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Abstract. Predictive maintenance is an emerging technology which aims at in-
creasing availability of systems, reducing maintenance cost, and ensuring the 
safety of systems. There exist two main issues in predictive maintenance. The 
first challenge is the system operation region definition, detection and model-
ling; and another one is estimation of the remaining useful life (RUL). To ad-
dress these issues, this paper proposes a particle filter (PF)-based model fusion 
approach for estimating RUL by classifying the system states into different op-
eration regions in which a data-driven model is developed to estimate RUL cor-
responding to each region, and combined with PF-based fusion algorithm. This 
paper reports the proposed approach along with some preliminary results ob-
tained from a case study. 

Keywords: Particle filter (PF) · Predictive maintenance · Remaining useful life 
/cycle (RUL/RUC) · Time to failure (TTF) · Operation region · Classification 

1 Introduction 

Predictive maintenance based on fault prognosis can reduce maintenance and produc-
tion costs, and increase the availability of systems. Hence, prognosis such as data-driven 
prognostics has become an active research area [1] [2]. The main goal of a prognostic 
system is to predict failures before accruing and estimate the Remaining Useful Life or 
Cycles (RUL/ RUC) or time to failure (TTF). The operation regions covered from nor-
mal-operation to failure, i.e. the number of cycles remaining between the present and 
the instance when a system can no longer perform a complete cycle. State prediction can 
help to detect the faults as early as possible and to deal with them when the current 
measurements are still within the normal phase of operation. However, how to define 
the normal operation region remains an issue. Due to the increment of systems complex-
ity with large number of components, model decomposition is attracting a lot of atten-
tion from research community [3]. In other words, operation region is decomposed into 
independent subspaces by using measured signals as local inputs. Each local estimator 
corresponding to operation region operates independently, and the damage estimation 
becomes naturally distributed [4] [5].  

In general, prognostics can be performed using either data-driven methods or  
physics-based approaches. Data-driven prognostic methods use pattern recognition and  
machine learning techniques to detect changes in system states [7, 8]. Data-driven  
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prognostic methods rely on past patterns of the degradation of similar systems to project 
future system states; their forecasting accuracy depends on not only the quantity but also 
the quality of system history data, which could be a challenging task in many real appli-
cations [6, 19]. Another principal disadvantage of data-driven methods is that the prog-
nostic reasoning process is usually opaque to users [20]; consequently, they sometimes 
are not suitable for some applications where forecast reasoning transparency is required. 
Physics-based approaches typically involve building models (or mathematical func-
tions) to describe the physics of the system states and failure modes; they incorporate 
physical understanding of the system into the estimation of system state and/or RUL 
[21-23]. Physics-based approaches, however, may not be suitable for some applications 
where the physical parameters and fault modes may vary under different operation con-
ditions [24]. On one hand, it is usually difficult to tune the derived models in situ to 
accommodate time-varying system dynamics. Recently the particle filter(PF)-based 
approaches have been widely used for prognostic applications [25-29], in which the PF 
is employed to update the nonlinear prediction model and the identified model is applied 
for forecasting system states. It is proven that FP-based approach, as a Sequential Monte 
Carlo (SMC) statistic method [30, 31], is affective for addressing the issues that data-
driven and physic-based approach face by fusing different models to improve the per-
formance of models.   

This paper presents a general PF-based model fusion methodology for constructing 
RUL monitoring/predicting systems. The proposed method is formulated and illus-
trated through a real Auxiliary Power Unit (APU) prognostic application. This paper 
also presents the the preliminary experimental results from the case study. The organ-
ization of the paper is as follows. Section 2 presents the proposed PF-based model 
fusion methods; Section 3 introduces the case study to demonstrate the implementa-
tion of the proposed methods along with some experimental results; Section 4 dis-
cusses the results and future work; and the final section concludes paper.  

2 FP-Based Model Fusion Method 

The stochastic approximation is used when functions cannot be computed directly and 
the system states may be estimated via acquired real data (noisy observations). Sto-
chastic approximation uses probability theory to estimate the monitoring system state. 
Let’s get started by Monte Carlo equation, concerning to the approximation of some 
probability distribution ( )p x , lx ∈  , being l the operation region, the approximation 

yields to 

{ } ( ) ( )E X f x p x dx=   (1)

where (·) nf ∈  is some useful function for estimation, in the n domain of interest. 

