
Dynamic e-Learning Content Selection
with BDI Agents

João de Amorim Jr.(&), Thiago Ângelo Gelaim,
and Ricardo Azambuja Silveira

PPGCC – UFSC, Florianópolis, Brazil
{joao.amorim,thiago}@iate.ufsc.br,

ricardo.silveira@ufsc.br

Abstract. This paper presents an e-learning content selection model, based on
multi-agent paradigm, aiming to facilitate the learning material reuse and
adaptability on Learning Management Systems. The proposed model was
developed according to a BDI multi-agent architecture, as an improvement of
the Intelligent Learning Objects approach, allowing the dynamic selection of
Learning Objects. A prototype was implemented to validate the proposed model,
using the JADEX BDI V3 platform, and allowing to build improved learning
experiences.

Keywords: Dynamic learning experience � Intelligent Learning Objects �
Intelligent learning environments

1 Introduction

The distance learning plays an important role on the educational process worldwide.
Several learning institutions have adopted e-learning as one of their acting strategies,
and new ways of online learning are becoming more and more common [1].

Teaching aid systems must be geared to enhance the educational experience. Two
aspects contribute to it: adaptability and reuse. The former is related to different stu-
dents’ needs and styles. An adaptable system increases the student understanding, in a
personalized way [2–4]. The latter avoids the need of developing a new resource if
exists another one with the same learning intention [3, 5].

Intelligent Tutoring Systems (ITS), Learning Management Systems (LMS) and
Learning Objects (LO) are some computational tools that enrich the learning process.
ITS are applications created for a specific educational domain, usually with some few
adaptability and interoperability resources [6]. Thus, if a change in the learning domain
is needed, the ITS must be reconfigured. Following, LMS are learning environments
used to build online courses (or publishing material), to monitor the student progress
and to manage educational data [1, 7, 8]. Finally, LO are digital artifacts for supporting
the teaching-learning process, promoting reuse and adaptability [9].

Although LO and LMS allow reusability, they have a limited level of adaptability.
The kind of adaptation they offer needs to be pre-programmed by the instructional
designer or teacher, that is, this systems usually are no dynamic adaptable [8, 9].

© Springer International Publishing Switzerland 2015
J. Bajo et al. (Eds.): PAAMS 2015 Workshops, CCIS 524, pp. 299–308, 2015.
DOI: 10.1007/978-3-319-19033-4_25



This article presents the first results of our research that seeks the convergence of
these three different paradigms for the development of intelligent learning environ-
ments. The first step, presented in this paper, was to develop a search engine, delivery
and presentation systems to get learning objects obtained from repositories.

1.1 Related Work

There are several similar studies developed to provide adaptability to educational
systems. Some of them are built as an extension of a LMS using conditional jumps [8],
Bayesian networks [4] or data mining technics [7] as their adaptive strategy. Other
researches are not integrated with a LMS, and use distinct ways to adapt the learning to
the students’ style, such as ITS [6], Recommender System [2], etc. [10, 11].

In addition, there are also some works based on the Multi-Agent System (MAS)
approach to produce smarter applications. MAS are composed by autonomous entities
(agents) which percept the environment they are situated in and act on it to achieve
their objectives. The communication and cooperation of individual agents make pos-
sible to solve complex problems, which they cannot solve individually [12, 13].

An important MAS architecture for intelligent agents is the BDI model. BDI agents
are composed of mental attitudes (Belief, Desire, Intention), and act following the
practical reasoning process (goal deliberation and means-end reasoning) [12, 14].

Some analyzed works combine LMS and MAS to make the former more adaptive.
An example is the use of data obtained from a MOODLE [15] forum to show resources
and activities to the students [16]. There is also an intelligent, dynamic and adaptive
environment, based on agents that are able to identify the student cognitive profile [17].

