

© Springer International Publishing Switzerland 2015
H. Unger et al. (eds.), Recent Advances in Information and Communication Technology 2015,

41

Advances in Intelligent Systems and Computing 361, DOI: 10.1007/978-3-319-19024-2_5

Finding the Critical Path with Loop Structure
for a Basis Path Testing Using Genetic Algorithm

Jakkrit Kaewyotha and Wararat Songpan (Rungworawut)

Department of Computer Science, Faculty of Science, Khon Kaen University,
Khon Kaen, Thailand

jakkrit_k@kkumail.com, wararat@kku.ac.th

Abstract. Path testing is strongest code coverage in white box testing tech-
niques. The objective of path testing is design path generating of program under
test. However, testing all paths does not mean that will find all defects in a pro-
gram especially loop structure program problem. In this paper significantly
achieved used genetic algorithm for automatic finding the critical path. The GA
can analyze control flow graphs of program to finding defect path called critical
path with loop structure. In addition, the approach designs automation of gener-
ating critical paths, which the algorithm can be adopted to find an optimal
solution in five programs under test. The experimental results shown that can
generate and recommend a set of critical defect path for five programs in differ-
ent loop structure of program. Our proposed approach is effective to help de-
veloper to find critical paths which means the paths should be improved in a
program previously.

Keywords: White Box, Path Testing, Genetic Algorithm.

1 Introduction

The software testing processing has spending time and high cost, according with the
objective of testing the software in order to given the performance and accurate with
the requirement. In the recently, the several software testing companies where inter-
ested for high accuracy and improved the testing quality to reduce errors in software
also known as defects. The defect is weak point of the software's source code or the
software function faults which brought the incorrect for the expectance output. The
several importance factors for software testing both spend high cost and times. Many
defects arise because programmers have forgotten to include some processing in their
code, so there are no paths to execute. Some defects are also related to the order in
which code segments are executed. Wherever, software testers have effort to decrease
the times and cost for software testing to improve the performance and reduce in
spending time. Therefore, the increasing of the automated software testing researches
was growing which separated for two types: black box and white box techniques.
Black box technique only is pointed the software input and output. In other hand,
white box technique represented the testing for software structure which focuses on
the software's source code. However, the problem is how to adopt this technique to

42 J. Kaewyotha and W. Songpan (Rungworawut)

complex source code in order to real program can have both sequence structure and
loop structure to implement source code completely. When source code is executed, it
shows only error parameter within a line. Therefore, the basis path testing is used in
this problem to analyze defects that found on whole paths. We propose an approach to
generate the priority path of software which applied the genetic algorithm with loop
structure that is the major contribute in this paper. In addition, we increased the pa-
rameter adjustment for find out the defect to solve loop structure program that is chal-
lenge. For example, population size, crossover, mutation and number of generation by
using genetic algorithm. The paper is arranged as follows: Section 2 presents the re-
lated work. Section 3 gives definition of basis path testing and how to construct the
control flow graph. Section 4 presents experiments an approach that uses genetic al-
gorithm applied to path testing with case study. The experimental results and discus-
sion are described in the section 5. Finally, the conclusion present in section 6.

2 Related Work

There are many research in software testing with genetic algorithm. Hermadi et al. [1]
presented using genetic algorithm generate test cases for white box testing of software
testing which test cases is built by path testing which this paper analyze to control
parameters affect to performance of genetic algorithm for path testing. The rest of the
paper shows population size very impact for path coverage, in order is allele range
while number of generation and mutation rate is low impact in term of number of
paths found. The paper showed only the experimental results with parameters adjust-
ment. Mansour and Salame [2] presented generate test cases for execute specified
paths in program by using two algorithms are simulated annealing algorithm and ge-
netic algorithm. These algorithms are based on the formulation optimization of the
path testing problem which includes integer and real value. This paper compare three
algorithms are simulated annealing algorithm, genetic algorithm and Korel's algo-
rithm with eight subject programs. The rest of paper shows simulated annealing algo-
rithm and genetic algorithm are efficient than Korel's Algorithm in term number of
executed path, simulated annealing algorithm tends to executed better than genetic
algorithm in term number of executed path and genetic algorithm faster than simulat-
ed annealing algorithm. They focused on comparison of three algorithms with gener-
ated test cases for programs. However, the algorithm does not specify critical paths to
suggest how to fix it. Srivastava and Kim [3] presented method for optimizing soft-
ware testing efficiency by identifying the most critical path clusters in a program by
developed variable length of genetic algorithm in order to optimize and select soft-
ware path, moreover, they tried to use weight to control path generation. The problem
is genetic algorithm generated many paths and redundant when occurred the same
fitness values and also not likely cause of error. Nirpal and Kale [4] presented apply
genetic algorithm to generate test cases to test selected path. The genetic algorithm is
used to selected path a target and executes sequence of operator iteratively for test
cases. This research experiment triangle classification program and used genetic
algorithm to automatic generate test cases for path testing and compare with method

