

© Springer International Publishing Switzerland 2015
M. Ali et al. (Eds.): IEA/AIE 2015, LNAI 9101, pp. 131–140, 2015.
DOI: 10.1007/978-3-319-19066-2_13

Sheet2RDF: A Flexible and Dynamic Spreadsheet
Import&Lifting Framework for RDF

Manuel Fiorelli, Tiziano Lorenzetti, Maria Teresa Pazienza,
Armando Stellato(), and Andrea Turbati

ART Research Group, University of Rome,
Tor Vergata, Via del Politecnico, 1 00133 Rome, Italy

{fiorelli,pazienza,stellato,turbati}@info.uniroma2.it,
tiziano.lorenzetti@gmail.com

Abstract. In this paper, we introduce Sheet2RDF, a platform for the acquisition
and transformation of spreadsheets into RDF datasets. Based on Apache UIMA
and CODA, two wider-scoped frameworks respectively aimed at knowledge
acquisition from unstructured information and RDF triplification, Sheet2RDF
narrows down their capabilities in order to restrict the domain of acquisition to
spreadsheets, thus taking into consideration their peculiarities and providing in-
formed solutions facilitating the transformation process, while still exploiting
their full potentialities. Sheet2RDF comes also bundled in the form of a plugin
for two RDF management platforms: Semantic Turkey and VocBench. The in-
tegration with such platforms enhances the level of automatism in the process,
thanks to a human-computer interface that can exploit suggestions by users and
translate them into proper transformation rules. In addition, it strengthens this
interaction by direct contact with the data/vocabularies edited in the platform.

Keywords: Human-computer interaction · Ontology engineering · Ontology
population · Text analytics · UIMA

1 Introduction

As organizations and public institutions are exposing their data under permissive and
open licenses, they often resolve to spreadsheets and other tabular formats to make
data available. The motivations rely on the acquaintance of publishers with spread-
sheet editors, and the easiness of producing and reading tabular data.

There is, however, a need for methodologies and systems that support publishers in
lifting these tabular data to a semantically clear form, as it is enabled by representa-
tion languages and practices of the Semantic Web [1]. To satisfy this need, we pro-
pose Sheet2RDF, an integrated system that supports a streamlined process for the
transformation and lifting of spreadsheets to RDF.

The paper is structured as follows. Section 2 surveys related systems and motivates
our work. Section 3 describes the approach underlying Sheet2RDF combining a po-
werful transformation specification language with the automatic generation of skeletal

132 M. Fiorelli et al.

specifications based on the recognition of known modeling patterns in the data.
Section 4 presents the system architecture. Section 5 reports on some use cases of
Sheet2RDF and the feedback of its users. In Section 6, we draw the conclusions.

2 Related Works

In this section, we briefly describe some of the systems and approaches for the tripli-
cation of spreadsheets, underlining their specificities. The systems may differ in their
support to different data formats: e.g. Microsoft Office, Open Office, CSV, TSV.
Obviously, spreadsheet editors provide a more convenient environment for manual
editing, while plain-text serializations based on predefined delimiters often enable
machine-to-machine data interchange. Some systems exploit additional metadata
usually not available in plain-text serializations, thus requiring at least a further pre-
processing step.

Any23 (https://any23.apache.org/dev-csv-extractor.html) im-
plements a systematic transformation of CSV (and otherwise delimited value formats)
into RDF. The transformation strategy assumes that the first row is a header, providing
the properties, while subsequent rows describe individual resources, by providing in
each cell the value for the property associated with the corresponding column. Any23
has limited choices for the representation of property values, either as URIs or as liter-
als the type of which is inferred from the values themselves.

Systematic strategies for the conversion of tabular data produce a sort of raw RDF,
which usually necessitate further processing to meet specific modeling patterns and
improve their quality. The DataLift platform [2] uses this two-step approach, which
initially turns various data formats (not only spreadsheets) into RDF, and then leve-
rages SPARQL [3] Constructs to refactor the RDF data originally obtained.

Tarql (https://github.com/cygri/tarql) somehow conflates these two
steps, by allowing the evaluation of SPARQL queries directly on CSV data. Tarql is a
command line program, which provides no specific assistance for writing the
SPARQL queries specifying the mapping.

