
Automated Equation Formulation for Causal
Loop Diagrams

Marc Drobek1,2(B), Wasif Gilani1, Thomas Molka1, and Danielle Soban2

1 SAP UK Ltd., Belfast, UK
{marc.drobek,wasif.gilani,thomas.molka}@sap.com

2 Department of Mechanical and Aerospace Engineering,
Queens University Belfast, Belfast, UK

d.soban@qub.ac.uk

Abstract. The annotation of Business Dynamics models with parame-
ters and equations, to simulate the system under study and further eval-
uate its simulation output, typically involves a lot of manual work. In
this paper we present an approach for automated equation formulation
of a given Causal Loop Diagram (CLD) and a set of associated time
series with the help of neural network evolution (NEvo). NEvo enables
the automated retrieval of surrogate equations for each quantity in the
given CLD, hence it produces a fully annotated CLD that can be used
for later simulations to predict future KPI development. In the end of the
paper, we provide a detailed evaluation of NEvo on a business use-case
to demonstrate its single step prediction capabilities.

Keywords: Business dynamics · Causal loop diagrams · Neural net-
works · Evolutionary algorithms · Big data · Predictive analyses

1 Introduction

The prediction of Key Performance Indicators (KPIs) in large enterprises is one
of the major assets for business analysts and decision makers to drive company
success. Traditional approaches, such as time series analyses are most common
and yield quick results [1]. However, their restriction on small-dimensional depen-
dencies limits the capability to identify actual root causes and main drivers for
the particular KPI under study. Especially nowadays, in the Big-Data era, the
massive amount of readily available business data raises the question, whether
it can be incorporated in the prediction process to pinpoint root causes. The
Business Dynamics (BD) domain tries to overcome this small-dimensionality by
establishing broader scopes of causal chains and feedback loops [2,3]. In the
field of BD, enterprise KPIs are modelled with the help of Causal Loop Dia-
grams (CLDs) and State & Flow Diagrams (SFDs) that are used to identify
causality and feedback between the KPIs, as well as the material/resources flow-
ing through the system. Once the modeller has arrived at a reasonable CLD and
SFD, she needs to annotate the model with equations and parameters to create a
c© Springer International Publishing Switzerland 2015
W. Abramowicz (Ed.): BIS 2015, LNBIP 208, pp. 38–49, 2015.
DOI: 10.1007/978-3-319-19027-3 4

Automated Equation Formulation for Causal Loop Diagrams 39

final simulation model that will eventually produce prediction results. We have
already summarised traditional approaches for the process of parameter esti-
mation and equation formulation (PEEF) and concluded that these traditional
concepts are cumbersome, resource-intensive and are in general only manually
applicable [4]. In this paper, we will demonstrate the automated equation formu-
lation and annotation of a given CLD based on a given historical data set. This is
done by training neural networks in combination with evolutionary algorithms.
The trained neural network is then annotated to the associated CLD element as
a function surrogate (FS) that can replay the historical data or predict its future
development. However, the main difference to traditional time series analyses is
the incorporation of all target KPI dependencies given in the CLD. Rather than
analysing the historical information of an isolated variable (silo-mode), we are
exploiting the dependency relationships provided by a CLD and incorporate the
historical information of all influencing elements to predict its future develop-
ment. In the following section, we briefly describe the traditional annotation and
simulation process in BD as well as provide a background of neural networks and
evolutionary algorithms, and how they can be employed together for time series
predictions. Afterwards, we define the research question that is derived from the
traditional BD annotation approach and provide a novel approach (NEvo) to
tackle this question. We then show the application of NEvo on a simple business
use-case and evaluate its results. The paper ends with a conclusion.