 Finding the Critical Path with Loop Structure for a Basis Path Testing 43

generate test case produced by random. The experimental result shows genetic algo-
rithm according to test data more effectively and quality of test cases by genetic algo-
rithm is higher than test cases by produced by random. Ghiduk [5] presented genetic
algorithm for generating test path and presented new technique for automatically gen-
erating a set of basis test paths. In this research, the basic structure of the software
analyzes and design in form of control-flow graph (CFG) then converts CFG in form
of dd-graph (DDG) to begin process of genetic algorithm a new technique was pre-
sented. This research aims to generated basis paths of each program which research
was presented 10 programs. The experimental result shows their technique that can
find path around 80% of actual basis paths of all subject programs which can be used
testing paths in various parts of the technique in path testing and shows genetic algo-
rithm of this paper effective in test path generation. Ngo and Tan [6] presented based
approach to infeasible path detection for dynamic test data generation which is a
method finding for infeasible path which can be apply with other dynamic path-
oriented test data generation technique to increase efficiency the many techniques to
finding infeasible path. This paper used control flow graph is representative structure
software. The example software of paper is compute_grade and presented test data
generation using infeasible path detection algorithm. This research was experiment to
compare Bueno approach using 4 java system in experiment are PMD, JMathLib,
GFP, SOOT. The experimental result shows the proposed method is very effective in
finding infeasible paths with average precision of 96.02% และ recall of 100% in all the
cases. The most papers solved with programs do not focus on loop structure. In
difference, this paper showed how to solved the program with collected loop structure
that is our challenge work.

3 Basis Path Testing

3.1 Path Testing

The path testing meaning the white box testing for assisted the tester who design the
test case which measure by the cyclometic complexity of program graph. In addition,
the cyclometic complexity measure could define the set of data for performing flow
graph called directed graph and consists the node which including statement and edg-
es represent the flow of control. For example, node i and j where the directed graph
link between from i to j after i node is executed and j is computed immediately. Path
testing is an approach to testing where you ensure that every path through a program
has been executed at least once. The program graph is written from programming
language which is transform to a directed graph called control flow graph (CFG).
CFG represented the structure of program similar with the flowchart without the con-
dition. The node of each control flow represented directed control flow graph includ-
ing either assignment nodes or decision nodes. The statement defined by the line of
code which the execution related with the path from started node to sequence node,
which linkage between nodes are executed. For example a reserve number program
performed by C language. The line of code i will be translated to node i of CFG as
show in Fig 1. Between node i and j called edge and represented by en where n is

44 J. Kaewyotha and W

consequence number execu
edges also are executed fr
edge e6, e7, e8 and exit loo
respectively.

Fig. 1. Sou

4 Experiments

In the process of finding th
program under testing. In F
starts with the process of i
solutions which these popu
A critical path means the
completed fitness function
elitism method was selecte
according to fitness functio
transform to parent and sha
offspring and the mutation
cess. Finally, swap some g
until the required number o
using genetic algorithm find

4.1 Initial Population

The number of population
number of edge. The numb
some. The number of all e
example, reserve number pr
only between 1 and 10 to ea

W. Songpan (Rungworawut)

ution. The nodes from 1 to 5 are sequence nodes and
rom e1 to e5, next from node 6 to 8 repeat the loop w
op in node 6 with e9 and direct to node 9 and 10 with

urce code to CFG of Reserve number program

he critical path could be compiled a genetic algorithm o
Fig 2 shows the applied genetic algorithm to path test
initial population generation which designs a set of m
ulation called chromosomes computed by fitness functi
e highest fitness function of those chromosomes. A
computing then performs the selection process which

ed. The elitism method is keeping the best chromoso
on. Then the Crossover state, random two chromosom
aring a part of genes. The product of sharing stated cal
process was computed after completed the crossover p

genes within an offspring. The algorithm can be repea
of generations is reached by population size. For examp
d out critical path on reserve number program.

selected from all chromosomes which is random by
ber of edge is randomized into each genes of a chrom
edge depends on the program that translates to CFG.
rogram has 10 edges that are assigned randomly an inte

ach genes of a chromosome as show in Figure 3.

the
with
h e10

on a
ting

many
ion.

