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Abstract. The availability of many assembled genomes opens the way
to study the evolution of syntenic character within a phylogenetic con-
text. The DeCo algorithm, recently introduced by Bérard et al., computes
parsimonious evolutionary scenarios for gene adjacencies, from pairs of
reconciled gene trees. Following the approach pioneered by Sturmfels
and Pachter, we describe how to modify the DeCo dynamic program-
ming algorithm to identify classes of cost schemes that generate similar
parsimonious evolutionary scenarios for gene adjacencies. We also de-
scribe how to assess the robustness, again to changes of the cost scheme,
of the presence or absence of specific ancestral gene adjacencies in parsi-
monious evolutionary scenarios. We apply our method to six thousands
mammalian gene families, and show that computing the robustness to
changes of cost schemes provides interesting insights on the DeCo model.

1 Introduction

Reconstructing evolutionary histories of genomic characters along a given species
phylogeny is a long-standing problem in computational biology. This problem
has been studied for several types of genomic characters (DNA sequences and
gene content for example), for which efficient algorithms exist to compute parsi-
monious evolutionary scenarios. Recently, Bérard et al. [2] extended the corpus
of such results to syntenic characters. They defined a model for the evolution
of gene adjacencies within a species phylogeny, together with an efficient dy-
namic programming (DP) algorithm, called DeCo, to compute parsimonious evo-
lutionary histories that minimize the total cost of gene adjacencies gain and
break, for a given cost scheme associating a cost to each of these two events.
Reconstructing evolutionary scenarios for syntenic characters is an important
step towards more comprehensive models of genome evolution, going beyond
classical sequence/ content frameworks, as it implicitly integrates genome rear-
rangements [5]. Application of such methods include the study of genome rear-
rangement rates and the reconstruction of ancestral gene order. Moreover, DeCo
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is the only existing tractable model that considers the evolution of gene adja-
cencies within a general phylogenetic framework; so far other tractable models
of genome rearrangements accounting for a given species phylogeny are either
limited to single-copy genes and ignore gene-specific events [3,18], assume restric-
tions on the gene duplication events, such as considering only whole-genome du-
plication (see [7] and references there), or require a dated species phylogeny [11].

The evolutionary events considered by DeCo, gene adjacency gain and break
caused by genome rearrangement, are rare evolutionary events compared to gene-
family specific events. It is then important to assess the robustness of inferences
made by DeCo, whether it is of a parsimony cost or of an individual feature such as
the presence of a specific ancestral adjacency. We recently explored an approach
that considers the set of all possible evolutionary scenarios under a Boltzmann
probability distribution for a fixed cost scheme [6]. A second approach consists
of assessing how robust features of evolutionary scenarios are to changes in the
cost associated to evolutionary events (the cost scheme). Such approaches have
recently been considered for the gene tree reconciliation problem and have been
shown to significantly improve the results obtained from purely parsimonious
approaches [1,10]. This relates to the general problem of deciding the precise cost
to assign to evolutionary events in evolutionary models, a recurring question in
the context of parsimony-based approaches in phylogenetics.

This motivates the precise questions tackled in this work. First, how robust
is a parsimonious evolutionary scenario to a change of the costs associated to
adjacency gains and breaks? Similarly, how robust is an inferred parsimonious
gene adjacency to a change in these costs? We address this problem using a
methodology that has been formalized into a rigorous algebraic framework by
Pachter and Sturmfels [15,14,13], that we refer to as the polytope approach. Its
main features, summarized in Fig. 1 for assessing the robustness of evolutionary
scenarios, are (1) associating each evolutionary scenario to a signature, a vector
of two integers (g, b) where g is the number of adjacency gains and b the number
of adjacency breaks; and (2) partitioning the space of cost schemes into convex
regions such that, for all the cost schemes within a region, all optimal solutions
obtained with such cost schemes have the same signature. This partition can be
computed by an algorithm that is a direct translation of the DP algorithm into
a polytope framework. Furthermore, the same framework can be extended to
assess the robustness of inferred parsimonious ancestral adjacencies.

