable instances |U | (U ⊂ I), number of algorithms |A|,
number of features #f , number of feature groups #fg, the average feature computation
cost of the used default features ∅tf , and runtime cutoff tc

Scenario |I| |U | |A| #f #fg ∅tf tc Ref

ASP-POTASSCO 1294 82 11 138 4 1.3 600 [9]

MAXSAT12-PMS 876 129 6 37 1 0.1 2100 [1,13]

PREMARSHALLING 527 0 4 16 1 0 3600 [29]

PROTEUS-2014 4021 428 22 198 4 6.4 3600 [11]

QBF-2011 1368 314 5 46 1 0 3600 [18,26]

SAT11-HAND 296 77 15 115 10 41.2 5000 [13,32]

SAT11-INDU 300 47 18 115 10 135.3 5000 [13,32]

SAT11-RAND 600 108 9 115 10 22.0 5000 [13,32]

SAT12-ALL 1614 20 31 115 10 40.5 1200 [13,33]

SAT12-HAND 767 229 31 115 10 39.0 1200 [13,33]

SAT12-INDU 1167 209 31 115 10 80.9 1200 [13,33]

SAT12-RAND 1362 322 31 115 10 9.0 1200 [13,33]

Setup. We implemented our parallel selection approach in the open-source
and flexible algorithm selection framework of claspfolio 2 (2.1.0; using scikit-
learn 0.14.1 [25]). For the choice of machine learning models, claspfolio 2
follows the implementations of well-known algorithm selectors; we used ran-
dom forests for pairwise voting (SATzilla11 [32]), ridge regression for regression
(SATzilla’09 [31]) and k-means for clustering (ISAC [15]).

Within claspfolio 2 , we use aspeed [8] with the ASP tools gringo (3.0.5) and
clasp (2.2) [6] with a time budget of at most 300 CPU seconds to effectively
compute pre-solving schedules. Our pre-solving schedules are limited to at most
256 s on the first processing unit and an additional 10% of the runtime cutoff
on the other processing units (10% of the runtime cutoff is the maximal feature
computation runtime - parameter of claspfolio 2 ; the runtime cutoff differs across
the ASlib scenarios).

Since speedup is a commonly used performance metric in parallelization and
PAR10 (penalized average runtime, counting each timeout as 10 times the runtime
cutoff) is a commonly used performance metric in algorithm selection, we assessed
our approaches based on PAR10-speedups over the (sequential) single best algo-
rithm (SB) in the given algorithm portfolios. We note that the possible speedup is
bounded from above by the performance of a perfect algorithm selector (the vir-

8 www.cs.uni-potsdam.de/claspfolio/.
9 The original ISAC [15] uses g-means, which automatically determines the number of

clusters. In preliminary experiments, we observed that the square root of the number
of instances gives a good upper bound for the number of clusters; therefore, we did
not used g-means but k-means with this cluster bound.

www.cs.uni-potsdam.de/claspfolio/
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tual best solver VBS ) that always selects the best algorithm for a given instance
without inducing feature computation costs. We used 10-fold cross validation (i.e.,
10 different training and test splits) to obtain an unbiased performance estimate
for claspfolio 2 , as given in ASlib. To avoid artificially inflating PAR10 scores,
we removed from the test sets all instances that could be solved neither by any of
the candidate algorithms nor during feature computation. Furthermore, to ver-
ify which approaches performed statistically indistinguishable from the best app-
roach, we used permutation tests with 100 000 permutations at significance level
α = 0.05.

Table 2. Speedup on PAR10 (wallclock) in comparison to SB with one processing
unit (U). Entries for which the number of processing units exceed the number of can-
didate algorithms are marked ‘NA’. Entries shown in bold-face are statistically indis-
tinguishable from the best speedups obtained for the respective scenario and number
of processing units (according to a permutation test with 100 000 permutations and
α = 0.05). If more processing are available than algorithms, we run all algorithms and
achieve a perfect VBS score (number in parentheses)

Comparison of Approaches Within Claspfolio 2. In Table 2, we report
performance results for the approaches presented in Sect. 3 as implemented in
claspfolio 2 , for 1 to 8 processing units (U). For 4 processing units, the speedup
over the single best algorithm is between 2.6 (SAT11-INDU with PNN) and
93.7 (QBF-2011 with pairwise voting). The best parallelization approach dif-
fered between the scenarios, which is not too surprising since it is known that
there is no single dominant approach for sequential per-instance algorithm selec-
tion. We note that the recent work on autofolio [19] proposes using algorithm
configuration to determine a well-performing algorithm selection approach and
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its parameters for a given scenario. On average, DNN and pairwise voting per-
formed best across our scenarios; for 4 processing units, both approaches achieved
performance levels that were was not significantly worse than the best approach
on 10 out of 12 scenarios. The geometric average speedup was 11.89 for DNN
and 10.90 for pairwise voting, respectively. In contrast, on one processing unit,
DNN performed best on only 3 scenarios and pairwise voting on 9 scenarios.
We note that performance differences between the approaches decreased as the
number of processing units increased: all approaches got closer to the optimal
speedup achieved when running all candidate algorithms in parallel.

Overall, our approaches and also the VBS do not scale as well on some of
the SAT scenarios as they do on the other scenarios (e.g., the maximal VBS
speedup is 95.6 on QBF-2011 but only 12.1 on SAT12-RAND). We speculate
that this is due to (i) the relatively large number of SAT solvers (which makes
it harder to perform as well as the VBS ) and (ii) the relatively low performance
correlation between some of those solvers.

(a) With pre-solving (b) Without pre-solving

Fig. 2. Heatmap for PAR10 speedups (wallclock) against sequential SB on 4 processing
units. A value is printed in bold-face if a statistical test (i.e., permutation test with
100 000 and α = 0.05) cannot find evidence that it is significantly lower than that of
the best approach for a given number of threads. The last row shows how often an
approach was en par with the best.

As can be seen in Fig. 2, using pre-solving schedules improved the perfor-
mance on 4 out of our 5 approaches on 4 processing units. Surprisingly, the
distance-based nearest neighbor approach (DNN) performed slightly better with-
out pre-solving schedules, which we believe may be caused by over-fitting to the
training data.

Comparison with Other Systems. While the previous experiment fixed
all design decisions except the selection strategy, we now compare the results
10 We note that we have to use a geometric average instead of an arithmetic average,

because we aggregate over speedup factors. This can be seen when considering a case
with speedups of 2 and 0.5, where the arithmetic average gives a misleading 1.25.
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(a) |U | = 1 (b) |U | = 4

Fig. 3. Comparison of parallelization approaches of different algorithm selection mech-
anisms on 1 and 4 processing units; we can’t assess statistical difference since ISAC
only outputs a single performance value.

for our two best results (DNN and pairwise-voting) with three other strate-
gies: SATzilla’11-like, a variant of our pairwise-voting approach in which we
restrict the number of presolvers and their time limit to resemble more closely
the strategy used in SATzilla 2011 [32]; the aspeed system, which does not per-
form per-instance selection, but produces static parallel schedules and is used
for pre-solver scheduling in claspfolio 2 ; and the ISAC system, for which we
have written a converter from the ASlib format into its native input format.
Since ISAC determines its cross-validation folds internally and only outputs a
single performance number, we cannot perform statistical tests for this experi-
ment and only report the number of times each method performed best, as well
as the methods’ (geometric) mean speedups.

Figure 3 shows the performance of these systems on 1 and 4 processing units.
In the sequential case, SATzilla’11-like performed best overall (best on 5 of
our 12 benchmarks; average speedup 3.80), followed by pairwise voting (best on 3
benchmarks; average speedup of 3.49), and aspeed (best on 4 benchmarks; aver-
age speedup 2.34). Using 4 processing units, while SATzilla’11-like still per-
formed best (best on 5 benchmarks; average speedup 12.27), it was now closely
followed by the other two approaches: DNN (also best on 5 benchmarks, average
speedup 11.89) and ISAC (best on 4 benchmarks, average speedup 10.72).

We conclude that, while SATzilla’11-like yields stable performance, the
performance of different methods scales differently as the number of processing
units grows. We also note that, going up to 4 processing units, the best aver-
age speedups obtained were roughly linear in the number of units. While ISAC
should not be used with more than 4 processing units (due to its exponential
time requirements in the number of units), Table 2 shows that our methods
(especially DNN) even improved further based on 8 processing units, without
increasing the effort to train or use them.
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6 Conclusions

Motivated by the increasing importance of hardware parallelism, in this work,
we considered the problem of selecting a parallel portfolio of solvers based on
features of a problem instance to be solved. In particular, we investigated generic
ways of extending well-known sequential per-instance algorithm selection meth-
ods to produce parallel portfolios. Since current algorithm selectors do not learn
or assess per-instance correlation in the performance of candidate solvers, we sim-
ply use the scoring (or ranking) function underlying all algorithm selectors to
select the n algorithms scored best for a parallel portfolio. A future research
goal would be to develop a method to consider the per-instance performance
correlation between candidate solvers, which should permit the construction of
even better per-instance parallel portfolios.

Our extensive empirical study demonstrated that all methods we considered
performed quite well on the large range of scenarios from the algorithm selection
library, with speedups from 2.6 to 93.7 on 4 processing units in comparison to
running only the single best available algorithm sequentially. Overall, we found
our distance-based nearest neighbor (DNN) and pairwise-voting approaches to
perform better than other approaches.

However, as for any algorithm selection approach, the performance of our
parallel portfolio selectors is bounded by that of an oracle selector, i.e., a per-
fect algorithm selector that always selects the single best algorithm for a given
instance. We see two ways to overcome this obstacle, (i) use of per-instance algo-
rithm configuration [15,30] to improve the performance of the candidate set of
algorithms and hence of the oracle; and (ii) to permit communication between
the algorithms in the parallel portfolio (e.g., clause sharing between SAT solvers).
Both avenues can potentially be pursued by extending the techniques investi-
gated here.
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Abstract. We present an algorithm selection benchmark based on
optimal search algorithms for solving the container pre-marshalling prob-
lem (CPMP), an NP-hard problem from the field of container terminal
optimization. Novel features are introduced and then systematically
expanded through the recently proposed approach of latent feature analy-
sis. The CPMP benchmark is interesting, as it involves a homogeneous set
of parameterized algorithms that nonetheless result in a diverse range of
performances. We present computational results using a state-of-the-art
portfolio technique, thus providing a baseline for the benchmark.

1 Introduction

The container pre-marshalling problem (CPMP) is a well-known NP-hard prob-
lem in the container terminals and stacking literature [2,7,10], first introduced
in [6]. The CPMP deals with the sorting of containers in a set of stacks (called
a bay) of intermodal containers based on their exit times from the stacks, such
that containers that must leave the stacks first are placed on top of containers
that must leave later. This prevents mis-overlaid containers from blocking the
timely exit of other containers. The goal of the CPMP is to find the minimal
number of container movements necessary to ensure that all of the stacks are
sorted by the exit time of each container without exceeding the maximum height
of each stack. Solving the CPMP assists container terminals in reducing delays
and increasing the efficiency of their operations.

A recent approach for solving the CPMP to optimality [11] presents two state-
of-the-art approaches, based on A* and IDA*. We use parameterized versions
of these approaches to form a benchmark for algorithm selection. We introduce
22 novel features to describe CPMP instances and show how the approach of
latent feature analysis (LFA) [8] can assist domain experts in developing useful
features for algorithm selection approaches. Finally, we augment the existing
CPMP instances with extra instances from a new instance generator .

1 An extended version of this paper is available at https://bitbucket.org/eusorpb/
cpmp-as/downloads/asl pm extended.pdf.

©
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Fig. 1. An example solution to the CPMP with mis-overlays highlighted (Reproduced
from [11]).

2 The Container Pre-marshalling Problem

Given an initial layout of a bay with a fixed number of stacks and tiers (stack
height), the goal of the CPMP is to find the minimal number of container move-
ments (or rehandles) necessary to eliminate all mis-overlays in the bay. Every con-
tainer is assigned a group that indicates when it must leave the bay. A mis-overlaid
container is defined as a container with a group that is higher than the group of
any container underneath it, or a container above a mis-overlaid container.

Consider the simple example of Fig. 1, which shows a bay composed of three
stacks of containers in which containers can be stacked at most four tiers high.
Each container is represented by a box with its corresponding group . This is not
an ideal layout as the containers with groups 2, 4 and 5 will need to be relocated
in order to retrieve the containers with higher groups (1 and 3). That is, contain-
ers with groups 2, 4 and 5 are mis-overlaid. Consider a container movement (f, t)
defining the relocation of the container on top of the stack f to the top position of
the stack t. The containers in the initial layout of Fig. 1 can reach the final layout
(d) with three relocation moves: (2, 3) reaching layout (b), (2, 3) reaching layout
(c) and (1, 2) reaching layout (d) where no mis-overlays occur.

Pre-marshalling is important both in terms of operational and tactical goals
at a container terminal. In particular, effective pre-marshalling of containers can
help reduce delays moving containers from the terminal yard onto vessels, as
well as from the yard onto trucks or trains. We refer to [11] for more information
and a discussion of related work.

3 Latent Feature Analysis (LFA)

Given a set of solvers for a problem and a set of instance, algorithm selection
is the study of finding the best performing solver for each instance. There are a
variety of approaches that can be used to make this decision, including machine
learning techniques as well as scheduling algorithms. For an overview of this area,
2 We note that multiple containers may have the same group, but in order to make

containers easily identifiable, in this example we have assigned a different group to
each container.
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we refer the reader to a recent survey [5]. Although there are many algorithm
selection approaches, they are not the only important component in a selection
approach. The quality of features in differentiating instances is critical to the
success or failure of any algorithm selection strategy.

Features are normally created based on the knowledge of domain experts.
In [8], the authors theorize how latent features gathered from a matrix decom-
position can systematically help domain experts augment a set of features with
more effective ones. Specifically, [8] shows that latent features can be determined
using an existing set of structural features. Features that assist algorithm selec-
tion techniques in making correct predictions can then be identified, thus guiding
a domain expert towards the features that work best on his or her problem.

The idea proposed by [8] uses singular value decomposition (SVD) to find the
latent features that best describe the changes in the actual performance of solvers
on instances. SVD is a method for identifying and ordering the dimensions along
which data points exhibit the most variation, which is mathematically represented
by the following equation: M = UΣV T , where M is the m × n matrix of solver
performance. In our case, we consider an M where there are m instances each
described by the performance of n solvers. This means that the m×n orthonormal
columns of U can be interpreted as a latent feature that describes that instance.
The columns of the V T matrix refer to each solver, with each row presenting how
active, or important a particular feature is for that solver.

If for a given instance it were possible to predict the latent features, using
this decomposition we could multiply the feature vectors by the existing Σ and
V T matrices to get back the performance of each solver. While this is of course
impossible in practice, we can use an existing set of structural features to pre-
dict these latent features. By then studying these predictions, we can identify
exactly which latent features are currently difficult to predict accurately and
even identify which latent feature we should focus on getting right to maximize
the quality of the resulting prediction.

It is assumed that if we are unable to accurately predict a latent feature using
our existing features, then our feature set is missing something critical about the
underlying structure of an instance. By computing the correct value for this latent
feature and sorting all training instances based on it, we assume that there must
be something different for the instances where the latent feature value is large
and those instances where the value is small. It is then up to a domain expert to
try to analyze this difference and propose a new, expanded set of features for the
algorithm selection approach to take advantage of.

4 Algorithm Selection Benchmark

We now describe our benchmark in detail . Four optimal parameterizations of the
A* and IDA* approaches in [11] form the basis of the benchmark. Due to space
limits, we refer interested readers to [11] for the algorithm and heuristic details.
3 This benchmark is available in the algorithm selection library (www.aslib.net) under

the name “PREMARSHALLING-ASTAR-2013”.

www.aslib.net
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Fig. 2. Features for the CPMP. Fig. 3. Instances used.

An interesting aspect of the pre-marshalling benchmark in relation to other bench-
marks, such as those based on SAT, CSP, QBF, etc. is that the portfolio of
algorithms is not particularly diverse (very similar algorithm parameterizations),
but performance variations are nonetheless significant.

We create a set of training and test instances out of existing pre-marshalling
instances from [1] (BF) and from [3] (CV) as well as instances we generated.
We filter out instances where all algorithms timeout/memout or are too easy.
An overview is provided in Fig. 3. Our BF-generated instances are not exactly
the same as in [1] because their instance generation is not completely described.

The features used in our dataset are given in Fig. 2, split into three categories.
Features 1 through 16 were designed before performing latent feature analysis.
Features 17 through 20 were created based on our first iteration of latent feature
analysis, and features 21 and 22 using our second iteration. All of the features can
be computed quickly. Our feature generation code (and instance generator) is
available at https://bitbucket.org/eusorpb/cpmp-as. We note that other features
are certainly possible, such as probing features.

Original features are created in the standard way for algorithm selection
benchmarks, based on domain knowledge. The first 5 features address the prob-
lem size and density of containers. Feature 6 counts the number of mis-overlaid
containers, a naive lower bound to the problem, whereas Feature 7 counts how
many stacks contain mis-overlaid containers. Feature 8 provides the lower bound
from [1], analyzing indirect container movements in addition to the mis-overlays
present in feature 7. Features 9 through 12 offer information on how many con-
tainers belong to each group. Features 12 through 15 attempt to uncover the
structure of the groups of the top non-mis-overlaid container on each stack.

LFA features are constructed based on the suggestions of the latent fea-
tures. Feature 17 is the density of containers on the “left” side of the instance.
We note that this feature is likely “overtuned” to the algorithms in our bench-
mark. Feature 18 measures whether containers with high group values are on high

https://bitbucket.org/eusorpb/cpmp-as
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or low tiers by multiplying the tier of a container by its group, summing these
values together and dividing by the maximum this value could take (namely if
the highest group container was in each slot). Feature 19 measures the L1 (man-
hattan) distance from the top left of a problem to each container in the latest
exit time, averaging these distances if there are multiple containers in the latest
exit group. The final feature from iteration 1 computes the percentage of empty
space in the instance in which an area of contiguous empty space includes at
least one empty stack. Features 21 and 22 come from LFA iteration 2. Feature
21 counts how many stacks with more than two containers are mis-overlaid, and
Feature 22 counts “low” (≤max -group/4) valued containers on the top of stacks.

5 Computational Results

We evaluate our features using the cost-sensitive hierarchical clustering (CSHC)
approach from [9]. Table 1 provides the performances of a CSHC based portfolio
when trained on the three datasets versus the best single solver (BSS) and the
virtual best solver (VBS), which is a portfolio that always picks the correct solver.
CSHC using just the initial arbitrary features already performs significantly
better than the BSS, indicating even the original features have descriptive value.

When a CSHC portfolio is trained on the first iteration of features, the per-
formance improves not only in the number of instances solved, but also on the
average time taken to solve each instance. This shows that by utilizing the latent
feature analysis, a researcher is able to develop a richer set of features to describe
the instances. Furthermore, the process can be repeated, as is evidenced by the
performance of CSHC on the second iteration of features. Note that the over-
all performance is again improved not only in the number of instances solved,
but the time taken to solve them on average. Thus, multiple iterations of the
latent feature analysis process can lead to even better features, although there
are clearly diminishing returns.

Table 1. Performance of CSHC trained on the three feature sets.

Solver Avg. PAR-10 Solved

BSS 78.6 5,923 458

Original Features 51.6 3,469 495

LFA Iteration 1 Features 46.6 2,741 506

LFA Iteration 2 Features 45.4 2,543 509

VBS 12.8 12.8 547

4 All runtime data was generated on an AMD Opteron 2425 HE processor running at
2.1 GHz with a 1 h timeout.
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6 Conclusion

We presented an algorithm selection benchmark for the container pre-marshalling
problem, a well-known problem from the container terminals literature. Our
benchmark includes novel features and instances. We further showed that latent
feature analysis can help in augmenting problem features. We hope that this
benchmark will help further algorithm selection research on real-world problems.
For future work, the latent feature analysis process could be more formalized.
A number of open questions remain, such as what criteria to use to gauge the per-
formance of a new feature during a single iteration of the latent feature analysis
process. Further challenges are to determine the number of iterations to perform
and what kind of performance/man-hour trade-off exists for each iteration past
the first.
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1 Introduction

The basic idea of algorithm portfolio [1] is to create a mixture of diverse algo-
rithms that complement each other’s strength so as to solve a diverse set of
problem instances. Algorithm portfolios have taken on a new and practical mean-
ing today with the wide availability of multi-core processors: from an enterprise
perspective, the interest is to make best use of parallel machines within the organi-
zation by running different algorithms simultaneously on different cores to solve a
given problem instance. Parallel execution of a portfolio of algorithms as suggested
by [2,3] a number of years ago has thus become a practical computing paradigm.

However, algorithm portfolios to date has remained largely a research pursuit
among algorithm designers. For algorithm portfolios to become truly usable by
enterprises, we need to enable an end-user to easily obtain an algorithm portfolio
when he/she provides a raw set of algorithms and has at his/her disposal a
K-core machine. This raises an interesting research challenge: given n target
algorithms—some parameter-less and some parameterized—as well as a reference
set of problem instances (hereinafter will be referred to as the training instances),
how do we automatically construct an algorithm portfolio with a maximum size
of K such that together the algorithms in the portfolio are capable of solving the
problem instances in the reference set effectively when executed in parallel? Our
goal is to generate a portfolio of k ≤ K algorithms that are sufficiently diverse
from each other and altogether solve the reference instances effectively.

Several software libraries or frameworks have been already introduced in the
literature. Hydra [4] is a tuning-based portfolio building strategy that allows
incorporating existing parameter tuning and algorithm portfolio techniques.
ISAC [5] constructs parameter tuning-based portfolios via instance clustering.
SufTra [6] employ problem-independent features to perform instance-specific
tuning. LLAMA [7] is an algorithm portfolio selection toolkit implemented in
R. HyFlex [8] is a hyper-heuristic framework with iterative heuristic selection
methods to solve optimisation problems in a problem-independent manner. All of
these frameworks to our knowledge are targeted for use by algorithm developers
and not for an end-user in mind.
1 https://bitbucket.org/lkotthoff/llama.
2 http://www.hyflex.org/.

©
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We present in this paper the ADVISER, an automated Algorithm portfolio
DeVISER service that combines ideas from algorithm configuration [9], algo-
rithm selection [10], and portfolio generation within a single framework. To max-
imize usability by an end-user, ADVISER is a web interface system. Providing
such a system over the web is inspired from a another web-based platform ded-
icated to algorithm configuration, called AutoParTune [6].

The remaining of this paper is organized as follows. Section 2 describes the
proposed ADVISER in greater detail. Section 3 presents the success of paral-
lel portfolio recommended by ADVISER through a use-case. Section 4 briefly
describes our web-based system. Finally, Sect. 5 concludes this work and presents
directions for future works.

2 ADVISER

Figure 1 summarizes the workflow of ADVISER through block diagram. Given
a mixture of n parameter-less and parameterized target algorithms as well as a
set of training instances as the input, ADVISER first performs algorithm con-
figuration and algorithm selection to generate a portfolio of k ≤ K (configured)
algorithms as the output. Parameter-less algorithms directly gets included in
the initial portfolio, whereas ADVISER performs algorithm configuration (such
as applying ParamILS [11], F-Race [12] and Post-Selection [13]) for each para-
meterized algorithm to determine the best configuration to be included in the
initial portfolio. Performance data is then obtained by executing all algorithms in
the initial portfolio on the training instances. Performance data of an algorithm
when it runs on an instance refers to a number representing solution quality.
The algorithms in the initial portfolio are then clustered based on their perfor-
mance data and the time taken to achieve such performance. A simple k-means
clustering is used for this purpose. Finally, a representative algorithm is chosen
from each cluster via algorithm selection. In this work, we consider choosing the
single best algorithm in each cluster for simplicity, where “single best” refers to
the algorithm which performs best among the other algorithms in the cluster on
most training instances.

3 Case Study

In the following, we present results with K = 4 for two parametric algorithms
on the Quadratic Assignment Problem (QAP). The first is a population-based a
memetic algorithm (MA), and the second is a single-point simulated annealing-
tabu search (SA-TS) [14] hybrid metaheuristic.

Table 1 shows the algorithms and their configuration spaces. Both algorithms
have three parameters to be set. MA has two categorial parameters and one integer
parameter. These categorical parameters are used to represent which crossover
and local search operators are to be used while the integer parameter indicates

3 http://research.larc.smu.edu.sg/autopartune/.

http://research.larc.smu.edu.sg/autopartune/
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Fig. 1. Workflow of ADVISER

Table 1. Configuration spaces of MA and SA-TS

Method Type Name Range

MA Categorical Crossover (C) [0, 1, 2, 3, 4]

Continuous Mutation Rate (M) [0, 1]

Categorical Local Search (L) [0, 1, 2, 3]

SA-TS Integer Initial Temperature (T) [4000, 6500]

Continuous Cooling Factor (C) [0.85, 0.95]

Integer Tabu List Length (L) [5, 10]

the mutation level. The upper bound values of these categorical parameters refer
to the cases where no operator of that type is applied. The two parameters of SA-
TS including initial temperature and cooling factor, are for simulated annealing.
For the tabu search part, only an integer parameter specifying the tabu list length
needs to be set.

Table 2. Portfolio suggested by ADVISER for the QAP using MA and SA-TS

Method Configuration

MA -C 4 -M 0.4 -L 2

SA-TS -T 6500 -C 0.9 -L 5

Table 2 shows the resulting portfolio constructed by using 20 QAP instances.
The portfolio is composed of MA and SA-TS with one configuration each
k = 2) instead of four (K = 4) since ADVISER detected that there is no need
to run that many configurations in parallel. Since the single best algorithm-
configuration pair is selected from each cluster, the overall single best which is
the MA configuration, automatically is a part of the portfolio.

The portfolio of MA and SA-TS is then tested on 42 QAP instances. The
results revealed that MA with the given configuration finds superior results on
28 instances while SA-TS outperforms MA on 12 instances. Both algorithms
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deliver the same quality solutions on the remaining 2 instances. In other words,
the diversity expected from the portfolio is achieved and delivered 12 better
solutions compared to the configured single best algorithm, i.e. MA.

4 Web Interface

The ADVISER web interface, shown in Fig. 2, is available via the following link:
http://research.larc.smu.edu.sg/adviser/. A user needs to specify some training
instances and the target algorithms as the inputs. The user will then receive an
email with the instructions to verify his/her request. After verification, a process
involving algorithm configuration and algorithm selection described in Sect. 2 is
started to build the portfolio. Once the process is completed, the user will receive
a notification email along with the portfolio of k ≤ K (configured) algorithms
as the output.

Each target algorithm should be provided in .exe which can be run as follows.
After calling an algorithm, it should return a value representing the quality of
the resulting solution.

algorithm.exe−I instance file−S seed ... OtherParameters

Alongside with each parametric algorithm, a parameter space file should
be given in the following form. In a parameter space file, for each parameter,
there should be a parameter name (e.g. INITIAL TEMPERATURE), a parameter

Fig. 2. ADVISER web interface

http://research.larc.smu.edu.sg/adviser/
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argument (e.g. "-T"), parameter type information (i: integer, r: continuous, c:
categorical) and the range of values (lower and upper bounds for integer and
continuous parameters) to be set.

INITIAL TEMPERATURE ” − T” i [4000, 6500]

ADVISER has been developed in Java. In addition to the presented system, a
number of existing parameter tuning related components are integrated. Among
those components, a Design of Experiments (DOE) [15] implementation is used
to reduce the initial parameter configuration space of each parametric algorithm.
SufTra [6] is incorporated for determining similar instances in order to fasten a
training process by using a small yet representative instance set. Post-Selection
[13] is embedded as a parameter tuner.

5 Conclusion

We believe ADVISER is the first step towards unifying the concepts of algo-
rithm configuration, selection, and portfolio generation with an end-user in mind.
The workflow of ADVISER shows how the three components play different yet
inter-related roles. Moving forward, we hope to incorporate various techniques of
algorithm configuration and selection and allow some degrees of customizations.
Options to use instance or algorithmic features, whenever available, will also be
explored.
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algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)
12. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race:
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Abstract. A major problem in deep learning is identifying appropri-
ate hyperparameter configurations for deep architectures. This issue is
important because: (1) inappropriate hyperparameter configurations will
lead to mediocre performance; (2) little expert experience is available to
make an informed decision. Random search is a straightforward choice
for this problem; however, expensive time cost for each test has made
numerous trails impractical. The main strategy of our solution has been
based on data modeling via random forest, which is used as a tool to
analyze data characteristics of performance of deep architectures with
respect to hyperparameter variants and to explore underlying interac-
tions of hyperparameters. This is a general method suitable for all types
of deep architecture. Our approach is tested by using deep belief net-
work: the error rate reduced from 1.2 % to 0.89 % by merely replacing
three hyperparameter values.

1 Introduction

In 2006, G.E. Hinton et al. published two important papers and created a new
era of deep learning [1,2]. It has been considered as taking a big step towards
true artificial intelligence [3]. In deep learning, the elements are artificial neural
cells, which are modeled loosely on the simple properties of biological neurons
[4]. Before 2006, neural networks were generally wide and shallow, with fewer
than three hidden layers, and error backpropagation methods were the domi-
nant learning algorithms. However, these methods suffer from a severe problem
known as error diffusion, which is one of the main factors that prevent networks
from going deeper. The problems of these dominant methods were overcome by
Hinton’s team. Inspired by the deep structure of human brain, they developed
a novel unsupervised layerwised learning method to train deep networks. Ever
since then, Deep Architectures have dominated the fields of artificial intelligence,
such as computer vision and natural language comprehension [3].

With networks growing from shallow to deep, architectures become increas-
ingly more complex, such as deep belief networks [1], convolutional neural
networks [5], and stacked autoencoders [6]. Variants of these as well as new
architectures are turning up one after another [7–9].
©
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All deep architectures are affected by an unavoidable problem of configuring
architecture, i.e., identifying an appropriate hyperparameter configuration for a
specific architecture. A hyperparameter is an inner architecture parameter, such
as depth, the number of neural units in a particular hidden layer, or learning
rate. Figure 1 shows a selection of hyperparameters for a deep belief network
architecture.

Fig. 1. Examples of hyperparameters in a deep belief network: (a) a schematic diagram
of a deep belief network, where red words indicate various hyperparameters; (b) a
neuron unit, where the activity function has two hyperparameters. Note that only a
subset of hyperparameters is shown.

Architecture configuration is an important issue because different configura-
tions significantly affect overall performance, where performance improvement
can be modest and sometimes smaller than the performance differences due to
architecture (hyper) parameters [10]. Moreover, for some specific tasks, it is
important to identify the most suitable architecture for that task.

Furthermore, no expert opinion or other hints are available to facilitate a
selection of an appropriate configuration for a new specific task. For example,
a researcher who addresses the task of Chinese handwritten character recognition
using a successful deep architecture (e.g., GPU-MCCNN (Ref. [11])) may not
know how to assign specific values to hyperparameters for that deep architecture.

In this paper, we propose a method using random forests to address the
problem of hyperparameter configuration. The remainder of this paper is orga-
nized as follows. We pose the issue of hyperparameter search and related work in
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Sect. 2. In Sect. 3, we provide a brief introduction to random forests and propose
a method for hyperparameters searching based on random forests. In Sect. 4,
we discuss the application of our method to deep belief networks and convolu-
tional networks as well. Our concluding remarks are given in Sect. 5.

2 Problem Statement and Related Works

Given a recognition task, a deep learning architecture A can be trained using
a data set χ by adapting parameters with weights W . After that a set of test
data can be sent into A to obtain a generalization performance. However, a deep
learning architecture itself needs to be configured by a set of parameters, called
hyperparameters Λ.

Suppose that Λ has N elements or dimensions, i.e., Λ = [λ , λ , . . . , λN ],
λi ⊆ si, si ⊂ R,SN = s ×s ×· · ·×sN , and thus Λ ⊆ S

N and S
N ⊂ R

N . Gener-
alization performance, usually evaluated by generalization error η, is defined as
a proportion of falsely recognized test samples in all test data. The performance
η is achieved by a configured deep learning architecture : η = AΛ(χ).

Our goal is to find a way to choose Λ to minimize generalization error η, as
written in Eq. (1):

Λ∗ = arg min
Λ∈ N

E[η] = arg min
Λ∈ N

E[AΛ(χ)] (1)

Brute Random Search Method is the baseline method for hyperparameter
search [13]. Random search can be used to configure a deep architecture by
Λo, obtained by a random selection function � defined on a distribution p :
Λo = �p(Λ). With respect to Λo, actually compute performance ηtrue using the
deep architecture AΛo

, to get ηtrue = AΛo
(χ). Best configuration is picked out

by ranking ηtrue. This search method was applied by Pinto et al. with 2500 trials
for each particular task [12]. However, this type of method is very costly, a single
trial usually requires hours or even days.

Bayesian Optimization Methods have been carried out to automatically
tune configuration hyperparameters. Hutter investigated the problem of auto-
mated configuration of algorithms in 2009 in his PhD thesis. He is the first
to research this problem within a framework of Bayesian optimization, and
proposed sequential model-based optimization (SMBO) approaches for general
algorithm configuration [16]. Coincidentally, Snoek et al. stated a Bayesian opti-
mization method, which involved two aspects: an assumed performance distri-
bution and an acquisition function a(Λ). The acquisition function a(Λ) was
maximized under the assumed performance distribution to select the next con-
figuration for testing Λ next = argmax(a(Λ)) [20]. Bergstra went further to use
Gaussian Process (GP) and Tree-structured Parzen Estimator (TPE) approaches
for hyperparameter optimization of deep architectures, such as deep belief net-
works (DBNs) [17]. Hutter et al. are putting their effect to construct online
projects to automatically search best hyperparameter configurations for various
kinds of applications [14,15,18,24]. Ghahramani’s team employed a Bayesian
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nonparametric method to optimize the weights W and hyperparameters
Λ simultaneously. They assumed that better configurations of a deep belief net-
work would conform with a stochastic process called the Indian Buffet Process
[21]. For a more detailed review of hyper-parameter optimization methods in
machine learning, see Ref. [22]. These optimization methods share one common
feature: the performance is computed by η = AΛo

(χ), which provides insights
into performance situations along the route rather than an overview of the entire
hyperparameter space, as shown in Fig. 2(b).

Fig. 2. A comparison of three hyper-parameter search methods. From left to right:
Brute random search method; optimization method and modeling method.

Our method was inspired by Hutter et al.’s work, in which they used random
forests models and a functional ANOVA framework to assess the importance
of each hyperparameter [22]. We introduce a prediction modeling approach to
search hyperparameters within a novel framework. Illustrations of the three types
of hyperparameter searching methods are shown in Fig. 2.

Using a prediction modeling method to search hyperparameters replaces
the actual computation of the deep architecture with a prediction modeling
function M . Suppose that the difference between the performance predicted by
model M and the true performance is sufficiently small, i.e., smaller than a given
positive number ζ, then we can define the performance predicted by model M
as ηpredicted ≡ M (Λ,χ) ≈ AΛ(χ), Therefor, the best configuration Λ∗ can be
obtained using Eqs. (2) and (3):

Λ∗ = arg min
Λ∈ N

E[ηpredicted] ≡ arg min
Λ∈ N

(M(Λ, (χ)) (2)

where,
ε = E

Λ∈ N
[|M(Λ,χ) − AΛ(χ)|] < ζ (3)

Random forests is a powerful prediction model that was proposed by Breiman
in 2001 [23]. We hypothesize that it is effective to use random forests as a model
to predict the overall performance with respect to all possible hyperparameter
configurations based on some (very few) performance results obtained using
random configurations of an actual deep architecture program. Thus, we need to
select these configurations based on the best performance estimates for further
validation. We applied this method to deep belief networks and convolutional
networks to validate the effectiveness of our method.
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3 Random Forest Model

3.1 Random Forests

The ingenious idea of Random Forests is derived from decision trees (forests)
with randomness injected [23]. A random forest F is defined as a predictor
that comprises a collection of tree structured predictors {f (x,Θk) , k = 1, · · · , l},
where x is an input vector and {Θk, k = 1, . . . , l} are independent identically
distributed random vectors. Parameter l is the number of trees in the forest.
Each tree contributes to a final prediction result mapped by a voting function
V (·), as follows:

Fl (x) = V (f (x,Θ)) (4)

Random forests are a kind of ensembled trees. It is generally considered to be an
accurate and robust method for modeling real world data and it appears to have
the ability to capture underlying and tangled structures of data. Breiman has
proved this in a mathematical manner, where it is the randomness that helps
improve accuracy. See Ref. [23] for a comprehensive introduction to random
forests. We selected Random Forests to model M based on three reasons:

1. There can be no prior assumptions about the performance distributions.
Assumptions of ideal distributions do not sit well with highly varied and
nonlinear real-world tasks.

2. They are fast. In our experiments, only 1 min is required to predict over 10,000
performance data points using random forests compared to approximately
1000 min for one performance data point when using the deep architecture
program.

3. They have few parameters. We prefer not to introduce further parameters
into the model M . As showed Eq. (3), the random forest used by us has only
one parameter l: which is the number of trees. Furthermore, random forests
converge, [23] i.e., a large number of trees will definitely not lead to overfitting,
therefore, we can safely set a relative high number for this parameter.

3.2 Model

Our goal is to identify an appropriate configuration Λ∗ with the best true per-
formance η∗

true ≤ ηtrue(Λ), for all Λ ⊆ S
N . In this subsection, we describe the

process to achieve this configuration using random forests. Given a deep archi-
tecture, a random forest model F is generated with a training set γ train , and
the model moves through the entire hyper-parameter space S

N to obtain an
overview of the predicted performance. Select the configuration with the best
predicted performance. We can confirm if this is a good estimate by computing
the performance using the deep architecture. The overall process comprises three
steps. The flow of the three steps in our method is illustrated in Fig. 3.
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Step 1. Random Search: This step establishes a training set γ train =
{Λ

train
i , η

train
true,i }K

i to construct a random forest model F . The inputs of
γ train are some randomly selected configurations Λ train , which are obtained
by a random selection function �p in the same manner as brute random search,
but with very few samples. The outputs of Λ train are the performance levels
that are computed by the deep architecture η

train
true , i.e.,

η
train

true = AΛ(train)(χ) (5)

where
Λi = �p(Λ), i = 1, 2, · · ·, K (6)

Fig. 3. Diagram flow of the proposed hyperparameters searching method. The proposed
method comprises three stages: random search (top left), modeling and predicting
(bottom), and confirmation and validation (top right).

The function �p is defined most frequently on a uniform distribution. How-
ever, for some special cases where prior knowledge about the configuration is
available, Poisson distribution is a good alternative for highlighting specific
ranges in the hyperparameter space.

Step 2. Modeling and Predicting: The random forests model F is grown with
the training data Λ train . Each tree in F is an unpruned classic classification and
regression tree (CART). The simplest random forest is formed using our method
by selecting each node at random where only one dimension of the input is split.
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After the model F is obtained, performance predictions ηpredicted(Λ) are per-
formed on grid points in the entire hyperparameter space. This provides us with
a panorama of the performance for all possible configurations. A global illustra-
tion of performance with various hyperparameters can easily identify where the
best performance level is located. This corresponds to the expected configura-
tion, but it also provides insights into the interaction between performance and
the hyperparameters. This is a unique advantage of our modeling method com-
pared with the other two methods. With adequate information for ηpredicted(Λ),
the best configuration will be achieved according to Eq. (7):

Λ ∗ = arg min
Λ∈ N

(F (Λgrid, l)) (7)

where l is the number of trees grown in the random forests model, which is set
sufficiently high.

Step 3. Confirmation and Validation: In this step, the deep architecture is
configured according to the best estimated configuration Λ∗ to produce the true
performance result η∗

true thereby checking whether Eq. (8) holds.

η∗
true = AΛ∗(χ) ≤ ηtrue(Λ) (8)

To validate the predication accuracy of the random forests model, we need
to compute the prediction error using Eq. (3).

Theoretically, both Eqs. (3) and (8) need to be held for all Λ ⊆ S
N , which

is apparently intractable. Fortunately, the ultimate goal is to achieve a better
performance. Thus, η∗

true is considered to be the best if the performance of a deep
architecture AΛ∗(χ) is lower than all others. In the same manner, a validation is
performed with a limited number of sample test data, where we use grid selection
for samples in the space of the hyperparameters.

4 Experiments

To validate this method, we performed experiments based on an open-source
code provided by Hinton, where the classification task was implemented for a
standard MNIST database using a three hidden layer deep belief network. The
original configuration neural units in each layer was: Λo = [500 500 2000],
and the error rate ηtrue = 1.2%, We were working on one PC with a CoreTM

I7-4770 CPU@3.4 GHz, and with a version of Matlab R2013 64 Bit.

4.1 Modeling Results

First, we needed to acquire a training set to construct our random forests. In
this case K= 27, SN = [100, 3000] × [100, 3000] × [100, 3000], Λ = [λ , λ , λ ]
and points in S

N were distributed uniformly. By applying Eqs. (5) and (6), a
training set {γ

train
i }K

i has been obtained, as showed in Fig. 4(a).
1 http://www.cs.toronto.edu/hinton/MatlabForSciencePaper.html.

http://www.cs.toronto.edu/hinton/MatlabForSciencePaper.html
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M. files for constructing random forests are available at googlecode online.
Constructing random forests model F is fairly fast (less than a second).
Grid searching of Λ was performed during this stage: ηpredicted = F (Λgrid).
An overview of ηpredicted was showed in Fig. 4(b), where the colors present the
performance levels: the darker the blue the better the performance. The perfor-
mance varied slowly but not monotonously as the hyperparameter configuration
changed and the best performance was achieved in a specific area. Clearly, the
original configuration Λo = [500 500 2000] was not located in the darkest
blue area.

Fig. 4. Illustration of modeling results. Left: training set {γ(train)
i }Ki=1 for constructing

random forests model. Right: Overview of performance ηpredicted with respect to all Λ.
Dots in the three-dimension axis with their position: Λ = [λ1, λ2, λ3] indicates values
of hyperparameters and their color stands for value of generalization error η (Color
figure online).

We tested the top configurations Λ∗ by running the deep architecture pro-
grams. These configurations obtained better performance, as indicated in Table
reftab:1. We tested each Λ∗ twice, as denoted by test 1, test 2 in the table
below, the values of different trials varied. Performance results of different
tests vibrated with a maximum range of ±0.05%. Clearly, the hyperparameters
Λ∗ = [950 2500 800], obtained the best performance for the MNIST database,
with an error rate of 0.89 % (Table 1).

4.2 Modeling Accuracy

We identified a better hyperparameter configuration and better performance
with MNIST, but one question still remained: Did the random forests actually

2 https://randomforest-matlab.googlecode.com/files/Windows-Precompiled-RF Mex
standalone-v0.02-.zip.

https://randomforest-matlab.googlecode.com/files/Windows-Precompiled-RF_Mexstandalone-v0.02-.zip
https://randomforest-matlab.googlecode.com/files/Windows-Precompiled-RF_Mexstandalone-v0.02-.zip
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Table 1. Experiments results showing the actual performance of Λ∗.

ηpredicted(%) Λ∗ ηtrue(test1)(%) ηtrue(test2)(%)

0.99 [700 2600 800] 0.97 0.98

0.99 [700 2500 850] 0.98 0.95

0.99 [700 2300 800] 0.93 1.02

0.99 [700 2300 800] 0.97 0.96

0.99 [950 2500 800] 0.89 0.95

0.99 [950 2300 800] 0.96 0.99

0.99 [650 2300 800] 0.97 0.98

model the sample data well? We tested some grid configurations of Hinton’s code
and compared ηpredicted and ηtrue to check the prediction accuracy of the random
forests models. The prediction accuracy levels obtained using our method based
on the experimental results are illustrated in Fig. 5. We tested each grid config-
uration twice. Most of the values of the actual performance levels agreed with
the predicted values. Note that we used K = 27 samples which was less than
adequate for obtaining accurate predictions using random forests. Better pre-
dictions shall be obtained with more samples. Figure 5(b) shows obtaining one
data of generalization error by deep architecture takes hours which is hundreds
of hundred times slower than modeling prediction.
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Fig. 5. Experiments results of prediction accuracy of our method. Left: accuracy com-
parison between predicted value and true values obtained. Right: time cost comparison
between prediction and actually computation throughout the deep architecture. Note
that abscissa values are in Hour while ordinate values are in Millisecond.
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4.3 Modeling Parameters

Size of Training Set: K. More than one week was required to collect the
K = 27 pairs of samples used to construct the random forests models, which is
unsatisfactory. Thus, we tested whether this method could still perform well with
fewer samples. We decreased the sample size from 24 to 12 with an interval of four
to obtain an overview for ηpredicted(Λ), as shown in Fig. 6. The experiment results
reveal that random forests can still provide some searching clues even with very
few samples. The clues progressed from blurred to clear with increasing numbers
of training data K. This is important if we are not concerned about the modeling
accuracy, because it allows us to model data using random forests and to test
some promising candidate configurations at the same time. We can probably
achieve an acceptable performance rapidly. However, the use of significantly few
samples would be misleading, such as the case shown in Fig. 6(d) where the
position of the best performance has moved.
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Fig. 6. Overviews of predicted performance in cases of fewer samples. The size of
training set K in (a)-(d) are 24, 20, 16 and 12 decreasingly.

Tree Numbers in Random Forests: l. To identify the sufficient number of
trees required for our method, an experiment was performed to investigate the
relationship between the prediction performance and the number of trees l. The
results are shown in Fig. 7. The convergent patterns shown in Fig. 7(a) supports
Breimans conclusion in Ref. [23] that random forests converge, where a larger
number of l did not cause overfitting with our model. Moreover, the increase
in computational time was reasonable with respect to the increasing number of
trees. In the case l = 5000, this model predicts each data within less than 0.2 s.
Thus, a large number of trees maintained the efficiency.
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Fig. 7. Experiment results of investigation on relationship between ηpredicted(Λ) and
parameter l using two configurations. Left: performance vs tree numbers. Right: time
cost of increased tree numbers.

4.4 Importance of Hyperparameters

An additional benefit of random forests is the ability to evaluate the importance
of variables, which helps us to understand the interactions among variables. This
benefit can be included in our method. Although a space with a small dimen-
sion of N = 3 was tested using our method, it is applicable to higher dimension
hyperparameters and has the potential to uncover the underlying interactions
among hyperparameters.

The method used to evaluate the importance of hyperparameters comprises
several steps: given a constructed model F , superpose some random perturbation
on the ith element of the hyperparameters λi : λi → λi(1 + τ), where τ is a
perturbation amplitude parameter, and 0 < τ < 1. Next, compute the increase
in the error compared with the case with no perturbation. A greater increase
indicates higher importance. Figure 8 shows the increases in the errors depending
on the numbers in the three layers of the deep belief network. In this case,
the generalization errors for the variables in layer 2 increased greatly compared
with all others, thus the number of neural units in the second layer was more
important than that in the other two layers.

4.5 An Extended Experiment for Convolutional Networks

We applied this method to convolutional networks based on an open-source code
named Caffe, available at [25], where the classification task was implemented for
the same MNIST database using a plain convolutional neural network. Five
hyperparameters, N = 5, has been chosen, showed in Table 2. The original con-
figuration in Caffe was Λo = [20, 5, 50, 5, 500] , with a baseline generalization
accuracy of 1.03%. We were working on one GeForce GTX TITAN Black 6 GB
GPU and a PC with a CoreTM I7-4770CPU@3.4 GHz a version of Matlab R2013
64 Bit.

In this case: SN = [100, 500]×[3, 11]×[100, 500]×[3, 11]×[100, 2000]. K=127.
The best configuratio we obtained was Λ∗ = [250, 5, 100, 7, 1600] with a gener-
alization error of 0.78%.
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Fig. 8. Experimental evaluation of the importance of hyperparameters. It shows gen-
eralization error increased with respect to increased amplitude parameter, and gener-
alization error in layers 2 (indicated by tiny circles) are all higher than other errors.

Table 2. Five hyperparameters chosen for experiments.

Λ Meanings

λ1 Number of feature maps in convolutional layer 1

λ2 Kernel size in convolutional layer 1

λ3 Number of feature maps in convolutional layer 2

λ4 Kernel size in convolutional layer 2

λ5 Number of neurons in fully connected layer

To investigate the minimum size of the training set needed to achieve an
acceptable generalization accuracy, we randomly chose several samples from the
training set to form a new smaller training set. Then we carried out this predic-
tion and confirmation based on each small training set. Results are showed in
Table 3. Runtime per training sample was around 20 to 30 min, and the entire
experiment was finished within 80 h. The results of this extended experiment
indicate acceptable generalization error could be obtained with few samples, in
line with that of former experiments.

Table 3. Generalization error based on different sizes of training sets.

K (Test1)(%) ηpredicted ηtrue (Test2)(%) ηpredicted ηtrue

Λ∗ Λ∗

40 [300, 7, 100, 3, 400] 0.76 1.02 [300, 5, 150, 3, 1500] 0.77 0.82

80 [300, , 5100, 7, 1600] 0.57 0.88 [250, 5, 100, 7, 1600] 0.54 0.87

120 [250, 5, 100, 7, 1600] 0.56 0.84 [250, 5, 100, 7, 1600] 0.54 0.84
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5 Conclusions and Remarks

Far less than enough work has been done on the issue of hyperparameter config-
uration. To address the problem, we propose a solution based on random forests.
This study shows that our method is effective to identify better hyperparame-
ter configurations for deep architectures. The advantages of this method are as
follows: (1) the idea is straightforward; (2) the implementation is simple; and
(3) it is suitable for all cases.

Although we only tested small dimensions of hyperparameters, this concept
is applicable to larger dimensions since random forests have no restrictions on
data dimensions. Thus, we will apply this method to search hyperparameter
configurations with high-dimensions in our future work.

During our research, we identified one disadvantage of this method where the
predictions obtained by the random forests models were highly reliant on the
samples used for training, i.e., the range of outputs for the samples defined
the range for the predictions. However, random forests models are good at pre-
dicting the trends in output data. Thus these models are useful for indicating
the values of hyperparameters with the best performance output. This explains
why the actual performance was generally better than the predicted results.
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Abstract. Inspired by methods and theoretical results from para-
meterised algorithmics, we improve the state of the art in solving
Cluster Editing, a prominent NP-hard clustering problem with appli-
cations in computational biology and beyond. In particular, we demon-
strate that an extension of a certain preprocessing algorithm, called the
(k+1)-data reduction rule in parameterised algorithmics, embedded in a
sophisticated branch-&-bound algorithm, improves over the performance
of existing algorithms based on Integer Linear Programming (ILP) and
branch-&-bound. Furthermore, our version of the (k+1)-rule outperforms
the theoretically most effective preprocessing algorithm, which yields a
2k-vertex kernel. Notably, this 2k-vertex kernel is analysed empirically
for the first time here. Our new algorithm was developed by integrating
Programming by Optimisation into the classical algorithm engineering
cycle – an approach which we expect to be successful in many other
contexts.

1 Introduction

Cluster Editing is a prominent NP-hard combinatorial problem with impor-
tant applications in computational biology, e.g. to cluster proteins or genes (see
the recent survey by Böcker and Baumbach [6]). In machine learning and data
mining, weighted variants of Cluster Editing are known as Correlation

Clustering [4] and have been the subject of several recent studies (see, e.g.,
[8,12]). Here, we study the unweighted variant of the problem, with the goal of
improving the state of the art in empirically solving it. Formally, as a decision
problem it reads as follows:
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Cluster Editing

Input: An undirected graph G = (V,E) and a positive integer k ∈ N.
Question: Is there a set of at most k edge insertions and deletions that

transform G into a cluster graph, that is, a graph in which each
connected component is a complete graph?

Cluster Editing corresponds to the basic clustering setting in which pairwise
similarities between the entities represented by the vertices in G are expressed by
unweighted edges, and the objective is to find a pure clustering, in the form of a
cluster graph, by modifying as few pairwise similarities as possible, i.e., by remov-
ing or adding a minimal number of edges. Notably, this clustering task requires
neither the number of clusters to be specified, nor their sizes to be bounded.

Related Work. The Cluster Editing problem is known to be APX-hard [10]
but can be approximated in polynomial time within a factor of 2.5 [25]. Further-
more, various efficient implementations of exact and heuristic solvers have been
proposed and experimentally evaluated (see the references in [6]). These methods
can be divided into exact algorithms, which are guaranteed to find optimal solu-
tions to any instance of Cluster Editing, given sufficient time, and inexact
algorithms, which provide no such guarantees, but can be very efficient in prac-
tice. State-of-the-art exact Cluster Editing algorithms are based on integer
linear programming (ILP) or specialised branch-&-bound methods (i.e., search
tree) [6,7]. Theoretically, the currently best fixed-parameter algorithm runs in
O(1.62k + |G|) time and it is based on a sophisticated search tree method [5].

Our work on practical exact algorithms for Cluster Editing makes use
of so-called data reduction rules [11,16,17,19] – preprocessing techniques from
parameterised algorithmics that are applied to a given instance with the goal
of shrinking it before attempting to solve it. Furthermore, when solving the
problem by a branch-&-bound search, these data reduction rules can be “inter-
leaved” [23], meaning that they can be again applied within each recursive
step. If after the exhaustive application of data reduction rules the size of the
remaining instance can be guaranteed to respect certain upper bounds, those
instances are called problem kernels [14,23]. Starting with an O(k )-vertex prob-
lem kernel [17], the best state-of-the-art kernel for Cluster Editing contains
at most 2k-vertices [11].

Our Contribution. Starting from a search tree procedure originally devel-
oped for a more general problem called M-Hierarchical Tree Clustering

(M -Tree Clustering) [20], and making heavy use of data reduction rules, we
developed a competitive state-of-the-art exact solver for (unweighted) Cluster

Editing .
To achieve this goal, and to study the practical utility of data reduction

rules for Cluster Editing, we employed multiple rounds of an algorithm engi-
neering cycle [24] that made use of the Programming by Optimisation (PbO)

1 Notably, our implementation is still able to solve M -Tree Clustering. However, here
our focus is on improving over state-of-the-art exact solvers for Cluster Editing.
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paradigm [21]. In a nutshell, PbO is based on the idea to consider and expose
design choices during algorithm development and implementation, and to use
automated methods to make those choices in a way that optimises empiri-
cal performance for given use contexts, characterised by representative sets of
input data.

We show that, using a clever implementation of a well-known (from a theoret-
ical point of view, out-dated) reduction rule, called (k+ 1)-Rule, we can achieve
improvements over existing state-of-the-art exact solvers for Cluster Editing

on challenging real-world and synthetic instances. For example, for the synthetic
data with a timeout of 300 s our so-called Hier solver times out only on 8 % of
the 1476 instances, while the best previously known solver has a rate of 22 %.
Furthermore, we demonstrate that on the hardest instances the (k + 1)-Rule
dominates on aggregate all other data reduction rules we considered, and that
using the best known data reduction rules [9,11] (yielding the best known kernel
of size 2k) does not yield further significant improvements.

Achieving these results involved multiple rounds of optimizing the implemen-
tation of the (k+1)-Rule as well as the use of automated algorithm configuration
tools in conjunction with a new method for selecting the sets of training instances
used in this context. It is based on the coefficient of variation of the running time
observed in preliminary runs, which we developed in the context of this work,
but believe to be more broadly useful.

Overall, our work demonstrates that the adoption of the Programming by
Optimisation paradigm, and in particular, the use of automated algorithm con-
figuration methods can substantially enhance the “classical” algorithm engineer-
ing cycle and aid substantially in developing state-of-the-art solvers for hard
combinatorial problems, such as Cluster Editing. We note that a similar
approach has been taken by de Oca et al. [13] to optimise a particle swarm
optimization algorithm.

2 Preliminaries

We use standard graph-theoretic notations. All studied graphs are undirected
and simple without self-loops and multi-edges. For a given graph G = (V,E)
with vertex set V and edge set E, a set consisting of edge deletions and addi-
tions over V is called an edge modification set. For a given Cluster Editing-
instance (G, k) an edge modification set S over V is called a solution, if it is of
size at most k and transforms G into a cluster graph, which we denote by G⊗S.
For convenience, if two vertices {u, v} are not adjacent, we call {u, v} a non-edge.

It is well-known that a graph G = (V,E) is a cluster graph if, and only
if, it is conflict-free, where three vertices {u, v, w} ⊆ V form a conflict if
{u, v}, {v, w} ∈ E, but {u,w} /∈ E – in other words, a conflict consists of three
vertices with two edges and one non-edge. We denote by C(G) the set of all con-
flicts of G. Branching into either deleting one of the two edges in a conflict or
adding the missing edge is a straight-forward search tree-strategy that results in
a O(3k+ |V | ) algorithm to decide an instance ((V,E), k) [17]. This algorithm can
be generalised to M -Tree Clustering [20] and is the basic algorithm implemented
in our Hier solver.
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Parametrised Algorithmics. Since our algorithm makes use of data reduction
rules known from parametrised algorithmics, and Cluster Editing has been
intensely studied in this context, we briefly review some concepts from this
research area (see [14,23]). A problem is fixed-parameter tractable (FPT) with
respect to a parameter k if there is a computable function f such that any
instance (I, k), consisting of the “classical” problem instance I and parameter k,
can be exactly solved in f(k) · |I|O time. In this work k always refers to the
“standard” parameter solution size.

The term problem kernel formalizes the notion of effective and (provably) effi-
cient preprocessing. A kernelization algorithm reduces any given instance (I, k)
in polynomial time to an equivalent instance (I ′, k′) with |I ′| ≤ g(k) and
k′ ≤ g(k) for some computable function g. Here, equivalent means that (I, k) is a
yes-instance if, and only if, (I ′, k′) is a yes-instance. The instance (I ′, k′) is called
problem kernel of size g. For example, the smallest problem kernel for Cluster

Editing consists of at most 2k vertices [11]. A common way to derive a problem
kernel is by the exhaustive application of data reduction rules. A data reduc-
tion rule is a polynomial-time algorithm which computes for each instance (I, k)
an equivalent reduced instance (I ′, k′) and it has been applied exhaustively if
applying it once more would not change the instance.

PbO and Automated Algorithm Configuration. Programming by Optimi-
sation (PbO) is a software design approach that emphasises and exploits choices
encountered at all levels of design, ranging from high-level algorithmic choices
to implementation details [21]. PbO makes use of powerful machine learning and
optimisation techniques to find instantiations of these choices that achieve high
performance in a given application situation, where application situations are
characterised by representative sets of input data, here: instances of the Clus-

ter Editing problem. In the simplest case, all design choices are exposed as
algorithm parameters and then optimised for a given set of training instances
using an automated algorithm configurator. In this work, we use SMAC [22] (in
version 2.08.00), one of the best-performing general-purpose algorithm configura-
tors currently available. SMAC is based on sequential model-based optimisation,
a technique that iteratively builds a model relating parameter settings to empir-
ical performance of a given (implementation of a) target algorithm A, here: our
Cluster Editing solver Hier, and uses this model to select promising algorithm
parameter configurations to be evaluated by running A on training instances.

By following a PbO-based approach, using algorithm configurators such as
SMAC, algorithm designers and implementers no longer have to make ad-hoc
decisions about heuristic mechanisms or settings of certain parameters. Further-
more, to adapt a target algorithm to a different application context, it is sufficient
to re-run the algorithm configurator, using a set of training instances from the
new context.

We note that the algorithm parameters considered in the context of auto-
mated configuration are different from the problem instance features considered
in parameterised algorithmics, where these features are also called parameters.
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3 Our Algorithm

Basic Algorithm Design. The algorithm framework underlying our Hier solver
is outlined in Algorithm 1; the actual implementation has several refinements of
this three-step approach, and many of them are exposed as algorithm parameters
(in total: 49) to be automatically configured using SMAC.

Given a graph G as input for the optimization variant of Cluster Editing,
we maintain a lower and upper bound, called k and k , on the size of an
optimal solution for G. As long as lower and upper bound are not equal, we
call our branch-&-bound search procedure (Line 8) to decide whether (G, k )
is a yes-instance. At the heart of our solver lies the following recursive pro-
cedure for solving the (decision variant) Cluster Editing-instance (G, k ).
First, a set of data reduction rules is applied to the given instance (see Line 2 in
decisionSolver). Next, a lower bound is computed on the size of a minimum
solution using our LP-based lower bound algorithm. If this lower bound is larger
than k, then we abort this branch, otherwise we proceed with the search. After-
wards, if there are still conflicts in the resulting graph, one of these is chosen,

ALGORITHM 1. Pseudo code of our Hier solver.

1 Algorithm Hier ()
Input: Graph G.
Output: The size kOPT of a minimum edge modification set S such

that G ⊗ S is a cluster graph.
33 Compute a lower bound kLB ≤ kOPT

55 Compute an upper bound kOPT ≤ kUB

77 while kLB < kUB do
8 if decisionSolver(G, kLB)=YES then
9 return kLB

10 else
11 increase kLB //details are subject to two algorithm parameters
12 end

13 end

1 Procedure decisionSolver(G, k)
Input: Graph G and integer k.
Output: YES/NO whether there is a size-at-most-k edge modification set

for G.
2 (G, k) ← Apply data reduction rules to (G, k)
3 if LP-based lower bound on modification cost for G > k then return NO
4 {u, v, w} ← a conflict in G
5 if {u, v} is unmarked ∧ decisionSolver (G − uv, k − 1) =YES then

return YES
6 else Mark edge {u, v} unmodifiable
7 if {v, w} is unmarked ∧ decisionSolver (G − vw, k − 1) =YES then

return YES
8 else Mark edge {v, w} unmodifiable
9 if decisionSolver(G + uw, k − 1) =YES then return YES

10 else return NO
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say {u, v, w}. Then the algorithm branches into the three possibilities to resolve
the conflict: Delete the edge {u, v}, delete {v, w}, or add the edge {u,w}.

On top of this, if the branch of deleting edge {u, v} has been completely
explored without having found any solution, then in all other branches this edge
can be marked as unmodifiable (the branch for deleting {v, w} is handled anal-
ogously). Moreover, in all three recursive steps, the (non-)edge that was intro-
duced to solve the conflict {u, v, w} gets marked as unmodifiable. Furthermore,
the choice of the conflict to resolve prefers conflicts involving unmodifiable (non-)
edges, since this reduces the number of recursive calls by one or, in the best case,
completely determines how to resolve the conflict. Combining this with solving
“isolated” conflicts is known to reduce the (theoretical) time complexity from
O(3k + |V | ) to O(2.27k + |V | ) [17]. Our empirical investigation revealed that
this improvement is also effective in practice.

Data Reduction Rules. In total, we considered seven data reduction rules
and implemented them such that each of them can be individually enabled or
disabled via an algorithm parameter. We first describe three rather simple data
reduction rules. First, there is a rule (Rule 2 in Hier) that deletes all vertices
not involved in any conflict (see [20] for the correctness). A second simple rule
(Rule 4 in Hier) checks all sets of three vertices forming a triangle, and in case
two of the edges between them are already marked as unmodifiable it also marks
the third one (deleting this edge would result in a unresolvable conflict). The
last simple rule (Rule 6 in Hier) checks each conflict and resolves it in case of
there is only one way to do this as a result of already marked (non-)edges.

We describe the remaining “sophisticated” data reduction rules in chrono-
logical order of their invention. Each of it either directly yields or is the main
data reduction rule of a problem kernel.

(k+ 1)-Rule: Gramm et al. [17] provide a problem kernel of size O(k ) that
can be computed in O(n ) time. More specifically, the kernel consists of at most
2k + k vertices and at most 2k + k edges. At the heart of this kernel lies the
following so-called (k + 1)-Rule (Rule 1 in [17]):

Given a Cluster Editing-instance (G, k), if there are two ver-
tices {u, v} in G that are contained in at least k + 1 conflicts in C(G),
then in case of {u, v} /∈ E add the edge {u, v} and otherwise delete the
edge {u, v}.

The (k + 1)-Rule is correct, since a solution that is not changing the (non-)edge
{u, v} has to resolve all the ≥ k+1 conflicts containing {u, v} by pairwise disjoint
edge modifications; however, this cannot be afforded with a “budget” of k.

We heuristically improved the effectiveness of the (k + 1)-Rule by the fol-
lowing considerations: For a graph G denote by C({u, v}) ⊆ C(G) all conflicts
containing {u, v}. If |C({u, v})| ≥ k + 1, then the (k + 1)-Rule is applicable.
Otherwise, let Cu,v(G) ⊆ C(G) \ C({u, v}) be all conflicts that are (non-)edge-
disjoint with C({u, v}), meaning that any pair of vertices occurring in a conflict
in Cu,v(G) does not occur in a conflict in C({u, v}). By the same argument
as for the correctness of the (k + 1)-Rule, it follows that if any lower bound
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on the number of edge modifications needed to solve all conflicts in Cu,v(G)
plus |C({u, v})| exceeds k, then the (non-)edge {u, v} needs to be changed (all
these conflicts require pairwise disjoint edge modifications). We use our heuristic
algorithm described below to compute a (heuristic) lower bound on the modifi-
cation cost of Cu,v(G).

As our experimental analysis reveals, the heuristically improved version of
the (k + 1)-Rule is the most successful one in Hier. Its operational details are
configurable by three algorithm parameters (not counting the parameters to
enable/disable it), and we implemented two different versions of it (Rule 0 & 1 in
Hier). These versions differ in their “laziness”: Often it is too time consuming to
exhaustively apply the (k+1)-Rule, as any edge modification requires an update
on the lower bound for Cu,v(G). In addition to various heuristic techniques,
we implemented a priority queue that (heuristically) delivers the (non-)edges
that are most likely reducible by the (k + 1)-Rule.

O(M ·k)-vertex Kernel: There is a generalisation of Cluster Editing called
M -Tree Clustering, in which the input data is clustered on M levels [2]. The
parametrised complexity of M -Tree Clusteringhas been first examined by Guo
et al. [20], who introduced a (2k · (M + 2))-vertex kernel which is computable in
O(M ·n ) time. This kernel basically corresponds to a careful and level-wise appli-
cation of the 4k-vertex kernel by Guo [19] for Cluster Editing. The underlying
technique is based on so-called critical cliques – complete subgraphs that have
the same neighbourhood outside and never get split in an optimal Cluster

Editing-solution. We refer to Guo et al. [20] for a detailed description of the
implemented O(M · k) kernel (Rule 3 in Hier).

2k-vertex Kernel: The state-of-the-art problem kernel for Cluster Editing

has at most 2k-vertices and is based on so-called edge-cuts [11]. In a nutshell,
for the closed neighbourhood Nv of each vertex v, the cost of completing it to
a complete graph (adding all missing edges into Nv) and cutting it out of the
graph (removing all edges between a vertex in Nv and a vertex not in Nv) is
accumulated. If this cost is less than the size of Nv, then Nv is completed and cut
out. This kernel has been generalised to M -Tree Clusteringwithout any increase
in the worst-case asymptotic size bound [9]. We implemented this kernel in its
generalized form for M -Tree Clustering(Rule 7), but omitted a rule that basically
merges Nv after it has been completed and cut out of the graph; although this
rule is necessary for the bound on the kernel size, as it removes vertices from
the graph, Hier will not deal with these vertices again and thus simply ignores
them.

Lower- and Upper-Bound Computation. We implemented two lower-bound
algorithms (LP-based and heuristic) and one upper-bound heuristic. Our prelim-
inary experiments revealed that high-quality lower- and upper-bound algorithms
are a key ingredient for obtaining strong performance in our Cluster Editing

solver. In total, these algorithms expose twenty-two algorithm parameters that
influence their application and behaviour.

LP-based Lower Bound Computation: We implemented the ILP-
formulation for M -Tree Clusteringproposed by Ailon and Charikar [3], which
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corresponds to the “classical ILP-formulation” for Cluster Editing in case
of M = 1 [6]. The formulation involves a 0/1-variable for each vertex of the graph
and a cubic number of constraints. Our LP-based lower bound algorithm simply
solves the relaxed LP-formulation where all variables take real values from the
interval [0, 1], which provides a lower bound on any ILP-solution. If after having
solved the relaxed LP-formulation the time limit (set via an algorithm parame-
ter) has not been exceeded, then we require a small fraction of the variables to be
0/1-integers and try to solve the resulting mixed-integer-linear-program (MIP)
again. Surprisingly, to obtain optimal integer solutions, in many cases, one only
needs to require a small fraction of the variables (≈10 %) to be 0/1-integers.
Using this mechanism, we are frequently able to provide optimal bounds on the
solution size, especially for small instances where the LP-formulation can be
solved quickly.

Heuristic Lower Bound Computation: Given a set of conflicts C (not nec-
essarily all, as in the application of the (k + 1)-Rule), our second lower bound
algorithm heuristically determines a maximum-size set of independent conflicts
based on the following observation. Consider the conflict graph for C, which con-
tains a vertex for each conflict in C and an edge between two conflicts if they
have a (non-)edge in common. A subset of vertices is an independent set if there
is no edge between any two vertices in it. Similarly to the correctness argument
for the (k + 1)-Rule, it follows that the size of an independent set in the con-
flict graph of C is a lower bound on the number of edge modifications needed to
resolve all conflicts in C. Computing a maximum-size independent set in a graph
is a classical NP-hard problem, and we thus implemented the commonly known
“small-degree heuristic” to solve it: As long as the graph is not empty, choose one
of the vertices with smallest degree, put it into the independent set and delete it
and all its neighbours. We apply this small-degree heuristic multiple times with
small (random) perturbations on the order in which the vertices get chosen (not
necessarily a smallest degree vertex is chosen, but only one with small degree).
In total, there are four algorithm parameters which determine the precise way
in which the order is perturbed and how often the heuristic is applied.

