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Preface

The 11th edition of the International Symposium on Bioinformatics Research and Ap-
plications (ISBRA 2015) was held during June 7-10, 2015 in Norfolk, Virginia. The
symposium provided a forum for the exchange of ideas and results among researchers,
developers, and practitioners working on all aspects of bioinformatics and computa-
tional biology and their applications.

There were 98 submissions received in response to the call for papers. The Program
Committee decided to accept 48 of them for publication in the proceedings and oral
presentation at the symposium: 34 for Track 1 publication (up to 12 pages) and 14 for
Track 2 (up to 2 pages). The technical program also featured invited keynote talks by
four distinguished speakers: Prof. Michael Brudno from University of Toronto spoke
on (computationally) solving rare disorders, Prof. Benny Chor from Tel-Aviv Univer-
sity spoke on what every biologist should know about computer science, Prof. Aidong
Zhang from State University of New York at Buffalo spoke on dynamic tracking of
functional modules in massive biological data sets, and Prof. Yang Zhang from Univer-
sity of Michigan spoke on protein structure prediction and protein design. Additionally,
the technical program of the symposium included tutorials, poster sessions, and invited
talks presented at the 4th Workshop on Computational Advances in Molecular Epi-
demiology (CAME 2015).

We would like to thank the Program Committee members and external reviewers for
volunteering their time to review and discuss symposium papers. We would also like to
thank the Chairs of CAME 2015 for enriching the technical program of the symposium
with a workshop on an important and active area of bioinformatics research. We would
like to extend special thanks to the Steering and General Chairs of the symposium for
their leadership, and to the Finance, Publicity, Workshops, Local Organization, and
Publications Chairs for their hard work in making ISBRA 2015 a successful event.
Last but not least we would like to thank all authors for presenting their work at the
symposium.

June 2015 Robert Harrison
Yaohang Li
Ton Mindoiu
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(Computationally) Solving Rare Disorders

Michael Brudno?!2-3

' Department of Computer Science, University of Toronto, Toronto M5S 2E4
2Centre for Computational Medicine,
3Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 1L7, Canada

brudno€@cs. toronto.edu

Abstract. Gene mutations cause not only well-recognized rare diseases such as
muscular dystrophy and cystic fibrosis, but also thousands of other rare disorders.
While individually rare, these disorders are collectively common, affecting one to
three percent of the population. The last several years have seen the identification
of hundreds of novel genes responsible for rare disorders, and an even greater
number of cases where a known gene was implicated in a new disease.

In this talk I will describe the computational approaches that are required to
make this identification possible, and describe the tools that we (and others) have
developed to enable clinicians to diagnose their patients by analyzing the patient
genomes and sharing de-identified patient data.



What Every Biologist Should Know
About Computer Science

Benny Chor

School of Computer Science, Tel-Aviv University, Tel Aviv, Israel
benny@cs.tau.ac.il

Abstract. We join the increasing call to take computational education of life sci-
ence students a step further, beyond teaching mere programming and employing
existing software tools. We describe a new course, focusing on enriching life sci-
ence students with abstract, algorithmic and logical thinking, and exposing them
to the computational culture. The design, structure and content of our course are
influenced by recent efforts in this area, collaborations with life scientists, and our
own instructional experience. Specifically, we suggest that an effective course of
this nature should: (1) devote time to explicitly reflect upon computational think-
ing processes, resisting the temptation to drift to purely practical instruction, (2)
focus on discrete notions, rather than on continuous ones, and (3) have basic pro-
gramming as a prerequisite, so students need not be preoccupied with elementary
programming issues. We strongly recommend that the mere use of existing bioin-
formatics tools and packages should not replace hands-on programming. Yet, we
suggest that programming will mostly serve as a means to practice computational
thinking processes. This talk deals with the challenges and considerations of such
computational education for life science students. It also describes a concrete im-
plementation of the course, and encourages its use by others.

Reference

1. Rubinstein, A., Chor, B.: Computational Thinking in Life Science Education. PLoS Comput.
Biol. 10(11), 1003897 (2014)

This wark was published in the educational column of PLOS Computational Biology [1]. This
is a joint work with Amir Rubinstein, School of Computer Science, Tel-Aviv University, Tel
Aviv, Israel.



Dynamic Tracking of Functional Modules in Massive
Biological Data Sets

Aidong Zhang

Department of Computer Science and Engineering
State University of New York at Buffalo
Buffalo, NY 14260

azhang@buffalo.edu

Abstract. Functional modules are an important aspect of living cells and are
made up of proteins that participate in a particular cellular process while they may
not be directly interacting with each other at all times. In recent years, while most
researchers have focused on detecting functional modules from static protein-
protein interaction (PPI) networks where the networks are treated as static graphs
derived from aggregated data across all available experiments or from a single
snapshot at a particular time, temporal nature of genomic and proteomic data
has been realized by researchers. Recently, the analysis of dynamic networks has
been a hot topic in data mining. Dynamic networks are structures with objects and
links between the objects that vary in time. Temporary information in dynamic
networks can be used to reveal many important phenomena such as bursts of ac-
tivities in social networks and evolution of functional modules in protein interac-
tion networks. In this talk, I will present our computational approaches to identify
the roles of functional modules and to track the patterns of modules in dynamic
biological networks. Significant modules which are correlated to observable bio-
logical processes can be identified, for example, those functional modules which
form and progress across different stages of a cancer. Through identifying these
functional modules in the progression process, we are able to detect the critical
groups of proteins that are responsible for the transition of different cancer stages.
Our approaches will discover how the strength of each detected modules changes
over the entire observation period. I will also demonstrate the application of our
approach in a variety of biomedical applications.

Keywords: Biological networks - Bioinformatics - Gene expression data



Protein Structure Prediction and Protein Design

Yang Zhang!-2
'Department of Computational Medicine and Bioinformatics
2Department of Biological Chemistry
University of Michigan, Ann Arbor, MI 48109

zhng@umich.edu

Abstract. Protein structure prediction aims to determine the spatial location of
every atom in protein molecules from the amino acid sequence by computational
simulations, while protein design is the reverse procedure of structure prediction
which aims to engineer novel protein sequences that have desirable structure and
function. In this presentation, we first review recent progress in computer-based
protein structure prediction, and show that a new approach combining ab initio
folding and profile-based fold-recognition methods can break though the barrier
of physics-based protein folding, which resulted in the successful folding of pro-
teins larger than 150 residues in the community-wide blind CASP experiments.
Next, we extend the profile alignment method to protein design, and introduce
an evolutionary profile based approach to design new functional XIAP (X-linked
Inhibitor of Apoptosis Protein) BIR3 domains that bind Smac peptide but do not
inhibit caspase-9 activity, representing a new therapeutic potential to change the
caspase-9 initiated apoptosis pathway through computational protein design. The
work shows that protein family-based profiling is an efficient tool to both prob-
lems of protein folding and protein design.
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Deriving Protein Backbone Using Traces Extracted
from Density Maps at Medium Resolutions

Kamal Al Nasr®”, and Jing He

Department of Computer Science, Tennessee State University, Nashville, TN 37209, USA
Department of Computer Science, Old Dominion University, Norfolk, VA 23529, USA
kalnasr@tnstate.edu, jhe@cs.odu.edu

Abstract. Electron cryomicroscopy is an experimental technique that is capable
to produce three dimensional gray-scale images for protein molecules, called
density maps. At medium resolution, the atomic details of the molecule cannot
be visualized from density maps. However, some features of the molecule can
be seen such as the locations of major secondary structures and the skeleton of
the molecule. In addition, the order and direction of the detected secondary
structure traces can be inferred. We introduce a method to construct the entire
model of a protein directly for traces extracted from the density map. The initial
results show that this method has good potential. A single model was built for
each of the 12 proteins used in the test. The RMSD, of the models is slightly
improved from our previous method.

Keywords: Cryo-EM - Volume image - Skeletonization - Protein modeling -
Loop modeling

1 Introduction

Electron cryomicroscopy (cryo-EM) is an emerging technique that produces three-
dimensional (3D) electron density maps at a wide-range of resolutions [1-4]. When
the resolution of density maps is higher than 4A, the atomic structure can often be
derived [5-9]. At the medium resolutions, such as 5—10A, the backbone and the cha-
racteristic features of amino acids are not resolved. It is still challenging to derive the
atomic structure from such a density map. When a component of the protein has
atomic structure available, fitting can be performed to derive the atomic structure
[10-12]. When a homologous model is available, rigid or flexible fitting can be used
to derive the atomic structure [13-18]. However, it is still challenging to find a suita-
ble template for many proteins. De novo modeling is an alternative method to derive
atomic structures without relying on template structures [19-24]. It relies on the detec-
tion of secondary structure positions and the connection patterns encoded in the skele-
ton of the density map.

A number of computational methods have been developed to detect a-helices from
the density maps [25-31]. Most helices longer than two turns can be detected. Most of
the major B-sheets can also be detected using various methods such as SheetTracer,
SSEhunter, SSELearner and SSETracer [29-32]. By analyzing the twist of B-sheet

© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 1-11, 2015.
DOI: 10.1007/978-3-319-19048-8_1



2 K. Al Nasr and J. He

density, the position of B-strands can be predicted [31]. A detected helix/B-strand
(Fig. 1C) is represented by its central axial line, and the backbone of the helix needs
to be built. In addition to a-helices and B-sheets that can be detected from the density
map, skeleton can also be derived from the density map [33-36]. Skeleton (red wire in
Figure 1) represents possible connection patterns among helices and B-strands (yellow
and green in Figure 1 C and D).

The de novo modeling combines information from the density map and the amino
acid sequence of the protein to derive the topology of secondary structure traces [21,
23, 37-39]. A topology maps the secondary structure traces from the density map to
the amino acid sequence, and therefore determines how the protein chain thread
through the traces. We previously showed that using a dynamic programming method
combined with the K-shortest path algorithm, it takes O(A2N?22N) time to rank the
top K topologies using DP-TOSS [23, 38]. Here N is the number of secondary struc-
ture traces detected in the density map and M is the number of secondary structure
sequence segments, and A = M — N + 1.

D

Fig. 1. De novo technique to construct a protein model. (A): Protein density map; (B): Skele-
ton; (C): Secondary structure traces for helices (yellow), and B-strands (green); (D): Superpo-
sition of the skeleton and the secondary structure traces; (E): Superposition of secondary
structures built and the skeleton; (F): The atomic structure.



Deriving Protein Backbone Using Traces Extracted from Density Maps 3

This paper investigates the problem of constructing backbone of a protein when the
topology of secondary structures is given. EM-fold uses Rosetta to construct the
backbone [20, 21]. Pathwalking uses pseudo atoms derived from the density map and
a constraint satisfaction solver to place Ca atoms [40]. Since the topology of second-
ary structures determines how the protein sequence thread through the secondary
structure traces, our current approach aims to build the backbone directly from the
traces and the topology information. We present a method that sequentially builds a
backbone chain from the N-terminal to C-terminal though iterative fragment-based
Cyclic Coordinate Descent (CCD) and Forward Backward CCD (FBCCD) method
[41]. We previously proposed a fragment-based method to construct secondary struc-
ture pieces using and then connect them using loops [22]. We here report an extension
of our previous method with improved capabilities. The current method constructs a
chain for proteins with both helices and B-sheets. Our previous method was only ap-
plied to proteins with helices only.

2 Methods

A skeleton is a compact shape representation of a 3D image. It contains possible con-
nection patterns, some of which are correct but most are wrong connections. A skele-
ton is processed in the topology determination process when the positions of second-
ary structures in 3D image are correlated with the sequence segments of the secondary
structures. As a result, only those connections that satisfy the pattern in the amino
acids sequence are selected.

Fig. 2. Three kinds of traces in a topology. (A): Superposition of the secondary structures
(o-helices yellow and B-strands in green) detected from the density map and the skeleton (red
opache). (B): a-trace: yellow, B-traces: in green; loop-traces: in purple.

The first step of the method is to initialize three types of traces: a-traces, B-traces,
and loop/turn traces (Figure 2).The first two may be generated from secondary struc-
ture detection methods [30, 31], and the third one is from the topology determination.
The second step is to construct the backbone using the three types of traces as a guide.
The idea is to start building from an end and build one segment at a time until it
reaches the other end. Depending on which type of trace it is going to use, the imple-
mentation details are slightly different, but the principle is the same. The process
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starts by determining the number of amino acids to be constructed for the next trace.
A piece of chain with random conformations is constructed using the torsion angles
from Ramachandran plot at one of the three regions a-helix, B-sheet, loop/turn. Let’s
refer to the piece of backbone being constructed as a spline that will be forced even-
tually to align with the trace.

Fig. 3. Examples of backbone fragments constructed. In the left panels, a spline of random
conformation with moving points (black) to be aligned with target points (red) on the trace. In
the right panels, the spline is aligned with the trace after running FBCCD. (A) A short loop
(2 amino acids) followed by a B-strand). The trace of the loop (if any) is added to the trace of
the secondary structure. (B) A strand. (C) A loop with no trace in the skeleton. (D) A loop
with a trace. (E) A loop with a trace comprising only two points.

Starting from the beginning of the trace, a point will be placed every 6A except for
the last two points near the end. 6A distance corresponds approximately to four amino
acids in a helix and two amino acids of a B-strand or a loop. Recall that an a-helix
includes a rise of 1.5A along the central axis and about 3A for a p-sheet and a loop.
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Similarly, same number of points is extracted from the spline with a random confor-
mation. The points are placed on the central axis (spline) of the conformation (Fig. 3).
The alignment process starts aligning the spline with the trace from the second point
using FBCCD [41].

Our approach aligns a line segment formed by two consecutive points of the spline
with a corresponding line segment from the trace. The following process is iterated
for the (n-2) segments, where n is the number of points to align. The amino acids
corresponding to line segment (i-/) on the spline are used to align the line segment i.
these are the amino acids immediately before the line segment i. To preserve the
structural characteristics of secondary structures, torsions used are ¢ € [-80°, -40°]
and Y € [-60°, -20°] for helices; ¢ € [-170°, -60°] and ¥ € [90°, 175°] for B-strands;
and ¢ € [-170°, 170°] and ¥ € [-170°, 170°] for loops. The process terminates either
when the cutoff Root Mean Square Distance (RMSD) distance between the target line
segment and the spline segment is reached or the maximum number of cycles is
reached. In our current implementation, the cutoff distance is 0.5A and the maximum
number of cycles is 200. If, after aligning (n-2) segments, the distance between the
last point on the spline and the corresponding point on the trace is more than 1A,
FBCCD is applied only for these points. The amino acids involved in this process are
the last half of the conformation fragment. This step is to assure that the end of the
conformation fragment is close to the trace so the next fragment to be built is not
misplaced from the trace.

Optimization techniques for loop closure, like FBCCD, are known to have low
success rate when work with short fragments. In general, the methods fail to close
loops shorter than four amino acids [41-43]. To overcome this problem, short loops
less than four amino acids are always built with its successive secondary structure as
one fragment (Figure 3A). Their traces are combined into one trace and the method is
applied as usual. On other hand, due to the quality of the cryo-EM image and, there-
fore, the skeleton, the traces will be missed for some loops/turns. Our method will
apply FBCCD with only one target point and one moving point. The target point will
be the first point from the next secondary structure’s trace and the moving point will
be the centroid of the last amino acid of the fragment being constructed (Figure 3C).
Similarily, if the trace has only two points, the last point is the only point targeted by
FBCCD (Figure 3E).

3 Results

We tested the current method using a data set consisting of five o-proteins, one
B-protein, and six o-f proteins. An a-protein / B-protein contains only o-helices /
B-sheets, and a a-f§ protein contains both helices and B-sheets. The native structures
were downloaded from the PDB database. For each native structure, a density map
was simulated to 8A resolution (except 3FIN_R [44]) using EMAN [45]. The density
map for 3FIN_R was extracted from cryo-EM density map thatwas downloaded from
the Electron Microscopy Data Bank (EMDB ID: 5030) [46]. For the a-proteins, we
applied SSETracer to detect the helices [30]. For the o/f proteins and B-proteins (ex-
cept 3FIN_R), the o-traces and B-traces were derived from the native structure by
calculating the geometrical center of each three consecutive Ca atoms from the native
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structure. To imitate the challenges with short helices and strands, we only derived
traces for helices longer than six amino acids and for -strands longer than four amino
acids. DP-TOSS was applied to produce top K ranked topologies, among which the
true topology was chosen for the construction of the backbone. For each protein, one
model was built using our sequential method. The model was constructed starting
from one end of the sequence and was built for one trace at a time till the end of the
sequence. A trace can be an o-trace, a f-trace or a loop/turn trace that was derived
from the skeleton. To build the backbone for each trace, a spline of random conforma-
tion was built and then aligned with the trace quickly using fragment-based CCD. We
report the backbone RMSD for the model constructed for each protein in Table 1.
The RMSD,(, was calculated for each constructed model against the entire native
structure except for the first loop before the first secondary structure or the last loop
after the last secondary structure, if any.

Fig. 4. Four constructed models. The constructed models (green) are superimposed with their
native structures (purple) in (A) for 3FIN_R, in (B) for 1BZ4, in (C) for 1ICX, and in (D) for
40XW. The native structures are labeled with PDB ID.

Figure 4 shows four models constructed using our method. As an example in 3FIN_R,
a small protein with four helices and three B-strands, SSETracer detected all four helices
from the density map . and produced four a-traces. The three B-traces were derived from
the native structure by calculating the geometrical centers of consecutive Co atoms. The
model constructed for 3FIN_R has RMSD,, of 3.96A for backbone atoms (Figure 4A
and Table 1). Note that the current model has improved accuracy compared to our pre-
vious model that has RMSD 4 of 5.98A (row 3 of Table 3). A few practices might have
contributed to the improved accuracy. The current method sequentially builds the back-
bone and the previous method first builds all secondary structures and then builds loops
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to connect them. Previous method does not build B-strands. -strands were built as loops.
The current approach uses P-traces to construct B-strands using torsion angles of f3-
strands. Current loop traces are derived from the skeleton extracted using newly devel-
oped skelEM method [36]. Previous skeleton was calculated using Gorgon [19]. We
expect that the skeleton generated by skelEM has less gaps. In the case of 1ICX (Figure
4C), the model built three of the six helices that are longer than six amino acids. For
helices shorter than six amino acids and strands shorter than four amino acids long, the
current method builds it as a loop. The constructed model has RMSD 3.47A. Our pre-
vious method builds the structure of proteins in two steps [22]. In the first step, it builds
the conformations of helices based on their central axes extracted from cryo-EM images
using SSETracer. In the second step, it connects the helices by building the conforma-
tions of the loops/turns using curve skeletons. In contrast, the current method constructs
the backbone structure of the protein in the same order of its secondary structure
elements.

Current implementation of our method has encountered a number of challenges
that negatively impact the accuracy of the constructed models and, therefore, the final
RMSD values. The first challenge is modeling a loop/turn fragment when no trace
was found on the skeleton or a trace found with only two points at the beginning and
the end of the trace (Fig. 3C and D). If the loop has no trace, our method set the
target point to be the first point on the trace of the next secondary structure. If the
loop has a trace with only two points, the target point is set to be the one at the end of
the trace that is close to the next secondary structure. Consequently, our method uses
FBCCD to connect the loop with the trace of the next secondary structure using only
one point. This results in a structure that is not guaranteed to be aligned with the na-
tive structure. The second challenge is the length of the traces for some turns. Gener-
ally, the skeleton trace of a turn is shorter than the actual length of the native loop.
This is expected since the skeleton represents the dense points in the image and the
dense points of a turn are often off the backbone. The third challenge is modeling the
missing secondary structures (i.e., helices) as loops. If the trace of an a-helix is not
detected from the map or if it is shorter than six amino acids as in current implemen-
tation, our method constructs it as a loop. This is expected to increase the final
RMSD,, due to the conformational differences between helices and loops. One poss-
ible method to overcome this challenge is to build a helix fragment if additional in-
formation suggests a possible small helix.

The test involving 12 cases can be partitioned into two groups. The first group of
proteins (row 1-5 in Table 1) was tested using two methods, the current sequential
method and the previous piece-wise method. The accuracy is comparable between the
two methods for the four a-proteins. The sequential method shows better accuracy for
two larger proteins of the four cases and less accuracy for the two smaller proteins. As
for the a-p protein 3FIN_R, the current method shows better accuracy, possibly due to
the modeling of B-strands that was not available for the previous piece-wise method
(see more detailed discussion in a previous paragraph). However, the sequential me-
thod builds only one conformation of the backbone directly from the traces. The pre-
vious piece-wise method builds many possible conformations, and the best conforma-
tion is listed in Table 1 (the 9" column). The second group of proteins
(row 6-12) was tested using the sequential method. The RMSDjy, for these a-
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proteins or the p-protein ranges from 3.30A to 4.53A. The o-traces and B-traces of
these proteins were derived from the native structure and therefore are fairly accurate.
The loop traces were derived from the skeleton of the 3D image and they face chal-
lenges from gaps and inaccuracy in some situations. Yet the backbone constructed
using sequential method is around 4A on average. This result shows the potential of
the sequential method when the traces are fairly accurately derived.

Table 1. The backbone accuracy of the constructed models

No|PDB ID*| #AA° | HIxSeq® | StrSeq® |HIxMap®| StrMap’| RMSD2 | RMSD2012"
1] 1A7D | 118 6 0 4 0 4.80 3.87
2 | 1BZ4 144 5 0 5 0 4.30 3.34
3 |3FIN_R| 117 4 3 4 3 3.96 5.98
4 | 1HZ4 | 373 21 0 19 0 3.19 3.87
51 3LTI] | 201 16 0 12 0 3.32 4.07
6 | 40XW | 119 5 3 3 3 4.21 N/A
7 1 1YDO 96 5 4 3 3 4.01 N/A
8 | 1079 | 150 5 5 5 4 3.61 N/A
9 | 1ICX 155 6 7 3 7 3.47 N/A
10| 2y4z 140 6 2 6 2 4.10 N/A
11| 4U3H | 100 0 8 0 7 3.30 N/A
12| 4YOK | 204 1 16 1 15 4.53 N/A

a: Protein ID
b: The number of amino acids in the protein.

c: The number of actual helices in the protein.

d: The number of actual strands in the protein.
e: The number of helices detected from the density map.
f: The number of strands detected from the density map.

g: The backbone RMSD of the constructed model with the native structure.
h: The backbone RMSD of the best model built from the previous study [22]. Pre-
vious method does not apply for proteins with B-sheets, indicated as N/A.

4 Conclusions

We present a method to sequentially construct the backbone from the traces detected
from density maps. It uses the topology derived from DP-TOSS and the o-traces, -
traces of the secondary structures and loop traces derived from skeleton of the density
map. The initial results show that this method has good potential. Judging from the
single model built for each of the 12 proteins, the RMSD is slightly improved from
our previous method [22]. The current method applies to proteins containing f3-sheets,
while the previous method applies to only a-proteins.

Acknowledgements. The work in this paper is partially supported by NSF DBI-1356621.
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Abstract. Gene mutations are responsible for a large proportion of ge-
netic diseases such as cancer. Hence, a number of computational methods
have been developed to find loci subject to frequent mutations in cancer
cells. Since normal cells turn into cancer cells through the accumulation
of gene mutations, the elucidation of interactive relationships among loci
has great potential to reveal the cause of cancer progression; however,
only a few methods have been proposed for measuring statistical signifi-
cance of pairs of loci that are co-mutated or exclusively mutated. In this
study, we proposed a novel statistical method to find such significantly
interactive pairs of loci by employing the framework of binary contin-
gency tables. Using Markov chain Monte Carlo procedure, the statistical
significance is evaluated by sampling null matrices whose marginal sums
are equal to those of the input matrix. We applied the proposed method
to mutation data of colon cancer patients and successfully obtained sig-
nificant pairs of loci.

Keywords: Cancer - Gene mutation - Binary contingency tables - Markov
chain Monte Carlo

1 Introduction

Gene mutations can change the normal function of proteins, leading to genetic
diseases such as cancer. For example, the mutation can result in loss of func-
tion that helps to repair damaged DNA. In cancer research, mutations observed
only in tumor cells have been intensively investigated, however, these mutations
are analyzed independently and combinations of mutations are not well stud-
ied. Since the accumulation of gene mutations causes cancer, it is important to
detect pairs of genes, which contribute to the accumulation interactively, e.g.,
genes with mutations that tend to occur together among a lot of samples. The
elucidation of these relationships allows us to identify how genes interact with
other genes. To achieve it, some studies[3,14,9] concerned the identification of
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the relationships between genes in cancer cells based on the fact that oncogenesis
is a process with multiple stages, in which normal cells transform into cancer
cells via multiple genetic mutations. However, almost these researches have not
measured the statistical significance of the relationships. Although Dees et al. [3]
considered statistical significance for identifying the relationships based on per-
mutation test-based method, they did not consider the varieties of the numbers
of the mutations in each of samples and genes.

Therefore, to provide an accurate statistical assessment, we propose a novel
method to measure the statistical significance of relationships between genes
using a statistical framework of binary contingency tables (BCTs), which are
defined as binary tables with fixed column and row sums. BCTs are utilized as
tables that are composed of entries with binary values indicating absence (0)
or presence (1) of mutations. In this study, we analyze the following two types
of gene relationships: co-mutated relationships, which represent pairs of genes
getting mutated together and exclusive relationships, which represent pairs of
genes including both a mutated gene and a gene without a mutation. Since the
numbers of mutations vary among samples and the numbers of mutated samples
vary among genes, we propose random sampling of BCTs keeping the sums of
mutations on each samples and genes using Markov chain Monte Carlo proce-
dure. By using gene mutation data as a BCT, the proposed method measures the
statistical significance of an observed state of each gene pair by the algorithm de-
veloped by Bezdkova [1]. This algorithm samples random BCTs and non-BCTs
satisfying almost marginal sums of the original data and obtains p-values for
all combinations of gene pairs; however, an accurate statistical test cannot be
performed when sampling non-BCTs. In order to sample BCTs only, we further
proposed a novel algorithm, termed Perfect BCT(PBCT)-sampling, that sam-
ples BCTs under the restrictions of the number of mutations occurring on each
sample and gene, and measures the statistical significance of the relationships
between genes in the mutation data.

To show the effectiveness of the proposed method, we compared the perfor-
mance of our proposed method, the proposed method using BCT-sampling and
an existing method (Fisher’s exact test) through a simulation study. As a re-
sult, our method outperformed other methods and we confirmed the advantage
of using BCTs. Next, we analyzed gene mutation data downloaded from The
Broad Institute (http://gdac.broadinstitute.org/) using our proposed method
and obtained significantly co-mutated and exclusively mutated gene pairs. We
confirmed that the result of the analysis by our proposed method contains pairs
of genes, which have been thought as genes related to cancer.

2 Method

2.1 Binary Contingency Tables

BCTs are typically used to represent two exclusive events, such as “absence”
or “presence” by 0 and 1, respectively. We apply the framework of BCTs to a
m X n binary table B containing the presence of mutations for pairs of genes and
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samples in order to clarify the relationships between genes in cancer cells using
gene mutation data. In the table B, rows and columns respectively correspond to
genes and samples, and the entry at the ith row and jth column is set to 1 if the
ith gene of the jth sample is mutated, and 0 otherwise. From the framework of
BCTs, we analyze the two types of gene relationships, co-mutated relationships
and exclusive relationships.

2.2 BCT-Sampling

From the number of mutations that occur on each column and row, we measure
the statistical significance of gene pairs such as co-mutated gene pairs or gene
pairs with exclusive mutations. For statistical testing, we first build the null dis-
tribution by sampling null matrices, and then measure the statistical significance
in terms of the number of samples for each co-mutated gene pair or for gene pair
with exclusive mutations in the original binary table B. For sampling null matri-
ces, we adopted BCT-sampling proposed by Bezdkova [1], which samples binary
tables keeping the given marginal sums. Let define perfect and near-perfect ta-
bles as tables satisfying completely the marginal sums of B and tables with one
row and one column sum decreased by 1, respectively. Starting from a perfect
table, the above method recursively samples a table from the previously sampled
table as follows:

1. Let (i,7) be a pair of indices for indicating the ith row and jth column of
a table or matrix. If the current m x n table T is a perfect table, randomly
select a pair of indices from {(4, j)|T;,; = 1}, where T} ; is the ¢th row and jth
column of T, and set T; ; to 0. A near-perfect table with marginal sums of
rows ri,...,7;—1,...,7y and columns ¢y, ...,¢; —1,..., ¢, and a deficiency
at (i,7) is obtained.

2. If the current m x n table T' is a near-perfect table with a deficiency at (i, 7),
randomly select a pair of indices in {(¢,7)} N{(k, )Tk, = 1}. If (k,1) = (4, 5)
holds, then set 7; ; to 1 and a perfect table is obtained. Otherwise, select
one of the following two procedures randomly:

(a) If Ty ; = 0 holds, then set Ty ; to 1 and Ty to 0 (the deficiency moves
from (i, 5) to (i,1)).

(b) If T;; = 0 holds, then set T;; to 1 and Ty, to 0 (the deficiency moves
from (i,1) to (k,1)).

These sampled tables from the above steps contain both near-perfect and perfect
tables.

2.3 PBCT-Sampling

In order to keep precisely the condition of the original binary table B, we de-
veloped PBCT-sampling by extracting only perfect tables from all the samples
tables with BCT-sampling. Sampling different perfect tables enables us to cal-
culate precisely the frequencies of that gene pairs with the number of mutated
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samples, which happen together or exclusively, under the given conditions. We
design PBCT-sampling to check if a newly generated perfect table is different
from the previously sampled tables in order to obtain various different perfect
tables. Algorithm 1 shows the detail of PBCT-sampling.

Algorithm 1. PBCT-sampling

M: the number of perfect tables to be sampled
f: the function of sampling BCTs proposed by Bezakova
X;: ith sampled binary table from f
X: a set of sampled binary tables
Set X =0
Setn=1
Set count = 0
while count < M do
Xn = f(Xn-1)
if X,, is a Perfect Table and X, # Xcount then
Put X,, to X

count = count + 1
n=n-4+1

2.4 Computation of p-value

For the pair of ¢th and jth genes in B, the test statistic for the detection of
co-mutated gene pairs is defined by

> B x By, (1)
k=1
and that for the exclusively mutated gene pairs is defined by

>0, 108) = {1 St B ©)
k=1

0 otherwise

where ng is the number of samples. Here, we calculate p-value referring to the
way adopted by CDCOCA [10]. Let T;; be the test statistic for the ¢th and
jth gene pair in a sampled table, O;; be the test statistic for that in B, Cj;
be the total number of the test statistics that satisfy O;;>T;; and M be the
total number of sampled matrices. The algorithm for the calculation of p-value
is shown in Algorithm 2.

3 Result

3.1 Simulation Study

In the simulation study, we compared our proposed method using PBCT-sampling
with the method using BCT-sampling and an alternative statistical method,
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Algorithm 2. Computation of p-value

M: the number of perfect tables to be sampled
ng: the number of genes
pij: p-value for gene pair, ¢ and j
Set count = 0
Set C =0
while count < M do
Sample binary tables X
for i <ny4 do
for j <ng do
calculate T;; for X
if Ti’j Z Oij then
Cij=0Ci +1
count = count + 1
pij = Cij /M

Fisher’s exact test [5,8]. The Fisher’s exact test in this context calculates the prob-
ability of obtaining the observed state under the given conditions as follows. Let
a be the number of samples without any mutations on both gene x and y, b be
the number of samples with mutations on only gene y and not on gene x, ¢ be the
number of samples with mutations on only gene x and not on gene y and d be the
number of samples with mutations on both genes = and y. Then the probability
of occurring such event is calculated by
a+b\ (c+d
= () o
a+c

where n is the number of all samples, which means n is identical to the sum of
a,b,c and d. Table 3.1 shows the relationship between these letters and genes.

Table 3.1. The summary of the relationships between two genes, x and y. Fisher’s
exact test calculates the probability of obtaining the tables using a, b, ¢ and d.

Gene y
Not mutated Mutated
Gene z Not mutated a b
Mutated c d

We measure the performance of the methods by area under the precision recall
curve (AUC) [2]. The performance is shown by the AUC score, which is the space
under the curve plotted according to the precision and recall of p-values at each
threshold. Fig. 3.1 shows an example of obtained p-values and AUC on our
simulation study. The precision is defined as the ratio of the number of relevant
records retrieved to the total number of irrelevant and relevant records retrieved.
The recall is defined as the ratio of the number of relevant records retrieved to
the total number of relevant records.
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To apply the method toward two problems, i.e., co-mutated and exclusively
mutated problems, we assume that simulated data have two pairs of co-mutated
genes or exclusively mutated genes, as statistical significant gene pairs, respec-
tively. We also suppose that the numbers of mutations vary among samples and
genes. Then, we prepared simulation data as follows:

1. Generate a mutation rate for each column and row, r; and r; (0 < r5,7; < 1),
which controls how often mutations occur on entities.

2. Set the mutation rate for each entry r; ; = r;r; based on the mutation rate
of columns and rows.

3. Set noise rate that regulates the amount of mutations in the simulated mu-
tation matrix. If the noise rate is 4, for example, we control the amount of
entries with mutations to be approximately 40% of all entries. The rate is
from 0 to 10.

4. Insert two pairs that have interactive relationships, which are co-mutated
or exclusively mutated gene pairs, and are named as true mutation pairs.
We define the number of co-mutated and exclusively mutated samples as
“signal”. In the co-mutated problem, when the signal is 4, two true mutation
pairs have four samples, where mutations happen in both of paired genes. In
the exclusively mutated problems, when the signal is 4, two true mutation
pairs have four samples, where mutations happen in either of paired genes.
For each true pair, we choose these samples at random.

Figs. 3.2(a)-3.2(c) show background data, simulated data with two true co-
mutated pairs and simulated data with two true exclusively mutated pairs, re-
spectively. We had a simulation using data, which is composed of 50 samples
and 50 genes, and several kinds of signal and noise.

Fig. 3.3 shows the result of the co-mutated problem. Consequently, BCT-
sampling has a higher AUC score than other methods in case of small noise
and large signal; however, PBCT-sampling demonstrates stably superior perfor-
mance in any parameter compared to other two methods. We also confirmed the
advantage on employing the BCT framework to the exclusively mutated prob-
lem as concluded in Table 3.4. The result shows that our proposed method has
higher AUC scores than other methods and detects true mutation pairs on both
co-mutated and exclusively mutated problems.

We can consider that the simulation results of our proposed method are better
than others because it takes the number of mutations on each gene and sam-
ple of the mutation data into account. In contrast, Fisher’s exact test utilizes
only the number of mutations happening on each gene. Also, we can see that
PBCT-sampling had better performance compared with BCT-sampling since
PBCT-sampling keeps completely the marginal sums and it utilizes more accu-
rate conditions of the original mutation data.
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Fig. 3.1. The example for the calculation of AUC. We use a dataset of twenty simulated
data to measure the performance of methods. Fig. 3.1(a) plots the number of obtained
p-values through a simulation, and the red and blue bars are the number of p-values
for gene pairs with true mutations and other gene pairs, respectively. Blue area on
Fig. 3.1(b), which consists precision and recall axes, shows AUC of data plotted on
Fig. 3.1(a).
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Fig. 3.2. A left figure shows background data with 20% noise and no signal. Figs. 3.2(b)
and 3.2(c) are simulated data containing two true co-mutated and exclusively pairs,
respectively. Black in the figure represents a gene mutation. These data are 50 x 50
size matrices, whose vertical and horizontal axes are genes and samples, respectively.



BCT Method for Analyzing Gene Mutation in Cancer Genome 19

BCT-sampling PBCT-sampling
Fisher test 30000 300000 3000000 30000 300000 3000000
Signal15 noise3 0.349 0.048 0.148 0.223 0.178 0.250 0.471
Signal10 noise3 0.070 0.030 0.207 0.192 0.211 0.211 0.222
Signal7 noise3 0.028 0.010 0.019 0.020 0.020 0.019 0.079
Signal15 noise2 0.733 0.197 0.514 0915 0.671 0.835 0.877
Signal10 noise2 0.537 0.288 0.376 0.553 0.460 0.545 0.561
Signal7 noise2 0.222 0.130 0.225 0.179 0.187 0.263 0.299

Fig. 3.3. The simulation results on 50 x 50 size matrices with two true co-mutated
pairs. Shown values are AUC scores, and methods with high scores are thought to have
high performance of assessing the relationships between genes. We tested Fisher’s exact
test, BCT-sampling and PBCT-sampling with several kinds of signal and noise.

BCT-sampling PBCT-sampling

Fisher test 5000 50000 500000 5000 50000 500000
Signal15 noise3 0.006 0.009 0.072 0.151 0.098 0.171 0.199
Signal10 noise3 0.002 0.008 0.033 0.041 0.042 0.055 0.084
Signal7 noise3 0.002 0.008 0.008 0015 0.011 0.015 0.028
Signal15 noise2 0.007 0.023 0.152 0.177 0.139 0.193
Signal10 noise2 0.003 0.018 0.037 0.041 0.036 0.045 0.042
Signal7 noise2 0.002 0.006 0.011 0012 0.020 0.013 0.013

Fig. 3.4. The simulation results on 50 x 50 size matrices with two true exclusively mu-
tated pairs. Shown values are AUC scores, and methods with high scores are thought to
have high performance of assessing the relationships between genes. We tested Fisher’s
exact test, BCT-sampling and PBCT-sampling with several kinds of signal and noise.

Table 3.2. Statistically significant co-mutated gene pairs obtained by PBCT-sampling

Gene Gene p-value g-value
PKHD1L1 RFC1 6.6 x 107° 4.5 x107°
LAMA3 DOCKI10 66x107° 4.5x107°
EPB41L3 DOCK5 6.6 x107° 4.5x 1076
EPB41L3 TRPM2 6.6x107° 45x 107°
EPB41L3  SLIT1 6.6 x107° 4.5x107°
ADAM7 DNAH1 6.6x107° 45x10°°
ADAM7 CACNAIC 6.6x107% 45x107°
ADAM7 CATSPERB 6.6 x 107 4.5x107°

3.2 Real Data Experiment

We used binary gene mutation data of colorectal adenocarcinoma, which is down-
loaded from The Broad Institute. We sorted 631 samples according to the number
of mutations and retrieved top 155 samples. The data contains 699 genes and
155 samples, whose rows and columns correspond to genes and samples, respec-
tively. We analyzed the data with PBCT-sampling to identify statistically sig-
nificant gene pairs. Consequently, we obtained eight co-mutated gene pairs with
10,000,000 samplings as concluded in Tables 3.2. For the exclusively mutated
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Table 3.3. Statistically significant exclusively mutated gene pairs obtained by PBCT-
sampling

Gene Gene p-value g-value

TP53 XIRP2 50x107% 3.3x107°
BRAF DSCAM 50x107% 3.3x107¢
ACVRIB POSTN 50x107% 33x10°°
SPHKAP VAV1 5.0x107° 3.3x10°°
TEX15 VAV1 5.0x107° 3.3x10°°
LAMA3 CELSR1 50x107° 33x10°°¢
KCNQ3 EPB41L3 50x107° 3.3 x107°
SEMA4D VAVl 50x107% 3.3x107¢
PTPRT VAV1 5.0x107° 3.3x10°°
DOCK5 DSCAM 50x107°% 3.3x10°¢
TMEM132B VAV1 5.0x107° 3.3x10°°
PXDNL DSCAM 5.0x107° 3.3x107°°

problem, we sampled 2,000,000 BCTs and obtained twelve gene pairs, which are
listed as significant exclusively mutated pairs shown in Table 3.3. These results
of both kinds, co-mutated and exclusively mutated gene pairs, show that gene
pairs of each kind have extremely small and the same p-value and ¢-value [13].
This is because there was no sampled BCT with greater test statistics than those
of the original mutation data at the significant gene pairs.

In the obtained results, we focus on one of significant co-mutated pairs,
LAMAS3 and DOCKI10, as illustrated in Fig. 3.5. The figure shows the frequencies
that mutations appear on each gene and sample. We can observe that DOCK10
and LAMAS3 have twelve and eight mutations, respectively, and the pair has 7
co-mutated samples. Some of them are recurrently mutated, but others are not
likely to be mutated. Our proposed method utilizes these frequencies of muta-
tions on each sample and gene, and detects gene pairs with co-mutated samples
including infrequently mutated sample, such as LAMA3 and DOCK10.

In addition, Fig. 3.6 shows the frequencies and locations of mutations on
gene-pair, TEX15 and VAV1, which is obtained as the statistically significant
and exclusively mutated gene pair. We can confirm that their mutations happens
in mutually exclusive way.

LAMA3 [12] and DOCK10 [6], which are obtained as a co-mutated gene pair,
are considered to be involved in tumor cell invasion and progression. Addition-
ally, among exclusively mutated gene pairs listed on Table 3.3, TP53 is widely
know as tumor suppressor gene and XIRP2 was suggested as a potential driver
gene in melanoma [7]. VAV1 [4] and TEX15 [11] are also identified as the can-
didates of genes related to cancer. VAV1 has been thought as a gene, which is
associated with decreased survival and contributes to the tumorigenic properties
of pancreatic cancer cells. Also, TEX15 was observed in a significant fraction of
tumor samples different histological types.
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4 Conclusion and Discussion

There exist many studies focusing on mutation genes and they play a key role
in the field of cancer research. In this study, we aimed to elucidate the relation-
ships of gene pairs using binary mutation data. The developed method, PBCT-
sampling, enables us to utilize the frequencies that mutations occur on each
gene and sample of the mutation data and assess the statistical significance of
relationships between genes.

Through the simulation study, we prepared two synthetic data representing
co-mutated and exclusively mutated problems and demonstrated that PBCT-
sampling outperformed BCT-sampling and Fisher’s exact test, which is with-
out the BCTs framework. These results indicated that the BCT framework is
reasonable for assessing the statistical significance of gene mutation data and
PBCT-sampling, which uses only BCTs, is capable of performing more accu-
rate assessment and has superior performance compared to BCT-sampling using
both of BCTs and non-BCTs, and also with Fisher’s exact test. Therefore, we
confirmed the advantage of the BCT-framework, which allows us to sample bi-
nary tables keeping the the varieties of the marginal sums of the mutation data.
Furthermore, the analysis of real data with PBCT-sampling showed the statisti-
cally significant co-mutated and exclusively mutated gene pairs. Since they have
been indicated as cancer related genes, the performance of detecting significant
pairs may be suggested. In these gene pairs, we confirmed that some of obtained
gene pairs as exclusively mutated gene pairs comprise of tumor suppressor gene
and driver gene and some of obtained gene pairs as co-mutated gene pairs are
the combination of genes, which contribute to the progression of cancer.

In this study, we focused on the detection of interactive gene pairs but we
further expect that our proposed method can be applied to the problem of
detecting more than three genes with interactive relationships. Also, since the
BCT framework is practical for the detection of relationships in binary data, we
consider that we can analyze other binary data, such as copy number data, with
PBCT-sampling.
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Abstract. This paper deals with the Approximate Circular Pattern
Matching (ACPM) problem, which appears as an interesting problem
in many biological contexts. Here the goal is to find all approximate oc-
currences of the rotations of a pattern P of length m in a text T of
length n. In this article, we present a filter-based approach to solve the
problem. We experimentally compare our approach with the state of the
art algorithms in the literature and the results are found to be excellent.

1 Introduction

The classical pattern matching problem is to find all the occurrences of a given
pattern P of length m in a text 7 of length n, both being sequences of characters
drawn from a finite character set Y. This problem is interesting as a fundamental
computer science problem and is a basic requirement of many practical appli-
cations. However in most practical applications it is some sort of approximate
version of the classic patterning matching problem that is of more interest.

The circular pattern, denoted C(P), corresponding to a given pattern P =
P1...Pm, is formed by connecting P; with P, and forming a sort of a cycle;
this gives us the notion where the same circular pattern can be seen as m different
linear patterns, which would all be considered equivalent. In the Circular Pattern
Matching (CPM) problem, we are interested in pattern matching between the
text 7 and the circular pattern C(P) of a given pattern P. We can view C(P)
as a set of m patterns starting at positions j € [1 : m] and wrapping around the
end. In other words, in CPM, we search for all ‘conjugates’® of a given pattern
in a given text.
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1.1 Applications and Motivations

Along with being interesting from the pure combinatorial point view, CPM has
applications in areas like, geometry, astronomy, computational biology etc. This
type of circular patterns occur in the DNA of viruses [7,18], bacteria [17], eukary-
otic cells [14], and archaea [3]. As a result, as has been noted in [10], algorithms
on circular strings seem to be important in the analysis of organisms with such
structures. Circular strings have also been studied in the context of sequence
alignment. In [16], basic algorithms for pair wise and multiple circular sequence
alignment have been presented. These results have later been improved in [8],
where an additional preprocessing stage is added to speed up the execution time
of the algorithm. In [12], the authors also have presented efficient algorithms
for finding the optimal alignment and consensus sequence of circular sequences
under the Hamming distance metric. For further details on the motivation and
applications of this problem in computational biology and other areas the readers
are kindly referred to [3,7,8,10,12,14,16-18] and references therein.

In this paper we focus on the Approximate Circular Pattern Matching (ACPM)
problem. As has been mentioned above, the DNA sequence of many viruses has
a circular structure. So if a biologist wishes to find occurrences of a particular
virus in a carrier’s (linear) DNA sequence, (s)he must locate all positions in T
where at least one rotation of P occurs. This motivates one to study CPM. How-
ever, from practical consideration, the biologists are more interested in locating
the approximate occurrences of one of the rotations of P in 7. This is why in
this paper we are interested to solve ACPM i.e., the approximate version of the
problem.

1.2 Owur Contribution

The main contribution of this paper is a fast and efficient algorithm for the
approximate circular pattern matching problem based on some filtering tech-
niques. The main idea behind our approach is quite simple and intuitive. We
employ a number of simple and effective filters to preprocess the given pattern
and the text. After this preprocessing, we get a text of reduced length on which
we can apply any existing state of the art algorithms to get the occurrences of
the circular pattern.

1.3 Road Map

The rest of the paper is organized as follows. Section 2 gives a preliminary de-
scription of some terminologies and concepts related to stringology that will be
used throughout this paper. Section 3 presents a brief literature review. In Sec-
tion 4 we describe our filtering algorithms. Section 5 presents the experimental
results. Section 6 draws conclusion mentioning some future research directions.
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2 Preliminaries

Let X be a finite alphabet. An element of X* is called a string. The length of
a string w is denoted by |w|. The empty string € is a string of length 0, that
is, |e] = 0. Let ¥ = Y*— {¢}. For a string w = zyz, x, y and z are called a
prefiz, factor (or equivalently, substring), and suffiz of w, respectively. The i-th
character of a string w is denoted by w[i] for 1 < i < |w|, and the factor of a
string w that begins at position ¢ and ends at position j is denoted by wli : j]
for 1 <1 < j < |w|. For convenience, we assume w[i : j] = € if j < i. A k-factor
is a factor of length k.

A circular string of length m can be viewed as a traditional linear string which
has the left-most and right-most symbols wrapped around and stuck together in
some way. Under this notion, the same circular string can be seen as m different
linear strings, which would all be considered equivalent. Given a string P of
length m, we denote by P* = P[i : m|P[1 :i — 1], 0 < i < m, the i-th rotation
of P and PV = P.

Example 1. Suppose we have a pattern P = atcgatg. The pattern P has the
following rotations (i.e., conjugates): P! = tcgatga, P? = cgatgat, P> = gatgatc,
P* = atgatcg, P° = tgatcga, P® = gatcgat.

