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Abstract. The capability to monitor process and service executions,
which has gone to notably increase in the last decades due to the growing
adoption of IT-systems, has brought to the diffusion of several reasoning-
based tools for the analysis of process executions. Nevertheless, in many
real cases, the different degrees of abstraction of models and IT-data,
the lack of IT-support on all the steps of the model, as well as informa-
tion hiding, result in process execution data conveying only incomplete
information concerning the process-level activities. This may hamper the
capability to analyse and reason about process executions. This paper
presents a novel approach to recover missing information about process
executions, relying on a reformulation in terms of a planning problem.
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1 Introduction

In the last decades, the use of IT systems for supporting business activities
has notably increased, thus opening to the possibility of monitoring business
processes and performing on top of them a number of useful analysis. This has
brought to a large diffusion of tools that offer business analysts the possibility
to observe the current process execution, identify deviations from the model,
perform individual and aggregated analysis on current and past executions, thus
supporting process model re-design and improvement.

Unfortunately, a number of difficulties may arise when exploiting information
system data for monitoring and analysis purposes. Among these, data may bring
only partial information in terms of which process activities have been executed
and what data or artefacts they produced, due to e.g., manual activities that
are scarcely monitorable and hence not present in within the information system
data (non-observable activities).
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To the best of our knowledge, none of the current approaches has tack-
led the latter problem. Only recently, the problem of dealing with incomplete
information about process executions has been faced by few works [1,2]. How-
ever, either the proposed approach relies on statistical models, as in [1] or it
relies on a specific encoding of a particular business process language, with lim-
ited expressiveness (e.g., it cannot deal with cycles), as in [2].

In this paper we tackle the problem of reconstructing information about
incomplete business process execution traces, proposing an approach that, lever-
aging on the model, aims at recovering missing information about process exe-
cutions using action languages. In order to address the problem we exploit the
similarity between processes and automated planning [3], where activities in a
process correspond to actions in planning. A (complete) process execution cor-
responds to a sequence of activities which, starting from the initial condition,
leads to the output condition satisfying the constraints imposed by the workflow.
Analogously, a total plan is a sequence of actions which, starting from the initial
state, leads to the specified goal.

Given a workflow and an observed, incomplete, trace, we provide an algorithm
to construct a planning problem s.t. each solution corresponds to a complete
process execution and vice versa. In this way, by analysing all the possible plans
we can infer properties of the original workflow specification (e.g. the number
of valid cases, unused branches, etc.), including all the possible completions of
the trace. The advantage of using automated planning techniques is that we can
exploit the underlying logic language to ensure that generated plans conform
to the observed traces without resorting to an ad hoc algorithm for the specific
completion problem. In the literature different languages have been proposed
to represent planning problems and in our work we use the language K based
on the Answer Set Programming engine DLVK (see [4]). This language, in the
spirit of the well known C (see [5]), is expressive enough for our purposes and the
integration within an ASP system enables a flexible and concise representation
of the problem. On the other hand, the main ideas behind the encoding are
general enough to be adapted to most of the expressive planning languages.

We focus on block structured workflows which, broadly speaking, means that
they are composed of blocks, where every split has a corresponding join, matching
its type, and of loops with a single entry and exit points [6]. This assumption rules
out pathological patterns that are notoriously hard to characterise (e.g. involving
nested OR joins); but they provide coverage for a wide range of interesting use
cases [7].

2 A Motivating Example

We aim at understanding how to reconstruct information of incomplete process
execution traces, given the knowledge about the process model (which we assume
to be correct and complete). The input to our problem consists of: (i) an instance-
independent component, the process model, which in this paper is described
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using the YAWL language1 [6]; and (ii) an instance-specific component, that is,
the input trace.

Fig. 1. YAWL

Hereafter we assume familiarity with YAWL, a work-
flow language inspired by Petri Nets, whose main con-
structs are reported in Figure 1.