Heuristic Upper Bound Computation: Given a graph G and the set of
conflicts C(G) in G, we use the following heuristic algorithm to compute an upper
bound on the minimum modification cost for G. The score of an (non-)edge is
the number of its occurrences in C(G), and the score of a conflict is simply
the maximum over the scores of all its modifiable (non-)edges. The algorithm
proceeds as follows: While there are still conflicts in C(G), choose a conflict with
highest score in C(G) and among the modifiable (non-)edges change (delete if
it is an edge otherwise add) one of those with highest score. Furthermore, mark
the corresponding (non-)edge as unmodifiable. Before solving the next conflict,
we exhaustively apply Rule 6, which solves all conflicts for which two of its
(non)-edges have been marked as unmodifiable.

In our implementation, the score of an edge is randomly perturbed, and thus
we run the algorithm described above multiple times and return the minimum
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over all these runs. The time limit for this computation as well as the maximum
number of rounds are exposed as algorithm parameters.

4 Experimental Results

Algorithms and Datasets. We compare our solver, Hier, with two other exact
solvers for (weighted) Cluster Editing: The Peace solver by Böcker et al. [7]
applies a sophisticated branching strategy based on merging edges, which yields
a search tree of size at most O(1.82k). This search tree algorithm is further
enhanced by a set of data reduction rules that are applied in advance and during
branching. Böcker et al. [7] compared the empirical performance of Peace against
that obtained by solving an ILP-formulation (due to Grötschel and Wakabayashi
[18]) using the commercial CPLEX solver 9.03. In August 2013, a new version 2.0
of this ILP-based approach has become available, which now directly combines
data reduction rules with an ILP-formulation. We refer to this solver as Yoshiko
(developed by G. Klau and E. Laude, VU University Amsterdam).

We compare our algorithm to Peace and Yoshiko (version 2.0) on the synthetic
and biological datasets provided by Böcker et al. [7]. The (unweighted) synthetic
dataset consists of 1475 instances that are generated from randomly disturbed
cluster graphs with 30–1040 vertices (median: 540) and densities of 11–99 %.
These instances have been observed to be substantially harder than the biological
dataset, which consists of 3964 instances that have been obtained from a protein
similarity network. The number of vertices in the biological dataset range from 3
to 3387, but the median is only 10, and thus, most instances are rather easy.
Since the biological instances are weighted Cluster Editing-instances and Hier
is restricted to unweighted Cluster Editing (as a result of its ability to solve
the general M -Tree Clusteringproblem), we transformed them into unweighted
instances by setting edges only for the c% of the pairs with highest weight
(corresponds to highest similarity). Using three different values of c = 33, 50,
and 66, we obtained 11 889 biological instances in total.

Implementation and Execution Environment. All our experiments were
run on an Intel Xeon E5-1620 3.6 Ghz machine (4 Cores + Hyper-Threading)
with 64 GB memory under the Debian GNU/Linux 6.0 operating system, with a
time limit of 300 s per problem instance. Our Hier solver was implemented in Java
and is run under the OpenJDK runtime environment in version 1.7.0 25 with
8 GB heap space. We use the commercial Gurobi MIP solver in version 5.62 to
compute our LP-based lower bound [1]. The source code along with the scenario
file used for configuration with SMAC is freely available. For Yoshiko, we used the
binary provided by the authors, and we compiled Peace using the provided Make
file with gcc, version 4.7.2. Our Hier solver sets up parallel threads for computing

2 http://www.mi.fu-berlin.de/w/LiSA/YoshikoCharles.
3 We removed the largest instance with 8836 vertices from the dataset. It is more than

two times larger than the second largest instance and could not be solved.
4 http://fpt.akt.tu-berlin.de/cluEdit/.

http://www.mi.fu-berlin.de/w/LiSA/YoshikoCharles
http://fpt.akt.tu-berlin.de/cluEdit/
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the lower and upper bounds, but otherwise runs in only one thread. Peace uses
a single thread, while Yoshiko makes extensive use of the parallel processing
capabilities of the CPU (according to its output, Yoshiko sets up 8 threads). All
running times were measured in wall-clock seconds.

Results for Synthetic Dataset. Table 1 and the scatter plots in Fig. 1 provide
an overview of our experimental findings on the synthetic dataset. Hier-Opt
refers to Hier with the best configuration found by SMAC. Before discussing how
we obtained this configuration we first discuss the performance of Hier’s default
configuration (always referred to simply as Hier) to that of Yoshiko and Peace.

As can be seen from these results, Hier clearly outperforms both Yoshiko and
Peace (see columns 4–6 in Table 1). Furthermore, it seems that search-tree based
algorithms, such as Peace and Hier, generally perform better than the ILP-based
Yoshiko-solver. We suspect that this is mainly due to the instance sizes which
are considerably larger than for the biological dataset. As can be seen in the
top left scatter plot in Fig. 1, Peace is on average faster than Hier for instances
solvable within ≤25 s by both solvers. However, the higher the time required by
both solvers, the more Hier starts to dominate on average, and, of course, its
overall success is heavily due to the smaller timeout-rate of 7.8 % (Peace: 21 %).

The bottom two scatter plots in Fig. 1 show that Hier-Opt clearly dominates
Yoshiko and Peace on most instances (also on instances solvable in a couple of sec-
onds). We obtained Hier-Opt by using SMAC; however, not by a single “shot”,
but rather by using SMAC repeatedly within an algorithm engineering cycle.
This means that we performed multiple rounds of tweaking the implementation,
testing it, and analysing it on our experimental data. Therein, in each round
we performed multiple SMAC runs in order to analyse not only the default con-
figuration of our current solver but also its optimized variant. We then used
an ablation analysis [15] to further pinpoint the crucial parameter adjustments
made by SMAC. This was important, because it revealed which algorithm para-
meters – and thus, which parts of the algorithm – are particularly relevant for
the overall performance of our solver. For example, we learned that by allowing
more time for the application of our original implementation of the (k+1)-Rule,
we can reduce the number of timeouts. We thus spent serious effort on tweaking
the implementation of the (k+1)-Rule and making more of its details accessible

Table 1. Running time (wall time in s) comparison of four different solvers on the
synthetic dataset (performance on disjoint training and test instances).

Training (#=196) Test (#=953)

Hier Hier-OptS Peace Yoshiko Hier Hier-OptS Hier-OptS-Rule7

Par-10 187.4 127.2 662.2 904.1 255.2 252.7 265.8

Mean 49.7 30.7 92.8 142.0 45.6 40.2 42.0

Median 28.4 7.5 26.4 96.6 18.6 10.1 9.6

% Timeouts 5.1 % 3.6 % 21.1 % 28.2 % 7.8 % 7.9 % 8.3 %
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to get optimized by SMAC. Of course, if one parameter setting clearly had been
identified by SMAC to be beneficial, then we adjusted the default values of this
parameter for the next round. This is the main reason why the final default
configuration of Hier is already quite competitive (for example, we started with
a version of Hier that had more than 30 % timeouts on the synthetic data).

In each round of the algorithm engineering cycle, we performed at least five
independent SMAC runs, each with a wall-clock time limit of 36 hours and a
cut-off time of 300 s per run of Hier. In each SMAC run about 160–200 configu-
rations were evaluated and about 1200–1500 runs of Hier have been performed.
We not only started SMAC from the default configuration, but also with the
best configuration that had been obtained in previous runs (we obtained our
final best configuration from one of these runs). We chose a validation set of 368
instances uniformly at random from the entire synthetic dataset, and we selected
the best configurations from multiple SMAC runs based on their performance on
this set. Our training set was initially also chosen uniformly at random from
the entire synthetic data set. However, we found that SMAC found better con-
figurations when selecting the training set as follows: We had, from multiple
rounds of the algorithm engineering cycle, multiple performance evaluations for
default and optimised configurations, and we observed that on many instances,
these running times did not vary. More specifically, there were many instances
whose solving times only seemed to improve due to some general improvements
(e. g. parallelizing the lower and upper bound computation) but appeared to be
almost entirely uncorrelated with algorithm parameters. Surprisingly, this was
true not only for rather quickly solvable instances, where one would expect only
minor differences, but also for harder instances. For example, we found instances
that were almost completely unaffected by the data reduction rules and that were
solved by exploring a (more less constant) number of search-tree nodes. In light
of this observation, we computed for each instance the coefficient of variation
(standard deviation divided by the mean) of the running times measured for
different configurations we had run on it. We then selected only the instances
with the highest coefficient of variation into a training set of size 196.

As can be seen in the top right scatter plot in Fig. 1, the configura-
tion Hier-Opt clearly dominates Hier on average. Furthermore, according to
columns 6 and 7 in Table 1, although Hier-Opt improves the timeout-rate only
slightly from 5.1 % to 3.6 % (on training data), the mean and PAR-10 run-
ning times are considerable smaller and the median is less than half. Notably,
Hier-Opt enables the (k + 1)-Rule but disables all other data reduction rules.
While this was already observed for Rule 3 (computing the O(M · k) kernel)
in previous studies [20], this was surprising for Rule 7, which computes the 2k-
vertex kernel [9]. The last column in Table 1 provides the results for Hier-Opt
with Rule 7 enabled. Interestingly, while it slightly decreases the running time
(mean and PAR-10) due to slightly more timeouts, the median is even lower
than for Hier-Opt . This shows that Rule 7, in principle, reduces the running

5 PAR-10 is the average with timeouts counted as 10 times the cut-off time.
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Fig. 1. Scatter plots of the running time of all solvers on the test instances of the
synthetic dataset (full synthetic set minus training and validation instances). Timeouts
(>300 s) are plotted at 360 s.

time on many instances, but the cost of applying it is overall not amortised by
its benefits.

Results for Biological Dataset. Our experimental findings for the biological
dataset are summarized in Table 2 and in the scatter plots in Fig. 2.

Unlike for the synthetic dataset, the ILP-based solver Yoshiko clearly out-
performs Peace and Hier. However, comparing results for the latter two revealed
that Hier is still better than Peace (see the upper-right plot in Fig. 2), especially,
on harder instances. In general, since the median of the running times is pretty
small (for Hier ≤ 0.18 s and for Peace and Yoshiko even ≤ 0.01 s), we suspect

Table 2. Running time (wall time in s) comparison of five solvers on the bio-
logical dataset with different “density” parameters c. The median of all solvers is
less than 0.2 s.

c Peace Hier Hier-OptB Yoshiko Yoshiko &Hier-OptB

33 50 66 33 50 66 33 50 66 33 50 66 33 50 66

Par-10 109 124 126 101 94.9 84.4 78.8 78.1 65.8 72.8 82.1 66.4 68.7 68.8 53

Mean 11.9 13.9 14 11.2 11.1 10.1 9.3 9.3 8.6 8.8 9.9 8.5 8.1 8.2 6.7

Timeouts 142 161 164 132 123 109 102 101 84 94 106 85 89 89 68
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that our Hier solver suffers from the fact that on extremely easy instances the
initialization cost of the Java VM dominates the running time.

While the default configuration of Hier is not competitive with Yoshiko, our
SMAC-optimized configuration, called Hier-Opt , considerably closes this gap.
Although, being greatly slower for density value c = 33, Hier-Opt clearly beats
Yoshiko for c = 50 and even slightly for c = 66. The bottom right plot in Fig. 2
stresses this point by clearly demonstrating that starting from instances that
require at least 10 s on both solvers, Hier-Opt begins to dominate on aver-
age. This behaviour goes together with the observations that can be made from
directly comparing Hier-Opt with Hier (see the bottom-left plot in Fig. 2): For
instances up to 1 s, Hier and Hier-Opt roughly exhibit the same performance, but
the higher the running times get, the clearer Hier-Opt is dominating on average.
We suspect that this is mainly caused by an algorithm parameter adjustments
made in Hier-Opt that heavily increases the time fraction spend to compute the
initial lower bound. While easy instances do not largely benefit from computing
a slightly better lower bound, on large instances this might save expensive calls
of the search-tree solver for the decision variant. Even better performance can
be obtained by running Hier-Opt and Yoshiko in parallel on the same instances,
as evident from the bottom right plot of Fig. 2. To demonstrate the potential of
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Fig. 2. Scatter plots of the running time of all solvers on the biological dataset (point
colour/value for c: black/33, blue/50, red/66). Timeouts (>300 s) are plotted at 360 s
(Color figure online).
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this approach, the last column in Table 2 shows the running times of a virtual
solver that takes the minimum of Yoshiko and Hier-Opt for each instance.

To obtain Hier-Opt , SMAC was used in the same way as for the synthetic
data, but could typically perform about 7500 algorithm runs and evaluate 3500
different configurations, because the instances tend to be easier. Due to the
small median running time, we once again selected the training set based on
the coefficient of variation but only among those instances, where at least one
previous run needed at least 0.5 s. On the 327 training instances, the PAR-10
running time value of Hier is 850 s and could be improved to 149 s for Hier-Opt .
This improvement was mainly due to a reduction in the number of timeouts
from 90 down to 12.

We note that Hier-Opt enables all data reduction rules, except the two
simple Rules 4 & 6. However, Rule 7 (computing the 2k-vertex kernel) is also
almost disabled, since it is applied only in every 88th recursive step (adjusted
by an algorithm parameter) of the search tree. For all other enabled rules, this
“interleaving constant” is at most 13. Overall, having a more heterogeneous set
of data reductions seems to be important on the biological dataset, but not for
synthetic data, where only the (k+1)-Rule was enabled. Our default Hier enables
all rules except Rules 4 and 7.

Finally, to investigate to which extent the difference in the use of parallel
processing capabilities of our CPU between Yoshiko and Hier affect our results, we
conducted the following experiment: For the biological dataset and c = 33 (where
Yoshiko performed better than Hier-Opt ) we computed for each instance that
could be solved by both solvers the maximum of their running times. According
to these, we then sorted the instances in descending order and performed on the
instances with number 1–100 and 301–400 another run of Yoshiko and Hier-Opt ,
were we restricted the CPU to run in single-threaded mode. Table 3 shows the
results of this experiment. To our surprise, despite of the different ways the
solvers explicitly use parallel resources, their performance slows down only by
a factor of less than two when restricted to sequential execution. The reasons
for this unexpected result, especially for the CPLEX-based Yoshiko solver, are
somewhat unclear and invite further investigation.

Table 3. Running time (wall time in s) comparison of Yoshiko and Hier-OptB on
biological data for multi- vs single-threaded execution on our multi-core CPU.

Multi-threaded Single thread

Hier-OptB Yoshiko Hier-OptB Yoshiko

Mean running time, instances 1–100 39.9 44.9 76.1 70.0

Mean running time, instances 301–400 1.7 0.4 3.7 0.8

Timeouts 0 0 7 4
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5 Conclusions and Future Work

We have shown how, by combining data reduction rules known from parame-
terised algorithmics with a heuristically enhanced branch-&-bound procedure,
we can solve the NP-hard (unweighted) Cluster Editing problem more effi-
ciently in practice than the best known approaches known from the literature.
This success was enabled by integrating Programming by Optimisation into the
classical algorithm engineering cycle and, as a side effect, lead to a new method
for assembling training sets for effective automated algorithm configuration.

It would be interesting to see to which extent further improvements could
be obtained by automatically configuring the LP solver used in our algorithm,
or the MIP solver used by Yoshiko. Furthermore, we see potential for leverag-
ing the complementary strengths of the three algorithms studied here, either by
means of per-instance algorithm selection techniques, or by deeper integration
of mechanisms gleaned from each solver. We also suggest to study more sophis-
ticated methods, such as multi-armed bandit algorithms, to more fine-grainely
determine in which depths of the search tree a data reduction rule should be
applied. Finally, we see considerable value in extending our solver to weighted
Cluster Editing, and in optimising it for the general M-Hierarchical Tree

Clustering problem.

Acknowledgement. We thank Tomasz Przedmojski who provided, as part of his
bachelor thesis, an accelerated implementation of the O(M · k) kernel [20].
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17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data cluster-
ing: exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392
(2005)

18. Grötschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering prob-
lem. Math. Program. 45(1–3), 59–96 (1989)

19. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput.
Sci. 410(8–10), 718–726 (2009)

20. Guo, J., Hartung, S., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Exact algo-
rithms and experiments for hierarchical tree clustering. In Proceedings of 24th
AAAI. AAAI Press (2010)

21. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
22. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

23. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

24. Sanders, P., Wagner, D.: Algorithm engineering. It - Inf. Technol. 53(6), 263–265
(2011)

25. van Zuylen, A., Williamson, D.P.: Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In: Kaklamanis, C., Skutella, M. (eds.)
WAOA 2007. LNCS, vol. 4927, pp. 260–273. Springer, Heidelberg (2008)



OSCAR: Online Selection of Algorithm
Portfolios with Case Study on Memetic

Algorithms

Mustafa Mısır B , Stephanus Daniel Handoko, and Hoong Chuin Lau

School of Information Systems, Singapore Management University,
Singapore, Singapore

{mustafamisir,dhandoko,hclau}@smu.edu.sg

Abstract. This paper introduces an automated approach called
OSCAR that combines algorithm portfolios and online algorithm selec-
tion. The goal of algorithm portfolios is to construct a subset of algo-
rithms with diverse problem solving capabilities. The portfolio is then
used to select algorithms from for solving a particular (set of) instance(s).
Traditionally, algorithm selection is usually performed in an offline man-
ner and requires the need of domain knowledge about the target prob-
lem; while online algorithm selection techniques tend not to pay much
attention to a careful construction of algorithm portfolios. By combin-
ing algorithm portfolios and online selection, our hope is to design a
problem-independent hybrid strategy with diverse problem solving capa-
bility. We apply OSCAR to design a portfolio of memetic operator combi-
nations, each including one crossover, one mutation and one local search
rather than single operator selection. An empirical analysis is performed
on the Quadratic Assignment and Flowshop Scheduling problems to ver-
ify the feasibility, efficacy, and robustness of our proposed approach.

1 Introduction

We propose in this paper a framework that combines the ideas of algorithm port-
folio and online selection. We call this framework OSCAR (Online SeleCtion
of Algorithm poRtfolio). Algorithm selection [1] essentially learns the mapping
between instance features and algorithmic performance, and this is usually per-
formed in an offline fashion, as the process is typically very computationally
intensive. The learned mapping can be utilized to choose the best algorithms
to solve unseen problem instances based on their features. Algorithm portfo-
lio [2,3] treats the algorithm selection problem in a broader perspective. The
goal is to construct a diverse suite of algorithms that altogether are capable of
solving a wide variety of problem instances, thus reducing the risk of failure.
In terms of online algorithm selection, Adaptive Operator Selection (AOS) [4]
deals with a single type of operators at a time, performs on-the-fly selection of
evolutionary operators. Selecting from the pool of all possible combinations of
crossover, mutation, and local search operators might be beneficial as this would
capture the correlation among the different types of operators, but it could be
©
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challenging for the AOS methods. Hyperheuristics [5] can be seen as generic
online algorithm selection methods that typically make use of a portfolio of very
simple algorithms.

This work is motivated by the objective to provide a rich generic algo-
rithm selection framework for solving diverse problem instances of a given target
optimization problem. More specifically, we focus our attention on memetic algo-
rithms (MA) [6] that represent a generic evolutionary search technique for solv-
ing complex problems [7]. By interleaving global with local search, MA reaps the
benefit of the global convergence of the stochastic global search method as well
as the quick and precise convergence of the deterministic local search method
thereby avoiding the local optimum trap of deterministic search technique and
alleviating the slow, imprecise convergence of the stochastic search technique.
Like other evolutionary algorithms, however, the efficacy of MA depends on
the correct choice of operators and their parameters. Various evolutionary (i.e.
crossover, mutation) operators lead to different solution qualities [8]. For con-
strained problems, the choice of ranking operator is also important [9]. Reference
[10] focused on the frequency of the local search, or in other words, whether local
search is needed or can be skipped, since it can be expensive computationally,
and may cause difficulty in escaping from local optimality (especially when the
population diversity is too low such that all individuals reside in the same basin
of attraction). All the above works suggest that there is indeed a correlation
between a problem instance and the MA configuration that can render effica-
cious search.

Rather than relying primarily on the personal expertise or simply employing
the widely-used ones, automatic selection of the potentially efficacious operators
makes MA not only more likely to yield superior performance, but also easier
to use, even by those inexperienced users. In our context, an algorithm refers to
one combination of evolutionary operators that need to be successively applied
in each MA iteration. Dummy operator is introduced for each operator type to
cater for the possibility of not using any operator of that type. As shown in
Fig. 1, the algorithm portfolio is constructed offline via a series of operations
which encompass feature extraction, feature selection, algorithm clustering, and
portfolio generation. The resulting portfolio is then sent to an online selection
mechanism that performs on-the-fly selection of combination of operators in
each MA iteration. The efficacy of the proposed framework is then assessed
empirically on quadratic assignment problem (QAP) and flowshop scheduling
problem (FSP).

The contributions of the work presented in this paper is three-fold:

1. We propose OSCAR, a novel framework which takes the advantage of both
the algorithm portfolio and online selection paradigms. To our knowledge,
OSCAR is the first online selection of algorithms in a portfolio.

2. We generate problem-independent features for the construction of portfolio,
thereby eliminating the necessity of problem domain expertise.

3. We provide a means of identifying reasonable number of sufficiently diverse
combinations of operators for the evolutionary algorithm, such as the MA,
allowing AOS to capture the correlation among different types of operators.
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Fig. 1. Workflow of OSCAR

The remainder of the paper is presented as follows. Section 2 reviews related
works in the literature. Section 3 introduces OSCAR and explains how it works
in detail. Section 4 presents and discusses the experimental results on QAP and
FSP. Finally, conclusion and future research directions are given in Sect. 5.

2 Related Works

Algorithm portfolios and (offline) selection have had a long history, and in the
following, we review some recent works. SATZilla [11] is a well-known algorithm
portfolio selection methodology that is particularly used to solve the SAT prob-
lem. It pursues a goal of providing a runtime prediction model for the SAT
solvers. A number of problem-specific features for a given SAT instance are used
to calculate the expected runtime of each algorithm in the portfolio. Its different
versions are consistently ranked among the top portfolio-based solvers in the
SAT competitions. 3S [12] utilised the resource constrained set covering prob-
lem with column generation to deliver solver schedules. Its superior performance
was shown on the SAT domain. A cost-sensitive hierarchical clustering model
was proposed in [13]. While the clustering model delivers a selection system, a
static solver schedule is generated by 3S. SAT and MaxSAT were used as the
application domains. Additionally, a Bayesian model combined with collabora-
tive filtering is introduced to solve the constraint satisfaction and combinatorial
auction problems in [14]. Unlike these studies, Hydra [15] addresses algorithm
portfolios using parameter tuning. A portfolio is constructed by combining a
particular solver with different parameter configurations provided by a version
of ParamILS, i.e. FocusedILS [16]. The effectiveness of Hydra was also shown on
SAT. Another tool developed for SAT, i.e. SATEnstein [17], targeted the algo-
rithm generation process via tuning. It considers a variety of design elements
for stochastic local search algorithms in the form of parameter tuning using
ParamILS.

In terms of online algorithm selection, existing studies mostly refer to the
terms Adaptive Operator Selection (AOS) [4] and Selection Hyper-heuristics [5].
The main idea is to monitor the search progress while solving a problem instance
to immediately make changes on the choice of algorithms. Besides that, the
online algorithm selection community deals with the algorithms and problems
where solutions can be shared. However, in the case of offline methods, solution
sharing can be cumbersome thus usually ignored when multiple algorithms are
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selected, like CPHydra [18]. Adaptive pursuit [19], multi-armed bandits [4] and
reinforcement learning (RL) [20] are some successful examples of online selection.

3 OSCAR

Unlike most existing algorithm portfolio approaches that seek to deliver a port-
folio of single solvers, this paper focuses on building a portfolio of algorithm
combinations (even though our underlying approach can be used in the context
of portfolio of single solvers). Each combination consists of a crossover opera-
tor, a mutational heuristic and a local search method. Our goal is to generate
a small number of algorithm combinations with diverse performance that can
successfully solve a large set of instances from a given problem domain. In order
to have such a portfolio, it is initially required to generate a performance data-
base revealing the behavior of each combination. Behavior here is denoted as
the generic and problem-independent features primarily used in hyper-heuristic
studies such as [21]. A class of hyper-heuristics, i.e. selection hyper-heuristics,
aims at efficiently managing a given set of heuristics by selecting a heuristic(s)
at each decision step. Due to the selection element in hyper-heuristics and their
generic nature, we make use of the following features to characterize algorithm
combinations for memetic algorithms.

– Number of new best solutions: Nbest

– Number of improving solutions: Nimp

– Number of worsening solutions: Nwrs

– Number of equal quality solutions: Neql

– Number of moves: Nmoves

– Amount of improvement: �imp

– Amount of worsening: �wrs

– Total spent time: T .

A pseudo-code for OSCAR is presented in Algorithm 1. The process starts by
collecting performance data regarding each algorithm combination ax. The goal
here is to perform a feature extraction about algorithms. For this purpose, each
instance iy is solved by a memetic algorithm successively using a randomly
selected algorithm combination ax. Algorithm 2 illustrates the basic memetic
algorithm implementation. It should be noted that the performance data gen-
eration process differs for the cases where offline algorithm selection is applied.
In the offline case, each algorithm is separately trained since these algorithms
neither interact nor share solutions. Considering that an online selection device
is employed and solutions are shared, it is vital to gather the performance data
by running all the algorithms while they are selected online and operating on
the same solutions.

The corresponding crossover (cx), mutation (mx) and local search (lx) oper-
ators of ax are applied in a relay fashion. The performance data generation
process ends after each instance is solved within a given time limit (tlimit). The
resulting performance data is used to generate features for each algorithm, F (ax).
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Algorithm 1. OSCAR(A, Itrain, Itest, FS, C, OAS, BC)
Input : A: an algorithm with multiple operators to choose from, Itrain: a set

of training instances, Itest: a set of test instances, FS: a feature
selection method, C: a clustering algorithm, OAS: an online algorithm
selector, BC: criterion for algorithm comparison

Operator combination ax = cx +mx + lx where cx, mx and lx refer to crossover,
mutation and local search operators respectively
Performance vector for the algorithm combination ax on the instance iy:
P (ax, iy) = {p1(ax, iy), . . . , pk(ax, iy)}
Feature vector for the algorithm combination ax:
F (ax) = {p1(ax, i1), . . . , pk(ax, im)}
Feature extraction

1 F ← P = A(.) algorithm A is iteratively applied using randomly selected
operator combinations ax to gather performance data P for generating features
F
Feature selection

2 F ← FS(F )
Algorithm clustering

3 Cluster algorithm combinations: C(A,F )
Portfolio generation

4 Build portfolio using best algorithm combination from each cluster of C:
AP = {cl1 → a, . . . , clt → a} w.r.t. BC
Online selection

5 Sbest ← A(AP,OAS, Itest)

Algorithm 2. MA(c, m, l)
n: population size, k: number of newly produced individuals / solutions at each
generation

1 Initialisation: Generate a population of solutions: P (Si) for 1 ≤ i ≤ n
2 while !stoppingCriteria() do

k = 1
3 while c ≤ nc do
4 Apply a crossover: Sn+k = c(Sa, Sb)
5 Apply a mutation method: Sn+k = m(Sn+c)
6 Apply a local search operator: Sn+k = l(Sn+c)
7 k + +

end
8 updatePopulation(P )

end

Each feature vector is composed of the normalised versions of the following 7 fea-
tures for each instance: f = Nbest/T , f = Nimp/T , f = Nwrs/T , f = Neql/T ,
f = �imp/T , f = �wrs/T and f = T/Nmoves As a result, each algorithm
combination has #instances × 7 features.
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After completing the feature extraction process, a feature selection or elimi-
nation [22] method is applied. Gini Importance [23] and Gain Ratio [24] were
used for feature selection purpose. Gini Importance is mostly used with Random
Forests to detect the effective features w.r.t. the given class information. Gain
Ratio is a information theoretic measure used to detect the effect of each feature
by checking the variations on the values of each feature.

Next, algorithm clustering is performed. k-means clustering is applied as the
clustering method C to identify the (dis-)similarity of the algorithm combina-
tions. The best performing algorithm combinations, one from each selected clus-
ter compose the portfolio during the portfolio generation process. During this
process, the clusters with operator combinations which couldn’t find any new
best solution are ignored. Of significant importance is that when a cluster man-
age to find some new best solution, that cluster must be part of the portfolio, no
matter how small the cluster may be. Such small cluster may in fact be the spe-
cial combination that works well only on some very specific problem instances.
The best combination for each cluster are then determined w.r.t. BC which is
the number of new best solutions found. The overall procedure is finalised by
applying the corresponding memetic algorithm with a given online selection app-
roach OAS to the test instances Itest during the online selection phase. For the
experiments, uniform random selection is used as the OAS option.

4 Computational Results

For the memetic algorithm, the population size is set to 40. As many as 20
new individuals are generated during each generation. 4 crossovers, 1 mutation
operator and 3 local search heuristics are the available memetic operators. Since
the mutation operator needs a mutation rate to be set, 6 different values are
considered: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0. Setting the mutation rate to zero
actually means that the mutation operator is not used. In order to have the
same effect for the other two operator types, we added one dummy crossover
operator and one dummy local search heuristic. In total, 119 (5 crossovers ×
6 mutations × 4 local search - 1 ) operator combinations are generated. The
details of these memetic operators are given as follows:

– Crossover:
• CY CLE crossover: iteratively construct individuals by taking values from

one parent and appointing the location of a next value from the second
parent.

• DISTANCE PRESERV ING crossover: outputs an individual where
the distance referring to the number of genes assigned to different locations
should be the same for the both parents.

1 Using Scikit http://scikit-learn.org.
2 Using Java-ML http://java-ml.sourceforge.net/.
3 No crossover + no mutation + no local search case is ignored.

http://scikit-learn.org
http://java-ml.sourceforge.net/
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• ORDER crossover: a subgroup of genes are taken from one parent and
the remaining genes come from the second parent respecting their order.

• PARTIALLY MAPPED crossover: two randomly gene segments swap
and partial maps denoting the elements located at common loci are used
to change the conflicting genes with the swapped segment.

– Mutation: perturbs a given individual based on a mutation rate
– Local search:

• BEST 2 OPT local search: attempts pairwise swap between 2 loci and
applies the one producing best improvement in an iterative manner.

• FIRST 2 OPT local search: attempts pairwise swap between 2 loci in a
systematic fashion and applies the first one that produces improvement
in an iterative manner.

• RANDOM 2 OPT local search: attempts pairwise swap between 2 loci
in a random order and applies the first one that produces improvement in
an iterative manner.

For the training phase, tlimit is set to 300 s. The testing is performed with the
per-instance execution time limit of 30 min for 5 trials. Java on an Intel Core I5
2300 CPU @ 2.80 GHz PC is used for the experiments.

4.1 Quadratic Assignment Problem

The QAP [25] requires the assignment of n facilities to n locations. Equation 1
shows the objective to minimise for the QAP. fπiπj

is the flow between the
facilities πi and πj . π refers to a solution where each element is a facility and the
locus of each facility shows its location. dij is the distance between the location
i and j. The objective is to minimise the total distance weighted by the flow
values.

min

n∑

i

n∑

j

fπiπj
dij (1)

60 QAP instances from QAPLIB [26] were used. 31 instances are selected for
training such that we can have enough performance data for each algorithm
combination within the aforementioned time limit.

Portfolio Generation. The feature generation process resulted in 217 (31
instances × 7 per instance features) features. The features calculated for each
operator combination on each instance is discarded if the number of moves per-
formed is less than 10. After eliminating such features, 182 (26 instances × 7
per instance features) are left for each operator combination. Next, k-means was
called with k = 5 to detect clusters of operator combinations. The features with
this cluster information was considered as a classification problem in order to
understand the nature of clusters. For this purpose, a random forests based
feature importance evaluation method, i.e. Gini importance [23], is applied.
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It revealed that 27 out of 182 features are the ones actually shaping these clus-
ters. In addition, the features f = Nbest/T and f = Nimp/T are from these 27
features for most of the QAP instances.

Besides using these 27 features, the same number of features are taken
from the most critical features determined by other feature importance metrics.
Table 1 lists the algorithm combination portfolios found using different feature
sets provided by the metrics. The general view of these portfolios suggest that
it is not always a good idea to keep applying all the three types of memetic
operators together. Thus, in certain operator combinations, one or two opera-
tor types are missing. DISTANCE PRESERVING and PARTIALLY MAPPED
crossovers are not included any of the operator combinations of the derived port-
folios. Mutation is either ignored or applied with a small rate, i.e. 0.2 and 0.4.
Among the local search heuristic, FIRST 2 OPT is detected as the most popular
local search method while BEST 2 OPT is never picked. Besides, the portfolio
sizes vary between 3 and 4. Considering that k = 5, 1 or 2 clusters have no
operator combination yielded new best solutions during the training phase. In
order to show whether using multiple operator combinations in an online setting
is useful, the single best combination is also detected. The single best for the
QAP uses CYCLE crossover and FIRST 2 OPT without mutation.

Table 1. Operator combination portfolios determined by OSCAR for the QAP

Feature selection Algorithm portfolios

Crossover Mutation Local search

No selection CYCLE − FIRST 2 OPT

CYCLE − RANDOM 2 OPT

ORDER 0.4 FIRST 2 OPT

CYCLE 0.2 FIRST 2 OPT

Gini importance CYCLE − FIRST 2 OPT

CYCLE − RANDOM 2 OPT

− − FIRST 2 OPT

Gain ratio CYCLE − FIRST 2 OPT

CYCLE − RANDOM 2 OPT

− − FIRST 2 OPT

CYCLE 0.2 FIRST 2 OPT

Figure 2 visualises the operator combinations for each operator type to deter-
mine what actually shapes these clusters via multidimensional scaling (MDS)
[27] with Euclidean distance. These graphs indicate that the operator combina-
tions are grouped particularly in reference to the local search operators. Figure 3
shows the effect of individual performance measures on clustering. The amount
of improvement and worsening w.r.t. the total time spent by each operator com-
bination is utilised as the most critical performance measures. The operator
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combinations’ speed, the number of new best solutions and equal quality solu-
tions detected w.r.t. the total time spent by each operator combination are
determined as the measures affecting clusters least.

(a) Crossover (b) Mutation

(c) Local Search

Fig. 2. MDS of operator combinations w.r.t. each operator type for the QAP

Online Algorithm Selection. Figure 4(a) shows the performance of three
portfolios together with the Single Best combination when Random is used as
online selector, in terms of the success rate (i.e. how many times the best known
or optimum solutions are found, expressed in percentage). The results indicate
that the single best is able to deliver around 23 % of the best known QAP solu-
tions while OSCAR with different portfolios can find between 36 % and 37 % of
the best known solutions. Although Gini and Gain Ratio based portfolios per-
form slightly better than the case without feature selection, there seems to be of
only slight difference. However, when we look at the results closely by consider-
ing the solution quality, the performance difference becomes clearer. Figure 4(b)
presents box plots indicating the ranks of each tested method. Besides the supe-
rior performance of OSCAR against the Single Best in ranking, the portfolio
constructed using Gini delivers the best results among the three portfolios.
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Fig. 3. Contribution of the 7 problem-independent performance measures to the top
QAP features, determined by Gini

(a) Success Rate (b) Rank

Fig. 4. Success rates and ranks of operator combination portfolios on the QAP

4.2 Flowshop Scheduling Problem

The Flowshop Scheduling Problem (FSP) is related to the assignment of n jobs
to m machines aiming at minimizing the completion time of the last job, i,e.
the makespan. The 68 FSP instances from the Taillard FSP benchmarks [28]
are used. 41 of these instances are taken as the training instances while the
remaining 27 instances are considered as the test set.

Portfolio Generation. The feature generation process provided 287 features
(41 instances × 7 per instance features) for each instance. After performing

4 http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnance
ment.html.

http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/ordonnancement.html
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k-means clustering with k = 5, the Gini importance metric calculated via apply-
ing Random Forests indicated that only 29 of these 287 features contributed
to the clustering process. Thus, we use 29 as the number of top features to
check. This is achieved using the aforementioned importance metrics as we
did for the QAP case. Table 2 lists the portfolios of operator combinations
derived using each of these importance metrics. Unlike the QAP case, DIS-
TANCE PRESERVING and PARTIALLY MAPPED crossovers are also used
in the FSP portfolios. For Mutation, higher rates are preferred, i.e. 0.6 and
0.8, or no mutation is applied. RANDOM 2 OPT, here, is as frequently picked
as FIRST 2 OPT and BEST 2 OPT is used in one operator combination where
DISTANCE PRESERVING is included. Similar to the QAP portfolios, here each
portfolio has either 3 or 4 operator combinations. The single best combination
for the FSP applies PARTIALLY MAPPED crossover, mutation with rate of 0.6
and RANDOM 2 OPT.

Table 2. Operator combination portfolios determined by OSCAR for the FSP

Feature selection Algorithm portfolios

Crossover Mutation Local search

No selection CYCLE − FIRST 2 OPT

CYCLE − RANDOM 2 OPT

DISTANCE PRESERVING 0.6 BEST 2 OPT

PARTIALLY MAPPED 0.6 RANDOM 2 OPT

Gini importance CYCLE - FIRST 2 OPT

CYCLE − RANDOM 2 OPT

PARTIALLY MAPPED 0.6 RANDOM 2 OPT

ORDER − FIRST 2 OPT

Gain ratio PARTIALLY MAPPED 0.6 RANDOM 2 OPT

− 0.8 FIRST 2 OPT

ORDER − FIRST 2 OPT

Figure 5 presents the operator combinations w.r.t. their problem-independent
features in 2D via MDS. As with the QAP, the local search operators mainly
characterise the operator combinations’ groups. Figure 6 shows the which indi-
vidual performance measure is used while clustering. Operator combinations’
speed is detected as the major factor. Additionally, the number of new best
solutions, worsening solutions and equal quality solutions w.r.t. the total time
spent by each operator combination are also highly effective on the clusters. The
amount of worsening w.r.t. the total time spent by each operator combination
is utilised as the least important performance measure.

Online Algorithm Selection. Figure 7(a) details the performance of 3 port-
folios and the single best combination in terms of success rate (i.e. how many
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(a) Crossover (b) Mutation

(c) Local Search

Fig. 5. MDS of operator combinations w.r.t. each operator type for the FSP

Fig. 6. Contribution of the 7 problem-independent performance measures to the top
FSP features, determined by Gini
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times the best known or optimal FSP solutions are found, expressed in per-
centage). The portfolios generated using full feature set and Gain Ratio show
similar performance to the single best combination by reaching between 47 %
and 49 % of the best known or optimum solutions. However, the portfolio
with Gini found around 56 % of the best known solutions as the best tested
method. Figure 7(b) presents these results in terms of ranks w.r.t. the solution
quality where OSCAR’s superior performance can be clearly seen. Among the
reported portfolios, the Gini based portfolio reveals the statistically significant
best results.

(a) Success Rate (b) Rank

Fig. 7. Success rates and ranks of operator combination portfolios on the FSP

Overall, the results on both the QAP and the FSP indicate that using multi-
ple operator combinations is profitable when they are selected online. This shows
that OSCAR is able to combine the strengths of both offline algorithm portfolios
and online algorithm selection in a problem-independent manner. Of particular
significance is that the Gini-based portfolio always perform the best.

5 Conclusions

In this paper, we have introduced OSCAR as a framework that performs Online
SeleCtion of Algorithm poRtfolio. The algorithm portfolio is constructed offline
to determine which combinations of the memetic operators are efficacious for
solving certain problem domains. Those combinations in the portfolio are then
fetched to some online selection mechanism. This hybridization allows an online
selection method to capture the correlation among different types of the memetic
operators. This paper presents the first study of such hybridization. Additionally,
OSCAR does not require any problem-specific features to generate the portfolio,
thereby eliminating the necessity of problem domain expertise.

Empirical assessments on QAP and FSP have demonstrated the efficacy of
OSCAR. OSCAR is able to deliver superior performance compared to the single
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best operator combinations for both problems. This shows that the problem-
independent features introduced are practical to differentiate one available oper-
ator combination from the others, which eventually lead to an efficient portfolio.
Furthermore, the improving performance delivered after feature selection, par-
ticularly when Gini importance index is employed, indicates the usefulness of
the feature selection part of OSCAR.

Moving forward, the explanatory landscape analysis [29] will be incorporated
to extend the algorithm feature space. The multi-objective performance measures
shall be studied to build portfolios for multi-objective evolutionary algorithms.
An in-depth analysis will be performed to evaluate the performance of different
clustering techniques and online selection methods.
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Abstract. A simple model shows how a reasonable update scheme for
the probability vector by which a hyper-heuristic chooses the next heuris-
tic leads to neglecting useful mutation heuristics. Empirical evidence
supports this on the MaxSat, TravelingSalesman, Permutation-

Flowshop and VehicleRoutingProblem problems. A new approach
to hyper-heuristics is proposed that addresses this problem by model-
ing and learning hyper-heuristics by means of a hidden Markov Model.
Experiments show that this is a feasible and promising approach.

1 Introduction

A hyper-heuristic is a problem-independent algorithm that aims to select which
heuristic to apply next during an evolutionary process. The aim of the hyper-
heuristic is to speed up convergence toward an optimum in an optimization
problem.

A hyper-heuristic is thus an optimization problem itself: one aims to optimize
the convergence speed by scheduling heuristics appropriately. By problem inde-
pendent we mean the hyper-heuristic can observe only some properties of the
solution, and not the solution itself. Most software packages only allow inspecting
the fitness-value.

One traditional approach to hyper-heuristics is to reward a heuristic that
has - in the past - improved the solution, and punish the heuristics that computed
a worse solution. This is achieved by adapting the probabilities by which a
heuristic is chosen. We show with a simple model that such a scheme is doomed to
underuse the bad heuristics, while they are necessary to find an optimal solution.
This slows down convergence to an optimal solution. We report on experiments
on four problem classes that confirm this.

Literature proposes several alternatives to avoid the underuse of certain
heuristics in a more or less ad-hoc way. We choose for a more radical approach:
we propose to model the choices made by a hyper-heuristic as a hidden Markov
Model (HMM), and learn this HMM by means of (a sample of) the performance
of the individual heuristics on (a sample of) the solution space.

This paper is structured as follows: Sect. 2 defines necessary terminology and
concepts. In Sect. 3 we argue why a popular model – the probability vector –
will probably fail to increase convergence. This is done both using a model
©
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and empirically. Section 4 introduces our approach to modeling and learning
hyper-heuristics: it is based on the Mealy Input-Output hidden Markov model
(MIOHMM) also explained there. Results and experiments using this model are
reported in Sect. 5. Section 6 concludes and discusses future work.

2 Preliminaries

A single-objective optimization problem consists of an implicit solution space S
and a fitness function f : S → R. The aim is to find a (pseudo) optimal solution
s� such that the fitness value f (s�) is the infimum of f (S).

An evolutionary algorithm aims to achieve this by applying a chain of heuris-
tics on an initial solution s and returns the best solution encountered so far when
the time limit is reached.

A heuristic h is a function h : S → S that maps one solution to another
solution.

Most heuristics are probabilistic in nature: the generated solution depends on
both a solution and the seed of a random number generator. The set of possible
outcomes of the heuristic h given the solution s, is called the neighborhood H of
s, H (s).

The concept of a heuristic can be generalized further: genetic algorithms for
instance make use of heuristics that take as input two or more solutions. Such
heuristics are called “crossover” heuristics. We do not consider such heuristics
here.

We consider two types of heuristics: local search and mutation heuristics.
A local search heuristic or hill climber is a heuristic h that guarantees that the
generated solution is at least as good as the original solution, or more formally
f (h (s)) ≥ f (s) for all solutions s. Mutation heuristics do not guarantee this
behavior.

A local optimum with respect to a set of heuristics hi is a solution s such
that for each element s′ in the union of the neighborhoods Hi of s, f (s′) < f (s)
or s = s′. Any local search heuristic applied on a local optimum results in the
same solution.

3 Modeling Heuristic Behavior with Probability Vectors

Hyper-heuristics [1,2] commonly use a probability vector [3] for guiding the selec-
tion of the heuristic to apply next.

A probability vector is a list of probabilities that sum up to one and asso-
ciates elements - in this case heuristics - with probabilities. The well known
roulette wheel selection procedure [4] can select heuristics proportional to their
probability.

A probability vector is trained by updating the weights in function of accu-
mulated empirical evidence. An algorithm that updates the probabilities is called
an update scheme.
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Hyper-heuristic systems use different [1,2] update schemes. We will show that
under assumptions stated later, a reasonable update scheme eventually makes
escaping from a local optimum less probable.

A reasonable update scheme rewards heuristics that produce a better solu-
tion, penalizes heuristics that produce a worse solution, and rewards or is neu-
tral to heuristics that produce a new solution with the same quality. The update
weights are furthermore monotonic with respect to the absolute difference in
fitness value: if the difference increases, the weight either increases or remains
the same. A reasonable update scheme is also oblivious to the type of heuris-
tic: e.g. the update strategy does not differ between local search and mutation
heuristics. Not all update schemes proposed in literature are reasonable.

3.1 On the Probability to Escape from a Local Optimum

Our claim is that probability vectors eventually antagonize convergence of the evo-
lutionary process given. This is true under a number of reasonable assumptions.

1. The hyper-heuristics runs with both a local search and mutation heuristic:
this is true for all hyper-heuristics we are aware off.

2. The heuristics are stationary. A heuristic is stationary if the probability of
generating a solution only depends on the given current solution and not on
other parameters like the elapsed time in the process.

3. It is very unlikely that the result of a mutation heuristic is a local optimum
or that a mutation heuristic can improve the result of a local search heuristic.
This seems true in practice. For simplicity, we assume here that it is not just
very unlikely, but impossible.

4. For a mutation heuristic, the average fitness value of the solution after the
application of the mutation heuristic is eventually worse than the fitness value
of the solution before the application of the mutation heuristic.

Experiments on four different problems implemented in the HyFlex 1.0
[5] framework show that this is true for 12 out of 15 mutation heuristics.
Other mutation heuristics are iso-fitting: they produce always solutions that
have the same fitness value as the original solution.

Once the evolutionary process is at a local optimum, a local search heuristic
cannot generate a solution different from the active solution. Mutation heuristics
are thus necessary to escape from a local optimum (assumption 1). Empirical
evidence shows that evolutionary algorithms are stuck in a local optimum a
significant number of times . The detection of and the escape from local optima
should thus be performed as efficiently as possible.

Figure 1 illustrates with an (in)finite state machine how a generic hyper-
heuristic process escapes a local optimum. The nodes represent the possible
1 See goo.gl/vVTZNE for details.
2 If the heuristics are applied with uniform probability, around 5 % to 20 % of the

time, although it strongly depends on the problem. See goo.gl/vVTZNE for empirical
evidence.

http://goo.gl/vVTZNE
http://goo.gl/vVTZNE
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LO0start LO1M0

LO2M1

. . .. . .

Mutation (m)
Local search (l)

Fig. 1. Representation of the different states in an escaping process.

states of a hyper-heuristic algorithm: they are distributions over the solution
space S that represent how probable it is for a solution to be the “active solu-
tion”. The escaping process starts in a state we represented by LO : the state
represents the fact that a local optimum is the active solution at that moment.
The aim is to get the system in another local optimal solution: other local optima
are represented by the states LO ,LO , . . .. All local optima states are marked
as “accepting” since they mark the end of an “escaping attempt”.

In the initial state of the escaping process, the probability vector is repre-
sented by 〈pl, pm〉 with pl and pm = 1−pl respectively the probability of the local
search and mutation heuristic. The expected number of function calls before the
mutation heuristic is called is determined by:

∑

i

pi
l =

1
1 − pl

=
1

pm
. (1)

During these escape attempts local search always generates the same solution: a
reasonable update scheme either does nothing with this information or it rewards
the local search heuristic l.

If an acceptance scheme is incorporated, this can take even more attempts
since rejecting the result of a local search application makes no difference, and
rejecting the solution generated by the mutation heuristic only results in more
attempts to escape the optimum.

After the mutation heuristic m is eventually applied, the generated solution
is worse since otherwise the initial solution would not have been a local optimum.
Reasonable update schemes will penalize this with a reduction of the probability.

Since we assume it is impossible that the mutation heuristic produces a local
optimum (assumption 3), the process escapes local optimum LO and ends up in
state M at the cost of a decrease in the probability of the mutation heuristic. M
describes a probability distribution over the possible outcomes of the mutation
heuristic. Now two possible scenarios can unfold:

1. The mutation heuristic is called a second time. The process ends up in state
M (with a possibly different distribution over the solution space) note that
this scenario can be repeated;

2. The local search heuristic is applied and the system ends up in a (possibly
different) local optimum. In case we end up in the same local optimum, all
invested computational resources are wasted.
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In the first scenario, in general the expected average fitness value over the dis-
tribution of solutions in Mi will be worse than that of Mi (assumption 4).
Depending on the outcome of the mutation heuristic, we thus expect that the
probability for the mutation heuristic will decrease further (since the proba-
bility vector is “reasonable”). After application of the mutation heuristic, the
algorithm is still in an M -state and thus the two scenarios reemerge.

In the second scenario we reach a local optimum (assumption 3). The proba-
bility of the local search heuristic will increase at the expense of the probability
of the mutation heuristic, since it is expected that the probability of the local
search heuristic will increase. Equation (1) shows that the higher the probability
of the local search heuristic, the longer it takes to escape a local optima.

One can describe this phenomena as the fact that the local search heuristic
“takes full credit” for the work that was partially carried out by the mutation
heuristic: escaping out of a local optimum. Since mutation heuristics are crucial
in such process, at least a small probability should be maintained to prevent a
hyper-heuristic locking itself in.

As the probability of applying a mutation heuristic decreases, it takes longer
to escape from a (new) local optimum. Hence we claim:

Claim. A method using a probability vector with a reasonable update scheme
eventually takes more and more time to escape from local optima and thus its
convergence speed decreases.

Fig. 2. Evolution of a probability vector solving the VehicleRoutingProblem.
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3.2 Empirical Evidence of the Claim

We performed experiments using the HyFlex 1.0 [5] framework to test whether
our claim about probability vectors hold. Note that we proved our claim using
just one mutation heuristic and one local search heuristic. In our experiments we
used multiple heuristics of both kinds. Several reasonable update schemes were
used. The tests were performed on the MaxSat, PermutationFlowshop,
TravelingSalesman and VehicleRoutingProblem problems.

Figure 2 depicts the state of the probability vector at each generation for the
VehicleRoutingProblem problem using a constant penalty/reward update
scheme.

The thin gray line shows the fitness value of the active solution and thus
indicates whether the system is stuck in a local optimum. When the spikes in
the fitness value are close together, this indicates that the escape from a local
optimum was fast. When the fitness value remains the same during some gener-
ations, it indicates a slower escape. It is clear that as the number of generations
increases, it becomes harder to escape the local optimum, still the fitness function
f (g) does not show that the local optima become significantly better.

This trend is matched by the evolution of the probability of the mutation
heuristic, and consequently the local search heuristic: the thick red line indicates
the total probability of the three employed local search heuristics. Initially the
probability is set to 1/9 for each heuristic, so the total probability for the local
search heuristics is pl = 0.333. As the number of iterations grows, the probability
approaches 1 quickly. The thick green line shows the sum of the probabilities
of mutation and ruin-recreate heuristics. Since the problem runs with 6 such
heuristics, initially the probability is set to pm = 0.666, but it decreases fast
below any reasonable probability.

The same effects were observed for all other tested problems and employed
update schemes, so we conclude that our claim about probability vectors gener-
ally holds.

One can argue that in practice, hyper-heuristics never implement such a
“pure” probability vector with a reasonable update scheme. For instance, many
approaches use a probability vector per heuristic. This probability vector then
determines which heuristic to apply next given the previous heuristic that was
called first. We have performed empirical tests on such probability transition
matrices as well and the same effects were observed although the convergence of
the probability of local search heuristics towards 1 was slower. The reason seems
that it takes several generations to update all the elements of the transition matrix.

3.3 Working Around the Problem with Probability Vectors

Hyper-heuristics try to solve the above stated problem in various ways:
Reinforcement learning [6,7] is a state-oriented update scheme with mem-

ory. It gives credit not only to the item last applied in the sequence, but uses

3 See the right axis for the appropriate unit.
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a smoothing off approach where each heuristic in the sequence receives credit:
the more recent the heuristic was called, the more the heuristic is rewarded.
The rewards are given in the context of an implementation-defined state.
A first limitation to this approach is that a programmer must find a good way to
define states that can only depend on the observed fitness values. Furthermore
reinforcement learning sometimes tend to reward items in a sequence that have
nothing to do with the result: if multiple local search heuristics were applied in
the evolutionary chain, they are all rewarded for delivering the same solution.

AdapHH [8,9] solves the problem using a tabu search [10] approach where
heuristics that take a significant amount of time without generating a better
solution are tabued. Since local search heuristics take in general more time than
mutation heuristics, local search heuristics will get tabued more often. Mutation
heuristics can get tabued as well resulting in a potential lower convergence rate.
Since eventually the heuristics are untabued again, such algorithms have a more
stable performance.

Finally, Iterative Local Search [11] interleaves mutation heuristics with local
search heuristics and applies pairs of a mutation and local search heuristic.
If such move generates a better solution, both heuristics are rewarded. A poten-
tial pitfall with this approach is that it can take more than one mutation heuristic
application to get out of a local optimum. Extensions on iterative local search
exist that take this into account.

We think that it might also be worthwhile to experiment with an update
scheme that penalizes heuristics that generate the same (quality) solution as the
given one. As a result, in a long sequence of local search heuristics, these local
search heuristics will become less favorable and the evolutionary process can
escape from the local optimum.

However, we think that it might be better to abandon probability vectors
altogether.

4 From Probability Vectors to Hidden Markov Models

Although in the previous section we showed that a probability vector cannot
learn well heuristic behavior, we think that probabilistic reasoning is a promising
way to reason about heuristic behavior. The missing aspect in many implemen-
tations is maintaining a “state”. This state is incorporated in a hyper-heuristic
by the notion of the active solution.

We already discussed that reinforcement learning maintains states, but it
is up to the programmer to decide what these states represent. In this section
we discuss an approach were the semantic interpretation of states is left to a
learning algorithm. This makes the algorithm more flexible.

We first discuss hidden Markov models and their application to hyper-
heuristics in Sect. 4.1. We then show how we can learn heuristic behavior using
such models in Sect. 4.2. In Sects. 4.3 and 4.4, we propose methods that decide
which heuristic to apply next in an evolutionary process and forgetting learned
behavior in favor of new experience.
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4.1 Hidden Markov Models

Definition 1 (Hidden Markov Model (HMM)). A hidden Markov Model
is a 3-tuple 〈π, A,B〉 with π a probability n-vector, A an n×n transition matrix
and B an n × m emission matrix. Each row of A and B are probability vectors.

π z1

y1

z2

y2

zT

yT

. . .

. . .

A
B

A
B

A
B

A
B

Fig. 3. A Markov process described by a hidden markov model.

A hidden Markov model describes a Markov process as depicted on Fig. 3: a
probabilistic function that varies in time Y : N → O : t �→ Y (t) with O =
{o , o , . . . , om} a finite set of possible observations. This is done by considering
a set of “hidden” states {s , s , . . . , sn}. Given the system is in state zt = si at
time step t, ai j describes the probability of the system being in state zt = sj at
time step t+1. The hidden states cannot be observed directly. At each time step t
the active state zt emits an observation. The probability of emitting observation
ok is defined by bi k. The initial probability vector π element for index i is defined
as the probability of generating the corresponding solution as initial solution in
the evolutionary process.

For the purpose of this paper, we take as observations the set of fitness values
of the solutions. Since a hyper-heuristic can only inspect directly the fitness value
of a solution, this is our only possibility.

Depending on which “behavior” we want to model, we can generate a set of
observations O. Since the number of solutions in a combinatorial optimization
problem is finite, the domain of behavioral aspects attached to the solution
space is finite as well. From a hyper-heuristic point of view, the only reasonable
behavioral property we can extract from a solution is its fitness value. Given the
set of all possible fitness values O, the emission probability bi k is set to 1 if the
solution corresponding to hidden state si has the fitness value represented by ok

and 0 otherwise.
The above discussed model shows that we can model the behavior of a single

stationary heuristic with a HMM. The aim of a hyper-heuristic however is to
determine which heuristic to apply next in a set of multiple heuristics. In order
to model multiple heuristics, we use the concept of an Input-Output hidden
Markov model [12].

Definition 2 (Input-Output Hidden Markov Model (IOHMM)). An
Input-Output hidden Markov model is a 3-tuple 〈π, A,B〉 with π a probabil-
ity n-vector, A an l × n × n transition matrix and B an n × m emission matrix.
Each matrix Ai is a transition matrix as defined in Definition 1.
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An IOHMM considers not only a set of observations O but an input alphabet Σ
as well. In the case of a hyper-heuristic the alphabet consists out of the set of
heuristics one can apply. Depending on the input hi, a different transition matrix
Ai is applied. One can generate an IOHMM model for a set of heuristics H and
an initializer analogue to a HMM, but the process of calculating the transition
matrices Ai is repeated for each heuristic.

4.2 Learning Heuristic Behavior

Constructing an IOHMM for a specific problem instance is useless: first of all
it requires at least O

(
|H| · |S|

)
time, with |H| the number of heuristics and

|S| the number of solutions of the problem instance, to generate an IOHMM for
a problem instance. Thus, it is easier to enumerate the entire solution space in
search for the global optimum.

An evolutionary process generates empirical evidence: a list of tuples contain-
ing both the heuristic that was called and the resulting behavior (i.e. the fitness
value of the generated solution). The well known Baum-Welch algorithm uses
the Expectation-Maximization methodology to learn values for π, A and B such
that probability of generating a sequence like the empirical evidence is maximized
for an a priori determined number of hidden states n. This is the best we can hope
given we cannot make any assumptions regarding how the heuristics work.

The algorithm runs in O (
t · (

n + n · m
))

with t the number of data points,
n the number of hidden states and m the number of possible observations. This
is the time complexity of one step in the expectation-minimization process:
it is possible that multiple iterations are necessary before the model parame-
ters 〈π, A,B〉 converge towards a local optimum . At this point we realized
that the number of observations and hidden states is too large to learn a model
effectively, so they must be reduced.

By reducing the number of hidden states, the hidden states no longer rep-
resent solutions, but distributions over the set of solutions. Each distribution
marks solutions that show, according to the Baum-Welch algorithm, similarly
with respect to the observations. Since the algorithm aims to maximize the prob-
ability of the observed data, solutions will be grouped if one or more heuristics
behave similarly on both solutions. The number of hidden states can be a limit-
ing factor: if the heuristic behavior is complex, it requires more hidden states. As
the amount of empirical evidence grows, one can increase the number of hidden
states to increase the quality of the model.

We also reduced the set of observations (in the context of a hyper-heuristic,
the set of possible fitness values). If an IOHMM considers the set of all possible
fitness values, the model has no means to generalize heuristic behavior and the
model would have a hard time learning that a local search heuristic applied to
one local optimum would generate the same solution, regardless of the fitness
value of the first solution.
4 Experiments show that such local optimum is nearly always near the global optimum,

although sequences can be derived that are hard to learn.
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Reasoning about the difference between two fitness values is therefore a better
decision: it enables the model to learn that if there is no difference between the
initial and final solution of a local search heuristic, there never will be any in
the future.

Considering “differences” between two fitness values as the observation set
leads to an inconsistency: differences between fitness values of two solutions
do not correspond to a single solution. Heuristics can produce different fitness
differences for the same solution.

We can solve this issue by squaring the number of hidden states: in that case
each hidden state represents a tuple containing the old and the new solution.
In that case the hidden Markov model has a “memory” of 1 time step. The
computational effort invested in learning how to handle such memory will how-
ever increase significantly: the number of parameters to learn is now n + n · m
with n the number of original hidden states and m the number of “difference”
observations.

One can “pre-encode” the use of memory using a Mealy Input-Output hidden
Markov Model : a IOHMM where the observed difference depends on both the
solution and the heuristic applied on that solution.

Definition 3 (Mealy Input-Output Hidden Markov Model (MIO-
HMM)). A Mealy Input-Output hidden Markov model is a 3-tuple 〈π, A,B〉
with π a probability n-vector, A an l×n×n transition matrix and B an l×n×m
emission matrix. Each matrix Ai is a transition matrix and each matrix Bi is
an emission matrix as defined in Definition 1.

The observation yt no longer depends on current hidden state zt, but on the
previous hidden state zt− and the input token xt. The Baum-Welch algorithm
can be modified such that it trains a MIOHMM in the same time complexity as
training a hidden Markov model. Figure 4 depicts the evolution of a MIOHMM
in time.

π

x1

z1

y1

x2

z2

y2

xT

zT

yT

. . .

. . .

. . .

Fig. 4. The markov process described by a mealy input-output hidden markov model.

For our experiments, we reduced the number of observations to three: better,
worse and same.

5 This in contrast with the Markov assumption that states that a Markov process has
no memory.
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4.3 Selecting a Heuristic

Based on the information collected, compressed and stored by the MIOHMM,
one needs to decide which heuristic to apply next in the evolutionary process.
An advantage of a hidden Markov model is that it can calculate the distribution
over the hidden states at any point in the process. Based on the earlier historical
evidence and the model itself, one can predict with which probability a heuristic
will produce a better, equivalent or worse solution, this of course given the model
is correct.

Our hyper-heuristic submitted to the CheSC 2014 challenge used the fol-
lowing selection procedure: we designed a desired emission probability vector
with values:

d = 〈d , d , d−〉 = 〈0.6, 0.05, 0.35〉 (2)

At each decision point the heuristic behavior is predicted. The heuristic for which
the dot-product between d and the predicted output is maximized is selected as
the next heuristic.

We did not perform any tuning on the d vector: the vector merely favors
generating a better solution over a worse solution and a worse solution over an
equivalent solution. Since we are only interested in the heuristic that maximizes
the dot-product we think this is a robust metric: a small difference in the d-vector
will typically only lead to a different decision on rare occasions.

The selection procedure is still a weak spot in our hyper-heuristic algorithm.

4.4 Forgetting Learned Experience

Since the number of empirical samples keeps increasing, adapting our model to
the latest measuring point would require increasing computational effort at each
time step. By considering only a time window of samples, we set a threshold on
the maximum amount of effort spend on improving the learned model.

Since the observed data originates in many cases from the same region in
the search space, the MIOHMM will learn a model aligned to this region. By
considering a time frame, our algorithm has the ability to forget past experience
that would make the model less suited for the challenges for the evolutionary
process at that moment.

The Baum-Welch algorithm tends to stick with an earlier learned model.
For instance, transition probabilities close to 0.0 require many iterations to
increase to a significant level. Since the transition matrices of learned hidden
Markov models tend to be sparse learning a better model can be hard.

We solved this by adding additional noise to the matrices: small probabilities
were added to or subtracted from the elements from transition matrices. This
noise can be seen as “forgetting” what has been learned in favor of accepting
new experience. Markovitch [13] argues that forgetting is a vital point in learning
that many algorithms tend to ignore.

6 See Sect. 5.3.
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5 Results

In this section we show that local search heuristics can be learned perfectly, the
effect of the number of hidden states on the model quality and the hyper-heuristic
performance in practice.

5.1 Local Search Heuristics

An encouraging theoretical result of the use of hidden Markov models, is that
the model can easily learn the behavior of local search heuristics using two
hidden states. The two states are called the improvement state si and the non-
improvement state sn.

si sn

+ =

Fig. 5. A model of a local search heuristic requires two hidden states.

The probability of a better solution (+) in the first state is 100% as is the
probability of generating an equal solution (=) in the second. The transition
probability of sn to itself is pnn = 100% as well since our local search heuristic
reached an optimum.

In case the local search heuristic guarantees a local optimum after one func-
tion application (as is the case in HyFlex 1.0 [5]), the transition from the
improvement state si to the optimum state is 100%. In case it can take an unde-
termined number of applications of the heuristic, the probability is pin = 1/λ
with λ the average number of consecutive improvements until an optimum
is reached. The transition probability from the improvement state to itself is
defined by pii ≡ 1 − pin.

If the result is guaranteed to be a local optimum, this behavior can be learned
from three observations. Otherwise it requires a sequence of heuristic applications
until an optimum is reached to estimate pin effectively. The precision of pin

increases with O
(
1/

√
k
)

with k the number of sequences of the local search
heuristic that end up in a local optimum.

5.2 Number of Hidden States Versus Model Quality

An advantage of the hidden Markov model approach is that the learning com-
ponent acts rather independent from the decision component . This allows one
to analyze whether the MIOHMM is capable of modeling the heuristic behav-
ior correctly. Sometimes machine learning algorithms fail to improve the overall
model quality: some problem instances can be modeled better at the expense of
others so that we end up with a zero-sum result.

7 The decision component will however have an impact on the generated evidence.
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Fig. 6. The effect of the number of hidden states on the model quality.

We performed a batch of experiments in which we iterated over all possible
Max3Sat problems with 8 variables and 4 clauses. With symmetry breaking,
this results in 199′057 unique problems. For each problem, we tried to learn the
behavior of three low level Max3Sat heuristics with a MIOHMM for a varying
number of hidden states using data collected exhaustively over the entire solution
space.

The quality of the learned model was evaluated by calculating the average
number of times the model could predict the result of heuristic application in an
evolutionary process correctly. Although we argued that the selection procedure
is still a weak spot in our approach, the more accurate a model can predict the
outcome of a heuristic, the better the decision a hyper-heuristic can make.

Figure 6 shows the results obtained with 1, 2 and 7 hidden states. As the
number of hidden states increases, the achievable quality of a MIOHMM is
guaranteed to increase . Since there is no inherent order in Max3Sat prob-
lem instances, we ordered the problem instances on increasing model quality
of a MIOHMM with 1 hidden state. The regions in green and yellow show the
increase of model quality compared to a MIOHMM with less hidden states.

The graph shows that as the number of hidden states increases, the model
quality of certain chunks of problem instances increases significantly. For some
instances, the learned model predicts the behavior correctly in more than 80%
of the cases.

The results might seem not that impressive, but note that a completely ran-
dom selection would result in a model quality of 0.333. Moreover in this experi-
ment we aimed to learn the heuristic behavior over the entire search space.

Since this data is not available in a real hyper-heuristic process, the hyper-
heuristic will learn based on evidence of “local” data and thus specialize in the
active region.

8 Since the Baum-Welch algorithm is a heuristic learning algorithm, this is not guar-
anteed, but we never encountered such an example.
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To the best of our knowledge, this is the first experiment performed with
hyper-heuristics where a problem instance set is exhaustively enumerated. These
experiments are an indication that one hyper-heuristic is more suited than
another to learn generic heuristic behavior given the learning algorithm can be
separated from the decision algorithm. The full batch of experiments is available
at goo.gl/vVTZNE.

5.3 Hyper-heuristic Performance

Our hyper-heuristic based on MIOHMM was submitted to the CheSC 2014
[14,15] competition for the parallel track. Parallelization was performed by mul-
tiple threads, learning and selecting based on the same model. No a priori knowl-
edge about the heuristics was added and the parameters as described by Eq. (2)
were not fine-tuned.

The algorithm outperformed the only competitor, the Evolving Tree
Hyper-Heuristic (ETH) [16] for the ProbeSelectionProblem and Multi-

dimensionalKnapsackProblem problem, but achieved worse results for the
VehicleRoutingProblem. For more details, visit goo.gl/IQZ1bj.

6 Conclusion and Future Work

We have shown that the probability vector approach has problems learning
heuristic behavior.

As an alternative, we have modeled a hyper-heuristic as an IOHMM. To
effectively learn such model, its number of observations and hidden states must
be reduced. This can result in a model with lower quality. Whether this is a
serious issue depends on the problem at hand.

An additional advantage of our approach is that at each point in time, one
can measure how well the model is trained with respect to historical data. The
model can learn from multiple sources concurrently and thus has a benefit with
respect to parallelization as was shown on the CheSC 2014 competition.

On the whole we think our results are promising and warrant further inves-
tigation. In particular, further research must study alternatives for reducing the
observation set. Also the selection procedure can be improved. It is possible to
encode a priori known aspects about heuristics into our model such that well
known aspects should not be learned.
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Abstract. Differential evolution (DE) is a powerful and simple algo-
rithm for single- and multi-objective optimization. However, its perfor-
mance is highly dependent on the right choice of parameters. To mitigate
this problem, mechanisms have been developed to automatically control
the parameters during the algorithm run. These mechanisms are usually
a part of a unified DE algorithm, which makes it difficult to compare
them in isolation. In this paper, we go through various deterministic,
adaptive, and self-adaptive approaches to parameter control, isolate the
underlying mechanisms, and apply them to a single, simple differential
evolution algorithm. We observe its performance and behavior on a set
of benchmark problems. We find that even the simplest mechanisms can
compete with parameter values found by exhaustive grid search. We
also notice that self-adaptive mechanisms seem to perform better on
problems which can be optimized with a very limited set of parameters.
Yet, adaptive mechanisms seem to behave in a problem-independent way,
detrimental to their performance.