In cases where this cannot be achieved analytically the approximation problem can be 

tackled indirectly by drawing random samples σl
i, in l region, from a distribution q(x) 

instead of p(x), like:  
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 as normalizing term, since now weight parameter Θ, then (1) results 

in the function approximator   

1

ˆ ( : , ) ( : )l

N

i i
i

X x f xθ σ θ σ
=

=   (3)

where the notation ˆ ( : , )X x θ σ  means the value of ˆ ( : , )X x θ σ evaluated at lx ∈ 

given Nθ ∈  and the parameter lσ ∈ in  which dimension depends on the 
approximator. The approximator has a linear dependence on θ but a nonlinear 
dependence on σ . In case of Non-Linearly Parametrized Approximators (NLIP), the 
parameters denoted by σ and the adaptable weights θ  are updated. Therefore, we 
can think informally of the nonlinear estimation structure,  

ˆ( , )l ly g x α=  (4)

1

) ˆ ( :
N

i i
i

x f xθ σ
=

=   (5)

, ( , )lg qθ η σ=  (6)

( , )y lσ ζ=  (7)

where (4) is the observation equation, (5) is the nonlinear estimation equation, (6) is 
the importance on-line adjustable weight correction and (7), Particle selection, is the 
particles evolution depending on the noisy observations y and the operation region l. 
Next we proceed to the design of η , ζ , f and l, the operation-region partition as 

shwon in Figure 1. 
Figure 1 shows the scheme of PF-based model fusion proposed for TTF estimation 

for prognostics. There are three main components: region selection, regional models 
for TTF (RUL) estimation, PF-based model fusion algorithm named as On-line Ap-
proximate Classifier (OLAC). Following is description of these main components 

2.1 Regional Selection (ζ) 

In prognostics systems, to detect and predict the risk to complete a planned mission, 
the monitored data variance may be sufficient to differentiate a normal-operation and 
failure; the variance is a measure of how far a set of input data is from the normal-
operation region. Signs of aging or degradation are detectable prior failure when the 
monitored model incorporate variables with high variance. 
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Principal Component Analysis (PCA) is a multivariable statistical approach used to 
study the variance of a data set, it is widely applied in industry for process 
monitoring. We developed a PCA search algorithm aiming to sort the input data 
vector , {1.. }jy j N=

  with N the number of input measurements and find indices

, {1.. }j jv N=   that describe the variation in the model in order of their importance. 

The ordering is such that 1 2( ) ( ) ... ( )jVar v Var v Var v≥ ≥ ≥ , where Var(vj) denotes the 

variance of jy


; being the variance a parameter describing the actual, normal-

operation to failure, probability distribution of jy


. This algorithm computes variable 

variance corresponding to a data-model )[ ( , {1.. }]jM Var y j a= =
. Given M the mean 

μ and standard deviation λ for each jy


 computes standardized χ  model. The 

covariance matrix, E will be computed for each jy


. So, the eigenvalues, EIG is 

evaluated with a design parameter, Γ; this process permits extract lines that 
characterize the data. A result table, {ν,ω} giving up with the more representative 
variable, Var(v1)≥Var(v2)≥...≥Var(vj). This information is used to replace the high 

variance attributes 1 2( ), ( ),..., ( )nVar v Var v Var v  by particles l l
iσ ∈ . The particles, 

l
iσ  of the PF model are selected among the centers, aj  of the fuzzy subspaces, 

according to the minimum distance criterion: 

1l n
i

n

x
round

d
σ

ρ
 

= +  
 

                               (8) 

with n nd dxρ =  to / 2ndx  neglecting evaluation centers within / 2ndx  of the edges 

of n
ja ∈ . This criterion was chosen since it extends the fundamental notion of 

fuzzy membership degree in the multidimensional input space and can be used to  
 

 

Fig. 1. The PF-based model fusion scheme for TTF estimation 
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activate the closest particles, σi in a certain domain, l, dealing in such a way with the 

particles degeneracy problem. The method considers all the centers as candidates for 
locating the particles, however, only a subset of the fuzzy centers is selected as the 
algorithm proceeds, the ones that are close to the observation data according to the 
Euclidean minimum distance criterion. At each time instant the number of selected 
fuzzy functions is equal to the number of particles. And if, the measurement get to a 

different operation-region, Al, the algorithm selects other particles and memberships, 
and PF estimator never gets to zeros. 

2.2 TTF Estimation 

In the estimation step, the expectation of the state given by f(x) is approximated by 
choosing an importance distribution q(x)  that is similar to f(x)  

{ }( ) ( ) ( )

( )
( ) ( )

( )

x

x

E f x f x p x dx
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q x

= ×

 
= × 

 





 
(9)

by using particles l
iσ , i={1..M} from the importance distribution q(x), the proposal 

sample distribution lead to ( )k kq x y ,  
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If, applying Bayes rule and defining a weight law as:  
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and, replacing (10) in (11)  
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(12)

which is the expectation of the weighted function ˆ( : , ) ( ) ( : )l
k if k k f xθ σ σ= Θ ×  

scaled by a normalizing term.  

