
Diploid Alignments and Haplotyping

Veli Mäkinen(�) and Daniel Valenzuela

Helsinki Institute for Information Technology HIIT
Department of Computer Science

University of Helsinki, Helsinki, Finland
{vmakinen,dvalenzu}@cs.helsinki.fi

Abstract. Sequence alignments have been studied for decades under
the simplified model of a consensus sequence representing a chromo-
some. A natural question is if there is some more accurate notion of
alignment for diploid (and in general, polyploid) organisms. We have de-
veloped such a notion in our recent work, but unfortunately the compu-
tational complexity remains open for such a diploid pair-wise alignment;
only a trivial exponential algorithm is known that goes over all possible
diploid alignments. In this paper, we shed some light on the complexity
of diploid alignments by showing that a haplotyping version, involving
three diploid inputs, is polynomial time solvable.

1 Introduction and Related Work

There are myriads of variants of pair-wise sequence alignments trying to capture
various biological sequence features, such as mutation biases, repeats (DNA),
splicing (RNA), alternative codons (protein) [4,5], but the fundamental feature
of a genome of a higher organism being diploid or even polyploid has remained
largely unexplored in alignment literature. The closest come some fairly recent
approaches in progressive multiple alignment that model a multiple alignment
profile as a labeled directed acyclic graph (labeled DAG) [7,8]. These works de-
fine the alignment of two such labeled DAGs A and B as the problem of finding
a path PA through A and a path PB through B such that the optimal align-
ment score of PA and PB is maximized. Since a pair-wise alignment models
a diploid chromosome pair accurately, giving the synchronization of their hap-
loid sequences, the labeled DAG alignment could be applied to model diploid
alignment. However, the caveat is that this approach takes only partial infor-
mation into account from the diploids, not their full content. It was shown in
[9] how to modify the approach into a covering version that takes full content
of diploids into account. Unfortunately, the computational complexity of this
accurate model of diploid alignment remains open.

In this paper, we shed some light on the complexity of diploid alignment by
showing that a haplotyping version, involving three diploid inputs, is polyno-
mial time solvable. In addition to the theoretical interest, the haplotyping ver-
sion may also be of practical value as a complementary technique to haplotype

Partially supported by Academy of Finland under grant 284598 (CoECGR).

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 235–246, 2015.
DOI: 10.1007/978-3-319-19048-8_20

236 V. Mäkinen and D. Valenzuela

assembly. We give some proof-of-concept simulation results that show excellent
performance on realistic input scenarios on an implementation of the approach.

In what follows, we fix our mindset on the haplotyping problem to fix the ter-
minology and to motivate our study also from the practical point of view. Then
we formalize the notion of diploid alignments and show how this formalization
can be extended to modeling the haplotyping problem.

1.1 Genotyping and Haplotyping

In diploid organism a pair of haplotype DNA sequences forms a chromosome pair,
where one haplotype is inherited from the mother and one from the father. Each
inherited haplotype sequence is a mixture (recombination) of the two haplotype
sequences forming the corresponding diploid chromosome pair in the parent.

Genotyping consists in the discovery of variants in specific positions in the
genome of an individual with respect to a consensus genome of the species.
After genotyping of child, mother, and father, one can reason which variants
came from the mother, which came from the father, and which are new. The
inherited variants are called germ-line variants and the new de novo variants. A
homozygous variant is inherited from both mother and father, and a heterozygous
variant is inherited only from one of them.

Haplotyping consists in the assignment of heterozygous variants to the correct
phase, that is, to a haplotype inherited from the mother or to a haplotype inher-
ited from the father. The importance of this process is not just in revealing the
inheritance pattern, but also in understanding the function of each haplotype;
after all, genes and other functional units are residing in haplotypes, and the
function always depends on the exact sequence content. Genotype information
is just enough to argue about the effect of a single mutation, while haplotype
information gives the full power of reasoning about the combined effect of a set
of mutations.