2 Preliminary: Models and Problems

A phylogeny is a rooted tree which describes the evolutionary relationships of
a set of elements (species, genes, . . . ) represented by its nodes: internal nodes
correspond to ancestral elements, leaves to extant elements, and edges represent
direct descents between parents and children. For a node v of a phylogeny, we
denote by s(v) the species it belongs to. For a tree T and a node x of T , we
denote by T (x) the subtree rooted at x. If x is an internal node, we assume it
has either one child, denoted by a(x), or two children, denoted by a(x) and b(x).
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Fig. 1. Outline of our method for assessing the robustness of an evolutionary scenario:
Starting from two reconciled gene trees and a set of extant adjacencies (a.), the polytope
of parsimonious signatures is computed (b.). Its normal vectors define a segmentation
of the space of cost schemes into cones (c.), each associated with a signature. Here,
the positive quadrant is fully covered by a single cone, meaning that the parsimonious
prediction does not depend on the precise cost scheme. In general (d.), the robustness
of a prediction (here, obtained using the (1, 1) scheme) to perturbations of the scheme
can be measured as the smallest angle θ such that a cost scheme at angular distance θ
no longer predicts the signature (a, b).

Species Tree and Reconciled Gene Trees. A species tree S is a binary tree that
describes the evolution of a set of species from a common ancestor through the
mechanism of speciation. A reconciled gene tree is a binary tree that describes
the evolution of a set of genes, called a gene family, within a given species tree S,
through the evolutionary mechanisms of speciation, gene duplication and gene
loss. Therefore, each leaf of a gene tree G represents either a gene loss or an
an extant gene, while each internal node represents an ancestral gene. In a rec-
onciled gene tree, we associate every ancestral gene (an internal node g) to an
evolutionary event e(g) that leads to the creation of the two children a(g) and
b(g): e(g) is a speciation (denoted by Spec) if the species pair {s(a(g)), s(b(g))}
is equal to the species pair {a(s(g)), b(s(g))}, s(a(g)) �= s(b(g)), or a gene du-
plication (GDup) if s(a(g)) = s(b(g)) = s(g). If g is a leaf, then e(g), as stated
before, indicates either a gene loss (GLoss) or an extant gene (Extant), in which
case e(g) is not an evolutionary event stricto sensu. A pre-speciation ancestral
gene is an internal node g such that e(g) = Spec. See Fig. 2 for an illustration.

Adjacency Trees and Forests. We consider now that we are given two reconciled
gene trees G1 and G2, representing two gene families evolving within a species
tree S. A gene adjacency is a pair of genes (one from G1 and one from G2)
that appear consecutively along a chromosome, for a given species, ancestral or
extant. Gene adjacencies evolve within a species tree S through the evolutionary
events of speciation, gene duplication, gene loss (these three events are modeled
in the reconciled gene trees), and adjacency duplication (ADup), adjacency loss
(ALoss) and adjacency break (ABreak), that are adjacency-specific events.

Following the model introduced in [2], we represent such an evolutionary his-
tory using an adjacency forest, composed of adjacency trees. An adjacency tree
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Fig. 2. A species tree S, with two extant species A and B and an ancestral species C.
Two reconciled gene trees G1 and G2, with four extant genes in genome A, four extant
genes in genome B and three ancestral genes in genome C. The set of extant gene
adjacencies is (A1A3, B1B3, B2B4). An adjacency forest A composed of two adjacency
trees. Blue dots represent speciation nodes. Leaves are extant species/genes/adjacen-
cies, except the one labeled by a red cross (gene loss) or a red diamond (adjacency
breaks). Green squares are (gene or adjacency) duplication nodes. Gene labels refer
to the species they belong to. Every node of the adjacency tree is labeled by a gene
adjacency. Figure adapted from [2].

represents the evolution of an ancestral gene adjacency (located at the root
of the tree) through the following events: (1) The duplication of an adjacency
{g1, g2}, where g1 and g2 are respectively genes from G1 and G2 such that
s(g1) = s(g2), follows from the simultaneous duplication of both its genes g1
and g2 (so e(g1) = e(g2) = GDup), resulting in the creation of two distinct
adjacencies each belonging to {a(g1), b(g1)} × {a(g2), b(g2)}; (2)The loss of an
adjacency, which can occur due to several events, such as the loss of exactly one
of its genes (gene loss, GLoss), the loss of both its genes (adjacency loss, ALoss)
or a genome rearrangement that breaks the contiguity between the two genes
(adjacency break, ABreak); (3) The creation/gain of an adjacency (denoted by
AGain), for example due to a genome rearrangement, that results in the creation
of a new adjacency tree whose root is the newly created adjacency.

