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Preface

The 11th edition of the International Symposium on Bioinformatics Research and Ap-
plications (ISBRA 2015) was held during June 7–10, 2015 in Norfolk, Virginia. The
symposium provided a forum for the exchange of ideas and results among researchers,
developers, and practitioners working on all aspects of bioinformatics and computa-
tional biology and their applications.

There were 98 submissions received in response to the call for papers. The Program
Committee decided to accept 48 of them for publication in the proceedings and oral
presentation at the symposium: 34 for Track 1 publication (up to 12 pages) and 14 for
Track 2 (up to 2 pages). The technical program also featured invited keynote talks by
four distinguished speakers: Prof. Michael Brudno from University of Toronto spoke
on (computationally) solving rare disorders, Prof. Benny Chor from Tel-Aviv Univer-
sity spoke on what every biologist should know about computer science, Prof. Aidong
Zhang from State University of New York at Buffalo spoke on dynamic tracking of
functional modules in massive biological data sets, and Prof. Yang Zhang from Univer-
sity of Michigan spoke on protein structure prediction and protein design. Additionally,
the technical program of the symposium included tutorials, poster sessions, and invited
talks presented at the 4th Workshop on Computational Advances in Molecular Epi-
demiology (CAME 2015).

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review and discuss symposium papers. We would also like to
thank the Chairs of CAME 2015 for enriching the technical program of the symposium
with a workshop on an important and active area of bioinformatics research. We would
like to extend special thanks to the Steering and General Chairs of the symposium for
their leadership, and to the Finance, Publicity, Workshops, Local Organization, and
Publications Chairs for their hard work in making ISBRA 2015 a successful event.
Last but not least we would like to thank all authors for presenting their work at the
symposium.

June 2015 Robert Harrison
Yaohang Li

Ion Măndoiu
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(Computationally) Solving Rare Disorders

Michael Brudno1,2,3

1Department of Computer Science, University of Toronto, Toronto M5S 2E4
2Centre for Computational Medicine,

3Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 1L7, Canada
brudno@cs.toronto.edu

Abstract. Gene mutations cause not only well-recognized rare diseases such as
muscular dystrophy and cystic fibrosis, but also thousands of other rare disorders.
While individually rare, these disorders are collectively common, affecting one to
three percent of the population. The last several years have seen the identification
of hundreds of novel genes responsible for rare disorders, and an even greater
number of cases where a known gene was implicated in a new disease.

In this talk I will describe the computational approaches that are required to
make this identification possible, and describe the tools that we (and others) have
developed to enable clinicians to diagnose their patients by analyzing the patient
genomes and sharing de-identified patient data.



What Every Biologist Should Know
About Computer Science

Benny Chor

School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
benny@cs.tau.ac.il

Abstract. We join the increasing call to take computational education of life sci-
ence students a step further, beyond teaching mere programming and employing
existing software tools. We describe a new course, focusing on enriching life sci-
ence students with abstract, algorithmic and logical thinking, and exposing them
to the computational culture. The design, structure and content of our course are
influenced by recent efforts in this area, collaborations with life scientists, and our
own instructional experience. Specifically, we suggest that an effective course of
this nature should: (1) devote time to explicitly reflect upon computational think-
ing processes, resisting the temptation to drift to purely practical instruction, (2)
focus on discrete notions, rather than on continuous ones, and (3) have basic pro-
gramming as a prerequisite, so students need not be preoccupied with elementary
programming issues. We strongly recommend that the mere use of existing bioin-
formatics tools and packages should not replace hands-on programming. Yet, we
suggest that programming will mostly serve as a means to practice computational
thinking processes. This talk deals with the challenges and considerations of such
computational education for life science students. It also describes a concrete im-
plementation of the course, and encourages its use by others.

Reference

1. Rubinstein, A., Chor, B.: Computational Thinking in Life Science Education. PLoS Comput.
Biol. 10(11), e1003897 (2014)

This wark was published in the educational column of PLOS Computational Biology [1]. This
is a joint work with Amir Rubinstein, School of Computer Science, Tel-Aviv University, Tel
Aviv, Israel.



Dynamic Tracking of Functional Modules in Massive
Biological Data Sets

Aidong Zhang

Department of Computer Science and Engineering
State University of New York at Buffalo

Buffalo, NY 14260
azhang@buffalo.edu

Abstract. Functional modules are an important aspect of living cells and are
made up of proteins that participate in a particular cellular process while they may
not be directly interacting with each other at all times. In recent years, while most
researchers have focused on detecting functional modules from static protein-
protein interaction (PPI) networks where the networks are treated as static graphs
derived from aggregated data across all available experiments or from a single
snapshot at a particular time, temporal nature of genomic and proteomic data
has been realized by researchers. Recently, the analysis of dynamic networks has
been a hot topic in data mining. Dynamic networks are structures with objects and
links between the objects that vary in time. Temporary information in dynamic
networks can be used to reveal many important phenomena such as bursts of ac-
tivities in social networks and evolution of functional modules in protein interac-
tion networks. In this talk, I will present our computational approaches to identify
the roles of functional modules and to track the patterns of modules in dynamic
biological networks. Significant modules which are correlated to observable bio-
logical processes can be identified, for example, those functional modules which
form and progress across different stages of a cancer. Through identifying these
functional modules in the progression process, we are able to detect the critical
groups of proteins that are responsible for the transition of different cancer stages.
Our approaches will discover how the strength of each detected modules changes
over the entire observation period. I will also demonstrate the application of our
approach in a variety of biomedical applications.

Keywords: Biological networks · Bioinformatics · Gene expression data



Protein Structure Prediction and Protein Design

Yang Zhang1,2

1Department of Computational Medicine and Bioinformatics
2Department of Biological Chemistry

University of Michigan, Ann Arbor, MI 48109
zhng@umich.edu

Abstract. Protein structure prediction aims to determine the spatial location of
every atom in protein molecules from the amino acid sequence by computational
simulations, while protein design is the reverse procedure of structure prediction
which aims to engineer novel protein sequences that have desirable structure and
function. In this presentation, we first review recent progress in computer-based
protein structure prediction, and show that a new approach combining ab initio
folding and profile-based fold-recognition methods can break though the barrier
of physics-based protein folding, which resulted in the successful folding of pro-
teins larger than 150 residues in the community-wide blind CASP experiments.
Next, we extend the profile alignment method to protein design, and introduce
an evolutionary profile based approach to design new functional XIAP (X-linked
Inhibitor of Apoptosis Protein) BIR3 domains that bind Smac peptide but do not
inhibit caspase-9 activity, representing a new therapeutic potential to change the
caspase-9 initiated apoptosis pathway through computational protein design. The
work shows that protein family-based profiling is an efficient tool to both prob-
lems of protein folding and protein design.
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Conservation and Network Analysis of the (4β+α) Fold
of the Immunoglobulin-Binding B1 Domain of Protein G to Elucidate
the Key Determinants of Structure, Folding and Stability . . . . . . . . . . . . . 417

Jason C. Collins, John Bedford, and Lesley H. Greene

Assessment of Transcription Factor Binding Motif and Regulon
Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Sefa Kilic and Ivan Erill

Short Tandem Repeat Number Estimation from Paired-end Sequence
Reads by Considering Unobserved Genealogy of Multiple Individuals . . . 422

Kaname Kojima, Yosuke Kawai, Naoki Nariai, Takahiro Mimori,
Takanori Hasegawa, and Masao Nagasaki

PnpProbs: Better Multiple Sequence Alignment by Better Handling
of Guide Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Yongtao Ye, Tak-Wah Lam, and Hing-Fung Ting

A Novel Method for Predicting Essential Proteins Based on Subcellular
Localization, Orthology and PPI Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Gaoshi Li, Min Li, Jianxin Wang, and Yi Pan

BASE: A Practical de novo Assembler for Large Genomes Using Longer
NGS Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Binghang Liu, Ruibang Luo, Chi-Man Liu, Dinghua Li, Yingrui Li,
Hing-Fung Ting, Siu-Ming Yiu, and Tak-Wah Lam

InteGO2: A Web Tool For Measuring and Visualizing Gene Semantic
Similarities Using Gene Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Jiajie Peng, Hongxiang Li, Yongzhuang Liu, Liran Juan,
Qinghua Jiang, Yadong Wang, and Jin Chen

Predicting Drug-Target Interactions for New Drugs via Strategies
for Missing Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

Jian-Yu Shi, Jia-Xin Li, and Hui-Meng Lu

A Genome-Wide Drug Repositioning Approach toward Prostate Cancer
Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Rong Xu and QuanQiu Wang

Clustering Analysis of Proteins from Microbial Genomes at Multiple
Levels of Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Leonid Zaslavsky and Tatiana Tatusova



Contents XXI

Systematic Analyses Reveal Regulatory Mechanisms of the Flexible
Tails on Beta-catenin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

Bi Zhao and Bin Xue

GRASPx: Efficient Homolog-Search of Short-Peptide Metagenome
Database Through Simultaneous Alignment and Assembly . . . . . . . . . . . . 442

Cuncong Zhong, Youngik Yang, and Shibu Yooseph

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445



© Springer International Publishing Switzerland 2015 
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 1–11, 2015. 
DOI: 10.1007/978-3-319-19048-8_1 

Deriving Protein Backbone Using Traces Extracted  
from Density Maps at Medium Resolutions  

Kamal Al Nasr(), and Jing He 

Department of Computer Science, Tennessee State University, Nashville, TN 37209, USA 
Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA 

kalnasr@tnstate.edu, jhe@cs.odu.edu 

Abstract. Electron cryomicroscopy is an experimental technique that is capable 
to produce three dimensional gray-scale images for protein molecules, called 
density maps. At medium resolution, the atomic details of the molecule cannot 
be visualized from density maps. However, some features of the molecule can 
be seen such as the locations of major secondary structures and the skeleton of 
the molecule. In addition, the order and direction of the detected secondary 
structure traces can be inferred. We introduce a method to construct the entire 
model of a protein directly for traces extracted from the density map. The initial 
results show that this method has good potential. A single model was built for 
each of the 12 proteins used in the test. The RMSD100 of the models is slightly 
improved from our previous method. 

Keywords: Cryo-EM · Volume image · Skeletonization · Protein modeling · 
Loop modeling 

1 Introduction 

Electron cryomicroscopy (cryo-EM) is an emerging technique that produces three-
dimensional (3D) electron density maps at a wide-range of resolutions [1-4]. When 
the resolution of density maps is higher than 4Å, the atomic structure can often be 
derived [5-9]. At the medium resolutions, such as 5-10Å, the backbone and the cha-
racteristic features of amino acids are not resolved. It is still challenging to derive the 
atomic structure from such a density map. When a component of the protein has 
atomic structure available, fitting can be performed to derive the atomic structure  
[10-12]. When a homologous model is available, rigid or flexible fitting can be used 
to derive the atomic structure [13-18]. However, it is still challenging to find a suita-
ble template for many proteins. De novo modeling is an alternative method to derive 
atomic structures without relying on template structures [19-24]. It relies on the detec-
tion of secondary structure positions and the connection patterns encoded in the skele-
ton of the density map. 

A number of computational methods have been developed to detect α-helices from 
the density maps [25-31]. Most helices longer than two turns can be detected. Most of 
the major β-sheets can also be detected using various methods such as SheetTracer, 
SSEhunter, SSELearner and SSETracer [29-32]. By analyzing the twist of β-sheet 
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density, the position of β-strands can be predicted [31]. A detected helix/β-strand 
(Fig. 1C) is represented by its central axial line, and the backbone of the helix needs 
to be built. In addition to α-helices and β-sheets that can be detected from the density 
map, skeleton can also be derived from the density map [33-36]. Skeleton (red wire in 
Figure 1) represents possible connection patterns among helices and β-strands (yellow 
and green in Figure 1 C and D).  

The de novo modeling combines information from the density map and the amino 
acid sequence of the protein to derive the topology of secondary structure traces [21, 
23, 37-39]. A topology maps the secondary structure traces from the density map to 
the amino acid sequence, and therefore determines how the protein chain thread 
through the traces. We previously showed that using a dynamic programming method 
combined with the K-shortest path algorithm, it takes Δ 2  time to rank the 
top K topologies using DP-TOSS [23, 38]. Here N is the number of secondary struc-
ture traces detected in the density map and M is the number of secondary structure 
sequence segments, and Δ 1.  

 

 

Fig. 1. De novo technique to construct a protein model. (A): Protein density map; (B): Skele-
ton; (C): Secondary structure  traces for helices (yellow), and β-strands (green); (D): Superpo-
sition of the skeleton and the secondary structure traces; (E): Superposition of secondary 
structures built and the skeleton; (F): The atomic structure. 
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This paper investigates the problem of constructing backbone of a protein when the 
topology of secondary structures is given. EM-fold uses Rosetta to construct the 
backbone [20, 21]. Pathwalking uses pseudo atoms derived from the density map and 
a constraint satisfaction solver to place Cα atoms [40]. Since the topology of second-
ary structures determines how the protein sequence thread through the secondary 
structure traces, our current approach aims to build the backbone directly from the 
traces and the topology information. We present a method that sequentially builds a 
backbone chain from the N-terminal to C-terminal though iterative fragment-based 
Cyclic Coordinate Descent (CCD) and Forward Backward CCD (FBCCD) method 
[41]. We previously proposed a fragment-based method to construct secondary struc-
ture pieces using and then connect them using loops [22]. We here report an extension 
of our previous method with improved capabilities.  The current method constructs a 
chain for proteins with both helices and β-sheets. Our previous method was only ap-
plied to proteins with helices only.  

2 Methods 

A skeleton is a compact shape representation of a 3D image. It contains possible con-
nection patterns, some of which are correct but most are wrong connections. A skele-
ton is processed in the topology determination process when the positions of second-
ary structures in 3D image are correlated with the sequence segments of the secondary 
structures. As a result, only those connections that satisfy the pattern in the amino 
acids sequence are selected. 
 

 

Fig. 2. Three kinds of traces in a topology. (A): Superposition of the secondary structures 
(α-helices yellow and β-strands in green) detected from the density map and the skeleton (red 
opache). (B): α-trace: yellow, β-traces: in green; loop-traces: in purple. 

The first step of the method is to initialize three types of traces: α-traces, β-traces, 
and loop/turn traces (Figure 2).The first two may be generated from secondary struc-
ture detection methods [30, 31], and the third one is from the topology determination. 
The second step is to construct the backbone using the three types of traces as a guide. 
The idea is to start building from an end and build one segment at a time until it 
reaches the other end. Depending on which type of trace it is going to use, the imple-
mentation details are slightly different, but the principle is the same. The process 

A B
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starts by determining the number of amino acids to be constructed for the next trace.  
A piece of chain with random conformations is constructed using the torsion angles 
from Ramachandran plot at one of the three regions α-helix, β-sheet, loop/turn. Let’s 
refer to the piece of backbone being constructed as a spline that will be forced even-
tually to align with the trace.  

 

 

Fig. 3. Examples of backbone fragments constructed. In the left panels, a spline of random 
conformation with moving points (black) to be aligned with  target points (red) on the trace. In 
the right panels, the spline is aligned with the trace after running FBCCD. (A) A short loop 
(2 amino acids) followed by a β-strand). The trace of the loop (if any) is added to the trace of 
the secondary structure. (B)  A strand. (C) A loop with no trace in the skeleton. (D) A loop 
with a trace. (E) A loop with a trace comprising only two points. 

Starting from the beginning of the trace, a point will be placed every 6Å except for 
the last two points near the end. 6Å distance corresponds approximately to four amino 
acids in a helix and two amino acids of a β-strand or a loop. Recall that an α-helix 
includes a rise of 1.5Å along the central axis and about 3Å for a β-sheet and a loop. 
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Similarly, same number of points is extracted from the spline with a random confor-
mation. The points are placed on the central axis (spline) of the conformation (Fig. 3). 
The alignment process starts aligning the spline with the trace from the second point 
using FBCCD [41]. 

Our approach aligns a line segment formed by two consecutive points of the spline 
with a corresponding line segment from the trace. The following process is iterated 
for the (n-2) segments, where n is the number of points to align. The amino acids 
corresponding to line segment (i-1) on the spline are used to align the line segment i. 
these are the amino acids immediately before the line segment i. To preserve the 
structural characteristics of secondary structures, torsions used are f ∈ [-80±, -40±] 
and y ∈ [-60±, -20±] for helices; f ∈ [-170±, -60±] and y ∈ [90±, 175±] for β-strands; 
and f ∈ [-170±, 170±] and y ∈ [-170±, 170±] for loops. The process terminates either 
when the cutoff Root Mean Square Distance (RMSD) distance between the target line 
segment and the spline segment is reached or the maximum number of cycles is 
reached. In our current implementation, the cutoff distance is 0.5Å and the maximum 
number of cycles is 200. If, after aligning (n-2) segments, the distance between the 
last point on the spline and the corresponding point on the trace is more than 1Å, 
FBCCD is applied only for these points. The amino acids involved in this process are 
the last half of the conformation fragment. This step is to assure that the end of the 
conformation fragment is close to the trace so the next fragment to be built is not 
misplaced from the trace. 

Optimization techniques for loop closure, like FBCCD, are known to have low 
success rate when work with short fragments. In general, the methods fail to close 
loops shorter than four amino acids [41-43]. To overcome this problem, short loops 
less than four amino acids are always built with its successive secondary structure as 
one fragment (Figure 3A). Their traces are combined into one trace and the method is 
applied as usual.  On other hand, due to the quality of the cryo-EM image and, there-
fore, the skeleton, the traces will be missed for some loops/turns. Our method will 
apply FBCCD with only one target point and one moving point. The target point will 
be the first point from the next secondary structure’s trace and the moving point will 
be the centroid of the last amino acid of the fragment being constructed (Figure 3C). 
Similarily, if the trace has only two points, the last point is the only point targeted by 
FBCCD (Figure 3E). 

3 Results 

We tested the current method using a data set consisting of five α-proteins, one  
β-protein, and six α-β proteins. An α-protein / β-protein contains only α-helices /  
β-sheets, and a α-β protein contains both helices and β-sheets. The native structures 
were downloaded from the PDB database. For each native structure, a density map 
was simulated to 8Å resolution (except 3FIN_R [44]) using EMAN [45]. The density 
map for 3FIN_R was extracted from cryo-EM density map thatwas downloaded from 
the Electron Microscopy Data Bank (EMDB ID: 5030) [46]. For the α-proteins, we 
applied SSETracer to detect the helices [30]. For the α/β proteins and β-proteins (ex-
cept 3FIN_R), the α-traces and β-traces were derived from the native structure by 
calculating the geometrical center of each three consecutive Cα atoms from the native 
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structure. To imitate the challenges with short helices and strands, we only derived 
traces for helices longer than six amino acids and for β-strands longer than four amino 
acids. DP-TOSS was applied to produce top K ranked topologies, among which the 
true topology was chosen for the construction of the backbone. For each protein, one 
model was built using our sequential method. The model was constructed starting 
from one end of the sequence and was built for one trace at a time till the end of the 
sequence. A trace can be an α-trace, a β-trace or a loop/turn trace that was derived 
from the skeleton. To build the backbone for each trace, a spline of random conforma-
tion was built and then aligned with the trace quickly using fragment-based CCD. We 
report the backbone RMSD100 for the model constructed for each protein in Table 1.  
The RMSD100 was calculated for each constructed model against the entire native 
structure except for the first loop before the first secondary structure or the last loop 
after the last secondary structure, if any.  

 

 

Fig. 4. Four constructed models. The constructed models (green) are superimposed with their 
native structures (purple) in (A) for 3FIN_R, in (B) for 1BZ4, in (C) for 1ICX, and in (D) for 
4OXW. The native structures are labeled with PDB ID. 

Figure 4 shows four models constructed using our method. As an example in 3FIN_R, 
a small protein with four helices and three β-strands, SSETracer detected all four helices 
from the density map . and produced four α-traces. The three β-traces were derived from 
the native structure by calculating the geometrical centers of consecutive Cα atoms. The 
model constructed for 3FIN_R has RMSD100 of 3.96Å for backbone atoms (Figure 4A 
and Table 1). Note that the current model has improved accuracy compared to our pre-
vious model that has RMSD100 of 5.98Å (row 3 of Table 3). A few practices might have 
contributed to the improved accuracy. The current method sequentially builds the back-
bone and the previous method first builds all secondary structures and then builds loops 
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to connect them. Previous method does not build β-strands. β-strands were built as loops. 
The current approach uses β-traces to construct β-strands using torsion angles of β-
strands. Current loop traces are derived from the skeleton extracted using newly devel-
oped skelEM method [36]. Previous skeleton was calculated using Gorgon [19]. We 
expect that the skeleton generated by skelEM has less gaps. In the case of 1ICX (Figure 
4C), the model built three of the six helices that are longer than six amino acids. For  
helices shorter than six amino acids and strands shorter than four amino acids long, the 
current method builds it as a loop. The constructed model has RMSD100 3.47Å. Our pre-
vious method builds the structure of proteins in two steps [22]. In the first step, it builds 
the conformations of helices based on their central axes extracted from cryo-EM images 
using SSETracer. In the second step, it connects the helices by building the conforma-
tions of the loops/turns using curve skeletons. In contrast, the current method constructs 
the backbone structure of the protein in the same order of its secondary structure  
elements.  

Current implementation of our method has encountered a number of challenges 
that negatively impact the accuracy of the constructed models and, therefore, the final 
RMSD100 values. The first challenge is modeling a loop/turn fragment when no trace 
was found on the skeleton or a trace found with only two points at the beginning and 
the end of the trace (Fig.  3C and D). If the loop has no trace, our method set the 
target point to be the first point on the trace of the next secondary structure. If the 
loop has a trace with only two points, the target point is set to be the one at the end of 
the trace that is close to the next secondary structure. Consequently, our method uses 
FBCCD to connect the loop with the trace of the next secondary structure using only 
one point. This results in a structure that is not guaranteed to be aligned with the na-
tive structure. The second challenge is the length of the traces for some turns. Gener-
ally, the skeleton trace of a turn is shorter than the actual length of the native loop. 
This is expected since the skeleton represents the dense points in the image and the 
dense points of a turn are often off the backbone. The third challenge is modeling the 
missing secondary structures (i.e., helices) as loops. If the trace of an α-helix is not 
detected from the map or if it is shorter than six amino acids as in current implemen-
tation, our method constructs it as a loop.  This is expected to increase the final 
RMSD100 due to the conformational differences between helices and loops. One poss-
ible method to overcome this challenge is to build a helix fragment if additional in-
formation suggests a possible small helix.  

The test involving 12 cases can be partitioned into two groups. The first group of 
proteins (row 1-5 in Table 1) was tested using two methods, the current sequential 
method and the previous piece-wise method. The accuracy is comparable between the 
two methods for the four α-proteins. The sequential method shows better accuracy for 
two larger proteins of the four cases and less accuracy for the two smaller proteins. As 
for the α-β protein 3FIN_R, the current method shows better accuracy, possibly due to 
the modeling of β-strands that was not available for the previous piece-wise method 
(see more detailed discussion in a previous paragraph). However, the sequential me-
thod builds only one conformation of the backbone directly from the traces. The pre-
vious piece-wise method builds many possible conformations, and the best conforma-
tion is listed in Table 1 (the 9th column). The second group of proteins  
(row 6-12) was tested using the sequential method. The RMSD100 for these α-β  
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proteins or the β-protein ranges from 3.30Å to 4.53Å. The α-traces and β-traces of 
these proteins were derived from the native structure and therefore are fairly accurate. 
The loop traces were derived from the skeleton of the 3D image and they face chal-
lenges from gaps and inaccuracy in some situations. Yet the backbone constructed 
using sequential method is around 4Å on average. This result shows the potential of 
the sequential method when the traces are fairly accurately derived.  

Table 1. The backbone accuracy of the constructed models 

No PDB IDa #AAb HlxSeqc StrSeqd HlxMape StrMapf RMSDg RMSD2012h 
1 1A7D 118 6 0 4 0 4.80 3.87 
2 1BZ4 144 5 0 5 0 4.30 3.34 

3 3FIN_R 117 4 3 4 3 3.96 5.98 
4 1HZ4 373 21 0 19 0 3.19 3.87 
5 3LTJ 201 16 0 12 0 3.32 4.07 
6 4OXW 119 5 3 3 3 4.21 N/A 
7 1YD0 96 5 4 3 3 4.01 N/A 
8 1OZ9 150 5 5 5 4 3.61 N/A 

9 1ICX 155 6 7 3 7 3.47 N/A 
10 2y4z 140 6 2 6 2 4.10 N/A 
11 4U3H 100 0 8 0 7 3.30 N/A 
12 4YOK 204 1 16 1 15 4.53 N/A 

a: Protein ID 
b: The number of amino acids in the protein. 

c: The number of actual helices in the protein. 
d: The number of actual strands in the protein. 

e: The number of helices detected from the density map. 
f: The number of strands detected from the density map. 

g: The backbone RMSD100 of the constructed model with the native structure. 
h: The backbone RMSD100 of the best model built from the previous study [22]. Pre-

vious method does not apply for proteins with β-sheets, indicated as N/A.  

4 Conclusions 

We present a method to sequentially construct the backbone from the traces detected 
from density maps. It uses the topology derived from DP-TOSS and the  α-traces, β-
traces of the secondary structures and loop traces derived from skeleton of the density 
map. The initial results show that this method has good potential. Judging from the 
single model built for each of the 12 proteins, the RMSD100 is slightly improved from 
our previous method [22]. The current method applies to proteins containing β-sheets, 
while the previous method applies to only α-proteins.  

Acknowledgements. The work in this paper is partially supported by NSF DBI-1356621. 
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Abstract. Gene mutations are responsible for a large proportion of ge-
netic diseases such as cancer. Hence, a number of computational methods
have been developed to find loci subject to frequent mutations in cancer
cells. Since normal cells turn into cancer cells through the accumulation
of gene mutations, the elucidation of interactive relationships among loci
has great potential to reveal the cause of cancer progression; however,
only a few methods have been proposed for measuring statistical signifi-
cance of pairs of loci that are co-mutated or exclusively mutated. In this
study, we proposed a novel statistical method to find such significantly
interactive pairs of loci by employing the framework of binary contin-
gency tables. Using Markov chain Monte Carlo procedure, the statistical
significance is evaluated by sampling null matrices whose marginal sums
are equal to those of the input matrix. We applied the proposed method
to mutation data of colon cancer patients and successfully obtained sig-
nificant pairs of loci.

Keywords: Cancer ·Gene mutation · Binary contingency tables ·Markov
chain Monte Carlo

1 Introduction

Gene mutations can change the normal function of proteins, leading to genetic
diseases such as cancer. For example, the mutation can result in loss of func-
tion that helps to repair damaged DNA. In cancer research, mutations observed
only in tumor cells have been intensively investigated, however, these mutations
are analyzed independently and combinations of mutations are not well stud-
ied. Since the accumulation of gene mutations causes cancer, it is important to
detect pairs of genes, which contribute to the accumulation interactively, e.g.,
genes with mutations that tend to occur together among a lot of samples. The
elucidation of these relationships allows us to identify how genes interact with
other genes. To achieve it, some studies[3,14,9] concerned the identification of
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the relationships between genes in cancer cells based on the fact that oncogenesis
is a process with multiple stages, in which normal cells transform into cancer
cells via multiple genetic mutations. However, almost these researches have not
measured the statistical significance of the relationships. Although Dees et al. [3]
considered statistical significance for identifying the relationships based on per-
mutation test-based method, they did not consider the varieties of the numbers
of the mutations in each of samples and genes.

Therefore, to provide an accurate statistical assessment, we propose a novel
method to measure the statistical significance of relationships between genes
using a statistical framework of binary contingency tables (BCTs), which are
defined as binary tables with fixed column and row sums. BCTs are utilized as
tables that are composed of entries with binary values indicating absence (0)
or presence (1) of mutations. In this study, we analyze the following two types
of gene relationships: co-mutated relationships, which represent pairs of genes
getting mutated together and exclusive relationships, which represent pairs of
genes including both a mutated gene and a gene without a mutation. Since the
numbers of mutations vary among samples and the numbers of mutated samples
vary among genes, we propose random sampling of BCTs keeping the sums of
mutations on each samples and genes using Markov chain Monte Carlo proce-
dure. By using gene mutation data as a BCT, the proposed method measures the
statistical significance of an observed state of each gene pair by the algorithm de-
veloped by Bezáková [1]. This algorithm samples random BCTs and non-BCTs
satisfying almost marginal sums of the original data and obtains p-values for
all combinations of gene pairs; however, an accurate statistical test cannot be
performed when sampling non-BCTs. In order to sample BCTs only, we further
proposed a novel algorithm, termed Perfect BCT(PBCT)-sampling, that sam-
ples BCTs under the restrictions of the number of mutations occurring on each
sample and gene, and measures the statistical significance of the relationships
between genes in the mutation data.

To show the effectiveness of the proposed method, we compared the perfor-
mance of our proposed method, the proposed method using BCT-sampling and
an existing method (Fisher’s exact test) through a simulation study. As a re-
sult, our method outperformed other methods and we confirmed the advantage
of using BCTs. Next, we analyzed gene mutation data downloaded from The
Broad Institute (http://gdac.broadinstitute.org/) using our proposed method
and obtained significantly co-mutated and exclusively mutated gene pairs. We
confirmed that the result of the analysis by our proposed method contains pairs
of genes, which have been thought as genes related to cancer.

2 Method

2.1 Binary Contingency Tables

BCTs are typically used to represent two exclusive events, such as “absence”
or “presence” by 0 and 1, respectively. We apply the framework of BCTs to a
m×n binary table B containing the presence of mutations for pairs of genes and

http://gdac.broadinstitute.org/
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samples in order to clarify the relationships between genes in cancer cells using
gene mutation data. In the table B, rows and columns respectively correspond to
genes and samples, and the entry at the ith row and jth column is set to 1 if the
ith gene of the jth sample is mutated, and 0 otherwise. From the framework of
BCTs, we analyze the two types of gene relationships, co-mutated relationships
and exclusive relationships.

2.2 BCT-Sampling

From the number of mutations that occur on each column and row, we measure
the statistical significance of gene pairs such as co-mutated gene pairs or gene
pairs with exclusive mutations. For statistical testing, we first build the null dis-
tribution by sampling null matrices, and then measure the statistical significance
in terms of the number of samples for each co-mutated gene pair or for gene pair
with exclusive mutations in the original binary table B. For sampling null matri-
ces, we adopted BCT-sampling proposed by Bezáková [1], which samples binary
tables keeping the given marginal sums. Let define perfect and near-perfect ta-
bles as tables satisfying completely the marginal sums of B and tables with one
row and one column sum decreased by 1, respectively. Starting from a perfect
table, the above method recursively samples a table from the previously sampled
table as follows:

1. Let (i, j) be a pair of indices for indicating the ith row and jth column of
a table or matrix. If the current m× n table T is a perfect table, randomly
select a pair of indices from {(i, j)|Ti,j = 1}, where Ti,j is the ith row and jth
column of T , and set Ti,j to 0. A near-perfect table with marginal sums of
rows r1, . . . , ri−1, . . . , rm and columns c1, . . . , cj−1, . . . , cn and a deficiency
at (i, j) is obtained.

2. If the current m×n table T is a near-perfect table with a deficiency at (i, j),
randomly select a pair of indices in {(i, j)}∩{(k, l)|Tk,l = 1}. If (k, l) = (i, j)
holds, then set Ti,j to 1 and a perfect table is obtained. Otherwise, select
one of the following two procedures randomly:
(a) If Tk,j = 0 holds, then set Tk,j to 1 and Tk,l to 0 (the deficiency moves

from (i, j) to (i, l)).
(b) If Ti,l = 0 holds, then set Ti,l to 1 and Tk,l to 0 (the deficiency moves

from (i, l) to (k, l)).

These sampled tables from the above steps contain both near-perfect and perfect
tables.

2.3 PBCT-Sampling

In order to keep precisely the condition of the original binary table B, we de-
veloped PBCT-sampling by extracting only perfect tables from all the samples
tables with BCT-sampling. Sampling different perfect tables enables us to cal-
culate precisely the frequencies of that gene pairs with the number of mutated
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samples, which happen together or exclusively, under the given conditions. We
design PBCT-sampling to check if a newly generated perfect table is different
from the previously sampled tables in order to obtain various different perfect
tables. Algorithm 1 shows the detail of PBCT-sampling.

Algorithm 1. PBCT-sampling

M : the number of perfect tables to be sampled
f : the function of sampling BCTs proposed by Bezáková
Xi: ith sampled binary table from f
X : a set of sampled binary tables
Set X = ∅
Set n = 1
Set count = 0
while count < M do

Xn = f(Xn−1)
if Xn is a Perfect Table and Xn �= Xcount then

Put Xn to X
count = count + 1

n = n + 1

2.4 Computation of p-value

For the pair of ith and jth genes in B, the test statistic for the detection of
co-mutated gene pairs is defined by

ns∑

k=1

Bik ×Bjk, (1)

and that for the exclusively mutated gene pairs is defined by

ns∑

k=1

I(k), I(k) =

{
1 if Bik +Bjk = 1

0 otherwise
, (2)

where ns is the number of samples. Here, we calculate p-value referring to the
way adopted by CDCOCA [10]. Let Tij be the test statistic for the ith and
jth gene pair in a sampled table, Oij be the test statistic for that in B, Cij

be the total number of the test statistics that satisfy Oij>Tij and M be the
total number of sampled matrices. The algorithm for the calculation of p-value
is shown in Algorithm 2.

3 Result

3.1 Simulation Study

In the simulation study, we compared our proposedmethod using PBCT-sampling
with the method using BCT-sampling and an alternative statistical method,
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Algorithm 2. Computation of p-value

M : the number of perfect tables to be sampled
ng : the number of genes
pij : p-value for gene pair, i and j
Set count = 0
Set C = 0
while count < M do

Sample binary tables X
for i < ng do

for j < ng do
calculate Tij for X
if Ti,j ≥ Oij then

Cij = Cij + 1
count = count + 1

pij = Cij/M

Fisher’s exact test [5,8]. The Fisher’s exact test in this context calculates the prob-
ability of obtaining the observed state under the given conditions as follows. Let
a be the number of samples without any mutations on both gene x and y, b be
the number of samples with mutations on only gene y and not on gene x, c be the
number of samples with mutations on only gene x and not on gene y and d be the
number of samples with mutations on both genes x and y. Then the probability
of occurring such event is calculated by

pxy =

(
a+b
a

)(
c+d
c

)
(

n
a+c

) , (3)

where n is the number of all samples, which means n is identical to the sum of
a, b, c and d. Table 3.1 shows the relationship between these letters and genes.

Table 3.1. The summary of the relationships between two genes, x and y. Fisher’s
exact test calculates the probability of obtaining the tables using a, b, c and d.

Gene y
Not mutated Mutated

Gene x
Not mutated a b
Mutated c d

We measure the performance of the methods by area under the precision recall
curve (AUC) [2]. The performance is shown by the AUC score, which is the space
under the curve plotted according to the precision and recall of p-values at each
threshold. Fig. 3.1 shows an example of obtained p-values and AUC on our
simulation study. The precision is defined as the ratio of the number of relevant
records retrieved to the total number of irrelevant and relevant records retrieved.
The recall is defined as the ratio of the number of relevant records retrieved to
the total number of relevant records.



BCT Method for Analyzing Gene Mutation in Cancer Genome 17

To apply the method toward two problems, i.e., co-mutated and exclusively
mutated problems, we assume that simulated data have two pairs of co-mutated
genes or exclusively mutated genes, as statistical significant gene pairs, respec-
tively. We also suppose that the numbers of mutations vary among samples and
genes. Then, we prepared simulation data as follows:

1. Generate a mutation rate for each column and row, ri and rj (0 < ri, rj < 1),
which controls how often mutations occur on entities.

2. Set the mutation rate for each entry ri,j = rirj based on the mutation rate
of columns and rows.

3. Set noise rate that regulates the amount of mutations in the simulated mu-
tation matrix. If the noise rate is 4, for example, we control the amount of
entries with mutations to be approximately 40% of all entries. The rate is
from 0 to 10.

4. Insert two pairs that have interactive relationships, which are co-mutated
or exclusively mutated gene pairs, and are named as true mutation pairs.
We define the number of co-mutated and exclusively mutated samples as
“signal”. In the co-mutated problem, when the signal is 4, two true mutation
pairs have four samples, where mutations happen in both of paired genes. In
the exclusively mutated problems, when the signal is 4, two true mutation
pairs have four samples, where mutations happen in either of paired genes.
For each true pair, we choose these samples at random.

Figs. 3.2(a)-3.2(c) show background data, simulated data with two true co-
mutated pairs and simulated data with two true exclusively mutated pairs, re-
spectively. We had a simulation using data, which is composed of 50 samples
and 50 genes, and several kinds of signal and noise.

Fig. 3.3 shows the result of the co-mutated problem. Consequently, BCT-
sampling has a higher AUC score than other methods in case of small noise
and large signal; however, PBCT-sampling demonstrates stably superior perfor-
mance in any parameter compared to other two methods. We also confirmed the
advantage on employing the BCT framework to the exclusively mutated prob-
lem as concluded in Table 3.4. The result shows that our proposed method has
higher AUC scores than other methods and detects true mutation pairs on both
co-mutated and exclusively mutated problems.

We can consider that the simulation results of our proposed method are better
than others because it takes the number of mutations on each gene and sam-
ple of the mutation data into account. In contrast, Fisher’s exact test utilizes
only the number of mutations happening on each gene. Also, we can see that
PBCT-sampling had better performance compared with BCT-sampling since
PBCT-sampling keeps completely the marginal sums and it utilizes more accu-
rate conditions of the original mutation data.
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Fig. 3.1. The example for the calculation of AUC. We use a dataset of twenty simulated
data to measure the performance of methods. Fig. 3.1(a) plots the number of obtained
p-values through a simulation, and the red and blue bars are the number of p-values
for gene pairs with true mutations and other gene pairs, respectively. Blue area on
Fig. 3.1(b), which consists precision and recall axes, shows AUC of data plotted on
Fig. 3.1(a).
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Fig. 3.2. A left figure shows background data with 20% noise and no signal. Figs. 3.2(b)
and 3.2(c) are simulated data containing two true co-mutated and exclusively pairs,
respectively. Black in the figure represents a gene mutation. These data are 50 × 50
size matrices, whose vertical and horizontal axes are genes and samples, respectively.
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Fig. 3.3. The simulation results on 50 × 50 size matrices with two true co-mutated
pairs. Shown values are AUC scores, and methods with high scores are thought to have
high performance of assessing the relationships between genes. We tested Fisher’s exact
test, BCT-sampling and PBCT-sampling with several kinds of signal and noise.

Fig. 3.4. The simulation results on 50×50 size matrices with two true exclusively mu-
tated pairs. Shown values are AUC scores, and methods with high scores are thought to
have high performance of assessing the relationships between genes. We tested Fisher’s
exact test, BCT-sampling and PBCT-sampling with several kinds of signal and noise.

Table 3.2. Statistically significant co-mutated gene pairs obtained by PBCT-sampling

Gene Gene p-value q-value

PKHD1L1 RFC1 6.6 × 10−9 4.5× 10−6

LAMA3 DOCK10 6.6 × 10−9 4.5× 10−6

EPB41L3 DOCK5 6.6 × 10−9 4.5× 10−6

EPB41L3 TRPM2 6.6 × 10−9 4.5× 10−6

EPB41L3 SLIT1 6.6 × 10−9 4.5× 10−6

ADAM7 DNAH1 6.6 × 10−9 4.5× 10−6

ADAM7 CACNA1C 6.6 × 10−9 4.5× 10−6

ADAM7 CATSPERB 6.6 × 10−9 4.5× 10−6

3.2 Real Data Experiment

We used binary gene mutation data of colorectal adenocarcinoma, which is down-
loaded from The Broad Institute. We sorted 631 samples according to the number
of mutations and retrieved top 155 samples. The data contains 699 genes and
155 samples, whose rows and columns correspond to genes and samples, respec-
tively. We analyzed the data with PBCT-sampling to identify statistically sig-
nificant gene pairs. Consequently, we obtained eight co-mutated gene pairs with
10,000,000 samplings as concluded in Tables 3.2. For the exclusively mutated
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Table 3.3. Statistically significant exclusively mutated gene pairs obtained by PBCT-
sampling

Gene Gene p-value q-value

TP53 XIRP2 5.0× 10−8 3.3× 10−6

BRAF DSCAM 5.0× 10−8 3.3× 10−6

ACVR1B POSTN 5.0× 10−9 3.3× 10−6

SPHKAP VAV1 5.0× 10−9 3.3× 10−6

TEX15 VAV1 5.0× 10−9 3.3× 10−6

LAMA3 CELSR1 5.0× 10−9 3.3× 10−6

KCNQ3 EPB41L3 5.0× 10−9 3.3× 10−6

SEMA4D VAV1 5.0× 10−9 3.3× 10−6

PTPRT VAV1 5.0× 10−9 3.3× 10−6

DOCK5 DSCAM 5.0× 10−9 3.3× 10−6

TMEM132B VAV1 5.0× 10−9 3.3× 10−6

PXDNL DSCAM 5.0× 10−9 3.3× 10−6

problem, we sampled 2,000,000 BCTs and obtained twelve gene pairs, which are
listed as significant exclusively mutated pairs shown in Table 3.3. These results
of both kinds, co-mutated and exclusively mutated gene pairs, show that gene
pairs of each kind have extremely small and the same p-value and q-value [13].
This is because there was no sampled BCT with greater test statistics than those
of the original mutation data at the significant gene pairs.

In the obtained results, we focus on one of significant co-mutated pairs,
LAMA3 and DOCK10, as illustrated in Fig. 3.5. The figure shows the frequencies
that mutations appear on each gene and sample. We can observe that DOCK10
and LAMA3 have twelve and eight mutations, respectively, and the pair has 7
co-mutated samples. Some of them are recurrently mutated, but others are not
likely to be mutated. Our proposed method utilizes these frequencies of muta-
tions on each sample and gene, and detects gene pairs with co-mutated samples
including infrequently mutated sample, such as LAMA3 and DOCK10.

In addition, Fig. 3.6 shows the frequencies and locations of mutations on
gene-pair, TEX15 and VAV1, which is obtained as the statistically significant
and exclusively mutated gene pair. We can confirm that their mutations happens
in mutually exclusive way.

LAMA3 [12] and DOCK10 [6], which are obtained as a co-mutated gene pair,
are considered to be involved in tumor cell invasion and progression. Addition-
ally, among exclusively mutated gene pairs listed on Table 3.3, TP53 is widely
know as tumor suppressor gene and XIRP2 was suggested as a potential driver
gene in melanoma [7]. VAV1 [4] and TEX15 [11] are also identified as the can-
didates of genes related to cancer. VAV1 has been thought as a gene, which is
associated with decreased survival and contributes to the tumorigenic properties
of pancreatic cancer cells. Also, TEX15 was observed in a significant fraction of
tumor samples different histological types.
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4 Conclusion and Discussion

There exist many studies focusing on mutation genes and they play a key role
in the field of cancer research. In this study, we aimed to elucidate the relation-
ships of gene pairs using binary mutation data. The developed method, PBCT-
sampling, enables us to utilize the frequencies that mutations occur on each
gene and sample of the mutation data and assess the statistical significance of
relationships between genes.

Through the simulation study, we prepared two synthetic data representing
co-mutated and exclusively mutated problems and demonstrated that PBCT-
sampling outperformed BCT-sampling and Fisher’s exact test, which is with-
out the BCTs framework. These results indicated that the BCT framework is
reasonable for assessing the statistical significance of gene mutation data and
PBCT-sampling, which uses only BCTs, is capable of performing more accu-
rate assessment and has superior performance compared to BCT-sampling using
both of BCTs and non-BCTs, and also with Fisher’s exact test. Therefore, we
confirmed the advantage of the BCT-framework, which allows us to sample bi-
nary tables keeping the the varieties of the marginal sums of the mutation data.
Furthermore, the analysis of real data with PBCT-sampling showed the statisti-
cally significant co-mutated and exclusively mutated gene pairs. Since they have
been indicated as cancer related genes, the performance of detecting significant
pairs may be suggested. In these gene pairs, we confirmed that some of obtained
gene pairs as exclusively mutated gene pairs comprise of tumor suppressor gene
and driver gene and some of obtained gene pairs as co-mutated gene pairs are
the combination of genes, which contribute to the progression of cancer.

In this study, we focused on the detection of interactive gene pairs but we
further expect that our proposed method can be applied to the problem of
detecting more than three genes with interactive relationships. Also, since the
BCT framework is practical for the detection of relationships in binary data, we
consider that we can analyze other binary data, such as copy number data, with
PBCT-sampling.
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Abstract. This paper deals with the Approximate Circular Pattern
Matching (ACPM) problem, which appears as an interesting problem
in many biological contexts. Here the goal is to find all approximate oc-
currences of the rotations of a pattern P of length m in a text T of
length n. In this article, we present a filter-based approach to solve the
problem. We experimentally compare our approach with the state of the
art algorithms in the literature and the results are found to be excellent.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P of length m in a text T of length n, both being sequences of characters
drawn from a finite character set Σ. This problem is interesting as a fundamental
computer science problem and is a basic requirement of many practical appli-
cations. However in most practical applications it is some sort of approximate
version of the classic patterning matching problem that is of more interest.

The circular pattern, denoted C(P), corresponding to a given pattern P =
P1 . . .Pm, is formed by connecting P1 with Pm and forming a sort of a cycle;
this gives us the notion where the same circular pattern can be seen asm different
linear patterns, which would all be considered equivalent. In the Circular Pattern
Matching (CPM) problem, we are interested in pattern matching between the
text T and the circular pattern C(P) of a given pattern P . We can view C(P)
as a set of m patterns starting at positions j ∈ [1 : m] and wrapping around the
end. In other words, in CPM, we search for all ‘conjugates’1 of a given pattern
in a given text.
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1.1 Applications and Motivations

Along with being interesting from the pure combinatorial point view, CPM has
applications in areas like, geometry, astronomy, computational biology etc. This
type of circular patterns occur in the DNA of viruses [7,18], bacteria [17], eukary-
otic cells [14], and archaea [3]. As a result, as has been noted in [10], algorithms
on circular strings seem to be important in the analysis of organisms with such
structures. Circular strings have also been studied in the context of sequence
alignment. In [16], basic algorithms for pair wise and multiple circular sequence
alignment have been presented. These results have later been improved in [8],
where an additional preprocessing stage is added to speed up the execution time
of the algorithm. In [12], the authors also have presented efficient algorithms
for finding the optimal alignment and consensus sequence of circular sequences
under the Hamming distance metric. For further details on the motivation and
applications of this problem in computational biology and other areas the readers
are kindly referred to [3, 7, 8, 10, 12, 14, 16–18] and references therein.

In this paper we focus on the Approximate Circular Pattern Matching (ACPM)
problem. As has been mentioned above, the DNA sequence of many viruses has
a circular structure. So if a biologist wishes to find occurrences of a particular
virus in a carrier’s (linear) DNA sequence, (s)he must locate all positions in T
where at least one rotation of P occurs. This motivates one to study CPM. How-
ever, from practical consideration, the biologists are more interested in locating
the approximate occurrences of one of the rotations of P in T . This is why in
this paper we are interested to solve ACPM i.e., the approximate version of the
problem.

1.2 Our Contribution

The main contribution of this paper is a fast and efficient algorithm for the
approximate circular pattern matching problem based on some filtering tech-
niques. The main idea behind our approach is quite simple and intuitive. We
employ a number of simple and effective filters to preprocess the given pattern
and the text. After this preprocessing, we get a text of reduced length on which
we can apply any existing state of the art algorithms to get the occurrences of
the circular pattern.

1.3 Road Map

The rest of the paper is organized as follows. Section 2 gives a preliminary de-
scription of some terminologies and concepts related to stringology that will be
used throughout this paper. Section 3 presents a brief literature review. In Sec-
tion 4 we describe our filtering algorithms. Section 5 presents the experimental
results. Section 6 draws conclusion mentioning some future research directions.
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2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, that
is, |ε| = 0. Let Σ+ = Σ∗− {ε}. For a string w = xyz, x, y and z are called a
prefix, factor (or equivalently, substring), and suffix of w, respectively. The i-th
character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the factor of a
string w that begins at position i and ends at position j is denoted by w[i : j]
for 1 ≤ i ≤ j ≤ |w|. For convenience, we assume w[i : j] = ε if j < i. A k-factor
is a factor of length k.

A circular string of length m can be viewed as a traditional linear string which
has the left-most and right-most symbols wrapped around and stuck together in
some way. Under this notion, the same circular string can be seen as m different
linear strings, which would all be considered equivalent. Given a string P of
length m, we denote by P i = P [i : m]P [1 : i − 1], 0 < i < m, the i-th rotation
of P and P0 = P .

Example 1. Suppose we have a pattern P = atcgatg. The pattern P has the
following rotations (i.e., conjugates): P1 = tcgatga,P2 = cgatgat,P3 = gatgatc,
P4 = atgatcg,P5 = tgatcga,P6 = gatcgat.

The Hamming distance between strings P and T , both of length n, is the
number of positions i, 0 ≤ i < n, such that P [i] �= T [i]. Given a non-negative
integer k, we write P ≡k T or equivalently say that P k-matches T , if the
Hamming distance between P and T is at most k. In biology, the Hamming
distance is popularly referred to as the Mutation distance. A little mutation
could be considered and in fact anticipated while finding the occurrences of a
particular (circular) virus in a carrier’s DNA sequence. This scenario in fact
refers to approximate circular pattern matching (ACPM). If, k = 0, then we get
the exact CPM, i.e., mutations are not considered. Note carefully that in this
setting, ACPM also returns all the occurrences returned by CPM; it computes
the occurrences allowing up to k mismatches/mutations.

We consider the DNA alphabet, i.e., Σ = {a, c, g, t}. In our approach, each
character of the alphabet is associated to a numeric value as follows. Each
character is assigned a unique numbers from the range [1...|Σ|]. Although this
is not essential, we conveniently assign the numbers from the range [1...|Σ|]
to the characters of Σ following their inherent lexicographical order. We use
num(x), x ∈ Σ to denote the numeric value of the character x. So, we have
num(a) = 1, num(c) = 2, num(g) = 3 and num(t) = 4,. For a string S, we
use the notation SN to denote the numeric representation of the string S; and
SN [i] denotes the numeric value of the character S[i]. So, if S[i] = g then
SN [i] = num(g) = 3. The concept of circular string and their rotations also
apply naturally on their numeric representations as is illustrated in Example 2
below.

Example 2. Suppose we have a pattern P = atcgatg. The numeric representation
ofP isPN = 1423143.And this numeric representation has the following rotations:
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P1
N = 4231431, P2

N = 2314314, P3
N = 3143142, P4

N = 1431423, P5
N = 4314231,

P6
N = 3142314.

The problem we handle in this article can be formally defined as follows.

Problem 1. (Approximate Circular Pattern Matching with k-mismatches (i.e
mutations) (ACPM)). Given a pattern P of length m, a text T of length n > m,
and an integer threshold k < m, find all factors F of T such that F ≡k P i for
some 0 ≤ i < m. And when we have a factor F = T [j : j + |F| − 1] such that
F ≡k P i we say that the circular pattern C(P) k-matches T at position j. We
also say that this k-match is due to P i, i.e., the ith rotation of P .

In the context of our filter based algorithm the concept of false positives and
negatives is important. So, we briefly discuss this concept here. Suppose we have
an algorithm A to solve a problem B. Now suppose that Strue represents the set
of true solutions for the problem B. Further suppose that A computes the set
SA as the set of solutions for B. Now assume that Strue �= SA. Then, the set of
false positives can be computed as follows: SA \ Strue. In other words, the set
computed by A contains some solutions that are not true solutions for problem
B. And these are the false positives, because, SA falsely marked these as solutions
(i.e., positive). On the other hand, the set of false negatives can be computed as
follows: Strue \ SA. In other words, false negatives are those members in Strue

that are absent in SA. These are false negatives because SA falsely marked these
as non-solutions (i.e., negative).

3 Brief Literature Review

The problem of circular pattern matching has been considered in [15], where an
O(n)-time algorithm is presented. A naive solution with quadratic complexity
consists in applying a classical algorithm for searching a finite set of strings
after having built the trie of rotations of P . The approach presented in [15]
consists in preprocessing P by constructing a suffix automaton of the string
PP, by noting that every rotation of P is a factor of PP. Then, by feeding
T into the automaton, the lengths of the longest factors of PP occurring in
T can be found by the links followed in the automaton in time O(n). In [9],
the authors have presented an optimal average-case algorithm for CPM, by also
showing that the average-case lower bound for the (linear) pattern matching of
O(n logσ m/m) also holds for CPM, where σ = |Σ|. Recently, in [6], the authors
have presented two fast average-case algorithms based on word-level parallelism.
Very recently, we have presented a filter-based approach to solve the problem
in [4]. Our approach in [4] turns out to be highly effective. In fact, as will be clear
shortly, in this paper, we extend our approach in [4] to solve the approximate
version of the problem.

The approximate version of the problem has also received attention in the
literature very recently [5]. In [5], Barton et al. have first presented an efficient
algorithm for CPM that runs in O(n) time on average. Based on the above, they
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have also devised fast average-case algorithms (ACSMF-Simple) for approxi-
mate circular string matching with k-mismatches. They have built a library for
ACSMF-Simple algorithm. The library is freely available [1]. Notably, indexing
circular patterns [11] and variations of approximate circular pattern matching
under the edit distance model [13] have also been considered in the literature.

4 Filtering Algorithm

As has been mentioned above, our algorithm is based on some filtering tech-
niques. Suppose we are given a pattern P and a text T . We will frequently and
conveniently use the expression “C(P) k-matches T at position i” (or equiv-
alently, “P circularly k-matches T at position i”) to indicate that one of the
conjugates of P k-matches T at position i (or equivalently, C(P) ≡k T ). We
start with an brief overview of our approach below.

4.1 Overview of Our Approach

Our approach follows our recent work in [4] where we have used a number of
filters to solve the exact circular pattern matching problem. In particular we will
extend the ideas of [4] and adapt the filters presented there so that those filters
become useful and effective for the approximate version as well. We employ a
number of filters to compute a set N of indexes of T such that C(P) k-matches
T at position i ∈ N in such a way that there are no false negatives.

4.2 Our Filters

We employ a total of 4 filters. The key to our observations and the resulting filters
is the fact that each function we devise results in a unique output when applied to
the rotations of a circular string. For example, consider a hypothetical function
X . We will always have the relation that X (P) = X (P i) for all 1 ≤ i < n. Recall
that, P0 actually denotes P . For the sake of conciseness, for such functions,
we will abuse the notation a bit and use X (C(P)) to represent X (P i) for all
0 ≤ i < |P|.

Filter 1. We define the function sum on a string P of length m as follows:
sum(P) =

∑m
i=1 PN [i]. Our first filter, Filter 1, is based on this sum function.

We have the following observation.

Observation 1. Consider a circular string P and a linear string T both having
length n. If C(P) ≡k T , where 0 ≤ k < n, then we must have

sum(T )− k × 4 + k × 1 ≤ sum(C(P)) ≤ sum(T ) + k × 4− k × 1.
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Example 3. Consider P = atcgatg. We can easily calculate that sum(C(P)) =
18. Now, consider T 1 = aacgatg, slightly different from P , i.e, P [2] = t �=
T 1[2] = a. As can be easily verified, here P ≡1 T 1. According to Observation 1,
in this case the lower (upper) bound is 15 (18). Indeed, we have T 1N = 1123143
and sum(T 1) = 15, which is within the bounds. Now consider T 2 = ttcgatg,
slightly different from P , i.e, P [1] = a �= T 2[1] = t. As can be easily verified, here
P ≡1 T 2. Therefore, in this case as well, the lower and upper bound mentioned
above hold. And indeed we have T 2N = 4423143 and sum(T 2) = 21, which
is within the bounds. Finally, consider another string T ′ = atagctg. It can be
easily verified that C(P) �≡1 T ′. Again, the previous bounds hold in this case
and we find that T ′

N = 1413243 and sum(T ′) = 18. Clearly this is within the
bounds of Observation 1 and in fact it is exactly equal to sum(C(P)). This is an
example of a false positive with respect to Filter 1.

Filters 2 and 3. Our second and third filters, i.e., Filters 2 and 3, depend on
a notion of distance between consecutive characters of a string. The distance
between two consecutive characters of a string P of length m is defined by
distance(P [i],P [i + 1]) = PN [i] − PN [i + 1], where 1 ≤ i ≤ m − 1. We define

total distance(P ) =
∑m−1

i=1 distance(P [i],P [i+ 1]). We also define an absolute

version of it: abs total distance(P ) =
∑m−1

i=1 abs(distance(P [i],P [i+ 1])), where
abs(x) returns the magnitude of x ignoring the sign. Before we apply these two
functions on our strings to get our filters, we need to do a simple pre-processing
on the respective string, i.e., P in this case as follows. We extend the string P
by concatenating the first character of P at its end. We use ext(P) to denote
the resultant string. So, we have ext(P) = PP [1]. Since, ext(P) can simply
be treated as another string, we can easily extend the notation and concept of
C(P) over ext(P) and we continue to abuse the notation a bit for the sake of
conciseness as mentioned at the beginning of Section 4.2 (just before Section 4.2).

Now we have the following observation which is the basis of our Filter 2.

Observation 2. Consider a circular string P and a linear string T both having
length n and assume that A = ext(P) and B = ext(T ). If C(P) ≡k T , where
0 ≤ k < n, then we must have

abs total distance(B)− k × 4 + k × 1 ≤ abs total distance(C(A))

≤ abs total distance(B) + k × 4− k × 1.

Example 4. Consider the same strings of Example 3, i.e., P = atcgatg, T 1 =
aacgatg and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2.
Now consider the extended strings and assume that A = ext(P), B1 = ext(T 1)
and B2 = ext(T 2). It can be easily verified that abs total distance(C(A)) is 14.
Recall that T 1 is slightly different from P , i.e, P [2] = t �= T 1[2] = a. Now we
have T 1N = 1123143. Hence B1N = 11231431. Hence, abs total distance(B1) =
10 which is indeed within the bounds of Observation 2. Now consider T 2, which
is slightly different from P , i.e, P [1] = a �= T 2[1] = t. Now we have T 2N =



30 M.A. Rahman Azim et al.

4423143. Hence B2N = 44231434. Hence, abs total distance(B2) = 10, which is
also within the bounds. Finally, consider T ′ = atagctg, which is again slightly
different from P . It can be easily verified that C(P) �≡1 T ′. However, assuming
that B′ = ext(T ′) we find that abs total distance(B′) is still 14, which is in the
range of Observation 2. This is an example of a false positive with respect to
Filter 2.

Now we present the following related observation which is the basis of our
Filter 3. Note that Observation 2 differs with Observation 3 only through using
the absolute version of the function used in the latter.

Observation 3. Consider a circular string P and a linear string T both having
length n and assume that A = ext(P) and B = ext(T ). If C(P) ≡k T , where
0 ≤ k < n, then we must have

total distance(B)− k × 4 + k × 1 ≤ total distance(C(A))

≤ total distance(B) + k × 4− k × 1.

Example 5. Consider the same strings of Example 3, i.e., P = atcgatg, T 1 =
aacgatg and T 2 = ttcgatg. As can be easily verified, here P ≡1 T 1 and P ≡1 T 2.
Now consider the extended strings and assume that A = ext(P), B1 = ext(T 1)
and B2 = ext(T 2). It can be easily verified that abs total distance(C(A)) is 14.
Recall that T 1 is slightly different from P , i.e, P [2] = t �= T 1[2] = a. Now we
have T 1N = 1123143. Hence B1N = 11231431. Hence, total distance(B1) = 0
which is indeed within the bounds of Observation 2. Now consider T 2, which
is slightly different from P , i.e, P [1] = a �= T 2[1] = t. Now we have T 2N =
4423143. Hence B2N = 44231434. Hence, total distance(B2) = 10, which is
also within the bounds. Finally, consider T ′ = atagctg, which is again slightly
different from P . It can be easily verified that C(P) �≡1 T ′. However, assuming
that B′ = ext(T ′) we find that total distance(B′) is still 0, which is in the range
of Observation 2. This is an example of a false positive with respect to Filter 3.

Filter 4. Filter 4 uses the sum() function used by Filter 1, albeit, in a slightly
different way. In particular, it applies the sum() function on individual charac-
ters. So, for x ∈ Σ we define sumx(P) =

∑
1≤i≤|P|,P[i]=x PN [i]. Now we have

the following observation.

Observation 4. Consider a circular string P and a linear string T both having
length n. If C(P) ≡k T , where 0 ≤ k < n, then we must have

sumx(T )− k × num(x) ≤ sumx(C(P)) ≤ sumx(T ) + k × num(x)

for all x ∈ Σ.
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Algorithm 1. Approximate Circular Pattern Signature using Observations 1 : 4
in a single pass

1: procedure ACPS FT (P [1 : m])
2: define three variables for observations 1, 2, 3
3: define an array of size 4 for observation 4
4: define an array of size 4 to keep fixed value of A, C, G, T
5: s ← P [1 : m]P [1]
6: initialize all defined variables to zero
7: initialize fixed array to {1, 2, 3, 4}
8: for i ← 1 to |s| do
9: if i �= |s| then
10: calculate different filtering values via observations 1 & 4 and make a

running sum
11: end if
12: calculate different filtering values via observations 2, 3 and make a running

sum
13: end for
14: return all observations values
15: end procedure

4.3 Reduction of Search Space in the Text

Now we present an O(n) runtime algorithm to reduce the search space of the
text applying the four filters presented above. It takes as input the pattern
P [1 : m] of length m and the text T [1 : n] of length n. It calls Procedure
ACPS FT with P [1 : m] as parameter and uses the output. It then applies
the same technique that is applied in Procedure ACPS FT (Algorithm 1). We
apply a sliding window approach with window length of m and calculate the
values applying the functions according to Observations 1 : 4 on the factor
of T captured by the window. Note that for Observations 2, and 3, we need
to consider the extended string and hence the factor of T within the window
need be extended accordingly for calculating the values. After we calculate the
values for a factor of T , we check it against the returned values of Procedure
ACPS FT . If it matches, then we output the factor to a file. Note that in
case of overlapping factors (e.g., when the consecutive windows need to output
the factors to a file), Procedure ACPS FT outputs only the non-overlapped
characters. And Procedure ACPS FT uses a $ marker to mark the boundaries
of non-consecutive factors, where $ /∈ Σ.

Now note that we can compute the values of consecutive factors of T using
the sliding window approach quite efficiently as follows. For the first factor,
i.e., T [1..m] we exactly follow the strategy of Procedure ACPS FT . When it
is done, we slide the window by one character and we only need to remove
the contribution of the left most character of the previous window and add the
contribution of the rightmost character of the new window. The functions are
such that this can be done very easily using simple constant time operations.
The only other issue that needs be taken care of is due to the use of the extended
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Algorithm 2. Reduction of Search Space in a Text String using procedure
ACPS FT
1: procedure RSS FT (T [1 : n], P [1 : m])
2: call ACPS FT(P [1 : m])
3: save the return value of observations 1 : 4 for further use here
4: define an array of size 4 to keep fixed value of A, C, G, T
5: initialize fixed array to {1, 2, 3, 4}
6: lastIndex ← 1
7: for i ← 1 to m do
8: calculate different filtering values in T [1 : m] via observations 1 : 4 and

make a running sum
9: end for
10: if 1 : 4 observations values of P [1 : m] vs 1 : 4 observations values of T [1 : m]

have a match then
11: � Found a filtered match
12: Output to file T [1 : m]
13: lastIndex ← m
14: end if
15: for i ← 1 to n−m do
16: calculate different filtering values in T [1 : m] via observations 1 : 4 by

subtracting i-th value along with wrapped value and adding i + m-th value and
new wrapped vale to the running sum

17: if 1 : 4 filtering values of P [1 : m] vs 1 : 4 filtering values of T [i+ 1 : i+m]
have a match then

18: � Found a filtered match
19: if i > lastIndex then
20: Output an end marker $ to file
21: end if
22: if i+m > lastIndex then
23: if i < lastIndex then
24: j ← lastIndex+ 1
25: else
26: j ← i+ 1
27: end if
28: Output to file T [j : i+m]
29: lastIndex ← i+m
30: end if
31: end if
32: end for
33: end procedure

string in two of the filters. But this too do not need more than simple constant
time operations. Therefore, overall runtime of the algorithm is O(m) + O(n −
m) = O(n). The algorithm is presented in the form of Procedure RSS FT
(Algorithm 2).
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Table 1. Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple
[5] and our algorithm considering the first three filters only for a text of size 299MB

k=2 k=3 k=4 k=5

m
Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

500 9.079 9.932 1 8.664 9.885 1 10.45 17.986 1 10.821 20.124 1

700 9.994 22.798 0 10.211 23.059 0 10.604 38.117 0 10.031 25.686 0

900 8.87 59.881 0 8.781 61.15 0 8.778 59.747 0 10.621 98.298 0

1000 9.949 32.957 0 11.214 31.264 0 10.814 50.094 0 10.849 55.664 0

1600 9.218 17.648 1 8.309 15.143 1 9.724 25.51 0 11.905 25.855 0

1800 10.889 94.992 0 11.794 92.022 0 13.708 100.813 0 14.149 135.089 0

2000 9.89 33.822 0 11.585 31.419 0 11.625 49.459 0 13.156 50.133 0

2200 10.42 4.717 2 12.689 5.983 2 13.804 7.299 2 13.974 7.76 2

2400 10.906 70.06 0 12.573 68.952 0 10.36 74.988 0 12.655 105.017 0

2600 9.928 9.31 1 8.279 8.563 1 14.268 15.141 1 13.77 15.326 1

2800 9.11 5.219 2 12.163 5.298 2 13.242 7.255 2 11.368 5.372 2

3000 8.826 8.321 1 11.466 9.058 1 10.534 9.767 1 13.535 13.286 1

Table 2. Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple
[5] and our algorithm considering all the four filters for a text of size 299MB

k=2 k=3 k=4 k=5

m
Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

Elapsed
Time(s)
of

Elapsed
Time(s)
of

Speed
up

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

ACSMF-
simple

Our Al-
gorithm

500 9.18 2.681 3 8.701 2.77 3 8.701 2.77 3 10.997 3.541 3

700 9.698 2.658 4 10.032 2.97 3 10.032 2.97 3 10.19 3.481 3

900 8.506 2.86 3 9.092 3.27 3 9.092 3.27 3 10.758 5.374 2

1000 9.108 2.878 3 11.506 3.061 4 11.506 3.061 4 10.912 4.414 2

1600 9.162 2.589 4 8.479 2.707 3 8.479 2.707 3 12.516 3.362 4

1800 12.404 2.876 4 11.829 2.897 4 11.829 2.897 4 14.867 3.767 4

2000 11.209 2.769 4 11.535 2.842 4 11.535 2.842 4 13.063 3.485 4

2200 11.189 2.495 4 12.425 2.481 5 12.425 2.481 5 13.856 2.643 5

2400 12.555 2.794 4 12.503 2.777 5 12.503 2.777 5 12.812 3.365 4

2600 9.912 2.501 4 8.51 2.5 3 8.51 2.5 3 13.546 2.609 5

2750 13.307 2.51 5 11.572 2.507 5 11.572 2.507 5 15.158 2.518 6

2800 9.368 2.487 4 12.086 2.472 5 12.086 2.472 5 11.234 2.548 4

2900 11.137 2.667 4 12.318 2.531 5 12.318 2.531 5 13.588 2.475 5

3000 10.008 2.584 4 11.71 2.53 5 11.71 2.53 5 13.809 2.72 5

4.4 The Combined Algorithm

We have already described the two main components of our algorithm, namely,
Procedure ACPS FT and Procedure RSS FT , which in fact calls the former.
Now Procedure RSS FT provides a reduced text T ′ (say) after filtering. At this
point we can use any algorithm that can solve ACPM and apply it over T ′ and
output the occurrences. Now, suppose we use Algorithm A at this stage which
runs in O(f(|T ′|)) time. Then, clearly, the overall running time of our approach
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is O(n) +O(f(|T ′|)). In our implementation we have used the recent algorithm
of [5]. In particular, in [5], the authors have presented an approximate circular
string matching algorithm with k-mismatches (ACSMF-Simple) via filtering.
They have built a library for ACSMF-Simple algorithm. The library is freely
available and can be found here: [1]. We only apply ACSMF-Simple on the
reduced string.

5 Experimental Results

We have implemented our algorithm and conducted experiments in C++ using
a GNU compiler with General Public License (GPL). As has been mentioned
already above, our implementation uses the ACSMF-Simple [5]. ACSMF-Simple
[5] has been implemented as library functions in the C programming language
under GNU/Linux operating system.

We have used real genome data in our experiments as the text string, T . This
data has been collected from [2]. Here, we have taken 299MB of data for our
experiments.

We have conducted our experiments on a PowerEdge R820 rack serve PC
with 6-core of Intel Xeon processor E5-4600 product family and 64GB of RAM
under GNU/Linux. With the help of the library used in [5], we have compared
the running time of ACSMF-Simple of [5] and of our algorithm. Table 2 reports
the elapsed time and speed-up comparisons for various pattern sizes (500 ≤ m ≤
3000) and for various mismatch sizes (2 ≤ k ≤ 5). As can be seen from Table 2,
our algorithm runs faster than ACSMF-Simple in all cases.

In order to analyze and understand the effect of our filters we have conducted
further experiments. For space constraints, here, in Table 1, we only present the
results of our algorithm where Filter 4 is omitted, i.e., Filters 1 through 3 are
employed. As can be seen from Table 1, ACSMF-Simple is able to beat this
version of our algorithm in a number of cases. This indicates that as more and
more effective filters are imposed, our algorithm performs better. We believe
after the application of two more filters from [4], we will get even better results.

6 Conclusions

In this paper, we have employed some effective lightweight filtering technique to
reduce the search space of the Approximate Circular Pattern Matching (ACPM)
problem. We have conducted experimental studies to show the effectiveness of
our approach. Much of the speed of our algorithm comes from the fact that our
filters are effective but extremely simple and lightweight.

Acknowledgement. Part of this research has been supported by an INSPIRE Strate-
gic Partnership Award, administered by the British Council, Bangladesh for the project
titled Advances in Algorithms for Next Generation Biological Sequences.
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Abstract. Assessment of microbial biodiversity is typically made by se-
quencing either PCR-amplified marker genes or all genomic DNA from
environmental samples. Both approaches rely on the similarity of the se-
quenced material to known entries in sequence databases. However, am-
plicons of non-marker genes are often used, when the research question
aims at assessing both functional capabilities of a microbial community
and its biodiversity. In such cases, a phylogenetic tree is constructed
with known and metagenomic sequences, and expert assessment defines
the taxonomic groups the amplicons belong to. Here, instead of relying
on sequences, often missing, of non-marker genes, we use tree reconcil-
iation to obtain a distribution of mappings between genes and species.
We describe efficient algorithms for the reconstruction of gene-species
mappings and a Monte-Carlo method for the inference of distributions
for the cases when the number of optimal reconstructions is large. We
provide a comparative study of different cost functions showing that the
duplication-loss cost induces mappings of the highest quality. Further,
we demonstrate the correctness of our approach using several datasets.

1 Introduction

Phylotype-centric studies of biodiversity of microbial communities have their
obvious limitations - they do not allow reliable prediction of functional capa-
bilities of the community [6]. Therefore, complex microbial communities are ap-
proached with functional analysis in mind. Sequence similarity searches against
reference databases such as KEGG, COG, Pfam or SEED provide in-depth know-
ledge about their metabolism, biochemistry or ecology. However, given our lim-
ited knowledge about microbial biochemistry and the large number of different
species in such communities, important metabolic phenotypes might not be visi-
ble in shotgun metagenomic studies. Therefore, researchers quite often use a dif-
ferent approach to address such issues - amplicons of important genes are used
instead of undirected shotgun sequencing. However, these sequences can rarely
be matched with species. We have only a few dozen well annotated universally
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conserved protein coding marker genes, for example RecA [28]. For the rest of the
genes, LCA-based methods such as MEGAN [14], or phylogeny-based methods
such as MLTreeMap [26], or pplacer [19], have a fundamental issue: if species is
not present in the reference database (i.e. genome is not known), sequence from
this species cannot be accurately placed at the leaf level. In other words, such
methods rely on annotated genes and do not use much richer microbial species
trees, because for majority of these species genomic sequence is unknown.

While phylogenetic trees of prokaryotic genes have typically different topolo-
gies from species tree, there is a prominent coherent trend of tree-like evolution,
that is substantially different from net-like trend produced by horizontal gene
transfer (HGT) [23]. Therefore, it should be possible to reconcile gene trees with
the species tree. While HGT is frequent in microbial world, it was shown that
HGT rates between close species are on average higher than between distantly
related ones [25]. This could mean that ambiguity stemming from HGT events
should not significantly affect reconciliation up from genus level of species tree.

The concept of reconciliation was introduced by Goodman [9] and formalized
by Page [21] in the context of reconciling a gene family tree with its species tree.
In this model, any incongruence between gene and species trees is explained
in terms of evolutionary events such as gene duplication, gene loss and specia-
tion. Reconciliation is interpreted as the embedding of a gene tree into a species
tree where these evolutionary events located in the species tree induce a bio-
logically consistent scenario [11]. By counting gene duplication and loss events
when reconciling trees, we can define a cost function, called a duplication-loss
cost (DL) [30]. Formally, it is the minimal number of gene duplication and loss
events required to reconcile a given gene tree with its species tree. Similarly, we
define gene duplication (D) or deep coalescence (DC) [18,30].

"im.dat"

 0  0.2  0.4  0.6  0.8  1

G

G’G’

All labelings with minimal reconciliation cost

G’

E

DL cost: 2 gene duplications + 4 gene losses 3 dupl. + 3 losses

Fig. 1. An example of inference of gene-species mappings showing the heat map that
represents the inferred distributions of species over the leaves of gene tree. Top-left: S
is a species tree with 7 species: a, b, . . . , g. G is a gene tree with 8 genes. There are 5
sequences in G that have undefined species assignment (marked with “?”). Middle: All
11 labelings that induce the minimal duplication-loss cost, such that every undefined
label in G is replaced with a species from S. The heat map shows the distribution of
species from the set of optimal labelings. Right: G′ is obtained from G by using the
second optimal labeling (marked with gray) E is the embedding of G′ into S [5,11].

Tree reconciliation has been intensively studied in recent decades in many
theoretical and practical contexts including supertree inference, error correc-
tion and HGT detection [2,7,8,12,15,17,25,27,30]. In this article we extend the
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concept of reconciliation by introducing partial mappings where the undefined
value represents an unknown gene-species assignment. We propose to reconstruct
the missing gene-species assignments by seeking for the labeling that extends the
input labeling, and such that it minimizes a given cost. An example is depicted
in Fig. 1. Similar concepts have been studied in several articles. In [20] authors
proposed heuristic algorithms for the reconstruction of gene-species mappings
under DC and a special case of binary gene trees with bijective leaf labellings.
In [31] O(|G||S|2) time algorithm was presented for DC and DL and the anal-
ogous reconstruction problem under general leaf labellings, where G and S are
the gene and species trees, respectively. In different biological context O(|G||S|)
time algorithm was developed for the duplication cost [3].

Our contribution. We propose a reconciliation-based formulation of the gene-
species assignment problem for cost functions such as D, DL, DC and L (gene
loss). Our algorithms run in O(|G||S|) time if trees are binary. Thus, we improve
known algorithm for DC and DL by a factor of |S| and we propose new efficient
algorithm for L. Our solution can be applied to non-binary trees in case of D
or DC, then the time complexity is O(|G||S|ΔSΔG), where ΔG is the maximal
out-degree of nodes from G. We also propose a Monte-Carlo approach to approx-
imate the distribution of gene-species mappings by sampling the space of optimal
reconstructions. Having this, we provide a comparative study of reconstructions
for our cost functions. These algorithms have been implemented in a software
package written in C++ that is publicly available. Our software can also solve
instances composed of unrooted trees (which is not discussed in this article). In
the last section we provide an experimental study showing the performance, and
the quality of mappings’ reconstruction for synthetic and empirical datasets.

2 Basic Definitions and Preliminaries

We provide basic definitions from phylogenetic theory and from the reconciliation
model. Observe that in the classical approach both a gene tree and a species tree
have leaves with labels. In this paper, we are focused on the reconstruction of
gene-species mappings, and therefore, we propose an equivalent definition where
the labeling of leaves is separated from gene trees.

Let G be a rooted tree. By LG we denote the set of all leaves in a tree G. In
this paper, a rooted tree is a model of a gene tree. We assume that every internal
node of a rooted tree has at least two children. For a gene tree G, by ΔG we
denote the maximal out-degree of its nodes. For instance, for a non-trivial (i.e.,
not single-noded) binary gene tree G, ΔG = 2. By |G| we denote the number of
nodes present in G and by ĝ we denote the set of all children of a node g.

A species tree S = 〈VS , ES〉 is a rooted tree whose leaves are called species. For
vertices a, b ∈ VS , let a⊕ b be the least common ancestor of a and b in S. We use
the binary order relation a � b if b is a vertex on the path between a inclusively,
and the root of S. For a gene tree G and a species tree S, a (leaf) labeling
from G to S, is a function from the leaves of G into the species (leaves) present
in S. Any leaf labeling λ : LG → LS can be extended into the least common
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ancestor mapping, or lca-mapping, Mλ : VG → VS defined as Mλ(g) = λ(g) if g
is a leaf, and Mλ(g) = Mλ(c1)⊕Mλ(c2)⊕· · ·⊕Mλ(cn) where ĝ = {c1, c2, . . . , cn},
otherwise.

Now, we define several known cost functions in a unified approach [10]. First,
we introduce the notion of a scoring function ξK for K ∈ {D,DL,DC,L} and
a species tree S. For an internal node g with n children from a gene tree G and
a sequence of species nodes {x1, x2, . . . , xn} from S, ξK(x1, x2, . . . , xn) is a con-
tribution to a total cost K when all n children g are mapped into x1, x2, . . . , xn,
respectively. We define the scoring functions for gene duplication (D), deep co-
alescence (DC), gene loss and gene duplication+loss (DL) costs:

• ξD(x1, x2, . . . , xn) = �(∃i ∈ {1, 2, . . . , n} : xi = x1 ⊕ x2 ⊕ · · · ⊕ xn),
• ξDC(x1, x2, . . . , xn) =

∑
i∈{1,2,...,n} ||x1 ⊕ x2 ⊕ · · · ⊕ xn, xi||,

• ξL(x, y) = ||x, y|| − 2(1− ξD(x, y)) (only for binary trees),
• ξDL(x, y) = ξD(x, y) + ξL(x, y),

where � is the indicator function, that is, �(p) is 1 if p is satisfied and 0 otherwise,
and ||x, y|| denotes the length of the shortest path connecting nodes x and y.
Now, we define the cost of reconciliation of a given gene tree G with labeling λ
and a species tree S under cost K ∈ {D,L,DL,DC}:

K(G,S, λ) :=
∑

g∈VG\LG, ĝ={c1,c2,...,cn}
ξK(Mλ(c1),Mλ(c2), . . . ,Mλ(cn)).

For example, if K = D then D(G,S, λ) is the classical duplication cost [22].
Observe that the duplication-loss cost is usually defined for binary trees [11,21]

due to complications with the biological interpretation of these events when a
multifurcation is present in trees [29,4]. Our definitions, however, are general and
they can be applied to any type of trees under assumption of that non-binary
vertices refer to hard polytomies. Please refer to the literature for a more detailed
study on the reconciliation model [18,21,30,32].

2.1 Problems: Resolving Unknown Gene-Species Mappings

We present several problems related to the reconstruction of gene-species map-
pings. To model undefined labels in gene trees we use the classical mathematical
notion of a partial function. In other words, we express the problem of recon-
struction of gene-species associations in terms of converting a partial function
into a total one. For example, if (a, (⊥, c)) is a gene tree with one undefined label
denoted by ⊥ and (a, (b, c)) is a species tree, then the problem is to replace ⊥ by
a, b or c such that the total reconciliation cost is minimized (in this case b is the
optimal choice for every cost function). See also Fig. 1 for a complex example.

Let G be a gene tree G and S a species tree. Any partial function φ : LG → LS

will be called a partial (leaf) labeling from G into S. Later on, we write φ(x) = ⊥
if φ is undefined for x. Now, we present problems related to the reconstruction
of leaf labelings, i.e., total functions, from partial labelings. Below, we assume
that K ∈ {D,L,DL,DC}.
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Problem 1. Given a gene tree G, a species tree S and a partial labeling φ between
G and S. Find a labeling λ such that (1) λ is a total function that extends φ,
and (2) K(G,S, λ) is minimal in the set of all labelings between G and S.

Such a labeling is called optimal under K. For given trees G, S and a partial
labeling φ we denote the minimal cost introduced in Problem 1 by Kopt(G,S, φ).

Problem 2. Given trees G, S and a partial labeling φ between G and S. Find
the number of optimal labelings under K that extends φ.

3 Methods

In this section we propose a polynomial time algorithm for the computation of
optimal costs. Next, we discuss its properties in the context of DL and DC.

Given a gene tree G, a species tree S and φ : LG → LS a partial labeling we
show how to compute Kopt(G,S, φ). The dynamic programming formula has two
components δK(g, s) and δ↑K(g, s) where g ∈ VG and s ∈ VS , such that

• δK(g, s) is the minimal cost K(G|g, S|s, ψ) in the set of all labelings ψ ex-
tending φ and satisfying Mψ(g) = s, where G|g denotes the subtree of G
rooted at g,

• δ↑K(g, s) is the minimal cost K(G|g, S|s, ψ) + dψ in the set of all labelings ψ
extending φ and satisfying Mψ(g) � s; dψ is the number of additional deep
coalescence events between Mψ(g) and s (i.e., the number of edges between
Mψ(g) and s); these additional events are counted only when K 
= D.

For δK we have the following formula:

δK(g, s) =

⎧
⎨

⎩

0 if g and s are leaves and φ(g) ∈ {s,⊥},
min{α, β} if g is not a leaf,
+∞ otherwise,

where, for ωDC = �(K ∈ {L,DL,DC}) we have:

α = min
p : ĝ→ŝ

p is not a const. function

∑

c∈ĝ

(δ↑K(c, p(c)) + �(K = DC)),

β = �(K ∈ {D,DL}) + min
p : ĝ→ŝ∪{s}

p(x)=s for some x

∑

c∈ĝ

{
δK(c, s) if p(c) = s,

δ↑K(c, p(c)) + ωDC if p(c) ∈ ŝ.

Functions p in above definitions denote all valid mapping assignments for the
children of g. In particular, α represents the case when g is a speciation node [11],
i.e., all children of g are mapped below s, and β represents the case when g is a
duplication node, i.e., at least on child of g is mapped to s.
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The formula for δ↑K can be expressed as:

δ↑K(g, s) =

{
δK(g, s) if s is a leaf,
min{δK(g, s), ωDC +minx∈ŝ δ

↑
K(g, x)} otherwise.

Theorem 1 (Correctness). For a gene tree G, a species tree S, a partial la-
beling φ and every standard cost K, Kopt(G,S, φ) = mins∈VS δK(root(G), s).

The proof of the next lemma provides details for efficient computation of δK .

Lemma 1. For a fixed g and s, the values of α and β can be computed in
O(ΔGΔS) time.

Proof: A naive approach to computing these values is to enumerate all possible
functions p present in these formulas. In the worst case scenario we have ΔSΔG

and (ΔS +1)ΔG functions needed for α and β computation, respectively. Thus,
the time complexity is O((ΔS + 1)ΔG). However, when computing the optimal
cost only, we can use a much more efficient algorithm.

For the computation of α, we need all values of δ↑K for every pair from ĝ × ŝ.
Then, for every c ∈ ĝ we set p(c) to be an element of argminx∈ŝ δ

↑
K(c, x). If p is

a not constant function, then

α =
∑

c∈ĝ

δ↑K(c, p(c)). (1)

Otherwise, if p is a constant function, then for every c we have p(c) = x for some
x ∈ ŝ. Let c′ and x′ be a pair of nodes that minimizes δ↑K(c′, x′) − δ↑K(c′, x) in
the set of pairs ĝ× ŝ \ {x}. It should be clear that the function p′ obtained from
p by setting the value of c′ to be x′ satisfies the equation (1). We conclude that
α can be computed in O(ΔGΔS) time.

Similarly, we compute β in O(ΔG(ΔS + 1)) time. Details are omitted. []

Theorem 2. The time complexity of computing Kopt(G,S, φ) by the formula
from Theorem 1 is O(|G||S|ΔSΔG).

Proof. Computing δK and δ↑K can be performed by bottom-up tree traversals
that require in total |G||S| steps. By Lemma 1 each step requires O(ΔSΔG) time.

Observe that in the case of binary trees we have an algorithm that runs in
O(|G||S|) time. The dynamic programming formula can be extended by back-
tracking to infer one optimal labeling (Problem 1). The time complexity of such
an extended algorithm is O(|G||S|ΔSΔG). However, when inferring the number
of optimal labelings (Problem 2) every function p present in formulas for α and
β has to be enumerated. Therefore,the time complexity of such an algorithm
(Problem 2) is O(|G||S|(ΔS + 1)ΔG).

In the case of DC, we can propose a better solution. Observe that if a partial
labeling has an empty image, i.e., every gene leaf has undefined label, then
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optimal labelings under DC, that extend such a labeling, are constant functions
that yield the optimal cost 0. To generalize this property, let us call a subtree G′

of G unlabeled under partial labeling φ if φ(g) = ⊥ for every leaf g of G′. Then:

Lemma 2. Let φ : LG → LS be a partial labeling. Let a subtree G′ of G be
unlabeled under φ. Then, for every optimal labeling under DC that extends φ,
leaves of G′ have the same label.

We conclude that the computation of optimal DC cost can be solved as follows:
(1) compress G: let Gφ be a gene tree G obtained from G by replacing every
maximal unlabeled subtree of G with a single-noded unlabeled tree, and (2)
compute optimal DC cost for Gφ and S with the labeling adjusted to capture
the compression of G. The procedure of compression requires one traversal of G.
Thus, the time complexity is O(|G|+ |S||Gφ|ΔSΔGφ).

3.1 Inferring Gene-Species Distributions

From the practical point of view, the crucial problem is the inference of gene-
species mappings (Problem 1). It can be solved efficiently by our algorithms when
inferring just one labeling. However, in practice the goal would be rather to find
all possible optimal labelings. As already mentioned, it may be difficult due to
potentially large number of optimal solutions. Therefore, instead of computing
all possible optimal labelings, we propose to apply the Monte Carlo method:
(1) repeat random sampling of the space of optimal labelings, and (2) aggregate
inferred labelings into the set of distributions of species associated with the leaves
of a gene tree. To guarantee proper approximation of species’ distribution, the
first step has to be performed under the assumption that every optimal labeling
has the same sampling probability. We solved this problem by computing the
number of possible optimal variants assigned with every pair g and s, when
computing δK and δ↑K . For example, such variants are represented by functions p
in formulas for α and β. Then, the sampling is performed by top-down traversal
of the gene tree and by choosing randomly one variant at each level from a
uniform probability distribution determined by the counts of variants.

The result of aggregation is formally defined as follows. Let us assume that
X = {φ1, φ2, . . . , φn} is the collection of optimal labelings inferred by our sam-
pling method, i.e., for every i, we have φi : LG → LS. Then, for every leaf
g ∈ LG and a species s we define the species frequency distribution at g by
pg(s,X) = |{i : φi(g) = s}|/n. It should be clear that for a fixed g, pg(·, X) is a
probability distribution. Such distributions called gene-species distributions can
be presented in the form of a heat map (see Fig. 1).

4 Experimental Evaluation

All the experiments were performed on a server with 256GB RAM and 8 AMD
Opteron processors. The computer program mgremap is written in C++ and is
freely available at http://bioputer.mimuw.edu.pl/gorecki/mgremap.
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4.1 Reconstruction Quality and Runtime Analysis

Assume that we have a species tree and a gene tree with a labeling without
unknown labels. There is a natural way to validate the reconstruction quality:
first mask some labels of the gene tree, then reconstruct them by using our
algorithms and check how many labels were correctly reconstructed.

We generated 650 species trees of size 103. Each tree was generated by the fol-
lowing procedure: start from a list of 103 single-noded trees representing species,
replace two randomly chosen trees T and T ′ with a single tree (T, T ′) and re-
peat until the list consists of one tree. It can be shown that such a process is
equivalent to the classical Yule-Harding model for rooted tree shapes [13]. Then,
for each species tree S, we generated one gene tree G with labeling λ. We ensure
that the distribution of dissimilarity measure, defined as DC(G,S, λ) − 999, in
our dataset is uniformly distributed over the interval [0, 3800]. Note that the
measure 0 is equivalent to tree isomorphism.
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Fig. 2. Left and middle: Mean quality score for the reconstructions of gene species
mappings under DL (left) and DC (middle) cost functions. The quality score on the Y
axis represents the correctness of gene-species mapping reconstruction, e.g., if the qual-
ity score is 1.0 then every unknown label was correctly reconstructed. The parameter
k denotes how many labels were set to be unknown in the input labeling of a gene tree.
Note that k = 1000 denotes the situation when all leaves are undefined. The Y axis
has a different range in both diagrams. Right: Runtime performance for species trees
of size 1000, 2000, . . . 105, a fixed gene tree of with 1000 leaves, and masking parameter
k. For every instance our program inferred 4000 optimal labelings for DL.

For each 〈G,S, λ〉 from our dataset, we generated 20 partial labelings by the
masking procedure: set k values of λ to be undefined for k ∈ {50, 100, 250, 500, 1000},
in particular k = 1000 means that every leaf has an undefined label. Then, for
each partial labeling φ, we computed gene-species distributions from 104 opti-
mal mappings obtained by the MC method for the DC and DL costs. Finally,
for a fixed 〈G,S, λ〉, a partial labeling φ with k undefined labels and their gene-
species distributions, the quality score is the expected value of the probability
that the undefined labels will be correctly reconstructed. Formally, if p are the
gene-species distributions induced by a set X of optimal labelings that extend
φ then the quality score is: ζ(G,S, λ, φ, p) = 1

k

∑
φ(g)=⊥ pg(λ(g), X) (see Fig. 2).

In the left and middle diagrams of Fig. 2 we summarize the experimental
evaluation. For readability reasons, all 650 pairs of the input trees were split
into bins such that each bin represents pairs whose DC score is between d and
d + 50, for d starting from 0. For each k we show mean values of quality score
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Fig. 3. Left: a
gene tree of 100
proteins similar
to mcrA from
Methanobre-
vibacter rumi-
nantium with 9
unknown gene-
species labels
M1-M9. Right:
A part of the
SILVA species
tree with the
species present in
the reconstructed
gene-species dis-
tributions. The
reconstruction of
all optimal label-
ings (484120 in
total) under the
DL cost indicated
that genes M6-
M9 and M4 were
resolved with a
unique species
assignment, while
the remaining
four genes have
species assign-
ments uniformly
distributed over
the leaves of
several clusters
from the species
tree.
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in these bins. In both diagrams we see trends that can be summarized: the
quality of reconstructions is better when the input trees are similar and when
the number of unknown labels is low. However, even for partial labelings with
high number of undefined values, our algorithms can still properly reconstruct
the majority of labels under DL. In general, our experiments confirmed that DL
can be successfully applied to reconstruct gene-species associations even in the
case when all leaves have unknown labels. On the other hand, the DC cost induces
generally low quality mappings. It can be explained by Lemma 2: leaves of every
unlabeled subtree of a gene tree will be mapped into the same species under DC.
For example in the middle diagram for DC, when the whole gene tree is unlabeled
the constant labeling is optimal yielding the mean score (almost) 0.0. Thus, the
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bijective labelings of the input trees are usually incorrectly reconstructed under
DC and, in consequence, the quality score is low.

The runtime analysis is depicted in the rightmost panel of Fig. 2.

4.2 Empirical Dataset Evaluation

To test the quality we have attempted to reproduce a typical scenario of amplicon
analysis. We have selected mcrA gene, that has been proposed as a marker gene
in the phylogenetic analysis of archeal methanogen populations [16]. Luton and
coworkers had seen a similarity between topologies of mcrA tree and 16S rRNA
tree from corresponding species, which in principle should make the case easier.

First 100 proteins similar to mcrA from Methanobrevibacter ruminantium
were selected using BLAST [1]. The list contained genes from uncultured archeons.
The gene tree was built using program proml from phylip package and tested
with a tree containing over 1400 known Euryarchaeota species from SILVA
database [24]. In total, we have attempted to resolve mappings of 9 unknown
sequences out of 100. A typical manual interpretation of the gene tree alone, de-
picted in Fig. 3, would lead to mostly unambiguous assignment of all unknown
sequences at least at the genus level. However our method assigned only half of
the sequences unambiguously. The rest have mostly a uniform distribution span-
ning sometimes several genuses. Cross-checking of the results with databases of
known genomes resulted in identification of a single error. One of the sequences
(M1) was assigned to a group consisting mainly of Thermoplasmaceae species.
This is clearly wrong as this taxonomic group does not seem to posses mcrA
gene nor methanogenic function. The other sequences have no such issues.

Despite large differences in tree sizes the final assignment did not differ much
in size from gene tree. While synthetic tests presented above show high level of
accuracy of our method, the evaluation on empirical data indicate that biological
interpretation of results should be important part of the process. Depending on a
situation, interpretation of ambiguity could be either HGT, or selective pressure
or simply understudied branch of species tree.

5 Conclusion and Future Outlook

In this article we proposed the first reconciliation-based approach to infer gene-
species mappings from partial gene tree labelings. We studied properties of this
approach and proposed efficient algorithms for the optimal cost computation and
gene-species assignment inference under several cost functions such as DL or DC.
We showed that the proposed algorithms implemented in the computer program
mgremap are able to infer optimal gene-species mappings even for large input
trees within minutes. The quality validation shows that DL cost performs signi-
ficantly better that DC cost. We also provided a theoretical explanation of this
phenomenon. Finally, the results from empirical tests indicate that our approach
is able to strengthen the taxonomic assignment of metagenomic sequences where
it can be done unambiguously and identify sequences with ambiguous taxonomic
context, which should not be attempted to classify at species or genus level.
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This article is focused on the efficient analysis of a single gene family under
classical duplication related models. Our next step is to extend the model by
considering cost functions with HGTs. Such models, however, are usually com-
putationally hard. Further extensions include methods for the analysis of whole
metagenomic samples that may contain sequences from many gene families.
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Abstract. Inference of a species tree from multi-locus gene trees hav-
ing topological incongruence due to incomplete lineage sorting (ILS), is
currently performed by either consensus (supertree), parsimony analy-
sis (minimizing deep coalescence), or statistical methods. However, sta-
tistical approaches involve huge computational complexity. Accuracy of
approximation heuristics used in either consensus or parsimony anal-
ysis, also varies considerably. We propose COSPEDSpec, a novel two
stage species tree estimation method, combining both consensus and
parsimony approaches. First stage uses our earlier proposed couplet su-
pertree technique COSPEDTree [2] [3], whereas the second stage pro-
poses a greedy heuristic to refine a non-binary (unresolved) supertree
into a binary species tree. During each iteration, it reduces the number
of extra lineages between the current species tree and the input gene
trees, thus modeling ILS as the cause of gene tree / species tree incon-
gruence. COSPEDSpec incurs time and space complexity lower or equal
to the reference methods. For large scale datasets having hundreds of
taxa and thousands of gene trees, COSPEDSpec produces species trees
with lower branch dissimilarities and much less computation.

1 Introduction

Gene trees are constructed by sampling individual genes among a group of taxa,
and subsequently employing phylogenetic reconstruction methods [7]. Rapid in-
crease of molecular phylogenetic data provides a set Ģ of M (> 1) gene trees
covering a set of N taxa. However, these gene trees often associate conflicting
topologies and branch lengths, due to independent site specific evolution of in-
dividual gene sequences. Genealogical discordance among these M trees can be
so high that no single gene tree topology predominates [7]. So, topology of the
final species tree S may considerably deviate even from the most frequent gene
tree. Such discordance of gene trees with the species tree occurs due to one of
the following three evolutionary processes: 1) Horizontal Gene Transfer (HGT),
2) Gene duplication / loss, and 3) Incomplete Lineage Sorting (ILS) or deep
coalescence (DC) [22]. Here we focus on constructing a species tree S from Ģ,
when the gene tree discordance occurs due to ILS, which is the failure of two or
more lineages in a population to coalesce. So, at least one of the lineages first

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 48–59, 2015.
DOI: 10.1007/978-3-319-19048-8_5
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coalesces with a lineage from a less closely related population [7]. For example,
suppose the true species tree S is (X, (Y, (Z, W))), where lineages Z and W co-
alesce at time t1, and subsequently the lineage Y coalesces at time t2. However,
in a gene tree G ∈ Ģ, suppose the lineages Y and W first coalesce at time t2,
and the lineage Z coalesces with them at time t (t > t2 > t1, assuming time
increases into the past). In this case, ILS causes discordance between G and S.

Currently, ILS based species tree estimation is done either by concatenation
[24] [6], or by separate analysis [30] techniques. The former infers species tree
using sequence alignment, but does not consider gene tree variabilities with re-
spect to ILS. Separate analysis methods use input tree topologies for species tree
estimation. They can employ summary or consensus clade analysis [14] [31] [32];
subtree decomposition and consensus determination such as ASTRAL [20]; aver-
age rank and coalescence time analysis as in GLASS [21], STEAC [18], maximum
tree [17], iGLASS [12], iSTEAC [11], shallowest divergence (SD) [19], STAR [18];
parsimony analysis by minimizing the number of deep coalescence between S and
Ģ, as mentioned in Phylonet [30] [32] [1], iGTP [4], Notung [8]; minimizing the
sum of Robinson-Foulds (RF) distance [23] between S and Ģ as in mulRF [5], etc.
Statistical modeling based species tree estimation techniques like STEM [13] and
MP-EST [16] (using maximum likelihood), BEST [9], *BEAST [10], BBCA [33],
BUCKy [15] (using Bayesian statistic), are statistically consistent, but involve
huge computational complexity, thus mostly applicable on small datasets involv-
ing ≈ 20 - 30 taxa and < 100 gene trees. Most of the summary based methods
except [32] [1] do not support incomplete (less than N taxa) non-binary input
gene trees. They employ additional heuristics to refine input trees into rooted
binary format, which may reduce performance.

We propose a novel two stage method COSPEDSpec, which uses both consen-
sus and parsimony techniques for species tree construction. First stage produces
a supertree S′ from Ģ, using our previously implemented couplet (taxa pair)
supertree algorithm COSPEDTree [2] [3]. However, resulting tree S′ may not be
completely resolved [2], thus may not form a binary species tree. So, the second
stage refines S′ to form a fully resolved binary species tree S. It uses a novel
greedy heuristic minimum normalized sum of deep coalescence (MNDC), by it-
eratively reducing the sum of extra lineages between the inferred species tree S′′

and the input set of gene trees Ģ, at successive iterations. COSPEDSpec works
on rooted input gene trees, to produce a rooted species tree as its output. It
supports incomplete or non-binary gene trees. We show that for large datasets
involving high number of gene trees and taxa, COSPEDSpec produces species
trees mostly with lower branch dissimilarities than reference methods. COSPED-
Spec involves time complexity of O

(
N3 +MN2 lgN

)
, and storage complexity of

O
(
N2

)
, both of which are equal or lower than existing species tree construction

methods.
Generation of the first stage supertree S′ from input Ģ can be found in our

earlier COSPEDTree algorithm [2] [3]. Section 2 discusses the refinement of S′

using MNDC criterion. Section 3 describes its performance analysis.
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2 Refinement of S′ into Binary Tree S

Directly applying basic COSPEDTree [2] algorithm on the set of gene trees
Ģ may produce non-binary species tree S′, as shown in Fig. 1(a) and Fig. 1(b).
Although multispecies coalescent model [7] does not assume strict binary species
tree, the datasets we have experimented associate binary gene trees. So, we
propose a refinement of S′ into a binary species tree S. Such a refined species
tree is shown in Fig. 1(c).

A

BC D
EF

(a)

AC EB D F

(b)

AC EB D F

(c)

Fig. 1. Example of non binary tree represented (a) as cluster, (b) as tree, (c) an example
of possible bifurcation based refinement

Producing a strict binary tree S requires generating bifurcation among the
taxa clusters underlying any of the multifurcation instance of S′. Example tree
shown in Fig. 1(c) indicates that introducing a bifurcation (speciation) between
the clusters (D) and (B,C), eventually resolves the original tri-furcation (shown
in Fig. 1(b)) by producing a bifurcation among the clusters (E,F) and (D, (B,C)).
We propose an agglomerative clustering technique to generate such bifurcation.
Its principle is to find a pair of taxa clusters (such as (D) and (B,C)) which
are closest compared to all other cluster pairs. The closeness between a pair of
taxa cluster is determined by a novel distance function, termed as the normal-
ized deep coalescence (NDC), between them. The cluster pair having minimum
value of normalized deep coalescence (MNDC) is termed as closest. They are
inserted as children of a newly introduced bifurcation (speciation) node. In the
current example, a bifurcation (D,(B,C)) is introduced to form a rooted binary
subtree, and the clusters (D) and (B,C) are inserted as its children. The process
is repeated until the original multi-furcation is resolved into a bifurcation (in the
current example, bifurcation among (E,F) and (D, (B,C))). Below we first elab-
orate the NDC based distance function between individual taxa cluster pairs,
and subsequently describe the agglomerative clustering using MNDC criterion.

NDC Between Individual Taxa Clusters: Let us denote for a phylogenetic
tree T , V (T ), E(T ), and L(T ) as its set of vertices, edges, and the leaves, respec-
tively. CladeT (v) denotes the subtree of a tree T rooted at a node v ∈ V (T ). Set
of leaves in CladeT (v) is denoted as ClusterT (v). For a set of taxa A ⊆ L(T ),
let LCAT (A) denotes the least (most recent) common ancestor of all the taxa
in A, with respect to the tree T . With such definitions, suppose g ∈ V (G) and
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s ∈ V (S) are two internal nodes of the respective gene and species trees G (∈
Ģ) and S, such that g = LCAG(ClusterS(s)). Then, number of leaves under
the subtree rooted at g is ClusterG(g). Number of extra lineages with respect to
s ∈ V (S) and this gene treeG isXL(s,G) = |ClusterG(g)| - |ClusterS(s)|, where
|.| denotes the cardinality of a set. Total number of extra lineages (also called the
deep coalescence cost) between G and S is XL(S,G) =

∑
s∈V (S)XL(s,G). For

a set of gene trees Ģ, the number of extra lineages between S and Ģ is XL(S, Ģ)
=

∑
G∈ĢXL(S,G).

Following above notations, LCAG(Cx∪Cy) denotes the least common ancestor
node of the union of taxa clusters Cx and Cy in the gene tree G ∈ Ģ. Suppose
we denote this node as Gxy. If |Cx| and |Cy| respectively denote the cardinality
of taxa clusters Cx and Cy, the node Gxy associates following number of extra
lineages, apart from the taxa clusters Cx and Cy :

XL(Gxy, G) = ClusterG(Gxy)− |Cx| − |Cy| (1)

We denote by D(Cx, Cy), the sum of extra lineages XL(Gxy, G) computed for
all the gene trees, as the following:

D(Cx, Cy) =
∑

G∈Ģ
XL(Gxy, G) (2)

Now suppose the non-binary species tree S′ has a multi-furcating internal spe-
ciation node, having k (> 2) taxa clusters C1, . . . , Ck under it. For a particular
cluster Ci (1 ≤ i ≤ k), we define D(Ci, :), the sum of distances from Ci to all
other clusters, as following:

D(Ci, :) =
∑

1≤j≤k,i�=j

D(Ci, Cj) (3)

Using above sum for individual clusters Ci (1 ≤ i ≤ k), normalized deep co-
alescence (NDC) DN (Cx, Cy) between individual cluster pairs Cx and Cy is
computed as:

DN (Cx, Cy) =
D(Cx, Cy)

D(Cx, :) +D(Cy, :)
(4)

MNDC Criterion Based Agglomerative Clustering: From the NDC func-
tions for individual cluster pairs, the pair (Cx, Cy) is said to satisfy minimum
NDC (MNDC) criterion, provided:

DN (Cx, Cy) = min
∀i,j,1≤i,j≤k,i�=j

DN (Ci, Cj) (5)

Suggested binary refinement is carried out by iteratively selecting a cluster
pair (Cx, Cy) satisfying the MNDC criterion among the k (> 2) taxa clusters
C1, . . . , Ck under the multi-furcating internal speciation node. One new internal
node is added in the species tree, and selected clusters Cx and Cy are placed as
its children. This produces a bifurcation.
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Lemma 1. Above mentioned MNDC criterion based binary refinement maxi-
mally reduces the number of extra lineages with respect to the current species
tree S′ and the input gene tree set Ģ, during every iteration. That is, for a
particular iteration, reduction in XL(S′,Ģ) is maximum.