2 Background

As has been stated earlier, it is most common in the field of BD to annotate
SFDs (for instance their flows and variables) and finally simulate those to pro-
duce prediction output [2,5]. The retrieved mathematical equations are usually
of a simply nature (as is intended to improve model understanding) and are
rarely based on actual system data, but rather are manually derived [4]. Out-
side the BD domain, approaches have been developed that simplify the creation
of function surrogates. For instance, Neural networks (NNs) are well known to
reproduce and/or predict time series behaviour, given that the modeller has
access to historical training data, knows how to train the NN efficiently, is capa-
ble of determining the correct network topology and can identify an adequate
number of inputs for the NN [6,7]. Good examples for such applications are,
for instance, traditional KPI time series analyses or the prediction of the stock
market [8,9]. In both cases, the historical information of the one target KPI
is used as training data for the NN, before the NN produces predictions of
the target KPI. However, the two latter properties (network topology and NN
input) are quite restrictive, since an expert-level background is required to pin-
point the correct topology (feed-forward, recurrent, partial-recurrent, Elman,
etc.), the topology configuration (number of input neurons, number of hidden
layers, number of hidden layer neurons, hidden layer activation functions) and
input variables (number of historical input information) for the problem at hand.
Dependent on the target KPI to predict, different network topologies and input
variables will yield diverse prediction results. The design and parameterization

40 M. Drobek et al.

of NNs is an optimisation problem whose search space is based on the different
configurations and its desired optimum is such a configuration that, given a well
trained matrix, yields very accurate replay and prediction results for its tar-
get KPI. A concept that is particularly well suited to tackle such optimisation
problems is that of Evolutionary Algorithms (EAs) [10,11]. Holland, Rechen-
berg, Goldberg and Schwefel among others, transferred the idea of the biological
evolution concept to the field of computer science and mathematical optimisa-
tion, thus introducing evolution strategy, evolutionary programming and genetic
& evolutionary algorithms [10–13]. Exploiting EAs to improve NNs in all differ-
ent dimensions (input data, architecture design, weight matrix improvements,
learning rule adaptation, etc.) has been extensively researched [14,15].

3 Network Evolution

The scope of this paper is to answer the question, if we can employ the massive
available historical business data, which is tracked on an hourly/daily/monthly
basis and resides in the companies databases, to support the BD modeller with
the annotation process. Furthermore, we are challenging the traditional BD
annotation process, by completely avoiding any SFDs, which are so far the pillars
of any BD modelling process. We will show, that a given CLD can be automat-
ically annotated, as long as each vertex in the CLD (each KPI) is associated
with a historical time series data set. These data sets need to be available in
the same time format, e.g., hourly, daily or monthly and are expected to be
timely ordered. Ideally, the entire CLD creation was based on those time series
data sets (see [16]). However, in the business domain, every KPI depends on
a variety of variables that drive the behaviour and future development of the
KPI. These causal dependencies (and their associated time series) are reflected
within a CLD and are the input for NEvo. The goal is to create an FS for each
target KPI which is reflected by an NN, because they are well proven to replay
and/or predict time series. In our implementation, we have decided to start with
a Feed-Forward network topology, because it can be easily created in an auto-
mated fashion. We are handling the challenge of parameterizing the NN topology
properties as an optimisation problem that we tackle with the help of an EA.
The EA is fed with a parent population that consists of multiple NN individuals.
Each individual contains a genotype that represents all topology properties of
one NN. Equation 1 defines such a genotype.

G = {g0, .., gi
︸ ︷︷ ︸

, gi+1, .., gj
︸ ︷︷ ︸

, gj+1, .., gk
︸ ︷︷ ︸

}
G = { GIL, GHL, GAF }

(1)

A genotype G embodies k + 1 genes, each reflecting one particular structural
property of an NN topology. In our genotype model, the following structural NN
properties are represented:

– Input Layer: Subsequence GIL = {g0, .., gi} represents the number of histori-
cal input data points for each dependent variable used to predict the target KPI.

Automated Equation Formulation for Causal Loop Diagrams 41

– Hidden Layers: Sequence GHL = {gi+1, .., gj} contains all genes that reflect
the hidden layers. Gene gi+1 defines the number of hidden layers in the neural
network and the subsequence {gj+2, .., gj} represents the number of neurons
per hidden layer, respectively.

– Activation Functions: Subsequence GAF = {gj+1, .., gk} defines the activa-
tion function starting from the input layer to the first hidden layer, then from
the first hidden layer to the second and so on to the last hidden layer.