As a simple explanatory example of the problem we
want to solve, consider the YAWL process in Figure 2.
The process takes inspiration from the procedure for the
generation of the Italian fiscal code: the registration mod-
ule is created (CRM), the personal details of the sub-
ject are added (APD) and, before assigning the fiscal
code, either the passport/stay permit information (APPD) or the parents’ data
(APARD) are added to the module. In the latter case, according to whether the
child is foreigner (foreigner) or not (!foreigner), either the nationality code
or the birth APSS code (AAC) is added to the module. Once data have been
added (APDC), the fiscal code is generated (GFC) and checked (CFC). If the
fiscal code is correct (FCOk), administrative offices (NA) and users (NU) can
be notified (in parallel), otherwise (!FCOk), the error reported (RE) and the
fiscal code generation procedure iterated until successful. Specifically, for the
user notification, according to whether the request is marked as a request for a
child or not, either the parents (NP ) or the requester (NR) are notified. After
the notification the request module is finally registered (RRM).

Fig. 2. A process for the generation of the Italian fiscal code

We assume that a run-time monitoring system is able to trace the execution
of this process, by logging only the observable activities APARD, RE and RRM ,
marked in Fig. 2 with a small gears icon and the data observed by the system.
An example of such a logged information (partial trace) is reported in (1). It
lists 4 executions of observable activities and the corresponding observed data
(enclosed in curly brackets):

APARD {foreigner : T}, RE, RE, RRM (1)

1 We use the YAWL modeling language but the approach can be extended to any
other block-structured language.
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Exploiting the available knowledge about the process model and the observed
trace, we would like to know whether it is possible (and how) to reconstruct the
complete trace. For instance, by knowing the process control flow in Fig. 2 and
the fact that RRM was executed, we can infer that the workflow has been exe-
cuted from the start until RRM . Thus, taking into account the YAWL semantics,
this means that: (i) all the sequential and “parallel” activities CRM , APD,
APDC, GFC, CFC, N , NU , NUC and NA have been executed; and (ii)
exactly one among the mutually exclusive activities (a) APPD or APARD
and APARDC, (b) ANC or AAC, and (c) NP or NR, have been executed.
Moreover, by knowing from (1) that RE has been executed twice, it is possible
to understand that the cycle has been iterated two times (and hence GFC and
CFC have been executed three times). Similarly, by observing that APARD
has been executed, it is possible to understand that the execution also passed
through APARDC and not through APPD. As a result a possible extension of
the trace in (1) is:

CRM , APD, APARD {foreigner : T}, APARDC, APDC,
GFC, CFC, RE, GFC, CFC, RE, GFC, CFC, N , NU ,
NUC, NA RRM

(2)

However, at this point we are not able to completely reconstruct the trace
as we cannot understand which of the alternatives among ANC or AAD, and
NP or NR, have been executed. Data, both used for enriching the model and
observed in the trace, provides a further source of useful knowledge which can
help to discriminate about the missing activities. For example, by observing in
the trace the value of the variable foreigner just after the branching activity
APARD, it is possible to understand that the branch executed by the considered
execution trace is the one passing through ANC. Finally, it could happen that
some further knowledge is available about data in a workflow, e.g., what are the
activities in charge of manipulating those data. For instance, in this example,
we could have further knowledge about the variable child: we could be aware
that child is a field of the registration module that is only set by the activity
APARD (to true) and APPD (to false)2. This knowledge makes it possible to
understand that the “child” branch, i.e., the branch passing through the parent
notification (NP ) should have been executed, thus reconstructing a complete
trace, e.g.,

CRM , APD, APARD {foreigner : T}, ANC, APARDC, APDC,
GFC, CFC, RE, GFC, CFC, RE, GFC, CFC, N , NU , NP
NUC, NA RRM

(3)

Although in this simple example understanding how to fill “gaps” in the
incomplete trace is relatively easy, this is not the case for real world examples.
In the next sections we show how to encode general problems in order to be
able to automatically reconstruct a partial trace (if the incomplete information

2 Note that the YAWL model in Figure 2 has been annotated with this additional
information.
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of the partial trace is compliant) or alternatively, to assess the non-compliance
of the incomplete information of the partial trace). The output that we expect
is hence either (a) the notification that the partial trace is inconsistent with
the process model, or (b) a set of traces that complete the input partial trace
(partially or in full).

3 The General Approach

IA (complete) process execution can be seen as a sequence of activities which,
starting from the initial condition, leads to the output condition satisfying the
constraints imposed by the workflow. Similarly, a total plan is a sequence of
actions which, starting from the initial state, leads to the achievement of a
specified goal.