Proof. Suppose, the species tree S′ (generated from COSPEDTree) contains a
multi-furcating internal speciation node having k taxa clusters C1, C2, . . . , Ck

as its children. First we prove the lemma for k = 3, and later prove for any
k. Considering three clusters C1, C2 and C3, suppose the cluster pair (C1, C2)
satisfies MNDC criterion. So,

DN (C1, C2) < DN (C1, C3)

=⇒ D(C1, C2)

D(C1, :) +D(C2, :)
<

D(C1, C3)

D(C1, :) +D(C3, :)
(Using Eq. 4)

=⇒ D(C1, C2)

2D(C1, C2) +D(C1, C3) +D(C2, C3)

<
D(C1, C3)

2D(C1, C3) +D(C2, C3) +D(C1, C2)
=⇒ D(C1, C2) < D(C1, C3)

(Since
X

X + Z
<

Y

Y + Z
means X < Y, for positive X, Y, Z

where X =D(C1, C2), Y =D(C1, C3), Z =D(C1, C2)+D(C1, C3)+D(C2, C3) )

=⇒
∑

G∈Ģ
XL(G12, G) <

∑

G∈Ģ
XL(G13, G)

Where Gxy indicates LCAG(Cx∪Cy) for the gene tree G ∈ Ģ. Similarly, we can
show ∑

G∈Ģ
XL(G12, G) <

∑

G∈Ģ
XL(G23, G)

So, creating a speciation node and inserting the clusters (C1, C2) as its children,
produces lower sum of extra lineages (with respect to Ģ) compared to merging
other cluster pairs in the current step.

For k > 3, we can similarly show that if (C1, C2) satisfies MNDC, XL(G12,
Ģ) is minimum of all XL(Gij , Ģ) (where i, j denote cluster indices; 1 ≤ i, j ≤ k,
i �= j). Thus, MNDC criterion reduces the extra lineages maximally. 	


To continue successive iterations for binary refinement, previously agglomer-
ated cluster pair (Cx,Cy) is treated as a single cluster (say it is denoted as Cxy).
We first adjust the distances from all other taxa clusters Ci (1 ≤ i ≤ k, i �= x, y)
to this new cluster Cxy as

D(Ci, Cxy) = max(D(Ci, Cx), D(Ci, Cy), D(Cx, Cy))
where max() indicates maximum operation. Employing such heuristic is mo-

tivated by the following lemma:

Lemma 2. For any phylogenetic tree t, and any three distinct taxa clusters X,
Y, Z ⊆ L(t), LCAt(Z,X ∪ Y ) is any two of the following: 1) LCAt(Z,X), 2)
LCAt(Z, Y ), and 3) LCAt(X,Y ).
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Proof. We can easily verify it from any of the trees in Fig. 1. LCAt(Z,X ∪ Y )
denotes the root of the subtree containing the triplet (X, Y, Z). So, any two of
the given expressions will map to the root. 	


Above lemma indicates that the node LCAG(Ci ∪ Cx ∪ Cy) is identical to
any of the following three nodes: 1) LCAG(Ci ∪ Cx), 2) LCAG(Ci ∪ Cy), and
3) LCAG(Cx ∪ Cy). So, the number of extra lineages D(Ci, Cxy) will be any
one of the three quantities: 1) D(Ci, Cx), 2) D(Ci, Cy), or 3) D(Cx, Cy). Here
we have used the maximum of them as the new approximation of D(Ci, Cxy).
Such approximation saves O (M) computation at each iteration, where M = |Ģ|.
Following such adjustment, the normalized distance values (DN ) are recomputed
according to the Eq. 4. New pairs of clusters are put under a new speciation node,
until the original multi-furcation is completely resolved.

The non-binary tree S′ may have more than one internal multi-furcating
nodes. To resolve S′ into a binary tree S, proposed refinement is applied on the
multi-furcating nodes occurring during the postorder traversal of S′. As individ-
ual refinement steps do not create any new multi-furcation, complete postorder
traversal refines S′ into a strict binary species tree S.

Table 1. Comparison of time and space complexity between COSPEDSpec and refer-
ence methods. M = |Ģ|. N is the number of taxa. Q is the size of largest population.

Method Time Complexity Space Complexity

SMRT [6] O
(
N5

)
O
(
N3

)

ASTRAL [20] O
(
N4M3

)
O
(
N4

)

iGLASS [12] O
(
NMQ2 +MN2

)
O
(
N2M

)

iGTP [4] and SD [19] O
(
N4M

)
O
(
N2M

)

Phylonet [30] [32] O
(
N2M2

)
O
(
N2

)

mulRF [5] O
(
N3M

)
O
(
N2M

)

MP-EST [16], BBCA [33] O
(
N3M

)
O
(
N3

)

COSPEDSpec O
(
N3 +MN2 lgN

)
O
(
N2

)

Computational Complexity: COSPEDTree [2] [3] involves O
(
N3

)
and

O
(
N2

)
time and space complexities for N taxa. COSPEDSpec does not in-

troduce additional storage complexity. Postorder traversal associated with the
proposed binary refinement involves processing at most O (N) internal multi-
furcating nodes. For each such node n ∈ V (S), computation of DN (Cx, Cy) for
individual pair of taxa clusters (Cx, Cy) within CladeS(n), requires O (M lgN)
time. Here, M = |Ģ|. The factor lgN is for finding the LCA(Cx, Cy) in a gene
tree G, where G contains at most N taxa. As |V (S)| ≈ O(N), refinements for all
multi-furcating nodes require O

(
N2

)
time to compute DN values. Thus, com-

plexity for the refinement of S′ is O
(
MN2 lgN

)
. So, overall time complexity

of COSPEDSpec is O
(
N3 +MN2 lgN

)
. Comparison of time and space com-

plexities between COSPEDSpec and the reference approaches are summarized
in Table 1.
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3 Experimental Results

COSPEDSpec is implemented in Python (version 2.7). Phylogenetic library Den-
dropy [29] is used for reading and processing tree datasets. Evolutionary relations
between individual couplets in the COSPEDTree [2] algorithm were computed
using the default rooting configuration provided in individual datasets.

3.1 Datasets Used

Simulated Mammalian Dataset: We have used the simulated 37-taxon Mam-
malian dataset with 447 gene trees, and the model species tree, as reported in
[20] [26]. We have used the simulated gene trees provided by [20]. There, different
degrees of ILS were modeled by scaling up (2X and 5X) or down (0.2X and 0.5X)
the branch lengths of the model species tree. Another species tree without any
such branch length scaling (denoted as 1X) was used to denote the default ILS
condition. For Mammalian 0.5X dataset, number of gene trees is 16000. Rest of
the datasets contain 4000 gene trees each. Such difference in the count of gene
trees is due to varying number of bootstrap replicates in gene tree simulation.

Simulated 100 Taxa Dataset: We have also used the simulated dataset of 100
taxa [31], containing ten different gene tree sets. Individual set consists of 25
different gene trees. As reported in [31], gene trees associate high topological
dissimilarities among themselves due to high degree of ILS. We have executed
COSPEDSpec and the reference approaches in all the copies, and reported results
for each of them separately.

Biological Dataset: We have analyzed five biological datasets for performance
comparison: 1) Apicomplexan dataset [30] [14] containing eight species and 268
gene trees; 2) Yeast dataset 1 [30] [24] containing seven species and 106 gene
trees; 3) Mammalian dataset [26] containing 37 species and 447 gene trees; 4)
Placental Mammal dataset [18] [27] containing 54 species and 6000 genes; and
5) Yeast dataset 2 [25] of 23 species and 1070 gene trees. The Mammalian [26]
dataset contains 440 distinct gene tree topologies out of 447 gene trees. As re-
ported in [26], [20], such difference in topologies is due to high degree of ILS,
without any recombination or other evolutionary processes. The Yeast dataset 2
[25] is also unique in the sense that no input gene tree topology exactly matches
with the model species tree topology.

3.2 Performance Measures

For evaluation of species trees obtained from different approaches, we have used
following performance measures:

A) Robinson-Foulds (RF) distance [23] between the inferred and the model
species tree, counting the number of bipartitions present in one of the trees, but
not in both. We have normalized the RF values by dividing the bipartition count
with (2N-6), where N is the number of taxa. Species tree having lower RF is
topologically closer to the model species tree.
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(a) RF measure comparison (b) DC measure comparison

Fig. 2. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with biological datasets. Both Phylonet and MulRF could
not parse Placental Mammal dataset. We could not compute DC values for Placental
Mammal dataset, since the dataset could not be parsed using Phylonet (used for DC
value computation). ASTRAL could not process Yeast 1 dataset since input gene trees
contain multi-furcation. Negative scale in y axis is used to mark the instances of zero
RF values.

(a) RF measure comparison (b) DC measure comparison

Fig. 3. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with simulated mammalian datasets. For the Mammalian-
0.5X dataset, both Phylonet and ASTRAL could not converge to a solution. Negative
scale in y axis is used to mark the instances of zero RF values.

B) Sum of deep coalescence count (sumDC) [19] [30], or the sum of extra lin-
eages XL(S, Ģ), computed using the routine available in Phylonet [30] package.
The value was normalized by dividing it with the number of input gene trees M .
Lower sumDC indicates better species tree. However, a species tree depicting
lowest sumDC may not be always the true species tree.

3.3 Performance Comparison

Performance of COSPEDSpec with respect to above mentioned measures is
benchmarked with the species tree estimation methods ASTRAL [20], Phylonet
[30], mulRF [5], and iGTP [4]. Only the heuristic (default) versions of Phylonet
[30] and ASTRAL [20] were tested, since their exact versions are applicable to
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(a) RF measure comparison (b) DC measure comparison

Fig. 4. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with simulated 100 taxa datasets. X axis denotes ten gene
tree datasets numbered 1 to 10.

at most 20 taxa. ASTRAL [20] was executed using its default settings, thus not
using any extra bipartitions generated from MP-EST and concatenation analy-
sis. Default rooting was employed for the output trees of ASTRAL, to compute
the sum of deep coalescence (sumDC) with respect to Ģ. Bayesian methods like
BEST [9], *BEAST [10], or BUCKy [15] are not experimented, since they are
computationally intensive even for the datasets involving more than 30 taxa.
Methods MP-EST [16] and RAxML [28] employ both sequence and topology of
input gene trees, thus not exactly comparable with COSPEDSpec.

Performance on Biological Datasets: Performance comparison between
COSPEDSpec and the reference approaches, when executed on the biological
datasets, is provided in Fig. 2. ASTRAL fails to process Yeast 1 dataset [24]
since it does not support non-binary gene trees. COSPEDSpec, on the other
hand, supports non-binary or incomplete gene trees. Both Phylonet and mulRF
packages exhibit parsing error for the Placental Mammal dataset. So we could not
compute the sumDC measure for this dataset. Overall we find that, COSPED-
Spec exhibits lowest or second lowest RF values for all datasets. In terms of
sumDC values, COSPEDSpec is only behind Phylonet and iGTP, both of which
employ parsimony technique to achieve low sumDC.

Performance on Simulated Mammalian Dataset: In this case, the tech-
nique mulRF was excluded from performance comparison, since it required more
than a day for processing such a large number of trees. Results in Fig. 3 show
that COSPEDSpec exhibits best performance across all the measures for the
Mammalian 1X dataset, which best resembles to the true biological dataset. For
other datasets, only ASTRAL consistently produces trees with lower RF than
COSPEDSpec. With respect to sumDC, COSPEDSpec performs better or equal
to the parsimonious approaches iGTP and Phylonet for almost all datasets.
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Further, for the Mammalian 0.5X dataset containing 16000 gene trees, both
ASTRAL and Phylonet having time complexities proportionate to O

(
M3

)
and

O
(
M2

)
, respectively, could not generate a solution in a day. COSPEDSpec, with

a time complexity proportionate to O (M), quickly produces the species tree (in
about 20 minutes), thus proving its utility in processing large datasets.

Performance on Simulated 100 Taxa Dataset: Performance comparison
between COSPEDSpec and the reference methods, with respect to the simulated
100 taxa dataset is shown in Fig. 4. Results for all ten gene tree sets have been
reported. COSPEDSpec produces lowest RF values for the majority of these
sets. Only the methods iGTP and Phylonet are comparable with COSPEDSpec,
in terms of the RF values. Considering the measure sumDC, COSPEDSpec per-
forms better than ASTRAL, and equal to the parsimonious methods Phylonet
and iGTP.

Discussion: Overall, the technique mulRF [5] based on minimizing the RF
value between S and Ģ, is computationally intensive for large datasets; such
minimization does not work well for high number of taxa, as shown in Fig. 4.
Parsimony approaches iGTP [4] and Phylonet [30] aiming minimum sumDC,
may converge to local minima as the number of taxa increases. Further, lower
sumDC values with respect to Ģ, do not always indicate lower RF with respect
to the model species tree. ASTRAL [20] produces species tree maximizing the
similarities with input gene tree quartets. For increasing taxa, maximizing such
quartet similarities may often lead to suboptimal solution, as found in the re-
sults for 100 taxa datasets. Both ASTRAL and Phylonet involves high time
complexity with respect to large number of gene trees. Further, ASTRAL does
not support non-binary gene trees. On the other hand, greedy heuristics em-
ployed in COSPEDSpec, produce better performance as the number of gene
trees or taxa increase. One disadvantage of COSPEDSpec is that, the underly-
ing supertree technique COSPEDTree [2] resolves couplets preferably with strict
consensus and most frequent relations (with respect to Ģ). If such relations are
not supported in the final species tree S, topological performance of S may be
low. However, inclusion of such non-consensus relations cannot be predicted from
input tree topologies, and is thus equally probable for other reference approaches
as well. Overall, COSPEDSpec involves low computation and high topological
similarities with respect to the model species tree. So it is applicable for large
biological datasets.

Executable: Executable of COSPEDSpec is provided in
http://facweb.iitkgp.ernet.in/∼jay/phtree/COSPEDSpec/cospedspec.html
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Abstract. A key idea in de novo secondary structure topology determination me-
thods is to calculate an optimal mapping between the observed secondary structure 
traces in a Cryo-EM density image and the predicted secondary structures on the 
protein sequence. The problem becomes much more complicated in presence of 
multiple secondary structure predictions for the protein sequence (for example 
those predicted by different prediction methods).  We present a novel computa-
tional method that elegantly and efficiently solves the problem of dealing with mul-
tiple secondary structure predictions and calculating the optimal mapping. The 
proposed method uses a two-step approach – it first uses the consensus positions of 
the secondary structures to produce top K topologies, and then it uses a dynamic 
programming method to find the optimal placement for the secondary structure 
traces of the density image. The method  was tested using twelve proteins of three 
types. We observed that the rank of the true topologies is consistently improved 
with the use of multiple secondary structure predictions over single prediction.  
The results show that the algorithm is robust and works well even in presence of er-
rors/misses in predicted secondary structures from the image or the sequence. The 
results also show that the algorithm is efficient and is able to handle proteins with 
as many as thirty-three helices. 

Keywords: Cryo-EM · Dynamic Programming · Graph · Image · Protein ·  
Secondary Structure 

1 Introduction 

The field of electron cryomicroscopy (Cryo-EM) has gone through dramatic growth 
in the last few decades, and has become a major technique in structure determination 
of large molecular complexes [8] . Unlike X-ray crystallography and Nucleic Magnet-
ic Resonance (NMR), Cryo-EM is particularly suitable for large molecular complexes 
such as viruses, ribosomes and membrane-bound ion channels [9-11]. Density maps 
with high resolution (2-5 Å), the atomic structure can be derived directly, since the 
backbone and large side chains are mostly resolved. However, it is computationally 
challenging to derive atomic structures from the medium resolution maps (5-10 Å). 
Two major methods have been previously used to derive atomic structures from the 
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medium resolution maps. The first is to fit a known atomic structure in the Cryo-EM 
map as a component using rigid-body or dynamic flexible fitting [12, 13]. The other is 
to use a template atomic structure from a homologous protein to build and evaluate 
potential models [14, 15]. The limitation here is the need for atomic structures that are 
either components of or homologous to the protein of atypical size. When there is no 
template structure with sufficient similarity, one must devise and use de novo me-
thods. These methods derive the structure from the intrinsic relationship among the 
secondary structures visible in the density map, such as α-helices and β-sheets. 

Although it is not possible to distinguish the amino acids at medium resolutions, sec-
ondary structures such as α-helices (red lines in Fig. 1A) and β-sheets (blue density vox-
els in Fig. 1A) can be identified [18-23]. We have recently developed StrandTwister, a 
method to predict the location of β-strands through the analysis of  β-sheet twist [24].  
A helix detected from a Cryo-EM image can be represented as a line, referred here as an 
α-trace, that corresponds to the central axis of a helix (red lines in Fig. 1B). Similarly, a 
β-strand can be represented as a β-trace that corresponds to the central line of the β-strand 
(Fig. 1B). Secondary structure traces (SSTs) refers to the set of α-traces and β-traces 
detected from the 3-demensional (3D) image. In order to know how a protein chain 
threads through SSTs, it is necessary to know which secondary structure trace is near the 
N-terminal of the protein chain and which trace follows next.  

 

Fig. 1. Secondary structures and topology. (A) The density map (gray) was simulated to 10 Å 
resolution using protein 3PBA from the Protein Data Bank (PDB) and EMAN software [1]. The 
secondary structure traces (red: helix sticks, blue: sheet, purple: β-strands) were detected using 
SSETracer [2] and StrandTwister [6], and viewed using Chimera [17]. For clear viewing, only 
those at the front of the structure are labeled. Arrows: the direction of the protein sequence; (B) 
The true topology of SSTs (arrow, cross and dot for directions); (C) red rectangles: helix seg-
ments; blue triangles ( ,, ,, , and  : β-strands; ". . .": loops longer than two amino acids.  

In order to help us determine the threading of the protein chain through the SSTs, 
we first use a computational method, such as Jpred [5], to predict the subsequences 
(sequence segments) of the protein sequence that are likely secondary structures and 
then map the SSTs to these subsequences. A topology of the SSTs refers to their order 
with respect to the protein sequence and the direction of each helix or strand. For 
example in Fig. 1, , … ,  represent the SSTs and  , , …   represent the 
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subsequences on the protein chain that correspond to secondary structures. In this 
case, SSETracer was able to detect twelve helices (red sticks in Fig. 1A) and one 
sheet (blue in Fig. 1A) from the density map. StrandTwister was then applied to the  
β-sheet density and it detected two (purple stick Fig. 1A and D13, D14 in Fig. 1B) of 
the four β-strands. For example, Fig. 1 presents a possible topology for the SSTs (it 
happens to be the true topology of this known protein structure).  Each stick/trace , 1, … , 14 corresponds to a sequence segment  , 1, … , 16. α-traces corres-
pond to α-helices on the sequence, and β-traces correspond to β-strands on the se-
quence.  Four sequence segments ,, ,, , and   are β-strands of a β-sheet. The 
true topology maps SSTs  , ,, , , , , , , , , , , ,   to 
( , , , , , , , , , , , , , ). Observe that the two β-strands        were note detected in the image. Also, note that there are two possible 
directions when mapping sequence segment  to   (arrows of Fig. 1A and 
dot/cross in Fig. 1B). We have shown previously that finding the optimal mapping 
between SSTs and sequence segments is an NP-hard problem [25]. A naïve approach 
to find the optimal solution requires Ω ! 2  time, where N is the number of SSTs. 
A dynamic programming algorithm has been previously devised to find the optimal 
match in 2  computation time, reduced from ! 2 . In a general case in 
which  sequence segments are mapped to  SSTs (assuming , Δ

), we previously gave a constrained dynamic programming algorithm and  short-
est path algorithm (in DP-TOSS) to find top  best mappings in Δ 2  time 
[26].  

An optimal topology of SSTs corresponds to a match with the optimal score that 
often evaluates the overall differences between the two sets of secondary structures. 
The differences can be measured with various factors such as the length of the sec-
ondary structures, the distance between two consecutive secondary structures, and the 
likelihood for amino acids being on a loop.  

Given a set of SSTs and a set of predicted sequence segments, matching deter-
mines their optimal mapping. However, the accuracy of secondary structure predic-
tion is about 80%, [7, 27-29], similar to that of secondary structure detection from 
medium resolution images. Alternative positions for an individual secondary structure 
are often needed due to the inaccuracy in the detection or prediction (Fig 2.). Howev-
er, this approach faces huge computational cost. Let N be the number of secondary 
structures in a protein. Suppose there are three alternative positions for each helix 
segment on the sequence and four alternative positions for each of the SSTs, then 
there are 3 4  possible pairs of secondary structure sets to be matched. The total 
number of possible matches will be 3 4 ! 2 , since there are ! 2 different ways 
(or different topologies) to match a given pair.  

Designing de novo methods for determining secondary structure topology from 
Cryo-EM data is a challenging problem. Although a few de novo methods have been 
developed, the efficiency and accuracy of these methods leave room for substantial 
improvement. One such method, Gorgon, formulates the topology problem into a 
graph matching problem and searches for possible topologies using A* search [30]. 
Another method, DP-TOSS, formulates the topology problem as a shortest path prob-
lem in a graph and uses the K shortest paths algorithm in combination of dynamic 
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programming to produce a set of K top-ranked topologies [3]. DP-TOSS shows im-
proved time and accuracy over Gorgon, particularly when working with large proteins 
[3].  

 

Fig. 2. Secondary structure predictions from multiple servers. The amino acid sequence of 
protein 2XVV (PDB ID) is labeled at the outermost circle. The positions of helices are shown 
as red rectangles from outer to inner circles as  the true position of the secondary structures 
obtained from PDB, the prediction using SYMPRED[4] , JPred[5], PSIPRED[7] and 
PREDATOR[16] respectively. The α-traces detected from density map using SSETracer are 
shown in the center. 

However, both methods address the mapping problem rather than the placement 
problem. One either has to submit the best estimated secondary structure positions to 
DP-TOSS or Gorgon, or to run either programs multiple times on alternative positions 
that are produced from multiple secondary structure prediction servers. We previously 
attempted a dynamic graph approach in which the alternative positions are handled in 
the graph update process [31]. This approach yielded, on average, running time that 
was about 34% lower than a naïve way. In this paper, we present a new more  
effective two-step approach. The consensus positions of the secondary structures will 
be used in the first step to obtain top K topologies using DP-TOSS. For each such 
topology, an efficient dynamic programming algorithm is devised to find the optimal 
placement of SSTs. To the best of our knowledge, this is the first algorithm that  
handles multiple predicted secondary structures. Moreover, the results show the  
algorithm is efficient in terms of running time and improves the ranking of the true 
topology.  
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2 Methods 

2.1 The Secondary Structure Mapping Problem 

Suppose that there are  helices and  β-strands detected from a 3D image and 
. Suppose that there are  helices and  β-strands predicted from 

the amino acid sequence of the protein, and   . For simplicity in de-
scription, we assume  and  and consequently . Our actual 
algorithm and implementation handle the case where .  Let the sequence 
segments of the secondary structures be , , … , , where  denotes the  
sequence segment from the N-terminus. Let the SSTs detected from the density map 
be , , … , , and . For convenience, we let , , … ,  be the 
α-traces, and , , … ,  be the β-traces. The secondary structure 

mapping problem is to find a mapping σ from , , … ,   to , , … ,  such 
that two criteria are satisfied. (1) Both  and  correspond to a helix or both 
correspond to a β-strand; (2) The mapping score is optimal.  A variety of factors have 
been considered to score a mapping. The length of a helix segment is represented as 
the number of amino acids involved in the secondary structure. It can be converted to 
the axial length of the helix in 3D using 1.5Å rise between two amino acids. There-
fore the length of the helix can be used in comparison during mapping. The length of 
a loop between two consecutive helices can also be considered in scoring a mapping. 
A rough estimate of the loop length between two sticks is the Euclidean distance be-
tween the two end points of two sticks. However, a better estimation is to measure the 
length along skeleton image between the two end points [32-34]. Loop score that 
measures the likelihood of a loop and other empirical constraints have also been used 
[35]. The scoring function used in this paper consists of skeleton length between two 
secondary structure traces, the length of a secondary structure and the loop length. 

Given a specific set of secondary structure traces and a specific set of predicted 
secondary structure sequence segments, the best match is determined through the 
mapping process. In order to cut down the computation, we took a two-step approach 
in this paper. In the first step, we used the consensus sequence segments predicted 
using SYMPRED [4] as , , … , , and the detected SSTs as , , … , . 
The idea is to use the best estimation of the secondary structure positions in the first 
step to obtain a small number of possible topologies. We applied DP-TOSS, a dynam-
ic programming approach built for a topology graph, to obtain the top ranked topolo-
gies [3]. For each possible topology, the best placement of the secondary structures 
will be searched in the second step. 

2.2 Dynamic Programming for Finding the Optimal Placement  

When there is a small pool of highly ranked topologies, it is possible to identify the 
optimal placement of secondary structures for each such topology. The idea is to 
enrich the ranking of the true topology using the optimally placed secondary structure 
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positions. In this paper we show that there is an efficient dynamic programming me-
thod to find the optimal placement as long as the topology is given.  

Let us represent the alternative sequence segments for secondary structure as the 
following. Let ,  be the th alternative segment on the amino acid sequence for 
secondary structure , where 1, 2, … , , 1, 2, … , . For a given topology, the 
order of SSTs and the direction of each trace are known. Let , , . . . ,   be 
mapped to , , … , . The optimal placement of secondary structures 
on the sequence is to find a placement of the sequence segments , , , , … , , , 1 , , … , , such that the score of mapping , , , , … , ,   to , , … ,   minimized.  

A naïve way to find the best placement of a topology is to exhaustively score   
different ways to map a set of alternative sequence segments to the set of SSTs. A 
better way is to use a dynamic programming where we store and reuse information.   

Let ,  denote the best cost that can be obtained when , , … ,  is 
mapped to , , … ,  with the  placement  used for . Then 

for any position  of ,  1,  is only affected by the values , , 
where 1, 2, … , , and the score obtained from the relative positioning of the  
mapped segment and the 1 th mapped segment. More precisely, for ∈1, 2, … , , 
 1,        min∈ , ,…,  ,  ,    , ,    ,   

 
Note that  measures the length of the secondary structure trace   

and  ,  measures the skeleton length between    and   in 

the 3D image. Ideally, ,  corresponds to the length of the loop con-
necting the two secondary structures and  measures the loop length between 
two consecutive secondary structures  and  on the sequence.  

2.3 Secondary Structure Predictions from Multiple Servers 

We submitted protein sequences to five online servers (SYMPRED[4] , JPred[5], 
PSIPRED[7], PREDATOR[16], and Sable [36]) to perform secondary structure pre-
dictions. Since there are always differences in the above predictions, we derive an 
initial set of positions of secondary structures. The initial positions include the pre-
dicted positions using SYMPRED together with major predicted difference using 
other four methods. Such initial positions were used to obtain initial topologies using 
DP-TOSS. Alternative positions of each secondary structure were generated based on 
the results from five secondary structure predictions. An optimal placement of SSTs 
was searched among alternatives for each of the top ranked topologies.  
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3 Results  

The accuracy and efficiency of the two-step approach were tested using three kinds of 
data: helix-only proteins (five), α-β proteins (five) and Cryo-EM proteins (two). The 
three datasets represent increasing level of difficulty in the data. The helix-only pro-
teins are the largest in the dataset, ranging from 207 amino acids (2XB5) to 585 ami-
no acids (2XVV) in length. They are a good test case for the efficiency of our method. 
Proteins with β-sheets are generally more challenging than helix-only proteins in 
terms of accuracy. Firstly, detection of β-sheets is generally more challenging than the 
detection of helices. Secondly, the close spacing of β-strands makes it more challeng-
ing to identify the correct topology. True atomic structures of the proteins were down-
loaded from the PDB. For the helix-only proteins and the α-β proteins, each atomic 
structure was used to simulate a density map at 10Å resolution using EMAN software 
[1]. Helices were detected from such density maps using SSETracer [2], and are 
represented as α-traces (sticks in Fig. 3).  

 

Fig. 3. The true topology derived from the two-step approach. The true topology is ranked the  
40th for protein 2XB5 (PDB ID) in (A) and the 2nd for protein 1BJ7 (PDB ID). It is shown in 
rainbow color with blue corresponding to the N-terminal of the chain. The SSTs (sticks) were 
detected using SSETracer [2]and the connection was selected from skeleton points using  
DP-TOSS[3].  

In order to test if our two-step approach works for the proteins with β-sheets, we first 
used the β-traces derived from the true structure for those proteins in the α-β dataset. 
The computationally detected β-traces were then used in the test involving Cryo-EM 
proteins. For each of the proteins in the test, multiple secondary structure predictions 
were performed and the predicted positions of secondary structures were used as the 
input information from protein sequence. To find the top 1000 ranked topologies, the 
initial secondary structure positions were used to match with the SSTs.  

Each of the initial 1000 topologies was reevaluated using the proposed dynamic 
programming placement method in searching for the optimal placement. The 1000 
optimally placed topologies were sorted based on the mapping score. The rank of the 
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true topology was compared among three methods: the one that uses the true positions 
of the secondary structures on the sequence, the one that uses consensus (SYMPRED) 
prediction, and the one that uses multiple secondary structure predictions with the 
dynamic programming algorithm searching for an optimal placement. 

As an example for 2XB5, there are thirteen helices, out of which SSETracer de-
tected nine α-traces from the density image (Fig. 3 & Table 1). Four short helices 
were not detected. The detected helices may be shorter/longer or shifted. The consen-
sus server (SYMPRED) predicted ten of the thirteen helices from the amino acid se-
quence. Using the predicted positions provided by SYMPRED, the true topology was 
ranked the 977th. Yet, when more alternative predictions are available from five pre-
diction servers, our dynamic programming algorithm is fast enough to explore more 
alternative positions. It takes 6.94 seconds to generate the top 1000 topologies and to 
find each optimal placement for all 1000 topologies. The true topology was ranked 
the 40th (Fig. 3), much improved from 977th when only SYMPRED was used. When 
the true sequence position of secondary structures is used, the true topology was de-
rived by our method DP-TOSS [3] as the 11th (Table 1). Although there is inaccuracy 
in both secondary structure predictions and the SST detection, Rank_d (40th ) is close 
to Rank_t (11th ), both near the top of the huge solution space for possible topologies. 
This suggests that the true topology can be ranked near the top even when two sets of 
non-perfect data are matched.  

Ultimately the rank of the true topology is determined by the overall similarity of 
the two sets rather than a few individuals, although they may affect to some extent.  
Similar message was suggested from the test using an α-β protein 1BJ7 (Fig. 3 and 
Table 1). In this case, the true topology is ranked as the 2nd when multiple secondary 
structure predictions and optimal placement were used, much improved from the rank 
(>1000) when one prediction is used. It is even better than the rank (4th) when the true 
secondary structure positions were used. 

We applied the two-step approach to two experimentally derived cryo-EM density 
map, (EMDB_5030 and EMDB_1780) that were downloaded from Electron Micro-
scopy Data Bank (EMDB). Each density map corresponds to an atomic structure, and 
therefore can be used to test the accuracy of our approach. We extracted the density 
component corresponding to chain R of the protein for EMDB_5030 and chain K for 
EMDB_1780 respectively (Table 1, section 3). In the case of EMDB_5030, all three 
helices and three β-strands were detected using SSETracer and StrandTwister. The 
true topology was ranked 55th when multiple secondary structure predictions and 
dynamic programming placement were used. Surprisingly, the rank (47th) is even 
better than the rank derived using true secondary structure positions on the protein 
sequence.  This is probably due to the existence of inaccuracy in the SST detected 
from the density image. Although the two Cryo-EM proteins are smaller than most 
other proteins in the test, they are the first two cases demonstrated the success in to-
pology determination directly using computationally obtained β-traces and multiple 
secondary structure predictions. Overall, our two-step approach shows improved 
ranking of the true topology for nine of eleven tested proteins, when it is compared to 
the method that uses a consensus secondary structure prediction. For the rest two 
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cases (2KZX, 1OZ9), the rank of the true topology is 1st and the 10th respectively, 
already near the top of the list.  

Table 1. The rank of the true topology and run-time of the two-step approach 

PIDa #a-Helicesb 
#b-Strandsc 

 
#a-stk/ 
 b-stkd 

# SS(a-hlx/
b-strand)e Rank_tf Rank_cg Rank_dh 

Time 
(sec)i 

  Helix-only Proteins  
2XB5 13 0 9/0 10/0 11 977 40 6.94 

3ACW 17 0 14/0 14/0 408 >1000 485 15.73 
3ODS 21 0 16/0 17/0 12 198 22 977.18 
1Z1L 23 0 15/0 17/0 157 >1000 568 14.19 
2XVV 33 0 19/0 27/0 21 >1000 87 1013.0 

    α-Helix & b-Sheet Proteins 
1BJ7 1 9 1/9 1/9 4 >1000 2 7.48 

2L6M 2 3 2/3 3/3 6 >1000 42 37.34 
2KZX 3 3 3/3 3/5 10 10 10 14.33 
1J1L 4 5 4/5 4/5 16 16 14 16.89 
1OZ9 5 5 5/4 5/3 2 1 1 2.69 

   Cryo-EM Proteins 
3FIN_R 
(5030)* 

3 3 3/3 3/3 55 97 47 2.11 

3IZ6_K 
(1780)* 

3 5 2/5 2/5 2 6 2 12.56 

 aThe PDB ID with chain; * EMDB ID of the experimentally derived Cryo-EM map; 
 bThe number of helices in the true structure;   
 cThe number of β-strands in the true structure;   
 dThe number of α-traces/β-traces detected from the 3D image;  
 eThe number of helices/β-strands predicted by SYMPRED;  
 fThe rank of the true topology using the true sequence position of secondary structures;  
 gThe rank of the true topology using consensus secondary structure position SYMPRED;  
 hThe rank of the true topology using multiple secondary structure predictions with dynamic 
programming algorithm for optimal placement;  
 iThe run-time (in seconds) of the two-step approach. It includes the time to generate top 1000 
topologies and the  total time to find each optimal placement for 1000 topologies; 

The execution time of the algorithm is dominated by the first step as the dynamic 
programming step requires a relatively short execution time. The total execution time 
to determine the best topology for protein 2XVV took a total of 1013 seconds out of 
which DP-TOSS took 1002 seconds (Table 1). The dynamic programming algorithm 
scales linearly to the product of the number of secondary structures and the number of 
possible alternatives for each secondary structure. The experiments in this paper were 
executed on a 2x Intel Xenon E5-2660 v2, 2.2GHz server machine.  
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4 Conclusions  

Due to inaccuracy in the estimation of secondary structures, determination of the to-
pology for SSTs requires the exploration of alternatives. Effective methods are 
needed to explore the large solution space resulted from the alternatives. We propose 
a dynamic programming algorithm to find the optimal placement when a topology is 
given. This algorithm is combined with our previous mapping algorithm and the 
shortest K paths algorithm to form a two-step approach. A test using twelve proteins 
shows that the two-step approach improves the ranking of the true topology as it is 
compared to using single consensus prediction. We demonstrate for the first time that 
computationally detected helices and β-strands from an experimentally derived Cryo-
EM density image can be combined with multiple secondary structure predictions to 
rank the true topology near the top of the list. Our previous methods were mostly 
tested using the true positions of secondary structures. Now we have made a big step 
ahead by establishing an efficient algorithm to address the increased computation due 
to the alternatives. 
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Abstract. KINARI-2 is the second release of the web server KINARI-
Web for rigidity and flexibility of biomolecules. Besides incorporating
new web technologies and making substantially improved tools available
to the user, KINARI-2 is designed to automatically ensure the repro-
ducibility of its computational experiments. It is also designed to fa-
cilitate incorporating third-party software into computational pipelines
and to simplify the process of large scale validation of its underlying
model through comprehensive comparisons with other competing coarse-
grained models. In this paper we describe the underlying architecture of
the new system, as it pertains to experiment management and repro-
ducibility.

1 Introduction

Modeling Protein Flexibility. Structure, flexibility and motion are the key
elements that relate a protein to its function. Yet current experimental meth-
ods and simulation techniques to determine flexibility parameters and to induce
large scale motions are expensive, difficult and insufficiently developed. The re-
cent successes in simulating fast motions [7] do not scale when applied to these
much more challenging types of conformational changes. A different approach to
understanding large-scale domain motions is to use coarse-grained models.

One of the best studied ones is the Gaussian Network Model (GNM), for which
servers [16] and third-party software [9] are available. A different coarse-grained
approach, pioneered by Thorpe and collaborators [14,13], relies on mathematical
results from combinatorial rigidity theory.

These coarse-grained graph-based models for rigidity analysis of protein struc-
tures have been around for over 15 years and several implementations of this
method are available. Several implementations exist, such as the stand alone ex-
ecutable ProFlex-FIRST [8], or the web server FlexWeb http://flexweb.asu.edu.
Yet, the model is still far from providing convincing evidence that the biologically

This project is supported by NSF CCF-1319366, NSF UBM-1129194 and
NIH/NIGMS 1R01GM109456.

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 72–83, 2015.
DOI: 10.1007/978-3-319-19048-8_7

http://flexweb.asu.edu


Managing Reproducible Computational Experiments 73

relevant (structural and functional) information that has been demonstrated on
a handful of protein structures can be automatically extracted on a larger scale.
This is due, primarily, to the lack of large scale validation efforts. For instance,
several studies have pointed out the sensitivity of the method to cut-off values
and choice of parameters. Inconsistencies in the reported results obtained by dif-
ferent implementations have also been identified recently, and they are difficult
to explain without the ability to easily reproduce the computational experiments
that generated them.

KINARI-Web Server. Similar to FIRST in that it uses the rigidity based
approach, KINARI-Web (http://kinari.cs.umass.edu) is a server for rigidity and
flexibility analysis of biomolecules developed in the group of the senior author
of this paper. There are however several differences in the underlying modeling
and in the algorithms used in KINARI, compared to the other available imple-
mentations. FIRST used a strict, pre-determined scheme for building a graph
from a molecule, in which the main parameter that the user can vary is a cut-off
value for the inclusion of hydrogen bonds. This value is based on a bond en-
ergy calculated with the Mayo formula [10]. FIRST does not curate the protein
and the user has to preprocess a PDB file prior to submitting it for the rigidity
analysis. By contrast, KINARI included from the very beginning several tools
for curating the protein and the option of altering the mechanical model for
experimenting with its parameters. KINARI relies on several third-party, freely
available protein curation tools such as Reduce (for adding Hydrogen atoms
to protein structures determined by X-ray crystallography) or HBPLUS (for
computing the Hydrogen bonds), as well as in-house implementations of other
relevant atomic interactions (such as hydrophobics) and energies. In addition,
KINARI-Web offers an integrated JMol visualizer and it returns to the user the
files produced during curation. This facilitates the process of building the right
model and computationally experimenting with it, and it allows for a better
degree of reproducibility of the results. Indeed, FIRST’s results are often impos-
sible to reproduce without direct access to the specific, typically not publicly
available, curated protein file that was submitted for analysis.

Reproducibility of KINARI-Web Experiments. The purpose of offering
these options in KINARI is the desire to make rigidity analysis a computationally
reproducible process. Our goal is to have a system in which the knowledge of the
PDB id of the protein or access to it in a PDB-formatted file, plus knowledge
of the parameters used during the modeling process would make it possible for
any reader of a paper describing a rigidity analysis experiment to reproduce it.
Towards this goal, KINARI also offered access to the recorded options selected
during the curation process in a configuration file that was made available at
the end of the process.

However, with the increased use of the system and several new applications
being integrated into KINARI, we reached the limitations of the initial design.
This paper describes the new, redesigned user and experiment infrastructure

http://kinari.cs.umass.edu
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underlying KINARI-2, whose goal is to permit full reproducibility of KINARI-
integrated computational experiments. In addition, we are improving and ex-
tending the curation process, and have designed a series of templates (based on
the Model-View-Controller software design paradigm) that will facilitate adding
new modules to KINARI which incorporate third-party software. The need for
this option is described next.

Validation. A major goal of this line of research, independent of the software
tool that one uses, is a thorough validation of the rigidity-based coarse-grained
modeling approach. The two implemented versions of FIRST already used dif-
ferent algorithms. These groups, and other researchers [14,13,5], reported on a
number of studies on specific proteins, where the rigid cluster decomposition
results obtained computationally matched protein flexibility properties observed
in lab experiments. However, more recent, slightly larger scale studies such as
[17,6], observed that the method is sensitive (among others) to the placement
of hydrogen bonds, and that there is no universal cut-off value for the hydrogen
bond energy which would give biologically meaningful results for all the proteins
in a specific dataset. These studies point to the need for systematic and com-
prehensive validation of rigidity analysis results, and of building benchmarking
datasets to assist with this goal.

One approach is to compare the results obtained through rigidity analysis
with other coarse-grained approaches, for which validation studies have been
conducted. These validation studies can themselves be by comparison with other
approaches, but in the end the results of a cluster (or domain) decomposition
should have been compared with biologically relevant properties of specific pro-
tein datasets. Moreover, we do not want just to make one series of runs on a
system versus another and compare them. We want to provide a tool which is
easy to extend for any kind of cluster-decomposition method and for any avail-
able dataset. Thus, from the very beginning we set as our goal to develop a
system in which all computational experiments would be fully reproducible.

Reproducible Protein Dilution Experiments. We illustrate the need for
such an infrastructure through a case study performed in our group and reported
in a companion paper [4]. We have developed there a method for visually com-
paring the rigidity analysis results on sets of proteins related by some common
type of computational experiment. Ultimately, of course, the goal is to compare
the cluster decompositions for any experiment on any family of proteins, but
this is, algorithmically, a very challenging task. To get started, we have chosen
two benchmark applications: Dilution and Mutations on proteins.

The first one is a simplified model for protein unfolding. It is one of the
first applications to demonstrate the usefulness of rigidity analysis and has been
described in [13,12]. Several subsequent protein dilution studies were conducted
by other groups. With the existing tools provided by FIRST, the results are
visualized and reported using a 1D comparison plot called a dilution plot. Our
visualization method proposed in [4] is much more intuitive, being based on
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3D structures. Since our dilution process relies on a different algorithmic kernel
(KINARI versus FIRST), we wanted to make sure that its results are compatible
with those reported in the literature. For this purpose, we have re-implemented
the 1D dilution plots and ran the dilution experiments (in KINARI) on data
for which dilution experiments done with FIRST were reported in the literature
[17,6]. In this way, we came very quickly across a situation where strikingly
different results were obtained. Tracing back the source of the discrepancy, we
found a large difference between the number of hydrogen bonds calculated by
us using HBPLUS [11] (which is third party software integrated with KINARI
to perform these calculations) and the number reported in [6] for the same
protein. Running a different software tool [15] for placing hydrogen bonds still
did not justify the discrepancy. We conjectured several possible scenarios that
could explain the results, but the lack of access to the precise data file on which
the outlier experiment of [6] was conducted made it impossible to settle to a
definitive explanation and remedy. More details about this case study appear in
[3], with an abstract in [4].

This experience prompted us to consider providing, with KINARI, an infras-
tructure where reproducible computational experiments could be carried by all
interested users. The purpose of this paper is to present the design of such an in-
frastructure in the new, extended and improved web server KINARI-2, planned
to be publicly released by the end of the year.

Reproducibility of Protein Data Curation. It is well known that the data
deposited in the Protein Data Bank is not of uniform quality: resolution and
B-factors are parameters recorded with each file which may help with judging
the quality of the experimental data deposited in the PDB. A number of en-
tries in the PDB have been declared obsolete and replaced by others. Tools for
checking the quality of crystallographic data are also available, such as MolPro-
bity [2]. However, the curation process for PDB data required as preprocessing
prior to rigidity analysis is not only about the acuracy of the molecular model.
Kinari Curation includes several steps that are performed with third party soft-
ware, and different software performing the same task may produce different
results. These steps include: adding the hydrogen atoms if the data comes from
an X-ray crystallography experiment; pruning the hydrogen bonds according to
a user-selected cut-off value; selecting the model from among several available
in a file containing data from an NMR experiment; computing the hydrogen
bonds and hydrophobic interactions; building a biological assembly or, possibly,
a small crystal, etc. Wihout precisely recording the entire sequence of steps per-
formed during a curation experiment, the reproducibility of a subsequent rigidity
analysis experiment may be compromised. Therefore, we are placing maximum
emphasis on the management and reproducibility of curation experiments in
KINARI.



76 J.C. Bowers et al.

2 Methods and Design

The new KINARI is based on a system to manage users and their experiments
in such a way that: (a) user privacy is guaranteed (we do not require registration
nor verification of the user’s identity); (b) it is easy to get started and resume
experiments (a new user account can be set up at any time, and, within a cer-
tain time span, the user can return and still find around, in that account, the
previously computed data); (c) the user can download all the files resulting from
the computation done in KINARI, including a readable configuration file that
keeps track of all the actions performed on the input PDB file, and (d) the user
can return, upload the previously saved files from some unfinished experiment,
and resume the experiment. Since we do not retain the user experiment data in-
definitely (the temporary storage is cleared automatically during routine main-
tenance procedures), this ensures that the users can conduct longer experiments
in several sessions, and protects them against other unwanted interruptions such
as those due to network connectivity disruptions.

Besides this basic user and experiment management system, our new design
has built-in capabilities for extending the system with new applications, which
correspond to experiment types. Each experiment consists in running one of
these apps. A series of experiments can then be either manually or automatically
streamed into an automatically executed sequence, thus permitting the design
of larger scale experiments on single molecules or on large datasets.

The server side application is implemented in PHP and Python and invokes
JMol and external binaries. It is hosted on an Apache web server. The user
interface is written in HTML5, CSS, JavaScript, JQuery and JsMol scripting.

We describe now the overall structure of the system, and focus afterwards on
the infrastructure for new application, experiment and step design.

2.1 System Design

The infrastructure of KINARI-2 is organized as a collection of applications
(apps), each of which is responsible for performing a particular experiment, or
set of computational tasks. The web server also has a Main component which
serves to log users into the system and provide tools for managing a user’s ongo-
ing or completed experiments. When the user first logs in she is presented with a
list of her experiments and from there can resume an ongoing experiment, delete
experiments, or start new experiments. Once the user chooses to either resume
an ongoing experiment or create a new experiment, control is handed off to the
appropriate app.

For organizational purposes we group apps into domains based on what type
of data the application operates on. For instance, the Gaussian Network Model
(GNM) app included now in KINARI-2 operates on biomolecules, and is grouped
within the “Biomolecules” domain. An overview of this structure is shown in
Fig. 1.
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Kinari2 System Architecture
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• Step1 
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• … 
• Conclude 

…

…

Lib

Fig. 1. The architecture of the system

2.2 Application Design

Each application is broken into a series of logical steps. For instance, the GNM
app example discussed in Sec. 3 performs five steps: Input Retrieve, which re-
trieves a PDB file from the user; Process PDB for GNM, which processes the
PDB in order to produce the appropriate input files for the gnm-domdecomp.e
binary [9]; Run GNM, which runs the gnm-domdecomp.e binary to output a
domain decomposition file; Prepare GNM for JMol, which takes the domain de-
composition file produced by gnm-domdecomp.e and produces a JMol script for
visualizing the results; and Visualize GNM, which displays a JMol visualization
of the domain decomposition to the user.

The Control Flow Graph. In the GNM app example, the control flow of
the experiment is linear–each step follows directly from the previous. In other
words, this simple app is obtained by pipelining several steps. However, for
certain applications this is not the case. In all applications the control flow
between steps forms a connected directed acyclic graph (DAG) with a single
initial step (of in-degree 0) and a single final step (of out-degree 0). The initial
step is typically an input retrieval step for obtaining a PDB or other input file.
This can be obtained directly from the user using a file upload or copy-and-
paste, or the user can select to retrieve a file from a publicly available database,
such as the RCSB [1], or select from prebuilt datasets that we curate in-house.
All applications end with a Conclusion step, which gives the user the option to
download the entire history of the concluded experiment. The result can then
be transferred and serve as input to another experiment.

If the out-degree of a step is greater than one, then the step is a branching step.
Here the “next step” may be determined by a user parameter or a computation.
For instance, in the Biomolecule Curation app, after the Summary step which
gives the user a summary of the contents of the file they selected in the Input
Retrieval step, the next step depends on whether the PDB file was obtained
using X-Ray Crystallography or NMR.
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Implementation in the Model-View-Controller Paradigm. Each appli-
cation is implemented as a PHP program in the Model-View-Controller (MVC)
paradigm. Each app has a main application controller, implemented in PHP,
which is responsible for setting up the input files to each step and for navigat-
ing between steps. Each step is managed by its own step controller, which is
responsible for getting additional user parameters by sending a view to the user.
Views are generated as HTML5/JavaScript code, and may contain controls for
gathering user defined parameters. These are sent back to the step controller.
Once the step controller has gathered the necessary input parameters from the
user, it performs its particular task, which typically means executing a python
script or binary to generate output files. After executing its task, the step con-
troller shows an output view to the user which lists all files generated as output
of the step and may include JMol visualizations. The user is then given the op-
tion of continuing to the next step. The state of an experiment is maintained
by an Experiment Configuration File, which is a record of all tasks performed
by the application for the current Experiment. The Experiment Configuration
File is designed to store all information needed to reproduce an experiment from
scratch. See Sec. 2.3.

Navigation. The steps performed during a particular experiment form a path
in the control flow graph of the application. This history path is shown to the
user in the gray navigation bar across the top of the screen. See Fig. 2. When
the user clicks on a previous step the main controller backtracks the experiment
to the state as it existed before the selected step was originally performed. In
other words, all data output by that step and any subsequent steps are erased as
if the subsequent steps had not been performed. This allows the user to tinker
with parameters at any step, see the results, and backtrack as necessary to fine
tune an experiment.

Fig. 2. Example of navigation in the GNM application case study. Top: the user is
on the “Prepare GNM for JMol” step. The current step is displayed in red and the
previous steps are highlighted in blue. The user backtracks to a previous step by clicking
on it. Backtracking removes the steps that occurred after the selected backtrack step.
Bottom: the steps in the history after the user backtracks to the “Process PDB for
GNM step”.
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Fig. 3. Screenshots of the visualization step of the GNM application. The gray nav-
igation bar across the top allows the user to backtrack the experiment to a previous
step.

2.3 Managing an Experiment

An application manages an experiment from start to finish. The goal of our
system design is to enable complete reproducibility for each experiment. To do
this we require two main components, an experiment folder for storing all inputs
and outputs for all steps of the experiment, and an experiment configuration file
detailing the parameters used to perform each step. This allows an experiment to
be rerun from start to finish using exactly the same parameters and allows each
step to be independently verified. The final Conclusion step in each application
gives the user the option of downloading the Experiment Folder which contains
the Experiment Configuration File.

Experiment Folder. The system creates a new Experiment Folder each time
the user starts a new experiment. The folder contains the Experiment Configu-
ration File which stores metadata about the experiment, as well as a separate
output folder for each completed step in the current experiment. Any output
files produced by a step are placed in this folder. These output files may then
be used as input files to future steps.

ExperimentConfiguration File andReproducibility. Each step performed
by the user is recorded in an Experiment Configuration file (stored as an XML
document). The file stores the current state of the experiment which includes the
entire history path of the experiment. For each step we record what input files and
parameters were used by the step and what output files were created.
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2.4 Step Design

Each step in an application is managed by a step controller which performs a
series of tasks. The main lifecycle of a step is as follows.

1. The app’s main controller sets the input files and parameters for the step
and hands control over to the step controller. The input files to a step must
be output files from a previous step.

2. The step controller shows the user an input web page. This page summarizes
what the purpose of the step is, and may obtain additional user parameters
in the form of HTML input controls.

3. Any user parameters are sent back to the step controller when the user clicks
a “Run this step.” button on the web page.

4. The step controller performs its particular task, typically by executing a
python script or binary on its input files with any supplied user parameters.
For instance, in the GNM app (Sec. 3), the Run GNM step executes the gnm-
domdecomp.e binary to produce the domain decomposition files (dom.txt
and dom1.txt).

5. The output of (4) is written to the server’s file system in the step’s output
folder.

6. The input files, user parameters from (3), and output files generated by (4)
are recorded in the Experiment Configuration File.

7. The user is shown an output page that states that the step was completed
and allows the user to download the output files from the step. This page
also shows a “Go to next step” button.

8. When the user clicks the “Go to next step” button, the app controller is
invoked to load the next step controller and start the process over.

Figure 4 shows a flowchart of the steps above.

Step Lifecycle

App Controller

Step Controller1. Set input files and parameters

Web Page

2. Show user an input page

3. Get user parameters

4. Process step using parameters from 3.

Run External Code Download a file

Experiment XML

6. Record user parameters  
and output files from 3. and 5.

8. Go to next step

Filesystem

5. Produce output files

Web Page

7. Show output page

Fig. 4. The lifecycle of a step in an application
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3 Results

We illustrate the described methodology with a simple application implemented
in our new system, and with a sketch of some representative steps from the larger
Curation application, which was redesigned both for guaranteeing reproducibility
and for adding much improved visualization tools.

GNM: An Example of a Pipelined Application Running Third-party
Software. Figure 5 illustrates an entire application, chosen to be as simple as
possible for illustration purposes. This application starts by retrieving a protein,
then runs the GNM domain decomposition program [9] on it, and ends with
a visualization of the results in a JMol applet. This application is obtained by
sequentially executing the following five steps. Each step except the first one
retrieves its necessary files from previous steps, and returns the results in a
step-specific folder from which future steps can retrieve them.

1. Input Retrieve: gets an unprocessed PDB file using user input (either from
the RCSB database, or from a file upload, etc.)

2. Process PDB for GNM: runs a python script on the PDB file to create the
correct inputs for the external, third-party GNM application.

3. Run GNM: runs the gnm program on the files produced in the previous step.
4. Prepare GNM for JMol: runs a python script on the domain file produced

by the previous step to obtain a JMol script for visualizing the results of
GNM.

5. Visualize GNM: loads the JMol script produced by the previous step and
shows the outcome of the script in a JMol visualizer.

The red arrows in Fig. 5 show that the input of each step is given by the output
of previous steps. For instance the output file produced by the Run GNM step
is given as input to the Prepare GNM for JMol step. It should be noted that
the input files to a given step may be output files from any previous step, not
just the step immediately prior. The mapping of output files from prior steps to
input files for each step is saved as part of the Experiment Configuration File.

Curation: An Example of a Branching Application. The Curation appli-
cation starts by retrieving the file, after which a Summary of the biomolecule is
computed. This extracts the experimental method and branches into a step that
extracts for curation a single model from the PDB file (if the method was NMR)
or into a step that performs an operation specific to proteins obtained through
X-ray crystallography, such as the placing of the missing Hydrogen atoms. JsMol
vsualization with step and molecule specific options are also provided on many
Curation steps. For instance, the user will have the option of choosing between
several methods for computing the Hydrogen bonds. For lack of space, we do
not pursue in detail the description of the entire Curation application.
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Process PDB 

• PDB File

• code.in 
• input.bak 
• pdb.ca 
• sheet.in

Input Retrieve 

None

• PDB File

Run GNM 

• code.in 
• input.bak 
• pdb.ca 
• sheet.in

• dom.out 
• dom1.out

Prepare for JMol 

• dom.out

• domJmol.txt

Prepare for JMol 

• domJmol.txt

None

Fig. 5. An example application that runs and visualizes the output of the GNM pro-
gram on a protein. Each box is a step in the application. The input files and output
files for each step are listed. In each case the input files for a step are given by output
files from previous steps (denoted by the red arrows).

4 Conclusion

We described the structure of KINARI-2, a web server for conducting repro-
ducible computational experiments on biomolecular data from the PDB or other
sources. The ultimate goal of KINARI-2 is to facilitate rigidity analysis and flex-
ibility calculation experiments, and to contribute to the validation of the rigidity
analysis method by providing tools for comparing its results with those obtained
by other methods. The system architecture presented here has been implemented
and tested. We are currently converting the previous KINARI-Web apps to the
new system, ensuring full reproducibility of those experiments and extending
the system with new and substantially improved tools, which will be described
elsewhere as they are completed.

Authors’ Contributions. IS conceived the project and the overall design of
the system, and oversaw the project. RTJ implemented the first prototype, and
JB redesigned and restructured it into the current version. JB and IS wrote the
paper.
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17. Wells, S., Jimenez-Roldan, J., Römer, R.: Comparative analysis of rigidity across
protein families. Physical Biology 6 (2009)

http://www.kuhnlab.bmb.msu.edu/software/proflex/index.html
http://kinemage.biochem.duke.edu/software/utilities.php


Protein Crystallization Screening Using

Associative Experimental Design
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Abstract. Protein crystallization remains a highly empirical process.
The purpose of protein crystallization screening is the determination of
the main factors of importance leading to protein crystallization. One of
the major problems about determining these factors is that screening is
often expanded to many hundreds or thousands of conditions to maxi-
mize combinatorial chemical space coverage for a successful (crystalline)
outcome. In this paper, we propose a new experimental design method
called “Associative Experimental Design (AED)” that provides a list of
screening factors that are likely to lead to higher scoring outcomes or
crystals by analyzing preliminary experimental results. We have tested
AED on Nucleoside diphosphate kinase, HAD superfamily hydrolase,
and nucleoside kinase proteins derived from the hyperthermophile Ther-
mococcus thioreducens [1]. After obtaining the candidate novel condi-
tions, we have confirmed that AED method yielded high scoring crystals
after experimenting in a wet lab.

Keywords: Associative Experimental Design · Protein Crystallization ·
Screening · Experimental Design

1 Introduction

Protein crystallization is the process of formation of 3-dimensional structure of
a protein. One of the significant difficulties in macromolecular crystallization is
setting up the parameters that yield a single large crystal for X-ray data col-
lection [2], [3]. The major difficulty in this process is the trial of abundance of
parameters with significant number of possible values. Physical, chemical and
biochemical factors such as type of precipitants, type of salts, ionic strengths,
pH value of the buffer, temperature of the environment, and genetic modifica-
tions of the protein affect the crystallization process significantly [4]. Because
each protein has a unique primary structure, it is quite challenging to predict
the parameters of the experiment that can yield crystal for a specific protein [2].
Theoretically, it is possible to crystallize a protein in a specific solution under
certain conditions; however, it may not be possible to crystallize in practice [5].
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R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 84–95, 2015.
DOI: 10.1007/978-3-319-19048-8_8



Protein Crystallization Screening Using Associative Experimental Design 85

This means that we can generate hundreds or thousands of conditions to max-
imize combinatorial chemical space coverage hoping for a crystalline outcome.
However, setting up huge number of experiments is not feasible in terms of cost
and time.

Basically, there are two main approaches to set parameters for protein crys-
tallization experiments [6], [7]: 1) incomplete factorial design (IFD) [8], [9] or
sparse matrix sampling (SMS) [3], [10], and 2) grid screening (GS) of crystal-
lization conditions [11]. The first approach has been widely used by commercial
companies such as Hampton Research, Emerald Biostructures, etc. [6]. Carter
et al. proposed to set parameters of protein crystallization experiments using
incomplete factorial design in their study [8]. The main goal of incomplete fac-
torial design experiments is to identify important factors of the experiments and
to produce much less number of experiments compared to full factorial design
experiments. The IFD is a very effective method as experts may not afford to
set up many experiments or they may not have enough resources to carry out
those many experiments [12]. The basic idea of IFD is that after identifying im-
portant factors of the experiments; balanced experiments are generated in terms
of factors. In the sparse matrix sampling [3], parameters of the experiments are
set using fewer major reagents (i.e., pH values, type of precipitants, type of salts,
etc.) as in IFD. It can be considered as an optimized version of IFD. In SMS,
values of type of salts, pH, and type of precipitants are selected based on past
experiences, and these variables are mostly favorable for protein crystallization
experiments. The reagents occur based on their frequency in the sparse matrix
[10]. This idea was commercialized by Hampton Research [13]. Grid screening
of crystallization conditions [11] is an early method that tries possible different
solutions exhaustively until the experiments succeed. This takes more time and
effort compared to IFD and SMS. However, it could be the only solution for
some of the proteins that have never or rarely been crystallized.

In the literature, there are also some optimization methods based on IFD
and GS [12], [14], [13]. We do not intend to give detail about these methods
in this paper. These studies in macromolecular crystallization generally try to
optimize available conditions changing one or few parameters in the chemical
space such as pH, concentration of precipitant, etc. For example, Snell et. al
optimized the conditions to change the pH value of the buffer and the weight
of the precipitant rather than just changing one value at a time by visualiz-
ing the result [13]. The traditional optimization techniques do not consider new
combinations of reagents [12]. In this paper, we propose a new experimental
design method called Associative Experimental Design (AED) that generates
candidate conditions by analyzing preliminary experimental data. This existing
data is analyzed to determine which screening factors are most likely to lead
to higher scoring outcomes, crystals. Unlike IFD, AED generates unbalanced
experiments for protein crystallization that may include novel conditions. This
means AED is not a typical optimization method for crystallization conditions.
In the literature, optimization steps usually include changing the pH value, con-
centration, weight of precipitants and salts. The AED method finds small but
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effective number of conditions that may lead to crystallization. The main idea of
the AED method is to generate novel conditions for crystallization by keeping
at least two reagents from promising conditions. Basically, the AED analyzes
other possible interactions between reagents to determine new crystallization
conditions. In this study, we have generated candidate conditions for Nucleoside
diphosphate kinase, HAD superfamily hydrolase, and nucleoside kinase proteins
using preliminary experimental results. After obtaining the candidate novel con-
ditions, we have confirmed that AED method yielded high scoring crystals after
experimenting in a wet lab.

The rest of the paper is structured as follows. Background information is
provided in Section 2. The proposed method, “Associative Experimental Design
(AED),” is explained in Section 3. Experimental results are provided in Section
4. Finally, our paper is concluded with the last section.

2 Background

In this section, we provide some information about the phase diagram, which is
a useful diagram for setting up protein crystallization experiments. We develop
AED based on the phase diagram, and we believe that a brief explanation of
it would help reader to understand the problem domain and our method. In
addition, we are going to provide some brief explanation of Hampton scores in
this section, since we are going to refer those scores throughout the paper.

2.1 Phase Diagram

In chemistry, a phase diagram is a graphical representation of different phases
(solid, liquid and gas) of a substance with respect to temperature and pressure.
In structural biochemistry, a phase diagram mostly represents solubility curve
of a protein with respect to some parameters such as precipitant, pH, etc. Since
the proteins can grow only in supersaturated solutions, it is important to locate
solubility curve based on these parameters [5], [15]. Thus, the phase diagram
is useful to set parameters for the experiments properly for X-ray diffraction
studies [16]. Figure 1 shows a visual representation of a phase diagram.

Fig. 1. Phase Diagram
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The phase diagram mainly has two main zones: undersaturated region and
supersaturated region. The supersaturated region consists of three subdivisions
as can be seen in Figure 1. The first region is labile zone, where nuclei of protein
crystals can form and continue growing its structure if the certain conditions are
provided. Once the nucleation starts, protein crystals start using the nutrients
of the solution, which will reduce the concentration of the solution. While the
concentration of the solution reduces, the solution will be in metastable region.
In this region, protein crystal may continue to grow up to its concentration equal
to the solubility limit, if there are nuclei that have formed before. In other words,
new nuclei cannot form in that region [4], [2]. If the supersaturation is too high,
amorphous precipitates can also appear in precipitation zone instead of crystals,
which is not a desirable outcome for crystallization process [5]. Furthermore, the
amorphous precipitates do not yield crystals, when they complete their forma-
tions. Since nucleation can only occur in labile zone, AED focuses the conditions
that fall into that region. Detailed information will be provided in Section 3.

2.2 Hampton Scoring

Hampton scoring is used to evaluate the growth of the protein during the crys-
tallization experiments. In Hampton scoring, there are 9 scores from 1 to 9. In
most of the experiments, a score that is greater than 7 is desired by the crystallo-
graphers, although scores between 5-7 are also classified as crystals. It should be
noted that mostly crystals that have either score 8 or 9 are able to provide suffi-
cient information about their 3D structures. Table 1 shows the list of Hampton
scores. The brief explanations of some scores1 are provided below.

Table 1. List of Hampton scores

Score Outcome Score Outcome

1 Clear solution 6 1D needles
2 Phase change (oiling out) 7 2D plates
3 Regular granular precipitate: 8 3D crystals small, < 200µm
4 Birefringent precipitate or bright spots 9 3D crystals large, > 200µm
5 Spheroids, dendrites, urchins

In this study, we focused on scores from 4 to 7 to generate novel conditions
using AED method. The details about AED are provided in Section 3.

1 http://hamptonresearch.com/tips.aspx

http://hamptonresearch.com/tips.aspx
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3 Proposed Method: Associative Experimental
Design(AED)

3.1 Motivation

In this research, we have generated some crystal screens for a few specific pro-
teins using preliminary crystal screen data with their Hampton scores. We use
3 different proteins to test our approach. There are 86 different crystal screens
in our dataset for the protein T t189 without considering the conditions having
multiple types of salts or precipitants. This data set contains 9 different salt
concentration values, 23 different type of salts, 7 different pH values, 45 different
precipitant concentration values, 85 different precipitants, 3 different protein
concentration values, where the concentrations and pH values are continuous
data and the other features are categorical data. (Note that type of buffer is
not considered, since it is generally correlated with pH value.) If we consider
full factorial design, it means that we need to set up approximately 16,627,275
different experiments for a single protein based on this dataset without consid-
ering the continuity of some of the variables and this is not feasible. In this
research, our goal is to generate less number of conditions rather than 16.6M
that is more likely to form a crystal. To achieve this goal, we proposed a method
called “Associative Experimental Design (AED).”

3.2 Method

Associative experimental design generates a new set of experiments by analyzing
the scores of experiments already evaluated in the lab. We use almost the same
scores from 1 to 9 provided in Table 1. Since we are using trace fluorescent
labeling (TFL) [17], a score of 4 is assigned to outcomes giving “bright spot”
lead conditions as an exceptional case.

We start with the notation for screening conditions and scores. Let

D = {(Ci, Hi) | (C1, H1) , (C2, H2), ..., (Cn, Hn)} (1)

be our dataset consisting of the pairs that include features of the conditions Ci

and their scoresHi for the i
th solution in the dataset. For simplicity we discarded

conditions that have more than one type of salt or precipitant. We only focused
on three main components of the remaining conditions: type of precipitant, type
of salt and pH value of the solution, while separating their concentrations. Let

Ci = {Si [sci] , pHi, Pi [pci]} (2)

be the set of all the features of ith crystal screen where i is 1 ≤ i ≤ n, n is
the number of samples in our dataset, Si [sci] represents type of salt with the
concentration of sci, pHi value represents the pH of ith solution, and Pi [pci]
represents type of precipitant with the concentration of pci. Let R be a subset
of D that contains the crystal screen pairs having a score greater than or equal
to lowH and less than or equal to highH:

R = {(Ci, Hi) | (Ci, Hi) ∈ D, lowH ≤ Hi ≤ highH , 1 ≤ i ≤ n} (3)
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In our preliminary experiments, we set lowH = 4 and highH = 7. Thus, the
samples that have a score of 8 or 9 are excluded to generate unbiased conditions
for the proteins. Similarly, for simplicity the samples that have score from 1 to
3 have not been included in the result set.

The AED analysis process consists of two major stages. In the first stage, we
process the data to reduce its size as we stated before. Let

Rc = {Ci | (Ci, Hi) ∈ R} (4)

be the set of conditions of R, where SCi = {sc1, sc2, ..., sck} represents the all
unique concentration values of the ith salt, and PCi = {pc1, pc2, ..., pck} repre-
sents the all unique concentration values of ith precipitant. Then, we compare
each Ci and Cj condition pairs where i �= j in RC . If there is a common com-
ponent between Ci and Cj , then we generate the candidate conditions set Z
based on these two sets. For example, let Ci = {Si [SCi] , pHi, Pi [PCi]} and
Cj = {Sj [SCj ] , pHj, Pj [PCj ]} where Si = Sj (i.e., the type of salt is com-
mon in Ci and Cj). We generate two new conditions Z by switching the other
components among each other. Thus,

Z = {{Si [SCi] ,pHj,Pi [PCi]} , {Si [SCi] ,pHi,Pj [PCj]}} (5)

is the set of candidate crystal screens for the pair Ci and Cj . Similarly, candidate
screens can be generated where pH value or precipitant is common between the
pairs as well. After we generate candidate combinations using these components,
we remove conditions that are replicated or are already in the training data. In
the second stage of our method, we assign unique values of concentrations, gen-
erate SCi and PCi, and unique type of buffers that were used in the preliminary
data to generate finalized crystal screens. At the end, we merge generated results
from two stages of the method. The identified significant factors are output and
used to generate condition screens with factor concentrations varied over the in-
dicated ranges from the analysis. These screens are then used to prepare a new
plate. Since we are comparing each condition with the remaining conditions to
find the common agent, the complexity of our algorithm is O(n2) where n = |R|.
Considering today plate sizes(up to 1536-well plate), we do not expect n is a
very large number. Therefore, this implies O(n2) is a reasonable time for this
problem. Figure 2 shows the flow diagram of AED.

Fig. 2. Flow diagram of AED
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Sample Scenario. Figure 3 shows the scores from four experiments from a com-
mercial screen. The figure shows a partial graph of scores for pH value of 6.5.
These conditions led to four scores: 1, 1, 4, and 4. As it can be seen, none
of the conditions lead to a good crystallization condition. Our AED method
finds the common reagent between solutions that could lead crystallization con-
ditions. In this scenario, there are only two promising conditions (with score
4): [Zn(O2CCH3)2, PEG 8K, pH = 6.5] and [(NH4)2SO4, PEG MME 5K,
pH = 6.5]. The AED draws a rectangle where these conditions (with score
4) are the corners of this rectangle (Figure 4). The other corners represent the
candidate conditions. There are two possible conditions for this scenario. One of
them ([(NH4)2SO4, PEG 8K, pH = 6.5]) already appeared in the commercial
screen with a low score. When we generate the experiment for the other condi-
tion ([Zn(O2CCH3)2, PEG MME 5K, pH = 6.5]), we were able to get a score
of 7 after optimizations. The experiments have not been conducted for others
since they were not on the corners of conditions with promising scores.

Fig. 3. Preliminary screen results

Fig. 4. Candidate (green node) conditions that AED generated based on preliminary
data
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We wanted to check that AED is able to generate novel conditions (leading
to crystallization) that do not appear in any commercial screen. A question was
where to draw the distinction between identical, similar, or different screen condi-
tions in comparison to those present in the original or all commercially available
screens. Using the C6 webtool [18], an exact match to an existing commercial
screen condition gives a score of 0. Variations on that condition (change in one
or both precipitant concentrations, or the buffer and/or pH), give scores > 0,
ranging to 1 for completely different conditions. The C6 web tool gives the top
10 matches to the input conditions. Our usual first pass optimization approach
to a lead condition, having precipitants A and B, is to use four solutions; one at
100% A and B, one at 50% A and 100% B, one at 100% A and 50% B, and one at
50% each A and B. The buffer is unchanged for all four conditions. Using the C6
webtool the greatest difference between the starting and optimization conditions
is for the 50% A and B, with a score of 0.269, using a reference condition of 0.5M
ammonium sulfate, 30% PEG 4K, 0.1M Tris-HCl pH 8.5. This is rounded to 0.3
for our threshold score for a different screen condition. Scores > 0 but ≤ 0.3 are
taken to be similar to an existing screen condition, with a score of 0 indicating
identity.

4 Experiments

4.1 Dataset

The Associated Experimental Design (AED) approach was evaluated using pro-
teins derived from the hyperthermophile Thermococcus thioreducens [1]. Six
crystallization screening plates, three using TFL’d and three unlabeled protein,
all with the Hampton Research High Throughput screen (HR2-130) had been set
up for each of these proteins as part of a separate experimental program. For this
preliminary test the scores of the results from the second (of the three) plates
for the TFL’d protein were used, as this also includes scores of potential cryptic
leads indicated by TFL. One was a difficult crystallizer (T t106, annotated as a
nucleotide kinase) with no conditions giving needles, plates or 3D crystals; one a
moderate crystallizer (T t82, annotated as a HAD superfamily hydrolase), with
one condition giving 2D plates but none giving needles or 3D crystals; one an
easy crystallizer (T t189, annotated as a nucleotide diphosphate kinase) having
five conditions that gave 3D crystals).

4.2 Results and Discussion

The crystallization screen components that were determined to have the great-
est positive effect were determined by the AED software, and a 96 condition
optimization screen generated using those components for each protein. Opti-
mization was in 96 well sitting drop plates, with the protein being TFL’d to
facilitate results analysis. The successful conditions were identified and scored.
Those conditions giving 2D and 3D crystals were then used to search the C6
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database [18] for similar conditions across all commercially available screens as
a determination of their uniqueness. As the optimization screens had different
concentration ratios for the same precipitant pairs, each ratio where a hit was
obtained was searched and the lowest C6 score was used.

The moderate and difficult proteins, T t82 and T t106 respectively, were sub-
jected to a second round of optimization based on the results from the first. In
the case of T t82 the second round was a grid screen around a condition that
gave an aggregated mass of plates. Many of the second round optimization wells
also showed clusters of plates. However, in one case a single plate was observed.
Although not pursued, the plate clusters could be excellent starting material
for seeded crystallizations, both with the original and first stage optimization
screening conditions. The second optimization round for protein T t106 used
ionic liquids as an additive [19], with the lead conditions selected from those
outcomes giving “bright spots” in the first round. Within one week one family
of conditions had 3D crystals, Figure 5. Novelty of the second round conditions
was determined from the grid screen condition for T t82, while it was based on
the parent condition for T t106. Additional lead conditions were apparent in the
optimization screens for T t82 and T t106.

Fig. 5. White light (A) and fluorescent images (B) of second round optimization crys-
tals of T t106. Crystallization conditions: 0.2M Na/K Tartrate, 0.75M Ammonium Sul-
fate, 0.1 M NaCitrate, pH 5.6, 0.1M 1-hexyl, 3-methyl imidazolium chloride. Scale bar
is 300µm. All images are to the same scale.

Table 2. Summary of Experiments

Protein Annotated
Function

HSHT Screen b Optimize Screen Novel Cond. vs Novel Cond. vs
Score = 7 Score = 8, 9 HSHT Screen* All Screens*

T t189 (Nucleoside
diphosphate kinase)

0 / 2 5 / 3 5 4

T t82 (HAD superfam-
ily hydrolase)

1 / 1 0 / 1 2 2

T t106 (Nucleoside ki-
nase)

0 / 0 0 / 1 1 1

* Using C6 tool for scores of 7, 8, & 9 threshold value of 0.3

b HSHT :Hampton Screen High-Throughput.
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The results are summarized in Table 2. The numerical values in the first two
columns after the protein name refer to the number of conditions with that score
in the original screening experiment (numerator) vs. those with that score in
the optimization screen (denominator). For example, (0/2) indicates two novel
crystallization conditions with the score of 7 (for Tt189), which did not have
score 7 in the original screening experiment. The third column lists the number
of optimization conditions that are novel compared to the original screen, while
the last column lists those that are novel compared to all available screens. All
found conditions were judged to be novel compared to the original screen on
the basis of our cutoff score criteria. For T t189, one optimization condition was
identical to an existing commercial screen condition.

5 Conclusion and Future Work

According to Table 2, AED generated 7 novel conditions compared to com-
mercially available conditions for 3 different proteins derived from the hyper-
thermophile Thermococcus thioreducens [1]. The results obtained indicate that
scored results from commercially available screens can be analyzed, and that
components that may contribute to the crystallization of the macromolecule
can be derived. Not surprisingly, a number of novel conditions were found for
the facile crystallizer (T t189). However, conditions were also found for both the
moderate and difficult crystallizers, one of which had not shown any results of
needles or better in the original screens (T t106). For all three proteins crystal-
lization conditions were obtained that were novel combinations of the identified
factors.

These results show that AED is an efficient tool to generate novel conditions
based on existing experimental results, which helps to save time and resources,
as well as facilitating more rapid progress. In the future, we plan to include
the conditions that have scores from 1 to 3 into AED analysis. Thus, we may
generate novel conditions that may yield a successful outcome. We are also going
to work on the correlation between original pair of conditions and candidate
conditions by analyzing their scores. By using the scores of the original pairs, we
plan to rank the candidate conditions to determine the conditions for a 96-well
plate.

Acknowledgments. This research was supported by National Institutes of Health
(GM090453) grant.
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15. Yang, H., Rasmuson, Å.C.: Phase equilibrium and mechanisms of crystallization in
liquid–liquid phase separating system. Fluid Phase Equilibria 385, 120–128 (2015)
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Abstract. Taking theadvantageofhigh-throughput singlenucleotidepoly-
morphism (SNP) genotyping technology, large genome-wide association
studies (GWASs) havebeen considered tohold promise for unraveling com-
plex relationshipsbetweengenotypesandphenotypes.Currentmulti-locus-
based methods are insufficient to detect interactions with diverse genetic
effects on multifarious diseases. In addition, statistic tests for high order
epistasis (≥ 2 SNPs) raise huge computational and analytical challenges
because the computation increases exponentially as the growth of the car-
dinality of SNPs combinations. In this paper, we provide a simple, fast
and powerful method, DAM, using Bayesian inference to detect genome-
wide multi-locus epistatic interactions on multiple diseases. Experimental
results on simulated data demonstrate that our method is powerful and
efficient. We also apply DAM on two GWAS datasets from WTCCC, i.e.
Rheumatoid Arthritis and Type 1 Diabetes, and identify some novel find-
ings. Therefore, we believe that our method is suitable and effective for the
full-scale analysis of multi-disease-related interactions in GWASs.

Keywords: Bayesian inference · Genome-wide association studies · Ge-
netic factors · Epistasis

1 Introduction

Genome-wide association study (GWAS) has been proved to be a powerful
genomic and statistical inference tool. The goal is to identify genetic suscep-
tibility through statistical tests on associations between a trait of interests
and the genetic information of unrelated individuals [1]. In genetics, genotype-
phenotype association studies have established that single nucleotide polymor-
phisms (SNPs) [2], one type of genetic variants, are associated with a variety of
diseases [3]. The current primary analysis paradigm for GWAS is dominated by
the analysis on susceptibility of individual SNPs to one disease a time, which
might only explain a small part of genetic causal effects and relations for mul-
tiple complex diseases [4]. The word, epistasis, has been defined generally as
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the interaction among different genes [5]. Many studies [6] have demonstrated
that the epistasis is an important contributor to genetic variation in complex
diseases, such as asthma [7][8], breast cancer [9], diabetes[10], coronary heart
disease [11], and obesity [12]. In this article, we consider epistatic interactions as
the statistically significant associations of d-SNP modules (d ≥ 2) with multiple
phenotypes [13].

Recently, the problem of detecting high-order genome-wide epistatic interac-
tion for case-control data has attracted extensive research interests. Generally,
there are two challenges in mapping genome-wide associations for multiple dis-
eases on large GWAS dataset [14]: the first is arose from the heavy computational
burden, i.e. the number of association patterns increases exponentially as the
order of interaction goes up. For example, around 6.25×1011 statistical tests are
required to detect pairwise interactions for a dataset with 500,000 SNPs. The
second challenge is that existing approaches lack statistical powers for search-
ing high-order multi-locus models of disease. Because of the huge number of
hypotheses and the limited sample size, a large proportion of significant associ-
ations are expected to be false positives. Many computational algorithms have
been proposed to overcome the above difficulties. More details about these tools
can be found in a recent survey [15]. To the best of our knowledge, current
epistasis detecting tools are only capable of identifying interactions on GWAS
data with two groups, i.e. case-control studies. Thus, they are incompetent to
discover genetic factors with diverse effects on multiple diseases. Moreover, they
lose the benefit of alleviating deficiency of statistical powers by pooling different
disease samples together.

In this paper, we design and implement a Bayesian inference method for
Detecting genome-wide Association on Multiple diseases, named DAM, to ad-
dress above challenges. DAM employs Markov Chain Monte Carlo (MCMC)
sampling based on the Bayesian variable partition model, and makes use of
stepwise condition evaluation to identify significant disease(s)-specific interac-
tions. It first generates a candidate set of SNPs based on our Bayesian variable
partition model by applying Metropolis-Hastings (MH) algorithm. A stepwise
evaluation of association is engaged to further detect the genetic effect types
for each interaction. Systematic experiments on both simulated and real GWAS
datasets demonstrate that our method is feasible for identify multi-locus interac-
tion on GWAS datasets and enriches some novel, significant high-order epistatic
interactions with specialties on various diseases.

2 Method

2.1 Notations

Suppose a GWAS dataset D has M diallelic SNPs and N samples. In general,
bi-allelic genetic markers use uppercase letters (e.g. A, B,...) to denote major al-
leles and lowercase letters (e.g. a, b) to denote minor alleles. For encoding three
genotypes, one popular way is to use {1, 2, 3} to represent {aa,Aa,AA}, respec-
tively. For a GWAS dataset with L groups, it includes one shared control group
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and L− 1 case groups. We use N (L) denotes the number of controls (i.e. normal
individuals) and N (i) denotes the number of cases (i.e. disease individuals) in
i-th groups (i = 1 . . . L − 1). X is utilized to indicate the ordered set of SNPs,
and xi represents i-th SNP in X .
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Fig. 1. Illustration for 10 states on 3 groups

For a set of L groups, there are BL partitions, and here we also refer partition
to state. Let S denote the set of states, and sk is the k-th state with |sk| non-
empty sets of groups. In general, the M markers are assigned into 2BL states,
and all states belong to two categories: sk1 ∈ {s1, . . . , sBL} indicates SNP mark-
ers contributing independently to the phenotypes, and sk2 ∈ {sBL+1, . . . , s2BL}
indicates SNP markers that jointly influence the phenotypes. An example for a
three groups dataset with 10 possible states is showed in Figure 1, where states
1 to 5 indicate that SNPs are independently associated with certain phenotypes,
and states 6 to 10 indicate that SNPs are dependently associated with the pheno-
types. In our experiments, group 1 and 2 are cases and group 3 is control. Since
we want to identify SNPs associated with phenotypes, SNPs in states 2 to 5 and
states 6 to 10 are the desired ones with disease associations. Let I = (I1, . . . , IM )
record the memberships of SNP with Im ∈ {1, . . . , 2BL}, Mk denote the number

of SNP markers in k-th state (
∑2BL

k=1 Mk = M), and D(k) denote genotypes of
SNPs in k-th state.

2.2 Bayesian Variable Partition Model

Consider a categorical variable X , which can be sampled at t different states
{Δ1, Δ2, . . . , Δt} with t different distribution {Θ1, Θ2, . . . , Θt}, where Θk is the
distribution of X at k-th state. The model describing the sums of independently
and identically distributed mixture categorical variables at different states is
referred as a ‘multinomial model’, meaning that it can be partitioned into t
inseparable multinomial models. Consider a model for a vector of M categori-
cal variables X = {x1, x2, . . . , xM}. If all variables are independent, the model
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can be simply treated as the union of M univariate multinomial models. If in-
teractions exist among multiple variables, a new model with a single variable
by collapsing the interacting variables can replace the model for these multiple
variables. The sample space of the collapsed variable is the product of the sam-
ple spaces of the variables before collapsing. Bayesian variable partition model
(BVP) is a multinomial model based on Bayesian theorem. The likelihood for
the multinomial model by given i-th state is

P (Dm|Δk) =

∫
P (Dm|Δk, Θk)dΘk

=

∫

θ1,θ2,...,θg

P (Dm|θ1, θ2, . . . , θg)P (θ1, θ2, . . . , θg)dp (1)

where Dm is the observation for the categorical variable xm, and g is the number
of category value for the variable xm. We set P (Θ = (θ1, θ2, . . . , θg)) to be
Dirichlet distribution Dir(α1, α2, . . . , αg); then we can have a closed form for
Equation 1:

P (Dm|Δk) =

∫

θ1,θ2,...,θg

P (Dm|θ1, θ2, . . . , θg)P (θ1, θ2, . . . , θg)dp

=

∫

θ1,θ2,...,θg

1

B(α1, α2, . . . , αg)

g∏

i=1

pni+ai−1
i dp

=

(
g∏

i=1

Γ (ni + αi)

Γ (αi)

)
Γ (|α|)

Γ (N+ |α|) (2)

where N is the total number of observations, and |α| is the sum of (α1, α2, . . . , αg).
Suppose the vector I is a vector of membership of state for categorical variable
vectorX , we obtain the posterior distribution of I as

P (I|D) ∝
(

M∏

m=1

P (Dm|I)
)
P (I) (3)

Based on Bayesian theorem, we describe the specific Bayesian variable par-
tition model for genome-wide association mapping as follows. For the SNPs

independently associated with phenotypes, we use Θk1 = ((θ
(ω)
m1 , θ

(ω)
m2 , θ

(ω)
m3 ) : ω ∈

{1, 2, . . . , |sk|} , Ixm ∈ {1, . . . , BL}) to denote the genotype frequencies of SNP
xm in k1 states. Note that SNP with membership value in {1, . . . , BL} does not
have interaction with other SNPs. The likelihood of Dk1 from BVP model is
that

P (D(k1)|Θk1) =
∏

Ixm=k1

|sk1 |∏

ω=1

3∏

i=1

(θ
(ω)
mi )

n
(ω)
mi , (4)
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where
{
n
(ω)
m1 , n

(ω)
m2 , n

(ω)
m3

}
are genotype counts of SNP xm in ω-th subset in k1-th

state. Similar to the above assumption, we set Θk1 to be a Dirichlet distribution
Dir (α) with parameter α = (α1, α2, α3), we integrate out Θk1 and obtain the
marginal probability:

P (D(k1)|I) =
∏

Ixm=k1

|sk1 |∏

ω=1

((
3∏

i=1

Γ (n
(ω)
mi + α

(ω)
i )

Γ (α
(ω)
i )

)
Γ (

∣∣α(ω)
∣∣)

Γ (Nk1,ω +
∣∣α(ω)

∣∣)

)
(5)

where Nk1,ω is the count of individuals in groups belonging to ω-th subset of
k1-th state, and |α| represents the sum of all elements in α.

SNP markers in state {sBL , sBL+1, . . . , s2BL} influence the disease statues
through interactions. Thus, we concatenate Mk2 SNPs into a single categorical
variable to resolve the interactions (BL+1 ≤ k2 ≤ 2BL). Note that there are 3

Mk2

possible concatenated genotype combinations. LetΘk2 =((φ
(ω)
1 , φ

(ω)
2 , . . . , φ

(ω)

3
Mk2

) :

ω = {1, 2, . . . , |sk2 |}) be the concatenated genotype frequencies overMk2 SNPs in
sk2 ∈ {sBL+1, . . . , s2BL}. Similarly, we use a Dirichlet prior Dir (β) for Θk2 , β =
(β1, β2, . . . , β3

Mk2
). According to Equation 2, we obtain the marginal probability:

P (D(k2)|I) =
|sk2 |∏

ω=1

⎛

⎝

⎛

⎝
3
Mk2∏

i=1

Γ (n
(ω)
i ) + β

(ω)
i

Γ (β
(ω)
i )

⎞

⎠ Γ (|β(ω)|)
Γ (Nk2,ω + |β(ω)|)

⎞

⎠ (6)

where Nk2,ω is the count of individuals belonging to ω-th subset k2-th state and

n
(ω)
i is the count of i-th concatenated genotype combinations in ω-th subset in

k2-th state.
Combining Equation 3, 5 and 6 , we obtain the posterior distribution of I as

P (I|D) ∝
(

BL∏

k1=1

P (D(k1)|I)
)⎛

⎝
2BL∏

k2=(BL+1)

P (D(k2)|I)

⎞

⎠P (I) (7)

In BVP, we set P (I) ∝
∏2BL

k=1 p
Mk

k to embed the prior knowledge of the pro-
portions of SNP associating with certain phenotypes. In our experiments with
three groups, we set pk = 0.001, k ∈ {2, . . . , 10}, and αi = βj = 0.5, ∀i, j.

2.3 MCMC Sampling

We apply MCMC method to sample the indicator I from the distribution in
Equation 7. According to the prior P (I), DAM first initializes I, then use the
Metropolis-Hastings (MH) algorithm [16] to construct a MCMC to update I.
Three types of updating strategies are used: (i) randomly change a SNP’s state,
(ii) randomly exchange two SNPs’ states between (s1, . . . , s2BL), or (iii) ran-
domly shuffle the state labels between {sBL+1, . . . , s2BL}. At each iteration, the
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acceptance of new indicator based on the MH ratio, a Gamma functions. DAM
records the entire accepted indicator after the burn-in process, and represent
it as the posterior distribution of single disease-related SNPs and interactions
associated with multiple diseases. The number of iteration in burn-in process is
fixed to 10M and the number of sampling iteration is set to M2 in our experi-
ments. We also apply a distance constraint that the physical distance between
two SNPs in multi-locus module is at least 1Mb. This constraint is used to avoid
associations that might be attributed to the LD effects [5].

2.4 Evaluation of Interaction

With the candidate SNPs generated by MCMC sampling, we apply the χ2 statis-
tic and its conditional test to measure the significance for a dependent SNP as-
sociation. Let A = (x1, x2, . . . , xd : k) denote an SNP module A with d SNPs in
k-th state. We denote its χ2 statistic as χ2(x1, x2, . . . , xd : k) and the conditional
χ2 statistic as χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ : k) by given a module A and a
subset of it, (xc1 , xc2 , . . . , xcd′ ) with d′ SNPs. The χ2 statistic can be calculated
as

χ2(x1, x2, . . . , xd : k) =

|sk|∑

i=1

3d∑

j=1

(ngi,j − egi,j)
2

egi,j
(8)

where gi is the i-th genotype combination for d SNPs, ngi,j is the number of
individuals having i-th genotype combination in j-th subset in k-th state, and
egi,j is the corresponding expected value. The degrees of freedom for Equation 8
is (|sk|− 1) · (3d− 1). The conditional independent test via χ2 statistic is defined
as follows

χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ : k) =

3d
′

∑

ι=1

|sk|∑

i=1

3d−d′∑

j=1

(n
(ι)
gi,j

− e
(ι)
gi,j

)2

e
(ι)
gi,j

(9)

where we calculate χ2 statistic separately for each genotype combination from
A − A

′. The degrees of freedom for Equation 9 is 3d
′ · (|sk| − 1) · (3d−d′ − 1).

In order to avoid redundant SNPs in a SNP module indicating that conditional
independence model fits better, we define an epistatic interaction (d ≤ 2) as a
compact significant SNP module with definition 1.

Definition 1 A SNPs module A = (x1, x2, . . . , xd : k) is considered as a com-
pact significant interaction by given the significant level αd, if it meets the fol-
lowing three conditions:
(1) the p-value of χ2(x1, x2, . . . , xd : k) ≤ αd;
(2) the p-value of χ2(x1, x2, . . . , xd : k) < ∀ p-value of χ2(x1, x2, . . . , xd : k′), k �=
k′ and k′ ∈ {1, 2, . . . , |S|};
(3) the p-value of χ2(x1, x2, . . . , xd|xc1 , xc2 , . . . , xcd′ : k) ≤ αd

for ∀A′ = (xc1 , xc2 , . . . , xcd′ : k) whose p-value ≤ αd′ .
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Based on definition 1, we develop a stepwise algorithm to search for top-f
significant d-locus compact significant interactions, where the searching space
only includes the SNP markers generated by MCMC sampling. We assume that
one SNP can only participate in one significant interaction in one state. So for
the SNP markers with state in {s1, . . . , sBL}, we first searches all the modules
with just one SNP based on definition 1, then the algorithm recursively tests all
the possible combinations by setting the module size with one more SNP. For
the SNPs reported as jointly contributing to the disease risk, we calculate the
p-value under different states and use the conditional test if part of SNPs already
reported as significant. All SNPs with significant marginal associations after a
Bonferroni correction are reported in a list L. The algorithm recursively searches
the interaction space with larger module size until d reaches user preset value.
We add all novel d-way interactions (i.e., no SNPs has been reported earlier)
that are significant after the Bonferroni correction for 2BL ·

(
M
d

)
tests. For the

interactions whose subsets have been reported as compact significant, we use the
conditional independent test, and put the interaction in L if it is still significant
after Bonferroni correction of 2BL ·

(
M
d

)
·
(
d
d′
)
tests.

3 Results

To the best of our knowledge, DAM is the first method to detect associations on
multiple diseases, so we first give definitions of 8 simulated multi-disease mod-
els and the power metric measurement, and then evaluate the effectiveness of our
method. The false positive rate of DAM is showed in Supplementary Material.
We also apply DAM on two real GWAS datasets, Rheumatoid Arthritis (RA) and
Type 1 Diabetes (T1D), and we find not only the results reported by other liter-
atures but also some novel interesting interactions. DAM (in Java) is conducted
on a 64-bit Windows 8 platform with 1.8 GHz Intel CPU and 4 GB RAM.

3.1 Experimental Design

Data simulation To evaluate the effectiveness of DAM, we perform extensive
simulation experiments using eight disease models with one- and two-locus asso-
ciations on three groups. The genotypes of unassociated SNP are generated by
the same procedure used in previous studies [14] with Minor Allele Frequencies
(MAFs) sampled from [0.05, 0.5]. The odds tables for eight models are showed
in Table 1 in Supplementary Material. Model 5, 6, 7, and 8 are the extensions
of Model 1, 2, 3, and 4, respectively. The settings for four datasets are showed
in Table 2 in Supplementary Material. In a setting, all models are using the
same MAF ∈ {0.1, 0.2, 0.4}, we generate 100 replicas per setting. Therefore, by
given a MAF, a dataset contains at most 8 associations labeled as Ep 1 to 8.
Note that in model 5 there are 7 associations, because the combination of three
2-locus models does not exist when MAF = 0.1. Each simulated replica con-
tained M = 1000 SNPs. The sizes of three groups are set to (1000, 1000, 2000)
or (2000, 2000, 4000), where the first two groups are considered as case groups
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and the third one is control group. More details about model simulation can be
found in Supplementary Material.

Statistical power In the evaluation of performances on simulated data, 100
datasets are generated for each setting. The measure of discrimination power
is defined as the fraction of 100 datasets on which the ground-truth associations
are identified as compact and significant by DAM.

3.2 Single-Locus Disease Models

Test results are illustrated in Figure 2 in Supplementary Material for SNPs
contributing independently to the disease risks. We can find that DAM is able
to report nearly 100% of embedded single SNP associations under most set-
tings. Carefully examining the results, we found that some SNPs are incorrectly
assigned to a state by MCMC sampling, although they do have significant as-
sociation with the phenotypes. After the stepwise evaluation, most mistakenly
labeled SNPs are corrected.

3.3 Two-Locus Disease Models

Test results for SNPs contributing jointly to the disease risks are illustrated in
Figure 2. We can find that DAM is able to report nearly 100% of embedded
interactions for dataset 1 and 2. It also obtained nearly full power when MAF is
0.1 for dataset 1, 2, and 4. Similar to the results on single-locus disease models,
after stepwise procedure, more interactions were assigned to correct states.

3.4 Experiments on WTCCC Data

We have applied DAM to analyze data from the WTCCC (3999 cases in total
and 3004 shared controls) on two common human diseases: Rheumatoid Arthritis
(RA), Type 1 Diabetes (T1D), where RA is treated as group 1, T1D is treated
as group 3, and control group is group 3. The procedure of quality control is the
same as presented in the [14]. After SNP filtration the dataset contains 333,739
high quality SNPs. DAM ran about 36 hours, for a total of 1× 1011 iterations.
Because the importance of the MHC region in chromosome 6 with respect to
infection, inflammation, autoimmunity, and transplant medicine has been heavily
reported [17] [18] [19], we concentrate on the results by DAM on Chromosome
6. The posterior probabilities for SNP on Chromosome 6 are showed in Figure 3
in Supplementary Material and Figure 3.

Recent studies [18] [20] has shown that both T1D and RA strongly associated
with the MHC region via single-locus association mapping, which is also verified
by our results that a large portion of SNPs’ posterior probabilities greater than
0.5 spreading in the region 28, 477, 797− 33, 448, 354. Comparing results from
state 6 to state 7, we can find that many SNPs contributing to RA are not
located inside the MHC region, while the SNPs associated with T1D gather in
MHC region. We select top 50 SNPs according to their posterior probabilities and
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Fig. 2. Performance comparison between DAM with MCMC sampling only and with
stepwise test on simulated disease datasets 1-4 embedded with Joint effect SNPs. Note
that the combination of model 5 with other three 2-locus models does not exist when
MAF = 0.1

analyze them with the stepwise evaluation procedure introduced in Section 2.4.
Table 1 summarizes some novel findings of the significant interactions with p-
values adjusted by 1.61× 1018 for three loci and 1.93× 1023 for four loci interac-
tions, respectively. Take the four-locus interaction (rs1977, rs707974, rs10755544,
rs2322635) for example. rs1977 is located inside gene BTN3A2, which encodes a
member of the immunoglobulin superfamily that may be involved in the adaptive
immune response. rs707974 is in gene GPANK1, encoding a protein which plays
a role in immunity. rs10755544 is at the upstream of gene KHDRBS2, which is
thought to involve SH2 domain binding and protein heterodimerization activity.
rs2322635 is located in gene BCKDHB for encoding branched-chain keto acid
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Fig. 3. Posterior probabilities of SNPs on chromosome 6. States 6 to 9 indicate joint
association probabilities per SNP. X-axis indicates the chromosomal position (Mb),
y-axis shows the posterior probability.

dehydrogenase, which is a multienzyme complex associated with the inner mem-
brane of mitochondria. BTN3A2 has been shown to associate with T1D in [21].
And mutations in the BCKD gene, BCKDHA, is also known to result in maple
syrup urine disease, which is related to T1D [22].

Table 1. Significant interactions obtained from theWTCCC data. Following each SNP
is its location.

State
Index

DAM
p-value

SNP 1 SNP 2 SNP 3 SNP 4

6 1.35E-26 rs4634439 rs707974 rs4236164 rs2322635
6 1.61E-26 rs6931858 rs707974 rs10755544 rs3805878

7 3.31E-26 rs1977 rs707974 rs10755544 rs2322635
7 1.86E-35 rs3117425 rs1150753 rs239494
7 5.79E-24 rs200481 rs1150753 rs12194665

4 Conclusions

The large number of SNPs genotyped in genome-wide case-control studies poses
a great computational challenge in the identification of gene-gene interactions.
During the last few years, many computational and statistical tools are devel-
oped to finding gene-gene interactions for data with only two groups, i.e. case
and control groups. In this paper, we present a method, named “DAM”, to ad-
dress the computation and statistical power issues for multiple diseases GWASs
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based on Bayesian theory. We have successfully applied our method to system-
atic simulation and also analyzed two datasets from WTCCC. Our experimental
results on both simulated and real data demonstrate that DAM is capable of de-
tecting high order epistatic interactions for multiple diseases at genome-wide
scale.

Supplementary Information. Supplementary Material and DAM software
are available at http://www.cs.gsu.edu/∼xguo9/research/DAM.html
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Abstract. Whole genome prediction of complex phenotypic traits using
high-density genotyping arrays has attracted a great deal of attention, as
it is very relevant to plant and animal breeding. More effective breeding
strategies can be developed based on a more accurate prediction. Most
of the existing work considers an additive model on single markers, or
genotypes only. In this work, we studied the problem of epistasis de-
tection for genetic trait prediction, where different alleles, or genes, can
interact with each other. We have developed a novel method MINED to
detect significant pairwise epistasis effects that contribute most to predic-
tion performance. A dynamic thresholding and a sampling strategy allow
very efficient detection, and it is generally 20 to 30 times faster than an
exhaustive search. In our experiments on real plant data sets, MINED is
able to capture the pairwise epistasis effects that improve the prediction.
We show it achieves better prediction accuracy than the state-of-the-
art methods. To our knowledge, MINED is the first algorithm to detect
epistasis in the genetic trait prediction problem. We further proposed
a constrained version of MINED that converts the epistasis detection
problem into a Weighted Maximum Independent Set problem. We show
that Constrained-MINED is able to improve the prediction accuracy even
more.

Keywords: Genetic trait prediction · Mutual information · Epistasis ·
Weighted maximum independent set

1 Introduction

Whole genome prediction of complex phenotypic traits using high-density geno-
typing arrays is an important computational problem, as it is relevant in the fields
of plant and animal breeding as well as genetic epidemiology [12,16,4]. Given a set
of biallelicmolecularmarkers, such as SNPs (Single-nucleotide polymorphisms) for
variant sites in the genome of a collection of plant, animal or human samples, with
genotype values encoded as {0, 1, 2} for each variant site, the goal is to predict the
quantitative trait values by simultaneously modeling all marker effects. The traits

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 108–124, 2015.
DOI: 10.1007/978-3-319-19048-8_10
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are typically physical properties of the samples, such as height,weight, size, etc.We
show an example of the problem in Figure 1.More accurate genetic trait prediction
can help to develop more effective breeding strategies for both plants and animals
and therefore can save cost and effort for the breeding companies.

Fig. 1. An example of the quantitative genetic trait prediction. On the left side is the
training data, where each row is a sample, each column of the genotype matrix is a
feature, the trait is the target variable. We build a predictive model on the training
data, and then use the model to predict the trait values of the new data, or test data,
which is of the same format.

A widely used algorithm for the genetic trait prediction problem is rrBLUP
(Ridge-Regression BLUP) [12,21]. The algorithm assumes all the markers con-
tribute to the trait value more or less, and it builds an additive linear regression
model by fitting the genotypes for all the markers on the trait being studied.
It fits the coefficient computed for each marker, which can be considered as a
measure of the importance of the marker. The rrBLUP method has the benefits
of the underlying hypothesis of normal distribution of the trait value and the
marker effects (well suited for highly polygenic traits). It is quick to compute,
robust, and is one of the most used models in whole genome prediction. Its per-
formance is as good as or better than other popular predictive models such as
Elastic-Net, Lasso, Ridge Regression [18,3], Bayes A, Bayes B [12], Bayes Cπ [9],
and Bayesian Lasso [10,13], as well as other machine learning methods.

Epistasis is the phenomenon where different alleles, or genes, can interact
with each other. The problem of epistasis detection has been widely studied in
GWAS (Genome Wide Association Studies). Exhaustive search of all possible
epistasis interactions is infeasible even for a small number of markers. Greedy
strategies [14,11,5,22,24,6] have been applied to detect epistasis effects where a
subset of high-marginal effect markers, which are markers that contribute to the
trait themselves, are first selected. Then the test is conducted either between all
the markers in this subset or between the markers in this subset and the remain-
ing markers. These strategies, however, miss all the possible epistasis between
the low-marginal effect markers, which are shown to exist [8]. Xiang et al. [23]
proposed an optimal algorithm to efficiently detect epistasis without conducting
an extensive search. A data structure is created to effectively prune interactions
that are potentially insignificant. In [1], a lasso for hierarchical interactions is
proposed, which again, considers interactions where one or both involved vari-
ables are marginally important. Therefore, it does not meet our requirement of
epistasis where both involved variables might be marginally not important.

These existing methods all target epistasis detection in GWAS. In this work,
we study the problem of detecting significant pairwise epistasis effects for genetic
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trait prediction. As the genetic trait prediction problem is usually modeled as a
linear regression problem, a traditional approach for interactions is a multiplica-
tive model. The pairwise interaction between two genotypes can be modeled as
the product of them, which is considered as a new feature in the linear regression
model. As the number of possible epistasis effects is far more than the number
of samples, naturally a feature selection method is used to select the significant
effects.

Recently, He et al. [7] proposed a feature selection method for genetic trait
prediction, based on the motivation that not necessarily all the marker effects
contribute to the trait values. A feature selection followed by prediction algo-
rithms with cross validation determines the set of marker effects that contribute
most to the prediction. Indeed, unlike the traditional feature selection problem
where generally a very small set of features are selected, here a relatively large
set of features need to be considered, often much larger than the number of
samples. Note that, for complex traits, it is known that many loci contribute to
the traits. Cross validation is applied to determine the set of loci that contribute
the most.

In this work, we proposed an efficient method MINED (Mutual INformation
basedEpistasisDetection) to select significant pairwise epistasis effects. To avoid
an exhaustive search of all pairs of interactions, MINED applies a sampling
strategy combined with a dynamic thresholding strategy to efficiently detect
significant epistasis effects. Our experiments show that MINED is much more
efficient than an exhaustive search without loss of accuracy and it is able to
effectively capture epistasis effects that can improve prediction performance. We
show it achieves better prediction accuracy than the state-of-the-art methods. To
our knowledge, MINED is the first algorithm to detect epistasis for genetic trait
prediction problem. We further proposed a constrained version of MINED, which
converts the epistasis detection problem into a Weighted Maximum Independent
Set problem. We show that constrained-MINED is able to improve the prediction
accuracy even more.

2 Preliminaries

The genetic trait prediction problem is defined as follows. Given n training sam-
ples, each with m � n genotype values (we use “feature”, “marker”, “genotype”,
“SNP” interchangeably) and a trait value, and a set of n′ test samples each with
the same set of genotype values but without trait value, the task is to train a pre-
dictive model from the training samples to predict the trait value or phenotype
of each test sample based on their genotype values. Let Y be the trait value of
the training samples. The problem is usually represented as the following linear
regression model:

Y = β0 +
m∑

i=1

βiXi + el (1)

where Xi is the i-th genotype value, m is the total number of genotypes, βi is
the regression coefficient for the i-th genotype and el is the error term.
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The pairwise interaction between two genotypes Xi and Xj is modeled as the
product of the two genotype values. Therefore, with the traditional representa-
tion, the linear regression model with pairwise epistasis interactions is modified
as follows:

Y = β0 +

m∑

i=1

βiXi +

m∑

i,j

αi,jXiXj + el (2)

where XiXj is the product of the genotype values of the i-th and j-th genotype
and it denotes the interaction of the two genotypes while αi,j represents the
coefficient for the interaction.