However, all this related studies have two features that can be improved. The
former is the way as the student’s learning style is determined. The analyzed works use
questionnaires in the beginning of the course to do it. This extra step can be considered
intrusive and distracting [2]. The exception is the work that clusters students in profiles
based on their assessments performance (grades) [17]. The latter is the possibility of
coupling new learning resources (LO) dynamically to the environment. The teacher (or
instructional designer) need to configure previously all the possible course paths for
each student style, what could be hard and take so much time [4, 18]. Further, the
attaching of a new LO to the course involves modifying the course structure.

To produce more intelligent LO, previous researches proposed the convergence
between the LO andMAS technologies, called Intelligent Learning Objects (ILO) [19, 20].
This approach makes possible to offer more adaptive, reusable and complete learning
experiences. An ILO is an agent capable to play the role of a LO, which can acquire new
knowledge by the interaction with students and other ILO (agents information
exchange), raising the potential of student’s understanding.

The LO metadata permits the identification of what educational topic is related to
the LO [9]. Hence, the ILO (agents) are able to find out what is the subject associated
with the learning experience shown to the student, and then to show complementary
information (another ILO) to solve the student’s lack of knowledge in that subject.

The next section presents a different model to handle the two issues pointed out in
the analyzed works, and to improve the ILO model as well.

300 J. de Amorim Jr. et al.



2 ILOMAS

The new proposed model is based on MAS approach integrated to a LMS, resulting on
the improvement of the analyzed related works, allowing that LO can be included to the
learning experience dynamically, adding intelligent behavior to the system. The
solution’s adaptability is based on the possibility of new LO be attached to the LMS
without previous course configuration, as soon as the system finds out that the student
needs to reinforce its understanding on a specific concept. This is automatically
identified through the verification of the student assessment performance (grade), on
each instructional unit, or by student choice, when interacting with the LO. Moreover,
the course structure becomes more flexible, since it is unnecessary to configure all the
possible sets of learning paths for each student profile.

The proposed model achieves reuse by the combination of pre-existed and vali-
dated LO whose concept (subject) is the same of that the student needs to learn more
about, avoiding that teachers or instructional designers need to build new materials.

The objective of the new model called Intelligent Learning Object Multi-Agent
System (ILOMAS) is to enhance the framework developed to create ILO based on
MAS with BDI architecture [21], extending this model to allow the production of
adaptive and reusable learning experiences. The idea is to select dynamically ILO in the
LMS according to the student performance, without previous specific configuration on
the course structure. The ILOMAS is composed by agents with specific goals, and
capable of communicating and offering learning experiences to students in a LMS
course, according to the interaction with these students.

3 Analysis and Design

The modeling of the ILOMAS framework uses an Agent-Oriented Software Engi-
neering methodology. The Prometheus methodology defines a detailed process to
specify, design and implement intelligent agent systems based on goals, plans and
beliefs (BDI) [22]. It is composed of several activities and phases to generate speci-
fication and design documents. Another reason to choose this methodology is the
existence of Prometheus Design Tool (PDT), an Eclipse IDE plug-in that supplies an
iterative development of the Prometheus diagrams [23].

Following the Prometheus methodology, on the system specification phase, it was
identified the goals, roles, agents and their respective interfaces with the environment
(perceptions, actions and external data). It was detected two kinds of agents (Fig. 1):

• LMSAgent – Represents the LMS. It is responsible for: (1) receiving the student
learning experience request (Learning Experience Request perception); (2) finding
out the subject that the student must learn about (Learning Experience Subject
Identifier role), according to the information provided from the LMS data base
(external data); and (3) for passing the control of the interaction with the student to a
new agent of the kind ILOAgent (Inform Learning Object Subject message).

Dynamic e-Learning Content Selection with BDI Agents 301



Its beliefs are information provided from the LMS database, such as the stu-
dents, the courses and the respective subject related to the current learning expe-
rience (that is, the topic that the student must learn about), for each student enrolled
on the LMS’s courses. The communication between the agent and the LMS can be
made through the calling to data base access API functions (such as Java JDBC,
PHP PDO, etc.) or Web Services. The LMSAgent goals are GetStudentCourseGoal
and GetStudentSubjectGoal (sub-goals of IdentifyLearningExperienceSubject goal),
which allow the agent to identify the information of the current learning experience
associated with a specific student.