By exploiting this similarity, given a workflow (that we assume to be correct
and complete, as its actions) and an observed trace, we provide an algorithm to
construct a planning problem such that each solution of the planning problem
corresponds to a complete process execution and vice versa. In this way, we can
(i) either assess the non-compliance of the incomplete information of the partial
trace w.r.t. the workflow specification (if no compliant plan is found) or (ii) by
analysing all the possible plans we can infer properties of the original workflow
specification.

Our encoding includes two stages: firstly the given workflow is encoded into
an equivalent planning problem; then further constraints are added to the gen-
erated problem to ensure that the only admissible plans are those conforming to
the observed traces.

The key of the bisimulation of the workflow processes using an action lan-
guage lays in the fact that the semantics of YAWL is provided in terms of petri
nets transition systems, where states are defined in terms of conditions connected
to activities. Conditions may contain one or more tokens and the execution of
activities causes transition between states by moving tokens from incoming to
outgoing conditions according to their type (AND/OR/XOR join or split); e.g.
in Figure 3a the execution of activity N , with an AND split, moves tokens from
the input condition to both the output conditions. In a nutshell, the general idea
of the bisimulation is to represent the position of tokens by means of states and
execution of activities by (possibly non-deterministic) transitions between states
(see Figure 3b).

(a) Transition in a Petri Net (b) Transition between states

Fig. 3. Encoding YAWL into a plan: an intuitive representation
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Block structured workflows are safe in the sense that no more than one token
accumulates in a single condition; therefore we do not need to keep track of the
number of tokens in each condition but we just need to track the presence of
a token by means of an appropriate mechanism (that of propositional fluents
introduced below).

The execution of a workflow is encoded by using the main elements of an
action language, that is fluents and actions. The formers represent the state
of the system which may change by means of actions. Causality statements
describe the possible evolution of the states and preconditions associated to
actions describe which action can be executed according to the present state. The
conditions in the workflow are represented by means of fluents and appropriate
causality statements describe the transition by “simulating” the semantics of
activities. The possibility of representing partial knowledge and non-determinism
in K, introduced in the next section, enables the precise modelling of complex
workflow structures like OR-splits and loops.

The conformance to observed traces is enforced by means of additional fluents
which, together with causality and pre-condition statements involving observable
activities, rule out unwanted plans.

4 Encoding the Problem Using K
We introduce our encoding in two different steps; firstly we provide a general
algorithm that, given a block structured workflow, generates a planning problem
that bisimulates the valid cases. Secondly, we show that given an observed trace
we can modify the planning problem in order to exclude plans that are not
conforming to the observations. Later we show that additional information about
data used by the process can be easily incorporated into the framework, providing
additional insight into the observed processes.

For lack of space, in this paper we introduce the main idea behind our tech-
nique. For the complete encoding and formal proofs the reader is referred to [8].

4.1 Overview of Action Language K
A planning problem in K is specified using a Datalog-like language where flu-
ents and actions are represented by literals (not necessarily ground). A problem
specification includes the list of fluents, actions, initial state and goal conditions;
moreover a set of statements specifies the dynamics of the planning domain using
causation rules and executability conditions. The semantics of K borrows heav-
ily from ASP paradigm. In fact, the system enables the reasoning with partial
knowledge and provides both weak and strong negation.

A causation rule is a statement of the form
caused f if b1,. . ., bk, not bk+1, . . ., not b� after a1,. . ., am, not
am+1, . . ., not an.

where f is either a classical literal over a fluent or false (representing absurdity),
the bi’s are classical literals (atoms or strongly negated atoms, indicated using -)
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over fluents and background predicates and the aj ’s are positive action atoms
or classical literals over fluent and background predicates. Informally, the rule
states that f is true in the new state reached by executing (simultaneously) some
actions, provided that a1, . . . , am are known to hold while am+1, . . . , an are not
known to hold in the previous state (some of the aj might be actions executed
on it), and b1, . . . , bk are known to hold while bk+1, . . . , b� are not known to hold
in the new state.