Unlike the model in Eq. 1, which has O(m) features (single marker effects
only), the epistasis model in Eq. 2 has O(m2) features (both single marker ef-
fects and pairwise epistasis effects). It is unrealistic to consider all O(m2) features
from both complexity and performance perspectives. MINT [7], a mutual infor-
mation based transductive feature selection method, has been shown to have
good performance for genetic trait prediction. MINT selects features based on a
MRMR criterion (Maximum Relevance and Minimum Redundancy), namely the
selected features maximize their relevances to the target variable (trait in our
problem setting) while minimizing the redundancy among the features them-
selves. Both relevances and redundancies are computed as mutual information.
When the relevance is computed, MINT uses only the training data as target
variable. However, when the redundancy is computed, MINT uses both training
and test data as only features (genotypes) are involved and MINT assumes the
features of test data is known apriori. MINT selects features by an incremen-
tal greedy search. Given t the number of target features, MINT works in the
following two stages: (1) First it ranks all the features by relevance and then
selects the top-k most relevant features, where m >> k >> t. This is based
on the assumption that most of the features have low relevance scores and in-
cluding them does not help improve the prediction performance. (2) Secondly, it
selects the features, one at a time, by maximizing an objective function defined
in Equation 3, where Sr−1 is the set of selected features at step r − 1, X is the
set of top-k most relevant features, xj is the j-th feature, c is the trait, I(A,B)
is the mutual information between A and B. It is shown that the transductive
strategy can usually lead to better selection performance.

max
xj∈X−Sr−1

⎛

⎝I(xj ; c)−
1

r − 1

∑

xi∈Sr−1

I(xj ;xi)

⎞

⎠ (3)

Thus a naive pipeline is to first generate all O(m2) features, then apply a fea-
ture selection method to select a subset of important features. However, gener-
ating all O(m2) features is infeasible for large data sets. Therefore, a challenging
task is to avoid exhaustive search of the O(m2) interactions. This is described
in the next section.

For two given vectors X,Y , their mutual information is computed as follows:
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I(X,Y ) =
∑

y∈Y

∑

x∈X

p(x, y)log
( p(x, y)

p(x)p(y)

)
, (4)

where p(x) is the marginal probability p(X = x) and p(x, y) is the joint proba-
bility p(X = x, Y = y). For vectors with discreet values, we can easily compute
p(x), p(y), p(x, y) by considering the frequency of the corresponding values. For
continuous values, the summation in the above formula should be replaced with
integral, as follows:

I(X,Y ) =

∫

Y

∫

X

p(x, y)log
( p(x, y)

p(x)p(y)

)
dxdy.

As the trait values are continuous, we perform discretization on the trait
values. We first compute the z-score of phenotype value for each sample as x−μ

δ2 .
Then, we assign discretized values to samples according to their z-score using
the following formula:

discretized value =

⎧
⎨

⎩

−1 if z-score < -1
1 if z-score > 1
0 otherwise

3 Methods

3.1 MINED: Mutual Information Based Epistasis Detection

To efficiently detect epistasis effects for genetic trait prediction, we need to ad-
dress the following two issues:

Problem 1. How to select a mutual information threshold to determine if an
epistasis interaction is significant?

Problem 1 is challenging since using all significant interactions may not neces-
sarily lead to the best prediction performance. Thus this is significantly different
from the GWAS scenario, where all significant epistasis effects are reported.
Therefore, if the threshold is too high, we may miss some important effects. If
the threshold is too low, too many interactions may be included leading to both
poor prediction power and poor computational complexity. To address this issue,
we update the threshold dynamically to only keep a top set of most significant
interactions. The threshold is initially set low to allow considering relatively less
significant interactions. As we collect more and more significant interactions,
the threshold is increased such that less significant interactions are pruned more
efficiently. See Section 3.2 for further details.

Problem 2. How to utilize the mutual information threshold to prune the inter-
actions that are potentially not significant?
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To avoid exhaustive search in GWAS, both greedy and optimal strategies have
been proposed. However, as we use mutual information, we can not adapt the
optimal methods from Xiang et al. [23], which rely on an F-test score. Prob-
lem 2 is challenging since the objective is to prune the interactions without even
computing their relevance scores. We observed that when a SNP is involved in
a significant interaction, it is very likely that the SNP is involved in multiple
significant interactions. Therefore, for each SNP, if we sample a small set of
interactions where the SNP is involved, it is likely that we can capture some
significant interactions the SNP is involved in. We also observed the relevance
scores of all the interactions that a SNP is involved in follow a truncated normal
distribution, as shown in Figure 2, similar to the hypothesis in rrBLUP that the
single marker effects follow a normal distribution. Then based on the sampled
interactions, we can estimate the probability that the SNP is involved in at least
one significant interaction to further determine if the SNP should be thoroughly
investigated for all possible interactions that it is involved in. See the following
sections for further details.
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Fig. 2. The histogram of the relevance scores for all the pairwise interactions of four
randomly sampled SNPs for the Maize Flint data set [16]. They all follow a truncated
normal distribution.

In summary, we propose a novel framework MINED (Mutual INformation
based Epistasis Detection) for pairwise epistasis effects detection, where we con-
duct a sampling for every single marker and compute the probability of the
marker involved in at least one significant epistasis effect. If the probability is
higher than a certain threshold, we check all the interactions between the current
marker and all the other markers. In the meanwhile, we maintain a set of top
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features and insert any new significant interactions into the set by removing the
feature with the lowest relevance score. The significance threshold is dynamically
updated as the lowest relevance score from the set of the top features. Finally
after all markers are checked, we select the target features from the set of most
relevant features using the objective function defined in Equation 3. As the num-
ber of single markers is much smaller than the number of pairwise interactions
and most of the markers have small probabilities, our method is in general very
time-efficient. For example, for data sets with 20,000 markers and 200 samples,
our method finishes in less than half an hour while an exhaustive search takes
over 15 hours.

Notice that the goal of MINED is to select a set of significant epistasis effects
efficiently by maximizing the prediction accuracy. Whether the prediction per-
formance based on epistasis effects is superior to the performance based on just
the single marker effects, and how much improvement epistasis effects can lead
to, depend on the quality of the epistasis effects themselves.

3.2 Dynamic Significance Threshold

MINED consists of two stages: first we rank features, which can be either single
markers or epistasis effects by relevance score and then we consider the redun-
dancy among only the top features. Assuming that after the first stage, we collect
the top-k most relevant features to do redundancy check for the second stage, as
we rank the epistasis effects by their relevances to the trait, it is natural to take
the relevance score R of the top-k-th feature as a threshold. We call this thresh-
old R the significance threshold and k generally needs to be large to guarantee
a good performance. At the beginning we have not checked any interactions. So
we rank all the single markers first, then initialize R as the top-k-th relevance
score of the single markers.

Next we scan each marker, compute the probability that the marker is involved
in any significant interaction and determine what interactions we should check.
As we show in the next section, the probability is affected by the threshold
R. The larger R is, the smaller the probability tends to be and the smaller
number of interactions we need to check. Therefore, we update this significance
threshold dynamically. We maintain the sorted list of the features according to
their relevance scores (notice we consider both epistasis effects and single marker
effects). When we check an interaction, we insert the interaction into the top-k
feature set if its relevance score is better than R and we remove the last feature
from the list. If the interaction does not have a higher relevance score than R,
we do not change the list and we say the interaction is pruned. We then set
the threshold R as the relevance score of the current k-th feature. We keep on
updating the threshold as we insert more interactions, while keeping the order
of the list according to the relevance scores. Obviously, the threshold becomes
higher and higher, and it becomes easier and easier to prune the remaining
interactions as shown in the next section.

We next show a running example. Assuming the current top-6 feature set has
scores [0.8, 0.5, 0.3, 0.3, 0.2, 0.1], the input features have scores 0.05, 0.4, 0.15,
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0.19. The threshold value is 0.1, the smallest score in the top-6 feature set. The
first input feature with score 0.05 will be pruned as 0.05 < 0.1. The second input
feature will be kept as 0.4 > 0.1. The top-6 feature set will be updated as [0.8,
0.5, 0.4, 0.3, 0.3, 0.2] and the threshold will be updated as 0.2. Therefore, the
last two input features with score 0.15 and 0.19 will be all pruned. If we do not
update the threshold, both of them will be selected.

3.3 Compute Marker Probability

Given the current significance threshold R, a naive strategy is to search all possi-
ble interactions for each marker and select the interactions that have score higher
than R. However, this is equivalent to an exhaustive search and is infeasible for
large data sets. In MINED, for each marker, we compute the probability that it
is involved in some significant epistasis interactions (we call this probability the
significance probability). If the probability is high enough, we continue explor-
ing all its possible interactions. Otherwise we ignore this marker, or prune this
marker such that all the interactions where the marker is involved in are also
pruned. To compute the probability efficiently, we conduct a sampling such that
exhaustive search of all possible interactions can be avoided.

The motivation of applying sampling to estimate the probability is based on
two observations: first of all, when a SNP is involved in a significant interaction, it
is very likely that the SNP is involved in many significant interactions. Wei et al.
[20] reported that SLC2A9 gene interacted with multiple loci across the genome,
indicating the observation is common. To further validate this observation, we
conduct an exhaustive search for all pairs of interactions on three plant data sets
Maize [16], Rice [25] and Pine [15]. We rank the interactions by their relevance
scores. Then we consider the top 20,000 interactions with the highest relevance
scores as significant interactions, and we plot the histogram for the number of
significant interactions that each SNP is involved in. Due to space limits, we
only state the results: out of the top-20,000 interactions around 85% SNPs are
involved in more than 5 significant interactions. The histogram for Maize data
set is shown in Figure 3.

Secondly, we observe that the relevance score follows a truncated normal dis-
tribution. Then if we sample f relevance scores, where f � m, the number of
genotypes, we can fit the normal distribution to estimate the mean and the stan-
dard deviation. Using this distribution, and given the total number of features as
m, we compute the probability of seeing at least one significant relevance score
out of the m− 1 possible interactions, where a score is significant if it is higher
than the current significance threshold R. If the probability is high, we check all
the m−1 interactions for this marker. If not, we do not need to further check this
marker and we can safely prune this marker. Obviously, the larger R, the lower
the probability and this is the motivation for the dynamic thresholding strategy
to keep on updating R such that the markers can be pruned more efficiently.
Therefore, it is reasonable to conduct a sampling to estimate the probability
that a SNP is involved in some significant epistasis interaction.
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Fig. 3. The histogram for the number of significant interactions out of the top-20,000
interactions that each SNP is involved in (degree of SNPs) for the three traits of the
Maize Dent data set [16]. We can see over 85% SNPs are involved in more than 5
significant interactions, namely the degree of SNPs is greater than 5.

Based on the above two observations, we check the markers one by one, and,
when we compute the significance probability of the current maker, we randomly
sample f markers from the set of remaining markers and compute the relevance
score of the interactions between the marker and the f sampled markers, where
f � m and m is the number of original features. If the probability is higher than
a threshold P , we will check the interactions between the marker and all the re-
maining markers. Otherwise we move to the next marker. f needs to be small
to guarantee efficiency but can not be too small in order to capture significant
interactions. We set f empirically and we observed that f = 0.01×m generally
achieves a good balance of efficiency and effectiveness. In order to capture as
many significant epistasis interactions as possible, we generally use a small value
for the significance probability s, say 0.001 (notice this threshold is the prob-
ability threshold and is different from the threshold R, which is the relevance
score threshold, or the so-called significance threshold). And our experiments
show that even with such a small threshold, the markers and interactions can
be pruned efficiently. The pesuedoucode of the algorithm MINED is shown in
Algorithm 1.

3.4 Epistasis Detection with Constraints

As we show later in the experiments, epistasis effects can be highly redundant,
since one SNP can be involved in multiple interactions and these interactions are
likely to have higher redundancy. Therefore, even though we keep a large k for
the set of top-k most relevant features, the epistasis effects in this set can be still
highly redundant. Thus considering redundancy later in a set of highly redundant
features will not help improve the prediction. To address this problem, we need
to increase the value of k to be large enough such that enough relatively unique
epistasis effects can be captured. However, given the extremely large number of
possible epistasis effects, for example, around 900 million epistasis effects for the
Maize Dent data set, lots of redundant epistasis effects have high relevance score.
Thus k needs to be very large, which makes selecting the final set of features very
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Algorithm 1. The pseudocode for the algorithmMINED to select a set of target
features considering both single marker effects and pairwise epistasis effects.

Input: Original marker set X, size of target feature set t, size of the most relevant
features k, a probability threshold s

Output: Set of target markers
1: Rank the markers in X in decreasing order of their relevance scores as x1, x2, . . .
2: Threshold R ← score(xk)
3: for xi ∈ X do
4: Randomly sample a set of f distinct xj ’s XM from X
5: prob ← estimateProb(xj, XM, t)
6: if prob > s or ∃score(xi, xj) > t for xj ∈ XM then
7: Compute score(xi, xh) for 1 ≤ h ≤ d and h �= x
8: if score(xi, xh) > t then
9: Update the top-k set by inserting the new feature (xi, xh)
10: R ← score(xk)
11: end if
12: end if
13: end for
14: Select a final set of t features using Equation 3

inefficient, as the complexity to select the final set of features is O(kt), where t
is the number of targeted features.

To address this problem,we further propose an algorithmConstrained-MINED,
where we set up a constraint threshold n such that onemarker can be involved in at
most n different interactions.We call two epistasis effects sharing the samemarker
as an overlap. The rationale is that when two interactions share the samemarker, it
is more likely that they have higher redundancy. Therefore, if we add a constraint
on the number of epistasis effects that can share the samemarker, we can probably
reduce the redundancyof the selected epistasis effects.This strategy leads to a great
computational advantage: we do not need to select a very largek for the top-kmost
relevant features. The epistasis effects selected using this strategyare naturally less
redundant as we force these effects to not overlap.We next give more details of the
algorithm.

We set up an overlap threshold n such that one SNP can be involved in at most
n interactions and we can rewrite the linear regression model with constraints
as the following:

Y = β0 +
d∑

i=1

βiXi +
d∑

i=1

d∑

j=1

αi,jIi,jXiXj + e

d∑

i=1

Ii,j ≤ n for 1 ≤ j ≤ d

d∑

j=1

Ii,j ≤ n for 1 ≤ i ≤ d

Ii,j = {0, 1}
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where Ii,j is an indicator function of value either 0 or 1, indicating if we select
the interactionXiXj or not. We call the set of selected interactions as constraint-
based interactions.

We construct an interaction graph, where the nodes are interactions, the edges
indicate the two associated nodes overlap by some SNPs. For example, for three
SNPs A,B and C, the edge between an interaction (AB) and an interaction (AC)
indicates the two interactions overlap as they share a common SNP A. There is a
weight associated with each node, which corresponds to the significance score of
the interaction. We show an example in Figure 4. If we set the overlap threshold
as 1, namely one SNP can be involved in only one interactions, we can select
two nodes AC and BD which are disjoint and the sum of their weights 0.7 is
the maximum sum of weights we can obtain.

Fig. 4. An example of interaction graph, where the constraint, or the overlap threshold
is set to 1, namely one SNP can not appear in more than one interaction.

With the above graph representation, the set of interactions with maximum
sum of significance score is converted to a Weighted Maximum Independent Set
(WMIS) problem. The WMIS problem seeks to select a set of nodes from a graph
to form an independent set, where all the nodes are not adjacent, such that the
sum of the weights on the nodes is maximized. As all the nodes are not adjacent
in the independent set, all selected interactions are guaranteed non-overlapping.
This is equivalent to using an overlap threshold of 1. When the overlap threshold
n is greater than 1, we allow the degree of the connectivity of the selected nodes
to be no greater than n, and we call the new problem Weighted Maximum n-
Independent Set (WMNIS) problem.

The WMIS problem is well-known to be NP-complete and therefore so is WM-
NIS problem. Many greedy methods have been proposed for the WMIS problem
[2] [17] [19]. We next developed a greedy algorithm for the WMNIS problem. The
basic idea is that we select the interactions according to their relevance scores,
where we select interactions with higher scores first. We maintain a count for
each single marker. Once an interaction is selected, we increase the counts of
both markers by 1. When we select an interaction, if either of its single markers
has count greater than the threshold n, we skip this interaction and move to the
next one. The pesuedoucode of the algorithm MINED is shown in Algorithm 2.

4 Experimental Results

4.1 Maize Data

We tested the performance of MINED on three real data sets. The first data
set is the Maize data set [16], which consists of two maize diversity panels with
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Algorithm 2. The pseudocode for the algorithm Constrained-MINED to se-
lect a set of target features considering both single marker effects and pairwise
epistasis effects.

Input: Original marker set X, size of target feature set t, size of the most relevant
features k, a probability threshold s, constraint threshold n

Output: Set of target markers
1: Rank the markers in X in decreasing order of their relevance scores as x1, x2, . . .
2: Threshold R ← score(xk)
3: for xi ∈ X do
4: if countDegree(xi) ≤ n then
5: Randomly sample a set of f distinct xj ’s XM from X
6: prob ← estimateProb(xj, XM, t)
7: if prob > s or ∃score(xi, xj) > t for xj ∈ XM then
8: Compute score(xi, xh) for 1 ≤ h ≤ d and h �= x
9: if countDegree(xh) ≤ n and score(xi, xh) > t then
10: Update the top-k set by inserting the new feature (xi, xh)
11: R ← score(xk)
12: degree(xi) ← degree(xi) + 1
13: degree(xh) ← degree(xh) + 1
14: end if
15: end if
16: end if
17: end for
18: Select a final set of t features using Equation 3

300 Flint and 300 Dent lines developed for the European CornFed program. The
two panels, Flint and Dent, were genotyped using a 50k SNP array, which after
removing SNPs with high rate of missing markers and high average heterozy-
gosity, yielded 29,094 and 30,027 SNPs respectively. Both of them contain 261
samples and three traits. In all experiments, we perform 10-fold cross-validations
and measure the average coefficient of determination r2 (computed as the square
of Pearson’s correlation coefficient) between the true and the predicted outputs,
where higher r2 indicates better performance. We use only r2 here as it is the
most common evaluation metric for genetic trait prediction problem.

As rrBLUP [12] is one of the most widely used methods for genetic trait pre-
diction and generally achieves better or equal results compared with other re-
gression methods such as Bayesian methods, Lasso, Elastic Net, Random Forests
and Boosting, we select it as our baseline method and we apply it on the selected
features for prediction. For MINED and Contraint-MINED, we do grid search
to determine the number of features to be used. Notice we have two types of
features, single markers and pairwise epistasis effects. Epistasis effects are extra
information for the model, so we consider using both types of features and we
seek for the best combination of them. In our algorithms, we set the probability
threshold s as 0.001, the size for the set of most relevant features k as 5,000, the
constraint threshold n as 5. These parameters are selected empirically to achieve
a good balance between the efficiency and the accuracy. We also conducted a
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Table 1. Performance (average r2) of rrBLUP, Bayesian, SVR (Support Vector Re-
gression), Lasso, exhaustive epistasis model, MINED followed by rrBLUP (MINED +
rrBLUP), and C-MINED (Constrained-MINED) followed by rrBLUP (Constrained-
MINED + rrBLUP) on the three phenotypes of Dent and Flint data sets.

Dent
Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED (Improvements over rrBLUP)

TASS 0.590 0.591 0.565 0.591 0.551 0.590 0.596 (1%)
DMC 0.552 0.563 0.567 0.563 0.548 0.552 0.563 (2%)

DM Yield 0.321 0.321 0.327 0.321 0.321 0.356 0.356 (11%)
Flint

Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED
TASS 0.470 0.471 0.467 0.471 0.48 0.476 0.482 (3%)
DMC 0.301 0.305 0.302 0.3 0.308 0.316 0.316 (5%)

DM Yield 0.057 0.062 0.073 0.058 0.054 0.096 0.078 (37%)

grid search and vary t, the number of selected epistasis effects to be used for
prediction as 0, 500, 1000 and 2000. Notice we allow not using any epistasis
effects by setting t = 0 if including them deteriorate the performance. Therefore
the performance of MINED+rrBLUP is guaranteed to be no worse than rrBLUP
along. The same strategy can be applied to any other regression methods such
that MINED followed by any method is guaranteed to be no worse than the
method itself, due to the extra information from the epistasis effects and the
grid search to determine if such extra information is useful or not. We compare
the performance of our methods with that of other different popular methods
and we show the improvements of Constrained-MINED over the baseline method
rrBLUP. Notice that for genetic trait prediction, a 5% improvement on r2 is con-
sidered as significant. As we can see in our experiments, Constrained-MINED is
able to make significant prediction improvements in most of the cases.

We show the results in Table 1, and we can see that both MINED and
Constrained-MINED achieve better performance than other methods in most
cases. Notice both methods achieve better performance than the exhaustive epis-
tasis model where all epistasis effects are considered in Equation 2. This clearly
indicates that considering all epistasis effects is not only very expensive (we had
used our super computer Blue Gene which has tens of thousands of nodes as
the rrBLUP model needs to handle billions of features at the same time), but
also often leads to poorer performance. Both MINED and Constrained-MINED
finished in around 1,500 seconds.

One needs to emphasize that the goal of MINED is to capture significant epis-
tasis effects by maximizing the prediction accuracy using cross validation. We
can see that MINED is indeed effective on this, but it can not guarantee that
these effects will improve the prediction, which depends on the effects them-
selves. When the effects themselves are poor, for example, when they are highly
redundant, it’s unlikely that MINED can improve the prediction. However, when
the effects do improve the prediction, MINED is able to capture them efficiently
and our experiments show that for most of the data sets epistasis effects help to
improve the prediction.
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Table 2. Performance (average r2) of rrBLUP, Bayesian, SVR (Support Vector Re-
gression), Lasso, exhaustive epistasis model, MINED followed by rrBLUP (MINED +
rrBLUP), and C-MINED (Constrained-MINED) followed by rrBLUP (Constrained-
MINED + rrBLUP) on the two phenotypes of Rice data set.

Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED (Improvements over rrBLUP)
Pericarp color 0.409 0.378 0.428 0.393 0.486 0.443 0.528 (29%)
Protein content 0.192 0.174 0.212 0.173 0.111 0.229 0.229 (19%)

Table 3. Performance (average r2) of rrBLUP, MINED followed by rrBLUP
(MINED + rrBLUP), Constrained-MINED followed by rrBLUP (Constrained-MINED
+ rrBLUP) on five randomly selected phenotypes of Rice data set.

Phenotype rrBLUP MINED Constrained-MINED (Improvements over rrBLUP)
Flowering time at Faridpur 0.282 0.282 0.291 (3%)
Flowering time at Aberdeen 0.343 0.344 0.351 (2%)

FT ratio of Faridpur/Aberdeen 0.204 0.251 0.251 (23%)
Culm habit 0.488 0.488 0.488 (0%)

Flag leaf length 0.281 0.281 0.301 (7%)

Table 4. Performance (average r2) of rrBLUP, MINED, Constrained-MINED, on four
randomly selected phenotypes of Pine data set.

Phenotype rrBLUP MINED Constrained-MINED (Improvements over rrBLUP)

BD 0.07 0.098 0.093 (33%)

BLC 0.24 0.245 0.252 (5%)

CWAC 0.23 0.233 0.233 (1.3%)

CWAL 0.15 0.154 0.166 (11%)

As we can see in Table 1, Constrained-MINED achieves better performance
than MINED for all cases except for Flint trait DM Yield, indicating that lim-
iting the overlaps of the epistasis effects does help to reduce the redundancy of
the selected effects resulting in improved prediction power.

4.2 Rice Data

Next we consider the second data set, the Asian rice, Oryza sativa, data set
[25]. This data set was based on 44,100 SNP variants from 413 accessions of O.
sativa, taken from 82 countries containing 34 phenotypes. The data sets have
36,901 markers and 413 samples. As the rice data set is much bigger than the
Maize data, we compare our methods against all other methods for only two
randomly selected phenotypes: “Pericarp.color” and “Protein.content”. We also
randomly selected another five phenotypes. As we have shown that rrBLUP is
as good as other methods, we compare our methods with rrBLUP only for these
five phenotypes. We use the same parameter setting for our methods and grid
search is conducted by our methods to select the number of epistasis effects to
be used. Average results of 10 fold cross-validation are shown in Table 2 and 3.
We see that for most of the phenotypes, both MINED and Constrained-MINED
achieves better performance than the other methods and rrBLUP, indicating
both methods are able to identify significant epistasis effects and including these
epistasis effects helps to improve the prediction. This again indicates that our
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methods are efficient in capturing significant epistasis effects. The results also
show again that whether the prediction can be improved using the epistasis
effects depends on the data set itself. For phenotype “Culm habit”, including
epistasis effects does not improve the prediction, and out of seven phenotypes,
Constrained-MINED achieves better performance for four phenotypes compared
with MINED. The improvement is especially significant for phenotype “Peri-
carp.color”, indicating that the constraint strategy is in general effective. Both
MINED and Constrained-MINED finished in around 3,000 seconds.

4.3 Pine Data

Finally we test the performance of our method on the third data set, the Loblolly
Pine data set [15], which contains 17 de-regressed phenotypes for the 926 sam-
ples, each with 4,854 genotypes. Average results of 10 fold cross-validation for
four randomly selected phenotypes are shown in Table 4, and again we com-
pare our methods with rrBLUP only. We use the same parameter setting for our
methods, and grid search is conducted by our methods to select the number of
epistasis effects to be used. We see that both MINED and Constrained-MINED
achieves better performance than rrBLUP does for all phenotypes. Constrained-
MINED achieves the best results for three phenotypes. For phenotype “BD”,
MINED achieves better results. These results are consistent with the results on
the previous two data sets, again illustrating the effectiveness of our methods.
Both MINED and Constrained-MINED finished in around 4,800 seconds.

Although we only tested the performance of our methods for genetic trait
prediction problem, they can be applied directly to prediction or classification
problems of other domains when the interactions of the features need to be
modeled.

5 Conclusions

In this work, we proposed an efficient mutual information based pairwise epis-
tasis detection method MINED for the genetic trait prediction problem. To our
knowledge, this is the first algorithm to detect epistasis for genetic trait pre-
diction problem. The method applies a sampling strategy as well as a dynamic
thresholding strategy to avoid exhaustive search. We show that MINED is much
faster than an exhaustive search. We also show that the method is effective in
capturing the truly significant epistasis effects. However, whether it is able to im-
prove the prediction performance depends on the quality of the epistasis effects.
In our future work, we would like to improve the method to better handle low
quality epistasis effects, for example, epistasis effects that are highly redundant.
We would also like to extend the framework to handle multi-way interactions,
where more than two SNPs are involved.
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16. Rincent, R., Laloë, D., Nicolas, S., Altmann, T., Brunel, D., Revilla, P.,
Rodriguez, V.M.: Maximizing the reliability of genomic selection by optimizing
the calibration set of reference individuals: Comparison of methods in two diverse
groups of maize inbreds (zea mays l.). Genetics 192(2), 715–728 (2012)

17. Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the max-
imum weighted independent set problem. Discrete Applied Mathematics 126(2),
313–322 (2003)



124 D. He et al.

18. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B 58, 267–288 (1994)

19. Valiente, G.: A new simple algorithm for the maximum-weight independent set
problem on circle graphs. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003.
LNCS, vol. 2906, pp. 129–137. Springer, Heidelberg (2003)

20. Wei, W., Hemani, G., Hicks, A.A., Vitart, V., Cabrera-Cardenas, C.,
Navarro, P., Huffman, J., Hayward, C., Knott, S.A., Rudan, I., et al.: Character-
isation of genome-wide association epistasis signals for serum uric acid in human
population isolates. PloS One 6(8), e23836 (2011)

21. Whittaker, J.C., Thompson, R., Denham, M.C.: Marker-assisted selection using
ridge regression. Genet. Res. 75, 249–252 (2000)

22. Yang, C., He, Z., Wan, X., Yang, Q., Xue, H., Yu, W.: Snpharvester: a filtering-
based approach for detecting epistatic interactions in genome-wide association
studies. Bioinformatics 25(4), 504–511 (2009)

23. Zhang, X., Huang, S., Zou, F., Wang, W.: Team: efficient two-locus epistasis tests
in human genome-wide association study. Bioinformatics 26(12), i217–i227 (2010)

24. Zhang, Y., Liu, J.S.: Bayesian inference of epistatic interactions in case-control
studies. Nature Genetics 39(9), 1167–1173 (2007)

25. Zhao, K., Tung, C.-W., Eizenga, G.C., Wright, M.H., Ali, L., Price, A.H.,
Norton, G.J., Islam, M.R., Reynolds, A., Mezey, J., et al.: Genome-wide associa-
tion mapping reveals a rich genetic architecture of complex traits in oryza sativa.
Nature Communications 2, 467 (2011)



Domain Adaptation with Logistic Regression

for the Task of Splice Site Prediction

Nic Herndon(�) and Doina Caragea

Computing and Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, KS 66506, USA

{nherndon,dcaragea}@ksu.edu

Abstract. Supervised classifiers are highly dependent on abundant la-
beled training data. Alternatives for addressing the lack of labeled data
include: labeling data (but this is costly and time consuming); training
classifiers with abundant data from another domain (however, the clas-
sification accuracy usually decreases as the distance between domains
increases); or complementing the limited labeled data with abundant
unlabeled data from the same domain and learning semi-supervised clas-
sifiers (but the unlabeled data can mislead the classifier). A better alter-
native is to use both the abundant labeled data from a source domain
and the limited labeled data from the target domain to train classifiers
in a domain adaptation setting. We propose such a classifier, based on
logistic regression, and evaluate it for the task of splice site prediction –
a difficult and essential step in gene prediction. Our classifier achieved
high accuracy, with highest areas under the precision-recall curve be-
tween 50.83% and 82.61%.

Keywords: Domain adaptation · Logistic regression · Splice
site prediction · Imbalanced data

1 Introduction

The adoption of next generation sequencing (NGS) technologies a few years ago
has led to both opportunities and challenges. The NGS technologies have made
it affordable to sequence new organisms but have also produced a large volume of
data that need to be organized, analyzed, and interpreted to create or improve,
for example, genome assemblies or genome annotations. For genome annotation
a major task is to accurately identify the splice sites – the regions of DNA that
separate the exons from introns (donor splice sites), and the introns from exons
(acceptor splice sites). The majority of the donor and acceptor splice sites, also
known as canonical sites, are the GT and AG dimers, respectively, but not all
GT, AG dimers are splice sites. Only about 1% or less of them are [23], making
the splice site prediction a difficult task.

NGS technologies have also enabled better gene predictions through programs
that assemble short RNA-Seq reads into transcripts and then align them against
the genome. For example, TWINSCAN [16] and CONTRAST [11] model the
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entire transcript structure as well as conservation in related species. However,
transcript assemblies from RNA-Seq reads are not error proof, and should be
subjected to independent validation [27].

Machine learning algorithms, which have been successfully applied on many
biological problems, including gene prediction, could be seen as alternative tools
that can help with such validation. For example, support vector machines (SVM)
have been used for problems such as identification of translation initiation sites
[19,30], labeling gene expression profiles as malign or benign [20], ab initio gene
prediction [4], and protein function prediction [5], while hidden Markov models
have been used for ab initio gene predictions [15,26], among others.

However, supervised machine learning algorithms require large amounts of
labeled data to learn accurate classifiers. Yet, for many biological problems,
including splice site prediction, labeled data may not be available for an organism
of interest. An option would be to label enough data from the target domain
for a supervised target classifier, but this is time consuming and costly. Another
option is to complement the limited labeled data with abundant unlabeled data
from the same target domain and learn semi-supervised classifiers. However, it
can happen that a classifier is degraded by the unlabeled data [7]. Assuming
that labeled data can can be plentifully available for a different, but closely
related model organism (for example, a newly sequenced organism is generally
scarce in labeled data, while a related, well-studied model organism is rich in
labeled data), another option is to learn a classifier from the related organism.
Nevertheless, using a classifier trained on labeled data from the related problem
to classify unlabeled data for the problem of interest does not always produce
accurate predictions.

A better alternative is to learn a classifier in a domain adaptation framework.
In this setting, the large corpus of labeled data from the related, well studied or-
ganism is used in conjunction with available labeled data from the new organism
to produce an accurate classifier for the latter.

Towards this goal, we propose a domain adaptation approach, presented in
Sect. 3.3, based on the supervised logistic regression classifier described in Sect.
3.1. This approach is simple, yet highly accurate. When trained on a source
organism, C.elegans, and one of four target organisms, C.remanei, P.pacificus,
D.melanogaster, and A.thaliana, with data described in Sect. 3.4, this algorithm
achieved high accuracy, with highest areas under the precision-recall curve be-
tween 50.83% for distant domains and 82.61% for closely related domains, as
shown in Sect. 4.

2 Related Work

Most of the approaches addressing splice site prediction involve supervised learn-
ing. For example, Li et al. [18] proposed a method that used the discriminating
power of each position in the DNA sequence around the splice site, estimated
using the chi-square test. They used a support vector machine algorithm with
a radial basis function kernel that combines the scaled component features, the
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nucleotide frequencies at conserved sites, and the correlative information of two
sites, to train a classifier for the human genome. Baten et al. [3], Sonnenburg
et al. [23], and Zhang et al. [29], also proposed supervised support vector ma-
chine classifiers, while Baten et al. [2] proposed a method using a hidden Markov
model, Cai et al. [6] proposed a Bayesian network algorithm, and Arita, Tsuda,
and Asai [1] proposed a method using Bahadur expansion truncated at the sec-
ond order. However, one major drawback of these supervised algorithms is that
they typically require large amounts of labeled data to train a classifier.

An alternative, when the amount of labeled data is not enough for learning a
supervised classifier, is to use the limited amount of labeled data in conjunction
with abundant unlabeled data to learn a semi-supervised classifier. However,
semi-supervised classifiers could be misled by the unlabeled data, especially
when there is hardly any labeled data [7]. For example, if during the first it-
eration one or more instances are misclassified, the semi-supervised algorithm
will be skewed towards the mislabeled instances in subsequent iterations. An-
other deficiency of semi-supervised classifiers is that their accuracy decreases
as the imbalance between classes increases. Stanescu and Caragea [25] studied
the effects of imbalanced data on semi-supervised algorithms and found that
although self-training that adds only positive instances in the semi-supervised
iterations achieved the best results out of the methods evaluated, oversampling
and ensemble learning are better options when the positive-to-negative ratio is
about 1:99. In their subsequent study [24], they evaluated several ensemble-based
semi-supervised learning approaches, out of which, again, a self-training ensem-
ble with only positive instances produced the best results. However, the highest
area under precision-recall curve for the best classifier was 54.78%.

Another option that addresses the lack of abundant labeled data needed with
supervised algorithms is to use domain adaptation. This approach has been
successfully applied to other problems even when the base learning algorithms
used in domain adaptation make simplifying assumptions, such as features’ inde-
pendence. For instance, in text classification, Dai et al. [9] proposed an iterative
algorithm derived from näıve Bayes that uses expectation-maximization for clas-
sifying text documents into top categories. This algorithm performed better than
supervised SVM and näıve Bayes classifiers when tested on datasets from News-
groups, SRAA and Reuters. A similar domain adaptation algorithm proposed
by Tan et al. [28], identified and used only the generalizable features from the
source domain, in conjunction with unlabeled data from the target domain. It
produced promising results for several target domains when evaluated on the
task of sentiment analysis.

Even though domain adaptation has been used with good results in other do-
mains, there are only a few domain adaptation methods proposed for biological
problems. For example, Herndon and Caragea [14] modified the algorithm pro-
posed by Tan et al. [28], by using a small amount of labeled data from the target
domain and incorporating self-training. Although this modified algorithm pro-
duced promising results on the task of protein localization, it performed poorly
on the splice site prediction data. The updated version of that algorithm, [13],
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implemented further changes, such as normalizing the counts for the prior and
likelihood, using mutual information in selecting generalizable features, and rep-
resenting the DNA sequences with location aware features. With these changes,
the method produced promising results on the task of splice site prediction,
with values for the highest area under the precision-recall curve between 43.20%
for distant domains and 78.01% for related domains. A recent approach for
splice site prediction, Giannoulis et al. [12], proposed a modified version of the
k-means clustering algorithm that took into account the commonalities between
the source and target domains for splice site prediction. While this method seems
promising, in its current version, it was less accurate than the method in [13] –
with the best values for the area under receiver operating characteristic curve
below 70%. The best results for the task of splice site prediction, up until now,
were obtained with a support vector machine classifier proposed by Schweikert
et al. [22] (which used a weighted degree kernel proposed by Rätsch et al. [21]),
especially when the source and target domain were not closely related.

3 Methods and Materials

In this section, we present the three logistic regression classifiers that we use
in our experiments. We describe them in the context of a binary classification
task since splice site prediction is a binary classification problem. The first clas-
sifier, proposed by Le Cessie and Van Houwelingen [17] , is a supervised logistic
regression classifier. We will use this as a baseline for our domain adaptation
classifiers. The second classifier uses a method proposed by Chelba and Acero
[8] for maximum entropy models. This is a logistic regression classifier for the
domain adaptation setting. The third classifier is our proposed classifier for the
domain adaptation setting.

3.1 Logistic Regression with Regularized Parameters

Given a set of training instances generated independently X ∈ R
m×n and their

corresponding labels y ∈ Ym, Y = {0, 1}, where m is the number of training
instances and n is the number of features, logistic regression models the posterior
probability as

p(y | x; θ) =
{
g(θTx) , if y = 1
1− g(θTx) , if y = 0

=
[
g(θTx)

]y ·
[
1− g(θTx)

]1−y

where g(·) is the logistic function g(θTx) = 1

1+e−θT x
.

With this model, the log likelihood can be written as a function of the pa-
rameters θ as follows:

l(θ) = log

m∏

i=1

p(yi | xi; θ) = log

m∏

i=1

[
g(θTxi)

]yi ·
[
1− g(θTxi)

]1−yi

=

m∑

i=1

[
yi log g(θ

Txi) + (1− yi) log
(
1− g(θTxi)

)]
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The parameters are estimated by maximizing the log likelihood, usually using
maximum entropy models, after a regularization term, with parameter λ, is
introduced to penalize large values of θ:

θ = argmax
θ

{
m∑

i=1

[
yi log g(θ

Txi) + (1− yi) log
(
1− g(θTxi)

)]
− λ‖θ‖2

}

Note that xi is the ith row in X , in our case, the ith DNA sequence in the
training data set, yi is the ith element of y, i.e., the corresponding label of xi,
and xi0 = 1, ∀i ∈ {1, 2, . . . ,m} such that θTxi = θ0 +

∑n
j=1 θjxij .

3.2 Logistic Regression for Domain Adaptation Setting with
Modified Regularization Term

The method proposed by [8] for maximum entropy models involves modifying the
optimization function. First, this method learns a model for the source domain,
θS , by using the training instances from the source domain, (XS , yS), where
XS ∈ R

mS×n and yS ∈ YmS (note that the subscripts indicate the domain, with
S for the source, and T – in the subsequent equations – for the target).

θS = argmax
θS

{
mS∑

i=1

[
yi log g(θ

T
Sxi) + (1− yi) log

(
1− g(θTSxi)

)]
− λS‖θS‖2

}

Then, using the source model to constrain the target model, learn a model of
the target domain, θT , by using the training instances from the target domain,
(XT , yT ), where XT ∈ R

mT×n and yT ∈ YmT , but with the following modified
optimization function:

θT = argmax
θT

{
mT∑

i=1

[
yi log g(θ

T
T xi) + (1− yi) log

(
1− g(θTT xi)

)]
−λT ‖θT −θS‖2

}

3.3 Logistic Regression for Domain Adaptation Setting with
Convex Combination of Posterior Probabilities

The method we are proposing uses a convex combination of two logistic regres-
sion classifiers – one trained on the source data, and the other trained on the
target data. First, we learn a model for the source domain and a model for the
target domain, using the training instances from the source domain, (XS , yS)
and from the target domain, (XT , yT ), respectively:

θS = argmax
θS

{
mS∑

i=1

[
yi log g(θ

T
Sxi) + (1− yi) log

(
1− g(θTSxi)

)]
− λS‖θS‖2

}

θT = argmax
θT

{
mT∑

i=1

[
yi log g(θ

T
T xi) + (1− yi) log

(
1− g(θTT xi)

)]
− λT ‖θT ‖2

}
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Then, using these models, we approximate the posterior probability for ev-
ery instance x from the test set of the target domain as a normalized convex
combination of the posterior probabilities for the source and target domains:

p(y | x; δ) ∝ (1− δ) · pS(y | x; θS) + δ · pT (y | x; θT ) (1)

where δ ∈ [0, 1] is a parameter that shifts the weight from the source domain to
the target domain depending on the distance between these domains, and the
amount of target data available. This parameter is optimized using the training
instances of the target domain, (XT , yT ), as validation set.

3.4 Data Set

We evaluated our proposed algorithm on the splice site dataset1 first introduced
in [22]. This contains DNA sequences from five organisms, C.elegans used as the
source domain and four other organisms at increasing evolutionary distance from
it, C.remanei, P.pacificus, D.melanogaster, and A.thaliana, as target domains.
Each instance is a 141 nucleotides long DNA sequence, with the AG dimer at
the sixty-first position, along with a label that indicates whether this AG dimer
is an acceptor splice site or not. In each file 1% of the instances are positive, i.e.,
the AG dimer at 61st position is an acceptor splice site, with small variations
(variance is 0.01), while the remaining instances are negative. The data from
the target organisms is split into three folds (by the authors who published the
data in [22]) to obtain unbiased estimates for the classifier performance. Similar
to [22], for our experiments, we used the training set of 100,000 instances from
C.elegans, and the three folds of 2,500, 6,500, 16,000, and 40,000 labeled in-
stances from the other organisms, and for testing, three folds of 20,000 instances
each, from the target organisms. This allows us to compare our results with the
previous state-of-the-art results on this dataset in [22]. Note that although the
dataset we used only has acceptor splice sites, the problem of predicting donor
splice sites can be addressed with the same approach.

3.5 Data Preparation and Experimental Setup

We use two similar representations for the data. In one of them, we convert each
DNA sequence into a set of features that represent the nucleotides present in the
sequence at each position, and the trimer at each position. For example, given
a DNA sequence starting with AAGATTCGC... and label -1 we represent it as
A,A,G,A,T,T,C,G,C,. . .,AAG,AGA,GAT,. . .,-1.

With these features we create a compact representation of a balanced combi-
nation of simple features in each DNA sequence, i.e., the 1-mers, and more com-
plex features – features that capture the correlation between the nucleotides,
i.e., the 3-mers. However, when the training data has a small number of in-
stances, the trimers lead to a set of sparse features which can result in decreased

1 Downloaded from ftp://ftp.tuebingen.mpg.de/fml/cwidmer/

ftp://ftp.tuebingen.mpg.de/fml/cwidmer/
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classification accuracy. Therefore, in the other representation we keep only the
nucleotide features. For an example DNA sequence starting with AAGATTCGC...

and label -1 we represent it as A,A,G,A,T,T,C,G,C,. . .,-1.
We use these representations for two reasons. First, with these representations

we achieved good results in [13] with a näıve Bayes classifier in a domain adap-
tation setting. And second, this allows us to compare the results of our proposed
method with our previous results.

To find the optimal parameters’ values we first did a grid search for λ, using
the baseline, supervised logistic classifier, with λ = 10x, x ∈ {−8,−6, . . . , 4},
trained with data from source and target domains. For these datasets we got the
best results when λ = 1, 000. Therefore, for our proposed algorithm we set λS

and λT to 1,000, and did a grid search for δ with values from {0.1, 0.2, . . . , 0.9},
while for our implementation of the method proposed in [8] we set λS to 1,000
and did a grid search for λT with λT = 10x, x ∈ {−8− 7, . . . , 4}. We tuned λT

for the method in [8], as λT controls the trade-off between source and target
parameters, and thus it is similar to the δ parameter for our proposed method.

For the domain adaptation setting we trained on source and target data,
while for the baseline classifiers, the supervised logistic regression, in one setting
we trained on source, and in another setting we trained on each of the labeled
target data set sizes: 2,500, 6,500, 16,000, and 40,000. To evaluate the classifiers
we tested them on the test target data from the corresponding fold. We expect
the results of the baseline, logistic regression classifier trained on each of the
target labeled data sets to be the lower bound for our proposed method trained
on the source data and that corresponding target labeled data, since we believe
that adding data from a related organism should produce a better classifier.

All results are reported as averages over three random train-test splits to
ensure that our results are unbiased. To evaluate the classifiers we used the area
under the precision-recall curve (auPRC) for the positive class, since the data
are so highly imbalanced [10].

With this experimental setup we wanted to evaluate:

1. The influence of the following factors on the performance of the classifier:

(a) The features used: nucleotides, or nucleotides and trimers.

(b) The amount of target labeled data: from 2,500, 6,500, 16,000 to 40,000
instances.

(c) The evolutionary distance between the source and target organisms.

(d) The weight assigned to the target data through the δ parameter in Equa-
tion 1.

2. The performance of the two domain adaptation classifiers derived from the
supervised logistic regression classifier (the method proposed by [8], and our
proposed method), compared to other domain adaptation classifiers for the
task of splice site prediction, namely, the SVM classifier proposed by [22]
and the näıve Bayes classifier proposed by [13].
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Table 1. auPRC values for the minority (i.e., positive) class for four target organ-
isms based on the number of labeled target instances used for training: 2,500, 6,500,
16,000, and 40,000. The top five rows in each subtable show the auPRC values for the
classifiers trained with nucleotide features (N), while the bottom five rows show the
values for the classifiers trained with nucleotide and trimer features (N&T). The LR SL
classifier is the baseline logistic regression classifier trained on 100,000 instances from
the source domain, C.elegans (first and seventh rows), and target labeled data (second
and eighth rows). The LR cc and LR reg domain adaptation classifiers are trained on
a combination of source labeled and target labeled data, while the NB domain adapta-
tion classifier is trained on a combination of source labeled, target labeled, and target
unlabeled data. We show for comparison with our classifier (the one with blue cell text)
the values for the best overall classifier in [22], SVMS,T , (listed in these subtables as
SVM), the values for our implementation of the LR reg classifier proposed in [8], and
the values for the best overall classifier in [13], A1, (listed in these subtables as NB).
Note that the SVM classifier used different features. The best average values for each
target dataset size is shown in bold. We would like to highlight that our classifier al-
ways performed better than the baseline classifier, and performed better in 9 out of 16
cases than the SVM classifier – the best classifier out of the three domain adaptation
classifiers used for comparison with our classifier. We couldn’t check if the differences
between our classifier and the SVM classifier are statistically significant, as we did not
have the performance results per-fold for the SVM classifier(only average performance
values were available in [22]).

Feat. Classifier 2,500 6,500 16,000 40,000

N

LR SLS 77.63±1.37
LR SLT 31.07±8.72 54.20±3.97 65.73±2.76 72.93±1.70
LR cc 77.64±1.39 77.75±1.25 77.88±1.42 78.10±1.15
LR reg 16.30±7.70 40.87±3.26 49.07±0.93 58.37±2.63
NB 59.18±1.17 63.10±1.23 63.95±2.08 63.80±1.41
SVM 77.06±2.13 77.80±2.89 77.89±0.29 79.02±0.09

N&T

LR SLS 81.37±2.27
LR SLT 26.93±9.91 55.26±2.21 68.30±1.91 77.33±2.78
LR cc 81.39±2.30 81.47±2.19 81.78±2.08 82.61±2.00
LR reg 2.30±1.05 14.50±4.68 40.10±3.72 63.53±7.10
NB 45.29±2.62 72.00±4.16 74.83±4.32 77.07±4.45

(a) C.remanei

Feat. Classifier 2,500 6,500 16,000 40,000

N

LR SLS 64.20±1.91
LR SLT 29.87±3.58 49.03±4.90 59.93±2.74 69.10±2.25
LR cc 64.70±1.85 65.31±2.10 66.76±0.89 70.18±2.12
LR reg 18.00±3.83 32.73±2.69 40.73±4.30 55.73±1.62
NB 45.32±2.68 49.82±2.58 52.09±2.04 54.62±1.51
SVM 64.72±3.75 66.39±0.66 68.44±0.67 71.00±0.38

N&T

LR SLS 62.37±0.84
LR SLT 28.40±4.49 49.67±2.83 62.97±3.32 74.60±2.85
LR cc 64.18±1.10 65.49±1.84 69.76±2.08 75.82±2.00
LR reg 4.37±1.76 14.50±4.86 38.23±6.54 63.70±5.28
NB 20.21±1.17 53.29±3.08 62.33±3.60 69.88±4.04

(b) P.pacificus
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Table 1. (Continued)

Feat. Classifier 2,500 6,500 16,000 40,000

N

LR SLS 35.87±2.32
LR SLT 19.97±3.48 31.80±3.86 42.37±2.15 50.53±1.80
LR cc 39.70±2.82 42.19±3.41 49.72±2.01 53.43±0.89
LR reg 11.33±1.36 22.80±2.60 27.30±3.92 42.67±0.76
NB 33.31±3.71 36.43±2.18 40.32±2.04 42.37±1.51
SVM 40.80±2.18 37.87±3.77 52.33±0.91 58.17±1.50

N&T

LR SLS 32.23±2.76
LR SLT 15.07±4.11 28.30±5.45 44.67±3.23 38.43±32.36
LR cc 37.24±2.20 40.93±3.79 50.54±3.91 45.89±22.25
LR reg 3.40±1.82 8.37±2.48 21.20±2.85 26.50±22.44
NB 25.83±2.35 32.58±5.83 39.10±1.82 47.49±3.44

(c) D.melanogaster

Feat. Classifier 2,500 6,500 16,000 40,000

N

LR SLS 16.93±0.21
LR SLT 13.87±2.63 26.03±3.29 38.43±6.18 49.33±4.07
LR cc 20.67±0.58 27.19±1.30 40.56±3.26 49.75±2.82
LR reg 8.50±2.08 17.93±4.72 23.30±2.35 39.10±4.97
NB 18.46±1.13 25.04±0.72 31.47±3.56 36.95±3.39
SVM 24.21±3.41 27.30±1.46 38.49±1.59 49.75±1.46

N&T

LR SLS 14.07±0.31
LR SLT 8.87±1.84 21.10±4.45 38.53±8.08 49.77±2.77
LR cc 16.42±1.20 26.44±2.49 41.35±6.49 50.83±2.28
LR reg 2.50±0.10 8.27±1.60 20.03±3.36 30.27±2.57
NB 3.99±0.43 13.96±2.42 33.62±6.31 43.20±3.78

(d) A.thaliana

4 Results and Discussion

Table 1 shows the auPRC values of the minority class when using our proposed
domain adaptation with logistic regression classifier and, for comparison, when
using the supervised logistic regression classifiers (trained on source or target),
the logistic regression for domain adaptation classifier proposed by [8], the näıve
Bayes classifier for domain adaptation from our previous work [13], and the best
overall SVM classifier for domain adaptation proposed by [22], SVMS,T . Based
on these results, we make the following observations:

1. In terms of the factors that influence the performance of the classifier:

(a) Features: our proposed classifier performed better with nucleotide and
trimer features, when the source and target domains are closely related
and the classifier has more target labeled data available. However, as the
distance between the source and target domains increases, our algorithm
performs better with nucleotide features when there is little target la-
beled data. This conforms with our previous results [13], and with our
intuition (see Section 3.5): since trimers generate a sparse set of fea-
tures, they lead to decreased classification accuracy when there are a
small number of target training instances.
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(b) Amount of target labeled training data: the more target training
data used by the classifier the better the classifier performs. This makes
sense, as more sample data describes more closely the distribution.

(c) Distance between domains: as the distance between the source and
target domains increases the contribution of the source data decreases.
It is interesting to note though that based on these results the splice site
prediction problem seems to be more difficult for more complex organ-
isms. For all dataset sizes there is a common trend of decreasing auPRC
values as the complexity of the organisms increases, from C.remanei, P.
pacificus, D.melanogaster, to A.thaliana, as shown in Table 1. We believe
this is a major reason that helps explain the decreased auPRC values for
all classifiers, for these organisms, respectively, i.e., in general auPRC
for C.remanei > P. pacificus > D.melanogaster > A.thaliana.

(d) Weight assigned to target data: Intuitively, we expect δ to be closer
to one when the source and target domain are more distantly related,
and closer to zero otherwise. The results conform with our intuition, with
δ between 0.1 and 0.6 for C.remanei, between 0.7 and 0.8 for P.pacificus,
between 0.8 and 0.9 for D.melanogaster, and 0.9 for A.thaliana.

2. In terms of performance, the method proposed by [8] produced worse re-
sults than the supervised logistic regression classifier trained on the target
data. We believe that these poor results are due to this method’s modified
optimization function, which constrains the values of the parameters for the
target domain to be close to the values of the parameters for the source do-
main. In addition, this method performed worse than the domain adaptation
näıve Bayes classifier proposed in our previous work [13], except for two cases
(when using nucleotides as features, the target domains are D.melanogaster,
and A.thaliana, and the algorithms are trained on 40,000 target instances).

Our proposed method produced better average results than the supervised
logistic classifier trained on either the source or the target domain in every
case of the 16 we evaluated. This confirms our hypothesis that augmenting
a small labeled dataset from the target domain with a large labeled dataset
from a closely related source domain improves the accuracy of the classifier.
In addition, this method outperformed the domain adaptation näıve Bayes
classifier proposed in our previous work [13], as well as the method proposed
by [8] in every case, and outperformed the best overall domain adaptation
SVM classifier proposed by [22] in 9 out of the 16 cases. Based on these
results we would recommend using our proposed method over the domain
adaptation SVM classifier when the source and target domains are closely
related, or when there is quite a bit of labeled data for the target domain.
However, when there are only very little labeled data for the target domain
and the domains are more distantly related, we would recommend using the
SVM algorithm proposed by [22].



Domain Adaptation with Logistic Regression for Splice Site Prediction 135

5 Conclusions and Future Work

In this paper, we compared two domain adaptation algorithms derived from
the supervised logistic regression classifier for the task of splice site prediction.
One of these algorithms is our implementation of the method proposed in [8],
in which the optimization function is modified. With this approach, a model for
the source domain is learned first, and then a model for the target domain is
learned with the target parameters’ values constrained to be close to the source
parameters’ values through the optimization function. The other algorithm is
our proposed method that uses a convex combination of a supervised logistic
regression classifier trained on the source data and a supervised logistic regression
classifier trained on the target data to approximate the posterior probability for
every instance from the test set of the target domain.

We evaluated these classifiers on four target domains of increasing distance
from the source domain. While the method proposed by [8] performed worse in
most cases than the domain adaptation näıve Bayes classifier proposed in our
previous work [13], our newly proposed method outperformed the best overall
domain adaptation SVM classifier [22] in 9 out of the 16 cases. Our empirical
evaluation of these classifiers also provided evidence that the task of splice site
prediction becomes more difficult as the complexity of the organism increases.

In future work, we would like to explore ways to improve the accuracy of the
classifier, even with these highly imbalanced data. For example, we would like
to randomly split the negative instances to create smaller balanced data sets.
Then, we would train an ensemble of classifiers with the method we proposed in
this paper. Furthermore, we would like to evaluate the effectiveness of our pro-
posed method on other problems that can be addressed in a domain adaptation
framework, e.g. text classification problems, sentiment analysis.
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Abstract. Upstream open reading frames (uORFs) are open reading frames located 
within the 5’ UTR of an mRNA. It is believed that translated uORFs reduce the 
translational efficiency of the main coding region, and play an important role in 
gene regulation. However, only few uORFs are experimentally characterized. In 
this paper, we use ribosome footprinting together with a stacking-based classifica-
tion approach to identify translated uORFs in Arabidopsis thaliana. Our approach 
resulted in a set of 5360 potentially translated uORFs in 2051 genes. GO terms 
enriched in uORF-containing genes include gene regulation, signal transduction 
and metabolic pathway. The identified uORFs occur with a higher frequency in 
multi-isoform genes, and many uORFs are affected by alternative transcript start 
sites or alternative splicing events. 

Keywords: uORF · Translation · Ribosome footprinting · Stacking · Classification 
· Arabidopsis thaliana 

1 Introduction 

Upstream open reading frames (uORFs) are open reading frames that appear in the 5’ 
untranslated region (UTR) of an mRNA. Studies have shown that uORFs are often 
involved in the regulation of the downstream main open reading frame [1-3]. It is 
estimated that the Arabidopsis genome encodes more than 20,000 uORFs [4, 5]. 
However, only few uORFs are experimentally characterized, and in most cases it is 
unknown what biological function they have, and if they are translated [6-8].  
Lab-based identification of functional uORFs is time-consuming (~ 4 man-months per 
gene), and so far, only few uORFs have been directly characterized through forward 
genetic analysis at the whole plant level [9, 10]. A comprehensive identification of 
translated uORFs via mass spectrometry has been challenging due to the short length 
of the encoded proteins [5]. Several studies have predicted functional uORFs based on 
evolutionary conservation [11, 12]. For example, in [12], the authors have developed 
a BLAST-based algorithm to identify conserved uORFs across eudicots species and  
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reported 18 novel uORFs in Arabidopsis thaliana. Unfortunately, conserved uORFs 
only account for a small part of the uORFs in the Arabidopsis genome - currently, the 
TAIR database lists only about 70 conserved uORFs [5]. The biological function and 
translation status of most uORFs is still unknown. 

Recently, ribosome footprinting (RF) has been developed to investigate translation 
via deep sequencing of ribosome protected mRNA fragments (ribosome footprints) 
[13]. The RF technique is able to provide experimental evidence for translation initia-
tion sites (TISs) and uORFs. For example, Fritsch and colleagues recorded the cover-
age of ribosome footprints upstream of annotated TISs and trained a neural network to 
detect novel TISs. Their experiment identified 2994 novel uORFs in the human ge-
nome [14]. A similar study has also been performed in mouse [15].  

In this paper, we use a stacking-based classification approach that combines RF da-
ta with additional genome information to identify translated uORFs in Arabidopsis 
thaliana. Using this approach, we found 5360 translated uORFs that occur in 2051 
genes. In a preliminary analysis of the predicted uORFs we found that the enriched 
GO terms of the uORF-containing genes include gene regulation, signal transduction 
and metabolic pathway, and that uORFs are prevalent in multi-isoform genes. 

2 Material and Methods 

Our approach consists of five steps: (1) First, we aligned ribosome footprints and the 
corresponding mRNA reads to the genome sequence of Arabidopsis thaliana, and 
assigned the aligned sequences to uORFs and the annotated main coding sequences. 
(2) For each uORF, we extracted 12 features for subsequent analyses from our data-
set. (3) Then, we used k-means clustering to construct a training dataset. (4) We 
trained five different base-level classifiers. (5) Finally, we used a stacking approach to 
combine the results of the base classifiers in order to achieve more accurate results.  
A detailed description of the individual steps is given below. 

2.1 Data Preparation 

Ribosome footprints and RNA-seq data were generated from Arabidopsis thaliana 
wildtype using the Illumina HiSeq2000 platform. We analyzed over 90 million reads 
from two biological replicates. First, we performed quality control and removed adap-
tor sequences and low quality reads using the FASTX-Toolkit (http://hannonlab. 
cshl.edu/fastx_toolkit/). The resulting reads were aligned to the genome sequence of 
Arabidopsis thaliana using Tophat [16]. Reads that mapped to multiple genomic 
positions, as well as reads with length smaller than 25bp, or larger than 40bp, were 
discarded. The remaining reads were assigned to transcript regions using custom perl 
scripts. Genome and transcript sequences, as well as gene annotation were down-
loaded from The Arabidopsis Information Resource (TAIR, version 10, 
http://www.arabidopsis.org/). We generated an exhaustive list of uORFs, where each 
uORF corresponds to a sequence of start and stop codons (start: ATG, stop: TAG, 
TAA, TGA) interrupted by one or more additional codons. All generated uORFs start 
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in the 5’UTR, but they might extend beyond this transcript region. We excluded 
uORFs that consist of only a start and a stop codon (but no additional codons) from 
our analysis, because such uORFs are not considered to be functional [17]. This re-
sulted in 29629 uORFs in 7831 genes. 

2.2 Feature Extraction 

Several features of functional uORFs are known to have an impact on the translation 
of the downstream coding sequence (CDS) [18]. Those features include the length of 
uORF and the distance between the uORF and its CDS. It has been shown that ribo-
some footprints tend to accumulate at the translation initiation sites, as a consequence, 
more ribosome footprints align to the start site of the translated open reading frames 
[15, 19]. According to these observations, we extracted features that characterize the 
distribution of ribosome footprints in the neighborhood of a uORF, and measure their 
relative position with respect to the CDS. The following part describes the individual 
features in detail. 

Denote u(1),u(2),…u(l) the sequence positions of an uORF with length l in a tran-
script t. We assume that the CDS starts at position s in t. For i=1,...,l we denote the 
number of ribosome footprints mapping to u(i) by c(u(i)). We computed 12 features 
for each possible uORF: 

 
1) Distance from uORF start to the start of CDS: Ds = s - u(1). 
2) Distance from uORF end to CDS: De = s - u(l). 
3) Length of uORF: l. 
4) Distance from uORF start to the nearest peak of the ribosome density curve: Dp. 
  Assume the number of ribosome footprints aligned to the positions of a gene with        
length n were counted as (c(1), c(2),…, c(n)). We use a kernel smoother to estimate 
the ribosome density curve: 

 
where Kh is the kernel function and h is the smoothing parameter (bandwidth). We 
used the R function density with kernel function Gaussian and bandwidth 5. Peaks 
p(1),p(2),…,p(k) of the density curve indicate positions where ribosome footprints 
accumulate. We have  

Dp = min( | p(i) - u(1) | ), i = 1,2,…,k 
5) Ribosome density of a uORF: Den. 

 
6) Maximum local ribosome density of uORF (window size 3): Den_max. 
  The local ribosome density is calculated using a sliding window of size three along 
the uORF region. Den_max is the maximum value of the resulting local ribosome 
densities. 
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7) Minimum local ribosome density of uORF (window size 3): Den_min. 
  Den_min is the minimum value of all local ribosome densities. 
8) Ribosome density for the region left of uORF: Den_left. 
The ribosome density upstream of uORF indicates ribosome loading before start codon. 
We chose 15bp as it is about the half length of ribosome in Arabidopsis. We have 

 
 

9) Ribosome density for the region right of uORF: Den_right.  

 
 

10) Variance of ribosome footprints distribution along uORF region: Var. 

 
where µ is the mean value of c(i) in the uORF region. 
11) Ribosome density of UTR region: Den_utr. 
  Assume the utr region extends from position a to position b on a transcript, we 
have 

 
12) Ribosome density of CDS: Den_cds. 
  Assume the CDS region extends from position n to position k on a transcript, we 
have 

 

2.3 Training Set Construction 

We performed k-means clustering to identify groups of similar uORFs. The resulting 
clusters were characterized with respect to their translation behavior. A detailed de-
scription is given in Section 3.1. The training set is constructed based on our cluster-
ing result. The positive class (translated uORFs) is chosen from cluster 2.1 (see Figure 
2). The uORFs in this cluster show the characteristic distribution of ribosome foot-
prints in a canonically translated uORF. There are 76 uORFs in this cluster. The nega-
tive class is randomly selected from cluster 1 and 2.2. The uORFs in these clusters 
exhibit a small ribosome footprints density, or ribosome footprints accumulate far 
from the translation start site. We selected 76 records from both classes, resulting in a 
training set with 152 records.  
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2.4 Base-Level Classifier  

Our classification model is developed based on the positive and negative classes de-
scribed above. We use five base-level classification algorithms: a k-nearest neighbor 
classifier, a support vector machine (SVM), a decision tree, a Naïve Bayes classifier, 
and a neural network. We have chosen these five algorithms because they used the 
different classification strategies. Each classifier was tuned and the model with lowest 
error rate was used. The performance of the different classifiers was evaluated by a 
leave-one-out cross validation. 

2.5 Stacking  

Stacking is a method that combines the predictions of several base-level learning 
algorithms by a meta-level learning algorithm in order to improve predictive accura-
cy. It has been shown that stacking can combine the expertise of different base-level 
classifiers while reducing their bias [21]. We refer the reader to [20, 21] for a detailed 
description of the stacking framework. Here, we use stacking to combine the results 
from different classifiers and the features from the uORF regions in the training set. 
First, we use our training set to train the base-level classifier. We record the results of 
the base-level classifiers and use them together with the extracted features of the 
training set to generate a meta-level k-nearest neighbor classifier. Finally, we use 
leave-one-out cross validation to evaluate the performance of our approach. Suppose 
our training dataset D consists of N records D(1), ...,D(N). For each record D(i), 
i=1,...,N, we train the base-level and meta-level classifiers using D - D(i), and we 
evaluate their performance using D(i). The algorithm is given below. 

 

Algorithm: Stacking Classification (LOOCV)

 1: for all data points j do 

 2:  for all base-level classifiers BC do 

 3:   Train model BC based on training set D - D(j) 
 4:   Use BC to predict class labels of D - D(j) 
 5:  done 
 6:  Combine prediction results of base-level classifiers with features of D - D(j) 

 7:  Train meta-level classifier MC based on combined dataset. 

 8:  Use MC to predict D(j) 

 9: done 

10: Calculate accuracy, precision, recall and f-score. 

3 Results 

3.1 Cluster Analysis 

To identify groups of similar uORFs, we performed a cluster analysis using k-means 
clustering and Euclidean distance. We restricted our analysis to well-expressed genes 
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that contain one single uORF in their 5’ UTR. To determine a suitable number of 
clusters k, we used the average silhouette value [22]. The silhouette value measures 
the fit of a data point within its cluster in comparison with neighboring clusters. 
Silhouette values are in the range of -1 to 1. A silhouette value close to 1 indicates 
that a data point is in an appropriate cluster, while a silhouette value close to -1 
indicates that it might be erroneously assigned. Figure 1 shows the average silhouette 
value for different numbers of clusters k. The average silhouette values for k=2, ... ,6 
clusters are similar and clearly larger than average silhouette values for k>6.  

 
Fig. 1. Average silhouette value for different numbers of clusters k 

To identify translated uORFs, we have focused on the joint distribution of Den and 
Dp feature values - these two features are the most important features that determine 
the translation status of uORFs [15, 19]. Figure 2 shows a contour plot of our dataset. 
The Figure shows two clusters that coincide with the cluster reported by 2-means 
clustering: cluster 1 (green diamond at the bottom of Figure 2) consists of uORFs for 
which only few ribosomal footprints have been detected. In contrast, the uORFs in 
cluster 2 show ample ribosomal footprints. 3-means clustering splits cluster 2 into two 
clusters: cluster 2.2 with large Dp and smaller Dens values (points with black 
triangle) and cluster 2.1 with small Dp and large Dens values (points with red circle); 
cluster 1 remains unchanged. For k-means clustering with k=4, … ,6, the cluster 2.1 
and 2.2 remained unchanged, while cluster 1 is subdivided. Therefore, we decided to 
choose k=3 clusters for our subsequent analyses.  

To learn the characteristics of the uORFs in the different clusters, we analyzed their 
features. There are no ribosome footprints in the uORFs from cluster 1, and we 
hypothesize that the uORFs in this group are not translated. The group accounts for about 
65% of the total uORFs in our dataset. The uORFs from cluster 2.1 and 2.2 have a 
positive footprint density Den, but we observed a significant differences in the variable 
Dp. Dp is significantly larger in cluster 2.2 indicating that fewer ribosomal footprints 
accumulate at the start codon of the corresponding uORFs. This is inconsistent with 
translated open reading frames [10,15]. In addition, we analyzed: 



144 Q. Hu et al. 

 

 

Fig. 2. Contour plot for clustering of potential uORFs according to ribosome density and dis-
tance between the start of uORF and nearest peak from ribosome density curve. Different shape 
of points indicates different clusters identified by k-means clustering (k=3). The reads coverage 
plots above show examples from cluster 2.1 and cluster 2.2. Cluster 1: green diamond. Cluster 
2.1: red points. Cluster 2.2: black triangle. The background color indicates the density of points, 
a darker color indicates a higher point density. 

1) Experimentally verified uORFs: there are two experimentally verified uORFs 
whose genes are well expressed and translated in our dataset. Both uORFs belong to 
cluster 2.1. 
2) GO terms of uORF-containing genes: we used AgriGO [23] to identify overrepre-
sented GO terms. Genes in cluster 2.1 show terms such as biological regulation 
(GO:0065007), metabolic process (GO:0008152) and cellular process (GO:0009987). 
This is consistent with the GO term annotation of currently known uORF-containing 
genes [5-7, 24]. We did not find overrepresented GO terms for cluster 1 and 2.2. 
3) Den_min: Den_min indicates the local coverage of ribosome footprints in a uORF 
region. A Den_min value larger than 0 indicates the continuous translation of ribo-
somes in the region. Ideally, a well translated uORF should show Den_min=0 for only 
a small fraction of its length. We found a significant difference of this value between 
cluster 2.1 and cluster 2.2 (Figure 3). For cluster 2.1, about 20% uORFs have 
Den_min=0, whereas in cluster 2.2 we have 74%. 
4) Ribosome density in the first 6bp region immediately after the start codon: we checked 
the footprint density immediately after the start codon (Figure 3). Our analysis indicates 
that ~70% of uORFs in cluster 2.2 do not show any footprints in this region. In contrast, 
all uORFs in cluster 2.1 show a non-zero footprint density in this region.  
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Based on these observations we chose the uORFs in cluster 2.1 as templates for trans-
lated uORFs and used them as positive class to train our classifiers. After inspecting 
representative examples from cluster 2.2 (Figure 2), we hypothesize that some of the 
uORFs in this cluster might use a different, non-canonical translation start site. 
 

 
 

Fig. 3. Distribution of minimal local density and ribosome footprints density in the first 6bp 
region immediately after the start codon for uORFs in cluster 2.1 and 2.2 

3.2 Performance Evaluation 

To evaluate the performance of each base-level classifier, we compared the data 
points of the training set that are identified correctly by a specific algorithm. We 
found a large overlap between algorithms, however, each classifier also detects a 
certain proportion of the data which is not detected by the other algorithms (Table 1). 
The results suggest that each classifier has its own expertise for classifying uORFs 
correctly, and stacking the classifiers may improve their performance.  

Table 1. Intersection of correctly classified data points for the different classification 
algorithms. The numbers on the main diagonal in the table indicate the total number of 
correctly classified data points for the individual classifier. The off-diagonal numbers is the 
number of data that correctly identified and overlapped between two algorithms. The number in 
the brackets is the overlap percentage for the classifiers in rows. SVM: support vector machine, 
DT: decision tree, NB: Naïve Bayes, NN: neural network, KNN: k-nearest neighbor. 

  SVM DT NB NN KNN 

SVM 115 111(97%) 87(78%) 108(97%) 105(95%) 

DT 111(82%) 136 96(71%) 122(90%) 111(82%) 

NB 87(83%) 96(91%) 105 94 (90%) 86(82%) 

NN 108(83%) 122(94%) 94(72%) 130 107(82%) 

KNN 105(91%) 111(97%) 86(75%) 107(93%) 115 
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To evaluate the performance of these classifiers, we performed a leave-one-out 
cross validation and calculated accuracy, precision, recall and f-score. Denote TP, FN, 
TN and FP is the number of true positives, false negatives, true negatives and false 
positives. We have                                   

              Accuracy = ( TP + TN ) / ( TP + FN + TN + FP ), 
              Precision = TP / ( TP + FP ), 
              Recall = TP / ( TP + FN ), 
              F-score = 2TP / ( 2TP + FP + FN ). 
To demonstrate the power of our stacking approach, we compared the performance 

of stacking with the performance of the individual base classifiers (Table 2). Stacking 
outperforms the underlying base-level classifiers for all values except for Recall.  

 To assess the overall performance of the different classifiers we computed the Re-
ceiver Operating Characteristic Curve (ROC)[25]. The area under the curve (AUC) 
indicates the performance of a classifier. The larger the area, the better the perfor-
mance of a classifier is. According to ROC curves and AUC values, stacking per-
forms best among all classifiers (Figure 3, table 2).  

 

Table 2. Overall performance for each classifier. AUC: area under the curve 

Algorithms Accuracy 
Preci-

sion 
Recall F-score AUC 

KNN 0.76 0.63 0.84 0.72 0.85 
SVM 0.76 0.74 0.77 0.75 0.85 

Decision Tree 0.89 0.84 0.94 0.89 0.86 
NaiveBayes 0.69 0.54 0.77 0.64 0.86 

Neural network 0.86 0.87 0.85 0.86 0.92 
Stacking with 

KNN 0.90 0.95 0.87 0.91 0.94 

 

3.3 Translated uORFs in Arabidopsis thaliana 

Our stacking approach identified 5360 translated uORFs. The identified uORFs occur in 
2051 genes, which account for about 6% of the all annotated genes in Arabidopsis tha-
liana. Likely, this number is an under-estimation since about 30% of uORF-containing 
genes were not transcribed in our experiment. Remarkably, the majority of translated 
uORFs occurs in multi-isoform genes. When comparing single- and multi-isoform genes 
with respect to the occurrence of translated uORFs, we found a significant difference (p-
value < 2.2e-16, Fisher’s exact test); only 3.4% of the single-isoform genes contain trans-
lated uORFs, whereas about 19% of the multi-isoform genes contain translated uORFs. 
About 15% of these uORFs do not occur in all transcripts generated by the multi-isoform 
gene, see Table 3 for a detailed breakdown. We hypothesize, that in some cases alterna-
tive transcription start sites, or alternative splicing events (AS events), might regulate 
presence and absence of translated uORFs. 
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Fig. 4. ROC curves for different classifiers. SVM support vector machine, DT decision tree, 
NB: Naïve Bayes, NN neural network, KNN k-nearest neighbor, ST stacking with KNN 

The majority (~58%) of the genes that contain translated uORFs contain only one 
single uORF. However, there are few genes that include up to 30 uORFs. To further 
characterize uORF-containing genes, we performed a GO-term analysis. Enriched Go 
terms include catalytic activity, binding, transferase activity, phosphotransferase ac-
tivity, kinase activity and transcription regulator activity. Our results provide ample 
candidates for experimental characterization and functional analysis of uORFs. 

Table 3. Potential uORFs identified in the genome of Arabidopsis. uORF level indicates the 
number of uORFs identified. Gene level indicates the number of genes that contains potential 
uORFs. There are totally 27717 single-isoform genes and 5885 multi-isoform genes. 

Translated uORFs in Arabidopsis 
genome 

uORF  
Level 

Gene  
Level 

Percentage of total  
genes 

Total uORFs identified 5360 2051 6.10% 

uORFs in multi-isoform genes 3783 1121 3.34% 

uORFs affected by AS events 580 293 0.87% 

uORFs not affected by AS events 3203 828 2.46% 

uORFs in single-isoform genes 1577 930 2.77% 
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4 Conclusion 

In this paper, we describe a stacking approach to identify translated uORFs using 
ribosome footprinting data in combination with sequence features related to function-
al uORFs. We identify 5360 translated uORFs in 2051 genes, which account for 6% of 
all annotated genes in Arabidopsis thaliana. Likely, this number will increase signifi-
cantly in the future, as more ribosome footprinting experiments are performed.  
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Abstract. Based on the data and tools in PRESS, especially the
residue-level virtual angle correlation plots, a web-server called PRESS-
PLOT is further developed for easy access and display of the plots for
structural analysis and evaluation. A structure to be analyzed and eval-
uated can be submitted to the server by either giving its structural ID
in PDB or uploading its structural file in the PDB format. The residue-
level virtual bond angles and torsion angles of the structure are then
computed. The neighboring virtual bond angle and torsion angle pairs
are displayed as scattered points in a 2D graph and compared against
the 2D contour map of the density distribution of such angle pairs in
known protein structures, as given in the background of the 2D graph.
The virtual angle pairs that can be analyzed and evaluated include α-τ
and τ -β angle pairs as they appear in either general structures or specific
secondary structures such as α-helices, β-sheets, or their turns. As a jus-
tification of PRESS-PLOT, more than 1000 obsoleted structures (with
lower resolutions) in PDB are evaluated using PRESS-PLOT and com-
pared with their current superseded versions (with higher resolutions).
The results show that PRESS-PLOT distinguishes high-quality struc-
tures (the current ones) from low-quality structures (the obsoleted ones)
clearly in its angle correlation plots. The PRESS-PLOT server can be
accessed online at [http://pidd.math.iastate.edu/press/].

Keywords: Protein structural bioinformatics · Protein residue distances
and angles · Statistical structural analysis · Online servers for structural
evaluation

1 Introduction

With the enormous number of protein structures already determined and de-
posited in PDB, statistical learning becomes not just a necessary but also feasi-
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ble and revitalizing tool for structural bioinformatics: Many structural properties
can now be surveyed statistically in the database of known protein structures.
The distributions or correlations of these properties in the structures can be
computed for structural inferences. They provide a wealth of information for re-
covering general structural properties beyond individual experimental outcomes.
They can be based to develop computational tools for structural analysis as well
as structural determination including structural assessment, refinement, and pre-
diction [1].

The atomic-level structural properties of proteins, such as the backbone tor-
sion angles φ, ψ, and ω, which are among the main determinants of a protein
fold, have been well studied and understood based on either chemistry knowl-
edge or statistical analysis. For example, it is well known that the allowed range
of ω angle is very restrictive, while φ and ψ angles are closely correlated to each
other. The latter is a key indicator for the correct fold of a structure, and is
often demonstrated via a so-called Ramachandran Plot, a 2D contour map of
the density distribution of the φ-ψ angle pairs in known protein structures. The
Ramachanduan Plot has been widely adopted for structural analysis and evalu-
ation, with its 2D contour map used as a reference for the correct formation of
the φ-ψ angle pairs in the structure [2,3].

Structural properties similar to those at atomic level can also be found at
residue level such as the distances between two neighbouring residues (called
virtual bonds); the angles formed by three residues in sequence (called virtual
bond angles); and the torsion angles of four residues in sequence (called virtual
torsion angles) (see Fig. 1). They can be as important as those at atomic level
for structural analysis and evaluation, especially when reduced models for pro-
teins are considered with residues used as basic units [4]. Due to the difficulty
of measuring the residue distances and angles, either experimentally or theoreti-
cally, a statistical approach to the study of these properties becomes crucial and
necessary. Much work has been done along this line in the past [5,6,7,8,9]. In
particular, Huang et al [10] have conducted a detailed survey on residue-level
protein structural properties using a large set of known protein structures in
PDB. An R package called PRESS (Protein REsidual-level Structural Statis-
tics) is released for the access to the structural properties calculated and to
the structural analysis tools developed [11]. Among the analysis tools developed
is a set of so-called residue-level virtual angle correlation plots, with a similar
nature of Ramachadran Plot for atomic-level angle correlations. These residue-
level angle correlation plots contain 2D contour maps of density distributions
of certain virtual bond angle and torsion angle pairs in the surveyed structures.
They can be used to analyze and evaluate any given protein structures, either
experimentally determined or theoretically predicted, with the 2D contour maps
used as references for the correct formation of the virtual angle pairs in the
structures. These angle correlation plots provide a unique and valuable set of
tools for residue-level structural analysis and assessment, and are expected to
have a useful impact in current protein modeling practices.



152 Y. Huang et al.

Fig. 1. Residue-level virtual angles. Assume that four residues in sequence are
located at x1, x2, x3, x4. Then, the distances between the neighboring residues
are called virtual bonds; the angles formed by three connected residues such as α
and β are called virtual bond angles; and the dihedral angles formed by four connected
residues such as τ are called virtual torsion angles.

Following Huang et al [10,11], this work is to develop a web-server called
PRESS-PLOT for easy access and display of the virtual angle correlation plots
in PRESS, especially for easy online access for WWW (World Wide Web) users.
A structure to be analyzed and evaluated can be submitted to the server by
either giving its structural ID in PDB or uploading its structural file in the
PDB format. The residue-level virtual bond angles and torsion angles of the
structure are then computed. The neighboring virtual bond angle and torsion
angle pairs are displayed as scattered points in a 2D graph and compared against
the 2D contour map of the density distribution of such angle pairs in known
protein structures, as given in the background of the 2D graph. The virtual
angle pairs that can be analyzed and evaluated include α-τ and τ -β angle pairs
as they appear in either general structures or specific secondary structures such
as α-helices, β-sheets, or their turns. As a justification of PRESS-PLOT, more
than 1000 obsoleted structures (with lower resolutions) in PDB are evaluated
using PRESS-PLOT and compared with their current superseded versions (with
higher resolutions). The results show that PRESS-PLOT distinguishes high-
quality structures (the current ones) from low-quality structures (the obsoleted
ones) clearly in its angle correlation plots. The PRESS-PLOT server can be
accessed online at [http://pidd.math.iastate.edu/press/].

2 Implementation

PRESS-PLOT is derived from PRESS structural data and functions for struc-
tural analysis and evaluation using residue-level virtual angle correlation plots.
Different from PRESS, PRESS-PLOT is focused on structural assessment. It has
a web interface for online access. It also evaluates the virtual angle correlations
for specific as well as general secondary structures. The development of PRESS-
PLOT is motivated by the successful application of residue-level virtual angle
correlation plots to structural assessment and justified by extensive testings on

[http://pidd.math.iastate.edu/press/]
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a large set of current vs. obsoleded structures in PDB.

Structural Data

As in PRESS, a total of 1052 X-ray crystallography structures are downloaded
from PDB, with resolution ≤ 1.5Å, sequence similarity ≤ 30%, and only single
chains. The angle sequences α-τ -β for all four residue sequences in the structures
are calculated and stored in a database named ATA-database. Each record in
the database contains the following information:

ID R1, S1 R2, S2 R3, S3 R4, S4 α τ β SS

where ID is the structural ID in PDB, Rj is the type of the jth residue in the
sequence, Sj is the secondary structure type of Rj , α, τ , β are the corresponding
virtual bond and torsion angles, and SS is the type of the secondary structure of
the whole residue sequence. The last item is determined by the following rules:
A four residue sequence R1-R2-R3-R4 is considered to be in

1. α-helix: if R1, R2, R3, R4 are in α-helix
2. head of α-helix: if R2, R3, R4 are in α-helix
3. tail of α-helix: if R1, R2, R3 are in α-helix
4. β-sheet: if R1, R2, R3, R4 are in β-sheet
5. head of β-sheet: if R2, R3, R4 are in β-sheet
6. tail of β-sheet: if R1, R2, R3 are in β-sheet

where the secondary structure type of each residue is identified by using the
program DSSP [12]. With the identification of the secondary structure type,
PRESS-PLOT is capable of evaluating the virtual angle correlations when they
are in specific types of secondary structures, while PRESS evaluates the corre-
lations without specifying the secondary structure types of the angle pairs.

Calculation of Virtual Angles

The virtual bond angles and torsion angles are calculated using standard trig-
nometric relations, given the positions of the residues in the residue sequences.
In all the calculations, the position of the backbone Cα of each residue is used
to represent the position of the residue.

Let R1, R2, R3 be a sequence of three residues located at positions x1, x2, x3

(see Fig. 1). Let u = x2 − x1, v = x3 − x2. Then,

‖u+ v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cosα

where ‖·‖ is the Euclidean norm, and α is the virtual bond angle of this sequence.
Let R1, R2, R3, R4 be a sequence of four residues located at positions x1, x2,

x3, x4 (see Fig. 1). Let u = x2 − x1, v = x3 − x2, w = x4 − x3. Then,

‖u+ v + w‖2 = ‖u‖2 + ‖v‖2 + ‖w‖2
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−2‖u‖‖v‖ cosα− 2‖v‖‖w‖ cosβ − 2‖u‖‖w‖ cosθ
where cos θ = sinα sinβ cos τ − cosα cosβ, and α, β, τ are the virtual bond and
torsion angles of this sequence.

All α-τ and τ -β angle pairs in the downloaded structures are collected from the
ATA-database. Let [0◦, 180◦] be divided into 90 small bins for α. Let [0◦, 360◦]
be divided into 180 small bins for τ . Multiply the two intervals to form a 2D sub-
space [0◦, 180◦]× [0◦, 360◦]. The 2D subspace then consists of 90× 180 squares.
The density of the α-τ angle pair in any of these squares is defined as the number
of the α-τ angle pairs in that square divided by the total number of α-τ angle
pairs collected. The density distribution of the τ -β angle pairs is calculated in
a similar way. The calculations are also similar for the density distributions of
these angle pairs when they are in certain types of secondary structures. All the
above calculations are carried out in R with BIO3D as a library [13].

Plot of Density Maps

The 2D countour maps of the density distributions of α-τ and τ -β angle pairs are
ploted in 2D α-τ and τ -β planes, respectively. The maps are displayed in a special
graphical form similar to that for the Ramachadran Plot: Each map has three
different density regions, with high 50%, 75%, and 90% of density, called most
favored, favored, and allowed regions, and plotted in dark, less dark, and
light colors, respectively. The region with lower 10% density is called disallowed
region and colored in white (see Fig. 2). The maps for the distributions in certain
secondary structure conditions are plotted similarly, with the density percentages
adjusted slightly for those different density regions.
Web Interface

PRESS-PLOT is a web-based integrated online service dedicated to protein
structural assessment. It helps the user to visualize the quality of a given struc-
ture in terms of its residue-level virtual angle correlations. PRESS-PLOT in-
tegrates web pages and server-side programs in a one-step query workbench,
making it easy to submit queries and acquire results. It allows the user to assess
a structure and display all the plots from any devices with internet connection
without the need of downloading and installing any large software and compli-
cated library dependencies. The service can be accessed anonymously without
registering or providing any personal information. Each user will be assigned a
query session so that multiple requests can be handled in parallel and indepen-
dently. The query results can also be downloaded in different formats for future
use. ([http://pidd.math.iastate.edu/press/]).

PRESS-PLOT can be broken down into two major components: front-end
dynamic web pages and back-end computing components (Fig. 3). The front-
end web pages are designed in MVC (Model, View, and Control) pattern, which
provides a high refactoring ability and is also simple for maintenance. The re-
sult generated by PRESS-PLOT is graphic-based data. It is important that any
result is presented to the user immediately. For a faster query response, AJAX
(Asynchronous JavaScript and XML) technique is adopted on the web pages. It

[http://pidd.math.iastate.edu/press/]
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allows the web pages to update the result without refreshing all the elements on
the pages. The back-end computing components are composed of two sub-units,
query handling unit and computing unit. The query handling unit is respon-
sible for pre-processing and transferring user queries to computing unit. After
the results are generated, it also renders the results and outputs plots onto the
web pages. The query handling unit is implemented in PHP, one of the most
popular and widely supported scripting languages. The computing unit imple-
ments the core computing functions. It accepts the query information from the
query handling unit, computes the virtual angle data for the input structure,
and generates the final graphical results. It is implemented in R, an open source
environment for statistical computing.

3 Results

PRESS-PLOT is developed to provide an online server for structural assessment
using the PRESS virtual angle correlation plots. In addition, it further extends
the PRESS angle correlation plots to angle pairs in specific secondary struc-
tures, which can be more accurate for specific structural types and practical for
more detailed structural analysis. PRESS-PLOT is tested on a large set of struc-
tures in PDB, showing that higher-resolution structures in general have better
evaluations in PRESS-PLOT angle correlation plots.

Fig. 2. Virtual angle correlation plots. The α-τ and τ -β angle correlation plots
for structure 1GBP, where there are three different density regions: most favored,
favored, and allowed, corresponding to high 50%, 75%, and 90% of α-τ and τ -β
density, respectively. The rest of the area is called disallowed region, with lower 10%
of density.
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Fig. 3. PRESS-PLOT organization. PRESS-PLOT can be broken down into two
parts: The front end and the back end. The front end takes the user’s input structure
and passes it to the query handling unit of the back end. The latter carries out prepro-
cessing and directs the structure to the computing unit of the back end for required
calculation and plot generation. The query handling unit takes the final results from
the computing unit and renders them to the front end for display.

Display Functions

A structure to be evaluated can be submitted to PRESS-PLOT by either provid-
ing the PDB ID of the structure or uploading the structural file in the PDB format.
The structure is then evaluated for their α-τ and τ -β angle correlations. Total 7
groups of evaluation results, in both graphics and text forms, are generated:

1. general α-τ plot
2. general τ -β plot

3. α-τ plot for angle pairs in α-helices
4. τ -β plot for angle pairs in α-helices

5. α-τ plot for angle pairs in β-sheets
6. τ -β plot for angle pairs in β-sheets

7. α-τ plot for angle pairs in heads of α-helices
8. τ -β plot for angle pairs in heads of α-helices

9. α-τ plot for angle pairs in heads of β-sheets
10. τ -β plot for angle pairs in heads of β-sheets
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11. α-τ plot for angle pairs in tails of α-helices
12. τ -β plot for angle pairs in tails of α-helices

13. α-τ plot for angle pairs in tails of β-sheets
14. τ -β plot for angle pairs in tails of β-sheets

The first group of results is displayed in the window as default. The remaining
groups are listed as small icons in the bottom of the window and can be selected
to show in the window. Each plot shows the corresponding type of angle pairs
in the given structure as scattered points in the corresponding density map.
The percentages of the points in different density regions are summarized in the
graph. Fig. 2 shows the general α-τ and τ -β correlation plots for a structure
1GBP. Examples for plots for specific secondary structures can be found at the
server page.

In the first group of plots, all α-τ (τ -β) angle pairs of the given structure are
calculated and ploted as scattered points in the α-τ (τ -β) plane. The background
of the α-τ (τ -β) plane is the contour map of the density distribution of the
α-τ (τ -β) angle pairs in general structures that include all types of secondary
structures. If the percentages of the α-τ (τ -β) angle pairs of the given structure
in most favored, favored, and allowed regions are around or above 50%, 75%,
and 90%, respectively, the structure is considered to be well formed in terms of
α-τ (τ -β) angle correlations.

In the second group of plots, all α-τ (τ -β) angle pairs in α-helices of the given
structure are calculated and plotted as scattered points in the α-τ (τ -β) plane.
The background of the α-τ (τ -β) plane is the contour map of the density distri-
bution of the α-τ (τ -β) angle pairs in α-helices. Likewise, in the third group of
plots, all α-τ (τ -β) angle pairs in β-sheets of the given structure are calculated
and plotted as scattered points in the α-τ (τ -β) plane. The background of the
α-τ (τ -β) plane is the contour map of the density distribution of the α-τ (τ -β)
angle pairs in β-sheets. The remaining groups of plots are generated similarly
for α-τ (τ -β) angle pairs in heads or tails of α-helices or β-sheets.

Testings

PRESS-PLOT is applied to evaluating a large set of obsoleted structures in PDB.
The results are compared with those for the current superseded structures. Up to
early 2012, there are total 1,654 obsoleted protein structures superseded by their
succesors according to a report from PDB [14]. For each pair of obsoleted and
replaced structures, the percentages of the virtual angle pairs in most favored,
favored, and allowed regions of the virtual angle correlation plots are examined.
The average percentages for the structural pairs with RMSD values in between
0 and 1Å, 1 and 3Å, 3 and 5Å, and beyond 5Å are calculated and summarized
in Table 1 and 2. The structural pairs for which the RMSD values cannot be
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computed due to various reasons are considered as a separate group (RMSD:
NA).

Table 1 and 2 show the average percentages of α-τ and τ -β angle pairs in
general secondary structures, respectively. These results show that the current
structures with higher resolutions than their previous ones all have, in average,
higher percentages of virtual angle pairs in the high-density regions of virtual
angle correlation plots, which implies that PRESS-PLOT can distinguish low
quality structures from high quality ones very well. In particular, for the struc-
ture pairs with RMSD values in between 1 and 3Å, the differences in these
percentages between the superseded and obsoleted ones are the most notable. A
simple explanation is that if two structures are very similar (with RMSD < 1Å),
their virtual angle correlations are certainly expected to be about the same, and
therefore, their PRESS-PLOT evaluations would be similar. On the other hand,
if two structures are very different (with RMSD > 3Å), they may differ in their
tertiary structures but still have similar secondary structures and hence similar
local structures. The latter would keep the virtual angle correlations of the two
structures similar.

Table 1. Assessments of α-τ correlation plots on PDB structures. The struc-
tures are grouped according to the RMSD values of the obsolete vs. superseded struc-
tural pairs. For each group of structures, the average percentages of their α-τ angle
pairs in different density regions in the α-τ correlation plots are summarized. Table
legends: RMSD – RMSD range for obsoleted and superceded structural pairs; size – #
of structural pairs with given RMSD range; obsX% – average percentage of obsoleted
structures in high X% region; supX% – average percentage of superceded structures in
high X% region.

RMSD size obs90% sup90% obs75% sup75% obs50% sup50%

NA 922 86.41 88.42 71.42 73.75 47.19 49.38
(0Å, 1Å) 542 89.56 89.69 75.36 75.51 51.00 51.16
(1Å, 3Å) 37 83.04 86.39 68.66 72.11 44.06 48.52
(3Å, 5Å) 17 86.42 86.95 69.26 71.20 43.47 43.23
(5Å, ∞) 136 84.09 86.31 67.69 69.84 42.62 45.03

The above statistics are further demonstrated by using boxplots in Fig. 4,
where the values at four different quartiles of the percentages are plotted for the
structural pairs with RMSD values between 1 and 3Å. These plots show that our
conclusions above are also valid even in terms of the quartile values including
the medians of the percentages. In addition, we have also calculated, for all
the structures, their average percentages of α-τ and τ -β angle pairs in different
density regions of the angle correlation plots in different secondary structures,
including α-helices, β-sheets, heads and tails of α-helices and β-sheets. In a
similar fashion, we have also compared these average percentages for all obsoleted
and superseded structural pairs. All the results (not shown) are consistent with
the above results on general secondary structures.
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Table 2. Assessments of τ -β correlation plots on PDB structures. The struc-
tures are grouped according to the RMSD values of the obsolete vs. superceded struc-
tural pairs. For each group of structures, the average percentages of their τ -β angle
pairs in different density regions in the τ -β correlation plots are summarized. Table
legends: RMSD – RMSD range for obsoleted and superceded structural pairs; size – #
of structural pairs with given RMSD range; obsX% – average percentage of obsoleted
structures in high X% region; supX% – average percentage of superceded structures in
high X% region.

RMSD size obs90% sup90% obs75% sup75% obs50% sup50%

NA 922 86.44 88.27 71.83 74.01 48.03 50.22
(0Å,1Å) 542 89.60 89.76 75.35 75.57 51.86 52.00
(1Å, 3Å) 37 82.95 86.14 68.65 72.68 44.42 49.53
(3Å, 5Å) 17 85.54 86.15 68.81 71.12 45.12 46.08
(5Å, ∞) 136 83.86 84.94 67.60 69.70 43.22 45.72

Fig. 4. Assessment of α-τ and τ -β correlation plots. For the structural pairs
with RMSD values between 1 and 3Å and for each density region of the α-τ (or τ -β)
correlation plot, the obsoleted and superseded structures are each divided into four
quartiles, in terms of their percentages of α-τ (or τ -β) angle pairs in the region. The
percentage values at these quartiles are then plotted in a boxplot form. The plots
show that the values at all these quartiles including the medians of the percentages for
the supersede structures (in orange color) are consistently higher than those for the
obsoleted ones (in green color) in all different density regions.

4 Discussion

Atomic-level structural analysis tools such as the Ramachandran Plot have been
used successfully for protein structural analysis and evaluation. Residue-level
structural properties are as important as those at atomic level for protein mod-
eling but are more difficult to measure. PRESS-PLOT has provided an extremely
valuable set of tools to analyze and evaluate protein structures based on their
residue-level virtual angle correlations. The effectiveness of the tools are clearly
demonstrated in their ability to distinguish the low resolution obsoleted struc-
tures from their superseded high-resolution counter parts.
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PRESS-PLOT is derived from the PRESS angle-based structural assessment
function, but it has more detailed analysis on the angle correlations: It examines
the virtual angle pairs in specific secondary part of the structure as well as the
whole structure, extending the correlation plots from original two to fourteen.
PRESS-PLOT utilizes various advanced web technologies and makes it possible
for the users to get access to the PRESS-PLOT structural evaluation tools easily
from anywhere on the internet, with zero software installation or command typ-
ing efforts. The users can submit their structures and obtain the PRESS-PLOT
evaluations immedaitely in both graphics and text forms.

PRESS-PLOT is the most effective for secondary structure assessment, be-
cause the virtual angle correlations are short-range restrictions (within four
connected residues) and relate directly to the correct fold of the secondary struc-
tures. If there are two structures with the same secondary structural components,
but different tertiary orders, their PRESS-PLOT evaluations would be about the
same, beacuse their local virtual angle correlations would remain the same. Tools
for tertiary structural assessment may be developed by combining certain long
range constraints such as residue contact potentials [5].

The current implementation of PRESS-PLOT is based on the survey on a
large set of X-ray structures in PDB, and therefore, applies to general struc-
tures, with X-ray structures as references. The implementation based on a spe-
cial type of structures, such as the structures of a special protein family or the
structures determined by NMR, could be interesting and particularly effective
for the structures of that type.

The residue-level virtual angle correlations are not as restrictive as those at
the atomic level such as the φ-ψ angle correlations in Ramachandran Plot. For
both atomic and residue-level accuracies, one may use Ramachandran Plot as
well as PRESS-PLOT as a pair of complementary assessment tools. After all, the
PRESS-PLOT assessment is statistically based. The results need to be examined
with caution: There could be exceptions: some angle pairs in most favored
regions may not be really favored in a particular structure; some in disallowed
regions may be just due to a special arrangement in that structure.
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Abstract. Stochasticity and small system size effects in complex bio-
chemical reaction networks can greatly alter transient and steady-state
system properties. A common approach to modeling reaction networks,
which accounts for system size, is the chemical master equation that
governs the dynamics of the joint probability distribution for molecular
copy number. However, calculation of the stationary distribution is often
prohibitive, due to the large state-space associated with most biochemi-
cal reaction networks. Here, we analyze a network representing a luminal
calcium release site model and investigate to what extent small system
size effects and calcium fluctuations, driven by ion channel gating, influx
and diffusion, alter steady-state ion channel properties including open
probability. For a physiological ion channel gating model and number
of channels, the state-space may be between approximately 106 − 108

elements, and a novel modified block power method is used to solve
the associated dominant eigenvector problem required to calculate the
stationary distribution. We demonstrate that both small local cytoso-
lic domain volume and a small number of ion channels drive calcium
fluctuations that result in deviation from the corresponding model that
neglects small system size effects.

Keywords: Systems biology ⋅ Chemical master equation ⋅ Fluctuation ⋅
Calcium ⋅ Ion channel ⋅ Stationary distribution ⋅ Eigenvector ⋅ Block
power method

1 Introduction

In a biochemical reaction network, the copy number of the molecules in the sys-
tem randomly fluctuates due to the random timing of individual reactions [1].
When the system size is small, concentration or density fluctuations are large in
amplitude, and these fluctuations may alter steady-state system properties. In
particular, when reactions are higher than first-order, the expected value calcu-
lated from the stationary distribution of a discrete system representation (that
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accounts for fluctuations and small system size) may disagree with the steady-
state value calculated from the corresponding continuous system representation
(that neglects fluctuations and ignores system size effects) [2].

In many cell types, calcium (Ca2+) is a key signaling molecule that drives im-
portant physiological functions, such as neurotransmitter release and myocyte
contraction [3]. Ca2+ signaling is often localized in “spatially restricted” domains
of small volume, or Ca2+ microdomains. Ca2+ influx into microdomains often oc-
curs via Ca2+-regulated Ca2+ channels, and the number of Ca2+ channels is often
small. For example, in cardiomyocytes, localized Ca2+ signaling occurs in dyadic
subspaces, estimated to contain between 10−100 Ca2+-activated channels[4]. Ac-
counting for stochasticity in Ca2+ channel gating, i.e., transitions between open,
closed, and inactivated channel states, due to the small number of ion channels,
is important and necessary to reproduce many aspects of subcellular Ca2+ sig-
naling [5]. However, due to small domain volume (0.001 − 0.1 μm3) and resting
Ca2+ concentration ([Ca2+], 0.1 μM), the expected number of Ca2+ ions is also
typically very small (0.06 − 6 Ca2+ ions). Yet the influence of stochasticity due
to Ca2+ ion fluctuations is not as well understood.

A common approach to modeling biochemical reaction networks that accounts
for system size is the chemical master equation that governs the joint probabil-
ity distribution for molecular copy number [6]. In prior work, Weinberg and
Smith utilized this approach to investigate the influence of [Ca2+] fluctuations
in minimal Ca2+ microdomain model, comprised of two-state Ca2+ channels, ac-
tivated by local domain Ca2+ [7]. Here, we expand on this prior work to include
a more physiological number of channels, channel gating model, which accounts
for both Ca2+-dependent activation and inactivation, and both cytosolic and
luminal Ca2+ domains. With this increasing level of physiological detail, the as-
sociated state-space for the luminal Ca2+ release site model contains between
106 − 108 elements. A novel modified block power method is used to solve the
associated dominant eigenvector problem required to calculate the stationary
distribution. Our paper is organized as follows: In Section 2, we briefly present
the chemical master equation and calculation of the stationary distribution in
a chemical reaction network. In Section 3, we describe the luminal Ca2+ release
site model. In Section 4, we illustrate how accounting for stochasticity influences
steady-state channel gating. We conclude with a brief discussion of our results
in Section 5.

2 Chemical Reaction Network

2.1 Chemical Master Equation

We follow the general notation for representing a biochemical reaction network
as presented in the excellent review by Goutsias and Jenkinson [6]. We de-
scribe the biochemical interactions in a system between N molecular species
X1,X2, . . . ,XN via M reactions,

∑

n∈N

νnmXn → ∑

n∈N

ν′nmXn, m ∈M, (1)
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where N = {1,2, . . . ,N} and M = {1,2, . . . ,M}. νnm and ν′nm are the stochio-
metric coefficients that describe the number of molecules of the n-th species
consumed or produced in the m-th reaction. We collect the net stoichiometric
coefficients in the N ×M matrix S = (snm), where snm = νnm − ν

′

nm.
In a Markov reaction network, the probability of a reaction occurring only

depends on the current system state, and further, to first-order

Pr{reaction m occurs within [t, t + dt)∣XXX(t) = xxx} = πm(xxx)dt, (2)

where vector XXX(t) = (X1(t),X2(t), . . . ,XN(t)), xxx = (x1, x2, . . . , xn) is a known
system state, and πm(xxx) is a state-dependent function called the propensity
function, associated with the m-th reaction. The joint probability distribution
pXXX(t) is governed by the partial differential equation, known as the chemical
master equation,

∂pXXX(xxx; t)

∂t
=

∑

m∈M

{πm(xxx − sssm)pXXX(xxx − sssm; t) − πm(xxx)pXXX(xxx; t)} , (3)

where sssm is the m-th column of matrix S.
If we index the elements in state space X , then the master equation can be

expressed as a linear system of coupled first-order differential equations

dppp(t)

dt
= ppp(t)Q, (4)

where ppp(t) is a 1×K vector containing the probabilities pXXX(xxx; t), xxx ∈ X , Q = (qij)
is a large K ×K sparse matrix, known as the infinitesimal generator matrix,
whose structure can be determined directly from the master equation, and K is
the cardinality of (number of elements in) state space X .

If a stationary distribution exists, then at steady-state, pppssQ = 0, which can
also be found by solution of pppssP = pppss, where P = QΔt + I, I is the identity ma-
trix of appropriate size, and Δt is sufficiently small that the probability of two
transitions taking place in time Δt is negligible, i.e., matrix P is stochastic [8].
We have essentially discretized the continuous-time Markov chain into a discrete-
time Markov chain with transition matrix P. To guarantee that P is stochastic,
0 < Δt < (maxi ∣qii∣)

−1, and specifically, for numerical considerations discussed
in Stewart [8], we define Δt = 0.99(maxi ∣qii∣)

−1. The stationary joint distribution
pssXXX can be determined from pppss, which is calculated as described in the following
section.

2.2 Numerical Calculation of Dominant Eigenvector

A Markov chain converges to a stationary distribution provided that it is aperi-
odic and irreducible. Let λ1, λ2, . . . , λK be the eigenvalues of the transition ma-
trix P of the Markov chain, where ∣λ1 ∣ = 1 ≥ ∣λ2∣ ≥ . . . ≥ ∣λK ∣, and v1, v2, . . . , vK are
the corresponding eigenvectors. The stationary distribution of the Markov chain
corresponds to the principle eigenvector v1. Although many numerical methods
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Fig. 1. Convergence of the simple power method and the block power method (k = 10
and 100) on a test matrix of size 1000 × 1000. The block power method significantly
reduces the number of passes over the transition matrix P and accelerates convergence
to the stationary distribution.

can be used to calculate v1, when the transition matrix P is large, the power
method, with a convergence rate proportional to 1/∣λ2∣, is typically the most
feasible method with the least memory requirement.

To calculate the stationary distribution of the luminal Ca2+ release site model
with over a million states, we develop a modified block power method. The block
power method was originally designed to estimate multiple dominating eigenval-
ues/eigenvectors, where the convergence depends on the eigengap between the
k-th and (k + 1)-th eigenvalues, for a given block size k (1 < k ≪ K) [9]. Here,
we are only interested in the principle eigenvector, and therefore the eigengap
between λ1 = 1 and λk governs the convergence speed.