The gene sequence GIL reveals two facts about the NN: Firstly, the number of
genes (i+1) represents the number of variables that impact the target KPI, includ-
ing the target KPI itself. Secondly, the length of the historical information used
for each dependency: For example, the sequence {5, 3, 7} aggregates to an overall
input layer length of 15 neurons, which is split into 5 historical values of the first
dependency, 3 historical values of the second dependency and 7 historical values of
the actual target KPI. However, one of the main questions in creating a well suited
NN is the question of how much historical data has to be incorporated when train-
ing the network? In order to answer this question we perform a lag window com-
putation via autocorrelation [17]. Lag windows describe the length of a repeating
pattern in a given stationary function that is produced by any type of periodicity.
The NN is then used to train the ‘pattern’ that spans the lag window and sup-
posed to apply it for prediction values it hasn’t been trained on. In the business
domain, it is common that all KPIs follow a particularly repeating pattern (sea-
sonality), respectively, which is caused by many impacting factors, e.g., customer
behaviour, product demand and so on. However, finding a specific pattern in a
given time series can be very challenging, since multiple periodicities are usually
overlapping one another. Hence, it seems reasonable to expect a diverse set of mul-
tiple lag windows for each KPI that can be fed into the creation of an input layer.
Because of the large number of different NNs that undergo the evolution process,
it is not of high importance which lag window is chosen for which individual, but
rather, that all possible lag windows are used at some point. We have therefore
decided to randomly choose lag windows, which is depicted via the U{X} opera-
tor, that represents the uniform random selection of an element in the given set X.
The creation of sequence GIL is shown in Algorithm 1, which requires the target
KPI, a list of lag windows for all KPIs and a CLD as input. We have shown earlier
how to arrive at such CLDs based on a given time series data set [16].

The overall size of the NN mainly depends on the number of hidden lay-
ers and neurons per hidden layer stored in GHL. All layers are connected in a
feed-forward fashion. We have decided to restrict the overall NN hidden layer
structure in its form to a sideways rotated triangle, whose base is the first hidden
layer and whose top is the last hidden layer, i.e., each consecutive layer consists
of equal or less neurons compared to its predecessor. This is mainly because we
find such a structure to beneficially impact the overall prediction results. How-
ever, other structures, such as a square or diamond, are also promising and are
subject to further research. Algorithm 2 provides the pseudo-code to produce
GHL with the required inputs GIL, an interval for the minimum and maximum
number of hidden layers and a global minimum of neurons for any hidden layer,
to avoid empty hidden layers. Similarly to the random selection in a set U{X} in

42 M. Drobek et al.

Algorithm 1. Create an input layer sequence for a target KPI T
Procedure: buildILSequence : GIL = {g0, . . . , gi}
Require: target KPI T; list of lag window sets Ω;

causal loop diagram CLD
GIL ← []
dependencies ← find dependencies of T in CLD
dependencies ← add T to dependencies
index ← 0
for (dependency D ∈ dependencies) do

ΩD ← find lag window set for D in Ω
GIL[index++] ← U{ΩD}

end for
return GIL

Algorithm 1, we are using U{[min,max]} as a discrete uniform random selection
of a given integral number interval [min,max].

Once the NN structure has been defined, one needs to determine the acti-
vation functions for each layer transition, represented in GAF . We have created
a set of commonly used activation functions, which includes the following func-
tions: Linear, Sigmoid, Elliot, Tanh, Sin, Log, Gaussian. For each transition,
one of these activation functions is randomly choosen. Algorithm 3 shows this
procedure. The genotyope G is then simply a union of the three subsequences
created with the Algorithms 1, 2 and 3.

G is a representation of an NN and as such easily transformable into any specific
NN runtime representation (a real NN). This NN is then trained with the given
historical time series and a training algorithm. We have implemented three
well established training algorithms for NEvo: Backpropagation, Resilient-
Backpropagation and Scaled-Conjugate-Gradient [18,19]. After a particular train-
ing error has been reached, the training is stopped. In some cases, the training error