The state of the art is that genotyping is nowadays a rather routinely con-
ducted process, when studying e.g. human individuals in the hunt of disease
causing mutations. It can be conducted by high-throughput sequencing of indi-
vidual DNA, aligning the sequencing reads to the consensus genome, and analyz-
ing the read alignments for variants supported by many reads. Single-nucleotide
polymorphisms (SNPs) affecting a single genome position can be revealed with
high accuracy, but larger indels and structural variants are much more hard to
identify [11].

Given a set of predicted heterozygous variants, haplotyping is still a chal-
lenging task, and it is often solved using statistical methods [1,10,2]. Recent
advances in pseudo-polynomial algorithms for haplotype assembly are however
making large-scale haplotyping feasible [12]. In haplotype assembly the j-th read
is reduced to a sequence Rj from alphabet {∗, 0, 1} with Rj [i] = ∗ denoting that
the read does not overlap i-th heterozygous variant, with Rj[i] = 0 denoting
that the read overlaps the i-th heterozygous variant but does not support it,
and with Rj[i] = 1 denoting that the read overlaps the i-th heterozygous variant
and supports it. The task is to assign each read to one of the haplotypes such

Diploid Alignments and Haplotyping 237

that minimal flipping of bits inside reads is required to make them uniform with
their chosen consensus haplotype pattern. The approach works if the read length
is long enough to contain many variants.

The reads can be separated into small independent blocks (i.e. such that
there are no shared variants among different blocks) and then solve the problem
for each block independently. Some blocks have been identified as particularly
difficult to phase [3].

There are also more tailored approaches to haplotyping that combine compu-
tational methods with problem-targeted sequencing technology [13].

In this paper, we propose a haplotyping algorithm that works directly at
the DNA sequence level, thus differing from previous approaches. Our method
is independent of the sequencing technology. We do not require any specific
information about reads, so the variants might have been obtained using different
methods.

The purpose of our algorithm is to haplotype complex genome regions, that
may contain long and possibly overlapping variants that are difficult to capture
by the haplotype assembly framework. We assume that one has identified com-
plex regions of the child genome and predicted variants from those regions as
well as from the same regions in the mother and father genomes. Such data can
be produced e.g. by targeted high-coverage sequencing followed by variant pre-
diction. Our haplotyping algorithm takes O(n3) time, where n is the length of
the genome region in question. This approach fits a haplotyping project, where a
computationally light approach can be applied on easy-to-haplotype regions, and
a more computational heavy approach can be applied on the identified complex
regions.

1.2 Alignment of Diploid Individuals

Recently, new alignment models that are designed for diploid organisms, incor-
porating the possibility of recombination, were introduced [9]. In this section we
briefly present these models and some basic definitions.

A pair-wise alignment (or simply an alignment, when it is clear from the
context) of sequences A and B is a pair of sequences (SA, SB) such that SA

is a supersequence of A, SB is a supersequence of B, |SA| = |SB| = n is the
length of the alignment, and all positions which are not part of the subsequence
A (respectively B) in SA (respectively SB), contain the gap symbol ′−′, which
is not present in the original sequences.

Given a similarity function s(a, b) that assets the similarity between two char-
acters, the similarity of a pair-wise alignment is simply defined as

S(SA, SB) =
n∑

i=1

s(SA[i], SB[i]).

The similarity of two sequences is then defined as

S(A,B) = max{
n∑

1=1

s(SA[i], SB[i]) : (SA, SB) is an alignment of A and B}.

238 V. Mäkinen and D. Valenzuela

An alignment that achieves that value is called an optimal alignment.
We say that (SA

′
, SB

′
) is a recombination of an alignment (SA, SB) if both

alignments have the same length n and there exists a binary string P (for phase)
such that SA

′
[i] = SA[i] and SB

′
[i] = SB[i] if P [i] = 0, and SA

′
[i] = SB[i] and

SB
′
[i] = SA[i] if P [i] = 1. We say that the characters are swapped in the positions

in which P [i] = 1.
We denote this recombination relation by (SA

′
, SB

′
)�(SA, SB).