• ILOAgent – Agent responsible for showing the learning experience to the student.
This is made through the presentation of a LO related to the subject that the student
needs to learn about, as determined by the LMSAgent. The function of an ILO-
Agent agent is to search a correspondent LO on the LO repository (Learning Object
Searcher role) and show it to the student (Learning Experience Show action),
furthermore, this kind of agent must keep itself aware to the interaction between the
student and the system (Learning Object Player role).

The beliefs of this agent are the information about the current learning expe-
rience (obtained from LMSAgent), the chosen LO, and the status of the interaction
with the student. The goals are GetLORepositoryGoal, GetRelatedLOGoal, and
SelectLOGoal (sub-goals of SearchLearningObject goal), which enable the agent to
search for a LO (related to the specific subject) in the repository.

The Agent Overview diagram (Fig. 2) presents the agent’s plans (the concrete way
to achieve the agent’s goals [12]), perceptions, actions, internal messages, and capa-
bilities. The idea of using capabilities is to module the agent features, allowing the
reuse of commons characteristics (such as plans, goals, etc.) among distinct agents [22].

Fig. 1. Analysis overview diagram

302 J. de Amorim Jr. et al.



4 Implementation

After the modeling phase, the ILOMAS framework and a prototype instance were
implemented to validate the proposed model. The JADEX framework [24, 25] – an
extension to JADE platform (FIPA compliant) with support to develop intelligent agent
systems – was chosen to implement the agents based on the BDI architecture [12, 14].

The JADEX platform permits the creation of active components, an approach that
gets benefits from the association of two distinct technologies: Agents and SCA. The
SCA model was proposed by IT companies (i.e.: IBM, ORACLE) with the intention of
promoting the interoperability among distributed applications, according to concepts of
components and service oriented architecture (SOA) [24, 25].

The newest JADEX platform version is JADEX BDI V3 (V3). Before V3, the
agents were built in ADF files (XML tags for beliefs, desires, etc.) and Java classes
(plans) [26]. However, on V3 the agents are developed with pure Java classes (without
XML files) and the annotations mechanism (beliefs, plans, etc.) [14, 25]. Further, on
V3 the recommended way of agent communication is through service invocation. The
BDI agents can be service providers (declaring specific annotations and implementing
specific interfaces) and can request services of other agents, components, etc. [24, 25].

It is necessary to point out the implementation limitations. Instead of putting
emphasis on visualization issues (such as formats, rich graphical user interfaces, etc.), it
was emphasized the MAS development (with the agents and their interactions).

The interaction interface between the student and the agents’ environment was
implemented based on the Java Servlets and JSP technologies, getting benefits of the
JADEX BDI V3 services communication structure. The Servlets technology allows the
execution of services and Java classes at the server side from Web requests.

On the prototype, the servlet layer delegates the handle of the student’s browser
request to a class (non-agent) based on the Facade design pattern. This pattern provides a
unified and simplified interface to a sub-system, promoting low coupling [27]. The
ILOMASFacade class offers to the servlet classes the access to agents’ services (the
agents’ capabilities, plans, etc.) keeping the separation between the MAS layer and
the external items (front-end and servlets), avoiding unnecessary coupling (Fig. 3).

Fig. 2. Agent overview diagram (i.e.: ILOAgent)

Dynamic e-Learning Content Selection with BDI Agents 303



4.1 Developed Classes

Following JADEX BDI V3 framework structure, the developed agents were declared
with the @Agent annotation and with the BDI suffix in their class name. Besides, it was
required to specify a BDIAgent type attribute (annotated with @Agent). This attribute
type provides the necessary methods to execute the reasoning and behaviors on the BDI
model, such as dispatch an agent goal (leading to plan execution).