Starting with a K×k orthogonal initial matrix X(0), the block power iteration
generates the matrices sequence {X(i)}

∞

i=0
by defining

X(i) ∶= PX(i−1), i = 1,2, . . . (5)

For each iteration, the top-k eigenvectors of P are approximated by eigendecom-

posing a small k × k matrix B
(i)T

PB
(i), where B

(i) is a basis of the range space
of X(i). More specifically, by performing block power iteration, the range space
of X(i) becomes an approximate space capturing the dominant information of

matrix P. We construct the matrix B
(i)T

PB
(i) to project matrix P into the range

space of X(i) and compute its eigenvectors U (i). Then, the top-k eigenvectors of
matrix P can be approximated effectively through a simple matrix multiplication
B
(i)U (i) and the largest is selected as the approximate principle eigenvector.
Compared to the simple power method, the block power method has impor-

tant advantages in handling very large transition matrices. Firstly, when the
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transition matrix P is large, the cost of passing over P dominates that of other
numerical computations and thus becomes the main computational bottleneck.
The block algorithm can significantly reduce the number of passes over P. Sec-
ondly, due to the fact that only the principle eigenvector is of interest, the block
power method converges at a rate proportional to 1/∣λk ∣ instead of 1/∣λ2∣ as in the
simple power method, which is particularly effective when the eigengap between
1 and ∣λk ∣ is significantly wider than that between 1 and ∣λ2∣. Using block sizes
of k = 10 and 100 on a test matrix reduces the number of passes over P to reach
convergence from on the order of 105 to 103 and 102, respectively (Figure 1).

3 Luminal Calcium Release Site Model

In this section, we first describe the Ca2+ channel gating model and Ca2+ domain
compartmental model. We then recast the luminal Ca2+ release site model as a
discrete biochemical reaction network, using the notation in Section 2.

3.1 Four-State Calcium Channel Gating Model

Many Ca2+-regulated channels have been shown to exhibit both fast Ca2+ ac-
tivation and slower Ca2+ inactivation, such as IP3 receptors [10]. The gating
of Ca2+ channels that are activated and inactivated by local cytosolic Ca2+ is
represented by a stochastic process with the following state transition diagram,

(closed) C

k+

accyt
⇌

k−

a

O (open)

k+bccyt ⥯ k−b k−d ⥮ k+dccyt

(closed, inactivated) CI

k+

c ccyt
⇌

k−

c

I (inactivated)

, (6)

where k+i ccyt and k−i are transition rates with units of time−1, ccyt is the local cy-
tosolic [Ca2+], and k+i is an association rate constant with units of concentration−1⋅
time−1, for i ∈ {a, b, c, d}. The channel is open when the activation site is Ca2+-
bound and the inactivation site is not bound (Figure 2).

In the absence of ion channel gating fluctuations, i.e., for a large number of
ion channels Nc, then the dynamics of the fraction of channels in the four states
is given by the following system of ordinary differential equations,

dfC
dt
= k−afO + k

−

bfCI − (k
+

a + k
+

b)ccytfC (7a)

dfCI
dt
= k+bccytfC + k

−

c fI − (k
−

b + k
+

c ccyt)fCI (7b)

dfI
dt
= k+c ccytfCI + k

+

dccytfO − (k
−

c + k
−

d)fI (7c)

dfO
dt
= k+a ccytfC + k

−

dfI − (k
−

a + k
+

dccyt)fO, (7d)

where fC , fCI , fI , and fO are the fraction of channels in states C, CI, I, and O,
respectively. One of these equations is superfluous, since fC + fCI + fI + fO = 1.
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closed
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closed/
inactivated

inactivated

Fig. 2. Illustration of the model components and fluxes in the calcium release unit.
Each Ca2+ channel has an activation and inactivation binding site. When only the
activation site is Ca2+-bound, the channel is open and Ca2+ is release at rate vrel.
Local cytosolic [Ca2+], ccyt, relaxes to the bulk [Ca2+], c∞cyt, at rate vcyt, and depleted
local luminal [Ca2+], cer, refills towards bulk luminal [Ca2+], c∞er, at rate ver .

3.2 Cytosolic and Luminal Domain Compartment Model

Depletion of local Ca2+ near the luminal side of the Ca2+ channel can alter local
Ca2+ release events, known as puffs or sparks [10]. Therefore, we consider a four
compartment model that accounts for local cytosolic and luminal domains, with
[Ca2+] of ccyt and cer, respectively, and bulk cytosolic and luminal compartments,
with [Ca2+] of c∞cyt and c∞er, respectively (Figure 2). Assuming local cytosolic

[Ca2+], ccyt, relaxes to the bulk [Ca2+], c∞cyt, at rate vcyt, and depleted local

luminal [Ca2+], cer, refills towards bulk luminal [Ca2+], c∞er, at rate ver, and in
the absence of local cytosolic domain [Ca2+] fluctuations, the dynamics of ccyt
and cer are given by the following system of ordinary differential equations,

dccyt

dt
= vrelfO(cer − ccyt) − vcyt(ccyt − c

∞

cyt) (8a)

dcer
dt
=

1

λ
[−vrelfO(cer − ccyt) − ver(cer − c

∞

er)] , (8b)

where vrel is the luminal Ca2+ release flux rate, and λ = Ωer/Ωcyt is the ratio of
the local luminal and cytosolic domain volumes, Ωer and Ωcyt, respectively.

3.3 Stochastic Luminal Calcium Release Site Model

The stochastic luminal calcium release site model that corresponds to the chan-
nel gating and compartment models, Eqs. 7-8, respectively, and accounts for
fluctuations in both channel gating and local cytosolic [Ca2+] can be described
by the following biochemical reaction network consisting of N = 5 species and
M = 10 reactions,
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C +Ca2+cyt
k̄+

a
�→ O, O

k−

a
�→ C +Ca2+cyt,

C +Ca2+cyt
k̄+

b
�→ CI, CI

k−

b
�→ C +Ca2+cyt,

CI +Ca2+cyt
k̄+

c
�→ I, I

k−

c
�→ CI +Ca2+cyt,

O +Ca2+cyt
k̄+

d
�→ I, I

k−

d
�→ O +Ca2+cyt,

∅

α
�→ Ca2+cyt, Ca2+cyt

β
�→ ∅,

(9)

where reaction rates are given by k̄+i = k+i /Ωcyt, α(xxx) = Ωcyt(vcytc
∞

cyt + vrelfO(xxx)
cer(xxx)), and β(xxx) = vcyt + vrelfO(xxx). The copy numbers of channels in each state
are (arbitrarily) defined as X1 = C, X2 = CI, X3 = I, and X4 = O, such that
fO(xxx) = x4/Nc. Similarly, the copy number of local cytosolic Ca2+ ions is defined as
X5 = Ca

2+
cyt, such that ccyt(xxx) = x5/Ωcyt. Local luminal [Ca2+], cer, is assumed to be

in rapid equilibrium, such that cer(xxx) = (vrelfO(xxx)ccyt(xxx) + verc
∞

er)/(vrelfO(xxx) +
ver).

The propensity functions and the net stoichiometric matrix S for the biochem-
ical reaction network defined by Eq. 9 are given by

π1(xxx) = k̄
+

ax1x5, π2(xxx) = k
−

ax4,
π3(xxx) = k̄

+

bx1x5, π4(xxx) = k
−

bx2,
π5(xxx) = k̄

+

c x2x5, π6(xxx) = k
−

c x3,
π7(xxx) = k̄

+

dx4x5, π8(xxx) = k
−

dx3,
π9(xxx) = α(xxx), π10(xxx) = β(xxx),

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 −1 1 0 0 0 0 0 0
0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 1 −1 0 0
1 −1 0 0 0 0 −1 1 0 0
−1 1 −1 1 −1 1 −1 1 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

As described in Section 2, we calculate the stationary distribution and sta-
tionary statistics, given by the q-th moment of the i-th species,

μi
q = ∑

xxx∈X

xq
i ⋅ p

ss
XXX (xxx), (10)

where X is the enumerated state-space, such that the expected channel open and
inactivation probability, E[fO] = μ

4
1/Nc and E[fI] = μ

3
1/Nc, respectively, and ex-

pected local cytosolic [Ca2+], E[ccyt] = μ5
1/Ωcyt. We compare these stationary

statistics that account for small system size with the corresponding steady-state
values for local cytosolic [Ca2+] and open and inactivated channel fraction that
neglect fluctuations and small system size effects, csscyt, f ss

O
, and f ss

I
, respec-

tively, found by the steady-state solution of Eqs. 7-8. We also calculate the spark
score, S = Var[fO]/E[fO], an index of dispersion for fO, where the fO variance,
Var[fO] = [μ

4
2−(μ

4
1)

2
]/N

2
c , divided by the expectation E[fO], which takes values

between 0 and 1. A larger spark score corresponds to more robust, spontaneous
luminal Ca2+ release events [11].

3.4 Practical Considerations for Enumerating the State-Space

The size of the enumerated state-space K = R5Rc, is the product of total num-
ber states for Ca2+cyt copy number, R5, and total number states for the Nc ion
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channels, Rc. Enumerating the state-space is straightforward when there is a
natural finite range of values that each species can allow. For example, X1,
X2, X3 and X4 allow values between 0,1, . . . ,Nc. However, because Ca2+ influx
(reaction 9) is zero-order, in theory, the local cytosolic Ca2+ ion maximum is
infinite. In practice, we define a maximum value R5, for which the probability of
Ca2+cyt exceeding such a value is negligible. We found that a reasonable value for
R5 = 2ρ, where ρ = max(⌈cmax

cyt Ωcyt⌉,50), c
max
cyt = (vcytc

∞

cyt + vrelc
∞

er)/(vcyt + vrel)
is the hypothetical maximum value for ccyt that occurs for a fully replete local
luminal domain (cer = c

∞

er) and all channels open (fO = 1), and ⌈⋅⌉ is the ceiling
function. Assuming channels are identical and experience the same local cytoso-
lic [Ca2+], the number of distinguishable states for Nc channels, with Ns states,
is given by Rc = (Nc +Ns −1)!/Nc!/(Ns −1)!, where Ns = 4 for the gating model
in Eq. 6 [12]. For example, for Ωcyt = 10

−2 μm3, Nc = 50 channels, and standard
compartment flux parameters (see Figure 3 legend), R5 = 3012, Rc = 23426, and
the state-space size K ≈ 7.06 ⋅ 107.

4 Results

We investigate the influence of small system size on the stationary properties
of the luminal Ca2+ release site model by varying the local cytosolic domain
volume Ωcyt and number of Ca2+ channels Nc. We plot the joint and marginal
distribution for local cytosolic [Ca2+], ccyt, and the fraction of open channels,
fO, and indicate E[fO] and E[ccyt] (blue circle, solid line) and fss

O
and csscyt (red

X, dashed line).
When the local cytosolic domain volume is small (Ωcyt = 10−3 μm3) and

has a small number of channels (Nc = 10), the fO-distribution is Poisson-like,
while the ccyt-distribution is bimodal, with one peak corresponding to a low
[Ca2+] and zero channels open and a second peak correspond to an elevated
[Ca2+] and a few channels open (Figure 3A). Steady-state measures, f ss

O
and

csscyt, that neglect fluctuations correspond closely with the second peak, which

illustrates that Ca2+ ion and gating fluctuations lead to a subpopulation of
channels that are not open, which in turn reduces E[fO] and E[ccyt]. Further
analysis of the joint distribution reveals that most of these channels are in the
inactivated states, I and CI (not shown). In a local cytosolic domain of larger
volume (Ωcyt = 10−2 μm3, Figure 3D), the two peaks in the ccyt-distribution
are narrower (due to smaller [Ca2+] fluctuations). As a consequence of smaller
[Ca2+] fluctuations, Ca2+-activation events, C → O and CI → I, are less likely,
and probability in the stationary distribution shifts such that the closed states,
C and CI, are more likely. As such, E[fO] is reduced, and E[ccyt] is reduced as a
consequence. However, variability in channel gating slightly increases, such that
the spark score S increases.

As the number of channels in the domain increases (Nc = 25, Figure 3B, E), the
fO-distribution is more Gaussian-like. For a small domain volume (Figure 3B),
the ccyt-distribution is bimodal, as in the domain with fewer channels; however,
probability has shifted primarily from the low [Ca2+] level to a higher [Ca2+]
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Fig. 3. Luminal Ca2+ release site model stationary distribution. For the parameters in
each panel, the stationary joint and marginal distribution for local cytosolic [Ca2+],
ccyt, and fraction of open channels, fO are shown. The expected values for fO and ccyt,
E[fO] and E[ccyt] (blue circle, solid line), respectively, and and steady-state values in
the large system limit, fss

O
and csscyt (red X, dashed line), respectively, are indicated.

Parameters: Nc = 10 (A, D), 25 (B, E), or 50 (C, F). Ωcyt = 10−3 (A-C) or 10−2

(D-F) μm3, Channel gating [13]: k+a = k+c = 1 μM−1 s−1, k−a = k−c = 1 s−1, k+b = k+d =
0.01 μM−1 s−1, k−b = k−d = 0.05 s−1. Compartment fluxes and bulk concentrations [14]:
c∞cyt = 0.1 μM, c∞er = 500 μM, vcyt = 10 s−1, ver = 10 s−1, vrel = 10 s−1.

level, i.e., E[ccyt] is approaching csscyt, as expected for a larger system size. In
a larger volume domain, the ccyt-distribution is multimodal, with small peaks
corresponding to a distinct number of open channels, including a large peak for
zero open channels (Figure 3E).

As the number of ion channels increases further (Nc = 50), the joint distri-
bution approaches a multivariate Gaussian distribution, with a clear positive
correlation between ccyt and fO (Figure 3C). The expected values for fO and
ccyt, E[fO] and E[ccyt], respectively, approach the steady-state measures that
neglect fluctuations, f ss

O
and csscyt, respectively. In a local cytosolic domain of

larger volume, the ccyt-distribution has a reduced variance, and the correlation
between fO and ccyt is increased (Figure 3F).

In summary, over a wide range of physiological values for Nc and Ωcyt, we can
observe that as Nc increases, the fO-distribution transitions from Poisson-like to
Gaussian-like, and the fO variance, Var[fO] decreases such that the spark score
S also decreases. For small domain volumesΩcyt, the ccyt-distribution transitions
from a bimodal to Gaussian distribution as Nc increases, whereas for a larger
Ωcyt, the ccyt-distribution transitions from bimodal, to multimodal, to Gaussian.
Over this transition, the variance of ccyt initially increases and then decreases
(not shown). Further, in general, fO and ccyt are more closely correlated for
small Nc and larger Ωcyt.
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Fig. 4. Stationary statistics for the luminal Ca2+ release site model. (A) The expected
value for local cytoslic [Ca2+], and fraction of open and inactivated channels, E[ccyt],
E[fO], and E[fI], respectively, and spark score S are shown as functions of the number
of channels Nc, for different local cytosolic domain volume Ωcyt. (B) The small system
deviation Δz (Eq. 11), for x ∈ {E[ccyt],E[fO],E[fI],S} is shown as a function of Nc.
Parameters as in Figure 3.

In Figure 4A, we plot E[ccyt], E[fO], E[fI], and S as functions of Nc, for
different values of Ωcyt (solid, colored lines). We found that S decreases as Nc

increases, i.e., spontaneous sparks are less robust in domains with fewer channels.
Further, E[ccyt], E[fO], and E[fI] all increase as Nc increases and approach the
steady-state values that neglects fluctuations, csscyt, f

ss
O
, and f ss

I
, respectively

(black, dashed). We found that for small number of channels, Nc near 10 − 20,
there is a noticeable difference between these metrics as the cytosolic domain
volume increases from Ωcyt = 10

−3 (red) to 10−2 μm3 (green). We quantified this
deviation, referred to as the small system size deviation in [7],

Δz =
E[z] −E[z]∞

E[z]∞
, (11)

where z is the measurement for the smallest domain volume (Ωcyt = 10
−3 μm3),

E[z]∞ is the measurement for the largest domain volume (Ωcyt = 10
−2 μm3), and

z ∈ {ccyt, fO, fI ,S}. Δz for the four measurements are biphasic functions of Nc

(Figure 4B). For z ∈ {ccyt, fO, fI}, Δz > 0 (positive) and is maximal at Nc = 10,
i.e., E[ccyt], E[fO], and E[fI] all decrease as local cytosolic domain volume Ωcyt

increases. ΔS < 0 (negative) and is minimal at Nc = 15, i.e., S increases as Ωcyt

increases. The small system size deviation is largest in magnitude for fI .
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5 Conclusions

Small system size effects are known to influence dynamics in many settings,
including biochemical, epidemiological, social, and neural networks [6]. Fluctu-
ations in Ca2+ microdomain signaling due to stochastic gating of ion channels
are well-known [5]; however, fewer studies have also accounted for influence of
fluctuations in [Ca2+] due to small microdomain volume [7, 15, 16].

In this study, we sought to determine the role of fluctuations in Ca2+ chan-
nel and ion fluctuations in influencing steady-state properties of a luminal Ca2+

release site model. The state-space for the discrete model is very large, on the or-
der of 106−108 elements, for a physiological number of channels, channel gating
model, and domain volume, and a novel method was utilized to solve the cor-
responding eigenvector problem. We demonstrate that small system size effects,
due to both the small number of channels Nc and local cytosolic domain vol-
ume Ωcyt, influence stationary statistics for the system, including open channel
probability and spark score. Further, we are able to identify properties of local
cytosolic domains, i.e., parameter values for Nc and Ωcyt, for which stationary
characteristics, such as channel open probability and local [Ca2+] levels, do not
agree with the corresponding model that neglect small system size effects. Ex-
pected values for ccyt, fO, fI , and S were found to have a strong dependence
on the number of channels in the domain, Nc. Further, for a given number of
channels, in particular, small values near 10-15, these measures deviated as Ωcyt

increases, demonstrating that fluctuations in Ca2+ ions, in addition to channel
gating, also influence system stationary properties. Since local domain, sponta-
neous Ca2+ release events can greatly influence global Ca2+ signaling and home-
ostasis [11, 14], our work suggests that predictive whole-cell models of Ca2+

signaling should account for Ca2+ ion fluctuations and small system size effects.
In this study, we consider a Ca2+ channel gating model that accounts for both

Ca2+-dependent activation and inactivation and a Ca2+ compartmental model
that includes first-order passive exchange between local and bulk domains [10].
Interestingly, we found that small system deviations, Δccyt and ΔfO , are pos-
itive, in contrast with our prior work analyzing a minimal domain and gating
model [7], demonstrating that accounting for more physiologically-detailed mod-
els of domain compartments and gating is important. In pathological settings,
the kinetics of these processes may be altered, leading to more frequent sponta-
neous Ca2+ release events. Further, luminal Ca2+ channel gating dynamics may
be more complex, including multiple closed, inactivated, and refractory states.
Further studies are needed to investigate the influence of small system effects
in these settings. However, the general approach presented is independent of
model parameters, compartments, or the channel gating model. The stationary
statistics of the expansive state-space associated with a pathological or expanded
gating model can be similarly analyzed.
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Abstract. We propose a novel robotics-inspired algorithm to compute
physically-realistic motions connecting thermodynamically-stable and
semi-stable structural states in protein molecules. Protein motion com-
putation is a challenging problem due to the high-dimensionality of the
search space involved and ruggedness of the potential energy surface
underlying the space. To handle the multiple local minima issue, we pro-
pose a novel algorithm that is not based on the traditional Molecular
Dynamics or Monte Carlo frameworks but instead adapts ideas from
robot motion planning. In particular, the algorithm balances computa-
tional resources between a global search aimed at obtaining a global
view of the network of protein conformations and their connectivity
and a detailed local search focused on realizing such connections with
physically-realistic models. We present here promising results on a va-
riety of proteins and demonstrate the general utility of the algorithm
and its capability to improve the state of the art without employing
system-specific insight.

Keywords: Protein motion computation · Conformational path ·
Roadmap-based algorithm

1 Introduction

Elucidating the detailed motions employed by dynamic protein molecules [1] to
switch between different thermodynamically-stable/functional conformations is
important to advance our understanding of protein physics and allow drug dis-
covery, protein-based sensor design, and protein engineering [2, 3]. Only compu-
tation is capable of providing detailed motions at a microscopic level. However,
computational methods are challenged by the size and dimensionality of the
protein conformation space, as well as the ruggedness of the underlying protein
energy surface. In particular, standard frameworks such as Molecular Dynamics
(MD) and Monte Carlo (MC) often get stuck in particular local minima and
cannot find conformational paths connecting given functional conformations [4].

Algorithms based on robot motion planning have been proposed over the
years, exploiting analogies between protein and robot motions [5]. These algo-
rithms are either limited to small proteins of no more than 100 amino acids when
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employing no insight on the degrees of freedom (dofs) involved in the motion or
heavily employ such insight and in turn have limited applicability [6–16].

Current robotics-inspired methods are tree-based or roadmap-based. Tree-
based methods grow a tree search structure in conformation space from a given
start to a given goal conformation. The growth of the tree is biased towards the
goal. As such, tree-based methods conduct efficient albeit limited sampling of the
conformation space. They are limited to finding essentially one path to the goal
conformation, a setting known as single-query, and need to be run multiple times
to obtain various paths. However, the bias in the growth of the tree causes path
correlations among runs. Tree-based methods have successfully been employed
to compute motions connecting functional conformations both in small peptides
and large proteins of several hundred amino acids [11–16].

Roadmap-based methods can answer multiple queries through graph search al-
gorithms on a constructed graph/roadmapof nearest-neighbor conformations.The
conformations are sampled a priori. Such methods have been applied to compute
mainly unfoldingmotions [6–10]. Several challenges limit broad applicability. Sam-
pling conformations in regions of interest is difficult with no a priori knowledge.
Once two nearest neighbors are connected with an edge as part of the roadmap
construction, the motion represented by that edge needs to be computed or real-
ized through a local search technique known as a local planner. The local planner
needs to find intermediate conformations. Doing so is particularly challenging, ei-
ther because the planner may have to connect vertices of the roadmap far away in
conformation space, if the sampling has not been dense, or vertices separated by a
high energy barrier. Significant computational timemay be spent by local planners
to realize all edges in the roadmap before being able to apply simple graph search
algorithms to report paths connecting conformations of interest.

We propose here SPIRAL, which stands for Stochastic Protein motIon
Roadmap ALgorithm. SPIRAL is a roadmap-based algorithm that assumes a lim-
ited computational budget and spends that budget in a priority-based scheme
to realize promising paths. SPIRAL balances computational resources between a
global search aimed at obtaining a global view of the network of protein confor-
mations and their connectivity and a detailed local search focused on realizing
such connections. In particular, SPIRAL is an adaptation of the fuzzy proba-
bilistic roadmap method introduced for manipulation planning in robotics [17].
SPIRAL is designed to be general and not employ specific insight on where the
relevant dofs are. The goal is to provide through SPIRAL a first-generation,
general algorithm that can be used as a benchmark to further spur research into
roadmap-based frameworks for computing protein motions connecting functional
conformations arbitrarily far away in conformation space.

2 Methods

SPIRAL consists of two main stages, sampling and roadmap building. The sam-
pling stage generates an ensemble of conformations/samples, Ω, that provide
a discrete representation of the conformation space. In roadmap building, the
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roadmapG = (V,E) first consists of pseudo-edges over nearest neighbors in Ω. A
time-limited iterative interplay between a global search and local search/planners
converts pseudo-edges residing in a user-specified number (K) of promising paths
into tree search structures of actual edges. At the expiration of time or success-
ful computation of K paths, the roadmap is augmented with conformations and
connections obtained by the local planners. All edge weights in the roadmap are
recomputed to reflect energetic difficulty, and the resulting roadmap is queried
for a specified number of lowest-cost paths. Various types of analyses can be
conducted over these paths, whether in terms of energetic profile or proximity
to given functional conformations.

2.1 Sampling Stage

SPIRAL extends the usual setting where two functional conformations are given
to an arbitrary number of given conformations. The idea is to accommodate
applications where a number � ≥ 2 of stable or semi-stable functional conforma-
tions are known from experiment or computation for a protein of interest, and
the goal is to map out the connectivity them. Let us refer to these conformations
as landmarks. The landmarks are used to initialize Ω. The sampling stage then
consists of a cycle of selection and perturbation operators. A selection operator
selects a conformation within the current ensemble. Once selected, a perturba-
tion operator is then sampled from a set of available ones and applied to the
selected conformation to generate a new conformation. The generated confor-
mation is checked for energetic feasibility prior to addition to the ensemble Ω.
The process repeats until |Ω| reaches a pre-determined value.

Selection Operator. The selection operator is based on our prior work on
tree-based methods for protein motion computation [16] but extended here to
deal with an arbitrary number of landmarks. The goal is to promote cover-
age of the conformation space enclosed by the landmarks. A progress coordi-
nate, ΔR(C)i,j , is defined for each conformation C and a pair of landmarks
(Ci, Cj) as in: ΔR(C)i,j = lRMSD(Ci, C) − lRMSD(Cj ,C). lRMSD here refers
to least root-mean-squared-deviation used to measure the dissimilarity between
two conformations after optimal superposition removes differences due to rigid-
body motions [18]. The ΔR(C)i,j coordinate is used to guide sampling towards
under-sampled regions. For each pair of landmarks (Ci, Cj), a 1d grid is defined
over the range [−lRMSD(Ci, Cj)− 2, lRMSD(Ci, Cj) + 2]. Each cell in the grid
is 1Å wide. All conformations in Ω are projected onto this grid. In this way,
each conformation in the growing ensemble Ω has

(
�
2

)
projections, one in each of

the
(
�
2

)
grids. The selection operator proceeds as follows. A pair of landmarks is

selected uniformly at random among the
(
�
2

)
pairs. This determines the 1d grid,

from which a cell is then sampled according to a probability distribution function
defined weights wc associated with cells of a grid. To bias the selection of confor-
mations from under-explored regions of the conformation space, wc =

1
(1+ns)∗nc ,

where ns is the number of times the cell has been selected, and nc is the number
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of conformations projected onto that cell. Once a cell is selected, a conformation
from that cell is then selected uniformly at random.

Perturbation Operators. In the absence of any specific insight onto the dofs
of relevance, SPIRAL employs a set of perturbation operators in order to make
moves of different granularities in conformation space in the sampling stage. Each
perturbation operator has to satisfy a set of constraints. One of the constraints
enforces energetic feasibility of generated conformations. The energy of a con-
formation C

′
generated from a selected conformation C, measured through the

Rosetta score3 function, is compared to the energy of C through the Metropolis
criterion (score3 is the backbone-level energy function, as we employ here only
backbone-level representations of protein structure). If this fails, C

′
is not added

to the ensemble. If it passes, C
′
is checked for satisfaction of distance-based con-

straints. Additional constraints are introduced on the minimum lRMSD εmin of
C

′
to any other conformation in the ensemble Ω and the maximum lRMSD δ of

C
′
to the � landmarks. The first constraint prevents redundant conformations

from being added to Ω. The second constraint prevents sampling from veering
off in regions of the conformation space deemed far from the landmarks to be
useful for participating in paths connecting them. While εmin is a parameter
that can depend on the specific system under investigation (analysis is provided
in section3), a reasonable value for δ is 150% of the maximum lRMSD between
any pairs of landmarks.

The idea behind making various perturbation operators available to SPI-
RAL is to allow SPIRAL to select the perturbation operator deemed most ef-
fective based on features of the conformation space and the specific problem
at hand. For instance, when the goal is to connect landmarks that reside far
way from one another, a perturbation operator capable of making large moves
is first desirable. Afterwards, to be able to make connections between such con-
formations, other perturbation operators capable of making smaller moves may
be more effective. We consider here three perturbation operators, detailed be-
low. An optimal weighting scheme that is responsive to emerging features of the
search space is difficult to formulate and beyond the scope of the work here.
However, we have been able to empirically determine a weighting scheme that
is effective on most protein systems studied here.

Molecular Fragment Replacement Operator This operator is inspired from pro-
tein structure prediction, where backbone dihedral angles in a bundle/fragment
of f consecutive amino acids are replaced altogether with values from a pre-
compiled library. SPIRAL employs f ∈ {3, 9} to balance between large (f = 9)
and small (f = 3) moves.

Single Dihedral Replacement Operator This operator modifies a single back-
bone dihedral angle at a time to allow small moves. Given a selected backbone
dihedral angle in a selected conformation, a new value from it is obtained using
a normal distribution N (μ, σ). The angle to perturb is selected uniformly at
random. This operator, gaussian sampling, offers the option of biasing the selec-
tion of dihedral angles to promote selection of those that differ most between a
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selected conformation and a landmark, though our application of SPIRALhere
does not make use of biased gaussian sampling in the sampling stage.

Reactive Temperature Scheme: The energetic constraint that determines
whether a conformation C

′
produced from a perturbation operator applied onto

a selected conformation C should be added to Ω is based on the Metropolis
criterion. Essentially, a probability e−(E

C
′−EC)/(K·T ), is measured, where K is

the Boltzmann constant, and T is temperature. An arbitrary temperature value
is both difficult to justify and obtain constraints-satisfying conformations as Ω
grows (if T is low). So, as in previous work on tree-based methods [16], we make
use of a reactive temperature scheme but extend it to the multiple-landmark
setting here. We maintain a temperature value Tc for each cell c of the 1d grids
over the progress coordinate. Each cell’s temperature is adjusted every s steps
(typical value employed is 25). The temperature of a cell, Tc, is increased if the
last s selections of that cell have resulted in no conformations being added to Ω.
If conformations are added to Ω more than 60% of the time within a window of s
steps, Tc is decreased. Increases and decreases occur over adjacent temperature
levels per a proportional cooling scheme that starts with very high temperatures
in the 2, 000K range and ends with room temperature of 300K.

2.2 Roadmap Building Stage

All conformations in Ω are added to the vertex set V . For each v ∈ V , its
k nearest-neighbors are identified, using lRMSD. For each identified neighbor,
directional pseudo-edges are added with v. Additional pseudo-edges are added by
identifying any vertex< εmax from v that lies in a different connected component
from v. Typical values for k and εmax are 10 and 5Å, respectively.

The pseudo-edges are assigned a weight to reflect their estimated difficulty
of being realizable. At initialization, all pseudo-edges are determined equally
difficult with a weight value of 1. A two-layer scheme is then used, which is
an iterative interplay between global and local search. The global search, path
query, identifies the current most promising/lowest-cost path in the roadmap
connecting two given functional conformations. If there are unrealizable edges in
the path, these edges are fed to the local search, which launches local planners
on unrealized edges, pursuing path realization. The planners are given a limited
computational budget, and they report at the end of this budget either a real-
ized edge or a new weight for the unrealized edges. In this iterative interplay
between path query and path realization, over time, the pseudo-edges that are
most difficult to realize will be assigned high weights and will thus be unlikely
to participate in the lowest-cost path pushed to the local planners. This dy-
namic interplay apportions computational resources in a manner that promotes
rapid path discovery. The iterative process continues until a total computational
budget is exhausted or a user-specified number of paths is obtained.

Path Query and Path Realization Interplay: A pair of landmarks are selected
uniformly at random over the �! permutations. The roadmap is then queried
for a lowest-cost path, using the assigned pseudo-edge weights. We utilize Yen’s
K-Shortest path algorithm [19] to identify the lowest non-zero cost path in the
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graph and allow us to continue obtaining paths after the first path has been
successfully realized. Given an identified path, a local planner is assigned to any
of the unrealized edges. The planner is given a fixed computational budget, time
T . If the local planner succeeds, the pseudo-edge it has realize is assigned a
weight of 0 to indicate the pseudo-edge is resolved. If the local planner fails, the
pseudo-edge is reweighted as in we = 0.7 ·CallsToPlanner+ 0.3 · (ClosestNode−
RequireResolution)2. CallsToPlanner tracks the number of times the planner
has been requested to work on a particular pseudo-edge, ClosestNode is the
node in the tree constructed by the local planner that is closest to the vertex
v in the directed pseudo-edge (u, v). For the planner to be successful, it must
also generate a path that is within a user-specified lRMSD of the vertex v, so
RequireResolution is also employed.

An additional feature of SPIRAL is its ability to learn from failures. When
a local planner has failed to complete a path more than RefineLimit times,
SPIRAL augments the graph with conformations identified by the local planner
that are otherwise invisible to the global layer. We now proceed to relate details
on the local planner and the augmentation procedure.

Local Planner: The local planner is an adaption of the tree-based method
proposed in [16]. The adaptation consists of diversifying the types of perturba-
tion operators employed in the expansion of the tree. The local planner selects
through a probabilistic scheme shown in section 3 from the menu of perturbation
operators described above. While biased gaussian sampling is not used in the
sampling stage in SPIRAL, it is used by the local planner.

Roadmap Augmentation: Some regions of conformational space may be chal-
lenging to connect through local planners. This can be due to high energetic
barriers or inadequate sampling. To address this issue, SPIRAL makes use of a
feedback mechanism to augment the roadmap. When a local planner encounters
difficulty realizing a pseudo-edge connecting given conformations p and r more
than RefineLimit times (set at 25), the problem of connecting p to r is consid-
ered as a mini-version of the entire motion computation problem. The sampling
scheme is repeated, essentially treating p and r as start and goal conformations.
The perturbation operators described above are used together with a new one
based on straight-line interpolation. The produced conformations are then min-
imized using the Rosetta relax protocol. Only the lowest-energy conformation
is considered for addition. Conformations obtained from the perturbation op-
erators are checked for satisfaction of the energetic and geometric constraints
also used in the sampling stage. The operators are applied under a probabilistic
scheme detailed in section 3 until either 25 conformations have been added to
the roadmap or a maximum of 2500 attempts to do so have been made.

Roadmap Analysis: Each edge in the roadmap is reweighted to reflect energetic
difficulty per the Metropolis criterion. A room temperature value is used for this
purpose. The reweighted graph is queried for one or more lowest-cost paths,
which are then analyzed in terms of energetic profile or distance within which
they come of the goal landmark structures, as related in section 3.
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3 Results

3.1 Systems of Study

Table 1 lists the protein systems selected for testing here. These are carefully
gathered from published literature to provide comparisons where possible; not
many published methods exist, and many of them either focus on few specific
systems or are limited by system size. For most of the collected systems, two
functional conformations have been extracted from literature (we consider both
directions). The final column in Table 1 shows the lRMSD between the start and
goal conformations. Neither size nor the lRMSD between functional conforma-
tions do by themselves define system difficulty. We have observed that the larger
systems that exhibit smaller motions (less than 4.5Å lRMSD) between the start
and goal conformations may require the protein chain to partially unfold before
returning to a folded state. The process of unfolding a large, compact structure
is computationally costly, as effectively an energy barrier needs to be crossed to
get out of the compact state. Indeed, many computational studies avoid com-
puting the motions involved in transitions from a closed to an open structural
state because of this challenge.

Table 1. Protein systems for evaluation of performance

System Length Start ↔ Goal lRMSD(start, goal)

CVN 101 2ezm ↔ 1l5e 16.01 Å

CaM 140
1cfd ↔ 1cll 10.7 Å
1cfd ↔ 2f3y 9.9 Å
1cll ↔ 2f3y 13.44 Å

AdK 214 1ake ↔ 4ake 6.96 Å

LAO 238 1laf ↔ 2lao 4.7 Å

DAP 320 1dap ↔ 3dap 4.3 Å

OMP 370 1omp ↔ 3mbp 3.7 Å

BKA 691 1cb6 ↔ 1bka 6.4 Å

3.2 Implementation Details

SPIRAL is implemented in C++. A hard termination criterion is set with regards
to the total number of energy evaluations. The sampling stage is terminated if
the total number of energy evaluations exceeds 1, 000 times the requested ensem-
ble size. That is, a maximum of 25 attempts are made to obtain a sample. The
roadmap building stage is terminated after 10, 000 iterations of the interplay
between path query and path realization. This stage may terminate earlier if
K = 250 paths are obtained for all �! landmarks as a way to control computa-
tional cost. The analysis stage reports the 50 lowest-cost paths. In terms of CPU
time, the computational time demands of all these three stages in SPIRAL spans
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anywhere from 56 hours on one CPU for protein systems around 100 amino acids
long to 300 hours on one CPU for systems around 700 amino acids long.

During sampling, the molecular fragment replacement perturbation operator
with f = 3 is selected 75% of the time, the operator with k = 9 is selected 20%
of the time, and the gaussian sampling operator is selected 5% of the time. The
reason for this scheme is to make large moves more often than small ones so as
to spread out conformations in conformation space during sampling.

During roadmap building, the probabilistic scheme with which local plan-
ners and the roadmap augmentation make use of the perturbation operators is
different, as shown in Table 2. A local planner can use two different schemes
depending on the lRMSD between the two conformation/vertices it is asked to
connect by the global layer. These schemes are not fine-tuned; essentially, when
the distance is ≤ 2.5Å, smaller moves are promoted as opposed to when the
distance is > 2.5Å. The reason for basing the decision at 2.5Åis due to prior
work on tree-based planners showing that molecular fragment replacement can
result in step sizes greater than 2.5Å [16].

Table 2. The perturbation operator set and their weights during roadmap building

Roadmap Building Perturbation Operator Prob.

Local Planner (> 2.5 Å lRMSD)
Molecular Fragment Replacement (f = 3) 0.70
Gaussian Sampling (μ = 0, σ = 15) 0.15
Biased Gaussian Sampling (μ = 0, σ = 15) 0.15

Local Planner (≤ 2.5 Å lRMSD)
Molecular Fragment Replacement (f = 3) 0.20
Gaussian Sampling (μ = 0, σ = 15) 0.40
Biased Gaussian Sampling (μ = 0, σ = 15) 0.40

Augmentation

Molecular Fragment Replacement(f = 3) 0.20
Gaussian Sampling (μ = 0, σ = 15) 0.40
Biased Gaussian Sampling (μ = 0, σ = 15) 0.40
Interpolation-based 0.05

The εmin parameter controls how close neighboring conformations will be in
the roadmap. Intuitively, smaller εmin values would produce a better-quality
roadmap. Our analysis indicates that this is not the case. Small values of εmin

(< 1Å) can result in many small cliques being formed in the roadmap around
local minima conformations. This is not surprising, particularly for the broad
minima that contain the stable and semi-stable landmarks. On these minima, it
is rather easy to sample a very large number of conformations nearby a land-
mark and thus essentially “get stuck” in the same local minimum. Insisting on a
minimum distance separation among sampled conformations forces sampling not
to provide refinement or exploitation of a particular local minimum but rather
explore the breadth of the conformation space. Not insisting on a minimum
distance pushes all the work to obtaining intermediate conformations to bridge
local minima to the local planners, which is an ineffective use of computational
time. The εmin parameter is set to 2.0Å for systems where the lRMSD between



Interleaving Global and Local Search for Protein Motion Computation 183

Table 3. Column 4 reports smallest distance to goal over all paths obtained by SPI-
RAL. Columns 5 − 7 shows such distances from tree-based methods. Max Step in
column 3 refers to the maximum lRMSD between any two consecutive conformations
in the SPIRAL path that comes closest to the goal. ’-’ indicates lack of published data.

System Start → Goal
Max
Step

Dist to Goal (Å)
SPIRAL Tree-based [16] Cortés[15] Haspel [11, 12]

CVN
(101 aa)

2ezm → 1l5e 1.5 1.5 – 2.1 2.1
1l5e → 2ezm 1.5 1.3 – – –

CaM
(144 aa)

1cll → 1cfd 3.4 1.46 3.35 – –
1cfd → 1cll 2.67 1.12 3.17 – –
1cll → 2f3y 2.77 1.26 1.67 – –
2f3y → 1cll 3.5 1.12 0.73 – 1.33
1cfd → 2f3y 3.33 1.26 3.5 – –
2f3y → 1cfd 3.48 1.46 3.2 – –

AdK
(214 aa)

1ake → 4ake 3.0 1.86 3.8 2.56 2.2
4ake → 1ake 3.12 1.33 3.6 1.56 –

Lao
(238 aa)

2lao → 1laf 2.0 1.21 – 1.32 –
1laf → 2lao 3.2 1.90 – – –

DAP
(320 aa)

1dap → 3dap 1.42 1.5 – 1.31 –
3dap → 1dap 1.46 0.92 – – –

OMP
(370 aa)

1omp → 3mbp 1.04 3.04 – – –
3mbp → 1omp 0.91 3.61 – – –

BKA
(691 aa)

1bka → 1cb6 3.87 1.55 – 2.79 –
1cb6 → 1bka 3.98 1.69 – – –

landmarks is > 6Å, 1.5Å for systems where the lRMSD between landmarks is
> 4.5 but ≤ 6Å, and 1.0 for systems where the lRMSD between landmarks is
≤ 4.5Å.

3.3 Comparison of Found Paths with Other Methods

We compare SPIRAL to published tree-based methods [11, 12, 15, 16]. These
methods make use of specific moves. For instance, our tree-based method in [16]
uses molecular fragment replacements with f = 3, the method in [15] uses moves
over low-frequency modes revealed by normal mode analysis, and the method
in [11, 12] considers only backbone dihedral angles whose values change be-
tween the given functional conformations. The last two methods consider a low-
dimensional search space of no more than 30 dimensions.

We report the closest that any path computed by SPIRAL comes to the
specified goal conformation and compare such values on all protein systems to
those reported in other published work. Columns 4−7 in Table 3 show these
values for SPIRAL and other published work. Column 3 reports some more
details on the path with which SPIRAL comes closest to the goal conformation
by listing the maximum lRMSD between any two consecutive conformations
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Fig. 1. Energy profiles of conformational paths computed for AdK (top) and of CaM
(bottom) by SPIRAL(green) and an interpolation-based planner (red)

in the path. SPIRAL typically generates paths with conformations closer to
the goal conformation than other methods (highlighted in bold where true). A
video illustrating the lowest-cost conformational path reported by SPIRALfor
the CVN protein can be found at http://youtu.be/7P4reYO3k-c.

 http://youtu.be/7P4reYO3k-c
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3.4 Analysis of Energetic Profiles

We show the energetic profile of the lowest-cost path obtained by SPIRAL on two
selected systems, AdK and CaM. We compare these profiles to those obtained
by the interpolation-based planner described in section 2. For this planner, the
resolution distance ε is set to 1.0 Å, and 50 cycles are performed to obtain a
path. This provides a fair comparison, given that we also analyze 50 paths ob-
tained after the analysis stage in SPIRAL and report here the lowest-cost one.
Figure 1 shows that on proteins, such as AdK, where the distance between the
start and goal conformations is large, paths provided by the interpolation-based
planner tend to have higher energies than those provided by SPIRAL. On sys-
tems, such as CaM, where the start-to-goal distance is smaller, an interpolation-
based planner can perform comparably to SPIRAL.

4 Conclusions

This paper has proposed SPIRAL, a novel protein motion computation algorithm
capable of handling proteins of various sizes and settings where distances among
functional conformations of interest can exceed 16Å. The algorithm is inspired
by frameworks used in robot motion planning as opposed to MD- or MC-based
frameworks. The main reason for doing so is to address the limited sampling
in MD- or MC-based frameworks, particularly when motions involve disparate
time and length scales.

SPIRALexploits no particular information on any protein at hand. It is ex-
pected that tunings of the probabilistic scheme or employment of additional
perturbation operators and moves based on specific system insight will improve
performance. Future work will consider such directions, but the current need of
the community is for a powerful, general, baseline method for the purpose of
benchmarking.

The results shown here suggest SPIRAL produces good-quality paths and can
be employed both to extract information on protein motions, possible long-lived
intermediate conformations in such motions, as well as to advance algorithmic
work in motion computation frameworks. In particular, the inherent prioritiza-
tion scheme in SPIRAL allows the sampling of both low-cost paths and high-cost
paths, provided enough computational budget is allocated. The latter paths may
highlight possible local unfolding involved in protein motions connecting func-
tional conformations. An executable of SPIRAL can be provided to researchers
upon demand.
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Abstract. Duplication-Transfer-Loss (DTL) reconciliation has emerged as a
powerful technique for studying gene family evolution in the presence of hori-
zontal gene transfer. DTL reconciliation takes as input a gene family phylogeny
and the corresponding species phylogeny, and reconciles the two by postulating
speciation, gene duplication, horizontal gene transfer, and gene loss events. Effi-
cient algorithms exist for finding optimal DTL reconciliations when the gene tree
is binary. However, gene trees are frequently non-binary. With such non-binary
gene trees, the reconciliation problem seeks to find a binary resolution of the gene
tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the
context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no effi-
cient algorithms exist for DTL reconciliation with non-binary gene trees and the
complexity of the problem remains unknown. In this work, we resolve this open
question by showing that the problem is, in fact, NP-hard. Our reduction applies
to both the dated and undated formulations of DTL reconciliation. By resolving
this long-standing open problem, this work will spur the development of both
exact and heuristic algorithms for this important problem.

1 Introduction

Duplication-Transfer-Loss (DTL) reconciliation is one of the most powerful techniques
for studying gene and genome evolution in microbes and other non-microbial species
engaged in horizontal gene transfer. DTL reconciliation accounts for the role of gene
duplication, gene loss, and horizontal gene transfer in shaping gene families and can
infer these evolutionary events through the systematic comparison and reconciliation
of gene trees and species trees. Specifically, given a gene tree and a species tree, DTL
reconciliation shows the evolution of the gene tree inside the species tree, and explicitly
infers duplication, transfer, and loss events. Accurate knowledge of gene family evolu-
tion has many uses in biology, including inference of orthologs, paralogs and xenologs
for functional genomic studies, e.g., [1, 2], reconstruction of ancestral gene content,
e.g., [3, 4], and accurate gene tree and species tree construction, e.g., [2, 5–7], and the
DTL reconciliation problem has therefore been widely studied, e.g., [4, 8–15].

DTL reconciliation is typically formulated using a parsimony framework where each
evolutionary event is assigned a cost and the goal is to find a reconciliation with minimum

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 187–198, 2015.
DOI: 10.1007/978-3-319-19048-8_16
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total cost. The resulting optimization problem is called the DTL-reconciliation prob-
lem. DTL-reconciliations can sometimes be time-inconsistent; i.e, the inferred transfers
may induce contradictory constraints on the dates for the internal nodes of the species
tree. The problem of finding an optimal time-consistent reconciliation is known to be
NP-hard [10, 16]. Thus, in practice, the goal is to find an optimal (not necessarily time-
consistent) DTL-reconciliation [4,10,11,13,15] and this problem can be solved inO(mn)
time [11], where m and n denote the number of nodes in the gene tree and species tree,
respectively. Interestingly, the problem of finding an optimal time-consistent reconcili-
ation actually becomes efficiently solvable [9, 17] in O(mn2) time if the species tree is
fully dated. Thus, these two efficiently solvable formulations, regular and dated, are the
two standard formulations of the DTL-reconciliation problem.

Both these formulations of the DTL-reconciliation problem assume that the input
gene tree and species tree are binary. However, gene trees are frequently non-binary in
practice. This is due to the fact that there is often insufficient information in the under-
lying gene sequences to fully resolve gene tree topologies. When the input consists of
a non-binary gene tree, the reconciliation problem seeks to find a binary resolution of
the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the con-
text of the simpler Duplication-Loss (DL) reconciliation model [5, 18–20], with the
most efficient of these algorithms having an optimal O(m + n) time complexity [20].
However, the DTL reconciliation model is more general and significantly more complex
than the DL reconciliation model. Consequently, no efficient algorithms exist for DTL
reconciliation with non-binary gene trees and the complexity of the problem remains
unknown. As a result, DTL reconciliation is currently inapplicable to non-binary gene
trees, significantly reducing its utility in practice.

In this work, we settle this open problem by proving that the DTL-reconciliation
problem on non-binary gene trees is, in fact, NP-hard. Our proof is based on a reduction
from the minimum 3-set cover problem and applies to both formulations of the DTL-
reconciliation problem. An especially desirable feature of our reduction is that it implies
NP-hardness for biologically relevant settings of the event cost parameters, showing
that the problem is difficult even for biologically meaningful scenarios. The uncertainty
about the complexity of DTL-reconciliation for non-binary gene trees has prevented
the development of any algorithms, exact or heuristic, for the problem. By settling this
question, our work will spur the development of both exact (better than brute-force) and
efficient approximation and heuristic algorithms for this important problem.

We develop our NP-hardness proof in the context of the regular (undated) DTL-
reconciliation formulation, and revisit dated DTL-reconciliation later in Section 4. The
next section introduces basic definitions and preliminaries, and we present the NP-
hardness proof for the optimal gene tree resolution problem in Section 3. Concluding
remarks appear in Section 5. In the interest of brevity, proofs for all Lemmas are de-
ferred to the full version of this paper.

2 Definitions and Preliminaries

We follow the basic definitions and notation from [11]. Given a tree T , we denote its
node, edge, and leaf sets by V (T ), E(T ), and Le(T ) respectively. If T is rooted, the
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root node of T is denoted by rt(T ), the parent of a node v ∈ V (T ) by paT (v), its set
of children by ChT (v), and the (maximal) subtree of T rooted at v by T (v). The set of
internal nodes of T , denoted I(T ), is defined to be V (T ) \ Le(T ). We define ≤T to be
the partial order on V (T ) where x ≤T y if y is a node on the path between rt(T ) and
x. The partial order ≥T is defined analogously, i.e., x ≥T y if x is a node on the path
between rt(T ) and y. We say that y is an ancestor of x, or that x is a descendant of y, if
x ≤T y (note that, under this definition, every node is a descendant as well as ancestor
of itself). We say that x and y are incomparable if neither x ≤T y nor y ≤T x. Given a
non-empty subset L ⊆ Le(T ), we denote by lcaT (L) the last common ancestor (LCA)
of all the leaves in L in tree T . Throughout this work, the term tree refers to rooted trees.
A tree is binary if all of its internal nodes have exactly two children, and non-binary
otherwise. We say that a tree T ′ is a binary resolution of T if T ′ is binary and T can be
obtained from T ′ by contracting one or more edges. We denote by BR(T ) the set of all
binary resolutions of a non-binary tree T .

Gene trees may be either binary or non-binary while the species tree is always as-
sumed to be binary. Throughout this work, we denote the gene tree and species tree
under consideration by G and S, respectively. If G is restricted to be binary we refer to
it as GB and as GN if it is restricted to be non-binary. We assume that each leaf of the
gene tree is labeled with the species from which that gene was sampled. This labeling
defines a leaf-mappingLG,S : Le(G) → Le(S) that maps a leaf node g ∈ Le(G) to that
unique leaf node s ∈ Le(S) which has the same label as g. Note that gene trees may
have more than one gene sampled from the same species. We will implicitly assume
that the species tree contains all the species represented in the gene tree.

2.1 Reconciliation and DTL-scenarios

A binary gene tree can be reconciled with a species tree by mapping the gene tree into
the species tree. Next, we define what constitutes a valid reconciliation; specifically,
we define a Duplication-Transfer-Loss scenario (DTL-scenario) [10, 11] for GB and
S that characterizes the mappings of GB into S that constitute a biologically valid
reconciliation. Essentially, DTL-scenarios map each gene tree node to a unique species
tree node in a consistent way that respects the immediate temporal constraints implied
by the species tree, and designate each gene tree node as representing either a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario for GB and S is a seven-tuple
〈L,M, Σ,Δ,Θ,Ξ, τ〉, where L : Le(GB) → Le(S) represents the leaf-mapping from
GB to S, M : V (GB) → V (S) maps each node of GB to a node of S, the sets Σ, Δ,
and Θ partition I(GB) into speciation, duplication, and transfer nodes respectively, Ξ
is a subset of gene tree edges that represent transfer edges, and τ : Θ → V (S) specifies
the recipient species for each transfer event, subject to the following constraints:

1. If g ∈ Le(GB), then M(g) = L(g).
2. If g ∈ I(GB) and g′ and g′′ denote the children of g, then,

(a) M(g) 	≤S M(g′) and M(g) 	≤S M(g′′),
(b) At least one of M(g′) and M(g′′) is a descendant of M(g).
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3. Given any edge (g, g′) ∈ E(GB), (g, g′) ∈ Ξ if and only if M(g) and M(g′) are
incomparable.

4. If g ∈ I(GB) and g′ and g′′ denote the children of g, then,
(a) g ∈ Σ only if M(g) = lca(M(g′),M(g′′)) and M(g′) and M(g′′) are in-

comparable,
(b) g ∈ Δ only if M(g) ≥S lca(M(g′),M(g′′)),
(c) g ∈ Θ if and only if either (g, g′) ∈ Ξ or (g, g′′) ∈ Ξ .
(d) If g ∈ Θ and (g, g′) ∈ Ξ , then M(g) and τ(g) must be incomparable, and

M(g′) must be a descendant of τ(g), i.e., M(g′) ≤S τ(g).

DTL-scenarios correspond naturally to reconciliations and it is straightforward to
infer the reconciliation of GB and S implied by any DTL-scenario. Figure 1 shows an
example of a DTL-scenario. Given a DTL-scenario α, one can directly count the min-
imum number of gene losses, Lossα, in the corresponding reconciliation. For brevity,
we refer the reader to [11] for further details on how to count losses in DTL-scenarios.

Let PΔ, PΘ, and Ploss denote the non-negative costs associated with duplication,
transfer, and loss events, respectively. The reconciliation cost of a DTL-scenario is de-
fined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario). Given a DTL-scenario α =
〈L,M, Σ,Δ,Θ,Ξ, τ〉 for GB and S, the reconciliation cost associated with α is given
by Rα = PΔ · |Δ|+ PΘ · |Θ|+ Ploss · Lossα.

A most parsimonious reconciliation is one that has minimum reconciliation cost.

Definition 3 (Most Parsimonious Reconciliation (MPR)). Given GB and S, along
with PΔ, PΘ , and Ploss, a most parsimonious reconciliation (MPR) for GB and S is a
DTL-scenario with minimum reconciliation cost.

2.2 Optimal Gene Tree Resolution

Non-binary gene trees cannot be directly reconciled against a species tree. Thus, given
a non-binary gene tree GN , the problem is to find a binary resolution of GN whose
MPR with S has the smallest reconciliation cost. An example of a non-binary gene tree
and a binary resolution is shown in Figure 1.

Problem 1 (Optimal Gene Tree Resolution (OGTR)). Given GN and S, along with
PΔ, PΘ , and Ploss, the Optimal Gene Tree Resolution (OGTR) problem is to find a
binary resolution GB of GN such that the MPR of GB and S has the smallest reconcil-
iation cost among all GB ∈ BR(GN ).

3 NP-hardness of the OGTR Problem

We claim that the OGTR problem is NP-hard; specifically, that the corresponding deci-
sion problem is NP-Complete. The decision version of the OTGR problem is as follows:
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Fig. 1. DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree GN and
binary species tree S. Part (b) shows a DTL reconciliation between a possible binary resolution
GB of GN and species tree S. The dotted arcs show the mapping M (with the leaf mapping being
specified by the leaf labels on the gene tree), and the label at each internal node of GB specifies
the type of event represented by that node. This reconciliation invokes two transfer events.

Problem 2 (Decision-OGTR (D-OGTR)).

Instance: GN and S, event costs PΔ, PΘ , and Ploss, and a non-negative integer l.
Question: Does there exist a GB ∈ BR(GN ) such that the MPR of GB and S has

reconciliation cost at most l?

Theorem 1. The D-OGTR problem is NP-Complete.

The D-OGTR problem is clearly in NP. In the remainder of this section we will show
that the D-OGTR problem is NP-hard using a poly-time reduction from the decision
version of the NP-hard minimum 3-set cover problem [21].

3.1 Reduction from Minimum 3-set Cover

The decision version of minimum 3-set cover can be stated as follows.

Problem 3 (Minimum 3-Set Cover (M3SC)).

Instance: Given a set of n elements U={u1, u2, . . . , un}, a set A={A1, A2, ..., Am}
of m subsets of U such that |Ai| = 3 for each 1 ≤ i ≤ m, and a nonnegative
integer k ≤ m.

Question: Is there a subset of A of size at most k whose union is U?

We point out that the M3SC problem as defined above is a slight variation of the
traditional minimum 3-set cover problem: In our formulation the subsets of U in A are
restricted to have exactly three elements each while the traditional formulation allows
for the subsets to have less than or equal to three elements [21]. However, it is easy to
establish that the NP-Completeness of the traditional version directly implies the NP-
Completeness of our formulation of the M3SC problem. We will also assume, without
any loss of generality, that each element ui appears in at least two subsets from A.

Consider an instance φ of the M3SC problem with U = {u1, u2, . . . , un}, A =
{A1, A2, ..., Am}, and k given. We now show how to transform φ into an instance λ of
the D-OGTR problem by constructing GN and S and setting the three event costs in
such a way that there exists a YES answer to the M3SC instance φ if and only if there
exists a YES answer to the D-OGTR instance λ with l = 10k + 39m− 12n.
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3.2 Gadget

Gene Tree. We first show how to construct the gene tree GN . Note that each element of
U occurs in at least two of the subsets from A. We will treat each of the occurrences of
an element separately and will order them according to the indices p of the Ap’s which
contain that element. More precisely, for an element ui ∈ U , we denote by xi,j the jth

occurrence of ui in A. For instance, if element u5 occurs in the subsets A2, A4, A10, and
A25, then x5,2 refers to the occurrence of u5 in A4, while x5,4 refers to the occurrence
of u5 in A25.

Let ci denote the cardinality of the set {Ap : ui ∈ Ap, for 1 ≤ p ≤ m}. Then, xi,j is
well defined as long as 1 ≤ i ≤ n and 1 ≤ j ≤ ci. Each xi,j will correspond to exactly
four leaves, xi,j,1, xi,j,2, xi,j,3, and xi,j,4 in the gene tree GN . In addition, the leaf set
of GN also contains a special node labeled start, provided for orientation.

Thus, Le(GN ) = {xi,j,1, xi,j,2, xi,j,3, xi,j,4 : 1 ≤ i ≤ n and 1 ≤ j ≤ ci} ∪ {start}.
The overall structure of GN is shown in Figure 2(a). As shown, the root node of the
gene tree is unresolved and has 3m + 3n + 1 children consisting of (i) the start node,
(ii) the

∑n
i=1 ci = 3m leaf nodes, collectively called blue nodes, and (iii) the 3n internal

nodes labeled gi, g′i, and g′′i , for each 1 ≤ i ≤ n. These internal nodes represent the
n elements in U and the subtrees rooted at those nodes have the structure shown in
Figure 2(a). Note that the number of children for each of the internal nodes labeled gi,
g′i, and g′′i , for 1 ≤ i ≤ n, is ci. These nodes may thus be either binary or non-binary.
The leaves labeled xi,j,3 appear in the node g′i, those labeled xi,j,4 appear in g′′i , and
those labeled xi,j,1 or xi,j,2 appear in gi. The xi,j,1’s also appear in the collection of
blue nodes and thus appear twice in the gene tree. Note, also, that all the children of
a node gi, for 1 ≤ i ≤ n, are themselves internal nodes and are labeled yi,j , where
1 ≤ j ≤ ci.

Species Tree. Next, we show how to construct the species tree S. The tree S is binary
and consists of m subtrees whose root nodes are labeled s1, . . . sm, each corresponding
to a subset from A, connected together through a backbone tree as shown in Figure 2(b).
The exact structure of this backbone tree is unimportant, as long as each si is sufficiently
separated from the roots of the rest of the subtrees. For concreteness, we will assume
that this backbone consists of a “caterpillar” tree as shown Figure 2(b), and that 9m
extraneous leaves (not present in the gene tree) have been added to this backbone as
shown in the figure to ensure that each pair of subtrees is sufficiently separated.

Recall that we use xi,j to denote the jth occurrence of ui in A. Assuming that ui ∈
Ap and that xi,j refers to the occurrence of ui in Ap, we define f(i, p) to be j. In
other words, if the jth occurrence of an element ui is in the subset Ap, then we assign
f(i, p) to be j. Each Si corresponds to the subset Ai and has the structure depicted
in Figure 2(b). In particular, if Ai contains the three elements ua, ub, and uc, then Si

contains the 12 leaves labeled xa,f(a,i),j , xb,f(b,i),j , and xc,f(c,i),j , for 1 ≤ j ≤ 4.

Event Costs. We assign the following event costs for problem instance λ: PΔ = 2,
PΘ = 4, and Ploss = 1.

Note that the D-OGTR instance λ can be constructed in time polynomial in m and n.

Claim 1. There exists a YES answer to the M3SC instance φ if and only if there exists
a YES answer to the D-OGTR instance λ with l = 10k + 39m− 12n.



On the Complexity of Duplication-Transfer-Loss Reconciliation 193

Fig. 2. Construction of non-binary gene tree and species tree. (a) Structure of the non-binary
gene tree GN . (b) Structure of the species tree S.

The remainder of this section is devoted to proving this claim which, in turn, would
complete our proof for Theorem 1. We begin by explaining the main idea of the reduc-
tion and describing the association between the instances φ and λ, and then prove the
forward and reverse directions of the claim.

3.3 Key Insight

The main idea behind our reduction can be explained as follows: In the gene tree GN ,
subtreesGN (gi),GN (g′i) andGN (g′′i ) correspond to the elementui, for each 1 ≤ i ≤ n,
while in the species tree the subtree S(sj) corresponds to the subset Aj , for each 1 ≤
j ≤ m. Let GB be any binary resolution of GN . It can be shown that in any MPR of any
optimal binary resolutionGB ofGN the following must hold: For each i ∈ {1, . . . , n}, gi
(along with g′i and g′′i ) must map to an S(sj) for which ui ∈ Aj . Under these restrictions
on the mappings, observe that if we were to solve the OGTR problem on GN and S and
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then choose all thoseAj’s for which the subtreeS(sj) has at least one of the gi’s mapping
into it, then the set of chosen Aj’s would cover all the elements of U .

The source of the optimization is that, due to the specific construction of the gene
tree and species tree, it is more expensive (in terms of reconciliation cost) to use more
S(sj)’s for the mapping. Thus, all the gi’s (along with g′i’s and g′′i ’s) must map to as
few of the subtrees, S(sj)’s, as possible. Recall that the OGTR problem optimizes the
topology of the binary resolution GB in such a way that its MPR with S has minimum
reconciliation cost. Thus, the OGTR problem effectively optimizes the topology of GB

in a way that minimizes the total number of S(sj)’s receiving mappings from the gi’s,
g′i’s, or g′′i ’s, yielding a set cover of smallest possible size. This is the key idea behind
our reduction and we develop this idea further in the next subsection.

3.4 Proof of Claim 1

Forward Direction. Let us assume that we have a YES answer for the M3SC instance
φ. We will show how to create a binary resolution GB of GN whose MPR with S has
reconciliation cost at most 10k + 39m− 12n.

We first show how to resolve the subtrees GN (gi), GN (g′i), and GN (g′′i ), for 1 ≤
i ≤ n. Recall that, for any fixed i, these three subtrees correspond to element ui of
U . The yi,j’s in GN (gi) correspond to the different occurrences of element ui in the
subsets from A. The same holds for the xi,j,3’s in GN (g′i) and the xi,j,4’s in GN (g′′i ).

Suppose a solution to instance φ consists of the k subsets Ar(1), Ar(2), . . . , Ar(k).
Since every element in U must be covered by at least one of these k subsets, we can des-
ignate a covering subset for each element ui ∈ U , 1 ≤ i ≤ n, chosen arbitrarily from
among those subsets in the solution that contain u. Suppose that element ui is assigned
the covering subset Aj (so we must have ui ∈ Aj and Aj ∈ {Ar(1), Ar(2), . . . , Ar(k)}).
The subtree GN (gi) will then be resolved as follows: The yi,j corresponding to the oc-
currence of ui in Aj , i.e., yi,f(i,j), will be separated out as one of the two children of gi.
The other child of gi will be the root of an arbitrary caterpillar tree on all the remaining
yi,j’s in GN (gi). This is depicted in Figure 3(d). The subtrees GN (g′i) and GN (g′′i ) are
resolved similarly, except that in GN (g′i) the leaf node xi,f(i,j),3 is separated out and
in GN (g′′i ) the leaf node xi,f(i,j),4 is separated out. Thus, the resolution of GN (gi),
GN (g′i), and GN (g′′i ) is done based on the assigned covering subset of element ui. This
is repeated for all i, where 1 ≤ i ≤ n.

Next, we show how to resolve the root node of GN to obtain GB . The start node
will become an outgroup to the rest of GB . The backbone of the rest of GB consists
of an arbitrary caterpillar tree on k “leaf” nodes as shown in Figure 3(a). These k
nodes are labeled hr(1), . . . hr(k) and are the root nodes of k subtrees. Each of the k
subtrees corresponds to one of the subsets Ar(1), Ar(2), . . . , Ar(k). In particular, subtree
GB(hr(i)), for 1 ≤ i ≤ k corresponds to the subset Ar(i). Each of the blue nodes
and the subtrees rooted at the gi’s, g′i’s, and g′′i ’s, for 1 ≤ i ≤ n will be included in
one of these k subtrees. Specifically, the subtree GB(hr(j)) will include all those gi’s,
g′i’s, and g′′i ’s for which the covering subset of the corresponding ui is Ar(j). Since
there may be 0, 1, 2, or 3 i’s for which the covering subset of ui is Ar(j), the sizes of
different GB(hr(j)) subtrees may vary. The structure of GB(hr(j)) when there are 3 i′s
is depicted in Figure 3(b). The structure of GB(hr(j)) when there are only 1 or 2 such
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i′s is similar and is the induced subtree, on the relevant i’s, of the full subtree for all 3
i’s. As shown in the figure, note that each subtree GB(hr(j)) also includes exactly three
blue nodes, corresponding to the three elements in Ar(j). These three blue nodes are
included even for cases where there are fewer than 3 i’s. Thus, when there are 0 such
i’s, which can happen when the size of the minimum set cover for instance φ is less
than k, the subtree GB(hr(j)) consists of the three blue nodes.

This results in the assignment of all gi’s, g′i’s, and g′′i ’s, for 1 ≤ i ≤ n to one of
the subtrees GB(hr(j)), for 1 ≤ j ≤ k. As discussed above, 3k out of the 3m blue
nodes also get assigned in this process. The remaining 3m − 3k of the blue nodes are
organized into an arbitrary caterpillar tree and added to the subtree GB(hr(k)) as shown
in Figure 3(c).

This finishes our description of GB . The following two lemmas imply the forward
direction of Claim 1. The next lemma follows from the construction of GB above.

Lemma 1. Gene tree GB is a binary resolution of GN .

It is not difficult to construct a DTL-scenario for GB and S with cost exactly 10k +
39m− 12n, yielding the following lemma.

Lemma 2. Any MPR of GB with S has reconciliation cost at most 10k + 39m− 12n.

Reverse Direction. Conversely, let us assume that we have a YES answer for the OGTR
instance λ with l = 10k+39m− 12n. We will show that there exists a solution of size
at most k for the set cover instance φ. We first characterize the structure of optimal
resolutions and their most parsimonious reconciliations.

Lemma 3. For any optimal binary resolution GB of GN there exists an MPR of GB

with S such that:

1. For any i ∈ {1, . . . , n}, gi, g′i and g′′i map to the same subtree S(sj), where j is
such that ui ∈ Aj .

2. If there is a subtree S(sj) for which at least one of the nodes of GB labeled gi,
g′i, or g′′i , for any i ∈ {1, . . . , n}, maps to a node in S(sj), then there exists an
i ∈ {1, . . . , n} such that gi, g′i and g′′i all map to S(sj).

3. If gi maps to a node in subtree S(sj), then gi, g′i, g
′′
i , and the three blue nodes

corresponding to the elements in Aj are arranged in such a way that the subtree of
GB connecting these six nodes does not contain any transfer nodes.

4. If two nodes, say a and b map to different subtrees S(sj), for 1 ≤ j ≤ m, then the
path connecting them in GB must contain at least one transfer event.

Lemma 4. For any optimal binary resolution GB of GN , all MPRs of GB with S must
be such that:

1. Each GB(gi), GB(g′i) and GB(g′′i ), for 1 ≤ i ≤ n, has exactly (ci − 1) transfer
nodes, no duplications, and invokes no losses.

2. Each blue node that maps to an S(sj), 1 ≤ j ≤ m, to which none of the gi’s map
must be the recipient of a transfer edge.

The next lemma implies the reverse direction and is based on the two lemmas above.
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Fig. 3. Resolution of GN into GB . (a) The structure of the backbone of the gene tree GB . (b)
Structure of the subtree hr(j) for any j ∈ {1, . . . , k}. (c) The two possible structures of the
subtree with root B in hr(j). For any j ∈ {1, . . . , k}, this subtree is as shown at the top of part
(c) while, for j = k, it is as shown at the bottom and includes all the “remaining” 3m − 3k blue
nodes. (d) The resolution of the gi’s, g′i’s, g′′i ’s. In the figure, ua, ub, and uc represent the three
elements in Ar(j), with u = f(a, r(j)), w = f(b, r(j)), and z = f(c, r(j)). In part (d), if the
covering subset of element ui is Ap, then v represents f(i, p). The labels inside the blue boxes
represent blue nodes.
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Lemma 5. If there exists a binary resolution of GN such that its MPR with S has
reconciliation cost at most 10k+39m−12n, then there exists a solution of size at most
k for the M3SC instance φ.

4 Extension to Dated DTL Reconciliation

An alternative model of DTL reconciliation has been proposed when the internal nodes
of the species tree can be fully ordered in time [9]. We refer to this model as the Dated-
DTL reconciliation model. Dated-DTL reconciliation makes use of the total order on the
species nodes to ensure that the reconstructed optimal reconciliation is time-consistent.
A key feature of this model is that it subdivides the species tree into different time
slices [9] and then restricts transfer events to only occur within the same time slice.

We show how to assign divergence times to each node of the species tree. Observe that
all subtrees S(si), for each i ∈ {1 . . .m}, have identical structure. All nodes at the same
level in eachS(si) are assigned the same divergence time across all the subtrees. The rest
of the nodes inSmay be assigned arbitrary divergence times respecting the topology ofS.
It can be shown that there exists an optimal resolution of the gene tree for which an MPR
exists that only invokes transfer events that respect the timing constraints of this dated
species tree as required by the dated-DTL reconciliation model. This implies that, for
our gadget, any optimal resolution of the gene tree under the undated DTL reconciliation
model has the same minimum reconciliation cost as the dated-DTL reconciliation model.

Theorem 2. The OGTR problem under the dated-DTL reconciliation model is NP-hard.

5 Conclusion

In this work, we have shown that the OGTR problem, i.e., the problem of reconciling
non-binary gene trees with binary species trees under the DTL reconciliation model,
is NP-hard. Our reduction applies to both the undated and dated formulations of DTL-
reconciliation and, furthermore, shows that the problem is NP-hard even for a biolog-
ically meaningful event cost assignment of 1, 2, and 4 for losses, duplications, and
transfers, respectively. The uncertainty about its complexity has prevented the devel-
opment of algorithms for the OGTR problem. This work will lead to the development
of effective exact, approximate, and heuristic algorithms for this problem, making it
possible to apply the powerful DTL reconciliation framework to non-binary gene trees.
Interesting open problems include determining if efficient algorithms exist for the spe-
cial case when the degree of each gene tree node is bounded above by a constant, and
investigating the approximability of the dated and undated OGTR problems.

Funding: This work was supported in part by startup funds from the University of
Connecticut to MSB.
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Abstract. The BLOSUMmatrices estimate the likelihood for one amino
acid to be substituted with another, and are commonly used in sequence
alignments. Each BLOSUMmatrix is associated with a parameter x—the
matrix elements are computed based on the diversity among sequences
of no more than x% similar. In an earlier work, Song et al. observed a
property in the BLOSUM matrices—eigendecompositions of the matri-
ces produce nearly identical sets of eigenvectors. Furthermore, for each
eigenvector, a nearly linear trend is observed in all its eigenvalues. This
property allowed Song et al. to devise an iterative alignment and matrix
selection process to produce more accurate matrices. In this paper, we
investigate the reasons behind this property of the BLOSUM matrices.
Using this knowledge, we analyze the situations under which the property
holds, and hence clarify the extent of the earlier method’s validity.

1 Introduction

In a protein sequence alignment, each amino acid in one sequence is matched
to an amino acid (or to a gap) in the other sequence. The likeliness that the
two sequences are related (under the alignment) is often evaluated through the
likeliness for amino acids in the matched pairs to appear in the place of each
other. It is hence very important to accurately assess the likeliness for these
amino acid substitutions. Several standards have emerged for this purpose, such
as BLOSUM [11], PAM [3], and GONNET [9]. Each of these gives a family
of substitution matrices of 20 × 20 elements; each element is a score for the
transition between two amino acids.

We consider the BLOSUM matrices in this paper. Each matrix in the BLO-
SUM family is distinguished by a parameter x—the transitional probabilities of
that matrix are calculated from the diversity among the sequences of no more

c© Springer International Publishing Switzerland 2015
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than x% similarity. The matrix of a parameter x is denoted BLOSUMx, e.g.
the matrix where x = 50 is written BLOSUM50. The BLOSUM62 matrix is the
most common, and is the substitution matrix used by default in the popular
sequence comparison tool called BLAST [1]. Fifteen other BLOSUM matrices
are in common use, namely, the matrices for x=30, 35, . . ., 100. Which of these
matrices to use depends very much on the situation; matrices of lower x are
better at aligning more distant sequences while matrices of higher x are better
for aligning more closely related sequences [16].

Many methods have been proposed to automate the process of finding the
optimal BLOSUMx [5,6,2,8,13,4,10,7,18,12,15]. Many of these methods employ
machine learning methods which are trained on sequence examples. Recently,
Song et al. proposed a method which is based completely on the BLOSUMx
matrices—eliminating the need for training examples [17].

The method is based on a property they observed of the BLOSUM matrices,
namely, that in general, the eigenvectors obtained from eigendecompositions of
the BLOSUM matrices are nearly identical, and that when all the eigenvalues
(from the BLOSUM matrices of different x) that correspond to the same (or
nearly identical) eigenvector are plotted against x, a near-linearly increasing
correlation is observed. This is shown in Figure 1, where we eigendecompose
the BLOSUMx matrices for x=30, 35, . . ., 100, (and x=62,) and then, for each
eigenvector obtained, we plot its corresponding eigenvalues against x.
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Fig. 1. Linearity between eigenvalues and clustering percentages

What causes this observation is unknown, and could be related to earlier
studies on the eigenvalues of other score matrices [14]. Our task in this paper
is to investigate a sufficient condition under which this near-linearly increasing
trend holds. From this, we examine the extent to which the phenomena can be
expected. One of the immediate implications of this is that we now have a better
understanding of when the method by Song et al. is applicable.
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2 Preliminaries

We first give the necessary background, as well as the notations in this paper.

2.1 The Construction of BLOSUM Matrices

The BLOSUM matrices are constructed from the blocks of sequences from the
BLOCKS database. Each block in the database is an ungapped multiple sequence
alignment. The sequences in different blocks are considered unrelated.

Each BLOSUM matrix is associated with a parameter x, and is constructed as
follows. First, sequences are clustered such that the sequences between different
clusters are no more than x% identical. Let fi denote the number of times an
amino acid Ai appears in the sequences of all the clusters, over the number
of all amino acid occurrences. We consider all possible pairs of sequences, each
from a different cluster within a same block. For every such pair, we count the
total number of times that one amino acid, Ai, is aligned with another, Aj ; this
count is weighted by the size of the clusters from which the sequences are drawn
to prevent over-representation of sequences in large clusters. The sum of these
counts from all possible pairs is computed, and divided by the total number of
pairs of aligned amino acids from all possible pairs of sequences; the resultant
value is denoted fi,j . (Note that fi,j = fj,i.) Finally, we calculate si,j , an estimate
of the log-odds ratio of finding Ai interchanged with Aj , as

si,j =

{
log2

fi,i
fifi

if i = j,

log2
fi,j
2fifj

if i �= j.

We are now prepared to define the BLOSUMx matrix. For simplicity we refer
to the BLOSUMx matrix by simply Bx. The (i, j)th element of Bx is set to the
integer that is closest to 1

0.347si,j . Using this procedure, Heinikoff and Heinikoff
computed the matrices for B30, B35, . . ., B100, as well as B62 [11]. We refer to
these matrices which they published implicitly in this work.

We let Jx denote the matrix of the counts fi,j obtained under parameter x.
That is,

Jx =

⎛

⎜⎜⎜⎜⎝

f1,1
f1,2
2 . . .

f1,20
2

f2,1
2 f2,2 . . .

f2,20
2

. . .
f20,1
2

f20,2
2 . . . f20,20

⎞

⎟⎟⎟⎟⎠

For a matrix M , we denote its (i, j)th element by M(i, j). The ith element of
a vertor v is written v(i). We denote the eigenvectors from a eigendecomposition
of M as u1

M , u2
M , . . ., u20

M , and denote the corresponding eigenvalues λ1
M , λ2

M ,
. . ., λ20

M .
We now create the notations to formalize our observation. Our first observa-

tion is that the eigendecomposition of B30, B35, . . ., B100 resulted in very similar
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eigenvectors. For simplicity we assume that there is an ideal set of eigenvectors
shared commonly. We denote these eigenvectors as u1

B, u
2
B, . . ., u

20
B . For each

eigenvector ui
B, we denote its corresponding eigenvalue from Bx as λi

Bx
. Hence,

the observation stated in the introduction can be restated as:

Observation 1. In general, one can observe a nearly linear trend in the values
λi
B30

, λi
B35

, . . ., λi
B100

, for each individual i from 1, 2, . . ., to 20.
This observation, in fact, extends to the joint probability matrices, Jx. That

is, the same observation holds when one replaces the Bx in the paragraphs above
to Jx, giving:

Observation 2. In general, one can observe a nearly linear trend in the values
λi
J30

, λi
J35

, . . ., λi
J100

, for each i from 1, 2, . . ., to 20.

3 A Sufficient Property For Nearly Linear Eigenvalue
Changes

We shall now show a link between the properties above, which is concerned with
the eigenvalues, and a more immediate and intuitive property of the matrices.
This property is with regard to the elements of the joint probability matrices
that is, Jx(i, j). The property can be stated as follows:

Observation 3. In general, for each i and j, one can observe a nearly linear
trend in the values J30(i, j), J35(i, j), . . ., J100(i, j).

To illustrate this property, we show this trend in the diagonal elements J30(i, i),
J35(i, i), . . ., J100(i, i) for each individual i from 1, 2, . . ., to 20, in Figure 2.
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Fig. 2. Diagonal entries of Jx

In this section we shall show, through both simulations and mathematical
argument, that this property of Jx gives rise to Observations 1 and 2.
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3.1 Simulation

We first verify the validity of the claim through simulations. We generate pseudo-
joint probability matrices J ′

30, J
′
35, . . ., J

′
100, with the only assumptions that

1. Each Jx is symmetric and its elements sum up to one,
2. The diagonal elements of Jx increase linearly with respect to x. More pre-

cisely, we assume for the ith diagonal elements of J ′
30, J

′
35, . . ., J

′
100, there is

a constant δi, such that Jx+5(i, i) = Jx(i, i) + δi,
3. The non-diagonal elements of the matrices are multiplied by a (same) con-

stant factor as we proceed from J ′
30, J

′
35, to J ′

100.

Generating Pseudo-joint Probability Matrices. We first generate a base
matrix J ′

100 of sum 1. The remaining J ′
30, J

′
35, . . ., J

′
95, are then generated from

J ′
100, as follows.
The diagonal elements of J ′

100−5k, k ∈ {1, . . . 14} is computed as

J ′
100−5k(i, i) = J ′

100(i, i)− kδi, for i ∈ {1, . . . , 20}. (1)

We now consider the non-diagonal elements of J ′
x. As mentioned, the sum of

the elements of each matrix is 1, that is,
∑

i,j∈{1,...,20} J
′
x(i, j) = 1. Let d100 =

20∑

i=1

J ′
100(i, i). Then,

– the non-diagonal elements in J ′
100 have a total probability of (1−d100), while

– the diagonal elements in J ′
100−5k have a total probability of (d100−kδ), where

δ =
20∑

i=1

δi.

As mentioned, we assume that each non-diagonal element of J ′
100−5k is of a

value sk times its original value in J ′
100(i, j), that is, J

′
100−5k(i, j) = skJ

′
100(i, j).

To find sk, we solve

(d100 − kδ) + sk
∑

i,j,i�=j

J ′
100(i, j) = 1

(d100 − kδ) + sk(1− d100) = 1

to obtain

sk = 1 +
kδ

1− d100
. (2)

Our joint probability matrices J ′
30, J

′
35, . . ., J

′
95 are generated from J ′

100 and
δ1, . . . , δ20, by Eqn. (1) and (2), which combines into

J ′
100−5k(i, j) =

{
J ′
100(i, i)− kδi i = j

J ′
100(i, j) +

kδ
1−dJ

′
100(i, j) i �= j

(3)
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Generating Pseudo-BLOSUM Matrices. Our pseudo-BLOSUM matrices
B′

30, B
′
35, . . ., B

′
100, are generated straightforwardly from the pseudo-joint prob-

ability matrices, as

B′
x(i, j) = log2

J ′
x(i, j)

Px(i)Px(j)
,

where Px(i) are the marginal probabilities of the pseudo-joint probability matrix
J ′
x, that is,

Px(i) =

20∑

j=1

J ′
x(i, j).

Simulation Results. We examine the pseudo-joint matrices and pseudo-
BLOSUM matrices separately. We perform eigendecomposition of the matri-
ces to produce, for each matrix, a set of eigenvectors. To match the eigenvectors
from a matrix to those from another, we construct a bipartite graph where ev-
ery eigenvector is used as a vertex. A weighted edge is placed between every two
vertices; its weight is computed as the dot product of its corresponding eigen-
vectors. Then, a maximum weighted bipartite matching of the graph is used as
the match between the eigenvectors. Finally, the eigenvalues for each group of
matching eigenvectors are collected and plotted in Figure 3.
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Fig. 3. (a) Eigenvalues from the pseudo-joint probability matrices, (b) Eigenvalues
from the pseudo-BLOSUM matrices

3.2 Theoretical Justification

We will now provide mathematical reasons for the observed relationship.
Our aim is to show that linearly increasing elements in the joint probability

matrices J30, J35, . . . , J100 imply linearly increasing λi
J30

, λi
J35

, . . ., λi
J100

, as

well as linearly increasing λi
B30

, λi
B35

, . . ., λi
B100

, for each i from 1, 2, . . ., to 20.
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Linear Trend in the Eigenvalues of Jx. We start with our assumptions, that

1. Each Jx is real and symmetric. (Here, we do not need the elements to sum
up to one.)

2. For each i and j, all the (i, j)th elements from the matrices Jx are linearly
correlated. More precisely, we can write

J100−5k = J100 + kΔ

for a symmetric matrix

Δ =

⎡

⎢⎢⎢⎣

δ1,1 δ1,2 . . . δ1,20
δ2,1 δ2,2 . . . δ2,20
...

...
...

δ20,1 δ20,2 . . . δ20,20

⎤

⎥⎥⎥⎦ .

However, to simplify the analysis, we also assume that

3. The eigendecomposition of each of J30, J35, . . . , J100 results in perfectly
identical sets of orthogonal eigenvectors, namely, u1

J , u
2
J , . . ., u

20
J . (Since Jx

is real and symmetric, achieving orthogonality is not a problem.)

We start with the eigendecomposition of Jx,

Jx = UΛxU
T

whereU =
[
u1
J u2

J . . . u20
J

]
, andΛx = diag(λ1

Jx
,λ2

Jx
, . . . ,λ20

Jx
). Left-multiplying

UT and right-multiplying U at both sides,

Λx = UT JxU

Λ100−5k = UT (J100 + kΔ)U = UT J100U+ kUTΔU

= Λ100 + kUTΔU.

Hence λi
J100−5k

= λ0(i) + k trace(ΔT (ui
J)(u

i
J)

T ), which shows a linear relation-

ship between λi
x and x.

We now proceed to show the same result for the BLOSUM matrices.

Linear Trend in the Eigenvalues of Bx Our analysis for the Bx requires
more assumptions of Jx. Besides the earlier conditions, we furthermore require
that:

1. The change in each element of Jx is small. More precisely, for all x and all
pairs (i, j)

| Jx(i, j)− J100(i, j) |
J100(i, j)

� 1
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2. The change in marginal probability of all Jx from J100 is small. More pre-
cisely, for all x and all i,

|
∑

j Jx(i, j)−
∑

j J100(i, j) |∑
j J100(i, j)

� 1

These conditions are required of Jx. For Bx, we only assume that the eigende-
compositions of each of B30, B35, . . . , B100 results in the same set of orthogonal
eigenvectors, namely, u1

B, u
2
B, . . ., u

20
B .

Our proof will show that Bx has the same properties as required in Section 3.2
for Jx, and hence, by the same argument therein, Bx has linearly correlated
eigenvalues.

For a fixed i and j,

Bx(i, j) = log2
Jx(i, j)

Px(i)Px(j)
= log2

Jx(i, j)

(
∑

t Jx(i, t)) (
∑

t Jx(j, t))

B100−5k(i, j) = log2
J100(i, j) + kδi,j

(
∑

t(J100(i, t) + kδi,t)) (
∑

t(J100(j, t) + kδj,t))

= log2
J100(i, j) + kδi,j

(r100(i) + km(i)) (r100(j) + km(j))

in which, we have let r100(z) =
∑

t

J100(z, t), and m(z) =
∑

t

δz,t. Note that

m(z) is the change in the marginal probability at the zth row. Subsequently,

B100−5k(i, j) = log2(J100(i, j) + kδi,j)

−log2(r100(i) + km(i))− log2(r100(j) + km(j))

= log2

(
J100(i, j)(1 + k

δi,j
J100(i, j)

)

)

−log2

(
r100(i)(1 + k

m(i)

r100(i)
)

)
− log2

(
r100(j)(1 + k

m(i)

r100(j)
)

)

= log2
J100(i, j)

r100(i)r100(j)
+ log2(1 + k

δi,j
J100(i, j)

)

−log2(1 + k
m(i)

r100(i)
)− log2(1 + k

m(j)

r100(j)
)

= B100(i, j) + log2(1 + k
δi,j

J100(i, j)
)

−log2(1 + k
m(i)

r100(i)
)− log2(1 + k

m(j)

r100(j)
)

Let x =
kδi,j

J100(i, j)
, and y(z) =

km(z)

r100(z)
, and this becomes

B100−5k(i, j) = B100(i, j) + log2(1 + x)− log2(1 + y(i))− log2(1 + y(j)) (4)
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Due to our assumptions, x =
kδi,j

J100(i, j)
� 1, and y(z) =

km(z)

r100(z)
� 1. This

allows us to use Taylor expansion to expand Eqn. (4) into

B100−5k(i, j) = B100(i, j) +
1

ln 2
(x+ o(x2)

−(y(i) + o(y(i)2))− (y(j) + o(y(j)2)))

≈ B100(i, j)−
1

ln 2
(y(i) + y(j)− x)

= B100(i, j)−
k

ln 2

(
m(i)

r100(i)
+

m(j)

r100(j)
− δi,j

J100(i, j)

)
.

Or more intuitively,

B100−5k(i, j) ≈ B100(i, j)− k

(
1

ln 2

)(
m(i)

r100(j)
+

m(i)

r100(j)
− δi,j

J100(i, j)

)
.

With this, and with the fact that each Bx computed from Jx is real and
symmetric, we have arrived at the same condition for J30, J35, . . ., J100 assumed
at the beginning of Section 3.2, which was sufficient to show a linear trend in
their eigenvalues. The exact same method can be applied here to demonstrate
the same for Bx to give us the desired result.

4 Achievability of Condition

The result that we have just obtained indicates that, for a set of substitution
matrices to have the near-linearly increasing eigenvalues stated, it suffices that
the joint probability matrices have incremental, and preferrably constantly in-
creasing elements.

In this section we shall investigate how demanding this condition is. Let g(x)
denote the number of aligned sequence pairs at level x (that is, the sequences
that are 100 ∗ x% identical). We are interested in the dependency of Jx on x for
different forms of g(x). Particularly, we want to know the forms of g(x) under
which the elements of Jx increase linearly with respect to x.

We assume that g(x) is monotonic, and we furthermore assume that g(x) is
continuous (in order to obtain integrals). Then, the diagonal elements of Jx can
be evaluated as

Jx(i, i) ∝
∫ x

0
y g(y)dy∫ x

0
g(y)dy

and non-diagonal elements of Jx can be evaluated as

Jx(i, j) ∝
∫ x

0
(1 − y) g(y)dy∫ x

0
g(y)dy

.

We consider the following two growth behavior for g(x):

Case (1). g(x) = axn, for n > 0, a > 0,

Case (2). g(x) = a(ebx − 1) for a > 0, b > 0.
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For Case (1), the integrals are straight-forward, and evaluates to

Jx(i, i) ∝
∫ x

0
yn+1dy∫ x

0
yndy

=
n+ 1

n+ 2
x,

and

Jx(i, j) = 1−
∫ x

0 yn+1dy∫ x

0 yndy
= 1− n+ 1

n+ 2
x,

which show that the elements of Jx correlate linearly with x.
Case (2) presents a more involved integral:

Jx(i, i) ∝
∫ x

0 y(eby − 1)dy∫ x

0 (e
by − 1)dy

=
xebx − 1

b e
bx + 1

b −
bx2

2

ebx − bx− 1

= x+
(−1)x(ebx − bx− 1) + xebx − 1

b e
bx + 1

b − bx2

2

ebx − bx− 1

= x+
− 1

b e
bx + 1

b +
bx2

2 + x

ebx − bx− 1

= x− 1

b
+

bx2

2

ebx − bx− 1

We are interested in whether x− 1
b +

bx2

2

ebx−bx−1 is nearly linear for 0 ≤ x ≤ 1.
Since b > 0, this expression monotonically increases with x. We can hence deduce

its range to
[
0, 1− 1

b +
b
2

eb−b−1

]
for 0 ≤ x ≤ 1. We compare the expression,

denoted S(b, x), to the straight line Lb which passes through (0, 0) and (1, 1 −
1
b +

b
2

eb−b−1
), namely

Lb(x) =

(
1− 1

b
+

b
2

eb − b− 1

)
x.

Let the discrepancy between S(b, x) and Lb(x) be

d(b) =
max
0<x<1

|S(b, x)− Lb(x)|

S(b, 1)− S(b, 0)

Figure 4(a) shows how this discrepancy varies with respect to b. The curve
indicates that d(b) reaches a maximum of 0.0504 at b = 7.83. Figure 4(b) shows
how S(b, x) varies with x at b = 7.83; similar trends are observed for other values
of b.

We hence conclude that in Case (2) as well, the elements of Jx correlate nearly
linearly with x.
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Fig. 4. (a) d(b) at different b; (b) S(b, x) vs x at b = 7.83

Finally, we examine the growth behavior of g(x) in the actual data. We show
this function in Figure 5, together with an exponential curve f(x) = a(ebx −
bx−1) approximated through nonlinear least-squares regression; the parameters
a = 74.1418, b = 8.1846, erf = 1.013e+ 09.
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Abstract. RNA secondary structures are known to be important in
many biological processes. Many available programs have been devel-
oped for RNA secondary structure prediction. Based on our knowledge,
however, there still exist secondary structures of known RNA sequences
which cannot be covered by these algorithms. In this paper, we provide an
efficient algorithm that can handle all RNA secondary structures found
in Rfam database. We designed a new stochastic context-free grammar
named Rectangle Tree Grammar (RTG) which significantly expands the
classes of structures that can be modelled. Our algorithm runs in O(n6)
time and the accuracy is reasonably high, with average PPV and sensi-
tivity over 75%. In addition, the structures that RTG predicts are very
similar to the real ones.

1 Introduction

Secondary structures of RNA molecules play important roles in their function-
alities [1, 2]. Many methods have been proposed to predict RNA secondary
structures. Although the majority of RNAs have simple secondary structures,
pseudoknots (base pairs crossing each other) are found in almost all classes of
RNAs. Pseudoknots are known to be involved in biological functions such as stim-
ulating ribosomal frameshifting [3, 4]. The existence of pseudoknots make the
secondary structure prediction an NP-hard problem, in general [5, 6]. Existing
algorithms attempt to solve the problem by considering a restricted set of pseu-
doknots [7–18]. Not all existing pseudoknots can be modelled. In terms of pre-
diction accuracy, CentroidAlifold[9] generalized a centroid estimator that maxi-
mizes the expected accuracy of structure prediction. Tabei, Yasuo and Kiryu[16]
proposed a fast multiple sequence alignment method named MXScarna in which
the optimal structure that maximized a heuristic scoring function was found
during the group alignments of stem component sequences. RNAaliFold[17] pre-
computed alignments using a combination of free-energy and a covariation mea-
sures, whilst TurboFold[18] utilized an iterative probabilistic method to predict
secondary structures for multiple RNA sequences.

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 211–222, 2015.
DOI: 10.1007/978-3-319-19048-8_18
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Despite of so many algorithms to predict RNA secondary structures, there
exist secondary structures of known RNAs in Rfam [19] that cannot be covered
by existing efficient algorithms1. Figure 1 shows such an example.

Fig. 1. A structure in Rfam which cannot be handled by existing efficient algorithms

In this paper, we proposed a grammar-based machine learning method to pre-
dict secondary structures for all RNA sequences in Rfam. Enlightened by [20], we
designed a new stochastic context-free grammar called Rectangular Tree Gram-
mar (RTG), which can model all possible secondary structures of known RNA
sequences in the Rfam database. Each structure can be generated by a unique
operation path, that is, the only sequence of operations that yields this sequence.
A set of paths is obtained using some real RNA sequences with known struc-
tures. Rule transition probabilities and base emission probabilities are calculated
based on this set. In order to determine the unknown secondary structure of a
RNA sequence, dynamic programming is adopted to generate the most probable
structure. This procedure takes O(n6) time, where n is the length of input RNA
sequence.

The proposed approach was evaluated using several sets of sequences with one
containing pseudoknot-free structures and the others with different types of pseu-
doknots. We compared the performance of RTG with popular prediction
algorithms including gfold[7], CentroidAlifold[9], pknotsRG[21], NUPACK[22],
MXScarna[16], RNAaliFold[17] andTurboFold[18]. The experimental results have
shown that our approach outperforms others substantiallywith high PPVand sen-
sitivity, especially on highly-pseudoknotted sequences.

2 Method

2.1 RNA Secondary Structure Definitions

Let S = s1s2 . . . sn be an RNA sequence of length n. Mx,y is the set of base pairs
in the range [x, y], Mx,y = {(i, j)|x ≤ i < j ≤ y, (si, sj) is a base pair}.
Banding: The secondary structure of sx . . . sy is a banding if it satisfies the
following conditions:
(i) for any i, j, k, l ∈ [x, y], i �= k, j �= l, if (i, j) ∈ Mx,y and (k, l) ∈ Mx,y, then
i < k < l < j or k < i < j < l.
(ii) (x, y) ∈ Mx,y.

1 We only consider algorithms which run in O(n6) time.



Predicting RNA Secondary Structures: One-grammar-fits-all Solution 213

Gapped Banding: The secondary structure of sx . . . sy ∪ sp . . . sq is a gapped
banding if it satisfies the following conditions:
(i) By cutting out the gap sy+1 . . . sp−1, the secondary structure over this new
sequence sx . . . sysp . . . sq is a banding.
(ii) ∀(i, j) ∈ M[x,y]∪[p,q], (i, j) is across the gap.

Regular Structure: A structure is a regular structure if no base pair cross-
ing exists, that is, the secondary structure of sx . . . sy is a regular structure if
� ∃i, j, k, l ∈ [x, y] such that (i, j) ∈ Mx,y, (k, l) ∈ Mx,y, and i < k < j < l.

Standard Pseudoknot of Degree k: A structure is a standard pseudoknot of
degree k (k ≥ 3) if it is either a simple standard pseudoknot of degree k or a
gapped standard pseudoknot of degree k.

For any 1 ≤ w ≤ k − 1, let Hw = {(i, j) ∈ Mx,y|xw−1 ≤ i < xw ≤ j < xw+1}.
We allow j = xk for Hk−1 to resolve the boundary case.

The secondary structure of sx . . . sy is a simple standard pseudoknot of degree
k (k ≥ 3) if there exists a set of x1, x2, . . . , xk−1 that satisfies the following
conditions (Figure 2):
(i) x = x0 < x1 < x2 < . . . < xk−1 < xk = y.
(ii) ∀w ∈ [1, k − 1], Hw is a gapped banding.
(iii) ∀(i, j) ∈ Mx,y, ∃w such that (i, j) ∈ Hw.
(iv) ∀w ∈ [1, k − 1], if (i, j) ∈ Hw, (k, l) ∈ Hw+1, then i < k < j < l.
(v) there does not exist two base pairs (i, j) ∈ Hw, (k, l) ∈ Hv, v − w ≥ 2, such
that i < k < j < l.

x = x0 x1 x2 x3 x4 = y

H1

H2

H3

Fig. 2. A simple standard pseudoknot of
degree 4

x = x0 x1 x3 x4 = y

H1

H2

H3

a b

Fig. 3. A gapped standard pseudoknot of
degree 4, where sa . . . sb forms a regular
structure

The secondary structure of sx . . . sy is a gapped standard pseudoknot of degree
k (k ≥ 3) if there exists a, b such that sa+1 . . . sb−1 is a structure defined above
and sx . . . sa ∪ sb . . . sy satisfies the following conditions (Figure 3):
(i) By cutting out the gap sa+1 . . . sb−1, the secondary structure over this new
sequence sx . . . sasb . . . sy is a standard pseudoknot.
(ii) if (i, j) ∈ M[x,a]∪[b,y] is across the gap, then ∃w such that (i, j) ∈ Hw.
Moreover, ∀(k, l) ∈ Hw is across the gap.

Based on our analysis to Rfam database, we focus on all standard pseudoknots
of degree k (k ≥ 3) in this paper.
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Three Banding Structure: The secondary structure of sx . . . sy is a three
banding structure if we can find x1, x2, x3 such that all the following conditions
are satisfied.
(i) x ≤ x1 ≤ x2 ≤ x3 ≤ y.
(ii) ∀(i, j) ∈ M[x,y], it must belong to one of the sets L12, L23, L34, L14 as defined
below.
(iii) for any two pairs (i, j) ∈ Lab and (k, l) ∈ Lab, then i < k < l < j or
k < i < j < l. where Lab = L12, L23, L34 or L14.

Let L12 = {(i, j)|x ≤ i ≤ x1 ≤ j ≤ x2}, L23 = {(i, j)|x1 ≤ i ≤ x2 ≤ j ≤ x3},
L34 = {(i, j)|x2 ≤ i ≤ x3 ≤ j ≤ y}, L14 = {(i, j)|x ≤ i ≤ x1, x3 ≤ j ≤ y}.

x x1 x2 x3 y

(a) A three banding structure.

x

x1

x2

x3

y

(b) Twist this three band-
ing structure so that all base
pairs are parallel.

Fig. 4. A three banding structure and its twisted view

Figure 4 illustrates a three banding structure sx . . . sy (Figure 4(a)) and how
it is twisted so that all its base pairs are grouped into four parallel sets (Figure
4(b)), i.e., L12 (blue and cyan pairs), L23 (red pairs), L34 (green and lime pairs)
and L14 (magenta pairs).

k-Crossing Structure: sxsx+1 . . . sy is a k-crossing structure (k ≥ 3) if it is
either a simple k-crossing structure or a gapped k-crossing structure. Intuitively,
in a k-crossing structure, there exist k gapped bandings where any two of them
crosses each other.

For any (1 ≤ w ≤ k), let Hw = {(i, j) ∈ Mx,y|xw−1 ≤ i < xw, xw−1+k ≤ j <
xw+k}. We allow j = x2k for Hk to resolve the boundary case. Let Cw(1 ≤ w ≤
2k) = {(i, j) ∈ Mx,y|xw−1 ≤ i < j < xw}. j = xj is allowed for C2k. A crossing
set is defined as CHw = Hw ∪ Cw ∪ Cw+k(1 ≤ w ≤ k).

The secondary structure of sx . . . sy is a simple k-crossing structure (k ≥ 3)
if there exist x0, x1, . . . , x2k that satisfy the following conditions:
(i) x = x0 < x1 < . . . < x2k−1 < x2k = y.
(ii) ∀ (i, j) ∈ Mx,y, ∃w such that (i, j) ∈ CHw.
(iii) ∀w ∈ [1, k], CHw is a regular structure, a standard pseudoknot or a three
banding structure.
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The secondary structure of sx . . . sy is a gapped k-crossing structure if and only
if there exists a, b such that sa+1 . . . sb−1 is a defined structure and sx . . . sa ∪
sb . . . sy satisfies the following conditions:
(i) By cutting out the gap sa+1 . . . sb−1, the secondary structure over this new
sequence sx . . . sasb . . . sy is a k-crossing structure.
(ii) ∀w ∈ [1, k], ∀(i, j) ∈ Hw, (i, j) is across the gap sa+1 . . . sb−1.
(iii) ∀(i, j) ∈ M[x,a]∪[b,y] is across the gap, ∃w ∈ [1, k] such that (i, j) ∈ Hw and
�w ∈ [1, k] such that (i, j) ∈ Cw.

x = x0x1 x2 x3 x4 x5 x6 = y

H1

H2

H3

C2 C4 C6

Fig. 5. A 3-crossing structure

Figure 5 depicts a 3-crossing structure. Each color denotes a crossing set, i.e.,
CH1 (cyan), CH2 (red) and CH3 (green).

Recall the example in Figure 1. The difficulty of this structure lies on two
mixed substructures called 3-crossing and standard pseudoknots for which none
of the existing algorithms can model (the green basepairs form a standard pseu-
doknot; the green, blue, and the red basepairs form a 3-crossing structure).
As a matter of fact, among all classes of Rfam structures we defined below,
only gfold[7] can generate some extremely simple 3-crossing structures with
CHw = Hw. None of the aforementioned algorithms can generate k-crossing
structures (k ≥ 4).

2.2 Rectangle Tree and Complete Tree

We have observed that the classic grammar-based algorithm, Simple Linear Tree
Adjoining Grammar[23], is incapable of predicting some highly-pseudoknotted
structures (e.g k-crossing structures). To predict these structures, we introduce
a new grammar called Rectangle Tree Grammar(RTG).

Let V be a finite set of alphabets and Σ be a set of terminal alphabets where
Σ ⊂ V . Let γ be a tree over V such that
(i) each internal node must be labeled with a nonterminal symbol.
(ii) each leaf node can be labeled with a nonterminal or terminal symbol.
(iii) each internal node can have any number of children.
(iv) each edge can be labeled red or black.

Y (γ) (ie. yield of tree) is defined as breadth-first search output of γ where all
the nonterminal symbols are ignored.

A tree is rectangle if it satisfies all the conditions below:
(i) all the internal nodes should be labeled with nonterminal symbols.
(ii) there is only one leaf labeled with nonterminal symbol. This node is called
N4. The path from the root to N4 is called the backbone.
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(iii) there is only one red edge that defines the insertion point of this tree which
is along the backbone.
(iv) considering the red edge N2 −N3, N3 is the only child of N2.
(v) the path from root to N2 is the longest path in upper tree, the path from
N3 to N4 is the longest path in bottom tree.

According to the definition above, a rectangle tree can be divided into two
parts by splitting through red edge, the yield of upper tree is γU , the yield of
bottom tree rooted at N3 is γB. Y (γ) = γUγB, the position between γU and γB
is called an insertion point (where other structures can be inserted in). Figure 6
is an example of a rectangle tree.

N1

f

a b

N2 e

N3

g

c d N4

γU

γB

Fig. 6. A rectangle tree. Orange nodes and blue are labeled with nonterminal and
terminal symbols, respectively. Its yield is fabe, gcd. The comma represents its insertion
point.

A tree is complete if it satisfies all the following conditions:
(i) only one leaf (labeled as N4) is labeled with nonterminal symbol.
(ii) there is no red edge, i.e., no more base pairs will be added.
(iii) the path from root to N4 is the longest path in the tree.
By labeling the red edge in Figure 6, the rectangle tree becomes a complete tree.
The yield is fabegcd. To predict the secondary structure of an RNA sequence,
we compute the most probable rectangle tree whose yield is exactly the given
sequence.

2.3 Grammar States

A rectangle tree or a complete tree has a unique state. As shown in Table 1, a
state corresponds to the secondary structure represented by this tree. The first
seven states are for rectangle trees. The remaining three are for complete trees.

2.4 Tree Operations

There are multiple ways to add bases into a tree. A tree operation defines how a
single base, a base pair or another tree are allowed to be added. In this section,
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Table 1.Grammar states and the corresponding secondary structures of RNA sequence
si . . . sk ∪ sl . . . sj or si . . . sj

State Structure Description

B banding or gapped banding

B3 the structure is three banding, insertion point is the insertion point of the
second banding.

BL the structure is standard pseudoknot of degree k(k ≥ 3), insertion point is the
insert point of the rightmost banding.

BR the structure is standard pseudoknot of degree k(k ≥ 3), insertion point is the
insert point of the leftmost banding.

BLR the structure is standard pseudoknot of degree k(k ≥ 4), insertion point can
be insertion point of any banding except the leftmost and rightmost one.

G 2-crossing structure, after another Cr operation, it will transit to state H.

H k-crossing structure(k ≥ 3).

CPP both si and sj are paired bases.

CPS si is a paired base, sj is a single base.

CSP si is a single base, sj is a paired base.

CSS both si and sj are single bases.

we introduce tree operations from state to state so that it is clear why each
operation is needed. For simplicity, we use S1 to denote γU (the yield of upper
tree) and S2 to denote γB (the yield of bottom tree).

Gapped Banding (State B). A gapped banding is divided by insertion point
into two parts: S1 and S2. Basically, base pairs and single bases of a banding is
allowed to be added from outmost inwards. For rectangle trees, single bases can
only be added at the end of S1 (at N2) or at the beginning of S2 (at N3). To
obtain a gapped banding, the following tree operations are designed:

– L23: add a base pair X into the tree, where the head and tail of X are added
to the end of S1 and the beginning of S2, respectively.