Keywords: Differential evolution · Multi-objective optimization · Para-
meter control · Comparative study

1 Introduction

Differential evolution (DE) [14] is a simple to understand, but nevertheless pow-
erful optimizer. However, its performance is highly sensitive to the choice of
parameters. Moreover, this dependency changes from problem to problem. Selec-
tion of well performing fixed parameters for a particular optimization problem
is a relatively little understood subject, especially in the multi-objective realm.
This motivated many researchers to develop techniques to set the parameters
automatically, during the run of the DE algorithm.

According to the taxonomy in [5], parameter setting techniques are divided
into parameter tuning, which happens before the run, and parameter control,
which happens during the run. The former is a subset of a larger field, called
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algorithm configuration, which is itself a deeply researched subject [8]. In this
work however, we study only parameter control mechanisms.

Parameter control (PC) techniques are further divided into deterministic,
adaptive, and self-adaptive. Deterministic techniques apply the parameters
according to a given rule, while ignoring any feedback from the search process.
Adaptive techniques continually update their parameters using feedback from
the population. Self-adaptive techniques attach different parameters to each indi-
vidual. These parameters undergo mutation and recombination along with the
individuals. Better parameter values lead to individuals with a higher chance to
survive and therefore have a higher chance to propagate to the next generation.

Each mentioned paradigm of parameter control is represented by numerous
algorithms in the literature. One of the first attempts to control parameters in
DE is the (multi-objective) SPDE algorithm [1] belonging to the self-adaptive
category. An adaptive mechanism based on population diversity for both single-
and multi-objective DE has been proposed by Zaharie in [19]. The use of fuzzy
controllers to adapt the parameters has been proposed by Liu et al. [11] The
SaDE algorithm [15], originally proposed for single-objective DE, adapts the used
DE strategies as well as the parameters. SaDE, which is an adaptive algorithm
according to our classification, has been generalized to multi-objective realm and
subsequently improved to OW-MOSaDE [6]. A comparison of single-objective
adaptive and self-adaptive methods is presented in [2] and in [3].

A typical modern multi-objective algorithm is in fact an orchestra of sub-
algorithms, each playing its own instrument. There is a sub-algorithm to initialize
the population, a sub-algorithm to select individuals for reproduction, a sub-
algorithm to maintain diversity, and so on. Various techniques for parameter
control are usually published as a part of a unified production-ready algorithm.
Apart from the parameter control mechanism, this algorithm usually has its own
sub-algorithms to perform tasks not related to parameter control. These sub-
algorithms usually vary from algorithm to algorithm and make the comparison
of algorithms difficult, since it is not clear if the difference in performance should
be attributed to the parameter control mechanism itself, or to the difference in
sub-algorithms. For example, to estimate diversity of an individual, the OW-
MOSaDE algorithm [6] uses the harmonic average distance measure, while the
JADE2 algorithm [21] uses the product of distances. In order to isolate these
effects, we implement all the parameter control methods within a simple multi-
objective DE algorithm DEMO [16].

In this paper, we want to find out if some parameter control paradigm is
inherently better in terms of performance and whether the parameter control
mechanisms can find favorable parameters in problems which can be success-
fully optimized only with a limited set of parameters. We are also interested in
finding an explanation of the observed performance. We do this by observing
the evolution of parameters used by the parameter control methods through-
out the optimization process. For this paper, we tried to choose representative
examples from each group. We compare one deterministic, three adaptive, and
four self-adaptive methods. Some of the methods we present here are originally
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used only for single-objective optimization, but they can be easily adopted to
multi-objective optimization, which we do in this paper.

We conclude, that self-adaptive methods are the most robust methods, while
performing on a par with the best fixed parameter settings. We found out that
adaptive methods may have big problems to find good parameters. Moreover,
they seem to adapt their parameters in patterns independent of the problem.

However, our conclusions come from empirical results with a single (DEMO)
algorithm. It is possible, that applying the studied PC mechanisms to a different
algorithm may yield very different results. Such was the case in [13] where the
authors studied parameter control in ant colony optimization algorithms.

In the following section we introduce the various mechanisms we use in this
work. In Sect. 3 we explain the details of our experimental setup. In Sect. 4 we
discuss and interpret the empirical results and we conclude in Sect. 5.

2 Approaches to Parameter Control in DE

In this section we describe DE in more detail and introduce its parameters. Then
we introduce the mechanisms that we examine in this paper.

2.1 Differential Evolution Parameters

The fundamental principle of DE is to create new individuals by adding
scaled differences of individuals to each other. Let P = {X , ...,X }, where
Xi = (xi, , . . . , xi,n) ∈ R

n, be the population. In its most basic form, DE tra-
verses through P , attempting to improve each individual X by generating
a new individual X in the following way: First, three distinct individuals,
Xr1 ,Xr2 ,Xr3 are chosen from P . Then a scaled difference of two of these indi-
viduals is added to the third one and an intermediate individual X is
created:

X := Xr1 + F(Xr2 − Xr3). (1)

The scaling factor F is the first parameter of DE. Then the X is generated by
randomly inheriting variables from either X or from X . One variable
with a randomly chosen index inv is automatically inherited from X to
avoid generating a copy of X . This is described in (2), where rand (0, 1) is
a generator of uniformly randomly distributed numbers in [0; 1].

x ,i :=

{
x ,i if rand (0, 1) < Cr or i = inv

x ,i else
(2)

The number Cr in (2) is the second parameter of DE and it is called the crossover
probability. Cr controls the proportion of variables that are perturbed in an
incumbent individual X to create a new individual. When Cr = 0, only one
variable changes at a time, hence Cr = 0 is well suited for separable problems.

Very significant work on understanding the theoretical properties of F and
Cr has been done by Zaharie in [18]. An empirical analysis has been performed
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by Kukkonen in [10]. The population size NP is also considered a parameter of
DE, and there have been attempts to adapt the population size as well [17], but
in this paper we restrict ourselves to parameters F and Cr. Moreover, strategies
to generate X , different than the one in (1) and (2) have been proposed, but
in this work we shall consider only the default strategy. Next, we present all the
parameter control mechanisms that we consider in this study.

2.2 Deterministic Mechanism for Parameter Control

The MDDE algorithm [22] initializes the parameters as relatively big values
F ,Cr , to prevent premature convergence. Then it monotonically decreases
them with respect to the generation g, in a geometric sequence, according to:

Fg := F exp(−a
g

g
)

Crg := Cr exp(−a
g

g
),

where g is the maximum number of generations.

2.3 Adaptive Mechanisms for Parameter Control

JADE2. The adaptive mechanism in the JADE2 algorithm generates new val-
ues of F and Cr for each new X . If a particular X Pareto dominates the
X , the combination of F and Cr which generated the X is recorded as a
successful one. The values of F are generated from a Cauchy distribution with
median μ and scale γ = 0.1, the values of Cr from a normal distribution with
mean μ and σ = 0.1. At the end of each generation, the parameters of these
distributions are updated using the following rules:

μ := (1 − c)μ + c.avgL(Fs)
μ := (1 − c)μ + c.avgA(Crs),

where c ∈ [0; 1] is a learning factor, avgL(Fs) is the Lehmer mean of all successful
F’s and avgA is the arithmetic mean of successful Cr’s in the previous generation.
In our experiments we used c = 0.1, as recommended by the authors.

OW-MOSaDE. Objective-wise MOSaDE [6] attempts to learn which value of
Cr is good for a particular objective. For each objective fi ∈ (f , . . . , fm) OW-
MOSaDE holds one value of μi, . These values are updated at the end of each
generation if the X generated by a particular Cr improves objective fi. In
addition, a master μ is updated if all objectives are improved simultaneously.
At each generation, one of these m + 1 values is randomly chosen to serve as
the mean of a normal random distribution with σ = 0.1, which is sampled to
generate the values of Cr. That is, each generation the algorithm concentrates
on either one randomly chosen objective or attempts to improve all objectives
at once. As opposed to JADE2, there is no learning factor, but the successful
values of Cr are retained for lp generations, where lp = 50 is a learning period.
The value F is not adapted, but generated randomly from a fixed set of normal
distributions for each individual.
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Control of Diversity Adaptation Algorithm (PDCaDE). Zaharie dis-
covered a simple algebraic relationship between the expected variance of the
DE population before and after the generation of new individuals [18]. Based
on these results, she developed an algorithm which monitors the variance of the
population in the decision space and alters the parameters according to this rela-
tionship, so that the variance of the population decreases in a specified, steady
manner throughout the entire run. The motivation is to prevent premature con-
vergence and to use the allocated budget of generations evenly.

The algorithm does not have a specific name, so we call it Population
Diversity Control Adaptive DE (PDCaDE) in the rest of this article. PDCaDE
introduces a new parameter γ, which we held constant at γ = 1.25 for all our
experiments. This value was determined by some limited tuning, since the author
does not provide a recommendation for multi-objective problems.

2.4 Self-adaptive Mechanisms for Parameter Control

The main idea behind self adaptive mechanisms is that each individual carries
the set of parameters by which it was created. This way, if an individual is created
by a good set of parameters and survives into the next generation, the parameters
it carries survive too. Conversely, bad parameter combinations get pruned away.

In all self-adaptive DE mechanisms considered in this paper, the principle is
the same. New individuals X are generated using (1) and (2), where the F and
Cr are not fixed, but replaced by F and Cr . These values are generated
on the spot and then carried by the newly generated X . Let us denote by
Fi and Cri the parameter values carried by individual Xi. Then the methods to
generate F and Cr can be described by simple equations in Table 1.

3 Experimental Design

3.1 Algorithmic Framework

Algorithm 1 shows the unified framework used to compare the selected parameter
control mechanisms. The lines that apply only to self-adaptive mechanisms are
highlighted in yellow, while the ones that apply only to adaptive mechanisms
are highlighted in purple.

If we want to draw conclusions about PC mechanisms in general using this
methodology, we rely on the following assumption: Let A,B be two PC mecha-
nisms and X,Y be two DE algorithms. If X(A) (algorithm X with mechanism
A) is better than X(B) in some regard, then Y (A) is better than Y (B). Surely
the validity of this assumption depends on many factors. Some research in this
direction has been done in [13]. Since all our experiments are performed within
this single algorithm, the most important task for future work is to explore the
validity of our assumption.

Some methods have their own parameters, which we held constant at the
values recommended by their authors. Some methods also use several strategies
to generate new individuals, but in this work we limited ourselves to the default
strategy described in Eqs. (1) and (2).
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Table 1. Summary of used self-adaptive mechanisms

Name Main formula Additional parameters

SPDE [1] Ftrial := randN(0, 1) Crinit := randN(μ, σ)

Crtrial := Crr1 + randN(0, 1)(Crr2 − Crr3 ) μ = 0.5, σ = 0.15

jDE [3] Ftrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ1

Ftarget else
τ1 = 0.1

Crtrial :=

{
randU(0.1, 1.0) if randU(0, 1) < τ2

Crtarget else
τ2 = 0.1

DEMOwSA Ftrial =
Fi+Fr1+Fr2+Fr3

4
eτrandN(0,1) τ = 1√

2n

[20] Crtrial =
Cri+Crr1+Crr2+Crr3

4
eτrandN(0,1)

SAMDE [12] Ftrial = Fr1 + F′(Fr2 − Fr3 ) F′ := randU(0.7, 1.0)

Crtrial = Crr1 + F′(Crr2 − Crr3 )

randN(μ, σ) - generator of normal random numbers

randU(a, b) - generator of uniform random numbers

Algorithm 1. Adaptive and self-adaptive DEMO [16] algorithm
1 initialize P = {X1, ..., XNP} uniformly randomly in the decision space

2 initialize F and Cr generators

3 initialize values of Fi and Cri for i = 1, . . . ,NP
4 for generation := 1 to Gmax do Evolutionary loop
5 for target := 1 to NP do Generational loop

6 generate Ftrial and Crtrial

7 compute Ftrial and Crtrial using Table 1
8 generate Xtrial using Ftrial and Crtrial from (1) and (2)

9 attach Ftrial and Crtrial to Xtrial

10 project Xtrial to decision space
11 if Xtarget dominates Xtrial then
12 discard Xtrial

13 else if Xtrial dominates Xtarget then
14 replace Xtarget with Xtrial

15 else if Xtarget and Xtrial are mutually non-dominated then
16 add Xtrial to the end of the population
17 end

18 update success memories

19 end

20 update parameter generators
21 Trim P to size NP using non-dominated sorting [16] and MNN diversity [9]

22 end
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Table 2. Characteristics of the selected WFG problems

WFG4 WFG6 WFG7 WFG9

Separable yes no yes no

Unimodal no yes yes no

3.2 Problems

WFG Problems. To test the mechanisms in various conditions, we chose a
subset of the WFG [7] test suite with the same concave Pareto front and all
possible combinations of separability and modality characteristics. These prob-
lems are summarized in Table 2. We held the number of variables fixed at 10 and
performed tests for 2 and 3 objectives.

Quadratic Problems. As we shall later see, even the non-separable multi-
modal WFG problems can be successfully optimized using many combinations
of fixed parameters. To test the ability of parameter control mechanisms to
solve challenging problems we developed a scalable problem, that can be solved
by relatively few combinations of F and Cr, called Q. The problem Q consists
of m functions: Q = (q , . . . , qm). Each function is a quadratic form qm(X) =
(X − cm)Dm(X − cm)T where

D = diag(1, 2, 4, . . . , 2n− ),
D = diag(2n− , 1, 2, . . . , 2n− ),

. . .

and the vectors ci are generated uniformly randomly in a unit sphere. The result-
ing problem is then rotated in the decision space around all n − 2 rotation sub-
spaces by 45 degrees. Moreover, the population for this problem is generated
randomly uniformly in a sphere of radius 2 which is shifted from the origin in
a random direction by 2 . In this work, we explore the Q problem for 2, 3, and
4 objectives, while the number of variables remains fixed at 10.

3.3 Observed Statistics

We are interested in the performance of the various methods as well as in their
behavior. To measure the performance, we use the hypervolume [23] metric,
since it measures both convergence and diversity of the resulting Pareto front
approximation. As a reference point for both types of problems we first construct
the hyperbox which contains the entire true Pareto front and add a unit vector
to its upper corner.

In order to simplify the interpretation of the hypervolume, we normalize it by
dividing it by the maximal attainable hypervolume in the case of WFG problems,
and by the volume of the hyperbox between the origin and the reference point
1 Details on this methodology can be found in [4].
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(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 1. Average normalized hypervolume for 2 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 2. Average normalized hypervolume for 3 objectives

for the Q problem. This way we know that the maximal attainable normalized
hypervolume, corresponding to complete convergence is 1.

In order to observe the behavior of the mechanisms, we log each combination
of F and Cr that the algorithm uses in one generation.

4 Results and Discussion

4.1 Parameter Tuning

For each problem we performed a preliminary tuning of the F and Cr parame-
ters by grid search. We explored the ranges F ∈ [0.05; 1.5] and Cr ∈ [0; 1] with a
resolution of 0.05. For each combination of parameters, we ran 10 independent
runs of Algorithm 1 with fixed parameters. The average normalized hypervolume
from this tuning is presented in the form of heat-maps, with hot colors mean-
ing good performance. The tuning results for the WFG problems are in Figs. 1
and 2. In each figure we see a bright, L-shaped region of favorable values. Some
theoretical explanation of the shape of this region can be found in [10] and [4].

4.2 Parameter Control on WFG Problems

For each of the studied methods we ran 50 independent runs with a fixed pop-
ulation size (NP) of 500 individuals. Each run was limited by 500 generations.
The average normal hypervolume along with the standard deviation across the
50 runs is presented in Table 3. The value of normalized hypervolume at the
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Table 3. Average normalized hypervolume for the WFG problems

2 objectives

WFG4 WFG6 WFG7 WFG9

start 0.774 (1.2e-02) 0.618 (1.5e-02) 0.706 (8.6e-03) 0.666 (2.2e-02)

ideal 0.999 (6.9e-05) 0.999 (5.9e-04) 0.999 (3.5e-04) 0.996 (1.4e-03)

MDDE 0.998 (3.4e-04) 0.820 (8.6e-04) 0.999 (7.5e-06) 0.905 (8.3e-02)

a
d
a
p
ti

v
e JADE2 0.999 (7.2e-06) 0.992 (4.4e-03) 0.999 (1.0e-05) 0.996 (8.7e-04)

OW-MOSaDE 0.997 (6.6e-04) 0.975 (6.4e-03) 0.999 (9.1e-06) 0.993 (2.0e-03)

PDCaDE 0.998 (1.7e-03) 0.980 (7.1e-03) 0.999 (4.9e-05) 0.993 (2.2e-03)

se
lf
-a

d
a
p
ti

v
e DEMOwSA 0.998 (2.9e-04) 0.991 (3.8e-03) 0.999 (2.1e-05) 0.989 (3.5e-03)

jDE 0.999(7.5e-06) 0.985 (1.7e-02) 0.999 (1.4e-05) 0.996 (1.0e-03)

SAMDE 0.999 (8.0e-06) 0.980 (1.4e-02) 0.999 (1.5e-05) 0.995 (9.5e-04)

SPDE 0.999 (1.1e-05) 0.970 (1.1e-02) 0.999 (8.8e-06) 0.996 (4.7e-04)

3 objectives

WFG4 WFG6 WFG7 WFG9

start 0.669 (1.9e-02) 0.563 (8.9e-03) 0.646 (1.0e-02) 0.575 (2.0e-02)

ideal 0.987 (2.2e-04) 0.983 (1.6e-03) 0.988 (1.1e-04) 0.976 (2.9e-03)

MDDE 0.978 (6.7e-04) 0.807 (3.6e-02) 0.986 (1.4e-04) 0.892 (8.4e-02)

a
d
a
p
ti

v
e JADE2 0.982 (4.3e-04) 0.977 (3.5e-03) 0.978 (4.5e-04) 0.965 (1.9e-03)

OW-MOSaDE 0.968 (1.3e-03) 0.971 (8.3e-03) 0.977 (5.2e-04) 0.961 (1.6e-03)

PDCaDE 0.974 (2.6e-03) 0.966 (8.4e-03) 0.979 (9.6e-04) 0.962 (2.2e-03)

se
lf
-a

d
a
p
ti

v
e DEMOwSA 0.972 (1.0e-03) 0.979 (1.6e-03) 0.975 (9.3e-04) 0.959 (1.8e-03)

jDE 0.982 (7.0e-04) 0.967 (1.3e-02) 0.981 (5.3e-04) 0.968 (2.7e-03)

SAMDE 0.983 (5.8e-04) 0.968 (8.8e-03) 0.977 (5.4e-04) 0.963 (1.5e-03)

SPDE 0.985 (6.6e-04) 0.964 (1.1e-02) 0.980 (3.8e-04) 0.965 (1.6e-03)

start of the run is denoted as start. For each problem, based on the initial tun-
ing, we constructed an ideal set of fixed parameters and ran the algorithm for
50 independent runs with these settings. Within the group of adaptive methods
and the group of self-adaptive methods we marked the highest value in bold.

We can see that both adaptive and self-adaptive methods are performing
almost on a par with the ideal parameter set. The only exception is the determin-
istic MDDE algorithm, which shows significant problems for the non-separable
WFG6 and WFG9 problems.

For each method, we plot the path of the average used F and Cr with respect
to the generation. We call this plot the trajectory of that method. The aver-
aged (over the 50 runs) trajectories of adaptive methods along with the MDDE
method are plotted in Fig. 3 and the trajectories of the self-adaptive methods
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Fig. 3. [Cr; F] trajectories of adaptive methods for 2 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 4. [Cr; F] trajectories of self-adaptive methods for 2 objectives

are in Fig. 4. The small crosses are plotted for each 10 generations and the final
reached value is marked by a large symbol. The optimal value of F and Cr is
marked by a black circle. Moreover, all graphs contain the contour lines of the
average normalized hypervolume obtained by parameter tuning.

It is immediately clear that all trajectories have different starting points.
This is because each PC mechanism has its own way of initialization. Next,
we see that each adaptive method seems to behave the same way across all
observed problems. That is, both JADE2 and OW-MOSaDE aim for the lower
values of Cr, while not adapting F much and PDCaDE seems to always converge
to the same point, regardless of where the optimal parameter combination is.
Conversely, the self-adaptive methods behave differently on each problem.

The situation is very similar for 3 objectives. The trajectories for the adap-
tive and deterministic methods in Fig. 5 seem to behave indifferently to the
problem and to the number of objectives. On the other hand, the behavior of
self-adaptive methods in Fig. 6 depends on the problem. Looking at the results of
parameter tuning in Figs. 1 and 2 we see a possible explanation. The heat-maps
of normalized hypervolume for problems WFG4 and WFG6 have more structure
than those of WFG7 and WFG9. The contour lines are more evenly distributed,
which may help the algorithms find favorable parameter values. Conversely, the
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Deterministic DE MDDE
Adaptive DE JADE2

(a) WFG4 (S-MM)

Deterministic DE MDDE
Adaptive DE JADE2

(b) WFG6 (S-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(c) WFG7 (NS-UM)

Deterministic DE MDDE
Adaptive DE JADE2

(d) WFG9 (NS-MM)

Fig. 5. [Cr; F] trajectories of adaptive methods for 3 objectives

(a) WFG4 (S-MM) (b) WFG6 (S-UM) (c) WFG7 (NS-UM) (d) WFG9 (NS-MM)

Fig. 6. [Cr; F] trajectories of self-adaptive methods for 3 objectives

heat-maps for WFG7 and WFG9 have large plateaus associated with favor-
able parameters, separated by steep cliffs from plateaus with bad parameters.
Consequently we see that on WFG4 and WFG6 problems, the trajectories of
self-adaptive methods aim correctly for the more favorable regions, while on the
WFG7 and WFG9 problems, the behavior seems more random.

4.3 Q Problems

The performance heat-maps for the Q problems are in Fig. 7. The contrast with
the data for WFG in Figs. 1 and 2 is immediately visible. The area of favor-
able parameter combinations is relatively small. Moreover, the favorable area
is surrounded by steep cliffs. Even a small change in one parameter may mean
the difference between a successful convergence and total failure. On such hard
problems, the difference in performance of parameter control methods becomes
apparent. The averages and standard deviations of 50 independent runs for 500
generations with a population size of 500 individuals are presented in Table 4.

On the 2-objective Q problem all the adaptive methods fail completely. Out
of 50 runs, not one of them approached close enough to the Pareto front. Some
minor success has been achieved by the deterministic MDDE method, but the
best performers are the self-adaptive methods. On the 3-objective problem, OW-
MOSaDE catches up, while the other adaptive methods are lagging. For the
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(a) 2 objectives (b) 3 objectives (c) 4 objectives

Fig. 7. Average normalized hypervolume for the Q problem

Table 4. Average normalized hypervolume for the Q problem

2 objectives 3 objectives 4 objectives

start 0.000 (0.0e+00) 0.000 (0.0e+00) 0.000 (0.0e+00)

ideal 0.999 (2.1e-05) 0.783 (6.7e-04) 0.673 (2.4e-03)

MDDE 0.128 (2.8e-01) 0.732 (1.2e-01) 0.653 (5.7e-03)

a
d
a
p
ti

v
e JADE2 0.000 (0.0e+00) 0.175 (2.8e-01) 0.648 (5.8e-03)

OW-MOSaDE 0.000 (0.0e+00) 0.668 (1.1e-01) 0.654 (4.3e-03)

PDCaDE 0.000 (0.0e+00) 0.000 (0.0e+00) 0.659 (8.7e-03)

se
lf
-a

d
a
p
ti

v
e DEMOwSA 0.999 (2.1e-05) 0.783 (6.8e-04) 0.652 (5.8e-03)

jDE 0.745 (4.0e-01) 0.433 (3.7e-01) 0.651 (6.1e-03)

SAMDE 0.994 (1.5e-02) 0.778 (2.0e-03) 0.638 (7.6e-03)

SPDE 0.548 (4.6e-01) 0.640 (2.4e-01) 0.643 (6.7e-03)

4-objective problem, the performances even out. It may seem counterintuitive
that increasing the number of objectives makes the parameter control easier, but
looking at Fig. 7 we see that the more objectives the Q problem has, the bigger
is the set of favorable parameter combinations.

The trajectories of the adaptive mechanisms in Fig. 8 again seem to be very
similar for the 2, 3 and 4 objective Q problems. Disturbingly, they resemble
those of the WFG problems. The PDCaDE algorithm seems to always converge
to Cr = 0.4 and F = 0.8. The OW-MOSaDE cannot adapt the distribution of
the F parameter and invariably pushes the value of Cr down. This makes sense
for the WFG problems, but it is counterproductive for the 2-objective Q prob-
lem. The JADE2 mechanism seems to be lured towards small values of Cr even
more. Both JADE2 and OW-MOSaDE try to adapt the parameters by learn-
ing which parameters generate individuals which dominate another individual.
This suggests that for each problem the parameters with this property are sim-
ilar and that this property does not guarantee good performance. Of course, a
more detailed and rigorous investigation is suggested as future work.
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Deterministic DE MDDE
Adaptive DE JADE2

(a) 2 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(b) 3 objectives

Deterministic DE MDDE
Adaptive DE JADE2

(c) 4 objectives

Fig. 8. [Cr; F] trajectories of adaptive methods for the Q problem.

(a) 2 objectives (b) 3 objectives (c) 4 objectives

Fig. 9. [Cr; F] trajectories of self-adaptive methods for the Q problem.

The behavior of self-adaptive mechanisms in Fig. 9 is completely different. On
the 2-objective problem, all self-adaptive mechanisms achieve at least half of the
possible hypervolume. This is even true for the SPDE mechanism, which does
not find the area of favorable parameter combinations. It seems that since the
parameters of SPDE are generated randomly, favorable parameter combinations
arise often enough to converge partially. The adaptive algorithms also generate
their parameters randomly, but the centers of the random distributions from
which these parameters are generated are shifting in the wrong direction.

5 Conclusion

In this paper we compared various deterministic, adaptive, and self-adaptive
mechanisms of parameter control in multi-objective differential evolution. We
isolated the mechanisms and applied them to a single multi-objective algorithm.
We then tested this algorithm on a set of known benchmark problems as well
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as one new problem. We measured the performance of these methods as well as
their behavior in terms of which parameters they found.

We found out that on the usual benchmark problems even the simple mech-
anisms can lead to results comparable with parameter tuning. On the new prob-
lem, which we proposed exactly because it can be optimized only by a small set of
parameters, the self-adaptive methods were the only ones that managed to find
a satisfactory Pareto front for all objective dimensionalities. The deterministic
method achieved also some limited success, but it is hard to determine if we can
attribute this to luck or to the underlying quality of the method. After examin-
ing the progress of the parameters used by the adaptive methods we found out
that each method evolves its parameters in a more or less problem independent
way, which seems undesirable.

For future work the behavior of adaptive mechanisms should be first con-
firmed to exist in other contexts, and if so, to be examined in detail and its
cause should be established. It would also be interesting to see if our results
hold for more modern DE algorithms.
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Abstract. This paper draws on three different sets of ideas from com-
puter science to develop a self-learning system capable of delivering an
obstacle avoidance decision tree for simple mobile robots. All three topic
areas have received considerable attention in the literature but their com-
bination in the fashion reported here is new. This work is part of a wider
initiative on problems where human reasoning is currently the most com-
monly used form of control. Typical examples are in sense and avoid
studies for vehicles – for example the current lack of regulator approved
sense and avoid systems is a key road-block to the wider deployment of
uninhabited aerial vehicles (UAVs) in civil airspaces.

The paper shows that by using well established ideas from logic cir-
cuit design (the “espresso” algorithm) to influence genetic programming
(GP), it is possible to evolve well-structured case-based reasoning (CBR)
decision trees that can be used to control a mobile robot. The enhanced
search works faster than a standard GP search while also providing
improvements in best and average results. The resulting programs are
non-intuitive yet solve difficult obstacle avoidance and exploration tasks
using a parsimonious and unambiguous set of rules. They are based on
studying sensor inputs to decide on simple robot movement control over
a set of random maze navigation problems.

Keywords: Decision tree · Data mining · Feature engineering · Classi-
fication · Algorithm construction

1 Introduction

Genetic Programming (GP) is the basic building block of the methods proposed
here. GP was initiated in the early 1990s, when Koza applied genetic algorithms
(GAs) to the evolution of computer programs (Koza 1992). GP extends the use
of GAs to evolve structures of significant complexity which demand sophisticated
adaptive plans to improve their performance. Since that time very many papers
have used the basic ideas proposed by Koza to study a bewildering array of
problems, see for example the review by Espejo et al. (2010) of the applications

©



Genetic Programming, Logic Design and Case-Based Reasoning 105

of GP in classification and for an application in robotics the work of (Seo et al.
2010). In this paper GP is used to evolve control programs for a simple mobile
robot equipped with adjacency touch sensors and the ability to move forward
or rotate 90◦ to the left or right. This is a very basic problem but one that
serves to illustrate the ideas being proposed and some of the shortcomings of a
straightforward application of GP to obstacle avoidance programs.

In a conventional GP approach a series of random initial programs are used to
seed the GP process and these are then evolved using the standard operations
of crossover and mutation under the impact of selection pressure to produce
improved programs to tackle a set of trial tasks. The basic problem with this
simple näıve use of GP is that the decision trees evolved are generally difficult
to interpret and can rapidly become very large and cumbersome. When designs
become large they then become more costly to evaluate and this slows the whole
search process down. Moreover, it is quite common to find that evolutionary
improvement can stall after a short period of initial improvement unless recourse
is made to very large population sizes. The whole aim of the present work is to
bring to bear ideas from logic design and case-based reasoning to deal with these
issues.

This paper is laid out as follows: in section two we briefly introduce the path
planning task being studied before going on to describe the basic ideas of how
GP systems can be applied to this problem in section three. In section four we
provide some illustrative results obtained using a näıve GP system, while in
section five we show how the espresso algorithm can be used to simplify evolved
program structures, speeding up the search process and improving outcomes.
We then show how the espresso logic tool can be applied to yield an improved
GP process in section six before drawing our conclusions in section seven.

2 Path Planning

In path planning and obstacle avoidance two basic approaches can be adopted:
either an initial exploration phase is carried out to map the robot’s world, follow-
ing which planning decision can be made using the derived map, possibly with
map updates or, alternatively, decisions must be based on current sensor inputs
and possibly previous readings and actions without a world map. When dealing
with significantly changing or new environments such as for UAV control, it is
clear that the off-line building of world maps of other UAVs and obstacles, prior
to decision making is not appropriate. Therefore we consider here the problem of
planning based on sensor inputs. Moreover, to simplify the problems being stud-
ied, we restrict ourselves to problems where decisions must be based solely on
current information states. Thus the task faced by the robot is: given a mission
to accomplish and current sensor readings, should the robot move forwards, turn
right or turn left. The mission considered is the commonly used one of visiting
as much of the available world as possible in the least number of moves while
not colliding with obstacles, see for example Bearpark and Keane (2008).

Such a task can be carried out using a range of programming structures but
that most similar to the approach adopted by human navigators is a form of
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case-based reasoning: i.e., a decision tree where a series of sensor predicates are
tested one at a time until a match is found following which a pre-defined action is
performed. Moreover, while human operators can be inconsistent in the actions
they take when presented with sets of sensor inputs, it is important when consid-
ering problems subject to regulatory approval, such as vehicle navigation, that
predictable behaviour is adopted. For example “rule-of-the-road” requirements
on cars and aircraft lay down the expected behaviour of operators when con-
fronted with certain known scenarios, i.e., turn to the right when confronted with
an oncoming vehicle so as to pass port side to port side. The great attraction of
such case-based approaches is that their logic can be studied and understood,
often exhaustively, for all possible scenarios; see for example Weng et al. (2009).
Our aim here is to try and build a GP system that produces well-structured case-
based programs for dealing with the robot task planning problem studied. This
is not as trivial as might at first be thought if the full power of the evolutionary
operators of cross-over and mutation is not to be curtailed.

The key step proposed here is to adopt ideas developed for logic circuit design
to allow a GP system to automatically build the case-based program structures
desired. In a previous paper it was shown that the convergence of GP in pro-
ducing robot path planning programs could be improved by re-writing the pro-
grams being developed in case-based form during the evolutionary search process
(Bearpark and Keane 2008). In that paper arbitrary Reverse Polish Notation
(RPN) control programs were re-written as large single case statements before
being re-inserted into the GP system, something the authors termed conver-
sion to “canonical form”. The process used to carry out this conversion was
not straightforward or simple to implement. Here a similar approach is adopted
but program re-writing is accomplished by borrowing tools from VLSI circuit
design. VLSI logic circuit design commonly involves millions of logic gates and
these are routinely simplified using well established methods. The most well-
known of these is the so called “espresso” algorithm originated at the University
of California, Berkeley, now made available as part of the Octtools package
(McGeer et al., 1993). VLSI logic circuit simplification essentially boils down
to taking a truth table that maps input states to output states for the pro-
posed design and producing a new, simplified, design that produces the same
truth table. Espresso does this in a very efficient way giving a high quality, if
not always perfect, reduction in the number of logic gates needed to create a
given truth table. Here we use the same algorithms to re-write the RPN struc-
tures being evolved by GP. Since the resulting structures are almost always
shorter, often massively so, their evaluation may then be carried out much more
quickly, allowing either faster or more exhaustive searches to be run, see for
example Moraglio et al. (2012). The reduced program structures also fundamen-
tally change the actions of mutation and crossover on a population of designs.
As far as can be found by searches of ISI publication data-bases, this is the first
time that the espresso algorithm has been applied to a GP system in this way.

1 http://embedded.eecs.berkeley.edu/pubs/downloads/octtools/.

http://embedded.eecs.berkeley.edu/pubs/downloads/octtools/
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3 Genetic Programming and Robot Control

A Genetic Algorithm (GA) uses techniques based on the natural evolution of
species to gradually improve the quality of the data structures that it produces
until an optimal solution is found, or the run is terminated. Generally, an initial
set of possible solutions is chosen randomly to form the first generation. The GA
performs genetic operations on the population, to produce another generation,
and the process is repeated for a number of generations. The principal genetic
operations are those of selection and crossover. The selection process measures
the success of each member of the population in performing the allotted task,
and selects the better members as candidates for a mating pool, here of the
same size as the population. On average, high-scoring members of the population
appear multiple times in the mating pool, while low-scoring members are not
selected. Consequently the average quality of the population increases with each
generation. A new generation is evolved by the crossover operation using the
concepts of sexual reproduction. Further genetic operations may be performed,
particularly mutation, in which randomly chosen genetic material is removed
from a child and randomly generated material inserted in its place. In a GP
system the data structures are computer algorithms, normally represented as
trees in which the nodes are function nodes, representing a sub-routine in the
algorithm, or terminal nodes, representing constants or variables defined by the
algorithm. A simple example is shown in Fig. 1. The algorithm is ‘executed’ by a
depth-first traverse of the tree, starting from the root node, searching for function
nodes and their operands. An examination of nodes 2, 3 and 4 yields the logical
value true or the logical value false. A true result causes the traverse to continue
by examining node 5 and its operands. A true value for Z causes the execution
of action A while a false value executes B. In the case where the expression
X AND Y is false, the algorithm executes C. This program may be written
in Reverse Polish Notation (RPN) form as: C, B, A, Z, IF, Y, X, AND, IF. To
encode this for GP each operator, state and action is given a numerical code
and the RPN re-written as a numerical string. When carrying out mutation and
crossover care must be taken to ensure that only syntactically correct strings are
produced. Thus each operator has a fixed number of operands (its cardinality)
and each operator must have the correct type(s) of operands (i.e., AND, OR
and NOT operands require state inputs and generate state outputs while an IF

Fig. 1. A sample of control pseudo-code and the equivalent tree.



108 A. Keane

Fig. 2. The robot in its world (coloured red) with obstacles coloured blue and a possible
path (the red solid line) (Color figure online).

requires either one state input and two action outputs or one state input and
two state outputs and generates either an action or a state output, respectively –
in this example X, Y and Z are states and A, B and C are actions).

Our GP system evolves algorithms that enable a software agent to solve basic
problems in spatial exploration. An example is shown in Fig. 2. An enclosed 10
by 10 space has fixed internal obstacles coloured blue while the software robot
itself is coloured red. The robot can either move forward one space, turn left or
turn right before reassessing its environment. Here the robot is required to visit
as many cells as possible using only a sense of touch, i.e., knowing only which
of the eight adjacent cells is occupied. The robot thus has eight state inputs
and three action outputs while the red line indicates a possible path. The score
achieved by the robot is the number of squares visited divided by the number
of vacant squares in the world. By testing a robot over a set of maze problems
with random obstacle numbers and positions an average performance score can
readily be computed – if the collection of random obstacle sets (mazes) is stored
and used repeatedly, that score is stationary and can be used in a GP process
to evolve better control programs. Notice that because the robot is blind and
has no memory it can only navigate by touch and so all competitive navigation
schemes involve moving towards an obstacle and then moving from obstacle to
obstacle using these obstacles to aid navigation (precisely the sort of groping
manoeuvre familiar to humans entering a darkened room). In an empty world a

Fig. 3. A simple wall follower tree – this design scores 0.2761 when averaged over 50
of the test mazes.
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Fig. 4. A tree of 47 elements evolved by näıve GP after 100 generations – in RPN this
is MOVE, turn left, front, front right, front, front, left, OR, IF, OR, front right, right,
back, AND, right, IF, front, front left, left, OR, IF, OR, front right, front, front, left,
OR, IF, OR, front right, back right, front left, IF, front, front left, front right, front
right, OR, right, back, AND, right, IF, OR, IF, OR, IF – this design scores 0.3922 when
averaged over 50 mazes.

simple thought experiment reveals that the best logic that can be achieved is to
move to the edge of the world and then circumnavigate the edge either clockwise
or anticlockwise, giving a maximum score in a ten by ten world of 44/100 (if
one starts with one’s back to the wall and walks forward to the opposite wall
and then moves around the perimeter). The tree in Fig. 3 does just this and will
cause the robot to move in the direction in which it is facing until it reaches the
wall when it will turn left and follow the wall in an anticlockwise direction. This
tree can be encoded in RPN as: MOVE, TURN LEFT, front, IF. As already
noted, execution of the program requires the identification of a path from the
root node to a terminal node by a depth-first traversal of the tree. Such a path is
determined by the internal logical operators and the values of their operands. If
the terminal node of a path is a sensor value, the traversal continues by providing
this value to its parent operator. If the terminal node is an action, the action
is taken and the traversal is terminated. This changes the relationship between
the robot and its environment and the control program is executed again from
the root node. The purpose of the GP system used here is to supply each robot
in the population with an algorithm to guide it in solving the set of maze prob-
lems. The fitness of the algorithm is measured by the score achieved by the
robot averaged over a set of 50 mazes. Selection for the mating pool that will
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produce the next generation is based on fitness, so the better robots survive
and may breed with other robots. Each breeding process produces two children
who may or may not be fitter than their parents. The tools that the GP system
has at its disposal are the logical operators IF, AND, OR and NOT, eight state
sensors with which the robot is able to detect an obstacle in an adjacent cell
(front, front-right, right, back-right, back, back-left, left and front-left) and three
actions MOVE, TURN RIGHT and TURN LEFT. Note that two forms of the
IF statement are used: in the first the IF statement tests a logical (sensor state)
input and then selects from one of two possible actions while in the second it
selects from one of two possible logic (sensor) states to output. These need to
be distinguished to establish syntactically correct programs: the second kind of
IF can provide inputs to further IF, AND, OR and NOT statements while the
first cannot – the IF in Fig. 3 is of the first kind, while both kinds are seen in
subsequent designs.

We additional use the concept of fuel to refer to the fact that each robot is
limited to a fixed number of actions when it gets its turn in the mazes – here 100
actions are allowed per maze, i.e., the GP program is looped over a maximum
of 100 times – this is sufficient to allow the exploration capabilities of a design
to be fully assessed. In the simplest version of the GP system, each robot in the
population has sole occupancy in the maze while its fitness is measured. The
mazes each have on average 10 obstacles but varying between as few as five and
as many as 15.

4 Some Illustrative Results

If we run a simple GP process to design control programs for this problem,
permitting crossover between any valid position and mutation across any node
or leaf (ensuring syntactically correct outcomes) it is possible to rapidly evolve
the simple wall following design of Fig. 3 into more powerful forms. Figure 4
shows a typical program structure while Fig. 5 shows its path around a typical
world. As can be seen from Fig. 4 a highly complex and non-intuitive program
structure has evolved. This particular run of the näıve GP used a population
size of 100 with 100 generations, each member of the population being trialled
over 50 obstacle courses at each generation. The initial population is seeded with
the structure from Fig. 3 plus 99 random, but syntactically valid, designs. The
GP uses roulette wheel selection, 40 % cross-over probability and 20 % mutation
probability (n.b., this latter probability is the probability that a member of the
population undergoes a single mutation operation as opposed to the quantity of
genetic material being modified). The final score for this design averaged over 50
mazes is 0.3922 as compared to 0.2761 for the original wall follower design. Not
only are the programs evolved by the näıve GP often cumbersome, their structure
makes them increasingly difficult to improve on using just selection, cross-over
and mutation – note the duplication and occasionally redundant elements in
Fig. 4 (where identical sensor inputs are ORed together – highlighted). This was
the observation made by Bearpark and Keane referred to earlier (Bearpark and
Keane 2008).
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If this basic GP process is repeated 100 times using different random number
sequences in the GP (with a fixed set of mazes) the results of Figs. 6 and 7 are
produced – the best, mean and standard deviation scores are 0.4547, 0.4111 and
0.0306, respectively. The elapsed CPU time required to carry these 100 searches
using a single CPU was 5.464E6 s. It is this performance that any new algorithm
should seek to improve on.
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Fig. 5. The näıve GP evolved robot of Fig. 4 in its world (coloured red) with obstacles
coloured blue and resulting path (the red solid line) (Color figure online).

5 Using espresso to Simplify Logic Trees – Case
Statements

To make improvements to the design process we observe that our robot control
program is a way of mapping a set of eight observable states that can be either
true or false into one of three action outcomes. This is entirely similar to the
task performed by VLSI logic circuits, although it is noted that VLSI designs
most commonly work with two output states (0 or 1) though –1, 0, 1 output
devices are also possible. We therefore proceed as follows: first a given control
program is interrogated by exhaustively tabulating all possible output values for
the 2 possible combinations of sensor input states; second the resulting truth
table is passed to a VLSI logic circuit simplification routine (here a version of
espresso) and third the resulting reduced logic table is then used to construct a
case-based robot control program where each unique input state needed to recre-
ate the program action is mapped to exactly one element in the case statement.
The resulting decision tree is (a) much more highly structured, (b) generally
more compact, (c) therefore faster to execute, (d) more readily understood by
a human reader and e) more useful for subsequent use by the GP system since
cross-over can now move entire sets of case elements between members of its
population. The reduction in program size significantly speeds up the whole GP
process while allowing it to produce better designs, typically halving evaluation
times. Since VLSI logic programs are so highly optimized the cost of thus re-
writing population members is trivially small as compared to evaluating designs
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Fig. 6. Optimization histories of 100 runs of the basic GP process with a population of
100 members each being used for 100 generations – plots stop when the search stalls.

over multiple mazes. The only subtlety required to carry out this process is to
adapt the essentially two output level tools available online to the task of dealing
with more actions, here three. The use of the espresso algorithm in this context
represents a considerable advance over the custom coded approach adopted ear-
lier (Bearpark and Keane 2008), allowing faster and more compact designs to
be produced. Figure 8 illustrates the espresso processed version of Fig. 4: it is
apparent that the simplified representation is much easier to comprehend, and
that its form better reflects the abilities of the robot as it tackles the different
problems encountered in its exploration. Essentially it is a case-based system:
each rule tackles a problem case faced by the robot. These rules may be seen to
take the following actions based on four distinct cases (sensor feature sets):

1. If front turn left ;
2. Else if front right and not left turn left ;
3. Else if front right and right and not back and not front left turn left ;
4. Else if right and back and not left and not front left turn left ;
5. Else move.

It is by no means obvious that this refined structure generates the same opera-
tional behaviour as the original one but in fact they generate identical tables.

As already noted the process used here to simplify logic trees involves first
converting any given control program into its equivalent truth table. Since the
robot has eight proximity sensors there are 2 = 256 possible combinations
of input sensor states. Each state is presented, one at a time, to the control
logic using the same code that is used to simulate the software robot and the
resulting action noted – this can take one of three values: turn left, move or
turn right, which are then represented as -1, 0 and 1. Table 1 shows part of the
truth table for a robot program. Truth tables of this kind cannot be presented
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Fig. 7. Histogram showing variations of final results for the optimization histories of
Fig. 6 – the best, mean and standard deviation scores are 0.4547, 0.4111 and 0.0306,
respectively.

Fig. 8. The espresso simplified tree of 32 elements derived from Fig. 4 – in RPN this
is MOVE, TURN LEFT, front left, NOT, left, NOT, back, right, AND, AND, AND,
IF, TURN LEFT, front left, NOT, back, NOT, right, front right, AND, AND, AND,
IF, TURN LEFT, left, NOT, front right, AND, IF, turn left, front, IF – this design
scores 0.3922 when averaged over 50 mazes.

directly to espresso as it is designed to work with binary valued inputs and
binary valued outputs – while the robot sensor map is a binary one, the action
list is not. Espresso does, however, permit multiple function outputs providing
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each one is only binary. Thus the next step is to convert the single three valued
output in the table into two binary valued ones. To do this a MOVE output is
encoded as [0 0], TURN RIGHT as [1 0] and TURN LEFT as [0 1], while [1 1]
is not used, see the right hand columns of Table 1. Such truth tables can then
be presented to espresso and rewritten in compact form. The resulting output
will show which compound input states must be explicitly dealt with and what
the appropriate action is for each. Table 2 shows the re-written table for the full
truth table from which Table 1 is drawn. Notice that the simplified table contains
only seven rows as compared to the 256 needed for the full table derived from
the initial program. Note also the presence of “–” symbols in the table which are
“don’t care” symbols meaning the relevant line can be used for multiple matching
entries, e.g., the final line of the table says if there is something in front of the
robot and no other line has fired then turn left. This re-write process works
for almost all input truth tables but it does permit an output action of [1 1]
which has no meaning for a three action problem. Espresso rule re-writing can
lead to such outcomes because it is designed for logic circuits where there is no
concept of one-at-a-time testing of input states and thus multiple input states

Table 1. Part of a truth table for a typical robot control program and the three valued
outputs converted to dual binary outputs

Inputs Outputs Binary outputs

00001100 0 0 0

00001101 0 0 0

00001110 1 1 0

00001111 1 1 0

00010000 1 1 0

00010001 -1 0 1

00010010 1 1 0

00010011 -1 0 1

Table 2. espresso simplified truth table for a typical robot control program.

Inputs Outputs

0001- - -0 10

0-00- -1- 10

00011- - - 10

- - -10- -1 01

- -1-0111 01

-101- -1- 01

1- - - - - - - 01



Genetic Programming, Logic Design and Case-Based Reasoning 115

can sometimes be handled by concatenation. If such output lines do occur in the
re-written tables the re-write operation is abandoned – such events are very rare.
The final step in the process is to convert tables like that of Table 2 back into
programmatic form. This is readily accomplished by creating a case statement
where each line of the truth table maps to one case which is then terminated
with a final action of MOVE. Each individual case is simply a sequence of sensor
readings unioned together with AND statements if the sensor column shows a 1
and AND NOT statements if the sensor column shows a zero with the relevant
action as specified in the output line, otherwise control passes to the next line in
the table. It will be obvious to the reader that the truth table in Table 2 maps to
the case structure in Fig. 6. Notice that the re-written statements do not make
use of the OR statement at all. Because of this fact it is important not to over
use the espresso algorithm as it can lead to a loss of genetic diversity.

6 Results: The Impact of espresso on the GP Process

To make use of the espresso capability an additional re-write operator must be
added to the GP system. Re-writing 20% of the population after the actions of
cross-over and mutation in every generation has been found to work effectively
with the problem being studied here, though the results are not particularly
sensitive to this setting – values ranging from 10% to 40% work similarly well. If
this enhanced GP process is repeated 100 times using different random number
sequences in the GP (with the same fixed set of mazes as used before) the results
of Figs. 9 and 10 are produced – the best, mean and standard deviation scores
are now 0.5133, 0.4151 and 0.0319, respectively as compared to the previous
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Fig. 9. Optimization histories of 100 runs of the espresso enhanced GP process with a
population of 100 members each being used for 100 generations – plots stop when the
search stalls.
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Fig. 10. Histogram showing variations of final results for the optimization histories of
Fig. 9 – the best, mean and standard deviation scores are 0.5133, 0.4151 and 0.0319,
respectively.

Fig. 11. A tree evolved by the espresso enhanced GP – this design scores 0.5133 when
averaged over 50 mazes.

results of 0.4547, 0.4111 and 0.0306. The elapsed CPU time required to carry
these 100 searches using a single CPU has reduced to 4.329E6 s from the previous
run time of 5.464E6 s, a saving of some 20%. The search is faster, achieves better
peak results and produces broadly similar average results (Welch’s t-test shows
the espresso based approach is better but only with a 36% significance level).
While these gains are not overwhelming, they are very useful, particularly the
improvement in peak performance. Figure 11 shows the best structure evolved
with this enhanced approach and Fig. 12 shows its path through the same maze
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as illustrated in Fig. 5. Its control program is appealingly simple, having the
desired case-based structure and now with only three distinct cases (a compact
set of useful features has been engineered):

1. If front turn left ;
2. Else if left and front right turn left ;
3. Else if not front right and not right and back right turn right ;
4. Else move.

It also contains the important capability of being able to turn right or left. The
logic of the final rule-base is, however, still not completely obvious and it is not
at all clear that a human navigator would develop such an approach. Indeed the
problem being studied here is extremely difficult for humans to write successful
decision trees for. This is the great attraction of computer generated control
programs – powerful yet readily studied logics can be produced without needing
any special insights into the problem being confronted.
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Fig. 12. The espresso enhanced GP evolved robot of Fig. 11 in its world (coloured
red) with obstacles coloured blue and resulting path (the red solid line) (Color figure
online).

7 Conclusions

This paper has shown how tools developed for VLSI logic circuit design can be
used to improve the performance of a näıve GP system in producing a simple
robot path planning task. The key observation is that restructuring GP derived
programs as case statements not only helps improve subsequent understanding
of the programs but also aids the GP system in developing them – the GP
runs faster and it produces better designs through cross-over. Moreover logic
simplification tools are extremely robust and powerful and so have negligible
impact on the cost of evolving new structures. Here an eight sensor, three action
system is explored but the ideas presented are capable of dealing with arbitrary
numbers of inputs and outputs by adopting suitable encoding approaches to
switch between decision trees, Reverse Polish Notation (RPN) and truth tables.
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Abstract. Minimizing total tardiness on identical parallel machines is
an NP-hard parallel machine scheduling problem that has received much
attention in literature due to its direct application to real-world appli-
cations. For solving this problem, we present a variable neighbourhood
search that incorporates a learning mechanism for guiding the search.
Computational results comparing with the best approaches for this prob-
lem reveals that our algorithm is a suitable alternative to efficiently solve
this problem.

1 Introduction

Minimizing total tardiness on identical parallel machines (referred to as P ||∑ Tj

in standard machine scheduling terminology) assumes a set of n jobs J =
{1, ..., n} to be processed on m identical parallel machines M , ...,Mm. Each
job j has a processing time pj > 0 and a due date dj . All jobs are available at
time zero, and no job pre-emption is allowed. The tardiness Tj of job j is given
by Tj = max(Cj − dj , 0), where Cj is the completion time of j. The objective
of this problem is to find a schedule that minimizes the total tardiness

∑n
j Tj .

Recent references include [1,2,6].
The P ||∑ Tj has been widely studied in the literature. Recent studies are

the following. Biskup et al. [1] present a comparison of the existing heuristic
algorithms for solving this problem. Moreover, they propose a new heuristic
approach to solve the problem. This heuristic provides better results in terms of
solution quality than the other heuristics. Tanaka and Araki [6] propose a new
branch and bound algorithm with a lagrangian relaxation for computing the
lower bounds. They propose a set of problem instances to assess their approach.
Niu et al. [4] propose a Clonal Selection Particle Swarm Optimization (CSPSO)
for this problem. The authors evaluate their proposal over the instances proposed
in [6]. Deng et al. [2] propose a Hybrid Differential Evolution algorithm (HDDE)
and also used the problem instances presented in [6]. The computational expe-
rience reported in their work shows that HDDE outperforms CSPSO for the
©
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small-sized problem instances. Moreover, they compare HDDE with branch and
bound (B&B) for the large-sized instances and indicate that HDDE improves
the performance of B&B in terms of computational time.

In this work, we present a Variable Neighbourhood Search with a learn-
ing mechanism (VNS-L) for solving P ||∑ Tj . Our approach combines a vari-
able neighbourhood search with restarting strategy which exploits the use of a
memory for learning from past solutions. The goal of this work is to assess the
performance of this idea as well as to provide high-quality solutions in short com-
putational times. In doing so, the performance of the VNS-L is evaluated using
the well-known benchmark suite proposed by Tanaka and Araki [6] and compar-
ing its results with those given by some arguably best algorithms reported in
the literature.

The remainder of this paper is organized as follows. Section 2 describes the
VNS-L proposed to address P ||∑ Tj . Afterwards, the performance of our algo-
rithm is analyzed in realistic scenarios proposed in literature; see Sect. 3. Finally,
Sect. 4 provides the main conclusions extracted from the work and suggests sev-
eral directions for further research.

2 Variable Neighbourhood Search with Learning

Variable Neighbourhood Search (VNS) is a well-established meta-heuristic that
systematically exploits the idea of changing neighbourhoods during the search
[3]. VNS relies only on the best solutions currently known to center the search. In
this regard, the information collected during the search relative to previous good
solutions or their characteristics is forgotten. In order to address this deficiency
and take advantage of that information, a Variable Neighbourhood Search with
a Learning Mechanism is proposed. It is a hybridization within a Multi-Start
strategy (MS) embedded with a learning mechanism for taking advantage of
the information obtained during the VNS process using a memory structure.
Within the VNS-L template we use the exploitation capabilities of the VNS and
the exploration capabilities provided by MS as it gives the ability of re-starting
the search. As noted by [5], incorporating memory structures into re-starting
processes improves their performance.

The learning mechanism within VNS-L is based on (i) a frequency based
memory structure, termed as M , with the aim of collecting promising solution
features found during the search and (ii) a solution generation procedure. The
memory structure, M , is composed of solution features as follows. Consider a
set of solutions Λ. Each solution x ∈ Λ has associated a set C(x) = {(i, j)}
of features. That is, a job j is the i-th job served in the whole schedule. The
memory has a matrix structure with dimension n × n, where the rows represent
the jobs and the columns the service order. Each time the VNS improves the
best solution known within the search, the information related to the solution
features is updated, for keeping track of these matches. For example, in case
the solution structure considered for updating the memory includes the feature
(i, j), i.e., job j is the i-th job served in the schedule, then its corresponding
memory position Mij is updated.
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Algorithm 1. VNS-L pseudocode
1 iter = 1
2 Initialize M
3 while iter �= itermax do
4 x ← Solution Generation Procedure using M
5 k = 1
6 while k �= kmax do
7 Shaking:
8 Choose a random neighbour x′ ∈ N1(x, k)
9 Improvement phase:

10 while stopping criterion is not met do
11 a) Reinsertion move over x′ → x′′

12 b) Interchange move over x′′ → x′′′

13 if x′′′ is better than x′ then
14 x′ ← x′′′

15 Solution assessment:
16 if x′′′ is better than x then
17 x ← x′′′

18 if x′′′ is better than xbest then
19 Update memory M using β parameter
20 xbest ← x′′′

21 k = 1

22 else
23 Update memory M using γ parameter
24 k = k + 1

25 iter = iter + 1

26 return xbest

The way a memory position Mij is updated is as follows: Mij = (Mij +1) ·β.
The parameter β ≥ 1 is used so that when the memory is updated, those solution
features that have been part of the best known solutions more often have greater
significance. On the other hand, in VNS-L we keep track of the worst solution
obtained during the local search process. In case we are not able to improve the
disturbed solution, we update the memory according to Mij = (Mij +1) ·γ. The
parameter γ < 1 is used so that when the memory is updated, those solution
features affected will have less significance.

VNS-L as shown in Algorithm 1 uses a finite set of neighbourhoods based on
(a) reinsertion-move, N (x, k), namely k jobs are removed from a machine m
and reinserted in another machine m′, where m �= m′, and (b) interchange-move
N (x), that consists of exchanging a job j assigned to machine m with a job j′

assigned to machine m′, where m �= m′. For any given k the application of these
neighbourhood structures is performed sequentially, i.e., firstly the reinsertion-
move is applied and thereafter the interchange-move. The shaking process allows
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Table 1. Computational results for the 2250 instances proposed by [6]. Note that only
the computational times (measured in seconds) are reported since all the approaches
reach the optimal solutions

Instance HDDE B&B VNS-L

n m Avg. t(s.) Max. t(s.) Avg. t(s.) Max. t(s.) Avg. t(s.) Max. t(s.)

20 2 0.01 0.30 0.43 1.41 0.06 0.12

3 0.02 0.41 0.30 4.00 0.07 0.13

4 0.03 1.14 0.15 4.03 0.08 0.13

5 0.02 0.17 0.08 0.47 0.08 0.13

6 0.02 0.38 0.05 0.36 0.09 0.16

7 0.02 0.27 0.04 0.36 0.09 0.17

8 0.02 0.63 0.03 0.28 0.10 0.18

9 0.01 0.52 0.11 8.81 0.10 0.19

10 0.01 0.88 0.03 0.33 0.12 0.18

25 2 0.02 0.45 1.16 13.47 0.12 0.22

3 0.06 1.92 19.85 757.28 0.15 0.32

4 0.08 1.22 47.47 4148.98 0.17 0.28

5 0.13 5.97 14.15 1534.72 0.17 0.43

6 0.12 4.00 0.37 27.22 0.24 0.45

7 0.10 1.52 0.16 2.84 0.28 0.58

8 0.18 13.78 0.11 0.89 0.30 0.54

9 0.06 0.72 0.18 12.78 0.32 0.57

10 0.03 0.28 0.07 2.81 0.33 0.59

0.05 1.92 4.71 362.28 0.16 0.30

to escape from those local optima found along the search by using the reinsertion-
move. Once the search process in the VNS-L is over, the information stored in
M is used by the solution generation procedure for re-starting the VNS-L. To
do so, a roulette wheel mechanism using the information stored in M is applied
to generate a job order sequence. Then, the first job in that sequence will be
assigned to the machine which adds the minimum tardiness completion time to
the solution.

3 Computational Results

This section is devoted to present the computational experiments carried out
in order to assess the performance of the proposed algorithm. For this purpose,
we use a set of 2250 instances provided by [6]. All the computational exper-
iments reported in this work are conducted on a computer equipped with an
Intel 3.16 GHz and 4 GB of RAM. We run 20 executions of VNS-L with the
following parameter values: itermax = 15, kmax= 3, β = 1.2, γ = 0.95, and M
initialized as the one-matrix.
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Table 1 shows the average computational results provided by (i) the best
approximate approach reported in the literature based on a Hybrid Discrete
Differential Evolution Algorithm, HDDE [2], (ii) the best exact approach based
on a Branch and Bound, B&B [6], and (iii) our VNS-L. HDDE and B&B were
executed on an Intel 3.2 GHz with 512 MB of RAM by [2]. The first columns
correspond to the sizes of the instance sets. Since all the sets are composed
of 125 instances each and the optimal solution values are known, in the tables
we only report the average computational time values since the three methods
always obtain the optimal solution values.

As can be seen in the table, VNS-L maintains a consistent temporal perfor-
mance during the search. VNS-L reduces the maximum required time in 85 %
and 99.92 % of the cases in comparison to HDDE and B&B, respectively. In this
regard, it should be noted that, on average, there is not much difference between
the average and maximum running performance of VNS-L (about 0.15 s). This
gives a sense of the temporal performance of VNS-L, which makes it suitable
when addressing related problems, solving larger instances or tackling integrated
problem schemes where this problem is involved.

4 Conclusions and Further Research

In this work, the problem of minimizing total tardiness on identical parallel
machines (P ||∑ Tj) has been addressed. In order to solve it, a Variable Neigh-
bourhood Search with a Learning mechanism (VNS-L) is proposed. According to
our computational experience over a well-known set of instances proposed in the
literature, our algorithm shows a competitive performance in terms of solution
quality and computational time. In this regard, it exhibits a similar performance
by means of average and maximum computational time, which makes it suitable
for those environments where the expected computational time may not vary
from one instance to another within the same scenario dimensions.

As further research, we are going to assess the contribution of VNS-L for
different configurations of its learning parameters as well as to determine an
adaptive method to parameterize it according to given problem instances.
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Abstract. Two different strategies for searching a best-available service in
adaptive, open software systems are simulated. The practical advantage of the
theoretically optimal strategy is confirmed over a ‘trivial choice’ approach,
however the advantage was only small in the simulation.
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1 Introduction

Service model paradigms for intelligent software systems include the idea of dynam-
ically adapting service invocations as needed, which aims at overcoming certain lim-
itations that constrain traditional software systems. In distributed system architectures,
services are implemented through well defined component interfaces. The discovery
and selection of suitable services is a decisive development step in composing larger
distributed systems [1, 2].

Initial service composition takes place at design time and guides static software
architectures. But in adaptive, dynamic systems services can be recomposed later at
run-time. In closed architectures these run-time alternatives are predefined at design
time and built into the system. But useful external services that were unknown at design
time may later become available. Specifically, open and uncontrolled software plat-
forms (the Internet) may provide numerous suitable service candidates. Open systems
can benefit from opportunistically performing parts of their functionality also through
such externally hosted service alternatives.

This practical challenge opens up an interesting field for the application of
advanced optimization techniques. The opportunistic run-time search for service
alternatives on open platforms is challenging for a number of reasons which are dis-
cussed in Sect. 3. Therefore, intelligent optimization strategies are required to improve
the related run-time adaptation process. Next to heuristic approaches, there is also an
interesting, exact algorithmic meta strategy which can be considered: the identification
of the best moment when to stop the search. Optimal stopping theory has been applied
for this purpose already in the past. This paper compares the advantages of an optimal
stopping approach with a trivial but suitable approach.
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The rest of the paper is organized as follows. Section 2 explains the background
and presents related work. Section 3 presents the application scenario and the related
stopping algorithm. Section 4 describes the simulation experiments and their results,
studying the algorithm and its behavior in different settings. Section 5 briefly sum-
marizes and concludes the paper.

2 Background and Related Work

Building larger distributed systems by composition implies matching well-defined
supplied service interfaces with equally well-defined requested service interfaces [1].

Supplied service interfaces might be available from other components which could
well be located externally on the Internet or on other open platforms. Adaptive systems
with run-time recomposition capabilities can opportunistically make use of such
externally provided services and search, before the invocation of a built-in service, for a
better external service [2].

Validated approaches of such self-adaptive systems reach back at least to the Viable
Systems Model from the 1960s [3]. More recent discussions include for instance [4, 5]
and a particular research focus deals with functionally equivalent Web services of
differing quality, e.g. in [6, 7].

When discovering a suitable service option on an uncontrolled open platform, the
final decision has to be made on the spot, to either accept or reject, because recalls are
inadmissible on open platforms. At first glance it seems that in this situation, regardless
of the decision method, the probability to make a right decision approaches zero when
the number of available options grows. But surprisingly, optimal decision strategies are
known from mathematical statistics. The complex problem class relevant for this
paper’s application scenario has been described already in [8, 9], and within the
framework of stopping Markov chains in [10]. The so-called 1/e stopping law that is
applied in the simulation is described and proven in [11].

Optimal stopping as a meta strategy was repeatedly proposed in computer science
with focus on evolutionary algorithms, and recent discussions also include, for
example, areas such as multi-criteria optimization [12] or local search heuristics [13].

3 Application Scenario and Stopping Algorithm

Recomposing service invocations at run-time with opportunistic search attempts on the
open Internet is particularly challenging for three main reasons. First, the number of
suitable service alternatives which are available on the Internet is unknown. There
could be very many such services, so exhaustive search is out of the question. Second, a
realistic application scenario will have practical limits as to the acceptable run-time
delay for end-to-end processing, and consequently also for each single service invo-
cation. To meet these two challenges, the time frame t which is available for an
opportunistic search preceding a service invocation is restricted to a hard limit in the
application scenario.
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Invoking publicly available services from open platforms raises yet a third issue.
Services that are hosted externally are not controlled by the self-adaptive system. One
important consequence is that any externally provided service alternative can be
unavailable or changed in the next moment. Therefore it is not possible to memorize
external options and, after further unsuccessful search, get back and use a service that
was found previously. This implies that the final decision whether to invoke a certain
external service must be made straight away when discovering it.

Next to heuristic approaches, these conditions allow an exact algorithmic search
optimization meta strategy through the application of an optimal stopping rule which
cuts off the search at the best possible point. The further simulation of a respective
stopping algorithm is guided by this scenario.

The solution approach taken in mathematical statistics basically defines a waiting
time as the time up to which all discovered services are observed without accepting,
while the value of the leading service is remembered. The intention is to choose the best
service and it can be shown that there exists an optimal waiting time w* maximizing the
success probability for the optimal choice when the first leading option arriving after w*

is accepted, if there is one, and all options are rejected if there is none. The only waiting
time policy with the best possible success probability is determined by the so-called
1/e law of optimal stopping [11] and the well-known value 1/e ≈ 0.3679 is the
(asymptotically) best possible lower bound. Cf. [8, 11] for the details and proofs.

The optimal point when to stop the search for further service alternatives in our
application scenario can be determined by directly applying the 1/e law.

The corresponding stopping algorithm identifies externally provided service
options suitable for matching with the internal composition’s requested service and
initially rejects all options, while memorizing the best option found yet. But as soon as
a proportion of t/e of the predefined time frame t has passed the next leading service
option is chosen, if there is one within the predefined time period. Otherwise, if no
more option that is better than all previous ones shows up until the time frame t expires,
no choice is made, the internal composition remains in place and the built-in service is
invoked. Since t is predefined in the application scenario, t/e is constant. As quoted, the
method yields the best possible lower probability bound for the optimal choice and
always stops within the predefined time frame.

Since 1/n < 1/e for all n ≥ 3, the algorithm should outperform any other strategy
already with three or more suitable service option alternatives.

4 Simulation Experiments

To investigate into the algorithm and its behavior, several simulation experiments were
conducted. Uniformly distributed integer service utility values U between Ub (best) and
Uw (worst) were randomly assigned to the compositions with external service options.
The internal composition was given fixed service utility value of Us (static), with
Ub < Us < Uw to exclude trivial cases. Smaller utility values were considered to be
better. The maximum run-time slot was set to t s and n differently suited Web service
options were available for each invocation.
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The simulation comprised 3000 experiments for two different settings. To compare
the developed algorithm, each experiment was additionally run also for a trivial choice
strategy following the obvious rule: identify suitable, externally provided service
options, choose the first option with U < Us and, if no such option is found by the end
of the time frame, invoke the internal service. This rule of choice fulfills the application
scenario restraints described in 3 and is an intuitive and very simple, trivial alternative
approach. The optimal stopping policy is compared to the trivial choice and, implicitly,
to a non-adaptive static system (Table 1).

The first simulation was set to t = 20 ms, n = 10 service options, Us = 3, Ub = 0 and
Uw = 9. The optimal stopping (lower half of Table 1) resulted in a total average
improvement to 1.94 utility points (35 %) over the assumed static system, and was
outperformed by the trivial choice (upper half of Table 1) with an average improvement
to 1.06 utility points (65 %). Remember that the objective of optimal stopping is to
optimize P(Ub) and not E(U). Over all 3000 experiments, and related to all n = 10
options, trivial choice selected the best service in 961 cases (32.0 %) and in 850 cases
the very first discovered service was chosen. This was better than optimal stopping with
714 optimal hits in 3000 experiments.

At first glance, the optimal stopping results seemingly yield a success rate of only
0.238 (714/3000) while the 1/e law predicts 0.3679. But the assumed number n of
provided services is required for the implementation of the simulation framework only.
We remember that the amount of services available on the Internet is unknown in the
application scenario, and its distribution is unknown in the 1/e law. The corresponding
total number of service options for a correct calculation therefore is not n but the

Table 1. Simulation results for the optimal stopping strategy, compared to a trivial choice
approach and (implicitly) to a non-adaptive system where Us equals 3 or 30. Cell values originate
from 3000 conducted experiments for each setting. Column headings denote the settings for (t, n,
Us, Uw).