With this model, one can model the evolution of two gene families along a
species phylogeny by a triple (G1, G2, A): G1 and G2 are reconciled gene trees
representing the evolution of these families in terms of gene-specific events and
A is an adjacency forest consistent with G1 and G2. Similar to species trees
and reconciled gene trees, internal nodes of an adjacency tree are associated
to ancestral adjacencies, while leaves are associated to extant adjacencies or
lost adjacencies (due to a gene loss, adjacency loss or adjacency break), and
are labeled by evolutionary events. The label e(v) of an internal node v of an
adjacency forest A belongs to {Spec,GDup,ADup}, while the label e(v) of a leaf
belongs to {Extant,GLoss,ALoss,ABreak}, as shown in Fig. 2.

Signatures, Descriptors and Parsimonious Scenarios. The signature of an adja-
cency forest A is an ordered pair of integers σ(A) = (gA, bA) where gA (resp. bA)
is the number of adjacency gains (resp. adjacency breaks) in A. A cost scheme
is a pair x = (x0, x1) of non-negative real numbers, where x0 is the cost of an
adjacency gain and x1 the cost of an adjacency break. The cost of an adjacency
forest A for a given cost scheme x is the number S(A) = x0 × gA+ x1× bA. The
adjacency forest A in an evolutionary scenario (G1, G2, A) is parsimonious for
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x if there is no other evolutionary scenario (G1, G2, B) such that S(B) < S(A).
The signature the adjacency forest A in Fig. 2 is (1, 1), and this adjacency forest
is parsimonious for the cost scheme (1, 1).

A descriptor of a scenario is a boolean or integer valued feature of the solu-
tion which does not contribute to the cost of the scenario, but rather represents
a feature of a scenario. For instance, the presence/absence of an ancestral ad-
jacency in a given adjacency forest A can be described as a boolean. Given k
descriptors a1, . . . , ak, we define an extended signature of a scenario A as a tuple
σa1,...,ak

(A) = (g, b, sa1 , . . . , sak
), where g, b are the numbers of adjacency gains

and breaks in A respectively, and sai is the value of the descriptor ai for A.

The DeCo Algorithm. Bérard et al. [2] showed that, given a pair of reconciled
gene trees G1 and G2, a list L of extant gene adjacencies, and a cost scheme x,
one can use a DP algorithm to compute an evolutionary scenario (G1, G2, A),
where A is a parsimonious adjacency forest such that L is exactly the set of leaves
of A labeled Extant. The DeCo algorithm computes, for every pair of nodes g1
(from G1) and g2 (from G2) such that s(g1) = s(g2), two quantities c1(g1, g2) and
c0(g1, g2), that correspond respectively to the cost of a parsimonious adjacency
forest for the pairs of subtrees G(g1) and G(g2), under the hypothesis that g1
and g2 form (for c1) or do not form (for c0) an ancestral adjacency. As usual in
dynamic programming along a species tree, the cost of a parsimonious adjacency
forest for G1 and G2 is given by min(c1(r1, r2), c0(r1, r2)) where r1 is the root
of G1 and r2 the root of G2. In [6], we recently generalized DeCo into a DP
algorithm DeClone that allows one to explore the space of all possible adjacency
evolutionary scenarios for a given cost scheme.

Robustness Problems. The first problem we are interested in is the signature
robustness problem. A signature σ = (g, b) is parsimonious for a cost scheme x
if there exists at least one adjacency forest A that is parsimonious for x and has
signature σ(A) = σ. The robustness of the signature σ is defined as the difference
between x and the closest cost scheme for which σ is no longer parsimonious. To
measure this difference, we rely on a geometric representation of a cost scheme.
Assuming that a cost scheme x = (x0, x1) ∈ R

2 provides sufficient information
to evaluate the cost of an adjacency forest, the predictions under such a model
remain unchanged upon multiplying x by any positive number, allowing us to
assume that ‖x‖ = 1 without loss of generality. So x = (x0, x1) can be summa-
rized as an angle θ (expressed in radians), and the difference between two cost
schemes is indicated by their associated angular distance.