Diploid to Diploid Similarity[9]1: Given two pair-wise alignments (SA, SB)
and (SX , SY) the diploid to diploid similarity is the sum of the optimal simi-
larity scores by components, given by the best possible recombination of both
individuals. More formally:

Sd−d((A,B), (X,Y)) = max{S(A′, X ′) + S(B′, Y ′) :

(SA
′
, SB

′
)�(SA, SB) ∧ (SX

′
, SY

′
)�(SX , SY))}

Neither algorithms nor complexity bounds were provided for the similarity
above. However, a simpler version where one of the individuals is considered as
a diploid and the other as a pair of haploids was developed:

Pair of Haploids to Diploid Similarity[9]: Given a pair-wise alignment
(SA, SB) and two sequences X and Y , the pair of haploids to diploid distance is
defined as the sum of the optimal similarity scores by components, given by the
best possible recombination of the diploid individual. More formally:

Sd−hh((A,B), (X,Y)) = max{S(A′, X) + S(B′, Y) :

(SA
′
, SB

′
)�(SA, SB)}

The best algorithm for this similarity measure runs in O(n3) time and requires
O(n2) memory. A modified version of the above was also presented, which can
be computed in O(nk) time and O(n) memory, where k is the resulting edit
distance (considering the analogous problem with min instead of max and costs
instead of scores).

2 Haplotype Sequences via Alignment

The measures covered in the previous section intent to measure the similarity be-
tween individuals in which heterozygous and homozygous variations are known,
but there is no knowledge about the correct phasing of the variations.

As such, they are not useful for haplotype phasing, as the evolutionary recom-
bination pattern is unique to the individual. To take the evolutionary context
into account, we need to extend the measures to mother-father-child trios, as it
is considered next.

1 The original paper considers the distance measure instead of the similarity, but these
are computationally equivalent.

Diploid Alignments and Haplotyping 239

2.1 The Similarity Model

Let us consider three pair-wise alignments, (SM1 , SM2),(SF1 , SF2) and (SC1 , SC2)
of length LM , LF and LC respectively. Those represent the diploid sequences of
the mother, father and child, and we call the three of them a mother-father-child
(m-f-c) trio.

We define the haplotyping similarity of an m-f-c trio, H(m-f-c), as the maxi-
mum pair-wise similarity between one of the sequences of the mother and one of
the sequences of the child, plus the pair-wise similarity between the other child
sequence and one of the father sequences, assuming that none of the diploids is
phased correctly. This means that we need to allow free recombination in each
pair-wise alignment, to let the model discover the real phase. More formally:

H(m-f-c) = max{S(M ′
1, C

′
1) + S(F ′

1, C
′
2) : (S

M ′
1 , SM

′
2)�(SM1 , SM2)

∧ (SF
′
1 , SF

′
2)�(SF1 , SF2) ∧ (SC

′
1 , SC

′
2)�(SC1 , SC2)}

Figure 1 shows an optimal alignment of a m-f-c trio.

a g c c a c a

- g c t a c a

a g - - g c a c a

a g a g g c a t a

a g - - c t a c a

a g a g g c a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

- g c c a c a

a g c t a c a

a g a - g c a c a

a g - g g c a t a

a g - g g c a c a

a g a - c t a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

Fig. 1. On the left we show how the pair-wise alignments would be if we knew
the correct phasing of the three individuals. On the right, the same individuals are
presented, but the haplotype phasing is not known a priori. We assume a similarity
function that scores 1 for equal characters, and −1 for indels and mismatches. The
colored recombinations show the sequences M ′

1 (hatched blue), F ′
1 (green) from the

recombination that gives the optimal alignment. The haplotyping similarity of the
trio is S(AGCTACA, AGCTACA) + S(AGAGGCATA, AGAGGCATA) = 7 + 9 = 16. The binary
strings associated to the recombinations are PM = 1001110, PF = 110100011 and
PC = 000111000. Note that the latter corresponds to the predicted phase for the
child genome. It is also important to note that none of the binary strings are signaling
evolutionary recombinations, but they are signaling phasing errors in the input data.