The system csv2rdf4lod-automation [4] follows an iterative workflow, which be-
gins with a raw transformation of CSV into RDF, and then proceeds with successive
refinements, which are expressed in RDF through a dedicated conversion vocabulary.
Available enhancements include: resource typing, adoption of user-supplied vocabu-
laries, reification of property values, custom mapping of values to URIs, and the gen-
eration of more than one resource from each row. This system also lacks a dedicated
user interface, especially to support the writing of mappings.

Spread2RDF (https://github.com/marcelotto/spread2rdf) uses an
internal Ruby-based DSL to specify the transformation. This approach may be advan-
tageous in terms of expressivity, while at same time forcing users to adopt a new syn-
tax, sometimes really different from the ones they are acquainted with. Conversely,
Tarql uses SPARQL, a standard and popular query language among Semantic Web
practitioners, likely to be interested in this type of systems.

 Sheet2RDF: A Flexible and Dynamic Spreadsheet Import&Lifting Framework 133

RDF123 [5] provides an application for writing mapping specifications, as well
as a web service for executing them against spreadsheets. It moves away from the
assumption that rows represent homogenous resources. Hence, it uses more complex
mappings, which may possibly be conditioned to specific data contained in the rows.

TabLinker (https://github.com/Data2Semantics/TabLinker) does
not commit on the existence of a predetermined structure in the spreadsheet, while
leveraging annotations in the spreadsheet to properly interpret the data organization. It
is specifically tailored to produce data conforming to the RDF Data Cube [6] vocabu-
lary. TabLinker uses Open Annotation Core Data Model [7] and PROV [8] to add
annotations and provenance information to the cells.

Spreadsheets and tabular data in general may be considered a somewhat limited
form of relational data. As such, it is possible to leverage existing RDB to RDF con-
verters. Sparqlify-CSV (http://aksw.org/Projects/Sparqlify.html),
as an example, allows to load CSV files into Sparqlify, which is a middleware for
viewing relational data as virtual RDF graphs.

The limitation of a completely automated conversion motivated the development of
a system [9], which uses Semantic MediaWiki to crowdsource the generation of a
mapping specification for Sparqlify-CSV.

LODRefine (https://github.com/sparkica/LODRefine) is a distribu-
tion of OpenRefine that includes several extensions related to Linked Open Data.
Specifically, it complements the data cleaning features of OpenRefine with the ability
to link values to entities from remote datasets. Moreover, from our viewpoint, it
provides a graphical language to represent mappings from tabular data to RDF con-
forming to user provided vocabularies. The system seems not to have any mechanism
for automatic generation of the mappings.

LODRefine is a standalone system to clean data and transform it to RDF. It is also
possible to find import and transformation capabilities directly in some systems con-
cerning with the actual management and development of RDF data. The thesaurus
editor PoolParty is able to import Excel files (https://grips.semantic-web.
at/display/POOLDOKU/Import+Excel+Taxonomies), which adhere to the
one resource per row convention. In addition, PoolParty organizes spreadsheets, trying
to visualize the conceptual taxonomy through the insertion of empty cells in the rows.

TopBraid Composer is an RDF development environment, which also offers a ge-
neric facility to import both conceptual and factual knowledge from a CSV file
(http://www.topquadrant.com/composer/videos/tutorials/spre
adsheets/import.html). A wizard-based user interface allows the customiza-
tion of the import, by mapping to an existing ontology, or by providing additional
information about the conceptual content, e.g. the range of the properties inferred by
the column names.

The preceding review shows that the combination of expressiveness and conveni-
ence is quite uncommon among existing systems. If the system disburdens the user
from heavy configuration, in many cases the reason is that the system implements a
rigid transformation based on strict assumptions about the input data. Conversely,
more capable systems rely on mapping specifications, which need to be completely
specified by the user, often without the support of a dedicate user interface.