Trivial choice (20, 10, 3, 9) (100, 100, 30, 99)

Best 961 92
Fallback 89 2
Avg. services 2.8 3.2
Avg. run-time 0.0102 0.0124
Avg. utility 1.06 14.67
First 850 883

Optimal stopping (20, 10, 3, 9) (100, 100, 30, 99)

Best 714 340
Fallback 1204 1149
Avg. services 5.3 21.3
Avg. run-time 0.0180 0.0780
Avg. utility 1.94 14.62
Ref. services 6.92 28.32
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number of reference services that would have been considered by the optimal stopping
algorithm if it would have used the full available time slot (approximate values are
shown in the last line of the lower half of Table 1, note that this number is not larger
than n). Scaling the values over all experiments yields an average hit rate of 0.3706
which differs by only 0.7 % from the theoretic prediction, possibly due to rounding
errors and timing imprecisions in the simulation.

The other simulation was run with n = 100 provided service options, Ub = 0 and
Uw = 99. With optimal stopping, the value of Us affects the achieved utility only but is
not used in the algorithm itself. Still Us is a relevant parameter for the trivial choice
strategy and therefore mentioned.

With these settings, simulation results and comparisons enable a first look at the
benefits of the optimal stopping approach. Already at these settings, optimal stopping
made the best choice in 340 cases, nearly 4 times as often as trivial choice. Also the
average achieved utility with optimal stopping is already slightly better as compared to
trivial choice. Trivial choice searches through 3.2 service options only and, at a run-
time delay of 12.4 ms, utilizes less than an eighth of the available time slot of 100 ms.
Optimal stopping makes much better use of the available time slot by taking 78 % of it
with a run-time delay of 78 ms. With the run-time in optimal stopping being about 6.3
times longer as in trivial choice, optimal stopping consequently makes better use of the
search space, too, and considers 21.3 services, which is nearly 7 times more in
comparison.

5 Summary and Conclusion

An optimal stopping algorithm was compared with a trivial choice approach in sim-
ulation experiments with two different settings. The bottom line benefits of the optimal
approach were confirmed. However, the advantage was small in the simulation. Both
optimal stopping and trivial choice clearly outperformed an assumed static architecture.
Further simulation experiments with other settings, for example longer time frames
and/or more available services, could give deeper insight into the optimal stopping
advantages above trivial choice.
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Abstract. This paper compares novel self-adaptive Differential Evolu-
tion algorithms (SADEs) on noisy test functions to see how robust the
algorithms are against noise in fitness function. This paper also com-
pares the performance of SADEs on real-world problems that estimates
Bidirectional Reflectance Distribution Function properties of 3D objects.

Keywords: Self-adaptive differential evolution · Noisy problem · Bidi-
rectional reflectance distribution function · Real-world application

1 Introduction

Differential Evolution (DE) [8] is a simple, easily implemented algorithm with
few operators and predetermined control parameters. Various self-adaptive DE
(SADE) algorithms have been proposed: jDE [1], Adaptive DE with an optional
external archive (JADE) [12], Success-History Based Adaptive Differential Evo-
lution (SHADE) [9], and so on.

Most real-world problems have some degree of uncernity, such as noisy fit-
ness functions and dynamic environments that change optima positions [4]. Prob-
lems involving fitness noise may result in incorrect search directions. The search
performance of DE is more affected by noisy fitness than other simple EC algo-
rithms [5]. Although sampling fitness values several times for each individual might
be a general approach to address noisy fitness [2,6], it requires a large number of
fitness evaluations.

In this study, we clarify SADEs search performance on noisy functions to
demonstrate their performance in realistic situations. The test functions used
in this study involve dynamic Gaussian noise on fitness values. In addition to
benchmark functions, we apply SADEs to a real-world computer vision problem,

©
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estimation of Bidirectional Reflectance Distribution Function (BRDF) properties
of 3D objects. Its dimensionality is not high; however, static noise exists in the
fitness function, and this problem is globally multimodal.

Experimental results on noisy test functions show that novel SADEs have
significantly higher performance than DEs that target noisy problems. In addi-
tion, the results of the BRDF estimation problem show difference in solution
quality and convergence speed between SADEs.

2 Self-Adaptive Des

Self-Adaptive Differential Evolution (jDE) [1] is a simple self-adaptation method
in which each vector (individual) has its own scale factor Fi and crossover
rate CRi. With the probability of τ and τ in each generation, jDE randomly
changes Fi and CRi within the specified ranges as Fi,g = Fl + Fu · rnd and
CRi,g = rnd , respectively, where rndj(j ∈ {1, 2, 3, 4}) are uniform random
values ranging in [0, 1]. τ and τ are probabilities changing Fi and CRi, respec-
tively. Fl and Fu determines the range of scale factor values. Since appropriate
values of Fl and Fu are experimentally clarified, jDE does not require control
parameter adjustment except population size N .

JADE is an SADE algorithm which has an archive to store inferior solutions
and control parameter adaptation. The archive stores target vectors which are
not selected due to the lower fitness than trial vectors. Although, like jDE, each
individual in JADE has its own crossover rate CRi and scale factor Fi, they are
updated as Fi = rndci(μF , 0.1) and CRi = rndni(μCR, 0.1), where rndci and
rndni are Cauchy and Gaussian distributions, μF = (1−c) ·μF +c ·meanL(SF ),
μCR = (1 − c) · μCR + c · meanA(SCR), and meanL denotes Lehmer mean.

JADE also utilizes a strategy called current-to-pbest, where a base vector is
selected from the top p% of the current population by random. Difference vector
vi,g is defined as vi,g = xi,g + Fi(x

p
best,g − xi,g) + Fi(xr1 ,g − x̃r2 ,g).

SHADE is a variant of JADE which uses different parameter adaptation
mechanism based on a history. The historical memories MCR and MF store
mean successful parameter values of CR and F for each generation, and produce
various parameter configurations which can be switched during the search. When
updating F and CR, SHADE weights arithmetic and Leamer means in JADE
i.e., meana and meanL, are replaced by meanWA(SCR) =

∑|SCR|
k wk · SCR,k

(wk = Δfk/
∑|SCR|

k Δfk) and meanWL(SF ) =
∑|SF |

k wk · SF,k/
∑|SF |

k wk · SF,k.
Although SHADE uses current-to-pbest/1 mutation strategy as well as JADE

does, SHADE automatically determines p as pi = rnd[pmin, 0.2] (2/N is recom-
mended for pmin) while JADE requires p to be determined by a user.

SHADEwithLinearPopulation SizeReduction (L-SHADE) [10] is an improved
version of SHADE, which linearly decreases the population size as the search pro-
gresses. Population size in the next generation Ng is calculated as Ng = round
[NFE × (Nmin − N init)/Nmax

FE + N init], where Nmin and N init denote the mini-
mum and initial population sizes, Nmax

FE and NFE denote the maximum and cur-
rent function evaluation counts.
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Table 1. Control parameter configurations

DE F = 0.7, CR = 0.7

jDE Fl = 0.1, Fu = 0.9, τ1 = 0.1, τ2 = 0.2

NADE CR = 0.7, {sampling number} = 30

MUDE Fl = 0.1, Fu = 0.9, τ1 = 0.1, τ2 = 0.2, pG = 0.04, pH = 0.07,

{initial range of SFGSS} = [−1, 1], {samping number} = 40,

h = 0.1,{FE limits in SFHC} = 100

JADE {archive size} = N , p = 0.05, c = 0.1

SHADE {archive size} = N , {memory size} = D

L-SHADE {archive size} = 2N , {memory size} = D, {final population size} = 4

DECC {number of divisions} = 10

Yang et al. proposed cooperative coevolution based DE algorithm named
DECC which utilizes problem decomposition strategies and DE with self-adaptive
neighbourhood search (SaNSDE) [11]. In DECC, first, an n-dimensional objec-
tive vector is decomposed into several s-dimensional subcomponents, and then
evolve each of them with SaNSDE.

3 Experiments on Noisy Test Functions

To clarify the performance of novel SADEs, JADE, SHADE, L-SHADE, and
DECC were compared with Canonical DE , jDE, and DEs targeting noisy func-
tions: Noise Analysis Differential Evolution (NADE) [2] and Memetic for Uncer-
tainties DE (MUDE) [6]. Control parameters were configured as shown in Table 1.
Strategy of all algorithms except JADE, SHADE, and L-SHADE was unified to
DE/rand/1/bin. Population size N was set to 100, and the maximum fitness eval-
uations (FEs) was to 100,000.

In the first four functions, Sphere, Rosenbrock, Rastrigin, and Griewank,
we added Gaussian noise with zero mean and standard deviation of 0.04C [2],
where C = Nc

∑Nc

i f(xc
i ) − f̄ , Nc is a sampling number set to 100, xc

i is i-th
individual that is sampled randomly, and f̄ is the function value of the global
optimum. Note that C does not change during the search, meaning that the more
significantly the noise affects the search performance as the search progresses [2].
The last two functions F4 and F17 in CEC 2005 benchmark problem [3] involve
the noise that gradually decreases as the objective function value gets smaller.
Dimensions of all the tested functions were set to 50.

Figure 1 shows the fitness transitions of the best solutions in the population.
The results were averaged over 50 runs. Note that, in Fig. 1, the function values
of the best solutions without noise were plotted.

Overall, JADE and SHADE showed better performance than other algo-
rithms. L-SHADE had a direct influence of noise, and its search performance

1 We represent canonical DE as “DE”.
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Fig. 1. Experimental results on noisy functions.

significantly deteriorated, meaning that the population reduction must be tuned
for noisy problems. DECC showed good convergence in noisy Rastrigin functions;
however, DECC was slower than jDE and other SADEs in other functions since
DECC targets higher dimensional problems. jDE followed JADE and SHADE,
and was less subject to noise.

The above results demonstratedSADEsgoodperformance compared toMUDE
and NADE targeting noisy functions and the robustness of JADE, SHADE and
jDE against fitness noise.

4 BRDF Estimation Problems

Bidirectional Reflectance Distribution Function (BRDF) is a method to describe
a light reflection model on a material surface [7]. This paper proposes a method
which simultaneously optimizes parameters in combination of Lafortune model
for specular reflection and Lambertian BRDF model for diffuse reflection. In addi-
tion, it is assumed that RGB components have the same specular reflection model.
Simultaneous estimation of the above model is difficult because one of Lafortune
model parameters corresponds to an exponent part of the mode equation.
This continuous optimization problem is globally multimodal because a certain
reflection model can be represented by various combinations of Lafortune and
Lambertian model parameters. This problem also involves static noise because a
solution is evaluated by comparing the images rendered according to the solution
and the actually photographed images.

When assuming that the number of lobes would be one, parameters for each
pixel to be adjusted are seven: diffuser reflection parameters ρdR, ρdG, ρdB
for color channel in addition to specular parameters Cx, , Cy, , Cz, , and n .
Lafortune model fr(·) is modeled by fr(ωi,ωr) =

∑
i

∑
D∈{x,y,z}[CD,iωiDωrD]ni
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Fig. 2. Fitness transitions
in BRDF estimation.

Fig. 3. PSNR for each
scene.

Fig. 4. Rendering result
examples (Color figure
online).

where ωi and ωr are lighting and viewing directions, and i denotes the number
of lobes. When assuming just one lobe, four parameters, Cx, , Cy, , Cz, , and
n , synthesizes the model.

An objective function E which should be minimized is defined by squared
error between estimated and observed intensities for all sampled pixels as follows

E =
∑

j

∑

C∈{R,G,B}
(IC j − frC(ωi,j ,ωr,j)) (1)

where j denotes index of sampled pixel, frC (C ∈ {R,G,B})is estimated inten-
sities for each RGB color, and IC is observed intensities.

Experiments with a glazed pottery object were conducted to compare the
performance of jDE, JADE, SHADE, and L-SHADE. Their control parameters
were configured as follows: in jDE, Fl = 0.1, Fu = 0.9, τ = 0.1, and τ = 0.1. In
JADE, SHADE, and L-SHADE, the archive size and memory size was set to 2N
and n, respectively. JADE uses p and c with 0.05 and 0.01, respectively. In L-
SHADE, final population size was set to four. In all algorithms, population size
N was set to 70, and the maximum FEs was set to 7.0×10 . BRDF models on all
199,838 points on the object surface were estimated individually. Photographed
images of one viewpoint and 60 × 11 (horizontally 60 and vertically 11) light
source directions were used for fitness calculation.

Figure 2 shows the example fitness transitions of the best solutions on a
certain point of the object surface. L-SHADE was the fastest to converge, and
SHADE followed L-SHADE. JDE and JADE were almost the same speed to
find the best solutions. Figure 3 shows Peak Signal-to-Noise Ratio (PSNR) for
49 scenes with varying light directions. From the viewpoint of PSNR, the output
image quality was high in the order of JADE, jDE, SHADE, and L-SHADE.
Significant differences could be seen between JADE and SHADE and between
JADE and L-SHADE by paired t-test with 95 % confidence interval. Figure 4
shows example rendering results estimated by JADE and L-SHADE. Rendering
results by L-SHADE involved artiacts (white pixels). The above experimental
results show that JADE’s robustness against problem properties.
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5 Conclusions

This paper experimentally compared the novel SADEs: JADE, DECC, SHADE,
L-SHADEwith noisy benchmark functions andBRDFestimation problem.Exper-
imental results showed that novel SADEs were faster than NADE and MUDE
which were specialized in noisy problems, and JADE found bettern solution than
SHADE and L-SHADE in BRDF estimation.
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MIC, Japan.
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Abstract. This paper presents an analysis of different possible oper-
ators for local search algorithms in order to solve permutation-based
problems. These operators can be defined by a distance metric that
define the neighborhood of the current configuration, and a selector that
chooses the next configuration to be explored within this neighborhood.
The performance of local search algorithms strongly depends on their
ability to efficiently explore and exploit the search space. We propose
here a methodological approach in order to study the properties of dis-
tances and selectors in order to buildtheir performances operators that
can be used either for intensification of the search or for diversification
stages. Based on different observations, this approach allows us to define
a simple generic hyperheuristic that adapt the choice of its operators to
the problem at hand and that manages their use in order to ensure a
good trade-off between intensification and diversification. Moreover this
hyperheuristic can be used on different permutation-based problems.

1 Introduction

Many optimization problems can be modeled as permutation problems (e.g.,
flowshop, traveling salesman or quadratic assignment problems). Dedicated
efficient solving methods have been proposed for these problems, but their per-
formance often depend on the considered instances and use most of the time
ad-hoc heuristics and/or techniques. Therefore, given a new permutation prob-
lem a non-expert user would hardly be able to design a solving algorithm using
components that she/he could re-use from previous experiments. A recent trend
in optimization consists in promoting more autonomous techniques for the design
of search algorithms [1], either by automating the tuning of their parameters [2],
by dynamically controlling their behaviour [3] or by automating their design [4].
Focusing on this latest aspect, hyperheuristics [5] is a generic paradigm that can
be used to manage a set of efficient heuristics in order to solve a sufficiently
large set of problem instances, without a priori knowledge. The main principle
of hyperheuristics is to adapt the solving process to the given instance at hand.
Considering a set of possible heuristics that can be applied on a given prob-
lem, one may select the best heuristics with regards to the characteristics and
properties of this problem and/or change heuristics during the solving process,
©
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according to the current state of the search. Of course, this high level manage-
ment of the solving heuristics requires to define sufficiently general heuristics
and to gather pertinent information on them. In this paper, our focus on per-
mutation problems allows us to consider a sufficiently large family of problems
which can be handled by a set of common search operators (from now on we
use the generic term operator for our basic search heuristics). These operators,
defined in a local search fashion [6], aim at selecting the next configuration of
the search space that will be examined by an incremental search process. Such
an operator can easily be defined by (1) a notion of neighborhood of the current
configuration, thanks to a distance measure, and (2) a selection function within
this neighborhood. One aim of this work is thus to carefully study the behav-
iour of these search operators with regards to different instances of well known
permutation problems. Note that different studies on distances for permutation
problems have been conducted [7,8]. Here we focus on how operators, which use
such distances, can be compared and efficiently chosen with regards to a given
instance of a problem. Note that the dynamic control of operators in local search
has been studied in [9]. Our approach can be more related to landscape analy-
sis [10]. An analysis of the correlations between the two basic above-mentioned
components of operators would help us to better understand their characteristics
and to define a simple hyperheuristic to manage them.

This paper is organized as follow. Basic notions on permutations are recalled
in Sect. 2. Main concepts concerning local search for combinatorial optimization
problems are presented in Sect. 3. The next sections are devoted to the analysis
of search landscapes induced by the static structures of the problems, as well
as the operational behaviour of local search operators. A simple hyperheuristics
is then defined in Sect. 6 in order to illustrate how previous observations can be
used to improve solving algorithms.

2 Basic Notions for Permutations

2.1 Permutations

A permutation of n elements is an arrangement of these n objects sorted in a
specific order where they appear only once. The group of permutations [11] can
be defined as the group of bijections from X to X where X is a non-empty
finite set. Let [n] be a set of objects [n] = {1..n}. A permutation π is a bijective
assignment on [n] such that π(i) is the element at position i in the permutation
π and posπ(i) is the position of the element i in the permutation π. Π([n]) is the
set of permutations on [n], whose cardinality is thus n!. Given [n] = {1, 2, 3, 4},
π = (1, 2, 3, 4) or π = (2, 1, 4, 3) are two possible permutations.

Identity. Let π ∈ Π([n]), the identity permutation I is defined as the permuta-
tion that assigns each element of π to itself, i.e. ∀i ∈ {1..n}, I(i) = i.

Product of permutations. Let π , π ∈ Π([n]), π (i) ∗ π (i) = π (π (i))∀i ∈ [n].
Note that π ∗ π �= π ∗ π . The neutral element of the product is I (i.e.,
∀π, π ∗ I = I ∗ π = π).
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Inverse. The inverse permutation can be defined using the identity permuta-
tion π− can be constructed from π using the property: π− (i) = posπ(i). For
instance, if π = (2, 3, 4, 1), then π− = (4, 1, 2, 3).
Let us recall now some properties of permutations.

Adjacency. Given a permutation π ∈ Π([n]), two elements i and j are adjacent
in π if |posπ(i) − posπ(j)| = 1.

Longest Increasing Sequence (LIS). Given a permutation π, the longest increas-
ing subsequence LIS(π) corresponds to the longest subsequence of elements of π
that are sorted in ascending order. For instance, for π = (1, 3, 2, 4) the longest
increasing subsequences are (1, 2, 4) and (1, 3, 4).

Longest Common Subsequence (LCS). The longest common subsequence of two
permutations π , π ∈ Π([n]) is LCS(π , π ) = {i ∈ {1..n}|p (i) = p (i)}.
For instance, with π = (2, 4, 3, 1, 5, 6) and π = (1, 2, 3, 5, 4, 6), LCS(π , π ) =
{2, 3, 5, 6}.

2.2 Distance on Permutations

Table 1 presents different distance indicators which will be considered in the
rest of the paper. The diameter of a distance measure represents the maximal
distance between all permutations. Note that, as an example, the last column
corresponds to the distance between the two following permutations (# is the
cardinality function):

– π = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) and,
– π = (15, 3, 1, 11, 2, 7, 9, 10, 4, 14, 6, 12, 5, 13, 8).

Note that the interchange distance requires a function, computing the number
of permutation cycles which composes a permutation [8].

Table 1. Distances for permutations.

Distances Formula (π1 and π2 are permutations) Diameter Ex.

Hamming #{i|i ∈ {1..n}, π1(i) �= π2(i)} n 14

Adjacency n − 1 − #{1 ≤ i|adjπ2(π1(i), π1(i + 1))} n − 1 13

Position
n∑

i=1

|posπ1(i) − posπ2(i)| 2�n/2��n/2� 62

Lee
n∑

i=1

min(|π1(i) − π2(i)|, n − |π1(i) − π2(i)|) n(n/2) 48

Swap #{(i, j)|1 ≤ i < j ≤ n, posπ2(π1(j)) < posπ2(π1(i))} n(n − 1)/2 44

Interchange n − c(π−1
1 ∗ π2) n − 1 12

Ulam n − length(LIS(π−1
1 ∗ π2)) n − 1 9

Insertion n − length(LCS(π1, π2)) n − 1 8
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3 Optimization Problems and Local Search

Let us define the components of a local search algorithm in the context of solving
optimization problems [6].

3.1 General Definitions

Optimization Problem. An optimization problem is a pair (S, f) where S
is a search space whose elements represent solutions (or configurations) of the
problem and f : S → R is an objective function. An optimal solution (for
maximization problems) is an element s∗ ∈ S such that ∀s ∈ S, f(s∗) � f(s).

Local Search. Given an optimization problem, a local search (LS) process
consists in starting from an initial configuration and in applying repeatedly basic
move operators in order to reach an optimal solution. The trace obtained by
such a search process is usually called a search path. An operator is thus a
function that returns the next configuration for building the search path. In
its simplest form, a move performs the selection of the next configuration to
be explored within the neighborhood of the current configuration. A generic
and basic outline of an LS metaheuristic is the application of an operator in a
simple loop as illustrated in Algorithm1 where the SpecificAction() method
represents a step specific to the type of metaheuristic used such as a perturbation
(e.g., Iterated Local Search [6]) or enforcing prohibitions (e.g., Tabu Search).

s ← initial configuration;
s∗ ← s;
while end condition not met do

s ← op(s);
if eval(s) < eval(s∗) then s∗ ← s;
SpecificAction();

end
return s∗

Algorithm 1. Algorithmic outline of an LS metaheuristic for minimization

Neighborhood. Let S be the search space of candidate solutions. A neighbor-
hood relation is an irreflexive binary relation N ⊆ S over the search space. In
most cases, the relation is also symmetric.

Search Paths. Given a neighborhood relation N , the set of search paths is
defined as PN = {s · · · sn ∈ S∗ | ∀i > 1, (si− , si) ∈ N}, where S∗ represents
the set of words constructed over S. Therefore any pair (s, s′) of elements of
S, such that (s, s′) ∈ N , defines an equivalence class over the set PN which
1 N+ is the transitive closure of N .
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corresponds to all paths that link s to s′. This subset is denoted by PN (s, s′). In
most cases, the neighborhood should be complete, i.e. ∀s, s′ ∈ S,PN (s, s′) �= ∅.

Distances Induced by Neighborhood. The neighborhood relation defines
the structure of the search space. The distance between s and s′ can therefore
be defined as dN (s, s′) = minp∈PN s,s′ |p|, where |p| is the classic word length
and dN (s, s) = 0. If d define a distance, then N is necessarily symmetric. Note
that a neighborhood induces a distance on the search space but, conversely, a
distance on the search space can easily be used to define a neighborhood.

Local Search Operators. An operator is defined by two main components:
neighborhood and selection process. A selector is a function that performs a selec-
tion over a neighborhood, eventually guided by the ordering <, and is defined
as σ : S × 2S2 → S (here the selection returns only one neighbor), such that
(s, σ(s,N )) ∈ N (the reflexive closure of S in order to include identity). Note
that the selectors may include randomization for computing their results (e.g.,
random choice of a neighbor). Let us consider three classic different selectors:

– First improve (select the first improving neighbor from a randomly ordered
set of neighbors),

– Best improve (select the best neighbor),
– Random choice (randomly chosen neighbor).

An operator is fully defined by a pair (N , σ).

Search Landscape. The search landscape is usually defined by the search space
and the objective function that should be maximized (without loss of generality).
The ordering relation < over S corresponds to the order induced by the fitness
function of the problem.

Operational Landscape. The operational structure of local search is defined
by the possible moves in the search landscape according to a neighborhood rela-
tion. Again, we consider the paths induced by an operator o = (N , σ) :

Po =
⋃

n>

{s · · · sn ∈ S∗|∀i > 1, si = σ(si− ,N )}

Here, we should note that we only have the inclusion Po ⊆ PN , since some
neighborhood paths cannot be necessarily constructed by the operators as soon as
it includes a selection process among the neighbors. Moreover, if there exists a path
in Po linking s to s′, there does not necessarily exist a path from s′ to s. Therefore,
due to this non symmetric aspect of operators, it is not obvious to use a simple
distance over the paths created by the operators. Now we may handle multiple
move operators local search by composing neighborhood relations and selectors.
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3.2 Permutations Based Problems

According to the previous definitions, a permutation based problem is a problem
such that S = Π([n]). Many combinatorial optimization problems can be for-
mulated as permutation-based problems, most of them being NP-hard. In this
section we recall three well-known permutation problems that will be used in
our experiments.

Quadratic Assignment Problem. Quadratic assignment problem (QAP) [12] mod-
els a facilities location problem. The objective of QAP is to assign n facilities to
n locations in order to minimize the assignment cost. It may be formalized as
follows:

– let fij the flow between facilities i and j,
– let dij the distance between locations i and j,

– minimize:
n∑

i,j

fijdπ i π j .

Flowshop Problem. The flowshop problem [13] is a scheduling problem where
the goal is to find the best planning to achieve n jobs on m different machines,
minimizing the makespan (total completion time), considering the following con-
straints :

– All jobs must be processed by all machines,
– A machine can deal with only one job at any time t,
– A job can be processed only by one machine at any time t.

Here we consider that the processing order of the jobs on the machine is always
the same. The goal is to find a permutation π representing a processing order of
the jobs that minimizes the makespan function Cmax = max{siM +piM |i ∈ [1..n]
and M ∈ [1..m]} where:

– pij is the time for the machine i to process the job i,
– sij is the starting time of the job i on the machine j.

Traveling Salesman Problem. The traveling salesman problem (TSP) [14] con-
sists in finding the shortest path in order to visit n cities without visiting any
city twice. This constraint is easily enforced by using permutations to represent
configurations of the problem. For a permutation π, each element is a city. Given
a matrix D such that dij corresponds to the distance between city i and city j,

the objective function to minimize is
n−∑

i

dπ i π i +dπ n π . Here, we restrict

our study to symmetric TSP (i.e., dij = dji ∀i, j ∈ {1, 2, .., n}).
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Table 2. Diameter and average distances

Instance Ham. Adj. Position Lee Swap Interchange Insertion Ulam

Based

Inst. 1 max 20 19 200 200 190 19 19 19

(size 20) avg 19 17 133 100 95 16 13 14

Inst. 2 max 26 25 338 338 325 25 25 25

(size 26) avg 25 23 225 169 162 22 18 19

Inst 3 max 100 99 5000 5000 4950 99 99 99

(size 100) avg 99 97 3331 2500 2475 95 92 93

4 Search Landscape Analysis

In this section, we propose a first study of the search landscape corresponding
to the previously selected permutation problems. Our purpose is to highlight
how suitable but yet generic local search operators can be defined. We will first
study the search landscape from a static point of view by using distance indi-
cators on permutations that have been presented in Sect. 2.2. This will allow us
to exhibit correlations between distances as well as correlations between prob-
lems and distances. Before starting our experiments, let us observe what are
the typical topological characteristics of our problems, computing the maximal
theoretical and the average distances between two permutations.

4.1 Search Space Diameters

The following results will help us to better interpret our further studies. Table 2
providesmaximal theoretical (max) andaverage (avg)distances for three instances.
Note that here the original problems have no influence since we consider only the
search landscape, which only depends on the size of the permutation. We output
here instances from size 20 to 100 in order to highlight the relative differences bet-
ween distances. Results show similar properties when considering larger instances.
Average results are obtained by computing the distance between 10 pairs of ran-
domly generated permutations.

4.2 Search Space: Correlation Between Distances

The purpose of this first experiment is to compare the distance indicators. Table 3
shows correlations of distances obtained for 10 randomly generated pairs of per-
mutations. Let us recall that the problem under consideration have no influence
on the results. We considered two close sizes (20 and 26) and a larger one (100) in
order to obtain different effects. Nevertheless, correlations do not depend on the
size, as observed here. This study can be related to the work presented in [8] but
with additional metrics. Moreover, the experimental process is slightly different
even if similar conclusions are reported.
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Table 3. Correlation distances - distances

1.000 0.672

1.000 − . − . − .

− . 1.000 0.939 0.605

1.000

− . 0.939 1.000 0.621

0.672 1.000

0.605 0.621 1.000

− . 1.000

1.000 0.640

1.000

1.000 0.941 0.589

1.000

0.941 1.000 0.594

0.640 1.000

0.589 0.594 1.000

1.000

1.000 0.575

1.000

1.000 0.944 0.557

1.000

0.944 1.000 0.532

0.575 1.000

0.557 0.532 1.000

1.000

The correlation coefficient cf corresponds to the intensity of the connection
between two sets of values and has a value ranging in [−1, 1]. Two sets are said
to be strongly correlated if |cf | > 0.5.

cf(x, y) =

n∑

i

(xi − x̄) ∗ (yi − ȳ)
√

n∑

i

(xi − x̄) ∗
√

n∑

i

(yi − ȳ)

where x̄ and ȳ are the mean values of x and y.
Note that the correlation between distances is measured only on the dis-

tances obtained between permutations. The objective function of the problem
is not involved in the process (only the size of the studied instances influences
the results rather than the type of problem). We can observe in Table 3 that
distances can be grouped by sets of correlated distances:

{Hamming, Interchange}, {Adjacency}, {Lee},
{Swap, PositionBased, Insertion}, {Ulam}.
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Table 4. Correlation problems - distances

Problem Instance Size Ham. Adj. Position Lee Swap Inter- Insertion Ulam

Based change

QAP nug20 20 0.105 0.091 0.031 0.006 −0.005 0.086 0.031 0.001

lipa30 a 30 0.020 0.000 0.006 0.011 0.001 0.018 −0.007 0.006

sko81 81 0.032 0.033 0.034 0.009 0.002 0.015 0.044 0.001

bur26a 26 0.092 0.000 0.104 −0.009 0.012 0.059 0.089 0.032

esc16a 16 −0.001 0.084 −0.001 0.004 −0.006 0.010 0.015 0.002

TSP a280 280 0.001 0.166 0.007 0.002 0.001 0.001 0.021 0.006

berlin52 52 0.000 0.392 0.006 −0.005 0.003 0.003 0.061 −0.002

eil51 51 0.002 0.392 −0.010 0.002 0.000 −0.001 0.069 −0.005

kroD100 100 0.003 0.268 0.003 0.001 0.001 0.000 0.039 0.002

tsp225 225 0.002 0.192 −0.005 −0.001 0.000 −0.002 0.023 −0.001

FlowShop 20 5 01 20 0.089 0.049 0.440 0.020 0.474 0.062 0.278 0.017

20 10 01 20 0.134 0.029 0.465 0.027 0.469 0.086 0.352 0.007

20 20 01 20 0.110 0.018 0.331 0.076 0.315 0.075 0.253 0.031

50 5 01 50 0.040 0.016 0.257 0.001 0.275 0.027 0.163 −0.004

50 10 01 50 0.055 0.037 0.334 0.013 0.342 0.034 0.203 0.010

This first observation may help us to select distances for either building search
operator or better controlling the search process with a specific heuristic. For
instance, if a search algorithm using Hamming distance requires diversification, it
seems intuitively appropriated to use another distance that is weakly correlated
(for instance Lee distance).

4.3 Search Landscape: Correlation between Problems and Distances

The correlation between the objective function of a problem and the neighbor-
hood relation used to define operators is obviously an important feature to ensure
good performance for a LS algorithm. Ideally, if distances between configurations
are proportional to their objective values difference, then it is easier to reach good
solutions, since moves can be clearly guided by improvement strategies.

In Table 4 we examine the correlation between the distance indicators and
the problems introduced previously, considering the search landscapes induced
by their objectives functions. Instances whose known optimal solution are used
to study this correlation. The distance between the optimal permutation and a
randomly generated permutation is computed as well as the difference between
their objective function values. This process is repeated 10 times in order to
obtain a correlation value between distances and problems. Results are presented
in Table 4.

In Table 4 no strong correlation can be observed. Considering QAP, due to
its quadratic objective function, it is very difficult to define a metric that can be
correlated to the fitness. For the flowshop problem, distances which induce less
perturbations in the objective function values of the configurations, show better
results as observed for Swap or Insertion indicators. Similar observation can be
done for TSP using Adjacency. Nevertheless, the correlation depends on the size
of the considered problems since random points can be far from the optimal
solution for problems with large diameters.
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5 Analysis of the Operational Landscape

We now turn to the operational point of view by considering search operators
that can be used in a local search algorithm. Using the previous results and in
order to avoid too combinatorial experiments, we consider only the following
classic distances: Swap, Interchange and Insertion. The corresponding neighbor-
hood are indeed often used to build operators for permutation problems. We also
consider the three selectors: First, Best and Random. According to the definition
of an operator provided in Sect. 3.1 we have thus nine possible operators.

The purpose of the following experiment is to assess the ability of an opera-
tor to reach an optimal solution using the shortest possible path (i.e., using the
fewest number of permutations). Here, we aim at studying the short term con-
vergence properties of operators for different problems, in order to identify good
candidates for intensification. For different instances of each problem, a permu-
tation is randomly generated at distance n, starting from the optimal known
permutation, with the different neighborhoods associated to the operators. We
observe then if the operator is able to come back to the optimal solution. Tests
have been carried out at various distances from the optimal solution. Here, we
are mainly interested by results obtained at a distance 5 from the optimal solu-
tion. For smaller distances it seems clear that all operators including the “best”
selection mechanism are likely to return to the optimal solution. Oppositely,
choosing too long distance for small instances leads to search the optimal solu-
tion from a totally random permutation. Table 5 shows results for a distance of
5. Values represent the probabilities of a path built by the operator to reach the
optimal permutation.

The results show the efficiency of the operators with regards to intensification
for the three problems. An operator that frequently reaches the optimal solution
from a distance of 5 is indeed a pertinent operator for the intensification of the
search. This experiment assesses that it is sufficient to reach a distance 5 from
the optimal solution in order to easily reach it with this operator. Nevertheless,
let us notice that maximal distances (i.e., diameters) related to operators are not
of the same order of magnitude. For instance, the insertion and interchange
have a smaller diameter than swap. We can remark that associations between
operators and problems do not correspond the empirical intuitions. The low
distance is certainly an explanation of this behavior.

6 Design of a Simple Hyperheuristic

In this section, the previous analysis are used in order to define a simple hyper-
heuristic approach for solving the three families of problems. The concept of
hyperheuristic [5] has been initially introduced as “a heuristics to choose heuris-
tics”. Hyperheuristics manage indeed a set of heuristics and select or combine
them in order to efficiently solve problems. Instead of manually designing a solv-
ing algorithm, an hyperheuristic is used in order to automate the process of
selection, combination or generation of heuristics, aiming at solving different
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Table 5. Ability to find the optimal solution starting at a distance of 5

Problem Instances Size Swap Interchange Insertion

First Best First Best First Best

Improve Improve Improve Improve Improve Improve

FlowShop 20 5 01 20 0.7 0.84 0.05 0.13 0.14 0.3

20 5 02 20 0.54 0.81 0.06 0.15 0.17 0.36

20 10 01 20 0.22 0.48 0 0.2 0.03 0.27

20 10 02 20 0.15 0.5 0.01 0.18 0.02 0.28

50 5 01 50 0.81 0.99 0.44 0.63 0.75 0.87

QAP nug12 12 0.25 0.45 0.13 0.27 0.03 0.09

bur26a 26 0.57 0.77 0.11 0.78 0.01 0.03

els19 19 0.41 0.71 0.1 0.7 0 0.07

lipa40 40 0.58 0.8 0.84 1 0 0.01

sko100a 100 0.86 0.99 0.01 1 0 0.07

chr12a 12 0.12 0.31 0.02 0.25 0 0.02

scr12 12 0.25 0.35 0.17 0.33 0 0.02

lipa40a 40 0.56 0.77 0.9 0.99 0 0.02

wil100 100 0.83 1 0.01 0.99 0 0.05

tai80b 80 0.35 0.83 0 0.98 0 0.05

TSP 100 rd100 0.58 0.95 0.00 0.97 0.54 0.99

berlin52 52 0.7 0.96 0.04 0.97 0.47 0.97

eil51 51 0.49 0.92 0.03 0.95 0.29 0.97

kroD100 100 0.62 0.96 0.00 0.97 0.40 0.98

lin105 105 0.7 1 0 0.97 0.49 0.99

tsp225 225 0.8 1 0 1 0.59 1

st70 70 0.65 0.96 0.01 0.95 0.32 0.97

problems with a single generic solver. There is currently a very active commu-
nity on hyperheursitics and a competition [15] has been launched to compare
different approaches.

In the following, we show that the analysis of the search and operational
landscape of the problems provided previously may help to design simple generic
hyperheuristic for permutation-based problems. Our solving approach is rather
simple and alternates two stages: an intensification phase and a diversification
phase, which allows the search process to escape of local optima [6]. Using pre-
vious experiments, it is possible to characterize operators that promote intensi-
fication or diversification.

6.1 Algorithm

Our hyperheuristic algorithm takes as input a set of operators and an instance of
a problem. Since the swap neighborhood has a larger diameter than the insertion
or interchange neighborhoods, it is not considered in the experiments. Indeed, it
is more difficult to use operators with different diameters if one wants to ensure
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fair comparisons. We consider here only two uncorrelated distances interchange
and insertion. This is a restricted choice and other possible distances could have
been considered. The set of possible operators is thus: interchange/first improve,
interchange/best improve, interchange/random, insertion/first improve, inser−
tion/best improve, insertion/random.

Using previous experiments, we consider the following methodology:

1. Select an operator for the the intensification stage: the algorithm starts with
a study of paths on the instance in order to determine which operator should
be considered for intensification. The algorithm selects thus the operator with
the highest success rate as the intensification operator. The distances study
of Sect. 4.2 is then used to select the diversification operator.

2. Select an operator for intensification: since the distances interchange and
insertion are weakly correlated, we assume that if an operator using the
insertion neighborhood is selected for intensification, then it may be inter-
esting to select an operator that uses interchange neighborhood for diversifi-
cation (and vice versa). The random selection mechanism will be considered
as selector in order to ensure an efficient diversification.

The hyperheuristic is detailed in Algorithm 2.

input
output f

Require:
OpIntensification, OpDiversification ← Select − operators I {

}
p ← Random { }
best ← f p { }
while do

p ← HillClimbing OpIntensification, p { }
if f p < best then

best ← f p
end if
p ← diversification p { }

end while
return best

Algorithm 2. Hyperheuristic algorithm

6.2 Results

Algorithm 2 has been evaluated on different instances of each problem. The
results have been compared to the best known values and to an algorithm that
selects uniformly an operator at each iteration among the possible ones. A basic
Hill Climbing using a unique operator (combinations of swap, interchange or
insertion and first, best or random selection) has been used, but obtains poor
results in being stuck in local optima. Same experimental conditions are used
to test the different algorithms: a maximum number of iterations is set for each
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Table 6. Results

Instance Size Hyperheuristic Best Uniform

best avg. s.d. known best avg. s.d.

TSP

Berlin52 52 7542 7912 175.6 7542 8282 8486.4 131.5

eil51 51 432 438.6 5.7 426 445 457.8 7.8

st70 70 690 711.4 13.9 675 772 821.8 25.5

kroD100 100 23627 25380.9 1332.73 21294 26333 32151.5 2292.3

lin105 105 15761 17785 1196.3 14379 17910 22387.5 1927.1

rd100 100 8748 9111.1 275.7 7910 10509 11483.3 635.6

tsp225 225 4824 5157.6 269.03 3919 8113 10038.68 2061.6

FlowShop

20 5 01 20 1278 1278 0 1278 1278 1283.8 7.0

20 5 02 20 1359 1359.2 0.4 1359 1360 1360.4 1.2

20 10 01 20 1583 1584.9 2.9 1582 1600 1606.1 6.6

20 10 02 20 1660 1666.4 3.1 1659 1675 1689.9 9.2

50 5 01 50 2724 2724 0 2724 2724 2724 0

QAP

Bur26a 26 5426670 5427870 1784 5426670 54322537 5435020 1460.8

tai50a 50 5067098 5074390 6361.6 4938796 5241678 5280400 27268.1

lipa40a 40 31645 31857.3 72.6 31538 32034 32052.7 11.3

sko100a 100 152560 153183 408.4 152002 155372 156912 1021.3

wil100a 100 274034 274553 365.7 273038 275750 278877 1335.3

instance, 20 runs are executed for each instance and the same initial permuta-
tions are used for the hyperheuristic and the random algorithms. Results are
presented in Table 6, in which best values are indicated bold.

We can remark that whatever the instance, the hyperheuristic obtains signifi-
cantly better results than those obtained by the algorithm with uniform selection,
both in terms of best result and average. This difference shows the importance of
carefully choosing operators for intensification and diversification. One can also
note that as well as being generic, hyperheuristic obtained reasonable results
with regards best-known ones – even for large instances, especially considering
QAP and flowshop problems. Note that this algorithm is generic in comparison
to problem-dedicated algorithms for these well-known problems. Our study can
be extended to more operators and problems. Our purpose here was rather to
highlight that studying the search space as well as the search landscape may be
useful to devise generic hyperheuristics.

7 Conclusion

In this paper, an analysis of operators for permutation-based problems is pro-
posed. Properties of distance measures, neighborhood and selection mechanisms
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were observed for different permutation-based problems, and provide a better
understanding of the relative efficiency of operators. Known relationships between
operators and problems have been confirmed. Moreover, collected informations
can be used to automate the choice of operators for different permutation-based
problems. We have proposed a simple hyperheuristic using these operators proper-
ties. Further studies will include more combinatorial experiments with more oper-
ators and problem instances.
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Abstract. Because permutation problems are particularly challenging to
model and optimise, the possibility to represent solutions by means of fac-
toradics has recently been investigated, allowing algorithms from other
domains to be used. Initial results have shown that methods using fac-
toradics can efficiently explore the search space, but also present difficul-
ties to exploit the best areas. In the present paper, the fitness landscape
of the factoradic representation and one of its simplest operator is studied
on the Permutation Flowshop Scheduling Problem (PFSP). The analysis
highlights the presence of many local optima and a high ruggedness, which
confirms that the factoradic representations is not suited for local search.
In addition, comparison with the classic permutation representation estab-
lishes that local moves on the factoradic representation are less able to lead
to the global optima on the PFSP. The study ends by presenting directions
for using and improving the factoradic representation.

Keywords: Permutation Flowshop Scheduling · Factoradics · Fitness
landscape

1 Introduction

Many optimisation problems can be modelled by means of permutations. This
is the case of many scheduling problems such as the Permutation Flowshop
Scheduling Problem (PFSP) in which a set of jobs needs to be assigned to a set
of machines in the same order on each machine. The space of permutations is
known to be a challenging one to search due to the nature of the representation
which is difficult to model in comparison with other domains. Efforts in the field
of Estimation of Distribution Algorithms (EDAs) have led to the development
of probabilistic models of the permutation space [1], but these models require
adapted algorithms to make use of them.

The use of alternative genotypes has been proved useful [2] in many domains,
including permutations [3]. By transferring a problem from one domain to another,
alternative genotypes encourage re-use of state of the art methods across domains.
©
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In the context of permutations, the use of genotypes may allow common modelling
frameworks to be adapted to the problem under consideration.

Recent work has shown that the factorial numbering system, also referred
to as factoradics or Lehmer codes can be used to represent permutations [4–6].
The factoradic representation uses a string of integers, with different weights
associated with each position. Consequently, optimising factoradics rather than
permutations themselves allows the use of methods from the integer domain.
Experiments have shown that factoradics can be successfully implemented within
different types of algorithms. However, the fitness landscape associated with the
factoradic representation and its move operators has not been studied to date.
It is thus difficult to define precisely the characteristics of this representation
and to understand what search principles are the most adapted to it.

The frequent use of the straightforward permutation representation in evolu-
tionary computation to tackle permutation problems has not really been investi-
gated in comparison to using other representations. This paper proposes a fitness
landscape analysis of the factoradic representation and one of its simplest oper-
ator on the PFSP, one of the most widely used benchmark for permutation
optimisation. The paper is organised as follows. First, the factoradic represen-
tation is described along with previous work on the topic. Section 3 highlights
the core concepts of fitness landscape analysis, while Sect. 3.2 defines the metrics
used for the analysis. The PFSP is explained in Sect. 4. Finally, experiments are
presented and their results discussed in Sect. 5, providing recommendations on
adapted search strategies for the factoradic representation.

2 The Factoradic Representation

2.1 Genotypes for Permutation Spaces

Introducing alternative genotypesmayproveuseful to overcome challenges encoun-
tered when handling permutations. In Evolutionary Algorithms (EAs), the term
genotype is often used to describe the domain searched by the algorithms, that is
the search space on which operators are applied. In order to assess solutions, a phe-
notype is required. The phenotype represents the domain in which a solution can
be evaluated, or in other words, a domain that can be read by the fitness function.
Not only does using alternative genotypes allow some problems to be modelled effi-
ciently by EAs, but it may also map a problem to a domain which is more adapted
to these algorithms. Consequently, it has been shown that using many representa-
tions within the same search procedure may yield improved results by balancing
out between the biases introduced by each representation [7].

With respect to permutations, the random key (RK) genotype has widely
been used [3]. Yet, it is known to display some features that may inhibit the
search in some contexts [8]. The RK genotype represents the permutation phe-
notype as a real value encoding. To generate a new permutation using RK, a
string of real values needs to be first generated, one per permutation index. This
string is then sorted and the permutation index assigned to each value set at
each position in the string. Figure 1 shows how a RK genotype is mapped into
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Fig. 1. Mapping from RK to permutation

a phenotype. Note that one of the properties of the RK representation is that
many distinct real strings can represent the same solution.

The factoradic representation was used in [6] as an alternative to RK.
It presents distinct characteristics and introduces a mutation operator that can
be parametrised by the position of the gene to mutate, allowing specific algo-
rithms such as the COMpeting Mutating Agents algorithm (COMMA) [9] to be
considered.

2.2 Factoradics

The factoradic system is a numbering system of dimension n, which uniquely
represents each number between 0 and n! − 1 as a string of factoradic digits.
Each position i, i ∈ [0, n − 1] can be assigned a digit taking a value between 0
and i. The base of each position increases with i and so does its place value, i.e.
the size of the factorial. Thus, the place value at position i is i!. The factoradic
a can be transformed into its decimal form a as follows:

a =
n−∑

i

a
i

× i! (1)

where a
i

represents the i-th element of a . The potential of factoradics goes
beyond the simple numbering system as it represents a way to easily repre-
sent permutations. For example, the factoradic 422100 denotes the permutation
where the 4th, 2nd, 2nd, 1st, 0th and 0th items are drawn successively with-
out replacement from the set of items. Figure 2 illustrates how this factoradic

Fig. 2. Mapping from factoradic to permutation
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number represents the permutation 423105. Note that the procedure to decode
a factoradic into a permutation is similar to the Fisher-Yates shuffle algorithm
which is a means to generate random permutation in an unbiased way [10].

To summarize, the factoradic representation allows representation of a per-
mutation by a string of integers of similar size, in which each digit is a number in
[0, i]. In addition, it introduces different weights between positions. For instance,
the first drawn item, i.e. at position n − 1 has a greater influence on the permu-
tation than draws at lower positions.

2.3 Factoradic Algorithms

Most of the applications of factoradics in EAs have focused on Particle Swarm
Optimisation (PSO) to turn permutations into a usable form for the algorithms
[11,12]. Factoradics have also proved useful in allowing restriction of the search
to sub spaces [5].

In [6], the factoradic representation is empirically assessed on four classic
benchmark problems, PFSP, Travelling Salesman Problem (TSP), Quadratic
Assignment Problem (QAP) and Linear Ordering Problem (LOP). In order to
do so, three algorithms are adapted to handle the factoradic representation:
a Genetic Algorithm (GA), a univariate EDA based on the Population-Based
Incremental Learning algorithm (PBIL) [13] and COMMA.

The use of three distinct algorithms allowed to draw some conclusions on
the potential of the factoradic representation. First the GA yielded poor results.
GAs were originally developed to make use of building blocks in order to improve
solutions. With respect to permutations, subsets of permutations can be seen as
building blocks. However, with the factoradic representation, it is unclear how
building blocks can be kept between successive generations. A GA using the
factoradic representation is hence very prone to breaking building blocks during
the search and may be unable to exploit any promising area of the search space.
Despite competitive results on some problems, COMMA was not the most effi-
cient at making use of factoradics. The nature of the algorithm which prevents
some of the best solutions’ genes to be mutated also prevented exploitation of
the space around these solutions. Finally, the univariate EDA yielded the best
performance, especially when used in conjunction with high learning rates, pro-
moting exploration over exploitation. Overall, the GA is exclusively explorative
and fails at reaching good solutions. By removing the notion of crossover, the
two other methods obtain better results. COMMA which is supposed to allow a
more refined exploitation is overall outperformed by the univariate EDA, show-
ing that the factoradic representation may not allow efficient exploitation. It is
also interesting to note that the results obtained on the selected benchmarks
using factoradic methods were significantly better than those reported for the
ordering messy genetic algorithm [14], which uses RK.

The sole experiments presented in [6] can only provide an insight on what can
be achieved by using factoradics. In this paper, the fitness landscape associated
with the representation and its local move operator is analysed in order to define
the ways in which factoradics should be used.
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3 Fitness Landscape Analysis

3.1 Fitness Landscape Definition

In optimization, the search space Ω is a set of feasible solutions and f : Ω −→ IR
is a fitness function that assigns a quality to each solution s ∈ Ω. A neighborhood
structure can be defined as a mapping function N : Ω → 2Ω that assigns a set
of solutions N (s) ⊂ Ω to any admissible solution s ∈ Ω. N (s) is called the
neighborhood of s, and a solution s′ ∈ N (s) is called a neighbor of s. A fitness
landscape [15,16] can be defined by a triplet (Ω,N , f).

The neighborhood structure links a solution with other solutions of the search
space. This principle is used by local search algorithms that move from solution
to neighboring solutions. Fitness landscape analysis is thus useful to understand
and predict the behaviour of metaheuristic algorithms [17,18]. Different measures
can be computed to do so.

3.2 Measures

In this paper, the fitness landscape will be analysed according to the following
characteristics.

Autocorrelation of the Fitness. It measures the continuity of the fitness between
neighboring solutions along a random walk. A random walk W = (s , s , ..., sm)
from s to s′ is a sequence of solutions belonging to Ω where s = s and s′ = sm

such that si ∈ N (si) for all i ∈ {1, 2, ...,m − 1}. The autocorrelation function
ρ(k) [19] is the correlation coefficient of the fitness between the solutions si

and si k of a random walk. The autocorrelation measures the correlation of
the problem structure. The coefficient ρ(1) represents the correlation between a
solution and its successors in the random walk. By definition of a random walk,
the solution’s successor is one of its neighbors. If ρ(1) is close to 1, the fitness
variation between neighbors is low, and the search space may be considered as a
structured graph where we can predict the variation of fitness between neighbors.

Distribution of Neighbors. It gives an insight about the problem structure and
the quality of the neighbors. A neighbor of a solution can be considered as
(i) improving, (ii) deteriorating or (iii) neutral. A neutral neighbor is a neigh-
boring solution with the same fitness value than the current solution. In some
case, neutral solutions can be useful to escape from a local optima [20,21]. In this
paper, all solutions of the search space are evaluated and the average number
of improving (>) and neutral (=) neighbors is computed for the global optima,
the local optima and the other solutions.

Basins of Attraction. It measures the attraction strength of the optima of the
search space. The basin of attraction of an optima s∗ is the set of solutions
si ∈ Ω where s∗ = climber(si) with climber being the basic local search where
the current solution’s best improving neighbor is chosen until a local optimum
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is found, that is a solution with no improving neighbor. The bigger the size of a
basin of attraction, the more influential its optimum. In the present paper, the
computation is done exhaustively for the whole search space. As a result, the
number of local and global optima is known.

4 Permutation Flowshop Scheduling Problem

4.1 Problem Description

The Flowshop Scheduling Problem (FSP) is one of the most investigated schedul-
ing problem from the literature. The problem consists in scheduling N jobs {J ,
J , . . . , JN} on M machines {M ,M , . . . , MM}. Machines are critical resources,
i.e. two jobs cannot be assigned to the same machine at the same time. A job Ji

is composed of M tasks {ti , ti , . . . , tiM}, where tij is the jth task of Ji, requir-
ing machine Mj . A processing time pij is associated with each task tij . We here
focus on a permutation FSP (PFSP), where the operating sequences of the jobs
are identical and unidirectional for every machine. As consequence, a feasible solu-
tion can be represented by a permutation πN of size N (the ordered sequence of
scheduled jobs), and the size of the search space is then |S| = N !.

In this study, we will consider the minimisation of the makespan, i.e. the
total completion time, as the objective function. Let Cij be the completion date
of task tij , the makespan (Cmax) can be computed as follows:

Cmax = max
i∈{ ,...,N}

{CiM}

Minimizing the makespan has been proven to be NP-hard for three machines and
more [22]. As a consequence, large-size problem instances can generally not be
solved to optimality, and then metaheuristics may appear to be good candidates
to obtain good quality solutions. Daolio et al. [17] showed that the difficulty of
the PFSP increases with the number of jobs and the number of machines.

4.2 Neighborhood Operators for Permutations

The design of local search metaheuristics requires a proper definition of a neigh-
borhood structure for the problem under consideration. A neighborhood structure
is a mapping function N : S → 2S that assigns a set of solutions N (s) ⊂ S to
any feasible solution s ∈ S. N (s) is called the neighborhood of s, and a solution
s′ ∈ N (s) is called a neighbor of s. A neighbor results from the application of
a move operator performing a small perturbation to a solution s. The choice of
the neighborhood operator is thus key to the local search efficiency.

For the PFSP, we will consider the insertion and the exchange operator.
These operators are known to be classical for permutation problems [23]. The
insertion operator can be defined as follows. A job located at position i is inserted
at position j �= i. The jobs located between positions i and j are shifted, as
illustrated in Fig. 3. The number of neighbors per solution is (N − 1) , where N
stands for the size of the permutation (and corresponds to the number of jobs).
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Insert operator Exchange operator

Fig. 3. Illustration of the neighborhood operators for permutations.

The exchange operator can be defined as follows. Two jobs located at position
i and j (i �= j) are swapped, as illustrated in Fig. 3. The number of neighbors
per solution is N ∗ (N − 1)/2.

In the literature, the insertion operator has shown better performance than the
exchange operator when used in local search or evolutionary algorithms [24,25].

4.3 Neighborhood Operators for Factoradics

The most straightforward operator that can be applied to factoradics is the point
mutation (PM). The point mutation is similar to other point mutation from
other domains. PM only affects one allele of the mutated solution. However,
because of the characteristics of the factoradic representation, the position of
the allele influences the amount of disruption brought to the solution. Hence,
PM needs to be defined in conjunction with a mutation distance as defined
in [9] for permutations. The mutation distance d denotes the position of the
gene to mutate. Note that the gene at position zero can only take the zero value
and is thus never considered during operations. An allele is mutated by sampling
randomly its value from the range [0, d]. As is the case with the exchange operator
for permutations, the number of neighbors per solution is N ∗ (N −1)/2. Table 1
shows all the neighbors of the solution represented by the factoradic sequence
422100 for different mutation distances. It also shows the resulting permutations,
illustrating how an increase in d generally leads to an increase in the number of
positions being altered in the permutation.

Although alternative mutation operators were introduced in [6], they are
not considered in the present study. The focus is instead set on the simple PM
operator. It is however interesting to point out that the two alternative mutation
operators named multi-point mutation and random multi-point mutation were
used in order to bring more disruption to a solution.

5 Experiments

In this section, an exhaustive landscape analysis of different problem sizes of the
PFSP is conducted in order to compare two different representations with their
own move operators.

5.1 Experimental Setup

Landscapes. The factoradic and the permutation representations are considered.
The PM move operator is used for the factoradics as it is the most natural for
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Table 1. Full neighborhood of the factoradic 422100 using point mutation

Mutated factoradic Resulting permutations

d = 0

d = 1

d = 2

d = 3

d = 4

this representation of solutions. In the previous section, an insight have been
given about the disruption it brings to the solution when the mutation of all
the point is allowed. Thus, it seems interesting to compare this PM operator
with the partial PM operator, which considers only p points from the end of
the factoradic, that is the index at which the value can only be 0 or 1. Note
that p is not directly set in the experiments presented here but computed by a
percentage P of the whole neighborhood given by the complete PM operator.
We investigate the PM operator with the percentage P ∈ {30, 50, 70, 100} of
the points mutation allowed. For example, on a problem of size n = 10, setting
P = 50, will restrict the genes that can be mutated to the last 5 indices. Note
that P = 100 gives the complete PM neighborhood. The resulting PM operators
will be named as PMP .

The insertion (IN) and the exchange (EX) move operators are used for the
permutations as they are classical for this type of representation. Although pre-
vious landscape analysis shown that IN operator is the best adapted for the
PFSP with a permutation representation [17], in the following, we will perform
the analysis of the landscape corresponding to the EX operator. Indeed, the EX
operator leads to the same number of neighbors as the complete PM operator,
and it allows to present an interesting comparison between two search space
where solutions are exactly connected to the same number of neighbors.



Fitness Landscape of the Factoradic Representation 159

Benchmark Instances. Taillard proposed a set of benchmark instances [26] where
the processing time pij of job i ∈ N and machine j ∈ M is generated randomly,
according to a uniform distribution U([0; 99]). These instances are widely used in
the literature, but the number of jobs is too large and gives a search space with
at least 20! solutions, thus impossible to evaluate exhaustively. An exhaustive
analysis of the fitness landscape of the instances being needed, we generated our
own instances in the same way as the Taillard instances, investigating different
values for the number of jobs N ∈ {5, 6, 7, 8, 9} and for the number of machines
M ∈ {3, 5, 10}. For each problem size (N × M), ten instances are generated.

Measures. For all instances, a random walk of 100 solutions is performed and
the autocorrelation value ρ(k) is computed.

As the analysis is made exhaustively for all solutions of the search space, the
distribution of the solutions is known. The exact numbers of global optima (GO),
local optima (LO) or of other solutions (LO) of the search space are computed.

The basins of attraction of every global and local optima are computed.
The sum of solutions belonging to each type of optima sum(basinLO) and
sum(basinGO) is computed.

From the distribution of the neighborhood of each solution, three different
values are computed: avg(LO>), avg(LO ) and avg(LO ), which stands for the
average number of strictly better (>) and neutral (=) neighbors of a solution LO
and the average number of neutral neighbors of a local optimum LO respectively.

Note that the results presented in the following section corresponds to the
mean obtained over the 10 instances of each problem size.

Table 2. ρ(1): First value of the autocorrelation function for each move operators.

ρ(1) Permutations Factoradics

Instance IN EX PM100 PM70 PM50 PM30

5× 3 0.46 0.41 0.34 0.14 -0.15 -0.13

5× 5 0.44 0.38 0.33 0.15 -0.13 0.04

5× 10 0.45 0.39 0.3 0.06 -0.19 0.02

6× 3 0.59 0.53 0.43 0.28 0.14 -0.1

6× 5 0.58 0.48 0.41 0.31 0.17 -0.12

6× 10 0.52 0.45 0.43 0.28 0.07 -0.24

7× 3 0.7 0.57 0.42 0.34 0.34 0.16

7× 5 0.67 0.53 0.41 0.28 0.27 0.2

7× 10 0.61 0.53 0.42 0.27 0.33 0.23

8× 3 0.77 0.62 0.52 0.38 0.22 0.16

8× 5 0.72 0.59 0.49 0.32 0.21 0.08

8× 10 0.68 0.62 0.52 0.3 0.24 0.09

9× 3 0.73 0.64 0.6 0.43 0.44 0.31

9× 5 0.72 0.67 0.6 0.41 0.37 0.17

9× 10 0.73 0.63 0.52 0.37 0.27 0.3
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Table 3. Distribution of the search space Ω. |Ω| is the size of the search space. |GO| is
the number of global optima in Ω and %GO its proportion. For each move operators,
the column gives the percentage of local optima (LO).

%LO Permutations Factoradics

Instance |Ω| |GO| %GO IN EX PM100 PM70 PM50 PM30

5× 3 120 3.1 2.58 3 5.25 7.75 19 36 36

5× 5 120 2.6 2.16 3.92 6.75 9.83 24.67 45 45

5× 10 120 1 0.83 1.58 4.08 5.17 11.67 25.08 25.08

6× 3 720 9.3 1.29 1.39 3.75 4.35 10.33 20.33 34.89

6× 5 720 10.9 1.51 1.76 3.14 4.57 12.57 25.97 43.57

6× 10 720 1.1 0.15 0.57 1.4 2.64 5.85 13.03 28.67

7× 3 5040 26.8 0.53 0.81 1.6 3.44 15.7 15.7 26.79

7× 5 5040 10 0.2 0.39 1.04 2.25 14.77 14.77 25.74

7× 10 5040 2.2 0.04 0.17 0.7 1.55 10.82 10.82 21.89

8× 3 40320 138.3 0.34 0.52 1.59 3.1 21.12 32.41 45.2

8× 5 40320 72.9 0.18 0.31 1.14 2.01 19.95 31.47 44.15

8× 10 40320 2.9 0.01 0.15 0.36 0.98 4.66 9.37 18.11

9× 3 362880 3491.2 0.96 1.03 2.2 3.98 36.78 50.64 62.78

9× 5 362880 727.6 0.2 0.6 1.24 2.31 21.67 33.67 45.98

9× 10 362880 3.4 � 10−2 0.03 0.14 0.5 2.29 5.02 10.36

5.2 Experimental Results

Experiments have been conducted for 6 different landscapes denoted by: IN, EX,
PM , PM , PM , PM .

Table 2 shows the first value ρ(1) of the autocorrelation function of the fitness
computed along a random walk. For problems of very small size (N = {5, 6}),
ρ(1) is meaningless, the fitness of a solution being not correlated with the fit-
ness of its neighbor. Moreover, the landscapes induced by PM operators (PPM )
seem to be random since ρ(1) is always under 0.6. The landscapes are locally
highly rugged. On the landscape PIN and PEX induced by IN and EX operators
respectively, ρ(1) shows that the fitness between neighbors is more continuous.
These landscapes are locally smoother than the landscapes PPM that could help
learning strategies in local search algorithms.

Table 3 shows the distribution of solution in the search space Ω. This com-
putation is feasible since the search space is exhaustively enumerated. The pro-
portion of global optima in the search space decreases when the number of jobs
and the number of machines increases. Therefore, the difficulty of the problem
is proportional to the problem size. The proportions of local optima show that
the factoradic representation induces more local optima than the permutation
representation. Furthermore, the landscape PPM is more and more rugged, i.e.
with more and more local optima, when the percentage of PM decreases. This
high number of local optima represents an issue when dealing with exploitation
methods.
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Table 4. Size of the basin of attraction of the search space. For each move operators,
the two columns give the proportion of solutions in the search space belonging to a
basin of a local optimum (LO) and a global optimum (GO) respectively.

[sum(basinLO), sum(basinGO)]

Permutations Factoradics

Instance IN EX PM100 PM70 PM50 PM30

5× 3 7.18 92.82 15.29 84.71 33.48 66.52 74.3 25.7 87.49 12.51 87.49 12.51

5× 5 23.15 76.84 42.92 57.08 64.22 35.78 86.05 13.95 93.11 6.89 93.11 6.89

5× 10 20.35 79.65 48.04 51.96 63.56 36.44 88.35 11.65 95.22 4.78 95.22 4.78

6× 3 5.72 94.28 40.78 59.22 60.57 39.43 80.25 19.75 89.69 10.31 94.18 5.82

6× 5 22.37 77.63 50.99 49.01 64.64 35.36 90.2 9.8 95.55 4.46 97.56 2.44

6× 10 40.55 59.45 64.73 35.27 83.78 16.22 94.53 5.47 97.77 2.23 99.16 0.84

7× 3 23.26 76.74 32.29 67.72 71.62 28.38 93.42 6.58 93.42 6.58 96.2 3.8

7× 5 34.17 65.83 56.75 43.25 82.39 17.61 97.37 2.63 97.36 2.64 98.58 1.42

7× 10 37.3 62.7 66.18 33.82 86.96 13.04 98.62 1.38 98.62 1.38 99.37 0.63

8× 3 17.3 82.7 50.74 49.26 77.38 22.62 96.88 3.12 98.14 1.86 98.78 1.21

8× 5 37.57 62.43 59.5 40.5 78.23 21.77 98.11 1.89 98.95 1.05 99.22 0.78

8× 10 60.27 39.73 80.52 19.48 94.63 5.37 99.43 0.57 99.84 0.16 99.94 0.06

9× 3 7.01 92.99 30.58 69.42 56.18 43.82 94.67 5.33 96.01 3.99 96.4 3.6

9× 5 45.35 54.65 59.7 40.3 79.5 20.5 97.83 2.17 98.56 1.44 98.96 1.04

9× 10 75.69 24.31 90.46 9.54 97.53 2.47 99.82 0.18 99.93 0.07 99.97 0.03

Table 4 shows the average size of the basin of attraction for global and
local optima. The less the percentage of neighbors, the more difficult it is to
reach global optima. As expected, reaching global optima becomes more diffi-
cult as the problem size increases, as it generally correlates with an increase
in sum(basinLO), which represents a trick where it is difficult to escape from
for naive local search algorithms. These results reinforce the conclusion that
the landscape PIN is more adapted for local search algorithms and that the
landscape PPM is not adapted for local search algorithms.

Table 5 shows the proportion of better or equal neighbors of a solution and the
proportion of equal neighbors of local optima. Neutrality arises when neighbors
have the same fitness values. This leads to plateaus in the landscape. The land-
scape PIN is known to be neutral and this neutrality can be exploited efficiently
to solve it [21]. The landscape PEX and PPM are also neutral. Besides, PPMP

is
more neutral when P decreases. This neutrality might be useful to escape from
the numerous local optima and to move to another basin of attraction.

These experimental results on these small instances gives more insight on the
use of the factoradic representation for the PFSP. Indeed, the landscape PPM

is locally rugged and local optima are numerous. The first idea that consists in
taking into account less neighbors by selecting a percentage of the PM neigh-
borhood is not adapted to the PFSP. In fact, we can think that the landscape
is a partition of independent networks of solutions. A study about local optima
networks should be undertaken to confirm this intuition.
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Table 5. Distribution of the neighborhood. For each move operators, the three columns
give the percentage of the average number of better (>) and neutral (=) neighbors of
LO and the average number of neutral (=) neighbors of LO respectively.

%[avg(LO>), avg(LO=), avg(LO=)]

Permutations

XENIecnatsnI

5×3 44.84 12.99 7.29 44.35 15.32 28.06
5×5 45.74 11.81 14.81 45.95 13.71 21.45
5×10 49.63 2.34 1.56 50.75 2.53 6.34
6×3 41.49 18.01 10 41.2 20.23 28.18
6×5 45.08 11.09 9.33 44.57 13.22 18.27
6×10 48.48 3.6 3.33 48.35 4.64 6.38
7×3 40.49 19.61 18.48 39.49 22.13 28.41
7×5 43.66 13 15.19 42.84 15.13 21.42
7×10 46.89 6.38 7.9 46.56 7.49 11.52
8×3 38.17 24 30.09 38.13 24.73 32.94
8×5 41.19 17.85 22.12 40.75 19.23 27.71
8×10 47.31 5.48 10.03 46.91 6.47 12.1
9×3 33.7 33.15 36.21 33.34 34.45 47.33
9×5 39.76 20.85 31.07 39.37 21.99 33.75
9×10 47.54 4.94 6 47.13 5.87 6.92

Factoradics

Instance PM100 PM70 PM50 PM30

5×3 47.61 11.56 18.71 51.8 12.46 31.95 62.39 9.37 38.78 62.39 9.37 38.78
5×5 48.32 11.95 18.6 53.2 13.18 34.52 64.17 9.89 50.27 64.17 9.89 50.27
5×10 51.52 2.26 4 54.87 2.78 5.4 63.99 2.48 8.73 63.99 2.48 8.73
6×3 45.81 12.01 18.76 47.76 13.16 24.84 52.73 11.87 31.72 63.76 7.34 33.83
6×5 46.68 10.33 15.76 48.65 11.79 27.8 53.78 11.48 37.77 64.85 8.29 44.73
6×10 49.62 3.34 4.73 50.7 4.29 7.57 53.85 5.07 13.74 63.56 4.24 20.84
7×3 45.17 12.63 15.95 48.37 15.56 32.86 48.37 15.56 32.86 53.58 14.6 39.69
7×5 45.96 9.98 15.37 48.76 12.47 34.21 48.76 12.47 34.21 53.39 11.82 40.27
7×10 47.71 6 9.27 49.79 8.63 27.95 49.79 8.63 27.95 53.95 8.55 37.99
8×3 42 18.08 26.75 44.95 20.7 53.89 47.94 20.45 61.06 53.02 18.82 66.11
8×5 42.84 15.74 23.36 45.79 18.04 53.16 49.04 17.54 60.05 54.36 15.62 64.63
8×10 48.29 4.3 8.65 48.8 6.42 16.11 50.29 7.41 21.42 54.11 7.65 26.91
9×3 36.44 29.36 44.34 42.81 29.38 73.83 46.38 27.87 79.97 50.73 25.44 84.3
9×5 41.42 18.69 30.62 44.23 21.61 59.63 46.82 21.45 67.51 50.38 20.27 73.27
9×10 48.31 3.86 4.96 48.19 5.65 11.08 48.78 6.54 18.67 50.52 7.03 26.05

6 Conclusions

The fitness landscape associated with the factoradics was analysed using the
PFSP. This has shown that the use of the representation along with its simplest
operator, PM, leads to a rugged landscape. The size of the basins of attraction
of the global optima is also small in comparison with those of local optima,
making the former very difficult to reach. Naive local search methods are thus
not adapted for this representation and are better used in conjunction with IN
and EX. This observation is in line with the findings from [6], where the suite of
algorithms chosen for optimising factoradics yielded poor exploitation behaviors.