Notice that this similarity measure is an extension of the diploid to pair of
haploids similarity, but it is easier than the diploid to diploid similarity measure.
The feasibility of the solution comes from the fact that only the child genome
needs to be covered by the alignment: Sequences induced by SC

′
1 and SC

′
2 are both

aligned in the H(m-f-c) definition, whereas only sequences induced by SM
′
1 and

SF
′
1 are aligned from the recombined father and mother sequences, respectively.

The difficulty of the diploid to diploid measure lies in the requirement of covering
both recombined inputs, which appears difficult to capture at least by dynamic

240 V. Mäkinen and D. Valenzuela

programming. For the m-f-c trio case, we can luckily extend the cubic solution
of the diploid to pair of haploids similarity.

2.2 Dynamic Programming Algorithm

In this section we present our algorithm to compute the m-f-c similarity. We
propose a dynamic programming formulation that computes values Hi,j,k,m,f,c

with i ∈ {1, LM}, j ∈ {1, LF}, k ∈ {1, LC}, m ∈ {1, 2}, f ∈ {1, 2} and
c ∈ {1, 2}. The value stored in Hi,j,k,m,f,c stands for the similarity score between
(SM1 [1, i], SM2 [1, i]), (SF1 [1, j], SF2 [1, j]), and (SC1 [1, k], SC2 [1, k]), with the ad-
ditional constrain that the last character of the mother alignment is swapped if
and only if m = 1, the last character of the father alignment is swapped if and
only if f = 1 and the last character of the child alignment is swapped if and only
if c = 1.

We first consider the particular case when the input alignments contain no
gaps. That is, SC1 = C1, SC2 = C2, S

F1 = F1, etc. It is possible to compute
those values recursively as follows:

Hi,j,k,m,f,c = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hi−1,j,k,∗,f,c + s(′−′,Mm[i]) if i > 1
Hi−1,j,k−1,∗,f,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k],

′ −′) if i, k > 1
Hi,j−1,k,m,∗,c + s(′−′, Ff [j]) if j > 1
Hi,j−1,k−1,m,∗,∗ + s(Cc[k],

′ −′) + s(Cc⊕1[k], Ff [j]) if j, k > 1
Hi−1,j−1,k−1,∗,∗,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j]) if i, j, k > 1

The recurrence uses several short-hand notations as follows. With Hi,j,k,∗,∗,∗
we mean max{m,f,c}∈{1,2}3{Hi,j,k,m,f,c} in order to consider all the 8 valid sub-
problems where the previous last characters could have been swapped or not
(and analogously when only one or two ∗ symbols are present). With c ⊕ 1 we
mean 2 if c = 1 and 1 otherwise.

The first and third cases correspond to the scenarios where the last character
of the mother (respectively, of the father) is not aligned with any character
of the child, and therefore a gap symbol is inserted. The second and fourth
cases corresponds to the scenarios where one of the last characters of the child
is aligned with one of the last characters of the mother (respectively, of the
father), and the other character of the child is not aligned, therefore, a gap is
inserted. The fifth case is the scenario where the last character of one of the child
sequences is aligned with one of the last sequences of the mother, and the last
character of the other child sequence is aligned with the last character of one of
the sequences of the father.

The correctness of the algorithm can be seen as a generalization of the classic
dynamic programming algorithm: Firstly, all the possibilities of alignment among
the last characters of the input sequences are considered. For each of those case,
it remains the subproblem of the m-f-c alignment where the characters that had
just been aligned (with another character or with a gap) are removed. For the
alignment to be optimal, it is required that the subproblem is solved optimally
too, and therefore, the recursion holds true.