The Hamming distance between strings P and 7T, both of length n, is the
number of positions i, 0 < i < n, such that P[i] # T[i]. Given a non-negative
integer k, we write P =, T or equivalently say that P k-matches T, if the
Hamming distance between P and 7T is at most k. In biology, the Hamming
distance is popularly referred to as the Mutation distance. A little mutation
could be considered and in fact anticipated while finding the occurrences of a
particular (circular) virus in a carrier’s DNA sequence. This scenario in fact
refers to approzimate circular pattern matching (ACPM). If, k = 0, then we get
the exact CPM, i.e., mutations are not considered. Note carefully that in this
setting, ACPM also returns all the occurrences returned by CPM; it computes
the occurrences allowing up to k mismatches/mutations.

We consider the DNA alphabet, ie., X = {a,¢,g,t}. In our approach, each
character of the alphabet is associated to a numeric value as follows. Each
character is assigned a unique numbers from the range [1...|X]|]. Although this
is not essential, we conveniently assign the numbers from the range [1...|X]]
to the characters of X following their inherent lexicographical order. We use
num(z),z € X to denote the numeric value of the character z. So, we have
num(a) = 1,num(c) = 2,num(g) = 3 and num(t) = 4,. For a string S, we
use the notation Sy to denote the numeric representation of the string S; and
Sn[i] denotes the numeric value of the character S[i]. So, if S[i] = ¢ then
Snli] = num(g) = 3. The concept of circular string and their rotations also
apply naturally on their numeric representations as is illustrated in Example 2
below.

Example 2. Suppose we have a pattern P = atcgatg. The numeric representation
of Pis Py = 1423143. And this numeric representation has the following rotations:
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Py = 4231431, P%, = 2314314, P3, = 3143142, Py = 1431423, PX, = 4314231,
P = 3142314.

The problem we handle in this article can be formally defined as follows.

Problem 1. (Approximate Circular Pattern Matching with k-mismatches (i.e
mutations) (ACPM)). Given a pattern P of length m, a text T of length n > m,
and an integer threshold k < m, find all factors F of T such that F = P’ for
some 0 <4 < m. And when we have a factor F = T[j : j + |F| — 1] such that
F =j P* we say that the circular pattern C(P) k-matches 7 at position j. We
also say that this k-match is due to P?, i.e., the ith rotation of P.

In the context of our filter based algorithm the concept of false positives and
negatives is important. So, we briefly discuss this concept here. Suppose we have
an algorithm A to solve a problem B. Now suppose that S, represents the set
of true solutions for the problem B. Further suppose that 4 computes the set
S 4 as the set of solutions for B. Now assume that Sy 7# Sa. Then, the set of
false positives can be computed as follows: S4 \ Sgrue. In other words, the set
computed by A contains some solutions that are not true solutions for problem
B. And these are the false positives, because, S 4 falsely marked these as solutions
(i.e., positive). On the other hand, the set of false negatives can be computed as
follows: Sirue \ Sa. In other words, false negatives are those members in Spyqe
that are absent in S 4. These are false negatives because S4 falsely marked these
as non-solutions (i.e., negative).

3 Brief Literature Review

The problem of circular pattern matching has been considered in [15], where an
O(n)-time algorithm is presented. A naive solution with quadratic complexity
consists in applying a classical algorithm for searching a finite set of strings
after having built the trie of rotations of P. The approach presented in [15]
consists in preprocessing P by constructing a suffix automaton of the string
PP, by noting that every rotation of P is a factor of PP. Then, by feeding
T into the automaton, the lengths of the longest factors of PP occurring in
T can be found by the links followed in the automaton in time O(n). In [9],
the authors have presented an optimal average-case algorithm for CPM, by also
showing that the average-case lower bound for the (linear) pattern matching of
O(nlog, m/m) also holds for CPM, where o = |¥|. Recently, in [6], the authors
have presented two fast average-case algorithms based on word-level parallelism.
Very recently, we have presented a filter-based approach to solve the problem
in [4]. Our approach in [4] turns out to be highly effective. In fact, as will be clear
shortly, in this paper, we extend our approach in [4] to solve the approximate
version of the problem.

The approximate version of the problem has also received attention in the
literature very recently [5]. In [5], Barton et al. have first presented an efficient
algorithm for CPM that runs in O(n) time on average. Based on the above, they
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have also devised fast average-case algorithms (ACSMF-Simple) for approxi-
mate circular string matching with k-mismatches. They have built a library for
ACSMF-Simple algorithm. The library is freely available [1]. Notably, indexing
circular patterns [11] and variations of approximate circular pattern matching
under the edit distance model [13] have also been considered in the literature.

4 Filtering Algorithm

As has been mentioned above, our algorithm is based on some filtering tech-
niques. Suppose we are given a pattern P and a text 7. We will frequently and
conveniently use the expression “C(P) k-matches T at position 7 (or equiv-
alently, “P circularly k-matches 7 at position i”) to indicate that one of the
conjugates of P k-matches T at position i (or equivalently, C(P) =, T). We
start with an brief overview of our approach below.

4.1 Overview of Our Approach

Our approach follows our recent work in [4] where we have used a number of
filters to solve the exact circular pattern matching problem. In particular we will
extend the ideas of [4] and adapt the filters presented there so that those filters
become useful and effective for the approximate version as well. We employ a
number of filters to compute a set A of indexes of T such that C(P) k-matches
T at position i € N in such a way that there are no false negatives.

4.2 Our Filters

We employ a total of 4 filters. The key to our observations and the resulting filters
is the fact that each function we devise results in a unique output when applied to
the rotations of a circular string. For example, consider a hypothetical function
X. We will always have the relation that X (P) = X (P?) for all 1 < i < n. Recall
that, PY actually denotes P. For the sake of conciseness, for such functions,
we will abuse the notation a bit and use X(C(P)) to represent X(P?) for all
0<i<|P|

Filter 1. We define the function sum on a string P of length m as follows:
sum(P) = D", Pyli]. Our first filter, Filter 1, is based on this sum function.
We have the following observation.

Observation 1. Consider a circular string P and a linear string T both having
length n. If C(P) = T, where 0 < k < n, then we must have

sum(T) —k x4+ kx1<sum(C(P)) <sum(T)+kx4—Fkx1.
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Ezample 3. Consider P = atcgatg. We can easily calculate that sum(C(P)) =
18. Now, consider T1 = aacgatg, slightly different from P, i.e, P[2] = t #
T1[2] = a. As can be easily verified, here P =; T1. According to Observation 1,
in this case the lower (upper) bound is 15 (18). Indeed, we have 71y = 1123143
and sum(7T1) = 15, which is within the bounds. Now consider 72 = ttcgatg,
slightly different from P, i.e, P[1] = a # T2[1] = t. As can be easily verified, here
P =1 T2. Therefore, in this case as well, the lower and upper bound mentioned
above hold. And indeed we have T2y = 4423143 and sum(7T2) = 21, which
is within the bounds. Finally, consider another string 7' = atagctg. It can be
easily verified that C(P) #; T'. Again, the previous bounds hold in this case
and we find that 7' = 1413243 and sum(7’) = 18. Clearly this is within the
bounds of Observation 1 and in fact it is exactly equal to sum(C(P)). This is an
example of a false positive with respect to Filter 1.

Filters 2 and 3. Our second and third filters, i.e., Filters 2 and 3, depend on
a notion of distance between consecutive characters of a string. The distance
between two consecutive characters of a string P of length m is defined by
distance(Pi], P[i + 1]) = Par[i] — Parli + 1], where 1 < i < m — 1. We define
total distance(P) = Z;Z}l distance(Pli], P[i + 1]). We also define an absolute
version of it: abs total distance(P) = Z:i_ll abs(distance(Pli], P[i + 1])), where
abs(z) returns the magnitude of x ignoring the sign. Before we apply these two
functions on our strings to get our filters, we need to do a simple pre-processing
on the respective string, i.e., P in this case as follows. We extend the string P
by concatenating the first character of P at its end. We use ext(P) to denote
the resultant string. So, we have ext(P) = PP[1]. Since, ext(P) can simply
be treated as another string, we can easily extend the notation and concept of
C(P) over ext(P) and we continue to abuse the notation a bit for the sake of
conciseness as mentioned at the beginning of Section 4.2 (just before Section 4.2).
Now we have the following observation which is the basis of our Filter 2.

Observation 2. Consider a circular string P and a linear string T both having
length n and assume that A = ext(P) and B = ext(T). If C(P) =, T, where
0 < k < n, then we must have

abs total distance(B) —k x 4+ k x 1 < abs total distance(C(.A))
< abs total distance(B) +k x4 —k x 1.

Example 4. Consider the same strings of Example 3, i.e., P = atcgatg, T1 =
aacgatg and T2 = ttcgatg. As can be easily verified, here P =1 T1 and P =1 T2.
Now consider the extended strings and assume that A = ext(P), Bl = ext(T1)
and B2 = ext(T2). It can be easily verified that abs total distance(C(A)) is 14.
Recall that 71 is slightly different from P, i.e, P[2] =t # T1[2] = a. Now we
have 71y = 1123143. Hence Bl = 11231431. Hence, abs total distance(Bl) =
10 which is indeed within the bounds of Observation 2. Now consider 72, which
is slightly different from P, i.e, P[l] = a # T2[1] = t. Now we have T2x =
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4423143. Hence B2y = 44231434. Hence, abs total distance(B2) = 10, which is
also within the bounds. Finally, consider 7' = atagctg, which is again slightly
different from P. It can be easily verified that C(P) #; T'. However, assuming
that B’ = ext(T’) we find that abs total distance(B’) is still 14, which is in the
range of Observation 2. This is an example of a false positive with respect to
Filter 2.

Now we present the following related observation which is the basis of our
Filter 3. Note that Observation 2 differs with Observation 3 only through using
the absolute version of the function used in the latter.

Observation 3. Consider a circular string P and a linear string T both having
length n and assume that A = ext(P) and B = ext(T). If C(P) =, T, where
0 < k < n, then we must have

total distance(B) —k x 4+ k x 1 < total distance(C(A))

< total distance(B) +k x4 —Fk x 1.

Example 5. Consider the same strings of Example 3, i.e., P = atcgatg, T1 =
aacgatg and T2 = ttcgatg. As can be easily verified, here P =1 T1 and P =1 T2.
Now consider the extended strings and assume that A = ext(P), Bl = ext(T1)
and B2 = ext(T2). It can be easily verified that abs total distance(C(A)) is 14.
Recall that 71 is slightly different from P, i.e, P[2] =t # T1[2] = a. Now we
have T1y = 1123143. Hence Bly = 11231431. Hence, total distance(B1) = 0
which is indeed within the bounds of Observation 2. Now consider 72, which
is slightly different from P, i.e, P[l] = a # T2[1] = t. Now we have T2x =
4423143. Hence B2y = 44231434. Hence, total distance(B2) = 10, which is
also within the bounds. Finally, consider 7' = atagctg, which is again slightly
different from P. It can be easily verified that C(P) #; T'. However, assuming
that B = ext(T’) we find that total distance(B’) is still 0, which is in the range
of Observation 2. This is an example of a false positive with respect to Filter 3.

Filter 4. Filter 4 uses the sum() function used by Filter 1, albeit, in a slightly
different way. In particular, it applies the sum() function on individual charac-
ters. So, for # € X' we define suma(P) = >21<,<|p| plij=s Pni]. Now we have
the following observation.

Observation 4. Consider a circular string P and a linear string T both having
length n. If C(P) =i T, where 0 < k < n, then we must have

sumy(T) — k x num(x) < sum,(C(P)) < sumy(T) + k x num(x)

forallx € X.
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Algorithm 1. Approximate Circular Pattern Signature using Observations 1 : 4
in a single pass
1: procedure ACPS FT(P[1:m])

2: define three variables for observations 1, 2, 3

3: define an array of size 4 for observation 4

4: define an array of size 4 to keep fixed value of A, C, G, T

5: s < P[1:m]P[1]

6: initialize all defined variables to zero

7 initialize fixed array to {1,2,3,4}

8: for i + 1 to |s| do

9: if ¢ # |s| then

10: calculate different filtering values via observations 1 & 4 and make a
running sum

11: end if

12: calculate different filtering values via observations 2, 3 and make a running
sum

13: end for

14: return all observations values

15: end procedure

4.3 Reduction of Search Space in the Text

Now we present an O(n) runtime algorithm to reduce the search space of the
text applying the four filters presented above. It takes as input the pattern
P[1 : m| of length m and the text T[1 : n] of length n. It calls Procedure
ACPS FT with P[1 : m] as parameter and uses the output. It then applies
the same technique that is applied in Procedure ACPS FT (Algorithm 1). We
apply a sliding window approach with window length of m and calculate the
values applying the functions according to Observations 1 : 4 on the factor
of T captured by the window. Note that for Observations 2, and 3, we need
to consider the extended string and hence the factor of 7 within the window
need be extended accordingly for calculating the values. After we calculate the
values for a factor of T, we check it against the returned values of Procedure
ACPS FT. If it matches, then we output the factor to a file. Note that in
case of overlapping factors (e.g., when the consecutive windows need to output
the factors to a file), Procedure ACPS FT outputs only the non-overlapped
characters. And Procedure ACPS FT uses a $ marker to mark the boundaries
of non-consecutive factors, where § ¢ X.

Now note that we can compute the values of consecutive factors of 7 using
the sliding window approach quite efficiently as follows. For the first factor,
i.e., T[l..m] we exactly follow the strategy of Procedure ACPS FT. When it
is done, we slide the window by one character and we only need to remove
the contribution of the left most character of the previous window and add the
contribution of the rightmost character of the new window. The functions are
such that this can be done very easily using simple constant time operations.
The only other issue that needs be taken care of is due to the use of the extended
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Algorithm 2. Reduction of Search Space in a Text String using procedure

ACPS FT
1: procedure RSS FT(T[l:n], P[1:m])
2: cAaLL ACPS FT(P[1 : m])
3 save the return value of observations 1 : 4 for further use here
4: define an array of size 4 to keep fixed value of A, C, G, T
5: initialize fixed array to {1,2, 3,4}
6: lastIndex < 1
7 for i <~ 1 to m do
8 calculate different filtering values in 7|1 : m] via observations 1 : 4 and
make a running sum
9: end for
10: if 1 : 4 observations values of P[1 : m] vs 1 : 4 observations values of T[1 : m]
have a match then
11: > Found a filtered match
12: Output to file 71 : m]
13: lastIndex < m
14: end if
15: for i < 1ton —m do
16: calculate different filtering values in 7[1 : m] via observations 1 : 4 by
subtracting i-th value along with wrapped value and adding i + m-th value and
new wrapped vale to the running sum
17: if 1: 4 filtering values of P[1 : m] vs 1 : 4 filtering values of T[i +1: ¢+ m)|
have a match then
18: > Found a filtered match
19: if i > lastIndex then
20: Output an end marker $ to file
21: end if
22: if i +m > lastIndex then
23: if i < lastIndex then
24: j < lastIndex + 1
25: else
26: jei+1
27: end if
28: Output to file T[j : i + m)]
29: lastIndex < i +m
30: end if
31: end if
32: end for
33: end procedure

string in two of the filters. But this too do not need more than simple constant
time operations. Therefore, overall runtime of the algorithm is O(m) + O(n —

m)

= O(n). The algorithm is presented in the form of Procedure RSS FT

(Algorithm 2).
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Table 1. Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple
[5] and our algorithm considering the first three filters only for a text of size 299MB

k=2 k=3 k=4 k=5
Elapsed Elapsed Speed Elapsed Elapsed Speed Elapsed Elapsed Speed Elapsed Elapsed Speed

m Time(s) Time(s) up Time(s) Time(s) up Time(s) Time(s) up Time(s) Time(s) up
of of of of of of of of
ACSMF-Our Al- ACSMF-Our Al- ACSMF-Our Al- ACSMF-Our Al-
simple gorithm simple gorithm simple gorithm simple gorithm

500 9.079  9.932 1 8.664 9.885 1 1045 17986 1 10.821 20.124 1
700 9.994 22.798 0 10.211  23.059 0 10.604 38.117 0 10.031 25.686 0
900 8.87 59.881 0 8.781 61.15 0 8.778  59.747 0 10.621 98.298 0
1000 9.949  32.957 0 11.214 31.264 0 10.814 50.094 0 10.849 55.664 0
1600 9.218  17.648 1 8.309 15.143 1 9.724 2551 0 11.905 25.855 0
1800 10.889 94.992 0 11.794 92.022 0 13.708 100.813 0 14.149 135.089 0
2000 9.89 33.822 0 11.585 31.419 0 11.625 49.459 0 13.156  50.133 0
2200 1042 4.717 2 12.689 5.983 2 13.804 7.299 2 13.974 7.76 2
2400 10.906 70.06 0 12,573 68.952 0 10.36  74.988 0 12.655 105.017 0
2600 9.928  9.31 1 8.279 8563 1 14.268 15.141 1 13.77 15326 1
2800 9.11 5219 2 12,163 5.298 2 13.242 7.255 2 11.368 5.372 2
3000 8.826 8321 1 11.466 9.058 1 10.534 9.767 1 13.535 13.286 1

Table 2. Elapsed-time (in seconds) and speed-up comparisons among ACSMF-Simple
[5] and our algorithm considering all the four filters for a text of size 2099MB

k=2 k=3 k=4 k=5
Elapsed Elapsed Speed Elapsed Elapsed Speed Elapsed Elapsed Speed Elapsed Elapsed Speed

m Time(s) Time(s) up Time(s) Time(s) up Time(s) Time(s) up Time(s) Time(s) up
of of of of of of of of
ACSMF-Our Al- ACSMF-Our Al- ACSMF-Our Al- ACSMF-Our Al-
simple gorithm simple gorithm simple gorithm simple gorithm

500 9.18 2.681 3 8.701  2.77 3 8.701  2.77 3 10.997 3.541 3
700 9.698  2.658 4 10.032 2.97 3 10.032  2.97 3 10.19 3481 3
900 8.506  2.86 3 9.092  3.27 3 9.092  3.27 3 10.758 5.3714 2
1000 9.108 2.878 3 11.506 3.061 4 11.506 3.061 4 10912 4.414 2
1600 9.162  2.589 4 8.479 2707 3 8.479 2707 3 12,516 3.362 4
1800 12.404 2.876 4 11.829 2.897 4 11.829 2.897 4 14.867 3.767 4
2000 11.209 2.769 4 11.535 2.842 4 11.535 2.842 4 13.063 3.485 4
2200 11.189 2.495 4 12.425 2481 5 12,425 2481 5 13.856 2.643 5
2400 12.555 2.794 4 12,503 2.777 5 12.503 2.777 5 12.812 3.365 4
2600 9.912  2.501 4 8.51 2.5 3 8.51 2.5 3 13.546 2.609 5
2750 13.307 2.51 5 11.572 2507 5 11.572 2.507 5 15.158 2.518 6
2800 9.368  2.487 4 12.086 2472 5 12.086 2472 5 11.234 2548 4
2900 11.137 2.667 4 12.318 2531 5 12.318 2,531 5 13.588 2475 5
3000 10.008 2.584 4 11.71  2.53 5 11.71  2.53 5 13.809 2.72 5

4.4 The Combined Algorithm

We have already described the two main components of our algorithm, namely,
Procedure ACPS FT and Procedure RSS FT, which in fact calls the former.
Now Procedure RSS FT provides a reduced text T’ (say) after filtering. At this
point we can use any algorithm that can solve ACPM and apply it over 7’ and
output the occurrences. Now, suppose we use Algorithm A at this stage which
runs in O(f(|77])) time. Then, clearly, the overall running time of our approach
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is O(n) + O(f(|T"])). In our implementation we have used the recent algorithm
of [5]. In particular, in [5], the authors have presented an approximate circular
string matching algorithm with k-mismatches (ACSMF-Simple) via filtering.
They have built a library for ACSMF-Simple algorithm. The library is freely
available and can be found here: [1]. We only apply ACSMF-Simple on the
reduced string.

5 Experimental Results

We have implemented our algorithm and conducted experiments in C++ using
a GNU compiler with General Public License (GPL). As has been mentioned
already above, our implementation uses the ACSMF-Simple [5]. ACSMF-Simple
[5] has been implemented as library functions in the C' programming language
under GNU/Linux operating system.

We have used real genome data in our experiments as the text string, 7. This
data has been collected from [2]. Here, we have taken 299MB of data for our
experiments.

We have conducted our experiments on a PowerEdge R820 rack serve PC
with 6-core of Intel Xeon processor F5-4/600 product family and 64GB of RAM
under GNU/Linux. With the help of the library used in [5], we have compared
the running time of ACSMF-Simple of [5] and of our algorithm. Table 2 reports
the elapsed time and speed-up comparisons for various pattern sizes (500 < m <
3000) and for various mismatch sizes (2 < k < 5). As can be seen from Table 2,
our algorithm runs faster than ACSMF-Simple in all cases.

In order to analyze and understand the effect of our filters we have conducted
further experiments. For space constraints, here, in Table 1, we only present the
results of our algorithm where Filter 4 is omitted, i.e., Filters 1 through 3 are
employed. As can be seen from Table 1, ACSMF-Simple is able to beat this
version of our algorithm in a number of cases. This indicates that as more and
more effective filters are imposed, our algorithm performs better. We believe
after the application of two more filters from [4], we will get even better results.

6 Conclusions

In this paper, we have employed some effective lightweight filtering technique to
reduce the search space of the Approximate Circular Pattern Matching (ACPM)
problem. We have conducted experimental studies to show the effectiveness of
our approach. Much of the speed of our algorithm comes from the fact that our
filters are effective but extremely simple and lightweight.
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titled Advances in Algorithms for Next Generation Biological Sequences.
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Abstract. Assessment of microbial biodiversity is typically made by se-
quencing either PCR~amplified marker genes or all genomic DNA from
environmental samples. Both approaches rely on the similarity of the se-
quenced material to known entries in sequence databases. However, am-
plicons of non-marker genes are often used, when the research question
alms at assessing both functional capabilities of a microbial community
and its biodiversity. In such cases, a phylogenetic tree is constructed
with known and metagenomic sequences, and expert assessment defines
the taxonomic groups the amplicons belong to. Here, instead of relying
on sequences, often missing, of non-marker genes, we use tree reconcil-
iation to obtain a distribution of mappings between genes and species.
We describe efficient algorithms for the reconstruction of gene-species
mappings and a Monte-Carlo method for the inference of distributions
for the cases when the number of optimal reconstructions is large. We
provide a comparative study of different cost functions showing that the
duplication-loss cost induces mappings of the highest quality. Further,
we demonstrate the correctness of our approach using several datasets.

1 Introduction

Phylotype-centric studies of biodiversity of microbial communities have their
obvious limitations - they do not allow reliable prediction of functional capa-
bilities of the community [6]. Therefore, complex microbial communities are ap-
proached with functional analysis in mind. Sequence similarity searches against
reference databases such as KEGG, COG, Pfam or SEED provide in-depth know-
ledge about their metabolism, biochemistry or ecology. However, given our lim-
ited knowledge about microbial biochemistry and the large number of different
species in such communities, important metabolic phenotypes might not be visi-
ble in shotgun metagenomic studies. Therefore, researchers quite often use a dif-
ferent approach to address such issues - amplicons of important genes are used
instead of undirected shotgun sequencing. However, these sequences can rarely
be matched with species. We have only a few dozen well annotated universally
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conserved protein coding marker genes, for example RecA [28]. For the rest of the
genes, LCA-based methods such as MEGAN [14], or phylogeny-based methods
such as MLTreeMap [26], or pplacer [19], have a fundamental issue: if species is
not present in the reference database (i.e. genome is not known), sequence from
this species cannot be accurately placed at the leaf level. In other words, such
methods rely on annotated genes and do not use much richer microbial species
trees, because for majority of these species genomic sequence is unknown.

While phylogenetic trees of prokaryotic genes have typically different topolo-
gies from species tree, there is a prominent coherent trend of tree-like evolution,
that is substantially different from net-like trend produced by horizontal gene
transfer (HGT) [23]. Therefore, it should be possible to reconcile gene trees with
the species tree. While HGT is frequent in microbial world, it was shown that
HGT rates between close species are on average higher than between distantly
related ones [25]. This could mean that ambiguity stemming from HGT events
should not significantly affect reconciliation up from genus level of species tree.

The concept of reconciliation was introduced by Goodman [9] and formalized
by Page [21] in the context of reconciling a gene family tree with its species tree.
In this model, any incongruence between gene and species trees is explained
in terms of evolutionary events such as gene duplication, gene loss and specia-
tion. Reconciliation is interpreted as the embedding of a gene tree into a species
tree where these evolutionary events located in the species tree induce a bio-
logically consistent scenario [11]. By counting gene duplication and loss events
when reconciling trees, we can define a cost function, called a duplication-loss
cost (DL) [30]. Formally, it is the minimal number of gene duplication and loss
events required to reconcile a given gene tree with its species tree. Similarly, we
define gene duplication (D) or deep coalescence (DC) [18,30].

S G’

abcdefg All labelings with minimal reconciliation cost
G a alalaalalafafafafafa]a
? ?|/b|b|b|b|b|b|b|b|b|b|b b f
e elele|le|elele|e|ele|e|e| 2PECcetag
? ?7|d|c|c|d|d|d|c|c|d|d]|d
e elefelelelefelelelefe|e E
? ?7|f|f|lg|lg|lc|c|c|c|lc|d]e
? 7|g|g|f|f|d|le|d|e|c|e|d
? ?|glg|f|fle|ld|e|d|c|e|d
m DL cost: 2 gene duplications + 4 gene losses sawsless] 3 ¢ doe fog

Fig. 1. An example of inference of gene-species mappings showing the heat map that
represents the inferred distributions of species over the leaves of gene tree. Top-left: S
is a species tree with 7 species: a,b,...,g. G is a gene tree with 8 genes. There are 5
sequences in G that have undefined species assignment (marked with “?”). Middle: All
11 labelings that induce the minimal duplication-loss cost, such that every undefined
label in G is replaced with a species from S. The heat map shows the distribution of
species from the set of optimal labelings. Right: G’ is obtained from G by using the
second optimal labeling (marked with gray) E is the embedding of G’ into S [5,11].

Tree reconciliation has been intensively studied in recent decades in many
theoretical and practical contexts including supertree inference, error correc-
tion and HGT detection [2,7,8,12,15,17,25,27,30]. In this article we extend the
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concept of reconciliation by introducing partial mappings where the undefined
value represents an unknown gene-species assignment. We propose to reconstruct
the missing gene-species assignments by seeking for the labeling that extends the
input labeling, and such that it minimizes a given cost. An example is depicted
in Fig. 1. Similar concepts have been studied in several articles. In [20] authors
proposed heuristic algorithms for the reconstruction of gene-species mappings
under DC and a special case of binary gene trees with bijective leaf labellings.
In [31] O(|G||S|?) time algorithm was presented for DC and DL and the anal-
ogous reconstruction problem under general leaf labellings, where G and S are
the gene and species trees, respectively. In different biological context O(|G||S|)
time algorithm was developed for the duplication cost [3].

Our contribution. We propose a reconciliation-based formulation of the gene-
species assignment problem for cost functions such as D, DL, DC and L (gene
loss). Our algorithms run in O(|G||S|) time if trees are binary. Thus, we improve
known algorithm for DC and DL by a factor of |S| and we propose new efficient
algorithm for L. Our solution can be applied to non-binary trees in case of D
or DC, then the time complexity is O(|G||S|ASAG), where AG is the maximal
out-degree of nodes from G. We also propose a Monte-Carlo approach to approx-
imate the distribution of gene-species mappings by sampling the space of optimal
reconstructions. Having this, we provide a comparative study of reconstructions
for our cost functions. These algorithms have been implemented in a software
package written in C+-+ that is publicly available. Our software can also solve
instances composed of unrooted trees (which is not discussed in this article). In
the last section we provide an experimental study showing the performance, and
the quality of mappings’ reconstruction for synthetic and empirical datasets.

2 Basic Definitions and Preliminaries

We provide basic definitions from phylogenetic theory and from the reconciliation
model. Observe that in the classical approach both a gene tree and a species tree
have leaves with labels. In this paper, we are focused on the reconstruction of
gene-species mappings, and therefore, we propose an equivalent definition where
the labeling of leaves is separated from gene trees.

Let G be a rooted tree. By Lo we denote the set of all leaves in a tree G. In
this paper, a rooted tree is a model of a gene tree. We assume that every internal
node of a rooted tree has at least two children. For a gene tree G, by AG we
denote the maximal out-degree of its nodes. For instance, for a non-trivial (i.e.,
not single-noded) binary gene tree G, AG = 2. By |G| we denote the number of
nodes present in G and by g we denote the set of all children of a node g.

A species tree S = (Vg, Eg) is a rooted tree whose leaves are called species. For
vertices a,b € Vg, let a® b be the least common ancestor of a and b in S. We use
the binary order relation a < b if b is a vertex on the path between a inclusively,
and the root of S. For a gene tree G and a species tree S, a (leaf) labeling
from G to S, is a function from the leaves of G into the species (leaves) present
in S. Any leaf labeling A\: Lg — Lg can be extended into the least common
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ancestor mapping, or lca-mapping, My : Vo — Vs defined as My(g) = A(g) if g
is a leaf, and My (g) = Mx(c1)®Mx(c2) D - -® My (cp,) where g = {c1,ca, ..., cn},
otherwise.

Now, we define several known cost functions in a unified approach [10]. First,
we introduce the notion of a scoring function i for K € {D,DL,DC,L} and
a species tree S. For an internal node g with n children from a gene tree G and
a sequence of species nodes {z1,z2,...,2,} from S, {x (1, x2,...,2,) i a con-
tribution to a total cost K when all n children g are mapped into x1, 2, . .., Ty,
respectively. We define the scoring functions for gene duplication (D), deep co-
alescence (DC), gene loss and gene duplication+loss (DL) costs:

o ¢p(z1,ma, .. .yxy) =1(Fe{l,2,....,n}: 2, =21 Dx2 D -+ D),
o {ipcl(xy,xo, ... xp) = Zie{l,Z,...,n} llz1 D ao ® -+ B Xn, 4|,

o {n(x,y) = ||z, yl| — 2(1 — ép(x,y)) (only for binary trees),

e épr(,y) = ép(,y) +&u(z, y),

where 1 is the indicator function, that is, 1(p) is 1 if p is satisfied and 0 otherwise,
and ||z, y|| denotes the length of the shortest path connecting nodes z and y.
Now, we define the cost of reconciliation of a given gene tree G with labeling A
and a species tree S under cost K € {D,L, DL, DC}:

K(G,S,\) := > Ex(Mx(cr), Ma(ca), ..., Mx(cn)).
ge€Ve\Lag, g={c1,c2,....cn}

For example, if K =D then D(G, S, \) is the classical duplication cost [22].

Observe that the duplication-loss cost is usually defined for binary trees [11,21]
due to complications with the biological interpretation of these events when a
multifurcation is present in trees [29,4]. Our definitions, however, are general and
they can be applied to any type of trees under assumption of that non-binary
vertices refer to hard polytomies. Please refer to the literature for a more detailed
study on the reconciliation model [18,21,30,32].

2.1 Problems: Resolving Unknown Gene-Species Mappings

We present several problems related to the reconstruction of gene-species map-
pings. To model undefined labels in gene trees we use the classical mathematical
notion of a partial function. In other words, we express the problem of recon-
struction of gene-species associations in terms of converting a partial function
into a total one. For example, if (a, (L, ¢)) is a gene tree with one undefined label
denoted by L and (a, (b, ¢)) is a species tree, then the problem is to replace L by
a, b or ¢ such that the total reconciliation cost is minimized (in this case b is the
optimal choice for every cost function). See also Fig. 1 for a complex example.

Let G be a gene tree G and S a species tree. Any partial function ¢: Lg — Lg
will be called a partial (leaf) labeling from G into S. Later on, we write ¢(x) = L
if ¢ is undefined for x. Now, we present problems related to the reconstruction
of leaf labelings, i.e., total functions, from partial labelings. Below, we assume
that K € {D,L,DL,DC}.
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Problem 1. Given a gene tree G, a species tree S and a partial labeling ¢ between
G and S. Find a labeling A such that (1) A is a total function that extends ¢,
and (2) K(G, S, ) is minimal in the set of all labelings between G and S.

Such a labeling is called optimal under K. For given trees G, S and a partial
labeling ¢ we denote the minimal cost introduced in Problem 1 by Ko (G, S, ¢).

Problem 2. Given trees G, S and a partial labeling ¢ between G and S. Find
the number of optimal labelings under K that extends ¢.

3 Methods

In this section we propose a polynomial time algorithm for the computation of
optimal costs. Next, we discuss its properties in the context of DL and DC.
Given a gene tree GG, a species tree S and ¢: Lg — Lg a partial labeling we
show how to compute K, (G, S, ¢). The dynamic programming formula has two
components dx (g, s) and 5%(9, s) where g € Viz and s € Vg, such that

e 0 (g,s) is the minimal cost K(G|g, S|s,®) in the set of all labelings v ex-
tending ¢ and satistying My (g) = s, where G|g denotes the subtree of G
rooted at g,

° 5}((9, s) is the minimal cost K (G|g, S|s, 1) + dy in the set of all labelings ¢
extending ¢ and satisfying My (g) < s; dy is the number of additional deep
coalescence events between My (g) and s (i.e., the number of edges between
My (g) and s); these additional events are counted only when K # D.

For dx we have the following formula:

0 if g and s are leaves and ¢(g) € {s, L},
0k (g,s) = < min{w, B} if g is not a leaf,
+00 otherwise,

where, for wpc = 1(K € {L,DL,DC}) we have:

o= min S (6k(ep(d) + 1(K =DC)),
p:g—s —~
p is not a const. function €€9
) Ok (c,s) if p(c) = s,
=1(K € {D,DL}) + min ] R
b ( { ) p: g5 U{s} Z {Jﬁ(c,p(c)) +wpe  if pe) € 5.
p(z)=s for some z €9

Functions p in above definitions denote all valid mapping assignments for the
children of g. In particular, « represents the case when g is a speciation node [11],
i.e., all children of g are mapped below s, and ( represents the case when ¢ is a
duplication node, i.e., at least on child of g is mapped to s.
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The formula for (5}( can be expressed as:

5 (g, 5) = 0k (g,s) if s is a leaf,
KA min{dx (g, s),wpc + minmeg(ﬁ((g, x)} otherwise.

Theorem 1 (Correctness). For a gene tree G, a species tree S, a partial la-
beling ¢ and every standard cost K, Kop(G, S, ¢) = mingeyy dx (root(G), s).

The proof of the next lemma provides details for efficient computation of .

Lemma 1. For a fized g and s, the values of a and B can be computed in
O(AGAS) time.

Proof: A naive approach to computing these values is to enumerate all possible
functions p present in these formulas. In the worst case scenario we have ASAY
and (AS +1)2¢ functions needed for o and 3 computation, respectively. Thus,
the time complexity is O((AS + 1)2%). However, when computing the optimal
cost only, we can use a much more efficient algorithm.

For the computation of «, we need all values of 51( for every pair from g x §.
Then, for every ¢ € g we set p(c) to be an element of arg minxeg(?}( (¢,z). If pis
a not constant function, then

o= 6% (e p(e). (1)

ceg

Otherwise, if p is a constant function, then for every ¢ we have p(c) = z for some
x € 5. Let ¢ and 2’ be a pair of nodes that minimizes 5}((0’,:5’) — 5%(0’,53) in
the set of pairs g x 5\ {«}. It should be clear that the function p’ obtained from
p by setting the value of ¢’ to be 2’ satisfies the equation (1). We conclude that
a can be computed in O(AGAS) time.

Similarly, we compute 8 in O(AG(AS + 1)) time. Details are omitted. I

Theorem 2. The time complexity of computing Kopi(G, S, ¢) by the formula
from Theorem 1 is O(|G||S|ASAG).

Proof. Computing 6k and 51( can be performed by bottom-up tree traversals
that require in total |G||S| steps. By Lemma 1 each step requires O(ASAG) time.

Observe that in the case of binary trees we have an algorithm that runs in
O(]G||S]) time. The dynamic programming formula can be extended by back-
tracking to infer one optimal labeling (Problem 1). The time complexity of such
an extended algorithm is O(|G||S|ASAG). However, when inferring the number
of optimal labelings (Problem 2) every function p present in formulas for o and
B has to be enumerated. Therefore,the time complexity of such an algorithm
(Problem 2) is O(|G||S|(AS + 1)4¢).

In the case of DC, we can propose a better solution. Observe that if a partial
labeling has an empty image, i.e., every gene leaf has undefined label, then
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optimal labelings under DC, that extend such a labeling, are constant functions
that yield the optimal cost 0. To generalize this property, let us call a subtree G’
of G unlabeled under partial labeling ¢ if ¢(g) = L for every leaf g of G'. Then:

Lemma 2. Let ¢: Lg — Ls be a partial labeling. Let a subtree G' of G be
unlabeled under ¢. Then, for every optimal labeling under DC that extends ¢,
leaves of G' have the same label.

We conclude that the computation of optimal DC cost can be solved as follows:
(1) compress G: let G4 be a gene tree G obtained from G by replacing every
maximal unlabeled subtree of G with a single-noded unlabeled tree, and (2)
compute optimal DC cost for G4 and S with the labeling adjusted to capture
the compression of GG. The procedure of compression requires one traversal of G.
Thus, the time complexity is O(|G| + |S||Gy|ASAG,).

3.1 Inferring Gene-Species Distributions

From the practical point of view, the crucial problem is the inference of gene-
species mappings (Problem 1). It can be solved efficiently by our algorithms when
inferring just one labeling. However, in practice the goal would be rather to find
all possible optimal labelings. As already mentioned, it may be difficult due to
potentially large number of optimal solutions. Therefore, instead of computing
all possible optimal labelings, we propose to apply the Monte Carlo method:
(1) repeat random sampling of the space of optimal labelings, and (2) aggregate
inferred labelings into the set of distributions of species associated with the leaves
of a gene tree. To guarantee proper approximation of species’ distribution, the
first step has to be performed under the assumption that every optimal labeling
has the same sampling probability. We solved this problem by computing the
number of possible optimal variants assigned with every pair g and s, when
computing dx and 5}(‘ For example, such variants are represented by functions p
in formulas for « and . Then, the sampling is performed by top-down traversal
of the gene tree and by choosing randomly one variant at each level from a
uniform probability distribution determined by the counts of variants.

The result of aggregation is formally defined as follows. Let us assume that
X ={¢1,b2,...,0,} is the collection of optimal labelings inferred by our sam-
pling method, i.e., for every ¢, we have ¢;: Lg — Lg. Then, for every leaf
g € Lg and a species s we define the species frequency distribution at g by
pg(s, X) = |{i: ¢i(g) = s}|/n. It should be clear that for a fixed g, py(-,X) is a
probability distribution. Such distributions called gene-species distributions can
be presented in the form of a heat map (see Fig. 1).

4 Experimental Evaluation

All the experiments were performed on a server with 256GB RAM and 8 AMD
Opteron processors. The computer program mgremap is written in C+- and is
freely available at http://bioputer.mimuw.edu.pl/gorecki/mgremap.
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4.1 Reconstruction Quality and Runtime Analysis

Assume that we have a species tree and a gene tree with a labeling without
unknown labels. There is a natural way to validate the reconstruction quality:
first mask some labels of the gene tree, then reconstruct them by using our
algorithms and check how many labels were correctly reconstructed.

We generated 650 species trees of size 10%. Each tree was generated by the fol-
lowing procedure: start from a list of 103 single-noded trees representing species,
replace two randomly chosen trees T and 7" with a single tree (7,T") and re-
peat until the list consists of one tree. It can be shown that such a process is
equivalent to the classical Yule-Harding model for rooted tree shapes [13]. Then,
for each species tree .S, we generated one gene tree G with labeling \. We ensure
that the distribution of dissimilarity measure, defined as DC(G, S, ) — 999, in
our dataset is uniformly distributed over the interval [0, 3800]. Note that the
measure ( is equivalent to tree isomorphism.
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Fig. 2. Left and middle: Mean quality score for the reconstructions of gene species
mappings under DL (left) and DC (middle) cost functions. The quality score on the Y
axis represents the correctness of gene-species mapping reconstruction, e.g., if the qual-
ity score is 1.0 then every unknown label was correctly reconstructed. The parameter
k denotes how many labels were set to be unknown in the input labeling of a gene tree.
Note that £ = 1000 denotes the situation when all leaves are undefined. The Y axis
has a different range in both diagrams. Right: Runtime performance for species trees
of size 1000, 2000, . .. 10°, a fixed gene tree of with 1000 leaves, and masking parameter
k. For every instance our program inferred 4000 optimal labelings for DL.

For each (G, S, \) from our dataset, we generated 20 partial labelings by the
masking procedure: set k values of A to be undefined for k € {50, 100, 250, 500, 1000},
in particular £ = 1000 means that every leaf has an undefined label. Then, for
each partial labeling ¢, we computed gene-species distributions from 10* opti-
mal mappings obtained by the MC method for the DC and DL costs. Finally,
for a fixed (G, S, \), a partial labeling ¢ with k undefined labels and their gene-
species distributions, the quality score is the expected value of the probability
that the undefined labels will be correctly reconstructed. Formally, if p are the
gene-species distributions induced by a set X of optimal labelings that extend
¢ then the quality score is: ((G, S, \, ¢,p) = i Z¢>(g):J_ pg(A(g), X) (see Fig. 2).

In the left and middle diagrams of Fig. 2 we summarize the experimental
evaluation. For readability reasons, all 650 pairs of the input trees were split
into bins such that each bin represents pairs whose DC score is between d and
d 4 50, for d starting from 0. For each k& we show mean values of quality score
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Fig. 3. Left: a
gene tree of 100

proteins  similar
to mcrA from
Methanobre-

vibacter rumi-
nantium with 9
unknown  gene-
species labels
M1-M9. Right:
A part of the
SILVA species

tree  with  the
species present in
the reconstructed
gene-species  dis-
tributions.  The
reconstruction of
all optimal label-
ings (484120 in
total) under the
DL cost indicated
that genes MG6-
M9 and M4 were
resolved with a
unique species
assignment, while
the remaining
four genes have
species assign-
ments uniformly
distributed  over
the leaves  of
several  clusters
from the species
tree.
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in these bins. In both diagrams we see trends that can be summarized: the
quality of reconstructions is better when the input trees are similar and when
the number of unknown labels is low. However, even for partial labelings with
high number of undefined values, our algorithms can still properly reconstruct
the majority of labels under DL. In general, our experiments confirmed that DL
can be successfully applied to reconstruct gene-species associations even in the
case when all leaves have unknown labels. On the other hand, the DC cost induces
generally low quality mappings. It can be explained by Lemma 2: leaves of every
unlabeled subtree of a gene tree will be mapped into the same species under DC.
For example in the middle diagram for DC, when the whole gene tree is unlabeled
the constant labeling is optimal yielding the mean score (almost) 0.0. Thus, the
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bijective labelings of the input trees are usually incorrectly reconstructed under
DC and, in consequence, the quality score is low.
The runtime analysis is depicted in the rightmost panel of Fig. 2.

4.2 Empirical Dataset Evaluation

To test the quality we have attempted to reproduce a typical scenario of amplicon
analysis. We have selected mcrA gene, that has been proposed as a marker gene
in the phylogenetic analysis of archeal methanogen populations [16]. Luton and
coworkers had seen a similarity between topologies of mcrA tree and 16S rRNA
tree from corresponding species, which in principle should make the case easier.

First 100 proteins similar to mcrA from Methanobrevibacter ruminantium
were selected using BLAST [1]. The list contained genes from uncultured archeons.
The gene tree was built using program proml from phylip package and tested
with a tree containing over 1400 known FEuryarchaeota species from SILVA
database [24]. In total, we have attempted to resolve mappings of 9 unknown
sequences out of 100. A typical manual interpretation of the gene tree alone, de-
picted in Fig. 3, would lead to mostly unambiguous assignment of all unknown
sequences at least at the genus level. However our method assigned only half of
the sequences unambiguously. The rest have mostly a uniform distribution span-
ning sometimes several genuses. Cross-checking of the results with databases of
known genomes resulted in identification of a single error. One of the sequences
(M1) was assigned to a group consisting mainly of Thermoplasmaceae species.
This is clearly wrong as this taxonomic group does not seem to posses mcrA
gene nor methanogenic function. The other sequences have no such issues.

Despite large differences in tree sizes the final assignment did not differ much
in size from gene tree. While synthetic tests presented above show high level of
accuracy of our method, the evaluation on empirical data indicate that biological
interpretation of results should be important part of the process. Depending on a
situation, interpretation of ambiguity could be either HGT, or selective pressure
or simply understudied branch of species tree.

5 Conclusion and Future Outlook

In this article we proposed the first reconciliation-based approach to infer gene-
species mappings from partial gene tree labelings. We studied properties of this
approach and proposed efficient algorithms for the optimal cost computation and
gene-species assignment inference under several cost functions such as DL or DC.
We showed that the proposed algorithms implemented in the computer program
mgremap are able to infer optimal gene-species mappings even for large input
trees within minutes. The quality validation shows that DL cost performs signi-
ficantly better that DC cost. We also provided a theoretical explanation of this
phenomenon. Finally, the results from empirical tests indicate that our approach
is able to strengthen the taxonomic assignment of metagenomic sequences where
it can be done unambiguously and identify sequences with ambiguous taxonomic
context, which should not be attempted to classify at species or genus level.
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This article is focused on the efficient analysis of a single gene family under

classical duplication related models. Our next step is to extend the model by
considering cost functions with HGTs. Such models, however, are usually com-
putationally hard. Further extensions include methods for the analysis of whole
metagenomic samples that may contain sequences from many gene families.
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Abstract. Inference of a species tree from multi-locus gene trees hav-
ing topological incongruence due to incomplete lineage sorting (ILS), is
currently performed by either consensus (supertree), parsimony analy-
sis (minimizing deep coalescence), or statistical methods. However, sta-
tistical approaches involve huge computational complexity. Accuracy of
approximation heuristics used in either consensus or parsimony anal-
ysis, also varies considerably. We propose COSPEDSpec, a novel two
stage species tree estimation method, combining both consensus and
parsimony approaches. First stage uses our earlier proposed couplet su-
pertree technique COSPEDTree [2] [3], whereas the second stage pro-
poses a greedy heuristic to refine a non-binary (unresolved) supertree
into a binary species tree. During each iteration, it reduces the number
of extra lineages between the current species tree and the input gene
trees, thus modeling ILS as the cause of gene tree / species tree incon-
gruence. COSPEDSpec incurs time and space complexity lower or equal
to the reference methods. For large scale datasets having hundreds of
taxa and thousands of gene trees, COSPEDSpec produces species trees
with lower branch dissimilarities and much less computation.

1 Introduction

Gene trees are constructed by sampling individual genes among a group of taxa,
and subsequently employing phylogenetic reconstruction methods [7]. Rapid in-
crease of molecular phylogenetic data provides a set G of M (> 1) gene trees
covering a set of IV taxa. However, these gene trees often associate conflicting
topologies and branch lengths, due to independent site specific evolution of in-
dividual gene sequences. Genealogical discordance among these M trees can be
so high that no single gene tree topology predominates [7]. So, topology of the
final species tree S may considerably deviate even from the most frequent gene
tree. Such discordance of gene trees with the species tree occurs due to one of
the following three evolutionary processes: 1) Horizontal Gene Transfer (HGT),
2) Gene duplication / loss, and 3) Incomplete Lineage Sorting (ILS) or deep
coalescence (DC) [22]. Here we focus on constructing a species tree S from G,
when the gene tree discordance occurs due to ILS, which is the failure of two or
more lineages in a population to coalesce. So, at least one of the lineages first
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coalesces with a lineage from a less closely related population [7]. For example,
suppose the true species tree S is (X, (Y, (Z, W))), where lineages Z and W co-
alesce at time t;, and subsequently the lineage Y coalesces at time to. However,
in a gene tree G € G, suppose the lineages Y and W first coalesce at time to,
and the lineage Z coalesces with them at time ¢ (t > to > t;, assuming time
increases into the past). In this case, ILS causes discordance between G and S.