An executability condition is a statement of the form
executable a if b1,. . ., bk, not bk+1, . . ., not b�.

where a is an action atom and b1, . . . , b� are classical literals (known as pre-
conditions in the statement). Informally, such a condition says that the action is
eligible for execution in a state, if b1, . . . , bk are known to hold while bk+1, . . . , b�

are not known to hold in that state.
Terms in both kind of statements could include variables (starting with cap-

ital letter) and the statements must be safe in the usual Datalog meaning w.r.t.
the first fluent or action of the statements. Additionally, K provides some macros
to express commonly used patterns. These are internally expanded using the
above two statements together with strong and weak negation. For example a
fluent can be declared inertial, expressing the fact that its truth value does
not change unless explicitly modified by an action, or it could be stated that
after an action there should be total knowledge concerning a given fluent. For
more details the reader should refer to [4].

4.2 Encoding of the Workflow

The main elements of a YAWL workflow are activities and conditions: the lat-
ter represent the current status by means of those where tokens are present,
while the former “activate” according to the state of input conditions and move
tokens in output conditions. To each activity X in the workflow is associated an
action with the identifier x in the plan, moreover each condition is associated
to a unique identifier. In our example this unique identifier is represented by
the concatenation of the connected actions. For example, nu np represents the
condition connecting the activities NU and NP in the workflow in Fig. 2. States
are represented by the inertial fluent enabled(·) ranging over the set of conditions
in the workflow. The fact of the fluent being true corresponds to the presence of
a token in the corresponding condition. In this way we can establish a one to one
correspondence between planning and workflow states. In the examples below
implicit conditions are named using the starting and ending activities. Work-
flow contains two special conditions called start and end respectively. These are
encoded as the initial state and goal specification:

initially: enabled(start).
goal: enabled(end)?

The encoding is based on the activities of the workflow: each activity with
input and output conditions translates to a set of K statements in a modu-
lar fashion. The kind of join determines the executability of the corresponding
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action according to the input conditions over the enabled(·) fluents. Values of the
enabled(·) fluents associated to the output conditions are manipulated according
to the kind of split by means of a set of causation rules.

Fig. 2 introduces two kinds of patterns: AND and XOR split/join represent-
ing parallelism and decision respectively. Parallelism makes sure that all the
alternative branches are processed by activating all the output conditions and
waiting for all the input conditions before enabling the closing activity:

caused enabled(n nu) after n.
caused enabled(n na) after n.
executable rrm if enabled(nuc rrm), enabled(na rrm).

All tokens in input conditions are “consumed” by the activities and this is cap-
tured by using strong negation; e.g. for RRM :

caused −enabled(nuc rrm) after rrm.
caused −enabled(na rrm) after rrm.

Decision patterns (XOR) select only one condition, and the corresponding join
expects just one of the input conditions to be activated:3

caused enabled(apd appd) if not enabled(apd apard) after apd.
caused enabled(apd apard) if not enabled(apd appd) after apd.
executable apdc if enabled(appd apdc).
executable apdc if enabled(apardc apdc).

All but the OR join can be characterised by local properties of the work-
flow; i.e. it is sufficient to consider input and output conditions associated to
the activity. On the other hand, YAWL semantics for the OR join sanctions
that the corresponding activity is executable iff there is a token in at least one
of the input conditions and no tokens can reach empty input conditions later on.
This specification is clearly non-local and requires the inspection of the status
of conditions not directly connected with the action. However, the restriction to
block structured workflows enables us to restrict the actual dependency only to
conditions enclosed between the “opening” OR split corresponding to the join.
By looking at the network we could determine which conditions might inject
tokens into each one of the input conditions; therefore we can prevent the exe-
cutability of the action unless there are no “active” conditions that might bring a
token into any of the empty inputs. To this end we introduce the fluent delayed(·)
which identifies such “waiting” conditions:

caused delayed(Y) if not enabled(Y), reachable(Y,W), enabled(W).

The information concerning reachability is encoded into the predicate
reachable(·,·) which can be pre-computed during the encoding. Given these
predicates, the encoding of the OR join for an action S with input conditions
c1, . . . , cn correspond to an executability condition of the form:

executable S if enabled(ci), not delayed(c1),. . ., not delayed(cn).

for each of the input conditions.

3 Split predicates associated to the edges will be discussed in a later section.
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4.3 Encoding of Traces

Activities are divided in observable and non-observable. Traces are sequences of
observed activities and generated plans should conform to these sequences in the
sense that observable activities should appear in the plan only if they are in the
traces and in the exact order.