– Ls2: add a single base to the end of S1.
– Ls3: add a single base to the beginning of S2.

Three Banding (State B3). A basic idea to generate a three banding structure
is to add gapped bandings in the twisted structure in a top-down manner. Besides
L23, Ls2 and Ls3, there are three more legal operations to add a gapped banding
(or a base pair) X :

– L12: add the head of X to the beginning of S1; tail of X to the end of S1.
– L34: add the head of X to the beginning of S2; tail of X to the end of S2.
– L14: add the head of X to the beginning of S1; tail of X to the end of S2.

Standard Pseudoknot of Degree k (State BL). To generate standard pseu-
doknot of degree k(k ≥ 3), we designed operation LR (Figure 7). Operation LR
inserts the upper tree of α above N1 of β and its bottom tree above N2. At the
same time, the insertion point is updated to insertion point of β. As a result,
base pairs across upper tree and bottom tree in α and β would cross. Moreover,
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the update of insertion point prevents base pairs in α from crossing base pairs in
subsequent trees adjoined with LR later. After (k− 2) LR operations, standard
pseudoknot of degree k is generated.

k-Crossing (State G and H). In k-crossing structures, without considering
embedded substructures, all base pairs can be grouped into different crossing
sets CH1 . . . CHk, where CHw (∀w ∈ [1, k]) is a regular structure (state B),
a standard pseudoknot (state BL, BR or BLR) or a three banding structure
(state B3). Standard pseudoknots of state BL and BR have their insertion
point within the leftmost and rightmost banding, respectively. Otherwise, if the
insertion point comes from neither the leftmost nor the rightmost banding, this
standard pseudoknot is in state BLR.

Fig. 7. After 2 LR operations over 3
gapped bandings, a standard pseudoknot
of degree 4 is generated

Fig. 8. A 3-crossing can be generated by
2 Cr operations

Operation LL is designed for state BR and BLR. An LL operation on rect-
angle tree ε with ζ inserts the upper tree of ζ above N3 of ε and its bottom
tree under N4. Then by operating LR on α1LR . . . LRαi with ε1LL . . . LLεj,
standard pseudoknot with insertion point in its (i+ 1)th banding is generated.

After generation of all the crossing sets, we designed the operation Cr to link
them up. As is shown in Figure 8, operation Cr on rectangle tree α with β
inserts upper tree of β under N2 of α and bottom tree under N4. So base pairs
between upper tree and bottom tree in α and β would cross. After (k − 1) Cr
operations, k-crossing can be generated.

Fig. 9. Lplus2, Lplus3 and Cp for embedding and concatenation. a is a rectangle tree,
b and c are complete trees
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Embedding and Concatenation (State CPP ). By applying operation Lm to
label the red edge of a rectangle tree to black, a complete tree is generated. Em-
bedding operations Lplus2 and Lplus3 insert a complete tree to N2 and N3 of a
complete tree, respectively. The concatenation operationCp can concatenate two
complete trees. The above three operations are also explained in Figure 9. Note
that if a rectangle tree α embeds (using Lplus2 or Lplus3) some complete trees, it
becomes a new rectangle treeα′. And the state ofα′ remains the same as that ofα.

Single Bases at Both Ends (State CPS, CSP and CSS). As required
by RTG, gapped bandings are always generated at first. Afterwards, applying
proper tree operations as defined above, these gapped bandings compose a more
complicated structure. When no base pairs are to be inserted, Lm alters this
rectangle tree (representing this complicated structure) to a complete tree of
state CPP . Note that the first base si and the last base sj must have been
boundary bases of gapped bandings. When there are single bases at either end
of an RNA sequence, operation Ls1 and Ls4 are used to add single bases to the
beginning of S1 and the end of S2, respectively.

2.5 Grammar

A RTG grammar rule clarifies whether a specific operation is applicable to rect-
angle trees (in CPP, CPS, CSP or CSS state) or complete trees (in any other
state). All the rules are tabulated in Table 2. In the table, α is a single base. (α,β)
is a base pair. (b1, b2) and (b3, b4) are rectangle trees, where comma denotes their
insertion points. (c), (c1), and (c2) represent complete trees.

After applying RTG grammar rules, the state of the predicted structure tran-
sits into another. All valid transitions defined by the grammar rules will be given
in the full paper. For the dynamic programming algorithm for structure predic-
tion and the parameter training, we follow the standard techniques (details will
be given in the full paper).

Table 2. RTG rules

Operation Input output

Ls2 α (b1,b2)*(α) (s1α,s2)
Ls3 α (b1,b2)*(α) (b1,αb2)
L12 (b1,b2)*(b3,b4) (b3b1b4,b2)
L23 α β (b1,b2)*(α,β) (b1α,βb2)
L34 (b1,b2)*(b3,b4) (b1,b3b2b4)
L14 (b1,b2)*(b3,b4) (b3b1,b2b4)
LL (b1,b2)*(b3,b4) (b3,b1b4b2)
LR (b1,b2)*(b3,b4) (b1b3b2,b4)
Lplus2 (b1,b2)*(c) (b1c,b2)
Lplus3 (b1,b2)*(c) (b1,cb2)
Lm (b1,b2) (b1b2)
Cr (b1,b2)*(b3,b4) (b1b3,b2b4)
Cp (c1)*(c2) (c1c2)
Ls1 (c1)*(α) (αc1)
Ls4 (c1)*(α) (c1α)
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3 Experiments

A total of 564 RNA sequences from 44 families were extracted from Rfam
database for our experiments. All these families were classified into three sets
D1, D2 and D3. D1 consists of regular structures (15 families). D2 contains stan-
dard pseudoknots of degree ≥ 3 (27 families). D32comprises a set of 3-crossing
structures (2 families). We carried out a 10-fold cross-validation on D1, D2
and D3 datasets separately. More specifically, take D1 as an example. In each
round of validation, a total of 334 sequences in D1 were randomly partitioned
into ten equal-size subsets. Out of these ten subsets, one subset was retained to
test the model, while the other nine subsets were used to train this model. To
eliminate variability, 10 rounds were performed using different partitions. The
performance evaluated below is based on the average among 10 rounds. We com-
pared the performance of our RTG method with seven popular softwares. For
softwares that take multiple sequences as inputs, like TurboFold, CentroidAlifold
and RNAalifold, we provided them with each family of sequences as an input.
The performance was measured using positive predictive value (PPV) and sen-
sitivity defined below. PPV = α

γ and sensitivity = α
β , where α is the number of

correctly reported base pairs, β is the total number of reported base pairs, and
γ is the total number of base pairs in the Rfam.

Table 3. PPV and sensitivity of RTG and seven other softwares on D1, D2 and D3

Dataset Software PPV(%) Sensitivity(%) Software PPV(%) Sensitivity(%)

D1 62.21 28.97 54.5 24.6
D2 pknotsRG[21] 71.72 65.92 gfold[7] 3 67.35 53.28
D3 19.78 10.13 11.00 6.70

D1 51.41 24.36 93.53 36.73
D2 NUPACK[22] 74.24 62.63 CentroidAlifold[9] 50.24 43.71
D3 37.52 18.88 24.89 12.38

D1 75.54 38.76 77.69 45.60
D2 MXScarna[16] 48.01 52.50 RNAalifold[17] 43.98 51.77
D3 13.73 7.30 23.40 24.88

D1 75.46 34.01 80.22 62.81
D2 TurboFold[18] 55.09 42.07 RTG 80.56 75.09
D3 20.80 10.74 71.95 71.36

Table 3 summarized the comparison of secondary structure prediction for
RTG and seven other state-of-the-art programs. Our RTG program often out-
performs other programs in terms of PPV and sensitivity. The experiment has
revealed that 3-crossing dataset is hard to predict for other programs, which is
consistent with our analysis of previous algorithms. However, the prediction of
RTG program is accurate to a certain extent.

2 There are only two families in Rfam with this complicated structures and one of
the families (RF02032) is too long that our server does not have enough memory to
handle it, we only extracted the 3-crossing structure (without considering embedded
substructure) to run.
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Apart from RTG, NUPACK[22] and RNAalifold[17] performed best in esti-
mating the secondary structure for 3-crossing dataset. The performance regard-
ing this dataset is further illustrated in Figure 10, which presents the predicted
structure of NUPACK, RNAalifold and RTG over AE005174-2 as well as the
trusted annotation in Rfam. The underlined parentheses(< − >,A − a and
B − b) denotes the correctly predicted base pairs.

Fig. 10. An detailed comparison for predicting the structure of AE005174-2(RF00140)
in Rfam

Evidently, RTG behaved the best with PPV = 87.5% and sensitivity = 70.0%.
The PPV and sensitivity of RNAalifold were 56.2% and 45.0%, respectively. NU-
PACK reached even lower PPV and sensitivity. In addition to its high accuracy
evaluated using PPV and sensitivity, RTG predicted a structure much more sim-
ilar to the ground truth. RTG thought the secondary structure of AE005174-2
is a 3-crossing. Furthermore, it almost pointed out all the bandings correctly.
Even for pairs denoted by B − b, the pairing position was very close. However,
NUPACK and RNAalifold predicted it as regular structures, which was way far
from its real structure.
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Abstract. The large amount of data collected in an MS experiment
requires effective computational approaches for the automated analysis
of those data. However, one specific challenge exists now is the unsat-
isfactory analysis of mixture spectra by the traditional computational
approaches. Mixture spectra are observed quite frequently in mass spec-
trometry experiment which result from the concurrent fragmentation
of multiple precursors, therefore effective approaches for characterizing
those non-canonical spectra are highly desired. In this manuscript, we
proposed an approach for matching mixture tandem mass spectra with
a pair of peptide sequences acquired from the protein sequence database
by incorporating a special de novo assisted filtration. The preliminary
experimental results demonstrated the efficiency of the integrated filtra-
tion strategy in reducing examination space and verified the effectiveness
of the proposed matching method.

Keywords: Mass spectrometry · Mixture spectra · Filtration strategy ·
Protein database

1 Introduction

The application of mass spectrometry on the characterization of large biopoly-
mers has obtained remarkable achievements over the past decade [1]. Now mass
spectrometry has become a standard choice for the high-throughput identifica-
tion and quantification of proteins. In the predominant “bottom-up” proteomics
method, the proteins are first proteolyzed into peptides mixtures which are then
separated by the reversed-phase liquid chromatography. After ionization using
ESI or MALDI, the targeted peptides are sequenced by the intensity depen-
dent selection and gas phase fragmentation. Subsequently, the fragments are

© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 223–234, 2015.
DOI: 10.1007/978-3-319-19048-8_19



224 Y. Liu et al.

detected and measured by mass spectrometers in very high speed which usually
generates a large amount of MS/MS spectra in one single run. Computational
approaches are necessary for the automated interpretation of the large volume
of proteomics data collected from mass spectrometers. Software tools developed
for this purpose can be generally divided into two categories: de novo sequenc-
ing and database search. De novo sequencing techniques directly reconstructs
the peptide sequence from each spectrum, while in contrast a database search
method scores each spectrum against peptides in a protein sequence database.
Typical de novo sequencing software tools include PEAKS [2], PepNovo [3],
and Lutefisk [4], meanwhile there are also many software packages available for
database search purpose, including Mascot [5], SEQUEST [6], PEAKS DB [7],
X!Tandem [8], and OMSSA [9].

Even with all those rapid progresses, there remain several challenging areas
unsolved. One significant challenge is that in a typical tandem mass spectrome-
try experiment, the ratio of the collected spectra being successfully identified is
rather low. One specific factor that contributes to the situation of low identifica-
tion rate is the frequent occurrence of concurrent fragmentation of multiple pep-
tides in one MS/MS spectrum. Traditional computational approaches have diffi-
culties in characterizing the resulting mixture spectra because they always take
the assumption that each MS/MS spectrum is generated from a single precursor.
Some preliminary literatures have reported that the frequency of multiple pep-
tides co-fragmented simultaneously can be quite phenomenal. Hoopmann et al. in
[10] investigated the frequency of mixture spectra observed in datasets collected
from a high resolution LTQ-Orbitrap mass spectrometer and estimated that
11% of MS/MS spectra are chimeras, with an additional 29% of MS/MS spectra
with parent iosotope distribution inconsistent with peptide analysis. Houel et
al. in [11] also conducted an assessment on the occurrence of chimera spectra in
shotgun proteomics under the Data-Dependent Acquisition(DDA) mode, indi-
cating that the percentage of chimeras may reach as high as 50% of total spectra
collected. The frequently observed mixture spectra in proteomics experiment ne-
cessitate the developing of new computational approaches for interpreting those
non-canonical spectra. In addition, mixture spectra have also been explored by
alternative experimental configurations to circumvent the limitations of current
mass spectrometry data acquisition strategies [12,13,14,15].

There have been several preliminary literatures appeared to address such an
issue by utilizing the mixture spectra to identify more peptides. Zhang et al. in
[16] proposed a method to identify the co-eluting peptides from mixture MS/MS
spectra. The database search engine, ProbIDtree, proceeds in an iterative man-
ner to identify multiple peptides from one spectrum by database search. During
the process, ions assigned to a tentative peptide are subtracted from the spec-
trum, and the remaining spectrum is then used to match with another peptide
sequence. The software then calculated an adjusted probability score to select
the best matched peptides from all the tentative identifications. Wang et al.
in [17] introduced M-SPLIT, an MS/MS spectra library search software and
demonstrated its potential to identiy peptides from mixture spectra by match-
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ing the acquired spectra against a spectral library. This approach is limited in
application because that it can only be used to search against a library com-
prising of the previously observed and confidently interpreted spectra. Recently,
Wang et al. in [18] designed another method, a database search tool, MixDB
to correlate mixture spectra with a pair of peptide sequences filtered from a
protein database by using a specifically designed scoring function. This method
explicitly formulates the occurrence of co-sequenced peptides in the same spec-
trum, and provide a strategy to report the FDR (False Discovery Rate) for the
computational results validation.

Despite of those advances above, the research on characterizing mixture spec-
tra is still far from satisfactory. Methods based on spectral library search will
lose effectiveness when the target peptides have not been observed or identified
before, meanwhile the research of de novo sequencing of mixture spectra iden-
tification is currently in its very primitive phase which suffers the problem of
low accuracy in computation, more research will be necessary before it become
practical for real application. Database search is traditionally recognized as the
mainstream approach for peptide identification with mass spectrometry. How-
ever when considering two precursors in a single spectra, the number of possible
candidate peptide pairs that fall into the required mass error bound is always
enormous [18]. Efficient filtration strategy is highly desired to avoid the huge
computational overload of searching the spectrum against all possible pairs in
the protein database. Researchers lately have showed an increasing interest in
combining the de novo sequencing results with database search to sufficiently in-
terpret MS/MS spectra [7,19]. In those research, the de novo sequencing results
that contain only partially correct sequences are used to reduce the examination
space. In this paper, we will formulate the mixture spectra identification problem
formally, and propose an approach for matching mixture MS/MS spectra with
a pair of peptides from a protein database by incorporating a special filtration
strategy assisted with the preliminary de novo sequencing results. Experimen-
tal results demonstrated that when equipped with such filtration process, the
correct matches can be found by only considering a minuscule fraction of all
possible pairs.

2 Notations and Problem Formulation

Assume that a mixture spectrum M is generated by the co-fragmentation of
peptides P1 and P2, and M can be represented by a peak list M = {(xi, hi)|i =
1, 2, ..., n}. Each element (xi, hi) represents a peak in the spectrum, in which
xi is the m/z value and hi is the intensity of the peak. Meanwhile we use two
molecular weightMW1 and MW2 to denote the precursor mass values of the two
peptides that satisfy ‖MW1 − MW2‖ ≤ Δ, and Δ is a small value predefined
by the width of the mass spectrometer selection window.1 More formally, we
formulated a mixture spectrum M as M = A + αB, where A and B are the

1 In the typical Data-dependent Acquisition (DDA) mode, the selection window in the
fragmentation is usually only a few Daltons wide.
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MS/MS spectra from the co-sequenced peptides P1 and P2 respectively, and
the mixture coefficient α represents the relative abundance of A and B when
sequenced. Without losing generality, we assume that both A and B are scaled
to the same magnitude, and A always corresponds to the peptide with higher
abundance level, therefore we have 0 ≤ α ≤ 1. In addition, we useΣ to denote the
alphabet of 20 different types of amino acids. For an amino acid a ∈ Σ, we use ‖a‖
to symbolize the mass of the amino acid residue. Let P = a1a2...ak be the string
of amino acids, we define the residue mass of the peptide as ‖P‖ = Σ1≤j≤k‖ai‖
and the actual mass of the peptide as ‖P‖+ ‖H2O‖.

Similar to the identification by comparing the single-peptide MS/MS spectra
against all possible peptides from a protein database, our objective is to identify
mixture spectra by comparison against all possible pairs of peptides in a given
protein sequence database. Thus, the Mixture Spectra Database Search
Problem can be formulated as follows: Given a mixture spectrum M, two
precursor mass valuesMW1 andMW2, a predefined error bound δ, and a protein
database D, we want to find a coefficient α and a pair of peptides P1 and P2

fromD that maximize the value under a specific scoring function H(M, A+αB),
such that |‖P1‖+‖H2O‖−MW1| ≤ δ, |‖P2‖+‖H2O‖−MW2| ≤ δ.2 The scoring
function H(M, A+ αB) measures how much the peptide pair (P1, P2) matches
with the mixture spectrumM, and A and B are the theoretical spectra predicted
from their peptide sequence P1 and P2 respectively, and the constant α in the
scoring function indicates the relative abundance of the co-sequenced precursors.

We use the normalized dot product of two real-value vectors to measure the
spectral similarity in this research.When all the spectra are scaled to Norm 1, the
normalized dot product will simply reduce to calculate the cosine value between
two unit vectors. Such measurement scheme considers no special requirements
regarding the real peak intensity values, and the spectral similarity is measured
based on the shape of the two spectra only. More specifically, we define the
following way to convert each spectrum to a real-value vector. Assume that a
spectrum S can be transformed to a real-value vector VS = s1, s2, ...sn, in which
each element si corresponds to the total intensity of peaks falling into the ith

mass bin. The value si is calculated as follows:

si =
∑

(xj,hj)∈S,xj∈[(i−0.5)δ,(i+0.5)δ]

hj (1)

The bin size δ in the equation above is chosen according to the resolution of
the instruments.3 After the conversion, each vector is normalized to unit vector

2 The molecular mass MW1 or MW2 is the neutral mass of the precursor without
extra protons attached. We can obtain this value directly from the m/z and charge
state z reported by the instruments.

3 The bin size in Equation 1, and the error bound in the Problem Formulation
are consistent with each other, both are predetermined by the resolution of the
experimental configurations, therefore we use the same symbol δ to denote them.
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with each element in the vector divided by its Euclidean Norm, thus the scoring
function can be rewritten in the following way:

H(M, A+ αB) =
VM · (VA + αVB)

‖VA + αVB‖
(2)

In the equation above, the vector VM, VA and VB are all unit vectors. The
‖VA + αVB‖ in the denominator indicates the Euclidean Norm(or Euclidean
Distance) of the new vector VA + αVB , which is the linear combination of two
separate unit vectors VA and VB .

3 Main Method

Even though the proposedMixture Spectra Database Search Problem is
formulated in a very simple form, the direct implementation will suffer a major
computational disadvantage when considering multiple precursors in one single
spectrum. The number of the possible candidate peptide pairs that fall into the
required mass error range will be very large. The computational burden for scor-
ing each spectrum against all the possible peptide pairs will make it impractical
for applying to large datasets. Moreover, the quadratic explosion in search space
will also dramatically increase the chances of false-positive identifications. Under
such circumstance, efficient filtration strategy is highly necessary for reducing
the search space before scoring and ranking all the candidate peptide pairs.

3.1 Filtration of Database Peptides

In our most recent research, we formulated the problem of peptide de novo se-
quencing from mixture MS/MS spectra mathematically, and proposed a dynamic
algorithm to report candidate pairs for each of the query spectrum [20,21]. The
algorithm has the ability to provide partially correct, yet useful peptide pairs
for a given mixture spectrum. We will be utilizing these incomplete results to
screen the peptide pairs acquired from the protein database.

Assume that for some mixture spectrumM, the de novo algorithm will output
the top-ranked peptide pairs in the following list:

Lm = {(A1, B1), (A2, B2), ..., (Am, Bm)}

in which, the subscript m indicates the number of reported pairs, and it can be
adjusted if required. Each element (Ai, Bi) in the list contains two individual
peptides generated for the two different precursors in the query mixture spectrum
respectively.

For each of the molecular mass values MW1 and MW2, we filtered the whole
protein database to find all the theoretically digested peptide sequences that
satisfy the required mass tolerance. We use the following list to include all the
tentative peptide sequences after filtered by precursor mass value MW1:

L1
n = (R1, R2, ..., Rn)
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in which, each element Ri satisfy the requirement of mass tolerance δ such that
|‖Ri‖ + ‖H2O‖ − MW1| ≤ δ, and n is the number of the filtered sequences.
Similarly we put all the possible peptide sequences for the second molecular
mass value MW2 in the following list:

L2
k = (Q1, Q2, ..., Qk)

where for each element Qj, the inequality |‖Qj‖+‖H2O‖−MW2| ≤ δ also holds.
Assuming that we intend to filter the peptide sequence list L1

n: Firstly, for each
element Ri, we compare it with all of its counterpart sequences in list Lm, that
is to compare Ri with each Aj in the de novo candidate pairs. In the comparison
of two sequences Ri and Aj , we use a special alignment algorithm which takes

linear time to count the number of common amino acids N
(i,j)
c between them. An

example to illustrate the comparison is shown in Fig. 1. Secondly, we calculate an

Fig. 1. Comparing a de novo sequence with a database peptide. The alignment ensures
that the mass of the aligned block(letters wrapped by brackets) is equal for both
sequences. Although in this example the masses of [WP] and [GLI] are slightly different,
we allow a tiny error tolerance δ exist, therefore we treat them as equal in comparison.
The number of common amino acids here is Nc = 6.

initial score for each Ri according to a Triplet T i = (limax, l
i
sum,mi

num) obtained
during the comparison in the previous step. In the Triplet, the notation limax

represents the largest N
(i,j)
c obtained when comparing the target peptide Ri

with some sequence Aj from the de novo list Lm. And the notation lsum is

calculated as: lisum =
∑

1≤j≤n,N
(i,j)
c ≥3

N
(i,j)
c which represents the summation

over all the N
(i,j)
c larger than or equal to 3. And the notation mi

num denotes

how many sequences in the de novo list Lm has common amino acids N
(i,j)
c ≥ 3

when aligning to the current peptide Ri. The filtration scoring function we chosen
in the research is as follows:4

Sini(R
i) = log (lisum) ∗ limax (3)

Thirdly, we rank all the peptides in Ri based on the filtration score. The score
calculated for each peptide indicates its likelihood of being a correct precursor, at

4 The filtration scoring function Sini is chosen empirically and can be adjusted. Each of
the three values contained in the Triplet indicates on some level how much the related
peptide should be considered(or correct). Different scoring functions are evaluated
based on the Triplet, however we have observed similar performance in search space
reduction after the filtration procedure. Another acceptable scoring function we have

evaluated is Sini(R
i) = log (

lisum
mi

num
) ∗ limax.
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least on some level. Similar operations can be carried out for the peptide list L2
k.

After scoring and ranking both L1
n and L2

k, we will select a portion of peptides
from each list to form the candidate pairs which will subsequently be matched
with the query mixture spectrum. The algorithm for this part is described in
Algorithm 1.

Algorithm 1. Filtration: Scoring and Ranking Database Peptides

INPUT: Given mixture spectrum M, the list of de novo sequence pairs: Lm =
{(A1, B1), (A2, B2), ..., (Am, Bm)}, the database peptide list L1

n = (R1, R2, ..., Rn) for
MW1, and the database peptide list L2

k = (Q1, Q2, ..., Qk) for MW2.
OUTPUT: Both lists L1

n and L2
k sorted according to the scoring function Sini

1: Inializing Triplet array T 1[1, ..., n] and T 2[1, ..., k].
2: Inializing the Initial Score array S1

ini[1, ..., n] and S2
ini[1, ..., k].

3: for i from 1 to n do
4: for j from 1 to m do
5: Calculate N

(i,j)
c between database peptide Ri and de novo sequence Aj

6: if N
(i,j)
c ≥ limax then

7: limax = N
(i,j)
c

8: if N
(i,j)
c ≥ 3 then

9: mi
num = mi

num + 1
10: lisum = lisum +N

(i,j)
c

11: Calculate the initial score S1
ini[i] for Ri based on Equation 3

12: Similar operations(line 3 to line 11)are carried out for L2
k to obtain T 2 and S2

ini.
13: Sort both lists L1

n and L2
k in decreasing order according to the filtration score.

In line 5 of Algorithm 1, given the fact that both peptide Ri and sequence
Aj have very limited length, the time complexity for finding the common amino
acids between them can be regarded as a constant. Without losing generosity,
assume n > k, thus the overall complexity for Algorithm 1 is O(mn+n logn). m
in the complexity denotes the number of candidate pairs reported by the de novo
procedure, it is adjustable according to real requirements of balancing results
accuracy and computational speed. In line 8 of Algorithm 1, we only count the
case that the number of common amino acids are larger than 3. because larger
number indicates more confidently that those common letters are true matching
evidence rather than random hits between the aligned sequences.

After the database peptides are sorted, we calculate the ratio between the
first-ranked and second-ranked sequences in each database peptide lists. We use
ratio r = R1st

R2ed
to determine how many peptides in each list should go through

further examination. A relatively larger value of r strongly suggests that the top-
ranked peptide has a great chance of being one of the co-fragmented precursors.
If r− 1 ≥ β in which β is a threshold value satisfies β ≥ 0, we only have to take
out the very few top-ranked peptides. The threshold we use in this research is
β = 0.3, in case that r− 1 ≥ β we only select the top �logn� peptides out of the
list, otherwise if r− 1 < β we will take out all the peptides in the list which has
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mi
num > 0.5 Peptides with mi

num > 0 means that there is at least one de novo
sequence that has 3 or more common amino acids with the current database
peptide. Thus in case that we can’t rely on the ratio r to reduce the list, we will
consider all the peptides with such de novo matching evidence. This also helps
to cut down the number of peptides to be considered in the next step. After
that, we will pair up the peptides selected from different lists to form peptide
pairs and score each peptide pair against the query mixture spectrum based on
Equation 2 to report the best matched pair.

3.2 Estimation of Mixture Coefficient

In the query mixture spectrumM = A+αB, we assume that α is unknown before
the identification. It is necessary to give a reasonable estimation of coefficient α
prior to scoring the query mixture spectrum against the target candidate pair,
because a biased mixture coefficient will compromise the accuracy of calculating
the normalized dot product betweenM and the correct peptides. We use a similar
method as [17] to estimate the mixture coefficient. Assume that α′ denotes the
estimated value of the mixture coefficient, we obtain the optimal value of α′ such
that the cosine similarity between VM and VA + α′VB is maximized. Because
vectors VM, VA and VB are all normalized to unit vectors, then V 2

M = V 2
A =

V 2
B = 1. We rewrote the mixture spectra scoring function in Formula 2 as the

following function with respect variable α:

f(α) =
VM · (VA + αVB)√
1 + 2αVA · VB + α2

in which f(α) = cosΘ, and Θ is the angle between the vectors VM and VA+αVB .
The function f(α) will have a maximum value at some value α′. In order

to achieve this, the first derivative of f(α) with respect to α will be zero at
this specific α′, meanwhile the second derivative of f(α) at the corresponding
α′ is negative. To simplify the following derivations, we denote VM · VA = x,
VM · VB = y and VA · VB = z. The first derivative of function f(α) is calculated
as:

f ′(α) =
y
√
1 + 2αz + α2 − (x+ αy)(α + z)(1 + 2αz + α2)−

1
2

1 + 2αz + α2

In which, the denominator will always be greater than zero, therefore to make
f ′(α) = 0 is equivalent to let the numerator be zero, then we will have:

y
√
1 + 2α′z + α′2 − (x+ α′y)(α′ + z)(1 + 2α′z + α′2)−

1
2 = 0

y(1 + 2α′z + α′2)− (x+ α′y)(α′ + z) = 0

y + 2α′yz + α′2y − α′x− xz − α′2y − α′yz = 0

y − xz + α′yz − α′x = 0

5 The threshold β is also an empirical value in the research. Base on our preliminary
experiment on a dataset of limited size, we found that β = 0.3 is a threshold value
large enough to distinguish the first-ranked peptide from all other followers.
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From the induction above, we will obtain the following formula to calculate the
estimation of mixture coefficient:

α′ =
y − xz

x− yz
=

VM · VB − (VM · VA)(VA · VB)

VM · VA − (VM · VB)(VA · VB)
(4)

Furthermore, to make sure that at this specific point α′ the original function
f(α) obtains the maximum value, we also need to guarantee that the second
derivative of f(α) is negative at α′. We know that f(α) = cosΘ will always
be positive, thus Θ ∈ (0, π2 ), the second derivative of this function is − cosΘ.
In the domain Θ ∈ (0, π

2 ), it will ways be negative value for − cosΘ. Thus, we
can conclude that the value α′ calculated by Equation 4 will make the original
function f(α) achieve the maximum value.

3.3 Algorithm for Scoring Peptide Pairs

Given an query mixture spectrum M, our proposed method will firstly con-
duct a preliminary de novo procedure to report a list of sequence pairs, and
then those de novo results possessing only limited accuracy will be used to fil-
trate the database peptides acquired from a protein sequence database. After
filtration of the database peptides, it is expected that the number of potential
peptide sequences that require a more rigorous examination will be reduced. For
each peptide sequence in the shortened lists, we use a similar method as [6] to
predict its corresponding theoretical spectrum. All the fragment types consid-
ered in the theoretical spectrum are denoted in Π = {y, b, a, c, x, z, y∗, yo, b∗, bo}.
The theoretical spectrum is furthermore converted to a spectrum vector using

Algorithm 2. Scoring Peptide Pairs against Query Mixture Spectrum

INPUT: The query mixture spectrum M and shortened database peptide lists af-
ter filtration: L1

x = (R1, R2, ..., Rx) for precursor molecular value MW1, and Li
y =

(Q1, Q2, ..., Qy) for precursor molecular value MW2.
OUTPUT: The best matched peptide pair (Ri, Qj) and its matching score.

1: Initializing an variable Scoremax = 0, and two indices xmax and ymax

2: Convert M to vector and normalize to unit vector VM.
3: for i from 1 to x do
4: Predict theoretical spectrum SRi from sequence Ri

5: Convert SRi and normalize to unit vector VRi

6: for j from 1 to y do
7: Predict theoretical Spectrum SQj from sequence Qj

8: Convert SQj and normalize to unit vectors VQj

9: Estimate coefficient α′ based on Equation 4

10: Calculate the cosine value using cos =
VM·(VRi

+α′VQj
)

‖VRi
+α′VQj

‖
11: if cos > Scoremax then
12: Scoremax = cos
13: xmax = i and ymax = j

14: Output peptide pair (Rxmax , Qymax) with its matching score Scoremax
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Equation 1 and subsequently normalized to a unit vector. Sequences from two
individual lists are paired up to constitute the tentative peptide pairs. Then for
each of the tentative peptide pairs, we will score it against the query mixture
spectrum based on the scoring function in Equation 2, and the best matched
pair will be outputted in the final step. The following Algorithm 2 describes the
general outline of seeking the best matched pair among all the tentative pairs:

The time consumed in Line 2, 5, 8 for converting a vector to its corresponding
unit vector depends on the number of bins considered in the spectra conversion,
therefore the complexity is O(MW

δ ). The overhead in Line 10 for calculating
the normalized dot product between VM and the linear combined vector VRi +
α′VQj also relies on the number of bins(or dimensions) in the vector, thus the
complexity for this part is the same as above. Meanwhile, we have nested loops
iterative with i and j, therefore the integrated complexity for Algorithm 2 is
O(x × y × MW

δ ), in which x and y are denoted in Algorithm 2 representing the
size of the shortened database peptide lists respectively.

4 Experimental Result and Discussion

To verify the efficiency of the proposed method, we use the published software
package MSPLIT [17] on a tryptic yeast databaset released on PRIDE [22] repos-
itory to obtain some real mixture spectra. The MSPLIT software is run in the
target/decoy strategy on the yeast dataset collected from an Ion Trap mass spec-
trometer. In our experiment, we further fitered those reported mixture spectra
according to our current requirements. We only select those spectra in which
both precursor peptides in the mixture spectra have charge 2, and contain no
Post-translational Modifications. Furthermore, we use the renowned database
search software PEAKS DB [7] to re-confirm those mixture spectra reported
by MSPLIT. Each individual peptide is searched against the protein database
with the other peptide sequence removed from the database to eliminate the po-
tential interference between two peptides. Only those mixture spectra in which
both peptides can be confirmed by PEAKS DB are kept. In total, we obtained
7 distinct mixture spectra. We implemented a software prototype based on our
proposed method and searched those mixture spectra against a yeast protein se-
quence database. The theoretically enzymatic peptides acquired from the protein
sequence database contain both fully-tryptic and semi-tryptic peptide sequences,
and also contain the peptide sequences with one missing cleavage. The mass er-
ror tolerance considered throughout the experiment is ±0.1Da. Our software
can successfully identify all the 14 different peptides contained in those mixture
spectra above. The experimental results are listed in Table 1.

From Table 1, we can clearly see that the proposed filtration strategy can
effectively reduced the number of candidate peptide pairs to be examined. For
most of the entries, the reduction ratio f is less than 1‰. Even with the worst
case in entry 4, the proposed method can still exclude more than two thirds of
the sequence pairs acquired from the protein sequence database after filtration.
Another point worth noticing is that in the real mixture spectra, we don’t know
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Table 1. Preliminary experiment results on a dataset containing 7 mixture spectra.
The columns Nb and Na represent the number of database peptides before and after
the filtration procedure for each mass value respectively. The column f shows the ratio
between the number of candidate sequence pairs after filtration and the number of all
possible peptide pairs acquired directly from the protein database. The column α′ is the
estimated mixture coefficient. The column cosΘ is the score(normalized dot product)
calculated based on Equation 2.

m/z Peptides Nb Na f α′ cosΘ

553.321
553.7795

GLILVGGYGTR
GPPGVFEFEK

1853
1924

7
297

0.5831‰ 0.827 0.327

419.724
420.2585

ASIASSFR
IAGLNPVR

1823
1319

7
7

0.0204‰ 1.101 0.444

506.78
507.2820

FHLGNLGVR
KFPVFYGR

1709
1837

7
7

0.0156‰ 0.917 0.365

600.2756
600.340

GYSTGYTGHTR
DAGTIAGLNVLR

976
1476

6
7

0.0292‰ 1.149 0.321

462.706
463.3077

DNEIDYR
IVAALPTIK

1239
743

474
519

267.23‰ 1.347 0.343

521.253
521.7932

YSDFEKPR
GAIAAAHYIR

1434
1880

7
7

0.0182‰ 0.996 0.302

675.364
675.8437

GKPFFQELDIR
ANLGFFQSVDPR

1560
1592

360
7

1.0147‰ 1.847 0.388

which precursor have the higher abundance, thus in estimated value for α′ can be
either larger than 1 or smaller than 1. The correctness of the identification results
demonstrated the effectiveness of the proposed method for matching a mixture
spectrum with a pair of database peptides by incorporating a preliminary de
novo filtration. In our future work, we will evaluate the performance of our
proposed method on datasets of different size and different acquisition methods,
also we will develop a method for the validation of the identification results.
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Abstract. Sequence alignments have been studied for decades under
the simplified model of a consensus sequence representing a chromo-
some. A natural question is if there is some more accurate notion of
alignment for diploid (and in general, polyploid) organisms. We have de-
veloped such a notion in our recent work, but unfortunately the compu-
tational complexity remains open for such a diploid pair-wise alignment;
only a trivial exponential algorithm is known that goes over all possible
diploid alignments. In this paper, we shed some light on the complexity
of diploid alignments by showing that a haplotyping version, involving
three diploid inputs, is polynomial time solvable.

1 Introduction and Related Work

There are myriads of variants of pair-wise sequence alignments trying to capture
various biological sequence features, such as mutation biases, repeats (DNA),
splicing (RNA), alternative codons (protein) [4,5], but the fundamental feature
of a genome of a higher organism being diploid or even polyploid has remained
largely unexplored in alignment literature. The closest come some fairly recent
approaches in progressive multiple alignment that model a multiple alignment
profile as a labeled directed acyclic graph (labeled DAG) [7,8]. These works de-
fine the alignment of two such labeled DAGs A and B as the problem of finding
a path PA through A and a path PB through B such that the optimal align-
ment score of PA and PB is maximized. Since a pair-wise alignment models
a diploid chromosome pair accurately, giving the synchronization of their hap-
loid sequences, the labeled DAG alignment could be applied to model diploid
alignment. However, the caveat is that this approach takes only partial infor-
mation into account from the diploids, not their full content. It was shown in
[9] how to modify the approach into a covering version that takes full content
of diploids into account. Unfortunately, the computational complexity of this
accurate model of diploid alignment remains open.

In this paper, we shed some light on the complexity of diploid alignment by
showing that a haplotyping version, involving three diploid inputs, is polyno-
mial time solvable. In addition to the theoretical interest, the haplotyping ver-
sion may also be of practical value as a complementary technique to haplotype
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assembly. We give some proof-of-concept simulation results that show excellent
performance on realistic input scenarios on an implementation of the approach.

In what follows, we fix our mindset on the haplotyping problem to fix the ter-
minology and to motivate our study also from the practical point of view. Then
we formalize the notion of diploid alignments and show how this formalization
can be extended to modeling the haplotyping problem.

1.1 Genotyping and Haplotyping

In diploid organism a pair of haplotype DNA sequences forms a chromosome pair,
where one haplotype is inherited from the mother and one from the father. Each
inherited haplotype sequence is a mixture (recombination) of the two haplotype
sequences forming the corresponding diploid chromosome pair in the parent.

Genotyping consists in the discovery of variants in specific positions in the
genome of an individual with respect to a consensus genome of the species.
After genotyping of child, mother, and father, one can reason which variants
came from the mother, which came from the father, and which are new. The
inherited variants are called germ-line variants and the new de novo variants. A
homozygous variant is inherited from both mother and father, and a heterozygous
variant is inherited only from one of them.

Haplotyping consists in the assignment of heterozygous variants to the correct
phase, that is, to a haplotype inherited from the mother or to a haplotype inher-
ited from the father. The importance of this process is not just in revealing the
inheritance pattern, but also in understanding the function of each haplotype;
after all, genes and other functional units are residing in haplotypes, and the
function always depends on the exact sequence content. Genotype information
is just enough to argue about the effect of a single mutation, while haplotype
information gives the full power of reasoning about the combined effect of a set
of mutations.

The state of the art is that genotyping is nowadays a rather routinely con-
ducted process, when studying e.g. human individuals in the hunt of disease
causing mutations. It can be conducted by high-throughput sequencing of indi-
vidual DNA, aligning the sequencing reads to the consensus genome, and analyz-
ing the read alignments for variants supported by many reads. Single-nucleotide
polymorphisms (SNPs) affecting a single genome position can be revealed with
high accuracy, but larger indels and structural variants are much more hard to
identify [11].

Given a set of predicted heterozygous variants, haplotyping is still a chal-
lenging task, and it is often solved using statistical methods [1,10,2]. Recent
advances in pseudo-polynomial algorithms for haplotype assembly are however
making large-scale haplotyping feasible [12]. In haplotype assembly the j-th read
is reduced to a sequence Rj from alphabet {∗, 0, 1} with Rj [i] = ∗ denoting that
the read does not overlap i-th heterozygous variant, with Rj[i] = 0 denoting
that the read overlaps the i-th heterozygous variant but does not support it,
and with Rj[i] = 1 denoting that the read overlaps the i-th heterozygous variant
and supports it. The task is to assign each read to one of the haplotypes such
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that minimal flipping of bits inside reads is required to make them uniform with
their chosen consensus haplotype pattern. The approach works if the read length
is long enough to contain many variants.

The reads can be separated into small independent blocks (i.e. such that
there are no shared variants among different blocks) and then solve the problem
for each block independently. Some blocks have been identified as particularly
difficult to phase [3].

There are also more tailored approaches to haplotyping that combine compu-
tational methods with problem-targeted sequencing technology [13].

In this paper, we propose a haplotyping algorithm that works directly at
the DNA sequence level, thus differing from previous approaches. Our method
is independent of the sequencing technology. We do not require any specific
information about reads, so the variants might have been obtained using different
methods.

The purpose of our algorithm is to haplotype complex genome regions, that
may contain long and possibly overlapping variants that are difficult to capture
by the haplotype assembly framework. We assume that one has identified com-
plex regions of the child genome and predicted variants from those regions as
well as from the same regions in the mother and father genomes. Such data can
be produced e.g. by targeted high-coverage sequencing followed by variant pre-
diction. Our haplotyping algorithm takes O(n3) time, where n is the length of
the genome region in question. This approach fits a haplotyping project, where a
computationally light approach can be applied on easy-to-haplotype regions, and
a more computational heavy approach can be applied on the identified complex
regions.

1.2 Alignment of Diploid Individuals

Recently, new alignment models that are designed for diploid organisms, incor-
porating the possibility of recombination, were introduced [9]. In this section we
briefly present these models and some basic definitions.

A pair-wise alignment (or simply an alignment, when it is clear from the
context) of sequences A and B is a pair of sequences (SA, SB) such that SA

is a supersequence of A, SB is a supersequence of B, |SA| = |SB| = n is the
length of the alignment, and all positions which are not part of the subsequence
A (respectively B) in SA (respectively SB), contain the gap symbol ′−′, which
is not present in the original sequences.

Given a similarity function s(a, b) that assets the similarity between two char-
acters, the similarity of a pair-wise alignment is simply defined as

S(SA, SB) =
n∑

i=1

s(SA[i], SB[i]).

The similarity of two sequences is then defined as

S(A,B) = max{
n∑

1=1

s(SA[i], SB[i]) : (SA, SB) is an alignment of A and B}.
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An alignment that achieves that value is called an optimal alignment.
We say that (SA

′
, SB

′
) is a recombination of an alignment (SA, SB) if both

alignments have the same length n and there exists a binary string P (for phase)
such that SA

′
[i] = SA[i] and SB

′
[i] = SB[i] if P [i] = 0, and SA

′
[i] = SB[i] and

SB
′
[i] = SA[i] if P [i] = 1. We say that the characters are swapped in the positions

in which P [i] = 1.
We denote this recombination relation by (SA

′
, SB

′
)�(SA, SB).

Diploid to Diploid Similarity[9]1: Given two pair-wise alignments (SA, SB)
and (SX , SY ) the diploid to diploid similarity is the sum of the optimal simi-
larity scores by components, given by the best possible recombination of both
individuals. More formally:

Sd−d((A,B), (X,Y )) = max{S(A′, X ′) + S(B′, Y ′) :

(SA
′
, SB

′
)�(SA, SB) ∧ (SX

′
, SY

′
)�(SX , SY ))}

Neither algorithms nor complexity bounds were provided for the similarity
above. However, a simpler version where one of the individuals is considered as
a diploid and the other as a pair of haploids was developed:

Pair of Haploids to Diploid Similarity[9]: Given a pair-wise alignment
(SA, SB) and two sequences X and Y , the pair of haploids to diploid distance is
defined as the sum of the optimal similarity scores by components, given by the
best possible recombination of the diploid individual. More formally:

Sd−hh((A,B), (X,Y )) = max{S(A′, X) + S(B′, Y ) :

(SA
′
, SB

′
)�(SA, SB)}

The best algorithm for this similarity measure runs in O(n3) time and requires
O(n2) memory. A modified version of the above was also presented, which can
be computed in O(nk) time and O(n) memory, where k is the resulting edit
distance (considering the analogous problem with min instead of max and costs
instead of scores).

2 Haplotype Sequences via Alignment

The measures covered in the previous section intent to measure the similarity be-
tween individuals in which heterozygous and homozygous variations are known,
but there is no knowledge about the correct phasing of the variations.

As such, they are not useful for haplotype phasing, as the evolutionary recom-
bination pattern is unique to the individual. To take the evolutionary context
into account, we need to extend the measures to mother-father-child trios, as it
is considered next.

1 The original paper considers the distance measure instead of the similarity, but these
are computationally equivalent.
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2.1 The Similarity Model

Let us consider three pair-wise alignments, (SM1 , SM2),(SF1 , SF2) and (SC1 , SC2)
of length LM , LF and LC respectively. Those represent the diploid sequences of
the mother, father and child, and we call the three of them a mother-father-child
(m-f-c) trio.

We define the haplotyping similarity of an m-f-c trio, H(m-f-c), as the maxi-
mum pair-wise similarity between one of the sequences of the mother and one of
the sequences of the child, plus the pair-wise similarity between the other child
sequence and one of the father sequences, assuming that none of the diploids is
phased correctly. This means that we need to allow free recombination in each
pair-wise alignment, to let the model discover the real phase. More formally:

H(m-f-c) = max{S(M ′
1, C

′
1) + S(F ′

1, C
′
2) : (S

M ′
1 , SM

′
2)�(SM1 , SM2)

∧ (SF
′
1 , SF

′
2)�(SF1 , SF2) ∧ (SC

′
1 , SC

′
2)�(SC1 , SC2)}

Figure 1 shows an optimal alignment of a m-f-c trio.

a g c c a c a

- g c t a c a

a g - - g c a c a

a g a g g c a t a

a g - - c t a c a

a g a g g c a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

- g c c a c a

a g c t a c a

a g a - g c a c a

a g - g g c a t a

a g - g g c a c a

a g a - c t a t a

M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

Fig. 1. On the left we show how the pair-wise alignments would be if we knew
the correct phasing of the three individuals. On the right, the same individuals are
presented, but the haplotype phasing is not known a priori. We assume a similarity
function that scores 1 for equal characters, and −1 for indels and mismatches. The
colored recombinations show the sequences M ′

1 (hatched blue), F ′
1 (green) from the

recombination that gives the optimal alignment. The haplotyping similarity of the
trio is S(AGCTACA, AGCTACA) + S(AGAGGCATA, AGAGGCATA) = 7 + 9 = 16. The binary
strings associated to the recombinations are PM = 1001110, PF = 110100011 and
PC = 000111000. Note that the latter corresponds to the predicted phase for the
child genome. It is also important to note that none of the binary strings are signaling
evolutionary recombinations, but they are signaling phasing errors in the input data.

Notice that this similarity measure is an extension of the diploid to pair of
haploids similarity, but it is easier than the diploid to diploid similarity measure.
The feasibility of the solution comes from the fact that only the child genome
needs to be covered by the alignment: Sequences induced by SC

′
1 and SC

′
2 are both

aligned in the H(m-f-c) definition, whereas only sequences induced by SM
′
1 and

SF
′
1 are aligned from the recombined father and mother sequences, respectively.

The difficulty of the diploid to diploid measure lies in the requirement of covering
both recombined inputs, which appears difficult to capture at least by dynamic
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programming. For the m-f-c trio case, we can luckily extend the cubic solution
of the diploid to pair of haploids similarity.

2.2 Dynamic Programming Algorithm

In this section we present our algorithm to compute the m-f-c similarity. We
propose a dynamic programming formulation that computes values Hi,j,k,m,f,c

with i ∈ {1, LM}, j ∈ {1, LF}, k ∈ {1, LC}, m ∈ {1, 2}, f ∈ {1, 2} and
c ∈ {1, 2}. The value stored in Hi,j,k,m,f,c stands for the similarity score between
(SM1 [1, i], SM2 [1, i]), (SF1 [1, j], SF2 [1, j]), and (SC1 [1, k], SC2 [1, k]), with the ad-
ditional constrain that the last character of the mother alignment is swapped if
and only if m = 1, the last character of the father alignment is swapped if and
only if f = 1 and the last character of the child alignment is swapped if and only
if c = 1.

We first consider the particular case when the input alignments contain no
gaps. That is, SC1 = C1, SC2 = C2, S

F1 = F1, etc. It is possible to compute
those values recursively as follows:

Hi,j,k,m,f,c = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hi−1,j,k,∗,f,c + s(′−′,Mm[i]) if i > 1
Hi−1,j,k−1,∗,f,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k],

′ −′) if i, k > 1
Hi,j−1,k,m,∗,c + s(′−′, Ff [j]) if j > 1
Hi,j−1,k−1,m,∗,∗ + s(Cc[k],

′ −′) + s(Cc⊕1[k], Ff [j]) if j, k > 1
Hi−1,j−1,k−1,∗,∗,∗ + s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j]) if i, j, k > 1

The recurrence uses several short-hand notations as follows. With Hi,j,k,∗,∗,∗
we mean max{m,f,c}∈{1,2}3{Hi,j,k,m,f,c} in order to consider all the 8 valid sub-
problems where the previous last characters could have been swapped or not
(and analogously when only one or two ∗ symbols are present). With c ⊕ 1 we
mean 2 if c = 1 and 1 otherwise.

The first and third cases correspond to the scenarios where the last character
of the mother (respectively, of the father) is not aligned with any character
of the child, and therefore a gap symbol is inserted. The second and fourth
cases corresponds to the scenarios where one of the last characters of the child
is aligned with one of the last characters of the mother (respectively, of the
father), and the other character of the child is not aligned, therefore, a gap is
inserted. The fifth case is the scenario where the last character of one of the child
sequences is aligned with one of the last sequences of the mother, and the last
character of the other child sequence is aligned with the last character of one of
the sequences of the father.

The correctness of the algorithm can be seen as a generalization of the classic
dynamic programming algorithm: Firstly, all the possibilities of alignment among
the last characters of the input sequences are considered. For each of those case,
it remains the subproblem of the m-f-c alignment where the characters that had
just been aligned (with another character or with a gap) are removed. For the
alignment to be optimal, it is required that the subproblem is solved optimally
too, and therefore, the recursion holds true.
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M1 :

M2 :

F1 :

F2 :

C1 :

C2 :

i

k

j j + 1

Hi,j+1,k,1,2,2 = max{Hi,j,k,1,∗,2} = Hi,j,1,k,1,2,2

Hi,j,k,1,2,2 = max{Hi−1,j−1,k−1,∗,∗,∗}+ s(c, c) + s(g, g)

Fig. 2. Example showing two steps of the dynamic programming algorithm. First for
the computation of Hi,j+1,k,1,2,2 we highlight the characters that need to be considered.
As the j + 1 character of the father sequence that is being considered is a gap, the
recursion returns the previous value of j, keeping all the parameters constant, except
for the sequence of the father that can be considered (line 10 of Algorithm 1.) For
the computation of Hi,j,k,1,2,2 the previous values indicated by lines 6,7,11,12, and 14
needs to be considered. Those correspond to all possible combinations of alignments
between the highlighted characters (allowing some of them to be ignored, but not all
of them).

Notice that we are allowing free recombinations when a path change its value
in either m,f , or c indexes. It is straightforward to include a penalty in those
changes of indexes, as it was proposed in [9], however, we decided to stay free of
such penalties for reasons that are discussed in Section 3.

It remains to consider the scenarios where the input sequences do have gaps.
Observe that the gaps in the input alignments need to be ignored without any
cost in order to model the similarity measure correctly; the gaps in the input
sequences are just required for keeping the positions of the two haplotypes of the
diploid synchronized so that recombination can be modeled. Algorithm 1 shows
our pseudo-code to handle this: If for a given configuration the last character of
the mother is a gap, we can immediately resort to the value computed for the
position i − 1. This just ignores that gap character. The case for the father is
handled analogously.When the gap character comes in one of the child sequences,
it is handled implicitly by the recursion, given that s(′−′,′ −′) = 0 allows the
gap character from the child to be ignored through the second and fourth cases
of the recurrence. Figure 2 simulates one step of the computation.

The straightforward implementation as in Algorithm 1 would require O(n3)
time and memory, as we need to retrieve the phasing. We implemented the check-
point method [14], a flexible variant of Hirschberg’s algorithm [6] that allows our
algorithm to run in O(n3) time and O(n2) memory. Still, in order to obtain a
scalable method, it is possible to apply some heuristics [9].
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2.3 Haplotype Phasing

Once all the values Hi,j,k,m,f,c are computed, it is enough to trace back the path
that originated the optimal score to obtain the optimal alignment. We notice
that if we collect the three last indexes m, f and c from the path we will obtain
the recombination binary strings for the mother, father, and child. In particular,
the latter gives us the phasing of the child diploid that maximizes the similarity
of the m-f-c trio. In the example of Figure 1 the binary strings are PM , PF and
PC ; the last one being the phasing of the child diploid.

Algorithm 1. Haplotyping similarity of an m-f-c trio. The algorithm corre-
sponds to the dynamic programming implementation of the recurrence presented
in Section 2.2, modified to handle the gaps in the input sequences properly.

1: function HaploidSimilarity(M1,M2, F1, F2, C1, C2)
2:
3: H[0, 0, 0, ∗, ∗, ∗] ← 0
4: SetGlobal(H,M1,M2,F1,F2,C1,C2)
5: for i ← 0 to LM do
6: for j ← 0 to LM do
7: for k ← 0 to LM do
8: for m ← 1 to 2 do
9: for f ← 1 to 2 do

10: for c ← 1 to 2 do
11: H[i, j, k,m, f, c] ← HValue(i,k,k,m,f,c)

12: return maxH[Lm, Lf , Lc, ∗, ∗, ∗]

1: function HValue(i, j, k,m, f, c)
2: value ← − inf
3: if i > 0 then
4: if Mm[i] =′ −′ then
5: return max{H[i − 1, j, k, ∗, f, c]}
6: value ← max{value, H[i − 1, j, k, ∗, f, c] + s(′−′,Mm[i])}
7: value ← max{value, H[i − 1, j, k − 1, ∗, f, ∗] + s(Cc[k],Mm[i]) + s(Cc⊕1[k],

′ −′)}
8: if j > 1 then
9: if Ff [i] =

′ −′ then
10: return max{H[i, j − 1, k,m, ∗, c]}
11: value ← max{value, H[i, j − 1, k,m, ∗, c] + s(′−′, Ff [j])}
12: value ← max{value, H[i, j − 1, k − 1, m, ∗, c] + s(Cc[k],

′ −′) + s(Cc⊕1[k], Ff [j])}
13: if j > 1 & > 1 then
14: value ← max{value, H[i− 1, j − 1, k − 1,m, ∗, c] + s(Cc[k],Mm[i]) + s(Cc⊕1[k], Ff [j])}
15: return value

3 From Variants to Unphased Diploid Genome

Our phasing algorithm assumes the inputs as pair-wise alignments representing
unphased diploid genomes. These can be constructed as follows. After sequencing
the target region (or whole genome) on each individual involved, one can align
the reads and analyse the variants [11]. All the predicted homozygous variants
on an individual can be applied to the consensus genome to produce a base S of
a pair-wise alignment; with applying we mean that the content of consensus is
replaced by the variants. Then the heterozygous variants can be greedily applied
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to S from left to right such that if a variant overlaps a previously applied variant,
it is not applied. This forms the non-gapped content T of the top row of a pair-
wise alignment. The remaining set of heterozygous variants are applied to S to
produce the non-gapped content B of the bottom row of a pair-wise alignment.
Finally, enough gaps are added such that T and B are synchronized according to
their origin in S. This process produces an unphased representation of a diploid
genome. It is important to notice that our algorithm is invariant to the phasing of
the input variants: In Figure 1 it is shown two different inputs that correspond
to the same variants; in the left the input is already correctly phased for the
trio, and in the right the variants are incorrectly phased, and the result in both
scenarios is the same. This is possible because we allow free recombination in
each of the diploids, thus giving an equal opportunity for each variant to be
phased either way.

We shall consider in Sect. 5 the case when the overlap depth is higher, so that
some variants are left after constructing B.

4 Experimental Results

We implemented our method fully in C ++, and the source code is freely avail-
able2. We ran our experiments in a computer node with 2 Intel Xeon E5540
2.53GHz processors, 32GB of RAM. The operating system was Ubuntu 12.04.4.
Our code was compiled with gcc 4.6.4, optimization option −O3.

To study the difficult areas to phase we simulated our father-mother-child
trios directly without adding the variant analysis step of Sect. 3. In this way
we could control the amount the mutation ratio, the type of variations, and the
measurement/predictions errors that are present in the input data.

To simulate the mother sequences, we started from two identical copies of a
sample from human chromosome 21. We inserted different types of variations,
and then we simulated a recombination of that pair-wise alignment to obtain the
child chromosome that is inherited from the mother. For the recombination pro-
cess we choose recombination points at random. We did analogously to simulate
the father, and the chromosome that the child inherits from the father.

The variations planted on the parents were as follow: point mutations con-
sisted of SNPs and single nucleotide deletions. Then we introduced long indels
(larger than 50 base pairs). In the case of insertions, those consisted of random
base pairs. We also inserted short tandem repeats [15] consisting of insertions of
length between 20 and 60 repeating a sequence between 2 and 6 base pairs. Af-
ter the recombination has been simulated to generate the child sequences, we
introduced de novo point mutations. (We also considered short indels but as the
results turned out to be analogous to long indels, we omitted them from the
results reported here for the lack of space.)

In addition to all the previous parameters, we also introduced random er-
rors over all the sequences at the end, to take into account errors during the

2 http://www.cs.helsinki.fi/u/dvalenzu/code/haplotyping/

http://www.cs.helsinki.fi/u/dvalenzu/code/haplotyping/
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Fig. 3. We show the percentage of incorrectly phased positions versus the mutation
ratio. For every graphic we include three levels of random noise. The two first plots
(above) show the behavior against long indels and short tandem repeats. The third
plot (below left) shows the behavior against point mutations in the parents and the
fourth plot (below right) shows de novo variants.

sequencing of the sequences and during variant calling to discover the genotype
patterns that constitute the inputs of our algorithm.

We studied the quality of our phasing algorithm by measuring how sensible
it was with respect to each of the parameters. For that sake, we made our
simulations from a 1000 bp sequence and we measured the percentage of positions
that were incorrectly phased. For each different type of variation, the ratio ranged
between 0 and 15%. Regarding to the error ratios we considered three scenarios:
a very optimistic one, were the genotyping was done without errors (0%), a
moderated scenario where error ratio is 5%, and a pessimistic scenario where
the error ratio is 15%. The time used for haplotyping each simulated trio was
less than a hour. The results are shown in Figure 3.

5 Discussion

Our case study and experimentation on the haplotyping problem show that our
method can provide a complementary technique to perform haplotype phas-
ing in complex genome sequences that are too difficult for haplotype assembly
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modeling. Our experiments are so far showing the proof-of-concept, and several
aspects need to be taken into account in order to apply the method on the real
data setting of Sect. 3. As the motivation for our approach is complex genome
regions, it should be observed that just the detection of variants in such areas
is challenging. It can happen that variant predictions overlap such that at some
positions a diploid genome is not enough to cover all variants [16]. For the pro-
cess in Sect. 3, this means that after constructing T and B for the content of
an unphased diploid genome, there are still some heterozygous variants to be
applied. Consider continuing the process further to create a multiple alignment
with some small number c of sequences for child genome, m for mother genome,
and f for father genome. Our dynamic programming approach can be extended
to this scenario, by considering all

(
c
2

)
pairs of rows from child multiple alignment

at each column to be aligned to m possible rows in mother multiple alignment at
column i and f possible rows in father multiple alignment at column j. We plan
to implement this scheme so as to compare our approach to other haplotyping
methods.

Our liberal model of allowing crossover at every position can be made more
restrictive by exploiting the connection to labeled DAGs we already discussed
in Sect. 1: Consider the alignment visualization in Fig. 1. This can be viewed as
a labeled DAG, by interpreting each cell as a vertex, and drawing an arc from
bottom cell to its neighbor on the right and to its neighbor on its top right,
and symmetrically for top cells. Each vertex has then two outgoing arcs except
for the two last vertices. With some existing local haplotype information, some
crossovers can be forbidden by removing non-horizontal arcs. The problem to
be solved becomes that of finding two paths C1 and C2 through the child DAG,
a path M1 through mother DAG, and a path F1 through father DAG, such
that S(C1,M1)+S(C2, F1) is maximized. Extending our dynamic programming
approach to this generalization is left as future work, but we think this is feasible.
On a more direct extension, it is straightforward to include a penalty cost for
each recombination in our equations in order to avoid overfitting.

Finally, the main objective of this study is to illustrate that sequence align-
ments can be extended to take the full content of diploid chromosome represen-
tations into account, and that meaningful alignment problems under this model
can be stated and solved in polynomial time. Given the unknown complexity of
the very basic diploid alignment problem on two diploid inputs and the connec-
tion to covering problems on labeled DAGs, the current study is probably only
scratching the surface of a prominent subarea of research.
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8. Löytynoja, A., Vilella, A.J., Goldman, N.: Accurate extension of multiple sequence
alignments using a phylogeny-aware graph algorithm. Bioinformatics 28(13),
1684–1691 (2012)
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Abstract. The control of extracellular nucleoside concentrations by
Extracellular Nucleoside Triphosphate Diphosphohydrolases (Ecto-
NTPDases) is essential in the regulation of the purinergic signalling and
also in immune response. In mammals, four isoforms of Ecto-NTPDases
have been described (NTPDase1-3 and NTPDase8). The isoform 1 of hu-
man Ecto-NTPDase (HsNTPDase1 or CD39) is expressed in endothelial
cells of veins and arteries. An Ecto-NTPDase have been identified in the
tegument of adult worms of Schistosoma mansoni (SmNTPDase1), and it
was located on the outer surface of parasite’s tegument. Due to the location
of theSmATPDase1, itwasproposed that theseEcto-NTPDaseparticipate
in the evasion of the host immune system by parasite. These assumptions
reinforce the importance of researching the SmATPDase1 as a drug tar-
get candidate for the schistosomiasis treatment. In this work, we propose
the three-dimensional structure model of the enzymes SmATPDase1 and
CD39 using comparative modeling. The results show similarities between
these proteins, especially in the active site region, and become necessary to
search for alternative binding site of drugs aiming new therapies for schis-
tosomiasis.

Keywords: ATP diphosphohydrolases · Schistosoma mansoni · Three-
dimensional models · Structural comparison

1 Introduction

Schistosomiasis is a neglected disease caused by helminthes of the genus Schis-
tosoma [3]. In 2009, there were 239 million people infected by the parasite in
the world [13]. This disease occurs predominantly in tropical countries of Africa,
Southeast Asia, South America, Middle East and the Caribbean [11]. In Brazil,
the specie responsible for schistosomiasis is Schistosoma mansoni, with an esti-
mate of 4-6 million people infected [12].
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DOI: 10.1007/978-3-319-19048-8_21
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In humans, the adult parasite lives in blood vessels [17], and the main form of
treatment is the praziquantel administration, though the literature has reported
cases of parasite resistance to this drug [6]. Consequently, the Schistosomiasis
Research Agenda advises about the importance to detect proteins that could be
considered as new putative drug targets [3,24].

ATP diphosphohydrolases (EC 3.6.1.5), also known as NTPDases (Nucleoside
Triphosphate Diphosphohydrolases) or apyrases, are enzymes that hydrolyze nu-
cleoside di- and triphosphates in the presence of bivalent ions. A characteristic
shared between these enzymes is the occurrence of five conserved regions called
ACR (Apyrase Conserved Regions) [18,14,19].

Two isoforms of S. mansoni ATP diphosphohydrolase (SmATPDase1 and 2)
were previously described both of molecular weight around 63 kDa and localized
on the external surface of tegument from adult schistosome [21,22]. They are
also present in other life cycle stages of the parasite, as eggs and miracidia [8].

Molecular studies showed that SmATPDase1 is possibly anchored to the outer
surface of adult worms through two transmembrane (TM) domains [5], being the
second most expressed protein in the tegument [1]. Results [4] showed that in the
suppression of enzymes in the tegument of adult worms, involved in the catalysis
of ATP and ADP, SmATPDase1 was the only that presented a reduction in the
ability to hydrolyze extracellular ATP and ADP.

Due to the catalytic properties and location of SmATPDase1, and the impor-
tance of di- and triphosphate nucleotides in the activation of haemostatic and
immune system cells, it was suggested that this isoform is involved in the regu-
lation of the concentrations of nucleotides surrounding the parasite contributing
with its evasion [21,22,5,15]. The authors point out the SmATPDase1 as a drug
target candidate for the schistosomiasis treatment.

In mammals, eight isoforms (NTPDases1-8) have been described in numerous
cells and tissues. They are divided into three groups: (i) called Ecto-NTPDases,
this group is formed by NTPDase1-3 and 8 that can be found on the outer surface
of the cell and anchored to the plasma membrane by two TM domains, (ii) group
of intracellular forms (NTPDase5 and 6) that can be secreted after heterologous
expression, (iii) group consisted by NTPDase4 and 7, forms associated with
membrane of organelles [18,14,19].

Ecto-NTPDases of mammalian cells act in the regulation of extracellular con-
centrations of nucleotides, which are important chemical signals stimulating P2
type purinergic receptors, in many physiological processes such as blood coagula-
tion, cell proliferation, inflammation, and immune response [18,19]. The human
NTPDase1 (HsNTPDase1 or CD39) is expressed in endothelial cells of veins and
arteries, some immune cells such as B cells and dendritic cells [18,19].

In this work, we propose the first three-dimensional (3D) structure models for
related proteins SmATPDase1 and CD39, and a comparative structural analysis
performed aiming to find differences between them. This work can help the fur-
ther investigations about structure-based drug design studies for schistosomiasis
treatment, aiming an inhibitor of SmATPDase1 that does not interfere with the
CD39, causing less or none side effects during treatment in humans.
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2 Methodology

2.1 Template Searching

We ran BlastP on the PDB website (using the default parameters and as cutoff
e-value≤ 0.001), aligning deposited proteins and target sequences (SmATPDase1
and CD39). Templates for 3D model construction were selected based on amino
acid sequence identity, similarity and the presence of ligands. We could not
identify templates (neither fragments) for TM domains of both enzymes. To
solve this problem, we constructed TM regions applying structural restrictions
during comparative modeling.

2.2 Detection of Transmembrane Domain

The prediction of TM domains was performed using the programs Phobius,
TMHMM and TMpred. In order to verify the consensus between target se-
quences and the secondary structure (SS) from templates, we used the programs
PSIPREP, Jpred3 and JUFO, using default parameters.

TMhit and TMhhcp programs were used to predict transmembrane helices
contacts between TM1 and TM2. All contacts were restricted to a distance of
8Å between carbons-α and a standard deviation of 0.5Å. Significative contacts
were defined with score s ≥ 0.5 for TMhhcp and probability p ≥ 0.8 for TMhit.

2.3 Three-Dimensional Protein Model Construction

Multiple sequence alignment between the amino acid sequences of protein targets
and templates were performed using ClustalΩ program. For generation of the
models we used the Modeller program, with applying restrictions of SS and
contact between TM1 and TM2.

2.4 SAS, Volume and Electrostatic Profile

We evaluated overall and catalytic site differences between the electrostatic pro-
file, volume and solvent accessible surface area (SASA) of SmATPDase1 and
CD39. The analyses of the overall volume and SASA were performed using the
plugin VolArea in the VMD program and CASTp program was used for the
active sites. The calculation and analyses of the electrostatic potentials were
performed using the programs PDB2PQR v1.9 and APBS v1.4.1.

3 Results and Discussion

3.1 NTPDases’s Phylogeny of Mammals and Parasites

Figure 1 presents phylogenetic relationships between NTPDase of mammals and
parasites. The phylogeny were made in ClustalΩ program, using the neighbor-
joining method, and the Bootstrap was calculated in MEGA v6.0 program. Re-
lationships between NTPDases of these organisms may provide clues about the
function of NTPDase of parasites not shown yet [19]. It is possible to see that
the mammalian Ecto-NTPDases and parasite NTPDases are in separate clades.
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Additionally, it is interesting to note that SmATPDase1 and NTPDase from
Plasmodium falciparum (PfNTPDase) have a higher phylogenetic relationship
with the mammalian Ecto-NTPDase than with NTPDase of parasites.

The phylogenetic relationship becomes more interesting, taking into account:
(i) the occurrence of two TM in SmATPDase1 and mammalian Ecto-NTPDases,
in special CD39, (ii) the location on the cell surface, anchored on the outer surface
of plasma membrane through TM, (iii) because the location, has been proposed
a probable involvement of SmATPDase1 inhibition of platelet aggregation [21].

With respect to P. falciparum, was demonstrated that platelets are able to kill
the parasite within the erythrocyte and this effect was abrogated in the presence
of platelet inhibitors, including ADPase [16]. The presence of a putative NTP-
Dase gene in the P. falciparum genome and the prediction of two TM domains,
suggest that this enzyme is present in the parasite surface acting against platelet
activation [19].

3.2 Templates Selection

The structure of mammalian Ecto-NTPDase is characterized by an extracel-
lular domain (ECD) where is located the ACR and the active site, and two
TM domains located near the Nter and Cter [10,18,14]. Recently, the crystal-
lographic structure of the ECD domain of both NTPDase1 and NTPDase2 of
Rattus norvegicus (RnNTPDase1 and RnNTPDase2) were published [26,27].

We select as templates the structure of RnNTPDase1 (3ZX3) [27] and Rn-
NTPDase2 (3CJA) [26], this last one due to the presence of ATP analogue. Se-
quence identity (and similarity) between SmATPDase1 (UniProtID: Q7YTA4)
and 3ZX3 and 3CJA were 37%(53%) and 33%(49%), respectively. Whereas for
the CD39 (UniProtID: P49961) these values were 74%(85%) and 46%(62%).
In this work, the structure 3CJA was used as reference in the identification of
catalytic residues, ligand and water molecules in the active site.

3.3 Prediction of Transmembrane Domains

The analyses with TM, SS and contact helix predictors confirmed the presence
of two TM in both models. The results of predictors can be seen in Table 1.
With respect to contacts between TMs were used the following pairs of contacts:
(i) SmATPDase1 - 40-533, 43-520, 43-524, 45-526 and 53-522, (ii) CD39 - 22-488
and 36-477.

It has been shown that the mobility of TM regulates the active site of CD39
[10]. The removal of one or both TM reduced by 90% the enzymatic activity,
indicating that the enzyme activity depends on both transmembrane domains [9].
Both helices display a high degree of rotational movement, and this movement
is regulated by the binding of substrate [9,10].

Da’dara and coworkers (2014) demonstrated that the lack of both TM do-
mains compromises the ATPase and ADPase activities of SmATPDase1. They
concluded that TM domains help to maintain the protein in an enzymatically
favorable conformation [4].
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Fig. 1. Phylogenetic tree constructed with amino acid sequences of mammalian and para-

sites NTPDases. (green) Ecto-NTPDases of mammals, (red) NTPDases of parasites, (brown)

intracellular human isoforms, (purple) secreted isoforms of humans and S. mansoni, and

apyrase of Solanum tuberosum. The SmATPDase1 and CD39 (HsNTPDase1) are in aster-

isk. The phylogeny were made in ClustalΩ program, and edited in the FigTree program.

The Bootstrap values are marked in black. The NCBI access number of each sequence used

is following listed: Rattus norvegicus (RnNTPDase1: PDBID 3ZX3, RnNTPDase2: PDBID

3CJA, RnNTPDase3: NP 835207.1, RnNTPDase8: NP 001028737.1); Mus musculus (MmNT-

PDase1: NP 033978.1, MmNTPDase2: NP 033979.2, MmNTPDase8: AAH31143.2); Bos taurus

(BtNTPDase1: XP 005225502.1, BtNTPDase2: DAA24062.1, BtNTPDase3: XP 005222451.1, BtNT-

PDase8: NP 001071395.1); Oryctolagus cuniculus (OcNTPDase3: XP 002713133.1, OcNTPDase3:

XP 002723105.1); Felis catus (FcNTPDase1: XP 006938097.1, FcNTPDase3: XP 003992264.1,

FcNTPDase8: XP 003996175.1); Canis lupus familiaris (ClfNTPDase1: XP 005637614.1,

ClfNTPDase2: XP 548362.1, ClfNTPDase3: XP 542723.3, ClfNTPDase8: XP 003435393.1);

Pan troglodytes (PtNTPDase1: XP 003312746.1, PtNTPDase3: XP 001135726.1, PtNTPDase8:

XP 001140109.1); Macaca mulatta (Mc.mlNTPDase1: XP 001100060.1, Mc.mlNTPDase2:

XP 001117802.2, Mc.mlNTPDase3: NP 001253677.1, Mc.mlNTPDase8: XP 001087078.1);

Homo sapiens (CD39 or HsNTPDase1: NP 001767.3, HsNTPDase2: NP 982293.1, HsNTP-

Dase3: NP 001239.2, HsNTPDase4: NP 004892.1, HsNTPDase5: NP 001240.1, HsNTPDase6:

NP 001238.2, HsNTPDase7: NP 065087.1, HsNTPDase8: NP 001028285.1); Plasmodium fal-

ciparum (PfNTPDase: XP 001348471.2); Trypanosoma cruzi (TcNTPDase: AAS75599.1);

Trypanosoma brucei (TcNTPDase1: XP 847211.1, TcNTPDase2: XP 845817.1); Leishmania

major (LmjNTPDase1: XP 001681917.1, LmjNTPDase2: XP 001681345.1); Leishmania infantum

(LiNTPDase1: XP 001464341.1, LiNTPDase2: XP 001463665.1); Leishmania braziliensis (LbNT-

PDase1: XP 001562178.1, LbNTPDase2: XP 001562788.1); Leishmania donovani (LdNTPDase1:

CBZ32820.1, LdNTPDase2: CBZ32136.1); Leishmania mexicana (LmxNTPDase1: CBZ25018.1,

LmxNTPDase2: CBZ24328.1); Solanum tuberosum (Apyrase: P80595) and Schistosoma mansoni

(SmATPDase1: AAP94734.1, SmNTPDase2: ABI79456.1).
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Table 1. Ranges of residues TM1 and TM2 for models CD39 and SmATPDase1

TM
Prediction

Phobius TMHMM TMpred SS

TM1/CD39 17-37 17-39 17-37 12-38
TM2/CD39 477-499 477-499 479-499 477-500

TM1/SmATPDase1 40-65 43-65 43-65 35-62
TM2/SmATPDase1 507-529 508-530 510-530 508-537

3.4 Three-Dimensional Models of SmATPDase1 and CD39

3D structure of SmATPDase1 (Fig. 2) and CD39 (Fig. 3) models proposed in
this work are formed by TM1 (Nter), ECD and TM2 (Cter) domains. The ECD
domain is divided in two subdomains, ECD-I and ECD-II, with the active site
located in the interdomain cleft (Fig. 2 and Fig. 3).

Models were constructed in the presence of ANP (ATP analogue) and the
Ca+2 in the active site. According to the literature and the analysis of the
structural alignment of the templates, we considered the presence of six con-
served water molecules, responsible for: (i) stabilizing the metal ion, and (ii)
nucleophilic attack [2,23,26,28]. The six water molecules (O503, O504, O505,
O506, O507, O508) were selected from 3CJA.

According Zebisch and Sträter (2008), there are twenty residues in the cat-
alytic site of RnNTPDases2 which interact with the ligand. From these, eight
residues (D45, T122, A123, E165, D201, S206, Q208 and W436) interact with
six conserved water molecules cited above, and four residues (R245, A347, Y350
and R394) that perform hydrogen bonds with the ligand allowing the docking
into the catalytic site [26].

Based on Zebisch and coworkers [26,27], it was possible to identify the likely
catalytic residues of SmATPDase1 and CD39. In both models, all residues in-
volved in catalytic activity are in ACR (Fig. 2 and Fig. 3). Studies have shown
that mutation of these residues implies a loss of catalytic ability of the enzyme
[20,7,25]. In SmATPDase1, the catalytic residues are D78 (ACR1), T154 and
A155 (both ACR2), E201 (ACR3), D232, S237 and Q239 (ACR4) and W483
(ACR5) (Fig. 4). In CD39, they are D54 (ACR1), T131 and A132 (ACR2),
E174 (ACR3), D213, S218 and Q220 (ACR4) and W450 (ACR5) (Fig. 4). Ad-
ditionaly, there are two residues that form the stacking of nitrogenous base in
SmATPDase1 (Y397 and F441), and CD39 (F365 and Y408).

The total volume calculated for CD39 was 89,788Å3 and for SmATPDase1
was 96,329Å3. The volume of active site was 1,273.91Å3 to SmATPDase1 and
1,234.17Å3 to CD39. Regarding the SASA of the active site of both models the
values calculated were 716.37Å2 to SmATPDase1 and 789.57Å2 to CD39.

The electrostatic profile of SmATPDase1 is more positively charged than
CD39 (Fig. 5). This profile can also be observed in the active site (Fig. 6),
although around the D438 is more negative. Despite having a more negative
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Fig. 2. Primary, secondary and tertiary structure of SmATPDase1 model. (a) Amino
acid sequences alignment of SmATPDase1 and templates 3ZX3 and 3CJA. Sec-
ondary structures are represented by rectangles (helices) and arrows (sheets). Catalytic
residues are shown in gray and residues that form the base-stacking of nitrogenous base
of nucleotide in beige. (b) Topology diagram of SmATPDase1 model. Sheets (E) and
helices (H) are numbered starting from the Nter to Cter. The diagram was generated
using the PDBsum program.(c) 3D model of SmATPDase1. The structure is formed
by TM1, TM2 and ECD domains. The last is divided into two subdomains: ECD-I
(E1-E5, H2-H6, E15-E16 e H19) and ECD-II (E6-E14 e H7-H18). The composition of
subdomains ECD-I and ECD-II is based on the work of Zebisch and Sträter (2008).
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Fig. 3. Primary, secondary and tertiary structure of CD39 model. (a) Amino acid
sequences alignment of CD39 and templates 3ZX3 and 3CJA. Secondary structures are
represented by rectangles (helices) and arrows (sheets). Catalytic residues are shown
in gray and residues that form the base-stacking of nitrogenous base of nucleotide
in beige. (b) Topology diagram of SmATPDase1 model. Sheets (E) and helices (H)
are numbered starting from the Nter to Cter. The diagram was generated using the
PDBsum program.(c) 3D model of CD39. The structure is formed by TM1, TM2 and
ECD domaind. The last is divided into two subdomains: ECD-I (E1-E5, H1-H5, H17
and E15-E16) and ECD-II (E6-E14 and H6-H16). The composition of subdomains
ECD-I and ECD-II is based on the work of Zebisch and Sträter (2008).
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Fig. 4. The 3D structure and active site of SmATPDase1 and CD39. (a) Structural
alignment of SmATPDase1 model (red) and CD39 (blue), with templates 3ZX3 (purple)
and 3CJA (green). (b) Structural alignment of SmATPDase1 model and templates in
the active site region. (c) Structural alignment of CD39 model and templates in the
active site region. In sticks is presented the ligand (ANP), catalytic residues (black),
conserved waters (O1, O2, O3, O4, O5 and O6) between the structures 3CJ1 (light red),
3CJA7 (yellow), 3CJ9 (orange), 3CJA (green) and 3ZX3 (purple), and the calcium ion
from structures 3CJ9 (black), 3CJA (light green), SmATPDase1 (brown) and CD39
(under the calcium ion of 3CJA). The dashed lines show the contacts between the
catalytic residues, the six conserved water molecules and the calcium ion. It can also
observe the residues that form stacking with adenine in SmATPDase1 (Y397 and F441)
and CD39 (F365 and Y408).
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Fig. 5. Electrostatic surface potential of SmATPDase1 (red) and CD39 (blue) models.
(a) Front view of electrostatic profile of SmATPDase1 model. (b) Back view of elec-
trostatic profile of SmATPDase1 model. (c) Front view of electrostatic profile of CD39
model. (d) Back view of electrostatic profile of CD39 model. The electrostatic potential
vary from -5 (red) to 5 (blue) kT/e.

Fig. 6. Electrostatic potential profile of SmATPDase1 and CD39 active sites. (a) Elec-
trostatic profile of active site of SmATPDase1 model (red). (b) Electrostatic profile
of active site of CD39 model (blue). 3D structures are presented in Cartoon, ligand
(ANP) in Licorice, Ca2+ and water molecules are presented in Spheres. The electro-
static potential vary from -3 (red) to 3 (blue) kT/e.

profile, the active site of CD39 (Fig. 6) shows a more positive electrostatic pro-
file around the lysines K405 and K407 next to the Y408.
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According Zebisch and coworkers [27], the binding site of the polyoxometal-
lates in RnNTPDase1 is located between the ECD-I and ECD-II subdomains
and close to the residues Y409 (stacked with nucleotide nitrogenous base), K406
and K407 [27]. This region would present a positive electrostatic potential [27],
probably by the presence of these two lysines. They suggested that K406 and
K407 are involved in electrostatic interactions with polyoxometallates [27]. Inter-
estingly, the residue K405 (CD39) corresponds to residue K406 in RnNTPDase1
(3ZX3) and residue K392 in RnNTPDase2 (3CJA), and it is not observerd in
SmATPDase1 (D438).

4 Conclusions

This paper presented 3D structure models of the isoforms 1 of NTPDases of S.
mansoni (SmATPDase1) and human (CD39). Both models were generated by
comparative modeling based on templates 3ZX3 and 3CJA. The proposed models
for SmATPDase1 and CD39 follow the pattern of Ecto-NTPDases of mammals
already described in the literature, namely the presence of a extracellular domain
(ECD) and two transmembrane domains (TM1 and TM2) whereby the enzyme
is anchored to the plasma membrane of cells.

As the templates used in the present study had only the ECD domain, a
specific approach was required for modeling TM1 and TM2 based on consen-
sus predictors of secondary structure, TM domains and contact. Both models
showed several regions with high structural conservation in relation to templates,
especially in regions that correspond to ACR. It was also possible to identify the
likely residues of the active site involved in catalytic activity.

Besides the high structural conservation, in could observed significative elec-
trostatic differences, mainly in the active sites which present some residue sub-
stitutions that could induce local changes in the electrostatic profiles. Further
investigations about alternative druggable pockets should be also performed.

We expect that these analyses could help future structure-based drug design
studies for schistosomiasis treatment, aiming an inhibitor of SmATPDase1 that
not interfere with the structure of CD39, causing less or none side effects during
treatment in humans.
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Abstract. The availability of many assembled genomes opens the way
to study the evolution of syntenic character within a phylogenetic con-
text. The DeCo algorithm, recently introduced by Bérard et al., computes
parsimonious evolutionary scenarios for gene adjacencies, from pairs of
reconciled gene trees. Following the approach pioneered by Sturmfels
and Pachter, we describe how to modify the DeCo dynamic program-
ming algorithm to identify classes of cost schemes that generate similar
parsimonious evolutionary scenarios for gene adjacencies. We also de-
scribe how to assess the robustness, again to changes of the cost scheme,
of the presence or absence of specific ancestral gene adjacencies in parsi-
monious evolutionary scenarios. We apply our method to six thousands
mammalian gene families, and show that computing the robustness to
changes of cost schemes provides interesting insights on the DeCo model.

1 Introduction

Reconstructing evolutionary histories of genomic characters along a given species
phylogeny is a long-standing problem in computational biology. This problem
has been studied for several types of genomic characters (DNA sequences and
gene content for example), for which efficient algorithms exist to compute parsi-
monious evolutionary scenarios. Recently, Bérard et al. [2] extended the corpus
of such results to syntenic characters. They defined a model for the evolution
of gene adjacencies within a species phylogeny, together with an efficient dy-
namic programming (DP) algorithm, called DeCo, to compute parsimonious evo-
lutionary histories that minimize the total cost of gene adjacencies gain and
break, for a given cost scheme associating a cost to each of these two events.
Reconstructing evolutionary scenarios for syntenic characters is an important
step towards more comprehensive models of genome evolution, going beyond
classical sequence/ content frameworks, as it implicitly integrates genome rear-
rangements [5]. Application of such methods include the study of genome rear-
rangement rates and the reconstruction of ancestral gene order. Moreover, DeCo

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 260–271, 2015.
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is the only existing tractable model that considers the evolution of gene adja-
cencies within a general phylogenetic framework; so far other tractable models
of genome rearrangements accounting for a given species phylogeny are either
limited to single-copy genes and ignore gene-specific events [3,18], assume restric-
tions on the gene duplication events, such as considering only whole-genome du-
plication (see [7] and references there), or require a dated species phylogeny [11].

The evolutionary events considered by DeCo, gene adjacency gain and break
caused by genome rearrangement, are rare evolutionary events compared to gene-
family specific events. It is then important to assess the robustness of inferences
made by DeCo, whether it is of a parsimony cost or of an individual feature such as
the presence of a specific ancestral adjacency. We recently explored an approach
that considers the set of all possible evolutionary scenarios under a Boltzmann
probability distribution for a fixed cost scheme [6]. A second approach consists
of assessing how robust features of evolutionary scenarios are to changes in the
cost associated to evolutionary events (the cost scheme). Such approaches have
recently been considered for the gene tree reconciliation problem and have been
shown to significantly improve the results obtained from purely parsimonious
approaches [1,10]. This relates to the general problem of deciding the precise cost
to assign to evolutionary events in evolutionary models, a recurring question in
the context of parsimony-based approaches in phylogenetics.

This motivates the precise questions tackled in this work. First, how robust
is a parsimonious evolutionary scenario to a change of the costs associated to
adjacency gains and breaks? Similarly, how robust is an inferred parsimonious
gene adjacency to a change in these costs? We address this problem using a
methodology that has been formalized into a rigorous algebraic framework by
Pachter and Sturmfels [15,14,13], that we refer to as the polytope approach. Its
main features, summarized in Fig. 1 for assessing the robustness of evolutionary
scenarios, are (1) associating each evolutionary scenario to a signature, a vector
of two integers (g, b) where g is the number of adjacency gains and b the number
of adjacency breaks; and (2) partitioning the space of cost schemes into convex
regions such that, for all the cost schemes within a region, all optimal solutions
obtained with such cost schemes have the same signature. This partition can be
computed by an algorithm that is a direct translation of the DP algorithm into
a polytope framework. Furthermore, the same framework can be extended to
assess the robustness of inferred parsimonious ancestral adjacencies.

2 Preliminary: Models and Problems

A phylogeny is a rooted tree which describes the evolutionary relationships of
a set of elements (species, genes, . . . ) represented by its nodes: internal nodes
correspond to ancestral elements, leaves to extant elements, and edges represent
direct descents between parents and children. For a node v of a phylogeny, we
denote by s(v) the species it belongs to. For a tree T and a node x of T , we
denote by T (x) the subtree rooted at x. If x is an internal node, we assume it
has either one child, denoted by a(x), or two children, denoted by a(x) and b(x).
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Fig. 1. Outline of our method for assessing the robustness of an evolutionary scenario:
Starting from two reconciled gene trees and a set of extant adjacencies (a.), the polytope
of parsimonious signatures is computed (b.). Its normal vectors define a segmentation
of the space of cost schemes into cones (c.), each associated with a signature. Here,
the positive quadrant is fully covered by a single cone, meaning that the parsimonious
prediction does not depend on the precise cost scheme. In general (d.), the robustness
of a prediction (here, obtained using the (1, 1) scheme) to perturbations of the scheme
can be measured as the smallest angle θ such that a cost scheme at angular distance θ
no longer predicts the signature (a, b).

Species Tree and Reconciled Gene Trees. A species tree S is a binary tree that
describes the evolution of a set of species from a common ancestor through the
mechanism of speciation. A reconciled gene tree is a binary tree that describes
the evolution of a set of genes, called a gene family, within a given species tree S,
through the evolutionary mechanisms of speciation, gene duplication and gene
loss. Therefore, each leaf of a gene tree G represents either a gene loss or an
an extant gene, while each internal node represents an ancestral gene. In a rec-
onciled gene tree, we associate every ancestral gene (an internal node g) to an
evolutionary event e(g) that leads to the creation of the two children a(g) and
b(g): e(g) is a speciation (denoted by Spec) if the species pair {s(a(g)), s(b(g))}
is equal to the species pair {a(s(g)), b(s(g))}, s(a(g)) �= s(b(g)), or a gene du-
plication (GDup) if s(a(g)) = s(b(g)) = s(g). If g is a leaf, then e(g), as stated
before, indicates either a gene loss (GLoss) or an extant gene (Extant), in which
case e(g) is not an evolutionary event stricto sensu. A pre-speciation ancestral
gene is an internal node g such that e(g) = Spec. See Fig. 2 for an illustration.

Adjacency Trees and Forests. We consider now that we are given two reconciled
gene trees G1 and G2, representing two gene families evolving within a species
tree S. A gene adjacency is a pair of genes (one from G1 and one from G2)
that appear consecutively along a chromosome, for a given species, ancestral or
extant. Gene adjacencies evolve within a species tree S through the evolutionary
events of speciation, gene duplication, gene loss (these three events are modeled
in the reconciled gene trees), and adjacency duplication (ADup), adjacency loss
(ALoss) and adjacency break (ABreak), that are adjacency-specific events.

Following the model introduced in [2], we represent such an evolutionary his-
tory using an adjacency forest, composed of adjacency trees. An adjacency tree
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Fig. 2. A species tree S, with two extant species A and B and an ancestral species C.
Two reconciled gene trees G1 and G2, with four extant genes in genome A, four extant
genes in genome B and three ancestral genes in genome C. The set of extant gene
adjacencies is (A1A3, B1B3, B2B4). An adjacency forest A composed of two adjacency
trees. Blue dots represent speciation nodes. Leaves are extant species/genes/adjacen-
cies, except the one labeled by a red cross (gene loss) or a red diamond (adjacency
breaks). Green squares are (gene or adjacency) duplication nodes. Gene labels refer
to the species they belong to. Every node of the adjacency tree is labeled by a gene
adjacency. Figure adapted from [2].

represents the evolution of an ancestral gene adjacency (located at the root
of the tree) through the following events: (1) The duplication of an adjacency
{g1, g2}, where g1 and g2 are respectively genes from G1 and G2 such that
s(g1) = s(g2), follows from the simultaneous duplication of both its genes g1
and g2 (so e(g1) = e(g2) = GDup), resulting in the creation of two distinct
adjacencies each belonging to {a(g1), b(g1)} × {a(g2), b(g2)}; (2)The loss of an
adjacency, which can occur due to several events, such as the loss of exactly one
of its genes (gene loss, GLoss), the loss of both its genes (adjacency loss, ALoss)
or a genome rearrangement that breaks the contiguity between the two genes
(adjacency break, ABreak); (3) The creation/gain of an adjacency (denoted by
AGain), for example due to a genome rearrangement, that results in the creation
of a new adjacency tree whose root is the newly created adjacency.

With this model, one can model the evolution of two gene families along a
species phylogeny by a triple (G1, G2, A): G1 and G2 are reconciled gene trees
representing the evolution of these families in terms of gene-specific events and
A is an adjacency forest consistent with G1 and G2. Similar to species trees
and reconciled gene trees, internal nodes of an adjacency tree are associated
to ancestral adjacencies, while leaves are associated to extant adjacencies or
lost adjacencies (due to a gene loss, adjacency loss or adjacency break), and
are labeled by evolutionary events. The label e(v) of an internal node v of an
adjacency forest A belongs to {Spec,GDup,ADup}, while the label e(v) of a leaf
belongs to {Extant,GLoss,ALoss,ABreak}, as shown in Fig. 2.

Signatures, Descriptors and Parsimonious Scenarios. The signature of an adja-
cency forest A is an ordered pair of integers σ(A) = (gA, bA) where gA (resp. bA)
is the number of adjacency gains (resp. adjacency breaks) in A. A cost scheme
is a pair x = (x0, x1) of non-negative real numbers, where x0 is the cost of an
adjacency gain and x1 the cost of an adjacency break. The cost of an adjacency
forest A for a given cost scheme x is the number S(A) = x0 × gA+ x1× bA. The
adjacency forest A in an evolutionary scenario (G1, G2, A) is parsimonious for
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x if there is no other evolutionary scenario (G1, G2, B) such that S(B) < S(A).
The signature the adjacency forest A in Fig. 2 is (1, 1), and this adjacency forest
is parsimonious for the cost scheme (1, 1).

A descriptor of a scenario is a boolean or integer valued feature of the solu-
tion which does not contribute to the cost of the scenario, but rather represents
a feature of a scenario. For instance, the presence/absence of an ancestral ad-
jacency in a given adjacency forest A can be described as a boolean. Given k
descriptors a1, . . . , ak, we define an extended signature of a scenario A as a tuple
σa1,...,ak

(A) = (g, b, sa1 , . . . , sak
), where g, b are the numbers of adjacency gains

and breaks in A respectively, and sai is the value of the descriptor ai for A.

The DeCo Algorithm. Bérard et al. [2] showed that, given a pair of reconciled
gene trees G1 and G2, a list L of extant gene adjacencies, and a cost scheme x,
one can use a DP algorithm to compute an evolutionary scenario (G1, G2, A),
where A is a parsimonious adjacency forest such that L is exactly the set of leaves
of A labeled Extant. The DeCo algorithm computes, for every pair of nodes g1
(from G1) and g2 (from G2) such that s(g1) = s(g2), two quantities c1(g1, g2) and
c0(g1, g2), that correspond respectively to the cost of a parsimonious adjacency
forest for the pairs of subtrees G(g1) and G(g2), under the hypothesis that g1
and g2 form (for c1) or do not form (for c0) an ancestral adjacency. As usual in
dynamic programming along a species tree, the cost of a parsimonious adjacency
forest for G1 and G2 is given by min(c1(r1, r2), c0(r1, r2)) where r1 is the root
of G1 and r2 the root of G2. In [6], we recently generalized DeCo into a DP
algorithm DeClone that allows one to explore the space of all possible adjacency
evolutionary scenarios for a given cost scheme.

Robustness Problems. The first problem we are interested in is the signature
robustness problem. A signature σ = (g, b) is parsimonious for a cost scheme x
if there exists at least one adjacency forest A that is parsimonious for x and has
signature σ(A) = σ. The robustness of the signature σ is defined as the difference
between x and the closest cost scheme for which σ is no longer parsimonious. To
measure this difference, we rely on a geometric representation of a cost scheme.
Assuming that a cost scheme x = (x0, x1) ∈ R

2 provides sufficient information
to evaluate the cost of an adjacency forest, the predictions under such a model
remain unchanged upon multiplying x by any positive number, allowing us to
assume that ‖x‖ = 1 without loss of generality. So x = (x0, x1) can be summa-
rized as an angle θ (expressed in radians), and the difference between two cost
schemes is indicated by their associated angular distance.

However, signatures only provide a quantitative summary of the evolutionary
events described by a parsimonious adjacency forest. In particular, signatures
discard any information about predicted sets of ancestral adjacencies. We ad-
dress the robustness of inferred parsimonious adjacencies through the parsimo-
nious adjacency robustness problem. Let a = (g1, g2) be an ancestral adjacency
featured in a parsimonious adjacency forest for a cost scheme x. We say that a
is parsimonious for a cost scheme y if a belongs to every adjacency forest that is
parsimonious for y. The robustness of a is defined as the angular distance from
x to the closest cost scheme y for which a is no longer parsimonious.
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3 Methods

If the signature for a given adjacency forest A is given by the vector σ (A) =
(g, b), and the cost scheme is given by the vector x = (x0, x1), then the parsimony
cost of DeCo can be written as the inner product 〈x, σ (A)〉 = g × x0 + b × x1.
DeCo computes the following quantity for a pair of gene trees G1 and G2.

c(G1, G2) = min
A∈F(G1,G2)

〈x, σ (A)〉, (1)

where F(G1, G2) denotes the set of all possible adjacency forests that can be
constructed from G1 and G2, irrespective of the cost scheme.

For a given adjacency forestA, we will consider a single descriptor a, indicating
the presence or absence of an ancestral adjacency a = (g1, g2) ∈ G1 ×G2 in A,
where sa = 1 if it is present in A, and 0 otherwise. Since, by definition, a
descriptor does not contribute to the cost, when considering the robustness of
specific adjacencies, we will consider cost schemes of the form x = (x0, x1, 0),
and DeCo will compute Eq. (1) as usual.

For a given cost scheme x, two adjacency forests A1 and A2 such that σ(A1) =
σ(A2) will have the same associated cost. We can thus define an equivalence class
in F(G1, G2) based on the signatures. However, for a given potential ancestral
adjacency a = (g1, g2) ∈ G1 ×G2, the adjacency forests in this equivalence class
may have different extended signatures, differing only in the last coordinate.
Thus, there may be two adjacency forests A1 and A2 with extended signatures
(g, b, 1) and (g, b, 0) respectively, and they will have the same cost for all cost
schemes. Evolutionary scenarios with the same extended signature also naturally
form an equivalence class in F(G1, G2).

Convex Polytopes from Signatures. Let us denote the set of signatures of all
scenarios in F(G1, G2) by σ (F(G1, G2)), and the set of extended signatures for
a given adjacency a by σa (F(G1, G2)). Each of these is a point in R

d, where
d = 2 for signatures and d = 3 for extended signatures. In order to explore the
parameter space of parsimonious solutions to DeCo, we use these sets of points
to construct a convex polytope in R

d. A convex polytope is simply the set of all
convex combinations of points in a given set, in this case the set of signatures
or extended signatures [15]. Thus, for each pair of gene trees G1, G2 and a list
of extant adjacencies, we can theoretically construct a convex polytope in R

2 by
taking the convex combinations of all signatures in σ (F(G1, G2)). This definition
generalizes to a convex polytope in R

3 when extended signatures σa (F(G1, G2))
are considered for some ancestral adjacency a. Viewing the set of evolutionary
scenarios as a polytope allows us to deduce some useful properties:

1. Any (resp. extended) signature that is parsimonious for some cost scheme x
lies on the surface of the polytope;

2. If a (resp. extended) signature is parsimonious for two cost schemes x and
x′, then it is also parsimonious for any cost scheme in between (i.e. for any
convex combination of x and x′).

Traditionally, a polytope is represented as a set of inequations, which is inap-
propriate for our intended application. Therefore, we adopt a slighty modified
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representation, and denote the polytope of F (G1, G2) as the list of signatures
that are represented within F (G1, G2) and lie on the convex hull of the polytope.

A vertex in a polytope is a signature (resp. extended signature) which is
parsimonious for some cost scheme. The domain of parsimony of a vertex v is
the set of cost schemes for which v is parsimonious. From Property 2, the domain
of parsimony for a vertex v is a cone in R

d, formally defined as:

Cone (v) =
{
x ∈ R

d : 〈x,v〉 ≤ 〈x,w〉 ∀ w ∈ P
}
. (2)

The set of cones associated with the vertices of a polytope form a partition
of the cost schemes space [15], which allows us to assess the effect of perturbing
the cost scheme on the optimal solution of DeCo for this cost scheme.

Computing the Polytope. Building on earlier work on parametric sequence align-
ment [8], Pachter and Sturmfels [14,15] described the concept of polytope prop-
agation, based on the observation that the polytope of a DP (minimization)
scheme can be computed through an algebraic substitution. Accordingly, any
point that lies strictly within the polytope is suboptimal for any cost scheme,
and can be safely discarded by a procedure that repeatedly computes the con-
vex hull H(P ) of the (intermediates) polytopes produced by the modified DP
scheme. In the context of the DeCo DP scheme, the precise modifications are:

1. Any occurrence of the + operator is replaced by ⊕, the (convex) Minkowski
sum operator, defined for P1, P2 two polytopes as

P1 ⊕ P2 = H({p1 + p2 | (p1, p2) ∈ P1 × P2});
2. Any occurrence of the min operator is replaced by �, the convex union

operator, defined for P1, P2 two polytopes as

P1 � P2 = H(P1 ∪ P2);

3. Any occurrence of an adjacency gain cost is replaced by the vector (1, 0)
(resp. (1, 0, 0) for extended signatures);

4. Any occurrence of an adjacency break cost is replaced by the vector (0, 1)
(resp. (0, 1, 0) for extended signatures);

5. (Extended signatures only) An event that corresponds to the prediction of
a fixed ancestral adjacency a in a scenario is replaced by the vector (0, 0, 1);

By making this substitution, we can efficiently compute the polytope associated
with two input gene treesG1 andG2, having sizes n1 and n2 respectively, through
O (n1 × n2) executions of the convex hull procedure. In place of the integers used
by the original minimization approach, intermediate convex polytopes are now
processed by individual operations, and stored in the DP tables, so the overall
time and space complexities of the algorithm critically depend on the size of
the polytopes, i.e. its number of vertices. Pachter and Sturmfels proved that, in
general, the number of vertices on the surface of the polytope is O

(
nd−1

)
, where

d is the number of dimensions, and n is the size of the DP table. In our case, the
number of vertices in the 2D polytope associated with simple signatures is in
O (n1 × n2). This upper bound also holds for extended signatures, as the third
coordinate is a boolean, and the resulting 3D polytope is in fact the union of two
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2D polytopes. The total cost of computing the polytope is therefore bounded
by O

(
n2
1 × n2

2 × log(n1 × n2)
)
, e.g. using Chan’s convex hull algorithm [4]. As

for the computation of the cones, let us note that the cone of a vertex v in a
given polytope P is fully delimited by a set of vectors, which can be computed
from P as the normal vectors, pointing towards the center of mass of P , of
each of the facets in which v appears. This computation can be performed as a
postprocessing using simple linear algebra, and its complexity will remain largely
dominated by that of the DP-fuelled polytope computation.

Assessing Signature and Adjacency Robustness. The cones associated with the
polytope of a given instance cover all the real-valued cost schemes, including
those associating negative costs to events. These later cost schemes are not valid,
and so, we only consider cones which contain at least one positive cost scheme.
Given a fixed cost scheme y, the vertex associated to the cone containing this
cost scheme corresponds to the signature of all parsimonious scenarios for this
cost scheme. In order to assess the robustness of this signature, we can calculate
the smallest angular perturbation needed to move from y to a cost scheme whose
parsimonious scenarios do not have this signature. This is simply the angular
distance from y to the nearest boundary of the cone which contains it. Using
this methods, we assign a numerical value to the robustness of the signatures of
parsimonious scenarios on a number of instances for a particular cost scheme.

In the case of extended signatures σa (F(G1, G2)) for an adjacency a, the
polytope is 3-dimensional. The cones associated with the vertices, as defined
algebraically, now partition R

3, the set of cost schemes (x0, x1, x2), where x2

indicates the cost of a distinguished adjacency. Since the third coordinate is a
descriptor, it does not contribute to the cost scheme, and we therefore restrict
our analysis to the R

+ × R
+ × {0} subset of the cost scheme space. Precisely,

we take the intersection of the plane x2 = 0 with each cone associated to a
vertex (g, b, sa), and obtain the region in which the extended signature (g, b, sa)
is parsimonious. This region is a 2D cone.

However, the cost of an extended signature is independent of the entry in its
last coordinate, and there may exist two different extended signatures (g, b, 0)
and (g, b, 1), both parsimonious for all the cost schemes found in the 2D cone. It
is also possible for adjacent cones to have different signatures, yet feature a given
adjacency. The robustness of a given adjacency a is computed from the cones
using a greedy algorithm which, starting from the cone containing x, explores the
adjacent cones in both directions (clockwise/counter-clockwise) until it finds one
that no longer predicts a, i.e. is associated with at least one signature (g′, b′, 0).

4 Results

We considered 5, 039 reconciled gene trees and 50, 389 extant gene adjacencies,
forming 6, 074 DeCo instances, with genes taken from 36 extant mammalian
genomes from the Ensembl database in 2012. In [2], this data was analyzed
with DeCo, using the cost scheme (1, 1). These adjacency forests defined 96, 482
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ancestral adjacencies (adjacencies between two pre-speciation genes from the
same ancestral species), covering 112, 188 ancestral genes.

We first considered all 6, 074 instances, and computed for each signature the
robustness of the parsimonious signature obtained with the cost scheme (1, 1).
We observe (Fig. 3(A)) that for more than half of the instances, the parsimo-
nious signature is robust to a change of cost scheme, as the associated cone is the
complete first quadrant of the real plane. On the other hand, for 945 instances
the parsimonious signature for the cost scheme (1, 1) is not robust to any change
in the cost scheme; these cases correspond to interesting instances where the
cost scheme (1, 1) lies at the border of two cones, meaning that two parsimo-
nious signatures exist for the cost scheme (1, 1), and any small change of cost
scheme tips the balance towards one of these two signatures. More generally, we
observe (Fig. 3(A)) an extreme robustness of parsimonious signatures: there is
a ∼ 80% overlap between the sets of signatures that are parsimonious for any
(positive) cost scheme, and for the (1, 1) cost scheme. This observation supports
the notion of a sparsely-populated search space for attainable signatures. In this
vision, signatures are generally isolated, making it difficult to trade adjacency
gains for breaks (or vice-versa) in order to challenge the (1, 1)-parsimonious pre-
diction. We hypothesize that such a phenomenon is essentially combinatorial, as
extra adjacency gains typically lead, through duplications to more subsequent
adjacency breaks.

Next, to evaluate the stability of the total number of evolutionary events in-
ferred by parsimonious adjacency forests, we recorded two counts of evolutionary
events for each instance: the number of syntenic events (adjacencies gains and
breaks) of the parsimonious signature (called the parsimonious syntenic events
count), and the maximum number of syntenic events taken over all signatures
that are parsimonious for some cost scheme (called the maximum syntenic events
count). We observe that the average parsimonious (resp. maximum) syntenic
events count is 1.25 (resp. 1.66). This shows a strong robustness of the (low)
number of syntenic events to changes in the cost scheme.