Diploid Alignments and Haplotyping 241

- g c c a c a

a g c t a c a

a g a - g c a c a

a g - g g c a t a

a g - g g c a c a

a g a - c t a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

i

k

j j + 1

Hi,j+1,k,1,2,2 = max{Hi,j,k,1,∗,2} = Hi,j,1,k,1,2,2

Hi,j,k,1,2,2 = max{Hi−1,j−1,k−1,∗,∗,∗}+ s(c, c) + s(g, g)

Fig. 2. Example showing two steps of the dynamic programming algorithm. First for
the computation of Hi,j+1,k,1,2,2 we highlight the characters that need to be considered.
As the j + 1 character of the father sequence that is being considered is a gap, the
recursion returns the previous value of j, keeping all the parameters constant, except
for the sequence of the father that can be considered (line 10 of Algorithm 1.) For
the computation of Hi,j,k,1,2,2 the previous values indicated by lines 6,7,11,12, and 14
needs to be considered. Those correspond to all possible combinations of alignments
between the highlighted characters (allowing some of them to be ignored, but not all
of them).

Notice that we are allowing free recombinations when a path change its value
in either m,f , or c indexes. It is straightforward to include a penalty in those
changes of indexes, as it was proposed in [9], however, we decided to stay free of
such penalties for reasons that are discussed in Section 3.

It remains to consider the scenarios where the input sequences do have gaps.
Observe that the gaps in the input alignments need to be ignored without any
cost in order to model the similarity measure correctly; the gaps in the input
sequences are just required for keeping the positions of the two haplotypes of the
diploid synchronized so that recombination can be modeled. Algorithm 1 shows
our pseudo-code to handle this: If for a given configuration the last character of
the mother is a gap, we can immediately resort to the value computed for the
position i − 1. This just ignores that gap character. The case for the father is
handled analogously.When the gap character comes in one of the child sequences,
it is handled implicitly by the recursion, given that s(′−′,′ −′) = 0 allows the
gap character from the child to be ignored through the second and fourth cases
of the recurrence. Figure 2 simulates one step of the computation.

The straightforward implementation as in Algorithm 1 would require O(n3)
time and memory, as we need to retrieve the phasing. We implemented the check-
point method [14], a flexible variant of Hirschberg’s algorithm [6] that allows our
algorithm to run in O(n3) time and O(n2) memory. Still, in order to obtain a
scalable method, it is possible to apply some heuristics [9].

242 V. Mäkinen and D. Valenzuela

2.3 Haplotype Phasing

Once all the values Hi,j,k,m,f,c are computed, it is enough to trace back the path
that originated the optimal score to obtain the optimal alignment. We notice
that if we collect the three last indexes m, f and c from the path we will obtain
the recombination binary strings for the mother, father, and child. In particular,
the latter gives us the phasing of the child diploid that maximizes the similarity
of the m-f-c trio. In the example of Figure 1 the binary strings are PM , PF and
PC ; the last one being the phasing of the child diploid.

Algorithm 1. Haplotyping similarity of an m-f-c trio. The algorithm corre-
sponds to the dynamic programming implementation of the recurrence presented
in Section 2.2, modified to handle the gaps in the input sequences properly.

1: function HaploidSimilarity(M1,M2, F1, F2, C1, C2)
2:
3: H[0, 0, 0, ∗, ∗, ∗] ← 0
4: SetGlobal(H,M1,M2,F1,F2,C1,C2)
5: for i ← 0 to LM do
6: for j ← 0 to LM do
7: for k ← 0 to LM do
8: for m ← 1 to 2 do
9: for f ← 1 to 2 do

10: for c ← 1 to 2 do
11: H[i, j, k,m, f, c] ← HValue(i,k,k,m,f,c)

12: return maxH[Lm, Lf , Lc, ∗, ∗, ∗]