Algorithm 2. Create a hidden layer sequence for a target KPI
Procedure: buildHLSequence : GHL = {gi+1, . . . , gj}
Require: GIL = {g0, . . . , gi}; hidden layer interval [hlimin, hlimax];

minimum number of neurons per layer LOWER BOUND
GHL ← []
hiddenLayers ← U{[hlimin, hlimax]}
maxNeurons ←∑a=i

a=0 GIL[a]
idealNeurons ← �(maxNeurons + 1)/hiddenLayers�
GHL[0] ← hiddenLayers
for (layer ← 1; layer ≤ hiddenLayers; layer++) do

minNeurons ← max(maxNeurons − idealNeurons,LOWER BOUND)
GHL[layer] ← U{[minNeurons,maxNeurons]}
maxNeurons ← minNeurons

end for
return GHL

Automated Equation Formulation for Causal Loop Diagrams 43

Algorithm 3. Create an activation function sequence
Procedure: buildAFSequence : GAF = {gj+1, . . . , gk}
Require: GHL; set of activation functions Φ

GAF ← []
activationFunctionSize ← size(GHL)
for (index ← 0; index < activationFunctionSize ; index++) do

GAF [index] ← U {Φ}
end for
return GAF

might be stuck in a local optima that it can’t escape from. This effect can be coun-
teracted by introducing an iteration limit, which automatically stops the training
after reaching the number of iterations. Once the network has been trained, it has
to be evaluated to compute a measure of its fitness.

Fitness Function. The fitness function is a measurement of the quality for an
individual in a population. It determines, whether a given individual i1 is a
better solution for the optimisation problem than individual i2. The definition
of an adequate fitness function for the problem at hand is therefore critical. In
our case, the fitness function incorporates the following two major metrics:

– The neural network training error fTE .
– The prediction error of the individual fPE .

The training error fTE of an NN is a direct measure of how much the network
aligns to the given input data it has been trained on. This value is a direct
output of the training function itself and therefore available without any further
computation cost. However, since these values are usually very small fTE needs
to be scaled appropriately in the fitness function. The prediction error fPE is a
measure for evaluating how well a trained NN performs on data it hasn’t seen
before. In this paper, we have decided to use 80% of the available historical data
(training data) to train the network and the remaining 20% (prediction data) to
compute the prediction error. The prediction error is computed from the devia-
tion of the given timeseries data and the output of the NN for that time period by
applying an error function. Literature provides various different error functions
that can be applied, e.g., the mean squared error (MSE), root mean squared
error (RMSE), mean absolute error (MAE) or mean magnitude of relative error
(MMRE). As we will see later in the evaluation section, we have tested NEvo
with all those error functions. The fitness function is then a simple aggregation
of both, the scaled network training error fTE and the weighted prediction error
fPE (2). This function is used to evaluate each individual and compare it with
other individuals in a given population, therefore creating evlutionary pressure.

f = w1 ∗ fTE + w2 ∗ fPE (2)

Evolutionary Operators. To improve the overall fitness of a given population
according to the above defined fitness function f , we have implemented sev-
eral evolutionary operators. Each generation is started with a uniform random

44 M. Drobek et al.

selection on a given parent population Pop = {GP0 , GP1 , . . . , GPn
}. The selec-

tion creates pairs of parent individuals that are then recombined with a uniform
crossover at gene gj (number of hidden layers) in order to create two child indi-
viduals. Equation (3) shows the signature and definition of this recombination
ρ. Hence, the first created child individual contains the input layer subsequence
from the first parent and the hidden layer and activation function subsequence
from the second parent. The same holds vice versa for the second individual.

ρ : 〈GPi
, GPj

〉 → 〈GCk
, GCl

〉
ρ(〈GPi

, GPj
〉) = ρ(〈{GIL

Pi
, GHL

Pi
, GAF

Pi
}, {GIL

Pj
, GHL

Pj
, GAF

Pj
}〉)

= 〈{GIL
Pi

, GHL
Pj

, GAF
Pj

}, {GIL
Pj

, GHL
Pi

, GAF
Pi

}〉
= 〈GCk

, GCl
〉

(3)

This procedure is repeated until a sufficiently dense child population has been
created. Afterwards, a subset population is selected based on a mutation rate. All
child individuals in this subset undergo a mutation operation, which alters one
gene or a small gene subsequence. We have implemented four different mutations:

– Input neuron mutation: One gene gn ∈ GIL is randomly chosen and replaced
with a new lag size from the precomputed pool of different lag sizes for the
associated input variable.

– Neuron mutation: The number of neurons in one particular hidden layer gn ∈
GHL is reset with a new random value in a given interval.