Currently, ILS based species tree estimation is done either by concatenation
[24] [6], or by separate analysis [30] techniques. The former infers species tree
using sequence alignment, but does not consider gene tree variabilities with re-
spect to ILS. Separate analysis methods use input tree topologies for species tree
estimation. They can employ summary or consensus clade analysis [14] [31] [32];
subtree decomposition and consensus determination such as ASTRAL [20]; aver-
age rank and coalescence time analysis as in GLASS [21], STEAC [18], maximum
tree [17], iGLASS [12], iISTEAC [11], shallowest divergence (SD) [19], STAR [18];
parsimony analysis by minimizing the number of deep coalescence between S and
G, as mentioned in Phylonet [30] [32] [1], iGTP [4], Notung [8]; minimizing the
sum of Robinson-Foulds (RF) distance [23] between S and G as in mulRF [5], etc.
Statistical modeling based species tree estimation techniques like STEM [13] and
MP-EST [16] (using maximum likelihood), BEST [9], *BEAST [10], BBCA [33],
BUCKYy [15] (using Bayesian statistic), are statistically consistent, but involve
huge computational complexity, thus mostly applicable on small datasets involv-
ing ~ 20 - 30 taxa and < 100 gene trees. Most of the summary based methods
except [32] [1] do not support incomplete (less than N taxa) non-binary input
gene trees. They employ additional heuristics to refine input trees into rooted
binary format, which may reduce performance.

We propose a novel two stage method COSPEDSpec, which uses both consen-
sus and parsimony techniques for species tree construction. First stage produces
a supertree S’ from G, using our previously implemented couplet (taxa pair)
supertree algorithm COSPEDTree [2] [3]. However, resulting tree S’ may not be
completely resolved [2], thus may not form a binary species tree. So, the second
stage refines S’ to form a fully resolved binary species tree S. It uses a novel
greedy heuristic minimum normalized sum of deep coalescence (MNDC), by it-
eratively reducing the sum of extra lineages between the inferred species tree S”
and the input set of gene trees G, at successive iterations. COSPEDSpec works
on rooted input gene trees, to produce a rooted species tree as its output. It
supports incomplete or non-binary gene trees. We show that for large datasets
involving high number of gene trees and taxa, COSPEDSpec produces species
trees mostly with lower branch dissimilarities than reference methods. COSPED-
Spec involves time complexity of O (N 34+ MN?1g N ), and storage complexity of
O (N 2), both of which are equal or lower than existing species tree construction
methods.

Generation of the first stage supertree S’ from input G can be found in our
earlier COSPEDTree algorithm [2] [3]. Section 2 discusses the refinement of S’
using MNDC criterion. Section 3 describes its performance analysis.
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2 Refinement of S’ into Binary Tree S

Directly applying basic COSPEDTree [2] algorithm on the set of gene trees
G may produce non-binary species tree S’, as shown in Fig. 1(a) and Fig. 1(b).
Although multispecies coalescent model [7] does not assume strict binary species
tree, the datasets we have experimented associate binary gene trees. So, we
propose a refinement of S’ into a binary species tree S. Such a refined species

tree is shown in Fig. 1(c).
: B CpE F A BC&A
(a) b) ()

Fig. 1. Example of non binary tree represented (a) as cluster, (b) as tree, (¢) an example
of possible bifurcation based refinement

(

Producing a strict binary tree S requires generating bifurcation among the
taxa clusters underlying any of the multifurcation instance of S’. Example tree
shown in Fig. 1(c) indicates that introducing a bifurcation (speciation) between
the clusters (D) and (B,C), eventually resolves the original tri-furcation (shown
in Fig. 1(b)) by producing a bifurcation among the clusters (E,F) and (D, (B,C)).
We propose an agglomerative clustering technique to generate such bifurcation.
Tts principle is to find a pair of taxa clusters (such as (D) and (B,C)) which
are closest compared to all other cluster pairs. The closeness between a pair of
taxa cluster is determined by a novel distance function, termed as the normal-
ized deep coalescence (NDC), between them. The cluster pair having minimum
value of normalized deep coalescence (MNDC) is termed as closest. They are
inserted as children of a newly introduced bifurcation (speciation) node. In the
current example, a bifurcation (D,(B,C)) is introduced to form a rooted binary
subtree, and the clusters (D) and (B,C) are inserted as its children. The process
is repeated until the original multi-furcation is resolved into a bifurcation (in the
current example, bifurcation among (E,F) and (D, (B,C))). Below we first elab-
orate the NDC based distance function between individual taxa cluster pairs,
and subsequently describe the agglomerative clustering using MNDC criterion.

NDC Between Individual Taxa Clusters: Let us denote for a phylogenetic
tree T, V(T'), E(T), and L(T) as its set of vertices, edges, and the leaves, respec-
tively. Clader(v) denotes the subtree of a tree T rooted at a node v € V(T'). Set
of leaves in Clader(v) is denoted as Clusterp(v). For a set of taxa A C L(T),
let LCAr(A) denotes the least (most recent) common ancestor of all the taxa
in A, with respect to the tree T. With such definitions, suppose g € V(G) and
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s € V(S) are two internal nodes of the respective gene and species trees G (€
G) and S, such that ¢ = LCAg(Clusters(s)). Then, number of leaves under
the subtree rooted at g is Clusterg(g). Number of extra lineages with respect to
s € V(S) and this gene tree G is X L(s, G) = |Clustera(g)| - |Clusters(s)|, where
|.| denotes the cardinality of a set. Total number of extra lineages (also called the
deep coalescence cost) between G and S is XL(S, G) = 3_ v (s X L(s, G). For
a set of gene trees G, the number of extra lineages between S and G is X L(S, G)
= ZGEG XL(S,G).

Following above notations, LC'Ag(CrUCy) denotes the least common ancestor
node of the union of taxa clusters C; and C}, in the gene tree G € G. Suppose
we denote this node as Gg,. If |C;| and |C,| respectively denote the cardinality
of taxa clusters C, and Cy, the node G, associates following number of extra
lineages, apart from the taxa clusters C, and Cj:

XL(Gyy, G) = Clusterc(Gay) — |Ca| — |Cy| (1)

We denote by D(Cy,Cy), the sum of extra lineages X L(Gyy, G) computed for
all the gene trees, as the following:

D(Cs,Cy) = Z XL(Gay, G) (2)
ceG

Now suppose the non-binary species tree S’ has a multi-furcating internal spe-
ciation node, having k (> 2) taxa clusters C1,...,Cy under it. For a particular
cluster C; (1 < i < k), we define D(C;,:), the sum of distances from C; to all
other clusters, as following:

D(Ci,;:)= ) D(Ci,Cy) (3)

1<j<k,i#j

Using above sum for individual clusters C; (1 < ¢ < k), normalized deep co-
alescence (NDC) DN (C,,C,) between individual cluster pairs C, and C, is
computed as:
D(C,,C,)
DN (C,,Cy) = oY 4
( ) D(Cy,:) + D(Cy,:) )
MNDC Criterion Based Agglomerative Clustering: From the NDC func-
tions for individual cluster pairs, the pair (C, Cy) is said to satisfy minimum
NDC (MNDC) criterion, provided:

DN(C,Cy) = min  D¥(CC)) 5
Suggested binary refinement is carried out by iteratively selecting a cluster
pair (Cy, Cy) satisfying the MNDC criterion among the k (> 2) taxa clusters
C1,...,Cy under the multi-furcating internal speciation node. One new internal
node is added in the species tree, and selected clusters C, and C, are placed as
its children. This produces a bifurcation.
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Lemma 1. Above mentioned MNDC' criterion based binary refinement maxi-
mally reduces the number of extra lineages with respect to the current species
tree S’ and the input gene tree set G, during every iteration. That is, for a
particular iteration, reduction in X L(S',G) is mazimum.

Proof. Suppose, the species tree S’ (generated from COSPEDTree) contains a
multi-furcating internal speciation node having k taxa clusters C1,C5,...,Cy
as its children. First we prove the lemma for £k = 3, and later prove for any
k. Considering three clusters C7, Cy and Cjs, suppose the cluster pair (Cy, Cs)
satisfies MNDC criterion. So,

DN(C1,Co) < DN(C1, C3)
D(Cq,Cy) D(C4,Cs)
(Ch,:) + D(Cs,:) ~ D(Ch,:)+ D(Cs,:)
D(Cq,Cy)
(C1,C2) + D(C1,C5) + D(Ca,Cs)
< D(C1,C3)
2D(C1, Cg) + D(CQ, Cg) + D(C1, CQ)

= 5 (Using Eq. 4)

9D
- D(Cl,CQ) < D(Cl,Cg)
X Y -
X4+ 7 < Y47 means X <Y, for positive X, Y, Z
where X :D(Cl, CQ), Y:D(Cl, Cg), Z:D(C1, CQ) +D(C1, Cg) +D(CQ, Cg) )
= Y XL(G12,G) < Y XL(Gu3,G)
ceG ceG

Where G, indicates LC Ag(Cy UCY) for the gene tree G € G. Similarly, we can
show

(Since

> XL(G12.G) < Y XL(G23,G)

ceG ceG
So, creating a speciation node and inserting the clusters (Cy, Cs) as its children,
produces lower sum of extra lineages (with respect to G) compared to merging
other cluster pairs in the current step.

For k > 3, we can similarly show that if (Cy, C3) satisfies MNDC, X L(G12,

G) is minimum of all XL(G;;, G) (where i, j denote cluster indices; 1 < 4,5 < k,
i # 7). Thus, MNDC criterion reduces the extra lineages maximally. O

To continue successive iterations for binary refinement, previously agglomer-
ated cluster pair (Cy,Cy) is treated as a single cluster (say it is denoted as Cyy).
We first adjust the distances from all other taxa clusters C; (1 <i < k,i # z,vy)
to this new cluster Cy, as

D(Clv Cl’y) = maX(D(CZ’ CI)’ D(Ch Cy)a D(CIv Cy))

where max() indicates maximum operation. Employing such heuristic is mo-
tivated by the following lemma:

Lemma 2. For any phylogenetic tree t, and any three distinct taxa clusters X,
Y, Z C L(t), LCA(Z,X UY) is any two of the following: 1) LCA(Z,X), 2)
LCAL(Z,Y), and 3) LCA(X,Y).
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Proof. We can easily verify it from any of the trees in Fig. 1. LCA(Z, X UY)
denotes the root of the subtree containing the triplet (X, Y, Z). So, any two of
the given expressions will map to the root. a

Above lemma indicates that the node LCAq(C; U Cp U Cy) is identical to
any of the following three nodes: 1) LC'Ag(C; U Cy), 2) LCAg(C; U Cy), and
3) LCA¢(Cy U Cy). So, the number of extra lineages D(C}, Cyy) will be any
one of the three quantities: 1) D(C;,Cy), 2) D(C;,Cy), or 3) D(Cy, Cy). Here
we have used the maximum of them as the new approximation of D(C;, Cyy).
Such approximation saves O (M) computation at each iteration, where M = |G|.
Following such adjustment, the normalized distance values (D) are recomputed
according to the Eq. 4. New pairs of clusters are put under a new speciation node,
until the original multi-furcation is completely resolved.

The non-binary tree S’ may have more than one internal multi-furcating
nodes. To resolve S’ into a binary tree S, proposed refinement is applied on the
multi-furcating nodes occurring during the postorder traversal of S’. As individ-
ual refinement steps do not create any new multi-furcation, complete postorder
traversal refines S’ into a strict binary species tree S.

Table 1. Comparison of time and space complexity between COSPEDSpec and refer-
ence methods. M = |G|. N is the number of taxa. Q is the size of largest population.

Method Time Complexity Space Complexity
SMRT [6] O (N®) O (N?)

ASTRAL [20] O (N*M?) O (N?)

iGLASS [12] O (NMQ*+ MN?) O(N’M)

iGTP [4] and SD [19] O (N*M) O (N*M)

Phylonet [30] [32] O (N*M?) O (N?)

mulRF [5] O (N°M) O (N*M)

MP-EST [16], BBCA [33] O (N°M) O (N?)
COSPEDSpec O (N?+MN?1gN) O (N?)

Computational Complexity: COSPEDTree [2] [3] involves O (N?) and
(@) (NZ) time and space complexities for N taxa. COSPEDSpec does not in-
troduce additional storage complexity. Postorder traversal associated with the
proposed binary refinement involves processing at most O (N) internal multi-
furcating nodes. For each such node n € V(S), computation of DV (C,,C,) for
individual pair of taxa clusters (Cy, Cy) within Cladeg(n), requires O (M 1g N)
time. Here, M = |G|. The factor lg N is for finding the LCA(C,,C}) in a gene
tree G, where G contains at most N taxa. As |V (S)| = O (N), refinements for all
multi-furcating nodes require O (N 2) time to compute D values. Thus, com-
plexity for the refinement of S’ is O (M N2lg N ) So, overall time complexity
of COSPEDSpec is O (N3 + MN?1g N). Comparison of time and space com-
plexities between COSPEDSpec and the reference approaches are summarized
in Table 1.
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3 Experimental Results

COSPEDSpec is implemented in Python (version 2.7). Phylogenetic library Den-
dropy [29] is used for reading and processing tree datasets. Evolutionary relations
between individual couplets in the COSPEDTree [2] algorithm were computed
using the default rooting configuration provided in individual datasets.

3.1 Datasets Used

Simulated Mammalian Dataset: We have used the simulated 37-taxon Mam-
malian dataset with 447 gene trees, and the model species tree, as reported in
[20] [26]. We have used the simulated gene trees provided by [20]. There, different
degrees of ILS were modeled by scaling up (2X and 5X) or down (0.2X and 0.5X)
the branch lengths of the model species tree. Another species tree without any
such branch length scaling (denoted as 1X) was used to denote the default ILS
condition. For Mammalian 0.5X dataset, number of gene trees is 16000. Rest of
the datasets contain 4000 gene trees each. Such difference in the count of gene
trees is due to varying number of bootstrap replicates in gene tree simulation.

Simulated 100 Taxa Dataset: We have also used the simulated dataset of 100
taxa [31], containing ten different gene tree sets. Individual set consists of 25
different gene trees. As reported in [31], gene trees associate high topological
dissimilarities among themselves due to high degree of ILS. We have executed
COSPEDSpec and the reference approaches in all the copies, and reported results
for each of them separately.

Biological Dataset: We have analyzed five biological datasets for performance
comparison: 1) Apicomplexan dataset [30] [14] containing eight species and 268
gene trees; 2) Yeast dataset 1 [30] [24] containing seven species and 106 gene
trees; 3) Mammalian dataset [26] containing 37 species and 447 gene trees; 4)
Placental Mammal dataset [18] [27] containing 54 species and 6000 genes; and
5) Yeast dataset 2 [25] of 23 species and 1070 gene trees. The Mammalian [26]
dataset contains 440 distinct gene tree topologies out of 447 gene trees. As re-
ported in [26], [20], such difference in topologies is due to high degree of ILS,
without any recombination or other evolutionary processes. The Yeast dataset 2
[25] is also unique in the sense that no input gene tree topology exactly matches
with the model species tree topology.

3.2 Performance Measures

For evaluation of species trees obtained from different approaches, we have used
following performance measures:

A) Robinson-Foulds (RF) distance [23] between the inferred and the model
species tree, counting the number of bipartitions present in one of the trees, but
not in both. We have normalized the RF values by dividing the bipartition count
with (2N-6), where N is the number of taxa. Species tree having lower RF is
topologically closer to the model species tree.
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Fig. 2. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with biological datasets. Both Phylonet and MulRF could
not parse Placental Mammal dataset. We could not compute DC values for Placental
Mammal dataset, since the dataset could not be parsed using Phylonet (used for DC
value computation). ASTRAL could not process Yeast 1 dataset since input gene trees

contain multi-furcation. Negative scale in y axis is used to mark the instances of zero
RF values.
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Fig. 3. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with simulated mammalian datasets. For the Mammalian-
0.5X dataset, both Phylonet and ASTRAL could not converge to a solution. Negative
scale in y axis is used to mark the instances of zero RF values.

B) Sum of deep coalescence count (sumDC) [19] [30], or the sum of extra lin-
eages X L(S, G), computed using the routine available in Phylonet [30] package.
The value was normalized by dividing it with the number of input gene trees M.
Lower sumDC indicates better species tree. However, a species tree depicting
lowest sumDC may not be always the true species tree.

3.3 Performance Comparison

Performance of COSPEDSpec with respect to above mentioned measures is
benchmarked with the species tree estimation methods ASTRAL [20], Phylonet
[30], mulRF [5], and iGTP [4]. Only the heuristic (default) versions of Phylonet
[30] and ASTRAL [20] were tested, since their exact versions are applicable to
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Fig. 4. Comparison of RF and DC measures between COSPEDSpec and reference
approaches, when executed with simulated 100 taxa datasets. X axis denotes ten gene
tree datasets numbered 1 to 10.

at most 20 taxa. ASTRAL [20] was executed using its default settings, thus not
using any extra bipartitions generated from MP-EST and concatenation analy-
sis. Default rooting was employed for the output trees of ASTRAL, to compute
the sum of deep coalescence (sumDC) with respect to G. Bayesian methods like
BEST [9], *BEAST [10], or BUCKy [15] are not experimented, since they are
computationally intensive even for the datasets involving more than 30 taxa.
Methods MP-EST [16] and RAxML [28] employ both sequence and topology of
input gene trees, thus not exactly comparable with COSPEDSpec.

Performance on Biological Datasets: Performance comparison between
COSPEDSpec and the reference approaches, when executed on the biological
datasets, is provided in Fig. 2. ASTRAL fails to process Yeast 1 dataset [24]
since it does not support non-binary gene trees. COSPEDSpec, on the other
hand, supports non-binary or incomplete gene trees. Both Phylonet and mulRF
packages exhibit parsing error for the Placental Mammal dataset. So we could not
compute the sumDC measure for this dataset. Overall we find that, COSPED-
Spec exhibits lowest or second lowest RF values for all datasets. In terms of
sumDC values, COSPEDSpec is only behind Phylonet and iGTP, both of which
employ parsimony technique to achieve low sumDC.

Performance on Simulated Mammalian Dataset: In this case, the tech-
nique mulRF was excluded from performance comparison, since it required more
than a day for processing such a large number of trees. Results in Fig. 3 show
that COSPEDSpec exhibits best performance across all the measures for the
Mammalian 1X dataset, which best resembles to the true biological dataset. For
other datasets, only ASTRAL consistently produces trees with lower RF than
COSPEDSpec. With respect to sumDC, COSPEDSpec performs better or equal
to the parsimonious approaches iGTP and Phylonet for almost all datasets.
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Further, for the Mammalian 0.5X dataset containing 16000 gene trees, both
ASTRAL and Phylonet having time complexities proportionate to O (M 3) and
O (M 2), respectively, could not generate a solution in a day. COSPEDSpec, with
a time complexity proportionate to O (M), quickly produces the species tree (in
about 20 minutes), thus proving its utility in processing large datasets.

Performance on Simulated 100 Taxa Dataset: Performance comparison
between COSPEDSpec and the reference methods, with respect to the simulated
100 taxa dataset is shown in Fig. 4. Results for all ten gene tree sets have been
reported. COSPEDSpec produces lowest RF values for the majority of these
sets. Only the methods iGTP and Phylonet are comparable with COSPEDSpec,
in terms of the RF values. Considering the measure sumDC, COSPEDSpec per-
forms better than ASTRAL, and equal to the parsimonious methods Phylonet
and iGTP.

Discussion: Overall, the technique mulRF [5] based on minimizing the RF
value between S and G, is computationally intensive for large datasets; such
minimization does not work well for high number of taxa, as shown in Fig. 4.
Parsimony approaches iGTP [4] and Phylonet [30] aiming minimum sumDC,
may converge to local minima as the number of taxa increases. Further, lower
sumDC values with respect to G, do not always indicate lower RF with respect
to the model species tree. ASTRAL [20] produces species tree maximizing the
similarities with input gene tree quartets. For increasing taxa, maximizing such
quartet similarities may often lead to suboptimal solution, as found in the re-
sults for 100 taxa datasets. Both ASTRAL and Phylonet involves high time
complexity with respect to large number of gene trees. Further, ASTRAL does
not support non-binary gene trees. On the other hand, greedy heuristics em-
ployed in COSPEDSpec, produce better performance as the number of gene
trees or taxa increase. One disadvantage of COSPEDSpec is that, the underly-
ing supertree technique COSPEDTree [2] resolves couplets preferably with strict
consensus and most frequent relations (with respect to G). If such relations are
not supported in the final species tree S, topological performance of S may be
low. However, inclusion of such non-consensus relations cannot be predicted from
input tree topologies, and is thus equally probable for other reference approaches
as well. Overall, COSPEDSpec involves low computation and high topological
similarities with respect to the model species tree. So it is applicable for large
biological datasets.

Executable: Executable of COSPEDSpec is provided in
http://facweb.iitkgp.ernet.in/~jay/phtree/ COSPEDSpec/cospedspec.html
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Abstract. A key idea in de novo secondary structure topology determination me-
thods is to calculate an optimal mapping between the observed secondary structure
traces in a Cryo-EM density image and the predicted secondary structures on the
protein sequence. The problem becomes much more complicated in presence of
multiple secondary structure predictions for the protein sequence (for example
those predicted by different prediction methods). We present a novel computa-
tional method that elegantly and efficiently solves the problem of dealing with mul-
tiple secondary structure predictions and calculating the optimal mapping. The
proposed method uses a two-step approach — it first uses the consensus positions of
the secondary structures to produce top K topologies, and then it uses a dynamic
programming method to find the optimal placement for the secondary structure
traces of the density image. The method was tested using twelve proteins of three
types. We observed that the rank of the true topologies is consistently improved
with the use of multiple secondary structure predictions over single prediction.
The results show that the algorithm is robust and works well even in presence of er-
rors/misses in predicted secondary structures from the image or the sequence. The
results also show that the algorithm is efficient and is able to handle proteins with
as many as thirty-three helices.

Keywords: Cryo-EM - Dynamic Programming - Graph - Image - Protein -
Secondary Structure

1 Introduction

The field of electron cryomicroscopy (Cryo-EM) has gone through dramatic growth
in the last few decades, and has become a major technique in structure determination
of large molecular complexes [8] . Unlike X-ray crystallography and Nucleic Magnet-
ic Resonance (NMR), Cryo-EM is particularly suitable for large molecular complexes
such as viruses, ribosomes and membrane-bound ion channels [9-11]. Density maps
with high resolution (2-5 A), the atomic structure can be derived directly, since the
backbone and large side chains are mostly resolved. However, it is computationally
challenging to derive atomic structures from the medium resolution maps (5-10 A).
Two major methods have been previously used to derive atomic structures from the
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medium resolution maps. The first is to fit a known atomic structure in the Cryo-EM
map as a component using rigid-body or dynamic flexible fitting [12, 13]. The other is
to use a template atomic structure from a homologous protein to build and evaluate
potential models [14, 15]. The limitation here is the need for atomic structures that are
either components of or homologous to the protein of atypical size. When there is no
template structure with sufficient similarity, one must devise and use de novo me-
thods. These methods derive the structure from the intrinsic relationship among the
secondary structures visible in the density map, such as a-helices and -sheets.

Although it is not possible to distinguish the amino acids at medium resolutions, sec-
ondary structures such as a-helices (red lines in Fig. 1A) and B-sheets (blue density vox-
els in Fig. 1A) can be identified [18-23]. We have recently developed StrandTwister, a
method to predict the location of B-strands through the analysis of [-sheet twist [24].
A helix detected from a Cryo-EM image can be represented as a line, referred here as an
a-trace, that corresponds to the central axis of a helix (red lines in Fig. 1B). Similarly, a
B-strand can be represented as a B-trace that corresponds to the central line of the B-strand
(Fig. 1B). Secondary structure traces (SSTs) refers to the set of a-traces and P-traces
detected from the 3-demensional (3D) image. In order to know how a protein chain
threads through SSTs, it is necessary to know which secondary structure trace is near the
N-terminal of the protein chain and which trace follows next.
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Fig. 1. Secondary structures and topology. (A) The density map (gray) was simulated to 10 A
resolution using protein 3PBA from the Protein Data Bank (PDB) and EMAN software [1]. The
secondary structure traces (red: helix sticks, blue: sheet, purple: B-strands) were detected using
SSETracer [2] and StrandTwister [6], and viewed using Chimera [17]. For clear viewing, only
those at the front of the structure are labeled. Arrows: the direction of the protein sequence; (B)
The true topology of SSTs (arrow, cross and dot for directions); (C) red rectangles: helix seg-
ments; blue triangles (S5, 57, Sg, and Sg): S-strands; ". . .": loops longer than two amino acids.

In order to help us determine the threading of the protein chain through the SSTs,
we first use a computational method, such as Jpred [5], to predict the subsequences
(sequence segments) of the protein sequence that are likely secondary structures and
then map the SSTs to these subsequences. A fopology of the SSTs refers to their order
with respect to the protein sequence and the direction of each helix or strand. For
example in Fig. 1, Dy, D, ..., Dy, represent the SSTs and S3,S,, ... S1¢ represent the
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subsequences on the protein chain that correspond to secondary structures. In this
case, SSETracer was able to detect twelve helices (red sticks in Fig. 1A) and one
sheet (blue in Fig. 1A) from the density map. StrandTwister was then applied to the
B-sheet density and it detected two (purple stick Fig. 1A and D;3, Dy, in Fig. 1B) of
the four B-strands. For example, Fig. 1 presents a possible topology for the SSTs (it
happens to be the true topology of this known protein structure). Each stick/trace
Dj,j =1, ...,14 corresponds to a sequence segment S; ,i = 1,...,16. a-traces corres-
pond to o-helices on the sequence, and B-traces correspond to B-strands on the se-
quence. Four sequence segments S3,S;,Sg, and Sy are B-strands of a B-sheet. The
true topology maps SSTs (D, D;,DgDyo Dy Dyg Dyy D3 Dg Dy Dg Ds,Dyy Dyy)  to
(51,52,54,55,56,57, 58,510, S11, S12, S13, S14, S15, S16)- Observe that the two B-strands
S; and Sy were note detected in the image. Also, note that there are two possible
directions when mapping sequence segment S; to D; (arrows of Fig. 1A and
dot/cross in Fig. 1B). We have shown previously that finding the optimal mapping
between SSTs and sequence segments is an NP-hard problem [25]. A naive approach
to find the optimal solution requires Q(N'!2V) time, where N is the number of SSTs.
A dynamic programming algorithm has been previously devised to find the optimal
match in O(N22V) computation time, reduced from O(N!2"). In a general case in
which M sequence segments are mapped to N SSTs (assuming M = N,A=M —
N), we previously gave a constrained dynamic programming algorithm and K short-
est path algorithm (in DP-TOSS) to find top K best mappings in O(A*N?2") time
[26].

An optimal topology of SSTs corresponds to a match with the optimal score that
often evaluates the overall differences between the two sets of secondary structures.
The differences can be measured with various factors such as the length of the sec-
ondary structures, the distance between two consecutive secondary structures, and the
likelihood for amino acids being on a loop.

Given a set of SSTs and a set of predicted sequence segments, matching deter-
mines their optimal mapping. However, the accuracy of secondary structure predic-
tion is about 80%, [7, 27-29], similar to that of secondary structure detection from
medium resolution images. Alternative positions for an individual secondary structure
are often needed due to the inaccuracy in the detection or prediction (Fig 2.). Howev-
er, this approach faces huge computational cost. Let N be the number of secondary
structures in a protein. Suppose there are three alternative positions for each helix
segment on the sequence and four alternative positions for each of the SSTs, then
there are 34" possible pairs of secondary structure sets to be matched. The total
number of possible matches will be 3V4VN!2V since there are N!2Ndifferent ways
(or different topologies) to match a given pair.

Designing de novo methods for determining secondary structure topology from
Cryo-EM data is a challenging problem. Although a few de novo methods have been
developed, the efficiency and accuracy of these methods leave room for substantial
improvement. One such method, Gorgon, formulates the topology problem into a
graph matching problem and searches for possible topologies using A* search [30].
Another method, DP-TOSS, formulates the topology problem as a shortest path prob-
lem in a graph and uses the K shortest paths algorithm in combination of dynamic
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programming to produce a set of K top-ranked topologies [3]. DP-TOSS shows im-
proved time and accuracy over Gorgon, particularly when working with large proteins

[3].

Fig. 2. Secondary structure predictions from multiple servers. The amino acid sequence of
protein 2XVV (PDB ID) is labeled at the outermost circle. The positions of helices are shown
as red rectangles from outer to inner circles as the true position of the secondary structures
obtained from PDB, the prediction using SYMPRED[4] , JPred[5], PSIPRED[7] and
PREDATOR[16] respectively. The a-traces detected from density map using SSETracer are
shown in the center.

However, both methods address the mapping problem rather than the placement
problem. One either has to submit the best estimated secondary structure positions to
DP-TOSS or Gorgon, or to run either programs multiple times on alternative positions
that are produced from multiple secondary structure prediction servers. We previously
attempted a dynamic graph approach in which the alternative positions are handled in
the graph update process [31]. This approach yielded, on average, running time that
was about 34% lower than a naive way. In this paper, we present a new more
effective two-step approach. The consensus positions of the secondary structures will
be used in the first step to obtain top K topologies using DP-TOSS. For each such
topology, an efficient dynamic programming algorithm is devised to find the optimal
placement of SSTs. To the best of our knowledge, this is the first algorithm that
handles multiple predicted secondary structures. Moreover, the results show the
algorithm is efficient in terms of running time and improves the ranking of the true

topology.
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2 Methods

2.1 The Secondary Structure Mapping Problem

Suppose that there are N, helices and Np B-strands detected from a 3D image and
N = Ng + Ng. Suppose that there are M, helices and Mg B-strands predicted from
the amino acid sequence of the protein, and M = M, + Mg. For simplicity in de-
scription, we assume M, = N, and Mz = Np and consequently M = N. Our actual
algorithm and implementation handle the case where M # N. Let the sequence
segments of the secondary structures be {S;,S,,...,Sy}, where S; denotes the it"
sequence segment from the N-terminus. Let the SSTs detected from the density map
be {Dy,D,, ..., Dy}, and N = N, + Ng. For convenience, we let Dy, D, ..., Dy, be the
a-traces, and Dy, 41, Dyy42 s Dnyjan 8 be the P-traces. The secondary structure
mapping problem is to find a mapping o from {S;, S,, ..., Sy} to {D;, D, ..., Dy} such
that two criteria are satisfied. (1) Both §; and Dg ;) correspond to a helix or both
correspond to a B-strand; (2) The mapping score is optimal. A variety of factors have
been considered to score a mapping. The length of a helix segment is represented as
the number of amino acids involved in the secondary structure. It can be converted to
the axial length of the helix in 3D using 1.5A rise between two amino acids. There-
fore the length of the helix can be used in comparison during mapping. The length of
a loop between two consecutive helices can also be considered in scoring a mapping.
A rough estimate of the loop length between two sticks is the Euclidean distance be-
tween the two end points of two sticks. However, a better estimation is to measure the
length along skeleton image between the two end points [32-34]. Loop score that
measures the likelihood of a loop and other empirical constraints have also been used
[35]. The scoring function used in this paper consists of skeleton length between two
secondary structure traces, the length of a secondary structure and the loop length.

Given a specific set of secondary structure traces and a specific set of predicted
secondary structure sequence segments, the best match is determined through the
mapping process. In order to cut down the computation, we took a two-step approach
in this paper. In the first step, we used the consensus sequence segments predicted
using SYMPRED [4] as (5,53, ..., Sy), and the detected SSTs as {D;, D,, ..., Dy}.
The idea is to use the best estimation of the secondary structure positions in the first
step to obtain a small number of possible topologies. We applied DP-TOSS, a dynam-
ic programming approach built for a topology graph, to obtain the top ranked topolo-
gies [3]. For each possible topology, the best placement of the secondary structures
will be searched in the second step.

2.2 Dynamic Programming for Finding the Optimal Placement

When there is a small pool of highly ranked topologies, it is possible to identify the
optimal placement of secondary structures for each such topology. The idea is to
enrich the ranking of the true topology using the optimally placed secondary structure
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positions. In this paper we show that there is an efficient dynamic programming me-
thod to find the optimal placement as long as the topology is given.

Let us represent the alternative sequence segments for secondary structure as the
following. Let (Sl-, ail) be the " alternative segment on the amino acid sequence for
secondary structure i,wherel =1,2,...,q,i = 1,2, ..., M. For a given topology, the
order of SSTs and the direction of each trace are known. Let (S;,S,,...,Sy) be
mapped to (Dg(1), Dg(2), - » Dgny)- The optimal placement of secondary structures
on the sequence is to find a placement of the sequence segments
(Sl,ail), (Sz,aéz), ...,(SN,aIZVN), 1<, ..., Iy < q, such that the score of mapping
(Sl,ail), (Sz,aéz), ...,(SN,aIZVN) t0 (Dy(1), Do(z)s - » Do(ny) minimized.

A naive way to find the best placement of a topology is to exhaustively score q"
different ways to map a set of alternative sequence segments to the set of SSTs. A
better way is to use a dynamic programming where we store and reuse information.

Let g(i,k) denote the best cost that can be obtained when (S;,S,,...,S;) is
mapped to (Dg(1), Dg(2ys - » Dg(iy) With the k" placement af used for S;. Then
for any position aijéiﬂ) of S;y1, g(@i+ 1,k") is only affected by the values g(i, k),
where k = 1,2, ...,q, and the score obtained from the relative positioning of the ith
mapped segment and the (i+1)” mapped segment. More precisely, for k' €

{1’ 2’ ;Q} ’

gi+1k) = i (g(i, k) + |l (S(i+1)' 0‘5;1)) - l(Da(i+1))|

+ |d ((Si'a{() - (5(i+1)'aé(il+1))> ~8(Doiy » Docien)) |)

Note that [(Dg(;41)) measures the length of the secondary structure trace Dg;41)
and & (Da(i),Da(iH)) measures the skeleton length between Dg(;y and Dg(yqy in
the 3D image. Ideally, & (D,,(i),D,,(iH)) corresponds to the length of the loop con-

necting the two secondary structures and d(a — b) measures the loop length between
two consecutive secondary structures a and b on the sequence.

2.3  Secondary Structure Predictions from Multiple Servers

We submitted protein sequences to five online servers (SYMPRED[4] , JPred[5],
PSIPRED[7], PREDATOR][16], and Sable [36]) to perform secondary structure pre-
dictions. Since there are always differences in the above predictions, we derive an
initial set of positions of secondary structures. The initial positions include the pre-
dicted positions using SYMPRED together with major predicted difference using
other four methods. Such initial positions were used to obtain initial topologies using
DP-TOSS. Alternative positions of each secondary structure were generated based on
the results from five secondary structure predictions. An optimal placement of SSTs
was searched among alternatives for each of the top ranked topologies.
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3 Results

The accuracy and efficiency of the two-step approach were tested using three kinds of
data: helix-only proteins (five), a-p proteins (five) and Cryo-EM proteins (two). The
three datasets represent increasing level of difficulty in the data. The helix-only pro-
teins are the largest in the dataset, ranging from 207 amino acids (2XB5) to 585 ami-
no acids (2XVV) in length. They are a good test case for the efficiency of our method.
Proteins with B-sheets are generally more challenging than helix-only proteins in
terms of accuracy. Firstly, detection of B-sheets is generally more challenging than the
detection of helices. Secondly, the close spacing of -strands makes it more challeng-
ing to identify the correct topology. True atomic structures of the proteins were down-
loaded from the PDB. For the helix-only proteins and the a-f proteins, each atomic
structure was used to simulate a density map at 10A resolution using EMAN software
[1]. Helices were detected from such density maps using SSETracer [2], and are
represented as a-traces (sticks in Fig. 3).

Fig. 3. The true topology derived from the two-step approach. The true topology is ranked the
40" for protein 2XB5 (PDB ID) in (A) and the 2" for protein 1BJ7 (PDB ID). It is shown in
rainbow color with blue corresponding to the N-terminal of the chain. The SSTs (sticks) were
detected using SSETracer [2]and the connection was selected from skeleton points using
DP-TOSS[3].

In order to test if our two-step approach works for the proteins with -sheets, we first
used the B-traces derived from the true structure for those proteins in the a-f dataset.
The computationally detected p-traces were then used in the test involving Cryo-EM
proteins. For each of the proteins in the test, multiple secondary structure predictions
were performed and the predicted positions of secondary structures were used as the
input information from protein sequence. To find the top 1000 ranked topologies, the
initial secondary structure positions were used to match with the SSTs.

Each of the initial 1000 topologies was reevaluated using the proposed dynamic
programming placement method in searching for the optimal placement. The 1000
optimally placed topologies were sorted based on the mapping score. The rank of the
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true topology was compared among three methods: the one that uses the true positions
of the secondary structures on the sequence, the one that uses consensus (SYMPRED)
prediction, and the one that uses multiple secondary structure predictions with the
dynamic programming algorithm searching for an optimal placement.

As an example for 2XBS5, there are thirteen helices, out of which SSETracer de-
tected nine o-traces from the density image (Fig. 3 & Table 1). Four short helices
were not detected. The detected helices may be shorter/longer or shifted. The consen-
sus server (SYMPRED) predicted ten of the thirteen helices from the amino acid se-
quence. Using the predicted positions provided by SYMPRED, the true topology was
ranked the 977", Yet, when more alternative predictions are available from five pre-
diction servers, our dynamic programming algorithm is fast enough to explore more
alternative positions. It takes 6.94 seconds to generate the top 1000 topologies and to
find each optimal placement for all 1000 topologies. The true topology was ranked
the 40™ (Fig. 3), much improved from 977" when only SYMPRED was used. When
the true sequence position of secondary structures is used, the true topology was de-
rived by our method DP-TOSS [3] as the 1® (Table 1). Although there is inaccuracy
in both secondary structure predictions and the SST detection, Rank_d (40™ ) is close
to Rank_t (11™), both near the top of the huge solution space for possible topologies.
This suggests that the true topology can be ranked near the top even when two sets of
non-perfect data are matched.

Ultimately the rank of the true topology is determined by the overall similarity of
the two sets rather than a few individuals, although they may affect to some extent.
Similar message was suggested from the test using an o-f protein 1BJ7 (Fig. 3 and
Table 1). In this case, the true topology is ranked as the 2"* when multiple secondary
structure predictions and optimal placement were used, much improved from the rank
(>1000) when one prediction is used. It is even better than the rank (4th) when the true
secondary structure positions were used.

We applied the two-step approach to two experimentally derived cryo-EM density
map, (EMDB_5030 and EMDB_1780) that were downloaded from Electron Micro-
scopy Data Bank (EMDB). Each density map corresponds to an atomic structure, and
therefore can be used to test the accuracy of our approach. We extracted the density
component corresponding to chain R of the protein for EMDB_5030 and chain K for
EMDB_1780 respectively (Table 1, section 3). In the case of EMDB_5030, all three
helices and three B-strands were detected using SSETracer and StrandTwister. The
true topology was ranked 55" when multiple secondary structure predictions and
dynamic programming placement were used. Surprisingly, the rank (47") is even
better than the rank derived using true secondary structure positions on the protein
sequence. This is probably due to the existence of inaccuracy in the SST detected
from the density image. Although the two Cryo-EM proteins are smaller than most
other proteins in the test, they are the first two cases demonstrated the success in to-
pology determination directly using computationally obtained B-traces and multiple
secondary structure predictions. Overall, our two-step approach shows improved
ranking of the true topology for nine of eleven tested proteins, when it is compared to
the method that uses a consensus secondary structure prediction. For the rest two
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cases (2KZX, 10Z9), the rank of the true topology is 1% and the 10™ respectively,
already near the top of the list.

Table 1. The rank of the true topology and run-time of the two-step approach

PID* |#a-Helices® #B-Strands* #Q'Sﬂf{ # Ss(a_hlﬁl Rank_t" |Rank_c®|Rank_d" Timei
B-stk” | B-strand) (sec)
Helix-only Proteins
2XB5 13 0 9/0 10/0 11 977 40 6.94
3ACW 17 0 14/0 14/0 408 >1000 485 15.73
30DS 21 0 16/0 17/0 12 198 22 977.18
1Z1L 23 0 15/0 17/0 157 >1000 568 14.19
2XVV 33 0 19/0 27/0 21 >1000 87 1013.0
a-Helix & B-Sheet Proteins
1BJ7 1 9 1/9 1/9 4 >1000 2 7.48
2L6M 2 3 2/3 3/3 6 >1000 42 37.34
2KZX 3 3 3/3 3/5 10 10 10 14.33
1J1L 4 5 4/5 4/5 16 16 14 16.89
10Z9 5 5 5/4 5/3 2 1 1 2.69
Cryo-EM Proteins
3FIN_R
(5030)" 3 3 3/3 3/3 55 97 47 2.11
31Z6_K
(1780)° 3 5 2/5 2/5 2 6 2 12.56
“The PDB ID with chain; * EMDB ID of the experimentally derived Cryo-EM map;
®The number of helices in the true structure;
“The number of B-strands in the true structure;
“The number of o-traces/B-traces detected from the 3D image;
°The number of helices/B-strands predicted by SYMPRED;
"The rank of the true topology using the true sequence position of secondary structures;
The rank of the true topology using consensus secondary structure position SYMPRED;
"The rank of the true topology using multiple secondary structure predictions with dynamic
[programming algorithm for optimal placement;
"The run-time (in seconds) of the two-step approach. It includes the time to generate top 1000
topologies and the total time to find each optimal placement for 1000 topologies;

The execution time of the algorithm is dominated by the first step as the dynamic
programming step requires a relatively short execution time. The total execution time
to determine the best topology for protein 2XVV took a total of 1013 seconds out of
which DP-TOSS took 1002 seconds (Table 1). The dynamic programming algorithm
scales linearly to the product of the number of secondary structures and the number of
possible alternatives for each secondary structure. The experiments in this paper were
executed on a 2x Intel Xenon E5-2660 v2, 2.2GHz server machine.
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4 Conclusions

Due to inaccuracy in the estimation of secondary structures, determination of the to-
pology for SSTs requires the exploration of alternatives. Effective methods are
needed to explore the large solution space resulted from the alternatives. We propose
a dynamic programming algorithm to find the optimal placement when a topology is
given. This algorithm is combined with our previous mapping algorithm and the
shortest K paths algorithm to form a two-step approach. A test using twelve proteins
shows that the two-step approach improves the ranking of the true topology as it is
compared to using single consensus prediction. We demonstrate for the first time that
computationally detected helices and B-strands from an experimentally derived Cryo-
EM density image can be combined with multiple secondary structure predictions to
rank the true topology near the top of the list. Our previous methods were mostly
tested using the true positions of secondary structures. Now we have made a big step
ahead by establishing an efficient algorithm to address the increased computation due
to the alternatives.
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Abstract. KINARI-2 is the second release of the web server KINARI-
Web for rigidity and flexibility of biomolecules. Besides incorporating
new web technologies and making substantially improved tools available
to the user, KINARI-2 is designed to automatically ensure the repro-
ducibility of its computational experiments. It is also designed to fa-
cilitate incorporating third-party software into computational pipelines
and to simplify the process of large scale validation of its underlying
model through comprehensive comparisons with other competing coarse-
grained models. In this paper we describe the underlying architecture of
the new system, as it pertains to experiment management and repro-
ducibility.

1 Introduction

Modeling Protein Flexibility. Structure, flexibility and motion are the key
elements that relate a protein to its function. Yet current experimental meth-
ods and simulation techniques to determine flexibility parameters and to induce
large scale motions are expensive, difficult and insufficiently developed. The re-
cent successes in simulating fast motions [7] do not scale when applied to these
much more challenging types of conformational changes. A different approach to
understanding large-scale domain motions is to use coarse-grained models.

One of the best studied ones is the Gaussian Network Model (GNM), for which
servers [16] and third-party software [9] are available. A different coarse-grained
approach, pioneered by Thorpe and collaborators [14,13], relies on mathematical
results from combinatorial rigidity theory.

These coarse-grained graph-based models for rigidity analysis of protein struc-
tures have been around for over 15 years and several implementations of this
method are available. Several implementations exist, such as the stand alone ex-
ecutable ProFlex-FIRST [8], or the web server FlexWeb http://flexweb.asu.edu.
Yet, the model is still far from providing convincing evidence that the biologically
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relevant (structural and functional) information that has been demonstrated on
a handful of protein structures can be automatically extracted on a larger scale.
This is due, primarily, to the lack of large scale validation efforts. For instance,
several studies have pointed out the sensitivity of the method to cut-off values
and choice of parameters. Inconsistencies in the reported results obtained by dif-
ferent implementations have also been identified recently, and they are difficult
to explain without the ability to easily reproduce the computational experiments
that generated them.

KINARI-Web Server. Similar to FIRST in that it uses the rigidity based
approach, KINARI-Web (http://kinari.cs.umass.edu) is a server for rigidity and
flexibility analysis of biomolecules developed in the group of the senior author
of this paper. There are however several differences in the underlying modeling
and in the algorithms used in KINARI, compared to the other available imple-
mentations. FIRST used a strict, pre-determined scheme for building a graph
from a molecule, in which the main parameter that the user can vary is a cut-off
value for the inclusion of hydrogen bonds. This value is based on a bond en-
ergy calculated with the Mayo formula [10]. FIRST does not curate the protein
and the user has to preprocess a PDB file prior to submitting it for the rigidity
analysis. By contrast, KINARI included from the very beginning several tools
for curating the protein and the option of altering the mechanical model for
experimenting with its parameters. KINARI relies on several third-party, freely
available protein curation tools such as Reduce (for adding Hydrogen atoms
to protein structures determined by X-ray crystallography) or HBPLUS (for
computing the Hydrogen bonds), as well as in-house implementations of other
relevant atomic interactions (such as hydrophobics) and energies. In addition,
KINARI-Web offers an integrated JMol visualizer and it returns to the user the
files produced during curation. This facilitates the process of building the right
model and computationally experimenting with it, and it allows for a better
degree of reproducibility of the results. Indeed, FIRST’s results are often impos-
sible to reproduce without direct access to the specific, typically not publicly
available, curated protein file that was submitted for analysis.

Reproducibility of KINARI-Web Experiments. The purpose of offering
these options in KINARI is the desire to make rigidity analysis a computationally
reproducible process. Our goal is to have a system in which the knowledge of the
PDB id of the protein or access to it in a PDB-formatted file, plus knowledge
of the parameters used during the modeling process would make it possible for
any reader of a paper describing a rigidity analysis experiment to reproduce it.
Towards this goal, KINARI also offered access to the recorded options selected
during the curation process in a configuration file that was made available at
the end of the process.

However, with the increased use of the system and several new applications
being integrated into KINARI, we reached the limitations of the initial design.
This paper describes the new, redesigned user and experiment infrastructure
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underlying KINARI-2, whose goal is to permit full reproducibility of KINARI-
integrated computational experiments. In addition, we are improving and ex-
tending the curation process, and have designed a series of templates (based on
the Model-View-Controller software design paradigm) that will facilitate adding
new modules to KINARI which incorporate third-party software. The need for
this option is described next.

Validation. A major goal of this line of research, independent of the software
tool that one uses, is a thorough validation of the rigidity-based coarse-grained
modeling approach. The two implemented versions of FIRST already used dif-
ferent algorithms. These groups, and other researchers [14,13,5], reported on a
number of studies on specific proteins, where the rigid cluster decomposition
results obtained computationally matched protein flexibility properties observed
in lab experiments. However, more recent, slightly larger scale studies such as
[17,6], observed that the method is sensitive (among others) to the placement
of hydrogen bonds, and that there is no universal cut-off value for the hydrogen
bond energy which would give biologically meaningful results for all the proteins
in a specific dataset. These studies point to the need for systematic and com-
prehensive validation of rigidity analysis results, and of building benchmarking
datasets to assist with this goal.