134 M. Fiorelli et al.

Sheet2RDF aims to fill this aspect, by combining a rich mapping specification
language with an intelligent approach for the semi-automatic generation of skeletal
mappings. Sheet2RDF follows the convention-over-configuration principle, when it
tries to relieve the user from writing the mappings at hand, by automatically generat-
ing suitable transformations based on the recognition of known modeling patterns.
Further user input supports the refinement of the generated mapping, possibly in-
formed by an already existing RDF dataset. However, the user may always resort to
the underlying mapping specification language, if the spreadsheet requires a very
specific transformation.

3 The Approach

The conversion of a spreadsheet to RDF may be considered an instance of the more
general task of triplificating unstructured and semi-structured information. CODA
[10,11] is one of the various systems supporting the achievement of this goal.

While such a system may be used as it is, we leverage the verticality of the domain
(spreadsheets) to build a more focused layer on top of CODA. Fig. 1 represents the
overall approach that Sheet2RDF implements to construct such an additional layer.

At the lower layer, CODA uses (in fact, it extends) UIMA [12] in order to analyze
the input spreadsheet and, then, it executes a PEARL [13] document prescribing the
transformation. The support of Sheet2RDF to deal with this setting is manifold. By
first, Sheet2RDF defines a meta-type system that is then instantiated into a concrete

UIMA
TypeSystemDescription

creation

UIMA Annotation

Header structure creation

PEARL code generation

CODA triples generation

Fig. 1. Sheet2RDF approach

 Sheet2RDF: A Flexible and Dynamic Spreadsheet Import&Lifting Framework 135

one for each spreadsheet. This type system models the data that will be read from the
spreadsheet through a UIMA annotator provided by Sheet2RDF. At the same time, a
mutable data structure mirroring the instantiated type system enables further customi-
zation from the user. In fact, user input requires a dedicated user interface, possibly
providing visualizations based on already existing knowledge in the target semantic
repository. Sheet2RDF uses this data structure, possibly adjusted by the user, to
generate a skeleton of the PEARL transformation that lifts the spreadsheet to RDF.
The user may refine this skeleton, until the PEARL document exactly matches the
intended transformation. The generation of the skeleton is informed by a number of
conventions that are looked for inside the data structure that reflects the spreadsheet
header. A number of heuristics have been designed to match these conventions and
refine the transformation rules. Ideally, the system should be able to generate a com-
plete specification for a spreadsheet fully conforming to the foreseen conventions.

The use of an expressive transformation language guarantees the applicability to
real-world scenarios, while at the same time facilities that automate the generation of
the transformation specifications disburden the user from writing these specifications,
as much as possible given the adherence of the input to specific conventions.

 We have already developed a user interface for the system as extensions for the
knowledge acquisition and management platform Semantic Turkey [14]. A user inter-
face for the Collaborative Thesaurus Editor VocBench [15,16] is under development.

4 Sheet2RDF Architecture

Sheet2RDF consists of a library, a command-line utility and an extension for Seman-
tic Turkey (and soon also for VocBench).

The library implements the core functionalities of Sheet2RDF, which include:

1. Generation of a skeletal PEARL transformation specification,
2. Refinement of the specification based on user input,
3. Use of CODA to execute the transformation that produces new RDF triples.

The Sheet2RDF library uses UIMA to analyze the spreadsheet (determining its
header). It then produces a UIMA type system including a feature structure type that
represents the rows and that has different features corresponding to each column
name. Repeated columns are associated with a single feature, the value type of which
is an array of elements. This type system is used by a further UIMA analyzer to read
the actual content of the spreadsheet; consequently, it is also used as basis to write the
corresponding PEARL transformation specifications.

As already said, the system also generates a skeleton of the transformation, by ap-
plying a set of heuristics to the aforementioned type system. The assumption is that
roughly each row corresponds to an entity description, and that each triple in this
description can be built from each column of the spreadsheet. The heuristics consider
the entity corresponding to the row as the subject, the predicate as something infera-
ble from (or explicitly associated to) the header of the column, and the object as (an
RDF node obtained from) the value in the cell at the crossing between the row and the

136 M. Fiorelli et al.

column. In some particular cases, the recognized property could fire the automatic
generation of more complex triple patterns in the target transformation specification.
As an example, SKOS-XL [17] labelling properties also require the reification of the
label into a URI.