We then considered the robustness of individual ancestral adjacencies. Using
the variant DeClone of DeCo that explores the set of all evolutionary scenarios [6],
we extracted, for each instance, the set of ancestral adjacencies that belong to all
parsimonious solutions for the cost scheme (1, 1), and computed their robustness
as defined in the previous sections. This set of ancestral adjacencies contains
87, 019 adjacencies covering 106, 903 ancestral genes. The robustness of these
adjacencies is summarized in Fig. 3(B, left and center columns). It is interesting
to observe that few adjacencies have a low robustness, while, conversely, a large
majority of the universally parsimonious adjacencies are completely robust to
a change of cost scheme (97, 593 out of 106, 639). This suggests that the DeCo

model of parsimonious adjacency forests is robust, and infers highly supported
ancestral adjacencies, which is reasonable given the relative sparsity of genome
rearrangements in evolution compared to smaller scale evolutionary events.

Besides the notions of robustness, an indirect validation criterion used to as-
sess the quality of an adjacency forest is the limited presence of syntenic conflicts.
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Fig. 3. (A) Average robustness of signatures predicted using the (1, 1) cost scheme. At
each point (x, y), the colour indicates the proportion of signatures that are parsimo-
nious, and therefore predicted, for the (1, 1) cost scheme, and remain parsimonious for
the (x, y) cost scheme. (B) Universally parsimonious adjacencies and syntenic conflicts.
(Left) Percentage of ancestral genes present in universally parsimonious adjacencies per
level of minimum robustness of the adjacencies, expressed in radians. (Center) Percent-
age of universally parsimonious adjacencies per level of minimum robustness. (Right)
Percentage of conserved conflicting adjacencies per level of minimum robustness.

An ancestral gene is said to participate in a syntenic conflict if it belongs to three
or more ancestral adjacencies, as a gene can only be adjacent to at most two
neighboring genes along a chromosome. An ancestral adjacency participates in a
syntenic conflict if it contains a gene that does. Among the ancestral adjacencies
inferred by DeCo, 16, 039 participate in syntenic conflicts, covering 5, 817 ances-
tral genes. This represents a significant level of syntenic conflict and a significant
issue in using DeCo to reconstruct ancestral gene orders. It was observed that
selecting universally parsimonious ancestral adjacencies, as done in the previ-
ous analysis, significantly reduced the number of syntenic conflicts, as almost all
discarded ancestral adjacencies participated in syntenic conflicts. Considering
syntenic conflicts, we observe (Fig. 3(B, right column) a positive result, i.e. that
filtering by robustness results in a significant decrease of the ratio of conflicting
adjacencies. However, even with robust universally parsimonious ancestral ad-
jacencies, one can observe a significant number of adjacencies participating in
syntenic conflicts. We discuss these observations in the next section.

5 Discussion and Conclusion

From an application point of view, the ability to exhaustively explore the pa-
rameter space leads to the observation that, on the considered instances, the
DeCo model is extremely robust. Even taking parsimonious signatures that max-
imize the number of evolutionary syntenic events (i.e. considering cost schemes
that lead to the maximum number of events) results in an average increase of
roughly 33% events (1.25 to 1.66), and stays very low, much lower than gene
specific events such as gene duplications (average of 3.38 event per reconciled
gene tree). This is consistent with the fact that for rare evolutionary events such
as genome rearrangements, a parsimony approach is relevant, especially when
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it can be complemented by efficient algorithms to explore slightly sub-optimal
solutions, such as DeClone, and to explore the parameter space. In terms of
direct applications of the method developed here and in [6], gene-tree based re-
construction of ancestral gene orders comes to mind [5]; more precisely, ancestral
adjacencies could be determined and scored using a mixture of their Boltzmann
probability (that can be computed efficiently using DeClone) and robustness to
changes of the cost scheme, and conflicts could be cleared out independently and
efficiently for each ancestral species using the algorithm of [12] for example.

An interesting observation is that even the set of ancestral adjacencies that
are universally-parsimonious and robust to changes in the cost scheme contains
a significant number of adjacencies participating in syntenic conflict. We conjec-
ture that the main reason for syntenic conflicts is in the presence of a significant
number of erroneous reconciled gene trees. This is supported by the observation
that the ancestral species with the highest number of syntenic conflict are also
species for which the reconciliation with the mammalian species tree resulted
in a significantly larger number of genes than expected (data not shown). This
points clearly to errors in either gene tree reconstruction or in the reconciliation
with the mammalian species phylogeny, which tends to assign wrong gene du-
plications in some specific species, resulting an inflation of the number of genes,
especially toward the more ancient species [9]. It would be interesting to see
if the information about highly suported conflicting adjacencies can be used in
reconciled gene tree correction.

From a methodological point of view, we considered here extended signatures
for a single ancestral adjacency at a time. It would be natural to extend this
concept to the more general case of several ancestral adjacencies considered at
once. We conjecture that this case can be addressed without an increase in the
asymptotic complexity of computing the polytope; this problem will be consid-
ered in the full version of the present work. Next, there exists another way to
explore the parameter space of a dynamic programming phylogenetic algorithm.
It consists of computing the Pareto-front of the input instance [10,16], rather
than optimal signatures for classes of cost schemes. A signature v is said to be
Pareto-optimal if there is no other signature whose entries are equal or smaller
than the corresponding entries in v, and is strictly smaller at at least one co-
ordinate. The Pareto-front is the set of all Pareto-optimal signatures, and can
be efficiently computed by dynamic programming [17,16,10]. The Pareto-front
differs from the approach we describe in the present work in several aspects.
An advantage of the Pareto-front is that it is a notion irrespective of the type
of cost function being used. This contrasts with the polytope propagation tech-
nique, which requires that the cost function be a linear combination of its terms.
However, so far, the Pareto-approach has only been used to define a partition of
the parameter space when the cost function is restricted to be linear/affine, and
it remains to investigate the difference with the polytope approach in this case.
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Abstract. We consider the problem of sorting a circular permutation
by reversals of length at most 2, a problem that finds application in com-
parative genomics. Polynomial-time solutions for the unsigned version of
this problem are known, but the signed version remained open. In this
paper, we present the first polynomial-time solution for the signed ver-
sion of this problem. Moreover, we perform an experiment for inferring
distances and phylogenies for published Yersinia genomes and compare
the results with the phylogenies presented in previous works.

1 Introduction

Distance-based methods form one of the three large groups of methods to infer
phylogenetic trees from sequence data [8, Chapter 5]. Such methods proceed
in two steps. First, the evolutionary distance is computed for every sequence
pair and this information is stored in a matrix of pairwise distances. Then, a
phylogenetic tree is constructed from this matrix using a specific algorithm, such
as Neighbor-Joining [9]. Note that, in order to complete the first step, we need
some method to estimate the evolutionary distance between a sequence pair.
Assuming the sequence data correspond to complete genomes, we can resort to
the genome rearrangement approach [4] in order to estimate the evolutionary
distance.

In genome rearrangements, one estimates the evolutionary distance between
two genomes by finding the rearrangement distance between them, which is the
length of the shortest sequence of rearrangement events that transforms one
genome into the other. Assuming genomes consist of a single chromosome, share
the same set of genes, and contain no duplicated genes, we can represent them
as permutations of integers, where each integer corresponds to a gene. If, besides
the order, the orientation of the genes is also regarded, then each integer has a
sign, + or −, and the permutation is called a signed permutation (similarly, we
also refer to a permutation as an unsigned permutation when its elements do
not have signs). Moreover, if the genomes are circular, then the permutations
are also circular; otherwise, they are linear.
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A number of publications address the problem of finding the rearrangement
distance between two permutations, which can be equivalently stated as a prob-
lem of sorting a permutation into the identity permutation (for a detailed survey,
the reader is referred to the book of Fertin et al. [4]). This problem varies accord-
ing to the rearrangement events allowed to sort a permutation. Reversals are the
most common rearrangement event observed in genomes. They are responsible
for reversing the order and orientation of a sequence of genes within a genome.
Although the problem of sorting a permutation by reversals is a well-studied
problem, most of the works concerning it do not take into account the length of
the reversals (i.e. the number of genes affected by it). Since it has been observed
that short reversals are prevalent in the evolution of some species [1, 2, 7, 10],
recent efforts have been made to address this issue [3, 5].

In this paper, we add to those efforts and present a polynomial-time solution
for the problem of sorting a signed circular permutation by super short rever-
sals, that is, reversals which affect at most 2 elements (genes) of a permutation
(genome). This solution closes a gap in the literature since polynomial-time
solutions are known for the problem of sorting an unsigned circular permuta-
tion [3,6], for the problem of sorting an unsigned linear permutation [6], and for
the problem of sorting a signed linear permutation [5]. Moreover, we reproduce
the experiment performed by Egri-Nagy et. al. [3] to infer distances and phyloge-
nies for published Yersinia genomes, but this time we consider the orientation of
the genes (they have ignored it in order to treat the permutations as unsigned).

The rest of this paper is organized as follows. Section 2 succinctly presents the
solution developed by Jerrum [6] for the problem of sorting by cyclic super short
reversals. Section 3 builds upon the previous section and presents the solution for
the problem of sorting by signed cyclic super short reversals. Section 4 briefly ex-
plains how we can use the solutions described in Sect(s). 2 and 3 to solve the prob-
lem of sorting a (signed) circular permutation by super short reversals. Section 5
presents experimental results performed on Yersinia pestis data. Finally, Sect. 6
concludes the paper.

2 Sorting by Cyclic Super Short Reversals

A permutation π is a bijection of {1, 2, . . ., n} onto itself. A classical notation
used in combinatorics for denoting a permutation π is the two-row notation

π =

(
1 2 . . . n
π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. This notation indicates that π(1) = π1, π(2)
= π2, . . ., π(n) = πn. The notation used in genome rearrangement literature,
which is the one we will adopt, is the one-row notation π = (π1 π2 . . . πn). We
say that π has size n. The set of all permutations of size n is Sn.

A cyclic reversal ρ(i, j) is an operation that transforms a permutation π =
(π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the permutation π · ρ(i,
j) = (π1 π2 . . . πi−1 πj πj−1 . . . πi+1 πi πj+1 . . . πn) if 1 ≤ i < j ≤ n and
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transforms a permutation π = (π1 π2 . . . πi πi+1 . . . πj−1 πj πj+1 . . . πn) into

the permutation π · ρ(i, j) = (πj πj+1 . . . πn πi+1 . . . πj−1 πi πi−1 . . . π1) if 1

≤ j < i ≤ n. The cyclic reversal ρ(i, j) is called a cyclic k-reversal if k ≡ j − i
+ 1 (mod n). It is called super short if k = 2.

The problem of sorting by cyclic super short reversals consists in finding the
minimum number of cyclic super short reversals that transform a permutation
π ∈ Sn into ιn = (1 2 . . . n). This number is referred to as the cyclic super short
reversal distance of permutation π and it is denoted by d(π).

Let S(πi, πj) denote the act of switching the positions of the elements πi and
πj in a permutation π. Note that the cyclic 2-reversal ρ(i, j) can be alternatively
denoted by S(πi, πj). Given a sequence S of cyclic super short reversals and a
permutation π ∈ Sn, let RS(πi) be the number of cyclic 2-reversals of the type
S(πi, πj) and let LS(πi) be the number of cyclic 2-reversals of the type S(πk, πi).
In other words, RS(πi) denotes the number of times a cyclic 2-reversal moves
the element πi to the right and LS(πi) denotes the number of times a cyclic
2-reversal moves the element πi to the left. We define the net displacement of an
element πi with respect to S as dS(πi) = RS(πi) − LS(πi). The displacement
vector of π with respect to S is defined as dS(π) = (dS(π1), dS(π2), . . ., dS(πn)).

Lemma 1. Let S = ρ1, ρ2, . . ., ρt be a sequence of cyclic super short reversals
that sorts a permutation π ∈ Sn. Then, we have that

n∑

i=1

dS(πi) = 0, (1)

πi − dS(πi) ≡ i (mod n). (2)

Proof. Let LS be the number of times a cyclic super short reversal of S moves an
element to the left and let RS be the number of times a cyclic super short reversal
of S moves an element to the right. Then, LS =RS because a cyclic super reversal
always moves two elements, one for each direction. Therefore, we have that

∑n
i=1

dS(πi) =
∑n

i=1 (RS(πi) − LS(πi)) = RS − LS = 0 and equation 1 follows. The
equation 2 follows from the fact that, once the permutation is sorted, all of its
elements must be in the correct position. �

Note that, in one hand, we can think of a sequence of cyclic super short
reversals as specifying a displacement vector. On the other hand, we can also
think of a displacement vector as specifying a sequence of cyclic super short
reversals. Let x = (x1, x2, . . ., xn) ∈ Zn be a vector and π ∈ Sn be a permutation.
We say that x is a valid vector for π if

∑
i xi = 0 and πi − xi ≡ i (mod n).

Given a vector x = (x1, x2, . . ., xn) ∈ Zn and two distinct integers i, j ∈ {1,
2, . . ., n}, let r = i − j and s = (i + xi) − (j + xj). The crossing number of i
and j with respect to x is defined by

cij(x) =

{
|{k ∈ [r, s] : k ≡ 0 (mod n)}| if r ≤ s,
−|{k ∈ [s, r] : k ≡ 0 (mod n)}| if r > s.
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The crossing number of x is defined by C(x) = 1
2

∑
i,j |cij(x)|. Intuitively, if

S is a sequence of cyclic super short reversals that sorts a permutation π and
dS(π) = x, then cij(x) measures the number of times the elements πi and πj

must “cross”, that is, the number of cyclic 2-reversals of type S(πi, πj) minus
the number of cyclic 2-reversals of type S(πj , πi). Using the notion of crossing
number, Jerrum [6] was able to prove the following fundamental lemma.

Lemma 2 (Jerrum [6]). Let S be a minimum-length sequence of cyclic super
short reversals that sorts a permutation π ∈ Sn and let x ∈ Zn be a valid vector
for π. If dS(π) = x, then d(π) = C(x).

The Lemma 2 allows the problem of sorting a permutation π by cyclic super
short reversals to be recast as the optimisation problem of finding a valid vector
x ∈ Zn for π with minimum crossing number. More specifically, as Jerrum [6]
pointed out, this problem can formulated as the integer program:

Minimize C(x) over Zn

subject to
∑

i xi = 0, πi − xi ≡ i (mod n).

Although solving an integer program is NP-hard in the general case, Jerrum [6]
presented a polynomial-time algorithm for solving this one.

Firstly, Jerrum [6] introduced a transformation Tij : Zn → Zn defined as
follows. For any vector x ∈ Zn, the result, x′ = Tij(x), of applying Tij to x is
given by x′

k = xk for k /∈ {i,j}, x′
i = xi − n, and x′

j = xj + n. Lemma 3 shows
what is the effect of this transformation on the crossing number of a vector.

Lemma 3. Let x and x′ be two vectors over Zn such that x′ = Tij(x). Then,
C(x′) − C(x) = 2(n + xj − xi).

Proof. The proof of this lemma is given by Jerrum [6, Theorem 3.9]. We note,
however, that he mistakenly wrote that C(x′) − C(x) = 4(n + xj − xi). In other
words, he forgot to divide the result by 2. This division is necessary because the
crossing number of a vector is the half of the sum of the crossing numbers of its
indices. �

Let max(x) and min(x) respectively denote the maximum and minimum com-
ponent values of a vector x ∈ Zn. The transformation Tij is said to contract x
iff xi = max(x), xj = min(x) and xi − xj ≥ n. Moreover, Tij is said to strictly
contract x iff, in addition, the final inequality is strict. The algorithm proposed
by Jerrum [6] starts with a feasible solution to the integer program and performs
a sequence of strictly contracting transformations which decrease the value of
the crossing number. When no further strictly contracting transformation can be
performed, the solution is guaranteed to be optimal. This is because, as showed
by Jerrum [6], any two local optimum solutions (i.e solutions which admit no
strictly contracting transformation) can be brought into agreement with each
other via a sequence of contracting transformations. The detailed algorithm is
given below (Algorithm 1).

Regarding the time complexity of Algorithm 1, we have that line 1 and the for
loop of lines 2-4 take O(n) time. Jerrum [6] observed that none of the variables xi
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Data: A permutation π ∈ Sn.
Result: Number of cyclic super short reversals applied for sorting π.

1 Let x be a n dimension vector
2 for k = 1 to n do
3 xk ← πk − k
4 end
5 while max(x)−min(x) > n do
6 Let i,j be two integers such that xi = max(x) and xj = min(x)
7 xi ← xi − n
8 xj ← xj + n

9 end
10 return C(x)

Algorithm 1. Algorithm for sorting by cyclic super short reversals

changes value more than once, therefore the while loop iterates only O(n) times.
As the lines 6-8 take O(n) time, the while loop takes O(n2) time to execute.
Since we can compute the value of C(x) in O(n2) time, the overall complexity
of the algorithm is O(n2).

Note that, in this section, we have focused on the problem of computing the
cyclic super short reversal distance of a permutation rather than finding the
minimum number of cyclic super short reversals that sorts it. As Jerrum [6]
remarked, his proofs are constructive and directly imply algorithms for finding
the sequence of cyclic super short reversals.

3 Sorting by Signed Cyclic Super Short Reversals

A signed permutation π is a bijection of {−n, . . ., −2, −1, 1, 2, . . ., n} onto itself
that satisfies π(−i) = −π(i) for all i ∈ {1, 2, . . ., n}. The two-row notation for
a signed permutation is

π =

(
−n . . . −2 −1 1 2 . . . n
−πn . . . −π2 −π1 π1 π2 . . . πn

)
,

πi ∈ {1, 2, . . ., n} for 1 ≤ i ≤ n. The notation used in genome rearrangement
literature, which is the one we will adopt, is the one-row notation π = (π1 π2

. . . πn). Note that we drop the mapping of the negative elements since π(−i) =
−π(i) for all i ∈ {1, 2, . . ., n}. By abuse of notation, we say that π has size n.
The set of all signed permutations of size n is S±

n .
A signed cyclic reversal ρ(i, j) is an operation that transforms a signed permu-

tation π = (π1 π2 . . . πi−1 πi πi+1 . . . πj−1 πj πj+1 . . . πn) into the signed per-

mutation π · ρ(i, j) = (π1 π2 . . . πi−1 −πj −πj−1 . . . −πi+1 −πi πj+1 . . . πn) if 1

≤ i ≤ j ≤ n and transforms a signed permutation π = (π1 π2 . . . πi πi+1 . . . πj−1

πj πj+1 . . . πn) into the signed permutation π · ρ(i, j) = (−πj −πj+1 . . . −πn

πi+1 . . . πj−1 -πi −πi−1 . . . −π1) if 1 ≤ j < i ≤ n. The signed cyclic reversal
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ρ(i, j) is called a signed cyclic k-reversal if k ≡ j − i + 1 (mod n). It is called
super short if k ≤ 2.

The problem of sorting by signed cyclic super short reversals consists in finding
the minimum number of signed cyclic super short reversals that transform a
permutation π ∈ S±

n into ιn. This number is referred to as the signed cyclic
super short reversal distance of permutation π and it is denoted by d±(π).

Let S(|πi|, |πj |) denote the act of switching the positions and flipping the signs
of the elements πi and πj in a signed permutation π. Note that the signed cyclic 2-
reversal ρ(i, j) can be alternatively denoted by S(|πi|, |πj |). Given a sequence S of
cyclic signed super short reversals and a signed permutation π ∈ S±

n , letRS(πi) be
the number of signed cyclic 2-reversals of the type S(|πi|, |πj |) and let LS(πi) be
the number of signed cyclic 2-reversals of the type S(|πk|, |πi|). We define the net
displacement of an element πi with respect to S as dS(πi) =RS(πi)− LS(πi). The
displacement vector of π with respect to S is defined as dS(π) = (dS(π1), dS(π2),
. . ., dS(πn)). The following lemma is the signed analog of Lemma 1. We omit the
proof because it is the same as of the proof of Lemma 1.

Lemma 4. Let S = ρ1, ρ2, . . ., ρt be a sequence of signed cyclic super short
reversals that sorts a signed permutation π ∈ S±

n . Then, we have that

n∑

i=1

dS(πi) = 0, (3)

|πi| − dS(πi) ≡ i (mod n). (4)

Let x ∈ Zn be a vector and π ∈ S±
n be a signed permutation. We say that x

is a valid vector for π if
∑

i xi = 0 and |πi| − xi ≡ i (mod n). Given a valid
vector x for the signed permutation π, we define the set podd(π, x) as podd(π,
x) = {i : πi > 0 and |xi| is odd} and we define the set neven(π, x) as neven(π,
x) = {i : πi < 0 and |xi| is even}. Moreover, let U(π, x) denote the union of
these sets, that is, U(π, x) = podd(π, x) ∪ neven(π, x). The following lemma is
the signed analog of Lemma 2.

Lemma 5. Let S be a minimum-length sequence of signed cyclic super short
reversals that sorts a signed permutation π ∈ S±

n and let x ∈ Zn be a valid
vector for π. If dS(π) = x, then d±(π) = C(x) + |U(π, x)|.

Proof. Note that the sequence S can be decomposed into two distinct subse-
quences S1 and S2 such that S1 is formed by the signed cyclic 1-reversals of S
and S2 is formed by the signed cyclic 2-reversals of S. Moreover, we can assume
without loss of generality that the signed cyclic reversals of subsequence S2 are
applied first. We argue that |S1| = |U(π, x)| regardless the size of S2. To see
this, suppose that we apply a signed cyclic 2-reversal ρ(i, j) of S2 in π, obtain-
ing a signed permutation π′. Moreover, let S′ be the resulting sequence after we
remove ρ(i, j) from S. We have that dS′(π′

k) = dS(πk) for k /∈ {i,j}, dS′(π′
i) =

dS(πi) − 1, and dS′(π′
j) = dS(πj) + 1. Then, assuming the vector x′ ∈ Zn is
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equal to dS′(π′), we can conclude that U(π′, x′) = U(π, x) because ρ(i, j) has
changed both the parities of |xi| and |xj | and the signs of πi and πj . Since |S1|
= |U(π, x)| regardless the size of S2 and we know from Lemma 2 that |S2| ≥
C(x), we can conclude that |S2| = C(x), therefore the lemma follows. �

The Lemma 5 allows the problem of sorting a signed permutation π by signed
cyclic super short reversals to be recast as the optimisation problem of finding a
valid vector x ∈ Zn for π which minimizes the sum C(x) + |U(π, x)|. The next
theorem shows how to solve this problem in polynomial time.

Theorem 1. Let π ∈ S±
n be a signed permutation. Then, we can find a valid

vector x ∈ Zn which minimizes the sum C(x) + |U(π, x)| in polynomial time.

Proof. We divide our analysis into two cases:

i) n is even. In this case, we have that the value of |U(π, x)| is the same for
any feasible solution x. This is because, in order to be a feasible solution, a
vector x has to satisfy the restriction |πi| − xi ≡ i (mod n). This means that
xi is congruent modulo n with a = |πi| − i and belongs to the equivalent
class {. . ., a− 2n, a− n, a, a+ n, a+ 2n, . . .}. Since n is even, the parities
of the absolute values of the elements in this equivalence class are the same,
therefore the value of |U(π, x)| is the same for any feasible solution x. It
follows that we can only minimize the value of C(x) and this can be done
by performing successive strictly contracting transformations.

ii) n is odd. In this case, it is possible to minimize the values of |U(π, x)| and
C(x). Firstly, we argue that minimizing C(x) leads to a feasible solution x′′

such that C(x′′) + |U(π, x′′)| is at least as low as C(x′) + |U(π, x′)|, where
x′ can be any feasible solution such that C(x′) is not minimum. To see this,
let x′ be a feasible solution such that C(x′) is not minimum. Then, we can
perform a sequence of strictly contracting transformations which decrease
the value of C(x). When no further strictly contracting transformation can
be performed, we obtain a solution x′′ such that C(x′′) is minimum. On one
hand, we know from Lemma 3 that each strictly contracting transformation
Tij decreases C(x) by at least 2 units. On the other hand, since n is odd, its
possible that the parities of |xi| and |xj | have been changed in such a way
that the value of |U(π, x)| increases by 2 units. Therefore, in the worst case,
each strictly contracting transformation does not change the value of C(x)
+ |U(π, x)|, so C(x′) + |U(π, x′)| ≥ C(x′′) + |U(π, x′′)|. Now, we argue that,
if there exists more than one feasible solution x such that C(x) is minimum,
then it is still may be possible to minimize the value of |U(π, x)|.
Jerrum [6, Theorem 3.9] proved that if there is more than one feasible solu-
tion such that C(x) is minimum, then each of these solutions can be brought
into agreement with each other via a sequence of contracting transforma-
tions. Note that a contracting transformation Tij does not change the value
of C(x), but it can change the value of |U(π, x)| because n is odd and the
parities of |xi| and |xj | change when Tij is performed. This means that,
among all feasible solutions such that C(x) is minimum, some of them have
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minimum |U(π, x)| and these solutions are optimal. Therefore, we can obtain
an optimal solution by first obtaining a feasible solution with minimum C(x)
(this can be done by performing successive strictly contracting transforma-
tions) and then we can apply on it every possible contracting transformation
Tij which decreases the value of |U(π, x)|. �

The proof of Theorem 1 directly implies an exact algorithm for sorting by
signed cyclic super short reversals. Such an algorithm is described below (Al-
gorithm 2). Regarding its time complexity, we know from previous section that
lines 1-9 take O(n2) time. Since lines 13-23 take O(1) time, we can conclude that
the nested for loops take O(n2) times to execute. Finally, we can compute C(x)
+ |U(π, x)| in O(n2), therefore the overall complexity of Algorithm 2 is O(n2).

Data: A permutation π ∈ S±
n .

Result: Number of signed cyclic super short reversals applied for sorting π.

1 Let x be a n dimension vector
2 for k = 1 to n do
3 xk ← |πk| − k
4 end
5 while max(x)−min(x) > n do
6 Let i,j be two integers such that xi = max(x) and xj = min(x)
7 xi ← xi − n
8 xj ← xj + n

9 end
10 if n is odd then
11 for i = 1 to n− 1 do
12 for j = i+ 1 to n do
13 if xi > xj then
14 min ← j
15 max ← i

16 else
17 min ← i
18 max ← j

19 end
20 if xmax − xmin = n and min ∈ U(π, x) and max ∈ U(π, x) then
21 xmax ← xi − n
22 xmin ← xj + n

23 end

24 end

25 end

26 end
27 return C(x) + |U(π, x)|

Algorithm 2. Algorithm for sorting by signed cyclic super short reversals
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Note that, in this section, we have focused on the problem of computing the
signed cyclic super short reversal distance of a signed permutation rather than
finding the minimum number of signed cyclic super short reversals that sorts it.
We remark that the proofs are constructive and directly imply algorithms for
finding the sequence of signed cyclic super short reversals.

4 Sorting Circular Permutations

In this section, we briefly explain how we can use the solution for the problem of
sorting by (signed) cyclic super short reversals to solve the problem of sorting a
(signed) circular permutation by super short reversals. This explanation is based
on Sect. 2.3 of the work of Egri-Nagy et al. [3] and on Sect. 2.5 of the book of
Fertin et al. [4], where one can find more details.

Note that a circular permutation can be “unrolled” to produce a linear per-
mutation, such as defined in the two previous sections. This process can produce
n different linear permutations, one for each possible rotation of the circular
permutation. Moreover, since a circular permutation represents a circular chro-
mosome, which lives in three dimension, it can also be “turned over” before being
unrolled. This means that, for each possible rotation of the circular permuta-
tion, we can first turn it over and then unroll it, producing a linear permutation.
Again, this process can produce n different linear permutations. The n linear
permutations produced in the first process are different from the n linear per-
mutations produced in the second process, thus both processes can produce a
total of 2n different linear permutations. Each of these 2n linear permutations
represents a different viewpoint from which to observe the circular permutation,
therefore they are all equivalent.

The discussion of the previous paragraph leads us to conclude that, in order
to sort a (signed) circular permutation by super short reversals, we can sort
each of the 2n equivalent (signed) linear permutations by (signed) cyclic super
short reversals, generating 2n different sorting sequences. Then, we can take the
sequence of minimum length as the sorting sequence for the (signed) circular
permutation and the super short reversal distance of the (signed) circular per-
mutation is the length of this sequence. Note that this procedure takes O(n3)
time because we have to execute Algorithm 1 or Algorithm 2 O(n) times.

5 Experimental Results and Discussion

We implemented the procedure described in the previous section for comput-
ing the super short reversal distance of a signed circular permutation and we
reproduced the experiment performed by Egri-Nagy et. al. [3] for inferring dis-
tances and phylogenies for published Yersinia genomes. In fact, we performed
the same experiment, except that we considered the orientation of the genes
rather than ignoring it and we considered that each permutation has 78 elements
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rather than 791. More specifically, we obtained from Darling et al. [2] the signed
circular permutations which represent eight Yersinia genomes. Then, we com-
puted the super short reversal distance between every pair of signed circular
permutation and this information was stored in a matrix of pairwise distances
(Table 1). Finally, a phylogenetic tree was constructed from this matrix using
Neighbor-Joining [9] method. The resulting phylogeny is shown in Fig. 1.

Table 1. Matrix of the super short reversal distances among the signed circular per-
mutations which represent the Yersinia genomes. The names of the species were ab-
breviated so that YPK refers to Y. pestis Kim, YPA to Y. pestis Antiqua, YPM to Y.
pestis Microtus 91001, YPC to Y. pestis CO92, YPN to Y. pestis Nepal516, YPP to
Y. pestis Pestoides F 15-70, YT1 to Y. pseudotuberculosis IP31758, and YT2 to Y.
pseudotuberculosis IP32953.

YPK YPA YPM YPC YPN YPP YT1 YT2

YPK 0 243 752 205 338 533 764 760
YPA 243 0 772 352 279 510 724 773
YPM 752 772 0 728 747 643 361 385
YPC 205 352 728 0 381 656 776 760
YPN 338 279 747 381 0 547 617 624
YPP 533 510 643 656 547 0 434 457
YT1 764 724 361 776 617 434 0 189
YT2 760 773 385 760 624 457 189 0

Considering the pair of Y. pseudotuberculosis as outgroup, the obtained phy-
logeny shows that Y. pestis Microtus 91001 was the first to diverge. It was fol-
lowed then by the divergences of Y. pestis Pestoides F 15-70, Y. pestis Nepal516,
Y. pestis Antiqua and the final divergence of Y. pestis Kim and Y. pestis CO92.
This result is different of the one obtained by Egri-Nagy et. al. [3] which used
super short reversal distance between unsigned permutations. On their results,
the divergence of Y. pestis Nepal516 happened before the divergence of Y. pestis
CO92 which occurred previous to the divergence of Y. pestis Kim and Y. pestis
Antiqua.

In our work and in the work of Egri-Nagy et. al. [3], the use of super short
reversals resulted on topologies which are different from the one of Darling et
al. [2], which considered inversions of any size. The first difference observed on
the result of Darling et al. [2] is that Y. pestis Pestoides F 15-70 diverged before
Y. pestis Microtus 91001. The second difference shows that Y. pestis Nepal516
is sibling of Y. pestis Kim, that Y. pestis CO92 is sibling of Y. pestis Antiqua

1 In their article, Darling et al. [2] state that they could identify 78 conserved segments
(or blocks) using Mauve, but they provided permutations with elements ranging from
0 to 78. In a personal communication, Darling confirmed that there are actually 78
blocks, with 0 and 78 being part of the same block. Nevertheless, we performed
another experiment, this time considering the permutations have 79 elements. Al-
though the distances were greater, the topology of the tree was the same.
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Fig. 1. Phylogeny of the Yersinia genomes based on the super short reversal distance
of the signed circular permutations.

and that these four bacteria have a common ancestor that is descendant of Y.
pestis Microtus 91001.

If we look to the branch lengths of the two trees obtained with super short
reversal distances and we compare with the branch lengths of the topology ob-
tained by Darling et al. [2], we can see that our results are more consistent than
the one obtained by Egri-Nagy et al. [3]. For instance, on our results the distance
between the two Y. pseudotuberculosis is smaller than the one observed between
the pair Y. pestis Kim and Y. pestis Antiqua, what agrees with the configuration
obtained by Darling et al. [2].

6 Conclusions

In this paper, we presented a polynomial-time solution for the problem of sort-
ing a signed circular permutation by super short reversals. From a theoretical
perspective, this solution is important because it closes a gap in the literature.
From a biological perspective, it is important because signed permutations con-
stitute a more adequate model for genomes. Moreover, we performed an exper-
iment to infer distances and phylogenies for published Yersinia genomes and
compared the results with the phylogenies presented in previous works [2, 3].
Our obtained topology is similar to the one obtained by Egri-Nagy et. al. [3].
However, the distances calculated with our algorithm are more consistent with
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the topology obtained by Darling et al. [2]. Some theoretical questions remain
open (for instance, the diameter of the super short reversal distance for signed
permutations), and we intend to address them in our future research.
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Abstract. Multiple Structure Alignment (MStA) is a fundamental
problem in Computational Biology and proteomics in particular. There-
fore, a number of algorithms have been proposed, chief among which
are MUSTANG, POSA, MultiProt, CE-MC. In this paper we propose
a new algorithm MASCOT that imitates the center-star algorithm for
multiple sequence alignment. We report the root mean square devia-
tions (RMSD) and execution times for a large number of alignments and
discuss their significance. We also include a comparison of the execu-
tion times of MASCOT with the well-known and widely-used algorithm
MUSTANG.

1 Introduction

Multiple Structure Alignment (MStA) is a fundamental problem in Compu-
tational Biology, and proteomics in particular, in view of the applications to
homology modelling, molecular replacement, finding conserved structures in pro-
tein families to name a few. Thus it has been the focus of extensive research by
computational biologists. The multiple alignment problem is more challenging
than pairwise alignment even for sequences, and we resort to heuristics to find
as best an approximation as possible, in polynomial time. In view of the rapid
growth of the Protein Data Bank [1], the need for fast, robust and reliable MStA
algorithms can hardly be overstated.

Based on the technique used, MStA algorithms fall into roughly one of four
categories. MUSTANG [2], msTali [3], and CE-MC [4] imitates the progressive
alignment approach used for multiple sequence alignment. Despite their suc-
cesses, these algorithms suffer from the disadvantages inherent to this technique,
such as not guaranteeing convergence to the global optimum. Algorithms based
on other approaches, [5] [6], often outperform the progressive ones, both in speed
and accuracy. A second approach is to optimize a consensus structure, sometimes
with several iterations, and report a common core of the input proteins. The
goal is to find out a structurally conserved subset of residues among the pro-
teins to gain some insight into their evolutionary origins. However, such cores
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c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 284–296, 2015.
DOI: 10.1007/978-3-319-19048-8_24



Multiple Alignment of Structures Using Center Of ProTeins 285

are often pseudo-structures that, although geometrically interesting, may not
have any biological significance. MATT [5], MultiProt [7], Mass [8], Mapsci [9],
and Smolign [10] belong to this category of MStA algorithms. Ye and Godzik’s
graph-based POSA [6] takes a totally different path by representing a protein
as a directed acyclic graph (DAG) of residues, connected in the order following
the backbone. POSA then creates a combined non-planar, multi-dimensional
DAG, taking hinge rotation into account, to come up with residue equivalences
among the input proteins. Though POSA is novel in incorporating the flexibility
of protein structures, it is known to completely miss motifs on TIM-barrel and
helix-bundle proteins [10], and incur a higher cost of alignment than for exam-
ple, MATT or Smolign [10]. The pivot-based approach selects one of the input
molecules, ‘closest’ to all the other proteins as the pivot. The remaining proteins
are then iteratively aligned to the pivot either in a bottom-up [11], or in a top-
down manner [12] to come up with residue-residue correspondences that are later
used to minimize some objective function and derive a score as a similarity mea-
sure. Some of the few published algorithms in this category, are Mistral [13], [11],
and [12]. Our approach is an adaptation of the center-star method for producing
a multiple sequence alignment (MSA) to the MStA problem.

In this paper we introduce a new algorithm,MASCOT (acronym forMultiple
Alignment of Structures using Center Of proTeins), for aligning two or more
protein structures. Our algorithm takes advantage of the linear structure of the
protein polypeptide chain, while judiciously preserving the secondary structure
elements (SSEs). The justification for this approach is that SSEs are funda-
mental components of protein structures, serving as a well-preserved scaffold.
As a result, SSEs are evolutionarily remarkably conserved while mutations af-
fect the loops, thus modifying functionality. For example, the substrate speci-
ficity of different serine proteases is governed by the conformation of the binding
loops [14]. Further, representing protein structures by their SSEs has been suc-
cessfully used on several previous occasions for the pairwise alignment problem
( [15], [16], [17]; [18], [19]). Our goal is to develop a fast algorithm that uses
these sequences of SSEs and produces a multiple alignment with high accuracy.
Thus we have designed MASCOT as a hybrid algorithm that uses a center pro-
tein, obtained by minimizing a sum pairwise-distances, to drive a layout that
identifies a set of residues from each protein that are similar. We then proceed
to find an optimal correspondence among the backbone carbon atoms of these
molecular structures, using inter-residue Euclidean distance threshold, and re-
port the centerRMSD (cRMSD)of the structures aligned in space as a measure
of similarity. We also include a comparison of the execution times of MASCOT
with the well-known and widely-used algorithm MUSTANG.

2 Method

2.1 Input Data Set

Protein structures are stored as PDB files in the Protein Data Bank [1], which
currently contains more than 99000 structures and is growing rapidly. The data
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can come from standard protein databases available, or from a local repository.
Either way, the first step is to retrieve the correct data and suitably preprocess
it for the algorithm to proceed. This is a tedious but important step as we might
have to align thousands of macromolecules, and we must then ensure that all
the requisite molecules are fetched and ready for the next step. For example,
an input set could be 1AOR:A 7ACN 2ACT 1TTQ:B etc. As we can see, with
inputs having such varied descriptions, in order to supply the right data to the
algorithm, the preprocessing step is an important and crucial one.

2.2 Representing the Proteins

Once we have the correct input set, we take each protein in turn and represent
it in a way that makes further processing convenient, while retaining all vital
information. The following observations are factored into this key step towards
obtaining a robust and fast multiple alignment algorithm.

(a) Too simple a representation could potentially miss crucial structural and
functional information, whereas too complex a representation will demand
innovative methods at every turn; Thus while a primary sequence is the
simplest possible representation, it is well-known that they do not necessar-
ily determine functionality. At the other extreme, POSA uses partial order
graphs, while mulPBA uses PROFIT elements.

(b) Distinguish between equal and unequal length proteins; for equal length
proteins we can represent the proteins by their coordinates and apply, for
example, the algorithm of Panigrahi et. al [20]. Otherwise, we have available
Janardan’s method [12] that handles unequal length proteins by representing
a protein as a set of vectors using gap vectors for a gap alignment.

(c) Speed of performance is crucial.

Thus, to strike a balance between complexity and functionality, we represent
the proteins by motif sequences based on DSSP-program [21] output, assigning
each residue to one of eight possible structural motifs (see Table 1). Simply put,
we use the linear structure of the protein to stretch it out into a straight line,
keeping the SSEs intact. For example, a DSSP representation of the protein SEA
CUCUMBER CAUDINA (1HLM) is as below.

...HHHHGGGZZIIIITTHHHHHHTTSSI...

This approach, we believe, captures the biological essence of the problem.
The main advantage of this is that we are now free to use a host of pattern

matching algorithms that can compute an optimal alignment given any two such
sequences. We exploit this observation in the next step.

2.3 Pairwise Global Alignment

First, we obtain the global alignment of every pair of the N DSSP sequences,
corresponding to the N input proteins. For this we apply the Needleman Wun-
sch algorithm [22] with appropriate affine gap opening penalty, and the scoring
matrix in Table 2.
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Table 1. The DSSP code

Symbol Motif

H Alpha Helix

B Beta bridge

G Helix 3

E Beta strand

T Turn

S Bend

I Helix 5

Z No motif

Table 2. Scoring Matrix

− H B G E T S I Z

H 1 0 1 0 0 0 1 0

B 0 1 0 1 0 0 0 0

G 1 0 1 0 0 0 1 0

E 0 1 0 1 0 0 0 0

T 0 0 0 0 1 1 0 0

S 0 0 0 0 1 1 0 0

I 1 0 1 0 0 0 1 0

Z 0 0 0 0 0 0 0 1

These pairwise alignments produce a primitive picture of SSE-SSE alignments.
For example, pairwise alignments of the DSSP-based sequences of the globins
1DM1, 1MBC, 1MBA generate the following output.

1DM1 ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHSGGG-...

1MBA ..ZZZHHHHHHHHHHHHHHHHT-HHHHHHHHHHHHHHHZGGG...

1DM1 ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHH-SGGG...

1MBC ..ZZZHHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHHZTHHH...

1MBC ..ZZZHHHHHHHHHHHHHHGGGHHHHHHHHHHHHHHHZTHH-H...

1MBA ..ZZZHHHHHHHHHHHHHHHHTHHHHHHHHHHHHHHHZGGGGG...

We can see that the helices are properly aligned against one another. These
alignments are saved in a list and referred to when needed.

2.4 Center Protein

As in the center star method [23] for multiple sequence alignment, an N ×
N symmetric matrix is created (see Table 3) whose entries are edit distances
between aligned pairs in the list mentioned above.

From this matrix we find the sum-of-pairs score (SP-score) and the center
protein using the following equation.

Pc = mini

N∑

j=1

EditDistance(Pi, Pj) (1)

A protein having the minimum SP-score is chosen as the center protein, Pc,
with respect to which other proteins are aligned. An edit-distance matrix for the
globins 1DM1, 1MBC, 1MBA is shown in Table 4 from which it is easy to see that
the globin 1DM1 with SP-score of 41 can be chsoen as the center protein, Pc.
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Table 3. A sample edit-distance matrix

− P1 P2 . . . PN

P1 0 10 . . . 20

P2 10 0 . . . 30
... · · · · · · · · ·

...

PN 20 30 · · · 0

Table 4. Edit-distance matrix for the globins 1DM1, 1MBC, 1MBA

1DM1 1MBC 1MBA

1DM1 0 37 4

1MBC 34 0 35

1MBA 7 35 0

Many MStA algorithms calculate a consensus structure in place of a real
protein in the hope of finding a common core. MUSTANG, MultiProt, Janaradan
[12], all attempt to obtain a template structure to drive their alignment process.
However, it should be noted that a consensus structure, while geometrically and,
perhaps, computationally convenient, may turn out to be a pseudo-structure,
bereft of any biological significance. Thus we have chosen to work with an actual
protein to drive the alignment.

2.5 Correspondence Matrix

Formally, a correspondence matrix is an N × l matrix with respect to a center
protein Pc in the set of input proteins, P = {P1, P2, . . . , PN} such that

max(|P1|, |P2|, . . . , |PN |) ≤ l ≤ |P1|+ |P2|+ · · ·+ |PN |

with the following properties:

(a) The ith row contains the DSSP-based sequence of protein Pi, with gaps.
(b) No column consists entirely of gaps
(c) Gives a good idea of residue equivalences to work with, should we have to

apply rigid body superposition.

In this step, all alignment pairs betweenPc and every other protein are retrieved
from the saved list, and merged sequentially, using the following algorithm:

A sample correspondence matrix for the globin family is shown in Fig. 1.
We can clearly see how the SSEs of all the proteins are aligned together in a
column-wise fashion.

At this point we have identified conserved regions across all the proteins, but
not aligned them in any way. Janaradan’s method [12] reaches a similar result,
creating a correspondence matrix by carefully manipulating vectors.
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Algorithm. Correspondence Matrix

Require: Protein DSSP sequences S1, S2 upto SN

Ensure: MSA of Sequences S1 to SN

for all i = 1...N − 1 do
use the alignment pair (Sc, Si) and MSA(Sc, S1, S2, . . . , Si−1) to obtain

MSA(Sc, S1, S2, . . . , Si) following the ’once a gap, always a gap’ rule

Fig. 1. A correspondence matrix [Notice there are no columns with gaps in all rows.]

The result is an MSA of DSSP-based sequences Si for proteins Pi, 1 ≤ i ≤ N .
The output of this step is used to identify as many residue equivalences as
possible given the raw protein structures. To actually align them in 3D space we
feed this output to the next step.

2.6 Rigid Body Superposition

To generate the spatial alignment of a set of input proteins we have to apply the
proper translation and rotation so that the distance between the alpha carbon
atoms of equivalent residues is below a threshold value. For this we need a set of
equivalences, and a reference frame against which the rigid body superposition is
to take place. We have both: the correspondence matrix from phase 2 gives us the
residue-residue equivalences, and our chosen center protein is the reference frame.
So, if the correspondence is as in Table 5, some annotated equivalences between
the center protein and the other protein are (1,3) (2,4) (4,5) (5,6) and (6,8).

For each protein Pi we apply Kabsch’s method [24] to superpose the structures
in space with respect to the center protein Pc. For example, the spatial alignment
of the globins 1DM1, 1MBC, 1MBA (see Figs. 2, 3, 4) generated by our algorithm
is shown in Fig. 5.

Residue no. 1 2 3 4 5 6

Center protein - - H H T I E - G

Other protein S S H H - G E E I

Residue no. 1 2 3 4 5 6 7 8

Table 5. Identifying equivalences
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Fig. 2. 1DM1 Fig. 3. 1MBC Fig. 4. 1MBA

Fig. 5. Alignment of 1DM1, 1MBC, and 1MBA

2.7 Dynamic Programming and Scoring

Once the proteins are spatially aligned by rigid body superposition, equivalent
residues have been brought close to each other. We increase the number of equiv-
alences between a pair of proteins by calculating the Euclidean distance between
every pair of alpha carbon atoms, and declare the ones that fall within a thresh-
old value(5Å) as equivalent pairs.

Finally, we use the following formula to derive the centerRMSD (cRMSD)
that represents the quality of the alignment.

1

N − 1

N∑

i=1,i�=c

RMSD(Pi, Pc)

A good alignment is one where the score is typically less than half the threshold
value(2.5Å). However, difficult alignments having biological relevance can exceed
this value by about 1.5Å. The cRMSD value of the alignment in Fig. 5 is 0.44Å.

2.8 Pseudocode

A pseudo-code version of our algorithm is described below.
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Algorithm. MASCOT

Require: Protein pdbids : (pdbid1, pdbid2, · · · , pdbidN)
Ensure: Multiple alignment of proteins with files created for pdbids1...N

� Phase 1

1: Extract protein structures into P = {P1, P2, . . . , PN}
2: Represent P by corresponding DSSP-based sequences S = {S1, S2, . . . , SN} con-

sisting of DSSP-defined SSE motifs
3: Perform pairwise global alignment of every (Si, Sj) pair, using custom similarity

matrix
� Phase 2

4: Create an edit-distance matrix that stores the distances between every (Pi, Pj)
using a custom scoring function

5: Choose the protein(sequence) with index c having minimum SP-score as the center
protein(sequence) Pc(Sc)

6: Create an MSA of S w.r.t Sc using the center-star approach
� Phase 3

7: Treat all alignments of symbols with non-gaps as residue-residue equivalences of
the pair (Pi, Pj)

8: Apply Kabsch’s method to every (Pi, Pc) pair to obtain (transi, roti) for this pair
9: Use (transi, roti) from Step 8 to transform and place Pi in space, with Pc being

brought to origin first, to produce output pdb files

3 Results and Discussion

MASCOT was implemented in Python 2.7.5 using packages from Bio-python
2.0 on an Alienware laptop-Intel corei7 CPU, 3 GHz and 8 GB RAM, running
under Fedora(64 bit). A large variety of experiments were conducted, among
which a representative set of 7 results have been presented here. Due to space
constraints, the results of another set of six experiments have been relegated
to the arXiv report CoRR abs/1412.8093 (2014) [25]. Note that TT and TG

represents the time taken right from giving the input to producing the output
files for MASCOT and MUSTANG respectively.

3.1 Globins

Globins are some of the most rigorously studied proteins by the MStA com-
munity. The globin family has long been known from studies of approximately
150-residue proteins such as vertebrate myoglobins and haemoglobins. The fol-
lowing globins have been aligned using MASCOT:
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Table 6. The table below shows the globins used in this section

Name PDB ids Count TT TG

Set 1 1HHO:A 2DHB:A 2DHB:B 1HHO:B 1MBD 1DLW 1DLY 1ECO
1IDR:A 2LH7

10 23s 29s

Set 2 1MBC 1MBA 1DM1 1HLM 2LHB 2FAL 1HBG 1FLP 1ECA 1ASH 10 24s 26s

Set 3 5MBN 1ECO 2HBG 2LH3 2LHB 4HHB:B 4HHB:A 7 13s 13s

Set 4 1ASH 1ECA 1GDJ 1HLM 1MBA 1BAB:A 1EW6:A 1H97:A
1ITH:A 1SCT:A 1DLW:A 1FLP 1HBG 1LHS 1MBC 1DM1 2LHB
2FAL 1HBG 1FLP

20 1m 38s 1m 47s

Fig. 6. Set 1 Fig. 7. Set 2 Fig. 8. Set 3 Fig. 9. Set 4

Set 1 is used by [13], and [10] to show how their algorithms align globins.
The cRMSD for this superposition is 2.765Å. Set 2, taken from [12], has been
aligned with an cRMSD of 2.39Å. Set 3 is [7]’s test data with cRMSD 2.41Å.
Set 4 is a custom assortment of 20 globins created from [26] and [9]. The purpose
is to see how well they are aligned visually and with how much cRMSD. As one
can see, the helices and the hinges are placed within the threshold distance as
much as possible, with cRMSD 2.038Å.

3.2 Serpins

Serpins play an important role in the biological world. For instance, thyroxine-
hinding globulin is a serpine which transports hormones to various parts of the
body, and Maspin is a serpine which controls gene expression of certain tumors
[27]. The name Serpin stands for Serine Protease Inhibitors. The following serpins
have been aligned using MASCOT:

Table 7. The table below shows the serpins used in this section

Name PDB ids Count TT TG

Set 5 7API:A 8API:A 1HLE:A 1OVA:A 2ACH:A 9API:A 1PSI 1ATU
1KCT 1ATH:A 1ATT:A 1ANT:L 2ANT:L

13 3m 33s 4m 14s
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Fig. 10. Set 5 Fig. 11. Set 5 LIPR

The serpins in set 5 is the same one used by [7] and is said to be quite
difficult owing to their large size and motif distribution. Unlike [7] we do not
attempt to find a common core. Instead, we perform a global alignment over the
length of the proteins. Fig. 10 shows how the beta sheets, hinges, and helices
are aligned together in spite of the difficulty. Also some non-alignable parts have
been correctly identified and left out. The cRMSD for this alignment is 2.99Å.
Fig. 11 is a low intensity PyMol rendition (LIPR) of the same alignment viewed
from another angle. It uses a ribbon representation to condense the output and
show most of the aligned portions of the proteins. The pictures suggest that all
these serpins share functionality and purpose, within the body. We can club all
these proteins into a single family, and keep adding to it as and when such high
similarities are found.

Fig. 12. Set 6 Fig. 13. Set 6 LIPR Fig. 14. Set 7

3.3 Barrels

The eight-stranded TIM-barrel is found in a lot of enzymes, but the evolutionary
history of this family has been the subject of rigorous debate. The ancestry of
this family is still a mystery. Aligning TIM-barrel proteins will allow us to add to
this ever-expanding family. The proteins aligned in this category are as follows:

MASS [8] has used the 66 molecules in set 6 to show how it aligns proteins
with barrels. MASCOT produces an cRMSD of 3.4Å for this alignment. Fig. 12
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Table 8. The table below shows the barrels used in this section

Name PDB ids Count TT TG

Set 6 1A49:A 1A49:B 1A49:C 1A49:D 1A49:E 1A49:F 1A49:G 1A49:H
1A5U:A 1A5U:B 1A5U:C 1A5U:D 1A5U:E 1A5U:F 1A5U:G
1A5U:H 1AQF:A 1AQF:B 1AQF:C 1AQF:D 1AQF:E 1AQF:F
1AQF:G 1AQF:H 1F3X:A 1F3X:B 1F3X:C 1F3X:D 1F3X:E
1F3X:F 1F3X:G 1F3X:H 1PKN 1F3W:A 1F3W:B 1F3W:C
1F3W:D 1F3W:E 1F3W:F 1F3W:G 1F3W:H 1PKM 1PKL:A
1PKL:B 1PKL:C 1PKL:D 1PKL:E 1PKL:F 1PKL:G6 1PKL:H
1A3W:A 1A3W:B 1A3X:A 1A3X:B 1E0T:A 1E0T:B 1E0T:C
1E0T:D 1PKY:A 1PKY:B 1PKY:C 1PKY:D7 1E0U:A 1E0U:B
1E0U:C 1E0U:D

66 2h 25m 2h 32m

Set 7 1SW3:A 1SW3:B 1WYI:A 1WYI:B 2JK2:A 2JK2:B 1R2T:A
1R2T:B 1R2R:A 1R2R:B 1M5W:A 1M5W:B 1M5W:C

13 1m 22s 1m 26s

shows how the new algorithm can superimpose proteins having the TIM barrel
supermotifs. Fig. 13 is an LIPR of the same alignment, for convenience. The
result indicates these proteins have structurally highly conserved regions since
all 8 helices and 8 beta sheets have been aligned. Set 7 has been taken from the
gold standard manually curated SCOP database. The proteins are taken from
different superfamilies but, as Fig. 14 suggests, MASCOT is still able to align
the barrel motifs on top of each other, with an cRMSD of 3.76Å.

4 Conclusions

MASCOT is a fast and elegant algorithm that succeeds in overcoming the major
hurdles inherent in the multiple structure alignment problem by using a sum-of-
pairs heuristic to choose a center protein and aligning all the other proteins with
it. The excellent cRMSD scores obtained in a variety of experiments support
our claim.

MASCOT can be extended to include the following functionalities in future:

1. Improve accuracy for aligning theoretical proteins.

2. Incorporate protein flexibility into the algorithm.

3. Derive a common core structure from the aligned input proteins for use as
a template for protein threading.

A web application based on MASCOT has been developed by an University of
Windsor undergraduate student Michael Salvadore. It will soon be made publicly
available.

Acknowledgement. The authors wish to acknowledge the anonymous reviewers for
their helpful comments.
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Abstract. In the era of modern sequencing technology, we are collecting
a vast amount of biological sequence data. The technology to store, pro-
cess, and analyze the data is not as cheap as to generate the sequencing
data. As a result, the need for devising efficient data compression and
data reduction techniques is growing by the day. Although there exist
a number of sophisticated general purpose compression algorithms, they
are not efficient to compress biological data. As a result, we need spe-
cialized compression algorithms targeting biological data. Five different
NGS data compression problems have been identified and studied. In
this article we propose a novel algorithm for one of these problems. We
have done extensive experiments using real sequencing reads of various
lengths. The simulation results reveal that our proposed algorithm is in-
deed competitive and performs better than the best known algorithms
existing in the current literature.

1 Introduction

Nowadays Next Generation Sequencing (NGS) technologies are producing mil-
lions to billions of short reads simultaneously in a single run. To process and an-
alyze the sequencing reads, at first we need to efficiently store this vast amount
of data. Specifically the increase in sequencing data generation rate is outpacing
the rate of increase in disk storage capacity. Furthermore, when the size of the
data transmitted through the internet increases, the transmission cost and con-
gestion in the network also increase. Thus it is vital to devise efficient algorithms
to compress biological data. General purpose algorithms do not consider some
inherent properties of sequencing data, e.g., repetitive regions, identical reads,
etc. Exploiting these properties one can devise better algorithms compared to
general purpose data compression algorithms. In this paper we offer a novel al-
gorithm to compress biological sequencing reads effectively and efficiently. Our
algorithm achieves better compression ratios than the currently best performing
algorithms in the domain of reads compression. By compression ratio we mean
the ratio of the uncompressed data size to the compressed data size.

The following five versions of compression have been identified in the litera-
ture: 1) Genome compression with a reference. Here we are given many (hope-
fully very similar) genomic sequences. The goal is to compress all the sequences
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using one of them as the reference. The idea is to utilize the fact that the se-
quences are very similar. For every sequence other than the reference, we only
have to store the difference between the reference and the sequence itself; 2)
Reference-free Genome Compression. This is the same as problem 1, except that
there is no reference sequence. Each sequence has to be compressed indepen-
dently; 3) Reference-free Reads Compression. Reference-free reads compression
algorithms are needed in biological applications where there is no clear choice for
a reference; 4) Reference-based Reads Compression. In this technique complete
read data need not be stored but only the variations with respect to a reference
genome are stored; and 5) Metadata and Quality Scores Compression. In this
problem we are required to compress quality sequences associated with reads as
well as metadata such as read name, platform, and project identifiers.

In this paper we focus on problem 3. We present an effective reference-free
reads compression algorithm namely NRRC: Non-Referential Reads Compres-
sion Algorithm. This algorithm takes any FASTQ file as input and outputs the
compressed reads in FASTA format. To begin with, reads are clustered based on
a hashing scheme. Followed by this clustering, a representative string is chosen
from each cluster of reads. Compression is independently done for each cluster.
In particular, the representative string in any cluster is used as a reference to
compress the other reads in this cluster. Simulation results show that our pro-
posed algorithm performs better than the best known algorithms existing in the
current literature.

The rest of this paper is organized as follows: Section 2 has a literature survey.
Section 3 describes the proposed algorithm and analyses its time complexity. Our
experimental platform is explained in Section 4. This section also contains the
experimental results and discussions. Section 5 concludes the paper.

2 Related Works

We now briefly survey some of the algorithms that have been proposed in the
literature to solve the problems of biological data compression.

In referential genome compression the goal is to compress a set S containing a
large number of similar sequences. The core idea of reference-based compression
can be described as follows. We first choose a reference sequence R from S. Then
we compress every other sequence s ∈ S by comparing it with R. Brandon et al.
[3] have used various coders like Golomb, Elias, and Huffman to encode the mis-
matches. Christley, et al. [8] have proposed theDNAzip algorithmthat exploits the
human population variation database, where a variant can be a single-nucleotide
polymorphism (SNP) or an indel (an insertion or a deletion of multiple bases). In
contrast to DNAzip, Wang et al. [28] have presented a de novo compression pro-
gram, GRS, which obtains variation information by using a modified UNIX diff
program. The algorithm GReEn [24] employs a probabilistic copy model that cal-
culates target base probabilities based on the reference. Given the base probabili-
ties as input, an arithmetic coder was then used to encode the target.

Reference-free genome compression algorithms compress a single sequence at a
time by identifying repeats in the given sequence and replacing these repeats with
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short codes. For example, BioCompress [12] and BioCompress-2 [13] methods are
based on Lempel-Ziv (LZ) style substitutional algorithm to compress exact re-
peats and palindromes. BioCompress-2 also utilizes an order-2 context-based
arithmetic encoding scheme to store the non-repetitive regions. Alternatively,
GenCompress [6] and DNACompress [7] identify approximate repeats and palin-
dromes so that a large fraction of the target sequence can be compressed to get
a high compression ratio. Similarly GeNML [17] divides a sequence into blocks
of fixed size. Then, blocks rich in approximate repeats are encoded with an effi-
cient normalized maximum likelihood (NML) model; otherwise, plain or order-1
context based arithmetic encoding is used. Some other well-known reference-free
genome compression algorithms are BIND [2], DELIMINATE [21], COMRAD
[18], DNAEnc3 [22], and XM [5].

Reads compression methods can also be categorized into reference-based and
non reference-based, similar to genome compression techniques. Next we survey
some of the non-referential reads compression algorithms. Tembe et al. [27] pro-
posed G-SQZ method. At first G-SQZ computes the frequency of each unique
tuple formatted as <base, quality>. Huffman coding scheme is then used to en-
code each tuple. The more frequent a tuple is the less number of bits is needed to
encode it. At the final step the encoded tuples along with metadata are written
to a file in binary format. In DSRC algorithm [10] input is divided into blocks of
32 records. Every 512 blocks are then grouped to make a superblock. Each of the
superblocks is then indexed and compressed independently using LZ77 coding
scheme. An arithmetic encoding scheme based on high order Markov chains is
used by Quip [15] to compress the input sequences. Bonfield and Mahoney [1]
proposed Fqzcomp and Fastqz where the sequences are compressed by using an
order-N context model and an arithmetic coder. BEETL proposed by Coax et
al. [9] identifies repeats among the reads using the Burros-Wheeler Transform
(BWT) data structure [4]. General purpose compression algorithms (like gzip,
bzip2, or 7-zip) are used to compress the transformed data. A similar mechanism
is followed by SCALCE [14]. In this method a consistent parsing algorithm ini-
tially proposed by [26] is used to find an identical longest ‘core’ substring from
the clustered reads. The reads within a cluster are then compressed using other
standard compression algorithms as stated above.

In a reference-based technique complete read data need not be stored but
only the variations with respect to a reference genome are stored. Reference-
based algorithms typically run in two steps. In the first step all the reads are
aligned to a reference genome of interest by using one of the NGS aligners such
as Bowtie [19], BWA [20], Novoalign (http://www.novo craft.com), etc. In the
second step, the mapped positions and variations are encoded using methods
such as arithmetic coding and Huffman coding. Some of the algorithms in this
domain are GenCompress, SlimGene, CRAM [11], Quip, NGC [25], Samcomp,
etc. In addition to the mapping and encoding procedure, CRAM uses a de Bruijn
graph based assembly approach where assembled contigs are used to map all the
unaligned reads. Quip assembles the genomic sequence from the given reads
using a de Bruijn graph based de novo assembler.
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3 Methods

In this section we present our novel algorithm for problem 3. Specifically, we
present an algorithm for the following problem: Reference-free Reads Com-
pression. For this version of compression, our algorithm achieves bet-
ter compression ratios than the currently best known algorithms for
this problem. We provide details of our Non-Referential Reads Compression
(NRRC) algorithm next. There are 4 basic steps in our novel algorithm. At first
NRRC clusters the given set of reads based on overlaps and similarity. For each
cluster a consensus sequence is created. All the reads in the cluster are com-
pressed using the consensus as the reference. I.e., for each read we only store its
difference with the consensus. Two reads are said to be neighbors of each other
if they have a large overlap (with a small Hamming distance in the overlapping
region). We find the neighbors of each read in steps 1 and 2 and use this neigh-
borhood information to cluster the reads and perform compression (in step 3
and 4). In step 1 we find the potential neighbors of each read and in step 2 we
find the true neighbors of each read. More details follow.

3.1 Finding Potential Neighbors

Potential neighbors for any read are found using two hashings. In each hashing
we generate all the k-mers (for some suitable value of k) of all the reads and
hash them based on these k-mers. A read is a potential neighbor of another read
if they are hashed into the same value in at least one of the two hashings. For
every read we collect all the potential neighbors from the two hashings and merge
them. Followed by this, in step 2 we find the neighbors of each read as explained
in the next section. Having two different hashings enables us to maximize the
chances of finding as many of the neighbors as possible for each of the reads.

In the first hashing, we generate the k1-mers in each read and hash the reads
based on these k1-mers (for some suitable value of k1). Let h1(.) be the hash
function employed. By a hash bucket (or simply a bucket) we mean all the reads
that have the same hash value with respect to at least one of the k1-mers in them.
If read R1 has a k1-mer x, read R2 has a k1-mer y, and if h1(x) = h1(y) then
we say that the reads R1 and R2 fall into the same bucket. Any read R will be
hashed into at most r−k1+1 buckets, where r = |R|. For every read R we collect
potential neighbors from the buckets that R falls into. All the reads that fall into
at least one of the buckets that R falls into will be called potential neighbors of
R. We perform one more such hashing by generating k2-mers of reads. Here k1
and k2 are appropriate integers chosen to optimize performance. In the second
hashing also we collect potential neighbors for each read. The potential neighbor
lists collected for each read from the two hashings are merged together.

Whenever we hash k-mers (where k is either k1 or k2) we record necessary
information about each of the k-mers such as the read associated with it and
its starting position in the read. We need this information to find and align
overlapping reads. To reduce memory usage we only record a unique read id
associated with any read and an integer corresponding to the starting position



NRRC: A Non-referential Reads Compression Algorithm 301

of the k-mer. As no hash function is perfect, two similar k-mers may be hashed
into two different buckets. Also, two dissimilar k-mers might be hashed into the
same bucket. In this case we will loose some potential neighbors which could
play important roles in compression. Having two different hashings enables us to
maximize the chances of finding as many of the neighbors as possible for each of
the reads. After finding the potential neighbors of each of the reads by traversing
the hash buckets, we merge the neighbors information.

3.2 Finding Neighbors

After having collected potential neighbors for each read, we do some pruning
to eliminate those potential neighbors that are not likely to be neighbors. Let
R be any read and let R′ be another read that has a sufficient overlap with R.
For instance, a suffix of R could overlap with a prefix of R′. In the pruning step
we compute the Hamming distance between the two reads in the overlapping
region. If this distance is less than a threshold, we will keep R′ as a neighbor
R. If not, we will prune R′ from the neighbor list of R. Note that the same two
reads might fall into more than one buckets together. In this case we will identify
and use the largest overlap between the pair. This is how merging of neighbors’
information between two hash buckets is also done.

3.3 Aligning and Building a Consensus String

If R is any read and L(R) is the list of neighbors of R, we correct R using
L(R). If R′ is any read in L(R) we already have found the maximum overlap
between R and R′ in Step 2. In Step 2 we have also ensured that the Ham-
ming distance between R and R′ in the overlapping region is within a small
threshold. We align every R′ (from L(R)) with R in a greedy manner using the
overlapping region. The greedy alignment is done as follows. Let R′ be a po-
tential neighbor of R as stated above. As R and R′ are potential neighbors, they
must share at least one identical k−mer. We align R′ with R using this k-mer
as the anchor. We then extend this match on both sides as much as possible.
Specifically, let R = x1x2 · · ·xr and R′ = y1y2 · · · yr. Let the common k-mer
between R and R′ be xixi+1 · · ·xi+k−1 and yjyj+1 · · · yj+k−1. We identify the
least i1 ≤ i and the largest i2 ≥ (i+ k− 1) such that the Hamming distance be-
tween xi1xi1+1 · · ·xi · · ·xi+k−1 · · ·xi2 and yj−(i−i1)yj−(i−i1)+1 · · · yj+i2−i is ≤ d.
If (i2 − i1 + 1) ≥ r

2 , we call R′ as a neighbor of R. Since the error rate in NGS
technology is very small, we expect that if R and R′ come from the same region
of the genome, then they will share more than one k−mers. While processing
the buckets of the hash table, we keep track of the k−mer for which the size of
the overlapping region between R and R′ (i.e., i2 − i1 + 1) is the biggest and
at the same time the Hamming distance between them is within d. We align
R and R′ based on this k-mer. Note that the greedy alignment that we do
does not take much time. After aligning the reads in L(R) with R, we construct
a consensus sequence by taking the calculated order of most frequent residues
(here nucleotides), found at each position in the alignments.
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Values of parameters such as k1, k2, etc. have been optimized to get the best
results. To speed up the proposed algorithm we have used several techniques.
After neighborhood calculation, if a read has less than two neighbors, we discard
the read as the read is potentially too erroneous to be corrected. Also, if the
size of any hash bucket is very large, we omit the entire bucket from further
consideration as it potentially corresponds to repeated regions of the genomic
sequence. Furthermore, if the size of a bucket is greater than a certain threshold
we randomly pick some of the reads and discard the others from that bucket.

3.4 Compressing and Encoding the Reads

Each read in L(R) and R are compressed using the consensus string. Specifi-
cally, for each read we only store its difference with the consensus string. Note
that a read may appear in more than one cluster. In this case, the read is com-
pressed only in that cluster where its compressed length will be the least. After
compressing the reads using the consensus, they are encoded using Lempel-Ziv-
Markov chain algorithm (LZMA) - a lossless data compression algorithm. It is
basically a dictionary based compression algorithm having large dictionary sizes.
The output of the dictionary is encoded using a range encoder (a variant of en-
tropy encoding method). To predict the probability of each bit, it uses a complex
probability model roughly similar to the arithmetic encoding technique. In brief
LZMA performs the compression in two basic steps. At first it detects matches
using sophisticated and highly efficient dictionary-based data structure and gen-
erates a stream of literal symbols and phrase references. These are then encoded
one bit at a time using a range encoder in the second step. It searches the space
of many encoding and chooses the best one using a dynamic programming algo-
rithm. Steps of the algorithm are shown in Algorithm 1.

Algorithm 1: Non-Referential Reads Compressor (NRRC)
Input: A set S of reads
Output A set S′ of compressed reads

begin
1. Generate k-mers of each read and hash the reads based on these k-

mers. Equal k-mers fall into the same bucket. If R is any read, any
other read that falls into at least one of the buckets that R falls into
is treated as a potential neighbor of R. For every read R ∈ S create
a list P (R) of potential neighbors.
Perform the above task twice with two different values for k and for
every read merge the lists of potential neighbors from the two hash
tables. If the size of a bucket is larger than a threshold, only a subset
of the bucket is included in the potential neighbors identification
process.

2. Let R be any read. Align every read in P (R) with R. Let R′ be any
read in P (R). IfR and R′ overlap sufficiently and if in the overlapping
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region the Hamming distance between R and R′ is small, then we
treat R′ as a neighbor of R. For every read R ∈ S construct a list
L(R) of neighbors of R in this fashion.

3. Let R be any read. The neighbors of R reside in L(R). Greedily align
R′ with R for every R′ ∈ L(R).

4. Make the consensus string RC and compress R along with reads in
L(R) using RC as a reference. Perform this step for every readR ∈ S.
In this step, a read may be present in more than one cluster. In this
case, the read is compressed in that cluster where its compressed
length will be the least.

5. Encode the already compressed reads using Lempel-ZivMarkov chain
algorithm (LZMA).

end

3.5 Time Complexity Analysis

In this section we analyze the time complexity of NRRC. Let n be the number of
reads and r be the read length. In the first step of NRRC, we build hash tables
and identify potential neighbors. The number of k-mers (k could either be k1 or
k2) generated from each read is r−k+1. Let h(.) be the hash function employed.
We think of the hash table as an array of buckets (or lists). Each bucket has an
integer as its index. If the size of the array is N , then the index of any bucket
is an integer in the range [1, N ]. If k is small enough, one could employ direct
hashing such that each k-mer is hashed into a bucket whose index is the k-mer
itself (thought of as an integer). In this case, the hash array should be of size
4k. If k is large, direct hashing may not be feasible. The expected size of each

bucket is (r−k+1)n
N = O

(
rn
N

)
. The total time spent in hashing of Step 1 is O(rn).

In the first step we also find potential neighbors of each read. A read falls
into at most r − k + 1 < r buckets and hence the expected number of potential

neighbors for each read is O
(

r2n
N

)
. For every bucket we spend an expected

O
((

rn
N

)2)
time. Thus the total time spent in Step 1 has an expected value of

O
(
rn+ r2n2

N

)
.

In Steps 2 and 3 we align reads. Specifically, if R is any read and P (R) is the

list of potential neighbors of R, then the expected size of P (R) is O
(

r2n
N

)
. For

every read R′ ∈ P (R), we align R′ with R and compute the Hamming distance
between R and R′ in the overlapping region. Thus for every R′ ∈ P (R) we
spend O(r) time. As a result, the total time spent in Step 2 and 3 for each read

is expected to be O
(

r3n
N

)
. Summing this over all the reads, the total expected

time spent in Step 2 and 3 is O
(

r3n2

N

)
.

In step 4, we form a consensus corresponding to the neighbors of each read.

Let R be any read. Since the expected number of reads in P (R) is O
(

r2n
N

)
,

the expected time to build a consensus is O
(

r3n
N

)
. Subsequently, each read is



304 S. Saha and S. Rajasekaran

compressed using the consensus. The expected time for this is also O
(

r3n
N

)
.

Summing this over all the reads, the expected time spent in step 4 is O
(

r3n2

N

)
.

In summary, the expected run time of NRRC (excluding the time for LZMA)

is O
(
rn+ r3n2

N

)
.

4 Simulation Results and Discussion

4.1 Experimental Setup

We have compared our algorithm with the best known algorithms currently
existing in the domain of reads compression. In this section we summarize the
results. All the experiments were done on an Intel Westmere compute node with
12 Intel Xeon X5650 Westmere cores and 48 GB of RAM. The operating system
running was Red Hat Enterprise Linux Server release 5.7 (Tikanga). NRRC
compression and decompression algorithms are written in C++ and standard
Java programming language, respectively. To compile the C++ source code we
used g++ compiler (gcc version 4.6.1) with the -O3 option. Java source code
was compiled and run by Java Virtual Machine (JVM) 1.6.0.

4.2 Datasets and Algorithms used for Comparisons

We have employed real datasets in our evaluation. Real datasets used are Illumina-
generated short reads of various lengths. The nine experimental datasets listed in
Table 1 have been taken from Sequence and Read Archive (SRA) at NCBI. To
prove the effectiveness of our algorithm, we choose two different types of data.
Datasets D1 to D4 consist of RNA-seq reads generated from transcriptomes of
different species (i.e. human (D1-D2), mouse (D3), and bacterium (D4)). The rest

Table 1. Illumina generated reads from human, mouse, and various organisms

Dataset Accession Number # of Reads Length Description

D1 SRR037452 11,671,179 35 Human brain tissue

D2 SRR635193.1 26,065,855 54 Pooled amnion

D3 SRR689233.1 16,407,945 90 Mouse oocyte

D4 SRR519063.1 26,905,342 51 Pseudomonas aeruginosa

D5 SRR001665.1 10,408,224 36 Escherichia coli

D6 SRR361468 7,093,045 35 Treponema pallidum

D7 SRR353563 7,061,388 100 Leptospira interrogans

D8 SRR022866.1 12,775,858 76 Staphylococcus aureus

D9 SRR065202.1 11,954,555 42 Haemophilus influenzae
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Table 2. Compression sizes of different reads compression algorithms in Bytes. Best
results are shown in bold. Please note that although PathEnc uses a reference for
compression, in this table we have not added the size of the compressed reference to
the size of the compressed file. (If we do this then NRRC’s compression ratios will be
better than PathEnc’s on all datasets)

Dataset 2-Bit SCALCE fastqz PathEnc NRRC

D1 102,122,816 66,558,377 85,493,834 45,180,142 67,522,391

D2 351,889,042 95,474,107 179,766,179 47,592,829 74,048,376

D3 369,178,762 87,419,349 – 59,497,698 50,795,839

D4 342,043,110 23,210,258 90,128,271 15,797,769 10,634,801

D5 93,674,016 33,882,183 59,210,245 20,918,160 17,339,502

D6 62,064,143 19,403,853 35,952,162 13,064,384 10,648,375

D7 176,534,700 36,065,779 48,856,429 22,728,610 15,201,009

D8 242,741,302 110,790,886 128,966,807 91,259,052 90,442,321

D9 125,522,827 25,523,344 56,519,690 14,962,205 10,424,120

Table 3. Compression ratios of different reads compression algorithms with respect to
8-bit encoding. Please note that although PathEnc uses a reference for compression,
in this table we have not added the size of the compressed reference to the size of the
compressed file. (If we do this then NRRC’s compression ratios will be better than
PathEnc’s on all datasets)

Dataset 2-Bit SCALCE fastqz PathEnc NRRC

D1 4 6.14 4.79 9.04 6.05

D2 4 14.74 7.83 29.57 19.01

D3 4 16.89 N/A 24.82 29.05

D4 4 58.95 15.18 86.61 128.65

D5 4 11.06 6.33 17.91 21.61

D6 4 12.79 6.91 19.00 23.31

D7 4 19.58 14.45 31.07 46.45

D8 4 8.76 7.53 10.64 10.74

D9 4 19.67 8.88 33.56 48.17

(i.e. D5 to D9) are short read datasets generated from DNA molecules of different
organisms.

We have compared our algorithm NRRC with three other well-known algo-
rithms based on biological reads. Currently, MFCompress [23], PathEnc [16],
SCALCE [14], and fastqz [1] are some of the most efficient reads compression al-
gorithms available in the literature. Every algorithm we have compared against,
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except for PathEnc, is a de novo compression algorithm. PathEnc needs a ref-
erence genome to generate a statistical, generative model of reads. It is then
employed in a fixed-order context, adaptive arithmetic coder. It does not align
reads with the reference. In this context PathEnc falls in between reference based
and non-reference based reads compression algorithms.

4.3 Discussion

Now we discuss how we have used other methods to compare with our algo-
rithm. SCALCE version 2.7 executable was used with its default parameters. It
encodes sequence data without considering the positions of Ns. As SCALCE is
targeted for compressing FASTQ files, it generates three output files with ex-
tension .scalcen (for read names), .scalcer (reads), and .scalceq (qualities). We
report only the size of .scalcer file it produced. Fastqz compression tool can
compress FASTQ files using a refernce genome. We report the results of the de
novo version of fastqz compression algorithm. It produces three files namely .fxh
(header/metadata information), .fxb (reads), and .fxq (quality scores). The file
size we report is the size of the .fxb file. Fastqz was not able to run on D3 dataset.
PathEnc was used with its default parameter settings. The file sizes reported are
the sizes of all its output files. Since PathEnc needs a reference sequence to build
the model, we have provided a specific biological sequence of interest for each
of the datasets. For datasets D1-D4 we used a set of human transcriptomes as
the reference (as was done by PathEnc). We used Sanger-assembled genomic
sequences of interest for the rest. MFCompress [23] was also run with specific
parameter settings. But the results have been omitted due to its consistently
poor performance.

We have done extensive experiments to realize that our algorithm NRRC is
indeed an effective and competitive reads compression tool. Please, see Table 2
and Table 3 for detailed simulation results. Table 2 and Table 3 present the com-
pressed sizes and compression ratios produced by different algorithms including
NRRC, respectively. The algorithm that has the best compression ratio is shown
in bold face. Clearly, our proposed algorithm is competitive and performs better
than all the best known algorithms in a majority of the datasets. Specifically,
NRRC produces poor results in D1 and D2 datasets. Although PathEnc uses a
reference for compression, we did not add the compressed size of the reference in
the end result. If we add the compressed size of the reference for each of the end
results, NRRC will perform better than PathEnc on every dataset. NRRC does
not record the identifiers of the reads in the compressed file (similar to other
algorithms we have compared). So, the reads will not be in the same order as
in the original file. It also discards duplicate reads (similar to PathEnc) if any.
Clearly, these will not affect any downward analysis of reads. Since SCALCE and
fastqz are FASTQ compression algorithms, these algorithms compress metadata,
reads, and quality scores in a single run. So, for a fair comparison we have not
shown the run times of our algorithm. NRRC is a single-core algorithm. On the
contrary PathEnc is a multi-core algorithm. If we consider linear speed-up and
CPU-hour, NRRC is generally faster than PathEnc.
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5 Conclusions

Data compression is a vital problem in biology especially for NGS data. Five
different NGS data compression problems have been identified and studied in
the literature. In this paper we have presented a novel algorithm for one of these
problems, namely, reference-free reads compression. From the simulation results
it is evident that our algorithm indeed achieves compression ratios that are better
than those of the currently best known algorithms. We plan to investigate the
possibility of employing the techniques we have introduced in this paper for
solving the other four compression problems.
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Abstract. In analysis of large biological networks traditional clustering
algorithms exhibit certain limitations. Specifically, these are either slow
in execution or unable to cluster. As a result, faster methodologies are
always in demand. In this context, some more efficient approaches have
been introduced most of which are based on greedy techniques. Clusters
produced as a result of implementation of any such approach are highly
dependent on the underlying heuristics. It is expected that better heuris-
tics will yield improved results. As far we are concerned, SPICi can han-
dle large protein-protein interaction (PPI) networks well. In this paper,
we have proposed two new heuristics and incorporate those in SPICi.
The experimental results exhibit improvements on the performance of
the new heuristics.

Keywords: Biological network · Clustering · Heuristics

1 Introduction

Clustering is considered to be an important tool in the context of biological net-
work analysis. However, traditional clustering algorithms do not perform well in
the analysis of large biological networks being either extremely slow or even un-
able to cluster [1]. On the other hand, recent advancement of the state of the art
technologies along with computational predictions have resulted in large scale
biological networks for numerous organisms [2]. As a result, faster clustering
algorithms are of tremendous interest. There exist a number of clustering algo-
rithms that work well on small to moderate biological networks. For instance, a
number of algorithms in the literature can guarantee that they generate clusters
with definite properties (e.g., Cfinder [3], [4], [5], [6]). They are however compu-
tationally very intensive and hence do not scale well as the size of the biological
network increases.

To this end, some more efficient approaches have been introduced most of
which are based on greedy techniques (e.g., SPICi [7], DPClus [8] etc.). However,
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algorithms like MGclus [9] suit relatively well for clustering of large biological
networks with dense neighborhood. In most cases, clusters produced by greedy
approaches are highly dependent on the heuristic(s) employed. It is expected
that a better heuristic will yield even more improved results. This motivates us
to search for a better heuristic to devise an even better clustering algorithm that
not only runs faster but also provides quality solutions.

SPICi [7] can be considered as new approach among the greedy techniques
that can cluster large biological networks. After carefully studying the imple-
mentation of SPICi, we have discovered that some essential modification in the
heuristics employed can bring drastic change in the clusters’ quality. In this pa-
per, we have proposed a couple of new heuristics with an aim to devise an even
better clustering algorithm. The results obtained via analysis produce better
performance for the heuristics proposed.

The residue of the paper will be unfolded in the following sequence : Sec-
tion II covers Background Study, Proposed heuristics in Section III, Section
IV represents Experiments and results, Section V with Conclusion followed by
Supplementary materials.

2 Background

We start this section with some preliminaries of the algorithmic framework of
SPICi. We will also briefly review the heuristics used in SPICi and subsequently
discuss the new heuristics. A biological network is modeled as an undirected graph
G = (V,E) where each edge (u, v) ∈ E has a confidence score (0 < wu,v ≤ 1),
also called the weight of the edge. We say that, wu,v = 0, if the two vertices u, v
have no edge between them. The weighted degree of each vertex u, denoted by
dw(u), is the sum of the confidence scores of all of its incident edges, i.e., dw(u) =∑

(u,v)∈E wu,v. Based on the confidence scores or weights of the edges, we can de-

fine the term density for each set of vertices S ⊆ V as follows. The densityD(S) of
a set S ⊆ V of vertices is defined as the sum of the weights of the edges that have
both end vertices belonging to S divided by the total number of possible edges in
S. In particular,

D(S) =
∑

u,v∈S wu,v

|S|×(|S|−1)/2

For each vertex u and a set S ⊆ V , support of u by S is denoted by S(u, S)
and is defined as the sum of the confidence scores of the edges of u that are
incident to the vertices in S. To be particular,

S(u, S) =
∑

v∈S wu,v

Given a weighted network, the goal of SPICi is to output a set of disjoint
dense sub-graphs. SPICi uses a greedy heuristic approach that builds one clus-
ter at a time and expansion of each cluster is done from an original protein seed
pair. SPICi depends on two parameters, namely, the support threshold, Ts and
the density threshold, Td. The use of these two parameters will be justified sub-
sequently. Now, we briefly review how SPICi employs its heuristic strategies. In
fact, SPICi first selects two seed nodes and then attempt to expand the clusters.
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Seed Selection. While selecting the seed vertices, SPICi uses a heuristic. Very
briefly, at first it chooses a vertex u in the network that has the highest weighted
degree. Then it divides the neighboring vertices of u into five bins according
to their edge weights, namely, (0, 0.2], (0.2, 0.4], (0.4, 0.6], (0.6, 0.8] and (0.8, 1.0].
Then the vertex with the highest weighted degree belonging to the highest non-
empty bin is chosen as the second seed, v. The edge (u, v) is referred to as the
seed edge.

Cluster Expansion. For cluster expansion, SPICi follows a procedure similar
to that of [10]. It works with a vertex set S for the cluster initially containing the
two selected seed vertices. It uses a heuristic approach to build the clusters and
it builds one cluster at a time. In the cluster expansion step, SPICi searches for
the vertex u such that S(u, S) is maximum amongst all the unclustered vertices
that are adjacent to a vertex in S. If S(u, S) is smaller than a threshold then u
is not added to S and D(S) is updated accordingly. However, if the calculated
D(S) turns out to be smaller than the density threshold Td then SPICi does not
include u in the cluster and output S.

3 Proposed Heuristics

The two heuristics SPICi employs are implemented in the form of two procedures,
namely, Search and Expand. In the Search procedure, node with the highest
outdegree is chosen as the seed and in Expand, node with the highest support
is selected as the candidate to be added to the cluster. In this paper, we have
proposed two heuristics and we combine our heuristics with the heuristics of
SPICi to have two new versions of SPICi. We will refer to these two versions as
SPICi1+ and SPICi2+. To be specific, we employ a new heuristic and modify the
Expand procedure of SPICi to get Expand+. Similarly, we employ another
new heuristic and modify the Search procedure of SPICi to get Search+.
In SPICi1+, we combine Expand+ with Search and in SPICi2+, we combine
Expand with Search+. In essence, our first heuristic is to choose the node with
the highest weighted degree among the neighbors as the first seed and second one
is to choose the node with the highest average weighted degree as the candidate
to join the cluster.

The heuristics employed by SPICi are developed based on an observation
that two vertices are more likely to be in the same cluster if the weight of the
edge between them is higher [7]. Below, we illustrate an example to identify the
shortcoming of this heuristic and to establish the necessity to introduce a new
heuristic.

3.1 Average Edge Weight

Consider Figure 1. Here assume that, the current cluster set is S = {1, 2, 3}
and the set of candidate nodes is {4, 5}. The goal at this point is to expand the
current cluster. Now SPICi calculates S(4, S) = 1.4 and S(5, S) = 1.5 and since
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Fig. 1. An example to illustrate the necessity of a new measure

S(5, S) > S(4, S), it will include node 5 in the cluster. However, two vertices are
more likely to be in the same module if the weight on the edge between them
is higher [7]. In Figure 1, we can see that the average weight with which node
4 is connected with nodes 2 and 3 is higher than the same with which node 5
is connected with nodes 1, 2 and 3. Although node 4 is not connected to node
1 it is more likely to find the set {4, 2, 3} in the same module rather than the
set {5, 1, 2, 3}. Hence, it seems more useful to include node 4 in the cluster as
the average weight of node 4 is better than that of node 5. To make a better
decision, we introduce a new heuristic measure which we refer to as the Average
Edge Weight as follows. For each node u and a set S ⊆ V , let Q ⊆ S be the set
of vertices u is connected with. The average edge weight of u by S is defined as
follows,

AverageEdgeWeight(u, S) =
∑

v∈Q wu,v

|Q|

Now let us refer back to the scenario illustrated in the Figure 1. Us-
ing our new heuristic measure, we calculate Average Edge Weight(4,S)=
0.7 and AverageEdgeWeight(5,S)=0.5. Since AverageEdgeWeight(4,S) > Aver-
ageEdgeWeight(5,S), in contrast to SPICi, we choose node 4 as desired. The
modifiedExpand procedure, i.e.,Expand+ is provided at the end of this section.

3.2 Weighted Degree of Neighbors

For each vertex u, the weighted degree of its neighbors, denoted by Aw(u) is
simply the summation of the weighted degrees of all of its neighbors. So, we have
Aw(u) =

∑
(u,v)∈E dw(v). To illustrate the usefulness of this heuristic measure,
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Fig. 2. Another illustration denoting the necessity of a new measure

let us consider Figure 2. While selecting the first seed SPICi groups the set of
nodes with similar outdegrees. In Figure 2, SPICi would have two group of nodes
{1, 2, 3, 5} and {4}. The grouping is as such, because node 1 has outdegree of
2.4 which is rounded off to 2 and similarly the outdegrees of 2, 3, 5 are 1.5,
2, 1.5 which are also rounded to 2. As these nodes have the same outdegree
after rounding off, they are in the same group. And node 4 has outdegree of 1.4
so it is rounded off to 1 and it creates a new group. Now, SPICi will select a
random node from the highest weight group. Suppose 5 is selected. But, clearly
5 is in a weak neighborhood, i.e., it does not have a dense group around it. But
if we use the weighted degree of all the neighbors for a particular node then
for node 1 we have the highest weighted degree (Aw(1)=2+1.4+1.5+1.6=6.5).
And, choosing the node with the highest weighted degree of neighbors is likely
to enhance the probability to select the most promising node as the first seed.
This ensures that we are selecting the node from a dense neighborhood, so in
the expand process we will always start in a dense population. However, note
that this heuristic is associated with an overhead that causes the complexity to
rise by an O(E) component. This is because we need to execute an extra loop
to find the summation of the weighted degrees of the neighbors of a particular
node. The modified Search procedure is provided at the end of this section.
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Algorithm 1. Expand+(u, v)

initialize the cluster S = {u, v}
initialize CandidateQ to contain vertices neighboring u or v
initialize AverageEdgeWeightHeap to contain vertices neighboring u or v
while CandidateQ is not empty do

find the largest non-empty bin of Average Edge
Weight Heap nodes in CandidateQ among the bins with
AverageEdgeWeight(t,S) range of (0.8, 1], (0.6, 0.8], (0.4, 0.6], (0.2, 0.4], (0.0, 0.2].

extract t from CandidateQ with highest support(t, S) and t belongs to largest
non-empty bin of AverageEdgeWeightHeap
if support(t, S) ≥ Ts*|S|*density(S) and density(S ∪ {t}) > Td then

S = S + {t}
increase the support for vertices connected to t in CandidateQ
for all unclustered vertices adjacent to t, insert them into CandidateQ if not
present
for all unclustered vertices adjacent to t, update AverageEdgeWeightHeap
break from loop

end if
end while
return S

Algorithm 2. Search+

Initialize DegreeQ to be V
while DegreeQ is not empty do

Extract u from DegreeQ with largest weighted degree of neighbors
if u has adjacent vertices in DegreeQ then

Find from u’s adjacent vertices the second seed protein v
S=Expand(u, v)

else
S={u}

end if
V=V - S
Delete all vertices in S from DegreeQ
For each vertex in t in DegreeQ that is adjacent to a vertex in S, decrement its
weighted degree by support(t,S)

end while

4 Experiments and Results

We have conducted our experiments on a PC having Intel 2.40 GHz core i5 pro-
cessor with 4GB memory. The coding has been done in C++ and in Codeblocks
10.05 IDE. All the analysis was done in Linux (Ubuntu 12.04) environment. For
all the experiments we set both Ts and Td to 0.5, the same value used in SPICi.
For the analysis we had to convert the gene names and we used various sources
to convert and extract the gene names from [11], [12] and [13]. The overall con-
version of the gene names affects the analysis. But as all the experiments were
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done using the same procedure, the overall penalty borne by the clusters are the
same. The reported runtimes of SPICi, SPICI1+ and SPICI2+ are wall clock times
as the same was done in [7].

4.1 Network Datasets

Same as SPICi our analyis is concentrated on four networks. Two networks
for yeast and two networks for human. These are the same networks used by
SPICi. The properties of these networks are reported in Table 1. Experimentally
determined physical and genetic interactions are found in the two Biogrid net-
works [14]. On the other hand, functional association between proteins that are
derived from data integration are found in the two STRING networks [15]. These
datasets are available at [16]. SPICi did another analysis on the Human bayesian
network which we could not get from the authors. For the Biogrid networks all
non-redundant interaction pairs are extracted which include the protein genetic
and physical interactions and all weighted interactions for the STRING networks
were used as reported in [7] .

Table 1. Test set of biological networks

Biogrid yeast STRING YEAST Biogrid Human STRING Human

Vertices 5361 6371 7498 18670
Edges 85866 311765 23730 1432538

4.2 GO Analysis

The GO analysis conducted here is based on the analysis done in [7]. They used
a framework described in [1] to evaluate the obtained clusters. We have used the
same framework to compare among the clusters we have obtained using different
heuristics. To construct the functional modules’ reference set we have used Gene
Ontology (GO) in the same way as it was done in [7]. The Gene Ontology [17] is an
external measure to derive functional modules. For a GO biological process (BP)
or cellular component (CC) functional term, a module contains all the proteins
that are annotated with that term. Evaluation of clustering algorithms is done
by judging how well the clusters correspond to the functional modules as derived
from either GO BP or GO CC annotations. Following the work of [7], we have
considered the GO terms that annotate at most 1000 proteins for each organism.
For a particular GO annotation A, GA is the functional module set having all
genes that are annotatedwithA. Tomeasure the similarity betweenGO functional
modules and derived clusters, [1] uses the following three measures.

– Jaccard: Consider a cluster C. With each GO derived functional module
group GA the Jaccard value of C is computed as |C∩GA|

|C∪GA| . The maximum

Jaccard value we get for cluster C over all GO term A is considered the
Jaccard value of C.
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– PR (Precision Recall): Consider a cluster C. With each GO derived func-

tional moduleGA, its PR value is computed as |C∩GA|
|GA|

|C∩GA|
|C| . The maximum

PR value we get for cluster C over all GO term A is considered the PR value
of C. terms A.

– Semantic density: Average semantic similarity between each pair of anno-
tated proteins it is computed for each cluster. For two proteins p1 with
annotations A(p1) and p2 with annotations A(p2). The semantic similarity
of their GO annotations is defined as:

2 ∗mina∈A(p1)∩A(p2) log(p(a))

mina∈A(p1) log(p(a)) +mina∈A(p1) log(p(a))

where p(a) is the fraction of annotated proteins with annotation a in the
organism [18], [1]. For semantic density calculations, all GO terms that are
annotating even more than 1000 proteins are also considered [7].

Table 2. GO analysis of clusters output by SPICi, SPICi1+ and SPICi2+

BP BP BP CC CC CC
Network Algorithm sDensity Jaccard PR sDensity Jaccard PR
Biogrid Yeast SPICi 0.351 0.189 0.158 0.291 0.156 0.129

SPICi2+ 0.358 0.205 0.171 0.271 0.176 0.145

SPICi1+ 0.365 0.191 0.158 0.302 0.155 0.126
MGclus 0.126 0.176 0.136 0.117 0.171 0.131

Biogrid Human SPICi 0.191 0.117 0.093 0.097 0.059 0.038
SPICi2+ 0.182 0.135 0.107 0.086 0.067 0.042

SPICi1+ 0.203 0.128 0.099 0.107 0.062 0.039
MGclus 0.061 0.126 0.092 0.026 0.079 0.046

STRING Yeast SPICi 0.431 0.225 0.196 0.333 0.169 0.149
SPICi2+ 0.455 0.246 0.213 0.334 0.183 0.158

SPICi1+ 0.531 0.224 0.195 0.429 0.175 0.153
MGclus 0.076 0.138 0.098 0.079 0.118 0.081

STRING Human SPICi 0.384 0.099 0.187 0.518 0.049 0.059
SPICi2+ 0.384 0.113 0.198 0.512 0.054 0.065

SPICi1+ 0.409 0.214 0.187 0.533 0.078 0.058
MGclus - - - - - -

The measures above have a range between 0 and 1. The higher the values,
the better is the result of uncovering clusters satisfying the functional modules
corresponding to GO. We calculate jaccard, PR and semantic density for each
cluster and for both BP and CC ontology. These measures are attributed to all
proteins in the cluster. Singleton cluster genes are penalized by assigning 0 to
each of the three measure. Lastly, we compute average value of the six measures
(three CC and three BP) over all proteins of the network.

From the Table 2, we observe that the changes in the heuristic of the algo-
rithm affect the quality of the clusters. We know that the higher the values of
measurement, the better the result of uncovering clusters in correspondence with
functional modules. We can see that SPICi2+ has higher values than of SPICi in
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most of the cases. We can observe that in STRING networks which are quite
denser SPICi1+ performs well. It is mentionable that, in all of the cases either
SPICi1+ or SPICi2+ has the higher value than that of SPICi which clearly indi-
cates that improvement in heuristics will result in better clusters. On the other
hand, the MGclus [9] algorithm is not capable to uncover quality clusters though
it works on strongly interconnected networks. Though the results are moderate
in small sized network, the algorithm is unable to produce quality clusters in
large network and it fails to cluster STRING Human networks in particular.

4.3 Run Time Analysis

A clustering algorithm should cluster large biological networks fast while main-
taining the quality of the cluster. The time represented in Table 3 are the times
required to cluster networks. As can be seen from the table, Average Weighted
Degree heuristic was applied in SPICi1+ uses the same time complexity but only
the number of calculations increases for which the change in runtime is negligible.
On the other hand while using the other heuristic in seed selection in SPICi2+
it takes an extra pre-calculation of O(E) which affects the run time heavily.
However, in many cases it provides us higher quality clusters (Table 2). Run
time of MGclus [9] algorithm is quite high, mainly because it uses Java Library
and it can not cluster STRING Human network which is the largest network in
the considered data-set. Finally, it can be noted that SPICi uses a faster way to
read the data from the file.

Table 3. Run time analysis

Biogrid
Yeast

STRING
Yeast

Biogrid
Human

String Human

SPICi 1s 1s 1s 9s

SPICi2+ 1s 3s 1s 11s

SPICi1+ 1s 2s 2s 9s

MGclus 32s 5s 85s Unable to Cluster

5 Conclusion

In bioinformatics clustering algorithms are considered to be one of the most im-
portant tools. Although there are a number of clustering algorithms that can
cluster biological network, most of them fail to handle large biological networks.
In this paper we have proposed two new heuristics for SPICi [7]. Our experi-
mental results and observations indicate better performance in comparison to
SPICi. This particular attempt is an ongoing research work. We are working on
robustness analysis, more efficient qualitative and quantitative analysis against
some new clustering methods, cluster size analysis to validate this effort as a
more effective one.



318 Md. Kishwar Shafin et al.

Supplementary Materials

The source codes of our proposed heuristics are freely available at http://goo.gl/
e9du1Y.
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Abstract. Glycosylation is one of the most important and prevalent
post-translational modifications of proteins. Identifying the structures of
such protein-linked glycans has become necessary in biochemistry analy-
sis. In the past decade, tandem mass spectrometry (MS/MS) has gradu-
ally served as an effective technique in glycoproteomics analysis because
of its high throughput and sensitivity. Different approaches have emerged
to address the challenges in computational analysis of mass spectrome-
try based glycoproteomics data. However, there are only a few available
software tools characterizing glycans using the spectra produced from
intact glycopeptides, which can conserve glycosylation site information.
Furthermore, with the development of advanced mass spectrometry tech-
niques, more accurate and complete spectra like HCD spectra can be
applied to identify glycopeptides. In this paper, we proposed a heuristic
algorithm for glycan de novo sequencing from HCD MS/MS spectra of
N-linked glycopeptides. Experiments conducted on a dataset compris-
ing of 46 MS/MS spectra showed that our results were comparable with
those identified by GlycoMaster DB, which is designed based on database
searching method.

Keywords: Mass spectrometry · Glycan de novo sequencing · Compu-
tational proteomics

1 Introduction

Glycosylation is one of the most common and important post-translational mod-
ifications (PTMs) of proteins, and over half of eukaryotic proteins in nature are
estimated to be glycoproteins [1]. The carbohydrate chains covalently attached
to glycoproteins or glycolipids, or as free forms in the cell plasma are usually
referred as oligosaccharides or glycans. Unlike other simple PTMs which have a
fixed mass change, glycans constitute a significant amount of mass and structural
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variation in biological systems [2]. Glycoproteins serve in a variety of processes
such as recognition between cell types or cellular structures. Research has sug-
gested that the decrease in the activity of certain glycosylation-related enzymes
can lead to serious physiological disorders [3]. Therefore, the characterization
of glycoproteins is becoming an increasingly challenging aspect in the emerging
proteomics research [4,5].

There are mainly two types of protein glycosylation, N-linked and O-linked
glycosylation. In N-linked glycoproteins, carbohydrate groups are linked to poly-
peptide chains via the amide nitrogen of an asparagine residue; while in O-linked
glycoproteins, glycans are linked via the hydroxyl groups of serine, threonine, or
hydroxylysine residues [6]. Analysis of protein sequence databases have revealed
that in most cases N-linked oligosaccharides are attached to a sequence motif
Asn-X-Ser/Thr, where X denotes any amino acid except proline [7]. It is also
occasionally observed that the consensus tripeptide Asn-X-Cys can also act as an
acceptable sequon in N-glycosylation [8]. All mammalian N-linked glycans share
a common core structure composed of two N-acetylglucosamine residues linked
to a branched mannose triad [9]. Many other sugar units may be attached to
each of the mannose residues of this branched core and the resulting structures
fall into three main categories of N-linked glycoforms: high mannose, complex
and hybrid [6,8]. The work of this paper is based on the analysis of N-linked
glycopeptides.

During the past decade, tandem mass spectrometry (MS/MS) has gradually
served as a major technique to determine glycan and glycopeptide primary struc-
tures because of its high sensitivity and throughput [10]. Depending on whether
glycans and peptides are separated or not before the mass spectrometry analysis,
there are generally two different strategies to analyze glycoproteins in biological
samples. In one approach, deglycosylation is firstly applied to glycoproteins in or-
der to obtain glycans and deglycosylated glycopeptides separately. And then after
MS/MS analysis, their tandemmass spectra are collected to do database search or
peptide/glycan identification [11]. In another method, glycoproteins are digested
into glycopeptides by trypsin first, and then the resulting intact glycopeptides are
characterizedby tandemmass spectrometry [12,13]. InMS/MS, different fragmen-
tation methods result in ion dissociation occurring at different sites and generate
different types of dominant fragment ions. Collision-induced dissociation (CID)
and higher-energy collision dissociation (HCD) usually break glycosidic bonds and
yield b-ions and y-ions. HCD spectra is featured with a predominance of y-ions;
b-ions and a-ions or other smaller species obtained from further fragmentations
could be less frequently observed [14]. Electron-capture dissociation (ECD) and
electron-transfer dissociation (ETD) often lead to cleavages at peptide backbone
and produce c-ions and z-ions. Ideally, ETD/ECD spectra can provide informa-
tion of both the peptide sequence and the glycosylation site because it keeps the
attached glycan intact on the peptide backbone [15].

Currently, numerous approaches have emerged to automatically interpret mass
spectrometry data of glycans or glycopeptides. One extensively studied method
is to find the best matching glycans by searching the glycan database and com-
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paring theoretical mass spectra with the experimental ones. Several software
packages have been designed based on this strategy, such as GlycoSearchMS
[16], GlycoPep DB[17], GlycoPeptideSearch (GPS) [18], GlyDB [19], and Glyco-
Master DB [20]. Another approach, called de novo sequencing, is essential to de-
termine novel or unknown glycans. The computation of de novo sequencing does
not rely on database knowledge, instead the algorithms directly construct glycan
structures from MS/MS spectra. There have been several attempts to charac-
terize glycan structures using this method. Tang et al. proposed a dynamic pro-
gramming algorithm GLYCH [21] to determine oligosaccharide structures from
tandem mass spectra. This algorithm was designed for MS/MS spectra of re-
leased glycans only and cannot handle glycopeptide data. Shan et al. developed
a software program called GlycoMaster [22] for glycan de novo sequencing from
CID MS/MS. In [22], it proved that glycan de novo sequencing is a NP-hard
problem under the condition that each mass value of the spectrum could be
used only once and then provided a heuristic algorithm to solve the problem.
In [23], Böcker et al. presented an exact algorithm based on fixed-parameter
algorithmics to solve this NP-hard problem.

Compared with CID spectrum, HCD spectrum has a larger detecting range
which could provide relatively complete and intensive peaks in the larger mass
side of the spectrum. In this paper, we present a new strategy for N-linked glycan
structure determination. By utilizing the quality peaks in the larger mass side of
HCD spectrum, the glycan de novo sequencing problem was modeled as a top-
down tree constructing process in a heuristic manner, in which the process started
at the glycosylation site and the peptide was regarded as the root of the tree.

2 Mathematical Model

In MS/MS, six types of fragmented ions are commonly observed. From the re-
ducing end, there are x-, y-, and z-ions; while in the non-reducing end, frag-
ments are labelled with a-, b-, and c-ions. The a- and x-ions are generated by
cross-ring cleavage [24]. Practically, y-ions dominate the fragment ions in HCD
spectra. Therefore, we only consider y- and b-ions when generating possible gly-
can candidates. In the evaluation, we also take the internal fragment ions into
consideration. When modeling glycopeptide structures, studies showed that a
glycan structure was usually abstracted by a labelled rooted tree with node la-
bels representing monosaccharide types [21,22,23]. In such representation, b-ions
correspond to subtrees and y-ions correspond to the remaining glycopeptide with
the subtrees removed. In this section, we will first formulate the glycopeptide
structure and then describe the mathematical model for the glycan de novo
sequencing problem.

For an N-linked glycopeptide, there is only one glycan attached to the peptide
at the glycosylation site. The total mass of a glycopeptide consists of the residue
mass of peptide, glycan and an extra water. Let Σa be the alphabet of different
types of amino acids and P = a1a2 . . . am be the string of peptide. For an amino
acid a ∈ Σa, we define ‖a‖ as its residue mass, then the residue mass of the
peptide is ‖P‖ =

∑
1≤i≤m ‖ai‖.



A Novel Algorithm for Glycan de novo Sequencing 323

The sugar units that constitute a glycan through glycosidic bonds are called
monosaccharides. It has been observed that some of the monosaccharides are
epimers, which means that they differ only in their configurations rather than
their mass. By de novo sequencing method, we cannot distinguish two epimers
because they can hardly be separated from MS/MS spectra. Therefore, we
only consider six types of common monosaccharides in this study based on the
datasets we have, as shown in Table 1. We use Σg to denote the alphabet of dif-
ferent types (different mass) of monosaccharides. For a monosaccharide g ∈ Σg,
‖g‖ is used to symbolize its residue mass value.