However, signatures only provide a quantitative summary of the evolutionary
events described by a parsimonious adjacency forest. In particular, signatures
discard any information about predicted sets of ancestral adjacencies. We ad-
dress the robustness of inferred parsimonious adjacencies through the parsimo-
nious adjacency robustness problem. Let a = (g1, g2) be an ancestral adjacency
featured in a parsimonious adjacency forest for a cost scheme x. We say that a
is parsimonious for a cost scheme y if a belongs to every adjacency forest that is
parsimonious for y. The robustness of a is defined as the angular distance from
x to the closest cost scheme y for which a is no longer parsimonious.
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3 Methods

If the signature for a given adjacency forest A is given by the vector σ (A) =
(g, b), and the cost scheme is given by the vector x = (x0, x1), then the parsimony
cost of DeCo can be written as the inner product 〈x, σ (A)〉 = g × x0 + b × x1.
DeCo computes the following quantity for a pair of gene trees G1 and G2.

c(G1, G2) = min
A∈F(G1,G2)

〈x, σ (A)〉, (1)

where F(G1, G2) denotes the set of all possible adjacency forests that can be
constructed from G1 and G2, irrespective of the cost scheme.

For a given adjacency forestA, we will consider a single descriptor a, indicating
the presence or absence of an ancestral adjacency a = (g1, g2) ∈ G1 ×G2 in A,
where sa = 1 if it is present in A, and 0 otherwise. Since, by definition, a
descriptor does not contribute to the cost, when considering the robustness of
specific adjacencies, we will consider cost schemes of the form x = (x0, x1, 0),
and DeCo will compute Eq. (1) as usual.

For a given cost scheme x, two adjacency forests A1 and A2 such that σ(A1) =
σ(A2) will have the same associated cost. We can thus define an equivalence class
in F(G1, G2) based on the signatures. However, for a given potential ancestral
adjacency a = (g1, g2) ∈ G1 ×G2, the adjacency forests in this equivalence class
may have different extended signatures, differing only in the last coordinate.
Thus, there may be two adjacency forests A1 and A2 with extended signatures
(g, b, 1) and (g, b, 0) respectively, and they will have the same cost for all cost
schemes. Evolutionary scenarios with the same extended signature also naturally
form an equivalence class in F(G1, G2).

Convex Polytopes from Signatures. Let us denote the set of signatures of all
scenarios in F(G1, G2) by σ (F(G1, G2)), and the set of extended signatures for
a given adjacency a by σa (F(G1, G2)). Each of these is a point in R

d, where
d = 2 for signatures and d = 3 for extended signatures. In order to explore the
parameter space of parsimonious solutions to DeCo, we use these sets of points
to construct a convex polytope in R

d. A convex polytope is simply the set of all
convex combinations of points in a given set, in this case the set of signatures
or extended signatures [15]. Thus, for each pair of gene trees G1, G2 and a list
of extant adjacencies, we can theoretically construct a convex polytope in R

2 by
taking the convex combinations of all signatures in σ (F(G1, G2)). This definition
generalizes to a convex polytope in R

3 when extended signatures σa (F(G1, G2))
are considered for some ancestral adjacency a. Viewing the set of evolutionary
scenarios as a polytope allows us to deduce some useful properties:

1. Any (resp. extended) signature that is parsimonious for some cost scheme x
lies on the surface of the polytope;

2. If a (resp. extended) signature is parsimonious for two cost schemes x and
x′, then it is also parsimonious for any cost scheme in between (i.e. for any
convex combination of x and x′).

Traditionally, a polytope is represented as a set of inequations, which is inap-
propriate for our intended application. Therefore, we adopt a slighty modified
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representation, and denote the polytope of F (G1, G2) as the list of signatures
that are represented within F (G1, G2) and lie on the convex hull of the polytope.

A vertex in a polytope is a signature (resp. extended signature) which is
parsimonious for some cost scheme. The domain of parsimony of a vertex v is
the set of cost schemes for which v is parsimonious. From Property 2, the domain
of parsimony for a vertex v is a cone in R

d, formally defined as:

Cone (v) =
{
x ∈ R

d : 〈x,v〉 ≤ 〈x,w〉 ∀ w ∈ P
}
. (2)

The set of cones associated with the vertices of a polytope form a partition
of the cost schemes space [15], which allows us to assess the effect of perturbing
the cost scheme on the optimal solution of DeCo for this cost scheme.