Other annotations can be used in agent classes to declare BDI attributes (@Belief,
@Capability, etc.) and methods. The method annotations define agent behavior to
specific states of the agent’s life cycle, such as @AgentCreated (after agent start up),
@AgentKilled (before agent die), and @AgentBody (agent run) [14, 25, 28], i.e.: when
the ILOAgentBDI starts running, its goal of search what LO will be shown to the
student is dispatched, according to the subject identified by the LMSAgentBDI.
Additionally, the agents were specified as service providers, using the annotations
@Service and @ProvidedService, and implementing the methods of the Java Interface
corresponding to each respective service, whose return is asynchronous [25, 28].

The BDI elements (beliefs, goals and plans) related to the functionality of deter-
mining the subject associated with the learning experience were grouped on the Iden-
tifyLearningExperienceCapability class. This capability class has beliefs that are
instances of another class, which keeps information obtained from the LMS database
(annotated with @Belief).

The IdentifyLearningExperienceCapability has also the goal IdentifyLearningEx-
perienceGoal (and its sub-goals GetStudentCourseGoal and GetStudentSubjectGoal),
declared with the @Goal annotation. The execution of a goal is made through the
triggering of a specific plan represented by a method, using the @Plan and @Trigger
annotations, (i.e.: identifyLearningExperienceSubject method).

Another developed capability was SearchLearningObjectCapability, whose main
goal SearchLOGoal is composed of sub-goals: (1) find out the repository, (2) get the
list of LO associated with the subject within the repository, and (3) choose one LO.
Some metadata elements declared in IEEE-LOM [9] are used in this process. The
ILOAgentBDI has the SearchLearningObjectCapability, which uses the element
“keywords” of the LOM metadata to define the list of related LO.

Fig. 3. ILOMAS Web prototype architecture

304 J. de Amorim Jr. et al.



The SearchLearningObjectCapability class declares one belief which references the
LO repository found. The dispatching of the main goal SearchLOGoal results in the
execution of the searchLearningObject plan method (annotated with @Plan and
@Trigger).

4.2 ILOMAS Validation

The prototype was deployed to an Apache Tomcat Server (7.0.57) to test the proposed
model. On the test beginning, a student accessed the system and the LMSAgent has
identified that the student needed to learn about photosynthesis (Biology course). After,
the student asked for the learning experience, leading to a new servlet requesting.
This servlet has forwarded it to ILOMASFacade, which has waited for the end of
ILOAgentBDI’s deliberation. Then, this agent has discovered a LO related to the
subject within the repository. Finally, this LO was shown to the student successfully.

Besides, it was simulated a student’s request for a complementary learning expe-
rience (by pressing the corresponding button). As result, a new ILOAgentBDI was
created on the system, which searched for and found a different LO related to the same
subject (photosynthesis) within the repository. It was not explicitly defined in the
database that the student should have watched this new LO (only the subject was
required, no specific LO), so the MAS obtained the related LO dynamically (Fig. 4).

Fig. 4. ILOMAS Web prototype

Dynamic e-Learning Content Selection with BDI Agents 305



5 Conclusions and Future Work

This paper presented a model to build more adaptive and reusable educational expe-
riences, compared to related works. The ILOMAS framework was designed to allow
the dynamic LO selection on LMS courses, as an improvement of ILO’s previous
approach. The agents are modeled based on the practical reasoning paradigm (towards
goal achievement). The MAS was developed following the JADEX BDI V3 frame-
work, which permits that the agents’ functionalities can be accessed as services. The
use of Servlet technology provides the integration of front-end and intelligent layer.

A prototype was implemented to verify the proposed model, and some evaluation
tests were executed. As result, the ILOMAS has received the learning experience
requested by the student, and has identified dynamically a LO associated with the
subject that the student must have learned about (according to the LMS database).