Table 1. Monosaccharide types used in the experiments

Monosaccharide Composition
Monoisotopic mass

Symbol
Intact Residue

Xylose (Xyl) C5H10O5 150.0528 132.0423 �
Fucose (Fuc) C6H12O5 164.0685 146.0579 �
Hexose (Hex) C6H12O6 180.0634 162.0528 ©

N-Acetyl hexosamine
(HexNAc)

C8H15NO6 221.0899 203.0794 �

N-Acetyl neuraminic
acid (NeuAc)

C11H19NO9 309.1060 291.0954 �

N-Glycolyl neuraminic
acid (NeuGc)

C11H19NO10 325.1009 307.0903 ♦

An N-linked glycan tree T is an unordered tree with its root linked to a
peptide P . Each node of T represents a monosaccharide, labelled by an element
from Σg. The degree of a glycan tree is bounded by four because there are at
most five linkages for one monosaccharide. Given a glycan tree T that include
n monosaccharides, its mass can be represented as ‖T ‖ =

∑
1≤i≤n ‖gi‖. The

actual mass of a glycopeptide G which consists of a glycan T and a peptide P
is ‖G‖ = ‖P‖+ ‖T ‖+ ‖H2O‖.

Assume that ti is the subtree of T rooted at ith node and its mass is ‖ti‖,
then the mass of the b-ion associated with ti is bi = ‖ti‖ + 1.1 Let y{i1,i2,...,ik}
denote the mass value of the y-ion corresponding to subtrees of T rooted at
peptide P with ti1 , ti2 , . . . , tik removed, where ti1 , ti2 , . . . , tik are nonoverlapping
subtrees of ti respectively. And y0 denotes the mass of the y-ion generated at
the cleavage of glycosylation site, without glycan included. In HCD spectrum,
peptide is maintained intact, thus the mass value of y-ion only depends on the
composition of glycan tree T .

Theoretically, the mass value set of b-ions and y-ions generated from a gly-
copeptide with n monosaccharides is,

I(G) =
⋃

1≤i≤n

{bi}
⋃

{i1,i2,...,ik}
y{i1,i2,...,ik} (1)

1 There is a proton added to the ion in the ionization process.
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Assume that M is used to denote the peak list of a glycopeptide spectrum,
then we have M = {(mi, hi)|i = 1, 2, . . . , n}, where mi and hi represent the
mass and the intensity of a peak respectively. Intuitively, the evidence that a
spectrum M is generated from a glycopeptide G is that the more and higher
peaks in M match with ion fragments of G. We use M to denote a set of peaks
from the spectrum M that match with the theoretical ion mass values of G
within the error tolerance δ,

M(G) = {(mi, hi) ∈ M|∃m ∈ I(G), |m−mi| ≤ δ} (2)

For each peak in the set M(G), a scoring function can be defined according to
its mass value m and intensity h. Here we use f(m,h) to denote the function
and one simple function can be defined as f(m,h) = log(h).

Therefore, the glycan de novo sequencing problem can be defined as
follows: Given a spectrum M, a precursor mass value Mp, a predefined error
bound δ, and a peptide mass ‖P‖, construct a glycan tree T such that |‖T ‖+
‖P‖+ ‖H2O‖+ 1−Mp| ≤ δ, and the score S(T ) is maximized,

S(T ) =
∑

(mi,hi)∈M(G)

f(mi, hi) (3)

The equation above is used to evaluate how likely a tree structure matches with a
spectrum. Several factors can be considered in the scoring function f(m,h), such
as mass value, intensity and ion types. Researchers can choose different factors
to formulate the scoring function according to the fragmentation techniques used
to generate MS/MS. It is worthy to notice that the set M(G) is used to denote
the peak list, which indicates that different ion fragments with the same mass
value refer to the same peak in spectrum and are only counted once in computing
the scoring function.

3 Algorithm

It has been proved that the complexity of the glycan de novo sequencing problem
is NP-hard, under the condition that each mass value in spectrum cannot be
repeatedly used [22]. Previous methods in [21] and [22] both constructed good
solutions for smaller size trees and then assemble the reported trees into larger
ones. Such strategy is suitable for glycan sequencing from CID spectra. While
in HCD spectra, numerous quality peaks in the lager mass side can be used to
explore new tree construction strategies. Therefore, in this paper, we provide a
heuristic algorithm which construct the glycan tree from root to leaves based on
HCD spectra.

A glycan tree with n vertices can be represented as T = 〈v1, v2, . . . , vn〉,
where vi denotes a node of the tree T . If the whole peptide is treated as a node,
the notation v0 can represent such node attached with an empty tree. d(vi) is
used to denote the degree of the subtree rooted at vi, and m(T ) represents the



A Novel Algorithm for Glycan de novo Sequencing 325

summation of monosaccharide residue mass values of the glycan tree T . We use
F (n) to denote a set of glycan trees with n nodes,

F (n) = { T | T is a glycan tree, |VT | = n}

Given a glycan tree T , and a monosaccharide g ∈ Σg, v is a node of T and it
has less than four children, i.e., d(v) < 4. We use Tv⊗g to represent a new tree
generated from T , where g is a new node added to the tree through node v. Thus,
v is the parent node of g, and g becomes a leaf node of the newly constructed
tree. In addition, we use T ⊗ g to represent the set containing all the possible
glycan trees generated by g and T = 〈v1, v2, . . . , vn〉,

T ⊗ g = {Tvi⊗g | vi ∈ VT , d(vi) < 4} (4)

As we mentioned before, using HCD fragmentation method, the peptide can
be kept intact during fragmentation. Thus, each y-ion fragment corresponds to
a subtree of the glycan tree T that rooted at v0. During the construction of the
glycan tree, we need to find out all those subtrees to calculate the theoretical
mass values of y-ions. We use r to denote a root-preserving subtree of T and the
mass value of its corresponding y-ion is ‖r‖+ ‖P‖+ ‖H2O‖+ 1.

Let RPST denote the set of all the root-preserving subtrees of a glycan tree
T , then we have,

RPST (T ) = {r | r is a root-preserving subtree of T }

Therefore, the set of root-preserving subtrees of T ⊗ g can be represented as
follows,

RPST (T ⊗ g) =
⋃

vi∈VT

RPST (Tvi⊗g)

Lemma 1. Given a glycan tree T , and a monosaccharide g ∈ Σg, the set of
root-preserving subtrees of the newly generated trees in T ⊗ g can be calculated
in the following way,

RPST (T ⊗ g) = RPST (T )∪ {rvi⊗g|∀vi ∈ VT , s.t. d(vi) < 4, vi ∈ Vr, r ∈ RPST (T )}

Proof. The set of the root-preserving subtrees for a new tree Tv⊗g generated from
a tree T and a node g via node v should contain all the subtrees from RPST (T ).
Besides, those newly generated trees derived from RPST (T ) by adding the
node g to node v are also included in the set. Thus we have RPST (Tv⊗g) =
RPST (T ) ∪ {rv⊗g | d(v) < 4, v ∈ Vr , r ∈ RPST (T )}. Furthermore, the compu-
tation of RPST (T ⊗ g) corresponds to the calculation of RPST (Tv⊗g) over all
the nodes in VT . �
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The glycan structures are abstracted as unordered rooted trees in our method.
The direct computation of the set T ⊗ g and RPST (T ⊗ g) from Equation
(4) and Lemma 1 will generate duplicate trees. The removal of identical trees
should be taken into consideration. Otherwise, the size limit of the candidate
set would be reached quickly, yet the correct result is not included. To solve
this problem, a string is assigned to each newly generated tree to represent its
structure and nodes information. The strings are computed based on the tree
isomorphism determination algorithm described in [26], which can be used to
determine the isomorphism of two n-vertex labeled trees in O(n) time. Therefore,
we can eliminate the duplications of trees in a set in O(nN logN) time, where
N is the size of the set.

Based on the mathematical model described above, we now introduce our
heuristic algorithm for the glycan de novo sequencing problem. The whole
glycan tree structure is gradually constructed by adding one node during each
round in the computation. For each round with n nodes, a fixed number of glycan
trees with highest scores are maintained in F (n). F (n) is computed in two steps.
Firstly, compute a set of candidate glycan structures Fc(n) = ∪g∈Σg ∪T∈F (n−1)

T ⊗ g; Secondly, compute the score of each structure in Fc(n) by evaluating how
its theoretical ion masses match with peaks in mass spectrum M, then put the
top |F | glycans in F (n) and remove those glycans with low scores. During the
construction process, if the mass of one generated glycan satisfies the desired
glycan mass value M ′, then this glycan will be put into the candidate results set
R. When the program finished, a fix number of glycans sorted by scores from
high to low can be obtained in R.

Algorithm 1. Glycan de novo Sequencing

INPUT:Given a spectrumM, and glycopeptide precursor mass valueMp, and peptide
mass value mp, and a predefined error bound δ.
OUTPUT: A set R consists of candidate glycan structures with their scores, and each
glycan tree T in R satisfies |‖T‖+ ‖P‖+ ‖H2O‖+ 1−Mp| ≤ δ.

1: M ′ = Mp −mp − 19, Mmin = mp

2: while Mmin +min‖g‖ ≤ M ′ do
3: Fc(n) = ∅
4: for T ∈ F (n− 1) do
5: for vi ∈ VT do
6: for g ∈ Σg do
7: T ′ = Tvi⊗g

8: RPST (T ′) = RPST (T )
9: for r ∈ RPST (T ) do
10: if vi ∈ Vr and d(vi) < 4 then
11: RPST (T ′) = RPST (T ′) ∪ rvi⊗g

12: Fc(n) = Fc(n) ∪ T ′

13: Score each glycan tree in Fc(n) according to RPST (T ), put top |F | in F (n)
14: Find the minimum tree mass Mmin in F (n)
15: Select the trees from F (n) that satisfies mass requirement and put them in R
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Theoretically, according to Lemma 1, the complexity to compute all the root-
preserving subtrees for a tree is not polynomial. Because the number of all pos-
sible rs in RPST of a rooted tree with n vertices and maximal out degree d is
exponential to n. However, in practice during our computation for glycan struc-
tures, the maximal size of RPST was less than 50. The main reason may be that
the degree of most nodes in a glycan tree is less than four and the identical trees
in each tree set had been removed. For simplicity, the number of elements in set
RPST (T ) can be regarded as a constant C. Therefore, the time complexity of
the algorithm proposed above is O(n3 × |Σg| × |F | × C × log(n × |F |)), where
n is the total number of the vertices for a glycan tree, which is less than 20
practically.

4 Experiments and Discussion

The algorithmproposed above was implemented in the experiments to test its per-
formance and the top 1000 candidates were selected during each round computa-
tion, i.e., |F | = 1000. The error bound δ = 0.2Da were used in the experiment.

4.1 Datasets

The glycopeptide samples used in the experiments were derived from three kinds
of protein samples: Alpha-1-acid glycoprotein of Bos taurus (Bovine), Ovomucoid
of Gallus gallus (Chicken), and Ig gamma-3 chain C region of Homo sapiens
(Human). Experiments were carried on a Thermo Scientific Orbitrap Elite hybrid
mass spectrometer and HCD fragmentation technique was used.

The newly developed software tool GlycoMaster DB [20] was used for compar-
ison. GlycoMaster DB can analyze mass spectra produced with HCD fragmen-
tation and identify N-linked glycans by searching against the glycan structure
database GlycomeDB [25]. The main reason we choose a database searching
method for comparison is that the algorithms mentioned in [21,22,23] which de-
signed based on de novo sequencing method cannot handle glycopeptide data
or can only analyze CID spectra. Besides, the results identified by database
searching method are relatively reliable.

Our experimental dataset contained 46 HCD spectra of glycopeptides that
were identified from the collected MS/MS spectra by GlycoMaster DB. The
reported glycan structures were used to benchmark the performance of our pro-
posed method.

4.2 Experimental Results

For each MS/MS spectrum in the dataset, top 10 candidates of glycan structures
were reported by GlycoMaster DB. Among those results, the highest ranked
glycan structure was treated as the reference structure, and this structure was
compared with all the results constructed by our algorithm. Table 2 shows the
ranking status of the reference structures observed in our reported results for
those 46 MS/MS spectra.
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Table 2. Performance of our algorithm compared with GlycoMasterDB

Rank No.1 No.2 No.3-10 No.>10 Can’t find

Number of glycans 35 6 1 2 2

Ratio(%) 76.09 13.04 2.17 4.35 4.35

As one can see from Table 2, there are 35 glycans with highest scores generated
by our proposed method have the same structures as those top-ranked glycans
interpreted by GlycoMaster DB. In addition, if the case that the corresponding
reference structure ranking top two in our reported results is deemed correct,
then the accuracy rate of our proposed method can reach to 89.13%. Among
the results that the reference structures ranked greater than 10, the lowest rank
observed in our results is 32. However, for the associated spectra, the top ranked
glycan structure reported by our method and the second ranked structure iden-
tified by GlycoMaster DB were identical. And the scores of those top two results
reported by GlycoMaster DB were indeed very close.

There are two entries that the reference glycan structures cannot be observed
in the results provided by our proposed algorithm. However, our reported gly-
cans with highest score were only partially different from the related reference
structures. Figure 1 shows the difference of these two pairs of results.

Fig. 1. Comparison of two pairs of glycan structures identified by GlycoMaster DB
and our method respectively.

Each pair of glycans in the same row shown in Fig.1. were interpreted by the
same HCD spectra. Glycans 1a. and 2a. were identified by GlycoMaster DB with
highest scores, while 1b and 2b were ranked first in the results of our method. As
one can see from the figure, in each row, the two glycans have high resemblance
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and one can be converted to the other one through a few steps of operations.
This indicated that although our algorithm did not find out the same glycan
structures as GlycoMaster DB did, our results were only partially different and
can be used to assist the filtration of tentative candidates generated by database
searching method. Our reported results were reasonable because they were also
supported well by each corresponding spectrum. In future, we will combine our
de novo sequencing method with database searching method to improve the
result accuracy of the glycan characterization from MS/MS spectra.
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Abstract. Machine learning algorithms are widely used to annotate
biological sequences. Low-dimensional informative feature vectors can
be crucial for the performance of the algorithms. In prior work, we
have proposed the use of a community detection approach to construct
low dimensional feature sets for nucleotide sequence classification. Our
approach uses the Hamming distance between short nucleotide subse-
quences, called k-mers, to construct a network, and subsequently uses
community detection to identify groups of k-mers that appear frequently
in a set of sequences. While this approach worked well for nucleotide se-
quence classification, it could not be directly used for protein sequences,
as the Hamming distance is not a good measure for comparing short pro-
tein k-mers. To address this limitation, we extend our prior approach by
replacing the Hamming distance with substitution scores. Experimental
results in different learning scenarios show that the features generated
with the new approach are more informative than k-mers.

Keywords: Community detection · Feature construction · Feature
selection · Dimensionality reduction · Protein sequence classification ·
Supervised learning · Semi-supervised learning · Domain adaptation

1 Introduction

Machine learning has been extensively used to address prediction and classifica-
tion problems in the field of bioinformatics. Advancements in sequencing tech-
nologies have led to the availability of large amounts of sequential data (mostly
unlabeled), which can benefit learning algorithms. In general, most learning al-
gorithms require a vectorial representation of the data in terms of features. Rep-
resenting the data through low-dimensional informative feature sets is critical
for the performance of the algorithms, in terms of both accuracy and complexity.

However, for many biological problems it is not yet understood which features
are informative. In the absence of known informative features, it is common to
represent the sequences as the count of k -mers generated using a sliding window-
based approach. To do this, a window of a particular size, k, is traversed across
the sequence, and at each step in the traversal, the fragment of the sequence
within the window is captured. All such possible unique subsequences/fragments
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(referred to as k -mers) are used as features to represent sequences. As informa-
tive features can have variable length, the size, k, of the window is varied. How-
ever, variable length k -mers result in high-dimensional feature sets, increased
computational complexity and sometimes decreased classification accuracy.

Feature selection is one of the techniques widely used to reduce the dimension-
ality of the input feature space, while retaining most of the informative features.
Most of the feature selection techniques use the available labeled data to es-
timate feature-class dependency scores for all features. The features are then
filtered based on the corresponding feature-class dependency scores. In theory,
feature selection can be applied not only in supervised learning (large amounts of
labeled data is used in the learning process), but also in semi-supervised learning
(small amounts of labeled and large amounts of unlabeled data are used) and
domain adaptation (large amounts of labeled data from a source domain, along
with small amounts of labeled data and large amounts of unlabeled data from a
target domain are used to learn classifiers for the target data). However, in the
semi-supervised and domain adaptation, as the amount of available (target) la-
beled data is small, feature selection may not capture the feature-class dependen-
cies accurately. Furthermore, when the number of features is very large, feature
selection techniques might be computationally expensive. Therefore, alternative
methods to generate a reduced set of informative features can presumably benefit
supervised, semi-supervised and domain adaptation algorithms.

Towards this goal, in [16], we have introduced the idea of using a commu-
nity detection algorithm to generate a low-dimensional informative sequential
feature set for classifying nucleotide sequences (specifically, for the problem of
classifying exons as either alternatively spliced or constitutive). Our approach
extended TFBSGroup [15], an unsupervised approach to identify transcription
factor binding sites in a small number of nucleotide sequences, based, in turn,
on the community detection algorithm proposed in [23]. The worst case running
time of TFBSGroup is quartic in the total number of sequences and the length
of each sequence in the dataset. As a result, running TFBSGroup on large sets
of sequences has high computational cost. We proposed a fast and novel ex-
tension to TFBSGroup [16], which makes it possible to generate features for
large sets of nucleotide sequences. Our approach is based on randomly sampling
small subsets of sequences (as opposed to using all the sequences at once) and
finding informative features in each set separately. The final set of informative
features is obtained by taking the union of the individual sets found using TF-
BSGroup. Although our prior approach [16] was successfully used to identify
low-dimensional informative features (referred to as c-mers) for nucleotide se-
quences, it cannot directly be applied for protein sequences given the large size
of the protein alphabet and the short length of the informative protein k-mers.

To address this limitation, in this paper, we further extend the approach in
[16] to protein sequences by making use of amino acid substitution scores in place
of the Hamming distance, under the assumption that the substitution scores are
better than the Hamming distance when comparing short protein subsequences.
We have applied the proposed approach to the problem of classifying protein
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sequences based on their localization. To evaluate the predictive power of c-
mers in classifying protein sequences, we have conducted experiments in three
different learning scenarios: supervised, semi-supervised and domain adaptation.
Experimental results in all three learning scenarios suggest that the features
generated with the community detection approach are more informative than
k-mers in classifying protein sequences.

The rest of the paper is organized as follows: The related work on applications
that have used k -mers, feature selection and community detection approaches is
described in Section 2. The proposed approach of using a community detection
algorithm to generate features for biological sequences is discussed in Section 3.
Section 4 lists the research questions that we are addressing through this work,
along with details about the set of experiments conducted, and the datasets used.
The results of the experiments conducted are presented in Section 5, followed
by conclusions in Section 6.

2 Related Work

In bioinformatics, and especially biological sequence classification, the sliding
window approach is frequently used, sometimes together with feature selection
or a different dimensionality reduction method, to generate k-mers and repre-
sent biological sequences as vectors of k -mers [1,2,3]. As an alternative to feature
selection, we propose to use community detection to select a small set of informa-
tive features (specifically, k-mers that appear frequently in a set of sequences).

To find communities, Grivan and Newman [8,22] proposed a hierarchical di-
visive algorithm, that iteratively removes edges between nodes based on their
“betweenness”, until the modularity of a partition reaches the maximum. The
“betweenness” measure defines the total number of shortest paths between any
two nodes that pass through an edge. The authors estimated the modularity
of a partition, referred to as the Newman-Girvan modularity, by comparison
with a null model (random graph). Their algorithm is believed to be the first of
modern day community detection approaches. Clauset et al. [4] proposed a fast
community detection approach that uses the Newman-Girvan modularity gain.
Their approach starts with a set of isolated nodes, and the nodes are iteratively
grouped based on the modularity gain. While some techniques use exhaustive
optimization to better estimate the final maximum modularity, at the expense
of computational cost [9,10,11,12], more efficient techniques have also been pro-
posed to identify communities from large complex networks [23,24,25,26,27].

In bioinformatics, community detection has been mainly used in the context of
protein-protein interaction networks and prediction of functional
families [18,19,20,21]. Jia et al. [15] used community detection to identify tran-
scription factor binding sites in a small set of nucleotide sequences (approach
referred to as TFBSGroup). In [16], we have extended TFBSGroup to construct
sequential features for classifying large sets of nucleotide sequences. To the best
of our knowledge, community detection algorithms have not been used to con-
struct sequential features for classifying protein sequences in a machine learning
framework.
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3 Feature Construction Using Community Detection

3.1 Community Detection Algorithm

Complex network analysis has gained a lot of attention among researchers inter-
ested in identifying hidden structural and relational properties within a large sys-
tem. A network, similar to a graph, comprises of a set ofV nodes, {n1, n2, · · · , nV },
along with a set of E edges, {(ni, nj) | 1 ≤ i �= j ≤ V }. Many complex systems
can be represented using a network, with nodes being the elementary components
of the system and the relationship between the components being the links.

A community is a sub-network whose nodes are highly connected with each
other, as compared to other nodes outside the community. Thus, a community
reflects a group of closely related nodes. Identifying communities can uncover
structural properties of a network. From the methods available to identify com-
munities, we use a technique based on modularity, proposed by Blondel et al. [23].

The modularity of a network (denoted by Q) measures the structure of a
network by defining the strength of the network when divided into modules
(sub-networks or communities). High modularity suggests that the nodes within
each community are densely connected when compared to other nodes. The
algorithm proposed in [23] identifies communities by optimizing the modularity
gain. It is a fast and efficient approach to identify high modularity partitions in
a large network, which can be seen as a two-phase iterative process.

In the first phase, each node is assigned to a different community. Then, for
each node, ni, the algorithm computes the gain in modularity, ΔQ, achieved by
removing ni from its community and placing it in the community of nj, where
nj is a neighboring node of ni. It then assigns ni to the community of that nj ,
for which the maximum modularity gain is obtained. In the second phase, a new
network is constructed, with the nodes being the communities identified in the
first phase. The weights of the edges between the new nodes are computed as
the sum of the weights of the edges between nodes of the corresponding two
communities. Edges among nodes of the same community form self-loops in the
new network. These two phases are iterated until there is no further improvement
in the modularity gain, and, then, the final set of communities is returned.

3.2 Identifying Motifs Using Community Detection

Jia et al. [15] introduced the idea of using community detection to identify
transcription factor binding sites (a.k.a., motifs) in a set of nucleotide sequences.
A motif is a pattern that is widespread across different sequences, and potentially
has biological significance. Consequently, a motif can be obtained by aligning a
set of subsequences that occur across different sequences (called motif instances),
which are highly correlated to each other. The motif is also referred to as the
consensus of its motif instances. The approach proposed by Jia et al. [15], called
TFBSGroup, aims at identifying motifs under the ZOMOPS constraint (Zero,
One or Multiple Occurrences of a motif Per Sequence). The motifs identified
have length k, and there are at most d mismatches between motif instances
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and the motif consensus. For a set of N sequences of maximum length L, the
TFBSGroup approach also works in three phases/steps.

(Step 1) The first step deals with the construction of an N -partite network
and detection of communities in that network. The nodes of the network rep-
resent all possible k-mers (subsequences of length k) of the input sequences.
Therefore, for a set of N sequences, each of length L, there are (N ∗ (L− k+1))
nodes. Two nodes are connected by an edge only if the Hamming distance be-
tween the k-mers corresponding to the two nodes is no more than x (a parameter
that the TFBSGroup algorithms takes). Given that the maximum Hamming dis-
tance allowed between a motif instance and the motif consensus is d (another
TFBSGroup parameter), it follows that the maximum Hamming distance be-
tween any two motif instances is 2d. Therefore, while constructing the network,
the maximum value that x can be given is 2d. We should note that there is no
edge between nodes (k -mers) belonging to the same sequence, which means that
a set of N sequences results in an N -partite network.

(Step 2) After constructing the network, all possible communities of size at
least q (another parameter) are identified. Then, from each community, a motif
consensus is generated by aligning all k-mers from that particular community.

(Step 3) Finally, each motif consensus is greedily refined towards a final motif,
and a significance score is calculated for it. The top t motifs (default t=10) are
then selected based on the significance score (see [15] for more details).

According to [15], the worst-case time complexity of the TFBSGroup algo-
rithm is quartic in terms of the total number of input sequences, N , and the
length of the sequences, L: O(p(k, x)2×N4×L4), where p(k, x) is the probability
of two random k-mers having Hamming distance at most x. Although TFBS-
Group can successfully identify transcription factor binding sites in a small set
of sequences, it cannot be applied for generating features for classification prob-
lems, due to the large number of sequences involved. To address this problem, in
[16], we proposed an approach for scaling up TFBSGroup, as described below.

3.3 Feature Construction for Large Nucleotide Sequence Datasets

To extend TFBSGroup to generate features for sequence classification problems,
in [16], we proposed to run TFBSGroup on a set of randomly selected R samples,
each of S sequences, from the available data consisting of N sequences, where S
� N . The time complexity of running TFBSGroup on R samples reduced to:

O(p(k, x)2 × S4 × L4 ×R) � O(p(k, x)2 ×N4 × L4), when (R× S4) � N4.
We choose R and S that satisfy the condition above to achieve scalability. Fur-
thermore, when generating the R samples, we allow overlap between samples, but
there is no overlap between sequences within a sample. The reason for this is that
we are interested in finding patterns/motifs that are frequent across sequences,
but not necessarily within a sequence. By allowing samples to overlap, we can
essentially link subsequences in different samples, and get higher coverage.

We run TFBSGroup on each individual sample and select the top t motifs
from each sample. All the resulting motifs are merged together to form the final
set of motifs. As a result, the final set of motifs contains a total of t×R motifs
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(for a particular length of the motif, k). The frequency count representation
of all unique motif instances present in the final set of motifs is then used to
represent sequences for classification. We refer to the set of motif instances as
the set of c-mers given that they are identified based on community detection.
This approach has been successfully used to construct informative features for
learning classifiers from large sets of nucleotide sequences [16]. However, it cannot
be directly used to construct features for protein sequences, as the Hamming
distance does not capture well differences between short protein k-mers.

3.4 Feature Construction for Large Protein Sequence Datasets

For protein sequences, motifs of shorter length carry better information than
motifs of longer length [2]. When the length of the motif is small (e.g., k = 1,
2 or 3), the probability of two protein k-mers having Hamming distance less
than a particular threshold, x, is high, as x ≈ k, and thereby the resulting
network in very dense. For longer k-mers (e.g., k = 6, 7 or 8), usually the
desired threshold x is smaller than k. In such cases, given the large alphabet
size of protein sequences, the probability of having an edge between two nodes is
very low, thereby resulting in a very sparse network. Therefore, when Hamming
distance is used to construct a network of protein subsequences, the resulting
network is either too sparse or too dense. To address this issue, we propose to use
substitution scores when constructing sequential features for protein sequences.
Substitution scores are computed using substitution matrices for amino acids,
which take into account the divergence time as well as the substitution rate for
each possible alignment of amino acids. Based on the default parameters for
BLAST, in this work, we used PAM30 matrix [5,13] to compute the substitution
scores for pairs of k-mers.

Similar to the Hamming distance, the substitution score for a pair of k -mers
is computed based on the alignment of the amino acids at the respective po-
sitions of the k -mers. However, when using substitution matrices, as opposed
to the Hamming distance, the score of an alignment at a particular position is
affected not only by the match/mismatch of the respective amino acids, but also
by the degree of match/mismatch as captured by the substitution matrix. For
example, consider two pairs of 3 -mers: {JQK,LZK} and {PGD,RGD}. For
pair 1, the Hamming distance is 2 and the substitution score is 19, and for pair 2,
the Hamming distance is 1 and the substitution score is 10 (where substitution
scores are computed using PAM30 matrix [5]). We should note that the substi-
tution scores represent similarity scores, as opposed to distances. The higher the
substitution score values, the more similar the sequences. Thus, based on the
Hamming distance, the k -mers of pair 2 are more similar than the k -mers of pair
1. Contrarily, based on substitution scores, the k -mers of pair 1 are more similar
when compared to pair 2. Given the fact that substitution scores capture the
degree of match/mismatch, they are preferable to the Hamming distance when
interested in identifying similar protein sequences.

In this work, we find protein motifs with the property that the substitution
score between any motif instance and the corresponding motif consensus is at
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least s (a parameter of the algorithm). When constructing the subsequence net-
work, a pair of nodes (protein subsequences of length k) are connected by an
edge only if the substitution score of the two k -mers is greater than a particular
threshold p (to avoid spurious edges, in our experiments, we chose p = s/2).
After constructing the network, all possible communities of size at least q are
identified in the network using the community detection algorithm, and the k -
mers corresponding to each community are aligned to form the motif consensus.
Subsequently, each motif consensus is greedily refined towards the final motif
for that community, using the substitution scores, and, for each community, the
refined motif along with the motif instances are returned, together with a nor-
malized substitution score. The above process is repeated for all communities
identified by the algorithm. The top t motifs (default t=10) from all the resulting
motifs are then selected based on the normalized substitution scores. The unique
motif instances belonging to the final motifs are used as classification features
and will be denoted by c-mers, similar to how the community detection-based
features for nucleotide sequences are denoted in our previous work.

4 Experimental Setup

In Section 4.1, we present the research questions addressed through our work.
The datasets used are described in Section 4.2, and the details about the exper-
imental setup are presented in Section 4.3.

4.1 Research Questions

We addressed the following research questions:

1. How does the number of c-mers compare to the number of all possible k-mers?
The set of c-mers generated using the community detection algorithm satisfy
the ZOMOPS constraint (Zero, One or Multiple Occurrences of the motifs
Per Sequence). Therefore, we expect the dimensionality of the set of c-mers
to be very small when compared to the dimensionality of the set of all k -mers.

2. How does the predictive power of c-mers compare to that of k-mers? To
investigate the predictive power of c-mers, we compare the performance of
the classifiers learned from sequences represented using c-mers with that
of the classifiers learned from sequences represented using an equal number
of k -mers (obtained via feature selection from the total number of k-mers).
Given that the community detection approach used to generate c-mers is not
supervised (i.e., does not make use of sequence labels), we have conducted
experiments in three different learning scenarios: supervised, semi-supervised
and domain adaptation. While larger amounts of data are possibly available
in the supervised learning scenario, the assumption in the semi-supervised
and domain adaptation scenarios is that only small amounts of labeled data
are available for the domain of interest. Therefore, we expect the features
obtained using community detection to be more informative than the k-
mers, at least in these scenarios, as feature-class dependencies may not be
well captured by feature selection when the amount of labeled data is limited.
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4.2 Datasets

In this work, we targeted the problem of classifying protein sequences based on
their respective localization. We used four different protein sequence datasets:

– PSORTb datasets [7]: The Gram-negative (GN) dataset consists of 1444
sequences belonging to one of the five classes: cytoplasm (278), cytoplasmic
membrane (309), periplasm (276), outer membrane (391) and extracellular
(190). The Gram-positive (GP) dataset consists of 541 sequences belonging
to one of the four classes: cytoplasm (194), cytoplasmic membrane (103),
cellwall (61) and extracellular (183).

– TargetP datasets [6]: The plant (P) dataset consists of 940 sequences be-
longing to one of the four classes: chloroplast (141), mitochondrial (368),
secretory pathway/signal peptide (269) and other (consisting of 54 proteins
labeled nuclear and 108 proteins labeled cytosolic). The non-plant (NP)
dataset consists of 2738 sequences belonging to one of the three classes:
mitochondrial (361), secretory pathway/signal peptide (715) and other (con-
sisting of 1224 proteins labeled nuclear and 438 proteins labeled cytosolic).

4.3 Experiments

Asmentioned above, we conducted experiments in three different scenarios: super-
vised, semi-supervised, and domain adaptation.We used the näıve Bayesmultino-
mial (NBM) classifier for the supervised scenario; the co-training iterative-based
algorithm, with NBM as the base classifier, for the semi-supervised scenario; and
the algorithm proposed in [14], derived from the NBM classifier, for the domain
adaptation scenario. All experiments are conducted using 5-fold cross-validation,
with four folds used for training and the remaining fold for testing. In the su-
pervised scenario, all the training data was assumed to be labeled and was used
to learn the classifiers. In the semi-supervised scenario, we assumed 20% of the
training data to be labeled and up to 80% to be unlabeled (specifically, we experi-
mented with 20%, 40%, 60%, and 80% of the training data as unlabeled). Finally,
for the domain adaptation scenario, we assumed a source domain with labeled
data to be available, in addition to the target domain labeled and unlabeled data.
We conducted experiments with the following pairs of source→target domains:
GP → GN , GN → GP , P → NP and NP → P , respectively. Only the overlap-
ping classes within a pair of domains were used in the domain adaptation scenario
(i.e., cytoplasm, cytoplasmic membrane and extracellular for the GP/GN pairs,
andmitochondrial, secretory pathway/signal peptide and others forP/NP pairs).
For each run, we used all the data from the source domain, and we split the train-
ing target data into 20% as labeled and up to 80% as unlabeled (i.e., 20%, 40%,
60%, and 80%).

We evaluated the performance of the classifiers using the area under the re-
ceiver operating characteristic curve (AUC), as the class distribution is relatively
balanced for all data sets. We report the average AUC over the five runs.

Our goal is to compare two feature representations, c-mers and k-mers. The
details of how these sets of features were generated are provided below:
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– For c-mers, we invoke the proposed approach (Section 3.4) with the following
parameter values: length of the motif k ∈ {2, 3, 4}, minimum community
size q = 5, minimum substitution score s = 15, number of samples R = 50,
sample size S = 10, and number of motifs selected t = 10. The algorithm
returns the set of c-mers. We denote the number of c-mers by Nc−mers.
We should note that the total number of unique sequences from all the R
samples, NRS , can be smaller than the total number of all the sequences in
the dataset N , as the samples generated can have overlapping sequences.

– For k-mers, we use the sliding window approach. To make a fair compar-
ison between c-mers and k-mers, we generate k-mers of the same length
k ∈ {2, 3, 4}, on the same set of training sequences, NRS . In addition, when
comparing the performance, we apply feature selection on k-mers, using the
labeled data only, to select top k-mers, such that the number of k-mers used,
Nk−mers, is the same as the number of, c-mers, Nc−mers. For feature selec-
tion, we use Entropy based Category Coverage Difference (ECCD), proposed
in [17], as this measure makes use of both the distribution of the sequences
containing the features and the frequency of the occurrence of a feature value
within the sequence, to compute the feature-class dependency scores.

5 Results

Following are the total number of features (#c-mers, #k-mers) generated, aver-
aged over five folds for all four datasets: GP (1976, 74203), GN (1823, 83060), P
(1684, 77091) and NP (1751, 102815). As can be seen, the total number of c-mers
is much smaller than the total number of k-mers. As the set of c-mers repre-
sents a reduced set of k -mers (c-mers ⊂ k -mers), this means that our proposed
approach can be seen as a dimensionality reduction technique for k -mers.

Table 1 shows the AUC values for the supervised, semi-supervised, and domain
adaptation scenarios, respectively. As can be seen, the AUC values are higher
when using c-mers as compared to k-mers in all scenarios, for most experiments,
specifically, in 3 out of 4 cases for the supervised scenario, and 15 out of 16 cases
for the semi-supervised scenario as well as for the domain adaptation scenario.
In semi-supervised/domain adaptation learning scenarios, given that the amount
of available labeled data is small, feature selection may not estimate the feature-
class dependencies accurately, thereby selecting a set of possibly uninformative
features, while filtering out informative features. Thus, in cases when the amount
of available labeled data is small, c-mers are expected to outperform k -mers
selected using feature selection. Surprisingly, we observed a similar behavior
also in the supervised learning scenario, the scenario where we presumably have
sufficient labeled data to estimate the feature-class dependencies accurately. The
reason for this might be that feature selection can still leave out informative
features, as the size of the final set is limited by the number of c-mers, and it
possibly includes some uninformative features. On the other hand, the set of
c-mers, having the same size as the set of selected k-mers, capture much better
features that carry information about classes.
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Table 1. AUC values on the four datasets: Gram-positive (GP), Gram-negative (GN),
plant (P), and non-plant (NP). For the semi-supervised and domain adaptation sce-
narios, the amount of labeled data is fixed to 20%, while the amount of unlabeled data
is varied from 20% to 80%. For domain adaptation, the source and target domains are
indicated as source→target. Note that for each scenario, in most cases, the classifiers
had higher AUCs when using c-mers.

Supervised learning scenario

Unlabeled
GP GN P NP

c-mers k-mers c-mers k-mers c-mers k-mers c-mers k-mers

0 0.925 0.869 0.929 0.915 0.837 0.754 0.834 0.874

Semi-supervised learning scenario

Unlabeled
GP GN P NP

c-mers k-mers c-mers k-mers c-mers k-mers c-mers k-mers

20 0.847 0.746 0.877 0.793 0.72 0.663 0.825 0.787

40 0.831 0.748 0.882 0.793 0.705 0.656 0.793 0.788

60 0.852 0.742 0.87 0.783 0.698 0.655 0.773 0.774

80 0.822 0.749 0.851 0.788 0.705 0.659 0.773 0.77

Domain adaptation scenario

Unlabeled
GN→GP GP→GN NP→P P→NP

c-mers k -mers c-mers k -mers c-mers k -mers c-mers k -mers

20 0.877 0.785 0.911 0.899 0.802 0.78 0.829 0.763

40 0.856 0.755 0.91 0.893 0.748 0.728 0.821 0.777

60 0.852 0.731 0.902 0.896 0.739 0.728 0.777 0.73

80 0.839 0.741 0.892 0.895 0.734 0.727 0.803 0.744

Together, the small dimensionality of the set of c-mers and the performance
results in Table 1 suggest that our approach is successful in retaining informa-
tive/predictive features, while reducing the dimensionality by a large extent in
all learning scenarios considered.

6 Conclusion

We have investigated the predictive power of the features generated using a
community detection approach, for classifying proteins based on their respec-
tive localizations. As the original approach of using Hamming distance [15,16]
to generate nucleotide features does not work for sequences of a large alphabet
size (such as proteins), we proposed a novel idea of using substitution scores
as a similarity metric between two protein k-mers in the process of construct-
ing the protein subsequence network. The resulting c-mers are associated with
a set of motifs which represent groups of similar subsequences that occur fre-
quently in the set of sequences. As opposed to that, the set of k -mers generated
with a sliding window take into account all possible subsequences of a certain
length occurring in the sequences. Both approaches are unsupervised, as they
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do not make use of class labels. To evaluate the predictive power of the fea-
tures generated using our proposed approach (specifically, the predictive power
of c-mers), we have conducted experiments in supervised, semi-supervised and
domain adaptation learning scenarios. The results of the experiments show that
our proposed approach generated low-dimensional informative features in su-
pervised, semi-supervised and domain adaptation scenarios. Furthermore, those
features have resulted in improved performance as opposed to k-mers selected
based on feature-class dependency scores, even in the supervised scenario, where
presumably there is enough labeled data to accurately estimate the scores.
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Abstract. Mesh generation is a useful tool for obtaining discrete de-
scriptors of biological objects represented by images. The generation of
meshes with straight sided elements has been fairly well understood.
However, in order to match curved shapes that are ubiquitous in na-
ture, meshes with high-order elements are required. Moreover, for the
processing of large data sets, automatic meshing procedures are needed.
In this work we present a new technique that allows for the automatic
construction of high-order curvilinear meshes. This technique allows for
a transformation of straight-sided meshes to curvilinear meshes with C2

smooth boundaries while keeping all elements valid as measured by their
Jacobians. The technique is demonstrated with examples.

Keywords: Biomedical image processing · High-order mesh generation

1 Introduction

Discretization of complex shapes into simple elements are widely used in various
computing areas that require a quantitative analysis of spatially dependent at-
tributes. One, traditional, area is the finite element analysis [12] which is used to
numerically solve partial differential equations derived using solid mechanics and
computational fluid dynamics approaches. With this approach one starts with
the knowledge of the constitutive physical laws and initial (boundary) conditions
and obtains a prediction of the properties of objects of interest. Another, emerg-
ing, area is the use of discretization for delineating homogeneous spatial zones
within objects that can be represented as units for an overall object description.
With this approach one starts with the knowledge of object properties and uses
statistical methods to infer the processes that govern the formation of the object.
Therefore, the second approach can be viewed as a reversal of the first approach,
that still relies on a similar discretization technique. This second approach is a
useful tool for bioinformatics applications, for example gene expression pattern
analysis [10,11,4].

Said discretizations of objects are usually called meshes, and the simple ele-
ments that they consist of are either triangles and tetrahedra (in two and three
dimensions, respectively), or quadrilaterals and hexahedra. Furthermore, ele-
ments can have either straight or curved sides. In our previous work [10,11] we
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used triangular meshes with straight sides to discretize images of fruit fly em-
bryos. However, the embryos, like most biological objects, have curved shapes,
and their discretizations with straight-sided elements have limited accuracy. To
obtain much higher accuracy one needs to use curved-sided elements that match
the curves of object boundaries.

In this paper we build the methodology for automatically generating valid
high-order meshes to represent curvilinear domains with smooth global mesh
boundaries. Cubic Bézier polynomial basis is selected for the geometric repre-
sentation of the elements because it provides a convenient framework supporting
the smooth operation and mesh validity verification. We highlight the three con-
tributions of this paper:

1. Curved mesh boundary is globally smooth. It satisfies the C2 smoothness
requirement, i.e., the first and second derivatives are continuous.

2. A new procedure was developed to efficiently verify the validity. It is formu-
lated to work in an arbitrary polynomial order.

3. Our proposed approach is robust in the sense that all the invalid elements
are guaranteed to be eliminated.

The procedure starts with the automatic construction of a linear mesh that si-
multaneously satisfies the quality (elements do not have arbitrarily small angles)
and the fidelity (a reasonably close representation) requirements. The edges of
those linear elements which are classified on the boundary are then curved us-
ing cubic Bézier polynomials such that these boundary edges constitute a cubic
spline curve. Once our validity verification procedure detects invalid elements,
the meshing procedure next curves the interior elements by iteratively solving
for the equilibrium configuration of an elasticity problem until all the invalid
elements are eliminated.

Various procedures have been developed and implemented to accomplish the
generation of a curvilinear mesh. Sherwin and Peiro [8] adopted three strategies
to alleviate the problem of invalidity: generating boundary conforming surface
meshes that account for curvature; the use of a hybrid mesh with prismatic and
tetrahedral elements near the domain boundaries; refining the surface meshes ac-
cording to the curvature. However, these strategies are intuitive solutions that are
not guaranteed to generate valid high-order meshes. The mesh spacing is decided
by a user defined tolerance ε related to the curvature and a threshold to stop ex-
cessive refinement. Persson and Peraire [6] proposed a node relocation strategy
for constructing well-shaped curved meshes. Compared to our method which iter-
atively solves for the equilibrium configuration of a linear elasticity problem, they
use a nonlinear elasticity analogy, and by solving for the equilibrium configuration,
vertices located in the interior are relocated as a result of a prescribed boundary
displacement. Luo et al. [5] isolate singular reentrant model entities, then gener-
ate linear elements around those features, and curve them while maintaining the
gradation. Local mesh modifications such as minimizing the deformation, edge or
facet deletion, splitting, collapsing, swapping as well as shape manipulation are
applied to eliminate invalid elements whenever they are introduced instead of our
global node relocation strategy. George and Borouchaki [7] proposed a method for
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constructing tetrahedral meshes of degree two from a polynomial surface mesh of
degree two. Jacobian is introduced for guiding the correction of the invalid curved
elements. When the polynomial degree is higher, it is complicated to calculate
the Jacobian, so we develop a procedure suitable for a polynomial of any degree.
Furthermore, none of the above algorithms generates C1 and C2 smooth mesh
boundaries.

The rest of the paper is organized as follows. in Section 2, we review some
basic definitions. Section 3 gives a description of the automatic construction of a
graded linear mesh and the transformation of the linear mesh into a valid high-
order mesh. We present meshing results in Section 4 and conclude in Section 5.

2 Bézier Curves and Bézier Triangles

2.1 Bézier Curves

We express Bézier curves in terms of Bernstein polynomials. A nth order Bern-
stein polynomial is defined explicitly by

Bn
i (t) =

(
n

i

)
ti(1 − t)n−i, i = 0, ..., n, t ∈ [0, 1],

where the binomial coefficients are given by

(
n

i

)
=

{ n!
i!(n−i)! if 0 ≤ i ≤ n

0 else.

One of the important properties of the Bernstein polynomials is that they satisfy
the following recurrence:

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t),

with

B0
0(t) ≡ 1, Bn

j (t) ≡ 0 for j ∈ 0, ..., n.

Then the Bézier curve of degree n in terms of Bernstein polynomial can be
defined recursively as a point-to-point linear combination (linear interpolation)
of a pair of corresponding points in two Bézier curves of degree n− 1. Given a
set of points P0, P1, ..., Pn ∈ E2, where E2 is a two-dimensional Euclidean space,
and t ∈ [0, 1], set

bri (t) = (1− t)br−1
i (t) + tbr−1

i+1 (t)

{
r = 1, ..., n
i = 0, ..., n− r

and b0i (t) = Pi. Then bn0 (t) is the point with parameter value t on the Bézier curve
bn. The set of points P0, P1, ..., Pn are called control points, and the polygon P
formed by points P0, P1, ..., Pn is called control polygon of the curve bn.
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P03

P12 P21

P30

(a) (b)

Fig. 1. (a) An example of the cubic Bézier curve with its control polygon formed by
four control points. (b) An example of the cubic Bézier triangle with its control net
formed by ten control points.

An explicit form of a n-th order Bézier curve can be defined as

bn(t) =

n∑

i=0

Bn
i (t)Pi.

The barycentric form of Bézier curves demonstrates its symmetry property
nicely. Let u and v be the barycentric coordinates, u ∈ [0, 1] and v ∈ [0, 1],
u+ v = 1, then

bn(u, v) =
∑

i+j=n

Bn
ij(u, v)Pij ,

where Bn
ij(u, v) =

n!
i!j!u

ivj , Pij ∈ E2 are the control points, and i+ j = n.
Specifically, the cubic Bézier curve can be written in terms of the barycentric

coordinates,

b3(u, v) =
∑

i+j=3

B3
ij(u, v)Pij = u3P03 + 3u2vP12 + 3uv2P21 + v3P30,

Fig. 1a gives an example of the cubic Bézier curve with its control polygon.

2.2 Bézier Triangles

Univariate Bernstein polynomials are the terms of the binomial expansion of [t+
(1− t)]n. In the bivariate case, a n-th order Bernstein polynomial is defined by

Bn
i (u) =

(
n

i

)
uivjwk,

where

i = {i, j, k}, |i|= n, u = {u, v, w},
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u ∈ [0, 1], v ∈ [0, 1] andw ∈ [0, 1] are the barycentric coordinates andu+v+w = 1.
It follows the standard convention for the trinomial coefficients

(n
i
)
= n!

i!j!k! .
This leads to a simple definition of a Bézier triangle of degree n

T n(u, v, w) =
∑

i+j+k=n

Bn
ijk(u, v, w)Pijk ,

where Pijk is a control point. Specifically, the Bézier triangle of degree three can
be written as

T 3(u, v, w) =
∑

i+j+k=3

B3
ijk(u, v, w)Pijk

= P300u
3 + P030v

3 + P003w
3 + 3P201u

2w + 3P210u
2v

+ 3P120uv
2 + 3P102uw

2 + 3P021v
2w + 3P012vw

2 + 6P111uvw.

(1)

Fig. 1b gives an example of the cubic triangular patch with its control net formed
by its ten control points.

3 Mesh Generation for Curvilinear Domains

Given a bounded curved domain Ω ⊂ R2, the algorithm outputs a curvilinear
mesh of the interior of Ω with global smooth boundary. Fig. 2 illustrates the
main steps performed by our algorithm. The details are elaborated below.

The mesh has to provide a close approximation of the object shape, and we
measure the closeness by the fidelity tolerance, the two-sided Hausdorff distance
from the mesh to the image and the image to the mesh. For image boundary I
and mesh boundary M , the one-sided distance from I to M is given by

H(I → M) = max
i∈I

min
m∈M

d(i,m),

where d(·, ·) is the regular Euclidean distance. The one-sided distance from M
to I is given similarly by

H(M → I) = max
m∈M

min
i∈I

d(m, i).

The two-sided distance is:

H(I ↔ M) = max{H(I → M), H(M → I)}.

To generate the initial linear mesh, we adopt the image-to-mesh conversion
algorithm [3], for four reasons: (1) it allows for a guaranteed angle bound (qual-
ity), (2) it allows for a guaranteed bound on the distance between the boundaries
of the mesh and the boundaries of the object (fidelity), (3) it coarsens the mesh
to a much lower number of elements with gradation in the interior, (4) it is
formulated to work in both two and three dimensions.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. An illustration of the main steps performed by our algorithm. (a) The input two-
dimensional image. It shows a curvilinear domain to be meshed. (b) A linear mesh which
satisfies the user specified quality and fidelity tolerances. The shaded region represents
the fidelity tolerance. (c) Those edges that are classified on the mesh boundary are
curved such that the C2 smoothness requirement is satisfied. (d) When there are curved
edges on the boundary and linear edges in the interior, the mesh validity need to be
verified. (e) The red triangles are invalid elements detected by our verifying procedure.
(f) To fix these invalid triangles, the interior edges are curved by iteratively solving for
the equilibrium configuration of an elasticity problem, and a valid mesh is obtained.

We transform the linear boundary edges followed by curving the interior edges
to eliminate the invalid elements. Bézier curve basis is selected because its math-
ematical descriptions are compact, intuitive, and elegant. It is easy to compute,
easy to use in higher dimensions (3D and up), and can be stitched together to
represent any shape.

Smoothness of the resulting curve is assured by imposing one of the continuity
requirements. A curve or surface can be described as having Cn continuity, n
being the measure of smoothness. Consider the segments on either side of a point
on a curve:

C0: The curves touch at the joint point;
C1: First derivatives are continuous;
C2: First and second derivatives are continuous.

A cubic polynomial is the lowest degree polynomial that can guarantee a C1

or a C2 curve. Biomedical objects usually have naturally smooth boundaries,
and can be approximated by either a C1 or a C2 curve. In our previous work [9],
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(a) (b) (c)

Fig. 3. An illustration of the construction of the cubic spline curve. (a) An example
of a cubic spline curve, formed by two Bézier curves with control points P0, P1, P2, S
and S, Q1, Q2, Q3. (b) An A-frame is a structure in which P2 is the midpoint of AP1,
Q1 is the midpoint of AQ2 and S is the midpoint of P2Q1. (c) The cubic spline curve
constructed with the help of the B-spline points shown in green. The black points are
S points, which are the endpoints of the boundary edges of the linear mesh. The red
points are the control points need to be calculated to form the cubic spline curve.

we present how to construct a C1 Bézier curve; in the following we will address
how to generate a C2 Bézier curve. By counting incorrectly classified pixels (i.e.,
inside vs. outside the shape) in the final mesh, the most suitable curve can be
determined.

We aim to find a cubic spline curve passing through all the mesh boundary
points given in order. It is a piecewise cubic curve that is composed of pieces of
different cubic curves glued together, and it is so smooth that it has a second
derivative everywhere and the derivative is continuous. Fig. 3a gives an example
of a cubic spline curve.

If two Bézier curves with control points P0, P1, P2, S and S, Q1, Q2, Q3 are
touched at point S, both their first and second derivatives match at S if and
only if their control polygons fit an A-frame, which is a structure in which P2 is
the midpoint of AP1, Q1 is the midpoint of AQ2 and S is the midpoint of P2Q1

as Fig. 3b shows.
To fit the A-frame in the set of cubic curves, one easy approach is to use

B-spline as an intermediate step. In Fig. 3c, the S points (shown in black) are
known, they are the endpoints of the boundary edges of the linear mesh. What
still needs to be calculated are the red control points. If the B-spline points (the
apexes of the A-frames, shown in green) are known, the control points (shown
in red) can be easily calculated by computing the one third and two thirds
positions between the connection of every two adjacent B-spline points. The
B-spline points can be computed by the relationship between S points:

6Si = Bi−1 + 4Bi +Bi+1.

By solving a linear system of equations, the coordinates of B-spline points can
be obtained.

The naive high-order mesh generation does not ensure that all the elements
of the final curved mesh are valid. Fig. 4a gives an example of this critical
issue: some of the curvilinear triangular patches have tangled edges. Thus, it is
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(a) (b)

Fig. 4. (a) An example of invalid mesh. The red line is the curved mesh boundary,
and the blue lines are straight mesh edges in the interior. The curved triangles that are
tangled are highlighted in gray. (b) An illustration of the local u, v, w coordinates are
distorted into a new, curvilinear set when plotted in global Cartesian x, y space. A gen-
eral principle for the transformation: an one-to-one correspondence between Cartesian
and curvilinear coordinates.

necessary to verify the validity and eliminate all the invalid elements as a post-
processing step once the curved mesh has been constructed. When elements of
the basic types will be mapped into distorted forms, a general principle is that
an one-to-one correspondence between Cartesian and curvilinear coordinates can
be established (illustrated in Fig. 4b).

The Jacobian matrix carries important information about the local behavior
of the transformation from linear elements to curved elements. A violation of the
condition that the determinant of the Jacobian Matrix is strictly positive every-
where means the violation of the bijection general principle. One way to detect
the element validity is evaluating the sign of the determinant of the Jacobian
matrix throughout the element. In our previous work [9], we took advantage of
the properties of Bézier triangle, formulated the Jacobian expression and calcu-
lated the tight lower bound of the Jacobian value at the element level. However,
although we used the third order polynomial, it is computationally and geomet-
rically complicated. To get the tight bound, we recursively refined the convex
hull of the Jacobian (it is a forth order Bézier triangle) using the Bézier subdivi-
sion algorithm. In this paper, an efficient element validity verification procedure
is developed for polynomials of arbitrary order. An element is invalid if and only
if the control net of the Bézier triangle is twisted, meaning that at least one of
the control triangles (shadowed triangles in Fig. 5) of the control net is inverted.

It is usually not enough to curve only the mesh boundary because some control
points may be located such that element distortions occur in the interior of the
mesh. In such case, interior mesh edges should also be curved to eliminate the
invalidity or improve the curved element quality.

We move the control points of the interior mesh edges using a finite element
method [12]. The geometry of the domain to be meshed is represented as an
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Fig. 5. (a) A valid control net with the uninverted control triangles. (b) A twisted
control net with one inverted control triangle �P012P102P003.

(a) (b)

Fig. 6. (a) The control nets of the linear mesh elements is the undeformed geometry. (b)
The red control points of the smooth curved boundary edges are the external loadings.

elastic solid. For each linear mesh edge, the positions of the two points which
are located in the one third and two thirds ratio of each edge are computed.
These positions are the original positions of the control points of the interior
edges before deformation. These points form the control nets of the linear mesh
elements. The control nets sticking together as a whole is the undeformed geom-
etry (shown in Fig. 6a). The external loadings are the control points (red points
in Fig. 6b) of the smooth curved boundary edges. The control nets are deformed
such that the control points of the boundary edges of the linear mesh move to
the corresponding control points of the curved boundary edge. By solving for
the equilibrium configuration of an elasticity problem, the finial configuration
is determined and the new positions of the control points of the interior mesh
edges after deformation are obtained. Fig. 6 illustrates these steps.
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(a) (b) (c) (d)

Fig. 7. An illustration of the iterative finite element method. (a) In this example there
is only one element in the mesh, the black border line represents the mesh boundary,
the position of the blue point represents the original position of one control point of
the linear mesh. (b) The position of the red point is the new position of the blue point
after deformation. The green point is one of the endpoints of the boundary edge, thus it
has to maintain its position. The control net is invalid because there exists an inverted
triangle. (c) The one step FEM method was applied, the blue point was directly moved
to the position of the red point. After solving for the equilibrium configuration, the
control net is still twisted. (d) The iterative way: make the position of the yellow point
as the intermediate target, first move the blue point to the position of the yellow point,
then move to the position of the red point. The two step FEM method successfully
corrected the twisted control net.

In most cases, the one step finite element method can handle this problem
successfully. However, in the case that the curvature of the boundary edge is
very large, the interior edges may not be able to be curved enough to correct the
invalidity. The iterative finite element method executes the validity check before
each round. When it is reported that an invalid element exists, the procedure
divides the segment formed by the original position and the new position into
two subsegments. The procedure takes the positions of the endpoints of the
subsegments one by one as the intermediate targets, and takes the solution of
the current target as the input of the next target. The algorithm terminates
when all the invalid elements are corrected. Fig. 6 shows an example.

4 Mesh Examples

The input data to our algorithm is a two-dimensional image. The procedure for
mesh untangling and quality improvement was implemented in MATLAB. All
the other steps were implemented in C++ for efficiency.

We meshed a region of a slice of mouse brain atlas [1] and a region of a fruit
fly embryo [2]. The size of the first input is 2550 ∗ 2050 pixels, the size of the
second input is 1900 ∗ 950 pixels. Each pixel has side lengths of 1 unit in x
and y dimensions, respectively. In each example, we show the linear mesh result
and the high-order mesh result (see Fig. 8 and Fig. 9). For both examples, the
fidelity tolerance for the linear mesh was specified by two pixels and the angle
quality bound was specified by 20◦. In the first example, after boundary edges
were curved, there were two invalid elements in the mesh interior. In the second
example, the number of invalid elements is one. After the mesh untangling pro-
cedure, all the invalid elements were corrected in both examples. The incorrectly
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(a) (b)

Fig. 8. Meshing results for a slice of mouse atlas [1]. (a) Linear mesh with two pixels
fidelity tolerance and 19◦ angle bound. (b) Final curvilinear mesh in which all the
elements are valid.

(a) (b)

Fig. 9. Meshing results for a fruit fly embryo [2]. (a) Linear mesh with two pixels
fidelity tolerance and 19◦ angle bound. (b) Final curvilinear mesh in which all the
elements are valid.

classified pixels (include both background pixels in the mesh elements and tissue
pixels outside the mesh) of the high-order mesh in both examples were improved
about 10 percent compared to that of the linear mesh.

5 Conclusion

We presented a new approach for automatically constructing a guaranteed qual-
ity curvilinear mesh to represent geometry with smooth boundaries.

Our future work will include the run time improvement. Compared to the
linear mesh generation we present in Section 3, the construction of the high-order
mesh is slow. One reason of the inefficiency is the hybrid code we implemented
both in MATLAB and C++. The most critical reason is that, in the procedure
of invalid mesh correction, we can not anticipate how many iterations we need
to eliminate all the invalid elements. As a result, we repeat this procedure until
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the suitable number of iteration is found. Parallelization may also be used later
to enhance the efficiency.

The other concern is further improving the accuracy. Our next step is design-
ing a more suitable linear mesh generation algorithm for curvilinear discretiza-
tion. For example, besides the two-sided Hausdorff fidelity requirement, if we
warp all the mesh boundary vertices to the image boundary, after smoothing,
the high-order mesh boundary will be naturally approaching to the boundary of
the biomedical objects.
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lation Graduate Research Fellowship Program at the Old Dominion University.
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Abstract. Chemotherapy is the main strategy in the treatment of cancer, how-
ever, the development of drug-resistance is the obstacle in long-term treatment 
of cervical cancer. Cisplatin is one of the most common drugs used in cancer 
therapy.  Recently, accumulating evidence suggests that miRNAs are involved 
in various bioactivities in oncogenesis. It is not unexpected that miRNAs play a 
key role in acquiring of drug-resistance in the progression of tumor. In this 
study, we induced and maintained four levels of cisplatin-resistant HeLa cell 
lines (HeLa/CR1, HeLa/CR2, HeLa/CR3 and HeLa/CR4). According to the 
previous studies and exiting evidence, we selected five miRNAs (miR-183, 
miR-182, miR-30a, miR-15b and miR-16) and their potential target mRNAs as 
our research targets. The real-time RT-PCR was used to detect the relative ex-
pression of miRNAs and their mRNAs. The results show that miR-182 and 
miR-15b were up-regulated in resistant cell lines while miR-30a was signifi-
cantly down-regulated. At the same time, the targets they regulated are related 
to the drug-resistance. The expression alteration of selected miRNAs in resis-
tant cell lines compared to their parent HeLa cell line suggests that HeLa cell 
drug resistance is associated with distinct miRNAs, which indicates that miR-
NAs may be one of the therapy targets in the treatment of cervical cancer by 
sensitizing cell to chemotherapy. 

Keywords: HeLa cell · Cisplatin-resistance · miRNAs · Chemotherapy 

1 Introduction 

Cisplatin (CDDP) is one of the most commonly used drugs in human malignancies 
therapy with the capability to damage DNA in normal and cancer cells. The main me-
chanism of cisplatin activation is through the combination to double-stranded DNA, 
and then form a DNA adducts to interfere in DNA replication and RNA transcription, 
resulting in apoptosis. The bioactivities of cisplatin determined its high efficient in the 
treatment of cervical cancer, and it also widely  used in other types of cancer such as 
bladder, testicular, head and neck, small and non-small cee lung, etc[1]. 

Although chemotherapy with cisplatin is a basic strategy for the treatment of vari-
ous cancers, the acquiring of drug-resistance becomes the main obstacle in cancer. 
The formation and aggravation of drug-resistance involves different molecular me-
chanism, including the increase of DNA repair activity and anti-apoptotic adjustment 
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factor activity, the reduce of drug accumulation, the increase of cisplatin adducts to-
lerance, the changes of post-translational modification and microtubule protein, inac-
tivation by thiol containing species and the failure of cell death [2]. Although the 
aforementioned mechanisms are cell-line dependent, according to the studies over the 
past decade, miRNAs play a key role in the formation of drug resistance in tumor 
cells [3]. 

MicroRNAs (miRNAs) are large class single-stranded RNA molecules approx-
imately 22 nucleotide (nt) length. MiRNAs play a key role in many cellular processes. 
MiRNAs are linked to tumor firstly due to its location on the chromosome very close 
to tumor-associated genomic regions and chromosomal breakpoints [4], and its ab-
normal expression in many malignant tumors. At current study, about 3% of human 
genome encodes miRNAs; however, there are more than 1/3 of protein-coding genes 
regulated by miRNAs [5]. Current studies confirmed many tumor-associated miR-
NAs, which targets are verified by experiments, thus further understanding of tumor-
associated miRNAs is important to tumor prediction, diagnosis and treatment. 

Most recently, there is an increasing number of miRNAs that have been shown to 
link to drug-resistance in different tumor cells. It is noteworthy that some miRNAs 
can mediate the formation of tumor stem cell and epithelial- mesenchymal transition, 
which is important for the development of drug-resistance [6]. At the same time, some 
miRNAs target chemosensitivity related genes and then change the sensitivity of tu-
mor cells to anticancer drugs [7]. 

To further understand of the potential role of miRNAs in drug resistance, and gain 
a primary perspective on the effective of miRNAs in the development of cisplatin 
resistance in HeLa cells, we studied a limit set of miRNAs which may play a role in 
the formation of cisplatin resistance in HeLa by target some mRNAs. At the same 
time, tumor suppressor gene p53 have been proven to play a role in the cellular resis-
tance to cisplatin. It can enhance cisplatin-induced apoptosis and sensitize HeLa cell 
to cisplatin [8]. Therefore, to confirm our cisplatin-resistant cell lines indeed acquired 
the resistance ability, we also analyzed the mRNA expression level of p53. In our 
study, we found the specific miRNAs that were differential expressed in different 
level of cisplatin-resistant HeLa cells.  

2 Material and Methods 

2.1 Cell Lines and Cultures 

Human cervical cancer cell line HeLa (obtained from Cell Resource Center of Shang-
hai Institute of Life Science, Chinese Academy of Science, Shanghai, China) and its 
different level of cisplatin-resistant variants HeLa/CR1, HeLa/CR2, HeLa/CR 3, 
HeLa/CR4 (induced and maintained in our laboratory) were cultured in RPMI-1640 
medium supplemented with 10% heat-inactivated fetal bovin serum (FBS) and 1% 
penicillin and streptomycin mixture. All the cells were cultured in a humid atmos-
phere with 5% CO2 at 37°C. 
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2.2 Induce of Cisplatin-Resistant HeLa Cells 

To mimic the process of cell resistance development and obtain different levels of 
resistant cells ，the HeLa cells were induced using a concentration gradient method. 
When the parental cells can growth stably at low concentration of cisplatin solution, 
then stepwise raise the concentration of cisplatin from 0.2μg/mL to 1.0μg/mL. Even-
tually four types of HeLa cells with different resistance levels were established. 

2.3 Detection of Drug-Resistant Ability 

The yellow dye 3(4, 5-dimethylthiazol2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) 
is a common method to assess the viability of cells because the absorbance is propor-
tional to the number of viable cells [9, 10]. The single cell suspension (5.0*104/mL) 
of different variant HeLa cells and normal cell in logarithmic phase were seeded in 96-
well plates Each well added 180μL and 5 repeat wells were used for each experimental 
condition and adherent culture 24h. Ten microliters of the MTT（5 mg/ml）solution 
was then added to each culture well, and the plates were incubated for 4h at 37°C. 
Carefully aspirated the medium in well, 150μl DMSO added to each well, set the plate 
into the shaker with low oscillation speed 10min, and make crystals fully dissolved. 
Absorbance was measured with an automatic enzyme-linked immunosorbent assay 
reader at a wavelength of 490 nm. The abilities of each cisplatin-resistant cell lines 
were calculated by the formula (1) according to the IC50 of each cell lines. 

 Multiple of cisplatin resistance =IC50 of cisplatin-resistant cells/IC50 of HeLa cell (1) 

2.4 Selection of miRNAs and miRNA Target Prediction 

Combined with the existing literature, we initially picked out five candidate miRNAs 
associated with drug resistance and predicted the targets of the candidate miRNAs (Ta-
ble 1) according to preliminary test results , existing theoretical knowledge , targetscan 
(http://genes.mit.edu/targetscan/) [11] and Diana-microT-CDS [12, 13] database. 

Table 1. Candidate microRNAs and their predicted targets 

Candidate microRNAs Predicted targets 
miR-183 KIAA1199, PDCD4 
miR-182 PDCD4 
miR-30a Beclin1 
miR-15b Bcl-2 
miR-16 Bcl-2 

2.5 Total RNA Extraction 

Total RNA of different type cell lines was isolated with Trizol regent (Invitrogen) ac-
cording to the manufacturer’s instruction and treated with 10 U DNase (RNase free) for  
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30 min at 37°C. DNase was removed with phenol-chloroform. The RNA concentrations 
were calculated according to the absorbance determined using a spectrophotometer at 
260 nm. 

2.6 Real-Time PCR 

For target mRNA level, reverse transcription (RT) was performed by using High Ca-
pacity cDNA Reverse Transcription Kit (Applied Biosystems) with 1microgramme 
total RNA. The mRNA level was detected by Real-time PCR performed in Applied 
Biosystems Prism 7300 Real-time PCR system with SYBR green PCR Premix (Taka-
ra) according to the manufacturer’s proposal. As for the level of miRNA, the tran-
scription of miRNA was performed using TaqMan MicroRNA Reverse Transcription 
Kit under the instruction of manufacturer. The level of miRNA was assessed using 
TaqMan Universal Master Mix II. For normalization purpose, U6 snRNA and 
GADPH were determined as the internal references in miRNAs and target mRNA 
quantitative PCR respective. All reactions were performed in triplicate. The relative 
expression level of each mRNA and miRNA was calculated using the 2-△△Ct method. 

2.7 Statistical Analysis 

The software SPSS 22 was utilized for statistical analysis. The means of the relative 
expression level of miRNAs and mRNAs were compared to the control group (normal 
HeLa cell) with paired Student’s t-test. A 5% level of probability can be recognized to 
be significant. 

3 Results 

3.1 Cisplatin Resistance Ability of Four Cisplatin-Resistant HeLa Cell Lines 

The cisplatin-resistant cells were induced and maintained in different concentration of 
cisplatin liquid. After the cells in different cisplatin concentration medium grew stably, 
using MTT method, we detected the cisplatin resistance ability of four different level 
resistant variants by comparing with the normal HeLa cell. As shown in Fig.1, the cell 
induced and cultured in higher cisplatin concentration acquired the higher resistance 
ability. It also shows that the resistant abilities of four variants are gradually increase, 
which can simply mimic the development of the drug resistance of HeLa cells.  

3.2 Real-Time RT-PCR Analysis of Candidate miRNAs in Cisplatin-Resistant 
HeLa Cell Lines 

To detect whether the candidate miRNAs are involved in the development of drug 
resistance in HeLa cell, we induced four types cisplatin-resistant HeLa cell, 
HeLa/CR1, HeLa/CR2, HeLa/CR3 and HeLa/CR4, and performed real time qPCR of 
the candidate miRNAs in four resistant cell lines and their parental cell line HeLa. It 
was shown that the relative expression levels of five miRNAs altered in resistant cell  
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Fig. 1. Multiple of cisplatin resistance of different cisplatin-resistant cells compared to their 
parent HeLa cell 
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Fig. 2. Real-time RT-PCR analysis of miR-183, miR-182, miR-30a, miR-15b and miR-16, data 
are shown as fold changes of miRNA levels in cisplatin-resistant HeLa cell lines relative to 
HeLa cell line, which is set as 1 (data are represent as: mean ± SD). *p<0.05; **p<0.01. 

lines compared to parental cell line HeLa (Fig.2). In the five candidate miRNAs, miR-182 
was upregulated in all resistant cell lines compared to HeLa cell, this is in accordance  
with the research that miR-183~miR-96~miR-182 cluster was upregulated in multidrug 
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resistant  Ehrlich ascites tumor cell lines [21]. On the contrary, miR-30a was down-
regulated in all resistant cell lines. Study in [22] gave evidence that targeting miR-30a 
enhances imatinib resistance against CML cells, which suggests that lower expression 
level of miR-30a may results in higher drug-resistance in tumor cell lines. All of the five 
miRNAs expression levels were significantly altered in HeLa/CR2 The cell initially dem-
onstrated cisplatin resistance ability. In HeLa/CR4 miR-182 and miR-15b were upregu-
lated. MiR-183 and mi-30a were down-regulated. The expression profiles of the five 
miRNAs demonstrated that they may play an important role in the development of cispla-
tin resistance in HeLa cell, especially miR-183, miR-182 and miR-30a. 

3.3 Real-Time RT-PCR Analysis of the Predicted Target mRNAs of miRNAs 
and p53 in Cisplatin-Resistant HeLa Cell Lines 

The real-time RT-PCR analysis results showed that all mRNAs of selected genes were 
down-regulated significantly in the four resistant cell lines The relative expression 
level of all researched mRNA were below 0.5(Fig.3). The down-regulation of p53 was 
in line with our prediction. Study had been indicated that in cisplatin-resistant HeLa 
cell line p53 did not enhance the sensitivity and could not show the ability to induce 
apoptosis. This may indicate that in cisplatin-resistant HeLa cell lines the apoptosis 
induced by p53 may be avoided [15]. According to our prediction, the high expression 
level of miRNAs would result in the low expression level of target mRNAs. In fact, 
there were really some low expressions of target mRNAs in accordance with their 
moderator miRNAs, such as PDCD4 and Bcl-2. The alteration of expression level of 
KIAA1199 was not in keeping with the change of expression of miRNAs. It was nota-
ble that the down-regulation of miR-30a did not cause the up-regulation of Beclin1. 
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Fig. 3. Real-time RT-PCR analysis of p53 and the mRNAs of predicted targets KIAA1199, 
BCL-2 Beclin1 and PDCD4 of candidate miRNAs in cisplatin-resistant HeLa cell lines relative 
to HeLa cell line, which is set as 1 (data are represent as: mean ± SD). *p<0.05; **p<0.01. 
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4 Discussion 

Our previous study shows that KIAA1199 is the target of has-miR-183. Existing re-
searches show that KIAA1199 is related to cancer pathways. Study in [23] confirmed 
that the expression level of KIAA1199 in breast cancer is higher than normal breast 
tissue. Researches proved thatKIAA1199 is involved in various signal pathways, 
including Wnt pathway, cell apoptosis, and DNA repair, and cell cycle, cancer cell 
migration [23, 24, 25, and 26]. Knockout KIAA1199 can cause the up-regulation of 
BAX protein, and BAX can active rapid programmed cell apoptosis by promoting 
Caspase-3 [23]. High level of BAX is related to the enhancing of chemotherapy re-
sponse. Therefore, the expression of miR-183 should be down-regulated theoretically, 
and the expression level of KIAA1199 should be up-regulated corresponding in resis-
tant cell. However, there is a high level of miR-183 in HeLa/CR2 and HeLa/CR3, 
especially in HeLa/CR2. This may due to the drug response in cell induced by cispla-
tin. Moreover, as the target of miR-183, KIAA1199 should be up-regulated when 
miR-183 is down-regulated. In fact, the level of KIAA1199 in cisplatin-resistant cell 
lines still is down-regulated. The explanation for this contradictory phenomenon may 
be the dynamic nature of tumor cells and the variability expression of cellular mole-
cules, and there may be other regulators that can mediate the expression of 
KIAA1199. From the evidence, we can forecast that miR-183 plays a suppressive role 
in the development of drug resistance. 

Programmed Cell Death Protein 4 (PDCD4) is a pro-apoptotic protein and it is in-
volved in proliferation and cell cycle progression. Research has shown that over-
expression of PDCD4 can sensitize cell to cisplatin in prostate cancer [27].PDCD4 is 
one of the targets of carcinogenic miRNAs, studies have shown that PDCD4 is in-
volved in TGF- TGF-β1-induced apoptosis in hepatocellular carcinoma cells，and is 
also the target of miR-183 in HCC cells. Study in [28] found that miR-183 was signif-
icantly up-regulated, and PDCD4 was down-regulated by miR-183 in HCC cells. 
MiR-182 is another PDCD4-targeting miRNA. Studies in [29] reported that overex-
pression of miR-182 can down-regulate PDCD4 and make non-small cell lung cancer 
(NSCLC) cell more resistant to cisplatin. Similarly, increasing miR-182 results in 
resistance of Ovarian cancer cells to cisplatin and Taxol and decreases PDCD4 [30]. 
All these indicate that miR-183 and miR-182 play an oncogenic role via suppressing 
the PDCD4 expression. For this reason, we can predict the up-regulation of miR-183 
and miR-182 in cisplatin-resistant HeLa cell lines. From the results of our study, the 
over-expression of miR-182 and down-expression of PDCD4 were detected in resistant 
cells, however, there was no significantly over-expression of miR-183 to be detected. 
Study also proved that inhibiting the miRNA cluster miR-183/96/182 can sensitizes 
gliomas cells to chemotherapy [31], which suggests that miR-183 and miR-182 may 
play a synergistic role. Overall, the expression of miR-183 and miR-182 is up-regulated, 
this is accordant with our prediction. As for the lower expression level of miR-183, the 
explanation may be that miR-183 plays both suppressor and promoter in the develop-
ment of drug-resistance by targeting KIAA1199 and PDCD4. 

Study in [32] demonstrated that PDCD4 can sensitize gastric cancer cells to tumor 
necrosis factor-related apoptosis-inducing ligand (TRAIL), and inhibiting Akt by 
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phosphoinositide 3-kiase (PI3K) inhibitor can active PDCD4 so that increase TRAIL 
sensitivity in TRAIL-resistant gastric  cancer cell line. The study suggests that PDD4 
can enhance the drug sensitivity of gastric cancer cell and lead to apoptosis by inter-
fere PI3K/Akt signaling pathway. Moreover, activation of FOXO3A, functioning 
downstream of PI3K/PTEN/AKT signaling cascade, can mediate the cytostatic and 
cytotoxic effect of cancer therapy drug, such as cisplatin, lapatinib and doxorubicin 
[33]. In study [34], the expression level of miR-182 was higher in glucocorticoid 
(GC) resistant cell lines than GC-sensitive cell lines in lymphoblastic malignancies, 
and miR-182 can enhance GC resistance by targeting FOXO3A. From the evidence, 
we can speculate that miR-182 makes contribution to the development of cisplatin 
resistance through inhibiting PI3K/PTEN/AKT signal pathway by targeting PDCD4.  

Autophagy is an important homeostatic catabolic progress that plays a dual role in 
cancer cells. Studies have shown that autophagy is upregulated by some tumor inhibi-
tor genes in breast cancer [35]. This indicates that autophagy may suppress the tumor-
genesis. Beclin1 as a tumor suppressor gene can mediate the autophagy. Paradoxically, 
autophagy could promote cell proliferation and drug resistance in some cancer cells 
[36]. Evidence suggests that it is activated in cancer cells, under various stresses, such 
as chemotherapy. During the chemotherapy of some cancer, autophagy contributes the 
chemotherapy resistance. Study has shown that miR-30a is targeting of beclin1 can 
decrease the autophagic activity by down-regulating the expression of beclin1, which 
will sensitize cell to cisplatin [9].  

It is notable that expression of miR-30a changes with cell types, in breast cancer, the 
expression is up, but in colorectal cancer, the expression is down [32].In this study, 
miR-30a was down-regulated in cisplatin-resistant cell lines. This is in accordance with 
the existing evidence. However, the expression of beclin1 did not keep with our pre-
diction. Explanations for this contradictory phenomenon are because the expression of 
beclin1 is regulated by several factors. Accumulating evidence has shown that nuclear 
factor (NF)-κB, E2F transcription factors (E2F) are involved in the beclin1-dependent 
autophagy by regulating the expression of beclin1 [38], thus miR-30a is not the unique 
regulator of beclin1 so that the effect of miR-30a is not significant.  As a tumor sup-
pressor gene, the expression of beclin1 is likely low, which suggests that in the devel-
opment of cisplatin-resistance in HeLa cell, beclin1 may play a role of suppressor but 
not promoter. The last speculation is that it may not the beclin1 that contributes in the 
acquisition of cisplatin-resistance in HeLa cell, for the reason that miR-30a also can 
mediate the autophagy gene ATG5 and enhance imatinib-induced cytotoxicity [33]. 
Therefore, we can speculate that miR-30a is related in drug sensitivity by targeting the 
genes of autophagy pathway, but not just targeting Beclin1. 

B cell lymphoma 2 (Bcl-2) is a crucial inhibitor in apoptosis in eukaryotic cells, 
therefore the overexpression of Bcl-2 is involved in oncogenesis [34]. Study has 
shown that Bcl-2 is one of the targets of miR-15b and miR-16, which are reported 
down-regulation in about 80% in prostate cancer compared to normal tissue [35]. This 
suggests that miR-15b and miR-16 function as tumor suppressors. Research reported 
that overexpression of miR-16 and miR-15b can sensitize multidrugresistant gastric 
cancer cell line SGC7901/VCR to VCR-induced apoptosis by targeting the posttran-
scriptional expression of Bcl-2 [36].  
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In our results, miR-15b and miR-16 show slight down-regulation in HeLa/CR1 and 
HeLa/CR2 while the expression of Bcl-2 did not been up-regulated. However, the 
level of Bcl-2 is stable in four cell lines. This is inconsistent with our speculation, 
therefore further researches are needed to confirm the results.   

In conclusion, from the results we acquired at present, miR-182 may play a role in 
the development of cisplatin-resistance in HeLa cell by targeting the expression of 
PDCD4 and involved in the PI3K/AKT pathway, while miR-183 may main target 
KIAA1199 compared with PDCD4 in resistant cell lines. Moreover, the significant 
down-regulation of miR-30a can suggest that it may play a central role in the acquisi-
tion of drug-resistance in HeLa cell indirectly by involving in autophagy pathway. 
Therefore, altering the expression level of miR-182 and miR-30a may be the therapy 
strategy to overcome drug resistance. Though the expression profiles of targets 
mRNAs are not in according to the miRNAs expression profiles and our prediction 
perfectly, it may due to the regulation lag between miRNAs and mRNAs. Further-
more, due to the dualism of miRNAs and regulators as well as the difference between 
different types of cancer, to investigate the exact mechanism and pathway of the de-
velopment of drug-resistance in HeLa cell, further studies are desired. 
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Abstract. In recent studies [1–3], lots of hidden homology in DNA
genome are not found by current comparative tools despite decades of
research. Many scholars modeled the genome as a monotonous string,
which limits and probably obstructs the discovery of some significant
patterns. We propose an information-coding-based model called DNA
As X (DAX) to improve the sensitivity in comparative genomic studies
by integrating the principles and concepts of other disciplines includ-
ing information coding theory and signal processing into genome analy-
sis. The proposed DNA As X model uses character-analysis-free (CAF)
techniques, where X is the intermediate for analysis that can be digit,
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comprehensive perspectives to further analyze and recognize the critical
patterns hidden in DNA genomes. Comparing with traditional character-
analysis-based (CAB) methods, DAX not only enriches the tools and
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1 Introduction

The purpose of DNA As X (DAX) design is to improve the performance in com-
parative genomics where conserved sequence searching is a preliminary way to
recognize and analyze the hidden conservation in nucleotide sequences. In recent
studies [1–3], lots of conservation in genome sequences cannot be detected by
current comparative methods even though the research in this field have de-
veloped for long time. Combinations of nucleotide mutation, insertion/deletion,
gap, shift, repeat and error in DNA genome sequence lead to numerous aberrant
patterns where traditional character-query tools cannot exert their efforts. Such
deficiencies in fundamental methods inevitably result in that some significant
patterns can not be recognized, which has been ceaselessly reported by latest
findings on coding genes and conservation [4–7].

Since the first DNA-based genome was sequenced in the 1970s, by tacit
agreement people have gotten used to characters for sequence analysis. Indeed
the character-annotation-based or character-analysis-based (CAB) methods have
played a significant role in analyzing and annotating genome data. Because of
the nature of characters, four human-readable characters, A, T/U, C and G,
respectively annotating the nucleotides of Adenine, Thymine/Uracil, Cytosine
and Guanine, are conveniently combined together to denote enormous varia-
tions of genes, proteins, RNAs and DNAs. A large percent of practitioners in
bioinformatics study these combinations and arrangements of four characters to
conduct their research on genomes. However, with the advent of high-throughput
sequencing technologies, CAB methods manifest their gaps/limitations on deal-
ing with exponentially increasing demands on genome-data mining. The main
reason is that CAB methods are limited to the linear analysis, in which the
only object is the monotonic and inflexible characters and existing numerous
numeric-based methods in engineering can hardly be exerted. Classical alignment
methods based on conventional character-analysis have shown their drawbacks
on handling increasing issues such as sequence assembly [8], whole genome anal-
ysis [9, 10], regulatory ncRNA prediction [11], genome-wide association studies
[12, 13], evolutionary pathway [14] and so forth. Unfortunately, the work on de-
veloping novel numerical representations have not drawn enough attentions from
scientists although the related work have emerged for a while. Targeting at the
above notch, the generic framework of DAX transforms the character sequences
into a series of signal waves, vectors and graphs by adopting the knowledge
and methods in information coding theory and signal processing primarily. As
an illustrative example, we demonstrate an implementation of the Character-
Analysis-Free (CAF) technique for the improvement of the sensitivity in com-
parative gene studies and conduct the related experiments used to evaluate our
proposed model. The result shows that the information-coding-based model has
achieved desirable performances in improving the sensitivity of comparative gene
studies.

The rest of the paper is organized as follows. Section 2 introduces the related
work, especially those on character-analysis-free methods. Section 3 presents the
details of DAX model and framework as well as fundamental concepts. Section 4
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provides the implementation and Section 5 shows the experiments with evalua-
tions. At last, Section 6 concludes theworkand discusses the future work thatDAX
can expand.

2 Related Work

The methods of Digital-signal-processing (DSP) applied in genomics adopt the
numerical representations as the intermediates that convert the strings into var-
ious numerical values. For example, the Voss binary representation [15, 16] is
currently the most used scheme that projects the nucleotide sequence into four
binary sequences denoted as xA[n], xC [n], xG[n] and xT [n] with the presence
(denoted as 1) or absence (denoted as 0) for the corresponding nucleotides.
This representation aims to facilitate the power spectra computation and spec-
tral transformation. Complex-based methods [17] are employed for each of four
bases and each corresponding sequence so as to reflect the complementary fea-
tures of nucleotides from mathematical perspectives. A typical assignment is
defined: A = 1 + j, T = 1 − j, G = −1 + j and C = −1 − j. The geometric
interpretation imposes a structure that the Euclidean distance between A and
C is greater than the distance between A and T [18]. Alternatively, pulse ampli-
tude modulation (PAM) scheme [19] uses non-integer representations to preserve
DNA’s reverse complementary properties. For example, (A, G, C, T) is assigned
to (-1.5, -0.5, 0.5, 1.5) so that G-C and A-T base pairs are complementary in
arithmetic. However, in this scheme the bio-chemical association is ambiguous.

Encoding-based numerical representation can transform the nucleotide se-
quence into a series of encoding digits. As the simplest example, Kent et al
[20] use 2-bit format to compress and store the DNA sequences in a compact
randomly-accessible format, which gives a 16-byte header to contain the encod-
ing information and pack each DNA nucleotide to two bits per base, T:00, C:01,
A:10 and G:11. However, this type of arbitrary assignment is criticized [21] for
that it cannot provide real signals to understand biological research. Instead, a
weight-based assignment in [21] is employed to the spectral transformation where
the weight coefficients derive from the enthalpy analysis for each nucleotide pair.

Another emerging method in information coding theory is Galois field (GF)
mapping [18], which maps nucleotides to Galois Field GF (4) and transform the
sequence into orthogonal (n, k) codes. This method manifests the advantage of
information coding in genome analysis that error-correcting coding structure
reflects the nature of genome coding and it also shows the efficient effects on
detecting genome redundancy and gene mutations [22].

Discrete Fourier transformation (DFT) is the most commonly used method in
genomic signal processing that takes advantage of DNA numerical series for the
genome spectral analysis. The numerical data are mathematically transferred
into the sums of sine and cosine functions through Fourier transform. After the
DFT calculations, the spectral information of genome sequence appear on a 2 di-
mensional plot. It benefits the periodicity detection, especially the identification
of amino acid 3-periodicity, since the periodical signals can be resolved from the
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3-periodicity amino acide codens. Thus, setting an appropriate spectral thresh-
old is one of keys to accurately find the exon boundaries. DFT usually uses a
window to calculate the spectral value for each position, resulting in either the
high computing load if the size is large or the signal loss if the size is small.
Digital signal filters, such as infinite impulse response (IIR) or finite impulse
response (FIR), can be applied to cope with these problems [23].

However, the applicable areas of DFT and other transforms are relatively
narrow only limited to the periodicity-related detection. Our information-coding-
based model is not limited to detect the periodicity but aim to fill the gaps in
the preceding literature and establish a generic framework for genome analysis.

3 Methodology

3.1 Bio-chemical Model

Assuming four nucletotides are distributed equiprobably, the entropy brings the
maximum information capacity to the sequence. In terms of the definition of
information entropy, we have the entropy value of 2 bit. Compatible to mod-
ern computing system, we consider the Galois Field GF(2) and the extension
of GF(4) for any GF(2) pair [18]. DNA sequences can be encoded to binary
codes [24] based on the principles in information coding theory. Obviously, two
important rules are needed to consider, nucleotide biochemical properties and
the features of binary codes. According to the chemical and biological enthalpy
values of the nearest nucleotide combinations [25], four nucleotide acids can be
placed in the order of (C,T,A,G) so that the bio-chemical dynamics manifest
the symmetric properties as shown in Figure 1. Also, in the ascendant order of
molecular physical size and weight, C, T/U, A, G are the best placement corre-
sponding to symmetric codes. As mapping these properties to features of binary
numeric coding, we encode C, T, A, and G to 00, 01, 10, and 11 respectively in
two bits of binary codes.

On the other hand, the mutations/changes between four nucleotides differen-
tiate the transition and the transversion. Relatively, transition (A-G, C-T) takes
place more frequently than transversion (C-G, T-A) as the different colors (light-
dark) respectively shown in Figure 1. Corresponding to the enthalpy values in
Figure 1, we can see the weak bonds between pairs of transitions comparing
with the strong bonds between nucleotide pairs of transversions. Mapping to the
binary codes, the Hamming distance and the Euclidean distance between two
codes precisely reflect the differences between transition and transversion. The
Hamming distance (dh) and the Euclidean distance (de) are defined for any two
codes c and c′ as Equation 1 (c, c′ ∈ GF (4)).

dh = c⊕ c′, de = c− c′. (1)
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Fig. 1. Left: Symmetric thermodynamics pattern [25] in terms of the enthalpy values of
thermodynamic interactions between two molecules. Unit of measurement is kcal/mol.
Right: Molecule coding to reflect the bio-chemical relations [26].

3.2 Encoding and Signalizing Model

In terms of algebraic coding theory, a single nucleotide can be encoded into c
that c = ψ1x + ψ0, where ψ1 and ψ0 ∈ GF (2). Any nucleotide in a sequence
is encoded into that c = ψ2i+1x

2i+1 + ψ2ix
2i according to the extended GF (4)

where i ∈ {0, 1, ..., n− 1} indicates the location information of any nucleotide in
this sequence.

Since ψi and ψ′
i ∈ GF (2), ψ2i+1x

2i+1 + ψ2ix
2i and ψ′

2i+1x
2i+1 + ψ′

2ix
2i ∈

GF (4), i ∈ {0, 1, ..., n − 1} and n is the length of this DNA sequence, assum-
ing that two DNA reads/tuples with the length of k are denoted as u and u′

respectively and that 2k − 1 (k > 0) is the degree of the expressed polynomial
with coefficients from the extension of GF(2) [27], u and u′ can be expressed as
follows.

u = ψ2k−1x
2k−1 + ψ2k−2x

2k−2 + ...+ ψ1x
1 + ψ0x

0 =
2k−1∑
i=0

ψix
i (2)

u′ = ψ′
2k−1x

2k−1 + ψ′
2k−2x

2k−2 + ...+ ψ′
1x

1 + ψ′
0x

0 =
2k−1∑
i=0

ψ′
i
xi (3)

The hamming distance and the Euclidean distance denoted as Dh and De

between u and u′ are

Dh(u, u′) = ‖u⊕ u′‖ =
2k−1∑
i=0

(ψi ⊕ ψ′
i
) (4)

and

De(u, u
′) = ‖u− u′‖ =

2k−1∑
i=0

(ψi − ψ′
i
)xi. (5)

Dh(u, u
′) is useful to identify the errors between two nucleotide reads/messages

with the length of k. Assuming thatm indicates the hamming distance/error toler-
ated by k-tuple messages/reads, by assigning the different (k,m), 0 ≤ m ≤ 2k, we
can achieve the goal of tolerating the distance in various patterns between reads.
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For example, Dh(u, u
′) ≤ m means that the difference between u and u′ is less or

equal to m.
Assuming that two DNA string sequences s and s′ have the nucleotide lengths

of n and n′ respectively, w and w′ are the numerical representations of string se-
quences s and s′. We denote the transformation and the inverse transformation
as follows:

w = T (s), s = T−1(w). (6)

Assuming that u and u′ are polynomials with the same degree of 2k−1 (k > 0)
and coefficients from the extension of GF (2), w and w′ can be represented as two
series, w = {u0, u1, ..., un−k} and w′ = {u′

0, u
′
1, ..., u

′
n′−k}. Therefore, sequential

codes ui−1, ui and ui+1 in sequence w can be expressed as the Equations 7 and 8.

ψ2(k+i)−1x
2k−1 + ψ2(k+i)−2x

2k−2 + ui−1

x2 = ui (7)

ui+1x
2 + ψ2i+1x+ ψ2i = ui (8)

For sequence w = {u0, u1, ..., un−k} and sequence w′ = {u′
0, u

′
1, ..., u

′
n′−k} with

the same polynomial degree for u and u′, we denote vl = 〈uil,jl, u
′
i′l,j′l〉 as a vector

that satisfies (k,m) for sequential pairs of u and u′ (u ∈ [uil, ujl], u
′ ∈ [u′

i′l, u
′
j′l]).

We further denote the set of possible vectors as F = {v0, v1, ..., vq} (q ≥ 0).
Therefore, the alignment between w and w′ can be represented by a set f that
contains a series of vectors, f ⊆ F .

3.3 Framework

The generic framework of the DAX model consists of four main parts that rep-
resent four processing phases respectively, as shown in the dashed rectangles
of Figure 2, including transformation, feature extraction, signal processing, and
inverse transformation.

(1) Transformation. This phase is responsible for transforming the DNA se-
quences into signals, where encoding and signalizing may vary dependent on the
selected encoding model.

(2) Feature extraction. Common features can be extracted by matching two
series of signal waves and further form the coding vectors that can be processed
on the stage of signal processing. These extracted features may be raw and
unpruned, which will be further refined in the next phase.

(3) Signal processing. Object X in this phase represents quantitative vectors.
Because of the nature of vectors, they can form undirected trees/graphs where
a vector may be contained in multiple paths. Chaining these vector into a larger
path is the goal of global comparative methods [28]. The one with the maximum
coverage will be selected as the best path.

(4) Inverse transformation. As the counterpart of transformation, inverse
transformation is responsible for converting the intermediate results, graphs,
trees, paths, vectors, signals, codes and digits, back into human-readable char-
acter sequences, denoted as Equation 6.
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4 Implementation

Following the DAX framework mentioned in last section, main methods adopted
in our application are illustrated in Figure 2. DAX framework can be imple-
mented through various methods not limited to the described methods here.

The encoding and signalizing spends the computing time of O(n) time. The
information tree is numeric-based hash table to improve the searching efficiency.
Each amplitude needs to take time of O (logn) to find the corresponding location
and for all signals it takes time of O (nlogn). The construction of information
tree takes the computing time of O (n) only. Thus, the time complexity of the
entire section is O (nlogn).

Legend: 

Fig. 2. Methods in DAX framework

The efficiency of signal stitching depends on the number of discovered vectors.
Signal stitching problem is equivalent to exon chaining problem. Using dynamic
programming and vector graphs, stitching the candidate vectors takes O(n) time.

5 Experiment and Evaluation

In order to evaluate the performance of the DAX algorithm, we use the ROSETTA
dataset which contains 140 orthologous gene pairs and 1,160 cross-species exons
from human and mouse [29]. The purpose of the evaluation is to provide compar-
ative experimental results to show the quality of the DAX algorithm and further
validate the effectiveness of the DAX framework.

The DAX program is written in C/C++ and these experiments are conducted
on the system of Intel i7 1.8GHz, 8G RAM, 500G HD and Ubuntu 12.4.
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5.1 Sensitivity

The sensitivity of exon prediction is a significant indicator to evaluate an algo-
rithm, which can be measured by several parameters: the number of conserva-
tion, the length of exon, the coverage of exon and sequence similarity [30]. Among
them, the coverage percentage of exon is the most important measurement to
evaluate the sensitivity. In [29], the coverage percentage of exon is calculated by
a strict rule: only if the two ends of the exon are simultaneously predicted, that
is, only if one hundred percent of the length of exon is predicted, the exon is
counted as being predicted; if only one end is predicted, we calculate how much
percentage of the length of the exon is predicted and classify the percentage to
the corresponding classes, such as ninety percent or seventy percent. Adopting
partial data in [30], as shown in Figure 3, we can see that the DAX algorithm
based on character-analysis-free techniques has a desirable overall performance
although the 100 percent sensitivity is a little inferior to others.
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Fig. 3. Comparative results of exon coverage

In order to show the comprehensive evaluation on the conservation, the length
of exon, the coverage of exon and sequence similarity, we scrutinize nine genes
from [29] to have a breakdown analysis on the evaluation of our algorithm in the
sensitivity. In Figure 4, DAX algorithm shows good results except Ribosom6al
S24 gene, which contains two exon regions of only 3-bp that all algorithms fail
to predict. In four genes, Casein kinase, Skeletal alpha-actin, Hsc70 and Int-1
oncogene, one end of each gene is missed by GLASS [29]. For more details of
DAX performance, in Figure 5, the curves of quantitative results for 39 exons are
plotted, including original exon’s similarity, predicted exon’s coverage percentage
and predicted exon’s similarity as well as the exon’s lengths. We can see that
the DAX can detect almost various lengths of exons with the range from 20+
nt to 1k+ nt except extremely short ones (3 nt and 6 nt).

5.2 Coding Length, Execution Time and Sensitivity

Despite of the less importance of computing speed comparing with that of sen-
sitivity, we evaluate the execution time of the DAX program by adjusting the
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Fig. 4. Percentage of predicted exons for nine genes
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Fig. 5. The sensitivity analysis for 39 exons

100k 200k 300k 400k 500k 600k 700k 800k 900k 1M 1.1M 1.2M 
0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

csize = 7 
csize = 6 
csize = 5 

Time (sec) 

Length (bp) 

k = 7 
k = 6 
k = 5 

Fig. 6. Relation between coding length and running time

magnitude of dataset and the coding length k in u to see the mutual relationship
between these impact factors. In Figure 6, the dataset of 1.2M can be computed
for exon prediction in 3.5 seconds if the coding length is set to 7 while the run-
ning time is double if coding length is set to 6. From the trend of the chart,
we can conclude that the larger magnitude of coding length may result in the
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Fig. 7. Relation between coding length and sensitivity

faster speed. However, the large magnitude of coding length does not contribute
to the sensitivity of predictive results. As illustrated in Figure 7, a larger coding
length leads to lower sensitivities, which means the lower granularity of common
features. On the other hand, although a small coding length often brings a better
resolution of prediction, it probably results in devastating computing loads and
the problem of over-representation. Thus, properly choosing the coding length
can determine the success of the experimental result. By observing the experi-
mental data, we choose coding length equal to 6 as a compromise between the
execution time and the sensitivity.

From the above experiments, we see that the DAX method can meet our ex-
pectation of improving the sensitivity in exon prediction and its partial perfor-
mance outperform other existing methods. Since finding the conserved sequence
areas is one of the fundamental issues in bioinformatics, we believe that more
productive outcomes can be obtained if we apply the DAX method as an effective
computational tool to other issues.

6 Conclusion

DNA AS X (DAX) is a systematic framework that adopts information-coding-
based techniques in the analysis and the pattern recognition in genome data.
By constructing a generic coding framework for the character-to-X transforma-
tion, the character-analysis-free techniques process and analyze the intermedi-
ates, such as signal waves, vectors, graph network and so forth, through existing
numeric methods. We implement the DAX framework on detecting exons be-
tween two homologous sequences of human and mouse and the experimental
results show that our DAX model based on character-analysis-free techniques
can improve the sensitivity of exon prediction. A few questions in this project
are remaining for the future work, such as integrating the splicing sites to im-
prove the specificity, applying to more dataset, etc. Besides, we plan to apply
the DAX methodology to other issues in the future, such as RNA secondary
and tertiary structure prediction where the complementary codes can model the
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folding process for the complementary structure, multiple-sequence alignments
where the codes reflect the possible mutation, genome mapping and assembly
where coding-based DAX is expected to reflect the biological truth. In sum, we
introduce a novel model, DNA AS X, to encode the nucleotide sequences into
codes and bring new perspectives for scientists to analyze DNA data in the area
of genome analysis.
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Abstract. Hybridization and incomplete lineage sorting (ILS) are two evolution-
ary processes that result in incongruence among gene trees and complicate the
identification of the species evolutionary history. Although a wide array of meth-
ods have been developed for inference of species phylogeny in the presence of
each of these two processes individually, methods that can account for both of
them simultaneously have been introduced recently. However, these new meth-
ods are based on the optimization of certain criteria, such as parsimony and like-
lihood, and are thus computationally intensive. In this paper, we present a novel
distance-based method for inferring phylogenetic networks in the presence of ILS
that makes use of pairwise distances computed from multiple sampled loci across
the genome. We show in simulation studies that the method infers accurate net-
works when the estimated pairwise distances have good accuracy. Furthermore,
we devised a heuristic for post-processing the inferred network to remove poten-
tial false positive reticulation events. The method is computationally very efficient
and is applicable to very large data sets.

1 Introduction

Understanding the evolutionary history of a set of species and the intricate relationships
between the evolution of genes and genomes are two central questions in biology. It has
long been acknowledged that the evolutionary history of a genomic region from a set
of species is not necessarily congruent with that of the species [16], which is the classic
gene tree/species tree problem. The incongruence among gene trees and species tree
may be caused by various evolutionary processes. Incomplete lineage sorting (ILS),
which is a result of random genetic drift in populations, is one common process, es-
pecially in evolutionary scenarios that involve rapid speciation and/or large population
sizes. The occurrence of ILS and its extent have been reported in various data studies of
very diverse sets of organisms; e.g., [29,24,14,32,4,33,8,30]. A large variety of meth-
ods have been developed to deal with it; see [26,5,15,23] for recent surveys of such
methods.

A second evolutionary process that results in gene tree incongruence is reticulation,
which includes horizontal gene transfer in asexual species and hybridization in sexual
species. Hybridization is believed to play an important role in several groups of eukary-
otic species [1,2,17,18,27]. Not only does hybridization result in gene tree incongru-
ence, but it also results in non-treelike phylogenetic relationships among species, that
are best represented by phylogenetic networks. The structure of a phylogenetic network

c© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 378–389, 2015.
DOI: 10.1007/978-3-319-19048-8_32



A Distance-Based Method for Inferring Phylogenetic Networks 379

is a rooted, directed acyclic graph, which allows for nodes with more than one parents.
Many methods have been devised to infer these phylogenetic networks by making use
of gene tree incongruence; see [22,11,23] for recent surveys of such methods.

With increasingly available genomic data, patterns of cooccurrence of hybridization
and incomplete lineage sorting are being observed, or suspected, in the data [7,6,28,3,20].
This has called for developing methods that can take both hybridization and incomplete
lineage sorting into account. Methods that assume only ILS as the cause of incongru-
ence would completely miss the possibility of hybridization, whereas methods that infer
phylogenetic networks without accounting for ILS would end up grossly overestimat-
ing the amount of hybridization when ILS is also at play. To address this issue, several
methods were proposed recently. However, given the the complexity of modeling such
scenarios in general, most of these methods focused on special cases of the problem
(typically with limited complexity); e.g., [31,9,19,13,12,38]. More recently, methods
for inferring general networks based on parsimony and likelihood criteria were devel-
oped [35,34,37,36]. The applicability of these inference methods is currently limited to
small data sets, given the hardness of the inference problems under these two criteria.

Distance-based methods have long been some of the fastest methods in phylogenet-
ics, producing very good estimates on phylogenies with thousands of taxa in minutes.
Even when the accuracy of inferences made by these methods is not very high, trees
produced by distance-based methods are still used as initial trees for the most computa-
tionally intensive and detailed methods, such as maximum likelihood. Thus, distance-
based method provide a very good tool in phylogenetics. In this paper, we introduce a
novel distance-based method that infers a phylogenetic network from pairwise distance
data in the presence of both hybridization and ILS. Our method builds on the GLASS
method [21] that was recently introduced to infer species trees from pairwise distances
obtained from multiple loci under the assumption that all incongruence is due to ILS.
We studied the performance of our method on simulated data and found that it produces
very good results, even when we perturbed the pairwise distances so as to simulate error
in distance estimates. We also devised a heuristic for potentially eliminating false posi-
tive reticulations in order to minimize the overestimation of the number of reticulations.

It is important to note that accurate estimates of pairwise distances based on multiple
loci is a requirement for a good performance of our method (just like they are a require-
ment for a good performance of GLASS). We view this as a major obstacle facing
the application of this method to real data. Nevertheless, as we pointed out above, this
method can still be used to quickly generate a good phylogenetic network to initialize
the search employed by computationally intensive methods such as [37,36].

2 Methods

2.1 Phylogenetic Networks

In order to account for both hybridization and incomplete lineage sorting in the evolu-
tionary history of a set of species (or, genomes), we use an evolutionary (rather than
“data-display”) phylogenetic network model [22]. For a node v in a digraph, we denote
by d−(v) and d+(v) the in- and out-degree of v. A (binary) phylogeneticX -network N
is a rooted, directed, acyclic graph whose node-set V (N) is partitioned into four sets:
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– {r}, the root of N , with d−(r) = 0 and d+(r) = 2;
– The leaf-set VL = {v ∈ V (N) : d−(r) = 1, d+(r) = 0}, which are bijectively

labeled by X ;
– The internal tree nodes VT = {v ∈ V : d−(r) = 1, d+(r) = 2}; and
– The reticulation nodes VN = {v ∈ V : d−(r) = 2, d+(r) = 1}.

Every structure inferred by our algorithm (described below) is a phylogenetic network.
However, it is important to point out that there are phylogenetic networks that cannot
be inferred by our algorithm. This is not a limitation of the algorithm, but rather has
to do with the reconstructibility of certain reticulation scenarios (e.g., a reticulation
edge involving two nodes one of which falls on the path from the root to the other
node). More generally, let us denote by L(v) the set of taxa that label leaves that are
descendants of node v. Given a phylogenetic network N , for each node v in {r} ∪ VT ,
we define the set dp(v) = {L(v1) − L(v2), L(v2) − L(v1)} where v1 and v2 are the
two children of v. Then if a phylogenetic network contains two nodes u, v ∈ {r} ∪ VT

where dp(u) = dp(v), one of these two nodes cannot be inferred by our method.