Computing the Polytope. Building on earlier work on parametric sequence align-
ment [8], Pachter and Sturmfels [14,15] described the concept of polytope prop-
agation, based on the observation that the polytope of a DP (minimization)
scheme can be computed through an algebraic substitution. Accordingly, any
point that lies strictly within the polytope is suboptimal for any cost scheme,
and can be safely discarded by a procedure that repeatedly computes the con-
vex hull H(P ) of the (intermediates) polytopes produced by the modified DP
scheme. In the context of the DeCo DP scheme, the precise modifications are:

1. Any occurrence of the + operator is replaced by ⊕, the (convex) Minkowski
sum operator, defined for P1, P2 two polytopes as

P1 ⊕ P2 = H({p1 + p2 | (p1, p2) ∈ P1 × P2});
2. Any occurrence of the min operator is replaced by �, the convex union

operator, defined for P1, P2 two polytopes as

P1 � P2 = H(P1 ∪ P2);

3. Any occurrence of an adjacency gain cost is replaced by the vector (1, 0)
(resp. (1, 0, 0) for extended signatures);

4. Any occurrence of an adjacency break cost is replaced by the vector (0, 1)
(resp. (0, 1, 0) for extended signatures);

5. (Extended signatures only) An event that corresponds to the prediction of
a fixed ancestral adjacency a in a scenario is replaced by the vector (0, 0, 1);

By making this substitution, we can efficiently compute the polytope associated
with two input gene treesG1 andG2, having sizes n1 and n2 respectively, through
O (n1 × n2) executions of the convex hull procedure. In place of the integers used
by the original minimization approach, intermediate convex polytopes are now
processed by individual operations, and stored in the DP tables, so the overall
time and space complexities of the algorithm critically depend on the size of
the polytopes, i.e. its number of vertices. Pachter and Sturmfels proved that, in
general, the number of vertices on the surface of the polytope is O

(
nd−1

)
, where

d is the number of dimensions, and n is the size of the DP table. In our case, the
number of vertices in the 2D polytope associated with simple signatures is in
O (n1 × n2). This upper bound also holds for extended signatures, as the third
coordinate is a boolean, and the resulting 3D polytope is in fact the union of two
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2D polytopes. The total cost of computing the polytope is therefore bounded
by O

(
n2
1 × n2

2 × log(n1 × n2)
)
, e.g. using Chan’s convex hull algorithm [4]. As

for the computation of the cones, let us note that the cone of a vertex v in a
given polytope P is fully delimited by a set of vectors, which can be computed
from P as the normal vectors, pointing towards the center of mass of P , of
each of the facets in which v appears. This computation can be performed as a
postprocessing using simple linear algebra, and its complexity will remain largely
dominated by that of the DP-fuelled polytope computation.

Assessing Signature and Adjacency Robustness. The cones associated with the
polytope of a given instance cover all the real-valued cost schemes, including
those associating negative costs to events. These later cost schemes are not valid,
and so, we only consider cones which contain at least one positive cost scheme.
Given a fixed cost scheme y, the vertex associated to the cone containing this
cost scheme corresponds to the signature of all parsimonious scenarios for this
cost scheme. In order to assess the robustness of this signature, we can calculate
the smallest angular perturbation needed to move from y to a cost scheme whose
parsimonious scenarios do not have this signature. This is simply the angular
distance from y to the nearest boundary of the cone which contains it. Using
this methods, we assign a numerical value to the robustness of the signatures of
parsimonious scenarios on a number of instances for a particular cost scheme.

In the case of extended signatures σa (F(G1, G2)) for an adjacency a, the
polytope is 3-dimensional. The cones associated with the vertices, as defined
algebraically, now partition R

3, the set of cost schemes (x0, x1, x2), where x2

indicates the cost of a distinguished adjacency. Since the third coordinate is a
descriptor, it does not contribute to the cost scheme, and we therefore restrict
our analysis to the R

+ × R
+ × {0} subset of the cost scheme space. Precisely,

we take the intersection of the plane x2 = 0 with each cone associated to a
vertex (g, b, sa), and obtain the region in which the extended signature (g, b, sa)
is parsimonious. This region is a 2D cone.

However, the cost of an extended signature is independent of the entry in its
last coordinate, and there may exist two different extended signatures (g, b, 0)
and (g, b, 1), both parsimonious for all the cost schemes found in the 2D cone. It
is also possible for adjacent cones to have different signatures, yet feature a given
adjacency. The robustness of a given adjacency a is computed from the cones
using a greedy algorithm which, starting from the cone containing x, explores the
adjacent cones in both directions (clockwise/counter-clockwise) until it finds one
that no longer predicts a, i.e. is associated with at least one signature (g′, b′, 0).