One approach is to compare the results obtained through rigidity analysis
with other coarse-grained approaches, for which validation studies have been
conducted. These validation studies can themselves be by comparison with other
approaches, but in the end the results of a cluster (or domain) decomposition
should have been compared with biologically relevant properties of specific pro-
tein datasets. Moreover, we do not want just to make one series of runs on a
system versus another and compare them. We want to provide a tool which is
easy to extend for any kind of cluster-decomposition method and for any avail-
able dataset. Thus, from the very beginning we set as our goal to develop a
system in which all computational experiments would be fully reproducible.

Reproducible Protein Dilution Experiments. We illustrate the need for
such an infrastructure through a case study performed in our group and reported
in a companion paper [4]. We have developed there a method for visually com-
paring the rigidity analysis results on sets of proteins related by some common
type of computational experiment. Ultimately, of course, the goal is to compare
the cluster decompositions for any experiment on any family of proteins, but
this is, algorithmically, a very challenging task. To get started, we have chosen
two benchmark applications: Dilution and Mutations on proteins.

The first one is a simplified model for protein unfolding. It is one of the
first applications to demonstrate the usefulness of rigidity analysis and has been
described in [13,12]. Several subsequent protein dilution studies were conducted
by other groups. With the existing tools provided by FIRST, the results are
visualized and reported using a 1D comparison plot called a dilution plot. Our
visualization method proposed in [4] is much more intuitive, being based on
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3D structures. Since our dilution process relies on a different algorithmic kernel
(KINARI versus FIRST), we wanted to make sure that its results are compatible
with those reported in the literature. For this purpose, we have re-implemented
the 1D dilution plots and ran the dilution experiments (in KINARI) on data
for which dilution experiments done with FIRST were reported in the literature
[17,6]. In this way, we came very quickly across a situation where strikingly
different results were obtained. Tracing back the source of the discrepancy, we
found a large difference between the number of hydrogen bonds calculated by
us using HBPLUS [11] (which is third party software integrated with KINARI
to perform these calculations) and the number reported in [6] for the same
protein. Running a different software tool [15] for placing hydrogen bonds still
did not justify the discrepancy. We conjectured several possible scenarios that
could explain the results, but the lack of access to the precise data file on which
the outlier experiment of [6] was conducted made it impossible to settle to a
definitive explanation and remedy. More details about this case study appear in
[3], with an abstract in [4].

This experience prompted us to consider providing, with KINARI, an infras-
tructure where reproducible computational experiments could be carried by all
interested users. The purpose of this paper is to present the design of such an in-
frastructure in the new, extended and improved web server KINARI-2, planned
to be publicly released by the end of the year.

Reproducibility of Protein Data Curation. It is well known that the data
deposited in the Protein Data Bank is not of uniform quality: resolution and
B-factors are parameters recorded with each file which may help with judging
the quality of the experimental data deposited in the PDB. A number of en-
tries in the PDB have been declared obsolete and replaced by others. Tools for
checking the quality of crystallographic data are also available, such as MolPro-
bity [2]. However, the curation process for PDB data required as preprocessing
prior to rigidity analysis is not only about the acuracy of the molecular model.
Kinari Curation includes several steps that are performed with third party soft-
ware, and different software performing the same task may produce different
results. These steps include: adding the hydrogen atoms if the data comes from
an X-ray crystallography experiment; pruning the hydrogen bonds according to
a user-selected cut-off value; selecting the model from among several available
in a file containing data from an NMR experiment; computing the hydrogen
bonds and hydrophobic interactions; building a biological assembly or, possibly,
a small crystal, etc. Wihout precisely recording the entire sequence of steps per-
formed during a curation experiment, the reproducibility of a subsequent rigidity
analysis experiment may be compromised. Therefore, we are placing maximum
emphasis on the management and reproducibility of curation experiments in
KINARI.
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2 Methods and Design

The new KINARI is based on a system to manage users and their experiments
in such a way that: (a) user privacy is guaranteed (we do not require registration
nor verification of the user’s identity); (b) it is easy to get started and resume
experiments (a new user account can be set up at any time, and, within a cer-
tain time span, the user can return and still find around, in that account, the
previously computed data); (c) the user can download all the files resulting from
the computation done in KINARI, including a readable configuration file that
keeps track of all the actions performed on the input PDB file, and (d) the user
can return, upload the previously saved files from some unfinished experiment,
and resume the experiment. Since we do not retain the user experiment data in-
definitely (the temporary storage is cleared automatically during routine main-
tenance procedures), this ensures that the users can conduct longer experiments
in several sessions, and protects them against other unwanted interruptions such
as those due to network connectivity disruptions.

Besides this basic user and experiment management system, our new design
has built-in capabilities for extending the system with new applications, which
correspond to experiment types. Each experiment consists in running one of
these apps. A series of experiments can then be either manually or automatically
streamed into an automatically executed sequence, thus permitting the design
of larger scale experiments on single molecules or on large datasets.

The server side application is implemented in PHP and Python and invokes
JMol and external binaries. It is hosted on an Apache web server. The user
interface is written in HTML5, CSS, JavaScript, JQuery and JsMol scripting.

We describe now the overall structure of the system, and focus afterwards on
the infrastructure for new application, experiment and step design.

2.1 System Design

The infrastructure of KINARI-2 is organized as a collection of applications
(apps), each of which is responsible for performing a particular experiment, or
set of computational tasks. The web server also has a Main component which
serves to log users into the system and provide tools for managing a user’s ongo-
ing or completed experiments. When the user first logs in she is presented with a
list of her experiments and from there can resume an ongoing experiment, delete
experiments, or start new experiments. Once the user chooses to either resume
an ongoing experiment or create a new experiment, control is handed off to the
appropriate app.

For organizational purposes we group apps into domains based on what type
of data the application operates on. For instance, the Gaussian Network Model
(GNM) app included now in KINARI-2 operates on biomolecules, and is grouped
within the “Biomolecules” domain. An overview of this structure is shown in
Fig. 1.
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Each application is broken into a series of logical steps. For instance, the GNM
app example discussed in Sec. 3 performs five steps: Input Retrieve, which re-
trieves a PDB file from the user; Process PDB for GNM, which processes the
PDB in order to produce the appropriate input files for the gnm-domdecomp.e
binary [9]; Run GNM, which runs the gnm-domdecomp.e binary to output a
domain decomposition file; Prepare GNM for JMol, which takes the domain de-
composition file produced by gnm-domdecomp.e and produces a JMol script for
visualizing the results; and Visualize GNM, which displays a JMol visualization
of the domain decomposition to the user.

Lib \\- Cbnc\ude

S

Fig. 1. The architecture of the system

2.2 Application Design

The Control Flow Graph. In the GNM app example, the control flow of
the experiment is linear—each step follows directly from the previous. In other
words, this simple app is obtained by pipelining several steps. However, for
certain applications this is not the case. In all applications the control flow
between steps forms a connected directed acyclic graph (DAG) with a single
initial step (of in-degree 0) and a single final step (of out-degree 0). The initial
step is typically an input retrieval step for obtaining a PDB or other input file.
This can be obtained directly from the user using a file upload or copy-and-
paste, or the user can select to retrieve a file from a publicly available database,
such as the RCSB [1], or select from prebuilt datasets that we curate in-house.
All applications end with a Conclusion step, which gives the user the option to
download the entire history of the concluded experiment. The result can then
be transferred and serve as input to another experiment.

If the out-degree of a step is greater than one, then the step is a branching step.
Here the “next step” may be determined by a user parameter or a computation.
For instance, in the Biomolecule Curation app, after the Summary step which
gives the user a summary of the contents of the file they selected in the Input
Retrieval step, the next step depends on whether the PDB file was obtained
using X-Ray Crystallography or NMR.
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Implementation in the Model-View-Controller Paradigm. Each appli-
cation is implemented as a PHP program in the Model-View-Controller (MVC)
paradigm. Each app has a main application controller, implemented in PHP,
which is responsible for setting up the input files to each step and for navigat-
ing between steps. Each step is managed by its own step controller, which is
responsible for getting additional user parameters by sending a view to the user.
Views are generated as HTML5/JavaScript code, and may contain controls for
gathering user defined parameters. These are sent back to the step controller.
Once the step controller has gathered the necessary input parameters from the
user, it performs its particular task, which typically means executing a python
script or binary to generate output files. After executing its task, the step con-
troller shows an output view to the user which lists all files generated as output
of the step and may include JMol visualizations. The user is then given the op-
tion of continuing to the next step. The state of an experiment is maintained
by an Experiment Configuration File, which is a record of all tasks performed
by the application for the current Experiment. The Experiment Configuration
File is designed to store all information needed to reproduce an experiment from
scratch. See Sec. 2.3.

Navigation. The steps performed during a particular experiment form a path
in the control flow graph of the application. This history path is shown to the
user in the gray navigation bar across the top of the screen. See Fig. 2. When
the user clicks on a previous step the main controller backtracks the experiment
to the state as it existed before the selected step was originally performed. In
other words, all data output by that step and any subsequent steps are erased as
if the subsequent steps had not been performed. This allows the user to tinker
with parameters at any step, see the results, and backtrack as necessary to fine
tune an experiment.

KINARI :: Biomolecules "' GNM

KINematics And Rigidity

Analyze biomolecular stability, flexibility and motion.

Logged in as: abcd | Logout Experiment 16. | Change Experiment Current Data: 1EZM.pdb
Retrieve Biomolecule  Process PDB for GNM  Run GNM [ Prepare GNM for JMol ] ...  Conclude Experiment
«e Ri l l S
KINARI :: Biomolecules GNM
KINematics And Rlgidity
Analyze biomolecular stability, flexibility and motion.
Logged in as: abcd | Logout Experiment 16. | Change Experiment Current Data: 1EZM.pdb
Retrieve Biomolecule [ Process PDB for GNM ] ...  Conclude Experiment

Fig. 2. Example of navigation in the GNM application case study. Top: the user is
on the “Prepare GNM for JMol” step. The current step is displayed in red and the
previous steps are highlighted in blue. The user backtracks to a previous step by clicking
on it. Backtracking removes the steps that occurred after the selected backtrack step.
Bottom: the steps in the history after the user backtracks to the “Process PDB for
GNM step”.
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KINARI :: Biomolecules -'" GNM

KINematics And Rigidity

Analyze biomolecular stability, flexibility and motion.
Logged in as: abed | Logout Experiment 16. | Change Experiment Current Data: 1EZM.pdb

Retrieve Biomolecule  Process PDBfor GNM  Run GNM  Prepare GNM for JMol [ Visualize GNM] ...  Conclude Experiment

Prepare GNM Output for JMol

Conclude Experiment

Step summary:

All files are loaded, and you can now view the PDB in the JMol
visualizer by clicking the "View in JMol” button to the right.

Input files:

« PrepareGNMforJMol/domsJmol.txt
o InputRetrieve/1EZM.pdb

Conclude Experiment

Click the "Conclude Experiment” button above to view a
summary of the experiment and get access to the files.

Fig. 3. Screenshots of the visualization step of the GNM application. The gray nav-
igation bar across the top allows the user to backtrack the experiment to a previous
step.

2.3 Managing an Experiment

An application manages an experiment from start to finish. The goal of our
system design is to enable complete reproducibility for each experiment. To do
this we require two main components, an experiment folder for storing all inputs
and outputs for all steps of the experiment, and an experiment configuration file
detailing the parameters used to perform each step. This allows an experiment to
be rerun from start to finish using exactly the same parameters and allows each
step to be independently verified. The final Conclusion step in each application
gives the user the option of downloading the Experiment Folder which contains
the Experiment Configuration File.

Experiment Folder. The system creates a new Experiment Folder each time
the user starts a new experiment. The folder contains the Experiment Configu-
ration File which stores metadata about the experiment, as well as a separate
output folder for each completed step in the current experiment. Any output
files produced by a step are placed in this folder. These output files may then
be used as input files to future steps.

Experiment Configuration File and Reproducibility. Each step performed
by the user is recorded in an Experiment Configuration file (stored as an XML
document). The file stores the current state of the experiment which includes the
entire history path of the experiment. For each step we record what input files and
parameters were used by the step and what output files were created.



80

J.C. Bowers et al.

2.4 Step Design

Each step in an application is managed by a step controller which performs a
series of tasks. The main lifecycle of a step is as follows.

1.

The app’s main controller sets the input files and parameters for the step
and hands control over to the step controller. The input files to a step must
be output files from a previous step.

. The step controller shows the user an input web page. This page summarizes

what the purpose of the step is, and may obtain additional user parameters
in the form of HTML input controls.

. Any user parameters are sent back to the step controller when the user clicks

a “Run this step.” button on the web page.

. The step controller performs its particular task, typically by executing a

python script or binary on its input files with any supplied user parameters.
For instance, in the GNM app (Sec. 3), the Run GNM step executes the gnm-
domdecomp.e binary to produce the domain decomposition files (dom.txt
and doml.txt).

. The output of (4) is written to the server’s file system in the step’s output

folder.

. The input files, user parameters from (3), and output files generated by (4)

are recorded in the Experiment Configuration File.

The user is shown an output page that states that the step was completed
and allows the user to download the output files from the step. This page
also shows a “Go to next step” button.

. When the user clicks the “Go to next step” button, the app controller is

invoked to load the next step controller and start the process over.

Figure 4 shows a flowchart of the steps above.

Step Lifecycle

k and output files from 3. and 5.

1. Set input files and parameters 2. Show user an input page

I 3. Get user parameters (W_bF’
eb Page

7. Show output page ‘

4. Process step using parameters from 3.

8. Go to next step

( Run External Code ) (Download a ﬁle)

Experiment XML

6. Record user parameters

5. Produce output files

Filesystem

/

Fig. 4. The lifecycle of a step in an application
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3 Results

We illustrate the described methodology with a simple application implemented
in our new system, and with a sketch of some representative steps from the larger
Curation application, which was redesigned both for guaranteeing reproducibility
and for adding much improved visualization tools.

GNM: An Example of a Pipelined Application Running Third-party
Software. Figure 5 illustrates an entire application, chosen to be as simple as
possible for illustration purposes. This application starts by retrieving a protein,
then runs the GNM domain decomposition program [9] on it, and ends with
a visualization of the results in a JMol applet. This application is obtained by
sequentially executing the following five steps. Each step except the first one
retrieves its necessary files from previous steps, and returns the results in a
step-specific folder from which future steps can retrieve them.

1. Input Retrieve: gets an unprocessed PDB file using user input (either from
the RCSB database, or from a file upload, etc.)

2. Process PDB for GNM: runs a python script on the PDB file to create the

correct inputs for the external, third-party GNM application.

. Run GNM: runs the gnm program on the files produced in the previous step.

4. Prepare GNM for JMol: runs a python script on the domain file produced
by the previous step to obtain a JMol script for visualizing the results of
GNM.

5. Visualize GNM: loads the JMol script produced by the previous step and
shows the outcome of the script in a JMol visualizer.

w

The red arrows in Fig. 5 show that the input of each step is given by the output
of previous steps. For instance the output file produced by the Run GNM step
is given as input to the Prepare GNM for JMol step. It should be noted that
the input files to a given step may be output files from any previous step, not
just the step immediately prior. The mapping of output files from prior steps to
input files for each step is saved as part of the Experiment Configuration File.

Curation: An Example of a Branching Application. The Curation appli-
cation starts by retrieving the file, after which a Summary of the biomolecule is
computed. This extracts the experimental method and branches into a step that
extracts for curation a single model from the PDB file (if the method was NMR)
or into a step that performs an operation specific to proteins obtained through
X-ray crystallography, such as the placing of the missing Hydrogen atoms. JsMol
vsualization with step and molecule specific options are also provided on many
Curation steps. For instance, the user will have the option of choosing between
several methods for computing the Hydrogen bonds. For lack of space, we do
not pursue in detail the description of the entire Curation application.
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‘ Input Retrieve Y Process PDB Y Run GNM Y Prepare for JMol Y Prepare for JMol A
i = : - - . - s
Input Files Input Files Input Files Input Files Input Files
None » ¢ PDB File * code.in e dom.out e domJmol.txt
® input.bak
Output Files Output Files e pdb.ca Output Files Output Files
* PDB File e code.in ® sheet.in e domJmol.txt None
® input.bak
e pdb.ca Output Files
® sheet.in e dom.out
e dom1.out
N J\ J\ J\ J\ J

Fig.5. An example application that runs and visualizes the output of the GNM pro-
gram on a protein. Each box is a step in the application. The input files and output
files for each step are listed. In each case the input files for a step are given by output
files from previous steps (denoted by the red arrows).

4 Conclusion

We described the structure of KINARI-2, a web server for conducting repro-
ducible computational experiments on biomolecular data from the PDB or other
sources. The ultimate goal of KINARI-2 is to facilitate rigidity analysis and flex-
ibility calculation experiments, and to contribute to the validation of the rigidity
analysis method by providing tools for comparing its results with those obtained
by other methods. The system architecture presented here has been implemented
and tested. We are currently converting the previous KINARI-Web apps to the
new system, ensuring full reproducibility of those experiments and extending
the system with new and substantially improved tools, which will be described
elsewhere as they are completed.

Authors’ Contributions. IS conceived the project and the overall design of
the system, and oversaw the project. RTJ implemented the first prototype, and
JB redesigned and restructured it into the current version. JB and IS wrote the

paper.
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Abstract. Protein crystallization remains a highly empirical process.
The purpose of protein crystallization screening is the determination of
the main factors of importance leading to protein crystallization. One of
the major problems about determining these factors is that screening is
often expanded to many hundreds or thousands of conditions to maxi-
mize combinatorial chemical space coverage for a successful (crystalline)
outcome. In this paper, we propose a new experimental design method
called “Associative Experimental Design (AED)” that provides a list of
screening factors that are likely to lead to higher scoring outcomes or
crystals by analyzing preliminary experimental results. We have tested
AED on Nucleoside diphosphate kinase, HAD superfamily hydrolase,
and nucleoside kinase proteins derived from the hyperthermophile Ther-
mococcus thioreducens [1]. After obtaining the candidate novel condi-
tions, we have confirmed that AE D method yielded high scoring crystals
after experimenting in a wet lab.

Keywords: Associative Experimental Design - Protein Crystallization -
Screening - Experimental Design

1 Introduction

Protein crystallization is the process of formation of 3-dimensional structure of
a protein. One of the significant difficulties in macromolecular crystallization is
setting up the parameters that yield a single large crystal for X-ray data col-
lection [2], [3]. The major difficulty in this process is the trial of abundance of
parameters with significant number of possible values. Physical, chemical and
biochemical factors such as type of precipitants, type of salts, ionic strengths,
pH value of the buffer, temperature of the environment, and genetic modifica-
tions of the protein affect the crystallization process significantly [4]. Because
each protein has a unique primary structure, it is quite challenging to predict
the parameters of the experiment that can yield crystal for a specific protein [2].
Theoretically, it is possible to crystallize a protein in a specific solution under
certain conditions; however, it may not be possible to crystallize in practice [5].

© Springer International Publishing Switzerland 2015
R. Harrison et al. (Eds.): ISBRA 2015, LNBI 9096, pp. 84-95, 2015.
DOI: 10.1007/978-3-319-19048-8 8
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This means that we can generate hundreds or thousands of conditions to max-
imize combinatorial chemical space coverage hoping for a crystalline outcome.
However, setting up huge number of experiments is not feasible in terms of cost
and time.

Basically, there are two main approaches to set parameters for protein crys-
tallization experiments [6], [7]: 1) incomplete factorial design (IF D) [8], [9] or
sparse matrix sampling (SM.S) [3], [10], and 2) grid screening (G.S) of crystal-
lization conditions [11]. The first approach has been widely used by commercial
companies such as Hampton Research, Emerald Biostructures, etc. [6]. Carter
et al. proposed to set parameters of protein crystallization experiments using
incomplete factorial design in their study [8]. The main goal of incomplete fac-
torial design experiments is to identify important factors of the experiments and
to produce much less number of experiments compared to full factorial design
experiments. The IF D is a very effective method as experts may not afford to
set up many experiments or they may not have enough resources to carry out
those many experiments [12]. The basic idea of IF'D is that after identifying im-
portant factors of the experiments; balanced experiments are generated in terms
of factors. In the sparse matrix sampling [3], parameters of the experiments are
set using fewer major reagents (i.e., pH values, type of precipitants, type of salts,
etc.) as in IF'D. It can be considered as an optimized version of IFD. In SMS,
values of type of salts, pH, and type of precipitants are selected based on past
experiences, and these variables are mostly favorable for protein crystallization
experiments. The reagents occur based on their frequency in the sparse matrix
[10]. This idea was commercialized by Hampton Research [13]. Grid screening
of crystallization conditions [11] is an early method that tries possible different
solutions exhaustively until the experiments succeed. This takes more time and
effort compared to IFD and SMS. However, it could be the only solution for
some of the proteins that have never or rarely been crystallized.

In the literature, there are also some optimization methods based on IFD
and GS [12], [14], [13]. We do not intend to give detail about these methods
in this paper. These studies in macromolecular crystallization generally try to
optimize available conditions changing one or few parameters in the chemical
space such as pH, concentration of precipitant, etc. For example, Snell et. al
optimized the conditions to change the pH value of the buffer and the weight
of the precipitant rather than just changing one value at a time by visualiz-
ing the result [13]. The traditional optimization techniques do not consider new
combinations of reagents [12]. In this paper, we propose a new experimental
design method called Associative Experimental Design (AED) that generates
candidate conditions by analyzing preliminary experimental data. This existing
data is analyzed to determine which screening factors are most likely to lead
to higher scoring outcomes, crystals. Unlike TF'D, AED generates unbalanced
experiments for protein crystallization that may include novel conditions. This
means AED is not a typical optimization method for crystallization conditions.
In the literature, optimization steps usually include changing the pH value, con-
centration, weight of precipitants and salts. The AED method finds small but
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effective number of conditions that may lead to crystallization. The main idea of
the AED method is to generate novel conditions for crystallization by keeping
at least two reagents from promising conditions. Basically, the AED analyzes
other possible interactions between reagents to determine new crystallization
conditions. In this study, we have generated candidate conditions for Nucleoside
diphosphate kinase, HAD superfamily hydrolase, and nucleoside kinase proteins
using preliminary experimental results. After obtaining the candidate novel con-
ditions, we have confirmed that AED method yielded high scoring crystals after
experimenting in a wet lab.

The rest of the paper is structured as follows. Background information is
provided in Section 2. The proposed method, “Associative Experimental Design
(AED),” is explained in Section 3. Experimental results are provided in Section
4. Finally, our paper is concluded with the last section.

2 Background

In this section, we provide some information about the phase diagram, which is
a useful diagram for setting up protein crystallization experiments. We develop
AFED based on the phase diagram, and we believe that a brief explanation of
it would help reader to understand the problem domain and our method. In
addition, we are going to provide some brief explanation of Hampton scores in
this section, since we are going to refer those scores throughout the paper.

2.1 Phase Diagram

In chemistry, a phase diagram is a graphical representation of different phases
(solid, liquid and gas) of a substance with respect to temperature and pressure.
In structural biochemistry, a phase diagram mostly represents solubility curve
of a protein with respect to some parameters such as precipitant, pH, etc. Since
the proteins can grow only in supersaturated solutions, it is important to locate
solubility curve based on these parameters [5], [15]. Thus, the phase diagram
is useful to set parameters for the experiments properly for X-ray diffraction
studies [16]. Figure 1 shows a visual representation of a phase diagram.

SUPERSATURATED

Precipitation Zone

Protein Concentration

Labile Zone
Solubility
Limit
Metastable Zone

UNDERSATURATED

Precipitant concentration

Fig. 1. Phase Diagram
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The phase diagram mainly has two main zones: undersaturated region and
supersaturated region. The supersaturated region consists of three subdivisions
as can be seen in Figure 1. The first region is labile zone, where nuclei of protein
crystals can form and continue growing its structure if the certain conditions are
provided. Once the nucleation starts, protein crystals start using the nutrients
of the solution, which will reduce the concentration of the solution. While the
concentration of the solution reduces, the solution will be in metastable region.
In this region, protein crystal may continue to grow up to its concentration equal
to the solubility limit, if there are nuclei that have formed before. In other words,
new nuclei cannot form in that region [4], [2]. If the supersaturation is too high,
amorphous precipitates can also appear in precipitation zone instead of crystals,
which is not a desirable outcome for crystallization process [5]. Furthermore, the
amorphous precipitates do not yield crystals, when they complete their forma-
tions. Since nucleation can only occur in labile zone, AE D focuses the conditions
that fall into that region. Detailed information will be provided in Section 3.

2.2 Hampton Scoring

Hampton scoring is used to evaluate the growth of the protein during the crys-
tallization experiments. In Hampton scoring, there are 9 scores from 1 to 9. In
most of the experiments, a score that is greater than 7 is desired by the crystallo-
graphers, although scores between 5-7 are also classified as crystals. It should be
noted that mostly crystals that have either score 8 or 9 are able to provide suffi-
cient information about their 3D structures. Table 1 shows the list of Hampton
scores. The brief explanations of some scores' are provided below.

Table 1. List of Hampton scores

Score Outcome Score Outcome
1 Clear solution 6 1D needles
2 Phase change (oiling out) 7 2D plates
3 Regular granular precipitate: 8 3D crystals small, < 200pum
4 Birefringent precipitate or bright spots 9 3D crystals large, > 200um
5  Spheroids, dendrites, urchins

In this study, we focused on scores from 4 to 7 to generate novel conditions
using AED method. The details about AED are provided in Section 3.

! http://hamptonresearch.com/tips.aspx
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3 Proposed Method: Associative Experimental
Design(AED)

3.1 Motivation

In this research, we have generated some crystal screens for a few specific pro-
teins using preliminary crystal screen data with their Hampton scores. We use
3 different proteins to test our approach. There are 86 different crystal screens
in our dataset for the protein Tt189 without considering the conditions having
multiple types of salts or precipitants. This data set contains 9 different salt
concentration values, 23 different type of salts, 7 different pH values, 45 different
precipitant concentration values, 85 different precipitants, 3 different protein
concentration values, where the concentrations and pH values are continuous
data and the other features are categorical data. (Note that type of buffer is
not considered, since it is generally correlated with pH value.) If we consider
full factorial design, it means that we need to set up approximately 16,627,275
different experiments for a single protein based on this dataset without consid-
ering the continuity of some of the variables and this is not feasible. In this
research, our goal is to generate less number of conditions rather than 16.6M
that is more likely to form a crystal. To achieve this goal, we proposed a method
called “Associative Experimental Design (AED).”

3.2 Method

Associative experimental design generates a new set of experiments by analyzing
the scores of experiments already evaluated in the lab. We use almost the same
scores from 1 to 9 provided in Table 1. Since we are using trace fluorescent
labeling (TFL) [17], a score of 4 is assigned to outcomes giving “bright spot”
lead conditions as an exceptional case.

We start with the notation for screening conditions and scores. Let

D = {(C;, Hy) | (Cy, Hy),(Cq, Ha), ..., (Cpy Hp)} (1)

be our dataset consisting of the pairs that include features of the conditions C;
and their scores H; for the i*" solution in the dataset. For simplicity we discarded
conditions that have more than one type of salt or precipitant. We only focused
on three main components of the remaining conditions: type of precipitant, type

of salt and pH value of the solution, while separating their concentrations. Let
C; = {S; [sci] , pH;, Py [peil } (2)

be the set of all the features of i*" crystal screen where i is 1 < i < n, n is
the number of samples in our dataset, S; [s¢;] represents type of salt with the
concentration of sc;, pH; value represents the pH of i" solution, and P; [pc;]
represents type of precipitant with the concentration of pc;. Let R be a subset
of D that contains the crystal screen pairs having a score greater than or equal
to lowy and less than or equal to highg:

R = {(ClaHz) ‘ (CZ,HZ) S D,lOU)H <H; < hith,l <1< TL} (3)
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In our preliminary experiments, we set lowy = 4 and highy = 7. Thus, the
samples that have a score of 8 or 9 are excluded to generate unbiased conditions
for the proteins. Similarly, for simplicity the samples that have score from 1 to
3 have not been included in the result set.

The AED analysis process consists of two major stages. In the first stage, we
process the data to reduce its size as we stated before. Let

Re =A{C; [ (Ci, Hi) € R} (4)

be the set of conditions of R, where SC; = {sc1, sca, ..., sci } represents the all
unique concentration values of the i*" salt, and PC; = {pcy, pca, ..., pcx } repre-
sents the all unique concentration values of i" precipitant. Then, we compare
each C; and C; condition pairs where i # j in R¢. If there is a common com-
ponent between C; and Cj, then we generate the candidate conditions set Z
based on these two sets. For example, let C; = {5, [SCi],pH;, P; [PC;]} and
C; = {S;[5C;],pH;, P; [PC;]} where S; = S; (i.e., the type of salt is com-
mon in C; and Cj). We generate two new conditions Z by switching the other
components among each other. Thus,

Z = {{5:[5C;],pH;;, P; [PCi]}, {S; [SCi], pH;, P; [PC;]}} (5)

is the set of candidate crystal screens for the pair C; and Cj. Similarly, candidate
screens can be generated where pH value or precipitant is common between the
pairs as well. After we generate candidate combinations using these components,
we remove conditions that are replicated or are already in the training data. In
the second stage of our method, we assign unique values of concentrations, gen-
erate SC; and PC};, and unique type of buffers that were used in the preliminary
data to generate finalized crystal screens. At the end, we merge generated results
from two stages of the method. The identified significant factors are output and
used to generate condition screens with factor concentrations varied over the in-
dicated ranges from the analysis. These screens are then used to prepare a new
plate. Since we are comparing each condition with the remaining conditions to
find the common agent, the complexity of our algorithm is O(n?) where n = |R|.
Considering today plate sizes(up to 1536-well plate), we do not expect n is a
very large number. Therefore, this implies O(n?) is a reasonable time for this
problem. Figure 2 shows the flow diagram of AED.

s T Data Generate a list of cocktails Generate triplets of type of salt, type of
Preprocessing 'with score between 4 and 7 precipitant and pH value

" - Generate unigque Generate 2 new Find a common agent
Assign the concentration : ; - :
valligs — concentration values for «— cocktails by swapping [«—— betweaen each triplet
each specific agent different agents pairs
Optimize the cocktails End

Fig. 2. Flow diagram of AED
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Sample Scenario. Figure 3 shows the scores from four experiments from a com-
mercial screen. The figure shows a partial graph of scores for pH value of 6.5.
These conditions led to four scores: 1, 1, 4, and 4. As it can be seen, none
of the conditions lead to a good crystallization condition. Our AED method
finds the common reagent between solutions that could lead crystallization con-
ditions. In this scenario, there are only two promising conditions (with score
4) [ZH(OQCCHg)Q,PEG SK,pH = 65} and [(NH4)QSO4,PEG MMFE 5K,
pH = 6.5]. The AED draws a rectangle where these conditions (with score
4) are the corners of this rectangle (Figure 4). The other corners represent the
candidate conditions. There are two possible conditions for this scenario. One of
them ([(NH4)25804, PEG 8K,pH = 6.5]) already appeared in the commercial
screen with a low score. When we generate the experiment for the other condi-
tion ([Zn(O2CCH3)e, PEG MME 5K,pH = 6.5]), we were able to get a score
of 7 after optimizations. The experiments have not been conducted for others
since they were not on the corners of conditions with promising scores.

Salt

i
score=4 |
i

i . |
Zn(Q:CCHY 1 @ ! |

Nosalt |~ o
(NHe)2S0: - o @

. - ——L_———— Precipitant
PEG 8K C:H:NaO: PEG MME 5K

Fig. 3. Preliminary screen results

i

i O score=4
i

| . score=4
i
i
i
i
i

Salt

:Candidate Conditions:
1 Zn(02CCH3)2, PEG MME 5K, pH=6.5 —score 7

Zn(OLCH3y) 21— i O candidate conditions
/‘ no experiment
No salt |- :fff:::ff:ff::: ,,,,,,,,,,
|Example of generating candidate conditions: :
1Zn(02CCH3)2, PEG 8K, pH=65 —score 4 i
{MNHeRS0s, PEG MME 5K, pH=6.5 —score 4 i
(NH2)2504 — :
i
i

Precipitant

L l L
PEG 8K CH3NaO: PEG MME 5K

Fig. 4. Candidate (green node) conditions that AED generated based on preliminary
data
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We wanted to check that AED is able to generate novel conditions (leading
to crystallization) that do not appear in any commercial screen. A question was
where to draw the distinction between identical, similar, or different screen condi-
tions in comparison to those present in the original or all commercially available
screens. Using the C6 webtool [18], an exact match to an existing commercial
screen condition gives a score of 0. Variations on that condition (change in one
or both precipitant concentrations, or the buffer and/or pH), give scores > 0,
ranging to 1 for completely different conditions. The C6 web tool gives the top
10 matches to the input conditions. Our usual first pass optimization approach
to a lead condition, having precipitants A and B, is to use four solutions; one at
100% A and B, one at 50% A and 100% B, one at 100% A and 50% B, and one at
50% each A and B. The buffer is unchanged for all four conditions. Using the C6
webtool the greatest difference between the starting and optimization conditions
is for the 50% A and B, with a score of 0.269, using a reference condition of 0.5M
ammonium sulfate, 30% PEG 4K, 0.1M Tris-HCI pH 8.5. This is rounded to 0.3
for our threshold score for a different screen condition. Scores > 0 but < 0.3 are
taken to be similar to an existing screen condition, with a score of 0 indicating
identity.

4 Experiments

4.1 Dataset

The Associated Experimental Design (AED) approach was evaluated using pro-
teins derived from the hyperthermophile Thermococcus thioreducens [1]. Six
crystallization screening plates, three using T'F'L’d and three unlabeled protein,
all with the Hampton Research High Throughput screen (HR2-130) had been set
up for each of these proteins as part of a separate experimental program. For this
preliminary test the scores of the results from the second (of the three) plates
for the T'F'L’d protein were used, as this also includes scores of potential cryptic
leads indicated by TFL. One was a difficult crystallizer (Tt106, annotated as a
nucleotide kinase) with no conditions giving needles, plates or 3D crystals; one a
moderate crystallizer (T't82, annotated as a HAD superfamily hydrolase), with
one condition giving 2D plates but none giving needles or 3D crystals; one an
easy crystallizer (T't189, annotated as a nucleotide diphosphate kinase) having
five conditions that gave 3D crystals).

4.2 Results and Discussion

The crystallization screen components that were determined to have the great-
est positive effect were determined by the AED software, and a 96 condition
optimization screen generated using those components for each protein. Opti-
mization was in 96 well sitting drop plates, with the protein being TFL’d to
facilitate results analysis. The successful conditions were identified and scored.
Those conditions giving 2D and 3D crystals were then used to search the C6
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database [18] for similar conditions across all commercially available screens as
a determination of their uniqueness. As the optimization screens had different
concentration ratios for the same precipitant pairs, each ratio where a hit was
obtained was searched and the lowest C6 score was used.

The moderate and difficult proteins, Tt82 and T't106 respectively, were sub-
jected to a second round of optimization based on the results from the first. In
the case of T't82 the second round was a grid screen around a condition that
gave an aggregated mass of plates. Many of the second round optimization wells
also showed clusters of plates. However, in one case a single plate was observed.
Although not pursued, the plate clusters could be excellent starting material
for seeded crystallizations, both with the original and first stage optimization
screening conditions. The second optimization round for protein 7t106 used
ionic liquids as an additive [19], with the lead conditions selected from those
outcomes giving “bright spots” in the first round. Within one week one family
of conditions had 3D crystals, Figure 5. Novelty of the second round conditions
was determined from the grid screen condition for T't82, while it was based on
the parent condition for T¢106. Additional lead conditions were apparent in the
optimization screens for Tt82 and Tt106.

—

Fig. 5. White light (A) and fluorescent images (B) of second round optimization crys-
tals of 7't106. Crystallization conditions: 0.2M Na/K Tartrate, 0.75M Ammonium Sul-
fate, 0.1 M NaCitrate, pH 5.6, 0.1M 1-hexyl, 3-methyl imidazolium chloride. Scale bar
is 300um. All images are to the same scale.

Table 2. Summary of Experiments

Protein Annotated HSHT Screen ® Optimize Screen Novel Cond. vs Novel Cond. vs

Function Score = 7 Score = 8, 9 HSHT Screen* All Screens*
Tt189 (Nucleoside 0/2 5/3 5 4
diphosphate kinase)

Tt82 (HAD superfam- 1/1 0/1 2 2

ily hydrolase)

Tt106 (Nucleoside ki- 0/0 0/1 1 1
nase)

* Using C6 tool for scores of 7, 8, & 9 threshold value of 0.3

> HSHT:Hampton Screen High-Throughput.



Protein Crystallization Screening Using Associative Experimental Design 93

The results are summarized in Table 2. The numerical values in the first two
columns after the protein name refer to the number of conditions with that score
in the original screening experiment (numerator) vs. those with that score in
the optimization screen (denominator). For example, (0/2) indicates two novel
crystallization conditions with the score of 7 (for Tt189), which did not have
score 7 in the original screening experiment. The third column lists the number
of optimization conditions that are novel compared to the original screen, while
the last column lists those that are novel compared to all available screens. All
found conditions were judged to be novel compared to the original screen on
the basis of our cutoff score criteria. For Tt189, one optimization condition was
identical to an existing commercial screen condition.

5 Conclusion and Future Work

According to Table 2, AED generated 7 novel conditions compared to com-
mercially available conditions for 3 different proteins derived from the hyper-
thermophile Thermococcus thioreducens [1]. The results obtained indicate that
scored results from commercially available screens can be analyzed, and that
components that may contribute to the crystallization of the macromolecule
can be derived. Not surprisingly, a number of novel conditions were found for
the facile crystallizer (T't189). However, conditions were also found for both the
moderate and difficult crystallizers, one of which had not shown any results of
needles or better in the original screens (7't106). For all three proteins crystal-
lization conditions were obtained that were novel combinations of the identified
factors.

These results show that AED is an efficient tool to generate novel conditions
based on existing experimental results, which helps to save time and resources,
as well as facilitating more rapid progress. In the future, we plan to include
the conditions that have scores from 1 to 3 into AED analysis. Thus, we may
generate novel conditions that may yield a successful outcome. We are also going
to work on the correlation between original pair of conditions and candidate
conditions by analyzing their scores. By using the scores of the original pairs, we
plan to rank the candidate conditions to determine the conditions for a 96-well
plate.

Acknowledgments. This research was supported by National Institutes of Health
(GMO090453) grant.
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Abstract. Takingtheadvantage of high-throughput single nucleotide poly-
morphism (SNP) genotyping technology, large genome-wide association
studies (GWASs) have been considered to hold promise for unraveling com-
plex relationships between genotypes and phenotypes. Current multi-locus-
based methods are insufficient to detect interactions with diverse genetic
effects on multifarious diseases. In addition, statistic tests for high order
epistasis (> 2 SNPs) raise huge computational and analytical challenges
because the computation increases exponentially as the growth of the car-
dinality of SNPs combinations. In this paper, we provide a simple, fast
and powerful method, DAM, using Bayesian inference to detect genome-
wide multi-locus epistatic interactions on multiple diseases. Experimental
results on simulated data demonstrate that our method is powerful and
efficient. We also apply DAM on two GWAS datasets from WTCCC, i.e.
Rheumatoid Arthritis and Type 1 Diabetes, and identify some novel find-
ings. Therefore, we believe that our method is suitable and effective for the
full-scale analysis of multi-disease-related interactions in GWASs.

Keywords: Bayesian inference - Genome-wide association studies - Ge-
netic factors - Epistasis

1 Introduction

Genome-wide association study (GWAS) has been proved to be a powerful
genomic and statistical inference tool. The goal is to identify genetic suscep-
tibility through statistical tests on associations between a trait of interests
and the genetic information of unrelated individuals [1]. In genetics, genotype-
phenotype association studies have established that single nucleotide polymor-
phisms (SNPs) [2], one type of genetic variants, are associated with a variety of
diseases [3]. The current primary analysis paradigm for GWAS is dominated by
the analysis on susceptibility of individual SNPs to one disease a time, which
might only explain a small part of genetic causal effects and relations for mul-
tiple complex diseases [4]. The word, epistasis, has been defined generally as
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the interaction among different genes [5]. Many studies [6] have demonstrated
that the epistasis is an important contributor to genetic variation in complex
diseases, such as asthma [7][8], breast cancer [9], diabetes[10], coronary heart
disease [11], and obesity [12]. In this article, we consider epistatic interactions as
the statistically significant associations of d-SNP modules (d > 2) with multiple
phenotypes [13].

Recently, the problem of detecting high-order genome-wide epistatic interac-
tion for case-control data has attracted extensive research interests. Generally,
there are two challenges in mapping genome-wide associations for multiple dis-
eases on large GWAS dataset [14]: the first is arose from the heavy computational
burden, i.e. the number of association patterns increases exponentially as the
order of interaction goes up. For example, around 6.25 x 10! statistical tests are
required to detect pairwise interactions for a dataset with 500,000 SNPs. The
second challenge is that existing approaches lack statistical powers for search-
ing high-order multi-locus models of disease. Because of the huge number of
hypotheses and the limited sample size, a large proportion of significant associ-
ations are expected to be false positives. Many computational algorithms have
been proposed to overcome the above difficulties. More details about these tools
can be found in a recent survey [15]. To the best of our knowledge, current
epistasis detecting tools are only capable of identifying interactions on GWAS
data with two groups, i.e. case-control studies. Thus, they are incompetent to
discover genetic factors with diverse effects on multiple diseases. Moreover, they
lose the benefit of alleviating deficiency of statistical powers by pooling different
disease samples together.

In this paper, we design and implement a Bayesian inference method for
Detecting genome-wide Association on Multiple diseases, named DAM, to ad-
dress above challenges. DAM employs Markov Chain Monte Carlo (MCMC)
sampling based on the Bayesian variable partition model, and makes use of
stepwise condition evaluation to identify significant disease(s)-specific interac-
tions. It first generates a candidate set of SNPs based on our Bayesian variable
partition model by applying Metropolis-Hastings (MH) algorithm. A stepwise
evaluation of association is engaged to further detect the genetic effect types
for each interaction. Systematic experiments on both simulated and real GWAS
datasets demonstrate that our method is feasible for identify multi-locus interac-
tion on GWAS datasets and enriches some novel, significant high-order epistatic
interactions with specialties on various diseases.

2 Method

2.1 Notations

Suppose a GWAS dataset D has M diallelic SNPs and N samples. In general,
bi-allelic genetic markers use uppercase letters (e.g. A, B,...) to denote major al-
leles and lowercase letters (e.g. a, b) to denote minor alleles. For encoding three
genotypes, one popular way is to use {1, 2,3} to represent {aa, Aa, AA}, respec-
tively. For a GWAS dataset with L groups, it includes one shared control group
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and L — 1 case groups. We use N&) denotes the number of controls (i.e. normal
individuals) and N denotes the number of cases (i.e. disease individuals) in
i-th groups (i = 1...L —1). X is utilized to indicate the ordered set of SNPs,
and x; represents i-th SNP in X.

Independent| o .1 iate2 State3 State4 States
Association | — — — — o

123123133123129123128123123)12314312312§1231312312302312B 123123123
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123123124312312312312B123123123124312312§123123123123[12312B3123123123
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12312312B12312312312B123123p2312B1]231f2412312p123123f2312B123123f123
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Deper.1dt.ent State 10 State6 State7 State8 State9
Association

Fig. 1. Illustration for 10 states on 3 groups

For a set of L groups, there are By, partitions, and here we also refer partition
to state. Let S denote the set of states, and sy is the k-th state with |s;| non-
empty sets of groups. In general, the M markers are assigned into 2Bj, states,
and all states belong to two categories: si, € {s1,...,sp, } indicates SNP mark-
ers contributing independently to the phenotypes, and si, € {sp,+1,.--,S2B, }
indicates SNP markers that jointly influence the phenotypes. An example for a
three groups dataset with 10 possible states is showed in Figure 1, where states
1 to 5 indicate that SNPs are independently associated with certain phenotypes,
and states 6 to 10 indicate that SNPs are dependently associated with the pheno-
types. In our experiments, group 1 and 2 are cases and group 3 is control. Since
we want to identify SNPs associated with phenotypes, SNPs in states 2 to 5 and
states 6 to 10 are the desired ones with disease associations. Let I = (I1,...,Inr)
record the memberships of SNP with I,,, € {1,...,2B.}, M} denote the number
of SNP markers in k-th state (Ziii My, = M), and D®*) denote genotypes of
SNPs in k-th state.

2.2 Bayesian Variable Partition Model

Consider a categorical variable X, which can be sampled at ¢ different states
{A1, Ag, ..., A} with t different distribution {61, 62, ...,60;}, where Oy, is the
distribution of X at k-th state. The model describing the sums of independently
and identically distributed mixture categorical variables at different states is
referred as a ‘multinomial model’, meaning that it can be partitioned into ¢
inseparable multinomial models. Consider a model for a vector of M categori-
cal variables X = {x1,xa,...,zp}. If all variables are independent, the model
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can be simply treated as the union of M univariate multinomial models. If in-
teractions exist among multiple variables, a new model with a single variable
by collapsing the interacting variables can replace the model for these multiple
variables. The sample space of the collapsed variable is the product of the sam-
ple spaces of the variables before collapsing. Bayesian variable partition model
(BVP) is a multinomial model based on Bayesian theorem. The likelihood for
the multinomial model by given i-th state is

P@%ﬁﬂw::/j%Dthnewd@k
:/ P(Dm|91,02,...,QQ)P(91,92,...,09)dp (1)
61,02,...,0

where D, is the observation for the categorical variable x,,, and ¢ is the number
of category value for the variable z,,. We set P(© = (01,02,...,04)) to be
Dirichlet distribution Dir(o1, o, ..., q4); then we can have a closed form for
Equation 1:

P(DyAr) :/ P(Dun|01, 05, .., 0,)P (01,05, ... 0,)dp
61,02,...,0
-, Y| (O
01,02,...,0,4 B(al,OCQ,...7

(g Tt e I(la)
‘(H r@>>rm+m> .

i=1

where N is the total number of observations, and || is the sum of (a1, as, . .., ay).
Suppose the vector I is a vector of membership of state for categorical variable
vector X, we obtain the posterior distribution of I as

P(I|D) <HP m|1> P(I) 3)

Based on Bayesian theorem, we describe the specific Bayesian variable par-

tition model for genome-wide association mapping as follows. For the SNPs
independently associated with phenotypes, we use O, = ((97%), 05::2), 95:53)) twE
{1,2,...,|skl}, Iz, € {1,...,Br}) to denote the genotype frequencies of SNP
ZTm in ky states. Note that SNP with membership value in {1, ..., Br} does not
have interaction with other SNPs. The likelihood of D*' from BVP model is

that

3
p*6y) = TT TI [T (4)
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(@) (W) (W)

where {nml, Nynd, Ty } are genotype counts of SNP z,, in w-th subset in k;-th

state. Similar to the above assumption, we set Oy, to be a Dirichlet distribution
Dir (o) with parameter « = (aq, a2, a3), we integrate out O, and obtain the
marginal probability:

sky | 3 (w) +OZ(W)) F(|Ot(w)’)
po™n="1[ I ((H o) )F(Nkl,wﬂa(“)’)) ?