– Hidden layer mutation: The entire hidden layer gene sequence GHL is rebuilt.
– Activation function mutation: One activation function gene gn ∈ GAF is

replaced with a randomly chosen element from the given pool of activation
functions.

The actual mutation, which is applied to a given individual, is randomly selected
from the above defined mutation set. Finally, the recombined and mutated child
population is filtered with an environment selection, which in our case is a best
selection based on the fitness of each child. This selection reduces the size of the
child population to the size of the parent population for the next generation.
Since the selection is based on the fitness of the child individuals, it also helps
to achieve a convergence of the population fitness towards an optimal solution.

Configuration Parameters. NEvo is a complex FS computation algorithm, and
as such, subject to a configuration that guides the algorithm and yield different
FS results. The following parameters are required for each NEvo run:

– Generations: The number of generations the evolutionary cycle is executed to
improve the overall fitness.

– Number of parent individuals: The number of parent individuals each gener-
ation is started with.

– Number of child individuals: The number of children created from the parent
population with the recombination operator.

– Mutation rate: The percentage of child individuals in a given child population
that are subject to the mutation operators.

Automated Equation Formulation for Causal Loop Diagrams 45

– Prediction error function: The error function to compute the deviation of the
prediction output and the orginal time series. As explained earlier, multiple
functions are available for fPE , e.g., RMSE, MSE, MAE, MMRE.

– Training function: The neural network training function, e.g., Backpropa-
gation, Resilient-Backpropagation, Quick-Propagation or Scaled-Conjugate-
Gradient.

4 Usecase

The evaluation of NEvo is based on the business use-case of the company Akron
Heating (AH), which operates in the highly competitive retail sector [20]. AH’s
business model is based on selling goods via an online store and supported by
various Business Processes (BPs), e.g., the Order process, Consignment fill-up
process, Return-Item process and so on. For managing and controlling their
business, AH employs various software solutions (ERP, CRM and HRM). These
solutions are thoroughly tracking and storing the generated operational and
business data, such as event data and aggregated high level data (revenue, sales,
market share, cost of goods sold, cashflow and so forth). We have shown in
our previous research work how one could automatically create CLDs based on
this data, to evaluate causality between these variables and find root causes for
bottlenecks [21]. Such automatically created CLDs are created with the help of
Granger-Causality and domain specific ontologies, thus aiming to visualize cau-
sation rather than correlation [22]. In this paper, we are using an extended CLD
that incorporates more strategic KPIs than created in [21]. It has been automat-
ically generated with the same algorithm. An image section of the CLD is shown
in Fig. 1. This image section does not contain loops, since it has been simplified
from a larger more complex view. However, the entire complex CLD with all
loops is the basis for the evaluation and as such, input for NEvo (including all
loops). The image section of the CLD shows 18 high-level KPIs, for instance,
profit, sales, expenses, number of orders, etc., as well as their causal relation-
ships. Every KPI in the CLD has to be annotated with an accurate FS computed
via NEvo. A created FS is ‘accurate’ if its respective fitness computed via f is
minimal. A minimised fitness is a strong indicator, that the FS is capable of
replaying the historical time series data, as well as, predict its future develop-
ment. As we have explained earlier, the usage of NEvo requires time series data
for each KPI and its dependencies. In the AH use-case, such time series data is
provided for a range of 10 years (2000–2010) and was monitored on a monthly
basis. Each time series therefore provides 120 entries, of which 90 entries are
used for NEvo (training and prediction data) and 30 entries are used to evaluate
NEvo’s prediction capabilites (evaluation data). The 90 entries used for NEvo
are split in the above stated 80/20 fashion, which means that 72 data points
are used as training data and 18 points are used as prediction data. To create
a reference frame for later comparison, we have set a default parameter pool
for each NEvo run, which looks as follows: 200 generations, 25 parent individ-
uals, 125 child individuals and a mutation rate of 0.7. These parameters have

46 M. Drobek et al.

Fig. 1. An image section of a greater CLD that represents interesting dependencies
and KPIs in the AH use-case.

been identified to work well throughout several simulation runs. The prediction
error function for fPE and the NN training function for fTE are subject to the
specific run.