The fact that the landscape is more rugged with PMP when P decreases
also proves that parameterising this operator in order to manage the amount of
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disruption brought to a solution is not a viable strategy on the PFSP. Modifi-
cation in the lower rank of a factoradic solution, as is the case when P is small,
results in the last elements in the permutation to be altered. On the PFSP, this
will affect the last jobs being processed. Changes on these is more likely to bring
changes in terms of fitness because the idle times they may introduce are unlikely
to be compensated by the processing of successive jobs. Because other permu-
tation problems have different characteristics, this comment on the potential
benefit of the parameterisation of PMP may not hold on other problems.

The results presented in this paper open avenues for future research. First, fit-
ness landscape analysis should be performed including the study of local optima
networks and on other types of permutation problems. Including alternative
genotypes such as RK in the landscape study would further benefit the analysis.
Experiments suggest that more efforts be spent on improving ways to refine the
locality for the factoradic representation. Altering the representation in order to
have a landscape exhibiting a lesser degree of ruggedness could be achieved by
investigating a possible application of the gray code principle to the factoradic
representation [27].

References

1. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
IEEE Trans. Evol. Comput. 18(2), 286–300 (2014)

2. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer,
Heidelberg (2006)

3. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

4. Kromer, P., Platos, J., Snasel, V.: Modeling permutations for genetic algorithms. In:
International Conference of Soft Computing and Pattern Recognition, pp. 100–105.
IEEE (2009)

5. Mehdi, M.: Parallel hybrid optimization methods for permutation based problems.
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Abstract. In this paper, we present a generic local search algorithm
which artificially adds neutrality in search landscapes by discretizing the
evaluation function. Some experiments on NK landscapes show that an
adaptive discretization is useful to reach high local optima and to launch
diversifications automatically. We believe that a hill-climbing using such
an adaptive evaluation function could be more appropriated than a clas-
sical iterated local search mechanism.

1 Context

In combinatorial optimization, fitness landscapes study abstracts problem speci-
ficities and aims at evaluating the pertinence of generic metaheuristics. More
formally, a fitness landscape is a triplet (X ,N , f), where X is a discrete set of
solutions, N : X → 2X a neighborhood function, and f : X → (0, 1) a fitness
(evaluation) function. In [1], we compared the efficiency of several hill-climbing
variants (denoted as climbers) to determine neighborhood-based moving strate-
gies that are likely to reach high solutions (with high fitness values). In particular,
we focused on the ways to handle neutrality [4]. To achieve this, we introduced
rounded landscapes, by setting a discretization level of the fitness function, refer-
ring to its codomain size r. The rounded function fr is then defined from an
original fitness function f as follows:

fr(x) =
�r.f(x)�

r

Let us notice that fr gives a partial order which is compliant with the order
relation induced by f . It means that, ∀x, y ∈ X , f(x) < f(y) ⇒ fr(x) � fr(y).
A second property of fr functions (fr(x) � f(x) < fr(x) + r ) makes possible
to compare fitnesses reached on original and rounded corresponding landscapes.
In [1], we observed on rounded landscapes that some r values allow stochastic
climbers (first improvement which accepts indifferently neutral and improving
moves) to reach higher solutions than while considering original fitness functions.

In this paper, we propose to extend the principle of rounding fitness function
to help neutrality-based local searches to reach high local optima. We propose
a generic local search algorithm based on an adaptive evaluation function LSf

©
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which incorporates an artificial rate of neutrality chosen with respect to informa-
tion collected during the search. It simulates deteriorating moves during inten-
sification phases, as well as automatic perturbations when local improvements
become rare.

Here, the efficiency of the proposed mechanism is evaluated on NK landscapes
[2], where size and ruggedness are tunable by means of parameters N and K.

2 Determining Appropriate Neutrality Rates
of Landscapes

Intuitively, adding neutrality to landscapes necessarily induces to decrease their
ruggedness, which make local searches more efficient as long as they exploit
neutral moves. Nevertheless, a too large neutrality level creates flat areas which
can drastically increase the number of moves needed to reach high solutions.
In an extreme case, on totally flat landscapes, stochastic hill-climbings behave
like random walk processes. Here, we propose to control the neutrality rate by
means of the fitness function fr. Setting r adequately consists in reducing the
ruggedness while keeping a moderate rate of neutrality.

We have extended our previous study on NK and NKr landscapes in order
to determine the most appropriate rounding values with respect to landscapes
under consideration (with N ∈ {128, 256, 512, 1024} and K ∈ {1, 2, 4, 8}). To
estimate the neutrality of these most appropriate rounded landscapes, we define a
search neutrality indicator ν̃ which aims to estimate the average rate of neutrality
encountered during the search:

Definition 1 (Search Neutrality). Let P be a fitness landscape, N the neigh-
borhood size and C the history of a climber execution (given by a sequence of
evaluated and selected solutions). Let p the number of strictly improving moves
in C. li and ni (i ∈ {1, . . . , p}) refer respectively to the number of evaluations
and the number of neutral moves realized between the (i−1)th and ith improving
moves. The search neutrality depends on C and P , and is defined by:

ν̃(C,P) =

∑p
i

ni

li
logN li

∑p
i logN li

Table 1 reports the ranges of rounding values r from which climbers executed
on corresponding NKr landscapes are not statistically outperformed by climbers
executed on derived landscapes with other values of r, as well as their asso-
ciated search neutrality. Non-dominated ranges have been determined using a
dichotomic sampling of r values. Statistical analysis were performed using a
binomial test based on 100 runs per r value. We observe that optimal r values
depend on landscape properties. The most noticeable information is that the ν̃
values which make a neutrality-based climbing more efficient, are similar on all
(N , K) parameterizations.
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Table 1. Climber comparison on NK and non-dominated NKr landscapes. We also
indicate ranges of optimal values of r and their associated ν̃ (in %).

Input : a fitness landscape (X , N , f), a set of n rounding values
R = {r1, . . . , rn} (with ri > ri+1), parameters d, νref, θ, ε.

Output: the best solution found xopt

Randomly select x ∈ X ;
F ← f(x) ;
t ← 0 ;
Fopt ← F ;
xopt ← x ;
repeat

Randomly select x′ ∈ N (x) ;
t ← t + 1 ;
α ← 1 − 1

min(d,t)
;

for all ri ∈ R do
νest[ri] ← α × νest[ri] ;
μest[ri] ← α × μest[ri] ;
if fri(x

′) = fri(x) then νest[ri] ← νest[ri] + 1 − α else if
fri(x

′) > fri(x) then μest[ri] ← μest[ri] + 1 − α

R′ ← {ri ∈ R, νest[ri] > 0} ;
if t > d then R′ ← {ri ∈ R′, μest[ri] � ε} if R′ = ∅ then t ← 0
{Diversification} else

R ← argminri∈R′
max(νest[ri],νref )
min(νest[ri],νref )

;

R′ ← {ri ∈ R′, νest[R] − θ � νest[ri] � νest[R]} ;
R ← argminri∈R′ νest[ri] ;

if fR(x′) � fR(x) then
x ← x′ ;
if f(x) > f(xopt) then

xopt ← x ;

until Stopping criterion;
Algorithm 1: LSf



168 M. Basseur et al.

3 Local Search with Adaptive Evaluation Function (LSf)

Previous results showed that there exists an appropriate range of neutrality rate
which leads to reach high solutions by hill-climbing. About 25% of neutrality
seems appropriate for climbing efficiently NK landscapes. However, additional
experiments emphasized that the local neutrality in NKr landscapes is negatively
correlated with the height (fitness value) of solutions. Then, we propose to set
r dynamically thanks to an adaptive mechanism which aims at preserving a
reference neutrality rate ν .

The local search algorithm we introduce here, LSf , is a stochastic climber
which selects at each iteration a rounding value ri among a set of candidate
roundings {r , . . . , rn}. To each rounding value ri is associated an estimated
neutrality ν [ri], which is dynamically updated at each iteration as follows:

ν [ri] ←
{

α × ν [ri] + 1 − α, if fri
(x′) = fri

(x)
α × ν [ri], otherwise

Additionally, at each iteration, we select the rounding value which is the closest
to ν in terms of ratio (more precisely argminri

νest ri ,νref
νest ri ,νref

).
Maintaining a certain level of neutrality can prevent to reach local optima (in

the sense of the original fitness function) and also requires to use a predefined
number of iterations as a stopping criterion. Therefore, we propose to associate
an improving move rate estimation μ to each rounding value ri. μ [ri] is
estimated similarly to ν [ri], by considering strictly improving moves. This
allows the detection of search stagnation with respect to each rounding value.
Then we refine the ri selection mechanism by forbidding stagnant ri values to
be selected (ri such that μ [ri] is lower than a threshold ε). As a consequence,
the search will be naturally driven to a local optimum.

To simulate a perturbation mechanism, we just need to reset the neutrality
estimations. This can be done when every μ value, which estimate improving
move rates, is smaller than a threshold ε. Such mechanism partially random-
izes the search during several steps by considering flat landscapes. Algorithm 1
provides a detailed description of LSf .

To assess the relevance of the proposed climbing technique, LSf has been
compared with a classical Iterated Local Search (ILS) process, where diversifi-
cation has been parameterized as follows:

– random restart;
– random walk from the last local optimum found (5 variants: 5, 10, 15, 20, 30

moves);
– random walk from the best local optimum found (5 variants: 5, 10, 15, 20, 30

moves).

On each instance, LSf is compared to the 11 ILS parameterizations (with 200
perturbations for each).

Table 2 compares average fitnesses reached by LSf (with and without pertur-
bations), with local searches (with — LS — and without perturbation — ILS)
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using original evaluation functions, requiring an equivalent computational effort.
These results emphasize the relevance of adapting the shape of a landscape accord-
ing to its local properties. Moreover, LSf allows the simulation of deteriorating
moves during intensification and diversification phases without explicitly dealing
with them. It is obvious that the behavior of such a mechanism can be linked with
Simulated Annealing (SA) [3]. In future work, it should be interesting to provide
a deep analysis of these two ways to simulate diversification during an intensifica-
tion process.

Table 2. Average efficiency of LSf̄ on NK landscapes, without (0) or after 200 per-
turbations. We also report comparison with local search (LS for hill-climbing, ILS for
iterated local search) on original NK landscapes. The ILS column contains the best
average results obtained among the 11 tested parameterizations.

Acknowledgment. This work was partially supported by the Fondation mathéma-
tique Jacques Hadamard within the Gaspard Monge Program for Optimization and
operations research.

References
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Abstract. The Covering Tour Problem finds application in distribution
network design. It includes two types of vertices: the covering ones and
the ones to be covered. This problem is about identifying a lowest-cost
Hamiltonian cycle over a subset of the covering vertices in such a way
that every element not of this type is covered. In this case, a vertex
is considered covered when it is located within a given distance from a
vertex in the tour. This paper presents a solution procedure based on a
Selector operator that allows to convert a giant tour into an optimal CTP
solution. This operator is embedded in an adaptive large neighborhood
search. The method is competitive as shown by the quality of results
evaluated using the output of a state-of-the-art exact algorithm.

Keywords: Covering tour problem · Split procedure · ALNS algorithm

1 Introduction

This study aims at solving a tour location problem (TLP), namely the Covering
Tour Problem (CTP) through a new splitting operator, Selector, embedded into
an Adaptive Large Neighborhood Search (ALNS) metaheuristic. The overall goal
of TLPs is to construct an optimal tour through a subset of the vertices of a
network, subject to a set of constraints. They differ from classical vehicle routing
problems since the assumption shared by problems of the TSP and VRP families
is that all vertices of the network should be served, something which is not valid
in many real applications. In TLPs, the visits are optional. The new Selector
operator finds a minimum-cost tour (subject to a given sequence) which passes
through a subset of vertices and meets side constraints. In the case of the CTP,
every vertex not in the elementary cycle must lie within a prespecified radius
from at least one vertex in the cycle.

The CTP is a generalization of the Traveling Salesman Problem (TSP) and
it can be formally described as follows. Let G = (N,E) be an undirected graph,
where N = V ∪ W represents the vertex set and E = {(vi, vj)|vi, vj ∈ N, i < j}
is the edge set. V is the subset of n vertices that can be visited at most once,
©
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T ⊆ V is the subset of vertices that must be visited exactly once, while W is
the subset of vertices that must be covered. Vertex v ∈ T is the depot. Let
dij be the distance associated with edge (i, j) ∈ E, and D = (dij) the distance
matrix that satisfies the triangle inequality. The solution of the CTP is to find a
minimum-length elementary cycle in V such that each vertex wi ∈ W is covered
by the cycle, and also all vertices in T are found in the cycle. A vertex wi ∈ W is
covered if there exists at least one vertex vj ∈ V in the cycle for which dij � c,
where c is known as the covering distance. Figure 1 shows a feasible CTP tour
for an instance where |V | = 8, |T | = 2 and |W | = 17, and exemplifies how vertex
vA ∈ V covers vertices {w ,w ,w }.

A very closely related problem is the Covering Salesman Problem (CSP)
where the aim is to identify a minimum-length tour visiting a subset of the
vertices in N and covering all the vertices not on the tour. When the subset of
vertices that must be on the tour is empty, T = ∅, the CTP reduces to a CSP,
and when T consists of the entire vertex subset, T = V , the CTP reduces to
the TSP. Therefore, it is NP-hard. The CTP can be formulated, with suitable
definitions, as a Generalized Traveling Salesman Problem (GTSP) where vertices
are clustered and the aim is to identify a minimum-length cycle which visits at
least a vertex of each cluster, as explained by Fischetti et al. (1997).

Despite its practical importance, the CTP has not been widely studied. It
is introduced and formulated in Current and Schilling (1989) as the Covering
Salesman Problem (CSP), where they also describe some real world routing
problems that can be modelled by the CTP, such as the design of bimodal
distribution systems. For instance, cities in the tour are served by air, while the
ones not in the tour are served by trucks which originate at their nearest city on
the air route. Another application explained is the routing of rural health care
delivery teams in developing countries where medical services are only delivered
to a subset of villages, but individuals living in villages not in the route are able
to reach the medical team at the nearest stop. In the formerly cited work, and
in Current and Schilling (1994) the problem is treated as a bicriterion routing
problem: the length of the tour and the number of vertices included in it.

Fig. 1. Example of CTP tour
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In the literature, only one exact method, a branch-and-cut algorithm by
Gendreau et al. (1997), has been presented so far to solve the CTP. Hodgson et al.
(1998) successfully applied this exact method to the routing of a mobile medical
facility in Ghana. Jozefowiez et al. (2007) also propose a bi-objective treatment
of the problem: minimization of the tour length and minimization of the covering
distance, and develop a two-phase cooperative strategy that combines a multi-
objective evolutionary algorithm with the branch-and-cut algorithm of Gendreau
et al. (1997). Salari and Naji-Azimi (2012) combine heuristic search and integer
linear programming techniques to solve the CSP.

Other heuristic algorithms have also been studied. The ones proposed by
Current and Schilling (1989) and Gendreau et al. (1997) are based upon solution
procedures for the Set Covering Problem (SCP) and the TSP. Motta et al. (2001)
have proposed a GRASP metaheuristic to solve a generalized version of the
CTP where the tour may also include vertices of set W , while Baldacci et al.
(2005) have presented three scatter-search heuristic algorithms for the CTP. In
addition, Golden et al. (2012) developed a generalized version of the CSP, which
they named the Generalized Covering Salesman Problem (GCSP), and defined
three variants of it for which they proposed two local search heuristics.

The contribution of this study is the development of a new operator that
optimally splits a giant tour into visited and not-visited vertices. In other words,
it selects the vertices of a given giant tour that comprise the optimal solution
for the CTP. A second contribution is the proposal of a state-of-the-art meta-
heuristic for solving the CTP.

The remainder of this paper is structured as follows. Section 2 presents the
Selector operator, while in Sect. 3 we describe our implementation of an ALNS-
based metaheuristic that incorporates the Selector operator. Computational
results are presented in Sect. 4, and conclusions are reported in Sect. 5.

2 Selector Operator

Our solution method is based on the route first–cluster second approach proposed
by Beasley (1983). The first phase, routing also called ordering, is handled by
the ALNS metaheuristic, while the second phase, clustering also called splitting,
is handled by our new operator. When solving the CTP, the Selector operator
splits a giant tour (GT), which is a permutation of all n vertices that can be in
the tour, into subsequences of visited and not-visited vertices in a similar way
as the Split operator segments a GT into feasible vehicle routes when applied
to solve the Capacitated Vehicle Routing Problem (CVRP) as proposed by Prins
(2004). Splitting the GT entails solving a shortest-path problem. However, in
the case of the CTP, the covered vertices act as a constraining resource and the
problem to be solved then becomes an Elementary Shortest Path Problem with
Resource Constraints (ESPPRC) (see Feillet et al. 2004).

In Sect. 2.1, Beasley’s approach is explained. Section 2.2 presents the method
used by our Selector operator to solve the ESPPRC in general terms, whereas
Sect. 2.3 demonstrates its specific algorithmic implementation.
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2.1 Split Method

The split method was firstly presented by Beasley (1983) as the second phase
of a route first–cluster second heuristic to solve the CVRP. Relaxing vehicle
capacity and maximum route length, the first phase solves a TSP to form a GT
that determines the order in which the customers are to be visited. The second
phase constructs an auxiliary cost network and then applies a shortest-path
algorithm to obtain an optimal partition of the GT into least-cost, capacity-
feasible, vehicle routes. This shortest path can be computed using Bellman-
Ford’s algorithm for directed, acyclic graphs. Beasley provided no computational
results for his proposal, and the method neither outperformed more traditional
CVRP heuristics nor was it given adequate recognition (see Laporte and Semet
2002). However, when Beasley’s seminal method was efficiently implemented
within a genetic algorithm (GA) (Prins 2004), it proved to be the first GA able
to compete with the best methods available at that time for the solution of the
CVRP, i.e. tabu search heuristics. It is since known as the basic Split procedure,
and other versions of it have been developed to tackle additional constraints
as presented in Prins et al. (2009). In the last decade, the route first–cluster
second approach has led to successful constructive heuristics and metaheuristics
for routing problems as explained in Prins et al. (2014) where a more general
name, order–first split–second, is given to the methodology, and an analysis of
70 articles involving splitting procedures is made.

2.2 Resource-Constrained Shortest Path Problem

The ESPPRC requires the computation of an elementary shortest path in a net-
work such that the overall resource usage does not exceed the limits. Resources
are used when visiting vertices or traversing arcs, hence, record of used resources
should be kept. Such problems are NP-hard (Feillet et al. 2004). The stan-
dard approach to solve an ESPPRC is dynamic programming (DP) and has
pseudopolynomial complexity.

The ESPPRC for the CTP can be solved quickly enough in practice by
adapting Desrochers’ algorithm (1988), a multi-label version taking resource
constraints into consideration of the Bellman-Ford algorithm, which is a label-
correcting approach where labels on a vertex are repeatedly extended to its
successors. The basic principle of Desrochers’ algorithm is to associate with
each partial path a label indicating the cost of the path and its consumption of
resources, and to eliminate unnecessary labels as the search progresses. Through-
out the search, then, every vertex receives labels, and these labels are iteratively
extended toward every possible successor vertex until no new labels are created.

Every label representing a feasible path can be understood as a vector V =
(ζ|r , r , . . . , rk) that memorizes the path cost ζ and the resource consumptions
ri that enable to know if a partial path can still be extended. The effectiveness
of the DP algorithm outlined relies upon the feasibility of pruning labels that
cannot lead to an optimal solution. For this purpose, suitable dominance tests
are always performed when labels are extended, so that the algorithm records
only non-dominated labels.
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2.3 Selector Algorithm Proposed

Auxiliary Graph. Selector works on a directed, acyclic graph M = (V ′, A),
where V ′ represents the position in the giant tour of the n vertices that
can be visited in the original graph, i.e., the representation of GT =
(GT ,GT , . . . , GTn− ) in V ′ implies vi = GTi. Thus, in the following, when
refering to vertex vi we imply the vertex located in position i in GT . Figure 2
shows an example for n = 6 and depicts only some of the possible arcs. An
arc (i, j) ∈ A | j � i + 2 models a subpath that visits only vertices vi and vj .
Such arc exists only if it is feasible to skip the points located between vertices vi
and vj . For instance, arc (v , v ) in Fig. 2 indicates a subpath that visits vertex
v , skips v and v , and ends at vertex v . This arc will be kept if no wi ∈ W
remains uncovered despite skipping vertices v and v . This means that the sub-
set {v , v , v } covers all wi ∈ W . The algorithm creates a vector of size n to
represent M , and this vector maintains the labels (subpaths) generated to reach
each vertex vi, i ∈ {1, 2, . . . , n−1}. The weight of an arc is equal to the Euclidean
distance, dij , between the vertex located in position i and the one in position j
in GT .

An optimal solution for a given GT indicates a minimum-cost path σ from
0 to n − 1 in M . This result can be seen as the splitting of the giant tour into
visited and not-visited vertices. Finding σ has pseudopolynomial complexity.

Fig. 2. Auxiliary graph M representing optional visits for vertices 0 and 1.

Labels and Their Control. Starting from v , a vertex in M may be reached
through different permutations of visited and not-visited predecessors and each
with a different cost and a different coverage of the vertices in W . In practice,
this information is stored in labels. As a result, several labels might exist at each
vertex. A label λj stored in vertex vi ∈ M\{v } represents a path that starts
at the depot and ends at vertex vi. It contains five fields λi

j = (ζ, ω[k], vi, π, ν)
which are useful for the decision making at different stages of the algorithm. ζ
memorizes the cost (sum of the arc weights) of the path represented, ω[k] is a
vector in which location i either stores the number of vertices in V that can still
cover vertex wi ∈ W or stores a flag indicating vertex wi is covered, vi keeps the
last visited vertex (site where label is stored), π stores the path from the depot
to vertex vi, and ν keeps the number of vertices already covered.

The dominance rule applied to control label proliferation is as follows. Let
Λi = {λi , λi , . . . , λi

k} be the set of labels associated with vertex vi ∈ M\{v },
and Ωj the set of vertices covered by label λj . A label λ ∈ Λi dominates λ ∈ Λi,
with λ �= λ , if ζ ≤ ζ and Ω ⊆ Ω .
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A look ahead mechanism also allows to reduce the number of labels created.
If when extending a label it is found that a vertex vi ∈ V \T must be visited in
the future because it is the only one that can cover a set Γ ⊂ W , then mark all
the vertices wi ∈ Γ as covered. The result of this look ahead is that it is known
then there is no need to visit any vertex vj ∈ V \T that only usefully covers
vertices in Γ ⊂ W , and as a consequence, less labels are produced.

On the other hand, the following feasibility rule is used. Let Ω̄j denote the
subset of vertices of W that are not covered by the subpath represented by label
λj . A vertex vi ∈ V \T can only be skipped if for each wi ∈ Ω̄j , there still
remain vertices ahead that can cover it. The number of such vertices is kept
through field ω[k]. Thus, when the decision to skip a node is evaluated, for each
wi ∈ Ω̄j , feasible labels yield w[i] > 0. Such value indicates that no vertex is left
uncovered, so it is feasible to skip vertex vi ∈ V \T . For computational efficiency,
a matrix relating the coverage of the vertices wi ∈ W by the vertices vi ∈ V is
precomputed and kept at hand.

Other way to control label proliferation in this algorithm is the computation
and updating of an upper bound as it will be explained in the ensuing section.

Algorithm 1. Selector
Input: giant tour GT , distance matrix D, set T
Output: optimal tour of visited vertices, S, and cost value of tour, c(S)
1: L∗ ←search upper bound {See Algorithm 2}

{build an initial set of labels}
2: while ( ∃ arc(v0, vi) ) do
3: Λi ← Λi ∪ {L} {L is the label being treated}
4: Extend Horizontally(L) {see Algorithm 3}
5: i ← i + 1
6: end while

{extend labels created}
7: while ( ∃ an Λi ) do
8: L ← mini∈N{λj} {find label of lowest cost}
9: Extend Skipping(L) {see Algorithm 4}

10: end while

Finding the Shortest Path. Algorithm 1 illustrates the core procedure of
Selector. It executes three main steps: (i) search for an initial feasible solution or
upper bound (UB), (ii) build an initial set of labels, and (iii) extend the created
labels. In the explanations that follow the term horizontal extension means to
iteratively visit in M the adjacent successor vertex until a complete feasible
solution is built or any other of the stopping criteria is met (see Algorithm 3).
The worst-case time complexity of the horizontal extension process is O(n).

As mentioned, besides the feasibility and dominance rules, the upper bound
is helpful to limit the creation of labels, and it is computed as follows (refer to
Algorithm 2). For every vertex vi ∈ M for which arc (v , vi) exists, it builds
arc (vi, vi ) and from this point continues the construction with a horizontal
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extension. Next, it constructs the arc to the next successor, arc (vi, vi ), and
proceeds with the same horizontal extension, and so on. The process stops when
arc (vi, vi k) can no longer be constructed, and restarts with the creation for
the next vertex of arc (v , vi ). In this first step, every built path is compared
and the best one is kept, no labels are stored in order to execute it fast. The
worst-case time complexity of the search is O(n ).

The second step, the generation of an initial set of labels, iteratively con-
structs arc (v , vi) followed by a horizontal extension. However, at each step
(at every vertex) a non-dominated label documenting the subpath is stored. The
process repeats as long as it is possible to construct arc (v , vi). The worst-case
time complexity of this step is O(n ).

Finally, the created labels are extended (see Algorithm 4). This means that
from the last visited vertex stored in the label, v , it tries to reach successor
v and from this point does a horizontal extension storing non-dominated
labels at every step. The process repeats as long as arc (v , v ) exists. The
label chosen for extension is always the one that documents the shortest path
and the execution of Algorithm 4 continues until there are no labels to extend.
The worst-case time complexity of this extension is O(n ). Nevertheless, it might
be executed for several thousands of labels in large instances.

As can be observed in Algorithm 3, at every step of the label extension the
following conditions are verified: (a) the vertex to be included is not redundant,
(b) ζ < ζ , (c) UB < UB , and (d) label is not dominated. Any
vertex that turns out to be redundant is simply skipped and the construction
continues, no labels are kept for not-visited vertices. If the cost of the path
being built is worse than the cost of the best known solution, the search in that
trajectory is abandoned. The initial upper bound built at the onset is updated
throughout the search to improve the limits for the creation of labels.

A distinctive and important characteristic of our operator is that aside from
the constraints mentioned in the definition of the problem, it does not impose
any further restrictions on the selected vertices of V \T such as adjacency, for
example. This operator is capable of discarding any vertex vi ∈ V \T at any
point in the tour.

Algorithm 2. Search Upper Bound
Input: giant tour GT , distance matrix D, set T
Output: feasible tour of visited vertices, S, and cost value of tour, c(S)
1: i ← 1
2: while ( ∃ arc(v0, vi) ) do
3: k ← i
4: while ( ∃ arc (vi, vk+1) ) do
5: Extend Horizontally(L) {see Algorithm 3}
6: k ← k + 1
7: end while
8: i ← i + 1
9: end while
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Algorithm 3. Extend Horizontally(L)
Input: label to be extended, L
Output: labels derived from L

{only nondominated labels that can be extended are kept}
1: for (j = lastV isitedNode + 1 to j � n) do
2: clientsCovered ← clientsCovered + coverage of j
3: if ( node is not redundant ) then
4: cost of L ← cost of L + cost of visiting j
5: if ( cost of L < cost of L∗ ) then
6: if ( clientsCovered �= clients ) then
7: if ( L not dominated ) then
8: Λi ← Λi ∪ {L}
9: end if

10: else
11: L∗ ← L
12: return
13: end if
14: else
15: return
16: end if
17: end if
18: end for

Algorithm 4. Extend Skipping(L)
Input: label to be extended, L
Output: labels derived from L
1: i ← lastV isitedNode
2: k ← 2
3: while ( ∃ arc (vi, vi+k) ) do
4: Extend Horizontally(L)
5: k ← k + 1
6: end while

3 Adaptive Large Neighborhood Search (ALNS)

In our methodology, the overall task of the ALNS metaheuristic is to build
suboptimal giant tours from which efficient CTP solutions are extracted. This
is, according to Beasley’s method (1983), the ordering phase, and the splitting
phase is performed by the Selector operator embedded into this heuristic. ALNS,
a local search framework which uses several competing destroy and repair meth-
ods and chooses amongst them using statistics gathered during the search, com-
petes strongly with genetic algorithms (GA) in vehicle routing. However, the
efficiency of GAs relies on sophisticated local search methods and population
management techniques, while in ALNS neighborhoods are searched by simple
and fast heuristics. ALNS has provided good solutions for a wide variety of VRPs
as shown in Pisinger and Ropke (2010) and Ribeiro and Laporte (2011).
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The three backbones of our implementation are (i) removal operators,
(ii) insertion operators and (iii) metaheuristic that defines the criteria to accept
a new solution. Three removal and three insertion heuristics were implemented.
In the following, the word facility indicates a vertex that belongs to the giant
tour, and lower-case Greek letters indicate user-controlled parameters.

3.1 Removal Operators

Shaw Removal Heuristic (SRH). Originally proposed by Shaw (1997), its
general idea is to remove facilities that exhibit similitude, characteristic computed
by a relatedness measure R(i, j). For this implementation, the similarity between
two facilities is measured by R(i, j) = dij , where dij is the Euclidian distance
between facilities i and j. This relatedness measure is used to remove facilities in
the same way as described by Shaw (1998). In order to avoid the sorting of facili-
ties required at each iteration, a nearest facility matrix is precomputed and kept
at hand. The worst-case time complexity of the SRH is O(n ).

Worst Removal Heuristic (WRH). Ropke and Pisinger (2006) propose a
heuristic that randomly removes facilities with a high cost in the current solution
X and tries to insert them in better positions. It iterates recalculating the costs
until it has removed the indicated number of facilities. The removal, though
random, is user-controlled by parameter ρ. The worst-case time complexity of
the WRH is O(n ).

Random Removal Heuristic (RRH). This procedure simply selects γ facil-
ities at random and removes them from the current solution X. Though it tends
to generate a poor set of removed members, it is useful to diversify the search.
The worst-case time complexity of the RRH is O(n).

How Many to Remove. The number of facilities removed, γ, from the current
solution X is key to the ALNS performance. When few elements are removed,
the heuristic has a higher probability of being trapped in one suboptimal area of
the search space. On the other hand, when too many are removed, it is almost
like starting from scratch and the insertion heuristics cannot build a good solu-
tion from such situation. In addition, the larger the number removed, the larger
the execution time of both insertion and removing heuristics. We choose γ ran-
domly between a lower and upper limit. The lower limit is fixed at a value given
according to the number of vertices in set V , 20 % to 25 % of its size, while
the upper limit is fine-tuned with parameter ε. This parameter indicates the
maximum percentage of elements removed from the complete solution size.

3.2 Insertion Operators

Best Greedy Heuristic (BGH). This simple construction heuristic performs
at most γ iterations as it inserts one facility into solution X in each iteration.
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The minimum cost position value is computed for all facilities waiting insertion,
set F , and the one with the minimum global cost position is chosen. This process
is repeated until F = ∅. The worst-case time complexity of the BGH is O(n ).

First Greedy Heuristic (FGH). This heuristic works similarly to the pre-
vious one. However, instead of inserting the facility having the minimum global
cost position, it inserts the one sitting in the first position. That is to say, it
respects the order of the facilities in F . After the first facility has been inserted,
the minimum cost position for each is recalculated and the process repeats until
all facilities in set F have been inserted.

Ropke and Pisinger(2006) add a noise term to the objective function during
the insertion phase of the BGH and regret-k heuristics in order to randomize
them and avoid always making the move that seems best locally. In our imple-
mentation, the FGH is used mainly to introduce this noise into the insertion
process as done by Ribeiro and Laporte(2011). This heuristic obviously runs
faster than the BGH.

Regret-k Heuristic (RKH). This heuristic tries to improve the myopic behav-
iour of the greedy heuristics by incorporating a kind of look ahead information
when selecting the facility to insert, as done by Ropke and Pisinger(2006) and
Pisinger and Ropke(2007). Let Δfi denote the change in objective value incurred
by inserting facility i at its minimum cost position, and Δfi denote the change
by inserting it at its second best position. The regret value is defined in terms
of the former values as c∗

i = Δfi − Δfi . In each iteration, the regret heuristic
chooses to insert the facility i that maximizes maxi∈F {c∗

i }, and such facility is
inserted at its minimum cost position. Ties are broken by selecting the facility
with lowest cost insertion. This is a time-consuming operator but unnecessary
computations were avoided when computing Δfn

i . The worst-case time complex-
ity of the RKH is O(n ).

Choosing a Removal and an Insertion Heuristic. In order to select a
heuristic, weights are assigned to them and a roulette wheel selection principle is
applied. The removal heuristic is selected independently of the insertion heuristic
and vice versa. Initially, all heuristics are equally likely.

Adaptive Weight Adjustment. The probability of selecting a heuristic
changes based on its performance. To enable this change, a score is kept for
each and it is updated at each iteration. Our implementation keeps track of vis-
ited solutions using a hash table. A hash key is assigned to every solution and
this key is stored in the table. We followed the scheme of scores and updating
procedure of probability weights proposed by Ropke and Pisinger (2006).

3.3 General Framework with Simulated Annealing

Algorithm 5 depicts the ALNS process implemented with simulated annealing
(SA) as the outer metaheuristic that guides the search. We followed the SA
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Table 1. Values of the ALNS parameters after experimental tuning.

Parameter Meaning Value

γ Number of facilities removed at each ALNS iteration [5, 30]

(instance size dependent)

ς Segment size for updating probabilities in number of ALNS
iterations

50

τ Reaction factor that controls the rate of change of the
weight adjustment

0.3

δ Avoids determinism in the SRH 6

ρ Avoids determinism in the WRH 2

σ1 Score for finding a new global best solution 50

σ2 Score for finding a new solution that is better than the
current one

20

σ3 Score for finding a new non-improving solution that is
accepted

5

β Cooling factor used by simulated annealing 0.99999

ε Fixes the upper limit of facilities removed at each iteration 0.3

scheme suggested by Pisinger and Ropke (2007). The algorithm works on two
items: the giant tour, GT , constructed by the ALNS heuristics, and S, the solu-
tion covering tour computed by Selector when applied to GT . The cost of GT
is labelled l, while the cost value for solution S is identified as c. The variable
GT indicates the solution obtained at the beginning of an iteration, and
the variable GT is the temporary solution obtained during the iteration. For
the sake of clarity, the updating processes for scores, hash keys and probabilities
are not shown.

The 2-opt procedure is used to rapidly improve the length of the starting GT
and avoid a long, random, initial walk. In addition, the acceptance of GT is
controlled by the cost value of solution S. The latter is because experimentation
showed that improvements on the length of the giant tour do not necessarily lead
to improvements on the length of the tour computed by Selector. However, in the
long run, the length of the CTP tour benefits from improvements on the length of
the GT. An important consequence of this finding is that execution of Selector to
optimality at each ALNS iteration is of low benefit. The upper bound computed
by Algorithm 2 can serve as a probe to determine if the complete process is
worth executing. This derives in important time savings.

4 Computational Results

The results obtained by our metaheuristic are compared against the optimal
solutions computed by the branch-and-cut algorithm of Gendreau et al. (1997).
The exact algorithm is written in Python 2.7 and uses 5.6 Gurobi callbacks.
Library Python-Igraph 0.7.0 helps to solve graph problems occurring in the valid
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Algorithm 5. The General Framework of the ALNS with Simulated Annealing
Input: Giant tour GT , distance matrix D
Output: Sbest and c(Sbest)
1: 2-opt(GT0)
2: compute l0(GT0)
3: initialize, to the same value, probability P t

r for each removal operator r ∈ R, and
likewise probability P t

i for each insertion operator i ∈ I.
4: t ← l0, {set initial temperature, variable used in probability function}
5: lcurrent ← l0
6: GTcurrent ← GT0

7: UBbest ←Search Upper Bound(GT0) {see Algorithm 2}
8: c(Sbest) ← c(Scurrent) ←Selector(GT0) {see Algorithm 1}
9: i ← 1 {iteration counter}

10: repeat
11: select a removal operator r ∈ R with probability P t

r {roulette wheel}
12: obtain GT −

new by applying r to GTcurrent

13: select an insertion operator i ∈ I with probability P t
i

14: obtain GTnew by applying i to GT −
new

15: UBcurrent ←Search Upper Bound(GTnew)
16: if ( UBcurrent < UBbest ) then
17: c(Snew) ←Selector(GTnew)
18: UBbest ← UBcurrent

19: else
20: c(Snew) ← UBcurrent

21: end if
{decide acceptance of new solution}

22: if ( c(Snew) < c(Scurrent) ) then
23: c(Scurrent) ← c(Snew)
24: GTcurrent ← GTnew

25: else
26: p ← e− c(Snew)−c(Scurrent)

t

27: generate a random number n ∈ [0, 1]
{new solution might be accepted with a computed probability even it is worse}

28: if ( n < p ) then
29: c(Scurrent) ← c(Snew)
30: GTcurrent ← GTnew

31: end if
32: end if
33: if ( c(Snew) < c(Sbest) ) then
34: c(Sbest) ← c(Snew)
35: Sbest ← Snew

36: end if
37: t ← β · t {cooling rate set to be very slow}
38: if ( segment size = ς ) then
39: update probabilities using the adaptive weight adjustment procedure
40: end if
41: i ← i + 1
42: until ( defined number of iterations is met )
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cut separation. The heuristic algorithms are coded in C++ and the benchmark
was done on a computer with 8 GiB of memory, processor Intel Core i7-4770
CPU@3.40 GHz, and Linux OS type 64 bits.

Since test problems for the CTP are not found in the literature, we created
data sets based on 9 Euclidean TSPLIB instances (Reinelt 1991) whose sizes
range from 100 to 200 vertices. Sets of vertices of |V ∪W | ∈ {100, 150, 200} were
created using kroX100 (X ∈ {A,B, . . . ,E}), kroX150 and kroX200 (X ∈ {A,B})
respectively. T and V are defined by taking the first |T | and |V | − |T | points,
respectively, while W is defined by the remaining points. Tests were run for
|V | ∈ {25, 50, 75, 100}. |T | = 1, only the depot is compulsory, which is the worst
case regarding the number of labels created.

The costs {ζij} are treated as integer values equal to 	dij + .5
, where dij
is the Euclidean distance between points i and j (Reinelt 1991). The value of c
is resolved using c = max

(
maxvk∈V \T minwl∈W {ζl,k},maxwl∈W {ζl,k l })

, where
k(l) indicates the second nearest vertex vk ∈ V \ T . Computing this value in
such way ensures that each vertex vi ∈ V \ T covers at least one vertex wi ∈ W ,
and each vertex wi ∈ W is covered by at least two different vertices vi ∈ V \ T
as explained in Gendreau et al. (1997).

Several independent executions were done to test our randomized heuristic.
Each instance was run 30 times with a different seed each time and for 30,000
iterations. To define an efficient parameter set, we used a ceteris paribus app-
roach based on sets of three or four values for each parameter. The resulting set
is listed in Table 1. On the other hand, both the optimal values and the quality
of the solutions computed by the heuristic can be observed in Table 2 where the
first three columns document the instance information, the next three report the
findings of the exact method, and the last five those of the approximate app-
roach. Columns UB and Opt show the time in seconds needed to reach an upper
bound and the optimal value respectively. Column θ indicates the deviation of
the heuristic solution from the optimum value in percentage, and t corresponds
to the total run time in seconds. These two figures are average values over the 30
runs. Column Found indicates how many times the heuristic found the optimum
value in the set of runs. Column Best Gap shows how close (in percentage) the
heuristic came to the optimum value, and the last one, labeled S − , exhibits
the corrected sample standard deviation.

On the whole, the heuristic is very accurate and its performance is highly
satisfactory, since for 96 % of the instances it was capable of finding the optimum
value rapidly. In the few cases where the optimum was not reached, the minimum
value computed was less than 1 % away from the optimal solution value. In
addition, the average deviation is typically within 1 % of optimality. Also, it
repeatedly found the optimum value for 63 % of the instances. In general, given
an instance, this number worsens as |V | increases. Results are reported for 30,000
iterations. However, observing the evolution of the search, we could see that
optimal solutions were identified for approximately 75 % of the instances as early
as in the first 1,000 iterations. Furthermore, in general, the spread around the
optimum of the values computed is very moderate. We can, thus, state that it
is a heuristic capable of identifying very good solutions quite quickly.
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Table 2. Performance of heuristic compared to the branch-and-cut algorithm.

Instance |V | |W | Optimum UB(s) Opt(s) θ(%) t(s) Found Best SN−1

Based on Gap(%)

kroA100 25 75 7985 0.17 0.17 2.36 0.42 14 0 272.51

kroA100 50 50 8608 22.20 44.95 0.21 0.95 11 0 23.06

kroB100 25 75 6449 0.21 0.27 0.16 0.50 24 0 22.79

kroB100 50 50 8043 1.18 21.54 0.70 1.25 1 0 60.20

kroC100 25 75 6161 0.01 0.01 0 0.81 30 0 0

kroC100 50 50 7942 0.81 0.81 0 2.27 30 0 0

kroD100 25 75 6651 0.24 0.38 0 0.31 30 0 0

kroD100 50 50 8411 3.75 4.33 0.02 1.13 27 0 4.64

kroE100 25 75 7417 0.26 0.27 0.02 0.42 29 0 8.71

kroE100 50 50 8493 1.10 1.11 0 1.00 30 0 0

kroA150 25 125 8050 0.13 0.13 1.43 0.54 3 0 131.72

kroA150 50 100 9623 118.80 121.58 0.37 1.16 2 0 38.56

kroA150 75 75 9971 1569.38 2884.34 0.60 2.93 0 0.59 59.81

kroB150 25 125 6165 0.01 0.01 0 1.50 30 0 0

kroB150 50 100 7818 1.16 1.16 0.02 2.32 29 0 7.23

kroB150 75 75 7434 13.34 38.24 0.01 4.32 26 0 2.16

kroA200 25 175 6165 0.01 0.01 0 1.63 30 0 0

kroA200 50 150 8273 0.46 0.49 0 5.09 30 0 0

kroA200 75 125 8499 141.97 266.19 0 6.31 30 0 0

kroA200 100 100 8355 4110.87 4789.22 0 14.21 30 0 0

kroB200 25 175 6450 0.15 0.15 0.18 1.17 23 0 24.62

kroB200 50 150 8171 2.69 3.46 0.78 2.6 3 0 77.29

kroB200 75 125 10007 0.65 0.65 1.42 4.5 5 0 166.52

kroB200 100 100 9988 17.20 17.68 1.73 11.60 5 0 202.63

5 Conclusions

This paper presents a study on a novel resolution method for a difficult com-
binatorial optimization problem which finds application in network design and
vehicle routing. Its key feature is the Selector operator that optimally splits an
initial sequence of facilities into subsequences of visited and not-visited vertices.
We have proposed an approximate method capable of obtaining very high qual-
ity solutions in very short periods of time. It is a simple, easy to implement
heuristic and its core, the Selector operator, is new and creative in its own right.
Given the practical relevance of the CTP, we will look into other heuristic mech-
anisms to solve large-scale instances. We believe the approach developed in this
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work can be translated or adapted to solve related TLPs like the Orienteering
Problem, also known as the Selective TSP, and the Prize Collecting TSP.
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Abstract. We introduce a new problem arising in small and medium-
sized container terminals: the Two-Dimensional Pre-Marshalling Prob-
lem (2D-PMP). It is an extension of the well-studied Pre-Marshalling
Problem (PMP) that is crucial in container storage. The 2D-PMP is par-
ticularly challenging due to its complex side constraints that are challeng-
ing to express and difficult to consider with standard techniques for the
PMP. We present three different heuristic approaches for the 2D-PMP.
First, we adapt an existing construction heuristic that was designed for
the classical PMP. We then apply this heuristic within two metaheuris-
tics: a Pilot method and a Max-Min Ant System that incorporates a
special pheromone model. In our empirical evaluation we observe that
the Max-Min Ant System outperforms the other approaches by yielding
better solutions in almost all cases.

Keywords: Ant colony optimization · Construction heuristics ·
Container terminal · Pilot-Method · Pre-Marshalling problem

1 Introduction

Containers are an essential component of today’s shipping industry. They are
standardized to facilitate shipment and storage. Container shipment typically
proceeds in chains of different transport modes, such as trains, ships or trucks.
Container terminals are crucial to the overall shipment process since they act as
hubs between the different transport modes. They deal with container exchange
between vessels, and container storage until the appropriate vessels arrive.

Container storage planning is a key factor in container terminal organization
and affects all other operations of the terminal. It is concerned with storing con-
tainers in such a way that they can be quickly retrieved when they are due for fur-
ther shipment. Containers are stored in so-called container bays which are rows
©
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of adjacent container stacks. When a container is due for shipment it is typically
removed from its bay by a gantry crane that can access the topmost containers
of each stack. Due containers may sometimes be blocked by other containers that
are stacked upon them. In this case, the blocking containers have to be relocated
to access the due containers, which increases the loading time. This can cause
severe delays for vessel loading and vessel departures, resulting in displeased
terminal clients and ultimately additional costs. Therefore, container terminals
rearrange (pre-marshal) container bays to assure that each container is reachable
when it is due. The Pre-Marshalling Problem (PMP) is concerned with finding
a sequence of container relocations of minimal length, such that in the resulting
bay no container is blocked when removed according to its due-time.

In this paper we introduce a new variant of the PMP, the Two-Dimensional
Pre-Marshalling Problem (2D-PMP), which occurs in smaller and medium-sized
container terminals. Those terminals do not use gantry cranes to load vessels but
so-called reach stackers. Reach stackers are powerful forklifts that can carry fully
loaded containers, however, most conventional reach stackers can only access the
leftmost and rightmost stacks of a container bay. This means that due containers
can be blocked by containers stacked next to them, in addition to containers
stacked upon them. Thus, a new 2-dimensional restriction on how containers may
be stacked such that they can be removed according to their due-times without
having to relocate blocking containers needs to be considered. Our use-case is
based on the Ennshafen container terminal in Enns, Austria. Another example
of a smaller to medium-sized container terminal is the Frihamnen container
terminal in Stockholm, Sweden. Space is an issue for them since they are located
in the city center, so agile vehicles like the reach stacker are required to perform
most of the work.

This work is based on a master thesis [1] which can be referred to for
detailed algorithm explanations, further implementation details and more elab-
orate results.

Related Work

The classical PMP is known to be NP-hard [2] and is well-studied [3]. The 2D-
PMP is a novel problem for which, to the best of our knowledge, no solution
approach has yet been published. In the following, we therefore give a chrono-
logical overview of the most prominent methods for the PMP.

Lee and Hsu [4] present a MIP model in form of a multi-commodity flow
formulation in which nodes represent slots in the container bay, and arcs connect
slots. Thus, container moves are represented with flows, and constraints assure
that the moves are valid. The number of moves is restricted by an upper bound,
and the objective is to find a flow that yields a desirable bay in a minimal
number of moves. This formulation grows substantially in the number of moves
and therefore has difficulties to scale.

1 http://www.ennshafen.at/en/container terminal/technical data.

http://www.ennshafen.at/en/container_terminal/technical_data
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Caserta and Voß [5] propose a corridor-method based approach for solving
the PMP. Given an initial solution (constructed by a method similar to the
GRASP heuristic), the approach builds a corridor around the incumbent solution
and performs low-level decisions using a combination of greedy heuristics and a
roulette-wheel approach. In their experiments, the authors obtained new upper
bounds for existing benchmarks with their approach.

Lee and Chao [6] introduce a neighbourhood search method that improves
an initial feasible solution by applying different local search heuristics and an
integer program that possibly reduces the length of the move sequence in the
incumbent solution, yielding the same final bay configuration.

Exposito et al. [7] propose a “lowest priority first” construction heuristic,
see Sect. 3, as well as an instance generator for the PMP. The heuristic aims
at placing containers at positions that seem most suitable, starting with the
container that will be removed last.

Bortfeldt and Forster [8] present a tree-search heuristic for the PMP, where
the tree depth is restricted by an upper bound. The tree search incorporates
a classification and ordering of the possible moves at each configuration, which
drives the search towards promising directions. This method is competitive with
the approaches from [5,6].

Prandtstetter [9] proposes a dynamic programming approach for the PMP
where states represent the container bay and are extended by container moves.
This method is quite successful since symmetric and dominated states (with a
weaker lower bound) are easily detected and discarded.

Rendl and Prandtstetter [10] introduce a constraint programming model for
the PMP where decision variables represent the container bay state and moves
are set exclusively by the search strategy, which applies the heuristic from [8].

Tierney et al. [11] present a novel solution technique for solving pre-marshalling
problems to optimality using the A* and IDA* algorithms. Both algorithms per-
form a path-based search guided by a cost estimation heuristic. Additionally, the
search is directed by combining branching rules, symmetry breaking and strong
lower bounds. Branching rules are used to prevent move reversal, unrelated and
transitive moves, and empty stack symmetry.

2 The Two-Dimensional Pre-Marshalling Problem

Pre-marshalling problems arise in container terminals where containers are stored
in stacks that are arranged in container bays. A container bay consists of a num-
ber of adjacent stacks that may not exceed a maximum height; see Fig. 1 for
a sample bay with four stacks. Each container is assigned a priority value that
indicates when the container is due to be removed from the bay. The smaller the
priority value, the sooner the container will be removed from the container bay.

The priority of a container is often not known at its arrival in the bay, there-
fore containers are frequently stacked more or less arbitrarily. As a consequence,
due containers would often be blocked by other containers that are due at a later
time. In the container bay in the left of Fig. 1, for example, the shaded containers
are blocked since containers with higher priority values are placed upon them.



Metaheuristics for the Two-Dimensional Container Pre-Marshalling Problem 189

−→

Fig. 1. A container bay with four stacks where the numbers represent the priority
values of the containers. Shaded containers are blocked for the gantry crane. The left
figure shows the bay before pre-marshalling, the right thereafter.

−→

Fig. 2. Left: The classically pre-marshalled container bay from Fig. 1, now serviced by
reach stackers. The shaded container is blocked horizontally. Right: A configuration
where all containers can directly be removed by reach stackers.

The classical Pre-marshalling Problem (PMP) is concerned with relocating
containers in a bay most economically in such a way that thereafter all containers
can be immediately retrieved from the bay in the order given by the priority
values. More specifically, the PMP seeks a minimal sequence of container moves
that yields a container bay without blocked containers.

In large container terminals all container movements are performed exclu-
sively by gantry cranes that can access the topmost container of each stack. In
small and medium-sized terminals gantry cranes are only used to move contain-
ers within a bay, while reach stackers remove containers to load vessels.

Reach stackers are forklifts that can carry one container at a time, but their
access is restricted to the top containers of the leftmost and rightmost stacks
of a bay. This is a significant restriction, since containers can be blocked verti-
cally (by containers in the same stack) but also horizontally (by containers in
neighbouring stacks). The classical PMP only considers vertical blocking, and
therefore does not sufficiently improve the container bay configuration in the
scenario with reach stackers. For instance, Fig. 2(left) illustrates that the pre-
marshalled configuration from Fig. 1(right) still has a blocked container when
considering reach stackers for removal.

Therefore, we introduce the Two-Dimensional Pre-Marshalling Problem
(2D-PMP) that considers blocking from two dimensions, i.e., vertically and
horizontally.

2.1 Formal Definition of the 2D-PMP

The 2D-PMP considers a container bay with S stacks holding a set of containers
C. Stacks may not exceed a maximum height H. We denote the set of all stacks
as S and the set of all tiers as T . Each container c ∈ C is referred to by its priority
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value, i.e., c ∈ N, which we assume without loss of generality to be unique; i.e.,
a complete ordering is specified for the containers.

We are given an initial bay configuration B, where Bs,t is the container in
the t-th tier in the s-th stack, with (s, t) ∈ S × T and write, Bs,t = 0 if slot Bs,t

is empty. The bay can be altered by performing moves: the topmost container
from a (non-empty) stack can be moved to the top of another stack whose height
is less than H. We denote such a container move from the top of stack i to the
top of stack j by m = (i, j), where i, j ∈ {1, . . . , S}.

A container c that is located at Bs,t is called vertically blocked, if there exists
another container c′ at Bs,t′ with t′ > t (container c′ is placed above c) and
c′ > c. A stack s is called v-perfect, if no container in stack s is vertically blocked.
A container c that is located at Bs,t is called horizontally blocked, if there exist
two containers c′ and c′′ where c′ is located at Bs′,t′ and c′′ at Bs′′,t′′ with s′ < s
(stack s′ is left of stack s) and s′′ > s (stack s′′ is right of stack s) and c < c′

and c < c′′ (container c has the smallest priority value of the three containers).
A stack s in which no container is horizontally blocked, is called h-perfect. The
aim of the 2D-PMP is to obtain with minimum effort a bay configuration in
which all stacks are v-perfect as well has h-perfect.

A solution is thus a sequence of container moves σ = {m ,m , . . . , mk} that
makes the initial bay configuration v- and h-perfect, and the 2D-PMP seeks an
optimal solution having minimum length k.

3 Lowest Priority First Heuristic (LPFH)

The Lowest Priority First Heuristic (LPFH) has been proposed in [7] The gen-
eral idea is to distinguish between well-located containers that may remain at
their current position and non-located containers that are moved to obtain an
unblocked configuration.

After classifying each container as well-located or non-located, the LPFH
iteratively performs the following three steps until all containers are well-located:

1. select the non-located container c with highest priority value,
2. select a destination stack s for c so that c becomes well-located,
3. and compute feasible moves to relocate c to s and perform them.

3.1 The 2D Lowest Priority First Heuristic (2D-LPFH)

We extend the LPFH for the 2D-PMP into a new heuristic, 2D-LPFH, by apply-
ing two main changes. First, we adapt the notion of well-located and non-located
containers, and second, we adapt the destination stack selection. The complete
2D-LPFH algorithm for the 2D-PMP is outlined in Algorithm1. In the following,
we highlight the differences to the classical LPFH.

Container Location. A container is called well-located in the 2D-PMP, if it is
neither vertically nor horizontally blocked, and if it is located in one of the
stacks foreseen for its priority (see below). A container is called non-located in
the 2D-PMP, if at least one of the well-located criteria is violated.
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Destination Stack Selection. The destination stack selection consists of three
main steps: First, adequate stacks are identified that are as second step ordered
according to the number of moves that are necessary to move the selected con-
tainer to the respective stack. Third, the destination stack is randomly selected
upon the best λ adequate stacks, where λ is an appropriately chosen strategy
parameter. In the 2D-LPFH, containers with higher priority value are usually
best placed in a central stack, while containers with low priority values are usu-
ally best placed in one of the outermost stacks. This way it is less likely that
they are horizontally blocking or blocked by other containers. We incorporate this
intuition in the stack selection, where we denote the set of adequate stacks Ac

for container c: First, we calculate the average number of containers per stack as
cps = |C|/S. Second, we determine the first preferred stack as s = �c/(2 · cps)�.
Third, we add the “mirror” stack s = S − s as the second preferred stack
(ifs �= s ), i.e., if the first preferred stack s is closer to the left edge of the
bay, then the second preferred stack s will be closer to the right edge of the bay
and have an equal number of stacks between itself and the right edge as the first
preferred stack s and the left edge. In case our configuration has an odd number
of stacks, the middle stack does not have a second preferred stack. Fourth, in
case s and s are not the outermost stacks, we allow some flexibility by adding
the neighbouring stacks that are closer to the outer border to the set of ade-
quate stack as s ′ = s − 1 and s ′ = s + 1. Finally, our set of adequate stacks
is Rc = {s ′ , s , s , s ′}. This calculation assumes unique priority values. When
moving the selected container to the destination stack we have to enable the
move by removing all containers placed on top of the selected container and all
containers placed on top of the designated slot in the destination stack. These
containers are called interfering containers and they are moved to temporary
stacks; any stack with free slots except the source and destination stacks.

In case the source and destination stack are the only stacks with free slots
and there is at least one interfering container, the algorithm is blocked and can
not continue. In such cases it is recommended to restart the algorithm because
it might perform a different sequence of moves due to it’s stochastic nature.

Compound Moves. In each iteration, the 2D-LPFH returns a compound move
K = {m , . . . , mk}, k ≥ 1, i.e., a sequence of moves, corresponding to all the
individual moves necessary to relocate a non-located container to a better loca-
tion. This especially needs to be taken into account when applying the heuristic
within a metaheuristic. Applying only a subsequence K̂ ∈ K would in general
result in a completely different and usually unintended and worse behaviour.
For instance, K̂ might easily lead to a state having a higher objective value than
when applying the complete K. Therefore, when using the 2D-LPFH within a
metaheuristic, we always consider only complete compound moves K. However,
this does not affect the behaviour of our metaheuristic algorithms as each regular
or compound move can be viewed as a changeset applied to our current bay; the
exact actions or their count are irrelevant to the metaheuristic.
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Algorithm 1. Lowest Priority First Heuristic for the 2D-PMP
Input: B : initial state; λ2, λ3: heuristic parameters
1: N ⇐ non-located containers in B
2: W ⇐ well-located containers in B
3: σ ⇐ empty list
4: while N �= ∅ do
5: c ⇐ container with highest priority value in N located at stack s
6: Ac ⇐ set of adequate stacks for c
7: Sort Ac ascending by the lowest number of interfering containers in each stack
8: s′ ⇐ select random stack from Ac among the top λ2 stacks
9: G ⇐ set of all interfering containers in c’s stack and s′

10: for each g ∈ G that is positioned at stack sg do
11: V ⇐ set of available temporary stacks for g
12: sort V ascending by the highest priority valued non-located container in each

stack
13: s′′ ⇐ select random stack from V among the top λ3 stacks
14: perform move (sg, s′′) on B, obtaining new bay configuration B′

15: append move (sg, s′′) to σ
16: B ⇐ B′

17: end for
18: perform move (s, s′), obtaining new bay configuration B′

19: append move (s, s′) to σ
20: N ⇐ non-located containers in B′

21: W ⇐ well-located containers in B′

22: B ⇐ B′

23: end while
24: return sequence of moves σ

4 Pilot Method

The Pilot method [12] is a meta-heuristic that applies a simpler construction
heuristic H as a lookahead subheuristic to guide a master construction process
towards a more promising solution. Starting from an initially “empty” solution
θ, the subheuristic H constructs n so-called pilot solutions θi, ∀i = 1, . . . , n,
which are partial solutions built from up to k greedy construction steps. Each
pilot solution θi is evaluated by a quality estimation function f that is able
to evaluate partial solutions. The idea is that these quality estimates provide
a better guidance for the master construction process than a simple greedy
criterion. A most promising partial solution θi with the best quality estimation is
then chosen and its first construction step adopted by the master procedure, i.e.,
θ is extended by the corresponding step. Then, the same construction process
with the help of the subheuristic is repeated from the next step onward until a
complete solution is obtained.

We use the Pilot method to solve the 2D-PMP by applying different con-
struction methods operating on partial solutions. Recall that a solution to the
2D-PMP is a sequence of (compound) moves, therefore, a pilot solution θi is a
sequence of (compound) moves θi = {m , . . . , mj} with j ≥ 1 ≤ k.
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Evaluation Function. Given a bay configuration Bθi
that has been obtained

by applying the pilot solution θi on the initial configuration B, the evaluation
function f(Bθi

) returns an estimate of the number of (compound) moves that
are necessary to get an unblocked bay configuration. We define f as

f(Bθi
) = bv(Bθi

) +
1
2
bh(Bθi

) + bt(Bθi
) (1)

where bv(Bθi
) and bh(Bθi

) represent the number of containers in Bθi
that are

blocked vertically and horizontally, respectively, and bt(Bθi
) is the cardinality

of the set of containers placed upon all vertically blocked containers (excluding
blocked containers).

Subheuristic. The subheuristic H is a heuristic that extends a current partial
master solution θ, by a (compound) move m ∈ MBθ

where MBθ
is the set of all

legal (compound) moves for the current container bay Bθ. Therefore, applying
k construction steps corresponds to appending k legal (compound) moves to θ.
We apply 2D-LPFH as a subheuristic.

5 An Ant Colony Optimization Approach

We developed a MAX -MIN Ant System (MMAS) [13] to tackle the 2D-PMP.
MMAS is a well known variant of Ant Colony Optimization (ACO) that strongly
favours so-far best solutions. It is characterized by four features: First, only the
best ant may update pheromone trails. Second, pheromone values have strict
upper and lower bounds τ and τ , respectively. Third, all pheromone val-
ues are initiated with τ and the evaporation rate ρ is kept low. Fourth, the
algorithm performs restarts after finding no improvement for a certain number
of iterations, to tackle stagnations.

For solving the 2D-PMP with MMAS, we consider the problem a path-
construction problem, where nodes represent container bay states, and edges
represent container movements. Thus, we search for a (shortest) path from the
initial node to a node that is a valid final state.

We outline the main steps of the MMAS in Algorithm2. In each iteration
the algorithm constructs n ant solutions (line 3) that are subsequently improved
using a simple local search procedure that is discussed in more detail in Sect. 5.3.
The best constructed solution σ is selected in line 11 and the global best solution
σ∗ possibly updated in line 13. In case the number of consecutive iterations
without improvement exceeds the threshold i (line 17), the pheromone values
are reinitialized (line 18). Finally the pheromone values are updated in lines 22
to 26. The decision whether to use the iteration best or global best solution is
based on the probability pσ∗. These steps are repeated until either a maximum
number of iterations or a time limit has been reached.

In the following sections we give a more detailed description of the different
components of our approach. Section 5.1 outlines the pheromone model, Sect. 5.2
discusses the ant construction algorithm and Sect. 5.3 the local search procedure.
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Algorithm 2. Max-Min Ant System for 2D-PMP
Input: B: initial state; n: ant count; imax: maximum number of consecutive itera-

tions without improvement; pσ∗: probability for using the global best solution for
pheromone update; f : evaluation function

1: i ⇐ 0
2: while stopping criteria not satisfied do
3: {σ1 . . . , σn} ⇐ construct set of n ant solutions from B
4: if {σ1 . . . , σn} = ∅ then
5: continue and register failed attempt
6: end if
7: {σ1 . . . , σn} ⇐ apply local search to all solutions in {σ1, . . . , σn}
8: if σ∗ not assigned then
9: σ∗ ⇐ set σ1 as new global best solution

10: end if
11: σ ⇐ find best solution in {σ1 . . . , σn}
12: if f(σ) < f(σ∗) then
13: σ∗ ⇐ set σ as new global best solution
14: i ⇐ 0
15: else
16: i ⇐ i + 1
17: if i < imax then
18: reinitialize pheromone values
19: i ⇐ 0
20: end if
21: end if
22: if random value ∈ [0, 1) < pσ∗ then
23: update pheromones with global best solution σ∗

24: else
25: update pheromones with iteration best solution σ
26: end if
27: end while
28: return σ∗

5.1 Pheromone Model

We studied different pheromone models in the design of the MMAS. First, we
considered a state-based pheromone model where each container bay state B is
associated with a pheromone value τB. However, since a state can be reached by
different (compound) moves that are not taken into account by the pheromone
model, this model gives little guidance to the agents/ants. We assume that
this is the reason why the state-based model performed poorly in our initial
experiments.

We thus extended that model to the move-based pheromone model. In it, we
associate a pheromone value τ B,m to each state-move pair (B,m). This way
the pheromone values direct the ants in a more traditional way into following
promising (compound) moves, given the current container bay state. A cru-
cial aspect hereby was to dynamically create pheromone values on the fly and
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Algorithm 3. Ant construction algorithm
Input: B: initial state, f : evaluation function, h: heuristic function
1: fe ⇐ f(B)
2: σ ⇐ empty list
3: while fe > 0∧ stopping criterion do
4: M ⇐ query h for set of all possible (compound) moves in state B
5: if M contains a (compound) move m leading to a final state then
6: append m to σ
7: return σ
8: end if
9: P ⇐ calculate probabilities for all m ∈ M

10: psum ⇐ 0
11: r ⇐ random number between 0 and 1
12: for each m ∈ M do
13: psum ⇐ psum + Pm

14: m′ ⇐ m
15: if psum ≥ r then
16: break
17: end if
18: end for
19: append m′ to σ
20: apply (compound) move m′ to B yielding new state B
21: fe ⇐ f(B)
22: end while
23: return σ

efficiently maintain them in a hash table, as obviously we cannot store them all
in a simple statically allocated matrix due to the state-space’s exponential size.

5.2 Ant Construction Algorithm

The ant construction algorithm is given in Algorithm3. It takes three arguments:
an initial state, an evaluation function and a heuristic function. In each iteration,
it first determines all possible (compound) moves for the current state B (line 4)
by querying the given heuristic algorithm h (e.g. 2D-LPFH). The heuristic algo-
rithm returns a set of all possible (compound) moves M it can execute for the
given state B; i.e. the heuristic algorithm explores the whole search space for one
step (one (compound) move) from the current state and returns all possibilities,
allowing the ant construction heuristic to choose the next (compound) move.
Then, for each possible (compound) move m, the probability pB,m of the ant
applying (compound) move m to B is computed (line 9) by

pB,m =
[τB,m]α[ηB,m]β

∑
l∈MB [τB,l]α[ηB,l]β

, if m ∈ MB, (2)

where τB,m refers to the pheromone value of (compound) move m from state B,
α refers to the priority given to pheromone values, ηB,m refers to the heuristic
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value of (compound) move m for state B, and β refers to the priority given to
heuristic values. The heuristic value ηB,m is acquired by evaluating the state Bm

that is reached by applying (compound) move m to the current state B. We
then select one of the (compound) moves according to their probability and a
random factor (line 11-19). This procedure is repeated until a complete solution
has been constructed or a maximum number of moves has been reached (line 3).

In addition, we check if the final state can be directly reached by a (com-
pound) move and in this case immediately select it without calculating proba-
bilities (line 5). All ant solutions can be constructed in parallel, since the only
shared resource are the read-only pheromone values.

5.3 Improvement Heuristic

We use an improvement heuristic that, given a solution σ, tries to find “shortcuts”
in the solution. More specifically, the algorithm tries to detect non-consecutive
states B and B that are connected with moves {m , . . . , mk} ∈ σ, k ≥ 2, which
can be connected by a single move m′. In this case, the sequence {m , . . . , mk}, k ≥
2 can be replaced by m′ in the solution and thus shortens the solution σ. Figure 3
illustrates such a shortcut between states B and B , eliminating moves m , m
and m and thus shortening the solution by two moves.

The heuristic works as follows. For each move m ∈ σ yielding bay state Bm,
two sets are computed: the set of states that are reachable (within one move)
from Bm, MB, and the set of states that are visited in the solution after the
successor of Bm, denoted by Mσ. If MB ∩ Mσ �= ∅, then a shortcut has been
found, since the state(s) in MB ∩ Mσ can be reached by one move from Bm.
Therefore, we chose the state B′ ∈ MB ∩ Mσ with the largest number of moves
from Bm and replace the moves between Bm and B′ with move m′.

6 Experimental Evaluation

We perform experiments with the LPFH, the Pilot method and the MMAS. The
experiments are all executed on the same machine in a sequential manner and
each experiment was run on the same set of instances.

Problem Instances. We obtained problem instances from the PMP instance gen-
erator provided in [7]. Our instances have s = {4, 6, 8, 10, 12, 14} stacks with
height H = 4 and occupancy rates q = {50%, 75%} (i.e., fill level of the con-
tainer bay). This yields 11 instance categories, because we leave out instances

Fig. 3. Finding a shortcut move m′ from B2 to B5 saving two moves.
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with s = 4 and q = 75% because they are too difficult to solve. Containers
have unique priorities and are randomly positioned within the given bay. The
instances are available online .

Algorithm Parameter Settings. The 2D-LPFH uses λ , = 2 (see [7]), after hav-
ing applied parameter tuning tests with values λ , λ ∈ {1, 2, 3, 5, 10}: restricting
the search space (λ , = 1) does not allow the algorithm enough flexibility to find
good solutions, but loosening the search space too much (λ , ∈ {5, 10}) does
not yield good results within a short time. The semi-greedy approach (λ , = 2)
performs best. However, if given more time (5 min), the λ , ∈ {5, 10} results
improved significantly, but still remained inferior to the semi-greedy approach.
The Pilot method experiments were run with 2D-LPFH as the subheuristic and
k ∈ {2, 3, 4, 5, 6, 7} construction steps for each heuristic. Test have shown that
k ∈ {5, 6, 7} always performs significantly better than k ∈ {2, 3, 4} with only
slight differences among k ∈ {5, 6, 7}. After careful review of all results, k = 7
is chosen as the representing result since it yielded slightly better results than
k = 5, but did not affect run time significantly. Finally, the MMAS uses 2D-
LPFH to calculate the heuristic values during construction and the following
parameters: n = 8, α = 1, β = 2, ρ = 0.02, i = 75 and pσ∗ = 0.1. All
experiments use the same evaluation function stated in Eq. (1), and after each
algorithm has finished, the improvement heuristic (see Sect. 5.3) is applied. All
of the mentioned parameter values were determined in preliminary tests or are
based on recommended values from [7] and [14]. For more details on the para-
meter selection, see [1].