2.3 Correction (η) 

In the weight calculation phase, you get the weight iΘ  of each particle ( : )l
if x σ  

from the observation model ( | , )l l
k kg y x α . This probability is calculated as a  
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multi-variate distribution ( )k kq x y . This importance function is evaluated for each 

particle :x σ sampled in the prediction step. Finally, the weights of all the particles 
are normalized, θ , always ensuring sum of one. Arriving to the final estimate, 
ˆ( ) ( ) ( : )l

i k if k k f xθ σ≈ × . 

Generalizing the on-line weights law, using (11), ( )· ( | ) ( | , )l l
k k k kk q x y g y x αΘ = ×

, thus:  

1

1
ˆ ( : | ) ( : )

N
l l

k i k k k i
i

q x y x x
N

σ δ σ
=

≈ −  (13)

Now, introducing the particles from the proposal ~ ( | )l
i k kq x yσ  and using the 

Monte Carlo approach leads to the desired result. That is, the Importance Sampling 
Function:  

1

1
ˆ ( : | ) ( : )

N
l l

k i k k k i
i

q x y x x
N

σ δ σ
=

≈ −  
(14)

and therefore substituting, applying the sifting property of the Dirac delta function 
and defining the normalized weights as  
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3 Implementation: A Case Study of APU RUC Estimation 

3.1 APU and APU Data 

The APU engines on commercial aircrafts are mostly used at the gates. They provide 
electrical power and air conditioning in the cabin prior to the starting of the main 
engines and also supply the compressed air required to start the main engines when 
the aircraft is ready to leave the gate. APU is highly reliable but they occasionally fail 
to start due to failures of components such as the Starter Motor. APU starter is one of 
the most crucial components of APU. During the starting process, the starter acceler-
ates APU to a high rotational speed to provide sufficient air compression for self-
sustaining operation. When the starter performance gradually degrades and its output 
power decreases, either the APU combustion temperature or the surge risk will in-
crease significantly. These consequences will then greatly shorten the whole APU life 
and even result in an immediate thermal damage. Thus the APU starter degradation 
can result in unnecessary economic losses and impair the safety of airline operation. 
When Starter fails, additional equipment such as generators and compressors must be 
used to deliver the functionalities that are otherwise provided by the APU. The uses of 
such external devices incur significant costs and may even lead to a delay or a flight 
cancellation. Accordingly, airlines are very much interested in monitoring the health 
of the APU and improving the maintenance.   

( )kp x
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For this study, we considered the data produced by a fleet of over 100 commercial 
aircraft over a period of 10 years. Only ACARS (Aircraft Communications Address-
ing and Reporting System) APU starting reports were made available. The data con-
sists of operational data (sensor data) and maintenance data. The maintenance data 
contains reports on the replacements of many components which contributed the dif-
ferent failure modes. Operational data are collected from sensors installed at strategic 
locations in the APU which collect data at various phases of operation (e.g., starting 
of the APU, enabling of the air-conditioning, and starting of the main engines). The 
collected data for each APU starting cycle, there are six main variables related to 
APU performance: ambient air temperature (T1), ambient air pressure ( ), peak val-
ue of exhaust gas temperature in starting process ( ), rotational speed at the 
moment of  occurrence ( ), time duration of starting process ( ), 
exhaust gas temperature when air conditioning is enable after starting with 100%  ( ). There are 3 parameters related to starting cycles: APU serial number 
(Sn), cumulative count of APU operating hours (hop) , and cumulative count of starting 
cycles(cyc).  In this work, in order to find out remaining useful cycle, we define a 
remaining useful cycle (RUC) as the difference of cyc0 and cyc. cyc0  is the cycle 
count when a failure happened and a repair was token. When RUC is equal to zero 
(0), it means that APU failed and repair is needed.  RUC will be used in PF prognos-
tic implementation in the following.  

3.2 Implementation for APU RUC Estimation 

This section presents an implementation of PF-based prognostics for APU starter. As 
we mentioned in Section 2, we first partition the operation state into 16 regions by 
using our fuzzy-based classification techniques (will be reported in other paper). Then 
for each region, we build a data-driven model to estimate the TTF given the operation 
condition. In this work, the region models are trained with SMO (Sequential Minimal 
Optimization) SVM(support Vector Machine) algorithm. The models noted SMO0, 
SMO1, SMO2, … SMO 16. The detail on data-driven methodology is refereed in 
[32]. Finally we implement the OLAC algorithm following the proposed PF-based 
model fusion schema. The OLAC algorithm combines 16 regional models to generate 
a relatively precise TTF (RUC) estimation.     