In order to generate plans in which observable activities appear in the cor-
rect order, we introduce a set of fluents (indicated as trace fluents) to “inhibit”
observable action activation unless it is in the right sequence. The action can be
executed only if its corresponding trace fluent is satisfied; moreover trace fluents
are set to true in the same order as the observed trace. An additional fluent
indicating the end of the trace and included among the goal guarantees that all
observed activities are included in the plan.

Trace fluents are in the form observed(·,·) where the first argument is the
name of the activity and the second one an integer representing the order in the
sequence (observed(end,k + 1) is the fluent indicating the end of a trace of length
k). E.g. a trace APARD, RRM for the example corresponds to the sequence of
fluents

observed(apard,1), observed(rrm,2), observed(end,3)

The additional integer argument is necessary to account for multiple activations
of the same activity in the trace; e.g. if RE has been observed twice there would
be a fragment observed(re,n),observed(re,n + 1) in the sequence of trace fluents.

To ensure that observable activities are included in plans only if required,
all the pre-conditions of the executability conditions for observable actions are
augmented with the corresponding trace fluents:

executable rrm if observed(rrm,N), enabled(nuc rrm), enabled(na,rrm).

Once an action from the trace is included in the candidate plan, the action
must not be repeated and the following activity could be considered; i.e. the
corresponding trace fluents should be toggled:

caused observed(rrm,2) after observed(apard,1), apard.
caused −observed(apard,1) if observed(rrm,2).

Finally the initial status and goal should be modified in order to enable the
first observable action and ensure the completion of the whole trace:

initially: enabled(start), observed(apard,1).
goal: enabled(end), observed(end,N)?

With the additional constraints related to the observed trace, the planner will
select only plans that conform to the observation among all the possible ones
induced by the workflow specification.

4.4 Encoding Information About Data

Although data within YAWL plays a crucial role in analysing process executions,
to the best of our knowledge there is no formalisation suitable for automatising
reasoning with workflows (see [9]).

As specified in YAWL, the conditions in which tokens are moved after the
execution of (X)OR splits depend on the evaluation of the so called branching
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tests associated to the edges.4 In order to provide an effective automated rea-
soning support for workflows manipulating data we considered common usage in
use cases [10] and introduced a restricted form of data which enables the analysis
of a wide range of workflows. The first restriction is that we focus on boolean
variables, that is, with true or false value; and the second is that we restrict
branching tests to literals; i.e. a variable or its negation.5

Data interacting with processes may arise in different contexts and from
disparate sources; we distinguish two kind of variables according to how their
value is established: endogenous and exogenous. The latter ones indicate vari-
ables whose value is determined by the environment in which the process actors
interact (e.g. a query to a web service) or by events not directly represented
within the workflow (e.g. an user action). For example, in Fig. 2, the variable
foreigner is not “controlled” within the workflow but depends on the context in
which the process is executed. Endogenous variables, on the contrary, are those
which are completely characterised by the workflow description; i.e. for these
variables we know which activities manipulate their value. For example, CFC in
Fig. 2 sets the flag FCOk which signals whether code is not valid, and the value
of this flag is used to control the loop in the workflow.

In our work we are not interested in capturing the whole data life cycle of
processes but rather in being able to further restrict the set of execution traces
to those conform to the observations about the data. E.g. the execution of a
specific activity might be incompatible with a branch because of the value of a
variable, and our system should be able to take this into account.

Endogenous variables. This kind of variables have a natural encoding within the
action language by considering each variable a different inertial fluent which can
be modified by actions. Branching tests involving these variables should be added
to the causation rules defining the activation of the corresponding condition.

For example, activity APARD is known to set the variable child to true, there-
fore the encoding should include the causation rule “caused child after apard.”.
Similarly, branching depending on these variables affects the enabling of the corre-
sponding conditions. For example, the condition connecting NU and NP depends
on the truth value of child as well:

enabled(nu nr) after nu.

Values of variables might be observed in traces, and in this case, before the
advancing of the corresponding trace fluent, the value of the variable should
be verified. This is encoded in the planning problem by adding the observed
variable to the pre-conditions of the following trace fluent. For example, if in the
trace RRM observes the value true for child, then the corresponding trace fluent
should be “advanced” only if that value has been set by an action:

caused observed(end,n + 1) if child after observed(rrm,n), rrm.