I, =k w=1 i=1

Tm

where Ny, ,, is the count of individuals in groups belonging to w-th subset of
k1-th state, and || represents the sum of all elements in a.

SNP markers in state {sp,,$B,+1,...,52p, ) influence the disease statues
through interactions. Thus, we concatenate M, SNPs into a single categorical
variable to resolve the interactions (Br+1 < ko < 2By,). Note that there are 3M’€2

possible concatenated genotype combinations. Let Oy, = (( gw), , e (b My E

w={1,2,...,|sk,|}) be the concatenated genotype frequencies over My, SNPS in
Sky € {SB.+1,---,S2B, }- Similarly, we use a Dirichlet prior Dir (53) for Oy,, 8 =
(81, B2, .-, By, ). According to Equation 2, we obtain the marginal probability:

3Mko (w) (w) (w)
Dk2) I'(n;”) + 5 I([p))
e T:I I e ) reva oy | ©

where Ny, ., is the count of individuals belonging to w-th subset k»-th state and
ngw) is the count of i-th concatenated genotype combinations in w-th subset in
ko-th state.

Combining Equation 3, 5 and 6 , we obtain the posterior distribution of I as

BL 23L
P(I|D) « (H P(D") I)> II Po*In)) P (7)
k2

k=1 =(BL+1)

In BVP, we set P(I) HZE? pIZHk to embed the prior knowledge of the pro-
portions of SNP associating with certain phenotypes. In our experiments with
three groups, we set p, = 0.001,%k € {2,...,10}, and o; = 3; = 0.5,V1, .

2.3 MCMC Sampling

We apply MCMC method to sample the indicator I from the distribution in
Equation 7. According to the prior P(I), DAM first initializes I, then use the
Metropolis-Hastings (MH) algorithm [16] to construct a MCMC to update I
Three types of updating strategies are used: (i) randomly change a SNP’s state,
(ii) randomly exchange two SNPs’ states between (s1,...,s2p,), or (iii) ran-
domly shuffle the state labels between {sp, +1,..., 5285, }. At each iteration, the
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acceptance of new indicator based on the MH ratio, a Gamma functions. DAM
records the entire accepted indicator after the burn-in process, and represent
it as the posterior distribution of single disease-related SNPs and interactions
associated with multiple diseases. The number of iteration in burn-in process is
fixed to 10M and the number of sampling iteration is set to M? in our experi-
ments. We also apply a distance constraint that the physical distance between
two SNPs in multi-locus module is at least 1Mb. This constraint is used to avoid
associations that might be attributed to the LD effects [5].

2.4 Evaluation of Interaction

With the candidate SNPs generated by MCMC sampling, we apply the x? statis-
tic and its conditional test to measure the significance for a dependent SNP as-
sociation. Let A = (1, 22,...,24 : k) denote an SNP module A with d SNPs in
k-th state. We denote its x? statistic as x?(x1, 2, ..., 2q : k) and the conditional
X2 statistic as X% (21, %2, .- ., TalTey, Ty, -5 ., : k) by given a module A and a
subset of it, (z¢,,Zc,, . .., T, ) with d’ SNPs. The x? statistic can be calculated
as

e 34 )2

TL — €
Xz(xl,xQ,n-,I'd:k § § 9isJ gisJ

e
i=1 j=1 9isJ

(®)

where g; is the i-th genotype combination for d SNPs, ng, ; is the number of
individuals having i-th genotype combination in j-th subset in k-th state, and
€g;,; is the corresponding expected value. The degrees of freedom for Equation 8
is (|sk| —1)- (3% —1). The conditional independent test via x? statistic is defined
as follows

" sk 3d- (n () (L)l)z
(@1, @2, - BTy ey ooy Ty 1 K Z Moes O Co01 (9)

v=11i=1 j=1 g“]

where we calculate x? statistic separately for each genotype combination from
A — A’. The degrees of freedom for Equation 9 is 3% - (|sg| — 1) - (397% —1).
In order to avoid redundant SNPs in a SNP module indicating that conditional
independence model fits better, we define an epistatic interaction (d < 2) as a
compact significant SNP module with definition 1.

Definition 1 A SNPs module A = (x1,22,...,24 : k) is considered as a com-
pact significant interaction by given the significant level oy, if it meets the fol-
lowing three conditions:

(1) the p-value of x*(x1,%2,...,2a: k) < ag;

(2) the p-value of X*(x1,2,..., 24 : k) <V p-value of X*(x1,%2,...,2aq: k'), k #
kK and k' € {1,2,...,]5]};

(3) the p-value of x*(x1,%2,...,Ta|Te,, Tey, - - e, k) <ag

for VA" = (z¢),%c,, ..., 2c,, : k) whose p-value < agr.
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Based on definition 1, we develop a stepwise algorithm to search for top-f
significant d-locus compact significant interactions, where the searching space
only includes the SNP markers generated by MCMC sampling. We assume that
one SNP can only participate in one significant interaction in one state. So for
the SNP markers with state in {si1,...,sp, }, we first searches all the modules
with just one SNP based on definition 1, then the algorithm recursively tests all
the possible combinations by setting the module size with one more SNP. For
the SNPs reported as jointly contributing to the disease risk, we calculate the
p-value under different states and use the conditional test if part of SNPs already
reported as significant. All SNPs with significant marginal associations after a
Bonferroni correction are reported in a list IL. The algorithm recursively searches
the interaction space with larger module size until d reaches user preset value.
We add all novel d-way interactions (i.e., no SNPs has been reported earlier)
that are significant after the Bonferroni correction for 2By, - (J;[ ) tests. For the
interactions whose subsets have been reported as compact significant, we use the
conditional independent test, and put the interaction in IL if it is still significant
after Bonferroni correction of 2By, - (Aj) . (U‘li,) tests.

3 Results

To the best of our knowledge, DAM is the first method to detect associations on
multiple diseases, so we first give definitions of 8 simulated multi-disease mod-
els and the power metric measurement, and then evaluate the effectiveness of our
method. The false positive rate of DAM is showed in Supplementary Material.
We also apply DAM on two real GWAS datasets, Rheumatoid Arthritis (RA) and
Type 1 Diabetes (T1D), and we find not only the results reported by other liter-
atures but also some novel interesting interactions. DAM (in Java) is conducted
on a 64-bit Windows 8 platform with 1.8 GHz Intel CPU and 4 GB RAM.

3.1 Experimental Design

Data simulation To evaluate the effectiveness of DAM, we perform extensive
simulation experiments using eight disease models with one- and two-locus asso-
ciations on three groups. The genotypes of unassociated SNP are generated by
the same procedure used in previous studies [14] with Minor Allele Frequencies
(MAFs) sampled from [0.05,0.5]. The odds tables for eight models are showed
in Table 1 in Supplementary Material. Model 5, 6, 7, and 8 are the extensions
of Model 1, 2, 3, and 4, respectively. The settings for four datasets are showed
in Table 2 in Supplementary Material. In a setting, all models are using the
same MAF € {0.1,0.2,0.4}, we generate 100 replicas per setting. Therefore, by
given a MAF, a dataset contains at most 8 associations labeled as Ep 1 to 8.
Note that in model 5 there are 7 associations, because the combination of three
2-locus models does not exist when MAF = 0.1. Each simulated replica con-
tained M = 1000 SNPs. The sizes of three groups are set to (1000, 1000, 2000)
or (2000,2000,4000), where the first two groups are considered as case groups
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and the third one is control group. More details about model simulation can be
found in Supplementary Material.

Statistical power In the evaluation of performances on simulated data, 100
datasets are generated for each setting. The measure of discrimination power
is defined as the fraction of 100 datasets on which the ground-truth associations
are identified as compact and significant by DAM.

3.2 Single-Locus Disease Models

Test results are illustrated in Figure 2 in Supplementary Material for SNPs
contributing independently to the disease risks. We can find that DAM is able
to report nearly 100% of embedded single SNP associations under most set-
tings. Carefully examining the results, we found that some SNPs are incorrectly
assigned to a state by MCMC sampling, although they do have significant as-
sociation with the phenotypes. After the stepwise evaluation, most mistakenly
labeled SNPs are corrected.

3.3 Two-Locus Disease Models

Test results for SNPs contributing jointly to the disease risks are illustrated in
Figure 2. We can find that DAM is able to report nearly 100% of embedded
interactions for dataset 1 and 2. It also obtained nearly full power when MAF is
0.1 for dataset 1, 2, and 4. Similar to the results on single-locus disease models,
after stepwise procedure, more interactions were assigned to correct states.

3.4 Experiments on WTCCC Data

We have applied DAM to analyze data from the WTCCC (3999 cases in total
and 3004 shared controls) on two common human diseases: Rheumatoid Arthritis
(RA), Type 1 Diabetes (T1D), where RA is treated as group 1, T1D is treated
as group 3, and control group is group 3. The procedure of quality control is the
same as presented in the [14]. After SNP filtration the dataset contains 333,739
high quality SNPs. DAM ran about 36 hours, for a total of 1 x 10! iterations.
Because the importance of the MHC region in chromosome 6 with respect to
infection, inflammation, autoimmunity, and transplant medicine has been heavily
reported [17] [18] [19], we concentrate on the results by DAM on Chromosome
6. The posterior probabilities for SNP on Chromosome 6 are showed in Figure 3
in Supplementary Material and Figure 3.

Recent studies [18] [20] has shown that both T1D and RA strongly associated
with the MHC region via single-locus association mapping, which is also verified
by our results that a large portion of SNPs’ posterior probabilities greater than
0.5 spreading in the region 28,477,797 — 33,448, 354. Comparing results from
state 6 to state 7, we can find that many SNPs contributing to RA are not
located inside the MHC region, while the SNPs associated with T1D gather in
MHC region. We select top 50 SNPs according to their posterior probabilities and
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Fig. 2. Performance comparison between DAM with MCMC sampling only and with
stepwise test on simulated disease datasets 1-4 embedded with Joint effect SNPs. Note
that the combination of model 5 with other three 2-locus models does not exist when
MAF =0.1

analyze them with the stepwise evaluation procedure introduced in Section 2.4.
Table 1 summarizes some novel findings of the significant interactions with p-
values adjusted by 1.61 x 10'® for three loci and 1.93 x 10?2 for four loci interac-
tions, respectively. Take the four-locus interaction (rs1977, rs707974, rs10755544,
r$2322635) for example. rs1977 is located inside gene BTN3A2, which encodes a
member of the immunoglobulin superfamily that may be involved in the adaptive
immune response. rs707974 is in gene GPANK1, encoding a protein which plays
a role in immunity. rs10755544 is at the upstream of gene KHDRBS2, which is
thought to involve SH2 domain binding and protein heterodimerization activity.
rs2322635 is located in gene BCKDHB for encoding branched-chain keto acid
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Fig. 3. Posterior probabilities of SNPs on
association probabilities per SNP. X-axis
y-axis shows the posterior probability.

chromosome 6. States 6 to 9 indicate joint
indicates the chromosomal position (Mb),

dehydrogenase, which is a multienzyme complex associated with the inner mem-
brane of mitochondria. BTN3A2 has been shown to associate with T1D in [21].
And mutations in the BCKD gene, BCKDHA, is also known to result in maple
syrup urine disease, which is related to T1D [22].

Table 1. Significant interactions obtained from theWTCCC data. Following each SNP
is its location.

State  DAM  qp SNP 2 SNP 3 SNP 4
Index p-value

6 1.35E-26 rs4634439 £S707974 154236164 152322635
6 1.61E-26 rs6931858 rs707974 rs10755544 rs3805878
7 3.31E-26 rs1977 rS707974 rs10755544 152322635
7 1.86E-35 rs3117425 rs1150753 15239494

7 5.79E-24 1s200481 rs1150753 rs12194665

4 Conclusions

The large number of SNPs genotyped in genome-wide case-control studies poses
a great computational challenge in the identification of gene-gene interactions.
During the last few years, many computational and statistical tools are devel-
oped to finding gene-gene interactions for data with only two groups, i.e. case
and control groups. In this paper, we present a method, named “DAM”, to ad-
dress the computation and statistical power issues for multiple diseases GWASs
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based on Bayesian theory. We have successfully applied our method to system-
atic simulation and also analyzed two datasets from WTCCC. Our experimental
results on both simulated and real data demonstrate that DAM is capable of de-
tecting high order epistatic interactions for multiple diseases at genome-wide
scale.

Supplementary Information. Supplementary Material and DAM software
are available at http://www.cs.gsu.edu/~xguo9/research/DAM.html
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Abstract. Whole genome prediction of complex phenotypic traits using
high-density genotyping arrays has attracted a great deal of attention, as
it is very relevant to plant and animal breeding. More effective breeding
strategies can be developed based on a more accurate prediction. Most
of the existing work considers an additive model on single markers, or
genotypes only. In this work, we studied the problem of epistasis de-
tection for genetic trait prediction, where different alleles, or genes, can
interact with each other. We have developed a novel method MINED to
detect significant pairwise epistasis effects that contribute most to predic-
tion performance. A dynamic thresholding and a sampling strategy allow
very efficient detection, and it is generally 20 to 30 times faster than an
exhaustive search. In our experiments on real plant data sets, MINED is
able to capture the pairwise epistasis effects that improve the prediction.
We show it achieves better prediction accuracy than the state-of-the-
art methods. To our knowledge, MINED is the first algorithm to detect
epistasis in the genetic trait prediction problem. We further proposed
a constrained version of MINED that converts the epistasis detection
problem into a Weighted Maximum Independent Set problem. We show
that Constrained-MINED is able to improve the prediction accuracy even
more.

Keywords: Genetic trait prediction - Mutual information - Epistasis -
Weighted maximum independent set

1 Introduction

Whole genome prediction of complex phenotypic traits using high-density geno-
typing arrays is an important computational problem, as it is relevant in the fields
of plant and animal breeding as well as genetic epidemiology [12,16,4]. Given a set
of biallelic molecular markers, such as SNPs (Single-nucleotide polymorphisms) for
variant sites in the genome of a collection of plant, animal or human samples, with
genotype values encoded as {0, 1, 2} for each variant site, the goal is to predict the
quantitative trait values by simultaneously modeling all marker effects. The traits

© Springer International Publishing Switzerland 2015
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are typically physical properties of the samples, such as height, weight, size, etc. We
show an example of the problem in Figure 1. More accurate genetic trait prediction
can help to develop more effective breeding strategies for both plants and animals
and therefore can save cost and effort for the breeding companies.

Training Data = New Data

Plant Lines Genotype Trait Plant Lines Genotype Trait
line 1 0020202021002 - - - 13.1 line n+1 0002002012200 - - - 12.1
line 2 0020002002001 - - - 9.4 line n+2  2000202010200---  10.3
line 3 2002000102001 -+ 10.3 linen+3 2012020020220- - 9.9
line 4 0020200002202---  11.5 line n+4 2002002010000 - - 10.7
line n 0200202001202+ 12.6 line n+m 0000201010202 - - 11.8

Fig. 1. An example of the quantitative genetic trait prediction. On the left side is the
training data, where each row is a sample, each column of the genotype matrix is a
feature, the trait is the target variable. We build a predictive model on the training
data, and then use the model to predict the trait values of the new data, or test data,
which is of the same format.

A widely used algorithm for the genetic trait prediction problem is rrBLUP
(Ridge-Regression BLUP) [12,21]. The algorithm assumes all the markers con-
tribute to the trait value more or less, and it builds an additive linear regression
model by fitting the genotypes for all the markers on the trait being studied.
It fits the coefficient computed for each marker, which can be considered as a
measure of the importance of the marker. The rrBLUP method has the benefits
of the underlying hypothesis of normal distribution of the trait value and the
marker effects (well suited for highly polygenic traits). It is quick to compute,
robust, and is one of the most used models in whole genome prediction. Its per-
formance is as good as or better than other popular predictive models such as
Elastic-Net, Lasso, Ridge Regression [18,3], Bayes A, Bayes B [12], Bayes Cr [9],
and Bayesian Lasso [10,13], as well as other machine learning methods.

Epistasis is the phenomenon where different alleles, or genes, can interact
with each other. The problem of epistasis detection has been widely studied in
GWAS (Genome Wide Association Studies). Exhaustive search of all possible
epistasis interactions is infeasible even for a small number of markers. Greedy
strategies [14,11,5,22,24,6] have been applied to detect epistasis effects where a
subset of high-marginal effect markers, which are markers that contribute to the
trait themselves, are first selected. Then the test is conducted either between all
the markers in this subset or between the markers in this subset and the remain-
ing markers. These strategies, however, miss all the possible epistasis between
the low-marginal effect markers, which are shown to exist [8]. Xiang et al. [23]
proposed an optimal algorithm to efficiently detect epistasis without conducting
an extensive search. A data structure is created to effectively prune interactions
that are potentially insignificant. In [1], a lasso for hierarchical interactions is
proposed, which again, considers interactions where one or both involved vari-
ables are marginally important. Therefore, it does not meet our requirement of
epistasis where both involved variables might be marginally not important.

These existing methods all target epistasis detection in GWAS. In this work,
we study the problem of detecting significant pairwise epistasis effects for genetic
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trait prediction. As the genetic trait prediction problem is usually modeled as a
linear regression problem, a traditional approach for interactions is a multiplica-
tive model. The pairwise interaction between two genotypes can be modeled as
the product of them, which is considered as a new feature in the linear regression
model. As the number of possible epistasis effects is far more than the number
of samples, naturally a feature selection method is used to select the significant
effects.

Recently, He et al. [7] proposed a feature selection method for genetic trait
prediction, based on the motivation that not necessarily all the marker effects
contribute to the trait values. A feature selection followed by prediction algo-
rithms with cross validation determines the set of marker effects that contribute
most to the prediction. Indeed, unlike the traditional feature selection problem
where generally a very small set of features are selected, here a relatively large
set of features need to be considered, often much larger than the number of
samples. Note that, for complex traits, it is known that many loci contribute to
the traits. Cross validation is applied to determine the set of loci that contribute
the most.

In this work, we proposed an efficient method MINED (Mutual INformation
based Epistasis Detection) to select significant pairwise epistasis effects. To avoid
an exhaustive search of all pairs of interactions, MINED applies a sampling
strategy combined with a dynamic thresholding strategy to efficiently detect
significant epistasis effects. Our experiments show that MINED is much more
efficient than an exhaustive search without loss of accuracy and it is able to
effectively capture epistasis effects that can improve prediction performance. We
show it achieves better prediction accuracy than the state-of-the-art methods. To
our knowledge, MINED is the first algorithm to detect epistasis for genetic trait
prediction problem. We further proposed a constrained version of MINED, which
converts the epistasis detection problem into a Weighted Maximum Independent
Set problem. We show that constrained-MINED is able to improve the prediction
accuracy even more.

2 Preliminaries

The genetic trait prediction problem is defined as follows. Given n training sam-
ples, each with m > n genotype values (we use “feature”, “marker”, “genotype”,
“SNP” interchangeably) and a trait value, and a set of n’ test samples each with
the same set of genotype values but without trait value, the task is to train a pre-
dictive model from the training samples to predict the trait value or phenotype
of each test sample based on their genotype values. Let Y be the trait value of
the training samples. The problem is usually represented as the following linear
regression model: m
Y:50+Zﬁz‘Xi+€z (1)
i=1

where X; is the i-th genotype value, m is the total number of genotypes, §; is
the regression coefficient for the i-th genotype and e; is the error term.
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The pairwise interaction between two genotypes X; and X; is modeled as the
product of the two genotype values. Therefore, with the traditional representa-
tion, the linear regression model with pairwise epistasis interactions is modified
as follows:

Y = 50+ZﬁiXi+Zai,inXj + e (2)

i=1 i.j

where X; X is the product of the genotype values of the i-th and j-th genotype
and it denotes the interaction of the two genotypes while oy ; represents the
coefficient for the interaction.

Unlike the model in Eq. 1, which has O(m) features (single marker effects
only), the epistasis model in Eq. 2 has O(m?) features (both single marker ef-
fects and pairwise epistasis effects). It is unrealistic to consider all O(m?) features
from both complexity and performance perspectives. MINT [7], a mutual infor-
mation based transductive feature selection method, has been shown to have
good performance for genetic trait prediction. MINT selects features based on a
MRMR criterion (Maximum Relevance and Minimum Redundancy), namely the
selected features maximize their relevances to the target variable (trait in our
problem setting) while minimizing the redundancy among the features them-
selves. Both relevances and redundancies are computed as mutual information.
When the relevance is computed, MINT uses only the training data as target
variable. However, when the redundancy is computed, MINT uses both training
and test data as only features (genotypes) are involved and MINT assumes the
features of test data is known apriori. MINT selects features by an incremen-
tal greedy search. Given t the number of target features, MINT works in the
following two stages: (1) First it ranks all the features by relevance and then
selects the top-k most relevant features, where m >> k >> t. This is based
on the assumption that most of the features have low relevance scores and in-
cluding them does not help improve the prediction performance. (2) Secondly, it
selects the features, one at a time, by maximizing an objective function defined
in Equation 3, where S,_1 is the set of selected features at step r — 1, X is the
set of top-k most relevant features, z; is the j-th feature, c is the trait, I(A, B)
is the mutual information between A and B. It is shown that the transductive
strategy can usually lead to better selection performance.

1 Z
mj€§(1§}§7-71 I(‘/I;J’ C) B r—1 cs I(x]’ xi) (3)
Ti€Sr—1

Thus a naive pipeline is to first generate all O(m?) features, then apply a fea-
ture selection method to select a subset of important features. However, gener-
ating all O(m?) features is infeasible for large data sets. Therefore, a challenging
task is to avoid exhaustive search of the O(m?) interactions. This is described
in the next section.

For two given vectors X, Y, their mutual information is computed as follows:
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1Y) =33 ple, y)log W’y))), (4)

ey p(z)p(y

where p(z) is the marginal probability p(X = x) and p(z,y) is the joint proba-
bility p(X = z,Y = y). For vectors with discreet values, we can easily compute
p(x),p(y), p(z,y) by considering the frequency of the corresponding values. For
continuous values, the summation in the above formula should be replaced with
integral, as follows:

I(X,Y):/Y/Xp(x,y)log(pl()g;;(y;))dmdy.

As the trait values are continuous, we perform discretization on the trait
values. We first compute the z-score of phenotype value for each sample as w(;“ .
Then, we assign discretized values to samples according to their z-score using
the following formula:

—1 if z-score < -1
discretized value = { 1 if z-score > 1
0 otherwise

3 Methods

3.1 MINED: Mutual Information Based Epistasis Detection

To efficiently detect epistasis effects for genetic trait prediction, we need to ad-
dress the following two issues:

Problem 1. How to select a mutual information threshold to determine if an
epistasis interaction is significant?

Problem 1 is challenging since using all significant interactions may not neces-
sarily lead to the best prediction performance. Thus this is significantly different
from the GWAS scenario, where all significant epistasis effects are reported.
Therefore, if the threshold is too high, we may miss some important effects. If
the threshold is too low, too many interactions may be included leading to both
poor prediction power and poor computational complexity. To address this issue,
we update the threshold dynamically to only keep a top set of most significant
interactions. The threshold is initially set low to allow considering relatively less
significant interactions. As we collect more and more significant interactions,
the threshold is increased such that less significant interactions are pruned more
efficiently. See Section 3.2 for further details.

Problem 2. How to utilize the mutual information threshold to prune the inter-
actions that are potentially not significant?
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To avoid exhaustive search in GWAS, both greedy and optimal strategies have
been proposed. However, as we use mutual information, we can not adapt the
optimal methods from Xiang et al. [23], which rely on an F-test score. Prob-
lem 2 is challenging since the objective is to prune the interactions without even
computing their relevance scores. We observed that when a SNP is involved in
a significant interaction, it is very likely that the SNP is involved in multiple
significant interactions. Therefore, for each SNP, if we sample a small set of
interactions where the SNP is involved, it is likely that we can capture some
significant interactions the SNP is involved in. We also observed the relevance
scores of all the interactions that a SNP is involved in follow a truncated normal
distribution, as shown in Figure 2, similar to the hypothesis in rrBLUP that the
single marker effects follow a normal distribution. Then based on the sampled
interactions, we can estimate the probability that the SNP is involved in at least
one significant interaction to further determine if the SNP should be thoroughly
investigated for all possible interactions that it is involved in. See the following
sections for further details.
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Fig. 2. The histogram of the relevance scores for all the pairwise interactions of four
randomly sampled SNPs for the Maize Flint data set [16]. They all follow a truncated
normal distribution.

In summary, we propose a novel framework MINED (Mutual INformation
based Epistasis Detection) for pairwise epistasis effects detection, where we con-
duct a sampling for every single marker and compute the probability of the
marker involved in at least one significant epistasis effect. If the probability is
higher than a certain threshold, we check all the interactions between the current
marker and all the other markers. In the meanwhile, we maintain a set of top
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features and insert any new significant interactions into the set by removing the
feature with the lowest relevance score. The significance threshold is dynamically
updated as the lowest relevance score from the set of the top features. Finally
after all markers are checked, we select the target features from the set of most
relevant features using the objective function defined in Equation 3. As the num-
ber of single markers is much smaller than the number of pairwise interactions
and most of the markers have small probabilities, our method is in general very
time-efficient. For example, for data sets with 20,000 markers and 200 samples,
our method finishes in less than half an hour while an exhaustive search takes
over 15 hours.

Notice that the goal of MINED is to select a set of significant epistasis effects
efficiently by maximizing the prediction accuracy. Whether the prediction per-
formance based on epistasis effects is superior to the performance based on just
the single marker effects, and how much improvement epistasis effects can lead
to, depend on the quality of the epistasis effects themselves.

3.2 Dynamic Significance Threshold

MINED consists of two stages: first we rank features, which can be either single
markers or epistasis effects by relevance score and then we consider the redun-
dancy among only the top features. Assuming that after the first stage, we collect
the top-k most relevant features to do redundancy check for the second stage, as
we rank the epistasis effects by their relevances to the trait, it is natural to take
the relevance score R of the top-k-th feature as a threshold. We call this thresh-
old R the significance threshold and k generally needs to be large to guarantee
a good performance. At the beginning we have not checked any interactions. So
we rank all the single markers first, then initialize R as the top-k-th relevance
score of the single markers.

Next we scan each marker, compute the probability that the marker is involved
in any significant interaction and determine what interactions we should check.
As we show in the next section, the probability is affected by the threshold
R. The larger R is, the smaller the probability tends to be and the smaller
number of interactions we need to check. Therefore, we update this significance
threshold dynamically. We maintain the sorted list of the features according to
their relevance scores (notice we consider both epistasis effects and single marker
effects). When we check an interaction, we insert the interaction into the top-k
feature set if its relevance score is better than R and we remove the last feature
from the list. If the interaction does not have a higher relevance score than R,
we do not change the list and we say the interaction is pruned. We then set
the threshold R as the relevance score of the current k-th feature. We keep on
updating the threshold as we insert more interactions, while keeping the order
of the list according to the relevance scores. Obviously, the threshold becomes
higher and higher, and it becomes easier and easier to prune the remaining
interactions as shown in the next section.

We next show a running example. Assuming the current top-6 feature set has
scores [0.8, 0.5, 0.3, 0.3, 0.2, 0.1], the input features have scores 0.05, 0.4, 0.15,
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0.19. The threshold value is 0.1, the smallest score in the top-6 feature set. The
first input feature with score 0.05 will be pruned as 0.05 < 0.1. The second input
feature will be kept as 0.4 > 0.1. The top-6 feature set will be updated as [0.8,
0.5, 0.4, 0.3, 0.3, 0.2] and the threshold will be updated as 0.2. Therefore, the
last two input features with score 0.15 and 0.19 will be all pruned. If we do not
update the threshold, both of them will be selected.

3.3 Compute Marker Probability

Given the current significance threshold R, a naive strategy is to search all possi-
ble interactions for each marker and select the interactions that have score higher
than R. However, this is equivalent to an exhaustive search and is infeasible for
large data sets. In MINED, for each marker, we compute the probability that it
is involved in some significant epistasis interactions (we call this probability the
significance probability). If the probability is high enough, we continue explor-
ing all its possible interactions. Otherwise we ignore this marker, or prune this
marker such that all the interactions where the marker is involved in are also
pruned. To compute the probability efficiently, we conduct a sampling such that
exhaustive search of all possible interactions can be avoided.

The motivation of applying sampling to estimate the probability is based on
two observations: first of all, when a SNP is involved in a significant interaction, it
is very likely that the SNP is involved in many significant interactions. Wei et al.
[20] reported that SLC2A9 gene interacted with multiple loci across the genome,
indicating the observation is common. To further validate this observation, we
conduct an exhaustive search for all pairs of interactions on three plant data sets
Maize [16], Rice [25] and Pine [15]. We rank the interactions by their relevance
scores. Then we consider the top 20,000 interactions with the highest relevance
scores as significant interactions, and we plot the histogram for the number of
significant interactions that each SNP is involved in. Due to space limits, we
only state the results: out of the top-20,000 interactions around 85% SNPs are
involved in more than 5 significant interactions. The histogram for Maize data
set is shown in Figure 3.

Secondly, we observe that the relevance score follows a truncated normal dis-
tribution. Then if we sample f relevance scores, where f < m, the number of
genotypes, we can fit the normal distribution to estimate the mean and the stan-
dard deviation. Using this distribution, and given the total number of features as
m, we compute the probability of seeing at least one significant relevance score
out of the m — 1 possible interactions, where a score is significant if it is higher
than the current significance threshold R. If the probability is high, we check all
the m —1 interactions for this marker. If not, we do not need to further check this
marker and we can safely prune this marker. Obviously, the larger R, the lower
the probability and this is the motivation for the dynamic thresholding strategy
to keep on updating R such that the markers can be pruned more efficiently.
Therefore, it is reasonable to conduct a sampling to estimate the probability
that a SNP is involved in some significant epistasis interaction.
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Fig. 3. The histogram for the number of significant interactions out of the top-20,000
interactions that each SNP is involved in (degree of SNPs) for the three traits of the
Maize Dent data set [16]. We can see over 85% SNPs are involved in more than 5
significant interactions, namely the degree of SNPs is greater than 5.

Based on the above two observations, we check the markers one by one, and,
when we compute the significance probability of the current maker, we randomly
sample f markers from the set of remaining markers and compute the relevance
score of the interactions between the marker and the f sampled markers, where
f < m and m is the number of original features. If the probability is higher than
a threshold P, we will check the interactions between the marker and all the re-
maining markers. Otherwise we move to the next marker. f needs to be small
to guarantee efficiency but can not be too small in order to capture significant
interactions. We set f empirically and we observed that f = 0.01 x m generally
achieves a good balance of efficiency and effectiveness. In order to capture as
many significant epistasis interactions as possible, we generally use a small value
for the significance probability s, say 0.001 (notice this threshold is the prob-
ability threshold and is different from the threshold R, which is the relevance
score threshold, or the so-called significance threshold). And our experiments
show that even with such a small threshold, the markers and interactions can
be pruned efficiently. The pesuedoucode of the algorithm MINED is shown in
Algorithm 1.

3.4 Epistasis Detection with Constraints

As we show later in the experiments, epistasis effects can be highly redundant,
since one SNP can be involved in multiple interactions and these interactions are
likely to have higher redundancy. Therefore, even though we keep a large k for
the set of top-k most relevant features, the epistasis effects in this set can be still
highly redundant. Thus considering redundancy later in a set of highly redundant
features will not help improve the prediction. To address this problem, we need
to increase the value of k to be large enough such that enough relatively unique
epistasis effects can be captured. However, given the extremely large number of
possible epistasis effects, for example, around 900 million epistasis effects for the
Maize Dent data set, lots of redundant epistasis effects have high relevance score.
Thus k needs to be very large, which makes selecting the final set of features very
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Algorithm 1. The pseudocode for the algorithm MINED to select a set of target
features considering both single marker effects and pairwise epistasis effects.
Input: Original marker set X, size of target feature set ¢, size of the most relevant
features k, a probability threshold s
Output: Set of target markers
1: Rank the markers in X in decreasing order of their relevance scores as xi, z2,. ..

2: Threshold R < score(zy)

3: for z; € X do

4:  Randomly sample a set of f distinct z;’'s XM from X

5. prob < estimateProb(zj, X M, t)

6:  if prob > s or Iscore(x;, x;) >t for x; € XM then

7 Compute score(zi,zp) for 1 <h <dand h #z

8: if score(xi, zp) >t then

9: Update the top-k set by inserting the new feature (x;, xp)
10: R + score(xy)

11: end if

12: end if

13: end for

14: Select a final set of t features using Equation 3

inefficient, as the complexity to select the final set of features is O(kt), where ¢
is the number of targeted features.

To address this problem, we further propose an algorithm Constrained-MINED,
where we set up a constraint threshold n such that one marker can be involved in at
most n different interactions. We call two epistasis effects sharing the same marker
as an overlap. The rationale is that when two interactions share the same marker, it
is more likely that they have higher redundancy. Therefore, if we add a constraint
on the number of epistasis effects that can share the same marker, we can probably
reduce the redundancy of the selected epistasis effects. This strategy leads to a great
computational advantage: we do not need to select a very large k for the top-k most
relevant features. The epistasis effects selected using this strategy are naturally less
redundant as we force these effects to not overlap. We next give more details of the
algorithm.

We set up an overlap threshold n such that one SNP can be involved in at most
n interactions and we can rewrite the linear regression model with constraints
as the following:

d d d
Y =B+ ZBiXi + Z Zai,jfi,inXj +e
i=1 i=1 j=1
d
dLij<nfor1<j<d
i=1
d
Z.Tm»gnforlgigd
j=1

Ii,j = {Ov 1}
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where I; ; is an indicator function of value either 0 or 1, indicating if we select
the interaction X;X; or not. We call the set of selected interactions as constraint-
based interactions.

We construct an interaction graph, where the nodes are interactions, the edges
indicate the two associated nodes overlap by some SNPs. For example, for three
SNPs A, B and C, the edge between an interaction (AB) and an interaction (AC')
indicates the two interactions overlap as they share a common SNP A. There is a
weight associated with each node, which corresponds to the significance score of
the interaction. We show an example in Figure 4. If we set the overlap threshold
as 1, namely one SNP can be involved in only one interactions, we can select
two nodes AC' and BD which are disjoint and the sum of their weights 0.7 is
the maximum sum of weights we can obtain.

Fig. 4. An example of interaction graph, where the constraint, or the overlap threshold
is set to 1, namely one SNP can not appear in more than one interaction.

With the above graph representation, the set of interactions with maximum
sum of significance score is converted to a Weighted Maximum Independent Set
(WMIS) problem. The WMIS problem seeks to select a set of nodes from a graph
to form an independent set, where all the nodes are not adjacent, such that the
sum of the weights on the nodes is maximized. As all the nodes are not adjacent
in the independent set, all selected interactions are guaranteed non-overlapping.
This is equivalent to using an overlap threshold of 1. When the overlap threshold
n is greater than 1, we allow the degree of the connectivity of the selected nodes
to be no greater than n, and we call the new problem Weighted Maximum n-
Independent Set (WMNIS) problem.

The WMIS problem is well-known to be NP-complete and therefore so is WM-
NIS problem. Many greedy methods have been proposed for the WMIS problem
[2] [17] [19]. We next developed a greedy algorithm for the WMNIS problem. The
basic idea is that we select the interactions according to their relevance scores,
where we select interactions with higher scores first. We maintain a count for
each single marker. Once an interaction is selected, we increase the counts of
both markers by 1. When we select an interaction, if either of its single markers
has count greater than the threshold n, we skip this interaction and move to the
next one. The pesuedoucode of the algorithm MINED is shown in Algorithm 2.

4 Experimental Results

4.1 Maize Data

We tested the performance of MINED on three real data sets. The first data
set is the Maize data set [16], which consists of two maize diversity panels with
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Algorithm 2. The pseudocode for the algorithm Constrained-MINED to se-
lect a set of target features considering both single marker effects and pairwise
epistasis effects.

Input: Original marker set X, size of target feature set ¢, size of the most relevant

features k, a probability threshold s, constraint threshold n
Output: Set of target markers
1: Rank the markers in X in decreasing order of their relevance scores as x1, z2,. ..

2: Threshold R < score(zy)

3: for z; € X do

4:  if countDegree(z;) < n then

5: Randomly sample a set of f distinct x;’s XM from X
6: prob + estimateProb(xj, X M, t)

7 if prob > s or 3score(x;, x;) >t for x; € XM then

8: Compute score(zi,zp) for 1 <h < d and h # x

9: if countDegree(xzr) < n and score(z;,xzy) >t then
10: Update the top-k set by inserting the new feature (x;, z5)
11: R < score(zy)

12: degree(x;) + degree(z;) + 1

13: degree(xy) + degree(zp) + 1

14: end if

15: end if

16:  end if

17: end for

18: Select a final set of ¢ features using Equation 3

300 Flint and 300 Dent lines developed for the European CornFed program. The
two panels, Flint and Dent, were genotyped using a 50k SNP array, which after
removing SNPs with high rate of missing markers and high average heterozy-
gosity, yielded 29,094 and 30,027 SNPs respectively. Both of them contain 261
samples and three traits. In all experiments, we perform 10-fold cross-validations
and measure the average coefficient of determination r? (computed as the square
of Pearson’s correlation coefficient) between the true and the predicted outputs,
where higher 72 indicates better performance. We use only r? here as it is the
most common evaluation metric for genetic trait prediction problem.

As rrBLUP [12] is one of the most widely used methods for genetic trait pre-
diction and generally achieves better or equal results compared with other re-
gression methods such as Bayesian methods, Lasso, Elastic Net, Random Forests
and Boosting, we select it as our baseline method and we apply it on the selected
features for prediction. For MINED and Contraint-MINED, we do grid search
to determine the number of features to be used. Notice we have two types of
features, single markers and pairwise epistasis effects. Epistasis effects are extra
information for the model, so we consider using both types of features and we
seek for the best combination of them. In our algorithms, we set the probability
threshold s as 0.001, the size for the set of most relevant features k as 5,000, the
constraint threshold n as 5. These parameters are selected empirically to achieve
a good balance between the efficiency and the accuracy. We also conducted a
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Table 1. Performance (average r2) of rrBLUP, Bayesian, SVR (Support Vector Re-
gression), Lasso, exhaustive epistasis model, MINED followed by rrBLUP (MINED +
rrBLUP), and C-MINED (Constrained-MINED) followed by rrBLUP (Constrained-
MINED + rrBLUP) on the three phenotypes of Dent and Flint data sets.

Dent
Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED (Improvements over rrBLUP)
TASS 0.590 0.591  0.565 0.591 0.551 0.590 0.596 (1%)
DMC 0.552 0.563 0.567 0.563 0.548 0.552 0.563 (2%)
DM Yield 0.321 0.321  0.327 0.321 0.321 0.356 0.356 (11%)
Flint
Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED
TASS 0.470 0.471  0.467 0.471 0.48 0.476 0.482 (3%)
DMC 0.301 0.305 0.302 0.3 0.308 0.316 0.316 (5%)
DM Yield 0.057 0.062 0.073 0.058 0.054 0.096 0.078 (37%)

grid search and vary ¢, the number of selected epistasis effects to be used for
prediction as 0, 500, 1000 and 2000. Notice we allow not using any epistasis
effects by setting ¢ = 0 if including them deteriorate the performance. Therefore
the performance of MINED+rrBLUP is guaranteed to be no worse than rrBLUP
along. The same strategy can be applied to any other regression methods such
that MINED followed by any method is guaranteed to be no worse than the
method itself, due to the extra information from the epistasis effects and the
grid search to determine if such extra information is useful or not. We compare
the performance of our methods with that of other different popular methods
and we show the improvements of Constrained-MINED over the baseline method
rrBLUP. Notice that for genetic trait prediction, a 5% improvement on 2 is con-
sidered as significant. As we can see in our experiments, Constrained-MINED is
able to make significant prediction improvements in most of the cases.

We show the results in Table 1, and we can see that both MINED and
Constrained-MINED achieve better performance than other methods in most
cases. Notice both methods achieve better performance than the exhaustive epis-
tasis model where all epistasis effects are considered in Equation 2. This clearly
indicates that considering all epistasis effects is not only very expensive (we had
used our super computer Blue Gene which has tens of thousands of nodes as
the rrBLUP model needs to handle billions of features at the same time), but
also often leads to poorer performance. Both MINED and Constrained-MINED
finished in around 1,500 seconds.

One needs to emphasize that the goal of MINED is to capture significant epis-
tasis effects by maximizing the prediction accuracy using cross validation. We
can see that MINED is indeed effective on this, but it can not guarantee that
these effects will improve the prediction, which depends on the effects them-
selves. When the effects themselves are poor, for example, when they are highly
redundant, it’s unlikely that MINED can improve the prediction. However, when
the effects do improve the prediction, MINED is able to capture them efficiently
and our experiments show that for most of the data sets epistasis effects help to
improve the prediction.
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Table 2. Performance (average r2) of rrBLUP, Bayesian, SVR (Support Vector Re-
gression), Lasso, exhaustive epistasis model, MINED followed by rrBLUP (MINED +
rrBLUP), and C-MINED (Constrained-MINED) followed by rrBLUP (Constrained-
MINED + rrBLUP) on the two phenotypes of Rice data set.

Phenotype rrBLUP Bayesian SVR Lasso Exhaustive MINED C-MINED (Improvements over rrBLUP)
Pericarp color  0.409 0.378 0.428 0.393 0.486 0.443 0.528 (29%)
Protein content 0.192 0.174 0.212 0.173 0.111 0.229 0.229 (19%)

Table 3. Performance (average r?) of rrBLUP, MINED followed by rrBLUP
(MINED + rrBLUP), Constrained-MINED followed by rrBLUP (Constrained-MINED
+ rrBLUP) on five randomly selected phenotypes of Rice data set.

Phenotype rrBLUP MINED Constrained-MINED (Improvements over rrBLUP)
Flowering time at Faridpur 0.282 0.282 0.291 (3%)
Flowering time at Aberdeen 0.343  0.344 0.351 (2%)
FT ratio of Faridpur/Aberdeen 0.204 0.251 0.251 (23%)
Culm habit 0.488 0.488 0.488 (0%)

Flag leaf length 0.281  0.281 0.301 (7%)
Table 4. Performance (average r2) of rrBLUP, MINED, Constrained-MINED, on four

randomly selected phenotypes of Pine data set.

Phenotype rrBLUP MINED Constrained-MINED (Improvements over rrBLUP)

BD 0.07  0.098 0.093 (33%)
BLC 0.24 0.245 0.252 (5%)
CWAC 0.23 0.233 0.233 (1.3%)
CWAL 0.15 0.154 0.166 (11%)

As we can see in Table 1, Constrained-MINED achieves better performance
than MINED for all cases except for Flint trait DM Yield, indicating that lim-
iting the overlaps of the epistasis effects does help to reduce the redundancy of
the selected effects resulting in improved prediction power.

4.2 Rice Data

Next we consider the second data set, the Asian rice, Oryza sativa, data set
[25]. This data set was based on 44,100 SNP variants from 413 accessions of O.
sativa, taken from 82 countries containing 34 phenotypes. The data sets have
36,901 markers and 413 samples. As the rice data set is much bigger than the
Maize data, we compare our methods against all other methods for only two
randomly selected phenotypes: “Pericarp.color” and “Protein.content”. We also
randomly selected another five phenotypes. As we have shown that rrBLUP is
as good as other methods, we compare our methods with rrBLUP only for these
five phenotypes. We use the same parameter setting for our methods and grid
search is conducted by our methods to select the number of epistasis effects to
be used. Average results of 10 fold cross-validation are shown in Table 2 and 3.
We see that for most of the phenotypes, both MINED and Constrained-MINED
achieves better performance than the other methods and rrBLUP, indicating
both methods are able to identify significant epistasis effects and including these
epistasis effects helps to improve the prediction. This again indicates that our



122 D. He et al.

methods are efficient in capturing significant epistasis effects. The results also
show again that whether the prediction can be improved using the epistasis
effects depends on the data set itself. For phenotype “Culm habit”, including
epistasis effects does not improve the prediction, and out of seven phenotypes,
Constrained-MINED achieves better performance for four phenotypes compared
with MINED. The improvement is especially significant for phenotype “Peri-
carp.color”, indicating that the constraint strategy is in general effective. Both
MINED and Constrained-MINED finished in around 3,000 seconds.

4.3 Pine Data

Finally we test the performance of our method on the third data set, the Loblolly
Pine data set [15], which contains 17 de-regressed phenotypes for the 926 sam-
ples, each with 4,854 genotypes. Average results of 10 fold cross-validation for
four randomly selected phenotypes are shown in Table 4, and again we com-
pare our methods with rrBLUP only. We use the same parameter setting for our
methods, and grid search is conducted by our methods to select the number of
epistasis effects to be used. We see that both MINED and Constrained-MINED
achieves better performance than rrBLUP does for all phenotypes. Constrained-
MINED achieves the best results for three phenotypes. For phenotype “BD”,
MINED achieves better results. These results are consistent with the results on
the previous two data sets, again illustrating the effectiveness of our methods.
Both MINED and Constrained-MINED finished in around 4,800 seconds.

Although we only tested the performance of our methods for genetic trait
prediction problem, they can be applied directly to prediction or classification
problems of other domains when the interactions of the features need to be
modeled.

5 Conclusions

In this work, we proposed an efficient mutual information based pairwise epis-
tasis detection method MINED for the genetic trait prediction problem. To our
knowledge, this is the first algorithm to detect epistasis for genetic trait pre-
diction problem. The method applies a sampling strategy as well as a dynamic
thresholding strategy to avoid exhaustive search. We show that MINED is much
faster than an exhaustive search. We also show that the method is effective in
capturing the truly significant epistasis effects. However, whether it is able to im-
prove the prediction performance depends on the quality of the epistasis effects.
In our future work, we would like to improve the method to better handle low
quality epistasis effects, for example, epistasis effects that are highly redundant.
We would also like to extend the framework to handle multi-way interactions,
where more than two SNPs are involved.
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Abstract. Supervised classifiers are highly dependent on abundant la-
beled training data. Alternatives for addressing the lack of labeled data
include: labeling data (but this is costly and time consuming); training
classifiers with abundant data from another domain (however, the clas-
sification accuracy usually decreases as the distance between domains
increases); or complementing the limited labeled data with abundant
unlabeled data from the same domain and learning semi-supervised clas-
sifiers (but the unlabeled data can mislead the classifier). A better alter-
native is to use both the abundant labeled data from a source domain
and the limited labeled data from the target domain to train classifiers
in a domain adaptation setting. We propose such a classifier, based on
logistic regression, and evaluate it for the task of splice site prediction —
a difficult and essential step in gene prediction. Our classifier achieved
high accuracy, with highest areas under the precision-recall curve be-
tween 50.83% and 82.61%.

Keywords: Domain adaptation - Logistic regression - Splice
site prediction - Imbalanced data

1 Introduction

The adoption of next generation sequencing (NGS) technologies a few years ago
has led to both opportunities and challenges. The NGS technologies have made
it affordable to sequence new organisms but have also produced a large volume of
data that need to be organized, analyzed, and interpreted to create or improve,
for example, genome assemblies or genome annotations. For genome annotation
a major task is to accurately identify the splice sites — the regions of DNA that
separate the exons from introns (donor splice sites), and the introns from exons
(acceptor splice sites). The majority of the donor and acceptor splice sites, also
known as canonical sites, are the GT and AG dimers, respectively, but not all
GT, AG dimers are splice sites. Only about 1% or less of them are [23], making
the splice site prediction a difficult task.

NGS technologies have also enabled better gene predictions through programs
that assemble short RNA-Seq reads into transcripts and then align them against
the genome. For example, TWINSCAN [16] and CONTRAST [11] model the
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entire transcript structure as well as conservation in related species. However,
transcript assemblies from RNA-Seq reads are not error proof, and should be
subjected to independent validation [27].