Experimental Setup. The experiments are carried out on a machine with four
Intel Xeon E5645 processors, each with six cores at 2.40 GHz, along with 200 GB
of RAM. The underlying system is Ubuntu 13.04. with Java 1.7. Our implemen-
tation of MMAS runs the ant construction algorithms in parallel.

All experiments have a time limit of 5 min (wall clock time, the machine not
otherwise utilized) or 500 moves. The ant construction algorithm has a different
move limit of 250 moves since we do not want bad solutions appearing in the
pheromone trails. As you will notice in the results section, 500 moves is a very
generous move limit since we expect solutions with less than 100 moves for the
biggest instances. All our experiments are of stochastic nature so we repeat them
until the final solution is not improved a consecutive number of runs. The 2D-
LPFH, Pilot method and MMAS had a no-improvement iteration number of 25,
25 and 5, respectively.

We perform experiments with the 2D-LPFH, Pilot method and MMAS. Due
to space limitations we only present each approach with its best setup:

1. 2D-LPFH: a single-run of the 2D-LPFH with λ , = 2
2. Pilot: the Pilot method with 2D-LPFH as construction-heuristic and k = 7

lookahead moves

2 http://www.ads.tuwien.ac.at/w/Research/Problem Instances.

http://www.ads.tuwien.ac.at/w/Research/Problem_Instances
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Table 1. Objective values over 50 instances for each category, where “s” denotes the
number of stacks and q the occupancy rate; all stacks have maximum height 4. “avg”
denotes the average objective value and “std” the standard deviation over all solved
instances in the category. “sol” is the number of instances solved per category.

s q 2D-LPFH Pilot 2D-LPFH 5min MMAS

avg std sol avg std sol avg std sol avg std sol

4 50 % 5.92 ±1.861 50 6.440 ±2.168 50 5.86 ±1.784 50 5.68 ±1.634 50

6 50 % 11.20 ±2.955 50 11.04 ±2.523 50 10.54 ±2.367 50 10.36 ±2.371 50

8 50 % 16.88 ±2.512 50 16.94 ±2.645 50 15.18 ±2.067 50 14.86 ±2.232 50

10 50 % 23.30 ±3.046 50 22.94 ±3.040 50 20.38 ±2.221 50 20.08 ±2.311 50

12 50 % 29.46 ±3.309 50 29.20 ±3.676 50 25.36 ±2.562 50 25.54 ±2.667 50

14 50 % 36.24 ±2.911 50 37.26 ±3.573 50 31.74 ±2.465 50 31.74 ±2.732 50

6 75 % 29.18 ±4.839 28 27.28 ±5.163 32 24.76 ±4.513 34 24.65 ±4.478 34

8 75 % 43.19 ±5.497 36 39.21 ±5.292 38 34.17 ±3.946 46 32.36 ±3.275 42

10 75 % 59.81 ±5.849 37 53.79 ±5.910 43 47.47 ±5.358 45 44.57 ±4.217 44

12 75 % 72.18 ±8.314 34 68.23 ±8.026 43 58.77 ±5.704 47 55.93 ±4.763 46

14 75 % 85.10 ±8.837 31 79.16 ±6.109 38 71.07 ±4.729 42 68.57 ±5.735 42

3. 2D-LPFH 5-min: the 2D-LPFH run sequentially for the same time as the
MMAS, returning the best found result; same configuration as the 2D-LPFH

4. MMAS: the Max-Min Ant System with n = 8, α = 1, β = 2 and the 2D-
LPFH as the heuristic function.

6.1 Results

Table 1 shows the detailed results for all four approaches: the average objective
value (number of moves) for each instance category, the standard deviation, and
the number of solved instances. We first see that the MMAS mostly provides
the best results, closely followed by the 2D-LPFH with a 5-minute runtime. The
third best results come from the Pilot method, followed by the single-run 2D-
LPFH. This is clearly illustrated in Fig. 4, where the average objective is shown
for each solving approach for both occupancy rates, clearly demonstrating that
the MMAS provides the best results.

Furthermore, we observe in Table 1 that all approaches managed to solve all
q = 50% instances. For the q = 75% categories, we notice that the MMAS and
extended run time 2D-LPFH solved almost the same number of instances with
the extended run time 2D-LPFH in a slight lead. They are followed by the Pilot
method and 2D-LPFH.

Note that the Pilot method, as well as the single-run 2D-LPFH only take
several milliseconds, while the MMAS and 2D-LPFH take 5 min to run, so we
do expect the latter approaches to provide better results. Using only the average
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Fig. 4. Average number of moves per category for best algorithm configurations split
by occupancy rate. Values for q = 0.50 are shown on the left and q = 0.75 on the right.

number of moves and number of solved instances, the MMAS and extended run
time 2D-LPFH are the overall best performing test cases. We confirmed this
conclusion using the Wilcoxon Paired Rank Sum test.

Due to space constraints only the most interesting results are included in this
section. For further experimental results and analysis please refer to [1].

7 Conclusions

In this work, we presented a novel challenging problem: the two-dimensional
pre-marshalling problem (2D-PMP). This problem is an extension of the well
studied NP-hard pre-marshalling problem (PMP). The 2D-PMP occurs in small
to medium-sized container terminals and is characterized by complex side con-
straints imposed by the reach stackers used for moving containers to ships. These
side constraints make it difficult to apply existing approaches for the PMP to
the 2D-PMP.

We first extended an existing PMP construction heuristic, the LPFH, to
consider the additional constraints and came up with 2D-LPFH. For obtaining
better solutions, we further integrated it in two metaheuristics: a Pilot method
and a novel Max-Min Ant System (MMAS) approach. The MMAS approach
yielded in our tests mostly the best solutions. Also, we observed that by using
2D-LPFH as a heuristic, the MMAS and Pilot method are able to solve instances
that the 2D-LPFH is not capable of solving itself.

Applying a MMAS approach to this kind of problem is rather unconventional.
In fact, for the classical PMP, no ACO-based approaches have been published so
far. However, for the 2D-PMP that incorporates complex side constraints that
are cumbersome to express, MMAS could be shown to be an amenable solving
approach, since the specialized pheromone model can guide the ants effectively.
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This demonstrates how problems that are difficult to model can be solved effec-
tively by a learning-based algorithm such as Ant Colony Optimisation.

For future work it appears interesting to study further variants and refine-
ments of 2D-LPFH,’ alternative metaheuristics, as well as A∗ or IDA∗ search and
constraint programming techniques for solving small 2D-PMP instances exactly.
Possibly look into adapting work from [11].
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Abstract. We investigate per-instance algorithm selection techniques
for solving the Travelling Salesman Problem (TSP), based on the two
state-of-the-art inexact TSP solvers, LKH and EAX. Our comprehensive
experiments demonstrate that the solvers exhibit complementary perfor-
mance across a diverse set of instances, and the potential for improving
the state of the art by selecting between them is significant. Using TSP
features from the literature as well as a set of novel features, we show
that we can capitalise on this potential by building an efficient selec-
tor that achieves significant performance improvements in practice. Our
selectors represent a significant improvement in the state-of-the-art in
inexact TSP solving, and hence in the ability to find optimal solutions
(without proof of optimality) for challenging TSP instances in practice.

1 Introduction

The travelling salesman problem (TSP) is arguably the most prominent NP-
hard combinatorial optimisation problem. Given a set of n locations – which, by
convention, are called cities – and pairwise distances between those cities, the
objective in the TSP is to find the shortest round-trip or tour through all cities,
i.e., a sequence in which every city is visited exactly once, except for the last city,
which is the same as the first, and the sum of the distances between successively
visited cities along the tour is minimal. Here, we consider the 2D Euclidean TSP
in which the cities correspond to points in the Euclidean plane and the distances
between them are simply the Euclidean distances between those points. This is
the most commonly studied special case of the TSP, and, like the general TSP,
it is known to be NP-hard. The Euclidean TSP has important applications (e.g.,
in the fabrication of printed circuit boards) and also arises in the context of
various transportation and logistics applications.

There are two types of TSP algorithms: exact algorithms, which are guar-
anteed to find an optimal solution to any TSP instance and, when run to com-
pletion, produce a proof of optimality; and inexact algorithms, which cannot
guarantee or prove the optimality of the solutions found. Intriguingly, the state
©
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of the art for both types of algorithms has been defined by a single solver each
for many years: the exact solver Concorde [1] and the inexact solver LKH [4].
Furthermore, LKH typically finds high-quality and even optimal solutions much
more quickly than Concorde, and therefore, for the purpose of finding such solu-
tions, per-instance algorithm selection techniques (see, e.g., [8]) were inapplicable
to the TSP.

Recently, however, an improvement in the state of the art in inexact TSP
solving in the form of a new evolutionary algorithm, EAX, has been reported
[13], and from the performance comparison against LKH, it appeared possi-
ble that per-instance selection between those two solvers might yield further
improvements.

In this work, we pursue this possibility and show, for the first time, that
per-instance algorithm selection techniques can be used to improve the state of
the art in inexact TSP solving. After providing some preliminary information
about the TSP solvers, benchmark instances and algorithm selection techniques
we use in our study in Sect. 2, we report performance results for LKH and EAX
that clearly indicate the potential benefit of per-instance algorithm selection
(Sect. 3). Next, we report the performance that can be obtained from actual
algorithm selectors, using broad sets of instance features from the literature
[6,12,15,19] (Sect. 4). Finally, we demonstrate how an effective selector can be
constructed based on a small number of efficiently computable probing features
extracted from the initial phase of EAX runs (Sect. 5), before concluding with
some general observations and directions for future work.

2 Background and Experimental Setup

TSP Solvers. We consider two state-of-the art inexact TSP solvers in this
work: LKH [4] and EAX [13].

LKH is a stochastic local search algorithm based on the Lin-Kernighan pro-
cedure. It uses an improved variant of the Lin-Kernighan algorithm, based on
5-exchange moves in combination with a construction procedure loosely related
to the nearest neighbour heuristic. LKH has defined the state of the art in inexact
TSP solving since it was first introduced in 2000.

Besides the reference implementation of LKH, we used a modification of
version 1.3, developed in the context of a study of LKH’s scaling behaviour [9].
This modification adds a simple dynamic restart mechanism to the original LKH
algorithm, based on the observation that the performance of the former suffered
frequently from stagnation of the underlying stochastic search process. We dub
this variant LKH+restart.

EAX is a recently introduced evolutionary algorithm for inexact TSP solv-
ing. Its key ingredient is a new edge assembly crossover procedure, which obtains
1 A similar modification can in principle be applied to the current version 2.0.3 of

LKH, but as we will see, the performance of version 1.3, for which the modification
was made available to us, is sufficient to obtain better performance than EAX in
many cases.
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high-quality tours by combining edges from two parent tours with a small num-
ber of new, short edges. EAX uses 2-opt local search to determine the initial
population, as well as a specific tabu search procedure for generating offspring
from very high-quality parent solutions. Furthermore, an entropy-based mech-
anism is used to preserve diversity in the population of candidate solutions.
A rather complex combination of termination criteria is used to determine when
a run of EAX is ended, at which point the best tour encountered during the run
is returned. Nagata and Kobayashi [13] provide empirical evidence that EAX
often, but not always, outperforms LKH on several sets of commonly studied
Euclidean TSP instances in terms of the solution qualities reached within simi-
lar or shorter running times.

We modified the official implementation of EAX to permit setting the ran-
dom seed (which had previously been fixed to one value) and to terminate when
a given solution quality or bound in running time is reached (or exceeded).
These modifications were necessary to facilitate our comparative performance
analysis and did not compromise performance. During initial experiments, we
noticed that EAX often terminates prematurely. We therefore created two vari-
ants, which we studied in the following. The first, simply dubbed EAX, disables
the original termination criterion and ends a run only when a given solution
quality or bound in running time is reached (or exceeded). We verified that sin-
gle runs of this variant performed no worse than the original version of EAX.
Our second variant uses the original termination criterion to trigger a restart,
by initialising another run; this is done until a given solution quality or bound
in running time is reached (or exceeded). We dub this variant EAX+restart.

Benchmark Instances. Consistent with other work in this area, we use four
types of benchmark instances.

Random uniform Euclidean (RUE) instances are obtained by placing n points
uniformly at random in a square, with integer coordinates between 1 and 1 000 000;
each point corresponds to a city to be visited. Distances between these cities are
defined as Euclidean distances between the respective points, rounded to the near-
est integer. We generated instances with 1 000, 1 500, and 2 000 cities, 1 000 each.
After filtering the instances that no solver could solve within 1 CPU hour on our
reference machine and instances for which features could not be computed because
the computation ran out of memory, we were left with 999 instances with 1 000
cities, 1 000 with 1 500 cities, and 998 with 2 000 cities. The RUE instances used in
our experiments were generated using the portgen generator from the 8th
DIMACS Implementation Challenge. Optimal solution qualities for all RUE
instances were obtained using Concorde [1].

TSPLIB is a widely used collection of TSP instances with different charac-
teristics, including instances from various applications of the TSP. In our exper-
iments, we used 74 instances with edge types EUC 2D, CEIL 2D and ATT and
sizes between 48 and 11 849. Again we excluded instances that no solver was able
to solve within 1 CPU hour on our reference machine and instances for which
we were unable to compute features.
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Finally, we used two sets of instances from the TSP webpage at http://
www.math.uwaterloo.ca/tsp/index.html. The National instances are based on
the locations of cities within different countries, and we used 8 National instances
with 734 to 9 882 cities. The VLSI instances stem from an application in VLSI
circuit design, and we used 27 VLSI instances with 662 to 2 924 cities. These
instances are known to be particularly hard for many TSP solvers, including
Concorde and EAX.

We limited our study to instances for which the optimal solution is known,
since we were interested in the ability of our solvers to find optimal solutions and
in the time required for doing so. This is the most ambitious goal for any TSP
solver, and even though inexact solvers, such as the ones we consider here, cannot
prove optimality, they are typically able to find solutions whose optimality is later
proven using other methods much more effectively than the best exact solvers.

Automated Algorithm Selection. The per-instance algorithm selection prob-
lem [16] involves selecting from a set of candidate algorithms the one expected
to perform best on a given problem instance. It is relevant where algorithm port-
folios [3,5] are employed – instead of tackling a set of problem instances with
just a single solver, a set of them is used with the best being selected for each
instance.

Algorithm selection systems build performance models of the algorithms or
the portfolio they are contained in to forecast which algorithm to use in a par-
ticular context. Usually, these models are induced using machine learning. Using
the model predictions, one or more algorithms from the portfolio are selected to
be run sequentially or in parallel.

Here, we consider the case where exactly one algorithm is selected for solving
the problem. One of the most prominent and successful systems that employs
this approach is SATzilla [20], which defined the state of the art in SAT solv-
ing for a number of years. Since then, additional algorithm selection systems
have been developed and proved their worth in the annual SAT competition
(e.g. CSHC [10], which has also been applied to MaxSAT). Other successful
application areas have been constraint solving [14], continuous black-box opti-
mization [2,11], mixed integer programming [21], and AI planning [18].

The interested reader is referred to a recent survey [8] for additional infor-
mation on algorithm selection.

Construction and Evaluation of Algorithm Selectors. In the following, we
use the LLAMA algorithm selection toolkit [7], version 0.7.2, to build algorithm
selectors for the TSP and consider a range of different approaches to algorithm
selection used in the literature. We build models that treat algorithm selection
as a classification problem and predict the algorithm to use. We furthermore build
models that use regression to predict the performance of the individual algorithms
in the portfolio separately and choose the algorithm with the best predicted perfor-
mance. Finally, we consider models that, for each pair of algorithms, use regression
to predict the performance difference between them. The solver with the largest
performance improvement over all other algorithms is chosen.

http://www.math.uwaterloo.ca/tsp/index.html
http://www.math.uwaterloo.ca/tsp/index.html
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In addition to a range of algorithm selection models, we also consider a range
of different machine learning techniques. For classification, we use C4.5 decision
trees (J48), random forests (RF), and recursive partitioning trees (RPART). For
regression, we consider random forests (RF), support vector machines (KSVM),
and multivariate adaptive regression spline (MARS) models. All machine learn-
ing models were used with their default parameters.

We generally consider the portfolio that contains all four solvers – LKH
and EAX as well as their respective restart variants. From our original set of
instances, we selected all that at least one of these solvers was able to find
the optimal solution for within the specified cutoff time of one hour. We also
filter instances for which we were unable to compute feature values because the
computation ran out of memory or unsupported constructs in the input. This
leaves us with a total of 3 106 instances.

We use 10-fold cross-validation to determine the performance of the algorithm
selection models. The entire set of instances was randomly partitioned into 10
subsets of approximately equal size. Of the 10 subsets, 9 were combined to
form the training set for the algorithm selection models, which were evaluated
on the remaining subset. This process was repeated 10 times for all possible
combinations of training and test sets. At the end of this process, each problem
instance in the original set was used exactly once to evaluate the performance
of the algorithm selection models.

Execution Environment and Performance Measurement. All experi-
ments were run on 24-core 2.5 GHz Intel XEON machines with 64 GB of RAM
running CentOS 6.4 64 Bit. We measured execution times using the time com-
mand and limited the CPU time of solvers with the runsolver tool [17] where
necessary. We set the cutoff time to 3 600 CPU seconds. We ran each solver 10
times on an instance with different random seeds and took the median of the
results.

The mean PAR10 score over all instances is 2 062.15 for LKH, 422.48 for
LKH+restart, 11 462.98 for EAX, and 104.01 for EAX+restart. The PAR10
score is the penalized average runtime. That is, if the solver chosen for the
respective instance was able to solve it within the cutoff time of one hour,
the actual runtime is the score. Otherwise, we penalise the solver by multiplying
the cutoff time by a factor of 10.

3 Potential for Portfolios

Figure 1 shows scatter plots of the CPU times on our benchmark sets of TSP
instances for the four inexact TSP solvers we considered in our study. It is obvious
that there is substantial potential for algorithm selection – the solvers show very
different behaviour on different sets of instances. There are many instances with
large performance differences; in particular, many instances are easily handled
by one solver, while the other times out after an hour.
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Fig. 1. Performance differences for EAX and LKH (left) and the respective restart
variants (right). Each point represents a problem instance. The axes show the CPU
time consumed by the respective solver as the median over 10 runs on a log scale. Both
solvers exhibit the same performance for points on the diagonal line. The points at the
top and right of the plots represent instances on which one of the solvers timed out,
the instances in the top right corner could not be solved by either of the solvers.

The RUE instances (triangles), which comprise the vast majority of our
instance set, are clustered in the centers of the plots – most of them can be
solved by all solvers, and often there are only small performance differences.
Still, there are a few instances that at least one of the solvers cannot solve
within the time limit of one CPU hour. The TSPLib instances are more varied.
While most of them are easily solvable within a few seconds by all solvers, a
few are very hard for one solver, but easily solvable by another. The VLSI and
National instances are in between very easy and very hard.

The left hand side of Fig. 1 shows that there is a large set of instances that
EAX is unable to solve within the time limit. However, the right hand side,
which compares the restart variants of the solvers, shows that EAX+restart is
able to solve the vast majority of these instances within the time limit. This
suggests that EAX+restart effectively improves over plain EAX; further analy-
sis of the performance correlation between the two variants indicates potential
for automated selection between those. Similar observations apply to LKH vs.
LKH+restart.

While in general solving times tend to increase with instances size, the solver
behaviour is not completely consistent with the size of the problem instances.
For example, there is a large number of relatively small instances on which EAX
times out after an hour. Similarly, there are small instances where LKH exhibits
the same behaviour. This suggests, consistent with earlier work on performance
modelling of TSP solver performance (e.g. [6]) that more information is required
to forecast solver behaviour.

We note that, as can be clearly seen from Fig. 1 and from the performance of
the single and virtual best solvers shown in Table 1, by simply running the algo-
rithms we consider (and in particular: LKH+restart and EAX+restart) in paral-
lel, an improvement can be achieved over the single best solver (EAX+restart),
and hence over the current state of the art in incomplete TSP solving.
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4 Building Algorithm Selectors Using Features
from the Literature

There are several approaches in the literature that attempt to characterise TSP
instances by computing features. We focus on the two presented in [12] and [6] ,
as they comprise a large set of syntactic and dynamic features, and consider them
in isolation as well as combined with each other. As mentioned above, the cost of
computing the feature values can play a major part in the success of an algorithm
selection system. We therefore split the feature set described in [6] further into
relatively cheap features and the full set of features that in addition comprises
more expensive characteristics and ones that are computed through probing.

We denote the feature set described in [12] TSPmeta and the one from [6]
UBC. Based on these, we use the following four sets of features in our experi-
ments.

UBC (cheap) The feature set from [6] without the more expensive features, in
particular, the local search, branch and cut, and clustering distance features
(13 features). The mean time of computing this set of features was 0.98 s per
instance, with the median at 0.97 s (standard deviation 0.42).

UBC The full feature set from [6] (50 features). The mean time of comput-
ing this set of features was 20.71 s per instance, with the median at 16.47 s
(standard deviation 46.36).

TSPmeta The full feature set from [12] (64 features). The mean time of com-
puting this set of features was 33.61 s per instance, with the median at 28.51 s
(standard deviation 39.47).

UBC ∪ TSPmeta The union of UBC and TSPmeta (114 features). Some of
the features in the constituent sets contain the same information.

An additional set of features based on k-nearest neighbour analysis has been
introduced very recently in [15]. These features will be included in future studies.

4.1 Results

The results we achieve with the feature sets described above are detailed in
Table 1 (we report PAR10 scores over the union of our four benchmark sets).

We are able to improve upon running the single best solver (EAX+restart)
only in two cases overall. All other selectors are (sometimes much) worse than
simply choosing the single best solver statically. In particular, the classification-
based models exhibit very bad performance. The regression-based models per-
form much better, in particular, the random forest and MARS models.

To what extent these results are caused by the cost of computing the features
becomes clear when examining the results that ignore this cost, presented in
Table 2. While the differences for the classification-based models are relatively
2 http://cran.r-project.org/web/packages/tspmeta/index.html.
3 http://www.cs.ubc.ca/labs/beta/Projects/EPMs/TSP features UBC2012.tar.gz.

http://cran.r-project.org/web/packages/tspmeta/index.html
http://www.cs.ubc.ca/labs/beta/Projects/EPMs/TSP_features_UBC2012.tar.gz
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Table 1. Summary of algorithm selector results using sets of features from the litera-
ture. The numbers represent mean PAR10 scores, including the cost of feature compu-
tation, over the entire set of instances and rounded to two digits. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

UBC (cheap) UBC TSPmeta UBC ∪ TSPmeta

Virtual best 18.52

Single best 104.01

Classification J48 3077.42 3725.07 3773.81 3542.36

RF 2676.62 2176.89 2312.16 2252.69

RPART 1931.51 1580.83 1628.55 1612.98

Regression RF 119.96 126.40 151.20 158.14

MARS 95.88 223.23 204.23 204.97

KSVM 295.76 911.49 3906.04 2140.11

Regression pairs RF 144.48 139.35 151.50 170.33

MARS 95.08 138.87 208.21 205.86

KSVM 345.48 850.06 1733.45 1948.49

small, there are major changes for the random forest and MARS regression
models.

The cost of computing the probing features can be substantial; this can be
seen, e.g., when comparing the performance of the random forest regression
model with the TSPmeta feature set without costs (118.57) with the performance
including the overhead (151.20). The average cost of computing this feature set
is almost twice as large as the average PAR10 score of the virtual best solver.

Figure 2 (right) shows the performance of the best overall model, MARS
regression on pairs of solvers trained using the UBC (cheap) feature set, com-
pared to the single best solver. There is a large number of instances where the
solver the selector chooses is better than the single best (points below the diag-
onal); in particular, there are 3 instances where the single best solver times
out (right margin of plot), while the selector chooses a solver that does not.
There are, however, a significant number of instances where the choice made
by the selector is incorrect, and EAX+restart exhibits better performance than
the chosen solver. In particular, there are two instances that are easy for the
single best solver, while the solver chosen by the selector times out (top margin
of plot). Unsurprisingly, as can be seen when comparing the left and right plots
in Fig. 2, the cost of feature computation mainly affects selector performance
on easy instances. Detailed inspection of our results indicates that on struc-
tured TSP instances, the selector tends to achieve more substantial performance
improvements than on RUE instances.

Additionally, we performed forward feature selection, where we start with an
empty set and repeatedly add the feature that gives most additional information,
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Table 2. Summary of algorithm selector results using features from the literature. The
numbers represent PAR10 scores over the entire set of instances without taking the cost
for feature computation into account and rounded to two digits. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

UBC (cheap) UBC TSPmeta UBC ∪ TSPmeta

Virtual best 18.52

Single best 104.01

Classification J48 3076.55 3696.60 3734.90 3495.63

RF 2675.73 2148.12 2271.91 2194.63

RPART 1930.59 1551.95 1597.61 1553.29

Regression RF 119.00 106.40 118.57 106.00

MARS 94.91 192.36 171.74 152.90

KSVM 294.80 892.43 3867.60 2069.93

Regression pairs RF 143.52 119.86 118.87 118.19

MARS 94.10 107.93 175.72 154.00

KSVM 344.52 831.01 1702.98 1877.95
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Fig. 2. Algorithm selector performance for the best model trained with features from
the literature without and with taking feature costs into account (left and right plot,
respectively) – in both cases, the best model was MARS regression on pairs of solvers
with the UBC (cheap) feature set. The x-axis shows the log PAR10 score of the single
best solver, the y-axis the log PAR10 score of the selector. Each point represents a
TSP instance. Points on the diagonal indicate that the selector chose the single best
solver, below the diagonal that the selector chose a better solver than the single best.

based on entropy and correlation on the full feature set UBC ∪ TSPmeta to
determine the features that are most important for determining the solver to run.
No cost-sensitive feature selection strategy was applied (we plan to improve on
this approach in future work). The resulting set included eight features from [6]
(the mean and standard deviation cluster distances, the average tour cost from
the construction heuristic, the skew of the probability of edges in local minima,
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the time required for the local search probing feature computation, the maximum
depth, the median and standard deviation of the distances of the minimum
spanning tree) and one from [12] (the fraction of nodes on the convex hull).

We also performed feature selection on the features used by the best overall
model, MARS on pairs of solvers with the UBC (cheap) feature set. Just a single
feature was chosen, the average length of the minimum spanning tree.

While feature selection was able to improve the performance slightly in some
cases, selectors trained on the reduced feature set showed worse performance in
other cases. There is significant overlap in the type of features computed in the
UBC and TSPmeta feature sets, which may explain the inconsistent results we
achieved with feature selection. All results reported in this paper are without fea-
ture selection, as feature selection does not significantly and consistently improve
the results and increases the conceptual complexity of selector construction.

5 Building Algorithm Selectors Using EAX Probing
Features

In the previous sections, we have shown that there are significant complemen-
tarities in performance between the four solvers we consider and therefore signif-
icant potential for algorithm selection to improve the current state of the art in
TSP solving. Using features described in the literature, we can already achieve
a significant performance improvement over the single best solver on our set
of instances. In this section, we investigate whether we can improve on this by
using a different, novel set of features.

As explained earlier, there is a trade-off between the cost of computing the
features characterising a TSP instance and the information obtained through
them. In particular, computing the features that cannot be determined directly
from the description of the instance itself is expensive, but does help learn better
algorithm selection models.

In this section, we propose a new set of features that allows us to investigate
the trade-off of cost of feature computation vs. information in a much more fine-
grained and principled manner. We harness one of the solvers from our portfolio
and analyse its progress when run for a small amount of time. We can control the
amount of time directly – the longer the solver is run, the more information we
get, but the more expensive the feature computation becomes. This information
is then used to derive novel features.

Our single best solver, EAX+restart, provides the user with a trace of its
execution as it progresses through the different generations. For each generation,
the evolutionary algorithm outputs the best and average tour length found over
the individuals of the current population. This gives an indication of how the
solver progresses. By comparing the tour lengths of successive generations to the
initial one, we get information on how quickly the solver is able to improve on
initial solutions.

We consider the information obtained during the first n generations. Each
best and average tour length is normalised by the best and average tour lengths
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of the initial population to obtain the improvement over these. We compute
the minimum, maximum, mean, and median of both best and average improve-
ments over the n generations. As the solving trajectory varies between different
executions, we compute the median values of these numbers over m runs of
EAX+restart with different random seeds.

This feature computation can be seen as a pre-solving step, during which we
are running the actual algorithm used to find a solution. If the solver finds the
solution during the first n generations, no further work needs to be done. Pre-
solving is an effective means of quickly solving easy instances without incurring
the overhead of feature computation costs. It is used with great success in the
SATzilla system [20] for example.

5.1 Determining the Number of Generations and Probing Runs

We first investigated the impact of the parameters n and m on selector per-
formance. The results of these preliminary experiments were somewhat incon-
clusive, but led us to choose n = 10 generations and m = 1 algorithm run for
computing our probing features. This keeps the cost of feature computation low,
while still providing us with valuable information that can be used effectively to
decide which solver to use.

The results vary not only with n and m, but also between different probing
runs. As our probing algorithm is stochastic, we obtain different feature values
for different random seeds. The resulting performance differences can be quite
high, especially for easy instances that are solved almost instantaneously if the
solver starts its search process with a good set of initial tours. This means that
not only the computed feature values, but also the cost of feature computation
is different for different runs. This introduces additional stochasticity and noise
into our evaluation.

We therefore average feature costs and values over 10 independent algorithm
runs with different random seeds, and the results reported below are averages
over those runs. In each of these runs, we extract the features as described above
and build and evaluate the models. Averaging the results in this manner makes
our conclusions statistically more robust.

The mean cost of computing this set of features (mean over all instances
that are not solved during feature computation, and median over 10 independent
runs per instance) is 2.81 s, and the mean number of presolved instances over all
independent runs is 26.60, all from TSPLIB.

5.2 Results

In the subsequent evaluation, we focus on the approaches that we have identified
as the most promising in the previous experiments, namely random forest and
MARS models for regression and regression on pairs of algorithms. Table 3 shows
the results we were able to achieve with selectors using only our new features. The
overall best model is random forest regression and achieves better performance
than the single best solver on average.
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We note that the performance of the virtual best solver is very slightly worse
than that observed in our experiments from Sect. 4, although the difference is
less than the two significant digits we round to. This is because for the instances
that are solved during feature computation, we take the runtime of the solver
used to compute those features, even though a different solver may be faster.

The selector performance obtained using our new models is worse than the
single best solver when taking into account the full cost of feature computation;
however, because of the nature of our new probing features, this is not necessary:
If the solver used for the feature computation is chosen as the solver to be run
on the given TSP instance, the features are obtained at no additional cost, by
simply continuing the probing run. The performance results for this ‘accelerated’
feature computation are shown in the third column of Table 3.

On average over all probing runs with different random seeds, the selectors
trained using the new features perform worse than the selectors trained using
features from the literature. However, there are clear indications for potential
to obtain much better performance. In Table 3, we report, in parentheses, the
first quartiles of the distributions of mean PAR10 scores over the 10 independent
runs per TSP instance. According to these results, the MARS models for pairs
of solvers, using our new probing features, can yield better performance than
any of the models we have studied previously, using instance features from the
literature.

The performance variation between the 10 independent runs underlying the
results in Table 3 is quite high, considering the relatively small difference in per-
formance to the single best algorithm; for our accelerated random forest models
and our accelerated MARS models for pairs of solvers, we observe standard devi-
ations of 21.77 and 28.09, respectively. The best performance achieved over the
10 independent runs is up to ≈30 % better than that of the single best solver.
While these results indicate the potential inherent in our new probing features,
statistically robust ways to exploit this potential will be investigated in future
work.

Figure 3 illustrates the performance of our new algorithm selectors, based on
EAX probing features, in more detail. In contrast to the situation when using
features from the literature, illustrated in Fig. 2, we are now able to match the
performance of the single best solver for the vast majority of easy instances.
This is in part due to the fact that the very easy instances are now solved during
feature computation. Furthermore, there are no more cases where our selector
chooses a solver that times out while the single best solver does not. On the con-
trary, there are three instances where the single best solver times out, but our
selector chooses a solver that does not. This fact further illustrates the potential
of our new probing features, which enable us to make better predictions, espe-
cially in extreme cases, where incorrect decisions are particularly detrimental.

When comparing the left- and right-hand plots in Fig. 3, we see the impact of
the feature computation costs. There is no difference in the top and right-hand
parts of the plots, as the instances in these areas take longer to solve, and the
time for feature computation is insignificant. In the centre part, however, a small
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Table 3. Summary of algorithm selector results using our new EAX probing features.
The numbers represent the mean of the mean PAR10 scores over the entire set of
instances (including the ones solved during feature computation) and 10 independent
runs per instance, rounded to two digits. The numbers in parentheses represent the
first quartiles over ten independent runs. The ‘accelerated’ column denotes the average
PAR10 score where the cost of computing the features was added only if the chosen
solver was different from the one used for computing those features. We show the scores
for the virtual best and single best solver for comparison. The scores for the models
that are better than the single best algorithm are shown in bold face.

Without costs With costs Accelerated

Virtual best 18.52

Single best 104.01

Regression RF 103.42 (95.04) 106.24 (97.86) 103.83 (95.46)

MARS 126.20 (116.93) 129.02 (119.73) 126.53 (117.24)

Regression pairs RF 128.74 (119.76) 131.56 (122.58) 129.28 (120.27)

MARS 107.13 (85.91) 109.95 (88.74) 107.51 (86.30)
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Fig. 3. Algorithm selector performance for the best model trained with the new EAX
probing features, random forest regression, without (left) and with (right) feature cost,
where in the latter case, the ‘accelerated’ feature computation method was used. The
x- and y- axes show the log PAR10 scores of the single best solver and the selector,
respectively. Each point represents one TSP instance. Points on the diagonal correspond
to cases where the selector chooses the single best solver, and points below the diagonal
to cases where the selector chooses a solver with even better performance for that
instance.

shift of points towards the top of the plot can be observed – there is no shift
to the right, as the single best solver can be determined statically and does not
require features. Easy instances are not affected as much, as the solver used to
compute the probing features is also chosen as the solver to continue solving.

Since our use of EAX probing features effectively combines feature computa-
tion with presolving, we see considerable benefits over other algorithm selection
approaches for relatively easy instances. With further optimised feature compu-
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Table 4. Summary of algorithm selector results using the combined set of all features
from the literature and our own. The numbers represent the mean of the mean PAR10
scores over the entire set of instances (including the ones solved during feature com-
putation) and all 10 random seeds rounded to two digits. The numbers in parentheses
are the first quartiles over 10 independent runs. The ‘accelerated’ column denotes the
average PAR10 score where the full cost of computing the features was added only if
the chosen solver was different from the one used for computing those features. If the
same solver was chosen, only the cost for the features not derived during the probing
run was added. We show the scores for the virtual best and single best solver for com-
parison. The scores for the models that are better than the single best algorithm are
shown in bold face.

Without costs With costs Accelerated

Virtual best 18.52

Single best 104.01

Regression RF 103.89 (95.93) 163.16 (161.73) 160.76 (159.32)

MARS 216.89 (190.69) 277.84 (260.15) 275.73 (257.83)

Regression pairs RF 125.73 (119.59) 180.63 (174.48) 178.29 (172.13)

MARS 159.13 (145.45) 221.65 (210.95) 219.41 (208.64)

tation and presolving strategies, it should be possible for the selector to focus
on improving performance on difficult instances and thus to obtain additional
overall performance improvements.

5.3 Combining with Features from the Literature

As we have seen above, our new features have the potential to give rise to better
selectors than those obtained by using only features from the literature. For our
final set of experiments, we combined the feature sets from the literature with
our new EAX probing features to assess whether this could result in even better
selectors.

Table 4 shows the performance results for selectors using the combined set
of features. Overall, when accounting for the cost of determining the features,
performance is worse than for the individual sets in isolation. This is mostly
caused by the high cost of feature computation. However, even when ignoring this
cost, the selectors do not perform better than before. In particular, while the best
selector achieved performance similar to the single best algorithm on average,
it appears to be unable to capitalise on the additional information contained in
the larger feature set. We believe that the redundant information contained in
the set of all features has a detrimental effect on selector performance.

6 Conclusions

The Travelling Salesman Problem is one of the most iconic NP-hard optimisation
problems. It has been extensively studied over the years, and many approaches
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for solving it have been developed. Until recently, a single solver, LKH, has
defined the state of the art for inexact TSP solving. With the recent introduction
of a new state-of-the-art inexact TSP algorithm, EAX, this picture has changed.

In this work, we have extensively studied the empirical performance of LKH,
EAX, and improved variants of these base solvers on a large set of TSP instances
ranging from trivial to hard. We have demonstrated the huge potential for algo-
rithm selection in this context. We then successfully applied algorithm selection
techniques to improve the state of the art in inexact TSP solving.

On the large set of instances we consider in this paper, we have computed
features defined in the literature. We empirically investigated how informative
these features are with respect to choosing the best solver for a specific instance.
The initial results are very encouraging. Even with features that are relatively
cheap to compute, we are able to build algorithm selection models that outper-
form the current state of the art – the single best solver over the entire set of
instances, EAX+restart.

Motivated by this observation, we proposed a new set of features based on
information gleaned from the execution trace of one of the solvers in our portfolio.
Controlling the trade-off between the amount of information and the cost of
computing it, we were able to show that the quality of the selector can improve
significantly over selectors that use existing features. Our approach to feature
computation combines the extraction of instance characteristics with presolving,
which has the additional benefit that trivial instances are solved during this
phase and the selector does not have to consider them.

In future work, we will further investigate our new EAX probing features,
with the goal of obtaining additional, statistically robust performance improve-
ments. We will also endeavour to add additional features and investigate the
impact of cost-sensitive feature selection methods. Our data is available on
the Algorithm Selection Benchmark Repository ASlib (http://aslib.net, beta
datasets) as scenario TSP-LION2015.
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Abstract. The Multiple Knapsack Assignment Problem (MKAP) is an
extension of the Multiple Knapsack Problem, a well-known NP-hard
combinatorial optimization problem. The MKAP is a hard problem even
for small-sized instances. In this paper, we propose an approximate app-
roach for the MKAP based on a biased random key genetic algorithm.
Our solution approach exhibits competitive performance when compared
to the best approximate approach reported in the literature.

1 Introduction

The Multiple Knapsack Assignment Problem (MKAP) is presented by Kataoka
and Yamada [7] as an extension of the well-known Multiple Knapsack Problem
(MKP). In the MKAP, we are given a set of items N = {1, ..., n}, each item
having a profit and a weight, and a set of knapsacks M = {1, ...,m}, where
each indivual knapsack has a given capacity. The items may be packed into m
knapsacks considering that the items are divided into K mutually disjoint subsets
of items Nk (k = 1, ...,K), where N =

⋃K
k Nk, nk := |Nk|, and n =

∑K
k nk.

The goal of this problem is to determine the assignment of knapsacks to each
subset, and fill the knapsacks with the items belonging to those subsets in such
a way that the profit of picked items is maximized.

As discussed in [7], the MKAP is NP-hard, since the special case of K = 1
is a MKP. Thus, the MKAP may require expensive computational effort when
using exact approaches. Therefore, the usage of approximate algorithms, such as
Genetic Algorithms (GAs), for finding high-quality solutions is advisable. GAs
are known as bio-inspired algorithms (see Holland [6], Goldberg [4]) that use
the concepts of biological evolution and survival of the fittest for (hopefully)
obtaining optimal or near optimal solutions in optimization problems.

The contributions of this paper are, on the one hand, to propose a Biased
Random Key Genetic Algorithm (BRKGA) approach for solving the MKAP.
As indicated by Forrest [3], a domain independent problem representation is
not always successful on hard optimization problems and a combination with
domain-specific knowledge is advised. Thus, we combine the method with a

©
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domain specific solver for the MKP proposed in the related literature by Pisinger
[8]. Through the computational experience reported in this work, we have verified
that our algorithm reports high quality solutions in terms of objective function
value and short computational times. In this regard, on average, it exhibits a bet-
ter performance than the best approximate algorithm proposed in the literature
(with respect to the quality of the solutions).

The remainder of this paper is organized as follows. Section 2 describes the
BRKGA proposed to solve the MKAP. Afterwards, Sect. 3 is devoted to analyse
the performance of our algorithm over problem instances proposed in the related
literature. Lastly, Sect. 4 provides the main conclusions extracted from the work
and suggests several directions for further research.

2 Biased Random Key Genetic Algorithm

One of the major drawbacks of GAs is the difficulty to maintain the feasibility of
solutions from parents to offspring. Moreover, another drawback is the possible
need of specialized representations for each problem variation. To overcome these
difficulties, Bean [1] introduced the concept of random keys. A random key is a
real-valued number in the interval [0, 1] and a solution is a random key vector
sampled from the [0, 1]n space, where n depends on the optimization problem
considered. The points in this space are mapped and associated to the solution
space of the optimization problem via a deterministic procedure called decoder.
It is a deterministic algorithm that takes as input a random key vector and
returns a feasible solution of the optimization problem along with its objective
function value.

The idea of the BRKGA [2,5] extends this concept in the way the crossover
is performed. That is, given an elite population, for generating the offspring,
BRKGA selects one parent from the elite population and the other parent from
the rest of the population. Moreover, in the crossover process, for giving more
probability to the elite parent genes, a biased coin favoring the elite parent is
tossed, so the child would have more probability of inheriting the keys of its elite
parent. This strategy implies an implicit learning from the best solutions along
the generations.

In the BRKGA, we have a fixed-size population, Pop, consisting of |Pop|
individuals, where each individual is a sequence of randomly generated numbers
(random keys) in the real interval [0, 1]. Through a deterministic procedure,
termed as decoder, a vector of random keys r is translated to a solution of the
optimization problem at hand with a fitness value f(r) for that vector. At each
iteration of the algorithm, the population is partitioned into a smaller set Pope
of elite individuals and a larger set Popc with the remaining individuals of Pop.
The evolutionary process within BRKGA is as follow. First, all elite individuals
are copied, without change, to the population of the next generation. Then, a
set Popm of mutant individuals, generated in the same way as an individual
of the initial population is inserted into the population of the next generation.
Finally, the rest of the population is filled with the offspring obtained through
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a parametrized uniform crossover with a crossover probability ς. This crossover
follows an elitist strategy, i.e., one parent from Pope and one from Popc are
selected at random. For a detailed explanation the reader is referred to [5].

Next we specify the BRKGA for the MKAP. That is, we describe the con-
figuration of the initial population, the way in which the solutions are encoded,
the decoding process and the stopping criterion of the BRKGA for the MKAP.

Initial Population: The initial population is composed of |Pop| chromosomes,
each randomly generated and satisfying the feasibility criteria imposed by the
problem.

Coding: The solutions for the MKAP are encoded with an n-dimensional array
R = (r , ..., rn), where n is the number of knapsacks. Each component ri (i =
1, ..., n) is a real number in the interval [0, 1].

Decoding: In the decoding process, a random key vector is mapped in the
solution space of the MKAP. Each random key, R, is used to determine the
assignment of knapsacks to groups. For this purpose, the interval [0, 1] is equally
divided into the number of groups, resulting in K subintervals corresponding to
each group. If a random key value is found in one of these intervals, then the cor-
responding knapsack is assigned to that group. Once we assign each knapsack to
a group, we solve K MKPs. In doing so, we use a truncated version of the exact
algorithm proposed by Pisinger [8]. The reduced version of this recursive branch
and bound allows us to provide high-quality solutions in shorter computational
times than the complete exact approach. The reduced version differs from the
complete version in that it avoids to check the bound again when a feasible solu-
tion is obtained, and hence, the recursive part of the algorithm is avoided. Note,
that this version does not guarantee the optimality of the solutions provided.

Furthermore, it should be mentioned that the truncated algorithm is used to
solve the K reduced problems. In this sense, we may delimit two procedures that
are used together but for different decisions, namely one is used for assigning
knapsacks to groups and the other to determine how to fill those knapsacks.
Therefore, the performance of the complete solution approach proposed in this
work should be assessed as a whole.

3 Computational Results

The proposed optimization technique has been implemented in C++ and exe-
cuted on a computer equipped with an Intel 3.16 GHz and 4 GB of RAM. By
preliminary experiments, we identified the following parameters. A population,
Pop, consisting of 20 individuals is used, within which an elite population, Pope,
of 3 and a mutation population, Popm, of 3 individuals are considered. The
crossover rate, ς, is set to 0.8. Furthermore, regarding the termination criterion,
a maximum number of 200 generations or 20 generations without improvement
of the best solution found is established.

To assess our algorithm, we use a representative group of the set of instances
from the benchmark suite proposed by [7]. In this regard, we selected those
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Table 1. Average computational results provided by BRKGA for the instances sets
proposed by [7]. Best values are given in bold.

Gurobi [7] Heuristic [7] BRKGA

K m n Obj. Time (s.) nopt Obj. Gap (%) Time (s.) Obj. Gap (%) Time (s.)

2 10 20 7134.40 0.03 10 6596.90 7.47 < 1 7134.40 0.00 0.05

40 15378.80 371.22 9 15062.80 2.05 < 1 15375.30 0.08 0.02

60 23163.30 1200.00 0 23018.80 0.62 < 1 23194.00 -0.13 0.14

20 20 4150.30 0.00 10 3799.60 7.53 < 1 4150.30 0.00 0.06

40 14891.90 0.77 10 14252.20 4.32 < 1 14849.60 0.18 0.29

60 23098.00 943.53 3 22478.10 2.68 < 1 23054.90 0.19 0.29

5 10 20 6978.50 0.02 10 5766.40 17.25 < 1 6977.60 0.01 0.14

40 15146.60 8.10 10 14273.60 5.75 < 1 15083.00 0.17 0.42

60 23006.10 1116.37 1 22483.50 2.27 < 1 22949.90 0.24 0.23

20 20 4150.30 0.02 10 3579.80 12.91 < 1 4150.30 0.00 0.10

40 14781.30 0.45 10 12677.40 14.19 < 1 14643.10 0.29 0.93

60 22932.80 780.47 4 21369.30 6.82 < 1 22754.20 0.78 0.30

Avg 14567.69 368.41 7.25 13779.87 6.99 < 1 14526.38 0.15 0.25

sets that are difficult to be solved by their heuristic in terms of solution quality.
Each set is composed of 10 instances each. Furthemore, the computational results
presented from [7] were conducted on a computer with CPU: Xeon X5482 Quad-
Core × 2 3.20 GHz × 2, RAM: 64 GB.

Table 1 shows the average computational results provided by (i) a general
purpose solver, Gurobi taken from [7], (ii) the best approximate approach for
this problem, Heuristic (see [7]; this method consists of various components
including a greedy approach appended by local search with lagrangian relaxation
plus solving some MKP), and (iii) our approach, the BRKGA. The first columns
correspond to the size of the instance set. Since all the sets are composed of 10
instances each, in the table we report average values. Additionally, we include
the number of optimal solutions, nopt, Gurobi reached for each instance set as
reported in [7]. Concerning the computational performance of Heuristic, the
authors only reported that they are below 1 second.

As can be checked in Table 1, the computational results indicate that BRKGA
presents a competitive performance in terms of, both, computational time and
solution quality. It requires, on average, about 0.25 seconds to provide a high-
quality solution (about 0.15 % gap). Moreover, our proposed approach, in
comparison with Gurobi and Heuristic, shows a better performance in terms
of computational time. Regarding, the quality of the solutions BRKGA provides
better quality solutions than Heuristic in terms of objective function value. On
the other hand, when compared to Gurobi, BRKGA provides slightly worse qual-
ity solutions. Nevertheless, it should be noted that for the instance set (K=2,
m=10 and n=60) BRKGA reports a better performance than Gurobi, this is due
to the fact that Gurobi reaches the time limit.
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4 Conclusions and Further Research

In this work, a Biased Random Key Genetic Algorithm for solving the Multiple
Knapsack Assignment Problem is proposed. From the computational experi-
ments it can be deduced that our algorithm provides high quality solutions in
terms of objective function value and short computational times. In this regard,
on average, it exhibits a better performance than the best approximate algorithm
reported in the literature.

Despite the fact that additional experimentation is still needed, our results
point out that the BRKGA is a suitable method for solving the MKAP. In
this regard, a more detailed analysis of our algorithm and its capability for
learning from the best solutions within its crossover strategy will be a topic
for more indepth investigation. We also strive to use a matheuristic approach
for solving the MKAP based on ideas from the POPMUSIC approach [10] or
the corridor method [9]. For this purpose it might be interesting to check for the
effect of rearranging the constraints of a standard mathematical formulation for
the MKAP.
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Abstract. In this article, we propose to apply a hybrid method called
DYNAMOP (DYNAmic programming using Metaheuristic for Optimiza-
tionProblems) to solve theUnitCommitmentProblem(UCP).DYNAMOP
uses a representation based on a path in the graph of states of dynamic pro-
gramming, which is adapted to the dynamic structure of the problem and
facilitates the hybridization between evolutionary algorithms anddynamic
programming. Experiments indicate that the proposed approach outper-
forms the best known approach in literature.

1 Introduction

DYNAMOP is a hybrid method that has been introduced in [1] and applied to
a hydro scheduling problem with success. The main idea of DYNAMOP is to
use a genetic algorithm (GA) to run though a graph of states defined as in the
dynamic programming (DP) method [2]. The GA handles solutions modeled as
paths in the graph of states of DP from the initial state to one terminal state.
Then a genotype is a valid sequence of states in which a gene is a state and the
objective is to find the shortest path. This choice of representation facilitates
the proposition of some intelligent evolutionary operators using DP.

In this paper DYNAMOP is applied to solve the Unit Commitment Prob-
lem (UCP) [3]. The UCP is a strategic optimization problem in power system
operation. The task is to schedule the generating units on-line or off-line over
a scheduling horizon. The objective is to minimize the power production cost
with the load demand fully met and the operation constraints satisfied. It is a
problem that has been extensively studied. Especially with methods based on
DP (i.e. [4,5]) and metaheuristics [3,6–9].

Applying DYNAMOP to the UCP has several motivations. Firstly, the rep-
resentation used in DYNAMOP can be interesting for a problem such as UCP.
Indeed, the representation used in the most of the proposed metaheuristics is a
binary vector or a binary matrix, giving the on/off scheduling of each unit, so
the neighborhood of a solution is the set of solutions whose representation differs
only by one bit. However, there is a high dependence between the decision vari-
ables: a unit has to stay turned on or off a minimal time and the production cost

c© Springer International Publishing Switzerland 2015
C. Dhaenens et al. (Eds.): LION 9 2015, LNCS 8994, pp. 223–228, 2015.
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depending on how long a unit stays in the same state. With this representation,
the neighborhood of a good solution could contain a lot of bad solutions and
conversely the neighborhood of a bad solution could be interesting to explore.
This is called the “problem of bad locality property” as defined in [10]. But the
representation proposed in DYNAMOP helps mitigate this problem. Indeed, the
neighborhood of a path consists of paths sharing a maximum number of edges
with this path, as the fitness function is the sum of the edges values, it implies
a positive impact on the locality property. Secondly, the choice of UCP, a well
studied problem, will help evaluate the quality of DYNAMOP.

In the following section, the UCP is explained in details. Then, DYNAMOP
and its application to the UCP are explained. Finally, our results are compared
to the best results found in literature and in conclusion we discuss the potential
of this method and future perspectives.

2 Unit Commitment Problem

UCP is to schedule generating units on-line or off-line over a scheduling horizon.
UCP is usually modeled as a mixed integer non-linear problem. It consists of
binary variables ui,t that take value 1 if a unit i is turned on at time t and 0
otherwise, and continuous variables pi,t that denote their production amounts.
The objective is to minimize the cost of production. This production cost is
divided into two components, the fuel cost (FC) and the start up cost (CS). For
a system of N units and a time horizon of T periods, the objective function can
be described as follows:

f(u, p) =
T∑

t=1

N∑

i=1

[FCi(pi,t) × ui,t + CSi(T off
i,t−1) × (1 − ui,t−1)ui,t],

where:

– FCi is the fuel cost function of the unit i, modeled by a quadratic function.
– CSi is the start-up cost for unit i, which depends on T off

i,t−1, which is the time
the unit i has been turned off at time t − 1:

CSi(T off
i,t−1) =

{
CScold if T off

i,min + Tcs,i ≤ T off
i,t−1

CShot else
,

where T off
i,min + Tcs,i is the time it takes the unit i to become cold.

The minimization of the objective is subject to the following system and unit
constraints:

1. Power Balance Constraints:
N∑

i=1

pi,tui,t = Dt ∀t

where Dt is a real number giving the load demand at time t.
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2. Unit Output Constraints:

pi,min × ui,t ≤ pi,t ≤ pi,max × ui,t ∀t, i,

where pi,min and pi,max are the lower and upper bounds on the energy pro-
duction of unit i respectively.

3. Spinning Reserve Constraints:

N∑

i=1

pi,maxui,t ≥ Dt + Rt ∀t

where Rt is a real number giving the minimal reserve at time t.
4. Minimum Uptime Limit:

T on
i,t−1 ≥ T on

i,min × (1 − ui,t)ui,t−1 ∀t, i,

where T on
i,t−1 is the time from which the unit i is turned on at time t − 1 and

T on
i,min is the minimal time during which unit i has to stay turned on.

5. Minimum Downtime Limit:

T off
i,t−1 ≥ T off

i,min × (1 − ui,t−1)ui,t ∀t, i,

where T off
i,t−1 is the time from which the unit i is turned off at time t − 1 and

T off
i,min is the minimal time during which unit i has to stay turned off.

3 DYNAMOP

In this section we explain how DYNAMOP is applied to the UCP.

Representation: The main idea of DYNAMOP [1] is to use a hybrid GA to
find the shortest path in the graph of states of a DP problem. The GA handles
solutions modeled as paths in the graph of states of DP from the initial to
the terminal state. A genotype is a valid sequence of states, in which a gene
is a state. In the case of the UCP, a state is characterized by a time period
and for each unit if it is turned on or off, and for how long. In practice, a
state is represented by an integer vector St = (St,i)i, with (St,i) ∈ �−T off

i,min −
Tcs,i, T

on
i,min� − {0}. St,i is negative if the unit i is turned off at time t, positive

else. The absolute value of St,i gives the time for which the unit remains turned
off or on. If St,i=T on

i,min/(T off
i,min + Tcs,i) it is that the unit i is turned on/off for

at least T on
i,min/(T off

i,min + Tcs,i) hours. To be valid, a sequence must be such that
it is possible to pass from a state to the next one while respecting the time
constraints.

Evaluation: The fitness function is the sum of the edges values. The value
of an edge St−1 → St is the fuel cost generated in St plus the start up cost
generated by moving from St−1 to St. To compute this value, it is necessary
to solve a dispatching problem. This problem is to determine which quantity
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is produced by which turned on unit of production, such that the constraints
(1,2,3) are met, and the production cost is minimized. It is solved using the
λ-iteration method [11]. As the fitness function is separable with to the edges,
a Δ-evaluation is applied. After applying the evolutionary operators, only the
values of the modified edges are computed.

Mutation: The mutation proposed in DYNAMOP randomly chooses a state
and replaces it by another state. This new state is linked to the current path
by modifying the minimum number of its edges. More precisely in the case of
the UCP if (St)t is mute on k into S∗

k , S∗
k is attached to (St)t in considering the

unit one by one: For each unit it is to find the maximum j < k such that it is
possible to reach S∗

k,i from Sj,i and the minimum l > k such that it is possible
to reach Sl,i from S∗

k,i. The way to go from Sj,i and S∗
k,i then from S∗

k,i to Sl,i

is uniquely defined.

Crossover: Crossover constructs a new path by introducing a portion of the
path of one parent into the path of another parent. After having selected a
portion of the path in one parent, the idea is to attach this portion to the path
of the other parent by using a minimum number of edges (composing transition
paths). The advantage is that the fitness of the obtained offspring is the sum
of the values of the portion of paths from both parents plus the values of the
transition paths. Then, as the transition paths are constructed to be as small as
possible, this leads to good inheritance properties [10] at the phenotypic level.
The crossover process is illustrated in Fig. 1. The two crossover points are the
states with thick borders.

Fig. 1. Illustration of crossover: recombine the two parents using two transition paths.

Intelligent Mutation: The idea of this mutation is to construct a corridor
around the considered path and to replace the path by the best path found (by
DP) in this corridor. This is exactly a step of Discrete Differential Dynamic
Programming methodology [12] which is a hybridization between DP and local
search, which has been generalized in [13] to a hybridization between local search
and any method. Here a corridor is constructed by fixing the scheduling for some
units.

Boosting Crossover: P 1 = (S1
t )t and P 2 = (S2

t )t are crossed as follows: Let
(ti)i the increasing serie of the locus of the common states of P 1 and P 2. The off-
spring is composed of the best sub-paths between (S1

t )ti≤t<ti+1 and (S2
t )ti≤t<ti+1 .
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Table 1. Results and comparison with the best known method in literature

N DYNAMOP BGA Best known (BK) GAP

Best t (s) Best t (s) Best t (s) BK−DY NAMOP
BK

BK−BGA
BK

10 563 938 11 563 938 32 563 938 19 0.000 % 0.00 %

20 1 123 297 37 1 129 460 97 1 123 003 19 −0.026 % −0.57 %

40 2 242 596 45 2 287 463 358 2 242 167 42 −0.019 % −2.02 %

60 3 360 320 88 3 430 710 677 3 361 980 328 0.050 % −2.04 %

80 4 480 630 133 4 891 180 795 4 481 860 113 0.027 % −9.13 %

100 5 599 150 166 5 848 670 1514 5 602 039 162 0.050 % −4.40 %

4 Results and Conclusion

First, a sensitivity analysis has been carried out in order to determine the effect
of algorithm parameters. This analysis is performed using Irace [14]. Irace is
a package for R (a statistical software). Its main purpose is to automatically
configure optimization algorithms by finding the most appropriate settings for
an optimization problem using statistical comparisons. The parameters to fix
are the evolutionary operators rates, the population size, and the number of
units that are randomly selected to keep their scheduling fixed in the intelligent
mutation. Once the parameters had been fixed, the performance of the proposed
DYNAMOP method was tested on UCP instances with the number of units from
10 to 100 taken from [6].

Table 1 summarizes the study results. Column “DYNAMOP” shows the
results obtained with DYNAMOP. Column “BGA” shows the results obtained
with a basic genetic algorithm. This algorithm is implemented using ParadisEO
software [15] and parameterized with Irace [14]. Column “Best known” gives
the best result found in literature for each instance. These results come from
methods: [3,7–9]. In each case, the stopping criteria are 100 iterations without
improvement. 20 independent trials are performed for each test case. Columns
“Best” give for each instance the best result obtained over the 20 runs. Columns
“t” give the mean time of convergence. The results given in column “Best known”
are directly taken from the articles, so in this case, the time is for informational
purpose only.

For each case of study, the statistical Friedman test was performed to com-
pare DYNAMOP and BGA and it leads to the conclusion that DYNAMOP
is statistically better with a significance level of 1 %. This can be observed in
the result table. On top of that it can be observed that the convergence of
DYNAMOP is much more faster. It should also be noted that on instances with
many units, DYNAMOP outperformed the results found in literature. In the case
were the best result of literature is better than the one obtained by DYNAMOP,
DYNAMOP is very near to this best. Therefore we can say that the effectiveness
and validity of DYNAMOP have been demonstrated through this application.
On top that DYNAMOP has the advantage to be adaptable to any problem
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which holds Bellman’s property and the proposed idea of representation can be
reused to construct hybridization with a different metaheuristic.

To conclude, we believe that the extension DYNAMOP to stochastic and
multi-objective problems could be an interesting line of research.
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Abstract. Multi-objective evolutionary optimisation algorithms and
stochastic multi-armed bandits techniques are combined in designing sto-
chastic multi-objective multi-armed bandits (MOMAB) with an efficient
exploration and exploitation trade-off. Lower upper confidence bound
(LUCB) focuses on sampling the arms that are most probable to be mis-
classified (i.e., optimal or suboptimal arms) in order to identify the set
of best arms aka the Pareto front. Our scalarized multi-objective LUCB
(sMO-LUCB) is an adaptation of LUCB to reward vectors. Preliminary
empirical results show good performance of the proposed algorithm on a
bi-objective environment.

1 Introduction

Multi-armed bandits [Auer et al., 2002] (MAB) is a machine learning para-
digm used to study and analyse resource allocation in stochastic and noisy
environments. The multi-objective multi-armed bandits (MOMAB) [Drugan and
Nowe, 2013] algorithms areMABswith rewardvectors that import techniques from
multi-objective optimisation for an efficient exploration / exploitation trade-off.
There are important differences between the MOMAB and the standard MAB
algorithms that arise mainly because: (1) there are sets of arms that can be
considered to be the best, i.e. the Pareto front, and (2) the number of arms in
the Pareto front is unknown.

MOMABs are optimisation algorithms that use a dominance relation to
order estimated reward vectors. The goal of multi-objective multi-armed bandits
algorithms is to identify the Pareto front. A main dominance relation that is
imported in MOMABs [Drugan and Nowe, 2013] is the scalarization functions
that transform the reward vectors into scalar rewards using weight vectors.

Section 2 studies the scalarized MOMAB problem with a new formulation of
the scalarized dominance relations for uncertain environments (SDU). SDU is
currently used by stochastic MAB to show that the best arm will be selected
with a certain accuracy. The linear scalarization function weights each objec-
tive from the reward vector and the result is the sum of these weighted values.
Due to its simplicity, linear scalarization is the most popular scalarization func-
tion in designing both multi-objective optimisation and reinforcement learning
algorithms [Roijers et al., 2013].
©
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Section 3 introduces the scalarizedmulti-objective lower upper confidence bound
algorithm (sMO-LUCB). This is a translation of the adaptive sampling algorithm
lower upper confidence bound [Kalyanakrishnan et al., 2012] to reward vectors
and scalarization functions. For each scalarization, each iteration, the arms that
are most probable to be misclassified (optimal or suboptimal arms) are selected.
The algorithm stops when the confidence in arm classification (i.e. suboptimal
and Pareto optimal arms) is high.

In Sect. 4, we test the proposed scalarization based MOMAB algorithm on
a stochastic environment generated with a bi-objective normal distribution.
Section 5 concludes the paper.

2 Scalarized Dominance for Uncertain Environments

Let’s consider, like in the standard definition of MAB, a fixed set of arms I
with cardinality K, where K ≥ 2. The vector reward space is defined as the
D-dimensional hypercube [0, 1]D, where D is the number of objectives. When
an arm i is played, a random vector of rewards is received, one component per
objective. The random vectors have a stationary distribution with support in
the D-dimensional hypercube [0, 1]D but the vector of true expected rewards
μi = (μi , . . . , μ

D
i ) is unknown. At time steps t ,t ,. . ., the corresponding reward

vectors Xt1
i , Xt2

i , . . . are independently and identically distributed according to
an unknown law with unknown expectation vector μi = (μi , . . . , μ

D
i ). Reward

values obtained from different arms are also assumed to be independent. To
bound the performance of MABs, i.e. upper and lower regret bounds, we assume
that the rewards are almost surely bounded random vectors with support belong-
ing to the D-dimensional hypercube [0, 1]D so that we can apply the Hoeffding
inequality. A policy π is an algorithm that selects the next arm to play based on
the list of past plays and obtained reward vectors.

A linear scalarized reward for an arm i is fω(μi) = ω · μi =
∑D

d ωd · μd
i ,

where ω = (ω , . . . , ωD) is weight vector selected from a set of predefined weight
vectors and

∑D
d ωd = 1.

We say that μi is better than μj given a scalarization function fω, iff fω(μj +
εj) < fω(μi − εi). Note that the scalarization of the uncertainty vector εi =
(εi, . . . , εi) for an arm i is equal to the uncertainty in a single objective, εi ←
fω(εi), for any weight vector ω with the sum of weights equal to 1. The linear
scalarization function is also additive, thus fω(μj + εj) = fω(μj) + fω(εj) =
fω(μj) + εj .

If εi = 0, then we obtain the definition of the standard scalarization function,
and, like all single objective functions, usually, there is a single optimal arm for
a scalarization function and that arm belongs to the Pareto front. If εi > 0, then
there could be multiple optimal arms for fω and the number of such arms is not
known beforehand.

Let ω be a scalarization vector with positive weight values in all objectives
ωd > 0. We define an indexing of arms according to their order wrt the scalar-
ization function fω such that

fω(μ̂i ) ≥ fω(μ̂i ) ≥ . . . ≥ fω(μ̂i K )
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By definition, an arm with the j-th index is an ε-optimal arm iff

fω(μ̂i ) − εi < fω(μ̂i j ) + εi j

Let’s consider that are m such ε-optimal arms, {1, . . . , m}. The rest of the arms,
with indexes {m+1, . . . , K}, are suboptimal. Thus, ∀j, m+1 ≤ j ≤ K, we have
fω(μ̂i j )+εi j < fω(μ̂i )−εi . The learner is not aware of the indexing ω(·)
and its goal is to identify all the ε-optimal arms for a given ω.

Table 1. Twenty bi-dimensional reward vectors labelled from 1 to 20. The first ten
ones are labelled from μ∗

1 till μ∗
10 and are Pareto optimal arms, while the last ten ones

are labelled from μ11 till μ20 and they are suboptimal.

μ∗
1 = (0.562, 0.493) μ∗

2 = (0.552, 0.515) μ∗
3 = (0.543, 0.527) μ∗

4 = (0.535, 0.535)

μ∗
5 = (0.525, 0.555) μ∗

6 = (0.523, 0.557) μ∗
7 = (0.515, 0.563) μ∗

8 = (0.506, 0.568)

μ∗
9 = (0.503, 0.571) μ∗

10 = (0.497, 0.573)

μ11 = (0.498, 0.567) μ12 = (0.502, 0.563) μ13 = (0.505, 0.495) μ14 = (0.508, 0.555)

μ15 = (0.512, 0.533) μ16 = (0.514, 0.525) μ17 = (0.522, 0.554) μ18 = (0.531, 0.531)

μ19 = (0.542, 0.523) μ20 = (0.547, 0.513)

Fig. 1. (a) A bi-objective example with ten Pareto optimal arms and ten subopti-
mal arms. (b) Scalarization dominance for uncertain environments on a bi-objective
example with the uncertainty value ε = 5 · 10−4 and 11 scalarization values, where
ω1 = {0.0, 0.1, 0.2, . . . , 0.9, 1.0}.

We identify multiple Pareto optimal arms using multiple scalarization
functions ω.

Example 1. Consider the example from Table 1. Figure 1(a) shows that, when
the standard Pareto dominance relation is considered, there are ten Pareto opti-
mal reward vectors in the Pareto front and ten suboptimal arms. Figure 1(b)
shows the ε - optimal arms for ten scalarization functions, where ε = 5 · 10− .
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There are only 6 arms identified as the best arms, i.e. with the index i(1), and
there is one extra arm identified as second best μ∗, with the index i(2), and
two extra arms identified as the third best μ∗ and μ∗. Note that the number
of ε optimal arms increases for weights vectors with small differences between
weight values meaning that the difference in fitness values is also smaller. In our
example, for ω = 1.0, there is only one ε-optimal arm, whereas, for ω = 0.5,
there are 5 ε-optimal arms.

3 Scalarized Multi-Objective LUCB

Our scalarized MOMAB algorithm’s practical value comes from re-usage of
arm pulls of different scalarization functions. A common approach in multi-
objective optimisation is to consider a fixed set of scalarization functions W ←
{ω , . . . ,ω|W|} that are uniform randomly spread in the weight space in order
to identify multiple Pareto optimal arms. The scalarized MO LUCB algorithm,
sMO-LUCB cf Algorithm 1, is a collection of LUCBs [Kaufmann and Kalyanakr-
ishnan, 2013] with different weight vectors ω ∈ W.

We assume that for each scalarization function ω ∈ W, a single objective
LUCB identifies the best arm within the confidence interval [−ε, ε], where the
confidence value ε decreases with the number of arm pulls. We are interested in
the Pareto front resulting from the reunion of all ε-optimal arms identified by
these scalarization functions. More formally, let I∗

ω be the set of ε - optimal arms
for fω, where the size of I∗

ω is unknown beforehand. The Pareto front I∗ is the
output of sMO-LUCB, cf. Algorithm 1, and I∗ is defined as the non-dominated
Pareto front generated at the reunion of the set of ε-optimal arms I∗

ω, for all
ω ∈ W and δ > 0 the error probability, as before.

Algorithm 1. Scalarized MO LUCB, sMO-LUCB

Require: A fixed set of weight vectors W
Require: Accuracy ε, error probability δ > 0

Initialisation: Pull once all arms i ∈ I;
Compute the critical arms uω (1) and �ω (1), ∀ω ∈ W;
I∗

ω (1) ← ∅ and compute the difference Bω (1)
while maxω∈W Bω (1) > ε do

Set υ(n) ← arg maxω∈WBω (n);
Pull the critical arms uυ (n) and �υ (n);
for all ω ∈ W do

Update the set of ε-optimal arms I∗
ω (n);

Update uω (n), �ω (n), and Bω (n)
end for
n ← n + 1;

end while
Compute the Pareto front I∗ ← ∪ω∈WI∗

ω

return I∗
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Let’s denote the confidence value of arm i for the scalarization function
ω after n arm pulls with εi(n) ←

√
β n,δ

ni
, and β(n, δ) ← log

(
k1K|W|nα

δ

)
+

log log
(

k1K|W|nα

δ

)
an exploration parameter and α a positive scalar value. To

adapt the original exploration parameter of LUCB, we have considered that
Hoeffding inequality and union bound sum up over the number of scalarization
functions.