4 In the YAWL specification they are indicated as branching conditions, we use an
alternative term to avoid confusion with the conditions themselves.

5 This latter restriction can be lifted, although it simplifies the discussion in this paper.
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Exogenous variables The behaviour of these variables is different because the
process does not control but only accesses their value. In fact, in general, is
not even possible to assume that their value would be constant through the
complete run of the process. In terms of planning, this means that they cannot
be characterised as inertial because their value might change without an explicit
causation rule (e.g. external temperature below freezing). However, knowledge
about their value might be exploited in specific context and this information
could arise from two different sources: traces and branching tests.

In the trace shown in Equation (1), the value of exogenous variable foreigner
is observed to be TRUE by the first activity (APARD); therefore we know its
value right after the execution of the corresponding activity. This can be encoded
into the following causation rules involving the fluent:

caused foreigner after observed(apard,1), apard.

The addition of the trace fluent is necessary to guarantee that the value is
associated to the corresponding observation and not just each time the action
is included in the plan (this is relevant for loops). Additional information about
the nature of these variables can be used to further refine the encoding. E.g.
knowing that the value of the variable would not change during the execution
of the process would enable its declaration as inertial and this knowledge could
be used in other parts of the workflow.

In general, exogenous variables which are part of a branching test cannot be
used to select the right branch as shown in the case of endogenous variables.
The reason being the fact that their value cannot be assumed. However, from
the non-deterministic selection of a specific condition by means of the search for
a valid plan the current value of a variable could be induced. Consider again the
variable foreigner from the example in the case that its value would not have been
observed in the trace, i.e., there is no information concerning which branch has
been really taken). The planner would select non-deterministically between the
two fluents apard anc and apard aac (see Fig. 2). From the selection of the first
one we can assume that the value of variable foreigner must be TRUE. Indeed
in any process execution in which that branching has been selected, the value
of that variable had to be TRUE. This constraint can be imposed also for the
encoding in the planning problem by adding the causation rule:

caused foreigner if enabled(apard anc).

5 Evaluation

The problem of finding a (optimistic) plan for a K program is PSPACE-complete
[11] and this result dominates the complexity of our algorithm. In fact, the
proposed encoding generates a K program whose size is polynomially bound
w.r.t. the size of the input problem (workflow and trace). Despite the upper-
bound complexity, we are interested in investigating whether the approach is able
to reconstruct incomplete traces in real scenarios and what kind of information
is worth exploiting for the encoding.
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Fig. 4. Birth registration workflow

Specifically, we are interested in answering the following research questions:

RQ1 Is the ASP-based solver able to cope with the planning problems obtained
encoding real scenarios?

RQ2 Is encoding information about data worth to be used by the solver to cope
with the problem of reconstructing incomplete traces?

Experimental Setting. The process investigated in the experiment is the Ital-
ian procedure for the registration of births. The process, which involves several
actors such as the public health service (APSS), the municipality, and the cen-
tral national registry (SAIA), is reported (in the YAWL notation) in Figure 46.
It contains 38 activities (6 of which observable), 5 XOR blocks and 1 OR block,
and it is enriched with data (specifically, 5 endogenous and 2 exogenous vari-
ables). Specifically, after that the activities devoted to prepare the procedure
(γ) have been executed, the execution flow can take two alternative paths: the
municipality path (path α) or the hospital one (path β), according to whether
the parents decide to register the newborn first at the municipality and then the
registration is passed to the hospital (< γ, α, β >) or, first at the hospital and
then the registration is passed to the municipality (< γ, β, α >). A feedback loop
(λ) allows the flow, once executed one of the two paths, to go back and execute
the other one. Moreover, the β path also exhibits a mutually exclusive branch,
such that, the subpath β1 is executed if β is executed as first path, while the
subpath β2 is taken if the path β is executed as second path.