While the heuristics are meant to generate an almost complete specification, the
system also assumes that the user may provide further input that helps to refine the
generated transformation. Therefore, an additional data structure has been introduced
to hold this additional information provided by the user. In the end, the transformation
rules are produced by merging the information provided by the type system and the
additional supporting data structure. The automatically generated transformation rules
may be handcrafted to match the desired output, whenever the heuristics fail to pro-
duce a complete specification. However, a better approach is to allow the user filling
missing information for the application of heuristics (e.g. associate a column with an
RDF property), and customizing the details (e.g. whether to reify property values, as
in case of skos:definitions) through a more convenient interface that avoids writing a
transformation rule. Indeed, the command-line utility only supports the basic functio-
nalities of Sheet2RDF, while this more advanced input requires a more complete user
interface.

One such interface has been developed as an extension for Semantic Turkey, which
enables the user to refine the proposed rules (without actually writing them), possibly
by exploiting the already assessed information in an RDF dataset. The extension does
not simply relay user input to the library (as it happens in the command-line utility),
but it also integrates in the loop the user and the underlying triple store, which is ma-
naged by Semantic Turkey. This integration allows the user to refine the transforma-
tion skeleton by supplying additional hints, which are based on information already
assessed in the triple store. As an example, the user may associate a column from the
spreadsheet with an existing property. In this task, the user is supported with a hierar-
chical visualization that is populated with the information contained in the current
ontology.

5 Use Cases and Community Feedback

The first and immediate use case we faced (actually the one that led to the develop-
ment of the system) was the automatic generation of Thesauri and Knowledge Organ-
ization Systems (KOSs) [18] in general. The standard modeling language in the RDF
family for representing KOSs is SKOS [19], together with its extension for reified
labels SKOS-XL [17]. Thanks to SKOS and SKOS-XL, the communities of libra-
rians, metadata developers and archivists opened up to the Semantic Web, though this
shift was not painless. The processes that used to lead to the development of KOSs in
the pre-RDF era were following the classical “domain experts handling something
more or less understandable (mostly to them) to data geeks” workflow pattern. These
craftworks caused a proliferation of in-house conventions and (mostly one-time) con-
versions to some formal (though no more standard than the original one) data repre-
sentation.

 Sheet2RDF: A Flexible and Dynamic Spreadsheet Import&Lifting Framework 137

No wonder that the preferred representation adopted by librarians was spread-
sheets, as that solution offered a rare combination of high usability with a minimal
underlying structure adopted to detail and organize the concept descriptions, their
hierarchical organization and their relationships. Our experience as developers of
Knowledge Management Systems (Semantic Turkey and VocBench), and especially
the feedback we gathered from users, showed us that spreadsheet-import is a much
desired feature, but its demand is an order of magnitude larger when considering KOS
developers. The immediate problem with this feature is that it is perceived as an im-
port, while it is actually, as already discussed in this paper, a transformation, in that
most of the assumptions underlying the organization of data in the spreadsheet (which
offer no more than a bidimensional matrix) are implicit in the mind of its creator.

We thus examined a few real use cases we received from organizations willing to
bring their Excel tables into SKOS or SKOS-XL. These use cases emerged in differ-
ent contexts, such as research projects, being directly involved in the consortium
(SemaGrow [http://semagrow.eu/]) or through partnership with consortium
members (as for agINFRA [http://aginfra.eu/]), or as direct feedback ga-
thered through the community groups (mailing lists, forums..) of our aforementioned
knowledge management platforms. In some cases we have been directly involved in
the realization of the target RDF representation (Soil Data Linked Dataset, FAO Land
and Water thesaurus, FAO Topics vocabulary), while in other cases we provided sup-
port through the mailing list to users directly using Sheet2RDF in importing their own
data. A few characteristics emerged as recurring across the various examined cases:

1. A concept-per-line approach: in all cases, a concept description was expressed
through a single line of the spreadsheet file. This is no wonder: while multiple lines
could fit more closely (and completely) the structure of an RDF graph (e.g. each
row representing an individual triple), the choice of spreadsheet is mostly dictated
by a need for simplicity, creating a match between identity of concepts and lines in
the spreadsheet was a natural path rather than a meditated choice.