As future work, the ILOMAS framework will be extended to supply the integration
with SCORM [29] in order to raise reuse, dynamic sequencing, and interoperability.
This improvement on the system will make possible to identify accurately the need of
reinforcement by the student, according to the information about the interaction
between the student and the object, provided by the messages received from and sent to
the SCORM API (the data model elements, such as success, fail, latency, weighting,
objectives, etc.) [30].

Another enhancement on the framework would be the use of some recommendation
mechanism, made by specialized agents, to better choosing a LO among the list of
objects associated with the specific subject within the repository. Currently, when there
are more than one LO related to the desired subject within the repository, a random
choice is made to select the next LO to be presented to the student, considering only the
objects not shown. The overall process can be smarter by using a multiagent based
recommender system for indexing and retrieving LO [31, 32]. The ILOMAS frame-
work can consult this system before accessing the repository.

Finally, future works involve also the testing of the model with different learning
situations and real students.

References

1. Allison, C., Miller, A., Oliver, I., Michaelson, R., Tiropanis, T.: The Web in education.
Comput. Netw. 56, 3811–3824 (2012). Elsevier

2. Vesin, B., Klasnja-Milicevic, A., Ivanovic, M., Budimac, Z.: Applying recommender systems
and adaptive hypermedia for e-learning personalization. Comput. Inform. 32, 629–659
(2013). Institute of Informatics

3. Mahkameh, Y., Bahreininejad, A.: A context-aware adaptive learning system using agents.
Expert Syst. Appl. 38, 3280–3286 (2011). Elsevier

4. Bachari, E., Abelwahed, E., Adnani, M.: E-learning personalization based on dynamic
learners’ preference. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 3(3), 200–216 (2011)

5. Caeiro, M., Llamas, M., Anido, L.: PoEML: modeling learning units through perspectives.
Comput. Standards Interfaces 36(2), 380–396 (2014). Elsevier

306 J. de Amorim Jr. et al.



6. Santos, G., Jorge, J.: Interoperable intelligent tutoring systems as open educational
resources. IEEE Trans. Learn. Technol. 6(3), 271–282 (2013). IEEE CS & ES

7. Despotovic-Zrakic, M., Markovic, A., Bogdanovic, Z., Barac, D., Krco, S.: Providing
adaptivity in moodle LMS courses. Int. Forum Educ. Tech. Soc. 15(1), 326–338 (2012).
International Forum of Educational Technology & Society

8. Komlenov, Z., Budimac, Z., Ivanovic, M.: Introducing adaptivity features to a regular
learning management system to support creation of advanced eLessons. Inform. Educ. 9(1),
63–80 (2010). Institute of Mathematics and Informatics

9. Barak, M., Ziv, S.: Wandering: A web-based platform for the creation of location-based
interactive learning objects. Comput. Educ. 62, 159–170 (2013). Elsevier

10. Chen, C.: Intelligent web-based learning system with personalized learning path guidance.
Comput. Educ. 51, 787–814 (2008). Elsevier

11. Kurilovas, E., Zilinskiene, I., Dagiene, V.: Recommending suitable scenarios according
to learners’ preferences: An improved swarm based approach. Comput. Hum. Behav. 30,
550–557 (2014). Elsevier

12. Wooldridge, M.: An Introduction to MultiAgent Systems, 2nd edn. Wiley, New York (2009)
13. Weiss, G. (ed.): Multiagent Systems: A Modern Approach to Distributed Artificial

Intelligence. The MIT Press, Cambridge (1999)
14. Pokahr, A., Braubach, L., Haubeck, C., Ladiges, J.: Programming BDI agents with pure

Java. In: Müller, J.P., Weyrich, M., Bazzan, A.L. (eds.) MATES 2014. LNCS, vol. 8732,
pp. 216–233. Springer, Heidelberg (2014)