The control that both path α and β are executed exactly once, as well as the
choice between the execution of β1 or β2 are realized through conditions imposed
on data. Hence, based on the observable activities, the model enriched with
data and conditions on data (DM ) allows for only two possible compliant cases:
< γ, α, β2 > and < γ, β1, α >. Note that, when conditions imposed on data are
not taken into account (i.e., the only control flow model M is considered), either
β1 or β2 can be executed without any particular constraint and the feedback loop
λ allows for the repetition of α and β. Although a potentially infinite number of
different executions can be generated from M , in order to answer the research

6 The figure is meant to provide an overview of the structure and size of the workflow;
details are not essential in this context.
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questions, we only focus on all the different incomplete traces (based on the set
of the available observable activities) such that each observable activity appears
at most once in the trace. The following 7 incomplete traces have been examined:

t1 :< γ, β1 >, t2 :< γ, β2 >, t3 :< γ, α >, t4 :< γ, β2, α >,
t5 :< γ, β1, α >, t6 :< γ, α, β1 >, t7 :< γ, α, β2 >

(4)

Among these traces, only t5 and t7 are compliant with DM . Two different
encodings have been investigated: (i) the one that considers only the information
about the control flow (the M -based encoding) and the one relying on both
control flow and data (the DM -based encoding). They contain about 35 actions
and 142 (causation and executable) rules. For each incomplete trace we evaluated
(both for the M and DM -encoding) the number of possible solutions (if any),
as well as the time required for returning at least one solution of minimum size.

The experimentation has been performed on a pc running Windows 8 with
8GB RAM and a 2.4 GHZ Intel-core i7.

Experiment Results Table 1 reports for each incomplete trace, its size (i.e., the
number of observable activities that it contains), the length of the plan (i.e., the
size of the complete traces reconstructed by the planner), two metrics related
to the planner exploration of the search space (i.e., the number of choice points
and the recursion level), the number of alternative solutions (i.e., of the possible
complete traces of minimum length) and the time required for reconstructing the
missing information with and without using the information about data. Results
in the table show that the planner with the DM encoding has correctly returned
a complete trace only for t5 and t7, while it has classified the other traces as
non-compliant. Indeed, the information about data, has a twofold advantage
(RQ2):

– By constraining the execution flow through the information in the model and
in the partial trace, it filters out non-compliant solutions. This also comes
out by looking at the number of solutions of minimum length returned with
the M and DM -encoding for t5 and t7: it is lowered down from 2 (c9 and
c13) to 1 (c10 and c14).

– By reducing the search space, it reduces the time required for the explo-
ration. The time required for reconstructing the complete trace with the
DM -encoding is almost a quarter of the one needed with the M -encoding.

By inspecting the time required by the planner to find a compliant plan, i.e.,
to find at least a possible complete trace of minimum size, results show that it
depends on both the process model and the incomplete trace. For instance, the
time required with the M -encoding seems to vary according to the plan length
and, for plans of the same length, on the base of the type of path followed by the
trace. Although the time required with the M -encoding can be high (e.g., see
c10), overall, the time required with the DM -encoding to find at least one possible
complete trace, is of the order of a couple of minutes, which is still acceptable
for a real case study (RQ1). Moreover, by inspecting the data, we found that for
more complex (and hence time-consuming) cases, like c10 (which can even take
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Table 1. Birth Management Procedure: statistics and time for trace completion

Check Trace
With Observable Plan Choice Recursion Number of Completion
Data Activities Length Points Level Plans Time

c1 t1 NO 1 17 1 1 2 696.0 ms
c2 t1 YES 1 non-compl. - - - -
c3 t2 NO 2 17 1 1 2 693.0 ms
c4 t2 YES 2 non-compl. - - - -
c5 t3 NO 4 22 1 1 2 1105.0 ms
c6 t3 YES 4 non-compl. - - - -
c7 t4 NO 6 31 707831 19 2 326224.0 ms
c8 t4 YES 6 non-compl. - - - -
c9 t5 NO 5 31 1050344 20 2 497429.0 ms
c10 t5 YES 5 31 385711 20 1 154157.0 ms
c11 t6 NO 5 31 189239 24 2 105574.0 ms
c12 t6 YES 5 non-compl. - - - -
c13 t7 NO 6 31 119850 22 2 84830.0 ms
c14 t7 YES 6 32 26348 22 1 18600.0 ms

10 minutes for getting a solution), the observability of a single extra activity
drastically reduces the time required for the planning. For instance, observing 6
activities rather than only 5 in trace t5 would allow us to halve the time needed
for providing a solution (from 497429 ms to 244603 ms). This seems to suggest
that a critical factor in terms of approach scalability is the ratio (and the type)
of observable activities.