Machine learning algorithms, which have been successfully applied on many
biological problems, including gene prediction, could be seen as alternative tools
that can help with such validation. For example, support vector machines (SVM)
have been used for problems such as identification of translation initiation sites
[19,30], labeling gene expression profiles as malign or benign [20], ab initio gene
prediction [4], and protein function prediction [5], while hidden Markov models
have been used for ab initio gene predictions [15,26], among others.

However, supervised machine learning algorithms require large amounts of
labeled data to learn accurate classifiers. Yet, for many biological problems,
including splice site prediction, labeled data may not be available for an organism
of interest. An option would be to label enough data from the target domain
for a supervised target classifier, but this is time consuming and costly. Another
option is to complement the limited labeled data with abundant unlabeled data
from the same target domain and learn semi-supervised classifiers. However, it
can happen that a classifier is degraded by the unlabeled data [7]. Assuming
that labeled data can can be plentifully available for a different, but closely
related model organism (for example, a newly sequenced organism is generally
scarce in labeled data, while a related, well-studied model organism is rich in
labeled data), another option is to learn a classifier from the related organism.
Nevertheless, using a classifier trained on labeled data from the related problem
to classify unlabeled data for the problem of interest does not always produce
accurate predictions.

A better alternative is to learn a classifier in a domain adaptation framework.
In this setting, the large corpus of labeled data from the related, well studied or-
ganism is used in conjunction with available labeled data from the new organism
to produce an accurate classifier for the latter.

Towards this goal, we propose a domain adaptation approach, presented in
Sect. 3.3, based on the supervised logistic regression classifier described in Sect.
3.1. This approach is simple, yet highly accurate. When trained on a source
organism, C.elegans, and one of four target organisms, C.remanei, P.pacificus,
D.melanogaster, and A.thaliana, with data described in Sect. 3.4, this algorithm
achieved high accuracy, with highest areas under the precision-recall curve be-
tween 50.83% for distant domains and 82.61% for closely related domains, as
shown in Sect. 4.

2 Related Work

Most of the approaches addressing splice site prediction involve supervised learn-
ing. For example, Li et al. [18] proposed a method that used the discriminating
power of each position in the DNA sequence around the splice site, estimated
using the chi-square test. They used a support vector machine algorithm with
a radial basis function kernel that combines the scaled component features, the
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nucleotide frequencies at conserved sites, and the correlative information of two
sites, to train a classifier for the human genome. Baten et al. [3], Sonnenburg
et al. [23], and Zhang et al. [29], also proposed supervised support vector ma-
chine classifiers, while Baten et al. [2] proposed a method using a hidden Markov
model, Cai et al. [6] proposed a Bayesian network algorithm, and Arita, Tsuda,
and Asai [1] proposed a method using Bahadur expansion truncated at the sec-
ond order. However, one major drawback of these supervised algorithms is that
they typically require large amounts of labeled data to train a classifier.

An alternative, when the amount of labeled data is not enough for learning a
supervised classifier, is to use the limited amount of labeled data in conjunction
with abundant unlabeled data to learn a semi-supervised classifier. However,
semi-supervised classifiers could be misled by the unlabeled data, especially
when there is hardly any labeled data [7]. For example, if during the first it-
eration one or more instances are misclassified, the semi-supervised algorithm
will be skewed towards the mislabeled instances in subsequent iterations. An-
other deficiency of semi-supervised classifiers is that their accuracy decreases
as the imbalance between classes increases. Stanescu and Caragea [25] studied
the effects of imbalanced data on semi-supervised algorithms and found that
although self-training that adds only positive instances in the semi-supervised
iterations achieved the best results out of the methods evaluated, oversampling
and ensemble learning are better options when the positive-to-negative ratio is
about 1:99. In their subsequent study [24], they evaluated several ensemble-based
semi-supervised learning approaches, out of which, again, a self-training ensem-
ble with only positive instances produced the best results. However, the highest
area under precision-recall curve for the best classifier was 54.78%.

Another option that addresses the lack of abundant labeled data needed with
supervised algorithms is to use domain adaptation. This approach has been
successfully applied to other problems even when the base learning algorithms
used in domain adaptation make simplifying assumptions, such as features’ inde-
pendence. For instance, in text classification, Dai et al. [9] proposed an iterative
algorithm derived from naive Bayes that uses expectation-maximization for clas-
sifying text documents into top categories. This algorithm performed better than
supervised SVM and naive Bayes classifiers when tested on datasets from News-
groups, SRAA and Reuters. A similar domain adaptation algorithm proposed
by Tan et al. [28], identified and used only the generalizable features from the
source domain, in conjunction with unlabeled data from the target domain. It
produced promising results for several target domains when evaluated on the
task of sentiment analysis.

Even though domain adaptation has been used with good results in other do-
mains, there are only a few domain adaptation methods proposed for biological
problems. For example, Herndon and Caragea [14] modified the algorithm pro-
posed by Tan et al. [28], by using a small amount of labeled data from the target
domain and incorporating self-training. Although this modified algorithm pro-
duced promising results on the task of protein localization, it performed poorly
on the splice site prediction data. The updated version of that algorithm, [13],
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implemented further changes, such as normalizing the counts for the prior and
likelihood, using mutual information in selecting generalizable features, and rep-
resenting the DNA sequences with location aware features. With these changes,
the method produced promising results on the task of splice site prediction,
with values for the highest area under the precision-recall curve between 43.20%
for distant domains and 78.01% for related domains. A recent approach for
splice site prediction, Giannoulis et al. [12], proposed a modified version of the
k-means clustering algorithm that took into account the commonalities between
the source and target domains for splice site prediction. While this method seems
promising, in its current version, it was less accurate than the method in [13] —
with the best values for the area under receiver operating characteristic curve
below 70%. The best results for the task of splice site prediction, up until now,
were obtained with a support vector machine classifier proposed by Schweikert
et al. [22] (which used a weighted degree kernel proposed by Rétsch et al. [21]),
especially when the source and target domain were not closely related.

3 Methods and Materials

In this section, we present the three logistic regression classifiers that we use
in our experiments. We describe them in the context of a binary classification
task since splice site prediction is a binary classification problem. The first clas-
sifier, proposed by Le Cessie and Van Houwelingen [17] , is a supervised logistic
regression classifier. We will use this as a baseline for our domain adaptation
classifiers. The second classifier uses a method proposed by Chelba and Acero
[8] for maximum entropy models. This is a logistic regression classifier for the
domain adaptation setting. The third classifier is our proposed classifier for the
domain adaptation setting.

3.1 Logistic Regression with Regularized Parameters

Given a set of training instances generated independently X € R™*™ and their
corresponding labels y € Y™, ¥ = {0,1}, where m is the number of training
instances and n is the number of features, logistic regression models the posterior
probability as

o las0) = {4 00 RYZ 0 = @] [ g6

where g(-) is the logistic function g(07x) = !

14e—0Ta"
With this model, the log likelihood can be written as a function of the pa-

rameters 6 as follows:

1(0) =log Hp(yi | z;;0) = log H 0sz Tl = g(0" )] v

i=1

Z yilog g( QTQEZ) + (1 —y;)log (1 — g(QTxi))]
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The parameters are estimated by maximizing the log likelihood, usually using
maximum entropy models, after a regularization term, with parameter A\, is
introduced to penalize large values of 6:

0 = arg mGaX{Z [yilog g(0"x;) + (1 — y;) log (1 — (0" x;))] — AI9II2}

i=1

Note that x; is the i** row in X, in our case, the i** DNA sequence in the
training data set, y; is the 7" element of y, i.e., the corresponding label of x;,
and x;0 = 1,Vi € {1,2,...,m} such that 67z; = 0y + Z;‘L:1 0.

3.2 Logistic Regression for Domain Adaptation Setting with
Modified Regularization Term

The method proposed by [8] for maximum entropy models involves modifying the
optimization function. First, this method learns a model for the source domain,
Os, by using the training instances from the source domain, (Xg,ys), where
Xs € Rms*™ and yg € Y™ (note that the subscripts indicate the domain, with
S for the source, and T — in the subsequent equations — for the target).

mgs
05 = arg H;aX{Z [yilog g(65x:) + (1 — yi) log (1 — g(08:))] — As|9sll2}
S

i=1

Then, using the source model to constrain the target model, learn a model of
the target domain, 07, by using the training instances from the target domain,
(X7,yr), where Xp € R™7*™ and yr € V™7, but with the following modified
optimization function:

Or = arg rr;aX{Z [yilog g(672:) + (1 — yi) log (1 — g(072:))] — A6 — 05|2}
T li=1

3.3 Logistic Regression for Domain Adaptation Setting with
Convex Combination of Posterior Probabilities

The method we are proposing uses a convex combination of two logistic regres-
sion classifiers — one trained on the source data, and the other trained on the
target data. First, we learn a model for the source domain and a model for the
target domain, using the training instances from the source domain, (Xg,ys)
and from the target domain, (Xr, yr), respectively:

ms
05 = arg H;aX{Z [yilog g(0&x:) + (1 — yi)log (1 — g(652:))] — As|9sll2}
S

i=1

Or = argn%aX{Z [yilog g(0Fx:) + (1 — y;) log (1 — g(07:))] — /\T|9Tll2}

i=1
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Then, using these models, we approximate the posterior probability for ev-
ery instance x from the test set of the target domain as a normalized convex
combination of the posterior probabilities for the source and target domains:

p(y [ #;0) o< (1=0)-ps(y | w;0s) + 0 - pr(y | x;07) (1)

where § € [0,1] is a parameter that shifts the weight from the source domain to
the target domain depending on the distance between these domains, and the
amount of target data available. This parameter is optimized using the training
instances of the target domain, (X7, yr), as validation set.

3.4 Data Set

We evaluated our proposed algorithm on the splice site dataset! first introduced
in [22]. This contains DNA sequences from five organisms, C.elegans used as the
source domain and four other organisms at increasing evolutionary distance from
it, C.remanei, P.pacificus, D.melanogaster, and A.thaliana, as target domains.
Each instance is a 141 nucleotides long DNA sequence, with the AG dimer at
the sixty-first position, along with a label that indicates whether this AG dimer
is an acceptor splice site or not. In each file 1% of the instances are positive, i.e.,
the AG dimer at 615 position is an acceptor splice site, with small variations
(variance is 0.01), while the remaining instances are negative. The data from
the target organisms is split into three folds (by the authors who published the
data in [22]) to obtain unbiased estimates for the classifier performance. Similar
o0 [22], for our experiments, we used the training set of 100,000 instances from
C.elegans, and the three folds of 2,500, 6,500, 16,000, and 40,000 labeled in-
stances from the other organisms, and for testing, three folds of 20,000 instances
each, from the target organisms. This allows us to compare our results with the
previous state-of-the-art results on this dataset in [22]. Note that although the
dataset we used only has acceptor splice sites, the problem of predicting donor
splice sites can be addressed with the same approach.

3.5 Data Preparation and Experimental Setup

We use two similar representations for the data. In one of them, we convert each
DNA sequence into a set of features that represent the nucleotides present in the
sequence at each position, and the trimer at each position. For example, given
a DNA sequence starting with AAGATTCGC. .. and label -1 we represent it as
A,A,G,A,T,T,C,G,C,...,AAG,AGA,GAT,...,—-1.

With these features we create a compact representation of a balanced combi-
nation of simple features in each DNA sequence, i.e., the 1-mers, and more com-
plex features — features that capture the correlation between the nucleotides,
i.e., the 3-mers. However, when the training data has a small number of in-
stances, the trimers lead to a set of sparse features which can result in decreased

! Downloaded from ftp://ftp.tuebingen.mpg.de/fml/cwidmer/
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classification accuracy. Therefore, in the other representation we keep only the
nucleotide features. For an example DNA sequence starting with AAGATTCGC. . .
and label -1 we represent it as A,A,G,A,T,T,C,G,C,...,-1.

We use these representations for two reasons. First, with these representations
we achieved good results in [13] with a naive Bayes classifier in a domain adap-
tation setting. And second, this allows us to compare the results of our proposed
method with our previous results.

To find the optimal parameters’ values we first did a grid search for A, using
the baseline, supervised logistic classifier, with A = 10*,z € {-8,—6,...,4},
trained with data from source and target domains. For these datasets we got the
best results when A = 1,000. Therefore, for our proposed algorithm we set Ag
and Ar to 1,000, and did a grid search for § with values from {0.1,0.2,...,0.9},
while for our implementation of the method proposed in [8] we set Ag to 1,000
and did a grid search for Ay with A\p = 10,2 € {-8 = 7,...,4}. We tuned Ar
for the method in [8], as Ap controls the trade-off between source and target
parameters, and thus it is similar to the § parameter for our proposed method.

For the domain adaptation setting we trained on source and target data,
while for the baseline classifiers, the supervised logistic regression, in one setting
we trained on source, and in another setting we trained on each of the labeled
target data set sizes: 2,500, 6,500, 16,000, and 40,000. To evaluate the classifiers
we tested them on the test target data from the corresponding fold. We expect
the results of the baseline, logistic regression classifier trained on each of the
target labeled data sets to be the lower bound for our proposed method trained
on the source data and that corresponding target labeled data, since we believe
that adding data from a related organism should produce a better classifier.

All results are reported as averages over three random train-test splits to
ensure that our results are unbiased. To evaluate the classifiers we used the area
under the precision-recall curve (auPRC) for the positive class, since the data
are so highly imbalanced [10].

With this experimental setup we wanted to evaluate:

1. The influence of the following factors on the performance of the classifier:

(a) The features used: nucleotides, or nucleotides and trimers.

(b) The amount of target labeled data: from 2,500, 6,500, 16,000 to 40,000
instances.

(¢) The evolutionary distance between the source and target organisms.

(d) The weight assigned to the target data through the § parameter in Equa-
tion 1.

2. The performance of the two domain adaptation classifiers derived from the
supervised logistic regression classifier (the method proposed by [8], and our
proposed method), compared to other domain adaptation classifiers for the
task of splice site prediction, namely, the SVM classifier proposed by [22]
and the naive Bayes classifier proposed by [13].
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Table 1. auPRC values for the minority (i.e., positive) class for four target organ-
isms based on the number of labeled target instances used for training: 2,500, 6,500,
16,000, and 40,000. The top five rows in each subtable show the auPRC values for the
classifiers trained with nucleotide features (N), while the bottom five rows show the
values for the classifiers trained with nucleotide and trimer features (N&T). The LR SL
classifier is the baseline logistic regression classifier trained on 100,000 instances from
the source domain, C.elegans (first and seventh rows), and target labeled data (second
and eighth rows). The LR cc and LR reg domain adaptation classifiers are trained on
a combination of source labeled and target labeled data, while the NB domain adapta-
tion classifier is trained on a combination of source labeled, target labeled, and target
unlabeled data. We show for comparison with our classifier (the one with blue cell text)
the values for the best overall classifier in [22], SVMg, 7, (listed in these subtables as
SVM), the values for our implementation of the LR reg classifier proposed in [8], and
the values for the best overall classifier in [13], A1, (listed in these subtables as NB).
Note that the SVM classifier used different features. The best average values for each
target dataset size is shown in bold. We would like to highlight that our classifier al-
ways performed better than the baseline classifier, and performed better in 9 out of 16
cases than the SVM classifier — the best classifier out of the three domain adaptation
classifiers used for comparison with our classifier. We couldn’t check if the differences
between our classifier and the SVM classifier are statistically significant, as we did not
have the performance results per-fold for the SVM classifier(only average performance
values were available in [22]).

Feat.|Classifier| 2,500 6,500 16,000 40,000

LR_SLgs 77.63£1.37

LR_SL7 | 31.07+8.72 54.20£3.97 65.73+2.76 72.93+1.70

N LR_cc |77.64%£1.39 77.75+1.25 77.88+1.42 78.10%£1.15

LR_reg |16.30+£7.70 40.87+3.26 49.07+0.93 58.371+2.63
NB 59.18+1.17 63.10+1.23 63.95+2.08 63.80+1.41
SVM | 77.06£2.13 77.80£2.89 77.89+0.29 79.02+0.09

LR_SLgs 81.37£2.27

LR-SL7 | 26.93+9.91 55.26+2.21 68.30+1.91 77.33+2.78

N&T| LR-cc |81.39+2.30 81.47+2.19 81.78+2.08 82.61+2.00

LR_reg | 2.30£1.05 14.50+4.68 40.10+3.72 63.53+7.10
NB 45.29£2.62 72.00£4.16 74.83+4.32 77.07£4.45

(a) C.remanei

Feat.|Classifier| 2,500 6,500 16,000 40,000

LR_SLg 64.20+1.91

LR_SL7 |29.87£3.58 49.03+£4.90 59.93+2.74 69.10+2.25

N LR_cc |64.70+1.85 65.31+2.10 66.76+0.89 70.18+2.12
LR_reg |18.00£3.83 32.73£2.69 40.73£4.30 55.73+1.62
NB 45.324+2.68 49.8242.58 52.09+2.04 54.62+1.51
SVM |64.72+3.75 66.39+0.66 68.44+0.67 71.00£0.38

LR_SLg 62.37£0.84

LR_SLt | 28.40+£4.49 49.67+2.83 62.97+3.32 74.60+2.85

N&T| LR._cc |64.18+£1.10 65.49+1.84 69.76+2.08 75.824+2.00

LR.reg | 4.37£1.76 14.50+4.86 38.23+6.54 63.70+5.28
NB 20.21+£1.17 53.29+3.08 62.33+3.60 69.88+4.04

(b) P.pacificus
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Table 1. (Continued)
Feat. [Classiﬁer[ 2,500 6,500 16,000 40,000

LR_SLg 35.87£2.32

LR_SL7 |19.97+3.48 31.80+3.86 42.37+2.15 50.53+1.80

N LR_cc |39.70+£2.82 42.19+3.41 49.72+2.01 53.43£0.89
LR.reg |11.33£1.36 22.80+2.60 27.30+£3.92 42.67+0.76
NB 33.31£3.71 36.434+2.18 40.324+2.04 42.37£1.51
SVM |40.80+2.18 37.87+3.77 52.334+0.91 58.17+1.50

LR_SLg 32.23£2.76

LR_SL7 | 15.07£4.11 28.30%5.45 44.67+3.23 38.43+32.36

N&T| LR._cc |37.24£2.20 40.93+3.79 50.54+3.91 45.89+22.25

LR_reg | 3.40£1.82 8.37£2.48 21.20+£2.85 26.50£22.44
NB 25.83+£2.35 32.58+5.83 39.10+£1.82 47.49+3.44

(¢) D.melanogaster

Feat.|Classifier] 2,500 6,500 16,000 40,000

LR_SLs 16.93+0.21

LR_SL7 | 13.87£2.63 26.03+3.29 38.43+6.18 49.33+4.07

N LR_cc |20.67£0.58 27.19£1.30 40.56%3.26 49.75£2.82
LR_reg | 8.50£2.08 17.93+4.72 23.30+2.35 39.10+4.97
NB 18.46+1.13 25.04+0.72 31.47+£3.56 36.95+3.39
SVM |24.21+3.41 27.30+1.46 38.49+1.59 49.75+1.46

LR_SLg 14.07£0.31

LR_SLy | 8.87£1.84 21.10+4.45 38.53+8.08 49.77+2.77

N&T| LR_cc |16.4241.20 26.4442.49 41.3546.49 50.83+2.28

LR_reg | 2.50£0.10 8.27£1.60 20.03+3.36 30.27+2.57
NB 3.9940.43 13.96+2.42 33.62+6.31 43.20£3.78

(d) A.thaliana

4 Results and Discussion

Table 1 shows the auPRC values of the minority class when using our proposed
domain adaptation with logistic regression classifier and, for comparison, when
using the supervised logistic regression classifiers (trained on source or target),
the logistic regression for domain adaptation classifier proposed by [8], the naive
Bayes classifier for domain adaptation from our previous work [13], and the best
overall SVM classifier for domain adaptation proposed by [22], SVMg 1. Based
on these results, we make the following observations:

1. In terms of the factors that influence the performance of the classifier:

(a) Features: our proposed classifier performed better with nucleotide and
trimer features, when the source and target domains are closely related
and the classifier has more target labeled data available. However, as the
distance between the source and target domains increases, our algorithm
performs better with nucleotide features when there is little target la-
beled data. This conforms with our previous results [13], and with our
intuition (see Section 3.5): since trimers generate a sparse set of fea-
tures, they lead to decreased classification accuracy when there are a
small number of target training instances.
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(b) Amount of target labeled training data: the more target training
data used by the classifier the better the classifier performs. This makes
sense, as more sample data describes more closely the distribution.

(c) Distance between domains: as the distance between the source and
target domains increases the contribution of the source data decreases.
It is interesting to note though that based on these results the splice site
prediction problem seems to be more difficult for more complex organ-
isms. For all dataset sizes there is a common trend of decreasing auPRC
values as the complexity of the organisms increases, from C.remanei, P.
pacificus, D.melanogaster, to A.thaliana, as shown in Table 1. We believe
this is a major reason that helps explain the decreased auPRC values for
all classifiers, for these organisms, respectively, i.e., in general auPRC
for C.remanei > P. pacificus > D.melanogaster > A.thaliana.

(d) Weight assigned to target data: Intuitively, we expect ¢ to be closer
to one when the source and target domain are more distantly related,
and closer to zero otherwise. The results conform with our intuition, with
6 between 0.1 and 0.6 for C.remanei, between 0.7 and 0.8 for P.pacificus,
between 0.8 and 0.9 for D.melanogaster, and 0.9 for A.thaliana.

. In terms of performance, the method proposed by [8] produced worse re-

sults than the supervised logistic regression classifier trained on the target
data. We believe that these poor results are due to this method’s modified
optimization function, which constrains the values of the parameters for the
target domain to be close to the values of the parameters for the source do-
main. In addition, this method performed worse than the domain adaptation
naive Bayes classifier proposed in our previous work [13], except for two cases
(when using nucleotides as features, the target domains are D.melanogaster,
and A.thaliana, and the algorithms are trained on 40,000 target instances).

Our proposed method produced better average results than the supervised
logistic classifier trained on either the source or the target domain in every
case of the 16 we evaluated. This confirms our hypothesis that augmenting
a small labeled dataset from the target domain with a large labeled dataset
from a closely related source domain improves the accuracy of the classifier.
In addition, this method outperformed the domain adaptation naive Bayes
classifier proposed in our previous work [13], as well as the method proposed
by [8] in every case, and outperformed the best overall domain adaptation
SVM classifier proposed by [22] in 9 out of the 16 cases. Based on these
results we would recommend using our proposed method over the domain
adaptation SVM classifier when the source and target domains are closely
related, or when there is quite a bit of labeled data for the target domain.
However, when there are only very little labeled data for the target domain
and the domains are more distantly related, we would recommend using the
SVM algorithm proposed by [22].
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5 Conclusions and Future Work

In this paper, we compared two domain adaptation algorithms derived from
the supervised logistic regression classifier for the task of splice site prediction.
One of these algorithms is our implementation of the method proposed in [§],
in which the optimization function is modified. With this approach, a model for
the source domain is learned first, and then a model for the target domain is
learned with the target parameters’ values constrained to be close to the source
parameters’ values through the optimization function. The other algorithm is
our proposed method that uses a convex combination of a supervised logistic
regression classifier trained on the source data and a supervised logistic regression
classifier trained on the target data to approximate the posterior probability for
every instance from the test set of the target domain.

We evaluated these classifiers on four target domains of increasing distance
from the source domain. While the method proposed by [8] performed worse in
most cases than the domain adaptation naive Bayes classifier proposed in our
previous work [13], our newly proposed method outperformed the best overall
domain adaptation SVM classifier [22] in 9 out of the 16 cases. Our empirical
evaluation of these classifiers also provided evidence that the task of splice site
prediction becomes more difficult as the complexity of the organism increases.

In future work, we would like to explore ways to improve the accuracy of the
classifier, even with these highly imbalanced data. For example, we would like
to randomly split the negative instances to create smaller balanced data sets.
Then, we would train an ensemble of classifiers with the method we proposed in
this paper. Furthermore, we would like to evaluate the effectiveness of our pro-
posed method on other problems that can be addressed in a domain adaptation
framework, e.g. text classification problems, sentiment analysis.
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Abstract. Upstream open reading frames (uORFs) are open reading frames located
within the 5° UTR of an mRNA. It is believed that translated uORFs reduce the
translational efficiency of the main coding region, and play an important role in
gene regulation. However, only few uORFs are experimentally characterized. In
this paper, we use ribosome footprinting together with a stacking-based classifica-
tion approach to identify translated uORFs in Arabidopsis thaliana. Our approach
resulted in a set of 5360 potentially translated uORFs in 2051 genes. GO terms
enriched in uORF-containing genes include gene regulation, signal transduction
and metabolic pathway. The identified uORFs occur with a higher frequency in
multi-isoform genes, and many uORFs are affected by alternative transcript start
sites or alternative splicing events.

Keywords: uORF - Translation - Ribosome footprinting - Stacking - Classification
- Arabidopsis thaliana

1 Introduction

Upstream open reading frames (uORFs) are open reading frames that appear in the 5’
untranslated region (UTR) of an mRNA. Studies have shown that uORFs are often
involved in the regulation of the downstream main open reading frame [1-3]. It is
estimated that the Arabidopsis genome encodes more than 20,000 uORFs [4, 5].
However, only few uORFs are experimentally characterized, and in most cases it is
unknown what biological function they have, and if they are translated [6-8].
Lab-based identification of functional uORFs is time-consuming (~ 4 man-months per
gene), and so far, only few uORFs have been directly characterized through forward
genetic analysis at the whole plant level [9, 10]. A comprehensive identification of
translated uORFs via mass spectrometry has been challenging due to the short length
of the encoded proteins [5]. Several studies have predicted functional uORFs based on
evolutionary conservation [11, 12]. For example, in [12], the authors have developed
a BLAST-based algorithm to identify conserved uORFs across eudicots species and
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reported 18 novel uORFs in Arabidopsis thaliana. Unfortunately, conserved uORFs
only account for a small part of the uORFs in the Arabidopsis genome - currently, the
TAIR database lists only about 70 conserved uORFs [5]. The biological function and
translation status of most uORFs is still unknown.

Recently, ribosome footprinting (RF) has been developed to investigate translation
via deep sequencing of ribosome protected mRNA fragments (ribosome footprints)
[13]. The RF technique is able to provide experimental evidence for translation initia-
tion sites (TISs) and uORFs. For example, Fritsch and colleagues recorded the cover-
age of ribosome footprints upstream of annotated TISs and trained a neural network to
detect novel TISs. Their experiment identified 2994 novel uORFs in the human ge-
nome [14]. A similar study has also been performed in mouse [15].

In this paper, we use a stacking-based classification approach that combines RF da-
ta with additional genome information to identify translated uORFs in Arabidopsis
thaliana. Using this approach, we found 5360 translated uORFs that occur in 2051
genes. In a preliminary analysis of the predicted uORFs we found that the enriched
GO terms of the uORF-containing genes include gene regulation, signal transduction
and metabolic pathway, and that uORFs are prevalent in multi-isoform genes.

2 Material and Methods

Our approach consists of five steps: (1) First, we aligned ribosome footprints and the
corresponding mRNA reads to the genome sequence of Arabidopsis thaliana, and
assigned the aligned sequences to uORFs and the annotated main coding sequences.
(2) For each uORF, we extracted 12 features for subsequent analyses from our data-
set. (3) Then, we used k-means clustering to construct a training dataset. (4) We
trained five different base-level classifiers. (5) Finally, we used a stacking approach to
combine the results of the base classifiers in order to achieve more accurate results.
A detailed description of the individual steps is given below.

2.1 Data Preparation

Ribosome footprints and RNA-seq data were generated from Arabidopsis thaliana
wildtype using the Illumina HiSeq2000 platform. We analyzed over 90 million reads
from two biological replicates. First, we performed quality control and removed adap-
tor sequences and low quality reads using the FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). The resulting reads were aligned to the genome sequence of
Arabidopsis thaliana using Tophat [16]. Reads that mapped to multiple genomic
positions, as well as reads with length smaller than 25bp, or larger than 40bp, were
discarded. The remaining reads were assigned to transcript regions using custom perl
scripts. Genome and transcript sequences, as well as gene annotation were down-
loaded from The Arabidopsis Information Resource (TAIR, version 10,
http://www.arabidopsis.org/). We generated an exhaustive list of uORFs, where each
uORF corresponds to a sequence of start and stop codons (start: ATG, stop: TAG,
TAA, TGA) interrupted by one or more additional codons. All generated uORFs start
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in the 5’UTR, but they might extend beyond this transcript region. We excluded
uORFs that consist of only a start and a stop codon (but no additional codons) from
our analysis, because such uORFs are not considered to be functional [17]. This re-
sulted in 29629 uORFs in 7831 genes.

2.2  Feature Extraction

Several features of functional uORFs are known to have an impact on the translation
of the downstream coding sequence (CDS) [18]. Those features include the length of
uORF and the distance between the uORF and its CDS. It has been shown that ribo-
some footprints tend to accumulate at the translation initiation sites, as a consequence,
more ribosome footprints align to the start site of the translated open reading frames
[15, 19]. According to these observations, we extracted features that characterize the
distribution of ribosome footprints in the neighborhood of a uORF, and measure their
relative position with respect to the CDS. The following part describes the individual
features in detail.

Denote u(1),u(2),...u(/) the sequence positions of an uORF with length / in a tran-
script z. We assume that the CDS starts at position s in t. For i=1,...,/ we denote the
number of ribosome footprints mapping to u(i) by c(u(i)). We computed 12 features
for each possible uORF:

1) Distance from uORF start to the start of CDS: Ds = s - u(1).
2) Distance from uORF end to CDS: De = s - u().
3) Length of uORF: L
4) Distance from uOREF start to the nearest peak of the ribosome density curve: Dp.

Assume the number of ribosome footprints aligned to the positions of a gene with
length n were counted as (c(1), c(2),..., c(n)). We use a kernel smoother to estimate
the ribosome density curve:

ORI oLk O
R " i h '

where K, is the kernel function and h is the smoothing parameter (bandwidth). We
used the R function density with kernel function Gaussian and bandwidth 5. Peaks
p(D),p(2),....p(k) of the density curve indicate positions where ribosome footprints
accumulate. We have

Dp =min( I p(i)-u(l)1),i=12,...k
5) Ribosome density of a uORF: Den.

Den =

6) Maximum local ribosome density of uORF (window size 3): Den_max.

The local ribosome density is calculated using a sliding window of size three along
the uORF region. Den_max is the maximum value of the resulting local ribosome
densities.
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7) Minimum local ribosome density of uORF (window size 3): Den_min.
Den_min is the minimum value of all local ribosome densities.
8) Ribosome density for the region left of uORF: Den_left.
The ribosome density upstream of uORF indicates ribosome loading before start codon.
We chose 15bp as it is about the half length of ribosome in Arabidopsis. We have
Ll (1)

: S wiuf) = LB Eh
Den_left =

9) Ribosome density for the region right of uORF: Den_right.
T LB

Qil-nuiu'

15

Den_right =

10) Variance of ribosome footprints distribution along uORF region: Var.

Far == Lo} — )=,
¥ i

where 1 is the mean value of c(7) in the uORF region.
11) Ribosome density of UTR region: Den_utr.

Assume the utr region extends from position a to position b on a transcript, we
have

]

o ol
Den_utr =Z.— '
—i b =0+ 1

12) Ribosome density of CDS: Den_cds.
Assume the CDS region extends from position n to position k on a transcript, we
have

n

_ el
Den_rds = } ——,
k=n+l

2.3  Training Set Construction

We performed k-means clustering to identify groups of similar uORFs. The resulting
clusters were characterized with respect to their translation behavior. A detailed de-
scription is given in Section 3.1. The training set is constructed based on our cluster-
ing result. The positive class (translated uORFs) is chosen from cluster 2.1 (see Figure
2). The uORFs in this cluster show the characteristic distribution of ribosome foot-
prints in a canonically translated uORF. There are 76 uORFs in this cluster. The nega-
tive class is randomly selected from cluster 1 and 2.2. The uORFs in these clusters
exhibit a small ribosome footprints density, or ribosome footprints accumulate far
from the translation start site. We selected 76 records from both classes, resulting in a
training set with 152 records.
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2.4 Base-Level Classifier

Our classification model is developed based on the positive and negative classes de-
scribed above. We use five base-level classification algorithms: a k-nearest neighbor
classifier, a support vector machine (SVM), a decision tree, a Naive Bayes classifier,
and a neural network. We have chosen these five algorithms because they used the
different classification strategies. Each classifier was tuned and the model with lowest
error rate was used. The performance of the different classifiers was evaluated by a
leave-one-out cross validation.

2.5  Stacking

Stacking is a method that combines the predictions of several base-level learning
algorithms by a meta-level learning algorithm in order to improve predictive accura-
cy. It has been shown that stacking can combine the expertise of different base-level
classifiers while reducing their bias [21]. We refer the reader to [20, 21] for a detailed
description of the stacking framework. Here, we use stacking to combine the results
from different classifiers and the features from the uORF regions in the training set.
First, we use our training set to train the base-level classifier. We record the results of
the base-level classifiers and use them together with the extracted features of the
training set to generate a meta-level k-nearest neighbor classifier. Finally, we use
leave-one-out cross validation to evaluate the performance of our approach. Suppose
our training dataset D consists of N records D(1), ....D(V). For each record D(i),
i=1,...,N, we train the base-level and meta-level classifiers using D - D(i), and we
evaluate their performance using D(i). The algorithm is given below.

Algorithm: Stacking Classification (LOOCV)
1: for all data points j do

2: for all base-level classifiers BC do

3:  Train model BC based on training set D - D(j)

4: Use BC to predict class labels of D - D(j)

5: done

6: Combine prediction results of base-level classifiers with features of D - D(j)
7: Train meta-level classifier MC based on combined dataset.

8: Use MC to predict D(j)

9: done

10: Calculate accuracy, precision, recall and f-score.

3 Results

3.1  Cluster Analysis

To identify groups of similar uORFs, we performed a cluster analysis using k-means
clustering and Euclidean distance. We restricted our analysis to well-expressed genes
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that contain one single uORF in their 5° UTR. To determine a suitable number of
clusters k, we used the average silhouette value [22]. The silhouette value measures
the fit of a data point within its cluster in comparison with neighboring clusters.
Silhouette values are in the range of -1 to 1. A silhouette value close to 1 indicates
that a data point is in an appropriate cluster, while a silhouette value close to -1
indicates that it might be erroneously assigned. Figure 1 shows the average silhouette
value for different numbers of clusters k. The average silhouette values for k=2, ... ,6
clusters are similar and clearly larger than average silhouette values for k>6.
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Fig. 1. Average silhouette value for different numbers of clusters k

To identify translated uORFs, we have focused on the joint distribution of Den and
Dp feature values - these two features are the most important features that determine
the translation status of uORFs [15, 19]. Figure 2 shows a contour plot of our dataset.
The Figure shows two clusters that coincide with the cluster reported by 2-means
clustering: cluster 1 (green diamond at the bottom of Figure 2) consists of uORFs for
which only few ribosomal footprints have been detected. In contrast, the uORFs in
cluster 2 show ample ribosomal footprints. 3-means clustering splits cluster 2 into two
clusters: cluster 2.2 with large Dp and smaller Dens values (points with black
triangle) and cluster 2.1 with small Dp and large Dens values (points with red circle);
cluster 1 remains unchanged. For k-means clustering with k=4, ... ,6, the cluster 2.1
and 2.2 remained unchanged, while cluster 1 is subdivided. Therefore, we decided to
choose k=3 clusters for our subsequent analyses.

To learn the characteristics of the uORFs in the different clusters, we analyzed their
features. There are no ribosome footprints in the uORFs from cluster 1, and we
hypothesize that the uORFs in this group are not translated. The group accounts for about
65% of the total uORFs in our dataset. The uORFs from cluster 2.1 and 2.2 have a
positive footprint density Den, but we observed a significant differences in the variable
Dp. Dp is significantly larger in cluster 2.2 indicating that fewer ribosomal footprints
accumulate at the start codon of the corresponding uORFs. This is inconsistent with
translated open reading frames [10,15]. In addition, we analyzed:
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Fig. 2. Contour plot for clustering of potential uORFs according to ribosome density and dis-
tance between the start of uORF and nearest peak from ribosome density curve. Different shape
of points indicates different clusters identified by k-means clustering (k=3). The reads coverage
plots above show examples from cluster 2.1 and cluster 2.2. Cluster 1: green diamond. Cluster
2.1: red points. Cluster 2.2: black triangle. The background color indicates the density of points,
a darker color indicates a higher point density.

1) Experimentally verified uORFs: there are two experimentally verified uORFs
whose genes are well expressed and translated in our dataset. Both uORFs belong to
cluster 2.1.

2) GO terms of uORF-containing genes: we used AgriGO [23] to identify overrepre-
sented GO terms. Genes in cluster 2.1 show terms such as biological regulation
(G0O:0065007), metabolic process (GO:0008152) and cellular process (GO:0009987).
This is consistent with the GO term annotation of currently known uORF-containing
genes [5-7, 24]. We did not find overrepresented GO terms for cluster 1 and 2.2.

3) Den_min: Den_min indicates the local coverage of ribosome footprints in a uUORF
region. A Den_min value larger than O indicates the continuous translation of ribo-
somes in the region. Ideally, a well translated uORF should show Den_min=0 for only
a small fraction of its length. We found a significant difference of this value between
cluster 2.1 and cluster 2.2 (Figure 3). For cluster 2.1, about 20% uORFs have
Den_min=0, whereas in cluster 2.2 we have 74%.

4) Ribosome density in the first 6bp region immediately after the start codon: we checked
the footprint density immediately after the start codon (Figure 3). Our analysis indicates
that ~70% of uORFs in cluster 2.2 do not show any footprints in this region. In contrast,
all uORFs in cluster 2.1 show a non-zero footprint density in this region.
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Based on these observations we chose the uORFs in cluster 2.1 as templates for trans-
lated uORFs and used them as positive class to train our classifiers. After inspecting
representative examples from cluster 2.2 (Figure 2), we hypothesize that some of the
uORFs in this cluster might use a different, non-canonical translation start site.
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Fig. 3. Distribution of minimal local density and ribosome footprints density in the first 6bp
region immediately after the start codon for uORFs in cluster 2.1 and 2.2

3.2 Performance Evaluation

To evaluate the performance of each base-level classifier, we compared the data
points of the training set that are identified correctly by a specific algorithm. We
found a large overlap between algorithms, however, each classifier also detects a
certain proportion of the data which is not detected by the other algorithms (Table 1).
The results suggest that each classifier has its own expertise for classifying uORFs
correctly, and stacking the classifiers may improve their performance.

Table 1. Intersection of correctly classified data points for the different classification
algorithms. The numbers on the main diagonal in the table indicate the total number of
correctly classified data points for the individual classifier. The off-diagonal numbers is the
number of data that correctly identified and overlapped between two algorithms. The number in
the brackets is the overlap percentage for the classifiers in rows. SVM: support vector machine,
DT: decision tree, NB: Naive Bayes, NN: neural network, KNN: k-nearest neighbor.

SVM DT NB NN KNN
SVM 115 111(97%) 87(78%) 108(97%)  105(95%)
DT 111(82%) 136 96(71%) 122(90%)  111(82%)
NB 87(83%) 96(91%) 105 94 (90%) 86(82%)
NN 108(83%) 122(94%) 94(72%) 130 107(82%)

KNN 105(91%) 111(97%) 86(75%) 107(93%) 115
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To evaluate the performance of these classifiers, we performed a leave-one-out
cross validation and calculated accuracy, precision, recall and f-score. Denote TP, FN,
TN and FP is the number of true positives, false negatives, true negatives and false
positives. We have

Accuracy =(TP+ TN )/(TP+FN + TN + FP),
Precision=TP /(TP + FP),

Recall=TP /(TP + FN),

F-score = 2TP / (2TP + FP + FN ).

To demonstrate the power of our stacking approach, we compared the performance
of stacking with the performance of the individual base classifiers (Table 2). Stacking
outperforms the underlying base-level classifiers for all values except for Recall.

To assess the overall performance of the different classifiers we computed the Re-
ceiver Operating Characteristic Curve (ROC)[25]. The area under the curve (AUC)
indicates the performance of a classifier. The larger the area, the better the perfor-
mance of a classifier is. According to ROC curves and AUC values, stacking per-
forms best among all classifiers (Figure 3, table 2).

Table 2. Overall performance for each classifier. AUC: area under the curve

Preci-

Algorithms Accuracy sion Recall F-score AUC
KNN 0.76 0.63 0.84 0.72 0.85
SVM 0.76 0.74 0.77 0.75 0.85

Decision Tree 0.89 0.84 0.94 0.89 0.86
NaiveBayes 0.69 0.54 0.77 0.64 0.86
Neural network 0.86 0.87 0.85 0.86 0.92
Stacking with 0.90 0.95 0.87 0.91 0.94

KNN

3.3 Translated uORFs in Arabidopsis thaliana

Our stacking approach identified 5360 translated uUORFs. The identified uORFs occur in
2051 genes, which account for about 6% of the all annotated genes in Arabidopsis tha-
liana. Likely, this number is an under-estimation since about 30% of uORF-containing
genes were not transcribed in our experiment. Remarkably, the majority of translated
uORFs occurs in multi-isoform genes. When comparing single- and multi-isoform genes
with respect to the occurrence of translated uORFs, we found a significant difference (p-
value < 2.2e-16, Fisher’s exact test); only 3.4% of the single-isoform genes contain trans-
lated uORFs, whereas about 19% of the multi-isoform genes contain translated uORFs.
About 15% of these uORFs do not occur in all transcripts generated by the multi-isoform
gene, see Table 3 for a detailed breakdown. We hypothesize, that in some cases alterna-
tive transcription start sites, or alternative splicing events (AS events), might regulate
presence and absence of translated uORFs.
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Fig. 4. ROC curves for different classifiers. SVM support vector machine, DT decision tree,
NB: Naive Bayes, NN neural network, KNN k-nearest neighbor, ST stacking with KNN

The majority (~58%) of the genes that contain translated uORFs contain only one
single uORF. However, there are few genes that include up to 30 uORFs. To further
characterize uORF-containing genes, we performed a GO-term analysis. Enriched Go
terms include catalytic activity, binding, transferase activity, phosphotransferase ac-
tivity, kinase activity and transcription regulator activity. Our results provide ample
candidates for experimental characterization and functional analysis of uORFs.

Table 3. Potential uORFs identified in the genome of Arabidopsis. uORF level indicates the
number of uORFs identified. Gene level indicates the number of genes that contains potential
uORFs. There are totally 27717 single-isoform genes and 5885 multi-isoform genes.

Translated uORFs in Arabidopsis uORF Gene Percentage of total
genome Level Level genes
Total uORFs identified 5360 2051 6.10%
uORFs in multi-isoform genes 3783 1121 3.34%
uORFs affected by AS events 580 293 0.87%
uORFs not affected by AS events 3203 828 2.46%
uORFs in single-isoform genes 1577 930 2.77%
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4 Conclusion

In this paper, we describe a stacking approach to identify translated uORFs using
ribosome footprinting data in combination with sequence features related to function-
al uORFs. We identify 5360 translated uORFs in 2051 genes, which account for 6% of
all annotated genes in Arabidopsis thaliana. Likely, this number will increase signifi-
cantly in the future, as more ribosome footprinting experiments are performed.
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Abstract. Based on the data and tools in PRESS, especially the
residue-level virtual angle correlation plots, a web-server called PRESS-
PLOT is further developed for easy access and display of the plots for
structural analysis and evaluation. A structure to be analyzed and eval-
uated can be submitted to the server by either giving its structural ID
in PDB or uploading its structural file in the PDB format. The residue-
level virtual bond angles and torsion angles of the structure are then
computed. The neighboring virtual bond angle and torsion angle pairs
are displayed as scattered points in a 2D graph and compared against
the 2D contour map of the density distribution of such angle pairs in
known protein structures, as given in the background of the 2D graph.
The virtual angle pairs that can be analyzed and evaluated include a-7
and 7-f angle pairs as they appear in either general structures or specific
secondary structures such as a-helices, S-sheets, or their turns. As a jus-
tification of PRESS-PLOT, more than 1000 obsoleted structures (with
lower resolutions) in PDB are evaluated using PRESS-PLOT and com-
pared with their current superseded versions (with higher resolutions).
The results show that PRESS-PLOT distinguishes high-quality struc-
tures (the current ones) from low-quality structures (the obsoleted ones)
clearly in its angle correlation plots. The PRESS-PLOT server can be
accessed online at [http://pidd.math.iastate.edu/press/].

Keywords: Protein structural bioinformatics - Protein residue distances
and angles - Statistical structural analysis - Online servers for structural
evaluation

1 Introduction

With the enormous number of protein structures already determined and de-
posited in PDB, statistical learning becomes not just a necessary but also feasi-
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ble and revitalizing tool for structural bioinformatics: Many structural properties
can now be surveyed statistically in the database of known protein structures.
The distributions or correlations of these properties in the structures can be
computed for structural inferences. They provide a wealth of information for re-
covering general structural properties beyond individual experimental outcomes.
They can be based to develop computational tools for structural analysis as well
as structural determination including structural assessment, refinement, and pre-
diction [1].

The atomic-level structural properties of proteins, such as the backbone tor-
sion angles ¢, v, and w, which are among the main determinants of a protein
fold, have been well studied and understood based on either chemistry knowl-
edge or statistical analysis. For example, it is well known that the allowed range
of w angle is very restrictive, while ¢ and v angles are closely correlated to each
other. The latter is a key indicator for the correct fold of a structure, and is
often demonstrated via a so-called Ramachandran Plot, a 2D contour map of
the density distribution of the ¢-1) angle pairs in known protein structures. The
Ramachanduan Plot has been widely adopted for structural analysis and evalu-
ation, with its 2D contour map used as a reference for the correct formation of
the ¢-1) angle pairs in the structure [2,3].

Structural properties similar to those at atomic level can also be found at
residue level such as the distances between two neighbouring residues (called
virtual bonds); the angles formed by three residues in sequence (called virtual
bond angles); and the torsion angles of four residues in sequence (called virtual
torsion angles) (see Fig. 1). They can be as important as those at atomic level
for structural analysis and evaluation, especially when reduced models for pro-
teins are considered with residues used as basic units [4]. Due to the difficulty
of measuring the residue distances and angles, either experimentally or theoreti-
cally, a statistical approach to the study of these properties becomes crucial and
necessary. Much work has been done along this line in the past [5,6,7,8,9]. In
particular, Huang et al [10] have conducted a detailed survey on residue-level
protein structural properties using a large set of known protein structures in
PDB. An R package called PRESS (Protein REsidual-level Structural Statis-
tics) is released for the access to the structural properties calculated and to
the structural analysis tools developed [11]. Among the analysis tools developed
is a set of so-called residue-level virtual angle correlation plots, with a similar
nature of Ramachadran Plot for atomic-level angle correlations. These residue-
level angle correlation plots contain 2D contour maps of density distributions
of certain virtual bond angle and torsion angle pairs in the surveyed structures.
They can be used to analyze and evaluate any given protein structures, either
experimentally determined or theoretically predicted, with the 2D contour maps
used as references for the correct formation of the virtual angle pairs in the
structures. These angle correlation plots provide a unique and valuable set of
tools for residue-level structural analysis and assessment, and are expected to
have a useful impact in current protein modeling practices.
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Fig. 1. Residue-level virtual angles. Assume that four residues in sequence are
located at x1, x2, x3, x4. Then, the distances between the neighboring residues
are called virtual bonds; the angles formed by three connected residues such as «
and [ are called virtual bond angles; and the dihedral angles formed by four connected
residues such as 7 are called virtual torsion angles.