2.2 Inferring a Network from a Distance Matrix

We denote by DL a distance matrix over a set of taxa L where DL(i, j) is the distance
between taxa i and j in L. With respect to the nodes of a phylogenetic network, we
define two functions DMax(u, v, S) and DMin(u, v, S), where u and v are two nodes
and S is a set of nodes, to be DMax(u, v, S) = max{DL(a, b) : a ∈ L(u)−L(v), b ∈
L(v) − L(u), � ∃w ∈ S s.t.{a, b} ⊆ L(w)} and DMin(u, v, S) = min{DL(a, b) :
a ∈ L(u)− L(v), b ∈ L(v) − L(u), � ∃w ∈ S s.t.{a, b} ⊆ L(w)}. See Figure 1 for an
illustration.

u v

L(u)-L(v) L(v)-L(u)

w

} }

the taxa that 
define DMax 

and DMin

Fig. 1. An illustration of DMax(u, v, S) and DMin(u, v, S) computation on S = {u, v, w}

Assuming the pairwise distances are realizable by a phylogenetic network, the basic
idea of our method is we start with a set of nodes S, each labeled by a taxon in L and
then we do the following until S has only one node:

1. Let X and Y be two nodes in S that have the minimum DMin(X,Y, S).
2. If DMin(X,Y, S) = DMax(X,Y, S), a speciation event is considered. We re-

move X and Y in S and add node XY .
3. If DMin(X,Y, S) �= DMax(X,Y, S), a hybridization event is considered. We

find the most parsimonious way to make a reticulation node(s), which can be one
of the following:
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– A reticulation node, say u, is added onto an edge whose tail is a descendant of
X . We remove Y from S and add a new node whose children are u and Y .

– A reticulation node, say u, is added onto an edge whose tail is a descendant of
Y . We remove X from S and add a new node whose children are u and X .

– Two reticulation nodes, say ux and uy, are added onto an edge whose tail is a
descendant of X and an edge whose tail is a descendant of Y , respectively. We
add a new node whose children are ux and uy to S.

More details can be found in Alg.1. See Fig. 2 for an example.
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Fig. 2. An example of building a species network given true pairwise distances. The true species
network and distance matrix are given on the top. For simplicity, the third parameter S is omitted
in DMin and DMax since the context is clear.
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In practice, the pairwise distances are estimated from gene data, and it is important to
account for the error inherent in these estimates. The GLASS method of [21] uses pair-
wise distances that are computed as the minimum interspecific coalescence times across
all loci and then builds a species tree using simple clustering. The rationale behind this
method is that when the number of loci goes to infinity, the minimum interspecies coa-
lescence times across all loci should converge to the speciation times. Here, given mul-
tiple loci data, we computed pairwise distances exactly like what GLASS does which
is using minimum interspecific coalescence times across all loci. Now suppose we have
a node (u, v) with time t in a species tree. Then if the number of loci is large enough,
we should see D(a, b) very close to t for all a ∈ L(u), b ∈ L(v). To quantify if two
numbers are “close”, we used some ε such that if |x − y| ≤ ε we say x ≈ y. Then
for two chosen nodes X and Y whether a speciation or a reticulation event should be
considered depends on if DMax(X,Y, S) − DMin(X,Y, S) ≤ ε or not. It is clear
that in this case our method would be very sensitive to the value of ε. If ε is set to be
too small, the method will overestimate the number of reticulations; if ε is set to be too
big, the method will underestimate the number of reticulations. When we vary ε from
a very small value gradually to a big one, we can expect the method to return species
networks with fewer and fewer reticulations. So we need to set a criterion. Here we
say that we want to infer a species network with the minimum number of unreasonably
short edges with as few reticulations as possible. This is because when ε is set to be too
small, the overestimated reticulations will produce short edges in the inferred network.
On the other hand, when ε is set to be too big, the underestimation of reticulations will
“squashed” the network to satisfy the distance matrix in which case short edges might
also be produced. See Fig. 3 for simple illustration of these two cases. In our program,
a value σ that defines “short” branches needs to be specified as input. Then the pro-
gram will try ε equal to 1, 2, . . ., k times of this value respectively and find the optimal
network.
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Fig. 3. Two examples of building species networks on different ε. Left: a small value of ε caused
an overestimation of reticulations. Right: a big value of ε caused an underestimation of reticula-
tions. Both of them result in short branches (of length 0.1) in the inferred network.

The details of our method are shown in Alg.1. It takes a distance matrix DL, a value
σ that defines short branches, and a value k that sets the values of ε as we discussed
above as input, and returns an inferred phylogenetic network. It reflects the basic idea
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of our method. In fact, we found that when we tried to find two nodes X and Y in S
that have the minimum DMin(X,Y, S), there might be multiple pairs of nodes that
share the same minimum value. To address this issue, we kept a stack in the program
so that every time there were more than one optimal pair we added a flag in the stack.
After a network was built from choosing one of the optimal pairs, the program read the
flag on the top of the stack and rolled back to the point where that flag was added and
tried another optimal pair, until all optimal pairs were tried. All equally optimal species
networks would be returned.

Input: A distance matrix DL, σ, k.
Output: A phylogenetic network N .
numCloseNodes ← 0;
numReticulations ← 0;
N ← NIL;
for i = 1 to k do

ε ← i× σ;
Let S be a set of nodes each labeled by a taxon in L and each node has time 0;
while |S| > 1 do

Let X and Y be two nodes in S that has the minimum DMin(X, Y, S);
tmin ← DMin(X, Y,S);
if DMax(X, Y,S) − tmin ≤ ε then

Remove X and Y from S;
Add a new node (X, Y ) with time tmin to S;

end
else

(wx, vx) ← arg max(w,v){|L(v)− L(Y )| : DMin(v, Y, S) =

tmin, DMax(v, Y, S) − tmin ≤ ε, w is a descendant of X};
if edge (wx, vx) does not exist then

(wy, vy) ← argmax(w,v){|L(v) − L(X)| : DMin(X, v, S) =

tmin, DMax(X, v, S) − tmin ≤ ε, w is a descendant of Y };
if edge (wy, vy) does not exist then

(wx, vx), (wy, vy) ← argmax(w1,v1),(w2,v2){|L(v1) − L(v2)| +
|L(v2) − L(v1)| : DMin(v1, v2, S) = tmin, DMax(v1, v2, S) − tmin ≤
ε, w1 is a descendant of X and w2 is a descendant of Y };
Add a new node whose children are ux and uy with time tmin to S where ux and
uy are newly added nodes on (wx, vx) and (wy, vy) respectively;

end
else

Remove X from S;
Add a new node whose children are X and u with time tmin to S where u is a newly
added node on (wy, vy);

end
end
else

Remove Y from S;
Add a new node whose children are u and Y with time tmin to S where u is a newly added
node on (wx, vx);

end
end

end
Let N ′ be the network that rooted at the only node in S;
Let c be the number of branches of N ′ whose branch length is less than σ;
Let r be the number of reticulations of N ′;
if N = NIL, or c < numCloseNodes, or c = numCloseNodes and r < numReticulations
then

N = N ′; c = numCloseNodes; r = numReticulations;
end

end
return N ;

Algorithm 1. inferNetworkFromDistanceMatrix
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2.3 Removing Reticulations with Low Support

In our simulation study (see Results section), we found that our method tended to over-
estimate the number of reticulations, especially when the number loci is small. To ad-
dress this issue, we employed a heuristics to remove reticulations with low bootstrap
support. More specifically, assuming the original data contained n loci, we randomly
sampled n loci with replacement and used them as the input of our method to infer a
species network. This process was repeated 100 times. Then we removed reticulations
of the species network inferred from the original dataset that were not well supported
by the 100 species networks obtained from bootstrap. To do so, we first defined a func-
tion called computeBootstrapSupport, which takes a target species network and a set
of bootstrap species networks and returns the target species network N with bootstrap
support for every edge. The support of an edge in the species network is calculated as
the percentage of that edge present in the bootstrap networks. To see whether one edge
in network N1 exists in network N2, we simply computed the hardwired cluster [11]
induced from that edge and then check if there is any edge in N2 inducing the same
hardwired cluster. The detailed algorithm for removing reticulations of a species net-
work with low support given a set of bootstrap networks and a bootstrap threshold is
shown in Alg. 2, where Support(u, v) means the support of edge (u, v).

Input: A species network N , a set of bootstrap networks BN , threshold.
Output: a species network N ′

N ′ ← computeBootstrapSupport(N,BN) ;
Let numLowSupport be the number of edges in N ′ that has low support;
foreach edge (u, v) visited when post-traversing N ′ do

if Support(u, v) < threshold then
foreach child node w of v that is also a reticulation node do

N ′′ ← N ′;
Remove reticulation edge (v, w) of N ′′;
N ′′ ← computeBootstrapSupport(N ′′, BN) ;
Let tnls be the number of edges in N ′′ that has low support;
if numLowSupport > tnls then

return removeLowSuportEdges(N ′′, BN, threshold);
end

end
end

end
return N ′;

Algorithm 2. removeLowSuportEdges

3 Results

We used synthetic datasets to test the performance of our method. We first generated
2 datasets, each consisting of 100 random species trees with 10 taxa of height 8 and
20 taxa of height 16 respectively using PhyloGen [25]. The height of tree is the total
branch lengths from the root of the tree to any of its leaf. Then for each species tree,
we randomly added 1, 2, 3, 4 and 5 reticulations respectively. To add a reticulation to a
species network, we randomly chose two edges in the network and add an edge between
their midpoints from the higher one to the lower one. Then the lower one became a new
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reticulation node and we randomly assigned an inheritance probability from 0.1 to 0.9.
Within the branches of each species network we simulated 25, 50, 100, 200, 500, 1000,
2000 and 5000 gene trees respectively using program ms [10].

We run our method on these gene trees and compared the inferred species networks
with true ones using hardwired cluster distance [11]. Note that in all simulations, we set
parameters as σ = 0.1 and k = 5 (see Alg. 1). σ was set to be 0.1 because it is a good
threshold of “short” branch when branch lengths are in coalescent units. We also tried
different values and found that varying it slightly did not have much affect on results.
For the setting of k, we found that in our simulations most optimal species networks
were found at ε = 2σ or ε = 3σ, and setting k to be more than 5 would only change
the results very slightly. The result is shown in Fig. 4. Note that when multiple equally
optimal networks were returned, the average distance of those tie networks was calcu-
lated. We can see that overall our method made very accurate inferences. As expected,
for both datasets, the error of the inferred networks increased slightly with the number
of reticulations, because for the same number of taxa increasing the number of reticula-
tions made the inference problem harder. Also, for both datasets, as the number of gene
trees increased, the accuracy of the inferred networks increased. When comparing the
results from the two datasets, we can see that the 20-taxon dataset actually produced
slightly better result. This is because for the same number of reticulations the reticu-
lations are expected to be more independent from each other on a network with more
taxa, which makes the inference problem easier.
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Fig. 4. Accuracy of the method using true gene trees. Results of the 10-taxon dataset and the
20-taxon dataset are shown in the left and right panels, respectively. The errors of the inferred
networks were computed using hardwired cluster distance [11]. The results were averaged over
100 repetitions.

In order to test the robustness of our method to error in pairwise distance estimates,
we synthetically perturbed the true distances. More specifically, the pairwise distances
obtained above underwent 5 different perturbation experiments i = 1, 2, 3, 4, 5: In ex-
periment i, each pairwise distance was multiplied by a (uniformly distributed) random
number in the range [1, 1+ iε] for ε = 0.1. For example, in the results, the “30% error”
data sets were obtained by multiplying each pairwise distance by a random number in
[1, 1.3] (each pairwise distance was multiplied by a potentially different number). The
inference method was then applied to the perturbed data sets. The results of using these
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perturbed pairwise distances are shown in Fig. 5. We can see that overall our method
still produced accurate results. As expected, on the same dataset, the accuracy of the in-
ferred network decreased as the value of iε increased. Further, the effect of the distance
error on the network accuracy decreased with increasing the number of gene trees. It
is important to note that the error has more impact on the “harder” datasets, that is, the
ones with more reticulation nodes.
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Fig. 5. Accuracy of the method using perturbed pairwise distances on 10-taxon dataset. Results
of datasets containing true species networks with 0, 3 and 5 reticulations are shown from left to
right columns, respectively. The errors of the inferred networks were computed using hardwired
cluster distance [11]. The results were averaged over 100 repetitions.

We also examined the number of reticulations in the inferred species networks; see
Fig. 6. As the results show, the estimates of the numbers of reticulations tend to the
true values as the number of loci increases. However, when the number of loci is small,
our method overestimates the number of reticulations, especially for datasets with high
error values. To address this issue, we used a heuristics to remove reticulations that
result in edges with low bootstrap support (see the Methods section).
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Fig. 6. The number of reticulations in inferred species networks of 10-taxon dataset. Results of
datasets containing true species networks with 0, 3 and 5 reticulations are shown from left to right
columns, respectively. In each subfigure, boxes from left to right (from black to cyan) in each
group corresponds to datasets consisting of 25, 50, 100, 200, 500, 1000, 2000 and 5000 gene
trees respectively. The solid horizontal black line in each subfigure indicates the true number of
reticulations.

In Fig. 7, we show results based on the “hardest” dataset where the true species
networks contain 10 taxa and 5 reticulations and the pairwise distances of taxa from
gene trees were randomly perturbed by at most 50%. When multiple equally optimal
species networks were returned, we chose a random one to which to apply the heuristic.
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We varied the bootstrap threshold by using values 70, 80 and 90. As the results show,
the heuristics successfully reduced the number of reticulations in the inferred species
networks, especially for datasets with a small number of loci. For datasets with 25 gene
trees, the mean number of reticulations was reduced from 15 to 7 when a bootstrap
threshold of 70 was used. As expected, when a larger bootstrap threshold was used, the
inferred species networks had fewer reticulations. On the other hand, the accuracy of
the inferred species networks increased after reducing the number of reticulations.
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Fig. 7. Results of using heuristics to remove reticulations that result in edges with low bootstrap
support based on 10-taxon and 5-reticulation datasets where distance matrices of gene trees were
randomly perturbed by at most 50%. Left: the number of reticulations in the inferred species
networks. The solid horizontal black line indicates the true number of reticulations. Right: the
error of the inferred species networks.

In terms of the running time, for the largest and most complex dataset (20 taxa, 5
reticulations and 5000 gene trees), the program took, on average, around 3 minutes to
complete the inference. For most of the datasets with 10 taxa, 5 reticulations and 5000
gene trees, the program finished in 10 seconds or less.

4 Conclusions

In this paper, we proposed a simple, yet effective distance-based method for inferring
phylogenetic networks from pairwise distances in the presence of incomplete lineage
sorting. Our method is a simple extension of the GLASS method [21]. It is important
to note, though, that while GLASS has theoretical guarantees (the authors proved its
statistical consistency), our method makes heuristic decisions and currently lack any
theoretical guarantees. However, our simulation study demonstrate the method can ob-
tain very good results, even when noise is added to the distance estimates. In practice,
distance-based methods in general suffer from the lack of accurate methods for estimat-
ing pairwise distances. As the amount of molecular sequence data increases and more
sophisticated methods are developed for more accurate estimates of pairwise distances,
the application of distance-based methods would become more common, particularly for
large data sets. Nevertheless, the speed of these methods make them appealing for rapid
generation of a relatively accurate network to initialize the search of a more accurate, and
computationally intensive method, such as maximum likelihood or Bayesian inference.
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Abstract. Accurate annotation of protein functions plays a significant role in 
understanding life at the molecular level. With accumulation of sequenced ge-
nomes, the gap between available sequence data and their functional annota-
tions has been widening. Many computational methods have been proposed to 
predict protein function from protein-protein interaction (PPI) networks. How-
ever, the precision of function prediction still needs to be improved. Taking into 
account the dynamic nature of PPIs, we construct a dynamic protein interac-
tome network by integrating PPI network and gene expression data. To reduce 
the negative effect of false positive and false negative on the protein function 
prediction, we predict and generate some new protein interactions combing 
with proteins' domain information and protein complex information and weight 
all interactions. Based on the weighted dynamic network, we propose a method 
for predicting protein functions, named PDN. After traversing all the different 
dynamic networks, a set of candidate neighbors is formed. Then functions de-
rived from the set of candidates are scored and sorted, according to the 
weighted degree of candidate proteins. Experimental results on four different 
yeast PPI networks indicate that the accuracy of PDN is 18% higher than other 
competing methods. 

Keywords: Protein-protein interaction · Functions prediction · Dynamic net-
works · PDN 

1 Introduction 

Proteins are biological macromolecules responsible for a wide range of activities in 
living cells, tissues, organs, and bodies. Proteins carry out their functions in the con-
text of environment they are in. This environment includes other macromolecules 
such as proteins, DNA, or RNA. The function annotation of a protein is an important 
issue in post-genomics due to the critical roles of proteins in various biological 
processes. General methods for protein function prediction are based on experimental 
or computational approaches. Although experimental techniques have been developed 
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to predict protein functions, these methods cannot scale up to accommodate the vast 
amount of sequence data because of their inherent difficulties such as the requirement 
of well trained technicians, labors, and time consumptions. As a result, a wide range 
of computational approaches have been proposed in the last decades. Traditional 
computational methods such as identifying domains or finding Basic Local Alignment 
Search Tool (BLAST) [1] hit among proteins with experimentally determined func-
tions. The recent availability of protein-protein interaction (PPI) data for many spe-
cies has created new opportunities for function prediction. Many methods have been 
proposed to predict function from PPI) networks. Function annotation methods based 
on PPI networks can be classified into five categories: neighborhood counting me-
thods [2-4], graph theoretic methods [5, 6], Markov random field based methods [7, 
8], module-assisted methods [9, 10] and integrating multiple information sources 
methods [11, 12]. 

The neighborhood counting method determines functions of a protein based on 
known functions of its immediate neighborhood [2-4]. A PPI network can be modeled 
as a simple graph, in which a vertex represents a protein and an edge represents an 
interaction between two distinct proteins, so it is natural to apply graph algorithms for 
its functions analysis. Two main approaches have been suggested in this context: cut-
based approaches [5] and a flow-based algorithm [6]. A lot of probabilistic methods 
to the annotation problem have been proposed [7, 8]. All of them rely on a Markovian 
assumption: the function of a protein is independent of all other proteins given the 
functions of its immediate neighbors. Module-assisted approaches [9, 10] predict 
functional modules of related proteins firstly and then annotate each module based on 
known functions of its members. A significant proportion of PPI networks obtained 
from high-throughput experiments have been found to contain false positives and 
false negatives, which have negative effects on the prediction of functions. To over-
come these limitations, some researchers have integrated data from multiple sources 
for the annotation task. These approaches differ in the way the sources are combined. 
Network topological properties are combined with sequence, gene expression, domain 
information, protein complexes and others to predict protein function from PPI net-
works [11, 12]. Although a great progress has been made on the computational me-
thods, the prediction of function based on PPI network is still very challenging. 

While under new conditions or stimuli, not only the number and location of pro-
teins would be changed, but also their interactions. A protein might interact with oth-
ers in different phases or time points. Interactions are vital in every biological process 
in a living cell. Many significant molecular processes are performed by large and 
sophisticated multi-molecular machines such as anaphase-promoting complexes [14], 
RNA splicing [15], polyadenylation [16], protein exports and transport complexes 
[17].  Therefore, stable modules might be developed among proteins, while tempo-
rary and dynamic modules would be formed by proteins with changing interactions. 
Proteins would join in different modules in various phases of molecular process to 
perform some common functions with other ones. In other words, proteins would 
have diverse functions under new conditions or in different time points. Therefore, it 
is ineffective to predict protein functions based on static networks. 

Interactions observed in experiments might not take place within organisms, or 
might occur in cells at certain moment or period. Interactions among proteins within 
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biological networks would change with time, external conditions, stimuli or cell stag-
es, which is the dynamic character of PPI networks. Therefore, an effective way to 
improve prediction performance is to construct dynamic protein interaction networks 
and predict dynamic biological modules under different conditions or in different time 
points to conduct protein function annotations. The experiment results in our previous 
research prove that predicting functions is imperfect only based on PPI networks or 
certain protein features, because functions between proteins might be overlapped and 
differentiated. 

Yook et al. [18] have concluded that the most functional classes appear in the form 
of isolating subnets within PPI networks. Current function prediction methods  
are based on the analysis of static networks, without exploring meta-organizations as 
well as interaction subnets or considering dynamic features of modules and functions. 
In this paper, we construct a dynamic interactome network by combining PPI network 
and gene expression data. Based on the constructed dynamic network, a new method 
is proposed to predict protein functions, called PDN (Predicting protein function 
based on Dynamic Network). Since PPI data obtained from high-throughput experi-
ments might contain false negative to some extent, the PDN method integrates mul-
tiple biological data such as protein domain information and protein complexes, in 
order to increase accuracy of prediction. The results show that PDN outperforms cur-
rent algorithms for protein function prediction. 

2 Method 

2.1 Construction of Dynamic Networks 

Dynamic networks can be viewed as ordered graphic sequences of a complex net-
work, i.e., snapshots [19] at different time points. The formal definition of dynamic 
networks follows as: 

Definition 1:  Dynamic Networks. A dynamic network G is defined as a series of 
networks {G1, G2,…, Gi,…,Gk}. Gi= (Vi, Ei) is a sample network at the ith condition, 
where Vi= {vi1, vi2,..., vin} represents a set of proteins, Ei = {ei1, ei2,... , eim} represents a 
set of interactions. We assume that e+=(u, v)∈(Ei\Ei-1) represents a new interaction 
emerged at the ith condition relative to the (i-1) the condition, e-=(u, v)∈(Ei-1\Ei) is an 
interaction existing at the (i-1)th condition while disappearing at the ith condition. 

Dynamic networks could be classified into two categories: spatial dynamic net-
works and time dynamic networks, according to the sampling conditions. Spatial dy-
namic networks mean different interactions among proteins under diversely spatial or 
other conditions, like various cell locations. Time dynamic networks refer to different 
interactions among proteins in different sampling time points, for instance, different 
protein expression levels of genes or proteins at various moments lead to dynamic 
changes of interactions among proteins. This study mainly focuses on the construction 
of time dynamic networks and their applications to protein function prediction. Ben-
jamin et al. have found that diploid yeast strain spontaneously begins respiratory 
cycles as measured by oxygen consumption, after growth to high density followed by 
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a brief starvation period [20]. They have performed micro-array analysis of gene ex-
pression further and confirmed that genes are expressed periodically. 

Gene expression data could reflect dynamic features of proteins under various con-
ditions or at different phrases in a biological process. Thus gene expression data at 
varying time points or under different conditions could provide another way to explore 
dynamic changes of protein interactions. Tang [21] et al. have constructed time course 
protein-protein interaction (TC-PPI) networks by incorporating time course gene ex-
pression into PPI networks, and applied it successfully to the identification of function 
modules. As to two interactive proteins in PPI networks, if their gene expression data 
at one moment exceed a certain fixed threshold, it is believed that they co-express at 
the moment and there would be an edge in TC-PPI networks at that moment. 

 

 

Fig. 1. Interval analysis of gene expression data 

As shown in Figure 1, proteins expression would vary dramatically, with the min-
imum approaching to 0 and the maximum over 150. The expression patterns would 
also change with genes. For example, some proteins play an important role but have 
relatively low expression levels during the whole cell cycle. Hence, it is inappropriate 
for us to filter out all proteins using a uniform threshold when constructing a dynamic 
network. An active threshold for each protein based on the characteristics of its ex-
pression curve is more valid for investigating whether a protein is active at certain 
moment. Wang [22] et al. have proposed the three-sigma rule to construct dynamic 
networks, and obtained the thresholds based on the average values and standard dev-
iations of gene expressions of specific proteins. In this paper, we design the threshold 
via expression levels of individual genes, which is different from the three-sigma rule. 
Gene expressions in 36 time points [20] could be divided into three cycles, i.e., every 
12 time points per cycle. However, researchers used to construct a PPI network within 
36 time points, greatly distinct from the network constructed per 12 time points in this 
paper. The value of gene expression at certain time point is the average value in three 
cycles, which is calculated as follows: 

 
( ) ( 12) ( 24)

'( )=     ( [1,12])
3

T i T i T i
T i i
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As for the threshold, it is simply set as the average expression value of each gene 
in this study. Figure 2 describes the process of a dynamic network construction. The 
first step, combine three cycles of gene expressions into one cycle according to equa-
tion (1) and filter out proteins with gene expression values below their average value. 
The second step, construct a dynamic network, if two genes co-express at the ith 
(i∈ [1,12]) time point and interact with each other in PPI networks, an interaction 
would be added in the dynamic network at this time point. 

 

 

Fig. 2. Schematic of construction of dynamic networks 

2.2 PDN Method 

Researches [23] show that PPI data obtained through high-throughput biological ex-
periments contains relatively high rates of false positives and false negatives. The 
false positives would be an obstacle to the precision of prediction algorithm, because 
the number of mismatched functions would rise. The false negatives would lead to the 
loss of interaction data, and continue to inhibit the increase of the number of functions 
correctly matched, so the recall is hard to be lifted. Thus reducing false positives and 
false negatives is the key to improve the performance of protein function prediction. 
Currently, a few function prediction algorithms have incorporated topological charac-
teristics and multiple biological data, which aim at reducing the impact of false nega-
tives by adding new protein interactions based on other biological data. However, 
those methods would inevitably result in the rise of false positives in the meanwhile. 
That is to say, the PPI data predicted on the basis of multiple biological data might be 
false positives.  
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This study aims at achieving the balance between false positives and false nega-
tives by incorporating multiple biological data and constructing dynamic protein inte-
raction networks. The multiple biological data includes proteins’ domain, protein 
complexes and gene expression data. In our previous work [24], we have successfully 
predicted protein functions by combining proteins’ domain and topological characte-
ristics of PPI networks and improved the performance of prediction compared to other 
methods. Besides, domain is widely applied in prevailing methods to predict func-
tions, such as Zhang [11], DCS [12], and PON [13], which demonstrate the close 
relationship between domains and functions of proteins. 

To reduce the influence of false positives and false negatives, we utilize the in-
formation regarding protein domain as well as protein complexes, topological charac-
teristics of PPI networks and the constructed dynamic networks. As to false negatives, 
we add interactions to the original PPI networks on the basis of domain and complex 
information; while as to false positives, we delete protein interactions having no co-
expressions based on the newly constructed dynamic protein networks. The PDN 
algorithm is shown in Figure 3 and consists of three stages. 

 
Input: A PPI network G= (V, E) 
Output: The set of predicted functions PF 
1. Generate a weighted network G= (V, E, W) by Equation (2); 
2. Construct a new weighted network G’= (V, E’, W’) by Equation (5); 
3. Get a set of dynamic networks GS = {G1, G2,... , G12} 
4. FOR each un- annotated protein u DO 
5.    Get a set of candidate proteins P= {p1, p2 ,…, pn} Score_Protein(pi) 
6.    Get a set of candidate functions F= {f1, f2 ,…, fm} 
7.    FOR each function fi in F, calculate 

8.       
1

_ ( ) _Pr ( ) ,   ( [1, ])
n

j i ij
i

Score Function f Score oten p t i n
=

= × ∈∑  

9.    END FOR 
10.    Order all functions in F in descending order by their score 
11.    PF={f1, f2 ,…, fk}; 
12.    Output PF 
13. END FOR 

Fig. 3. PDN algorithm 

 
The first stage of PDN, interaction weighting, weights all interactions using domain 

information, protein complex information and topological characteristics of PPI net-
works, removes and adds interactions. PDN weights interactions based on topology of 
networks firstly. Generally speaking, for a pair of interacting proteins, the probability 
of the interaction can be reflected by the number of common neighbors of them. PDN 
uses AdjustECC to calculate the weight of protein pairs, which is defined as: 
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Actually, AdjustECC is a variant of ECC, where Ni and Nj are the neighborhood sets of 

vi and vj, respectively. If there is not an interaction between vi and vj, AdjustECC (vi, vj) =0. 
Next, PDN supplements interactions using domains information and protein com-

plexes to the original PPI network. For a pair of proteins vi and vj, Di and Dj are sets of 
domains of vi and vj, respectively. PD (vi, vj) represents the probability of sharing 
domains, which is calculated as follows: 
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In equation (3), Di∩Dj denotes the set of common domains between vi and vj. In a 
similar way, PC (vi, vj), the probability of sharing complexes between vi and vj can be 
calculated as follow: 
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where Ci and Cj is the set of protein complexes that contained vi and vj, respectively 
and Ci∩Cj denotes the set of common protein complexes of them. 

Given a pair of proteins vi and vj in the PPI network G= (V, E), the weight of inte-
raction between them is calculated as: 

( , ) ( , ) ( , ) , ( , )
( , )

( , ) ( , ) , ( , )
i j i j i j i j

i j
i j i j i j

AdjustECC v v PD v v PC v v v v E
Weight v v

PD v v PC v v v v E

+ + ∈⎧⎪= ⎨ + ∉⎪⎩
           (5) 

' {( , ) | , ,( , ) , ( , ) ( , ) 0}i j i j i j i j i jE v v v v V v v E PD v v PC v v= ∈ ∉ + >  is the set of new interac-

tions generated according to domain information and protein complex information. G’ 
= (V, E∪E’, W) is the constructed network, where W = {w(e1), w(e2) ,… , w(em)}, 
w(ei) represents the weight of ei. 

The second stage, dynamic networks construction, takes as input the weighted PPI 
network, generates 12 dynamic weighted networks using the gene expression profiles 
according to equation (1). At the ith time point (i∈ [1,12]), if a pair of proteins inte-
ract in the PPI network and co-express, an interaction would be added between them 
in the dynamic weighted network. 

The third stage is predicting and scoring. The set of candidate proteins is formed 
according to neighbors of tested proteins from these 12 sub- networks. The algorithm 
scores for every candidate proteins. Scores of candidate proteins are the sum of  
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weight of interaction between the candidate proteins and the testing proteins in all 12 
sub- networks. Given a set of dynamic networks set GS = {G1, G2,... , G12}, Gi= (V, 
Ei, Wi) (i∈[1,12]), u is a testing protein with unknown functions, v is a protein with 
known functions in the PPI network. The score of v can be calculated by the follow-
ing formula: 

12

1

1 ,  ( , )
_Pr ( ) ( , ) ,   where 

0 ,
i

i i
i

if v u E
Score otein v Weight v u t t

otherwise=

∈⎧
= × = ⎨

⎩
∑        (6) 

After the set of candidate proteins is formed, PDN algorithm generates a set of 
candidate functions and computes the ranking scores for candidate functions. It is 
assumed that P= {p1, p2 ,…, pn} is a set of candidate proteins , F= {f1, f2 ,…, fm} is a 
list of functions of all proteins in P. The score of a candidate function fj in F can be 
calculated as follow: 

1

_ ( ) _Pr ( ) ,   ( [1, ])
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i

Score Function f Score oten p t i n
=

= × ∈∑                (7) 

In equation (7), if a protein pi has the function fj then tij equals to 1, otherwise tij 
equals to 0. PDN sorts all candidate functions in descending order by their ranking 
scores and selects top N of the ranked functions for the testing protein with unknown 
functions. N= min (l, m), where l is the number of predicted functions and m is the 
maximum number of functions of candidate proteins. 

3 Results and Discussion 

3.1 Experimental Data 

The Saccharomyces cerevisiae (yeast) PPI networks are widely used in the network-
based function prediction methods, because the species of yeast has been well charac-
terized by knockout experiments and is the most complete and convincible. Here, we 
also adopt the yeast PPI network to test our method. The DIP [25] dataset, updated to 
Oct.1, 2014, consists of 5,017 proteins and 23,115 interactions among proteins. The 
self-interactions and the repeated interactions are filtered out in DIP data. The annota-
tion data of proteins used for method validation is the latest version (2012.3.3) down-
loaded from GO official website [26]. To avoid too special or too general, only those 
GO terms that annotate at least 10 and at most 200 proteins will be kept in the expe-
riments. After processing by this step, the number of GO terms is 267. 

The domain data is derived from Pfam database [27], including 1107 different 
types of domains among 3,042 proteins. As for the protein complex information, we 
used the dataset CYC2008 [28] which consists of 408 protein complexes involving 
1,492 proteins in the yeast PPI network. The gene expression data of yeast [20] for the 
construction of dynamic networks contains 6,776 genes and 36 samples in total, with 
4,898 genes involved in the DIP network. For proteins which have no corresponding 
gene expression data, we simply set zero values. In addition, the GO data and Pfam 
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domain data are transformed to use the ensemble genome protein entries because the 
original PPI network uses such a labeling system. 

In order to evaluate the performance of our proposed new protein function predic-
tion method, PDN, We have applied our method and other five competing algorithms, 
including Zhang [11], DCS [12], DSCP [12], NC [2] and PON [13], to the datasets 
mentioned above. DSCP is a variant of DSC, which combines protein complex infor-
mation. NC is a classic functions prediction algorithm while Zhang, DCS, DSCP, NC 
and PON integrate domain information. 

3.2 Cross Validation 

The proteins in the PPI network are partitioned into two subsets, the training set and 
the testing set. Functions are hidden from the part of proteins in the PPI network arti-
ficially. These proteins consist of the testing set and the rest proteins form the training 
set. Functions of proteins in the testing set are predicted, using functional information 
of proteins in the training set. Then predicted functions are compared with actual 
functions to evaluate the performance of protein function prediction algorithms. In 
this study, we put one protein into the testing set and the remaining proteins into the 
training set. Each function of proteins in the testing set is assigned with a probability, 
according to the functions of proteins in the training set. Then a number of top-
ranking functions are selected to annotate the protein with unknown functions. The 
quality of prediction depends on the matching results of predicted functions with ac-
tual ones. There are two widely used criteria to measure the predicted results. The one 
is the precision which measures the percentage of predicted functions that match the 
known functions. The other is the recall which measures the fraction of known func-
tions that are matched by the predicted ones. They can be calculated as follows: 

Pr
TP

ecison
TP FP

=
+

,       Re
TP

call
TP FN

=
+

                       (8)  

where TP is the number of predicted functions matched by known functions. FP is the 
number of predicted functions that are not matched by known functions. FN is the 
number of known functions that are not matched by predicted functions. F-measure, 
as the harmonic mean of precision and recall, is another measure to evaluate the per-
formance of a method synthetically. 

In the DIP PPI network, 2870 proteins among all 5017 proteins have been anno-
tated by known functions. We analyze the overall prediction performance of PDN and 
other five methods for these 2870 proteins, firstly. Figure 4 shows the average preci-
sion, recall and F-measure of various algorithms. 

From Figure 4 we can see that PDN archives the highest precision and F-measure, 
the second-highest recall after NC. F-measure of PDN is 86.04%, 31.95%, 109.64%, 
184.83% and 15.4% higher than Zhang, DCS, NC, PON and DSCP, respectively. 
PDN is the only one method that F-measure over 0.4 among all methods. At the same 
time, we consider the number of proteins annotated at least one function correctly. 
The number of proteins which have been matched at least one function by  
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Fig. 4. Overall performance comparisons of various algorithms 

PDN, Zhang, DCS, NC, PON and DSCP is 1491, 810, 1148, 1619, 572 and 1298, 
respectively. PDN archives the second largest number of matched proteins after NC. 
The number of matched proteins of PDN is 84.07%, 29.88%, 160.66% and 14.87% 
more than Zhang, DCS, PON and DSCP, respectively.  Thus it can be seen that PDN 
has the highest accuracy than other algorithms. 

All these methods take the different strategies for selecting the number of functions 
for proteins. It may not be sufficient to evaluate these methods by comparing their 
precision and recall directly. To have a more objective comparison of the perfor-
mances of these methods, we adopt the F-measure curve to evaluate the global per-
formance of each method in terms of the different strategies of function selection 
adopted by these six prediction methods. We try to choose the same number of func-
tions for each method, i.e. to choose for each protein respectively the top K functions 
of each prediction method. As for Zhang, DCS and DSCP methods, we choose the top 
M (M<=K) proteins with the highest similarity value and then select the top K func-
tions from the function list as predictive functions which are in descending order ac-
cording to the maximum value of protein similarity. As for PDN, NC and PON me-
thods, we choose the top K GO terms to assign functional annotations for those un-
known proteins (K ranges from 1 to 50). Average F-measure will be calculated re-
spectively under different K values and shown in Figure 5. 

 

 

Fig. 5. Comparison of average F-measure of various methods 
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Figure 5 clearly shows that PDN achieves the highest average F-measure from be-
ginning to end among all the six methods. Average F-measure of PDN falls into (0.26, 
0.4]. PON is the only one method whose F-measure increases with increasing the 
value of K. This is because PON limits the number of predicted functions to be less 
than or equal to that of the annotated GO terms in the query protein. All of facts con-
firm that our method proposes an effective strategy based on dynamic PPI networks 
and outperforms other existing methods in protein function prediction. 

4 Conclusion 

At present, plenty of recognizable genes and proteins have not gained characteristics 
in experiments, so their functions have been unknown yet. The algorithm of function-
al prediction is generally based on static PPI network. However, interactions change 
with time, external conditions, stimulations and different stages of cells. Combining 
PPI network with multiple sources of biological data, we have constructed a dynamic 
weighting PPI network by using the time course gene expression profiles, and put 
forward a function prediction method named PDN aiming at reducing the negative 
effects of false positives and false negatives in PPI networks for protein function pre-
diction. The experimental results have verified the effectiveness of PDN method.  
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Abstract. Copy number variants are an underlying factor in human
evolution and in many diseases, especially in cancer. Tumors generally
contain cells with a varying number of gene copies, and the variance in the
number of gene copies follows a pattern formed by an evolutionary pro-
cess. The Fluorescence in situ hybridization (FISH) provides researchers
a reliable technique to measure the copy numbers of preselected genes
in a group of cells. Recently, Chowdhury et al. successfully modeled the
progression of tumor progression using FISH copy number to the Recti-
linear Steiner Minimum Tree (RSMT) problem, and proposed both exact
and heuristic algorithms to reconstruct phylogenetic trees modeling the
development of cancer cell patterns [1]. We proposed new heuristics to
attack the RSMT problem, which is inspired by iterative approaches to
approximate solutions to the Steiner tree in the “small phylogeny” prob-
lem [2,3]. Experimental results from both simulated and real tumor data
show that our approach outperforms the previous heuristic algorithm in
approximating better solutions for the RSMT problem.

Keywords: FISH · Tumor phylogentic inference · Median problem ·
Small phylogeny problem

Introduction

It is well known that the occurrence of cancer is driven by somatic genetic
changes, including single-nucleotide variants, insertions and deletions, copy num-
ber aberrations, structural variants, and gene fusions [4]. Unique cancer clones
are created as a consequence of accumulating changes in the progeny of a single
most recent common ancestor. Ongoing linear and branching evolution results in
the creation of multiple varying subclones, mapping the evolutionary history of
a tumor to a tree [5]. The clonal evolution tree is shaped by genetic changes, as
well as competition between subclones under the pressures of environmental se-
lection. Inferring the evolutionary history of a particular type of tumor can help
pinpoint important changes that lead to the recurrence of some genome aber-
rations [6]. There has already been a lot of research on identifying important
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genes that are related to the evolution of cancer and may contribute developing
better cancer treatment, among which phylogenetic inference plays a significant
role [7,8,9,10].

During tumor development, the gene copy number can increase or decrease,
due to various mechanisms [11,12,13]. FISH (Fluorescent In Situ Hybridization)
developed by bio-medical researchers in the early 1980s has been used to detect
and localize the presence or absence of specific DNA sequences and to visual-
ize the genomic diversity of chromosome aberrations [14]. While the single cell
sequencing (SCS) technique has the potential to count the number of specific
genes or specific regions for a group of cells, the highly non-uniform coverage,
the admixture signal, and relatively high cost make the current SCS technique
not very suitable to resolve accurate gene copy numbers.

Phylogenetic inferences have facilitated the study of cancer initiation, progres-
sion, treatment, and resistance by regarding cancer as the product of evolution-
ary processes [15] and are usually limited to providing an average signal from
a population of cells based on sequencing data [16,17]. Although FISH yields
single-cell resolution profiles, previous studies are limited to a small number of
preselected gene probes, e.g., two [18] and three [8]. More recently, Chowdhury
et al. successfully modeled the progression of tumor progression using FISH
copy number to the Rectilinear Steiner Minimum Tree (RSMT) problem, and
proposed both exact and heuristic algorithms to reconstruct phylogenetic trees
modeling the development of cancer cell patterns [1]. However, both algorithms
do not scale well with the number of gene probes, making them impractical to
handle dozens of gene probes — a typical number of genes in one complicated
signal pathway. A similar model based on the Steiner Minimum Tree has also
been introduced to study the “small phylogeny” problem at both the sequence
level [2] and the gene order level [3]. A special case of the “small phylogeny”
problem is called the median problem — given three sequences (or permuta-
tions), find the configuration of a median genome to minimize the sum of the
pairwise distances between the median and three input ones [19]. Sankoff et al.
proposed iterative approaches to approximate solutions to the Steiner tree, which
iteratively solve the median problem for one internal vertex at a time, and to
make improvement until a local optimum is found [2,3]. We propose similar
heuristics to approximate solutions to the RSMT problem through iteratively
optimizing the median version of RSMT problem. Moreover, our iterative ap-
proach contains new procedures for the generation of median instances and the
order of iterative optimizations of median instances, which generalizes the previ-
ous approaches of using median solvers to approximate solutions to the Steiner
tree [2,3] and takes into consideration specific characterization and challenging
in the RSMT problem. Experimental results from both simulated and real tu-
mor data show that our approach outperforms the previous heuristic algorithm
in approximating better solutions for the RSMT problem.
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Methods

Below we described our approach for building a phylogenetic tree by using copy
number change information from FISH data. In FISH data, such as cancer data,
each cell has some non-negative integer count of each gene probe. Given two cell
count patterns (x1, x2, . . . , xd) and (y1, y2, . . . , yd), the pairwise distance under
the rectilinear metric (or L1 distance) is defined as |x1 − y1| + |x2 − y2| + . . . +
|xd − yd|, where xi, yi ∈ N. The weight of a tree with nodes labeled by cell
count patterns is defined as the sum of all branch lengths under the rectilinear
metric. Since the distance between two cell count patterns under the rectilinear
metric represents the number of single gene duplication and loss events between
them, a minimum weight tree, including Steiner nodes if needed, explains the k
observed cell count patterns d probes with minimum total number of single gene
duplication and loss events, from a single ancestor, e.g., cell count pattern with a
copy number count of 2 for each gene probe (i.e., a healthy diploid cell) [1]. The
RSMT problem is NP-complete [20] and Chowdhury et al. proposed an inefficient
exact algorithm and a heuristic algorithm based on the median-joining algorithm
for maximum parsimony phylogenetics [1].

Rectilinear Steiner Minimum Tree (RSMT) Problem

The RSMT problem for phylogenetic inference from FISH data is defined as
follows.
Definition: RSMT(k, d)
Input: FISH data of k cell count patterns on d probes for a given patient
Output: A minimum weight tree with the rectilinear metric (or L1 distance) in-
cluding all the observed k cell count patterns and, as needed, unobserved Steiner
nodes along with their cell count patterns for d probes

Median Version and Iterative Optimization for the RSMT Problem

The median version of RSMT problem can be solved in linear time.

Theorem 1. RSMT(3,d) can be solved in time O(d).

Proof. Given three original cell count patterns (x1
1, x

2
2, . . . , x

3
d), (x2

1, x
2
2, . . . , x

2
d)

and (x3
1, x

3
2, . . . , x

3
d), RSMT(3, d) returns a cell count pattern (m1,m2, . . . ,md)

such that
3∑

i=1

d∑

j=1
|xi

j − mj | is minimized, where xi
j ,mj ∈ N. Since the count

for each gene probe is independent, we can optimize mj independently which

minimizes
3∑

i=1
|xi

j − mj |, respectively, and mj simply equals to the median of

x1
j , x2

j and x3
j . Thus (m1,m2, . . . ,md) can be constructed in time O(d) and

if it differs from all three input cell count patterns then a Steiner node with
cell count pattern (m1,m2, . . . ,md) has to be introduced. On the other hand,
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d∑

j=1
miny∈N

3∑

i=1
|xi

j − y| is a lower bound for the minimum weight of any Steiner

tree on three input cell count patterns, and arg miny∈N

3∑

i=1
|xi

j − y| = mj, thus

the above construction is optimum under the rectilinear metric. ��
Two instances of RSMT(3,d) are shown in Figure 1. Given three cell count
patterns in Figure 1(a), a Steiner node is introduced in Figure 1(b) with reduced
the weight of the tree (i.e., the number of single gene duplication and loss events)
from 7 to 4. Figure 1(c) shows an instance that no Steiner node is introduced.

(a) (b) (c)

Fig. 1. Instances of RSMT(3,4) and the introduction of the Steiner node as the median.
Each white node represents an input cell count pattern, and each green node represent
an inferred Steiner node. Branch lengths are shown in Blue.

In the study of “small phylogeny” problem, Sankoff et al. studied iterative
approaches to approximate solutions to the Steiner tree, which solve the median
problem for one internal vertex at a time, and iteratively make improvement until
a local optimum is found [2,3]. For each internal node in the current (binary)
tree, the input for a median instance consists its three immediate neighbors [3].
While the above generation of median instances works for iterative approaches
in attacking the “small phylogeny” problem in which the tree topology is fixed,
it is not directly applicable to the study of the RSMT problem since the solution
for the RSMT problem may change the tree topology by adding Steiner nodes to
the input tree. Our approach thus checks all potential triplets in the tree, instead
of only the triplets introduced by immediate neighbors of internal nodes, which
is more suitable to deal with varying tree topologies and may also help to escape
from the local optimum.

The order how the Steiner nodes are added to the tree may also affect the
weight of the resulting tree. Figure 2(a) shows the original tree before itera-
tive optimization, and Figure 2 (b) and (c) show the introduction of Steiner
nodes through two different orders. Compared to Figure 2 (c), Figure 2 (b)
first introduces a Steiner node 21422282 which prevents adding new potential
Steiner nodes in the later stage. We define an interference score for each po-
tential Steiner node to model the interference between potential Steiner nodes.
The Steiner count of any node in the current tree is defined as the number of
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(a) (b) (c)

Fig. 2. Different orders of adding Steiner nodes result in different weights of the result-
ing trees. From the same initial tree in (a), the weight of the tree in (b) is 37 and the
weight of the tree in (c) is 35. Each white node represents an input cell count pattern,
and each green node represent an inferred Steiner node. Branch lengths are shown in
Blue.

triplets which contains this node and requires the introduction of a Steiner node
to optimize the tree weight. The interference score for each potential Steiner
node with respect to a triplet is thus defined as the sum of Steiner counts of
three nodes in that triplet. At each iteration, the potential Steiner node with
minimum interference score is added to minimize the inference upon other po-
tential Steiner nodes with respect to the current tree. An example is shown in
Figure 3.

Our iterative algorithm starts from a Minimum Spanning tree built from the
set of input cell count patterns, select a median instance at a time, and iteratively

Fig. 3. The definition of Steiner count of the node in the current tree and the inter-
ference score of potential Steiner nodes to be added. Each input cell count pattern is
represented by a white node labeled by its Steiner counts, and each potential green
node is represented by a green node labeled by its interference score.
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make improvement until a local optimum is found. The detailed description is
shown in Algorithm 1.

Algorithm 1: An iterative algorithm to approximate solutions for RSMT(k, d)
Input: a set of k cell count patterns on d gene probes
Output: a tree with additional Steiner nodes if needed and k nodes that
correspond to k input cell count patterns respectively
Initialization: the initial tree T0 = a Minimum Spanning tree on k cell count
patterns under the rectilinear metric
Iteration: from tree Ti(Vi) on node set Vi to Ti+1(Vi+1) on node set Vi+1

Identify the set S of the potential Steiner nodes from all possible triplets in Ti

While S is not empty
Select the potential Steiner node p with minimum interference score in S
Build a Minimum Spanning tree on {Vi ∪ p} as T (Vi ∪ p)
If the weight of T (Vi ∪ p) is lower than the weight of Ti(Vi), restart the

iteration
Ti+1(Vi+1) = T (Vi ∪ p)

Else
S = S \ {p}

Exit condition: S is empty

Datasets

We used both real cervical cancer and breast cancer data samples and simulation
samples generated through the same process described in the the supplemental
material of the previous study by Chowdhury et al. [1]. The cervical cancer
data contain four gene probes LAMP3, PROX1, PRKAA1 and CCND1, and
the breast cancer data contain eight gene probes COX-2, MYC, CCND1, HER-
2, ZNF217 ,DBC2, CDH1 and p53. All those genes are chosen because they
are considered as important factors for cancer growth inhibition or promotion.
The cervical cancer data is from 16 lymph positive patients (both primary and
metastasis tumors) and 15 lymph negative patients, making 47 samples in total.
The breast cancer data is from 12 patients with both IDC and DCIS and 1
patient with only DCIS, making 25 samples in total. More details of this FISH
data set can be found in Chowdhury et al. [1].

Chowdhury et al. proposed an inefficient exact algorithm and an efficient
heuristic algorithm to reconstruct phylogenetic trees modeling the development
of cancer cell patterns [1]. Since the inefficient exact algorithm can not finish
most of the test samples with a reasonable amount of time, we compare our
iterative approach to the efficient heuristic algorithm [1]. In the following text,
we refer to the efficient heuristic algorithm as FISHtrees [1], and refer to our
iterative approach as iFISHtrees.
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Real Cancer Dataset

There are 25 data samples for the breast cancer dataset, and our iterative ap-
proach iFISHtrees performs better than FISHtrees in 14 sample, ties in 10
samples, and performs worse in 1 sample. Table 1 summarizes the comparison
between FISHtrees and iFISHtrees (ties are not included due to the space limit
and the better tree weights are shown in bold). Figure 4 shows two trees con-
structed by FISHtrees and our iFISHtrees reconstructed from the DCIS cancer
sample from patient 13, respectively. For example, the Steiner node 44423334 is
introduced by iteratively checking all potential triplets in iFISHtrees, which al-
lows iFISHtrees to escape from the local optimum that has trapped FISHtrees.

Table 1. Comparison on the real dataset for real breast cancer samples

Case # Initial FISHtrees iFISHtrees
Node # Tree weight Node # Tree weight Node # Tree weight

B1 IDC 119 230 135 213 132 212
B1 DCIS 143 259 158 241 159 242
B2 IDC 104 238 124 217 123 216
B3 DCIS 106 72 80 100 80 98
B4 IDC 110 232 129 214 129 213
B6 IDC 85 116 90 112 90 111
B7 IDC 59 128 73 116 71 113
B7 DCIS 76 202 84 186 83 184
B9 IDC 94 251 121 222 119 217
B9 DCIS 76 177 89 164 89 162
B10 DCIS 95 154 89 146 89 145
B11 DCIS 80 144 87 136 84 135
B12 IDC 112 212 124 201 123 200
B13 IDC 84 140 92 133 92 131
B13 DCIS 43 66 47 63 47 62

Similarly, our iterative approach iFISHtrees performs better than FISHtrees
in 15 sample, ties in 30 samples, and performs worse in 2 samples, out of 47
samples in the cervical cancers datasets. Table 2 summarizes the comparison
between FISHtrees and iFISHtrees (ties are not included due to the space
limit and the better tree weights are shown in bold).
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(a) (b)

Fig. 4. Phylogenetic trees constructed by FISHtrees (a) and iFISHtrees (b) from the
DCIS breast cancer sample of patient 13, respectively. Each node in the tree is labeled
by a cell count pattern of eight gene probes COX-2, DBC2, MYC, CCND1, CDH1,
p53, HER-2 and ZNF217. Each white node represents an input cell count pattern, and
each green node represent an inferred Steiner node. Branch lengths are shown in Blue.

Table 2. Comparison on the real dataset for real cervical cancer samples

Case # Initial FISHtrees iFISHtrees
Node # Tree weight Node # Tree weight Node # Tree weight

C5 140 208 153 195 151 196
C9 130 144 131 143 132 142
C10 72 87 72 87 73 86
C12 63 72 63 72 64 71
C15 66 75 67 74 68 73
C21 63 77 67 73 65 74
C27 49 60 50 59 52 57
C29 76 85 78 83 78 82
C32 160 216 167 209 169 207
C34 67 88 72 83 73 82
C37 71 74 72 73 73 72
C42 157 207 164 199 166 198
C45 126 183 136 172 140 169
C46 87 116 92 110 93 109
C49 128 166 132 162 133 161
C53 64 82 66 80 66 79
C54 123 152 129 146 130 145



410 J. Zhou et al.

Table 3. Comparison on simulated datasets

Probe # Growth
factor

FISHtrees
=iFISHtrees

FISHtrees
>iFISHtrees

FISHtrees
<iFISHtrees

4 0.4 176 23 1
6 0.4 161 30 9
8 0.4 162 31 7
4 0.5 182 18 0
6 0.5 160 31 9
8 0.5 162 32 6

Simulated Cancer Data

We also test on simulated datasets generated for different number of gene probes
(4, 6 and 8) and for different tree growth factors (0.4 and 0.5) [1]. For each
pair of parameters, we simulate 200 samples with cell count patterns varying
from 75 to 150. Table 3 summarizes the comparison of between FISHtrees and
iFISHtrees from these simulation datasets, and in average iFISHtrees outper-
forms FISHtrees on all of them. Moreover, we also generate simulated datasets
for relatively larger number of gene probes (e.g., 12 and above), FISHtrees
started taking too much time to produce solutions while our iterative approach
iFISHtrees still scales well with dozens of gene probes, and thus we did not
include the comparison results for larger number of gene probes.

Conclusions

Chowdhury et al. successfully modeled the progression of tumor progression
using FISH copy number to the Rectilinear Steiner Minimum Tree (RSMT)
problem, and proposed both exact and heuristic algorithms to reconstruct phy-
logenetic trees modeling the development of cancer cell patterns [1]. We show
that the RSMT problem can be solved in linear time when there are only three
input cell count patterns. Inspired by the iterative approaches to approximate
solutions to the Steiner tree in the “small phylogeny” problem [2,3], we propose
a new iterative algorithm to approximate solutions of the RSMT problem. More-
over, our new iterative approach extends the generation of median instances, and
also takes into account the order of iterative optimizations of median instances.
problem. Experimental results from both simulated and real tumor data show
that our approach outperforms the previous heuristic algorithm in approximat-
ing better solutions for the RSMT problem and may provide insights into more
likely tumor progression pathways. Chowdhury et al. recently constructed a phy-
logenetic model of tumor progression that include copy number changes not only
at the scale of single genes, but also at the scale of entire chromosomes and the
whole genome [21]. Extensions of our iterative approach for this more general
model are possible, but remain to be thoroughly tested.
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Abstract. We propose a phenome-based strategy to identify novel dis-
ease associated genes for PD, and investigated the translational potential
of the predicted genes in drug discovery. Different from previous studies,
we incorporated multiple disease phenotypic similarity networks, and in-
tegrated them with a genetic network to infer novel candidate genes. We
validated the approach in two experiments: the 15 known PD genes from
OMIM were averagely ranked within the top 0.8%, and the top-ranked
genes were enriched for 669 PD genes from GWAS. In addition, our ap-
proach prioritized the target genes for both FDA-approved PD drugs
and candidate PD drugs in clinical trials. The result provides empiri-
cal evidence that our computational gene prediction approach has the
translational potential in PD drug discovery.

1 Introduction

Parkinson’s disease (PD) is a common neurodegenerative disorder with unclear
disease mechanisms and limited effective drug treatments [1]. Detecting novel
disease genes is useful in understanding PD and identifying new drug targets.
Systematically studying disease phenotypes have the potential to uncover the un-
derlying genetic factors for PD. However, disease phenotype data used in current
gene prediction approaches remain largely incomplete. Recently, we explored a
new phenotype data source in biomedical ontologies and constructed the disease
manifestation network (DMN). We showed that DMN contains new knowledge
[2] and is useful in disease gene prediction [3]. In this study, we integrated DMN
with a widely-used phenotype network provided by human phenotype ontol-
ogy (HPO), and identify candidate PD genes using the combined network. We
demonstrated that the PD genes predicted by our phenome-based approach can
provide information for PD drug targets.

2 Method

Our approach consists of two parts: (1) predict genes for PD and (2) investigate
the translational potential of the predicted genes. We downloaded the phenotype
network of HPO (7395 nodes) and DMN (2312 nodes), and connected them using
maps between disease nodes. We also built a gene network (17,831 nodes) using
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(a) distribution of target genes for
approved drug for PD

(b) distribution of target gens for drugs that have been tested in
clinical trials for PD

Fig. 1. Distribution of target genes for approved PD drugs and candidate PD drugs
that are tested in clinical trials

1,971,371 gene functional relationships from STRING. We extracted 4021 and
1872 disease-gene associations from OMIM to connect HPO and DMN to the
gene network, respectively.

We used PD and its 15 associated genes (in OMIM) as the seeds, and itera-
tively updated the score for every gene node at step k: pk+1 = (1−γ)MTpk+γp0,
where p0 is a vector of initial scores for each node, γ is the probability of restart-
ing from the seeds, and M is the transition matrix of the entire combined net-
work, which was normalized following the method in [3].

We validated our method in two ways: testing the ranks of seed genes in a
“leave-one-out” cross validation, and examining the ranks of 669 PD associated
genes obtained from genome-wide association studies (GWAS). Then we predict
genes for PD and evaluated if the top-ranked genes are enriched for the genes
targeted by the drugs that have been approved for PD and have been tested for
PD in clinical trials.

3 Results
The top-ranked genes are relevant to PD. In the cross validation, the average
rank for the retained seed genes is 147 (within the top 0.8%). The top 500 genes
contain 99 PD genes from GWAS, which is a 4.95-fold enrichment compared
with the average of 1000 random rankings (p < e−8).

The top-ranked predicted genes provide information of PD drug targets. Our
approach prioritized the drug targets for approved PD drugs (fig. 1(a)) and
candidate PD drugs in clinical trials fig. 1(b). In addition, the top 500 genes
are enriched for novel drug target genes, which offer unique opportunities for
identifying candidate PD drugs through drug repositioning.
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Finding a relevant dictionary for extracting the relevant features in a dataset is
a very important task for many applications. The Non-negative Matrix Factor-
ization (NMF) is a recent and very efficient method for achieving this goal in
the case of non-negative data. Given a dataset consisting of n vectors x1, . . . , xn

in Rd, the NMF approach consists of building a matrix M whose columns are
x1, . . . , xn and then factorize this matrix as

M = UV t + E,

where E is an error term, U and V are componentwise non-negative, and U has
a small number of columns. The columns of U represent the “features” present
in the dataset and the interpretation of this decomposition is that each data
consists of a mixture of the discovered features.

Since its study by Lee and Seung [7] in the late 90’s the method, first explored
in the chemometrics community, enjoyed a significant gain of interest from many
application fields and especially in machine learning. It has been successfully used
for document clustering [11], email surveillance [1], hyperspectral image analysis
[5], face recognition [4], blind source separation [3], etc. It has recently also been
applied to microarray data analysis [6] and biomedicine [8].

The approach proposed in the present article relies on Bregman-proximal
iterations. Our goal is to extend the method to the case where data may be
missing and/or corrupted by the occurrence of outliers. Our approach borrows
ideas from robust PCA [2], where the matrix to approximate is decomposed into
a low rank part and a sparse part:
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M = L+ S.

The low rank part L is intended to approximate the data set which is supposed
to be of low rank, and the sparse part S represents the outliers. In the seminal
article [2], the noise is not taken into account. However, in datasets such as
gene expression data, the noise may be very large and one has to search for
a low rank solution that removes the noise at the same time. In the present
work, we propose an efficient method that denoises the data, guesses the missing
values, and detects the outliers in the matrix M while performing a low-rank
non-negative matrix factorization of the recovered matrix. For this purpose, we
use a mixture of Bregman proximal methods and of the Augmented Lagrangian
scheme as it is used in the Alternating Direction of Multipliers Method (ADMM).
This mixture is also justified by [10], which presents a clear interpretation of the
ADMM in terms of proximal method-type iterations.
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Introduction 

Proteins fold from an ensemble of denatured states by a restriction of conformational 
space to form the initial native-like topology followed by further stabilizing secondary 
and tertiary interactions. It is believed that the formation of the initial native-like to-
pology is guided by an evolutionarily conserved set of amino acids. Residues are 
typically conserved in a superfamily of proteins because they make critical interac-
tions that are more important in maintaining the common fold. This could lead to 
residues clustering together in a hydrophobic core to stabilize the initial native-like 
topology [1, 2]. This network of conserved amino acids has been the target of compu-
tational and experimental research which seeks to investigate the link between con-
served amino acids and how they facilitate rapid and correct folding of a protein into 
its native state [3, 4, 5]. Using bioinformatics approaches we can determine and assess 
which amino acids are conserved for the fold of a protein. This type of analysis is 
highly useful and important in understanding the tertiary structure of proteins and 
becomes significantly more powerful when supported with experimental data. The 
application of network science has also become important in the study of protein 
structure and folding [2, 3, 6, 7, 8, 9]. 

Results and Discussion  

Our model system is the Streptococcal B1 immunoglobulin-binding domain of pro-
tein G (GB1) with a T2Q mutation to prevent methionine excision [10]. GB1 is a 
small, 56 amino acid bacterial immunoglobulin-binding protein with a 4β+α fold. 
This fold is composed of a two-layer sandwich consisting of a four-stranded β-sheet 
that packs against an α-helix. Using several bioinformatics approaches we investi-
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gated which residues are key determinants in forming this fold. We identified nine 
structurally conserved amino acids using a conservation analysis and propose that 
they are critical to forming and stabilizing the 4β+α fold. The nine conserved residues 
form a predominantly hydrophobic nucleus within the core of GB1 based on the aver-
age hydrophobicity analysis. A network analysis of all the long-range interactions in 
the structure of GB1 in concert with a Betweenness-centrality (BC) analysis was con-
ducted. It revealed the relative significance of each conserved amino acid  
residue based on the number and location of the interactions. The BC analysis identi-
fied four nodes (Tyr3, Leu5, Phe52 and Val54) with high betweenness. Interestingly, 
the 4 amino acids are found on the N- and C-termini β-strands and appear to be im-
portant in bringing the two hairpins together. Additionally, three of the four amino 
acids in the GB1 network are in conserved residue positions in the superfamily. This 
result indicates that these positions appear to be more centrally important to the net-
work and may be of higher importance, forming first in the folding process. However, 
experimental studies are necessary to truly determine if their hypothesized role in the 
formation of the 4β+α fold is supported.  

In summary, figure 1 highlights the results our conservation and network studies. 
This computational analysis provides an important foundation for the design of expe-
rimental work which is critical to solving the protein folding problem. 

 

 

Fig. 1. Network of Long-Range Interactions in the Structure of GB1. Individual amino acids 
are the red colored nodes connected by long-range interactions shown as blue lines. Residue 
numbers are in black. The nine conserved amino acids based on a statistical conservation analy-
sis are shown by orange circles. Red links indicate long-range interactions between the nine 
conserved amino acids. The methodology and equation can be found in references [2] and [11]. 
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Introduction. Comparative genomics has been leveraged in many studies to
characterize transcriptional regulatory networks [1,2]. However, despite its fun-
damental importance in such studies, the effect of motif and regulon transfer
methods remains largely unstudied. Thanks in large part to high-throughput
experimental techniques, available experimental data has increased dramatically
over the last few years and it has become possible for the first time to reliably
assess methods used for regulatory network reconstruction. In this study, we
describe three different transfer methods that define transcription factor (TF)
binding motif in a target species given some regulatory activity information in a
reference species. Motif-based transfer is performed using the reference binding
motif to search for putative binding sites in the target genome on the assump-
tion that, for a given TF, the binding motif is relatively well conserved across
closely related species. This method has been shown to perform well at inferring
existing regulatory networks in previously uncharacterized genomes [3,4]. The
alternative source of prior information is the regulatory network itself. The pu-
tative regulon is then constructed based on orthologous transfer of the reference
regulon and de novo motif discovery is performed on the promoter regions of
putatively regulated target genes.

Methods.Wecompiledbinding site data fromseveral publicly available databases
including CollecTF [5], a database of experimentally-validated sites. The first
method that we tested is the direct transfer using the collection of known bind-
ing sites from a model species to build a position-specific scoring matrix (PSSM)
which is used then to scan the promoter regions of the target genome to identify
putative sites. The second method defines the motif by performing motif discov-
ery on pre-searched candidate sequences. After the PSSM search, promoters with
high scoring sites are given as input to the motif discovery algorithm with the mo-
tivation of capturingmotifs slightly different from the reference one andmitigating
the effects of inaccurate PSSM score threshold. The final method that we tested,
called network transfer, does not assume motif conservation. The underlying hy-
pothesis is that the regulon across two genomesmight be functionally conserved to
some degree even if the binding motif is not. To define the motif in target species
throughnetwork transfer, thefirst step is to identify target regulon, the collectionof
genes that are orthologous to the ones in the reference regulon. In the next step, the
promoters of operons in the target regulon are used for motif discovery. To assess
the performance of different transfer methods quantitatively, we measured both
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(a) Euclidean distance between the true motif and the inferred motif and (b) the
area under ROC curve for the inferred motif. To assess the significance of perfor-
mances, we computed the distance and area under ROC curve using a column-
permuted version of the target motif as the inferred motif.

Results. We measured the performance of the transfer methods by applying
them to all pairs of species with at least 10 binding sites for a particular TF,
yielding 411 pairs of species belonging mostly to either Fur or LexA. Our re-
sults show that direct transfer and motif discovery on pre-searched promoters
perform very similarly. Since these two methods are based on motif conserva-
tion, they perform well when the TF proteins in the reference and target species
are highly similar. As the TF protein distance increases, their performances de-
crease dramatically. Although network transfer is capable of inferring conserved
and non-conserved motifs for large protein distances in many cases, our per-
mutation analysis showed that, overall, the network transfer method does not
perform significantly well for any level of reference-target TF distance. This find-
ing is consistent with previous studies reporting high plasticity in transcriptional
regulatory networks [6]. Another reason for poor network transfer is the strict-
ness of the orthology-based regulon transfer method. In the future, we intend to
relax the network transfer method by using functional similarity (e.g., cluster
of orthologous groups) for regulon transfer rather than direct orthology. Also,
we plan to investigate whether combining the information from the extended
network transfer with relaxed PSSM searches can enhance the performance of
direct transfer as the similarity between reference and target motifs decays.
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The progress of next-generation sequencing (NGS) technologies enables whole
genome sequencing for each individual in practical time and with reasonable
cost. From NGS data, single nucleotide variants for more than a thousand of
individuals were accurately detected in genome wide scale [6]. However, we still
have difficulty in accurately detecting structural variations such as genome in-
sertion and deletion, copy number variations, and short tandem repeat (STR)
number polymorphisms, especially from low coverage NGS data. Repeat num-
ber polymorphisms are known to associate with various disease phenotypes such
as the association of CAG repeat stretch in the Huntingtin gene with Hunt-
ington’s disease. From NGS data, several approaches such as lobSTR [2] and
RepeatSeq [3] have been proposed to estimate repeat numbers in STR regions
by counting repeat patterns included in aligned sequence reads. Although these
approaches can accurately detect STR variants and estimate their repeat num-
bers, STR regions longer than the length of sequence reads cannot be handled.
Another strategy is to use paired-end reads aligned flanking regions of the target
repeat in the reference genome [1]. Insert size inferred from the aligned paired-
end reads is longer than its actual size if the repeat number is smaller than that
in the reference genome and shorter if the repeat number is larger. Thus, the
insert size inferred from the paired-end reads can be used to estimate repeat
numbers. Since insert size is longer than sequence reads, this strategy can be
used for estimating repeat numbers for relatively long STR regions that cannot
be handled by the strategy counting repeat patterns in sequence reads. However,
the accuracy of estimated repeat numbers from insert size is not high especially
for low coverage NGS data, compared to the strategy counting repeat patterns.

We propose a new statistical model named coalescentSTR, which considers
the unobserved genealogy of multiple individuals to estimate repeat numbers
for these individuals using insert size information from paired-end reads. In the
model, the genealogy is handled as coalescent trees, which describe the ancestral
history of genomes for multiple individuals backward in time [4]. Because the
change in repeat numbers in genealogy is naturally considered in our model,
more accurate estimation of repeat numbers is expected. For the estimation of
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the model, coalescent trees are sampled from phased genotypes around a target
STR region with the Markov chain Monte Carlo (MCMC) method. We also pro-
pose a new belief propagation method that can calculate the loopy belief prop-
agation and the mixed-product belief propagation [5] while handling sampled
coalescent trees as hidden variables. By using the proposed belief propagation,
we estimate repeat numbers by searching approximated maximum configuration
of the posterior. In a simulation study with synthetically generated NGS data
for STR regions mostly longer than read length, we compare the performance of
coalescentSTR, coalescentSTR with genealogies from randomly shuffled haplo-
types, coalescentSTR without genealogy information, lobSTR, RepeatSeq, and
STRViper on datasets with various numbers of individuals. In the performance
evaluation, a root mean squared error (RMSE) between true and estimated re-
peat numbers is considered. The effectiveness of our approach is also verified with
real whole exome datasets of 33 HapMap JPT individuals in the 1000 Genomes
Project (1KGP).

CoalescentSTR provides the least RMSE values in both simulation and real
datasets. In addition, coalescentSTR with shuffled individuals provides worse re-
sults than coalescentSTR on average, and hence the effectiveness of considering
genealogy is verified. From the comparison of computational time, coalescentSTR
requires the most computational time, and it is mainly taken by sampling co-
alescent trees with MCMC. One idea for resolving this issue is to use MCMC
with approximate Bayesian computation in order to avoid the calculation of
likelihood for each sampled tree, which mainly takes the computational time in
sampling. Although the recombination of genomes is usually not considered in
coalescent theory, the use of ancestral recombination graph is one of the solutions
for handling larger size of genome structural variations such as large size copy
number variations. We are planning to extend our approach to handle larger size
of genome events in future work.
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Due to the huge computational requirement for constructing optimal multiple
sequence alignments, much research has been done on designing heuristics for
generating good, but not necessarily optimal, alignments. One of the most widely
used heuristics is progressive alignments [1], which (i) constructs optimal pair-
wise alignment for every pair of the input sequences, (ii) using these pairwise
alignments constructs a guidetree, and (iii) based on the “order” suggested by
the guidetree constructs a multiple alignment progressively as follows: the most
related sequences are aligned first, and the more distant ones are aligned later.
This paper proposes a general method for improving MSA tools that adopt this
progressive alignment heuristic, or more specifically, proposes an adaptive ap-
proach for improving step (ii) for guidetree construction.

We first classify input sequences into two types: they are normally related if
their similarity is above some threshold (default value is 18%); otherwise they are
distantly related. For normally related sequences, we try to generate better guide
trees for them. Note that many progressive alignment tools use the UPGMA
method to construct guide trees, which merges clusters of sequences (represented
as subtrees) into larger clusters (subtrees) iteratively, and in each iteration, the
pair of clusters with the smallest distance will be chosen and merged. The dis-
tance dk between clusters C and Ck, where Ck is resulted from the merging of
clusters Ci and Cj , is defined to be

d�k =
d�i|Ci|+ d�j |Cj |

|Ci|+ |Cj |
, (*)

where |C| denotes the size, i.e., the number of sequences, in cluster C. Intuitively,
dk estimates the average cost (e.g., the average number of gapped columns
needed to be introduced) for aligning C to a single sequence in Ck. This defini-
tion works fine in general, but it may not be the best for inputs with low discrep-
ancy, i.e., for those sequences that differ mostly in some common regions, and
are more or less identical in all the other positions. For these low discrepancy se-
quences, we propose to use the following distance definition: dk = (di + dj)/2.
We think that (*) may overestimate the influence of the sizes, especially when
one cluster is much larger than the other. To see why, suppose that Ci has low
discrepancy. Then, its sequences look like one “meta-sequence” and the same set
of gapped columns would be enough to align most of them; the average cost is
not very sensitive to Ci’s size. Note that (*) is reduced to our definition when
Ci and Cj contain only one (meta-)sequence.
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Table 1. Summary of results. Columns show the average sum of pairs scores (SP) and
total column scores (TC) multiplied by 100. The best results in each column are shown
in bold. The second best results in each column are marked with *. Table (a) groups
the results according to the similarity of the families in OXBench. For (b), the Twilight
Zone contain families with no more than 25% similarity, and the Superfamily contains
those with similarities mostly between 20%-50%. For (c), RV11 contains families with
less than 20%, and RV11 those with similarity between 20%-40%. The last column
of table (a) shows the running time on OXBench (395 families) using a single CPU
thread. All tools ran with default parameters.

(a) Mean SP and TC scores on OXBench

ALL(0-100%) 0%-20% 20%-50% 50%-100% Time

SP TC SP TC SP TC SP TC mm:ss

PNPProbs 90.41 82.23 48.98 24.88 83.47∗ 68.79 98.05 95.18 2:58

GLProbs 90.38∗ 82.14∗ 47.29∗ 22.95∗ 83.48 68.65∗ 98.05 95.18 3:15

MSAProbs 90.07 81.75 44.83 22.08 82.77 67.74 98.01 95.08 4:04

Probalign 89.97 81.68 43.58 20.51 82.53 67.46 98.05 95.18 2:10

CONTRAlign 89.34 79.87 44.76 17.83 81.56 64.75 97.55 94.10 10:19

ProbCons 89.68 80.86 44.15 20.30 82.06 66.33 97.84 94.61 1:48

MUSCLE 89.50 80.67 45.64 21.90 81.75 66.15 97.63 94.28 0:19

MAFFT 88.00 77.96 37.82 13.27 78.99 60.86 97.41 93.68 0:19

T-Coffee 89.52 80.50 43.99 19.11 81.82 65.85 97.75 94.38 15:05

ClustalΩ 88.91 79.99 39.09 16.38 80.71 64.49 97.76 94.58 0:12

ClustalW 89.43 80.16 42.94 18.23 81.67 65.01 97.76 94.40 0:22

PicXAA 89.64 80.74 45.11 22.04 81.86 65.91 97.84 94.55 4:26

DIALIGN 83.97 72.41 26.03 8.07 72.67 52.57 95.21 89.54 3:17

Align-m 86.95 76.06 28.36 12.74 76.35 57.54 96.95 92.60 21:14

(b) Mean SP and TC scores on SABmark

ALL Twilight Zone Superfamily

SP TC SP TC SP TC

PnpProbs 61.37∗ 41.70 44.40 24.80 67.19∗ 47.49

GLProbs 61.42 41.36∗ 44.35∗ 24.30∗ 67.27 47.21∗

MSAProbs 60.27 40.02 42.97 22.88 66.20 45.90

Probalign 59.53 38.63 42.42 22.64 65.39 44.11

CONTRAlign 57.45 35.59 39.01 17.69 63.77 41.73

ProbCons 59.69 39.17 42.81 22.78 65.47 44.79

MUSCLE 54.51 33.47 34.69 16.96 61.29 39.13

MAFFT 52.63 32.57 31.72 15.17 59.79 38.53

T-Coffee 59.14 39.53 41.66 23.29 65.13 45.10

ClustalΩ 55.02 35.47 35.55 18.10 61.69 41.42

ClustalW 51.92 31.37 31.45 15.09 58.93 36.95

PicXAA 59.37 39.11 41.05 21.51 65.65 45.14

DIALIGN 47.09 27.11 27.85 12.73 53.69 32.05

Align-m 46.19 31.07 25.72 16.28 53.21 36.14

(c) Mean SP and TC scores on BALiBASE

ALL RV11 RV12

SP TC SP TC SP TC

PnpProbs 82.80∗ 68.00 68.91 45.73 94.79∗ 87.23∗

GLProbs 83.20 67.59∗ 69.72 44.68 94.84 87.38

MSAProbs 82.35 66.83 68.13 44.02 94.63 86.52

Probalign 82.53 67.27 69.50∗ 45.34∗ 94.63 86.20

CONTRAlign 77.59 58.10 61.78 35.60 91.23 77.52

ProbCons 81.55 65.22 66.99 41.68 94.12 85.54

MUSCLE 75.60 58.27 57.15 32.06 91.53 80.89

MAFFT 72.46 52.58 52.96 26.19 89.30 75.38

T-Coffee 80.82 64.93 65.63 41.36 93.94 85.29

ClustalΩ 75.96 59.38 59.01 36.21 90.60 79.38

ClustalW 69.63 49.21 50.06 22.99 86.52 71.84

PicXAA 81.33 66.08 66.56 44.06 93.47 84.19

DIALIGN 68.63 48.22 49.72 26.81 84.18 65.81

Align-m 71.45 56.04 51.88 33.06 88.36 75.88

For distantly related sequences, they are not similar at all, except for some
small local domains or motifs embedded in many long divergent regions. We
find that for these sequences progressive alignment heuristic always introduces
many mis-aligned columns, and early mistakes cannot be corrected and would
be propagated and cause more mistakes for later alignments. Thus, for distantly
related sequences, we propose to abandon the progressive heuristic and use in-
stead non-progressive methods, which do not depend on global pairwise align-
ments and guidetrees. In particular, we propose to use the sequencence annealing
technique [2] to this kind of sequences.
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We have implemented a MSA tool called PnpProbs by modifying our previous
progressive alignment tool GLProbs [3] according to our aforementioned ideas.
We have tested PnpProbs extensively on three popular benchmark alignment
databases, namely BAliBASE, OXBench and SABmark, comparing its perfor-
mance with that of a dozen other leading multiple sequence alignment tools. As
shown in Table 1, the quality of PnpProbs’s alignments is in general signficantly
better than those generated by the other tools, specially for distantly related
sequences.
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Currently, a lot of computational methods to identify essential proteins have been 
presented. The typical network-based essential protein discovery methods include 
Degree Centrality (DC) [1], Betweenness Centrality (BC) [2], Closeness Centrality 
(CC) [3], Subgragh Centrality (SC) [4], Eigenvector Centrality (EC) [5], Information 
Centrality (IC) [6] and Edge Clustering Coefficient Centrality (NC) [7], etc. At present, 
in order to achieve higher accuracy, researchers try to combine the topological 
characters with different biological information, such as subcellular localization [8], 
evolutionary conservation [9], expression level [10]. For example, PeC[11] predicts 
essential proteins by using PPI network topology information and gene expression 
profiles. ION [12] combines the topological characters of PPI networks with 
orthologous information.  

In this paper, by integrating subcellular localization, orthology with PPI network, a 
novel method, named SON, is proposed to predict essential proteins. Firstly, the 
relationship between subcellular localization, orthology and essentiality of proteins are 
analyzed. Based on the relation between subcellular localization and topology of PPI 
networks, the subcellular localization score is calculated. Orthologous score is the same 
as that introduced in ION [12]. The definition of edge clustering coefficients in [7] is 
used. . Calculation model of sorting score is an expansion of random walk model that is 
linear combination of three values. The essentiality of each protein is calculated by a 
linear combination of the subcellular localization score, orthologous score and NC.  

To validate the effectiveness of the proposed method SON, we test SON by using the PPI 
network of S.cerevisiae. There are total of 5093 proteins and 24743 interactions in PPI 
network data set of S.cerevisiae. Essential proteins data set is integrated from MIPS，
SGD，DEG and SGDP. There are 1167 essential proteins in PPI network in total. 
Subcellular localization data set includes 5095 yeast proteins and 206831 subcellular 
localization records. After preprocessing, there are still 3923 proteins in PPI network 
that have subcellular localization data. Orthologous proteins data set is taken from 
Version 7 of InParanoid that contains a set of pairwise comparisons between 100 whole 
genomes. The experimental results of SON compared with other nine essential protein 
discovery methods (DC, BC,CC, SC, EC, IC, NC, PeC, ION) are shown in Fig. 1. From 
Fig.1 we can see that SON can get higher prediction accuracy than other methods.   
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Fig. 1. SON compared with ION and eight centrality methods 
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De novo genome assembly is a fundamental problem in genomic research. When 
assembling relatively large genomes, time is often a very important concern, and one 
might have no choice but to use a more efficient assembler like SOAPdenovo2 [1] 
instead of a high-quality but prohibitively slow assembler (SPAdes[2] is a typical 
example). As the read length of high-throughput sequencers increases beyond 100bp, 
it has been expected that the quality issue of SOAPdenov2 can gradually improve. 
Yet SOAPdenov2, a typical de Bruijn graph based assembler, has inherent difficulty 
to fully utilize the advantage of longer reads (say, 150 bp and 250 bp from Illumina 
HiSeq and MiSeq, respectively). Other assemblers, such as the string graph assembler 
SGA [3] and the multisized de Bruijn graph assembler SPAdes, though more favora-
ble for longer reads, are very slow and less popular. It is still up to the challenge how 
to better utilize longer reads to develop a fast-and-accurate assembler. 

This paper presents a new assembler called BASE, whose assembly quality is ap-
proaching SPAdes for relatively longer reads. BASE is way faster than SPAdes and 
SGA, but slower than SOAPdenovo2. BASE is based on a simple seed-extension 
approach. Exploiting an efficient indexing of short reads (bi-directional BWT [4]), 
BASE firstly generates adaptive seeds with high probability of unique appearance in 
the genome and high sequencing qualities. Then rooted at such seeds, BASE con-
structs extension trees and gradually removes the branches with a novel method called 
reverse validation. In this method, by extensively utilizing information including read 
coverage and paired-end relationship, structures like “Tips”, “butterfly” and “bub-
bles”, as defined by DBG based assemblers (see, for example [1]), are recognized and 
simplified to obtain consensus sequences from the reads sharing the seeds. And these 
consensus sequences are further extended to form high-quality contigs. 

Benchmark on several bacteria and human data sets clearly reflects our expected per-
formance of BASE on speed and assembly quality when reads are getting longer.  Our 
first benchmark was based on two data sets of deeply sequenced bacteria genomes 
(~240X), with read length 100 and 250 respectively. Among others, the correct N50 of 
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assembly was evaluated; for 100 bp reads, BASE is slightly better than SOAPdenov2 
and SGA, but way below SPAdes (the correct N50 for BASE, SOAPdenov2, SGA and 
SPAdes are respectively 92,706, 82,495, 74,584 and 299,305). For 250 bp reads, BASE 
performs much better than SOAPdenov2 and SGA and is approaching SPAdes (precise-
ly, 159,715, 88,858 and 95,711 and 169,978, respectively).  Regarding speed, BASE is 
consistently a few times faster than SPAdes and SGA, but still slower than SOAPdeno-
vo2.  We have further compared BASE and SOAPdenov2 using human genome data 
sets with read length 100, 150 and 250. BASE consistently achieves a higher N50 for 
each data set, and the improvement becomes obvious when the read length increases to 
250. SOAPdenovo2 uses relatively more memory when sequencing error is high. 

In conclusion, BASE is an efficient assembler for constructing good-quality con-
tigs, especially when reads are relatively longer. BASE could be extended easily to 
support scaffolding in the future. 
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TheGene Ontology (GO) is a widely used bioinformatics resource using ontologies
to represent biological knowledge and describe function information for genes and
gene products. GO has three categories shared by all organisms: molecular func-
tion, biological process and cellular component. As an integrated resource,GOpro-
vides rich information and a convenient way to study gene functional similarity [9].

Various methods have been proposed to measure gene functional similarities
by comparing GO terms with which the genes are annotated. Based on the
types of information in GO they use, these methods can be grouped into three
categories [5]: 1) edge-based measurements are fully dependent on the structure
of GO, and simply equalize the terms at the same topological level [11]; 2) node-
based measurements consider the annotations and common ancestors, neglecting
the complex topology of GO [7,6]; and 3) hybrid measurements [10] fully utilize
the topological information in GO structure, but neglect gene annotations.

Since none of these measurements can take into account all the information
in GO (structure, annotation, all common parents, most informative common
parent, etc.), we have recently presented two integrative measurements succes-
sively to unite the strength of the existing measures [3,4]. Our model automat-
ically selects and integrates seed measurements with a meta-heuristic search
process in three steps. First, all the ranked similarity values of a background
gene set are calculated with all the GO-based semantic similarity measurements
that we would integrate. Second, the most appropriate seed measurements for
each gene pair are selected with a grouping method. Third, the parameters of a
meta-heuristic search model are estimated by maximizing the distances between
distinct EC groups. The experimental results on molecular function, biological
process and protein sequence indicate that our integrative measurement performs
better than all the seed measurements (see details in [3]).
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Various web tools have been proposed to compute gene functional similarities
using GO, including GossToWeb [1], FunSimMat [8] and G-SESAM [2]. Choosing
the right measurement is difficult for users, but none of these tools provide a
solution to it. In addition, most tools simply list the gene similarity values as the
final output, neglecting the fact that appropriate data visualization is essential
towards result interpretation and hypothesis testing. It is desirable to develop
an easy-to-use web tool that allows researchers to conveniently measure gene
functional similarities, and to visualize the functional interactions with an easy-
to-use graphical interface. In this article, we present a novel web tool named
InteGO2, which is available at http://mlg.hit.edu.cn:8089/.Comparing with the
existing web tools, the major contributions of our work are:

– InteGO2 supplies researchers an integrative approach that automatically
choose and weigh appropriate gene functional similarity measurements for
the input genes.

– InteGO2 is an easy-to-use HTML5 based web interface to visualize gene
functional associations.

– InteGO2 can measure gene functional similarities using 98 types of gene IDs
in 24 species.
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Identifying protein targets for novel drug candidates is a crucial step in drug 
discovery. However, testing drug candidates by turn in wet lab would require a huge 
amount of money and take a very long time. As one of dry-lab means, computational 
methods have shown their power when predicting novel drug–target interactions 
(DTI) by making use of both drug similarity and target similarity. 

Compared with network inference-based methods and matrix factorization-based 
methods, supervised learning models (SLM) are able to cope with more scenarios of 
predicting DTIs, and to provide the better elucidation of why a drug interacts with a 
target as well. Thus, they have been gained a lot of concerns for predicting DTI in 
both drug discovery and drug repositioning. 

Former approaches base on SLM can be roughly categorized into two groups: 
global model and local model. The global model holds the underlying assumption that 
all DTIs follow a common distribution in terms of feature or similarity [1]. Usually, it 
suffers the computation of large complexity due to the tensor product between drug 
similarity matrix and target similarity matrix. In contrast, the local model considers 
that all drugs linking to a concerned target follow a common distribution specific to 
the target [2]. It generally requires less computation than the global model. In 
common, two types of SLM treat known DTIs as positive instances and all unknown 
drug-target pairs (DTP) as negative instances respectively. However, SLM has no 
consideration that some of unknown DTPs are true or potential DTIs which were not 
explicitly labeled when the dataset was being built. They are called missing DTIs. 

Deriving from missing DTIs hidden in unlabeled DTPs, several issues have not yet 
been addressed appropriately by SLM in the field of DTI prediction. First, simply 
regarded as negatives, missing DTIs give rise to a bad decision boundary of the 
trained classifier which predicts more positives as negatives. Secondly, they lead 
existing DTIs away from the popularly acceptable assumption of interactions: similar 
drugs tend to interact with similar targets. Thirdly, they may aggravate the inherent 
imbalance caused by few DTIs and many unknown DTPs.  

In this work, we extended the local model of SLM to cope with the 
abovementioned issues. Focusing on the predicting scenario in which predicting 
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interactions between known targets and new drugs is anticipated [1], we proposed the 
approach, K Nearest Neighbors with strategies for missing DTI (KNNm), which 
includes a semi-supervised strategy (named Spy [3]), a clustering strategy (named 
Super-target[4]) and an instance-based classifier (named KNN [5]).  

KNNm has the following advantages: (1) Spy can identify reliable non-DTIs 
among unknown DTP by means of investigating the behavior of DTIs in unknown 
DTP, so as to be able to train a less biased decision boundary by known DTIs and 
reliable non-DTIs. (2) Super-target enables missing DTIs in unknown DTPs as few as 
possible by grouping similar targets as well as their interacting drugs. Thus, the 
assumption of interactions can be matched better when determining how likely a drug 
interacts with a Super-target containing a group of similar targets. (3) KNN is 
particularly helpful to relax the inherent imbalance of few DTIs and many unknown 
DTPs, and has less computational complexity as well  

To predict how likely a new drug interacts with a known target, KNNm perform 
Spy and Super-target strategies simultaneously and combine them together. First, 
using KNN in a traditional supervised way, we predicted how likely a new drug 
interacts with a Super-target which contains the concerned target. Secondly, we 
applied Spy to identify reliable non-DTIs, and predicted how likely the new drug 
interacts with the individual target in the Super-target directly by training KNN on 
both the known DTIs and the reliable non-DTIs. Moreover, considering the possibly 
bad case that drugs interacting with a Super-target are very different, we designed an 
adaptive rule to determine when to combine Super-target with Spy or not. 

Based on four benchmark datasets [2], we adopted the five-fold cross validation 
(CV) in [6] to evaluate KNNm. The results show that KNNm is overall superior to 
two best existing approaches [1, 6] which also treat DTPs as unlabeled instances not 
simply as non-DTIs.  
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Introduction. Prostate cancer (PC) is the most common cancer and the third leading 
cause of cancer death in men worldwide [1]. Despite its high incidence and mortality, 
the likelihood of a cure is low for late-stages of PC [2]. There is an unmet need for 
more effective agents for treating PC. Traditional drug development is expensive and 
time-consuming. Computation-based drug repositioning approaches that automatical-
ly search vast amounts of genetic, genomic, chemical, and phenotypic data for thou-
sands of drugs and tens of thousands of diseases can greatly speed up the traditional 
drug discovery process [3]. Here we propose to develop a computation-based drug 
repositioning system, GenoPredict, that capitalizes on comprehensive disease genetic 
data generated and a unique large-scale drug treatment database that we recently con-
structed [4-6] in order to rapidly identify drug candidates for PC. Our study is based 
on the premise that the genetic overlap among diseases reflects pathophysiological 
overlap. Though the majority of such shared pathophysiological features remain un-
known, treatment insights from one disease may be used to inform our knowledge of 
others and potentiate their treatments. In order to systematically reposition drug 
treatments from one disease to another, it is critical to have a comprehensive drug 
treatment knowledge base. In our recent studies, we constructed a comprehensive 
drug-disease treatment knowledge base (TreatKB) using computational techniques 
including natural language processing, text mining and data mining from multiple 
heterogeneous and complementary data resources, including FDA drug labels, the 
FDA Adverse Event Reporting System, clinical trial reports, and biomedical literature 
[4-6]. TreatKB contains 208,330 unique drug-disease treatment pairs, representing 
2,484 drugs and 24,511 unique disease concepts.   

Methods. The experiment framework consists of three steps: (1) we constructed a 
genetic disease networks (GDN) using disease-gene association data from the Catalog 
of Published Genome-Wide Association Studies (the GWAS catalog) from the US 
National Human Genome Research Institute (NHGRI) [7] On GDN, two diseases 
were connected if their associated genes overlaped. The edge weights were deter-
mined by the cosine similarity of disease-associated genes. GDN  comprised of 882 
disease nodes and 200,758 edges; (2) we applied the network-based ranking algo-
rithms that we recently developed [8-9] to find diseases that are genetically related to 
PC. We tested the network construction and ranking algorithms by examining disease 
class distribution among ranked diseases; (3) we developed an approach to systemati-
cally reposition drugs from PC-related diseases to treat PC. We ranked drugs based on 
the number of PC-related diseases that they could treat as well as the ranking scores 
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of these diseases. We evaluated GenoPredict using 27 FDA-approved PC drugs. We 
compared GenoPredict to one of currently most comprehensive drug repositioning 
systems, PREDICT [10], in novel predictions using 172 PC drugs extracted from 
172,888 clinical trials; and (4) to better understand top-ranked drug candidates, we 
examined their class distributions, i.e., the drug classes that most of the top candidates 
belong to. We analyzed genetic pathways targeted by top-ranked 124 candidates. 
Functions of enriched pathways might provide novel insights into common molecular 
mechanisms targeted by drug candidates.  

Results. When evaluated in a de-novo prediction setting using 27 FDA-approved PC 
drugs. GenoPredict found 25 of 27 FDA-approved PC drugs and ranked them highly 
(recall: 0.925, mean ranking: 27.3%, median ranking: 15.6%). When compared to 
PREDICT, GenoPredict clearly dominated PREDICT in Precision-Recall (PR) curves 
across two evaluation datasets. GenoPredict achieved a mean average precision 
(MAP) of 0.447 when evaluated with 172 PC drugs extracted from 172,888 clinical 
trial reports, representing a 164.5% improvement as compared to a MAP of 0.169 for 
PREDICT. When evaluated with 72 PC drugs extracted from 43,811 ongoing clinical 
trial reports, GenoPredict achieved a MAP of 0.278, representing a 231.1% improve-
ment as compared to a MAP of 0.084 for PREDICT.  

Conclusions and Future Work. We developed a drug repositioning system, Geno-
Predict, to exploit the genetic and treatment connections among a large number of 
diseases and applied it to identify drug candidates for PC.  GenoPredict found 25 of 
27 FDA-approved PC drugs and ranked them highly. Future works include testing 
GenoPredict on other common complex diseases to assess its generalizability.  
We expect that its performance will vary according to different diseases. This study 
focused on disease genetics-based drug repositioning. Additional invaluable data  
resources such as other disease-related data (i.e. disease phenotypic data or gene  
expression data) and drug-related data (i.e. drug side effects, drug chemical structure, 
and gene expression) can be incorporated into GenePredict to further improve its per-
formance. However, integrating and reasoning over such complex biological data 
poses a significant challenge that bears future investigation.  

References 

1. Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics, 2013. CA: A Cancer Journal for 
Clinicians 63(1), 11–30 (2013) 

2. Trewartha, D., Carter, K.: Advances in prostate cancer treatment. Nature Reviews Drug 
Discovery 12(11), 823–824 (2013) 

3. Hurle, M.R., Yang, L., Xie, Q., Rajpal, D.K., Sanseau, P., Agarwal, P.: Computational 
drug repositioning: From data to therapeutics. Clinical Pharmacology and Therapeutics 
(2013) 

4. Xu, R., Wang, Q.: Large-scale extraction of drug-disease treatment pairs from biomedical 
literature for drug repurposing. BMC Bioinformatics 14(1), 181 (2013) 

5. Xu, R.: Li, Li. and Wang, Q.: Towards building a disease-phenotype relation- ship know-
ledge base: large scale extraction of disease-manifestation relationship from literature. Bio-
informatics (2103), doi: 10.1093/bioinformatics/btt359 



A Genome-Wide Drug Repositioning Approach toward Prostate Cancer Drug Discovery 437 

 

6. Xu, R., Wang, Q.: Automatic signal prioritizing and filtering approaches in detecting post-
marketing cardiovascular events associated with targeted cancer drugs from the FDA Ad-
verse Event Reporting System (FAERS). Journal of Biomedical Informatics, 171–177 
(2014) 

7. Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Parkinson, H.: 
The NHGRI GWAS Catalog, a curated resource of SNP- trait associations. Nucleic acids 
research, 42(D1), D1001–D1006 (2014) 

8. Chen, Y., Xu, R.: Network-based Gene Prediction for Plasmodium falci- parum Malaria 
Towards Genetics-based Drug Discovery. BMC Genomic (in press)  

9. Xu, R., Wang, Q., Li, L.: Genome-wide systems analysis reveals strong link between colo-
rectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary 
meat and fat. BMC Genomics (in press)  

10. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: A method for inferring novel 
drug indications with application to personalized medicine. Molecular Systems Biology 
7(1) (2011) 



Clustering Analysis of Proteins from Microbial

Genomes at Multiple Levels of Resolution

Leonid Zaslavsky(�) and Tatiana Tatusova

National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD 20854, USA

{zaslavsk,tatiana}@ncbi.nlm.nih.gov

Microbial genomes at NCBI represent a large collection containing almost 30,000
genomes from more than 5,000 species [5]. The quality and sampling density of
the bacterial genome assemblies vary greatly: human pathogens are densely sam-
pled while other bacteria are less represented. The variation in frequency of oc-
currences of different proteins in genome annotation is another factor contribut-
ing to the complexity of the analysis and presentation of the data. Redundancy
in the results make them difficult to analyze and use, as the nearest-neighbor lists
may often contain many nearly identical objects making it difficult or impossible
to reflect more distant neighbor relationships. The complex data we work with
requires the information to be organized, processed and shown at multiple lev-
els of resolution, with appropriate levels of phylogenomic resolution and protein
similarity and an adequate sampling strategy.

Our approach is to perform detailed clustering in the groups of closely-related
genomes (species-level clades), and thencluster proteins globally, startingwith seed
clusters built from clustroids of conservative in-clade clusters of large clades and
building other global clusters around them. Utilizing protein clusters built at dif-
ferent phylogenomic and sequence similarity levels, and links between them, allows
us to explore the protein space for close and distant neighbor relationships impor-
tant for automatic protein annotation and intelligent presentation of protein data.

In-clade Clusters.Genomic andproteomic structure of a densely-sampled group
of related strains is usually described by the concept of pan-genome [3], [7]. Clus-
ters within a clade are created using a combined approach that takes into account
both sequence similarity and genome context. First, proteins are tentatively clus-
tered by sequence similarity. Then local genome context and protein phylogeny
are used to separate paralogs in the tentative clusters. This combined approach
defines core and conservative clusters in a pan-genome more accurately than by
sequence-based clustering alone. For computational efficiency, protein redundancy
and near-redundancy is eliminated, with one representative sequence from each
near-redundant group used [2]. In each in-clade cluster, a clustroid is selected to
serve as a representative in global clustering. Using clustroids to represent all pro-
teins of the in-clade clusters allows us, to some extent, to filter out the outliers.
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Global Clusters. In order to denoise the data and achieve robustness of the
results as well as computational efficiency, global clustering is performed in three
steps. First, seed clusters are built from the clustroids of conservative in-clade
clusters. Then UCLUST [2] is used to select representatives from tight groups of
proteins not represented by the seed cluster proteins. Finally, global clustering
is performed and the selected UCLUST-representatives are either associated
with seed clusters or form new global clusters. Building seed clusters from the
stabilized and denoised data results in larger and more stable global clusters.

Implementation Details. Prokaryotic genomes from NCBI Refseq collection
are organized in related groups (species-level clades), using robust distance be-
tween sets of universally conserved ribosomal proteins[1], [5]. Our clustering pro-
cedure is based on hierarchical clustering algorithm with additional restrictions
on minimum alignment score and coverage (see section ”Protein Clustering Pro-
cedure” in [6]). The available hardware that includes NCBI’s Grid Engine-based
computer farm and PanFS scalable storage system connected through a router,
requires a coarse-grain parallelization, which is done in three stages: (1) The
dataset is partitioned in disjoint sets using a parallel implementation based on a
disjoint-set forest with union-by-rank heuristics [4]; (2) the data are redistributed
according to the partitioning; (3) clustering in partitions is performed.

Conclusions. The computational infrastructure developed at NCBI provides
a foundation for prokaryotic gene and genome analysis allowing easy access to
pre-calculated genome groups (clades), protein clusters and pan-genome rep-
resentation. It provides a solution to one of the most challenging problems in
the data deluge - presenting the relevant data at different levels of details and
eliminating data redundancy while keeping biologically interesting variations.
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Abstract. Beta-catenin has two major functions: coordinate cell-cell adhesion 
by interacting with cadherin; regulate gene expression through Wnt pathway. 
The armadillo domain in the central region of beta-catenin is the critical struc-
tural unit for its functions. Recently, the flexible tails at both N- and C-termini 
of beta-catenin were observed to regulate the functions of armadillo domain. 
However, the mechanisms are still elusive. In this study, we identified multiple 
functional motifs in the tail regions and analyzed the conserved hydrophobic 
sequential patterns on these regions, which act as interaction motifs between 
tails, armadillo domain, and other molecules. The interactome of beta-catenin is 
enriched of protein intrinsic disorder. The interactions between beta-catenin and 
its partners are modulated by post-translational modifications and the move-
ment of tail regions. The “open” and “close” states of the tail regions determine 
the function of beta-catenin.  

Keywords: Beta-Catenin · Intrinsic disorder · Tails · Functional motif · Conser-
vation · Post-translational modification · Network · Pathway 

 

Beta-catenin is composed of a central structured armadillo domain (ARM) and two 
flexible tails. The interactions between ARM of beta-catenin and its partners are criti-
cal for embryonic development, cell division, and maintenance of pluripotency. Dis-
organized expression of beta-catenin is associated with cancer development. Recent 
studies discovered that the above-mentioned interactions were mediated by both flex-
ible tails of beta-catenin [1]. These discoveries extended our comprehension on the 
interaction patterns between beta-catenin and its partners, opened a new field on the 
functional roles of flexible tails. However, the detailed mechanisms are still largely 
unknown. In this study, we integrated multiple bioinformatics strategies and analyzed 
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beta-catenin on various aspects, including: intrinsic disorder, functional motifs, Evo-
lutionary conservation, diseases-associated mutations, signaling pathways, and inte-
raction networks. We also proposed a model through which the flexible tails regulate 
the function of beta-catenin. 
Although being very flexible as shown by the results of disorder predictions, the tail 
regions of beta-catenin contain multiple hydrophobic segments that overlap with pre-
dicted binding motifs. In addition, the tail regions carry more than thirty database-
retrieved functional motifs, which are categorized into four functional groups: regula-
tion, interaction, recognition, and cleavage. Among these motifs, the function of GSK 
and SCF-TRCP1 motifs at N-terminal, and the function of PKA and PDZ motifs at C-
terminal were experimentally validated [2-4]. Our further analysis demonstrated that 
these functional motifs were highly conserved across species. Many human-diseases-
associated mutations were found on or near these functional motifs. 

The interaction partners of beta-catenin are enriched of protein intrinsic disorder. 
Out of forty interaction partners, fourteen are completely disordered, seven accom-
modate large portion of disordered regions. Since protein interactions involving dis-
ordered regions are often characterized by high-specificity and low-affinity, they are 
extremely important in signaling and regulation. The interaction between beta-catenin 
and its partners on disordered regions contribute to related functional pathways. 

In the two major functional pathways where beta-catenin is involved, the flexibility 
of both tails of beta-catenin and the post-translational modifications on ARM domain 
regulate the interaction between tail regions and ARM domain, as well as the interac-
tion between beta-catenin and its partners. The phosphorylation on Tyr-654 was 
found crucial for many interactions of beta-catenin [5, 6]. Our studies demonstrate 
that the phosphorylation of Tyr-654 is also critical in modulating local polarity, pack-
ing of both tails on ARM domain, and regulating the interaction with other partners. 
The “close” and “open” status of both tails determines the function of beta-catenin.  
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Abstract. To improve the reference-based homolog search of metagenomic se-
quencing reads, we have recently developed a program called GRASP based on 
a paradigm involving simultaneous search and assembly of the reads. GRASP 
shows substantially improved performances but is relatively slower than other 
homology search programs. In this abstract we present GRASPx, a computa-
tionally efficient improvement to GRASP. GRASPx achieves a 30X speedup 
compared to GRASP while maintaining its superior search performance.  

1 Introduction 

Metagenomic samples are routinely sequenced using high-throughput next-generation 
sequencing (NGS) technologies that generate short reads. These reads are subsequently 
aligned to reference sequences for the annotation of their functions. However, these 
short reads often represent only partial gene sequences (the corresponding protein se-
quence is referred to as a short peptide [1]) and it is challenging to accurately identify 
their homologs in reference databases. To address this issue, we developed a method 
called GRASP that identifies the homologs of a given reference protein sequence from 
a database of short peptide sequences [2]. GRASP has improved homology detection 
capability, primarily due to its ability to assemble the short peptide sequences in the 
database during the search step. GRASP has ~20% higher sensitivity than other homo-
log search programs (such as BLAST [3] and FASTM [4]). However, the overall com-
putational efficiency of GRASP is adversely impacted by the assembly process; there-
fore, a substantial speedup is required for its applications on large data sets. 

In this abstract we present GRASPx, a computational efficient improvement of 
GRASP. GRASPx is designed with the following major improvements. (1) Prebuilt 
extension links: Overlaps between the reads are resolved during the indexing step, 
substantially reducing the time spent on the search/assembly. (2) Local assembly: 
Each seed is allowed to be extended up to a pre-defined depth, therefore reducing the 
computation time wasted on extending non-homologous seeds. (3) Query level paral-
lelism: Each thread is dedicated to the search/assembly of one query (instead of one 
seed as in GRASP), therefore minimizing the inter-thread communication. GRASPx 
executables are freely available at http://graspx.sourceforge.net/. 
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2 Results 

GRASPx was benchmarked with GRASP [2], BLASTP, PSI-BLAST [3], and 
FASTM [4]. We constructed a simulated data set from 20 marine microbial genomes 
[1] using WGSIM (10X, 100bp pair-ended, 1% error rate). Short peptides were called 
using FragGeneScan [5], resulted in 6,273,043 short-peptide reads. 198 Dehalococ-
coides sp. CBDB1 marker genes (Amphora2) were used as the queries. In this expe-
riment, GRASPx shows ~30X speedup compared to GRASP; and GRASPx also 
shows the same performance as GRASP (see Fig. 1). Additional benchmark results on 
a real human saliva data set (SRS013942) generated by the Human Microbiome 
Project further confirm that GRASPx is capable of identifying many more homologs 
than the other tools with high accuracy (data not shown). In conclusion, GRASPx has 
a substantially improved computational efficiency over GRASP while keeping the 
same level of performance, enabling homolog search on large metagenomic data sets 
with superior sensitivity and specificity. 

 

 

Fig. 1. (A) Total runtime of GRASPx and GRASP (numbers above bars indicate speedups). (B) 
ROC (Receiver Operating Characteristic) curve for performance comparison between 
GRASPx, GRASP+mapping, FASTM, PSI-BLAST (with 3 iterations), and BLASTP. 
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