After
the

ome
mes
lled
pro-
ated

mple,

the
mo-
For

eger

 Finding the Critical Path with Loop Structure for a Basis Path Testing 45

Fig. 2. Genetic algorithms process

Fig. 3. Initial population generation

4.2 Fitness Function

The Fitness function is measure the fitness of chromosome of each chromosome
where possible solution design. Each chromosome in population gives a fitness val-
ues. If the chromosome gives highest fitness value which means critical path. The
fitness functions are represented follow as Eq.1

∑
=

=
Edges#

1i
(i)Defect FunctionFitness , (1)

where edge i has linked with edge i+1

46 J. Kaewyotha and W. Songpan (Rungworawut)

As Figure 1 reserve number program is drawn to CFG flow and stored defects into
defect table (i.e., Fig. 4). The number of defect in each edge gets from the program
executed on complier between lines of code that appeared error. And the table is col-
lected defected into defect table. Therefore, a chromosome can be computed by fit-
ness function in equation (1). For example, fitness value of chomosome1,
chomosome2 and chomosome3 gives 3, 2 and 1 respectively. Let us look
chomosome1 calculation; edge 10 no has linked with edge 5 from Fig. 4 that gives 0
from edge10 to edge 5, therefore, defect gives value 0. Next defect is calculated edge
5 that only has linked to edge 6; the fitness function is worked given 1. Therefore, the
total of fitness value of chomosome1 gives 3.

Fig. 4. Defect table of reserve number program

4.3 Crossover

Crossover process needs to choose two chromosomes by selection process as parents
to sharing a part of genes and produce two offspring. For example, chomosome2 and
3 as parent crossover between them if position of crossover randomly is 5. The off-
spring1 is obtained from gene 1 to 5 of parent1 and from 6 to 10 of parent2. In addi-
tion, the offspring2 is obtained from 1 to 5 of parent2 and from 6 to 10 of parent1 in
Fig. 5. However, for the algorithm will define a crossover rate. If the crossover is not
greater than the rate, the parents will crossover process.

Fig. 5. Crossover process

 Finding the C

4.4 Mutation

The mutation process will c
some genes within an offsp

5 Experimental R

There are five programs fo
number [8], Even number p
tion sort [1,11,12], Which
Fig. 7-10. The objective of
the defect path as critical pa

F

Critical Path with Loop Structure for a Basis Path Testing

computed after the crossover process finished by swappi
ring (e.g. position 2 and 8) as Fig. 6.

Fig. 6. Mutation process

Results

or testing including as Reverse a number [7], Check pri
pyramid [9], Insert an element in an array [10] and In
each program differences structure of program as show
f this experiment is to clarify the algorithm that discov
ath even more complex program of 5 programs.

Fig. 7. CFG of Check prime number

47

ing

ime
ser-

w in
vers

48 J. Kaewyotha and W

F

Fig.

W. Songpan (Rungworawut)

Fig. 8. CFG of Even number pyramid

9. CFG of Insert an element in an array

 Finding the C

(a)

Fig. 11. Defect table of (a) C
ment in an array (d) Insertion s

Critical Path with Loop Structure for a Basis Path Testing

Fig. 10. CFG of Insertion sort

(b)

Check prime number (b) Even number pyramid (c) Insert an
sort

49

ele-

50 J. Kaewyotha and W. Songpan (Rungworawut)

(c)

(d)

Fig. 11. (continued)

We set up optimal set of parameters for algorithm running as bellows,

Table 1. Parameter setup

Programs Population
size

Crossover
rate

Mutation
rate

Number of
generation

Reverse a number 2000 0.8 0.08 100
Check prime number 20000 0.8 0.08 100
Even number pyramid 2000 0.8 0.08 100

Insert an element in an array 2000 0.8 0.08 100
Insertion sort 20000 0.8 0.08 100

 Finding the Critical Path with Loop Structure for a Basis Path Testing 51

Table 2. Critical Paths of 5 programs in different structure

Programs Path generation Critical path Fitness
value

Reverse a number e2-e4-e1- e3-e10- e5- e6- e7-
e8-e9

e5- e6- e7- e8-
e9

4

Check prime number e4-e11- e14- e13- e12- e1- e5-
e6- e7- e8- e9- e10- e3- e2

e5- e6- e7- e8-
e9- e10

5

Even number pyra-
mid

e3- e11- e2- e10- e1- e5- e6-
e7- e8- e9- e4

e5- e6- e7- e8-
e9

4

Insert an element in
an array

e11- e3- e8- e17- e2- e1- e16-
e12- e13- e14- e15- e20- e10-
e18- e4- e5- e9- e7- e6- e19

e12- e13- e14-
e15

3

Insertion sort e6- e9- e10- e20- e2- e12-
e13- e14- e15- e16- e4- e11-
e19- e3- e8- e1- e17- e7- e22-

e21- e18- e5

e12- e13- e14-
e15- e16

4

In Table 2 presented the algorithm runs to solve finding critical path in five pro-
grams under test. For example, reverse a number program defect path is generated e2-
e4-e1- e3- e10- e5-e6-e7-e8-e9, which expressed path defect e5- e6- e7- e8- e9 was
generated represents the number of edge of program to analyze the critical path from
reverse a number program. For example, number inputs 12345 for the reverse number
program testing and expected result 54321 which difference with 29614540. There-
fore, should consider solving this critical path in Fig. 12. The source code in line 6 is
revised from num=num*10 to num=num/10, in line 7 is revised from r=num/10 to
r=num%10 and in line 8 is revised from reverse*10-r to reverse*10+r

.