15. MOODLE – Modular Oriented-Object Dynamic Learning Environment. http://moodle.org
16. Alencar, M., Netto, J.: Improving cooperation in virtual learning environments using multi-

agent systems and AIML. In: 41st ASEE/IEEE Frontiers in Education Conference, Session
F4C, pp. 1–6. IEEE (2011)

17. Giuffra, P., Silveira, R.: A multi-agent system model to integrate virtual learning
environments and intelligent tutoring systems. International Journal of Interactive
Multimedia and Artificial Intelligence (IJIMAI) 2(1), 51–58 (2013)

18. Brown, E., Cristea, A., Stewart, C., Brailsford, T.: Patterns in authoring of adaptive
educational hypermedia: a taxonomy of learning styles. Edu. Technol. Soc. 8(3), 77–90
(2005). International Forum of Educational Technology & Society

19. Silveira, R., Gomes, E., Vicari, R.: Intelligent learning objects: an agent-based approach of
learning objects. In: van Weert, T., Tatnall, A. (eds.) Information and Communication
Technologies and Real-Life Learning. IFIP, vol. 182, pp. 103–110. Springer, Boston (2006)

20. Silva, J., Silveira, R.: The development of intelligent learning objects with an ontology based
on SCORM standard. In: Seventh International Conference on Intelligent Systems Design
and Applications, pp. 211–216. IEEE (2007)

21. Bavaresco, N., Silveira, R.: Proposal of an architecture to build intelligent learning objects
based on BDI agents. In: XX Informatics in Education Brazilian Symposium (2009)

22. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems – A practical guide.
Wiley, New York (2004)

23. Prometheus Design Tool (Eclipse Plug-in). https://code.google.com/p/pdt-plugin/
24. Pokahr, A., Braubach, L., Jander, K.: The jadex project: programming model. In: Distributed

Systems and Information Systems, Chap. 1, pp. 1–34. University of Hamburg (2012)
25. JADEX Active Components. http://www.activecomponents.org/
26. Braubach, L., Pokahr, A.: Jadex Active Components Framework – BDI Agents for Disaster

Rescue Coordination. University of Hamburg (2011)
27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, New York (1995)

Dynamic e-Learning Content Selection with BDI Agents 307

http://moodle.org
https://code.google.com/p/pdt-plugin/
http://www.activecomponents.org/


28. Braubach, L., Pokahr, A.: Developing Distributed Systems with Active Components and
JADEX. University of Hamburg (2012)

29. SCORM 2004. Advanced Distributed Learning. http://www.adlnet.org/scorm
30. SCORM Run-Time Reference. Rustici Software. http://scorm.com/scorm-explained/

technical-scorm/run-time/run-time-reference/
31. Vian, J., Campos, R., Palomino, C., Silveira, R.: A multiagent model for searching learning

objects in heterogeneous set of repositories. In: 2011 11th IEEE International Conference on
Advanced Learning Technologies (ICALT), pp. 48–52. IEEE (2011)

32. Campos, R.L.R., Comarella, R.L., Silveira, R.A.: Multiagent based recommendation system
model for indexing and retrieving learning objects. In: Corchado, J.M., Bajo, J., Kozlak, J.,
Pawlewski, P., Molina, J.M., Julian, V., Silveira, R.A., Unland, R., Giroux, S. (eds.)
PAAMS 2013. CCIS, vol. 365, pp. 328–339. Springer, Heidelberg (2013)

308 J. de Amorim Jr. et al.

http://www.adlnet.org/scorm
http://scorm.com/scorm-explained/technical-scorm/run-time/run-time-reference/
http://scorm.com/scorm-explained/technical-scorm/run-time/run-time-reference/

	Dynamic e-Learning Content Selection with BDI Agents
	Abstract
	1 Introduction
	1.1 Related Work

	2 ILOMAS
	3 Analysis and Design
	4 Implementation
	4.1 Developed Classes
	4.2 ILOMAS Validation

	5 Conclusions and Future Work
	References