1: function HValue(i, j, k,m, f, c)
2: value ← − inf
3: if i > 0 then
4: if Mm[i] =′ −′ then
5: return max{H[i − 1, j, k, ∗, f, c]}
6: value ← max{value, H[i − 1, j, k, ∗, f, c] + s(′−′,Mm[i])}
7: value ← max{value, H[i − 1, j, k − 1, ∗, f, ∗] + s(Cc[k],Mm[i]) + s(Cc⊕1[k],

′ −′)}
8: if j > 1 then
9: if Ff [i] =

′ −′ then
10: return max{H[i, j − 1, k,m, ∗, c]}
11: value ← max{value, H[i, j − 1, k,m, ∗, c] + s(′−′, Ff [j])}
12: value ← max{value, H[i, j − 1, k − 1, m, ∗, c] + s(Cc[k],

′ −′) + s(Cc⊕1[k], Ff [j])}
13: if j > 1 & > 1 then
14: value ← max{value, H[i− 1, j − 1, k − 1,m, ∗, c] + s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j])}
15: return value

3 From Variants to Unphased Diploid Genome

Our phasing algorithm assumes the inputs as pair-wise alignments representing
unphased diploid genomes. These can be constructed as follows. After sequencing
the target region (or whole genome) on each individual involved, one can align
the reads and analyse the variants [11]. All the predicted homozygous variants
on an individual can be applied to the consensus genome to produce a base S of
a pair-wise alignment; with applying we mean that the content of consensus is
replaced by the variants. Then the heterozygous variants can be greedily applied

Diploid Alignments and Haplotyping 243

to S from left to right such that if a variant overlaps a previously applied variant,
it is not applied. This forms the non-gapped content T of the top row of a pair-
wise alignment. The remaining set of heterozygous variants are applied to S to
produce the non-gapped content B of the bottom row of a pair-wise alignment.
Finally, enough gaps are added such that T and B are synchronized according to
their origin in S. This process produces an unphased representation of a diploid
genome. It is important to notice that our algorithm is invariant to the phasing of
the input variants: In Figure 1 it is shown two different inputs that correspond
to the same variants; in the left the input is already correctly phased for the
trio, and in the right the variants are incorrectly phased, and the result in both
scenarios is the same. This is possible because we allow free recombination in
each of the diploids, thus giving an equal opportunity for each variant to be
phased either way.

We shall consider in Sect. 5 the case when the overlap depth is higher, so that
some variants are left after constructing B.

4 Experimental Results

We implemented our method fully in C ++, and the source code is freely avail-
able2. We ran our experiments in a computer node with 2 Intel Xeon E5540
2.53GHz processors, 32GB of RAM. The operating system was Ubuntu 12.04.4.
Our code was compiled with gcc 4.6.4, optimization option −O3.

To study the difficult areas to phase we simulated our father-mother-child
trios directly without adding the variant analysis step of Sect. 3. In this way
we could control the amount the mutation ratio, the type of variations, and the
measurement/predictions errors that are present in the input data.

To simulate the mother sequences, we started from two identical copies of a
sample from human chromosome 21. We inserted different types of variations,
and then we simulated a recombination of that pair-wise alignment to obtain the
child chromosome that is inherited from the mother. For the recombination pro-
cess we choose recombination points at random. We did analogously to simulate
the father, and the chromosome that the child inherits from the father.

The variations planted on the parents were as follow: point mutations con-
sisted of SNPs and single nucleotide deletions. Then we introduced long indels
(larger than 50 base pairs). In the case of insertions, those consisted of random
base pairs. We also inserted short tandem repeats [15] consisting of insertions of
length between 20 and 60 repeating a sequence between 2 and 6 base pairs. Af-
ter the recombination has been simulated to generate the child sequences, we
introduced de novo point mutations. (We also considered short indels but as the
results turned out to be analogous to long indels, we omitted them from the
results reported here for the lack of space.)