6 Related Work

The problem of incomplete traces has been faced in a number of works in the
field of process mining, where it still represents one of the challenges [12]. Several
works [13–15] have addressed the problem of aligning event logs and procedural
models, without [13] and with [14] data, or declarative models [15]. All these
works explore the search space of the set of possible moves to find the best one for
aligning the log to the model. In our case, however, both goal and preconditions
are different since we assume that the model is correct. Moreover, differently
from [14], data are not used for weighting a cost function, by looking at their
values, but rather their existence is exploited to drive the reconstruction of the
complete trace.

The key role of data in the context of workflows and their interaction with
the control flow has been deeply investigated by the artefact-centric approaches,
in which processes are guided by the evolution of business data objects, i.e.,
artefacts [16]. The Guard-Stage-Milestone (GSM) approach [17] is an example of
these approaches. It relies on a declarative description of the artefact life cycles,
through a hierarchical structure of stages (sets of clusters of activities equipped
with guards, controlling the stage activation, and milestones, determining when
the stage goal is achieved). Although, similarly to these approaches, we also focus
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on the interaction between data and workflows, we are not interested to the data
lifecycle, but rather we aim at exploiting data in order to further restrict the set
of plans compliant with the available partial observations.

The reconstruction of flows of activities of a model given a partial set of
information on it can be related to several fields of research in which the dynam-
ics of a system are perceived only to a limited extent and hence it is needed
to reconstruct missing information. Most of those approaches share the com-
mon conceptual view that a model is taken as a reference to construct a set
of possible model-compliant “worlds” out of a set of observations that convey
limited data. We can divide the existing proposals in two groups: quantitative
and qualitative approaches. The former rely on the availability of a probabilistic
model of execution and knowledge. For example, in a very recent work about
the reconstruction of partial execution traces [1], the authors exploit stochas-
tic Petri nets and Bayesian Networks to recover missing information (activities
and their durations). The latter stand on the idea of describing “possible out-
comes” regardless of likelihood; hence, knowledge about the world will consist
of equally likely “alternative worlds” given the available observations in time.
Among these approaches, the same issue of reconstructing missing information
has been tackled in [2] by reformulating it in terms of a Satisfiability Modulo
Theory (SAT) problem. In this work, the problem is reformulated as a planning
problem (specifically in the form of an action language).

Other works focused on the use of planning techniques in the context of
workflows [18,19], though with a different purpose (e.g. for verifying workflow
constraints, for accomplishing business process reengineering). Planning tech-
niques have also been applied for the construction and adaptation of autonomous
process models [20–22]. For example in [21] YAWL is customized with Planlets,
YAWL nets where tasks are annotated with pre-conditions, desired effects and
post-conditions, to enable automatic adaptivity of dynamic processes at run-
time. The same problem is addressed using continuous planning, in [22], where
workflow tasks are translated into plan actions and task states into causes and
effects, constraining the action execution similarly to the approach presented
here. However, to the best of our knowledge, planning approaches have not yet
been applied to specifically face the problem of incomplete execution traces.

7 Conclusions

The paper aims at supporting business analysis activities by tackling the lim-
itations due to the partiality of information often characterising the business
activity monitoring. To this purpose, a novel reasoning method for reconstruct-
ing incomplete execution traces, that relies on the formulation of the issue in
terms of a planning problem, is presented.

Although preliminary experiments with significantly more complex workflows
than the one used in the paper show that the approach can cope with real
workflows, we plan to perform an exhaustive empirical evaluation to understand
whether the planner can scale up to workflows deployed in practice. Another
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aspect to investigate is the different kind of data used in workflows and their
interaction with the observed traces in order to discriminate relevant plans by
augmenting the workflow with annotations. To this end we plan to consider
the recent work on data-centric approaches to business processes (e.g. [16]) to
characterise the data involved in process specification. Another line of research
we have not yet considered is the analysis of the compatible completed traces.
Since there could be several possible completions for an observed trace, it would
be interesting to investigate how these can be aggregated and probabilistically
ranked.
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