For each ω, we consider two arms �ω(n) and uω(n) to be critical after n arm
pulls as the arms that are the most likely to be misclassified. Thus,

uω(n) ← arg mini∈I∗
ω
fω(μ̂i) − εi(n)

�ω(n) ← arg maxj /∈I∗
ω
fω(μ̂j) + εj(n)

sMO-LUCB pulls each round the two critical arms u(n) and �(n) and it stops
when

maxω∈WBω(n) < δ

where Bω(n) ← (fω(μ̂�) + ε�(n)) − (fω(μ̂u) − εu(n)). When the critical arms
of the scalarization function ω are pulled, the corresponding difference Bω(n)
decreases with the decrease in confidence values. The next round, another scalar-
ization function with a larger difference between the upper and lower bounds will
be pulled. The algorithm stops when all the scalarization functions have identi-
fied with high confidence the corresponding sets of ε-optimal arms.

Fig. 2. The numerical simulations for: scalarized multi-objective lower upper confi-
dence bound (sMO-LUCB), scalarized successive rejects (sSR), and scalarized upper
confidence bound (sUCB1 ). The scalarized dominance relation has (top) ε = 0.01 and
(bottom) ε = 0.001.
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Consider a set of scalarization functions with the same optimal arm. The
arms pulls’ for one scalarization function will influence, decrease, the confidence
interval of the other scalarization functions with the same optimal value. In the
ideal case, when there is a single scalarization function per Pareto optimum arm,
sMO-LUCB is fair in pulling arms from the Pareto front. Thus, the algorithm is
computational efficient by reusing arm pulls for different scalarization functions.

Unlike for the Pareto version of the MO-LUCB algorithm, the behaviour of
scalarized MO-LUCB cannot be straightforwardly bounded using state of the
art theorems.

The advantage of scalarized LUCB is that the number of scalarization func-
tions |W| can be chosen by the user and thus, the sMO-LUCB algorithm does not
depend on the size of the Pareto front. In addition, sMO-LUCB does not need
to assume that the optimum value of these scalarization functions are evenly
spread over the Pareto front.

4 Preliminary Numerical Simulations

We experimentally compare three performance indexes of three scalarization
MOMAB algorithms: (1) sMO-LUCB, cf. Algorithm 1, and (2) scalarized suc-
cessive rejects sSR from [Drugan and Nowe, 2014], and (3) scalarized UCB1
from [Drugan and Nowe, 2013]. The bi-objective problem from Example 1 is the
test problem, where the mean vector rewards are generated using a bi-objective
normal distribution with variance 0.1. For all algorithms we take 11 scalarization
functions and N = 10 arm pulls for each of the 100 independent runs of the
algorithms, the error probability δ = 0.01 and α = 2. In Fig. 2, we compare the
performance of the three algorithms in terms of: (1) empirical probability of error
in identifying the Pareto front, (2) cumulative Pareto regret [Drugan and Nowe,
2013], and (3) cumulative Pareto variance regret. In the scalarized dominance
relation, we consider ε ∈ {0.01, 0.001}. Figure 2(a) shows that sMO-LUCB has a
lower probability of error than sSR whereas in Fig. 2(d) sSR outperforms sMO-
LUCB. sUCB1 has the largest probability of error. Note the relation between
the performance of the algorithms and their goal. sMO-LUCB and sSR have
the goal of identifying the Pareto front whereas sUCB1 minimizes the Pareto
regret. Therefore, the cumulative Pareto regret, cf Fig. 2(b) and (e) and the
Pareto variance regret Fig. 2(c) and (f), is the smallest for sUCB1. We conclude
that in these preliminary simulations, sMO-LUCB has a low probability of error.

5 Conclusions

This paper translates a successful multi-armed bandits algorithm, i.e. adaptive
sampling, to reward vectors using scalarization functions. sMO-LUCB ’s goal is
to identify the Pareto front with high accuracy. Our preliminary experiments
show good performance for the scalarized MO-LUCB algorithm.
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Abstract. A supervised learning approach to generating composite lin-
ear priority dispatching rules for scheduling is studied. In particular we
investigate a number of strategies for how to generate training data
for learning a linear dispatching rule using preference learning. The
results show, that when generating a training data set from only opti-
mal solutions, it is not as effective as when suboptimal solutions are
added to the set. Furthermore, different strategies for creating preference
pairs is investigated as well as suboptimal solution trajectories. The dif-
ferent strategies are investigated on 2000 randomly generated problem
instances using two different problem generator settings.

When applying learning algorithms, the training set is of paramount importance.
A training set should have sufficient knowledge of the problem at hand. This is
done by the use of features which are supposed to capture the essential measures
of a problem’s state. For this purpose, the job-shop scheduling problem (JSP)
is used as a case study to illustrate a methodology for generating meaningful
training data which can be successfully learned.

JSP deals with the allocation of tasks of competing resources where the
goal is to minimise a schedule’s maximum completion time, i.e., the makespan
denoted C . In order to find good solutions, heuristics are commonly applied
in research, such as the simple priority based dispatching rules (SDR) from [11].
Composites of such simple rules can perform significantly better [6]. As a con-
sequence, a linear composite of dispatching rules (LCDR) was presented in [3].
The goal there was to learn a set of weights, w, via logistic regression such that

h(xj) =
〈
w · φ(xj)

〉
, (1)

yields the preference estimate for dispatching job Jj that corresponds to post-
decision state xj , where φ(xj) denotes its feature mapping. The job dispatched
is the following,

j∗ = arg max
j

{h(xj)} . (2)

The approach was to use supervised learning to determine which feature states
are preferable to others. The training data was created from optimal solutions
of randomly generated problem instances.
©
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An alternative would be minimising the expected C by directly using a
brute force search such as CMA-ES [2]. Preliminary experiments were conducted
in [5], which showed that optimising the weights in Eq. (1) via evolutionary
search actually resulted in a better LCDR than the previous approach. The
nature of the CMA-ES is to explore suboptimal routes until it converges to an
optimal route. This implies that the previous approach, of restricting the training
data only to one optimal route, may not produce a sufficiently rich training set.
That is, the training set should incorporate a more complete knowledge of all
possible preferences, i.e., it should make the distinction between suboptimal and
sub-suboptimal features, etc. This approach would require a Pareto ranking of
preferences which can be used to make the distinction of which feature sets are
equivalent, better or worse – and to what degree, e.g. by giving a weight to the
preference. This would result in a very large training set, which of course could
be re-sampled in order to make it computationally feasible to learn. In this
study we will investigate a number of different ranking strategies for creating
preference pairs.

Alternatively, training data could be generated using suboptimal solution
trajectories. For instance [7] used decision trees to ‘rediscover’ largest processing
time (LPT, a single priority based dispatching rule) by using LPT to create
its training data. The limitations of using heuristics to label the training data
is that the learning algorithm will mimic the original heuristic (both when it
works poorly and well on the problem instances) and does not consider the real
optimum. In order to learn heuristics that can outperform existing heuristics,
then the training data needs to be correctly labelled. This drawback is confronted
in [8,10,15] by using an optimal scheduler, computed off-line. In this study,
we will both follow optimal and suboptimal solution trajectories, but for each
partial solution the preference pair will be labelled correctly by solving the partial
solution to optimality using a commercial software package [1]. For this study
most work remaining (MWR), a promising SDR for the given data distributions
[4], and the CMA-ES optimised LCDRs from [5] will be deemed worthwhile for
generating suboptimal trajectories.

To summarise, the study considers two main aspects of the generation of
training data: (a) how preference pairs are added at each decision stage, and (b)
which solution trajectorie(s) should be sampled. That is, optimal, random, or
suboptimal trajectories, based on a good heuristic, etc.

The outline of the paper is as follows, first we illustrate how JSP can be
seen as a decision tree where the depth of the tree corresponds to the total
number of job-dispatches needed to form a complete schedule. The feature space
is also introduced and how optimal dispatches and suboptimal dispatches are
labelled at each node in the tree. This is followed by detailing the strategies
investigated in this study by selecting preference pairs ranking and sampling
solution trajectories. The authors then perform an extensive study comparing
these strategies. Finally, this paper concludes with discussions and a summary
of main results.
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Table 1. Problem space distributions, P.

Name Size (n × m) Ntrain Ntest Note

Pj.rnd 6 × 5 500 500 Random

Pj.rndn 6 × 5 500 500 Random-narrow

Table 2. Feature space, F .

φ Feature description

φ1 Job processing time

φ2 Job start-time

φ3 Job end-time

φ4 When machine is next free

φ5 Current makespan

φ6 Total work remaining for job

φ7 Most work remaining for all jobs

φ8 Total idle time for machine

φ9 Total idle time for all machines

φ10 φ9 weighted w.r.t. number of assigned tasks

φ11 Time job had to wait

φ12 Idle time created

φ13 Total processing time for job

1 Problem Space

In this study synthetic JSP data instances are considered with the problem
size n × m, where n and m denotes number of jobs and machines, respectively.
Problem instances are generated stochastically. By fixing the number of jobs
and machines while processing time are i.i.d. samples from a discrete uniform
distribution from the interval I = [u , u ], i.e., p ∼ U(u , u ). Two different
processing time distributions are explored, namely Pj.rnd where I = [1, 99] and
Pj.rndn where I = [45, 55] are referred to as random and random-narrow, respec-
tively. The machine order is a random permutation of all of the machines in the
job-shop.

For each data distribution N and N problem instances were generated
for training and testing, respectively. Values for N are given in Table 1. Note,
that difficult problem instances are not filtered out beforehand, such as the
approach in [16].

2 JSP Tree Representation

When building a complete JSP schedule � = n · m dispatches must be made
consecutively. A job is placed at the earliest available time slot for its next
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machine, whilst still fulfilling constraints that each machine can handle, which
is at most one job at each time, and jobs need to have finished their previous
machines according to its machine order. Unfinished jobs, referred to as the
job-list denoted L, are dispatched one at a time according to a heuristic. After
each dispatch, the schedule’s current features are updated based on its resulting
partial schedule. For each possible post-decision state the temporal features, F ,
applied in this study are given in Table 2. These features are based on SDRs
which are widespread in practice. For example if w is zero, save for w = 1, then
Eq. (1) gives h(xj) > h(xi), ∀i which are jobs with less work remaining than
job Jj , namely Eq. (2) yields the job with the highest φ value, i.e., equivalent
to dispatching rule most work remaining (MWR).

Figure 1 illustrates how the first two dispatches could be executed for a 6× 5
JSP with the machines a ∈ {M , ...,M } on the vertical axis and the horizontal
axis yields the current makespan, C . The next possible dispatches are denoted
as dashed boxes with the job index j within and its length corresponding to
processing time pja. In the top layer one can see an empty schedule. In the middle
layer one of the possible dispatches from the layer above is fixed (depicted solid)
and one can see the resulting schedule (i.e., what are the next possible dispatches
given this new scenario?). Finally, the bottom layer depicts all outcomes if job J
on machine M would be dispatched. This sort of tree representation is similar
to game trees [9] where the root node denotes the initial (i.e., empty) schedule
and the leaf nodes denote the complete schedule. Therefore, the distance k from
an internal node to the root yields the number of operations already dispatched.
Traversing from root to leaf node, one can obtain a sequence of dispatches that
yielded the resulting schedule, i.e., the sequence indicates in which order the
tasks should be dispatched for that particular schedule.

However, one can easily see that this sequence of task assignments is by no
means unique. Inspecting a partial schedule further along in the dispatching
process such as in Fig. 1 (top layer), then let’s say J would be dispatched next,
and in the next iteration J . This sequence would yield the same schedule as if
J would have been dispatched first and then J in the next iteration (since these
are non-conflicting jobs). This indicates that some of the nodes in the tree can
merge despite states of the partial schedules being different in previous layers.
In this particular instance one can not infer that choosing J is better and J is
worse (or vice versa) since they can both yield the same solution.

Furthermore, in some cases there can be multiple optimal solutions to the
same problem instance. Hence not only is the sequence representation ‘flawed’ in
the sense that slight permutations on the sequence are in fact equivalent w.r.t.
the end-result, but varying permutations on the dispatching sequence (given the
same partial initial sequence) can result in very different complete schedules
with the same makespan, and thus same deviation from optimality, ρ defined by
Eq. (4), which is the measure under consideration. Care must be taken in this
case that neither resulting features are labelled as undesirable or suboptimal.
Only the resulting features from a dispatch resulting in a suboptimal solution
should be labelled undesirable.
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Fig. 1. Partial Tree for JSP for the first two dispatches. Executed dispatches are
depicted solid, and all possible dispatches are dashed.

The creation of the tree for job-shop scheduling can be done recursively for
all possible permutation of dispatches in the manner described above, resulting
in a full n-ary tree of height � = n · m. Such an exhaustive search would yield
at the most n� leaf nodes (worst case scenario being that no sub-trees merge).
Now, since the internal vertices (i.e., partial schedules) are only of interest to
learn, the number of those can be at the most n�− /n− [12]. Even for small
dimensions of n and m the number of internal vertices are quite substantial and
thus computationally expensive to investigate them all.

1 The root is the empty initial schedule and for the last dispatch there is only one
option left to dispatch, so there is no preferred ‘choice’ to learn.
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The optimum makespan is known for each problem instance. At each time
step (i.e., layer of the tree) a number of feature pairs are created. The feature
pairs consist of the features φo resulting from optimal dispatches o ∈ O k , versus
features φs resulting from suboptimal dispatches s ∈ S k at time k. Note, O k ∪
S k = L k and O k ∩ S k = ∅. In particular, each job is compared against
another job from the job-list, L k , and if the makespan differs, i.e., C

s
�

C
o , an optimal/suboptimal pair is created. However, if the makespan would

be unaltered the pair is omitted since they give the same optimal makespan.
This way, only features from a dispatch resulting in a suboptimal solution is
labelled undesirable.

The approach taken in this study is to verify analytically, at each time step,
whether it can indeed somehow yield an optimal schedule by manipulating the
remainder of the sequence, while maintaining the current temporal schedule fixed
as its initial state. This also takes care of the scenario that having dispatched a
job resulting in a different temporal makespan would have resulted in the same
final makespan even if another optimal dispatching sequence would have been
chosen. That is to say the data generation takes into consideration when there
are multiple optimal solutions to the same problem instance.

3 Selecting Preference Pairs

At each dispatch iteration k, a number of preference pairs are created, which is
then iterated over all N instances available. A separate data set is deliber-
ately created for each dispatch iteration, as the initial feeling is that DRs used in
the beginning of the schedule building process may not necessarily be the same
as in the middle or end of the schedule. As a result there are � linear schedul-
ing rules for solving a n × m job-shop specified by a set of preference pairs for
each step,

S =
{ {φo − φs,+1} , {φs − φo,−1} } ⊂ Φ × Y (3)

for all o ∈ O k , s ∈ S k , k ∈ {1, . . . , �} where Y = {−1, 1} denotes, suboptimal
or optimal preferences, respectively, and φo, φs ∈ Φ ⊂ F are features from the
collected training set Φ. The reader is referred to [3] for a detailed description of
how the linear ordinal regression model is trained on preference set S. Defining
the size of the preference set as l = |S|, then if l is too large re-sampling may
be needed to be done in order for the ordinal regression to be computationally
feasible.

3.1 Trajectory Sampling Strategies

The following trajectory sampling strategies were explored for adding features
to the training set Φ,

Φopt at each dispatch some (random) optimal task is dispatched.
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Φcma at each dispatch the task corresponding to highest priority, computed with
fixed weights w, which were obtained by directly optimising the mean of the
performance measure defined in Eq. (4) with CMA-ES.

Φmwr at each dispatch the task corresponding to most work remaining is dis-
patched, i.e., following the simple dispatching rule MWR.

Φrnd at each dispatch some random task is dispatched.
Φall all aforementioned trajectories are explored, i.e.,

Φall = Φopt ∪ Φcma ∪ Φmwr ∪ Φrnd.

In the case of Φmwr and Φcma it is sufficient to explore each trajectory exactly
once for each problem instance, since they are static DRs. Whereas, for Φopt

and Φrnd there can be several trajectories worth exploring. However, only one is
chosen at random, this is deemed sufficient as the number of problem instances
N is relatively large.

3.2 Ranking Strategies

The following ranking strategies were implemented for adding preference pairs
to S,

Sb all optimum rankings r versus all possible suboptimum rankings ri, i ∈
{2, . . . , n′}, preference pairs are added, i.e., same basic set-up as in [3].

Sf full subsequent rankings, i.e., all possible combinations of ri and ri for
i ∈ {1, . . . , n′}, preference pairs are added.

Sp partial subsequent rankings, i.e., sufficient set of combinations of ri and ri

for i ∈ {1, . . . , n′}, are added to the preference set – e.g. in the cases that
there are more than one operation with the same ranking, only one of that
rank is needed to compared to the subsequent rank. Note that Sp ⊂ Sf .

Sa all rankings, i.e., all possible combinations of ri and rj for i, j ∈ {1, . . . , n′},
i 	= j, preference pairs are added.

where r > r > . . . > rn′ (n′ ≤ n) are the rankings of the job-list, L k , at time
step k.

4 Experimental Study

To test the validity of different rankings and strategies, the problem spaces
outlined in Table 1 were used. The optimum makespan is denoted C , and
the makespan obtained from the heuristic model is C . Since the optimal
makespan varies between problem instances the performance measure is the
following,

ρ =
C − Copt

C
· 100% (4)

which indicates the percentage relative deviation from optimality.
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The preference set, S, across varying trajectories and ranking strategies is
depicted in Fig. 2, where the figure is divided vertically by problem space and
horizontally by trajectory scheme.

A linear ordinal regression model (PREF) was created for each preference
set, S, for problem spaces Pj.rnd and Pj.rndn. A box-plot with the results of per-
centage relative deviation from optimality, ρ, defined by Eq. (4), is presented in
Fig. 3. The box-plots are grouped w.r.t. trajectory strategies and colour-coded
w.r.t. ranking schemes. Moreover, the simple priority dispatching rule MWR
and the weights obtained by the CMA-ES optimisation used to obtain the train-
ing sets Φmwr and Φcma respectively are shown in black in the far left of the
group for comparison. From Fig. 3 it is apparent there can be a performance
edge gained by implementing a particular ranking or trajectory strategy. More-
over, the behaviour is analogous across different disciplines. Main statistics are
reported in Table 3a and b for Pj.rnd and Pj.rndn, respectively. Models are sorted
w.r.t. mean relative error.

Fig. 2. Size of preference set, l = |S|, for different trajectories and ranking strategies
obtained from the training set for problem spaces Pj.rnd and Pj.rndn.

4.1 Ranking Strategies

There is no statistical difference between PREFf and PREFp ranking-models
across all trajectory disciplines (cf. Fig. 3), which is expected since Sp is designed
to contain the same preference information as Sf . The results hold for both
problem spaces.
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Fig. 3. Box-plot of results for linear ordinal regression model trained on various pref-
erence sets using test sets for problem spaces Pj.rnd and Pj.rndn.

Combining the ranking schemes, Sa, does not improve the individual ranking-
schemes as there is no statistical difference between PREFa and PREFb, PREFf

nor PREFp across all disciplines, save PREFcma
a for Pj.rndn which yielded a

considerably worse mean relative error.
Moreover, there is no statistical difference between either of the subsequent

ranking-schemes outperforming the original Sb set-up from [3]. However overall,
the subsequent ranking schemes results in lower mean relative error, and since
a smaller preference set is preferred, it is opted to use the Sp ranking scheme.

Furthermore, it is noted that PREFmwr is able to significantly outperform the
original heuristic (MWR) used to create its training data Φmwr, irrespective of
the ranking schemes. Whereas the fixed weights found via CMA-ES outperform
the PREFcma models for all ranking schemes. This implies that ranking scheme
is relatively irrelevant. The results hold for both problem spaces.

4.2 Trajectory Sampling Strategies

Learning preference pairs from good scheduling policies, as done in PREFcma

and PREFmwr, can give favourable results. However, tracking optimal paths
yield generally a lower mean relative error.
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Table 3. Main statistics of percentage relative deviation from optimality, ρ, defined
by Eq. (4) for various models.

It is particularly interesting there is no statistical difference between PREFopt

and PREFrnd for both Pj.rnd and Pj.rndn ranking-models. That is to say, tracking
optimal dispatches gives the same performance as completely random dispatches.
This indicates that exploring only optimal trajectories can result in a training
set where the learning algorithm is inept to determine good dispatches in the
circumstances when newly encountered features have diverged from the learned
feature set labelled to optimum solutions.

Finally, PREFall and PREFopt gave the best combination for Pj.rnd and
Pj.rndn. However, in the latter case PREFrnd had the best mean relative error
although not statistically different from PREFall and PREFopt.

For Pj.rnd the best mean relative error was for PREFall. In that case adding
random suboptimal trajectories with the optimal trajectories gave the learning
algorithm a greater variety of preference pairs for getting out of local minima.
Therefore, a general trajectory scheme would explore both optimal with subop-
timal paths.

4.3 Following CMA-ES Guided Trajectory

The rational for using the Φcma strategy was mostly due to the fact that a
linear classifier created the training data (using the weights found via CMA-
ES optimisation). Hence the training data created should be linearly separable,
which in turn should boost the training accuracy for a linear classification learn-
ing model. However, this is not the case since PREFcma does not improve the
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Fig. 4. Linear weights (w1 to w13 from left to right, top to bottom) found via CMA-ES
optimisation (dashed), and weights found via learning classification PREFcma

p model
(solid).

original CMA-ES heuristic which was used to guide its training set Φcma. How-
ever, the PREFcma approach is preferred to that of PREFmwr, so there is some
information gained by following the CMA-ES obtained weights instead of simple
priority dispatching rules, such as MWR. Inspecting the CMA-ES guided train-
ing data more closely, in particular the linear weights for Eq. (1). The weights
are depicted in Fig. 4 for problem spaces Pj.rnd (left) and Pj.rndn (right). The
original weights found via CMA-ES optimisation that are used to guide the col-
lection of training data are depicted dashed whereas weights obtained by the
linear classification PREFcma

p model are depicted solid.
From the CMA-ES experiments it is clear that a lot of weight is applied to

decision variable w which corresponds to implementing MWR, yet the existing
weights for other features directs the evolutionary search to a “better” training
data to learn than the PREF models. Arguably, the training data could be even
better, however implementing CMA-ES is rather costly. In [5] the optimisation
had not fully converged given its allocated 288 hrs of computation time.

It might also be an artefact because the sampling of the feature space during
CMA-ES search is completely different to the data generation described in this
study. Hence the different scaling parameters for the features might influence the
results. Moreover, the CMA-ES is minimising the makespan directly, whereas the
PREF models are learning to discriminate optimal versus suboptimal features
sets that are believed to imply a better deviation from optimality later on. How-
ever, in that case, the process is very vulnerable when it comes to any divergence
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from the optimal path. Ideally, it would be best to combine both methodologies:
Collect training data from the CMA-ES optimisation which optimises w.r.t. the
ultimate performance measure used, and in order to improve upon those weights
even further, use a preference based learning approach to deter from any local
minima.

5 Summary and Conclusion

The study presents strategies for how to generate training data to be used in
supervised learning of linear composite dispatching rules for job-shop scheduling.
The experimental results provide evidence of the benefit of adding suboptimal
solutions to the training set apart from optimal ones. The subsequent rankings
are not of much value, since they are disregarded anyway, but the classification
of optimal and suboptimal features are of paramount importance. However, the
trajectories to create training instances have to be varied to boost performance.
This is due to the fact that sampling only states that correspond to optimal or
close-to optimal schedules isn’t of much use when the model has diverged too
far. Since we are dealing with sequential decision making, all future observations
are dependent on previous operations. Therefore, to account for this drawback,
an imitation learning approach by [13,14] could fruitful. In that case, we could
continue with our PREFopt model and collect a new training set by following the
learned policy and use that to create a new model similar to the Φall scheme. In
short, using the model to update itself. This can be done several times until the
weights converge. The benefit of this approach is that the states that are likely
to occur in practice are investigated and as such used to dissuade the model
from making poor choices. Alas, due to the computational cost of collecting the
training set Φ, this sort of methodology isn’t suitable for high dimensionality of
job-shops.

Unlike [8,10,15] learning only optimal training data was not fruitful. How-
ever, inspired by the original work of [7], having heuristics guide the generation
of training data (while using optimal labelling based on a solver) gave mean-
ingful preference pairs which the learning algorithm could learn. In conclusion,
henceforth, the training data will be generated with PREFall

p scheme for the
authors’ future work. Based on these preliminary experiments, we continue to
test on a greater variety of problem data distributions for scheduling, namely job-
shop and permutation flow-shop problems. Once training data has been carefully
created, global dispatching rules can finally be learned with the hope of imple-
menting them for a greater number of jobs and machines. This is the focus of
our current work.

2 Here the tasks labelled ‘optimal’ do not necessarily yield the optimum makespan
(except in the case of following optimal trajectories), instead these are the optimal
dispatches for the given partial schedule.

3 Note, each partial schedule corresponding to a feature in Φ is optimised to obtain
its correct labelling.
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Abstract. In this paper, we present a practical case of the multiob-
jective knapsack problem which concerns the elaboration of the optimal
action plan in the social and medico-social sector. We provide a descrip-
tion and a formal model of the problem as well as some preliminary
computational results. We perform an empirical analysis of the behav-
ior of three metaheuristic approaches: a fast and elitist multiobjective
genetic algorithm (NSGA-II), a Pareto Local Search (PLS) algorithm
and an Indicator-Based Multi-Objective Local Search (IBMOLS).

1 Introduction

During the last decades, combinatorial optimization has received great interest
and takes an important and even strategic place in industrial settings. Multi-
objective metaheuristics have proven their efficiency for solving many practical
problems, which usually consist in handling simultaneously several conflicting
objectives [2].

The aim of this paper is to present a practical problem, proposed by the
company “GePI” which works in the social and medico-social domain. This study
is unique in the sector because even if this sector is increasingly computerized
these last years, it remains among the sectors where optimization is not yet used
as a tool for decision support.

The problem considered in this paper consists in elaborating action plans in
order to improve the overall management of the considered structure. The aim
is to choose a subset of actions among many possible actions while optimizing
several objectives. Each action has a realization cost and can influence other
objectives (positively or negatively). The global cost of the solution should not
exceed a predefined budget. Our problem is a multiobjective knapsack prob-
lem [5,8], which is well known in the literature. The action plan represents the
knapsack and the selected actions represent the items to put in the knapsack
respecting the budget constraint.

The considered problem can include more than one thousand possible actions
and involve up to eight objectives. Here, we are interested in providing efficient
techniques in terms of solutions quality and response time.
©



250 B. Chabane et al.

In the following, a description and a formal model of the problem are first
introduced. Then, the ways of generating problem instances is provided. Next,
we present the first results using three metaheuristic algorithms: PLS (Pareto
Local Search) [7,9], IBMOLS (Indicator-Based Multi-Objective Local Search)
[1] and NSGA-II [4]. Finally, we end with a conclusion and the future work.

2 Problem Modeling and Description

This project is a part of “MSQualité” software developed by the company GePI
which is dedicated specifically to the social and medico-social sector that includes
34000 different structures (rest houses, accommodation and rehabilitation cen-
ters, work-based support centers, etc.) [10]. Even if the use of computer resources
has made considerable progress in recent years in this sector, they are basically
employed for the daily management of the structures. In particular, optimiza-
tion tools are completely absent. In this context of lack of advanced models
and tools, GePI has decided to set up this project to develop a multiobjective
decision support system to assist managers in their action plan elaboration.

We can define an action plan p as a subset of actions selected among a set
of feasible actions A, in order to maximize or minimize a set F of conflicting
objectives. p can be represented by a vector p = (a , a , ..., an) with n equal to
the size of A. ai = 1 if the action ai is selected and ai = 0 otherwise. The set of
the possible action plans (solutions) is denoted by P. The origins of the actions
are either issued from action plans already made in the structure itself or other
similar structures, or are decided by the managers for continuous improvements.

The objectives can be of varied nature, namely qualitative (such as “improve
resident’s quality of life”) or quantitative (such as “increase the resident’s auton-
omy”). In both cases, each objective is represented by an objective function fj

which associates to every action ai ∈A its impact on the objective j.
An action ai ∈ A can have a positive or a negative impact on an objective

fj ∈ F . This impact is evaluated by the function fj(ai) = vij which assigns to
any action ai an integer value vij ∈ [−100,+100] that represents the contribution
of the action ai to the achievement of the objective j (vij > 0) or the degradation
of the action ai for the objective j (vij < 0). vij=0 when the action ai has no
effect on the objective j. Thus, we can associate to each action ai an objective
vector v=(f (ai), f (ai), ..., fm(ai)) with m equal to the number of objectives to
optimize. We define m in the interval [2,8] because in practice, the projects can
have up to eight objectives (otherwise the project management and evaluation
will be difficult).

Considering an action plan p = (a , a , ..., an) ∈ {0, 1}n, the impact that p∗

has on an objective j is obtained by:

1 In social and medico-social structures, a project is defined for a period of five years.
At the sixth year, the evaluation of the project is carried out and the attainment of
each objective is measured. Therefore, the more there are objectives, the more the
evaluation is difficult.
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fj(p) =
n∑

i

aifj(ai) (1)

Thus, an objective vector z = (f (p), f (p), ..., fm(p)) is associated to each solu-
tion p ∈ P . A constraint cj is added for every objective j determining the minimal
threshold accepted for fj . In the following, we consider that all the objectives
must be improved:

fj(p) ≥ cj ≥ 0 (2)

An additional constraint concerns the realization cost of the solution which
should not exceed some budget β fixed by the decision maker. Indeed, each action
ai has a realization cost ωi which can take negative values since there may be
actions with negative cost when it is about selling of objects or services. Actions
with no cost are also to be taken into account. The global cost of a solution p
corresponds to the following cost sum of the actions of p:

⎧
⎨

⎩
W (p) =

n∑

i

aiωi

W (p) ≤ β
(3)

So, the optimization goal aims to find p∗ ∈ arg max
p∈P

F (p) verifying:

⎧
⎪⎪⎨

⎪⎪⎩

p∗ ∈ {0, 1}n

∀j ∈ {1,m}, fj(p∗) ≥ cj
n∑

i

aiωi ≤ β
(4)

Since we deals with a multiobjective case, p∗ is not unique. Instead, we obtain
a set of non-dominated solutions (in Pareto optimality sens). The aim is to
approximate the Pareto front effectively.

3 Instance Generation

Based on the above model, we have randomly generated a number of instances
with different sizes (actions) {50,100,250,500,750,1000} and different number of
objectives m ∈ {2, ..., 8}. We have also generated several partially structured
instances which are more representative of real cases. To be as close as possible
to the real problem, for each objective function, an action has a chance of 50 %
to be neutral, 40 % to have a positive impact and 10 % to have a negative impact.
Moreover, the cost of 40 % of the actions is set to 0. The non-null action values
are uniformly taken from the interval [0,100] (positively or negatively). The non-
null action costs are uniformly taken in the interval [-10000,10000].
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4 Preliminary Results

We have tested, on random instances, three metaheuristic algorithms: NSGA-II,
IBMOLS and PLS. For NSGA-II, we have used a population of size 100, a
mutation probability of 1/n (where n is the number of the actions). The initial
population is generated randomly while verifying that the cost of the individuals
do not exceed the budget β. For IBMOLS, we have used the iterative version
with a population of size 10 (the initial population is generated in the same way
as NSGA-II) and the epsilon indicator as realized in [1] and in [12]. The fitness
of each individual in the population is evaluated, with respect to the rest of the
population, using the following formula:

Iε(P\{x}, x) =
∑

z∈P\{x}
− exp−Iε z,x /k (5)

where k > 0 represents the scaling factor [1] (k is set to 0.01 in our experiments).
NSGA-II is compared with IBMOLS and shows to be inferior to IBMOLS

on the large size problems. Indeed, both algorithms use a bounded population
and the same selection strategy: one random neighbor of each individual of the
current population is selected to be a member of the child population in NSGA-II
or to integrate the current population in IBMOLS.

PLS [7] is used with an archive of unbounded size and an initial population
of one individual. The neighborhood generation is the same as for PLS and
IBMOLS. The ith neighbor of the solution p = (a , a , ..., an) is obtained by
flipping the value of ai and only the neighbors verifying the constraint β are
accepted. The budget constraint β is fixed to one million e for the three methods.

For the quality assessment, we have performed 30 runs of each method to
solve each instance. For IBMOLS and NSGA-II, a run time of n ∗m milliseconds
is used for each run (where n is the number of actions and m is the number of
objectives). But for PLS, the run time is limited to one hour because the size of
the archive and the response time increase exponentially with the instance size,
making PLS inefficient for large size problems. Our experiments are realized on
an Intel core i5-2400 CPU machine with 2 x 3.10 Ghz and 16 Gb of RAM. Then,
we have evaluated our outputs using the R and ε indicators and computed their
average values over the 30 runs for each algorithm and each tested instance.
For the statistical analysis, we have used the Mann-Whitney test. In our experi-
ments, we say that algorithm A outperforms algorithm B if the Mann-Whitney
test provides a confidence level greater than 95 %. To calculate the indicator
values and the Mann-Whitney test, we have used the performance assessment
package (PISA) [6] which is available at: http://www.tik.ee.ethz.ch/sop/pisa/?
page=assessment.php.

Table 1 shows a comparison of NSGA-II and IBMOLS in terms of the mean
values obtained for R and ε indicators over 30 runs, using 30 instances with
different sizes. The first column presents the instance size “m n” where m and n
are the number of objectives and actions respectively. The values in bold mean
that the corresponding algorithm is at least 95 % statistically better than the
other one for the considered instance and indicator.

http://www.tik.ee.ethz.ch/sop/pisa/?page=assessment.php
http://www.tik.ee.ethz.ch/sop/pisa/?page=assessment.php
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Table 1. Comparison of mean values of Iε and IR of IBMOLS and NSGA-II

Instance Iε IR

NSGA-II IBMOLS NSGA-II IBMOLS

2 50 0.520 0.135 0.160 0.030

2 100 0.520 0.135 0.160 0.030

2 150 0.491 0.200 0.159 0.055

2 250 0.521 0.283 0.174 0.074

2 500 0.558 0.358 0.191 0.097

2 1000 0.567 0.306 0.191 0.072

3 50 0.415 0.229 0.112 0.044

3 100 0.412 0.368 0.119 0.096

3 150 0.461 0.386 0.122 0.108

3 250 0.442 0.411 0.108 0.109

3 500 0.451 0.482 0.121 0.143

3 1000 0.480 0.654 0.119 0.086

4 50 0.401 0.398 0.094 0.086

4 100 0.351 0.438 0.083 0.108

4 150 0.451 0.450 0.099 0.133

4 250 0.405 0.537 0.100 0.189

2 500 0.347 0.594 0.089 0.230

4 1000 0.396 0.709 0.085 0.278

5 50 0.364 0.292 0.073 0.047

5 100 0.375 0.459 0.081 0.111

5 150 0.396 0.556 0.092 0.165

5 250 0.316 0.650 0.077 0.246

5 500 0.374 0.700 0.086 0.285

5 1000 0.307 0.788 0.084 0.353

6 50 0.381 0.350 0.091 0.085

6 100 0.267 0.385 0.046 0.084

5 150 0.291 0.564 0.066 0.204

6 250 0.219 0.664 0.042 0.278

6 500 0.336 0.748 0.104 0.368

6 1000 0.199 0.846 0.058 0.459

From Table 1 we can conclude that on the whole NSGA-II is more efficient
on the small instances (instances with 50 actions or no more than 3 objectives)
but IBMOLS performs better than NSGA-II as soon as we exceed 4 objectives.
It still remains that the diversity of the compromise solutions is reduced with
IBMOLS and should be improved.
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5 Conclusion

In this paper, we presented an application of the multiobjective knapsack prob-
lem encountered in the structures of the social and medico-social sector. A formal
model of the problem has been provided. The efficiency of IBMOLS and its supe-
riority to NSGA-II on a large size problems has been shown. However, the epsilon
indicator of IBMOLS does not always maintain naturally the diversity of the
population in the objective space. It should be interesting to consider a modified
version of IBMOLS or to evaluate the effectiveness of other quality indicators.
In [3], the hypervolume contribution indicator has shown a high performance
level and outperforms the Iε indicator on different multiobjective combinatorial
problems. However, it cannot be applied to the present problem since when the
number of objective function is greater than three, the high computational cost
of the hypervolume contribution calculation tends to drastically reduce the con-
vergence speed of the algorithm. An interesting idea should be to consider the
R2 indicator [11], which can be a good trade-off between a reduced computation
cost and an efficient indicator.
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Abstract. This paper addresses the problem of derivative-free multi-
objective optimization of real-valued functions under multiple inequality
constraints. Both the objective and constraint functions are assumed
to be smooth, nonlinear, expensive-to-evaluate functions. As a conse-
quence, the number of evaluations that can be used to carry out the
optimization is very limited. The method we propose to overcome this
difficulty has its roots in the Bayesian and multi-objective optimization
literatures. More specifically, we make use of an extended domination
rule taking both constraints and objectives into account under a unified
multi-objective framework and propose a generalization of the expected
improvement sampling criterion adapted to the problem. A proof of con-
cept on a constrained multi-objective optimization test problem is given
as an illustration of the effectiveness of the method.

1 Introduction

This paper addresses the problem of derivative-free multi-objective optimization
of real-valued functions under multiple inequality constraints:

{
Minimize f(x)
Subject to x ∈ X and c(x) ≤ 0

where f = (fj) ≤j≤p is a vector of objective functions to be minimized, X ⊂ R
d

is the search domain and c = (ci) ≤i≤q is a vector of constraint functions. Both
the objective functions fj and the constraint functions ci are assumed to be
smooth, nonlinear functions that are expensive to evaluate. As a consequence,
the number of evaluations that can be used to carry out the optimization is
very limited. This setup typically arises when the values f(x) and c(x) for a
given x ∈ X correspond to the outputs of a computationally expensive computer
program.

In this work, we consider a Bayesian approach to this optimization prob-
lem. The objective and constraint functions are modelled using a vector-valued
Gaussian process and X is explored using a sequential Bayesian design of exper-
iments approach. More specifically, we focus on the Expected Improvement (EI)
©
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sampling criterion. This criterion was originally introduced in the context of
single-objective, unconstrained optimization [10,13]. It was later extended to
handle constraints [7,16,18,20,21] and to address unconstrained multi-objective
problems [4,9,17,23]. However, to the best of our knowledge, the general case
of a constrained multi-objective problem has only been addressed very recently
by [22]. In their paper, Shimoyama et al. consider three different Bayesian criteria
for unconstrained multi-objective optimization and study the effect of multiply-
ing the criteria by a probability of feasibility in order to handle the constraints.

The approach we propose to handle the constraints is based on an extended
domination rule, in the spirit of [6,15,19], which takes both objectives and con-
straints into account under a unified framework. The extended domination rule
makes it possible to derive a new expected improvement criterion to deal with
constrained multi-objective optimization problems. Section 2 introduces the pro-
posed method, while Sect. 3 presents a proof of concept on a classical test case
from the literature. Results and future works are briefly discussed at the end of
Sect. 3.

2 An Expected Improvement Criterion for Constrained
Multi-objective Optimization

In this section, we present our extended domination rule and introduce a
new expected improvement criterion suitable for constrained and unconstrained
multi-objective problems. The new criterion is equivalent to the original EI on
unconstrained single-objective problems and to Schonlau’s extension to the con-
strained case [21] once a feasible point has been found. It is also similar to the
formulation of [23] for unconstrained multi-objective problems and to that of
[22] in the constrained case once a feasible point has been found. As such, it can
be seen as a generalization of the above-mentioned criteria.

Denote by F ⊂ R
p and C ⊂ R

q the objective and constraint spaces respec-
tively, and let Y = F × C. We shall say that y ∈ Y dominates y ∈ Y, which
will be denoted by y � y , if ψ(y ) dominates ψ(y ) in the usual Pareto sense,
where

ψ : F × C → R
p × R

q

(yf , yc) �→
{

(yf , 0) if yc ≤ 0,

(+∞,max(yc, 0)) otherwise,

In the above system of equations, R denotes the extended real line. For uncon-
strained problems, we simply take the usual domination rule on F. Figure 1
illustrates this extended domination rule in different cases.

Assume now that Y is bounded. Much like [4,17,23], we define the improve-
ment yielded by a new observation as the increase of the dominated hyper-
volume:

IN (xN ) = |HN | − |HN | ,
where HN is the subset of Y dominated by the solutions observed so far
(f(x ), c(x )) , . . . , (f(xN ), c(xN )) and | · | denotes the usual (Lebesgue) volume
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Fig. 1. Illustration of the extended domination rule in different situations. The region
dominated by each point is represented by a shaded area. Darker shades of gray indicate
overlapping regions. (a) Feasible solutions are compared with respect to their objective
values using the usual domination rule in the objective space. (b) Non-feasible solutions
are compared component-wise with respect to their constraint violations using the usual
domination rule applied in the constraint space. (c) Feasible solutions always dominate
non-feasible solutions; other cases are handled as in the first two figures.

measure in R
p q. The corresponding expected improvement criterion can be

written as
EIN (xN ) = EN ((IN (xN ))

= EN

(∫

Y\HN

1ξ xN+1 �y dy

)

=
∫

Y\HN

PN (ξ(xN ) � y) dy

where PN denotes the probability conditional to the observations and ξ is a
vector-valued Gaussian model for (f, c).

Even though the integrand of the EI formula can be readily computed ana-
lytically, its integration is not trivial due to the combinatorial nature of the
problem [2,5,8]. To overcome this difficulty, we propose to use a Sequential
Monte Carlo (SMC) approximation [1,3,11,12]:

EIN (xN ) ≈
n∑

i

wi PN (ξ(xN ) � yi),

where YN = (wi, yi) ≤i≤n is a weighted sample that targets the uniform density
on Y \ HN .
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Fig. 2. Test results on Osyczka and Kundu test problem with, from left to right,
N = 20, 40 and 60 evaluations. Only feasible points are shown on the figures. The
dark dots represent non-dominated observations while the light gray dots represent
dominated ones. The dark curve represents the target Pareto front.

3 Proof of Concept

In this paper, we illustrate the behavior of our new optimization strategy using
the Osyczka and Kundu test problem [14] for constrained multi-objective opti-
mization (d = 6, p = 2, q = 6). The algorithm is initialized using a Latin
Hypercube sample of 18 samples and proceeds using the above mentionned cri-
terion. Figure 2 shows the convergence of the algorithm at different steps of the
optimization.

We are also able to report good results on other challenging test cases
from the literature and future communications will include a comparison of
our method to reference optimization methods. More details about the SMC
procedure will also be proposed.
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Abstract. A method to generate various size tunable benchmarks for
multi-objective AI planning with a known Pareto Front has been recently
proposed in order to provide a wide range of Pareto Front shapes and
different magnitudes of difficulty. The performance of the Pareto-based
multi-objective evolutionary planner DaEYAHSP are evaluated on some
large instances with singular Pareto Front shapes, and compared to those
of the single-objective aggregation-based approach.

1 Introduction

Multi-Objectives Problems (MOP) involves several contradictory criteria to be
optimized. The Pareto Set of a MOP is the set of the best trade-offs between
these objectives, i.e., solutions that cannot be improved w.r.t. one objective
without deteriorating at least another one. The projection of the Pareto Set on
the objective space is called the Pareto Front.

Many benchmark suites exist for continuous multi-objective optimization,
for which the exact Pareto Front can be analytically computed, and with known
difficulties (e.g. dimensionality, shape of the Pareto Fronts, existence of local
Pareto-optima, . . . ). For combinatorial optimization, the situation is not yet
so clear, and whereas there exist famous benchmark problems of all sizes, their
Pareto Fronts are generally not exactly known except the simplest ones (see e.g.,
MOCOLIB at http://www.mcdmsociety.org/MCDMlib.html).

The context of the present work is that of AI planning: a planning domain
D is defined by (i) a set of predicates, that define the state of the system when
instantiated, and (ii) a set of possible actions that can be triggered in states
where their pre-conditions are satisfied, resulting in a new state. A planning
problem instance PD(I,G) is defined on a given planning domain D by a list of
objects, used to instantiate the predicates to define the states, an initial state
I and a goal state G. The aim is to come up with a feasible plan, i.e., a set
of actions that, when applied in turn to the initial state, lead the system to
©
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Fig. 1. A schematic view of a general MultiZenoTravel problem.

the goal state, that is optimal w.r.t. a given measure: the number of actions,
or the total cost of the plan when actions have non-uniform costs, or the total
makespan (total duration of the plan) when actions have durations, and can be
run in parallel, as in the present work.

The present work presents the first results of DaE , an Evolution-
ary Pareto-based multi-objective planner [5] on large instances of MultiZeno-

Travel domain with known Pareto Fronts, as proposed in [6]. The paper is
organized as follows: Sect. 2 introduces the MultiZenoTravel benchmark
suite, and the ZenoSolver algorithm that can derive the true Pareto Front
for these instances. Sample very diverse experimental Pareto Fronts illustrate
its versatility. Experimental results on some of the large MultiZenoTravel

instances obtained by Divide-and-Evolve, the only Pareto-based evolutionary AI
planner to-date [5], are compared with those of its single-objective version using
the weighted sum aggregation on problems with non-convex fronts in Sect. 3.

2 MULTIZENOTRAVEL Benchmarks and ZENOSOLVER

MiniZenoTravel is a simple temporal planning domain related to logistics,
inspired by the well-known ZenoTravel problem of IPC series . It involves
cities, passengers, and planes (see e.g., Fig. 1); Planes can fly from one city to
another when a link exists; Planes fly either empty, or carrying a unique passen-
ger – and these are the only possible actions. In a MiniZenoTravel instance
(Fig. 1), there are n central cities Ci, linked as a clique, and all are linked to
the initial city CI and the goal city CG; the flight durations are di from city
Ci to city CI or CG, and dij between cities Ci and Cj . There are t passengers
and p planes, and all are in CI in the initial state I, and all passengers must be
in city CG in the goal state G. The single objective version aims at minimizing
the total makespan. Previous work [5,7] proposed a multi-objective version of
these benchmarks called MultiZenoTravel, by adding a cost ci for landing
in city Ci: the second objective is to minimize the total cost of the plan. More
recent work [6] extended these benchmarks to problems of various complexity,
and proved that such problems could provide Pareto Fronts of various shapes
and difficulties, thanks to ZenoSolver, an exact Pareto solver.

1 http://ipc.icaps-conference.org/.

http://ipc.icaps-conference.org/
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Table 1. Large instances: parameters and generation statistics.

n t p h

5
2 i

(i mod 2)
10

5
2 i

(i mod 2)
10

√
i i

ZenoSolveris a C++11 software dedicated to generate and exactly solve
MultiZenoTravel instances in cases where di + dj < dij for all (i, j). Firstly,
it allows to tune the problem parameters in order to adjust the difficulty or to
obtain different shapes of Pareto Fronts. In particular, vectors c and d are gen-
erated using two user-defined functions, f and g, such that ci = xcf(i) + yc and
di = xdg(n− i)+yd, ensuring that both objectives are conflicting. ZenoSolver
outputs the corresponding PDDL file (Planning Domain Definition Language, uni-
versally used to describe planning problems), that can be directly used by any
standard AI planner, and computes the true Pareto Front (see all details in [6]).

We identified some large instances with very diverse front shapes and com-
plexities, that could become a basic set of representative instances for Multi-

ZenoTravel, allowing fair comparisons between various solvers and approaches.
Table 1 gives the parameters used by ZenoSolver to build some of them, as well
as some statistics about their complexity: The generating time strongly varies,
from some minutes for Instance 1 up to 51h for Instance 3. The choice of the
generating functions was purely empirical, guided by the fact that we wanted
to obtain mainly piecewise concave fronts with uneven point distributions. This
is why none of these fronts is linear, and most contain concave parts, i.e., parts
where all points are above the segment made of the two extreme points. Unfor-
tunately, this is not obvious on Fig. 2, due to the large scale used here (but see
[6] for some zooms). Note the small number of Pareto points of Instance 4, in
spite of the complexity of this instance (26 persons), due to the small ratio p

t .

3 Multi-objective Experiments

3.1 Divide-and-Evolve

Based on the Divide-and-Conquer paradigm, this generic hybrid evolutionary
approach has been originally introduced in [7]. The main idea to solve a plan-
ning problem PD(I,G) is to find a sequence of states S , . . . , Sn, and to use some
embedded planner to solve in turn the series of planning problems PD(Sk, Sk ),
for k ∈ [0, n] (with the convention that S = I and Sn = G). The generation
and optimization of the sequence of states (Si)i∈ ,n is driven by an evolutionary
algorithm, and each subproblems PD(Sk, Sk ) is handled to an external ‘embed-
ded’ planner. The concatenation of the corresponding plans (possibly with some
compression step) is a solution of the initial problem. A more detailed presenta-
tion is given in [1].
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Fig. 2. Attainment surfaces for the Instances 1, 2, 3 and 4.

3.2 Experimental Conditions

The MOEA used here is IBEAH− [10], the Indicator Base Evolutionary Algo-
rithm [10] using the Hypervolume Difference Indicator, that was demonstrated
the best choice in previous work [5]. DaE internal parameters have been
tuned with ParamILS [3], also using H−. For each instance, 20 independent
runs limited to 5400 s (1800 for instance 4) have been performed. This limit
is arbitrary but early experiments on small MultiZenoTravel instances not
shown here have empirically demonstrated (stagnation of the hypervolume for
all runs) that indeed the algorithm had reached a stationary state within this
limit. All performance assessments and comparisons have been done using the
PISA platform [2].

3.3 DAEYAHSP on Large Instances

Attainment surfaces are displayed on Fig. 2: the darker the region in objective
space, the higher the probability to reach it (full white meaning that none of the
20 runs ever reached it). The attainment surfaces for the Instance 1 are uniformly
distributed close to the true Pareto Front, even though very few Pareto optima
were actually reached. The surfaces for Instances 2 and 3 are much further from
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Fig. 3. Attainment surface for Pareto approach after 900 s and 5400 s (left, center) and
for aggregation after 5400 s (right).

the exact front (only 2 points are found for the Instance 3 out of 383). On the
opposite, even if with a smaller budget, most of the actual Pareto optima are
found for Instance 4, except on the most concave part.

We can notice that, even if n is higher for the Instance 4 than for the Instance 2,
adding planes results here in Pareto front that is easier to reach. This is quite
surprising since the search space for DaE is increasing with p.

3.4 Pareto Vs Weighted Sum Aggregation

Finally, let us have a quick look at some comparative results between the multi-
objective version of DaE and its single-objective version using a weighted
sum of the objectives. The chosen instance is a concave instance with 30 cities
(resulting in a Pareto Front made of 66 points) not displayed here. All experi-
mental conditions are the same than in [4]. One aggregated run amounts to 11
independent runs, the weight α taking values from 0 to 1 by step of 0.1.

The attainment surfaces (Fig. 3) show that in the case of Pareto approach,
the exact Pareto Front is already delineated after 900 s, even considering only
the worst run. On the opposite, even the best of the 20 runs is still far from the
Pareto Front apart from a few points that lie in the convex parts. This trend,
though preliminary here, nevertheless confirms the well-known fact that weight
sum aggregation has difficulties to reach the concave parts of Pareto fronts.
However, using an archive shows that several non-dominated plans where found
all over the Pareto front, strongly reducing the impact of the weight parameter.
We hypothesize that this is due to the highly stochastic nature of YAHSP, that
seems to be able to reach good results without the help of the genetic algorithm:
A single individual can lead to several different objective vectors depending on
YAHSP strategy and random choices. The causality between the good structure
of an individual and its fitness is thus very weak. Further work will study more
deeply this hypothesis, and try to learn the relation between the individual
structure and its ability to provide good plans.

4 Conclusion and Perspectives

This paper has proposed some first experiments with the recently proposed
MultiZenoTravel test suite for multi-objective AI planning [6], where the
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instance generator comes with ZenoSolver, an exact solver that is able to
identify the true Pareto front for even very large instances. The complete code is
publicly available at https://descarwin.lri.fr, making it easy for everyone to gen-
erate his/her own benchmark instances. However, we hope that the few typical
instances that have been provided here, and that exhibit very different shapes of
Pareto Fronts for very different levels of complexity, could be the starting point
for a general benchmark for AI planning.

The results of DaE on some of these instances show the need for further
improvement of the multi-objective search efficiency of MO-DaE. The results
on the aggregation approach raise interesting issues regarding the respective
usefulness of the evolutionary (DaE ) and the AI-planning (YAHSP) parts
of DaE . Further experiments are also needed, in which DaE approach
is used within other state-of-the-art decomposition algorithms (e.g., from the
MOEA/D family [9], or using Tchebychev decomposition), and compared in
detail to other non-Pareto multi-objective planners [8].
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7. Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a new memetic scheme
for domain-independent temporal planning. In: Gottlieb, J., Raidl, G.R. (eds.)
EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)

8. Sroka, M., Long, D.: Exploring metric sensitivity of planners for generation of
pareto frontiers. In: Kersting, K., Toussaint, M. (eds.) 6th STAIRS, pp. 306–317.
IOS Press (2012)

9. Zhang, Q., Hui, L.: A Multi-objective evolutionary algorithm based on decompo-
sition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

10. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
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Abstract. When searching for a maximum clique of a graph using a
branch-and-bound algorithm, it is usually believed that one should min-
imize the set of branching vertices from which search is necessary. It
this paper, we propose an approach called incremental MaxSAT reason-
ing to reduce the set of branching vertices in three ways, developing
three algorithms called DoMC (short for Dynamic ordering MaxClique
solver), SoMC and SoMC- (short for Static ordering MaxClique solver),
respectively. The three algorithms differ only in the way to reduce the
set of branching vertices. To our surprise, although DoMC achieves the
smallest set of branching vertices, it is significantly worse than SoMC
and SoMC-, because it has to change the vertex ordering for branching
when reducing the set of branching vertices. SoMC is the best, because
it preserves the static vertex ordering for branching and reduces the set
of branching vertices more than SoMC-.

1 Introduction

A clique in an undirected graph G = (V,E), where V is a set of n vertices
{v , v , ..., vn} and E is a set of m edges, is a subset C of V in which every two
vertices are adjacent. The maximum clique problem (MaxClique for short) con-
sists in finding a clique of G of the largest size. The size of a maximum clique of
G is usually denoted by ω(G). MaxClique is a very important NP-hard problem,
because it is useful in many real-world applications such as bioinformatics and
fault diagnosis. A huge amount of effort has been devoted to solve it. In this
paper, we focus on exact algorithms for MaxClique based on the Branch-and-
Bound (BnB) scheme.

In order to search for a maximum clique in G, a BnB algorithm typically uses
a heuristic to order vertices of G to obtain an ordering such as v < v < v <
... < vn, and branches on every vertex vi for i = 1, 2, ..., n to recursively search for
a maximum clique containing vi in the subgraph Gi induced by {vi, vi , ..., vn}.
To be efficient, the algorithm maintains a global variable Cmax to denote the
largest clique found so far in G and prunes useless branches in which a clique
larger than Cmax cannot be found. Recent BnB algorithms for MaxClique such

©
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as MCS [5], MaxCliqueDyn [1], and MaxCLQ [3,4] prune useless branches as
follows. They first partition the vertices in G into independent sets D ,D , ...,Dr

(an independent set is a subset of V in which no two vertices are adjacent). Then
if r > |Cmax|, they order the vertices according to their independent set: vi < vj
if vi ∈ Dp and vj ∈ Dq and q < p. In the vertex ordering v < v < ... < vn
obtained in this way, the vertices in the subset Dr ∪ Dr− ∪ ... ∪ D|Cmax| are
the smallest. The algorithms only need to branch on vertices in this subset, since
vertices in D ,D , ..., and D|Cmax| cannot form alone a clique larger than Cmax.

We call branching vertices the vertices that a BnB algorithm needs to branch
on. It is a common practice for a state-of-the-art BnB algorithm to reduce as much
as possible the number of branching vertices by cleverly ordering vertices. For
example, the Re-NUMBER procedure in MCS aims at reducing the number of
branching vertices by re-organizing the independent sets D ,D , ..., and D|Cmax|
to make them accept more vertices. Consequently, the vertex ordering for branch-
ing in the algorithm is dynamic and is different at different search tree nodes.

An exception is the algorithm IncMaxCLQ [2] which uses a static vertex
ordering for branching and needs to branch on all vertices of G. Let vi and vj be
two vertices in G and vi < vj , the static vertex ordering implies vi < vj in any
subgraph of G containing vi and vj and at every search tree node. The static
vertex ordering allows IncMaxCLQ to use an efficient incremental upper bound.

In this paper, we show that deriving the smallest possible set of branching
vertices is not necessarily beneficial, that keeping a static vertex ordering prob-
ably is more important, and that reducing the number of branching vertices by
keeping a static vertex ordering is really beneficial. Concretely, we propose an
approach called incremental MaxSAT reasoning to reduce the number of branch-
ing vertices in three ways, developing three algorithms called DoMC (short for
Dynamic ordering MaxClique solver), SoMC and SoMC- (short for Static order-
ing MaxClique solver), respectively. DoMC uses incremental MaxSAT reasoning
to reinforce the Re-NUMBER procedure of MCS, reducing the number of branch-
ing vertices more than MCS. Nevertheless, this reduction prohibits any static
vertex ordering for branching in DoMC as in MCS. SoMC and SoMC- reduce the
number of branching vertices using incremental MaxSAT reasoning by preserv-
ing a static vertex ordering. Experimental results show that SoMC, SoMC-, and
even IncMaxCLQ that preserves a static vertex ordering but does not reduce the
number of branching vertices at all, are significantly better than DoMC, in terms
of both search tree size and runtime, although the set of branching vertices in
DoMC is smaller. SoMC and SoMC- are also faster than the stat-of-the-art algo-
rithms such as MCS, MaxCliqueDyn, MaxCLQ and IncMaxCLQ. SoMC derives
smaller sets of branching vertices than SoMC-, and is better than SoMC-.

2 Incremental MaxSAT Reasoning

Let V ′ be a subset of V , the subgraph of G induced by V ′ is defined as G(V ′) =
(V ′, E′), where E′ = {(vi, vj) ∈ E | vi, vj ∈ V ′}. The set of adjacent vertices of
a vertex v in G is denoted by Γ (v) = {v′|(v, v′) ∈ E}. The cardinality |Γ (v)| of
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Γ (v) is called the degree of v. The density of a graph of n vertices and m edges
is 2m/(n(n − 1)).

Recent BnB algorithms such as MCS, MaxCliqueDyn, MaxCLQ and IncMax-
CLQ partition G into independent sets by sequentially inserting vertices of G into
independent sets. Unfortunately, the upper bound given by the independent set
partition, called UBIndSet in this paper, may not be tight, because a set of r inde-
pendent sets may not form a clique of size r. In this case, these independent sets
are said conflicting. A recent approach proposed in [3,4] uses MaxSAT reasoning
to improve UBIndSet by detecting conflicting independent sets, after (implicitly)
encoding a MaxClique problem into a partial MaxSAT problem. MaxSAT reason-
ing as described in [3,4] is not incremental because it is always done from scratch.
In this paper, we propose incremental MaxSAT reasoning which, given an induced
subgraph G′ of G with a known upper bound of ω(G′), successively adds vertices
of G into G′ and detects a conflict in G′ after inserting each vertex. The purpose
of incremental MaxSAT reasoning is to show that the upper bound of ω(G′) is not
increased after inserting these vertices into G′.

Example 1. Consider the graph in Fig. 1 and its subgraph G′ induced by {v , v ,
v , v }. G′ is partitioned into 2 independent sets: {v , v }, {v , v }, so UBIndSet=2
for G′. When inserting v into G′, we have a new independent set {v }. Incremental
MaxSAT reasoning detects a conflict as follows: assume that each of the three
independent sets contributes a vertex to the maximum clique under construction,
then v is in the clique, excluding v and v from the clique because they are not
adjacent to v , so the only remaining v in the first set and the only remaining v
in the second set should be in the clique. However, this is not possible, because v
and v are not adjacent. So the three independent sets {v , v }, {v , v } and {v }
are conflicting.

We add a new vertex z (z , z ) into the first (second, third) independent
set. Each zi is unconnected to zj (for any j �=i) and the vertices in the same
independent set, but is adjacent to all other vertices in G. If the conflicting
independent sets can form a clique of size p without the new vertices, they can
form a clique of size p+1 with the new vertices. So, the new vertices cover exactly
one conflict in these independent sets.

Then v is inserted into G′. We have now 4 independent sets: {v , v , z },
{v , v , z }, {v , z }, and {v }. Incremental MaxSAT reasoning detects a new
conflict as follows: the adding of v in the maximum clique under construction
excludes v and v from the first set, and v from the third set. However, z and
z are not adjacent and cannot both belong to a clique. So, {v , v , z }, {v , z },
and {v } are conflicting.

The two conflicts detected above for v and v are clearly disjoint because of
the adding of z , z and z , showing that the upper bound of ω(G′) is always 2
after G′ includes v and v . The second conflict can also be covered by adding a
new vertex into each independent set involved in the conflict.

Formally, we define a function IncMaxSAT(G,S,B), where G = (V,E) is a
graph with a vertex ordering, S is a subset of vertices that is partitioned into r
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Fig. 1. A simple graph (ω(G)=2) from [3]

Algorithm 1. GetBranches(G, r)
Input: G=(V , E), and r: an imposed lower bound for the size of a MaxClique

of G
Output: a set of branching vertices

1 begin
2 G′ ← G; P ← ∅; S ← ∅; B ← ∅;
3 while G′ is not empty do
4 v ← the biggest vertex of G′;
5 remove v from G′;
6 if P contains an independent set D in which v is not adjacent to any

vertex then
7 insert v into D; insert v into S;

8 else
9 if |P |<r then

10 create a new independent set D = {v}; P ← P ∪ {D}; insert
v into S;

11 else
12 if P contains an independent set D in which v has only one

adjacent vertex u and u can be inserted into another
independent set D′ then

13 move u from D to D′; insert v into D; insert v into S;

14 else B ← {v} ∪ B;

15 B ← IncMaxSAT(G, S, B);
16 return the set of all vertices of G smaller than or equal to the biggest

vertex in B.

independent sets, and B = V \ S is a set of branching vertices to be reduced.
The function successively inserts vertices of B (from the biggest vertex to the
smallest one in the predefined vertex ordering) into S, and detects a disjoint
conflict in S for each inserted vertex. The detected conflicts show that S with
the inserted vertices cannot form a clique of size larger than r. The function
stops as soon as it fails to detect a conflict when inserting a vertex v into S, and
returns the set of remaining vertices in B (including v).
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Algorithm 2. SoMC(G, C, Cmax), a BnB algorithm for MaxClique
Input: G=(V , E), clique C under construction, and the largest clique Cmax

found so far
Output: C∪C′, where C′ is a maxclique of G, if |C∪C′|>|Cmax|; Cmax

otherwise
1 begin
2 if |V |=0 then return C;
3 B ← GetBranches(G, |Cmax|-|C|);
4 if B=∅ then return Cmax;
5 S ← V \B;
6 for i:=|B| downto 1 do
7 C1← SoMC(G(Γ (bi)∩S), C∪{bi}, Cmax);
8 S ← {bi}∪S;
9 if |C1|>|Cmax| then Cmax ← C1;

10 return Cmax;

Table 1. Median runtimes in seconds and tree sizes in thousands for random graphs
(computed by solving 51 graphs at each point). The points where fewer than 26 graphs
are solved within 5000 s are marked by “-”. “Dyn” stands for MaxCliqueDyn.

N D Dyn MCS MaxCLQ IncMaxCLQ SoMC DoMC SoMC-

Time Time Time Time Tree size Time Tree size Time Tree size Time Tree size

200 0.80 4.56 2.26 1.63 1.27 111 0.92 97.1 1.33 113 1.19 121

200 0.90 61.87 34.18 9.18 6.22 305 4.64 263 6.86 341 5.98 299

200 0.95 28.45 13.41 1.59 0.74 22.2 0.54 20.7 0.67 22.4 0.71 22.1

300 0.70 7.91 6.38 6.12 5.62 642 3.68 503 5.62 567 4.77 646

300 0.80 269.5 203.1 117.3 105.7 8166 74.12 6611 143.5 10326 99.18 8372

300 0.90 - - - - - 4169 182516 - - - -

400 0.60 4.70 4.19 5.94 4.99 685 3.53 521 4.84 556 4.58 697

400 0.70 99.76 96.79 89.96 86.43 8590 58.15 6687 90.56 8416 75.24 8488

400 0.80 - - 4877 4986 475219 2834 269528 - - 3868 345920

500 0.50 1.85 1.62 2.96 2.42 519 1.66 410 1.94 294 1.93 470

500 0.60 26.15 23.27 29.93 26.97 3822 17.31 2688 25.66 2875 21.08 3478

500 0.70 915.8 916.1 766.2 883.8 81697 646.2 61687 905.5 78280 709.4 79602

1000 0.30 0.75 0.70 2.51 1.27 374 1.02 217 1.04 163 1.23 354

1000 0.40 8.47 7.57 19.15 8.90 2279 6.59 1934 8.68 1556 7.20 2083

1000 0.50 176.9 167.2 303.2 214.3 40154 139.9 27445 188.8 25256 164.6 34645

3 Applying Incremental MaxSAT Reasoning to Reduce
the Number of Branching Vertices

A BnB algorithm always searches for a maximum clique of size larger than a
given lower bound r in G = (V,E). Assuming V is totally ordered, we define
the function GetBranches(G, r) in Algorithm 1 that returns a set of branching
vertices B by showing vertices in V \ B cannot form a clique of size larger than
r. The function works in two phases: in the first phase, r independent sets are
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Table 2. Runtimes in seconds and tree sizes in thousands for DIMACS instances
that are solved by at least one solver in 105 s, excluding the instances solved by all
solvers in 10 s. “-” stands for instances that cannot be solved in 105 s. “Dyn” stands
for MaxCliqueDyn.

Instance N D Dyn MCS MaxCLQ IncMaxCLQ SoMC DoMC SoMC-

Time Time Time Time Tree size Time Tree size Time Tree size Time Tree size

brock400 1 400 0.74 466.0 379.7 339.2 222.3 18906 147.8 14541 345.2 52167 189.5 18826

brock400 2 400 0.74 192.1 166.2 105.9 170.2 14474 109.9 11160 303.7 22489 146.7 14367

brock400 3 400 0.74 371.6 256.2 102.4 204.6 17735 80.17 8022 267.7 8275 108.5 10272

brock400 4 400 0.74 185.7 138.2 125.3 159.2 13319 105.7 10307 196.5 10746 140.3 13337

brock800 1 800 0.65 5988 5209 4889 8830 890495 2142 233383 9063 810594 2838 298022

brock800 2 800 0.65 5349 4686 4857 11210 1125211 2139 221625 8315 538086 2872 287018

brock800 3 800 0.65 3455 3208 3452 4221 398861 895.8 105807 7628 392722 1161 131127

brock800 4 800 0.65 2691 2259 3441 5832 547564 1483 173233 4589 251810 1947 217924

C2000.5 2000 0.50 - - - 61009 9901896 41222 6606311 46381 5704024 48332 8604571

C250.9 250 0.89 2376 2074 298.2 278.9 12066 202.1 10055 372.6 16361 264.5 11707

DSJC1000.5 1000 0.50 185.2 169.6 295.8 226.3 38431 134.9 26826 196.2 26604 154.9 33278

gen400 p0.9 55 400 0.90 - 37220 - 1.23 4.01 1.17 4.03 1.56 5.13 1.17 4.03

gen400 p0.9 65 400 0.90 - 96567 26134 0.34 3.09 0.29 3.09 0.37 3.24 0.30 3.09

gen400 p0.9 75 400 0.90 - - 1372 0.27 6.64 0.17 3.34 0.18 3.52 0.17 3.34

hamming10-2 1024 0.99 49.73 0.19 0.06 32.65 131 34.49 131 34.59 131 34.43 131

keller5 776 0.75 - - 5376 141.6 2092 192.4 7818 344.3 10837 199.3 8106

MANN a45 1035 0.99 1712 63.09 20.04 115.8 218 15.49 85.4 13.23 75.7 15.48 86.2

p hat1000-2 1000 0.49 276.6 131.6 219.9 48.75 1855 33.87 1391 53.38 1778 44.69 1612

p hat1000-3 1000 0.75 - - - 42244 1028854 27727 618456 - - 36521 804780

p hat1500-2 1500 0.51 - 10448 15138 2165 45143 1322 26354 4023 77650 1829 35299

p hat500-3 500 0.75 235.1 79.23 81.04 22.02 941 15.59 704 23.59 823 19.20 792

p hat700-3 700 0.75 3946 1586 1009 269.5 7544 178.9 4954 434.8 10891 233.3 6121

sanr200 0.9 200 0.90 32.56 19.68 6.08 2.71 128 1.97 107 3.63 170 2.39 119

sanr400 0.7 400 0.70 110.0 99.69 98.56 104.7 10607 70.06 8390 100.1 15146 90.26 10658

formed using the coloring process of MCS with the Re-NUMBER procedure, and
an initial set B of branching vertices is obtained; in the second phase, incremental
MaxSAT reasoning is applied to eliminate the biggest vertices of B from which
any clique of size larger than r cannot be found.