Following Huang et al [10,11], this work is to develop a web-server called
PRESS-PLOT for easy access and display of the virtual angle correlation plots
in PRESS, especially for easy online access for WWW (World Wide Web) users.
A structure to be analyzed and evaluated can be submitted to the server by
either giving its structural ID in PDB or uploading its structural file in the
PDB format. The residue-level virtual bond angles and torsion angles of the
structure are then computed. The neighboring virtual bond angle and torsion
angle pairs are displayed as scattered points in a 2D graph and compared against
the 2D contour map of the density distribution of such angle pairs in known
protein structures, as given in the background of the 2D graph. The virtual
angle pairs that can be analyzed and evaluated include a-7 and 7-3 angle pairs
as they appear in either general structures or specific secondary structures such
as a-helices, [-sheets, or their turns. As a justification of PRESS-PLOT, more
than 1000 obsoleted structures (with lower resolutions) in PDB are evaluated
using PRESS-PLOT and compared with their current superseded versions (with
higher resolutions). The results show that PRESS-PLOT distinguishes high-
quality structures (the current ones) from low-quality structures (the obsoleted
ones) clearly in its angle correlation plots. The PRESS-PLOT server can be
accessed online at [http://pidd.math.iastate.edu/press/].

2 Implementation

PRESS-PLOT is derived from PRESS structural data and functions for struc-
tural analysis and evaluation using residue-level virtual angle correlation plots.
Different from PRESS, PRESS-PLOT is focused on structural assessment. It has
a web interface for online access. It also evaluates the virtual angle correlations
for specific as well as general secondary structures. The development of PRESS-
PLOT is motivated by the successful application of residue-level virtual angle
correlation plots to structural assessment and justified by extensive testings on
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a large set of current vs. obsoleded structures in PDB.
Structural Data

As in PRESS, a total of 1052 X-ray crystallography structures are downloaded
from PDB, with resolution < 1.5A, sequence similarity < 30%, and only single
chains. The angle sequences a-7-0 for all four residue sequences in the structures
are calculated and stored in a database named ATA-database. Each record in
the database contains the following information:

1D R1,51 R2,SQ R3,Sg R4,S4 o T /5' SS

where ID is the structural ID in PDB, R; is the type of the jth residue in the
sequence, S; is the secondary structure type of R;, o, 7, 5 are the corresponding
virtual bond and torsion angles, and SS is the type of the secondary structure of
the whole residue sequence. The last item is determined by the following rules:
A four residue sequence R1-Ro-R3-Ry4 is considered to be in

. a-helix: if Ry, Rs, R3, R4 are in a-helix

. head of a-helix: if Ry, R3, R4 are in a-helix
. tail of a-helix: if Ry, Ro, R3 are in a-helix

. B-sheet: if Ry, Ry, R3, R4 are in -sheet

. head of -sheet: if Ry, R3, R4 are in [-sheet
. tail of B-sheet: if Ry, Ro, Rs are in (-sheet

ST W N

where the secondary structure type of each residue is identified by using the
program DSSP [12]. With the identification of the secondary structure type,
PRESS-PLOT is capable of evaluating the virtual angle correlations when they
are in specific types of secondary structures, while PRESS evaluates the corre-
lations without specifying the secondary structure types of the angle pairs.

Calculation of Virtual Angles

The virtual bond angles and torsion angles are calculated using standard trig-
nometric relations, given the positions of the residues in the residue sequences.
In all the calculations, the position of the backbone C, of each residue is used
to represent the position of the residue.

Let Ry, R2, R3 be a sequence of three residues located at positions x1, x2, x3
(see Fig. 1). Let u = 23 — 21, v = 3 — 2. Then,

lu+ol* = llul? + [[o]* = 2[lul o] cosex

where ||-|| is the Euclidean norm, and « is the virtual bond angle of this sequence.
Let Ri, R2, R3, R4 be a sequence of four residues located at positions x1, 2,
x3, x4 (see Fig. 1). Let u = x9 — 21, v = &3 — T2, w = x4 — x3. Then,

lu+v +w||* = [Ju]|® + [Jof|* + [Jw]|®
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—2[|ulll|v[l cosar = 2[jo][[w]| cos 5 = 2||uf|w]| cos
where cos = sin asin S cos T — cos . cos B, and «, 3, 7 are the virtual bond and
torsion angles of this sequence.

All a-7 and 7-0 angle pairs in the downloaded structures are collected from the
ATA-database. Let [0°,180°] be divided into 90 small bins for a. Let [0°, 360°]
be divided into 180 small bins for 7. Multiply the two intervals to form a 2D sub-
space [0°,180°] x [0°,360°]. The 2D subspace then consists of 90 x 180 squares.
The density of the a-7 angle pair in any of these squares is defined as the number
of the a-7 angle pairs in that square divided by the total number of a-7 angle
pairs collected. The density distribution of the 7-5 angle pairs is calculated in
a similar way. The calculations are also similar for the density distributions of
these angle pairs when they are in certain types of secondary structures. All the
above calculations are carried out in R with BIO3D as a library [13].

Plot of Density Maps

The 2D countour maps of the density distributions of a-7 and 7-8 angle pairs are
ploted in 2D -7 and 7-f planes, respectively. The maps are displayed in a special
graphical form similar to that for the Ramachadran Plot: FEach map has three
different density regions, with high 50%, 75%, and 90% of density, called most
favored, favored, and allowed regions, and plotted in dark, less dark, and
light colors, respectively. The region with lower 10% density is called disallowed
region and colored in white (see Fig. 2). The maps for the distributions in certain
secondary structure conditions are plotted similarly, with the density percentages
adjusted slightly for those different density regions.

‘Web Interface

PRESS-PLOT is a web-based integrated online service dedicated to protein
structural assessment. It helps the user to visualize the quality of a given struc-
ture in terms of its residue-level virtual angle correlations. PRESS-PLOT in-
tegrates web pages and server-side programs in a one-step query workbench,
making it easy to submit queries and acquire results. It allows the user to assess
a structure and display all the plots from any devices with internet connection
without the need of downloading and installing any large software and compli-
cated library dependencies. The service can be accessed anonymously without
registering or providing any personal information. Each user will be assigned a
query session so that multiple requests can be handled in parallel and indepen-
dently. The query results can also be downloaded in different formats for future
use. ([http://pidd.math.iastate.edu/press/]).

PRESS-PLOT can be broken down into two major components: front-end
dynamic web pages and back-end computing components (Fig. 3). The front-
end web pages are designed in MVC (Model, View, and Control) pattern, which
provides a high refactoring ability and is also simple for maintenance. The re-
sult generated by PRESS-PLOT is graphic-based data. It is important that any
result is presented to the user immediately. For a faster query response, AJAX
(Asynchronous JavaScript and XML) technique is adopted on the web pages. It
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allows the web pages to update the result without refreshing all the elements on
the pages. The back-end computing components are composed of two sub-units,
query handling unit and computing unit. The query handling unit is respon-
sible for pre-processing and transferring user queries to computing unit. After
the results are generated, it also renders the results and outputs plots onto the
web pages. The query handling unit is implemented in PHP, one of the most
popular and widely supported scripting languages. The computing unit imple-
ments the core computing functions. It accepts the query information from the
query handling unit, computes the virtual angle data for the input structure,
and generates the final graphical results. It is implemented in R, an open source
environment for statistical computing.

3 Results

PRESS-PLOT is developed to provide an online server for structural assessment
using the PRESS virtual angle correlation plots. In addition, it further extends
the PRESS angle correlation plots to angle pairs in specific secondary struc-
tures, which can be more accurate for specific structural types and practical for
more detailed structural analysis. PRESS-PLOT is tested on a large set of struc-
tures in PDB, showing that higher-resolution structures in general have better
evaluations in PRESS-PLOT angle correlation plots.

general alpha-tau plot for protein 1GBP general beta-tau correlation plot for protein 1GBP
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Fig. 2. Virtual angle correlation plots. The a-7 and 7-8 angle correlation plots
for structure 1GBP, where there are three different density regions: most favored,
favored, and allowed, corresponding to high 50%, 75%, and 90% of a-7 and 7-f
density, respectively. The rest of the area is called disallowed region, with lower 10%
of density.
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Input Structure Display Plots

i
=

Fig.3. PRESS-PLOT organization. PRESS-PLOT can be broken down into two
parts: The front end and the back end. The front end takes the user’s input structure
and passes it to the query handling unit of the back end. The latter carries out prepro-
cessing and directs the structure to the computing unit of the back end for required
calculation and plot generation. The query handling unit takes the final results from
the computing unit and renders them to the front end for display.

Display Functions

A structure to be evaluated can be submitted to PRESS-PLOT by either provid-
ing the PDB ID of the structure or uploading the structural file in the PDB format.
The structure is then evaluated for their a-7 and 7-3 angle correlations. Total 7
groups of evaluation results, in both graphics and text forms, are generated:

1. general a-7 plot
2. general 7-3 plot

3. a-7 plot for angle pairs in a-helices
4. 7-3 plot for angle pairs in a-helices

5. a-T plot for angle pairs in [-sheets
6. 7-3 plot for angle pairs in S-sheets

7. a-7 plot for angle pairs in heads of a-helices
8. 7-3 plot for angle pairs in heads of a-helices

9. a-7 plot for angle pairs in heads of S-sheets
10. 7-3 plot for angle pairs in heads of S-sheets
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11. a-7 plot for angle pairs in tails of a-helices
12. 7-8 plot for angle pairs in tails of a-helices

13. a-7 plot for angle pairs in tails of 5-sheets
14. 7-3 plot for angle pairs in tails of S-sheets

The first group of results is displayed in the window as default. The remaining
groups are listed as small icons in the bottom of the window and can be selected
to show in the window. Each plot shows the corresponding type of angle pairs
in the given structure as scattered points in the corresponding density map.
The percentages of the points in different density regions are summarized in the
graph. Fig. 2 shows the general a-7 and 7-f correlation plots for a structure
1GBP. Examples for plots for specific secondary structures can be found at the
server page.

In the first group of plots, all a-7 (7-3) angle pairs of the given structure are
calculated and ploted as scattered points in the a-7 (7-/3) plane. The background
of the a-7 (7-8) plane is the contour map of the density distribution of the
a-1 (7-f3) angle pairs in general structures that include all types of secondary
structures. If the percentages of the a-7 (7-) angle pairs of the given structure
in most favored, favored, and allowed regions are around or above 50%, 75%,
and 90%, respectively, the structure is considered to be well formed in terms of
a-7 (7-3) angle correlations.

In the second group of plots, all a-7 (7-3) angle pairs in a-helices of the given
structure are calculated and plotted as scattered points in the -7 (7-f3) plane.
The background of the a-7 (7-3) plane is the contour map of the density distri-
bution of the a-7 (7-3) angle pairs in a-helices. Likewise, in the third group of
plots, all a-7 (7-8) angle pairs in S-sheets of the given structure are calculated
and plotted as scattered points in the a-7 (7-8) plane. The background of the
a-1 (7-f) plane is the contour map of the density distribution of the a-7 (7-3)
angle pairs in S-sheets. The remaining groups of plots are generated similarly
for a-7 (7-f) angle pairs in heads or tails of a-helices or S-sheets.

Testings

PRESS-PLOT is applied to evaluating a large set of obsoleted structures in PDB.
The results are compared with those for the current superseded structures. Up to
early 2012, there are total 1,654 obsoleted protein structures superseded by their
succesors according to a report from PDB [14]. For each pair of obsoleted and
replaced structures, the percentages of the virtual angle pairs in most favored,
favored, and allowed regions of the virtual angle correlation plots are examined.
The average percentages for the structural pairs with RMSD values in between
0 and 1A, 1 and 3A, 3 and 5A, and beyond 5A are calculated and summarized
in Table 1 and 2. The structural pairs for which the RMSD values cannot be
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computed due to various reasons are considered as a separate group (RMSD:
NA).

Table 1 and 2 show the average percentages of a-7 and 7-8 angle pairs in
general secondary structures, respectively. These results show that the current
structures with higher resolutions than their previous ones all have, in average,
higher percentages of virtual angle pairs in the high-density regions of virtual
angle correlation plots, which implies that PRESS-PLOT can distinguish low
quality structures from high quality ones very well. In particular, for the struc-
ture pairs with RMSD values in between 1 and 3A, the differences in these
percentages between the superseded and obsoleted ones are the most notable. A
simple explanation is that if two structures are very similar (with RMSD < 1A),
their virtual angle correlations are certainly expected to be about the same, and
therefore, their PRESS-PLOT evaluations would be similar. On the other hand,
if two structures are very different (with RMSD > SA), they may differ in their
tertiary structures but still have similar secondary structures and hence similar
local structures. The latter would keep the virtual angle correlations of the two
structures similar.

Table 1. Assessments of a-7 correlation plots on PDB structures. The struc-
tures are grouped according to the RMSD values of the obsolete vs. superseded struc-
tural pairs. For each group of structures, the average percentages of their a-7 angle
pairs in different density regions in the a-7 correlation plots are summarized. Table
legends: RMSD — RMSD range for obsoleted and superceded structural pairs; size — #
of structural pairs with given RMSD range; obsX% — average percentage of obsoleted
structures in high X% region; supX% — average percentage of superceded structures in
high X% region.

RMSD  size 0bs90% sup90% obs75% sup75% obs50% sup50%
NA 922 86.41 88.42 7142 73.75 4719 49.38
(0A, 1A) 542 89.56  89.69 75.36 75.51 51.00 51.16
(1A, 3A) 37 83.04 86.39 68.66 7211 44.06 48.52
(3A,5A) 17 86.42 86.95 69.26 71.20 43.47 43.23
(5A, 00) 136 84.09 86.31 67.69 69.84 42.62 45.03

The above statistics are further demonstrated by using boxplots in Fig. 4,
where the values at four different quartiles of the percentages are plotted for the
structural pairs with RMSD values between 1 and 3A. These plots show that our
conclusions above are also valid even in terms of the quartile values including
the medians of the percentages. In addition, we have also calculated, for all
the structures, their average percentages of a-7 and 7-f angle pairs in different
density regions of the angle correlation plots in different secondary structures,
including a-helices, (-sheets, heads and tails of a-helices and [-sheets. In a
similar fashion, we have also compared these average percentages for all obsoleted
and superseded structural pairs. All the results (not shown) are consistent with
the above results on general secondary structures.
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Table 2. Assessments of 7-3 correlation plots on PDB structures. The struc-
tures are grouped according to the RMSD values of the obsolete vs. superceded struc-
tural pairs. For each group of structures, the average percentages of their 7-8 angle
pairs in different density regions in the 7-8 correlation plots are summarized. Table
legends: RMSD — RMSD range for obsoleted and superceded structural pairs; size — #
of structural pairs with given RMSD range; obsX% — average percentage of obsoleted
structures in high X% region; supX% — average percentage of superceded structures in
high X% region.

RMSD  size 0bs90% sup90% obs75% sup75% obs50% sup50%
NA 922 86.44 88.27 71.83 74.01 4803 50.22
(0A,1A) 542 89.60 89.76 75.35 7557 51.86 52.00
(1A, 3A) 37 82.95 86.14 68.65 72.68 44.42 49.53
(3A,5A) 17 85.54 86.15 68.81 71.12 45.12 46.08
(5A, 00) 136 83.86 84.94 67.60 69.70 43.22  45.72

Percentages of Scattered Points in
Alpha-Tau Correlation Plots

Percentages of Scattered Points in
Tau-Beta Correlation Plots
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Fig. 4. Assessment of a-7 and 7-8 correlation plots. For the structural pairs
with RMSD values between 1 and 3A and for each density region of the a-7 (or 7-3)
correlation plot, the obsoleted and superseded structures are each divided into four
quartiles, in terms of their percentages of a-7 (or 7-3) angle pairs in the region. The
percentage values at these quartiles are then plotted in a boxplot form. The plots
show that the values at all these quartiles including the medians of the percentages for
the supersede structures (in orange color) are consistently higher than those for the
obsoleted ones (in green color) in all different density regions.

4 Discussion

Atomic-level structural analysis tools such as the Ramachandran Plot have been
used successfully for protein structural analysis and evaluation. Residue-level
structural properties are as important as those at atomic level for protein mod-
eling but are more difficult to measure. PRESS-PLOT has provided an extremely
valuable set of tools to analyze and evaluate protein structures based on their
residue-level virtual angle correlations. The effectiveness of the tools are clearly
demonstrated in their ability to distinguish the low resolution obsoleted struc-
tures from their superseded high-resolution counter parts.
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PRESS-PLOT is derived from the PRESS angle-based structural assessment
function, but it has more detailed analysis on the angle correlations: It examines
the virtual angle pairs in specific secondary part of the structure as well as the
whole structure, extending the correlation plots from original two to fourteen.
PRESS-PLOT utilizes various advanced web technologies and makes it possible
for the users to get access to the PRESS-PLOT structural evaluation tools easily
from anywhere on the internet, with zero software installation or command typ-
ing efforts. The users can submit their structures and obtain the PRESS-PLOT
evaluations immedaitely in both graphics and text forms.

PRESS-PLOT is the most effective for secondary structure assessment, be-
cause the virtual angle correlations are short-range restrictions (within four
connected residues) and relate directly to the correct fold of the secondary struc-
tures. If there are two structures with the same secondary structural components,
but different tertiary orders, their PRESS-PLOT evaluations would be about the
same, beacuse their local virtual angle correlations would remain the same. Tools
for tertiary structural assessment may be developed by combining certain long
range constraints such as residue contact potentials [5].

The current implementation of PRESS-PLOT is based on the survey on a
large set of X-ray structures in PDB, and therefore, applies to general struc-
tures, with X-ray structures as references. The implementation based on a spe-
cial type of structures, such as the structures of a special protein family or the
structures determined by NMR, could be interesting and particularly effective
for the structures of that type.

The residue-level virtual angle correlations are not as restrictive as those at
the atomic level such as the ¢-1 angle correlations in Ramachandran Plot. For
both atomic and residue-level accuracies, one may use Ramachandran Plot as
well as PRESS-PLOT as a pair of complementary assessment tools. After all, the
PRESS-PLOT assessment is statistically based. The results need to be examined
with caution: There could be exceptions: some angle pairs in most favored
regions may not be really favored in a particular structure; some in disallowed
regions may be just due to a special arrangement in that structure.
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Abstract. Stochasticity and small system size effects in complex bio-
chemical reaction networks can greatly alter transient and steady-state
system properties. A common approach to modeling reaction networks,
which accounts for system size, is the chemical master equation that
governs the dynamics of the joint probability distribution for molecular
copy number. However, calculation of the stationary distribution is often
prohibitive, due to the large state-space associated with most biochemi-
cal reaction networks. Here, we analyze a network representing a luminal
calcium release site model and investigate to what extent small system
size effects and calcium fluctuations, driven by ion channel gating, influx
and diffusion, alter steady-state ion channel properties including open
probability. For a physiological ion channel gating model and number
of channels, the state-space may be between approximately 10° — 108
elements, and a novel modified block power method is used to solve
the associated dominant eigenvector problem required to calculate the
stationary distribution. We demonstrate that both small local cytoso-
lic domain volume and a small number of ion channels drive calcium
fluctuations that result in deviation from the corresponding model that
neglects small system size effects.

Keywords: Systems biology - Chemical master equation - Fluctuation -
Calcium - Ion channel - Stationary distribution - Eigenvector - Block
power method

1 Introduction

In a biochemical reaction network, the copy number of the molecules in the sys-
tem randomly fluctuates due to the random timing of individual reactions [1].
When the system size is small, concentration or density fluctuations are large in
amplitude, and these fluctuations may alter steady-state system properties. In
particular, when reactions are higher than first-order, the expected value calcu-
lated from the stationary distribution of a discrete system representation (that
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accounts for fluctuations and small system size) may disagree with the steady-
state value calculated from the corresponding continuous system representation
(that neglects fluctuations and ignores system size effects) [2].

In many cell types, calcium (Ca2+) is a key signaling molecule that drives im-
portant physiological functions, such as neurotransmitter release and myocyte
contraction [3]. Ca* signaling is often localized in “spatially restricted” domains
of small volume, or Ca®" microdomains. Ca?" influx into microdomains often oc-
curs via Ca**-regulated Ca?* channels, and the number of Ca?" channels is often
small. For example, in cardiomyocytes, localized Ca®* signaling occurs in dyadic
subspaces, estimated to contain between 10-100 Ca®*-activated channels[4]. Ac-
counting for stochasticity in Ca’" channel gating, i.e., transitions between open,
closed, and inactivated channel states, due to the small number of ion channels,
is important and necessary to reproduce many aspects of subcellular Ca?" sig-
naling [5]. However, due to small domain volume (0.001 - 0.1 pm?) and resting
Ca®" concentration ([Ca®*], 0.1 uM), the expected number of Ca* ions is also
typically very small (0.06 - 6 Ca?* ions). Yet the influence of stochasticity due
to Ca®* ion fluctuations is not as well understood.

A common approach to modeling biochemical reaction networks that accounts
for system size is the chemical master equation that governs the joint probabil-
ity distribution for molecular copy number [6]. In prior work, Weinberg and
Smith utilized this approach to investigate the influence of [Ca2+] fluctuations
in minimal Ca** microdomain model, comprised of two-state Ca®* channels, ac-
tivated by local domain Ca?t [7]. Here, we expand on this prior work to include
a more physiological number of channels, channel gating model, which accounts
for both Ca®"-dependent activation and inactivation, and both cytosolic and
luminal Ca®" domains. With this increasing level of physiological detail, the as-
sociated state-space for the luminal Ca?" release site model contains between
10% — 108 elements. A novel modified block power method is used to solve the
associated dominant eigenvector problem required to calculate the stationary
distribution. Our paper is organized as follows: In Section 2, we briefly present
the chemical master equation and calculation of the stationary distribution in
a chemical reaction network. In Section 3, we describe the luminal Ca®* release
site model. In Section 4, we illustrate how accounting for stochasticity influences
steady-state channel gating. We conclude with a brief discussion of our results
in Section 5.

2 Chemical Reaction Network

2.1 Chemical Master Equation

We follow the general notation for representing a biochemical reaction network
as presented in the excellent review by Goutsias and Jenkinson [6]. We de-
scribe the biochemical interactions in a system between N molecular species
X1,Xo,..., XN via M reactions,

Z VnmXn = Z V',Ilanv meM, (1)
neN neN
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where N' = {1,2,...,N} and M ={1,2,..., M}. vpy, and v, are the stochio-
metric coefficients that describe the number of molecules of the n-th species
consumed or produced in the m-th reaction. We collect the net stoichiometric
coefficients in the N x M matrix S = (Spm ), where Spm = Vpm — V-

In a Markov reaction network, the probability of a reaction occurring only
depends on the current system state, and further, to first-order

Pr{reaction m occurs within [¢,t + dt)| X (t) = 2} = 7, (x)dt, (2)

where vector X (¢) = (X1(t), Xa2(¢),..., XN (1)), = (z1,22,...,2,) i a known
system state, and m,,(x) is a state-dependent function called the propensity
function, associated with the m-th reaction. The joint probability distribution
px (t) is governed by the partial differential equation, known as the chemical
master equation,

BB L 5 @ -sndpx (@ suil) - mn@px(@0), (3)
meM

where s,,, is the m-th column of matrix S.
If we index the elements in state space X, then the master equation can be
expressed as a linear system of coupled first-order differential equations

dp(t) _

) -p)e, @)

where p(t) is a 1x K vector containing the probabilities px (x;t), z € X', Q = (¢s5)
is a large K x K sparse matrix, known as the infinitesimal generator matriz,
whose structure can be determined directly from the master equation, and K is
the cardinality of (number of elements in) state space X.

If a stationary distribution exists, then at steady-state, p**@Q = 0, which can
also be found by solution of p**P = p®®, where P = QAt + I, I is the identity ma-
trix of appropriate size, and At is sufficiently small that the probability of two
transitions taking place in time At is negligible, i.e., matrix P is stochastic [8].
We have essentially discretized the continuous-time Markov chain into a discrete-
time Markov chain with transition matrix P. To guarantee that P is stochastic,
0 < At < (max;|g;])~!, and specifically, for numerical considerations discussed
in Stewart [8], we define At = 0.99(max; |g;;|)~'. The stationary joint distribution
p%x can be determined from p®*, which is calculated as described in the following
section.

2.2 Numerical Calculation of Dominant Eigenvector

A Markov chain converges to a stationary distribution provided that it is aperi-
odic and irreducible. Let A1, Ao, ..., Ag be the eigenvalues of the transition ma-
trix IP of the Markov chain, where |A1| =1 > [Ao| 2 ... 2 [Ak|, and v1,v2, ..., vk are
the corresponding eigenvectors. The stationary distribution of the Markov chain
corresponds to the principle eigenvector v1. Although many numerical methods
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Fig. 1. Convergence of the simple power method and the block power method (k =10
and 100) on a test matrix of size 1000 x 1000. The block power method significantly
reduces the number of passes over the transition matrix P and accelerates convergence
to the stationary distribution.

can be used to calculate v;, when the transition matrix P is large, the power
method, with a convergence rate proportional to 1/|\z|, is typically the most
feasible method with the least memory requirement.

To calculate the stationary distribution of the luminal Ca®* release site model
with over a million states, we develop a modified block power method. The block
power method was originally designed to estimate multiple dominating eigenval-
ues/eigenvectors, where the convergence depends on the eigengap between the
k-th and (k + 1)-th eigenvalues, for a given block size k (1 < k < K) [9]. Here,
we are only interested in the principle eigenvector, and therefore the eigengap
between A1 =1 and A\x governs the convergence speed.

Starting with a K x k orthogonal initial matrix X (%), the block power iteration
generates the matrices sequence {X @) }Zo by defining

XO=pxOY =12 .. (5)

For each iteration, the top-k eigenvectors of IP are approximated by eigendecom-

T . .

posing a small k& x k matrix B PB(, where B is a basis of the range space
of X (f). More specifically, by performing block power iteration, the range space
of X becomes an approximate space capturing the dominant information of

matrix P. We construct the matrix B(i)TIP’IB(i) to project matrix IP into the range
space of X and compute its eigenvectors U Then, the top-k eigenvectors of
matrix P can be approximated effectively through a simple matrix multiplication
BM U and the largest is selected as the approximate principle eigenvector.
Compared to the simple power method, the block power method has impor-
tant advantages in handling very large transition matrices. Firstly, when the
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transition matrix P is large, the cost of passing over P dominates that of other
numerical computations and thus becomes the main computational bottleneck.
The block algorithm can significantly reduce the number of passes over P. Sec-
ondly, due to the fact that only the principle eigenvector is of interest, the block
power method converges at a rate proportional to 1/|\;| instead of 1/|\s| as in the
simple power method, which is particularly effective when the eigengap between
1 and |\g| is significantly wider than that between 1 and |A2|. Using block sizes
of k=10 and 100 on a test matrix reduces the number of passes over P to reach
convergence from on the order of 10° to 10® and 102, respectively (Figure 1).

3 Luminal Calcium Release Site Model

In this section, we first describe the Ca®* channel gating model and Ca** domain
compartmental model. We then recast the luminal Ca’" release site model as a
discrete biochemical reaction network, using the notation in Section 2.

3.1 Four-State Calcium Channel Gating Model

Many Ca?*-regulated channels have been shown to exhibit both fast Ca®* ac-
tivation and slower Ca®" inactivation, such as IP3 receptors [10]. The gating
of Ca?" channels that are activated and inactivated by local cytosolic Ca?" is
represented by a stochastic process with the following state transition diagram,

k: Ceyt
(closed) C = @] (open)
K
ki Coye M Ky kg b Ejceyt ., (6)
k: Ceyt
(closed, inactivated) CZ = 7z (inactivated)
e

where kc.y and k; are transition rates with units of time ™!, Ceyt 1s the local cy-
tosolic [Ca2+], and k; is an association rate constant with units of concentration™!-
time™!, for i € {a,b,c,d}. The channel is open when the activation site is Ca**-
bound and the inactivation site is not bound (Figure 2).

In the absence of ion channel gating fluctuations, i.e., for a large number of
ion channels NV, then the dynamics of the fraction of channels in the four states
is given by the following system of ordinary differential equations,

dfe

g~ Faforkifer - (kF + k) eyt fe (7a)
d];'iz = kpceytfo + ko f1 = (K + Kkl ceyt) fez (7b)
dCJ;f =kl ceyrfer + kiceyifo — (ks +k3) fz (7c)
dgl"f = kf coyefo + ki fz - (k5 + ki cep) fo, (7d)

where fe, fez, fz, and fo are the fraction of channels in states C, CZ, Z, and O,
respectively. One of these equations is superfluous, since fe + fer + fz + fo = 1.
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Fig. 2. Illustration of the model components and fluxes in the calcium release unit.
Each Ca®" channel has an activation and inactivation binding site. When only the
activation site is Ca?"-bound, the channel is open and Ca" is release at rate vye.
Local cytosolic [Ca®*], ceyt, relaxes to the bulk [Ca®*], Cogt, at Tate veyt, and depleted
local luminal [Ca®*], ¢, refills towards bulk luminal [Ca®*], ¢22, at rate ver.

3.2 Cytosolic and Luminal Domain Compartment Model

Depletion of local Ca®* near the luminal side of the Ca** channel can alter local
Ca?" release events, known as puffs or sparks [10]. Therefore, we consider a four
compartment model that accounts for local cytosolic and luminal domains, with
[Ca2+] of ceyr and ce,, respectively, and bulk cytosolic and luminal compartments,

with [Ca®'] of Cogt and cgy, respectively (Figure 2). Assuming local cytosolic

[Ca®*], ceyr, relaxes to the bulk [Ca®'], Cogts ab Tate veyr, and depleted local
luminal [Ca2+], Cer, refills towards bulk luminal [Ca2+], ¢, at rate ver, and in
the absence of local cytosolic domain [Ca2+] fluctuations, the dynamics of cey

and c., are given by the following system of ordinary differential equations,

dCc oo
dtyt = 'UrelfO(Cer - Ccyt) - Ucyt(cCyt - ccyt) (8&)
1
d;ir T [~vretfo(Cer = Ceyt) = ver(cer — cg)], (8b)

where v, is the luminal Ca®* release flux rate, and \ = £2,, /£20y¢ is the ratio of
the local luminal and cytosolic domain volumes, (2., and (2., respectively.

3.3 Stochastic Luminal Calcium Release Site Model

The stochastic luminal calcium release site model that corresponds to the chan-
nel gating and compartment models, Eqs. 7-8, respectively, and accounts for
fluctuations in both channel gating and local cytosolic [Ca2+] can be described
by the following biochemical reaction network consisting of N = 5 species and
M =10 reactions,
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C+CaZl, o, oy CaZy,
Cc+CaZ, 21, ¢z ¢+ CaZ,,
CT+Ca2, 25 1, 75 ez a2, (9)
(9+Ca3;t ﬁ,z’ 7t (9+Ca3§t,
z > Call,, Caly, LR 3,

where reaction rates are given by ki = k7 /21, a(z) = eyt (VeytCoyy + Vrel fo (T)
cer(x)), and B(x) = vyt + Vrer fo(x). The copy numbers of channels in each state
are (arbitrarily) defined as X1 = C, X2 = CZ, X3 = Z, and X4 = O, such that
fo(z) = x4/N... Similarly, the copy number of local cytosolic Ca?" ions is defined as
X5 = Cag;, such that e, () = 25/ 2eyt. Local luminal [Ca®*], ¢, is assumed to be
in rapid equilibrium, such that ce, () = (Ve fo (&) eyt (&) + Verces )/ (Vrer fo(x) +
Ver ).

The propensity functions and the net stoichiometric matrix S for the biochem-
ical reaction network defined by Eq. 9 are given by

wl(x):E;x1x5, Wg(x):k;1'4, -11-11 000 000
7T3($):];7g1'1.’£5, 7T4(22):k7g1'2, 00 1-1-11 0000
m5(x) = kizoxs, me(x) = ka3, S=1 00 001-11-100
m7(x) = kizazs, ws(x) = ks, 1-10000-1100
mo(x) =alx), mo(z)=75(x), -11-11-11-111-1

As described in Section 2, we calculate the stationary distribution and sta-
tionary statistics, given by the ¢g-th moment of the i-th species,

pg = > @l -p¥ (x), (10)
xeX

where X is the enumerated state-space, such that the expected channel open and
inactivation probability, E[ fo] = u /N, and E[ fz] = 3 /N, respectively, and ex-
pected local cytosolic [Ca®*], E[ceyt] = p13/2ey:. We compare these stationary
statistics that account for small system size with the corresponding steady-state
values for local cytosolic [Ca®*] and open and inactivated channel fraction that
neglect fluctuations and small system size effects, czyy, f&', and f7°, respec-
tively, found by the steady-state solution of Eqs. 7-8. We also calculate the spark
score, S = Var[ fo]/E[ fo], an index of dispersion for fo, where the fo variance,
Var[ fo] = [pa—(u7)?]/N?, divided by the expectation E[ fo], which takes values
between 0 and 1. A larger spark score corresponds to more robust, spontaneous
luminal Ca®* release events [11].

3.4 Practical Considerations for Enumerating the State-Space

The size of the enumerated state-space K = R5R., is the product of total num-
ber states for Cai; copy number, R, and total number states for the N, ion
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channels, R.. Enumerating the state-space is straightforward when there is a
natural finite range of values that each species can allow. For example, X,
X5, X3 and X, allow values between 0,1, ..., N.. However, because Ca*" influx
(reaction 9) is zero-order, in theory, the local cytosolic Ca?* jon maximum is
infinite. In practice, we define a maximum value R 5, for which the probability of
Caz;rt exceeding such a value is negligible. We found that a reasonable value for
R5 = 2p, where p = max( [cl’:’;‘? 2¢4¢],50), Coyt” = (vcytcgzt + VrerCon ) [ (Veyt + Vrel)
is the hypothetical maximum value for c.,; that occurs for a fully replete local
luminal domain (ce, = ¢2) and all channels open (fo = 1), and [-] is the ceiling
function. Assuming channels are identical and experience the same local cytoso-
lic [Ca2+], the number of distinguishable states for N, channels, with N states,
is given by R = (Ne + N, = 1)!/NC!/(N; = 1)!, where N = 4 for the gating model
in Eq. 6 [12]. For example, for {2.,; = 1072 um?® A =50 channels, and standard
compartment flux parameters (see Figure 3 legend), R5 = 3012, R, = 23426, and
the state-space size K ~ 7.06-107.

4 Results

We investigate the influence of small system size on the stationary properties
of the luminal Ca®" release site model by varying the local cytosolic domain
volume {2.,; and number of Ca?" channels NV,. We plot the joint and marginal
distribution for local cytosolic [Ca2+], Ceyt, and the fraction of open channels,
Jo, and indicate E[ fo] and E[c.,:] (blue circle, solid line) and f& and ¢, (ved
X, dashed line).

When the local cytosolic domain volume is small (e, = 107 pm?®) and
has a small number of channels (N, = 10), the fo-distribution is Poisson-like,
while the c.y-distribution is bimodal, with one peak corresponding to a low
[Ca2+] and zero channels open and a second peak correspond to an elevated
[Ca?*] and a few channels open (Figure 3A). Steady-state measures, /& and
Coyt» that neglect fluctuations correspond closely with the second peak, which
illustrates that Ca®" ion and gating fluctuations lead to a subpopulation of
channels that are not open, which in turn reduces E[fo] and E[ccy:]. Further
analysis of the joint distribution reveals that most of these channels are in the
inactivated states, Z and CZ (not shown). In a local cytosolic domain of larger
volume (2., = 1072 pum?, Figure 3D), the two peaks in the c.y-distribution
are narrower (due to smaller [Ca®*] fluctuations). As a consequence of smaller
[Ca2+] fluctuations, Ca**-activation events, C - O and CZ — Z, are less likely,
and probability in the stationary distribution shifts such that the closed states,
C and CZ, are more likely. As such, E[ fo] is reduced, and E[c.y;] is reduced as a
consequence. However, variability in channel gating slightly increases, such that
the spark score S increases.

As the number of channels in the domain increases (N, = 25, Figure 3B, E), the
fo-distribution is more Gaussian-like. For a small domain volume (Figure 3B),
the ccye-distribution is bimodal, as in the domain with fewer channels; however,
probability has shifted primarily from the low [Ca?*] level to a higher [Ca®*]
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Fig. 3. Luminal Ca®* release site model stationary distribution. For the parameters in
each panel, the stationary joint and marginal distribution for local cytosolic [Ca®*],
Ceyt, and fraction of open channels, fo are shown. The expected values for fo and ceye,
E[fo] and E[ccyt] (blue circle, solid line), respectively, and and steady-state values in
the large system limit, f& and ciy; (red X, dashed line), respectively, are indicated.
Parameters: N. = 10 (A, D), 25 (B, E), or 50 (C, F). £, = 107 (A-C) or 1072
(D-F) pm?®, Channel gating [13]: kZ = kY =1 pM ™ s ky = ko =18, Kk = Kk} =
0.01 uM™ s7*, Ky = k3 = 0.05 s'. Compartment fluxes and bulk concentrations [14]:
ey = 0.1 uM, ¢ =500 uM, veye = 10 871, ver = 1057, v, = 10 575

level, i.e., E[ccyt] is approaching Coyts as expected for a larger system size. In
a larger volume domain, the c.y-distribution is multimodal, with small peaks
corresponding to a distinct number of open channels, including a large peak for
zero open channels (Figure 3E).

As the number of ion channels increases further (N, = 50), the joint distri-
bution approaches a multivariate Gaussian distribution, with a clear positive
correlation between cq,¢ and fo (Figure 3C). The expected values for fo and
Ceyt, E[fo] and E[ceyt], respectively, approach the steady-state measures that
neglect fluctuations, f& and cij,, respectively. In a local cytosolic domain of
larger volume, the c.y:-distribution has a reduced variance, and the correlation
between fo and ¢y is increased (Figure 3F).

In summary, over a wide range of physiological values for N, and $2.,;, we can
observe that as NV, increases, the fo-distribution transitions from Poisson-like to
Gaussian-like, and the fo variance, Var[ fo] decreases such that the spark score
S also decreases. For small domain volumes §2c,¢, the c.y¢-distribution transitions
from a bimodal to Gaussian distribution as A, increases, whereas for a larger
£204t, the ccyp-distribution transitions from bimodal, to multimodal, to Gaussian.
Over this transition, the variance of c.,; initially increases and then decreases
(not shown). Further, in general, fo and c.,: are more closely correlated for
small NV and larger (2.
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Fig. 4. Stationary statistics for the luminal Ca®* release site model. (A) The expected
value for local cytoslic [Ca®*], and fraction of open and inactivated channels, E[cey:],
E[fo], and E[ fz], respectively, and spark score S are shown as functions of the number
of channels NV, for different local cytosolic domain volume (2cy¢. (B) The small system
deviation A, (Eq. 11), for z € {E[ceyt], E[fo],E[fz], S} is shown as a function of A.
Parameters as in Figure 3.

In Figure 4A, we plot E[ceyt], E[fo], E[fz], and S as functions of N, for
different values of 2., (solid, colored lines). We found that S decreases as N,
increases, i.e., spontaneous sparks are less robust in domains with fewer channels.
Further, E[ceyt ], E[ fo], and E[ fz] all increase as N. increases and approach the
steady-state values that neglects fluctuations, cij,, f&', and f7*, respectively
(black, dashed). We found that for small number of channels, N, near 10 — 20,
there is a noticeable difference between these metrics as the cytosolic domain
volume increases from (2.,; = 107 (red) to 1072 ym? (green). We quantified this
deviation, referred to as the small system size deviation in [7],

_E[+]- El#]
a.= P (1)

where z is the measurement for the smallest domain volume ({2¢,; = 107 pm?),
E[2]e is the measurement for the largest domain volume (£2.y; = 1072 um?), and
z € {Ceyt, fo, f1,8}. A, for the four measurements are biphasic functions of N,
(Figure 4B). For z € {ccyt, fo, fz}, A. >0 (positive) and is maximal at N, = 10,
ie., E[ceye], E[fo], and E[ fz] all decrease as local cytosolic domain volume 2.,
increases. Ags < 0 (negative) and is minimal at N = 15, i.e., S increases as 2.y
increases. The small system size deviation is largest in magnitude for fz.
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5 Conclusions

Small system size effects are known to influence dynamics in many settings,
including biochemical, epidemiological, social, and neural networks [6]. Fluctu-
ations in Ca?" microdomain signaling due to stochastic gating of ion channels
are well-known [5]; however, fewer studies have also accounted for influence of
fluctuations in [Ca®*] due to small microdomain volume [7, 15, 16].

In this study, we sought to determine the role of fluctuations in Ca?" chan-
nel and ion fluctuations in influencing steady-state properties of a luminal Ca?*
release site model. The state-space for the discrete model is very large, on the or-
der of 10° - 10® elements, for a physiological number of channels, channel gating
model, and domain volume, and a novel method was utilized to solve the cor-
responding eigenvector problem. We demonstrate that small system size effects,
due to both the small number of channels A, and local cytosolic domain vol-
ume {2y, influence stationary statistics for the system, including open channel
probability and spark score. Further, we are able to identify properties of local
cytosolic domains, i.e., parameter values for N, and 2.y, for which stationary
characteristics, such as channel open probability and local [Ca2+] levels, do not
agree with the corresponding model that neglect small system size effects. Ex-
pected values for ceye, fo, fz, and S were found to have a strong dependence
on the number of channels in the domain, N.. Further, for a given number of
channels, in particular, small values near 10-15, these measures deviated as 2.y
increases, demonstrating that fluctuations in Ca?" ions, in addition to channel
gating, also influence system stationary properties. Since local domain, sponta-
neous Ca”* release events can greatly influence global Ca?* signaling and home-
ostasis [11, 14], our work suggests that predictive whole-cell models of Ca®*
signaling should account for Ca®* ion fluctuations and small system size effects.

In this study, we consider a Ca?* channel gating model that accounts for both
Ca®*-dependent activation and inactivation and a Ca** compartmental model
that includes first-order passive exchange between local and bulk domains [10].
Interestingly, we found that small system deviations, A, , and Ay, , are pos-
itive, in contrast with our prior work analyzing a minimal domain and gating
model [7], demonstrating that accounting for more physiologically-detailed mod-
els of domain compartments and gating is important. In pathological settings,
the kinetics of these processes may be altered, leading to more frequent sponta-
neous Ca’* release events. Further, luminal Ca®* channel gating dynamics may
be more complex, including multiple closed, inactivated, and refractory states.
Further studies are needed to investigate the influence of small system effects
in these settings. However, the general approach presented is independent of
model parameters, compartments, or the channel gating model. The stationary
statistics of the expansive state-space associated with a pathological or expanded
gating model can be similarly analyzed.
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Abstract. We propose a novel robotics-inspired algorithm to compute
physically-realistic motions connecting thermodynamically-stable and
semi-stable structural states in protein molecules. Protein motion com-
putation is a challenging problem due to the high-dimensionality of the
search space involved and ruggedness of the potential energy surface
underlying the space. To handle the multiple local minima issue, we pro-
pose a novel algorithm that is not based on the traditional Molecular
Dynamics or Monte Carlo frameworks but instead adapts ideas from
robot motion planning. In particular, the algorithm balances computa-
tional resources between a global search aimed at obtaining a global
view of the network of protein conformations and their connectivity
and a detailed local search focused on realizing such connections with
physically-realistic models. We present here promising results on a va-
riety of proteins and demonstrate the general utility of the algorithm
and its capability to improve the state of the art without employing
system-specific insight.

Keywords: Protein motion computation - Conformational path -
Roadmap-based algorithm

1 Introduction

Elucidating the detailed motions employed by dynamic protein molecules [1] to
switch between different thermodynamically-stable/functional conformations is
important to advance our understanding of protein physics and allow drug dis-
covery, protein-based sensor design, and protein engineering [2, 3]. Only compu-
tation is capable of providing detailed motions at a microscopic level. However,
computational methods are challenged by the size and dimensionality of the
protein conformation space, as well as the ruggedness of the underlying protein
energy surface. In particular, standard frameworks such as Molecular Dynamics
(MD) and Monte Carlo (MC) often get stuck in particular local minima and
cannot find conformational paths connecting given functional conformations [4].

Algorithms based on robot motion planning have been proposed over the
years, exploiting analogies between protein and robot motions [5]. These algo-
rithms are either limited to small proteins of no more than 100 amino acids when
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employing no insight on the degrees of freedom (dofs) involved in the motion or
heavily employ such insight and in turn have limited applicability [6-16].

Current robotics-inspired methods are tree-based or roadmap-based. Tree-
based methods grow a tree search structure in conformation space from a given
start to a given goal conformation. The growth of the tree is biased towards the
goal. As such, tree-based methods conduct efficient albeit limited sampling of the
conformation space. They are limited to finding essentially one path to the goal
conformation, a setting known as single-query, and need to be run multiple times
to obtain various paths. However, the bias in the growth of the tree causes path
correlations among runs. Tree-based methods have successfully been employed
to compute motions connecting functional conformations both in small peptides
and large proteins of several hundred amino acids [11-16].

Roadmap-based methods can answer multiple queries through graph search al-
gorithms on a constructed graph /roadmap of nearest-neighbor conformations. The
conformations are sampled a priori. Such methods have been applied to compute
mainly unfolding motions [6—10]. Several challenges limit broad applicability. Sam-
pling conformations in regions of interest is difficult with no a priori knowledge.
Once two nearest neighbors are connected with an edge as part of the roadmap
construction, the motion represented by that edge needs to be computed or real-
ized through a local search technique known as a local planner. The local planner
needs to find intermediate conformations. Doing so is particularly challenging, ei-
ther because the planner may have to connect vertices of the roadmap far away in
conformation space, if the sampling has not been dense, or vertices separated by a
high energy barrier. Significant computational time may be spent by local planners
to realize all edges in the roadmap before being able to apply simple graph search
algorithms to report paths connecting conformations of interest.

We propose here SPIRAL, which stands for Stochastic Protein motIon
Roadmap ALgorithm. SPIRAL is a roadmap-based algorithm that assumes a lim-
ited computational budget and spends that budget in a priority-based scheme
to realize promising paths. SPIRAL balances computational resources between a
global search aimed at obtaining a global view of the network of protein confor-
mations and their connectivity and a detailed local search focused on realizing
such connections. In particular, SPIRAL is an adaptation of the fuzzy proba-
bilistic roadmap method introduced for manipulation planning in robotics [17].
SPIRAL is designed to be general and not employ specific insight on where the
relevant dofs are. The goal is to provide through SPIRAL a first-generation,
general algorithm that can be used as a benchmark to further spur research into
roadmap-based frameworks for computing protein motions connecting functional
conformations arbitrarily far away in conformation space.

2 Methods

SPIRAL consists of two main stages, sampling and roadmap building. The sam-
pling stage generates an ensemble of conformations/samples, (2, that provide
a discrete representation of the conformation space. In roadmap building, the
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roadmap G = (V, F) first consists of pseudo-edges over nearest neighbors in £2. A
time-limited iterative interplay between a global search and local search /planners
converts pseudo-edges residing in a user-specified number (K) of promising paths
into tree search structures of actual edges. At the expiration of time or success-
ful computation of K paths, the roadmap is augmented with conformations and
connections obtained by the local planners. All edge weights in the roadmap are
recomputed to reflect energetic difficulty, and the resulting roadmap is queried
for a specified number of lowest-cost paths. Various types of analyses can be
conducted over these paths, whether in terms of energetic profile or proximity
to given functional conformations.