In addition to all the previous parameters, we also introduced random er-
rors over all the sequences at the end, to take into account errors during the

2 http://www.cs.helsinki.fi/u/dvalenzu/code/haplotyping/

http://www.cs.helsinki.fi/u/dvalenzu/code/haplotyping/

244 V. Mäkinen and D. Valenzuela

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

ng
ly

 p
ha

se
d

si
te

s
(%

)

long indels (%)

Sensibility to long indels

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

ng
ly

 p
ha

se
d

si
te

s
(%

)

sort tandem repeats (%)

Sensibility to sort tandem repeats

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

ng
ly

 p
ha

se
d

si
te

s
(%

)

parents point mutations (%)

Sensibility to parents point mutations

0% errors
5% errors

10% errors

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16

w
ro

ng
ly

 p
ha

se
d

si
te

s
(%

)

de novo point mutations (%)

Sensibility to de novo point mutations

0% errors
5% errors

10% errors

Fig. 3. We show the percentage of incorrectly phased positions versus the mutation
ratio. For every graphic we include three levels of random noise. The two first plots
(above) show the behavior against long indels and short tandem repeats. The third
plot (below left) shows the behavior against point mutations in the parents and the
fourth plot (below right) shows de novo variants.

sequencing of the sequences and during variant calling to discover the genotype
patterns that constitute the inputs of our algorithm.

We studied the quality of our phasing algorithm by measuring how sensible
it was with respect to each of the parameters. For that sake, we made our
simulations from a 1000 bp sequence and we measured the percentage of positions
that were incorrectly phased. For each different type of variation, the ratio ranged
between 0 and 15%. Regarding to the error ratios we considered three scenarios:
a very optimistic one, were the genotyping was done without errors (0%), a
moderated scenario where error ratio is 5%, and a pessimistic scenario where
the error ratio is 15%. The time used for haplotyping each simulated trio was
less than a hour. The results are shown in Figure 3.

5 Discussion

Our case study and experimentation on the haplotyping problem show that our
method can provide a complementary technique to perform haplotype phas-
ing in complex genome sequences that are too difficult for haplotype assembly

Diploid Alignments and Haplotyping 245

modeling. Our experiments are so far showing the proof-of-concept, and several
aspects need to be taken into account in order to apply the method on the real
data setting of Sect. 3. As the motivation for our approach is complex genome
regions, it should be observed that just the detection of variants in such areas
is challenging. It can happen that variant predictions overlap such that at some
positions a diploid genome is not enough to cover all variants [16]. For the pro-
cess in Sect. 3, this means that after constructing T and B for the content of
an unphased diploid genome, there are still some heterozygous variants to be
applied. Consider continuing the process further to create a multiple alignment
with some small number c of sequences for child genome, m for mother genome,
and f for father genome. Our dynamic programming approach can be extended
to this scenario, by considering all

(
c
2

)
pairs of rows from child multiple alignment

at each column to be aligned to m possible rows in mother multiple alignment at
column i and f possible rows in father multiple alignment at column j. We plan
to implement this scheme so as to compare our approach to other haplotyping
methods.

Our liberal model of allowing crossover at every position can be made more
restrictive by exploiting the connection to labeled DAGs we already discussed
in Sect. 1: Consider the alignment visualization in Fig. 1. This can be viewed as
a labeled DAG, by interpreting each cell as a vertex, and drawing an arc from
bottom cell to its neighbor on the right and to its neighbor on its top right,
and symmetrically for top cells. Each vertex has then two outgoing arcs except
for the two last vertices. With some existing local haplotype information, some
crossovers can be forbidden by removing non-horizontal arcs. The problem to
be solved becomes that of finding two paths C1 and C2 through the child DAG,
a path M1 through mother DAG, and a path F1 through father DAG, such
that S(C1,M1)+S(C2, F1) is maximized. Extending our dynamic programming
approach to this generalization is left as future work, but we think this is feasible.
On a more direct extension, it is straightforward to include a penalty cost for
each recombination in our equations in order to avoid overfitting.