The BnB algorithm SoMC depicted in Algorithm 2 calls the GetBranches
function to obtain a reduced set B of branching vertices {b , b , ..., b|B|} and suc-
cessively branches on vertex bi (for i = |B|, |B|−1, ..., 1) to search for a maximum
clique containing bi in the subgraph of G induced by {bi, bi , ..., b|B|}∪S, where
S = V \ B, and B is ordered as V . Note that for any b ∈ B and any v ∈ S,
we have b < v, meaning that the set {bi, bi , ..., b|B|} ∪ S can never contain a
vertex smaller than bi. This fact is exploited in the implementation of SoMC to
speed up search using an incremental upper bound as in IncMaxCLQ. See [2]
for details.

The GetBranches function returns the set of all vertices of G smaller than
or equal to the biggest vertex in B, which is larger than the set given by
IncMaxSAT(G,S,B) in line 15, because some vertices smaller than the biggest
vertex in B could be inserted into S by the independent set partition, but are
included in the set returned by the GetBranches function in line 16. We can
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modify GetBranches to make it simply return IncMaxSAT(G,S,B) in line 15,
giving another BnB algorithm called DoMC, in which the set of branching ver-
tices is smaller, but the static vertex ordering for branching is not preserved
any more, because the set {bi, bi , ..., b|B|} ∪ S can now contain some vertices
smaller than bi when DoMC branches on bi.

Another possibility to make S not contain vertices smaller than any vertex
in B is to stop the independent set partition in the GetBranches function as
soon as a vertex cannot be inserted into the r independent sets (i.e. line 14 is
replaced by “else break”, then the function returns IncMaxSAT(G,S, V \ S) in
line 15). This modification gives the BnB algorithm SoMC- which also exploits
the incremental upper bound as SoMC and IncMaxCLQ, thanks to the preserved
static vertex ordering for branching.

Note that SoMC, SoMC- and DoMC are the same except the modifications
described above. They share the same implementation and use the same ver-
tex ordering as in IncMaxCLQ to partition G into independent sets in the
GetBranches function. We now compare them, as well as MaxCliqueDyn, MCS,
MaxCLQ, and IncMaxCLQ on standard MaxClique benchmarks on an Intel
Xeon CPU X5460@3.16 GHz under Linux with 16 GB of memory. All solvers
were compiled using gcc/g++ -O3.

Tables 1 and 2 show the runtimes (in seconds) of all algorithms and search
tree sizes (in thousands) of IncMaxCLQ, SoMC, SoMC- and DoMC. Except
few graphs, the search trees of DoMC are larger than IncMaxCLQ, SoMC and
SoMC- that keep static vertex ordering for branching, although DoMC derives
the smallest set of branching vertices. SoMC- is better than IncMaxCLQ because
IncMaxCLQ does not reduce the number of branching vertices at all, while
SoMC- does. SoMC is better than SoMC- because SoMC derives smaller sets of
branching vertices than SoMC-.

SoMC and SoMC- are faster than MaxCLQ, MaxCliqueDyn, and MCS.
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Abstract. In this paper we present a new approach to reduce the com-
putational time spent on coloring in one of the recent branch-and-bound
algorithms for the maximum clique problem. In this algorithm candi-
dates to the maximum clique are colored in every search tree node. We
suggest that the coloring computed in the parent node is reused for the
child nodes when it does not lead to many new branches. So we reuse
the same coloring only in the nodes for which the upper bound is greater
than the current best solution only by a small value δ. The obtained
increase in performance reaches 70% on benchmark instances.

Keywords: Maximum clique problem · Branch-and-bound algorithm ·
Reusing coloring

1 Introduction

A complete graph, or a clique, is a graph which vertices are all pairwise adja-
cent. The maximum clique problem (MCP) consists in finding a clique (a com-
plete subgraph) of a given graph with the largest number of vertices. MCP is an
important and deeply studied NP-hard problem, because it has many applica-
tions in a wide range of fields (e.g. [1,3]). The detailed analysis of heuristics and
exact algorithms for MCP can be found in [5]. The comparison survey reports
that MCS [4] and MaxCLQ [2] have the best performance among the existing
exact algorithms.

In this paper, we show that for MCP solvers that use coloring as the upper
bound it is not necessary to color every subproblem. It is efficient to reuse the
same coloring in the child nodes. In Sect. 2 we present some preliminaries and
give the formulation of the MCP. In Sect. 3 we describe the branch-and-bound
algorithm. A description of a new approach and some examples are presented
in Sect. 4. In Sect. 5 computational results and comparison with MaxCLQ are
provided.
©
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2 Preliminaries

Consider a simple undirected graph G = (V,E) which consists of a finite set of
vertices V = {v , v , . . . , vn} and edges E ⊆ V ×V that pair distinct vertices.
A clique Q is a subset of V where all vertices are pairwise adjacent. A maximal
clique is a clique that cannot be enlarged by adding any other vertex to it. A
clique which has the maximum size (number of vertices) in a graph is called
maximum clique. The number of vertices in a maximum clique of a graph G is
the clique number ω(G) of the graph G. The maximum clique problem (MCP)
is the problem of finding the maximum clique in a given graph.

Two vertices are said to be neighbors (or adjacent vertices) if they are con-
nected by an edge. The neighbor set of any vertex v∈V in G = (V,E) is
denoted by N(v), i.e. N(v) = {w∈V |(v, w)∈E}. A coloring (vertex coloring)
of a graph G is an assignment of colors c(v) : V → N to every vertex of the
graph G so that any two adjacent vertices have different colors. Color set nota-
tion C(G) = {C ,C , . . . , Cl} denotes a vertex coloring that employs l different
color numbers. C(G) partitions the vertex set into l disjoint color sets Ci, where
Ci contains all vertices with color number i. The following proposition is impor-
tant for MCP solvers because it gives an upper bound for the clique number.
The proposition can be easily proved by contradiction.

Proposition 1. If G can be colored into l colors, then ω(G) ≤ l.

3 The Exact Algorithm for the MCP

The majority of branch-and-bound algorithms for the MCP begin with the ini-
tializing of two global variables Q and Qmax to ∅, where Q is the current clique
and Qmax is the largest clique found so far. Then we use greedy coloring heuristic
(GCH function) for coloring. Greedy coloring heuristic is an approximate coloring
algorithm that iteratively assigns the smallest positive integer (color number) to
vertices, so that any two adjacent vertices have different positive integers. There
is an extension of greedy coloring heuristic which is called greedy coloring heuris-
tic with recoloring (RECOLORING function). The details and implementation
of the greedy coloring heuristic with recoloring (termed Re-Number-Sort) can
be found in [4]. The result of GCH and RECOLORING is a vertex coloring C
(C = {C ,C , . . . , Cl}).

FINDING OF MAXIMUM CLIQUE is an implementation of a branch-and-
bound algorithm (Listing 1). A list of candidate vertices sorted according to the
initial ordering is denoted by U . At the beginning U is equal to V . We choose
vertex v with maximum color (step 2) and if pruning condition (step 3) is ruled
out then we add the vertex v to the current clique Q and compute the new set
of candidate vertices newU (step 4). We replace Qmax with Q (step 10) only if
Q is maximal (Qmax = ∅) and |Q| > |Qmax|. Step 11 is performed to remove
the already considered vertex v.

The current branch-and-bound algorithm and MCS [4] are similar but there
is a difference in FINDING OF MAXIMUM CLIQUE. The difference is in the
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condition |Q| − 1 + c(v)≤|Qmax| + δ (step 6) which is added for integrating of a
new approach (REUSING OF COLORING procedure). Here δ is a non-negative
integer. If the condition holds then we use our approach for computing the upper
bound. Otherwise, greedy coloring with recoloring is used.

Listing 1. Branch-and-bound algorithm
procedure FINDING OF MAXIMUM CLIQUE (U, C)
initial step: Q:=∅, Qmax:=∅, U:=V, C:=GCH(V)
begin
1. while U�=∅

2. v:= a vertex with the maximum color number in C;
3. if (|Q|+c(v)≤|Qmax|) then return
4. Q:=Q∪{v}, newU:=U∩N(v);
5. if newU�=∅ then
6. if (|Q|-1+c(v)≤|Qmax|+δ) then
7. REUSING OF COLORING (newU, C, newC);
8. else newC:=RECOLORING (newU);
9. FINDING OF MAXIMUM CLIQUE (newU, newC);
10. else if (|Q|>|Qmax|) then Qmax:=Q;
11. Q:=Q\{v}, C:=C\{v}, U:=U\{v};
end

Listing 2. Reusing of parent coloring
procedure REUSING OF COLORING (newU, C, newC)
begin
1. for i:=1 to |C|-1
2. newCi=Ci∩newU;
3. remove empty colors from newC;
4. for i:=1 to |newC|
5. if (|newCi|=1) then
6. w:= the vertex in newCi;
7. for j:=1 to |newC|
8. if (newCi∩N(w)=∅ and i�=j) then
9. recolor w to color j and remove newCi;
10. j:=|newC|+1;
11. sort newC by size of color sets in descending order;
end

4 Reusing of Parent Coloring

Reusing of parent coloring is a new approach for branch-and-bound algorithms
for the MCP. It is based on the idea that for some node of the search tree
we can use the parent coloring instead of computing greedy coloring or greedy
coloring with recoloring. So it is not necessary to color candidate vertices every
time. The implementation of this idea is REUSING OF COLORING procedure
(Listing 2). The procedure can be divided into 3 steps: 1. Reusing of parent
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coloring; 2. Improving the quality of coloring; 3. Sorting colors by size. The
following example shows how it works:

Consider a node of the search tree for which δ = 2, |Q| = 1 (the current clique
has 1 vertex), |Qmax| = 4 (the largest clique found so far has 4 vertices), and
the subgraph of candidates (neighbors of the vertex in the current clique Q) is
shown in Fig. 1. The colors of vertices are shown in brackets in this figure.

Fig. 1. Reusing of parent coloring

According to the algorithm we consider candidates starting from the vertex
9 because it is the candidate with the largest color. We add this vertex to the
current clique, so |Q| = 2. The condition |Q| − 1 + c(9)≤|Qmax| + δ (Listing 2,
step 6) holds that is why for the vertex 9 we use our approach. For vertex 9
the new subgraph of candidates is shown in Fig. 1 (right). We do not color this
subgraph and reuse the colors from the coloring in the parent node (Listing 2,
steps 1–3). It is worth noting that the quality of the obtained coloring is not
so high because the greedy coloring heuristic can color this subgraph in three
colors.

Fig. 2. Improving the quality of coloring and sorting colors by size

Steps 4–10 improve the quality of coloring. At the beginning we find a color
which contains only one vertex w (step 6). Then we try to recolor vertex w, i.e.
we attempt to add vertex w to another color set (steps 7–10). In our example
color 1 contains only one vertex 5. We recolor vertex 5 to color 2 and remove
empty color 1 (see Fig. 2).
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Table 1. Computational time (in seconds)

Instances n p ω δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 MaxCLQ

C250.9 250 0.909 44 1494.3 1230.1 1125.1 1124.9 1116.9 344.5

MANN a45 1035 0.996 345 72.59 66.92 77.40 103.3 150.7 34.15

brock400 1 400 0.748 27 316.6 278.1 255.8 252.7 262.1 259.7

brock400 2 400 0.749 29 135.8 117.3 110.5 111.0 111.0 118.9

brock400 3 400 0.748 31 214.0 187.6 172.8 174.4 178.1 204.2

brock400 4 400 0.749 33 107.9 92.86 88.07 86.97 89.70 130.7

brock800 1 800 0.649 23 4993.3 4257.0 3922.6 3831.3 3870.4 5606.6

brock800 2 800 0.651 24 4661.6 3871.7 3594.6 3539.9 3470.8 4889.0

brock800 3 800 0.649 25 3030.4 2550.2 2342.8 2271.2 2252.6 3222.6

brock800 4 800 0.65 26 2218.0 1861.2 1700.3 1653.9 1645.1 2438.4

dsjc1000.5 1000 0.5 15 171.3 151.5 144.7 144.9 148.8 317.9

frb30-15-1 450 0.824 30 992.6 609.8 463.3 399.4 365.8 655.2

frb30-15-2 450 0.823 30 827.2 485.3 343.4 283.0 239.9 951.7

frb30-15-3 450 0.824 30 585.1 329.0 226.2 178.6 152.9 581.0

frb30-15-4 450 0.823 30 1543.8 902.8 653.4 535.1 480.1 1155.6

frb30-15-5 450 0.824 30 893.1 503.7 364.5 296.1 263.6 873.7

p hat500-3 500 0.752 50 70.73 59.02 55.44 56.08 60.08 49.83

p hat700-3 700 0.748 62 1289.5 1055.6 964.1 949.1 1019.2 1082.2

p hat1000-2 1000 0.49 46 141.5 115.5 105.2 104.0 109.3 117.8

sanr200 0.9 200 0.898 42 13.79 11.40 10.41 10.19 10.26 5.604

sanr400 0.7 400 0.7 21 88.85 78.09 75.49 75.91 77.94 97.66

Total 23862 18814 16796 16182 16075 23137

Step 11 changes the order of colors, so that color sets are sorted by the
size in descending order. In our example after sorting by size colors become:
C = {2, 5, 8}, C = {7, 10}, C = {6}. The result of sorting is shown in Fig. 2
(right).

5 Computational Results

We have tested our algorithm with different values of δ and compared it with
MaxCLQ [2]. The implementation of MaxCLQ was kindly provided by Li and
Quan. Table 1 presents the considered DIMACS instances and the performance
of the compared algorithms. Column header n, p and ω stands for the number
of vertices, the density and the clique number respectively. It takes more com-
putational time (the total time over all instances is 16917 s) if δ = 5, that is why
it is not included in Table 1.

It is interesting that only for four instances MaxCLQ has the best time. The
total computational time over all instances for the algorithm with δ = 4 is 33 %
and 31 % less than for the original algorithm (δ = 0) and MaxCLQ respectively.
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For frb30-15-1, frb30-15-3, frb30-15-5 the new algorithm with δ = 4 gives 63 %,
74 % and 70 % reduction in computational time. The new approach does not look
so powerful for MANN a45. The reason for this fact may be that the density of
the instance is high and ω ∼= 0.3n.

6 Conclusion

We have proposed a new approach based on reusing of parent coloring. The
computational results show that this technique is very efficient. It reduces the
computational time by 60–70 % for some instances and by 30 % on average.

The proposed approach is quite flexible and in the future it can be applied
to some other state-of-the-art algorithms.

Acknowledgments. The authors would like to thank Chu-Min Li and Zhe Quan for
the source code of their MaxCLQ algorithm. We gratefully acknowledge their kindness.
The work was conducted at National Research University Higher School of Economics
and supported by RSF grant 14-41-00039.
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Mickaël Binois , B , David Ginsbourger , and Olivier Roustant
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Abstract. This works extends the Random Embedding Bayesian Opti-
mization approach by integrating a warping of the high dimensional sub-
space within the covariance kernel. The proposed warping, that relies on
elementary geometric considerations, allows mitigating the drawbacks of
the high extrinsic dimensionality while avoiding the algorithm to eval-
uate points giving redundant information. It also alleviates constraints
on bound selection for the embedded domain, thus improving the robust-
ness, as illustrated with a test case with 25 variables and intrinsic
dimension 6.

Keywords: Black-box optimization · Expected Improvement · Low-
intrinsic dimensionality · Gaussian processes · REMBO

1 Introduction

The scope of Bayesian Optimization methods is usually limited to moderate-
dimensional problems [2]. To overcome this restriction, [9] recently proposed to
extend the applicability of these methods to up to billions of variables, when
only few of them are actually influential, through the so-called Random EMbed-
ding Bayesian Optimization (REMBO) approach. In REMBO, optimization is
conducted in a low-dimensional domain Y, randomly embedded in the high-
dimensional source space X . New points are chosen by maximizing the Expected
Improvement (EI) criterion [4] with Gaussian process (GP) models incorporating
the considered embeddings via two kinds of covariance kernels proposed in [9].
A first one, kX , relies on Euclidean distances in X . It delivers good performance
in moderate dimension, albeit its main drawback is to remain high-dimensional
so that the benefits of the method are limited. A second one, kY , is defined
directly over Y and is therefore independent from the dimension of X . However,
it has been shown [9] to possess artifacts that may lead EI algorithms to spend
many iterations exploring equivalent points.
©
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Here we propose a new kernel with a warping (see e.g. [7]) inspired by simple
geometrical ideas, that retains key advantages of kX while remaining of low
dimension like kY . Its effectiveness is illustrated on a 25-dimensional test problem
with 6 effective variables.

2 Background on the REMBO Method
and Related Issues

The considered minimization problem is to find x∗ ∈ argminx∈X f(x), with
f : X ⊆ R

D → R, where X is a compact subset of R
D, assumed here to be

[−1, 1]D for simplicity. From [9], one main hypothesis about f is that its effective
dimensionality is de < D: there exists a linear subspace T ⊂ R

D of dimension de

such that f(x) = f(x� + x⊥) = f(x�), x� ∈ T and x⊥ ∈ T ⊥ ⊂ R
D ([9], Defin-

ition 1). Given a random matrix A ∈ R
D×d (d ≥ de) with components sampled

independently from N (0, 1), for any optimizer x∗ ∈ R
D, there exists at least a

point y∗ ∈ R
d such that f(x∗) = f(Ay∗) with probability 1 ([9], Theorem 2).

To respect box constraints, f is evaluated at pX (Ay), the convex projection
of Ay onto X . The low dimensional function to optimize is then g : Rd → R,
g(y) = f (pX (Ay)).

Optimizing g is carried out using Bayesian Optimization, e.g., with the EGO
algorithm [1]. It bases on Gaussian Process Regression [5], also known as Kriging
[3], to create a surrogate of g. Supposing that g is a sample from a GP with known
mean (zero here to simplify notations) and covariance kernel k(., .), condition-
ing it on n observations Z = f(x n) = g(y n), provides a GP Z(.) with mean
m(x) = k(x)T K− Z and kernel c(x,x′) = k(x,x′) − k(x)T K− k(x′), where
k(x) = (k(x,xi)) ≤i≤n and K = (k(xi,xj)) ≤i,j≤n. The choice of k is prepon-
derant, since it reflects a number of beliefs about the function at hand. Among
the most commonly used are the “squared exponential” (SE) and “Matérn” sta-
tionary kernels, with hyperparameters such as length scales or degree of smooth-
ness [6,8]. For REMBO, [9] proposed two versions of the SE kernel with length
scales l, namely the low-dimensional kY(y,y′) = exp

(−‖y − y′‖d/2lY
)

and the

high-dimensional kX (y,y′) = exp
(
−∥

∥pX (Ay) − pX (Ay′)
∥
∥

D
/2lX

)
(y,y′ ∈ Y).

Selecting the domain Y ⊂ R
d is a major difficulty of the method: if too

small, the optimum may not be reachable while a too large domain renders
optimizing harder, in particular since pX is far from being injective. Distant
points in Y may coincide in X , especially far from the center, so that using kY
leads to sample useless new points in Y corresponding to the same location in
X after the convex projection. On the other hand, kX suffers from the curse of
dimensionality when Y is large enough so that most or all of the points of X
belonging to the convex projection of the subspace spanned by A onto X have
at least one pre-image in Y. Indeed, whereas embedded points pX (Ay) lie in a d
dimensional subspace when they are inside of X , they belong to a D-dimensional
domain when they are projected onto the faces and edges of X . To alleviate these
shortcomings, after showing that with probability 1−ε the optimum is contained
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in the centered ball of radius de/ε (Theorem 3), the authors of [9] then suggest
to set Y = [−√

d,
√

d]d. In practice, they split the evaluation budget over several
random embeddings or set d > de to increase the probability for the optimum
to actually be inside Y, slowing down the convergence.

3 Proposed Kernel and Experimental Results

Both kY and kX suffering from limitations, it is desirable to have a kernel that
retains as much as possible of the actual high dimensional distances between
points while remaining of low dimension. This can be achieved by first projecting
points orthogonally on the faces of the hypercube to the subspace spanned by
A: Ran(A), with pA : X 	→ R

D, pA(x) = A(ATA)− ATx. Note that these
back-projections from the hypercube can be outside of X . The calculation of
the projection matrix is done only once, inverting a d × d matrix. This solves
the problem of adding already evaluated points: their back-projections coincide.
Nevertheless, distant points on the sides of X from the convex projection can be
back-projected close to each other, which may cause troubles with the stationary
kernels classically used.

The next step is to respect as much as possible distances on the border of
X , denoted ∂X . Unfolding and parametrizing the manifold corresponding to the
convex projection of the embedding of Y with A would be best but unfortunately
it seems intractable with high D. Indeed, it amounts to finding each intersection
of the d-dimensional subspace spanned by A with the faces of the D-hypercube,
before describing the parts resulting from the convex projection. Alternatively,
we propose to distort the back-projections which are outside of X , corresponding
to those convex-projected parts on the sides of ∂X . In more details, from the
back-projection of the initial mapping with pX , a pivot point is selected as the
intersection between ∂X and the line (O; pA(pX (Ay)). Then the back-projection
is stretched out such that the distance between the pivot point and the initial
convex projection are equal. It results in respecting the distance on the embedding
between the center O and the initial convex projection. The resulting warping,
denoted Ψ , is detailed in Algorithm1 and illustrated in Fig. 1. Based on this,
any positive definite kernel k on Y can be used. For example, the resulting
SE kernel is kΨ (y,y′) = exp

(
− ‖Ψ(y) − Ψ(y′)‖D /2lΨ

)
. Note that the function

value corresponding to Ψ(y) remains g(y).
Like kX , kΨ is not hindered by the non-injectivity brought by the convex pro-

jection pX . Furthermore, it can explore sides of the hypercube without spending
too much budget since belonging to Ran(A) (all distances between embedded
points after warping are d-dimensional instead of D-dimensional, thus smaller,
hence limiting the risk of over-exploring sides of X ). It is thus possible to extend
the size of Y to avoid the risk of missing the optimum. For instance, one can check

that Y is larger than [−γ, γ]d with γ such that γ− = min
j∈ ,...,D

d∑

i

|Aj,i|, with

Aj,i the components of A, ensuring to span [−1, 1] for each of the D variables.
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y1

y2

y3

O

Ψ(y2) = Ay2

z′′
1 = Ψ(y1)

Ψ(y3)

Ay3

Ay1

Y

X
z1

z′
1

pX (Ay1)

Fig. 1. Illustration of the new warping Ψ , d = 1 and D = 2, from triangles in Y to
diamonds in X , on three points y1, y2, y3. As for REMBO, the points yi are first mapped
by A and convexly projected onto X (if out of X ). If the resulting image is strictly
contained in X – as for y2 – nothing else is done. Otherwise, the new warping is defined
in two supplementary steps: back-projection onto Ran(A) (giving zi) and stretching
out in the resulting line [0, zi) (red solid line) by reporting the distance between the
intersection of [0, zi] on the frontier of X , z′

i, and the initial convex projection pX (Ayi).
The points y1 and y3 correspond to cases where such projections are on a corner or a
face of X (Color figure online).

We compare the performances of the usual REMBO method with kY , kX
and the proposed kΨ , with a unique embedding. Tests are conducted with the
DiceKriging and DiceOptim packages [6]. We use the isotropic Matérn 5/2 ker-
nel with hyperparameters estimated with Maximum Likelihood and we start
optimization with space filling designs of size 10d. Initial designs are modified
such that no points are repeated in X for kY and kX . For kΨ , we apply Ψ to
bigger initial designs before selecting the right number of points, as distant as
possible between each other. Experiments are repeated fifty times, taking the
same random embeddings for all kernels. To allow a fair comparison, Y is set to

Algorithm 1. Calculation of Ψ .
1: Map y ∈ Y to Ay
2: If Ay ∈ X Then
3: Define Ψ(y) = Ay
4: Else
5: Project onto X and back-project onto Ran(A): z = pA(pX (Ay))
6: Compute the intersection of [O; z] with ∂X : z′ = (maxi=1,...,D |zi|)−1z

7: Define Ψ(y) = z′ + ‖pX (Ay) − z′‖D. z′
‖z′‖D

8: EndIf
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0.0 0.5 1.0 1.5

kX

kY

kΨ

Fig. 2. Boxplot of the optimality gap (best value found minus actual minimum) for ker-
nels kX , kY and kΨ on the Hartmann6 test function (see e.g. [1]) with 250 evaluations,
d = de = 6, D = 25.

[−√
d,

√
d]d for all kernels and the computational efforts on the maximization of

the Expected Improvement are the same.
Results in Fig. 2 show that the proposed kernel kΨ outperforms both kY and

kX when d = 6. In particular, kY loses many evaluations on the sides of Y for
already known points in X and kX has a propensity to explore sides of X , while
kΨ avoids both pitfalls.

4 Conclusion and Perspectives

The composition with a warping of the covariance kernel used with REMBO
wipes out some of the previous shortcomings. It thus achieved the goal of improv-
ing the results with a single embedding, as was shown on the Hartman6 example.
Studying the efficiency of splitting the evaluation budget between several ran-
dom embeddings, compared to relying on a single one along with kΨ , would be
the scope of future research. Of interest is also the study of the embedding itself,
such as properties ensuring fast convergence in practice.
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Abstract. The global optimization of expensive-to-calculate continu-
ous functions is of great practical importance in engineering. Among the
proposed algorithms for solving such problems, Efficient Global Opti-
mization (EGO) and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) are regarded as two state-of-the-art unconstrained contin-
uous optimization algorithms. Their underlying principles and perfor-
mances are different, yet complementary: EGO fills the design space
in an order controlled by a Gaussian process (GP) conditioned by the
objective function while CMA-ES learns and samples multi-normal laws
in the space of design variables. This paper proposes a new algorithm,
called EGO-CMA, which combines EGO and CMA-ES. In EGO-CMA,
the EGO search is interrupted early and followed by a CMA-ES search
whose starting point, initial step size and covariance matrix are calcu-
lated from the already sampled points and the associated conditional
GP. EGO-CMA improves the performance of both EGO and CMA-ES
in our 2 to 10 dimensional experiments.

Keywords: Continuous global optimization · CMA-ES · EGO

1 Introduction and Basic Concepts

Continuous numerical optimization problems are at the core of many applications
in science and engineering. They are formalized as

minx∈S⊂Rdf(x).

It often happens that the underlying function, f , is not only expensive to evaluate
but also mathematically multimodal.

EGO Algorithm. One approach to deal with expensive and multimodal opti-
mization problems is to use GP as (meta)models for the objective function. The
deterministic Efficient Global Optimization (EGO) algorithm [7] instanciates
this idea and has become a standard for continuous global optimization in less
than twenty dimensions when the number of function evaluations is inferior to
1000. The principle of model-based optimizers such as EGO and SMAC [4] is
©
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to build a prediction for f(x) called m(x) and the associated prediction uncer-
tainty v(x). A new point x′ ∈ S is selected which strikes a compromise between
the best known regions (low m(x)) and the least known regions (large v(x)). In
EGO, m(x) and v(x) are GP’s mean and variance and the compromise is the
maximization of the expected improvement below the best observed f value.
Once x′ has been found, f(x′) is calculated, the model (m() and v()) is updated
and the process is iterated.

CMA-ES Algorithm. Another popular algorithm in continuous global optimiza-
tion is theCovarianceMatrixAdaptationEvolution Strategy (CMA-ES) [3]. CMA-
ES relies on the iterative sampling and updating of a multi-normal density

x ∼ m g + σ g N
(
0,C g

)
, i = 1, ..., λ, (1)

where g is the iteration counter, σ g ∈ R is called mutation step size and
C g ∈ R

d×d is a covariance matrix. σ g controls the step length and C g gov-
erns the ellipsoidal shape of the density function. The effective covariance matrix
σ ×C of CMA-ES describes good steps in S. CMA-ES is sometimes interpreted
as a robust local search method [3]. Its robustness is related to invariance prop-
erties with respect to objective function scaling and coordinate system rotations.
This algorithm was consistently found to be highly performing in the Black-Box
Optimization Benchmarking (BBOB) workshops for low, moderate and highly
multimodal functions for problems dimensions between 5 and 40 [2] if it is cou-
pled with a restart mechanism.

CMA-ES and Models. Past works on global optimization of costly functions
have already involved augmenting Evolution Strategies (ESs) with metamodels
[6,8,10]. The general idea is to replace some evaluations of the true objective
function with metamodel estimates and trigger true evaluations through an error
rate measure. Kriging has sometimes been the metamodel added to the ESs. The
motivation for using kriging is the availability of a prediction uncertainty. In [12],
a pre-selection of the most promising points is done based on a kriging model,
which enables sampling more solutions and makes the search more efficient.
Two criteria are investigated as performance measures, the (mean) objective
function prediction and the probability of improvement over the best observed
point. In [1], kriging serves as a local metamodel and various performances are
measured by different compromises between search intensification around the
current best solution and exploration. In [9], a local kriging enables dealing
with noisy objective functions by easing the estimation of the objective function
expectation.

The optimization algorithm introduced in this paper differs from previous
contributions in the fact that the EGO and CMA-ES search principles are
invoked one after each other without iterations. The motivation is that EGO
is efficient in the early design of experiments (DoE) stage of the optimization
(volume search), while CMA-ES is a converging search process that efficiently
transitions from volume to local search.
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2 The EGO-CMA Algorithm

2.1 Experimental Setup and Initial Observations

The optimization algorithms compared in the paper (EGO, CMA-ES and later
EGO-CMA) are tested with four well-known functions called Sphere, Ackley,
Rastrigin, and Michalewicz (cf. [5]). The search spaces of the functions have
been rescaled to [−5, 5]d, d = 2, 5, 10. The total number of calls to the objective
function or budget is 70 × d. The initial design points of EGO are obtained by
Latin Hypercube Samples (LHS) of size 3 × d. We repeat EGO three times on
each function. CMA-ES being a stochastic optimizer, it arguably exhibits larger
performance variation so its runs are repeated ten times from three different
starting points. Figure 1 illustrates one typical run of EGO and CMA-ES on the
Sphere function in dimension 5. The solid line represents each function value
obtained by the optimization algorithm and the dashed-dotted line shows the
best observed function value so far. In a characteristic manner, EGO makes early
progress and then loses efficiency (left) while CMA-ES steadily converges to the
minimum as the number of calls to the objective function increases (right). Such
an observation was confirmed on the other test functions and started the idea
of combining EGO and CMA-ES.

Fig. 1. One typical run of EGO (left) and CMA-ES (right) on the Sphere, d = 5. Solid
line: f history during optimization. Dash-dotted line: best f .

2.2 Combining EGO and CMA-ES

We now introduce the EGO-CMA algorithm, which first explores the search
space with EGO and then switches to CMA-ES in order to converge to the
optimum.

The switch occurs after the best observed f has not improved for at least
0.1×budget analyses and if one of the following conditions is met: (i) 50 percent
of the budget is exhausted or (ii) EI < 0.01 × (

f best
DoE − f best

)
. EI is the average

of the maximum expected improvement over the 5 last iterations. f best
DoE and f best
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are the best f values in the initial design of experiments and the current best
point, respectively. When the switch takes place, the best point obtained by
EGO, xbest, becomes CMA-ES’s starting point. Furthermore, EGO-CMA uses
of the fitted kriging mean as an approximation to the true function to warm
start CMA-ES.

Let us provide some background on CMA-ES initialization. Consider first the
optimization of a convex-quadratic function fH(x) = (x − x∗

H)�H(x − x∗
H),

where H is positive definite and x∗
H is the optimum. H can be decomposed into

H = BD B�, where B is made of the eigenvectors of H as columns (B�B =
BB� = I) and D is a diagonal matrix with the square roots of H’s eigenvalues as
diagonal elements. The optimal ES covariance matrix has lines of equiprobable
mutation aligned with the level sets of the objective function [11]. This happens
when the covariance matrix of the search distribution, C (from (1) without
superscript), is proportional to the inverse of H so we set

C = BD− B�. (2)

The step size σ can now be tuned by performing a change of variable to turn to
a spherical landscape: define the new variable t = DB�(x − x∗

H), the objective
function becomes fH(t) = t�t. In the t-space, the CMA-ES search points
distribution (1) becomes t ∼ DB�(m − x∗

H) + σN (0, I). In terms of t, one
optimizes a spherical function with a spherical distribution, a situation in which
one would like that the average step length (the expectation of the square root
of a χd random variable times σ) equals the distance to the optimum

σ
√

d − 0.5 =
∥
∥
∥DB�(m − x∗

H)
∥
∥
∥ ⇒ σ =

∥
∥
∥DB�(m − x∗

H)
∥
∥
∥

√
d − 0.5

. (3)

We can now return to the EGO-CMA description. EGO is stopped and CMA-ES
is started at m = xbest. To obtain σ and C from the above quadratic
considerations, we take the second order Taylor expansion of the kriging mean
(an approximation to the objective function) at point xbest:

f(x) ≈ fH(x) = m(xbest) + ∇m(xbest)�(x − xbest) +
1
2
(x − xbest)H(x − xbest).

The initial covariance of CMA-ES is set equal to the inverse of the Hessian of
the kriging mean at xbest,

C = H− . (4)

Cases when H is not strictly positive definite, among which the non invertibility
case, are discussed later. Minimization of fH gives x∗

H, an approximation to the
optimum, by which we can complete Eq. (3) and calculate σ :

x∗
H − xbest = −H− (xbest)∇m(xbest)

⇒ σ =

∥
∥
∥DB�H− (xbest)∇m(xbest)

∥
∥
∥

√
d − 0.5

. (5)
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Fig. 2. Median of the best objective function vs. number of calls of EGO, CMA-ES
(with three different starting points) and EGO-CMA on the 5 dimensional Sphere (left)
and Ackley (right) functions.

We now discuss the cases when the Hessian matrix is not strictly positive definite,
i.e., fH is concave in some directions. fH is convexified, i.e., the Hessian is forced
to be positive definite, by substituting 10− for the negative eigenvalues in D .
However, this might increase the condition number of the Hessian matrix that is
the ratio of the largest to the smallest eigenvalue, cond(H) = λmax

λmin
. To improve

the condition number, we add a positive value, δ, to the main diagonal of the
Hessian matrix, H = BD B� = B(D + δI)B�. δ can be calculated
by defining an upper bound on the condition number, CU ,

λmax + δ

λmin + δ
≤ CU ⇒ δ ≥ CUλmin − λmax

1 − CU
. (6)

In our experiments, we set the condition number limit CU equal to 10 and the
initial CMA-ES covariance and step size (Eqs. (4) and (5)) are calculated with
H and D . Finally, the step size is bounded through

0.3 10−
√

d
× ‖D B�(u − l)‖ ≤ σ ≤ 0.3√

d
× ‖D B�(u − l)‖ . (7)

3 Simulation Results

The performance of EGO-CMA is tested by repeating each run of EGO-CMA 5
times on each function, then the results are compared to EGO and CMA-ES. For
the sake of brevity, we just illustrate this comparison on the Sphere and Ackley
functions in 5 dimensions, see Fig. 2. It is seen that EGO shows a rough yet early
location of the global minimum, which allows EGO-CMA to further increase the
accuracy. The accuracy of EGO-CMA is about 10− for the Sphere function with a
gain of two orders of magnitude over CMA-ES. The switch from EGO to CMA-ES
in EGO-CMA can clearly be seen on the Sphere function before 100 function eval-
uations as the EGO-CMA curve first follows EGO and then is parallel to CMA.



292 H. Mohammadi et al.

With the more multimodal Ackley function, the switch occurs at more diverse
times of the search. On the average of the other functions tested, we similarly
observed a better performance of EGO-CMA over EGO and CMA-ES.

Acknowledgments. The authors would like to acknowledge support by the French
national research agency (ANR) within the Modèles Numériques project NumBBO
(analysis, improvement and evaluation of “NUMerical BlackBox Optimizers”).
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Abstract. This article presents MO −Mineclust a first package of the
platform in development MO −Mine. This platform aims at providing
optimization algorithms, and in particular multi-objective approaches, to
deal with classical datamining tasks (Classification, association rules...).
This package MO − Mineclust is dedicated to clustering. Indeed, it is
well-known that clustering may be seen as a multi-objective optimization
problem as the goal is both to minimize distances between data belonging
to a same cluster, while maximizing distances between data belonging
to different clusters. In this paper we present the framework as well
as experimental results, to attest the benefit of using multi-objective
approaches for clustering.

1 Introduction

Clustering is a very common and popular datamining technique. In a context
where data are described by a set of variables, clustering algorithms provide a
partition of the dataset, while grouping similar data into clusters. Thus, elements
in one cluster are similar among them and different from elements of the other
clusters.

This problem may be seen as a combinatorial optimization problem as soon
as a criterion able to evaluate the quality of a given clustering can be found. In
the literature, many such criteria have been proposed and multi-objective models
have been adopted. In this context, genetic and other evolutionary algorithms
have been widely used to obtain good solutions regarding the chosen quality
measure.

The aim of this paper is to present MO − Mineclust, a framework dedicated
to multi-objective clustering. This framework is part of a more global one, MO−
Mine which will provide to non specialists of datamining or optimization, the
ability to execute performant multi-objective algorithms to analyse their data.
This framework must be able to be used on any kind of data and has to be
generic. The genericity of this framework allows to adopt different models, taking
into account several combinations of optimization criteria.
©
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To present the framework and its performance, the rest of the article is pre-
sented as follows. In Sect. 2 multi-objective optimization and multi-objective
clustering are presented. We focus in particular in the components of existing
multi-objective algorithms for clustering. Section 3 presents MO − Mineclust,
its approach and its implementation. In Sect. 4, results on some classical bench-
marks are presented and discussed. The last section gives conclusions and per-
spectives.

2 Multi-objective Optimisation for Clustering

A clustering solution, that will assign each element to a given cluster, is con-
sidered good when elements of each cluster are very similar among them (low
intra-cluster variance) and very different from the elements of the other clus-
ters (high inter-cluster variance). This problem is by nature a multi-objective
combinatorial optimisation one.

2.1 Multi-objective Combinatorial Optimization

A problem of multi-objective combinatorial optimization can be defined as a
problem where a set of n ≥ 2 objective functions have to be optimized (minimized
or maximized) in a finite set of feasible solutions (decision space Ω).

{
optimize F (x) =

(
f (x), f (x), . . . , fn(x)

)

subject to x ∈ Ω
(1)

Unlike to mono-objective problems, the solution of a multi-objective problem
is not unique. It is composed of a set of non-dominated solutions called Pareto
solutions. These solutions present the best compromises between the objectives.

2.2 Multi-objective Clustering (MOC)

Given the two natural objectives of clustering, minimizing intra-cluster vari-
ance and maximizing inter-cluster variance, several compromise solutions may
be obtained. Figure 1 presents an example, where instances are described by two
attributes x and y. Their projection in the decision space allows to visualize
distances between instances. Several clustering solutions are proposed, in which
criteria are either optimized independently or simultaneously [4]. In the multi-
objective context, the final solution of a multi-objective clustering is a collection
of clustering solutions with different trade-offs between objectives represented in
a Pareto set, based on the Pareto dominance (see Fig. 2).

In the literature, many works on multi-objective clustering exist, and in par-
ticular, evolutionary approaches have been widely used. For a complete recent
survey on Multi-Objective Evolutionary Algorithms (MOEAs) for clustering, the
reader may refer to [15]. As indicated in this survey, MOEAs for clustering defer
from the underlying MOEA used (PESA-II, NSGA-II, IBEA. . . ), the chromo-
some representation, the objectives functions used or the evolutionary operators
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Fig. 1. Optimizing both objectives simultaneously [4].

Fig. 2. Multi-objective clustering Pareto set of solutions [4].

implemented. Many combinations have been proposed, some of them may be
adapted to specific data [12].

For example, one of the first Multi-Objective Clustering (MOC) approach
was VIENNA introduced by Handl and Knowles based on PESA-II incorporat-
ing specialized mutation and initialization procedures [9]. The algorithm employs
two following internal measures to estimate clustering quality: variance and con-
nectivity. Such clustering quality measures have also been used in many other
MOEAs. In particular, MOCK [8] uses overall deviation, that measures the com-
pactness of clusters as a first objective and connectivity that considers whether
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adjacent data items are grouped into a same cluster. Let us note that VIENNA
algorithm, for example, requires to know a-priori the number k of clusters. In the
present work, we focus on automatic k-detection, as the platform may adapt to
any data set. Table 1 reports some multi-objective clustering approaches while
describing their differences; is the number of clusters k fixed in advance? what
are the representations (locus-based adjacency, eisen plot, chromosome represen-
tation. . . ), objective functions (variance, connectivity, deviation, complete link,
separation, global completeness. . . ) and operators used? Regarding the objec-
tive functions which determine the clustering model of the problem, most of the
approaches are using two types of measures in order to estimate both the com-
pactness and the separation of clusters. Some of these objective measures are
presented hereafter.

Table 1. Summary table of some multi-objective clustering methods

Algorithms k ? Representation Objective functions Operators

VIENNA[9] Yes Vorono Cells -Variance -No crossover

-Connectivity -Directed mutation based NN

MOCK[7,8] No Locus-based adjacency -Deviation -Uniform crossover

-Connectivity -Nearest neighbors mutation

SiMM-TS[1,7] No -Eisen plot -Variance Crossover and mutation

-Cluster profile plot -min dist(2 centroids) (unknown)

MOGA-BF[7,14] No Chromosome -Global compactness -Crowded binary

representation -Separation tournament selection

-Single point crossover

-Random mutation

MOSSC[18] No Chromosome -SSXB -Binary tournament - crowded

representation -J′
fwsc comparison operator based

-Simulated binary crossover

-Polynomial mutation

MOEA/D-Net[6] No Locus-based adjacency -Negative Ratio -2-points crossover

Association -Neighbor-based mutation

-Ratio Cut

MOMoDEFC[16] No Vector representation -XB -MoDE crossover

-Global cluster variance -ModiMutation

MOVGA[13] No Chromosome -Global compactness -Crowded binary

representation -Separation based tournament selection

centroid clusters -crossover point

-random mutation

2.3 Clustering Quality Measures

As indicated in the survey [15], usually cluster validity indices are used as objec-
tive functions. Most of multiobjective clustering algorithms use two validity
indices to be simultaneously optimized in order to evaluate two complementary
aspects: compactness and separation of clusters. Hence, given C a clustering
solution (corresponding to a partition of the dataset), several measures may be
computed.
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Compactness Measures. Many measures have been proposed to evaluate the
compactness. Variance and Deviation are the most used in the literature. They
measure the proximity of data belonging to a same cluster. Therefore, they use
the distance between each element and the center of the cluster it belongs to.

Variance. The variance [1,7,9] is computed by V ar(C) =
∑

Ck∈C

∑

i∈Ck

d(i, ck) ,

where C is a set of clusters, ck is the cluster centroid of Ck and d(. . .) is a
distance function to be defined. The variance has to be minimized.

Deviation. The deviation objective function [7,8] is very similar to the variance.
It is computed by Dev(C) =

∑

Ck∈C

∑

i∈Ck

d(i, ck) and has also to be minimized.

Separation. Separation measures evaluate how different the clusters are. The
connectivity measure is the most used in the literature.

Connectivity. The connectivity [7,8,17] evaluates the degree to which neighbor-
ing data points have been placed in the same cluster. It is computed as follows.
Its value lies in the interval [0, 1] and has to be maximized:

Conn(C) =
1
N

N∑

i

(∑h
j ωi,nni(j)

h

)

, where ωa,b =
{

1 if ∃Ck|a, b ∈ Ck

0 otherwise.

where nni j is the jth nearest neighbor of data i, h is the number of neighbors
used to compute the connectivity. N is a number of data.

Separation Based Centroid Clusters. This measure allows to compute the global
sum between clusters centroid [7,14]. It is computed by SumD(C) =∑

Ck∈C,Cl∈C,l � k d(ck, cl) where ck and cl are the cluster centroids of clusters
Ck and Cl respectively.

Hence several objective functions exist and choosing a combination of them
will define the optimization model. As we will see later in the article, some models
may be more efficient than other for some datasets. Therefore MO − Mineclust
gives the possibility, for a given dataset, to automatically choose the best one.

3 MO − Mineclust

Providing a platform dedicated to non specialists is the goal of MO − Mine.
Therefore many components have been implemented in order to be able to
adapt to the data to analyse. Indeed, as it will be shown in the experiments,
a same MOEA, for example, is not always the best to use, according to the
dataset. Then, regarding the numerous models (and in particular combina-
tions of objective functions) able to deal with the multi-objective clustering,
the objective of the proposed platform is to identify the best combination of
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Fig. 3. Presentation of the MO-MINE clustering process part.

model/engine/parameters to a particular dataset in order to offer, to a non spe-
cialist, the ability of discovering the best clustering for his/her dataset. Such
an approach requires the implementation of several components that can be
combined. Therefore, the general approach adopted is described in Fig. 3. This
figure shows that given the set of elements necessary to describe the model, the
set of available engines and the assoicated parameters, MO − Mineclust will
propose, for a given dataset, the best configuration model/engine/parameters.
Let us note that this approach is not specific to clustering but can be applied to
any optimization problem.

3.1 Components

In this first part of MO − Mineclust, the focus is set on the opportunity to
provide several MOEAs and a set of objective functions (to propose several
multi-objective models).

Available multi-objective models are a combination of the clustering mea-
sures presented previously. Ideally, a measure for compactness should be com-
bined with a measure of separation. Currently, the following measures are
implemented: Variance, Deviation, Connectivity, Separation based centroid clus-
ters. Other measures may be added easily.

Already available MOEAs in MO − Mineclust are: NSGA II [3], EasyEA,
IBEA [19] and PESA II [2].

Concerning the representation and associated operators, in this first study,
those presented in MOCK [8] will be used:

– Representation: locus-based adjacency representation,
– Initialization: 1/2 of the population is initialized by the Minimum spanning

trees (MSTs), these solutions performing well for compactness, the other 1/2
of the population is initialized using the k-means algorithm, these solutions
performing well for separation,
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– Mutation operator: Nearest neighbor mutation,
– Crossover operator: Uniform crossover.

In the litterature, several representations exist for clustering problems. In their
recent complete work, Garcia-Piquer et al. [5] present an analysis on the efficiency
of several representations using PESA-II algorithm. In our work, the focus is
given on the different MOEAs (that are called engine), and on the association
MOEAs / Model. Therefore we first propose a single representation: the locus
based adjacency representation, as it is the one used in MOCK, one of the best
Multi-Objective Evolutionary Algorithm for clustering.

3.2 Implementation

All the developments have been realized under ParadisEO and its extension
ParadisEO-MOEO [10]. ParadisEO is a C++ white-box object-oriented frame-
work dedicated to the reusable design of metaheuristics. In order to choose the
pair of model/engine, which has the best performance for a data set, the package
IRACE [11] will be used. This package implements an iterated racing procedure,
which is an extension of the Iterated F-race procedure.

MO − Mineclust is available at http://mo-mine.gforge.inria.fr/doku.php.

4 Experiments and Discussion

In order to attest the performance of the platform, experiments and comparisons
with the literature are proposed.

4.1 Data Sets

In this study, two types of experimental data from the literature are used: hand-
crafted two-dimensional data sets (2D) and generated dataset (GD) . Tables 2
and 3 present details of data sets; the number of clusters (k), the number of
data (N) and the dimensions which corresponds to the number of attributes
characterizing a data.

4.2 Protocol

In [7], Handl and Knowles compare the choice of clustering criteria in multi-
objective data clustering thanks to several algorithms. MOCK showed the best
performance for the majority of the data sets. Due to these reasons, we decide
to compare our approach to MOCK algorithm in the following. Therefore, we
will use the same protocol than in [8] to compare the obtained results. In order
to be fair in the methods comparison, we use a same number of generations
equals to 1000. To compare clustering approaches, it is common to use datasets
1 http://www.paradiseo.gforge.inria.fr.
2 http://personalpages.manchester.ac.uk/mbs/Julia.Handl/mock.html.

http://mo-mine.gforge.inria.fr/doku.php
http://www.paradiseo.gforge.inria.fr
http://personalpages.manchester.ac.uk/mbs/Julia.Handl/mock.html
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Table 2. Datasets 2D

Data sets k N Dimensions

Square1 4 1000 2

Square4 4 1000 2

Sizes5 4 1000 2

Long1 2 1000 2

Spiral 2 1000 2

Table 3. Datasets GD

Data sets k N Dimensions

2d-4c 4 1572 2

2d-20c 20 1000 2

2d-40c 40 1000 2

10d-4c 4 1289 10

10d-20c 20 1013 10

10d-40c 40 1937 10

where partitions are known a-priori and to evaluate the quality of the found
partitions obtained after running of the tested methods in comparison to the
original partitions.

The process is detailed in Fig. 4.

MO-Mine Pareto Front

Other approaches

Results

Comparison

Set of solutions

Kmeans
MOCK

...

Validation using external criterion

+

MO-Mine

MO-Mine_Clust

Fig. 4. Comparison process.

4.3 Cluster Evaluation

There exist several performance indices for cluster evaluation. They measure the
correspondance between two partitions G and H, corresponding respectively to
the clustering solution obtained and to a theoretical solution. Based on these
two partitions, it is possible to compute the contingency table that displays the
frequency distribution of the variables as follows.
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a = |{i, j|CG i = CG j ∧ CH i = CH j }|
b = |{i, j|CG i = CG j ∧ CH i �= CH j }|
c = |{i, j|CG i �= CG j ∧ CH i = CH j }|
d = |{i, j|CG i �= CG j ∧ CH i �= CH j }|

The values a, b, c and d are computed for each possible pair of data elements i
and j, and their respective cluster assignments CG i , CG j , CH i and CH j .
Using these four values several performance indices have been proposed. We
will use in this work, the Adjusted Rand index (ARI) as it is one of the most
successful cluster validation indices and is the one used in [8]. ARI is the version
adjusted for the chance of grouping of elements of the Rand index that is a
measure of the similarity between two data clusterings.

The Adjusted Rand Index [4] has to be maximized and is computed as:

ARI(G,H) =

(
n

2

)
(a + d) − [(a + b)(a + c) + (c + d)(b + d)]

(
n

2

)
− [(a + b)(a + c) + (c + d)(b + d)]

ARI ranges between -1 and 1. The values of ARI close to 1 indicate an almost
perfect concordance between the two compared partitions, whereas the values
close to -1 indicate a complete discordance between them.

As previously mentionned, the cluster evaluation is done after the obtention
of the results of each clustering methods.

4.4 IRACE Results

As mentioned before, IRACE [11] has been used to obtain the best combination
of parameters for each dataset using Adjusted Rand Index of the best solution
of the Pareto front as an external criterion to optimize. In these preliminary
experiments, only a few ranges of parameters have been proposed to IRACE.
The parameters tested, the ranges of values tested, as well as the best para-
meters obtained are presented in Table 4 for each dataset. We can observe that
several combinations of fitness functions are selected: Variance and Separation,
Deviation and Separation, Deviation and Connectivity, Variance and Connec-
tivity. It shows that it is not always the same pair of objectives that is selected
as the best combination, according to the dataset studied. We can also observe
that the best algorithm is not always the same, however, for these datasets, only
two of them are selected by IRACE: IBEA and PESA II. These experiments
show, that PESA II, used in MOCK, is indeed well adpated for clustering. It
also demonstrates the importance to be able to use different MOEAs and to let
the framework choose the most adapted one whereas in other works often one
single MOEA is tested [5].
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Table 4. Components setting obtained by Irace.

Data sets Neighborhood size Population size Objective functions MOEA

Square1 30 [10;100] 12 [10;20] Deviation + Connectivity IBEA

Square4 65 [10;100] 16 [10;20] Deviation + Connectivity IBEA

Sizes5 54 [10;100] 19 [10;20] Deviation + Connectivity IBEA

Long1 28 [10;100] 15 [10;20] Deviation + Connectivity PESA-II

Spiral 42 [10;100] 13 [10;20] Deviation + Connectivity PESA-II

2d-4c 31 [10;100] 17 [10;20] Variance + Connectivity PESA-II

2d-20c 43 [10;70] 100 [10;100] Variance + Connectivity IBEA

2d-40c 63 [10;70] 100 [10;100] Variance + Connectivity IBEA

10d-4c 31 [10;100] 20 [10;20] Deviation + Separation PESA-II

10d-20c 38 [10;50] 100 [10;100] Deviation + Separation IBEA

10d-40c 15 [10;50] 100 [10;100] Deviation + Separation PESA-II

4.5 Experimental Results

Table 5 presents results obtained by the platform MO − Mineclust. Results
obtained by the well-known Kmeans algorithm, as well as those obtained by
the state-of-the-art MOCK algorithm based on PESA II are presented. Those
results are directly extracted from the original article [8]. The number of clus-
ters computed as well as the average quality (in terms of Adjusted Rand Index
(ARI)) are presented. In the table we present the average value of the Adjusted
Rand Index value and its standard deviation (Std.) for MO −Mineclust over 10
executions. Let us note that the value of the adjusted rand index is an exter-
nal criterion used to select the best solution among the Pareto front generated
by each algorithm but it is not used within the algorithms as an optimization
criterion.

In this table, we can observe that for the majority of the datasets, our
approach improves the average Adjusted Rand Index (AV. ARI). The average
relative percentage deviation on the other datasets is less than 0.1 %. With a
Friedman test, we observe that the algorithms are different with a p-value of
0.001. Concerning the comparison between MOCK and MO − Mineclust the
difference is also statistically significative and MO − Mineclust performs better
in term of ARI.

Table 5 reports clustering with the best ARI. We can however observe that
the number of clusters obtained is sometimes larger than the expected number
(square 1, size5, 2d-20c, 10d-20c). In each case, the algorithm selected was IBEA.
Let us remark, that for these datasets, PESA-II manages to find good solutions
with a correct number of clusters, but their ARI evaluation is not as good as
the one proposed by IBEA. This leads to two comments and hypotheses; first
IBEA seems to better optimize on one extreme part of the Pareto front and then
the best ARI solution leads on the part that favours connectivity. Secondly, we
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Table 5. Performance of MO −Mineclust.

Data sets MOCK [8] Kmeans MO −Mineclust

Name k Av. ARI k Av. ARI k Av. ARI Std

Square1 4.22 0.9622 4 0.9651 19.6 0.9901 0.013

Square4 4.32 0.7729 4 0.8048 4.4 0.8196 0.0225

Sizes5 4.2 0.976 3.92 0.9557 37.8 0.9838 0.005

Long1 2 0.9998 4.98 0.3562 2 0.9998 0.0001

Spiral 2 1 5.12 0.5502 2 1 0

2d-4c 4.12 0.9893 3.99 0.9143 4.2 0.988 0.0002

2d-20c 19.94 0.9454 33.79 0.8633 19.2 0.9832 0.009

2d-40c 42.14 0.8654 42.36 0.692 19.4 0.9835 0.034

10d-4c 4.07 0.9962 3.99 0.9704 4.2 0.9975 0.001

10d-20c 20.26 0.9981 21.45 0.9820 20.2 0.9979 0.004

10d-40c 42.84 0.9896 43.48 0.9678 19.2 0.9859 0.01

can wonder on the capability of the ARI measure to really detect more interest-
ing partitions as sometimes it may prefer solutions with a too large number of
clusters. These remarks strengthen the interest of using a generic framework for
multi-objective clustering. In particular, it is really easy to modify a selection
criterion in the parameter file or to include new additional components and to
offer it to the users as the framework will select the best combination.

5 Conclusion

In this article, we have presented a multi-objective framework for clustering
data, MO − Mineclust. The framework searches for the best association of
model/engine/parameter for a dataset without specifiing the number of clusters.
MO − Mineclust shows very interesting behavior and shows that the model and
the engine have a great importance in the performance of the method and can
depend on datasets. There are several directions for future works. First we would
like to extend the platform to more models and to different representations. We
also want to test our method on real datasets and in particular to datasets from
biology where the number of dimensions and observations are large. We would
also study how to automatically choose a solution of the pareto front on unseen
data. The same kind of methodology could be used to solve other datamining
problems and it will be interesting to see if results could also be improved.
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Andrew J. Parkes B , Ender Özcan, and Daniel Karapetyan

ASAP Research Group School of Computer Science, University of Nottingham,
Nottingham, UK

{ajp,exo,dxk}@cs.nott.ac.uk

Abstract. Many real world problems can be solved effectively by meta-
heuristics in combination with neighbourhood search. However, imple-
menting neighbourhood search for a particular problem domain can be
time consuming and so it is important to get the most value from it.
Hyper-heuristics aim to get such value by using a specific API such
as ‘HyFlex’ to cleanly separate the search control structure from the
details of the domain. Here, we discuss various longer-term additions to
the HyFlex interface that will allow much richer information exchange,
and so enhance learning via data science techniques, but without losing
domain independence of the search control.

Keywords: Combinatorial optimisation · Metaheuristics · Data sci-
ence · Machine learning

1 Introduction

Over the last few decades many highly-effective metaheuristic search methods,
working on numerous target problem domains, have been developed. They are
generally based on neighbourhood improvement search in which a solution is
iteratively changed by using moves taken from one or more neighbourhoods.
The generation and acceptance/rejection of the moves is generally controlled by
a metaheuristic. The neighbourhoods are often quite sophisticated and involve
a fairly deep insight into the domain. However, all-too-often the metaheuris-
tics are relatively simple, rather static, and do not exploit the specifics of the
interactions between the neighbourhood search operators. Hyper-heuristics are
a technique, and a software architecture, that separates the control (the meta-
heuristic) from the details of the domain and the neighbourhoods [2]. A key
aim allowing learning and statistical techniques, ‘data science’, to be applied
to optimisation without them having to be re-implemented separately for every
problem domain; essentially giving a plug-and-play version of sophisticated adap-
tive metaheuristics. The goal is to lift the control from the domain level up to
the higher hyper-heuristic level so that data science methods have access to
the details of the search process but in a problem domain independent manner.

©
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In a sense, this is refactoring of standard algorithms leading to better ‘separation
of concerns’; search control agents should not know about the domain details.

We discuss the support of this goal by using the ‘HyFlex’ (Hyper-heuristics
Flexible framework) interface [4] to separate the hyper-heuristic control from
the details of the domain. In the initial limited interface, the hyper-heuristic
simply selects neighbourhood moves (the domain-level heuristics) and in return
all it learns about the current solution(s) is the objective value. Although such
an interface is narrow, one should note that this is sufficient for some well-
known meta-heuristics; e.g. standard simulated annealing can be implemented
as a simple hyper-heuristic. If data science techniques for optimisation are to
become both easy-to-use and still effective, then a drive should be to extend the
interfaces (APIs) towards a clean separation but supporting a rich control and
information flow. (There are a few existing examples, e.g. [5], that consider a
limited broadening of the interface, allowing increased information flow.) The
point of this paper, (which is necessarily brief, ‘positional’, and with only a few
key references), is to strengthen and promote the general point that a signifi-
cantly richer information flow is still consistent with a clean separation between
the control and the domain.

The interest in frameworks enabling implementation of general purpose algo-
rithms is growing; for example, Ryser-Welch and Miller [7] provided an overview
of some of those frameworks, including Snappy, SATzilla, ParHyFlex, Hyperion
and HyFlex. We focus on selection hyper-heuristics which mix and control a pre-
defined set of low level heuristics during the search process [2]. Corresponding
to these, an initial version of an interface, HyFlex v1.0 was implemented using
Java and used in the first Cross-domain Heuristic Search Competition; CHeSC
2011 [4]. HyFlex connects the high level control layer managing a set of low level
heuristics via a domain barrier but does not allow any problem specific informa-
tion flow from the domain to the control level. Problem domain implementation
details are hidden from the users so that they could focus on the design of the
higher level method that will mix and control the low level heuristics and their
settings; giving a for researchers, as well as practitioners, to develop new cross-
domain solution methods and solve their problems with reduced effort.

The implementation of a metaheuristic is a special case which is supported
by HyFlex. The only restriction is that the metaheuristic has to use the oper-
ators provided for a problem domain, or the problem domain implementation
needs to be extended to include new operators. HyFlex can already be used
as a benchmark to evaluate the performance of metaheuristic/hyper-heuristic
methods. HyFlex also allows data science techniques and metaheuristics to be
employed at the hyper-heuristic level to build, tune or refine hyper-heuristics via
analysis (data collection) and execution modes of operation.

The interface was extended to HyFlex v1.1 [1] to enable treating the prob-
lem instances collectively as a batch, and was used in the second Cross-domain
Heuristic Search Competition; CHeSC 2014. The extension supports balancing
of computational effort between instance; if some instances are much “easier”

1 http://www.hyflex.org/.

http://www.hyflex.org/
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than others then it seems reasonable that they should be allocated less compu-
tational time. More importantly, it also allows inter-instance learning: If some
of the instances are from the same domain then it makes sense that the hyper-
heuristics should be able to learn from the earlier instances in order to perform
better on the latter ones. The implementations of HyFlex also provide imple-
mentations of multiple problem domains allowing ideas for search control to
be tried and tested with much reduced time and effort. Each problem domain
includes implementation of a set of low level heuristics (operators), categorised
as ‘local search’ (guarantees a non-worsening solution), ‘mutation’ (might be
worsening), ‘ruin-recreate’, and ‘crossover’. As well as selecting the heuristic,
the hyper-heuristic may aslo need to control the heuristics via parameters. For
example, local search can be controlled via a ‘Depth of Search’ parameter, and
mutation/ruin-recreate by an ‘Intensity of Mutation’ parameters.

HyFlex v1.1 also considers the recent developments in the CPUs by support-
ing multi-core mode of operation, and also allows solution exchange via external
memory. In particular, it allows multiple instances of the same solver to be work-
ing on the same problem instance, and to share solutions between the instances
via a central pool of solutions. Naturally, this means that the system should aim
to learn which solutions are most useful, and so it would be helpful for it to have
more information about them. (This is part of the motivation for the ‘solution
features’ discussed in the next section.)

2 Future Extensions to HyFlex

Here we discuss future extensions to HyFlex, including support for better anno-
tations, instance/solution features, distance metrics and multi-objective optimi-
sation. In many situations, metaheuristics are run as time contract algorithms,
i.e., they terminate after a given time limit. HyFlex v1.0 has full support for
this type of operation, returning the final solution and its quality. In certain
situations, time limit can be irrelevant or relaxed and running an algorithm on
and off, even running different algorithms at any phase might be preferable.
This would require a hyper-heuristic (HH) reading from and writing into a file.
The next HyFlex version will support saving of a (set of) solution(s) into file(s)
and initialising a (set of) solution(s) from a (set of) file(s). Additionally, we
will investigate ways of supporting delta/incremental evaluation, enabling fast
computation of the objective values (fitness/cost) of a given solution.

In order to give more context, in Fig. 1 we give a more refined picture of the
kind of structure that often (but not necessarily always) occurs within the hyper-
heuristic. Specifically, it can (often) be split into two portions, “reactive” and
“reflective”. The reactive or ‘dispatch’ portion of the HH is directly responsible
for calling the low level operators; typically, it make such decisions based on some
control parameters. The parameters used by the dispatch side are controlled by
the reflective portion that ‘monitors’ the sequence of actions (heuristics selected,
etc.) and their effects (changes in the objectives, etc.). It uses data science
techniques, aiming to dynamically set the control parameters to better values.
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Solution feature values

Heuristic selection
State selection

Control parameters

Fig. 1. Proposed general architecture of HyFlex 2.

As an example, the hyper-heuristic might be a form of adaptive reactive sim-
ulated annealing, and the parameter could be the temperature. The reflective
portion of the HH could then try to observe the search progress in order to
decide cooling rates, and make reheats. In this view, a metaheuristic may often
be rather static and so could be considered as a hyper-heuristic that lacks the
reflective data-science component. The reactive portion bears the responsibility
for the ‘selection of low-level heuristics’ whereas it is the combination of both
reactive and reflective that might be said to be closer to doing a ‘search the
space of meta-heuristics’.

Instance Features: Each problem instance in a given domain carries a set
of features reflecting its specific characteristics. There are existing optimisation
approaches, such as, algorithm portfolios, that make use of the instance features
for choosing the best approach and/or best setting of an algorithm to solve
a given instance. Our aim is that HyFlex should support the use of machine
learning techniques to relate such characteristics to the choice of hyper-heuristic
components or their parameter settings. HyFlex v1.0 does not support instance
features; however, the basics for this are already in HyFlex v1.1: In CHeSC 2014,
size of an instance was provided as an instance feature which can be used for
better balancing of computational effort across the instances, i.e. allowing allo-
cation of computational time for the ‘smaller’ instances. Other instance features
could be graph density, number of constraints or planning horizon. Importantly,
no domain-specific semantic information will be provided; the hyper-heuristic
level will treat the set of feature values features as abstract vectors describing
the instance, but will need to reflect and discover for itself how these relate to
the search control.

Solution Features: Within domain-specific methods it is quite likely that some
features of the current solution would be exploited to guide the search. It seems
reasonable that in many cases these could be exposed to the hyper-heuristic
as (for example) a vector of values. The meaning of the values would not be
known to the hyper-heuristic, however, it could still extract information about
the patterns that occur and use that in order to guide the search; e.g. spotting
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correlations between the solution features and the true objective(s). If the objec-
tive is uninformative (due to plateaux) or expensive to compute, then some solu-
tion features could be used as cheaper surrogates or used to guide the search. A
more advanced extension of HyFlex might also all the hyper-heuristic to control
the individual heuristics in a fashion that accounts for the solution features —
e.g. the hyper-heuristic could supply the selected move operators with some
bounds or preferences/goals on the values of the mix of multiple objective and
solution features. One specific form of this would be for the operators to inter-
nally be optimising a weighted sum, but allowing the hyper-heuristic to control
the weights. If the exposed solution features are regarded as a chromosome then
one can potentially link with the mixed black-white box concepts [6], and so the
hyper-heuristics become closer to the realm of evolutionary computation — and
lead towards combining evolutionary/genetic algorithms with other metaheuris-
tics. For example, solution features might have the potential to permit search
control that captures the essence of EDA (estimation of distribution) algorithms.

Distances: An natural and straightforward extension to HyFlex is to allow the
domain level to provide some measure of the difference between different solu-
tions. This is algorithmically useful, for example, to support methods to maintain
diversity within populations. This extension has been considered previously [5]
for the simplest case of a single distance metric. However, there is no reason
not to also permit multiple distance metrics. An annotation system can also say
what kinds of properties they satisfy (such as triangle inequality). Note that this
does not break the domain barrier as the actual nature of the solutions and the
precise meaning of the metric itself still remains hidden. The task of data science
would then be to extract useful information so as to control the search.

Multi-objectivity: Another natural and obvious extension to HyFlex is that
it should allow the hyper-heuristic access to multiple objectives rather than a
single one (e.g. see [3]). There are already studies on approaches that mix and
control multi-objective evolutionary algorithms, which is currently not possible
with HyFlex. The support for multiple objectives should then enable implemen-
tation of evolutionary search methods within the HyFlex and hyper-heuristic
context. The primary difference would be that the details of the mutations (or
perturbations) are implemented in the domain level, and not visible to the hyper-
heuristic. Usually, techniques for diversity are done at the phenotype level (i.e.
the objective values), but equivalents of genotypic diversity could be done by also
using the distances discussed earlier. Since the hyper-heuristic will have access
to the distance metrics, multiple objectives and multiple solutions, then it can
measure the quality of the Pareto front, and control the search accordingly.

Annotations: Currently, HyFlex annotates low level heuristics with labels
‘mutation’, ‘local search’, ‘ruin-recreate’ and ‘crossover’, but an extended typol-
ogy and annotation system should allow improved implementation of techniques
such as iterated local search or memetic algorithms. For example, crossover oper-
ators could be annotated by whether they act as ‘local search’; whether or not
they never generate worsening solutions. Similarly, a ruin and recreate operator
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could act as a mutational operator in a given domain and as a local search
operator in another domain. Furthermore, annotations can be extended to cover
instance/solutions features, objectives and distance metrics.

3 Conclusion

The crucial conclusion is that HyFlex domain barrier can be modified to permit
a much richer search control and information flow, but without losing the essen-
tial advantage of the designer of a hyper-heuristic still not needing to become
an expert in the specific domain, but instead be able to apply and exploit data
science techniques. An obvious task is to continue with the work in [1] in order
to implement this and provide appropriate implemented domain solvers. The
advantage, and major challenge, for those studying the application of data sci-
ence methods to optimisation, is then to find techniques to exploit the rich
streams of data that will result during runs of the solvers. We believe that the
popular metaheuristics of today barely scratch the surface of what is possible in
such a system. We intend to continue with the extensions to HyFlex, including
initially support for initialisation from a solution file, saving of a solution, better
annotations, instance and solution features, distance metrics, multi-objectivity.
In order to reach a wider audience/users, training and teaching material will
also be provided. Finally, we remark that using learning at the hyper-heuristic
level does not exclude also learning at the domain level; though, expect this adds
the challenge of the use of learning to control systems whose behaviour is itself
changing due to their own internal learning.
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