2. Concept references (especially hierarchy): thesauri often come as hierarchy of
concepts, and in order to represent a hierarchy (or express any relationship between
concepts) across linear descriptions, there is the need for identifiers. At the same
time, usually these identifiers were not available or, in the better cases, not clearly
expressed. Labels represented the most common case of implicit identifier. This
cleared out any possibility for ambiguous names; however, in some of the analyzed
cases there were an explicit terminological separation between “terms” (which uni-
quely define concepts in a domain) and alternative lexicalizations.

3. Implicit bindings between subsets of values: often, users represented as a linear ar-

ray of independent characteristics, elements that were actually grouped into bound
subsets of elements dependent from each other. Specific cases include:
(a) Reified labels, lexical descriptions etc..: very often in thesauri, lexical descrip-

tors of any kind bring metadata with them, such as editorial notes (related to the
same lexical content rather than to concepts) date-of-creation/update, prove-
nance (e.g. author of the description) and so on. As such, columns following a

138 M. Fiorelli et al.

reified label are usually not providing further characteristics of the concept but
they describe its label. This binding may be guessed by a person by reading the
spreadsheet content, while for sure it is not explicit to machines processing the
spreadsheet.

(b) Information about atomic elements sparse across two or more cells: a common
case are labels (even simple literals) and their associated language, most often
when there are conceptual resources represented non-uniformly in a plethora of
languages. While the common approach is to define the language of the labels
in a column header (e.g. one or more columns for English labels, for French
ones), users might avoid excessive proliferation of columns and data sparse-
ness in the sheet, by having pairs of columns, holding the label content and lan-
guage respectively. Usually new column pairs are just added upon need, when
they are not enough to represent the concept with the larger number of labels.

Thanks to the expressiveness of PEARL, all of the above phenomena could be ma-
naged successfully. However, our intent was to cover as much as possible of the
typical cases, minimizing the amount of human effort to be carried on the PEARL
transformation. This can be dealt with either in a completely automatic fashion, by
having sheet2rdf guessing what is needed in/how to handle a particular situation, or
through human computer-interaction. In the latter case, the machine is able to
detect potential patterns and suggest choices to be taken by the user, presenting
them in an understandable way and still hiding the transformation technicalities

Fig. 2. Sheet2RDF user interaction

 Sheet2RDF: A Flexible and Dynamic Spreadsheet Import&Lifting Framework 139

which the naïve user it not able to handle. In addressing these issues, we have
followed a combination of both approaches. The first one has been pursued by de-
fining a series of conventions that are recognized by the system and that automate
the transformation generation (http://art.uniroma2.it/sheet2rdf/
docu-mentation/heuristics.jsf). At the same time, by benefiting from
the possibilities offered by Sheet2RDF integration into editing systems, we have
plugged interactive wizards (see Fig. 2) raising issues/warnings to the user, or just
signaling that human intervention is welcome (e.g. by highlighting the header of a
column and providing menu boxes with choices) in order to disambiguate among
different possible choices. We set default choices (made customizable per system
and by the user), so to minimize even this interactive part by tailoring choices to
systems/user needs.

6 Conclusion

In this paper, we presented Sheet2RDF, a system for importing and lifting spread-
sheets to RDF. Sheet2RDF combines a flexible mapping specification language with
the automatic generation of skeletal mappings, by recognizing patterns in the input
spreadsheet. This approach filled a void in the landscape of currently available sys-
tems, which tend to be either minimally customizable or highly dependent on human
intervention for the specification of the transformation.

Sheet2RDF supports human participation in the process by providing several levels
of interaction, each one trading generality for ease of usage. Automatically generated
mapping skeletons aim to cover commons cases, while manual refinement may be
required for specific cases. A graphical user interface enables some refinements with-
out the need to explicitly use the underling mapping specification language.