Finally, the main objective of this study is to illustrate that sequence align-
ments can be extended to take the full content of diploid chromosome represen-
tations into account, and that meaningful alignment problems under this model
can be stated and solved in polynomial time. Given the unknown complexity of
the very basic diploid alignment problem on two diploid inputs and the connec-
tion to covering problems on labeled DAGs, the current study is probably only
scratching the surface of a prominent subarea of research.

References

1. Browning, S.R., Browning, B.L.: Haplotype phasing: existing methods and new
developments. Nature Reviews Genetics 12(10), 703–714 (2011)

2. Chen, W., Li, B., Zeng, Z., Sanna, S., Sidore, C., Busonero, F., Kang, H.M., Li,
Y., Abecasis, G.R.: Genotype calling and haplotyping in parent-offspring trios.
Genome Research 23(1), 142–151 (2013)

246 V. Mäkinen and D. Valenzuela

3. Zhi-Zhong Chen, Fei Deng, and Lusheng Wang. Exact algorithms for haplotype
assembly from whole-genome sequence data. Bioinformatics, btt349 (2013)

4. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press
(1998)

5. Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press (1997)

6. Hirschberg, D.S.: A linear space algorithm for computing maximal common sub-
sequences. Communications of the ACM 18(6), 341–343 (1975)

7. Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using partial order
graphs. Bioinformatics 18(3), 452–464 (2002)

8. Löytynoja, A., Vilella, A.J., Goldman, N.: Accurate extension of multiple sequence
alignments using a phylogeny-aware graph algorithm. Bioinformatics 28(13),
1684–1691 (2012)

9. Mäkinen, V., Valenzuela, D.: Recombination-aware alignment of diploid individu-
als. BMC Genomics 15(suppl. 6), S15 (2014)

10. Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin, E.,
Lin, S., Qin, Z.S., Munro, H.M., Abecasis, G.R., et al.: A comparison of phasing
algorithms for trios and unrelated individuals. The American Journal of Human
Genetics 78(3), 437–450 (2006)

11. Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M.,
Krabichler, B., Speicher, M.R., Zschocke, J., Trajanoski, Z.: A survey of tools
for variant analysis of next-generation genome sequencing data. Briefings in Bioin-
formatics 15(2), 256–278 (2014)

12. Patterson, M., Marschall, T., Pisanti, N., van Iersel, L., Stougie, L., Klau, G.W.,
Schönhuth, A.: whatsHap: Haplotype assembly for future-generation sequencing
reads. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol. 8394, pp. 237–249. Springer,
Heidelberg (2014)

13. Peters, B.A., Kermani, B.G., Sparks, A.B., Alferov, O., Hong, P., Alexeev, A.,
Jiang, Y., Dahl, F., Tang, T., Haas, J., et al.: Accurate whole-genome sequencing
and haplotyping from 10 to 20 human cells. Nature 487(7406), 190–195 (2012)

14. Powell, D.R., Allison, L., Dix, T.I.: A versatile divide and conquer technique for
optimal string alignment. Information Processing Letters 70(3), 127–139 (1999)

15. Weber, J.L., Wong, C.: Mutation of human short tandem repeats. Human molec-
ular genetics 2(8), 1123–1128 (1993)

16. Wittler, R.: Unraveling overlapping deletions by agglomerative clustering. BMC
Genomics 14(S-1), S12 (2013)

	Diploid Alignments and Haplotyping
	1 Introduction and Related Work
	1.1 Genotyping and Haplotyping
	1.2 Alignment of Diploid Individuals

	2 Haplotype Sequences via Alignment
	2.1 The Similarity Model
	2.2 Dynamic Programming Algorithm
	2.3 Haplotype Phasing

	3 From Variants to Unphased Diploid Genome
	4 Experimental Results
	5 Discussion
	References