3.3 Experimental Results  

We conducted the experiments based on implementation of the proposed PF-based 
model fusion algorithm (OLAC) by using the data-driven models developed for each 
region. The data-driven models are developed following a data-mining-based meth-
odology [32] from 10-year operational data and maintenance data from operator. We 
run the testing data on all models by using region selection, PF-based correction to 
verify if the algorithm improved the precision of the RUL estimations. To evaluate 
the performance of the model fusion algorithm, several criteria are deployed from 
statistics. They are the mean absolute error (MAE), the mean squared error (MSE), 
and the mean absolute percentage error (MAPE) defined as follows.  
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We computed these criteria for each region based on deployed models selected by 
OLAC algorism, and the results are shown in Table 1. The estimation results are plot-
ted in Figure 2  

4 Discussion 

As mentioned above, Table 1 shows the statistical analysis results of RUL estimation 
from OLAC model combination. Figure 2 shows the plotting figures of the experi-
mental results for 16 regions noted as test0 to test15. In these Figures, the x-axis is the 
predicted RUC and y-axis is the actual RUC. When the dots form a direct line with 
slop ~1.0, the estimation is the close to actual value. This is the ultimate goal of our 
PF-based model fusion techniques. From these preliminary results, it is obvious that 
Region 0, 1, 2, 4, 7, 8, 9, 10, 11, and 15 demonstrated a high precision of the RUC 
estimations, and rest are needed to be further investigated. The experimental results 
above demonstrated that PF-based model fusion methods are useful and effective for 
combining multiple region models to improve the precision of RUC.  Since there is 
existing a large variance in the different failure models, the precise RUC prediction 
for a particular APU Starter is really challenged.  

Table 1. The evaluation results for each region 

Region Name MAE MSE MAPE MODEL ACTIVATED 

Test 0 0.8689 1,2918 893,7902 SMO0 

Test 1 6.1142 37,7908 7.05e+03 SMO1, SMO6 

Test 2 16,7287 347,7456 4.08e+03 SMO2, SMO6 

Test 3 52,6930 4.42e+03 4.79e+04 
SMO 3, SMO6, SMO9, 

SMO14 

Test 4 27,1294 768,7272 5.57e+04 SMO4, SMO13 

Test 5 8,2586 89,6823 2.63e+03 SMO5, SMO6 

Test 6 50,9350 3.78e+03 1.01e+05 SMO6 

Test 7 10,0948 117,3304 1.11e+04 SMO6,SMO7 

Test 8 15,7412 350,4517 2.43e+04 SMO8 

Test 9 74,1271 5.99e+03 9.17e+04 SMO6, SMO9, SMO14 

Test 10 12,0190 209,1858 1.88e+04 SMO6, SMO10 

Test 11 23,4310 834,0634 2.51e+03 SMO11, SMO12 

Test 12 51,7319 4.87e+03 1.40e+05 SMO12, SMO14 

Test 13 15,9962 393,2352 6.49e+04 SMO4, SMO13 

Test 14 50,5856 5.14e+03 1.35e+05 SMO0, SMO6, SMO14 

Test 15 31,2127 1.35e+03 1.167e+03 SMO6, SMO15 
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In this paper, we only report the preliminary results. It is worth to note the number 
of regions is empirical and need more investigation to find out the right number such 
that the precision of RUC estimation will be largely improved. At moment, we devel-
oped a fuzzy- based operation region definition and modeling techniques. Its details 
will be reported in other papers. It is possible to investigate the other method to im-
prove the performance of region classification models. One potential way is to classi-
fy the state region based on failure modes by integrating with FMEA (failure mode 
effective analysis). This will be our future work. 
 

   

   
 

Fig. 2. The RUC estimation results from each regional estimator (16 regions) 

5 Conclusions 

In this paper we developed a PF-based model fusion method to estimate the RUL or 
TTF for predictive maintenance and applied it to APU Starter prognostics as a case 
study.  We implemented the PF-based OLAC algorithm by using sequential im-
portance sampling, and conducted the experiments with 10 years historic operational 
data provided by an airline operator. From the experimental results, it is obvious that 
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the developed PF-based model fusion technique is useful for estimating relative pre-
cise remaining useful life for the monitored components or machinery systems in 
predictive maintenance.     
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