4 Results

We considered 5, 039 reconciled gene trees and 50, 389 extant gene adjacencies,
forming 6, 074 DeCo instances, with genes taken from 36 extant mammalian
genomes from the Ensembl database in 2012. In [2], this data was analyzed
with DeCo, using the cost scheme (1, 1). These adjacency forests defined 96, 482
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ancestral adjacencies (adjacencies between two pre-speciation genes from the
same ancestral species), covering 112, 188 ancestral genes.

We first considered all 6, 074 instances, and computed for each signature the
robustness of the parsimonious signature obtained with the cost scheme (1, 1).
We observe (Fig. 3(A)) that for more than half of the instances, the parsimo-
nious signature is robust to a change of cost scheme, as the associated cone is the
complete first quadrant of the real plane. On the other hand, for 945 instances
the parsimonious signature for the cost scheme (1, 1) is not robust to any change
in the cost scheme; these cases correspond to interesting instances where the
cost scheme (1, 1) lies at the border of two cones, meaning that two parsimo-
nious signatures exist for the cost scheme (1, 1), and any small change of cost
scheme tips the balance towards one of these two signatures. More generally, we
observe (Fig. 3(A)) an extreme robustness of parsimonious signatures: there is
a ∼ 80% overlap between the sets of signatures that are parsimonious for any
(positive) cost scheme, and for the (1, 1) cost scheme. This observation supports
the notion of a sparsely-populated search space for attainable signatures. In this
vision, signatures are generally isolated, making it difficult to trade adjacency
gains for breaks (or vice-versa) in order to challenge the (1, 1)-parsimonious pre-
diction. We hypothesize that such a phenomenon is essentially combinatorial, as
extra adjacency gains typically lead, through duplications to more subsequent
adjacency breaks.

Next, to evaluate the stability of the total number of evolutionary events in-
ferred by parsimonious adjacency forests, we recorded two counts of evolutionary
events for each instance: the number of syntenic events (adjacencies gains and
breaks) of the parsimonious signature (called the parsimonious syntenic events
count), and the maximum number of syntenic events taken over all signatures
that are parsimonious for some cost scheme (called the maximum syntenic events
count). We observe that the average parsimonious (resp. maximum) syntenic
events count is 1.25 (resp. 1.66). This shows a strong robustness of the (low)
number of syntenic events to changes in the cost scheme.

We then considered the robustness of individual ancestral adjacencies. Using
the variant DeClone of DeCo that explores the set of all evolutionary scenarios [6],
we extracted, for each instance, the set of ancestral adjacencies that belong to all
parsimonious solutions for the cost scheme (1, 1), and computed their robustness
as defined in the previous sections. This set of ancestral adjacencies contains
87, 019 adjacencies covering 106, 903 ancestral genes. The robustness of these
adjacencies is summarized in Fig. 3(B, left and center columns). It is interesting
to observe that few adjacencies have a low robustness, while, conversely, a large
majority of the universally parsimonious adjacencies are completely robust to
a change of cost scheme (97, 593 out of 106, 639). This suggests that the DeCo

model of parsimonious adjacency forests is robust, and infers highly supported
ancestral adjacencies, which is reasonable given the relative sparsity of genome
rearrangements in evolution compared to smaller scale evolutionary events.

Besides the notions of robustness, an indirect validation criterion used to as-
sess the quality of an adjacency forest is the limited presence of syntenic conflicts.
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Fig. 3. (A) Average robustness of signatures predicted using the (1, 1) cost scheme. At
each point (x, y), the colour indicates the proportion of signatures that are parsimo-
nious, and therefore predicted, for the (1, 1) cost scheme, and remain parsimonious for
the (x, y) cost scheme. (B) Universally parsimonious adjacencies and syntenic conflicts.
(Left) Percentage of ancestral genes present in universally parsimonious adjacencies per
level of minimum robustness of the adjacencies, expressed in radians. (Center) Percent-
age of universally parsimonious adjacencies per level of minimum robustness. (Right)
Percentage of conserved conflicting adjacencies per level of minimum robustness.