5 Results and Evaluation

The evaluation of NEvo is a comparison of its prediction capabilities with both,
a linear regression (LR) and a uniform random estimator (URE). LR produces
a linear mean function over the given time series, whereas URE is a uniform
random distribution in the interval [min, max], with min and max being the
minimum and maximum value of the given time series. We compare the quality
of the results for NEvo, LR and URE by using a cumulative distribution function
(CDF) of the relative error. It shows how many y percent of the prediction results
are within a relative error range of x percent of the original time series. These
results are produced on the evaluation data set, which consists of 30 entries. The
NEvo prediction results are created as single step predictions with the evaluation
data set as input (rather than previously predicted values). However, none of the
evaluation data points have been used to train the NN. Figure 2 shows results
for the replay and prediction of the KPIs salesvolume and profit. As we can see
in the first picture 2(a), the winning NN nearly reproduces the original training
data with an accuracy of a 100 %, but continues less accurate on the remaining
prediction data (which was not fed into the NN, but rather used to internally
evaluate the NN with the EA). Investigating the evaluation output (green line)
clearly shows that only few trends are recognized by NEvo. This observation
can be confirmed by analyzing the CDF graph 2(b). The simple LR algorithm

Automated Equation Formulation for Causal Loop Diagrams 47

(a)Salesvolume (MRE, RP):
Original (blue), NN replay
(black) and predictions (green)

(b)CDF for Salesvolume with
NEvo (blue), LR (green) and
URE (red)

(c)Profit (MAE, RP): Original
(blue), NN replay (black) and
predictions (green)

(d)CDF for Profit with NEvo
(blue), LR (green) and URE
(red)

Fig. 2. NEvo results: The left side shows the original time series (blue), the training
replay of the winning NN (black) and the predictions of this NN (green). The right
side shows the CDF for NEvo (blue), LR (green) and URE (red) (Color figure online).

outperforms NEvo in this scenario, since 80 % of all prediction results produced
by LR are better than 5 % of relative error of the original salesvolume time series.
This is due to the small overall fluctuation of the salesvolume time series (all
values are between a 15 % relative error). However, if we focus more on the results
of a KPI with a higher fluctuation, e.g., profit, evidence points to more reliable
results predicted with NEvo (see Fig. 2(c) and (d)). The graph 2(c) on the left
shows a couple of prediction intervals that are picked up correctly by NEvo, e.g.,
03/2009 until 06/2009 or 02/2010 until 06/2010. This is also reflected in the
respective CDF graph 2(d) on the right, which shows a better performance of
NEvo compared to LR and URE. These sort of prediction results can be found
along all given KPIs, if all previously explained error functions and training
functions are included (see Fig. 3(a) and (b) for another example of the monthly
variable costs of Akron Heating).

An interesting question at this point is that of the ‘best’ NEvo configuration
to guarantee results that are at least of the quality as shown earlier in the profit
example. As we can see in the CDF graphs 3(c) and (d), such a configuration
might not exist. Both figures are clearly showing that different configurations
for different KPIs yield the respective ‘best’ result. For instance, in case of the
profit KPI, RP MAE and RP MSE produce the best results, whereas in case
of expenses RP RMSE and SCG MSE are better. Nevertheless, the CDF itself
can be employed to automatically determine the ‘best’ winning NN accurately.

48 M. Drobek et al.

(a)Variable costs (MAE, SCG):
Original (blue), NN replay
(black) and predictions (green)

(b)CDF for variable costs with
NEvo (blue), LR (green) and
URE (red)

(c)CDF of profit for all 8 win-
ning NEvo NNs from all differ-
ent configurations

(d)CDF of expenses for all 8
winning NEvo NNs from all dif-
ferent configurations

Fig. 3. The prediction output for the variable cost and its CDF (3(a) and 3(b)). 3(c)
and 3(d) show a comparison of all CDFs for the profit and expenses KPI (Color figure
online).