2.1 Sampling Stage

SPIRAL extends the usual setting where two functional conformations are given
to an arbitrary number of given conformations. The idea is to accommodate
applications where a number ¢ > 2 of stable or semi-stable functional conforma-
tions are known from experiment or computation for a protein of interest, and
the goal is to map out the connectivity them. Let us refer to these conformations
as landmarks. The landmarks are used to initialize {2. The sampling stage then
consists of a cycle of selection and perturbation operators. A selection operator
selects a conformation within the current ensemble. Once selected, a perturba-
tion operator is then sampled from a set of available ones and applied to the
selected conformation to generate a new conformation. The generated confor-
mation is checked for energetic feasibility prior to addition to the ensemble f2.
The process repeats until |{2| reaches a pre-determined value.

Selection Operator. The selection operator is based on our prior work on
tree-based methods for protein motion computation [16] but extended here to
deal with an arbitrary number of landmarks. The goal is to promote cover-
age of the conformation space enclosed by the landmarks. A progress coordi-
nate, AR(C'); j, is defined for each conformation C' and a pair of landmarks
(Cy,Cj) as in: AR(C'); ; = IRMSD(C;, C') — IRMSD(C;,C'). IRMSD here refers
to least root-mean-squared-deviation used to measure the dissimilarity between
two conformations after optimal superposition removes differences due to rigid-
body motions [18]. The AR(C); ; coordinate is used to guide sampling towards
under-sampled regions. For each pair of landmarks (C;, C;), a 1d grid is defined
over the range [-IRMSD(C;, C;) — 2,IRMSD(C;, C;) + 2]. Each cell in the grid
is 1A wide. All conformations in {2 are projected onto this grid. In this way,
each conformation in the growing ensemble (2 has (g) projections, one in each of
the (5) grids. The selection operator proceeds as follows. A pair of landmarks is
selected uniformly at random among the (5) pairs. This determines the 1d grid,
from which a cell is then sampled according to a probability distribution function
defined weights w,. associated with cells of a grid. To bias the selection of confor-
mations from under-explored regions of the conformation space, w, = (1+nls)>knc’
where ns is the number of times the cell has been selected, and nc is the number
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of conformations projected onto that cell. Once a cell is selected, a conformation
from that cell is then selected uniformly at random.

Perturbation Operators. In the absence of any specific insight onto the dofs
of relevance, SPIRAL employs a set of perturbation operators in order to make
moves of different granularities in conformation space in the sampling stage. Each
perturbation operator has to satisfy a set of constraints. One of the constraints
enforces energetic feasibility of generated conformations. The energy of a con-
formation C" generated from a selected conformation C, measured through the
Rosetta scored function, is compared to the energy of C through the Metropolis
criterion (score3 is the backbone-level energy function, as we employ here only
backbone-level representations of protein structure). If this fails, C’ is not added
to the ensemble. If it passes, C’ is checked for satisfaction of distance-based con-
straints. Additional constraints are introduced on the minimum IRMSD ¢,,,;,, of
C to any other conformation in the ensemble (2 and the maximum IRMSD § of
C" to the ¢ landmarks. The first constraint prevents redundant conformations
from being added to {2. The second constraint prevents sampling from veering
off in regions of the conformation space deemed far from the landmarks to be
useful for participating in paths connecting them. While €,,;, is a parameter
that can depend on the specific system under investigation (analysis is provided
in section3), a reasonable value for § is 150% of the maximum IRMSD between
any pairs of landmarks.

The idea behind making various perturbation operators available to SPI-
RAL is to allow SPIRAL to select the perturbation operator deemed most ef-
fective based on features of the conformation space and the specific problem
at hand. For instance, when the goal is to connect landmarks that reside far
way from one another, a perturbation operator capable of making large moves
is first desirable. Afterwards, to be able to make connections between such con-
formations, other perturbation operators capable of making smaller moves may
be more effective. We consider here three perturbation operators, detailed be-
low. An optimal weighting scheme that is responsive to emerging features of the
search space is difficult to formulate and beyond the scope of the work here.
However, we have been able to empirically determine a weighting scheme that
is effective on most protein systems studied here.

Molecular Fragment Replacement Operator This operator is inspired from pro-
tein structure prediction, where backbone dihedral angles in a bundle/fragment
of f consecutive amino acids are replaced altogether with values from a pre-
compiled library. SPIRAL employs f € {3,9} to balance between large (f = 9)
and small (f = 3) moves.

Single Dihedral Replacement Operator This operator modifies a single back-
bone dihedral angle at a time to allow small moves. Given a selected backbone
dihedral angle in a selected conformation, a new value from it is obtained using
a normal distribution N (p, o). The angle to perturb is selected uniformly at
random. This operator, gaussian sampling, offers the option of biasing the selec-
tion of dihedral angles to promote selection of those that differ most between a
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selected conformation and a landmark, though our application of SPIRA Lhere
does not make use of biased gaussian sampling in the sampling stage.

Reactive Temperature Scheme: The energetic constraint that determines
whether a conformation C” produced from a perturbation operator applied onto
a selected conformation C' should be added to 2 is based on the Metropolis
criterion. Essentially, a probability e_(EC’_EC)/(K'T), is measured, where K is
the Boltzmann constant, and T is temperature. An arbitrary temperature value
is both difficult to justify and obtain constraints-satisfying conformations as {2
grows (if T' is low). So, as in previous work on tree-based methods [16], we make
use of a reactive temperature scheme but extend it to the multiple-landmark
setting here. We maintain a temperature value T, for each cell ¢ of the 1d grids
over the progress coordinate. Each cell’s temperature is adjusted every s steps
(typical value employed is 25). The temperature of a cell, T, is increased if the
last s selections of that cell have resulted in no conformations being added to 2.
If conformations are added to {2 more than 60% of the time within a window of s
steps, T, is decreased. Increases and decreases occur over adjacent temperature
levels per a proportional cooling scheme that starts with very high temperatures
in the 2, 000K range and ends with room temperature of 300K.

2.2 Roadmap Building Stage

All conformations in {2 are added to the vertex set V. For each v € V| its
k nearest-neighbors are identified, using IRMSD. For each identified neighbor,
directional pseudo-edges are added with v. Additional pseudo-edges are added by
identifying any vertex < €,,4, from v that lies in a different connected component
from v. Typical values for k and €nq, are 10 and 5A, respectively.

The pseudo-edges are assigned a weight to reflect their estimated difficulty
of being realizable. At initialization, all pseudo-edges are determined equally
difficult with a weight value of 1. A two-layer scheme is then used, which is
an iterative interplay between global and local search. The global search, path
query, identifies the current most promising/lowest-cost path in the roadmap
connecting two given functional conformations. If there are unrealizable edges in
the path, these edges are fed to the local search, which launches local planners
on unrealized edges, pursuing path realization. The planners are given a limited
computational budget, and they report at the end of this budget either a real-
ized edge or a new weight for the unrealized edges. In this iterative interplay
between path query and path realization, over time, the pseudo-edges that are
most difficult to realize will be assigned high weights and will thus be unlikely
to participate in the lowest-cost path pushed to the local planners. This dy-
namic interplay apportions computational resources in a manner that promotes
rapid path discovery. The iterative process continues until a total computational
budget is exhausted or a user-specified number of paths is obtained.

Path Query and Path Realization Interplay: A pair of landmarks are selected
uniformly at random over the ¢! permutations. The roadmap is then queried
for a lowest-cost path, using the assigned pseudo-edge weights. We utilize Yen’s
K-Shortest path algorithm [19] to identify the lowest non-zero cost path in the
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graph and allow us to continue obtaining paths after the first path has been
successfully realized. Given an identified path, a local planner is assigned to any
of the unrealized edges. The planner is given a fixed computational budget, time
T. If the local planner succeeds, the pseudo-edge it has realize is assigned a
weight of 0 to indicate the pseudo-edge is resolved. If the local planner fails, the
pseudo-edge is reweighted as in w, = 0.7 - CallsToPlanner + 0.3 - (ClosestNode —
RequireResolution)?. CallsToPlanner tracks the number of times the planner
has been requested to work on a particular pseudo-edge, ClosestNode is the
node in the tree constructed by the local planner that is closest to the vertex
v in the directed pseudo-edge (u,v). For the planner to be successful, it must
also generate a path that is within a user-specified IRMSD of the vertex v, so
RequireResolution is also employed.

An additional feature of SPIRAL is its ability to learn from failures. When
a local planner has failed to complete a path more than RefineLimit times,
SPIRAL augments the graph with conformations identified by the local planner
that are otherwise invisible to the global layer. We now proceed to relate details
on the local planner and the augmentation procedure.

Local Planner: The local planner is an adaption of the tree-based method
proposed in [16]. The adaptation consists of diversifying the types of perturba-
tion operators employed in the expansion of the tree. The local planner selects
through a probabilistic scheme shown in section 3 from the menu of perturbation
operators described above. While biased gaussian sampling is not used in the
sampling stage in SPIRAL, it is used by the local planner.

Roadmap Augmentation: Some regions of conformational space may be chal-
lenging to connect through local planners. This can be due to high energetic
barriers or inadequate sampling. To address this issue, SPIRAL makes use of a
feedback mechanism to augment the roadmap. When a local planner encounters
difficulty realizing a pseudo-edge connecting given conformations p and r more
than RefineLimit times (set at 25), the problem of connecting p to r is consid-
ered as a mini-version of the entire motion computation problem. The sampling
scheme is repeated, essentially treating p and r as start and goal conformations.
The perturbation operators described above are used together with a new one
based on straight-line interpolation. The produced conformations are then min-
imized using the Rosetta relax protocol. Only the lowest-energy conformation
is considered for addition. Conformations obtained from the perturbation op-
erators are checked for satisfaction of the energetic and geometric constraints
also used in the sampling stage. The operators are applied under a probabilistic
scheme detailed in section 3 until either 25 conformations have been added to
the roadmap or a maximum of 2500 attempts to do so have been made.

Roadmap Analysis: Fach edge in the roadmap is reweighted to reflect energetic
difficulty per the Metropolis criterion. A room temperature value is used for this
purpose. The reweighted graph is queried for one or more lowest-cost paths,
which are then analyzed in terms of energetic profile or distance within which
they come of the goal landmark structures, as related in section 3.
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3 Results

3.1 Systems of Study

Table 1 lists the protein systems selected for testing here. These are carefully
gathered from published literature to provide comparisons where possible; not
many published methods exist, and many of them either focus on few specific
systems or are limited by system size. For most of the collected systems, two
functional conformations have been extracted from literature (we consider both
directions). The final column in Table 1 shows the IRMSD between the start and
goal conformations. Neither size nor the IRMSD between functional conforma-
tions do by themselves define system difficulty. We have observed that the larger
systems that exhibit smaller motions (less than 4.5A IRMSD) between the start
and goal conformations may require the protein chain to partially unfold before
returning to a folded state. The process of unfolding a large, compact structure
is computationally costly, as effectively an energy barrier needs to be crossed to
get out of the compact state. Indeed, many computational studies avoid com-
puting the motions involved in transitions from a closed to an open structural
state because of this challenge.

Table 1. Protein systems for evaluation of performance

System Length Start <» Goal IRMSD(start, goal)

CVN 101 2ezm < 1l5e 16.01 A
lefd < 1cll 10.7 A
CaM 140 1cfd « 2f3y 9.9 A
lell < 2f3y 13.44 A
AdK 214  lake < 4ake 6.96 A
LAO 238  1laf + 2lao 4.7 A
DAP 320 1dap <> 3dap 4.3 A
OMP 370 lomp <> 3mbp 3.7 A
BKA 691 1ch6 <> 1bka 6.4 A

3.2 Implementation Details

SPIRAL is implemented in C++. A hard termination criterion is set with regards
to the total number of energy evaluations. The sampling stage is terminated if
the total number of energy evaluations exceeds 1,000 times the requested ensem-
ble size. That is, a maximum of 25 attempts are made to obtain a sample. The
roadmap building stage is terminated after 10,000 iterations of the interplay
between path query and path realization. This stage may terminate earlier if
K = 250 paths are obtained for all ¢! landmarks as a way to control computa-
tional cost. The analysis stage reports the 50 lowest-cost paths. In terms of CPU
time, the computational time demands of all these three stages in SPIRAL spans
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anywhere from 56 hours on one CPU for protein systems around 100 amino acids
long to 300 hours on one CPU for systems around 700 amino acids long.

During sampling, the molecular fragment replacement perturbation operator
with f = 3 is selected 75% of the time, the operator with k = 9 is selected 20%
of the time, and the gaussian sampling operator is selected 5% of the time. The
reason for this scheme is to make large moves more often than small ones so as
to spread out conformations in conformation space during sampling.

During roadmap building, the probabilistic scheme with which local plan-
ners and the roadmap augmentation make use of the perturbation operators is
different, as shown in Table 2. A local planner can use two different schemes
depending on the IRMSD between the two conformation/vertices it is asked to
connect by the global layer. These schemes are not fine-tuned; essentially, when
the distance is < 2.5A, smaller moves are promoted as opposed to when the
distance is > 2.5A. The reason for basing the decision at 2.5Ais due to prior
work on tree-based planners showing that molecular fragment replacement can
result in step sizes greater than 2.5A [16].

Table 2. The perturbation operator set and their weights during roadmap building

Roadmap Building Perturbation Operator Prob.
Molecular Fragment Replacement (f =3) 0.70
Local Planner (> 2.5 A IRMSD) Gaussian Sampling (1 = 0, o = 15) 0.15

Biased Gaussian Sampling (u = 0, o = 15) 0.15

Molecular Fragment Replacement (f =3) 0.20
Local Planner (< 2.5 A IRMSD) Gaussian Sampling (1 = 0, ¢ = 15) 0.40
Biased Gaussian Sampling (¢ = 0, o = 15) 0.40

Molecular Fragment Replacement(f =3) 0.20

. Gaussian Sampling (u = 0, o = 15) 0.40
Augmentation Biased Gaussian Sampling (1 = 0, 0 = 15) 0.40
Interpolation-based 0.05

The €,,s» parameter controls how close neighboring conformations will be in
the roadmap. Intuitively, smaller €,,;, values would produce a better-quality
roadmap. Our analysis indicates that this is not the case. Small values of €,,;n
(< 1A) can result in many small cliques being formed in the roadmap around
local minima conformations. This is not surprising, particularly for the broad
minima that contain the stable and semi-stable landmarks. On these minima, it
is rather easy to sample a very large number of conformations nearby a land-
mark and thus essentially “get stuck” in the same local minimum. Insisting on a
minimum distance separation among sampled conformations forces sampling not
to provide refinement or exploitation of a particular local minimum but rather
explore the breadth of the conformation space. Not insisting on a minimum
distance pushes all the work to obtaining intermediate conformations to bridge
local minima to the local planners, which is an ineffective use of computational
time. The €,,;, parameter is set to 2.0A for systems where the IRMSD between
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Table 3. Column 4 reports smallest distance to goal over all paths obtained by SPI-
RAL. Columns 5 — 7 shows such distances from tree-based methods. Max Step in
column 3 refers to the maximum IRMSD between any two consecutive conformations
in the SPIRAL path that comes closest to the goal. -’ indicates lack of published data.

System  Start — Goal Max Dist to Goal (A)
yste & ©% Step SPIRAL Tree-based [16] Cortés[15] Haspel [11, 12]

CVN 2ezm — 115e 1.5 1.5 - 2.1 2.1
(101 aa) 115e — 2ezm 1.5 1.3 - - -

lell — lcfd 3.4 1.46 3.35 - -

lefd — 1cll 2.67 1.12 3.17 - -

CaM 1cll — 2f3y 2.77 1.26 1.67 - -
(144 aa) 23y — 1cll 3.5 1.12 0.73 - 1.33

lefd — 2f3y  3.33 1.26 3.5 - -

2f3y — lcfd  3.48 1.46 3.2 - -

AdK 1lake — 4ake 3.0 1.86 3.8 2.56 2.2
(214 aa) 4ake — lake 3.12 1.33 3.6 1.56 -

Lao 2lao — 1laf 2.0 1.21 - 1.32 -
(238 aa) llaf — 2lao 3.2 1.90 - - -

DAP 1dap — 3dap 1.42 1.5 - 1.31 -
(320 aa) 3dap — ldap 1.46 0.92 - -
OMP lomp — 3mbp 1.04 3.04 - - -
(370 aa) 3mbp — lomp 0.91 3.61 - - -
BKA 1bka — 1cb6 3.87 1.55 - 2.79 -
(691 aa) 1cb6 — 1bka 3.98 1.69

landmarks is > 6A, 1.5A for systems where the IRMSD between landmarks is
> 4.5 but < 6A, and 1.0 for systems where the IRMSD between landmarks is
< 4.5A.

3.3 Comparison of Found Paths with Other Methods

We compare SPIRAL to published tree-based methods [11, 12, 15, 16]. These
methods make use of specific moves. For instance, our tree-based method in [16]
uses molecular fragment replacements with f = 3, the method in [15] uses moves
over low-frequency modes revealed by normal mode analysis, and the method
in [11, 12] considers only backbone dihedral angles whose values change be-
tween the given functional conformations. The last two methods consider a low-
dimensional search space of no more than 30 dimensions.

We report the closest that any path computed by SPIRAL comes to the
specified goal conformation and compare such values on all protein systems to
those reported in other published work. Columns 4—7 in Table 3 show these
values for SPIRAL and other published work. Column 3 reports some more
details on the path with which SPIRAL comes closest to the goal conformation
by listing the maximum IRMSD between any two consecutive conformations
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Fig. 1. Energy profiles of conformational paths computed for AdK (top) and of CaM
(bottom) by SPIRAL(green) and an interpolation-based planner (red)

in the path. SPIRAL typically generates paths with conformations closer to
the goal conformation than other methods (highlighted in bold where true). A
video illustrating the lowest-cost conformational path reported by SPIRA Lfor
the CVN protein can be found at http://youtu.be/7P4reYO3k-c.
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3.4 Analysis of Energetic Profiles

We show the energetic profile of the lowest-cost path obtained by SPIRAL on two
selected systems, AdK and CaM. We compare these profiles to those obtained
by the interpolation-based planner described in section 2. For this planner, the
resolution distance € is set to 1.0 A, and 50 cycles are performed to obtain a
path. This provides a fair comparison, given that we also analyze 50 paths ob-
tained after the analysis stage in SPIRAL and report here the lowest-cost one.
Figure 1 shows that on proteins, such as AdK, where the distance between the
start and goal conformations is large, paths provided by the interpolation-based
planner tend to have higher energies than those provided by SPIRAL. On sys-
tems, such as CaM, where the start-to-goal distance is smaller, an interpolation-
based planner can perform comparably to SPIRAL.

4 Conclusions

This paper has proposed SPIRAL, a novel protein motion computation algorithm
capable of handling proteins of various sizes and settings where distances among
functional conformations of interest can exceed 16A. The algorithm is inspired
by frameworks used in robot motion planning as opposed to MD- or MC-based
frameworks. The main reason for doing so is to address the limited sampling
in MD- or MC-based frameworks, particularly when motions involve disparate
time and length scales.

SPIRA Lexploits no particular information on any protein at hand. It is ex-
pected that tunings of the probabilistic scheme or employment of additional
perturbation operators and moves based on specific system insight will improve
performance. Future work will consider such directions, but the current need of
the community is for a powerful, general, baseline method for the purpose of
benchmarking.

The results shown here suggest SPIRAL produces good-quality paths and can
be employed both to extract information on protein motions, possible long-lived
intermediate conformations in such motions, as well as to advance algorithmic
work in motion computation frameworks. In particular, the inherent prioritiza-
tion scheme in SPIRAL allows the sampling of both low-cost paths and high-cost
paths, provided enough computational budget is allocated. The latter paths may
highlight possible local unfolding involved in protein motions connecting func-
tional conformations. An executable of SPIRAL can be provided to researchers
upon demand.
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Abstract. Duplication-Transfer-Loss (DTL) reconciliation has emerged as a
powerful technique for studying gene family evolution in the presence of hori-
zontal gene transfer. DTL reconciliation takes as input a gene family phylogeny
and the corresponding species phylogeny, and reconciles the two by postulating
speciation, gene duplication, horizontal gene transfer, and gene loss events. Effi-
cient algorithms exist for finding optimal DTL reconciliations when the gene tree
is binary. However, gene trees are frequently non-binary. With such non-binary
gene trees, the reconciliation problem seeks to find a binary resolution of the gene
tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the
context of the simpler Duplication-Loss (DL) reconciliation model. Yet, no effi-
cient algorithms exist for DTL reconciliation with non-binary gene trees and the
complexity of the problem remains unknown. In this work, we resolve this open
question by showing that the problem is, in fact, NP-hard. Our reduction applies
to both the dated and undated formulations of DTL reconciliation. By resolving
this long-standing open problem, this work will spur the development of both
exact and heuristic algorithms for this important problem.

1 Introduction

Duplication-Transfer-Loss (DTL) reconciliation is one of the most powerful techniques
for studying gene and genome evolution in microbes and other non-microbial species
engaged in horizontal gene transfer. DTL reconciliation accounts for the role of gene
duplication, gene loss, and horizontal gene transfer in shaping gene families and can
infer these evolutionary events through the systematic comparison and reconciliation
of gene trees and species trees. Specifically, given a gene tree and a species tree, DTL
reconciliation shows the evolution of the gene tree inside the species tree, and explicitly
infers duplication, transfer, and loss events. Accurate knowledge of gene family evolu-
tion has many uses in biology, including inference of orthologs, paralogs and xenologs
for functional genomic studies, e.g., [1, 2], reconstruction of ancestral gene content,
e.g., [3,4], and accurate gene tree and species tree construction, e.g., [2,5-7], and the
DTL reconciliation problem has therefore been widely studied, e.g., [4, 8—15].

DTL reconciliation is typically formulated using a parsimony framework where each
evolutionary event is assigned a cost and the goal is to find a reconciliation with minimum
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DOI: 10.1007/978-3-319-19048-8 16
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total cost. The resulting optimization problem is called the DTL-reconciliation prob-
lem. DTL-reconciliations can sometimes be time-inconsistent; i.e, the inferred transfers
may induce contradictory constraints on the dates for the internal nodes of the species
tree. The problem of finding an optimal fime-consistent reconciliation is known to be
NP-hard [10, 16]. Thus, in practice, the goal is to find an optimal (not necessarily time-
consistent) DTL-reconciliation [4,10,11,13,15] and this problem can be solved in O(mn)
time [11], where m and n denote the number of nodes in the gene tree and species tree,
respectively. Interestingly, the problem of finding an optimal time-consistent reconcili-
ation actually becomes efficiently solvable [9, 17] in O(mn?) time if the species tree is
fully dated. Thus, these two efficiently solvable formulations, regular and dated, are the
two standard formulations of the DTL-reconciliation problem.

Both these formulations of the DTL-reconciliation problem assume that the input
gene tree and species tree are binary. However, gene trees are frequently non-binary in
practice. This is due to the fact that there is often insufficient information in the under-
lying gene sequences to fully resolve gene tree topologies. When the input consists of
a non-binary gene tree, the reconciliation problem seeks to find a binary resolution of
the gene tree that minimizes the reconciliation cost. Given the prevalence of non-binary
gene trees, many efficient algorithms have been developed for this problem in the con-
text of the simpler Duplication-Loss (DL) reconciliation model [5, 18-20], with the
most efficient of these algorithms having an optimal O(m + n) time complexity [20].
However, the DTL reconciliation model is more general and significantly more complex
than the DL reconciliation model. Consequently, no efficient algorithms exist for DTL
reconciliation with non-binary gene trees and the complexity of the problem remains
unknown. As a result, DTL reconciliation is currently inapplicable to non-binary gene
trees, significantly reducing its utility in practice.

In this work, we settle this open problem by proving that the DTL-reconciliation
problem on non-binary gene trees is, in fact, NP-hard. Our proof is based on a reduction
from the minimum 3-set cover problem and applies to both formulations of the DTL-
reconciliation problem. An especially desirable feature of our reduction is that it implies
NP-hardness for biologically relevant settings of the event cost parameters, showing
that the problem is difficult even for biologically meaningful scenarios. The uncertainty
about the complexity of DTL-reconciliation for non-binary gene trees has prevented
the development of any algorithms, exact or heuristic, for the problem. By settling this
question, our work will spur the development of both exact (better than brute-force) and
efficient approximation and heuristic algorithms for this important problem.

We develop our NP-hardness proof in the context of the regular (undated) DTL-
reconciliation formulation, and revisit dated DTL-reconciliation later in Section 4. The
next section introduces basic definitions and preliminaries, and we present the NP-
hardness proof for the optimal gene tree resolution problem in Section 3. Concluding
remarks appear in Section 5. In the interest of brevity, proofs for all Lemmas are de-
ferred to the full version of this paper.

2 Definitions and Preliminaries

We follow the basic definitions and notation from [11]. Given a tree T', we denote its
node, edge, and leaf sets by V(T'), E(T'), and Le(T') respectively. If T' is rooted, the
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root node of T is denoted by r#(T"), the parent of a node v € V(T') by pa,(v), its set
of children by Chy(v), and the (maximal) subtree of T rooted at v by T'(v). The set of
internal nodes of T, denoted I(T'), is defined to be V(T') \ Le(T"). We define < to be
the partial order on V(T') where x <7 y if y is a node on the path between r#(T") and
x. The partial order > is defined analogously, i.e., x > y if x is a node on the path
between r#(T") and y. We say that y is an ancestor of x, or that x is a descendant of y, if
x <7 y (note that, under this definition, every node is a descendant as well as ancestor
of itself). We say that x and y are incomparable if neither x <1 y nor y <7 z. Given a
non-empty subset L C Le(T'), we denote by lcar (L) the last common ancestor (LCA)
of all the leaves in L in tree T". Throughout this work, the ferm tree refers to rooted trees.
A tree is binary if all of its internal nodes have exactly two children, and non-binary
otherwise. We say that a tree T" is a binary resolution of T if T’ is binary and T can be
obtained from 7" by contracting one or more edges. We denote by BR(T') the set of all
binary resolutions of a non-binary tree 7.

Gene trees may be either binary or non-binary while the species tree is always as-
sumed to be binary. Throughout this work, we denote the gene tree and species tree
under consideration by G and S, respectively. If G is restricted to be binary we refer to
it as GP and as GV if it is restricted to be non-binary. We assume that each leaf of the
gene tree is labeled with the species from which that gene was sampled. This labeling
defines a leaf-mapping L s: Le(G) — Le(\S) that maps a leaf node g € Le(G) to that
unique leaf node s € Le(S) which has the same label as g. Note that gene trees may
have more than one gene sampled from the same species. We will implicitly assume
that the species tree contains all the species represented in the gene tree.

2.1 Reconciliation and DTL-scenarios

A binary gene tree can be reconciled with a species tree by mapping the gene tree into
the species tree. Next, we define what constitutes a valid reconciliation; specifically,
we define a Duplication-Transfer-Loss scenario (DTL-scenario) [10, 11] for G? and
S that characterizes the mappings of GP into S that constitute a biologically valid
reconciliation. Essentially, DTL-scenarios map each gene tree node to a unique species
tree node in a consistent way that respects the immediate temporal constraints implied
by the species tree, and designate each gene tree node as representing either a speciation,
duplication, or transfer event.

Definition 1 (DTL-scenario). A DTL-scenario for G® and S is a seven-tuple
(L, M, X, A,0,Z,7), where L: Le(GP) — Le(S) represents the leaf-mapping from
GB to S, M: V(GP) — V(S) maps each node of GP to a node of S, the sets X, A,
and O partition 1(G®) into speciation, duplication, and transfer nodes respectively, =
is a subset of gene tree edges that represent transfer edges, and T: © — V (S) specifies
the recipient species for each transfer event, subject to the following constraints:

1. If g € Le(GP), then M(g) = L(g).
2. Ifg € I(GP) and ¢' and g" denote the children of g, then,
(a) M(g) £s M(g') and M(g) £s M(g"),
(b) At least one of M(g') and M(g") is a descendant of M(g).
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3. Given any edge (g,g') € E(GP), (g9,9") € Z if and only if M(g) and M(g') are
incomparable.
4. Ifg € I(GP) and ¢' and g" denote the children of g, then,
(a) g € X only if M(g) = lcalM(g"), M(g")) and M(g") and M(g") are in-
comparable,
(b) g € Aonlyif M(g) >s lea(M(g), M(g"))
(c) g € O ifand only if either (g,4g') € ZE or (9,9") € =.
(d) If g € © and (g,9') € =, then M(g) and 7(g) must be incomparable, and
M(g") must be a descendant of T(g), i.e., M(g") <s 7(g).

DTL-scenarios correspond naturally to reconciliations and it is straightforward to
infer the reconciliation of G and S implied by any DTL-scenario. Figure 1 shows an
example of a DTL-scenario. Given a DTL-scenario «, one can directly count the min-
imum number of gene losses, Loss,, in the corresponding reconciliation. For brevity,
we refer the reader to [11] for further details on how to count losses in DTL-scenarios.

Let Pa, Po, and P, denote the non-negative costs associated with duplication,
transfer, and loss events, respectively. The reconciliation cost of a DTL-scenario is de-
fined as follows.

Definition 2 (Reconciliation cost of a DTL-scenario). Given a DTL-scenario @ =
(L, M, 2, A0, 2, 7) for GB and S, the reconciliation cost associated with « is given
by Ro = Pa - |A| + Po - |O| + Pioss - Lossq.

A most parsimonious reconciliation is one that has minimum reconciliation cost.

Definition 3 (Most Parsimonious Reconciliation (MPR)). Given G® and S, along
with Pa, Po, and P,ss, a most parsimonious reconciliation (MPR) for GB and S is a
DTL-scenario with minimum reconciliation cost.

2.2 Optimal Gene Tree Resolution

Non-binary gene trees cannot be directly reconciled against a species tree. Thus, given
a non-binary gene tree GV, the problem is to find a binary resolution of GV whose
MPR with S has the smallest reconciliation cost. An example of a non-binary gene tree
and a binary resolution is shown in Figure 1.

Problem 1 (Optimal Gene Tree Resolution (OGTR)). Given GV and S, along with
Pa, Po, and Py,ss, the Optimal Gene Tree Resolution (OGTR) problem is to find a
binary resolution G® of GV such that the MPR of G® and S has the smallest reconcil-
iation cost among all GB € BR(GN).

3 NP-hardness of the OGTR Problem

We claim that the OGTR problem is NP-hard; specifically, that the corresponding deci-
sion problem is NP-Complete. The decision version of the OTGR problem is as follows:
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Fig. 1. DTL reconciliation and OGTR problem. Part (a) shows a non-binary gene tree G* and
binary species tree S. Part (b) shows a DTL reconciliation between a possible binary resolution
G of GV and species tree S. The dotted arcs show the mapping M (with the leaf mapping being
specified by the leaf labels on the gene tree), and the label at each internal node of G specifies
the type of event represented by that node. This reconciliation invokes two transfer events.

Problem 2 (Decision-OGTR (D-OGTR)).

Instance: G and S, event costs Pa, Po, and Py, and a non-negative integer l.
Question: Does there exist a GP € BR(GY) such that the MPR of GP and S has
reconciliation cost at most [?

Theorem 1. The D-OGTR problem is NP-Complete.

The D-OGTR problem is clearly in NP. In the remainder of this section we will show
that the D-OGTR problem is NP-hard using a poly-time reduction from the decision
version of the NP-hard minimum 3-set cover problem [21].

3.1 Reduction from Minimum 3-set Cover
The decision version of minimum 3-set cover can be stated as follows.
Problem 3 (Minimum 3-Set Cover (M3SC)).

Instance: Given a set of n elements U={u1,us, ... ,u,}, a set A={A1, As, ..., A, }
of m subsets of U such that |A;| = 3 for each 1 < i < m, and a nonnegative
integer k < m.

Question: Is there a subset of A of size at most k whose union is U?

We point out that the M3SC problem as defined above is a slight variation of the
traditional minimum 3-set cover problem: In our formulation the subsets of U in A are
restricted to have exactly three elements each while the traditional formulation allows
for the subsets to have less than or equal to three elements [21]. However, it is easy to
establish that the NP-Completeness of the traditional version directly implies the NP-
Completeness of our formulation of the M3SC problem. We will also assume, without
any loss of generality, that each element u; appears in at least two subsets from A.

Consider an instance ¢ of the M3SC problem with U = {uy,uz,...,un}, A =
{41, Ay, ..., A, }, and k given. We now show how to transform ¢ into an instance A of
the D-OGTR problem by constructing GV and S and setting the three event costs in
such a way that there exists a YES answer to the M3SC instance ¢ if and only if there
exists a YES answer to the D-OGTR instance A with [ = 10k + 39m — 12n.
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3.2 Gadget

Gene Tree. We first show how to construct the gene tree GV . Note that each element of
U occurs in at least two of the subsets from A. We will treat each of the occurrences of
an element separately and will order them according to the indices p of the A,’s which
contain that element. More precisely, for an element u; € U, we denote by z; ; the jth
occurrence of u; in A. For instance, if element u5 occurs in the subsets As, A4, A1, and
Ags, then x5 5 refers to the occurrence of us in A4, while x5 4 refers to the occurrence
of us in Ass.

Let ¢; denote the cardinality of the set {A,: u; € A,, for1 < p < m}. Then, z; ; is
well defined aslong as 1 < ¢ <nand1 < j < ¢;. Each z; ; will correspond to exactly
four leaves, x; ; 1, @i j 2, %;,5,3, and x; ; 4 in the gene tree GN . In addition, the leaf set
of G also contains a special node labeled start, provided for orientation.

Thus, Le(GN) = {Zij1,2ij2,Tij3, Tiga: 1 <i<nandl < j < ¢} U{start}.

The overall structure of G is shown in Figure 2(a). As shown, the root node of the
gene tree is unresolved and has 3m + 3n + 1 children consisting of (i) the start node,
(i) the Z?:l ¢; = 3m leaf nodes, collectively called blue nodes, and (iii) the 3n internal
nodes labeled g;, g}, and g, for each 1 < ¢ < n. These internal nodes represent the
n elements in U and the subtrees rooted at those nodes have the structure shown in
Figure 2(a). Note that the number of children for each of the internal nodes labeled g;,
g5, and g/, for 1 < i < m, is ¢;. These nodes may thus be either binary or non-binary.
The leaves labeled x; ; 3 appear in the node gj, those labeled x; ; 4 appear in g}, and
those labeled x; ;1 or x; ;o appear in g;. The z; ;1’s also appear in the collection of
blue nodes and thus appear twice in the gene tree. Note, also, that all the children of
a node g;, for 1 < 4 < n, are themselves internal nodes and are labeled y; ;, where
1<j <.
Species Tree. Next, we show how to construct the species tree S. The tree S is binary
and consists of m subtrees whose root nodes are labeled s, . . . Sy, €ach corresponding
to a subset from A, connected together through a backbone tree as shown in Figure 2(b).
The exact structure of this backbone tree is unimportant, as long as each s; is sufficiently
separated from the roots of the rest of the subtrees. For concreteness, we will assume
that this backbone consists of a “caterpillar” tree as shown Figure 2(b), and that 9m
extraneous leaves (not present in the gene tree) have been added to this backbone as
shown in the figure to ensure that each pair of subtrees is sufficiently separated.

Recall that we use x; ; to denote the 4" occurrence of u; in A. Assuming that u; €
A, and that z; ; refers to the occurrence of u; in A,, we define f(i,p) to be j. In
other words, if the jth occurrence of an element u; is in the subset A,, then we assign
f(i,p) to be j. Each S; corresponds to the subset A; and has the structure depicted
in Figure 2(b). In particular, if A; contains the three elements u,, up, and u., then S;
contains the 12 leaves labeled @, f(a,i,j» Tb, £(b,4),5> a0 T¢, f(c4),5, Tor 1 < j < 4.

Event Costs. We assign the following event costs for problem instance A\: P = 2,
Po =4, and Pj,ss = 1.

Note that the D-OGTR instance A can be constructed in time polynomial in m and n.

Claim 1. There exists a YES answer to the M3SC instance ¢ if and only if there exists
a YES answer to the D-OGTR instance A with | = 10k 4+ 39m — 12n.
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Fig. 2. Construction of non-binary gene tree and species tree. (a) Structure of the non-binary
gene tree G . (b) Structure of the species tree S.

The remainder of this section is devoted to proving this claim which, in turn, would
complete our proof for Theorem 1. We begin by explaining the main idea of the reduc-
tion and describing the association between the instances ¢ and A, and then prove the
forward and reverse directions of the claim.

3.3 Key Insight

The main idea behind our reduction can be explained as follows: In the gene tree GV,

subtrees GV (g;), GN (g}) and G™ (g!') correspond to the element u;, foreach 1 < i < n,

while in the species tree the subtree S(s;) corresponds to the subset A;, for each 1 <
j < m.Let GP be any binary resolution of G'V. It can be shown that in any MPR of any
optimal binary resolution G of G¥ the following must hold: Foreachi € {1,...,n},g;
(along with g; and g;") must map to an S(s;) for which u; € A;. Under these restrictions
on the mappings, observe that if we were to solve the OGTR problem on G and S and
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then choose all those A ’s for which the subtree S(s; ) has at least one of the g;’s mapping
into it, then the set of chosen A;’s would cover all the elements of U.

The source of the optimization is that, due to the specific construction of the gene
tree and species tree, it is more expensive (in terms of reconciliation cost) to use more
S(s;)’s for the mapping. Thus, all the g;’s (along with ¢;’s and g;'’s) must map to as
few of the subtrees, S(s;)’s, as possible. Recall that the OGTR problem optimizes the
topology of the binary resolution G? in such a way that its MPR with S has minimum
reconciliation cost. Thus, the OGTR problem effectively optimizes the topology of G
in a way that minimizes the total number of S(s;)’s receiving mappings from the g;’s,
g.’s, or gi’s, yielding a set cover of smallest possible size. This is the key idea behind
our reduction and we develop this idea further in the next subsection.

3.4 Proof of Claim 1

Forward Direction. Let us assume that we have a YES answer for the M3SC instance
¢. We will show how to create a binary resolution G® of GV whose MPR with S has
reconciliation cost at most 10k + 39m — 12n.

We first show how to resolve the subtrees GV (g;), G (g!), and GV (g), for 1 <
i < n. Recall that, for any fixed 4, these three subtrees correspond to element u; of
U. The y; ;’s in GN(g;) correspond to the different occurrences of element u; in the
subsets from A. The same holds for the z; j 3’s in GV (g}) and the z; j 4’s in GV (g}').

Suppose a solution to instance ¢ consists of the k subsets A, (1), Ay(2), .-, Ari)-
Since every element in U must be covered by at least one of these £ subsets, we can des-
ignate a covering subset for each element u; € U, 1 < ¢ < n, chosen arbitrarily from
among those subsets in the solution that contain u. Suppose that element u; is assigned
the covering subset A; (so we must have u; € Ajand A; € {A, 1y, Ar2), -5 Ari) D)
The subtree G¥ (g;) will then be resolved as follows: The Yi,; corresponding to the oc-
currence of u; in Aj, i.e., y; r(; j)» Will be separated out as one of the two children of g;.
The other child of g; will be the root of an arbitrary caterpillar tree on all the remaining
yi ;’sin GN(g;). This is depicted in Figure 3(d). The subtrees G (g!) and G™ (g!') are
resolved similarly, except that in GV (g!) the leaf node x; f(; ;) 3 is separated out and
in GN(g}') the leaf node ; f(; j.4 is separated out. Thus, the resolution of G (g;),
G (g), and G (g!) is done based on the assigned covering subset of element u;. This
is repeated for all ¢, where 1 <17 < n.

Next, we show how to resolve the root node of GV to obtain GP. The start node
will become an outgroup to the rest of G. The backbone of the rest of GZ consists
of an arbitrary caterpillar tree on k£ “leaf” nodes as shown in Figure 3(a). These k
nodes are labeled h,.(1), ... h,.) and are the root nodes of k subtrees. Each of the &
subtrees corresponds to one of the subsets A,.(1), A,(2), - . ., Ap(x). In particular, subtree
GB(hT(Y;)), for 1 < i < k corresponds to the subset A,.(;). Each of the blue nodes
and the subtrees rooted at the g;’s, g;’s, and g;’s, for 1 < i < n will be included in
one of these k subtrees. Specifically, the subtree G (hy(jy) will include all those g;’s,
gi’s, and g;”’s for which the covering subset of the corresponding u; is A,.(;). Since
there may be 0, 1, 2, or 3 ¢’s for which the covering subset of u; is A,‘(j), the sizes of
different G7 (h,.(;)) subtrees may vary. The structure of G (h,.(;)) when there are 3 ¢'s
is depicted in Figure 3(b). The structure of GZ (hr(;)) when there are only 1 or 2 such
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i's is similar and is the induced subtree, on the relevant i’s, of the full subtree for all 3
i’s. As shown in the figure, note that each subtree G (hy(jy) also includes exactly three
blue nodes, corresponding to the three elements in A,;). These three blue nodes are
included even for cases where there are fewer than 3 7’s. Thus, when there are O such
i’s, which can happen when the size of the minimum set cover for instance ¢ is less
than k, the subtree G¥ (h,.(;) consists of the three blue nodes.
This results in the assignment of all g;’s, ¢;’s, and g’s, for 1 < ¢ < n to one of
the subtrees GB(hr(j)), for 1 < j < k. As discussed above, 3k out of the 3m blue
nodes also get assigned in this process. The remaining 3m — 3k of the blue nodes are
organized into an arbitrary caterpillar tree and added to the subtree G (hr(x)) as shown
in Figure 3(c).

This finishes our description of GZ. The following two lemmas imply the forward
direction of Claim 1. The next lemma follows from the construction of G above.

Lemma 1. Gene tree G® is a binary resolution of GV .

It is not difficult to construct a DTL-scenario for G¥ and S with cost exactly 10k +
39m — 12n, yielding the following lemma.

Lemma 2. Any MPR of G® with S has reconciliation cost at most 10k + 39m — 12n.

Reverse Direction. Conversely, let us assume that we have a YES answer for the OGTR
instance A with [ = 10k + 39m — 12n. We will show that there exists a solution of size
at most k for the set cover instance ¢. We first characterize the structure of optimal
resolutions and their most parsimonious reconciliations.

Lemma 3. For any optimal binary resolution GP of GN there exists an MPR of G?
with S such that:

1. Foranyi € {1,...,n}, gi, g; and g’ map to the same subtree S(s;), where j is
such that u; € Aj;.

2. If there is a subtree S(s;) for which at least one of the nodes of GP labeled g;,
g, or g, for any i € {1,...,n}, maps to a node in S(s;), then there exists an
i € {1,...,n} suchthat g;, g and g all map to S(s;).

3. If g; maps to a node in subtree S(s;), then g;, g;, g., and the three blue nodes
corresponding to the elements in A; are arranged in such a way that the subtree of
GPB connecting these six nodes does not contain any transfer nodes.

4. If two nodes, say a and b map to different subtrees S(s;), for 1 < j < m, then the
path connecting them in G® must contain at least one transfer event.

Lemma 4. For any optimal binary resolution G® of GV, all MPRs of G® with S must
be such that:

1. Each GP(g;), GB(g) and GB(g!), for 1 < i < n, has exactly (c; — 1) transfer
nodes, no duplications, and invokes no losses.

2. Each blue node that maps to an S(s;), 1 < j < m, to which none of the g;’s map
must be the recipient of a transfer edge.

The next lemma implies the reverse direction and is based on the two lemmas above.
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Fig. 3. Resolution of G into GE. (a) The structure of the backbone of the gene tree GE
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elements in A, (;), with u = f(a,7(j)), w = f(b,7(j)), and z = f(c,7(j)). In part (d), if the
covering subset of element w; is Ay, then v represents f(7, p). The labels inside the blue boxes

represent blue nodes.
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Lemma 5. If there exists a binary resolution of GV such that its MPR with S has
reconciliation cost at most 10k + 39m — 12n, then there exists a solution of size at most
k for the M3SC instance ¢.

4 Extension to Dated DTL Reconciliation

An alternative model of DTL reconciliation has been proposed when the internal nodes
of the species tree can be fully ordered in time [9]. We refer to this model as the Dated-
DTL reconciliation model. Dated-DTL reconciliation makes use of the total order on the
species nodes to ensure that the reconstructed optimal reconciliation is time-consistent.
A key feature of this model is that it subdivides the species tree into different time
slices [9] and then restricts transfer events to only occur within the same time slice.
We show how to assign divergence times to each node of the species tree. Observe that
all subtrees S(s;), foreach i € {1...m}, have identical structure. All nodes at the same
level in each S(s;) are assigned the same divergence time across all the subtrees. The rest
of the nodes in S may be assigned arbitrary divergence times respecting the topology of S.
It can be shown that there exists an optimal resolution of the gene tree for which an MPR
exists that only invokes transfer events that respect the timing constraints of this dated
species tree as required by the dated-DTL reconciliation model. This implies that, for
our gadget, any optimal resolution of the gene tree under the undated DTL reconciliation
model has the same minimum reconciliation cost as the dated-DTL reconciliation model.

Theorem 2. The OGTR problem under the dated-DTL reconciliation model is NP-hard.

5 Conclusion

In this work, we have shown that the OGTR problem, i.e., the problem of reconciling
non-binary gene trees with binary species trees under the DTL reconciliation model,
is NP-hard. Our reduction applies to both the undated and dated formulations of DTL-
reconciliation and, furthermore, shows that the problem is NP-hard even for a biolog-
ically meaningful event cost assignment of 1, 2, and 4 for losses, duplications, and
transfers, respectively. The uncertainty about its complexity has prevented the devel-
opment of algorithms for the OGTR problem. This work will lead to the development
of effective exact, approximate, and heuristic algorithms for this problem, making it
possible to apply the powerful DTL reconciliation framework to non-binary gene trees.
Interesting open problems include determining if efficient algorithms exist for the spe-
cial case when the degree of each gene tree node is bounded above by a constant, and
investigating the approximability of the dated and undated OGTR problems.

Funding: This work was supported in part by startup funds from the University of
Connecticut to MSB.
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Abstract. The BLOSUM matrices estimate the likelihood for one amino
acid to be substituted with another, and are commonly used in sequence
alignments. Each BLOSUM matrix is associated with a parameter z—the
matrix elements are computed based on the diversity among sequences
of no more than £% similar. In an earlier work, Song et al. observed a
property in the BLOSUM matrices—eigendecompositions of the matri-
ces produce nearly identical sets of eigenvectors. Furthermore, for each
eigenvector, a nearly linear trend is observed in all its eigenvalues. This
property allowed Song et al. to devise an iterative alignment and matrix
selection process to produce more accurate matrices. In this paper, we
investigate the reasons behind this property of the BLOSUM matrices.
Using this knowledge, we analyze the situations under which the property
holds, and hence clarify the extent of the earlier method’s validity.

1 Introduction

In a protein sequence alignment, each amino acid in one sequence is matched
to an amino acid (or to a gap) in the other sequence. The likeliness that the
two sequences are related (under the alignment) is often evaluated through the
likeliness for amino acids in the matched pairs to appear in the place of each
other. It is hence very important to accurately assess the likeliness for these
amino acid substitutions. Several standards have emerged for this purpose, such
as BLOSUM [11], PAM [3], and GONNET [9]. Each of these gives a family
of substitution matrices of 20 x 20 elements; each element is a score for the
transition between two amino acids.

We consider the BLOSUM matrices in this paper. Each matrix in the BLO-
SUM family is distinguished by a parameter z—the transitional probabilities of
that matrix are calculated from the diversity among the sequences of no more
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than 2% similarity. The matrix of a parameter z is denoted BLOSUMz, e.g.
the matrix where x = 50 is written BLOSUMS50. The BLOSUMG62 matrix is the
most common, and is the substitution matrix used by default in the popular
sequence comparison tool called BLAST [1]. Fifteen other BLOSUM matrices
are in common use, namely, the matrices for =30, 35, ..., 100. Which of these
matrices to use depends very much on the situation; matrices of lower x are
better at align