An ancestral gene is said to participate in a syntenic conflict if it belongs to three
or more ancestral adjacencies, as a gene can only be adjacent to at most two
neighboring genes along a chromosome. An ancestral adjacency participates in a
syntenic conflict if it contains a gene that does. Among the ancestral adjacencies
inferred by DeCo, 16, 039 participate in syntenic conflicts, covering 5, 817 ances-
tral genes. This represents a significant level of syntenic conflict and a significant
issue in using DeCo to reconstruct ancestral gene orders. It was observed that
selecting universally parsimonious ancestral adjacencies, as done in the previ-
ous analysis, significantly reduced the number of syntenic conflicts, as almost all
discarded ancestral adjacencies participated in syntenic conflicts. Considering
syntenic conflicts, we observe (Fig. 3(B, right column) a positive result, i.e. that
filtering by robustness results in a significant decrease of the ratio of conflicting
adjacencies. However, even with robust universally parsimonious ancestral ad-
jacencies, one can observe a significant number of adjacencies participating in
syntenic conflicts. We discuss these observations in the next section.

5 Discussion and Conclusion

From an application point of view, the ability to exhaustively explore the pa-
rameter space leads to the observation that, on the considered instances, the
DeCo model is extremely robust. Even taking parsimonious signatures that max-
imize the number of evolutionary syntenic events (i.e. considering cost schemes
that lead to the maximum number of events) results in an average increase of
roughly 33% events (1.25 to 1.66), and stays very low, much lower than gene
specific events such as gene duplications (average of 3.38 event per reconciled
gene tree). This is consistent with the fact that for rare evolutionary events such
as genome rearrangements, a parsimony approach is relevant, especially when
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it can be complemented by efficient algorithms to explore slightly sub-optimal
solutions, such as DeClone, and to explore the parameter space. In terms of
direct applications of the method developed here and in [6], gene-tree based re-
construction of ancestral gene orders comes to mind [5]; more precisely, ancestral
adjacencies could be determined and scored using a mixture of their Boltzmann
probability (that can be computed efficiently using DeClone) and robustness to
changes of the cost scheme, and conflicts could be cleared out independently and
efficiently for each ancestral species using the algorithm of [12] for example.

An interesting observation is that even the set of ancestral adjacencies that
are universally-parsimonious and robust to changes in the cost scheme contains
a significant number of adjacencies participating in syntenic conflict. We conjec-
ture that the main reason for syntenic conflicts is in the presence of a significant
number of erroneous reconciled gene trees. This is supported by the observation
that the ancestral species with the highest number of syntenic conflict are also
species for which the reconciliation with the mammalian species tree resulted
in a significantly larger number of genes than expected (data not shown). This
points clearly to errors in either gene tree reconstruction or in the reconciliation
with the mammalian species phylogeny, which tends to assign wrong gene du-
plications in some specific species, resulting an inflation of the number of genes,
especially toward the more ancient species [9]. It would be interesting to see
if the information about highly suported conflicting adjacencies can be used in
reconciled gene tree correction.

From a methodological point of view, we considered here extended signatures
for a single ancestral adjacency at a time. It would be natural to extend this
concept to the more general case of several ancestral adjacencies considered at
once. We conjecture that this case can be addressed without an increase in the
asymptotic complexity of computing the polytope; this problem will be consid-
ered in the full version of the present work. Next, there exists another way to
explore the parameter space of a dynamic programming phylogenetic algorithm.
It consists of computing the Pareto-front of the input instance [10,16], rather
than optimal signatures for classes of cost schemes. A signature v is said to be
Pareto-optimal if there is no other signature whose entries are equal or smaller
than the corresponding entries in v, and is strictly smaller at at least one co-
ordinate. The Pareto-front is the set of all Pareto-optimal signatures, and can
be efficiently computed by dynamic programming [17,16,10]. The Pareto-front
differs from the approach we describe in the present work in several aspects.
An advantage of the Pareto-front is that it is a notion irrespective of the type
of cost function being used. This contrasts with the polytope propagation tech-
nique, which requires that the cost function be a linear combination of its terms.
However, so far, the Pareto-approach has only been used to define a partition of
the parameter space when the cost function is restricted to be linear/affine, and
it remains to investigate the difference with the polytope approach in this case.
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17. Schnattinger, T., Schöning, U., Kestler, H.A.: Structural RNA alignment by multi-
objective optimization. Bioinformatics 29(13), 1607–1613 (2013)

18. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving prob-
lems under different genomic distances. BMC Bioinformatics, 10 (2009)


	Assessing the Robustness of Parsimonious Predictions for Gene Neighborhoods from Reconciled Phylogenies: Supplementary Material
	1 Introduction
	2 Preliminary: Models and Problems
	3 Methods
	4 Results
	5 Discussion and Conclusion
	References