Fig. 12. Example of revision reverse a number program by GA recommends

In addition, the programs of Check prime number, Even number pyramid, Insert an
element in an array and Insertion sort program are generated to the critical path. The
path e4-e11- e14- e13- e12- e1- e5- e6- e7- e8- e9- e10- e3- e2 of check prime number
program gives the edge of defect in program that is e5- e6- e7- e8- e9- e10. The anal-
ysis of defect output when input 5 expected result is 5 is prime number but defect
output 5 is not a prime number. However, developer will revise line 6-8 following
path recommendation. The even number pyramid program is generated critical path as

52 J. Kaewyotha and W. Songpan (Rungworawut)

e3- e11- e2- e10- e1- e5- e6- e7- e8- e9- e4 defect analysis is revised as line 6-8. The
Insert an element in an array program is generated critical path as e11- e3- e8- e17-
e2- e1- e16-e12- e13- e14- e15- e20- e10- e18- e4- e5- e9- e7- e6- e19 defect analysis
is revised as line 12 and 13. And The Insertion sort program is generated critical path
as e6- e9- e10- e20- e2- e12- e13- e14- e15- e16- e4- e11- e19- e3- e8- e1- e17- e7-
e22- e21- e18- e5 defect analysis is revised as line 12-14.

6 Conclusion

The result of finding the critical path for software testing using genetic algorithm in
that can supports the developer to analyze defects. Specifically, in this paper focused
on the software including the loop structure which the most software was often found
defect in loops structure. The newly found that successful how to apply genetic algo-
rithm repository complex source code which adjustment of some parameter in the
process as population size, crossover, mutation and number of generation. The fitness
function is very robustness to loop structure due to the mainly finding critical path is
to solve a continuous difficult finding critical path. Moreover, our approach helps to
solve the path design problem in a complex program in different structure.

References

1. Hermadi, I., Lokan, C., Sarker, R.: Genetic Algorithm Based Path Testing: Challenges
and Key Parameters. In: Proceeding of the 2010 Second World Congress on Software
Engineering (WCSE), vol. 2, 241–244 (2010)

2. Mansour, N., Salame, M.: Data Generation for Path Testing. Software Quality Journal.
12(2), 121-136 (2004)

3. Srivastava, P.R., Kim, T.H.: Application of Genetic Algorithm in Software Testing.
International Journal of Software Engineering and Its Applications, 3(4), 87-96 (2009)

4. Nirpal, P.B., Kale, K.V.: Comparison of Software Test Data for Automatic Path Coverage
Using Genetic Algorithm. International Journal of Computer Science & Engineering
Technology, 1(1), 12-16 (2010)

5. Ghiduk, A.S.: Automatic generation of basis test paths using variable length genetic algo-
rithm. Information Processing Letters, 114(6), 304–16(2014)

6. Ngo, M.N., Tan, H.B.K.: Heuristics-based infeasible path detection for dynamic test data
generation. Information and Software Technology, 50(7), 641–55 (2008)
Kumar, R., http://www.cquestions.com/2008/01/c-program-to-
reverse-any-number.html

7. Kumar, R., http://www.cquestions.com/2012/02/
check-given-number-is-prime-number-or.html

8. Taral P., http://www.c4learn.com/c-programs/
program-even-number-pyramid-in-c.html

9. Taral P., http://www.c4learn.com/c-programs/
program-insert-element-in-array.html

10. Kumar, R., http://www.cquestions.com/2009/09/
insertion-sort-algorithm.html

11. Ahmed, M.A., Hermadi, I.: GA-based multiple paths test data generator. Computers &
Operations Research, 35(10), 3107–3124 (2008)

	Finding the Critical Path with Loop Structure for a Basis Path Testing Using Genetic Algorithm
	1 Introduction
	2 Related Work
	3 Basis Path Testing
	3.1 Path Testing

	4 Experiments
	4.1 Initial Population
	4.2 Fitness Function
	4.3 Crossover
	4.4 Mutation

	5 Experimental R Results
	6 Conclusion
	References