Acknowledgments. This research has been partially supported by the EU funded
project SemaGrow (http://www.semagrow.eu/) under grant agreement no:
318497.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American 279(5), 34–43 (2001)

2. Scharffe, F., Atemezing, G., Troncy, R., Gandon, F., Villata, S., Bucher, B., Hamdi, F.,
Bihanic, L., Képéklian, G., Cotton, F., Euzenat, J., Fan, Z., Vandenbussche, P.-Y., Vatant,
B.: Enabling linkeddata publication with the datalift platform. In: AAAI Workshop on
Semantic Cities (2012)

3. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. In: World Wide
Web Consortium - Web Standards, January 15 2008. http://www.w3.org/TR/rdf-sparql-
query/

140 M. Fiorelli et al.

4. Lebo, T., Williams, G.: Converting governmental datasets into linked data. In: Proceedings
of the 6th International Conference on Semantic Systems, New York, NY, USA,
pp. 38:1–38:3 (2010)

5. Han, L., Finin, T.W., Parr, C.S., Sachs, J., Joshi, A.: RDF123: from spreadsheets to RDF.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan,
K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008)

6. W3C: The RDF data cube vocabulary. In: World Wide Web Consortium (W3C), January
14 2014. http://www.w3.org/TR/vocab-data-cube/

7. W3C Open Annotation Community Group: Open annotation data model. In: World Wide
Web Consortium (W3C), February 08 2013. http://www.openannotation.org/spec/core/

8. W3C: PROV-DM: the PROV data model. In: World Wide Web Consortium (W3C), April
30 2013. http://www.w3.org/TR/prov-dm/

9. Ermilov, I., Auer, S., Stadler, C.: CSV2RDF: user-driven CSV to RDF mass conversion
framework. In: Proceedings of the ISEM 2013, Graz, Austria, September 04–06 2013

10. Fiorelli, M., Pazienza, M.T., Stellato, A., Turbati, A.: CODA: Computer-aided ontology
development architecture. IBM Journal of Research and Development 58(2/3), 14:1–14:12
(2014)

11. Fiorelli, M., Gambella, R., Pazienza, M.T., Stellato, A., Turbati, A.: Semi-automatic
knowledge acquisition through CODA. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F.
(eds.) IEA/AIE 2014, Part II. LNCS, vol. 8482, pp. 78–87. Springer, Heidelberg (2014)

12. Ferrucci, D., Lally, A.: Uima: an architectural approach to unstructured information
processing in the corporate research environment. Nat. Lang. Eng. 10(3–4), 327–348
(2004)

13. Pazienza, M.T., Stellato, A., Turbati, A.: PEARL: ProjEction of annotations rule language,
a language for projecting (UIMA) annotations over RDF knowledge bases. In: LREC,
Istanbul (2012)

14. Pazienza, M.T., Scarpato, N., Stellato, A., Turbati, A.: Semantic Turkey: A Browser-
Integrated Environment for Knowledge Acquisition and Management. Semantic Web
Journal 3(3), 279–292 (2012)

15. Caracciolo, C., Stellato, A., Rajbahndari, S., Morshed, A., Johannsen, G., Keizer, J.,
Jacques, Y.: Thesaurus maintenance, alignment and publication as linked data: the
AGROVOC use case. International Journal of Metadata, Semantics and Ontologies
(IJMSO) 7(1), 65–75 (2012)

16. Stellato, A., Rajbhandari, S., Turbati, A., Fiorelli, M., Caracciolo, C., Lorenzetti, T.,
Keizer, J., Pazienza, M. T.: VocBench: a Web Application for Collaborative Development
of Multilingual Thesauri. In : The Semantic Web: Trends and Challenges. Springer Inter-
national Publishing (2015) (accepted for publication)

17. World Wide Web Consortium (W3C): SKOS simple knowledge organization system
eXtension for labels (SKOS-XL). In: World Wide Web Consortium (W3C), August 18
2009. http://www.w3.org/TR/skos-reference/skos-xl.html

18. Hodge, G.: Systems of Knowledge Organization for Digital Libraries: Beyond Traditional
Authority Files. Council on Library and Information Resources, Washington, DC (2000)

19. World Wide Web Consortium (W3C): SKOS simple knowledge organization system ref-
erence. In: World Wide Web Consortium (W3C), August 18 2009. http://www.w3.org/TR/
skos-reference/

	Sheet2RDF: A Flexible and Dynamic Spreadsheet Import&Lifting Framework for RDF
	1 Introduction
	2 Related Works
	3 The Approach
	4 Sheet2RDF Architecture
	5 Use Cases and Community Feedback
	6 Conclusion
	References