6 Conclusion and Future Work

In this paper we have demonstrated an EA-guided NN function retrieval algo-
rithm that is capable of annotating all variables in a given CLD, thus preparing
the CLD itself for a later multi step prediction (simulation). Our future research
will be focussed on evaluating if the simulation of CLDs annotated with NEvo
can accurately predict the future development of the modelled KPIs for longer
time frames (multi step). We have shown that some of the NEvo results are
not capable of matching the quality of a simple LR algorithm that produces a
mean function over the given time series. Some of these results can be explained
with a timely shift in the prediction results that has a strong impact on the
CDF. However, this clearly shows room for improvement. As stated in the “Net-
work Evolution” section, the NN topology is currently limited to simple feed-
forward networks. One possible improvement is the implementation of different
NN topologies, such as partial-recurrent networks that are capable of maintain-
ing a state. We have also explained earlier that different hidden layer structures
are under investigation (square and diamond structures). Furthermore, after
analysing the CDF results, one could think of an extension of the EA fitness
function by enriching it with a CDF threshold: Whenever y % of the predic-
tion results are above a relative error of x %, an additional penalty is applied.
This would surely favour all those individuals that are below such a threshold.
It remains to be investigated, whether such improvements yield more accurate
prediction results.

Automated Equation Formulation for Causal Loop Diagrams 49

References

1. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer,
Heidelberg (2006)

2. Forrester, J.W.: Industrial Dynamics. Currently Available from Pegasus Commu-
nications. MIT Press, Cambridge (1961)

3. Sterman, J.D.: Business Dynamics: Systems Thinking and Modeling for a Complex
World. McGraw-Hill, New York (2000)

4. Drobek, M., Gilani, W., Soban, D.: Parameter estimation and equation formulation
in business dynamics. In: 3rd International Symposium on Business Modeling and
Software Design. ScitePress, Noordwijkerhout (2013)

5. Burns, J.R.: Converting signed digraphs to forrester schematics and converting
forrester schematics to differential equations. IEEE Trans. Syst. Man Cybern. B
Cybern. 10, 695–707 (1977)

6. Fausett, L.V.: Fundamentals of Neural Networks: Architectures, Algorithms, and
Application, 1st edn. Pearson, London (1993)

7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

8. McNelis, P.D.: Neural Networks in Finance: Gaining Predictive Edge in the Market.
Academic Press, Orlando (2005)

9. Tudor, N.L.: Intelligent system for time series prediction in stock exchange markets.
In: Abramowicz, W., Kokkinaki, A. (eds.) BIS 2014. LNBIP, vol. 176, pp. 122–133.
Springer, Heidelberg (2014)

10. Holland, J.H.: Genetic algorithms and the optimal allocations of trials. SIAM J.
Comput. 2, 88–105 (1973)

11. Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Inc., Boston (1989)

12. Rechenberg, I.: Evolutionsstrategie - Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Ph.D. thesis (1971)

13. Schwefel, H.P.: Numerische Optimierung von Computer-Modellen, vol. 26th.
Birkhaeuser, Basel (1977)

14. Schaffer, J., Whitley, D., Eshelman, L.: Combinations of genetic algorithms and
neural networks: a survey of the state of the art. In: COGANN 1992, pp. 1–37.
IEEE, Baltimore, MD (1992)

15. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87, 1423–1447 (1999)
16. Drobek, M., Gilani, W., Soban, D.: A data driven and tool supported CLD creation

approach. In: The 32nd International Conference of the System Dynamics Society,
pp. 1–20, Delft (2014)

17. Wei, W.W.S.: Time Series Analysis: Univariate and Multivariate Methods, 2nd
edn. Pearson, London (2005)

18. Riedmiller, M., Braun, H.: RPROP - a fast adaptive learning algorithm. In: Pro-
ceedings of ISCIS VII (1992)

19. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-
tems. J. Res. Nat. Bur. Stan. 49(6), 409–436 (1952)

20. Fritzsche, M., Picht, M., Gilani, W., Spence, I., Brown, J., Kilpatrick, P.: Extending
BPM environments of your choice with performance related decision support. In:
Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 97–112. Springer, Heidelberg (2009)

21. Drobek, M., Gilani, W., Redlich, D., Molka, T., Soban, D.: On advanced business
simulations - converging operational and strategic levels. In: 4th International Sym-
posium on Business Modeling and Software Design. ScitePress, Luxembourg (2014)

22. Granger, C.W.J.: Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37, 424–438 (1969)

	Automated Equation Formulation for Causal Loop Diagrams
	1 Introduction
	2 Background
	3 Network Evolution
	4 Usecase
	5 Results and Evaluation
	6 Conclusion and Future Work
	References

